

Introduction to Modeling

and Simulation of

Technical and Physical

Systems with Modelica

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Lajos Hanzo, Editor in Chief

R. Abhari M. El-Hawary O. P. Malik
J. Anderson B-M. Haemmerli S. Nahavandi
G. W. Arnold M. Lanzerotti T. Samad
F. Canavero D. Jacobson G. Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Introduction to Modeling

and Simulation of

Technical and Physical

Systems with Modelica

Peter Fritzson

IEEE Press

A John Wiley & Sons, Inc., Publication

For further information visit: the book web page http://www.openmodelica.org, the Modelica Association web
page http://www.modelica.org, the authors research page http://www.ida.liu.se/labs/pelab/modelica, or home
page http://www.ida.liu.se/∼petfr/, or email the author at peter.fritzson@liu.se. Certain material from the
Modelica Tutorial and the Modelica Language Specification available at http://www.modelica.org has been
reproduced in this book with permission from the Modelica Association under the Modelica License 2
Copyright  1998–2011, Modelica Association, see the license conditions (including the disclaimer of
warranty) at http://www.modelica.org/modelica-legal-documents/ModelicaLicense2.html. Licensed by
Modelica Association under the Modelica License 2.

Modelica is a registered trademark of the Modelica Association. MathModelica is a registered trademark
of MathCore Engineering AB. Dymola is a registered trademark of Dassault Systèmes. MATLAB and
Simulink are registered trademarks of MathWorks Inc. Java is a trademark of Sun MicroSystems AB.
Mathematica is a registered trademark of Wolfram Research Inc.

Copyright  2011 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness
of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Fritzson, Peter A., 1952-
Introduction to modeling and simulation of technical and physical systems with Modelica /

Peter Fritzson.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-118-01068-6 (cloth)

1. Systems engineering—Data processing. 2. Computer simulation. 3. Modelica. I. Title.
TA168.F76 2011
003’.3—dc22

2011002187

Printed in Singapore

oBook ISBN: 978-1-118-09425-9
ePDF ISBN: 978-1-118-09424-2

10 9 8 7 6 5 4 3 2 1

http://www.openmodelica.org
http://www.modelica.org
http://www.ida.liu.se/labs/pelab/modelica
http://www.ida.liu.se/%EF%BD%9Epetfr/
http://peter.fritzson@liu.se
http://www.modelica.org
http://www.modelica.org/modelica-legal-documents/ModelicaLicense2.html
http://www.wiley.com/go/permission
http://www.wiley.com

Contents

Preface xi

1. Basic Concepts 1

1.1 Systems and Experiments, 2
1.1.1 Natural and Artificial Systems, 3
1.1.2 Experiments, 5

1.2 The Model Concept, 6
1.3 Simulation, 7

1.3.1 Reasons for Simulation, 8
1.3.2 Dangers of Simulation, 9

1.4 Building Models, 10
1.5 Analyzing Models, 12

1.5.1 Sensitivity Analysis, 12
1.5.2 Model-Based Diagnosis, 13
1.5.3 Model Verification and Validation, 13

1.6 Kinds of Mathematical Models, 14
1.6.1 Kinds of Equations, 15
1.6.2 Dynamic Versus Static Models, 16
1.6.3 Continuous-Time Versus Discrete-Time Dynamic

Models, 17
1.6.4 Quantitative Versus Qualitative Models, 18

1.7 Using Modeling and Simulation in Product Design, 19
1.8 Examples of System Models, 21
1.9 Summary, 27
1.10 Literature, 27

2. A Quick Tour of Modelica 29

2.1 Getting Started with Modelica, 30
2.1.1 Variables and Predefined Types, 35
2.1.2 Comments, 37
2.1.3 Constants, 38

v

vi Contents

2.1.4 Variability, 38
2.1.5 Default start Values, 39

2.2 Object-Oriented Mathematical Modeling, 39
2.3 Classes and Instances, 41

2.3.1 Creating Instances, 42
2.3.2 Initialization, 43
2.3.3 Specialized Classes, 44
2.3.4 Reuse of Classes by Modifications, 45
2.3.5 Built-in Classes and Attributes, 46

2.4 Inheritance, 47
2.5 Generic Classes, 48

2.5.1 Class Parameters as Instances, 48
2.5.2 Class Parameters as Types, 50

2.6 Equations, 51
2.6.1 Repetitive Equation Structures, 53
2.6.2 Partial Differential Equations, 54

2.7 Acausal Physical Modeling, 54
2.7.1 Physical Modeling Versus Block-Oriented

Modeling, 55
2.8 The Modelica Software Component Model, 57

2.8.1 Components, 58
2.8.2 Connection Diagrams, 58
2.8.3 Connectors and Connector Classes, 60
2.8.4 Connections, 61
2.8.5 Implicit Connections with Inner/Outer, 62
2.8.6 Expandable Connectors for Information Buses, 63
2.8.7 Stream Connectors, 64

2.9 Partial Classes, 65
2.9.1 Reuse of Partial Classes, 66

2.10 Component Library Design and Use, 67
2.11 Example: Electrical Component Library, 67

2.11.1 Resistor, 68
2.11.2 Capacitor, 68
2.11.3 Inductor, 68
2.11.4 Voltage Source, 69
2.11.5 Ground, 70

2.12 Simple Circuit Model, 70
2.13 Arrays, 72
2.14 Algorithmic Constructs, 74

Contents vii

2.14.1 Algorithm Sections and Assignment Statements, 75
2.14.2 Statements, 76
2.14.3 Functions, 77
2.14.4 Operator Overloading and Complex Numbers, 79
2.14.5 External Functions, 81
2.14.6 Algorithms Viewed as Functions, 82

2.15 Discrete Event and Hybrid Modeling, 83
2.16 Packages, 87
2.17 Annotations, 89
2.18 Naming Conventions, 91
2.19 Modelica Standard Libraries, 91
2.20 Implementation and Execution of Modelica, 94

2.20.1 Hand Translation of the Simple Circuit Model, 96
2.20.2 Transformation to State Space Form, 98
2.20.3 Solution Method, 99

2.21 History, 103
2.22 Summary, 107
2.23 Literature, 108
2.24 Exercises, 110

3. Classes and Inheritance 113

3.1 Contract Between Class Designer and User, 113
3.2 A Class Example, 114
3.3 Variables, 115

3.3.1 Duplicate Variable Names, 116
3.3.2 Identical Variable Names and Type Names, 116
3.3.3 Initialization of Variables, 117

3.4 Behavior as Equations, 117
3.5 Access Control, 119
3.6 Simulating the Moon Landing Example, 120
3.7 Inheritance, 123

3.7.1 Inheritance of Equations, 124
3.7.2 Multiple Inheritance, 124
3.7.3 Processing Declaration Elements and Use Before

Declare, 126
3.7.4 Declaration Order of extends Clauses, 127
3.7.5 The MoonLanding Example Using

Inheritance, 128

viii Contents

3.8 Summary, 130
3.9 Literature, 130

4. System Modeling Methodology 131

4.1 Building System Models, 131
4.1.1 Deductive Modeling Versus Inductive

Modeling, 132
4.1.2 Traditional Approach, 133
4.1.3 Object-Oriented Component-Based Approach, 134
4.1.4 Top-Down Versus Bottom-Up Modeling, 136
4.1.5 Simplification of Models, 136

4.2 Modeling a Tank System, 138
4.2.1 Using the Traditional Approach, 138
4.2.2 Using the Object-Oriented Component-Based

Approach, 139
4.2.3 Tank System with a Continuous PI Controller, 141
4.2.4 Tank with Continuous PID Controller, 144
4.2.5 Two Tanks Connected Together, 147

4.3 Top-Down Modeling of a DC Motor from Predefined
Components, 148
4.3.1 Defining the System, 149
4.3.2 Decomposing into Subsystems and Sketching

Communication, 149
4.3.3 Modeling the Subsystems, 150
4.3.4 Modeling Parts in the Subsystems, 151
4.3.5 Defining the Interfaces and Connections, 153

4.4 Designing Interfaces–Connector Classes, 153
4.5 Summary, 155
4.6 Literature, 155

5. The Modelica Standard Library 157

5.1 Summary, 168
5.2 Literature, 168

A. Glossary 169

Literature, 174

B. OpenModelica and OMNotebook Commands 175

B.1 OMNotebook Interactive Electronic Book, 175
B.2 Common Commands and Small Examples, 178

Contents ix

B.3 Complete List of Commands, 179
B.4 OMShell and Dymola, 185

OMShell, 185
Dymola Scripting, 185

Literature, 186

C. Textual Modeling with OMNotebook and
DrModelica 187

C.1 HelloWorld, 188
C.2 Try DrModelica with VanDerPol and DAEExample

Models, 189
C.3 Simple Equation System, 189
C.4 Hybrid Modeling with BouncingBall, 189
C.5 Hybrid Modeling with Sample, 190
C.6 Functions and Algorithm Sections, 190
C.7 Adding a Connected Component to an Existing

Circuit, 190
C.8 Detailed Modeling of an Electric Circuit, 191

C.8.1 Equations, 191
C.8.2 Implementation, 192
C.8.3 Putting the Circuit Together, 195
C.8.4 Simulation of the Circuit, 195

D. Graphical Modeling Exercises 197

D.1 Simple DC Motor, 197
D.2 DC Motor with Spring and Inertia, 198
D.3 DC Motor with Controller, 198
D.4 DC Motor as a Generator, 199

References 201

Index 207

Preface

This book teaches the basic concepts of modeling and simulation
and gives an introduction to the Modelica language to people who are
familiar with basic programming concepts. It gives a basic introduction
to the concepts of modeling and simulation, as well as the basics of
object-oriented component-based modeling for the novice. The book
has the following goals to be:

• A useful textbook in introductory courses on modeling and sim-
ulation.

• Easily accessible for people who do not previously have a back-
ground in modeling, simulation and object orientation.

• A basic introduction of the concepts of physical modeling,
object-oriented modeling, and component-based modeling.

• A demonstration of modeling examples from a few selected
application areas.

The book contains examples of models in a few different application
domains, as well as examples combining several domains.

All examples and exercises in this book are available in an elec-
tronic self-teaching material called DrModelica, based on this book
and the more extensive book Principles of Object-Oriented Modeling
of Simulation with Modelica 2.1 Fritzson (2004), for which an updated
version is planned. DrModelica gradually guides the reader from sim-
ple introductory examples and exercises to more advanced ones. Part
of this teaching material can be freely downloaded from the book’s
website, www.openmodelica.org, where additional (teaching) material
related to this book can be found.

xi

xii Preface

ACKNOWLEDGEMENTS

The members of the Modelica Association created the Modelica
language and contributed many examples of Modelica code in the
Modelica Language Rationale and Modelica Language Specification
(see http://www.modelica.org), some of which are used in this book.
The members who contributed to various versions of Modelica are
mentioned further below.

First, thanks to my wife, Anita, who has supported and endured
me during this writing effort.

Special thanks to Peter Bunus for help with model examples, some
figures, MicroSoft Word formatting, and for many inspiring discus-
sions. Many thanks to Adrian Pop, Peter Aronsson, Martin Sjölund,
Per Östlund, Adeel Asghar, Mohsen Torabzadeh-Tari, and many other
people contributing to the OpenModelica effort for a lot of work on the
OpenModelica compiler and system, and also to Adrian for making
the OMNotebook tool finally work. Many thanks to Hilding Elmqvist
for sharing the vision about a declarative modeling language, for start-
ing off the Modelica design effort by inviting people to form a design
group, for serving as the first chairman of Modelica Association, and
for enthusiasm and many design contributions including pushing for
a unified class concept. Also thanks for inspiration regarding presen-
tation material including finding historical examples of equations.

Many thanks to Martin Otter for serving as the second chairman
of the Modelica Association, for enthusiasm and energy, design and
Modelica library contributions, for two of the tables and some text in
Chapter 5 on Modelica libraries from the Modelica Language Specifi-
cation, as well as inspiration regarding presentation material. Thanks
to Jakob Mauss who made the first version of the Glossary, and to
Members of Modelica Association for further improvements.

Many thanks to Eva-Lena Lengquist Sandelin and Susanna Mon-
emar for help with the exercises, and for preparing the first version of
the DrModelica interactive notebook teaching material which makes
the examples in this book more accessible for interactive learning and
experimentation.

Thanks to Peter Aronsson, Jan Brugård, Hilding Elmqvist, Vadim
Engelson, Dag Fritzson, Torkel Glad, Pavel Grozman, Emma Larsdot-
ter Nilsson, Håkan Lundvall, and Sven-Erik Mattsson for constructive

Preface xiii

comments, on parts of the book. Thanks to Hans Olsson and Martin
Otter who edited recent versions of the Modelica Specification. Thanks
to all members of PELAB and employees of MathCore Engineering,
who have given comments and feedback.

Peter FritzsonLinköping, Sweden
May 2011

CHAPTER 1

Basic Concepts

It is often said that computers are revolutionizing science and engineer-
ing. By using computers we are able to construct complex engineering
designs such as space shuttles. We are able to compute the properties
of the universe as it was fractions of a second after the big bang. Our
ambitions are ever-increasing. We want to create even more complex
designs such as better spaceships, cars, medicines, computerized cellu-
lar phone systems, and the like. We want to understand deeper aspects
of nature. These are just a few examples of computer-supported mod-
eling and simulation. More powerful tools and concepts are needed
to help us handle this increasing complexity, which is precisely what
this book is about.

This text presents an object-oriented component-based approach
to computer-supported mathematical modeling and simulation through
the powerful Modelica language and its associated technology. Mod-
elica can be viewed as an almost universal approach to high-level
computational modeling and simulation, by being able to represent a
range of application areas and providing general notation as well as
powerful abstractions and efficient implementations. The introductory
part of this book, consisting of the first two chapters, gives a quick
overview of the two main topics of this text:

• Modeling and simulation
• The Modelica language

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

1

2 CHAPTER 1 Basic Concepts

The two subjects are presented together since they belong together.
Throughout the text Modelica is used as a vehicle for explaining dif-
ferent aspects of modeling and simulation. Conversely, a number of
concepts in the Modelica language are presented by modeling and sim-
ulation examples. The present chapter introduces basic concepts such
as system, model , and simulation. Chapter 2 gives a quick tour of
the Modelica language as well as a number of examples, interspersed
with presentations of topics such as object-oriented mathematical mod-
eling. Chapter 3 gives an introduction to the Modelica class concept,
whereas Chapter 4 introduces modeling methodology for continuous,
discrete, and hybrid systems. Chapter 5 gives a short overview of
the Modelica Standard Library and some currently available Modelica
model libraries for a range of application domains. Finally, in two
of the appendices, examples are presented of textual modeling using
the OpenModelica electronic book OMNotebook tool, as well as very
simple graphical modeling.

1.1 SYSTEMS AND EXPERIMENTS

What is a system? We have already mentioned some systems such as
the universe, a space shuttle, and the like. A system can be almost any-
thing. A system can contain subsystems that are themselves systems.
A possible definition of system might be:

• A system is an object or collection of objects whose properties
we want to study.

Our wish to study selected properties of objects is central in this defi-
nition. The “study” aspect is fine despite the fact that it is subjective.
The selection and definition of what constitutes a system is somewhat
arbitrary and must be guided by what the system is to be used for.

What reasons can there be to study a system? There are many
answers to this question but we can discern two major motivations:

• Study a system to understand it in order to build it. This is the
engineering point of view.

• Satisfy human curiosity, for example, to understand more about
nature—the natural science viewpoint.

1.1 Systems and Experiments 3

1.1.1 Natural and Artificial Systems

A system according to our previous definition can occur naturally,
for example, the universe, it can be artificial such as a space shuttle,
or a mix of both. For example, the house in Figure 1.1 with solar-
heated warm tap water is an artificial system, that is, manufactured
by humans. If we also include the sun and clouds in the system, it
becomes a combination of natural and artificial components.

Even if a system occurs naturally, its definition is always highly
selective. This is made very apparent in the following quote from Ross
Ashby (1956, p. 39):

At this point, we must be clear about how a system is to be defined. Our
first impulse is to point at the pendulum and to say “the system is that
thing there.” This method, however, has a fundamental disadvantage:
every material object contains no less than an infinity of variables, and
therefore, of possible systems. The real pendulum, for instance, has not
only length and position; it has also mass, temperature, electric
conductivity, crystalline structure, chemical impurities, some
radioactivity, velocity, reflecting power, tensile strength, a surface film
of moisture, bacterial contamination, an optical absorption, elasticity,
shape, specific gravity, and so on and on. Any suggestion that we should
study all the facts is unrealistic, and actually the attempt is never made.

Collector

Storage tank

PumpCold water

Hot water

Electricity

Heater

Figure 1.1 A system: a house with solar-heated warm tap water, together with clouds
and sunshine.

4 CHAPTER 1 Basic Concepts

What is necessary is that we should pick out and study the facts that are
relevant to some main interest that is already given.

Even if the system is completely artificial, such as the cellular phone
system depicted in Figure 1.2, we must be highly selective in its def-
inition, depending on what aspects we want to study for the moment.

An important property of systems is that they should be observ-
able. Some systems, but not large natural systems like the universe,
are also controllable in the sense that we can influence their behavior
through inputs, that is:

• The inputs of a system are variables of the environment that
influence the behavior of the system. These inputs may or may
not be controllable by us.

• The outputs of a system are variables that are determined by
the system and may influence the surrounding environment.

In many systems the same variables act as both inputs and outputs . We
talk about acausal behavior if the relationships or influences between
variables do not have a causal direction, which is the case for relation-
ships described by equations. For example, in a mechanical system the
forces from the environment influence the displacement of an object,
but on the other hand the displacement of the object influences the
forces between the object and environment. What is input and what
is output in this case is primarily a choice by the observer, guided by
what is interesting to study, rather than a property of the system itself.

Regional
processor

Regional
processor

Regional
processor

Incoming callsIncoming callsIncoming calls

Central processor
in cellular phone system

Figure 1.2 Cellular phone system containing a central processor and regional proces-
sors to handle incoming calls.

1.1 Systems and Experiments 5

1.1.2 Experiments

Observability is essential in order to study a system according to our
definition of system. We must at least be able to observe some outputs
of a system. We can learn even more if it is possible to exercise a sys-
tem by controlling its inputs. This process is called experimentation ,
that is:

• An experiment is the process of extracting information from a
system by exercising its inputs.

To perform an experiment on a system, it must be both controllable
and observable. We apply a set of external conditions to the accessi-
ble inputs and observe the reaction of the system by measuring the
accessible outputs.

One of the disadvantages of the experimental method is that for
a large number of systems many inputs are not accessible and con-
trollable. These systems are under the influence of inaccessible inputs,
sometimes called disturbance inputs . Likewise, it is often the case that
many really useful possible outputs are not accessible for measure-
ments; these are sometimes called internal states of the system. There
are also a number of practical problems associated with performing
an experiment, for example:

• The experiment might be too expensive: Investigating ship dura-
bility by building ships and letting them collide is a very expen-
sive method of gaining information.

• The experiment might be too dangerous: Training nuclear plant
operators in handling dangerous situations by letting the nuclear
reactor enter hazardous states is not advisable.

• The system needed for the experiment might not yet exist . This
is typical of systems to be designed or manufactured.

The shortcomings of the experimental method led us to the model con-
cept. If we make a model of a system, this model can be investigated
and may answer many questions regarding the real system if the model
is realistic enough.

6 CHAPTER 1 Basic Concepts

1.2 THE MODEL CONCEPT

Given the previous definitions of system and experiment, we can now
attempt to define the notion of model:

• A model of a system is anything an “experiment” can be applied
to in order to answer questions about that system .

This implies that a model can be used to answer questions about a
system without doing experiments on the real system. Instead we
perform simplified “experiments” on the model, which in turn can
be regarded as a kind of simplified system that reflects properties of
the real system. In the simplest case a model can just be a piece of
information that is used to answer questions about the system.

Given this definition, any model also qualifies as a system.
Models, just like systems, are hierarchical in nature. We can cut out
a piece of a model, which becomes a new model that is valid for a
subset of the experiments for which the original model is valid. A
model is always related to the system it models and the experiments
to which it can be subjected. A statement such as “a model of a
system is invalid” is meaningless without mentioning the associated
system and the experiment. A model of a system might be valid
for one experiment on the model and invalid for another. The term
model validation, see Section 1.5.3, always refers to an experiment
or a class of experiment to be performed.

We talk about different kinds of models depending on how the
model is represented:

• Mental model—a statement like “a person is reliable” helps us
answer questions about that person’s behavior in various situa-
tions.

• Verbal model—this kind of model is expressed in words. For
example, the sentence “More accidents will occur if the speed
limit is increased” is an example of a verbal model. Expert
systems is a technology for formalizing verbal models.

• Physical model—this is a physical object that mimics some
properties of a real system, to help us answer questions about
that system. For example, during design of artifacts such as

1.3 Simulation 7

buildings, airplanes, and so forth, it is common to construct
small physical models with the same shape and appearance as
the real objects to be studied, for example, with respect to their
aerodynamic properties and aesthetics.

• Mathematical model—a description of a system where the rela-
tionships between variables of the system are expressed in math-
ematical form. Variables can be measurable quantities such as
size, length, weight, temperature, unemployment level, infor-
mation flow, bit rate, and so forth. Most laws of nature are
mathematical models in this sense. For example, Ohm’s law
describes the relationship between current and voltage for a
resistor; Newton’s laws describe relationships between velocity,
acceleration, mass, force, and the like.

The kinds of models that we primarily deal with in this book are
mathematical models represented in various ways, for example, as
equations, functions, computer programs, and the like. Artifacts rep-
resented by mathematical models in a computer are often called virtual
prototypes . The process of constructing and investigating such mod-
els is virtual prototyping. Sometimes the term physical modeling is
used also for the process of building mathematical models of physical
systems in the computer if the structuring and synthesis process is the
same as when building real physical models.

1.3 SIMULATION

In the previous section we mentioned the possibility of performing
“experiments” on models instead of on the real systems corresponding
to the models. This is actually one of the main uses of models, and
is denoted by the term simulation, from the Latin simulare, which
means to pretend. We define a simulation as follows:

• A simulation is an experiment performed on a model.

Analogous to our previous definition of model , this definition of sim-
ulation does not require the model to be represented in mathematical
or computer program form. However, in the rest of this text we
will concentrate on mathematical models , primarily those that have

8 CHAPTER 1 Basic Concepts

a computer-representable form. The following are a few examples of
such experiments or simulations:

• A simulation of an industrial process such as steel or pulp man-
ufacturing, to learn about the behavior under different operating
conditions in order to improve the process.

• A simulation of vehicle behavior, for example, of a car or an
airplane, for the purpose of providing realistic operator training.

• A simulation of a simplified model of a packet-switched com-
puter network, to learn about its behavior under different loads
in order to improve performance.

It is important to realize that the experiment description and model
description parts of a simulation are conceptually separate entities. On
the other hand, these two aspects of a simulation belong together even
if they are separate. For example, a model is valid only for a certain
class of experiments. It can be useful to define an experimental frame
associated with the model, which defines the conditions that need to
be fulfilled by valid experiments.

If the mathematical model is represented in executable form in
a computer, simulations can be performed by numerical experiments ,
or in nonnumeric cases by computed experiments . This is a simple
and safe way of performing experiments, with the added advantage
that essentially all variables of the model are observable and con-
trollable. However, the value of the simulation results is completely
dependent on how well the model represents the real system regarding
the questions to be answered by the simulation.

Except for experimentation, simulation is the only technique that is
generally applicable for analysis of the behavior of arbitrary systems.
Analytical techniques are better than simulation, but usually apply
only under a set of simplifying assumptions, which often cannot be
justified. On the other hand, it is not uncommon to combine analytical
techniques with simulations, that is, simulation is used not alone but
in an interplay with analytical or semianalytical techniques.

1.3.1 Reasons for Simulation

There are a number of good reasons to perform simulations instead of
performing experiments on real systems:

1.3 Simulation 9

• Experiments are too expensive, too dangerous , or the system to
be investigated does not yet exist . These are the main difficulties
of experimentation with real systems, previously mentioned in
Section 1.1.2.

• The time scale of the dynamics of the system is not compatible
with that of the experimenter. For example, it takes millions
of years to observe small changes in the development of the
universe, whereas similar changes can be quickly observed in a
computer simulation of the universe.

• Variables may be inaccessible. In a simulation all variables can
be studied and controlled, even those that are inaccessible in the
real system.

• Easy manipulation of models. Using simulation, it is easy to
manipulate the parameters of a system model, even outside the
feasible range of a particular physical system. For example, the
mass of a body in a computer-based simulation model can be
increased from 40 to 500 kg at a keystroke, whereas this change
might be hard to realize in the physical system.

• Suppression of disturbances . In a simulation of a model it is
possible to suppress disturbances that might be unavoidable in
measurements of the real system. This can allow us to isolate
particular effects and thereby gain a better understanding of
those effects.

• Suppression of second-order effects . Often, simulations are per-
formed since they allow suppression of second-order effects
such as small nonlinearities or other details of certain system
components, which can help us to better understand the primary
effects.

1.3.2 Dangers of Simulation

The ease of use of simulation is also its most serious drawback: It is
quite easy for the user to forget the limitations and conditions under
which a simulation is valid and therefore draw the wrong conclusions
from the simulation. To reduce these dangers, one should always try
to compare at least some results of simulating a model against exper-
imental results from the real system. It also helps to be aware of the
following three common sources of problems when using simulation:

10 CHAPTER 1 Basic Concepts

• Falling in love with a model—the Pygmalion1 effect. It is easy
to become too enthusiastic about a model and forget all about the
experimental frame, that is, that the model is not the real world
but only represents the real system under certain conditions. One
example is the introduction of foxes on the Australian continent
to solve the rabbit problem, on the model assumption that foxes
hunt rabbits, which is true in many other parts of the world.
Unfortunately, the foxes found the indigenous fauna much easier
to hunt and largely ignored the rabbits.

• Forcing reality into the constraints of a model—the Procrustes2

effect. One example is the shaping of our societies after cur-
rently fashionable economic theories having a simplified view
of reality, and ignoring many other important aspects of human
behavior, society, and nature.

• Forgetting the model’s level of accuracy. All models have sim-
plifying assumptions, and we have to be aware of those in order
to correctly interpret the results.

For these reasons, while analytical techniques are generally more
restrictive since they have a much smaller domain of applicability,
such techniques are more powerful when they apply. A simulation
result is valid only for a particular set of input data. Many simula-
tions are needed to gain an approximate understanding of a system.
Therefore, if analytical techniques are applicable, they should be used
instead of a simulation or as a complement.

1.4 BUILDING MODELS

Given the usefulness of simulation in order to study the behavior of
systems, how do we go about building models of those systems? This

1Pygmalion is the mythical king of Cyprus who also was a sculptor. The king fell in love
with one of his works, a sculpture of a young woman, and asked the gods to make her
alive.
2Procrustes is a robber known from Greek mythology. He is known for the bed where he
tortured travelers who fell into his hands: If the victim was too short, he stretched arms
and legs until the person fit the length of the bed; if the victim was too tall, he cut off the
head and part of the legs.

1.4 Building Models 11

is the subject of most of this book and of the Modelica language, which
has been created to simplify model construction as well as reuse of
existing models.

There are in principle two main sources of general system-related
knowledge needed for building mathematical models of systems:

• The collected general experience in relevant domains of
science and technology, found in the literature and available
from experts in these areas. This includes the laws of
nature, for example, including Newton’s laws for mechanical
systems, Kirchhoff’s laws for electrical systems, approximate
relationships for nontechnical systems based on economic or
sociological theories, and so on.

• The system itself, that is, observations of and experiments on
the system we want to model.

In addition to the above system knowledge, there is also specialized
knowledge about mechanisms for handling and using facts in model
construction for specific applications and domains, as well as generic
mechanisms for handling facts and models, that is:

• Application expertise —mastering the application area and tech-
niques for using all facts relative to a specific modeling appli-
cation.

• Software and knowledge engineering —generic knowledge
about defining, handling, using, and representing models and
software, for example, object orientation, component system
techniques, expert system technology, and so on.

What is then an appropriate analysis and synthesis process to be used
in applying these information sources for constructing system models?
Generally, we first try to identify the main components of a system
and the kinds of interaction between these components. Each com-
ponent is broken down into subcomponents until each part fits the
description of an existing model from some model library, or we can
use appropriate laws of nature or other relationships to describe the
behavior of that component. Then we state the component interfaces
and make a mathematical formulation of the interactions between the
components of the model.

12 CHAPTER 1 Basic Concepts

Certain components might have unknown or partially known
model parameters and coefficients. These can often be found by
fitting experimental measurement data from the real system to the
mathematical model using system identification , which in simple
cases reduces to basic techniques like curve fitting and regression
analysis. However, advanced versions of system identification may
even determine the form of the mathematical model selected from a
set of basic model structures.

1.5 ANALYZING MODELS

Simulation is one of the most common techniques for using models
to answer questions about systems. However, there also exist other
methods of analyzing models such as sensitivity analysis and model-
based diagnosis or analytical mathematical techniques in the restricted
cases where solutions can be found in a closed analytical form.

1.5.1 Sensitivity Analysis

Sensitivity analysis deals with the question how sensitive the behav-
ior of the model is to changes of model parameters. This is a very
common question in design and analysis of systems. For example,
even in well-specified application domains such as electrical systems,
resistor values in a circuit are typically known only by an accuracy of
5 to 10%. If there is a large sensitivity in the results of simulations to
small variations in model parameters, we should be very suspicious
about the validity the model. In such cases small random variations
in the model parameters can lead to large random variations in the
behavior.

On the other hand, if the simulated behavior is not very sensitive
to small variations in the model parameters, there is a good chance
that the model fairly accurately reflects the behavior of the real system.
Such robustness in behavior is a desirable property when designing
new products, since they otherwise may become expensive to man-
ufacture since certain tolerances must be kept very small. However,
there are also a number of examples of real systems which are very
sensitive to variations of specific model parameters. In those cases that
sensitivity should be reflected in models of those systems.

1.5 Analyzing Models 13

1.5.2 Model-Based Diagnosis

Model-based diagnosis is a technique somewhat related to sensitivity
analysis. We want to find the causes of certain behavior of a system by
analyzing a model of that system. In many cases we want to find the
causes of problematic and erroneous behavior. For example, consider
a car, which is a complex system consisting of many interacting parts
such as a motor, an ignition system, a transmission system, suspension,
wheels, and the like. Under a set of well-defined operating conditions
each of these parts can be considered to exhibit a correct behavior
if certain quantities are within specified value intervals. A measured
or computed value outside such an interval might indicate an error in
that component or in another part influencing that component. This
kind of analysis is called model-based diagnosis.

1.5.3 Model Verification and Validation

We have previously remarked about the dangers of simulation, for
example, when a model is not valid for a system regarding the intended
simulation. How can we verify that the model is a good and reliable
model, that is, is it valid for its intended use? This can be very hard,
and sometimes we can hope only to get a partial answer to this ques-
tion. However, the following techniques are useful to at least partially
verify the validity of a model:

• Critically review the assumptions and approximations behind
the model, including available information about the domain of
validity regarding these assumptions.

• Compare simplified variants of the model to analytical solutions
for special cases.

• Compare to experimental results for cases when this is possible.
• Perform sensitivity analysis of the model. If the simulation

results are relatively insensitive to small variations of model
parameters, we have stronger reasons to believe in the validity
of the model.

• Perform internal consistency checking of the model, for
example, checking that dimensions or units are compatible
across equations. For example, in Newton’s equation F = ma,

14 CHAPTER 1 Basic Concepts

the unit (N) on the left-hand side is consistent with (kg m s−2)

on the right-hand side.

In the last case it is possible for tools to automatically verify that
dimensions are consistent if unit attributes are available for the quan-
tities of the model. This functionality, however, is not yet available
for most current modeling tools.

1.6 KINDS OF MATHEMATICAL MODELS

Different kinds of mathematical models can be characterized by differ-
ent properties reflecting the behavior of the systems that are modeled.
One important aspect is whether the model incorporates dynamic time-
dependent properties or is static. Another dividing line is between
models that evolve continuously over time and those that change at
discrete points in time. A third dividing line is between quantitative
and qualitative models.

Certain models describe physical distribution of quantities, for
example, mass, whereas other models are lumped in the sense that
the physically distributed quantity is approximated by being lumped
together and represented by a single variable, for example, a point
mass.

Some phenomena in nature are conveniently described by stochas-
tic processes and probability distributions, e.g. noisy radio transmis-
sions or atomic-level quantum physics. Such models might be labeled
stochastic or probability-based models where the behavior can be rep-
resented only in a statistic sense, whereas deterministic models allow
the behavior to be represented without uncertainty. However, even
stochastic models can be simulated in a “deterministic” way using a
computer since the random number sequences often used to represent
stochastic variables can be regenerated given the same seed values.

The same phenomenon can often be modeled as being either
stochastic or deterministic depending on the level of detail at which
it is studied. Certain aspects at one level are abstracted or averaged
away at the next higher level. For example, consider the modeling of
gases at different levels of detail starting at the quantum mechanical
elementary particle level, where the positions of particles are described
by probability distributions:

1.6 Kinds of Mathematical Models 15

• Elementary particles (orbitals)—stochastic models
• Atoms (ideal gas model)—deterministic models
• Atom groups (statistical mechanics)—stochastic models
• Gas volumes (pressure and temperature)—deterministic models
• Real gases (turbulence)—stochastic models
• Ideal mixer (concentrations)—deterministic models

It is interesting to note the kinds of model changes between stochastic
or deterministic models that occur depending on what aspects we want
to study. Detailed stochastic models can be averaged as deterministic
models when approximated at the next upper macroscopic level in
the hierarchy. On the other hand, stochastic behavior such as turbu-
lence can be introduced at macroscopic levels as the result of chaotic
phenomena caused by interacting deterministic parts.

1.6.1 Kinds of Equations

Mathematical models usually contain equations. There are basi-
cally four main kinds of equations, where we give one example
of each.

Differential equations contain time derivatives such as dx /dt , usu-
ally denoted ẋ , for example,

ẋ = a · x + 3 (1.1)

Algebraic equations do not include any differentiated variables:

x 2 + y2 = L2 (1.2)

Partial differential equations also contain derivatives with respect to
other variables than time:

∂a

∂ t
= ∂2a

∂z 2
(1.3)

Difference equations express relations between variables, for example,
at different points in time:

x(t + 1) = 3x(t) + 2 (1.4)

16 CHAPTER 1 Basic Concepts

1.6.2 Dynamic Versus Static Models

All systems, both natural and man-made, are dynamic in the sense
that they exist in the real world, which evolves in time. Mathematical
models of such systems would be naturally viewed as dynamic in
the sense that they evolve over time and therefore incorporate time.
However, it is often useful to make the approximation of ignoring time
dependence in a system. Such a system model is called static. Thus
we can define the concepts of dynamic and static models as follows:

• A dynamic model includes time in the model. The word
dynamic is derived from the Greek word dynamis meaning
force and power, with dynamics being the (time-dependent)
interplay between forces. Time can be included explicitly as a
variable in a mathematical formula or be present indirectly, for
example, through the time derivative of a variable or as events
occurring at certain points in time.

• A static model can be defined without involving time, where
the word static is derived from the Greek word statikos , mean-
ing something that creates equilibrium. Static models are often
used to describe systems in steady-state or equilibrium situa-
tions, where the output does not change if the input is the same.
However, static models can display a rather dynamic behavior
when fed with dynamic input signals.

It is usually the case that the behavior of a dynamic model is
dependent on its previous simulation history. For example, the pres-
ence of a time derivative in a mathematical model means that this
derivative needs to be integrated to solve for the corresponding vari-
able when the model is simulated, that is, the integration operation
takes the previous time history into account. This is the case, for
example, for models of capacitors where the voltage over the capac-
itor is proportional to the accumulated charge in the capacitor, that
is, integration/accumulation of the current through the capacitor. By
differentiating that relation the time derivative of the capacitor volt-
age becomes proportional to the current through the capacitor. We can
study the capacitor voltage increasing over time at a rate proportional
to the current in Figure 1.3.

Another way for a model to be dependent on its previous history is
to let preceding events influence the current state, for example, as in a

1.6 Kinds of Mathematical Models 17

Time

Resistor voltage

Capacitor voltage

Input current pulse

Figure 1.3 Resistor is a static system where the voltage is directly proportional to the
current, independent of time, whereas a capacitor is a dynamic system where voltage is
dependent on the previous time history.

model of an ecological system where the number of prey animals in the
system will be influenced by events such as the birth of predators. On
the other hand, a dynamic model such as a sinusoidal signal generator
can be modeled by a formula directly including time and not involving
the previous time history.

A resistor is an example of a static model that can be formulated
without including time. The resistor voltage is directly proportional to
the current through the resistor, for example, as depicted in Figure 1.3,
with no dependence on time or on the previous history.

1.6.3 Continuous-Time Versus Discrete-Time
Dynamic Models

There are two main classes of dynamic models: continuous-time and
discrete-time models. The class of continuous-time models can be
characterized as follows:

• Continuous-time models evolve their variable values continu-
ously over time.

A variable from a continuous-time model A is depicted in Figure 1.4.
The mathematical formulation of continuous-time models includes

18 CHAPTER 1 Basic Concepts

Time

A

B

Figure 1.4 Discrete-time system B changes values only at certain points in time,
whereas continuous-time systems like A evolve values continuously.

differential equations with time derivatives of some model variables.
Many laws of nature, for example, as expressed in physics, are for-
mulated as differential equations.

The second class of mathematical models is discrete-time models,
for example, as B in Figure 1.4, where variables change value only at
certain points in time:

• Discrete-time models may change their variable values only at
discrete points in time.

Discrete-time models are often represented by sets of difference
equations or as computer programs mapping the state of the model at
one point in time to the state at the next point in time.

Discrete-time models occur frequently in engineering systems,
especially computer-controlled systems. A common special case is
sampled systems, where a continuous-time system is measured at reg-
ular time intervals and is approximated by a discrete-time model.
Such sampled models usually interact with other discrete-time sys-
tems like computers. Discrete-time models may also occur naturally,
for example, an insect population which breeds during a short period
once a year; that is, the discretization period in that case is one year.

1.6.4 Quantitative Versus Qualitative Models

All of the different kinds of mathematical models previously discussed
in this section are of a quantitative nature—variable values can be rep-
resented numerically according to a quantitatively measurable scale.

1.7 Using Modeling and Simulation in Product Design 19

Time

Good

Tasty

Superb

Mediocre

Figure 1.5 Quality of food in a restaurant according to inspections at irregular points
in time.

Other models, so-called qualitative models, lack that kind of pre-
cision. The best we can hope for is a rough classification into a finite
set of values, for example, as in the food quality model depicted in
Figure 1.5. Qualitative models are by nature discrete-time models,
and the dependent variables are also discretized. However, even if
the discrete values are represented by numbers in the computer (e.g.,
mediocre—1, good—2, tasty—3, superb—4), we have to be aware
of the fact that the values of variables in certain qualitative models are
not necessarily according to a linear measurable scale, that is, tasty
might not be three times better than mediocre.

1.7 USING MODELING AND SIMULATION
IN PRODUCT DESIGN

What role does modeling and simulation have in industrial product
design and development? In fact, our previous discussion has already
briefly touched this issue. Building mathematical models in the com-
puter, so-called virtual prototypes , and simulating those models, is
a way to quickly determine and optimize product properties without
building costly physical prototypes. Such an approach can often dras-
tically reduce development time and time to market, while increasing
the quality of the designed product.

The so-called product design V , depicted in Figure 1.6, includes
all the standard phases of product development:

• Requirements analysis and specification
• System design

20 CHAPTER 1 Basic Concepts

Specification

Design

Design
Refinement

Component verification

Subsystem level integration and
verification

Subsystem level integration test
calibration and verification

Product verification and
deployment

Maintenance

Realization

Detailed feature design and
implementation

Achitectural design and
system functional design

Preliminary feature design

System
requirements

Level of Abstraction

Documentation, Version and Configuration Management

Verification

Integration

Calibration

Experience Feedback

Figure 1.6 Product design V.

• Design refinement
• Realization and implementation
• Subsystem verification and validation
• Integration
• System calibration and model validation
• Product deployment

How does modeling and simulation fit into this design process?
In the first phase, requirements analysis , functional and

nonfunctional requirements are specified. In this phase important
design parameters are identified and requirements on their values
are specified. For example, when designing a car, there might be
requirements on acceleration, fuel consumption, maximum emissions,
and the like. Those system parameters will also become parameters
in our model of the designed product.

In the system design phase we specify the architecture of the sys-
tem, that is, the main components in the system and their interactions.
If we have a simulation model component library at hand, we can use
these library components in the design phase or otherwise create new
components that fit the designed product. This design process itera-
tively increases the level of detail in the design. A modeling tool that

1.8 Examples of System Models 21

supports hierarchical system modeling and decomposition can help in
handling system complexity.

The implementation phase will realize the product as a physical
system and/or as a virtual prototype model in the computer. Here a
virtual prototype can be realized before the physical prototype is built,
usually for a small fraction of the cost.

In the subsystem verification and validation phase, the behavior
of the subsystems of the product is verified. The subsystem virtual
prototypes can be simulated in the computer and the models corrected
if there are problems.

In the integration phase the subsystems are connected. Regard-
ing a computer-based system model, the models of the subsystems
are connected together in an appropriate way. The whole system can
then be simulated, and certain design problems corrected based on the
simulation results.

The system and model calibration and validation phase validates
the model against measurements from appropriate physical prototypes.
Design parameters are calibrated, and the design is often optimized to
a certain extent according to what is specified in the original require-
ments.

During the last phase, product deployment , which usually
only applies to the physical version of the product, the product is
deployed and sent to the customer for feedback. In certain cases this
can also be applied to virtual prototypes, which can be delivered
and put in a computer that is interacting with the rest of the
customer physical system in real time, that is, hardware-in-the-loop
simulation.

In most cases, experience feedback can be used to tune both
models and physical products. All phases of the design process con-
tinuously interact with the model and design database, as depicted at
the bottom of Figure 1.6.

1.8 EXAMPLES OF SYSTEM MODELS

In this section we briefly present examples of mathematical models
from three different application areas, in order to illustrate the power
of the Modelica mathematical modeling and simulation technology to
be described in the rest of this book:

22 CHAPTER 1 Basic Concepts

• A thermodynamic system—part of an industrial GTX100 gas
turbine model

• A three-dimensional (3D) mechanical system with a hierarchical
decomposition—an industry robot

• A biochemical application—part of the citrate cycle (TCA
cycle), see Figure 1.11

A connection diagram of the power cutoff mechanism of the GTX100
gas turbine is depicted in Figure 1.8, whereas the gas turbine itself is
shown in Figure 1.7.

The connection diagram in Figure 1.8 might not appear as a math-
ematical model, but behind each icon in the diagram is a model
component containing the equations that describe the behavior of the
respective component.

In Figure 1.9 we show a few plots from simulations of the gas
turbine, which illustrates how a model can be used to investigate the
properties of a given system.

The second example, the industry robot, illustrates the power of
hierarchical model decomposition. The 3D robot, shown to the right
of Figure 1.10, is represented by a two-dimensional (2D) connection
diagram (in the middle). Each part in the connection diagram can be a
mechanical component such as a motor or joint, a control system for
the robot, and so forth. Components may consist of other components
that can in turn be decomposed. At the bottom of the hierarchy wehave
model classes containing the actual equations.

Figure 1.7 Schematic picture of the gas turbine GTX100. (Courtesy Siemens Industrial
Turbomachinery AB, Finspång, Sweden.)

8

8

8

−

C

C
G

pa
ra

m
et

er
_s

et
tin

gs
f..

.
f..

.
P

el
...

pe
l..

.
dr

oo
p

dr
o.

..
LC

LC
t0

t0

t7
p0

p0
p3

G
rid

P
gr

id

xg
p

x.
..

IG
V

P
...

f

pi
lo

...
pi

lo
...

pi
lo

...
F

u.
..

m
ai

...
m

ai
...

ma...

pr
e.

.. A
ir.

..
A

ir.
..

A
ir.

..

C
on

te
st

...
In

f..
.

In
er

tia
1

J
=

 1
00

0
T

ur
bi

...

S
l..

.

T
ei

R
am

p1

du
ra

tio
...

A
dd

1 +
1

+
1

+

G
ea

r1

A
ir.

..
A

ir.
..P

G
en

...
cl

ut
ch

J
=

 1

In
er

tia
2

va
ria

bl
eD

am
pe

r

ef
fe

ct
... P
1

{1
}

lo
ad

 s
...

F
ee

...

H
zS

...
po

w
er

..

po
w

er
...

po
w

er
co

nt
ro

l

lo
ad

_d
ro

p

lo
ad

_g
ai

n

st
ar

t t
im

e
=

 {
40

0}

st
ar

t t
im

e
=

 {
0}

k
=

 {
2}

k
=

 {
0}

k
=

 {
30

0.
..

cl
ut

ch
...

cl
ut

ch
...

cl
ut

ch
...

cl
ut

ch
...

cl
ut

ch
...

du
ra

tio
...

k
=

 {
−1

}

k
=

 {
0}

ze
ro

 g
...

P switch

f switch

st
ar

t T
im

e
=

 {
35

0}

st
ar

t t
im

e
=

 {
50

}

m
ec

h_
br

ea
k

co
nt

ro
lle

r

F
ig

ur
e

1.
8

D
et

ai
l

of
po

w
er

cu
to

ff
m

ec
ha

ni
sm

in
40

M
W

G
T

X
10

0
ga

s
tu

rb
in

e
m

od
el

.
(C

ou
rt

es
y

Si
em

en
s

In
du

st
ri

al
T

ur
bo

m
ac

hi
ne

ry
A

B
,

Fi
ns

på
ng

,
Sw

ed
en

.)

23

F
ue

l S
ys

te
m

G
en

er
at

ed
 P

ow
er

Lo
ad

 c
ut

of
f

P
ilo

t t
o

m
ai

n
fu

el

G
en

er
at

or

0
−1

0010203040506070809010
0

−4
.5

E
7

−4
E

7

−3
.5

E
7

−3
E

7

−2
.5

E
7

−2
E

7

−1
.5

E
7

−1
E

7

−5
E

60

5E
6

40
80

12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

0
40

80
12

0
16

0
20

0
24

0
28

0
32

0
36

0

40
80

12
0

16
0

20
0

24
0

28
0

32
0

36
0

40
0

m
ai

nV
al

ve
.o

pe
nF

ra
ct

io
n.

si
gn

al
[1

]

C
om

pr
es

so
rA

dv
M

ap
1.

rp
m

pi
lo

tV
al

ve
.o

pe
nF

ra
ct

io
n.

si
gn

al
[1

]

64
00

65
00

66
00

67
00

68
00

69
00

70
00

G
en

er
at

or
1.

po
w

er

F
ig

ur
e

1.
9

Si
m

ul
at

io
n

of
G

T
X

10
0

ga
s

tu
rb

in
e

po
w

er
sy

st
em

cu
to

ff
m

ec
ha

ni
sm

.
(C

ou
rt

es
y

A
ls

to
m

In
du

st
ri

al
T

ur
bi

ne
s

A
B

,
Fi

ns
på

ng
,

Sw
ed

en
.)

24

in
er

tia
l

x
y

ax
is

1

ax
is

2

ax
is

3

ax
is

4

ax
is

5

ax
is

6

r3
D

riv
e1

1

r3
M

ot
or

r3
C

on
tr

ol
qd

R
ef

1 S

qR
ef 1 S

k2 i k1 i

qd
dR

ef
cu

t j
oi

nt

q:
 a

ng
le

qd
: a

ng
ul

ar
 v

el
oc

ity
qd

d:
 a

ng
ul

ar
 a

cc
el

er
at

io
n

qd

tn

ra
te

2
b(

s)
a(

s)

ra
te

3
34

0.
8

S

ra
te

1
b(

s)
a(

s)

ta
ch

o1

P
T

1

K
d

0.
03

w
S

um −

su
m

+
1

+
1

pS
um −

K
v

0.
3

ta
ch

o2
b(

s)
a(

s)

q
qd

iR
ef

qR
ef

qd
R

ef

Jm
ot

or
 =

 J

ge
ar

 =
 i

sp
rin

g
=

 c

fric = Rv0

S re
l

jo
in

t =
 0

S

S
r
e
l

=

n
*
t
r
a
n
s
p
o
s
e
(
n
)
+
(
i
d
e
n
t
i
t
y
(
3
)
-

n
*
t
r
a
n
s
p
o
s
e
(
n
)
)
*
c
o
s
(
q
)
-

s
k
e
w
(
n
)
*
s
i
n
(
q
)
;

w
r
e
l
a

=

n
*
q
d
;

z
r
e
l
a

=

n
*
q
d
d
;

S
b

=

S
a
*
t
r
a
n
s
p
o
s
e
(
S
r
e
l
)
;

r
0
b

=

r
0
a
;

v
b

=

S
r
e
l
*
v
a
;

w
b

=

S
r
e
l
*
(
w
a

+

w
r
e
l
a
)
;

a
b

=

S
r
e
l
*
a
a
;

z
b

=

S
r
e
l
*
(
z
a

+

z
r
e
l
a

+

c
r
o
s
s
(
w
a
,

w
r
e

l
a
)
)
;

f
a

=

t
r
a
n
s
p
o
s
e
(
S
r
e
l
)
*
f
b
;

t
a

=

t
r
a
n
s
p
o
s
e
(
S
r
e
l
)
*
t
b
;

F
ig

ur
e

1.
10

H
ie

ra
rc

hi
ca

l
m

od
el

of
an

in
du

st
ri

al
ro

bo
t.

(C
ou

rt
es

y
M

ar
tin

O
tte

r.
)

25

C
itr

at
e

C
oA

F
um

ar
at

e

S
uc

ci
na

te

A
ce

ty
l-

C
oA

2-
O

xo
-

gl
ut

ar
at

e
S

uc
ci

ny
l-

C
oA

O
xa

lo
-

su
cc

in
at

e

Is
oc

itr
at

e
O

xa
lo

-
ac

et
at

e
2.

3.
3.

8

2.
3.

3.
1

4.
2.

1.
3

M
al

at
e

1.
1.

1.
37

4.
2.

1.
2

6.
2.

1.
5

6.
2.

1.
4

1.
2.

4.
2

2.
3.

1.
61

1.
3.

99
.1

1.
1.

1.
42

1.
1.

1.
42

1.
3.

5.
1

3.
1.

2.
3

C
O

2

1.
1.

1.
41

F
ig

ur
e

1.
11

B
io

ch
em

ic
al

pa
th

w
ay

m
od

el
of

pa
rt

of
th

e
ci

tr
at

e
cy

cl
e

(T
C

A
cy

cl
e)

.

26

1.10 Literature 27

The third example is from an entirely different domain—
biochemical pathways describing the reactions between reactants, in
this particular case describing part of the citrate cycle (TCA cycle)
as depicted in Figure 1.11.

1.9 SUMMARY

We have briefly presented important concepts such as system, model,
experiment, and simulation. Systems can be represented by models,
which can be subject to experiments, that is, simulation. Certain mod-
els can be represented by mathematics, so-called mathematical models.
This book is about object-oriented component-based technology for
building and simulating such mathematical models. There are different
classes of mathematical models, for example, static versus dynamic
models, continuous-time versus discrete-time models, and so forth,
depending on the properties of the modeled system, the available
information about the system, and the approximations made in the
model.

1.10 LITERATURE

Any book on modeling and simulation needs to define fundamental
concepts such as system, model, and experiment. The definitions in this
chapter are generally available in modeling and simulation literature,
including Ljung and Glad (1994) and Cellier (1991). The example of
different levels of details in mathematical models of gases presented in
Section 1.6 is mentioned in Hyötyniemi (2002). The product design-V
process mentioned in Section 1.7 is described in Stevens et al. (1998)
and Shumate and Keller (1992). The citrate cycle biochemical pathway
part in Figure 1.11 is modeled after the description in Allaby (1998).

CHAPTER 2

A Quick Tour of Modelica

Modelica is primarily a modeling language that allows specification
of mathematical models of complex natural or man-made systems, for
example, for the purpose of computer simulation of dynamic systems
where behavior evolves as a function of time. Modelica is also
an object-oriented equation-based programming language, oriented
toward computational applications with high complexity requiring
high performance. The four most important features of Modelica are:

• Modelica is primarily based on equations instead of assignment
statements. This permits acausal modeling that gives better reuse
of classes since equations do not specify a certain data flow
direction. Thus a Modelica class can adapt to more than one
data flow context.

• Modelica has multidomain modeling capability, meaning that
model components corresponding to physical objects from
several different domains such as, for example, electrical,
mechanical, thermodynamic, hydraulic, biological, and control
applications can be described and connected.

• Modelica is an object-oriented language with a general class
concept that unifies classes, generics—known as templates in
C++—and general subtyping into a single language construct.
This facilitates reuse of components and evolution of models.

• Modelica has a strong software component model, with
constructs for creating and connecting components. Thus

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

29

30 CHAPTER 2 A Quick Tour of Modelica

the language is ideally suited as an architectural description
language for complex physical systems and to some extent for
software systems.

These are the main properties that make Modelica both powerful and
easy to use, especially for modeling and simulation. We will start with
a gentle introduction to Modelica from the very beginning.

2.1 GETTING STARTED WITH MODELICA

Modelica programs are built from classes, also called models. From a
class definition, it is possible to create any number of objects that are
known as instances of that class. Think of a class as a collection of
blueprints and instructions used by a factory to create objects. In this
case the Modelica compiler and run-time system is the factory.

A Modelica class contains elements, the main kind being variable
declarations, and equation sections containing equations. Variables
contain data belonging to instances of the class; they make up the data
storage of the instance. The equations of a class specify the behavior
of instances of that class.

There is a long tradition that the first sample program in
any computer language is a trivial program printing the string
"Hello World". Since Modelica is an equation-based language,
printing a string does not make much sense. Instead, our Hello World
Modelica program solves a trivial differential equation:

ẋ = −a · x (2.1)

The variable x in this equation is a dynamic variable (here also a
state variable) that can change value over time. The time derivative
ẋ is the time derivative of x , represented as der(x) in Modelica.
Since all Modelica programs, usually called models , consist of class
declarations, our HelloWorld program is declared as a class:

class HelloWorld
Real x(start = 1);
parameter Real a = 1;

equation
der(x) = -a*x;

end HelloWorld;

2.1 Getting Started with Modelica 31

Use your favorite text editor or Modelica programming environment
to type in this Modelica code,1 or open the DrModelica electronic
document containing all examples and exercises in this book. Then
invoke the simulation command in your Modelica environment. This
will compile the Modelica code to some intermediate code, usually
C code, which in turn will be compiled to machine code and exe-
cuted together with a numerical ordinary differential equation (ODE)
solver or differential algebraic equation (DAE) solver to produce a
solution for x as a function of time. The following command in the
OpenModelica environment produces a solution between time 0 and
time 2:

simulate2 (HelloWorld,stopTime=2)

Since the solution for x is a function of time, it can be plotted by a
plot command:

plot3(x)

(or the longer form plot(x,xrange={0,2}) that specifies the x
axis), giving the curve in Figure 2.1.

Now we have a small Modelica model that does something, but
what does it actually mean? The program contains a declaration of a
class called HelloWorld with two variables and a single equation.
The first attribute of the class is the variable x, which is initialized to a
start value of 1 at the time when the simulation starts. All variables in
Modelica have a start attribute with a default value that is normally
set to 0. Having a different start value is accomplished by providing a
so-called modifier within parentheses after the variable name, that is,
a modification equation setting the start attribute to 1 and replacing
the original default equation for the attribute.

1There is an open-source Modelica environment OpenModelica downloadable from
www.openmodelica.org, MathModelica is from Wolfram Research and MathCore
(www.mathcore.com), and Dymola from Dassault Systémès, (www.3ds.com/products/
catia/portfolio/dymola).
2simulate is the OpenModelica command for simulation. The corresponding MathMod-
elica Mathematica-style command for this example would be Simulate[HelloWorld,

{t,0,2}], and in Dymola simulateModel("HelloWorld", stopTime=2).
3plot is the OpenModelica command for plotting simulation results. The cor-
responding MathModelica Mathematica-style and Dymola commands would be
PlotSimulation[x[t], {t,0,2}] and plot({"x"}), respectively.

32 CHAPTER 2 A Quick Tour of Modelica

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1.0

Figure 2.1 Plot of simulation of simple HelloWorld model.

The second attribute is the variable a, which is a constant that
is initialized to 1 at the beginning of the simulation. Such a constant
is prefixed by the keyword parameter in order to indicate that it
is constant during simulation but is a model parameter that can be
changed between simulations, for example, through a command in the
simulation environment. For example, we could rerun the simulation
for a different value of a.

Also note that each variable has a type that precedes its name
when the variable is declared. In this case both the variable x and the
“variable” a have the type Real.

The single equation in this HelloWorld example specifies that
the time derivative of x is equal to the constant -a times x. In Mod-
elica the equal sign = always means equality, that is, establishes an
equation, and not an assignment as in many other languages. Time
derivative of a variable is indicated by the pseudofunction der().

Our second example is only slightly more complicated, containing
five rather simple equations:

mv̇x = −x

L
F

mv̇y = −y

L
F − mg (2.2)

ẋ = vx

ẏ = vy

x 2 + y2 = L2

2.1 Getting Started with Modelica 33

L

x

y

−mg

ϕ

F

Figure 2.2 Planar pendulum.

This example is actually a mathematical model of a physical system,
a planar pendulum, as depicted in Figure 2.2. The equations are New-
ton’s equations of motion for the pendulum mass under the influence
of gravity, together with a geometric constraint, the fifth equation,
x 2 + y2 = L2, which specifies that its position (x , y) must be on a cir-
cle with radius L. The variables vx and vy are its velocities in the x
and y directions, respectively.

The interesting property of this model, however, is the fact that
the fifth equation is of a different kind: a so-called algebraic equation
only involving algebraic formulas of variables but no derivatives.
The first four equations of this model are differential equations as
in the HelloWorld example. Equation systems that contain both
differential and algebraic equations are called differential algebraic
equation systems (DAEs). A Modelica model of the pendulum appears
below:

class Pendulum "Planar Pendulum"
constant Real PI=3.141592653589793;
parameter Real m=1, g=9.81, L=0.5;
Real F;
output Real x(start=0.5),y(start=0);
output Real vx,vy;

equation
m*der(vx)=-(x/L)*F;
m*der(vy)=-(y/L)*F-m*g;
der(x)=vx;
der(y)=vy;
xˆ2+yˆ2=Lˆ2;

end Pendulum;

34 CHAPTER 2 A Quick Tour of Modelica

1 2 3 4
t

−0.4

−0.2

0.2

0.4

Figure 2.3 Plot of simulation of Pendulum DAE (differential algebraic equation)
model.

We simulate the Pendulum model and plot the x coordinate, shown
in Figure 2.3:

simulate(Pendulum, stopTime=4)
plot(x);

You can also write down DAE systems without physical significance,
with equations containing formulas selected more or less at random,
as in the class DAEexample below:

class DAEexample
Real x(start=0.9);
Real y;

equation
der(y) + (1+0.5*sin(y))*der(x) = sin(time);
x-y = exp(-0.9*x)*cos(y);

end DAEexample;

This class contains one differential and one algebraic equation. Try to
simulate and plot it yourself, to see if any reasonable curve appears!

Finally, an important observation regarding Modelica models:

• The number of variables must be equal to the number of
equations!

This statement is true for the three models we have seen so far and
holds for all solvable Modelica models. By variables we here mean
something that can vary, that is, not named constants and parameters
already having values, described in Section 2.1.3.

2.1 Getting Started with Modelica 35

2.1.1 Variables and Predefined Types

This example shows a slightly more complicated model, which
describes a van der Pol4 oscillator. Notice that here the keyword
model is used instead of class with almost the same meaning.

model VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x";
// x starts at 1

Real y(start = 1) "Descriptive string for y";
// y starts at 1

parameter Real lambda = 0.3;
equation
der(x) = y;
// This is the first equation

der(y) = -x + lambda*(1 - x*x)*y;
/* The 2nd diff. equation */

end VanDerPol;

This example contains declarations of two dynamic variables (here
also state variables) x and y, both of type Real and having the start
value 1 at the beginning of the simulation, which normally is at time
0. Then follows a declaration of the parameter constant lambda, which
is a so-called model parameter.

The keyword parameter specifies that the variable is constant
during a simulation run but can have its value initialized before a run or
between runs. This means that parameter is a special kind of constant,
which is implemented as a static variable that is initialized once and
never changes its value during a specific execution. A parameter

is a constant variable that makes it simple for a user to modify the
behavior of a model, for example, changing the parameter lambda,
which strongly influences the behavior of the Van der Pol oscillator. By
contrast, a fixed Modelica constant declared with the prefix constant
never changes and can be substituted by its value wherever it occurs.

Finally, we present declarations of three dummy variables just
to show variables of data types different from Real: the Boolean
variable bb, which has a default start value of false if nothing

4Balthazar van der Pol was a Dutch electrical engineer who initiated modern experimental
dynamics in the laboratory during the 1920s and 1930s. Van der Pol investigated electrical
circuits employing vacuum tubes and found that they have stable oscillations, now called
limit cycles. The van der Pol oscillator is a model developed by him to describe the
behavior of nonlinear vacuum tube circuits.

36 CHAPTER 2 A Quick Tour of Modelica

else is specified, the string variable dummy which is always equal
to "dummy string", and the integer variable fooint always equal
to 0.

Boolean bb;
String dummy = "dummy string";
Integer fooint = 0;

Modelica has built-in predefined “primitive” data types to support
floating-point, integer, Boolean, and string values. There is also the
Complex type for complex numbers computations, which is prede-
fined in a library. These predefined types contain data that Modelica
understands directly, as opposed to class types defined by program-
mers. The type of each variable must be declared explicitly. The
predefined basic data types of Modelica are:

Boolean either true or false

Integer corresponding to the C int data type, usually
32-bit two’s complement

Real corresponding to the C double data type,
usually 64-bit floating-point

String string of text characters
enumeration(...) enumeration type of enumeration literals
Complex for complex number computations, a basic

type predefined in a library

Finally, there is an equation section starting with the keyword
equation, containing two mutually dependent equations that define
the dynamics of the model.

To illustrate the behavior of the model, we give a command to
simulate the van der Pol oscillator during 25 s starting at time 0:

simulate(VanDerPol, stopTime=25)

A phase plane plot of the state variables for the van der Pol oscillator
model (Fig. 2.4):

plotParametric(x,y, stopTime=25)

The names of variables, functions, classes, and so forth are known as
identifiers. There are two forms in Modelica. The most common form
starts with a letter, followed by letters or digits, for example, x2. The
second form starts with a single quote, followed by any characters,
and terminated by a single quote, for example, '2nd*3'.

2.1 Getting Started with Modelica 37

−2 −1 1 2

−1

1

2

2

Figure 2.4 Parametric plot of simulation of van der Pol oscillator model.

2.1.2 Comments

Arbitrary descriptive text, for example, in English, inserted through-
out a computer program are comments to that code. Modelica has
three styles of comments, all illustrated in the previous VanDerPol

example.
Comments make it possible to write descriptive text together with

the code, which makes a model easier to use for the user, or easier to
understand for programmers who may read your code in the future.
That programmer may very well be yourself, months or years later.
You save yourself future effort by commenting your own code. Also,
it is often the case that you find errors in your code when you write
comments since when explaining your code you are forced to think
about it once more.

The first kind of comment is a string within string quotes, for
example, “a comment,” optionally appearing after variable declara-
tions or at the beginning of class declarations. Those are “definition
comments” that are processed to be used by the Modelica program-
ming environment, for example, to appear in menus or as help texts for
the user. From a syntactic point of view they are not really comments
since they are part of the language syntax. In the previous example
such definition comments appear for the VanDerPol class and for the
x and y variables.

The other two types of comments are ignored by the Modelica
compiler and are just present for the benefit of Modelica programmers.
Text following // up to the end of the line is skipped by the compiler,

38 CHAPTER 2 A Quick Tour of Modelica

as is text between /* and the next */. Hence the last type of
comment can be used for large sections of text that occupies several
lines.

Finally we should mention a construct called annotation, a kind
of structured “comment” that can store information together with the
code, described in Section 2.17.

2.1.3 Constants

Constant literals in Modelica can be integer values such as
4,75,3078; floating-point values like 3.14159,0.5,2.735E-

10, 8.6835e+5; string values such as "hello world", "red";
and enumeration values such as Colors.red,Sizes.xlarge.

Named constants are preferred by programmers for two reasons.
One reason is that the name of the constant is a kind of documentation
that can be used to describe what the particular value is used for. The
other, perhaps even more important reason, is that a named constant is
defined at a single place in the program. When the constant needs to be
changed or corrected, it can be changed in only one place, simplifying
program maintenance.

Named constants in Modelica are created by using one of the
prefixes constant or parameter in declarations, and providing a
declaration equation as part of the declaration:

constant Real PI = 3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;
parameter Real mass = 22.5;

Parameter constants can be declared without a declaration equation
since their value can be defined, for example, by reading from a file,
before simulation starts. For example:

parameter Real mass, gravity, length;

2.1.4 Variability

We have seen that some variables can change value at any point in
time, whereas named constants are more or less constant. In fact,
there is a general concept of four levels of variability of variables and
expressions in Modelica:

2.2 Object-Oriented Mathematical Modeling 39

• Expressions or variables with continuous-time variability can
change at any point in time.

• Discrete-time variability means that value changes can occur
only at so-called events; see Section 2.15.

• Parameter variability means that the value can be changed at
initialization before simulation but is fixed during simulation.

• Constant variability means the value is always fixed.

2.1.5 Default start Values

If a numeric variable lacks a specified definition value or start value
in its declaration, it is usually initialized to zero at the start of the
simulation. Boolean variables have start value false, and string
variables have the start value empty string "" if nothing else is
specified.

Exceptions to this rule are function results and local variables in
functions, where the default initial value at function call is undefined .

2.2 OBJECT-ORIENTED MATHEMATICAL
MODELING

Traditional object-oriented programming languages like Simula, C++,
Java, and Smalltalk, as well as procedural languages such as Fortran
or C, support programming with operations on stored data. The stored
data of the program include variable values and object data. The num-
ber of objects often changes dynamically. The Smalltalk view of object
orientation emphasizes sending messages between (dynamically) cre-
ated objects.

The Modelica view on object orientation is different since the
Modelica language emphasizes structured mathematical modeling.
Object orientation is viewed as a structuring concept that is used
to handle the complexity of large system descriptions. A Modelica
model is primarily a declarative mathematical description, which
simplifies further analysis. Dynamic system properties are expressed
in a declarative way through equations.

The concept of declarative programming is inspired by mathe-
matics, where it is common to state or declare what holds , rather than

40 CHAPTER 2 A Quick Tour of Modelica

giving a detailed stepwise algorithm on how to achieve the desired
goal as is required when using procedural languages. This relieves the
programmer from the burden of keeping track of such details. Further-
more, the code becomes more concise and easier to change without
introducing errors.

Thus, the declarative Modelica view of object orientation, from
the point of view of object-oriented mathematical modeling, can be
summarized as follows:

• Object orientation is primarily used as a structuring concept,
emphasizing the declarative structure and reuse of mathematical
models. Our three ways of structuring are hierarchies, compo-
nent connections, and inheritance.

• Dynamic model properties are expressed in a declarative way
through equations .5

• An object is a collection of instance variables and equations
that share a set of data.

However:

• Object orientation in mathematical modeling is not viewed as
dynamic message passing.

The declarative object-oriented way of describing systems and their
behavior offered by Modelica is at a higher level of abstraction than the
usual object-oriented programming since some implementation details
can be omitted. For example, we do not need to write code to explic-
itly transport data between objects through assignment statements or
message-passing code. Such code is generated automatically by the
Modelica compiler based on the given equations.

Just as in ordinary object-oriented languages, classes are blueprints
for creating objects. Both variables and equations can be inherited
between classes. Function definitions can also be inherited. However,
specifying behavior is primarily done through equations instead of via
methods. There are also facilities for stating algorithmic code including
functions in Modelica, but this is an exception rather than the rule. See
also Chapter 3 for a discussion regarding object-oriented concepts.

5Algorithms are also allowed, but in a way that makes it possible to regard an algorithm
section as a system of equations.

2.3 Classes and Instances 41

2.3 CLASSES AND INSTANCES

Modelica, like any object-oriented computer language, provides the
notions of classes and objects, also called instances, as a tool for solv-
ing modeling and programming problems. Every object in Modelica
has a class that defines its data and behavior. A class has three kinds
of members:

• Data variables associated with a class and its instances. Vari-
ables represent results of computations caused by solving the
equations of a class together with equations from other classes.
During numeric solution of time-dependent problems, the vari-
ables store results of the solution process at the current time
instant.

• Equations specify the behavior of a class. The way in which the
equations interact with equations from other classes determines
the solution process, that is, program execution.

• Classes can be members of other classes.

Here is the declaration of a simple class that might represent a point
in a three-dimensional space:

class Point "Point in a three-dimensional space"
public
Real x;
Real y, z;

end Point;

The Point class has three variables representing the x, y, and z

coordinates of a point and has no equations. A class declaration like
this one is like a blueprint that defines how instances created from
that class look like, as well as instructions in the form of equations
that define the behavior of those objects. Members of a class may be
accessed using dot (.) notation. For example, regarding an instance
myPoint of the Point class, we can access the x variable by writing
myPoint.x.

Members of a class can have two levels of visibility. The public
declaration of x, y, and z, which is default if nothing else is specified,
means that any code with access to a Point instance can refer to
those values. The other possible level of visibility, specified by the

42 CHAPTER 2 A Quick Tour of Modelica

keyword protected, means that only code inside the class as well
as code in classes that inherit this class, are allowed access.

Note that an occurrence of one of the keywords public or
protected means that all member declarations following that
keyword assume the corresponding visibility until another occurrence
of one of those keywords, or the end of the class containing the
member declarations has been reached.

2.3.1 Creating Instances

In Modelica, objects are created implicitly just by declaring instances
of classes. This is in contrast to object-oriented languages like Java or
C++, where object creation is specified using the new keyword. For
example, to create three instances of our Point class we just declare
three variables of type Point in a class, here Triangle:

class Triangle
Point point1;
Point point2;
Point point3;

end Triangle;

There is one remaining problem, however. In what context should
Triangle be instantiated, and when should it just be interpreted as
a library class not to be instantiated until actually used?

This problem is solved by regarding the class at the top of
the instantiation hierarchy in the Modelica program to be executed
as a kind of “main” class that is always implicitly instantiated,
implying that its variables are instantiated, and that the variables
of those variables are instantiated, and so forth. Therefore, to
instantiate Triangle, either make the class Triangle the “top”
class or declare an instance of Triangle in the “main” class. In the
following example, both the class Triangle and the class Foo1 are
instantiated:

class Foo1
...

end Foo1;

class Foo2
...

end Foo2;

2.3 Classes and Instances 43

...

class Triangle
Point point1;
Point point2;
Point point3;

end Triangle;

class Main
Triangle pts;
Foo1 f1;

end Main;

The variables of Modelica classes are instantiated per object. This
means that a variable in one object is distinct from the variable with
the same name in every other object instantiated from that class. Many
object-oriented languages allow class variables. Such variables are
specific to a class as opposed to instances of the class, and are shared
among all objects of that class. The notion of class variables is not
yet available in Modelica.

2.3.2 Initialization

Another problem is initialization of variables. As mentioned previously
in Section 2.1.5, if nothing else is specified, the default start value of
all numerical variables is zero, apart from function results and local
variables where the initial value at call time is unspecified. Other start
values can be specified by setting the start attribute of instance
variables. Note that the start value only gives a suggestion for initial
value—the solver may choose a different value unless the fixed

attribute is true for that variable. Below a start value is specified in
the example class Triangle:

class Triangle
Point point1(start={1,2,3});
Point point2;
Point point3;

end Triangle;

Alternatively, the start value of point1 can be specified when instan-
tiating Triangle as below:

class Main
Triangle pts(point1.start={1,2,3});

44 CHAPTER 2 A Quick Tour of Modelica

foo1 f1;
end Main;

A more general way of initializing a set of variables according to some
constraints is to specify an equation system to be solved in order to
obtain the initial values of these variables. This method is supported
in Modelica through the initial equation construct.

An example of a continuous-time controller initialized in steady
state, that is, when derivatives should be zero, is given below:

model Controller
Real y;

equation
der(y) = a*y + b*u;

initial equation
der(y)=0;

end Controller;

This has the following solution at initialization:

der(y) = 0;
y = -(b/a)*u;

2.3.3 Specialized Classes

The class concept is fundamental to Modelica and is used for a number
of different purposes. Almost anything in Modelica is a class. How-
ever, in order to make Modelica code easier to read and maintain,
special keywords have been introduced for specific uses of the class
concept. The keywords model, connector, record, block, type,
package, and function can be used to denote a class under appro-
priate conditions, called restrictions. Some of the specialized classes
also have additional capabilities, called enhancements. For example,
a function class has the enhancement that it can be called, whereas
a record is a class used to declare a record data structure and has
the restriction that it may not contain equations.

record Person
Real age;
String name;

end Person;

A model is the same as a class, that is, those keywords are com-
pletely interchangeable. A block is a class with fixed causality, which

2.3 Classes and Instances 45

means that for each member variable of the class it is specified whether
it has input or output causality. Thus, each variable in a block class
interface must be declared with a causality prefix keyword of either
input or output.

A connector class is used to declare the structure of “ports”
or interface points of a component and may not contain equations,
but has the additional property to allow connect(..) to instances
of connector classes. A type is a class that can be an alias or an
extension to a predefined type, record, or array. For example:

type vector3D = Real[3];

The idea of specialized classes is beneficial since the user does not
have to learn several different concepts, except for one: the class
concept . The notion of specialized classes gives the user a chance
to express more precisely what a class is intended for and requires
the Modelica compiler to check that these usage constraints are actu-
ally fulfilled. Fortunately, the notion is quite uniform since all basic
properties of a class, such as the syntax and semantics of definition,
instantiation, inheritance, and generic properties, are identical for all
kinds of specialized classes. Furthermore, the construction of Model-
ica translators is simplified because only the syntax and semantics of
the class concept have to be implemented along with some additional
checks on specialized classes.

The package and function specialized classes in Modelica
have much in common with the class concept but also have additional
properties, so-called enhancements. Especially functions have quite a
lot of enhancements, for example, it can be called with an argument
list, instantiated at run time, and so forth. An operator class is sim-
ilar to a package but may only contain declarations of functions and
is intended for user-defined overloaded operators (Section 2.14.4).

2.3.4 Reuse of Classes by Modifications

The class concept is the key to reuse of modeling knowledge in
Modelica. Provisions for expressing adaptations or modifications of
classes through so-called modifiers in Modelica make reuse easier.
For example, assume that we would like to connect two filter models
with different time constants in series.

46 CHAPTER 2 A Quick Tour of Modelica

Instead of creating two separate filter classes, it is better to define
a common filter class and create two appropriately modified instances
of this class, which are connected. An example of connecting two
modified low-pass filters is shown after the example low-pass filter
class below:

model LowPassFilter
parameter Real T=1 "Time constant of filter";
Real u, y(start=1);

equation
T*der(y) + y = u;

end LowPassFilter;

The model class can be used to create two instances of the filter
with different time constants and “connecting” them together by the
equation F2.u = F1.y as follows:

model FiltersInSeries
LowPassFilter F1(T=2), F2(T=3);

equation
F1.u = sin(time);
F2.u = F1.y;

end FiltersInSeries;

Here we have used modifiers , that is, attribute equations such as T=2
and T=3 to modify the time constant of the low-pass filter when creat-
ing the instances F1 and F2. The independent time variable is denoted
time. If the FiltersInSeries model is used to declare variables
at a higher hierarchical level, for example, F12, the time constants
can still be adapted by using hierarchical modification, as for F1 and
F2 below:

model ModifiedFiltersInSeries
FiltersInSeries F12(F1(T=6), F2.T=11);

end ModifiedFiltersInSeries;

2.3.5 Built-in Classes and Attributes

The built-in type classes of Modelica correspond to the prede-
fined “primitive” types Real, Integer, Boolean, String, and
enumeration(...), and have most of the properties of a class, for
example, can be inherited, modified, and so forth. Only the value

attribute can be changed at run time and is accessed through the

2.4 Inheritance 47

variable name itself, and not through dot notation, that is, use x

and not x.value to access the value. Other attributes are accessed
through dot notation.

For example, a Real variable has a set of default attributes such
as unit of measure, initial value, and minimum and maximum values.
These default attributes can be changed when declaring a new class,
for example:

class Voltage = Real(unit= "V", min=-220.0,
max=220.0);

2.4 INHERITANCE

One of the major benefits of object orientation is the ability to extend
the behavior and properties of an existing class. The original class,
known as the superclass or base class , is extended to create a more
specialized version of that class, known as the subclass or derived
class . In this process, the behavior and properties of the original class
in the form of variable declarations, equations, and other contents are
reused, or inherited, by the subclass.

Let us regard an example of extending a simple Modelica class, for
example, the class Point introduced previously. First, we introduce
two classes named ColorData and Color, where Color inherits the
data variables to represent the color from class ColorData and adds
an equation as a constraint. The new class ColoredPoint inherits
from multiple classes, that is, uses multiple inheritance, to get the
position variables from class Point, and the color variables together
with the equation from class Color.

record ColorData
Real red;
Real blue;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

48 CHAPTER 2 A Quick Tour of Modelica

class Point
public
Real x;
Real y, z;

end Point;

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

See also Section 3.7 regarding inheritance and reuse.

2.5 GENERIC CLASSES

In many situations it is advantageous to be able to express generic pat-
terns for models or programs. Instead of writing many similar pieces
of code with essentially the same structure, a substantial amount of
coding and software maintenance can be avoided by directly express-
ing the general structure of the problem and providing the special
cases as parameter values.

Such generic constructs are available in several programming lan-
guages, for example, templates in C++, generics in Ada, and type
parameters in functional languages such as Haskell or Standard ML.
In Modelica the class construct is sufficiently general to handle generic
modeling and programming in addition to the usual class functionality.

There are essentially two cases of generic class parameterization
in Modelica: Class parameters can either be instance parameters ,
that is, have instance declarations (components) as values, or be type
parameters , that is, have types as values. Note that by class parameters
in this context we do not usually mean model parameters prefixed by
the keyword parameter, even though such “variables” are also a kind
of class parameter. Instead we mean formal parameters to the class .
Such formal parameters are prefixed by the keyword replaceable.
The special case of replaceable local functions is roughly equivalent
to virtual methods in some object-oriented programming languages.

2.5.1 Class Parameters as Instances

First, we present the case when class parameters are variables, that is,
declarations of instances, often called components. The class C in the

2.5 Generic Classes 49

example below has three class parameters marked by the keyword
replaceable. These class parameters, which are components
(variables) of class C, are declared as having the (default) types
GreenClass, YellowClass, and GreenClass, respectively. There
is also a red object declaration that is not replaceable and therefore
not a class parameter (Fig. 2.5).

Here is the class C with its three class parameters pobj1,
pobj2, and pobj3 and a variable obj4 that is not a class parameter:

class C
replaceable GreenClass pobj1(p1=5);
replaceable YellowClass pobj2;
replaceable GreenClass pobj3;
RedClass obj4;

equation
...

end C;

Now a class C2 is defined by providing two declarations of pobj1
and pobj2 as actual arguments to class C, being red and green,
respectively, instead of the defaults green and yellow. The key-
word redeclare must precede an actual argument to a class formal
parameter to allow changing its type. The requirement to use a key-
word for a redeclaration in Modelica has been introduced in order to
avoid accidentally changing the type of an object through a standard
modifier.

In general, the type of a class component cannot be changed if it
is not declared as replaceable and a redeclaration is provided. A
variable in a redeclaration can replace the original variable if it has
a type that is a subtype of the original type or its type constraint. It
is also possible to declare type constraints (not shown here) on the
substituted classes.

pobj1

A green
object

pobj2

A yellow
object

pobj3

A green
object

class C

obj4

A red
object

Figure 2.5 Three class parameters pobj1, pobj2, and pobj3 that are instances (vari-
ables) of class C. These are essentially slots that can contain objects of different colors.

50 CHAPTER 2 A Quick Tour of Modelica

class C2 = C(redeclare RedClass pobj1, redeclare
GreenClass pobj2);

Such a class C2 obtained through redeclaration of pobj1 and pobj2

is of course equivalent to directly defining C2 without reusing class
C, as below.

class C2
RedClass pobj1(p1=5);
GreenClass pobj2;
GreenClass pobj3;
RedClass obj4;

equation
...

end C2;

2.5.2 Class Parameters as Types

A class parameter can also be a type, which is useful for changing
the type of many objects. For example, by providing a type parameter
ColoredClass in class C below, it is easy to change the color of all
objects of type ColoredClass.

class C
replaceable class ColoredClass = GreenClass;
ColoredClass obj1(p1=5);
replaceable YellowClass obj2;
ColoredClass obj3;
RedClass obj4;

equation
...

end C;

Figure 2.6 depicts how the type value of the ColoredClass class
parameter is propagated to the member object declarations obj1 and
obj3.

We create a class C2 by giving the type parameter ColoredClass
of class C the value BlueClass:

class C2 =
C(redeclare class ColoredClass = BlueClass);

2.6 Equations 51

obj1

Colored-
Class
object

obj2 obj3

A yellow
object

Colored-
Class
object

ColoredClass

GreenClass

obj4

A red
object

Figure 2.6 Class parameter ColoredClass is a type parameter that is propagated to
the two-member instance declarations of obj1 and obj3.

This is equivalent to the following definition of C2:

class C2
BlueClass obj1(p1=5);
YellowClass obj2;
BlueClass obj3;
RedClass obj4;

equation
...

end C2;

2.6 EQUATIONS

As we already stated, Modelica is primarily an equation-based
language in contrast to ordinary programming languages, where
assignment statements proliferate. Equations are more flexible
than assignments since they do not prescribe a certain data flow
direction or execution order. This is the key to the physical modeling
capabilities and increased reuse potential of Modelica classes.

Thinking in equations is a bit unusual for most programmers. In
Modelica the following holds:

• Assignment statements in conventional languages are usually
represented as equations in Modelica.

• Attribute assignments are represented as equations.
• Connections between objects generate equations.

52 CHAPTER 2 A Quick Tour of Modelica

Equations are more powerful than assignment statements. For
example, consider a resistor equation where the resistance R

multiplied by the current i is equal to the voltage v:

R*i = v;

This equation can be used in three ways corresponding to three pos-
sible assignment statements: computing the current from the voltage
and the resistance, computing the voltage from the resistance and the
current, or computing the resistance from the voltage and the current.
This is expressed in the following three assignment statements:

i := v/R;
v := R*i;
R := v/i;

Equations in Modelica can be informally classified into four different
groups depending on the syntactic context in which they occur:

• Normal equations occurring in equation sections, including the
connect equation, which is a special form of equation.

• Declaration equations , which are part of variable or constant
declarations.

• Modification equations , which are commonly used to modify
attributes.

• Initial equations , specified in initial equation sections or as start
attribute equations. These equations are used to solve the ini-
tialization problem at startup time.

As we already have seen in several examples, normal equations appear
in equation sections started by the keyword equation and terminated
by some other allowed keyword:

equation
...
<equations>
...

<some other allowed keyword>

The above resistor equation is an example of a normal equation that
can be placed in an equation section. Declaration equations are usu-
ally given as part of declarations of fixed or parameter constants, for
example:

2.6 Equations 53

constant Integer one = 1;
parameter Real mass = 22.5;

An equation always holds, which means that the mass in the above
example never changes value during simulation. It is also possible to
specify a declaration equation for a normal variable, for example:

Real speed = 72.4;

However, this does not make much sense since it will constrain the
variable to have the same value throughout the computation, effec-
tively behaving as a constant. Therefore a declaration equation is quite
different from a variable initializer in other languages.

Concerning attribute assignments, these are typically specified
using modification equations. For example, if we need to specify an
initial value for a variable, meaning its value at the start of the com-
putation, then we give an attribute equation for the start attribute of
the variable, for example:

Real speed(start=72.4);

2.6.1 Repetitive Equation Structures

Before reading this section you might want to take a look at Section
2.13 about arrays and Section 2.14.2 about statements and algorithmic
for-loops.

Sometimes there is a need to conveniently express sets of
equations that have a regular, that is, repetitive structure. Often this
can be expressed as array equations, including references to array
elements denoted using square bracket notation. However, for the
more general case of repetitive equation structures Modelica provides
a loop construct. Note that this is not a loop in the algorithmic sense
of the word—it is rather a shorthand notation for expressing a set of
equations.

For example, consider an equation for a polynomial expression:

y = a[1]+a[2]*x + a[3]*xˆ2 + ... + a[n+1]*xˆn

The polynomial equation can be expressed as a set of equations with
regular structure in Modelica, with y equal to the scalar product of
the vectors a and xpowers, both of length n+1:

54 CHAPTER 2 A Quick Tour of Modelica

xpowers[1] = 1;
xpowers[2] = xpowers[1]*x;
xpowers[3] = xpowers[2]*x;
...
xpowers[n+1] = xpowers[n]*x;
y = a * xpowers;

The regular set of equations involving xpowers can be expressed
more conveniently using the for loop notation:

for i in 1:n loop
xpowers[i+1] = xpowers[i]*x;

end for;

In this particular case a vector equation provides an even more com-
pact notation:

xpowers[2:n+1] = xpowers[1:n]*x;

Here the vectors x and xpowers have length n+1. The colon notation
2:n+1 means extracting a vector of length n, starting from element
2 up to and including element n+1.

2.6.2 Partial Differential Equations

Partial differential equations (PDEs) contain derivatives with respect to
other variables than time, for example, of spatial Cartesian coordinates
such as x and y . Models of phenomena such as heat flow or fluid flow
typically involve PDEs. PDE functionality is not yet part of the official
Modelica language but is planned for the future.

2.7 ACAUSAL PHYSICAL MODELING

Acausal modeling is a declarative modeling style, meaning modeling
based on equations instead of assignment statements. Equations do
not specify which variables are inputs and which are outputs, whereas
in assignment statements variables on the left-hand side are always
outputs (results) and variables on the right-hand side are always
inputs. Thus, the causality of equation-based models is unspecified
and becomes fixed only when the corresponding equation systems
are solved. This is called acausal modeling . The term physical

2.7 Acausal Physical Modeling 55

modeling reflects the fact that acausal modeling is very well suited
for representing the physical structure of modeled systems.

The main advantage with acausal modeling is that the solution
direction of equations will adapt to the data flow context in which
the solution is computed. The data flow context is defined by stating
which variables are needed as outputs and which are external inputs
to the simulated system.

The acausality of Modelica library classes makes these more
reusable than traditional classes containing assignment statements
where the input-output causality is fixed.

2.7.1 Physical Modeling Versus Block-Oriented
Modeling

To illustrate the idea of acausal physical modeling we give an example
of a simple electrical circuit (Fig. 2.7). The connection diagram6 of
the electrical circuit shows how the components are connected. It may
be drawn with component placements to roughly correspond to the
physical layout of the electrical circuit on a printed circuit board.
The physical connections in the real circuit correspond to the logical
connections in the diagram. Therefore the term physical modeling is
quite appropriate.

The Modelica SimpleCircuit model below directly corre-
sponds to the circuit depicted in the connection diagram of Figure 2.7.
Each graphic object in the diagram corresponds to a declared instance
in the simple circuit model. The model is acausal since no signal
flow, that is, cause-and-effect flow, is specified. Connections between
objects are specified using the connect equation construct, which
is a special syntactic form of equation that we will examine later.
The classes Resistor, Capacitor, Inductor, VsourceAC, and
Ground will be presented in more detail in Sections 2.11 and 2.12.

model SimpleCircuit
Resistor R1(R=10);
Capacitor C(C=0.01);

6A connection diagram emphasizes the connections between components of a model,
whereas a composition diagram specifies which components a model is composed of, their
subcomponents, and so forth. A class diagram usually depicts inheritance and composition
relations.

56 CHAPTER 2 A Quick Tour of Modelica

R1 = 10

C = 0.01 L = 0.1

R2 = 100

G

AC = 220

p
n

p

pp

p

p

n

n

nn

Figure 2.7 Connection diagram of the acausal simple circuit model.

Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p, R1.p); // Capacitor circuit
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p); // Inductor circuit
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p); // Ground

end SimpleCircuit;

As a comparison we show the same circuit modeled using causal
block-oriented modeling depicted as a diagram in Figure 2.8. Here the
physical topology is lost—the structure of the diagram has no simple
correspondence to the structure of the physical circuit board. This
model is causal since the signal flow has been deduced and is clearly
shown in the diagram. Even for this simple example the analysis to
convert the intuitive physical model to a causal block-oriented model
is nontrivial. Another disadvantage is that the resistor representations
are context dependent. For example, the resistors R1 and R2 have

2.8 The Modelica Software Component Model 57

−1
1

sum3

+1
−1

sum1

+1
+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Figure 2.8 Simple circuit model using causal block-oriented modeling with explicit
signal flow.

different definitions, which makes reuse of model library components
hard. Furthermore, such system models are usually hard to maintain
since even small changes in the physical structure may result in large
changes to the corresponding block-oriented system model.

2.8 THE MODELICA SOFTWARE
COMPONENT MODEL

For a long time, software developers have looked with envy on hard-
ware system builders, regarding the apparent ease with which reusable
hardware components are used to construct complicated systems. With
software there seems too often to be a need or tendency to develop
from scratch instead of reusing components. Early attempts at software
components include procedure libraries, which unfortunately have too
limited applicability and low flexibility. The advent of object-oriented
programming has stimulated the development of software component
frameworks such as CORBA, the Microsoft COM/DCOM component
object model, and JavaBeans. These component models have consid-
erable success in certain application areas, but there is still a long way
to go to reach the level of reuse and component standardization found
in hardware industry.

58 CHAPTER 2 A Quick Tour of Modelica

The reader might wonder what all this has to do with Modelica. In
fact, Modelica offers quite a powerful software component model that
is on par with hardware component systems in flexibility and potential
for reuse. The key to this increased flexibility is the fact that Modelica
classes are based on equations. What is a software component model?
It should include the following three items:

1. Components

2. A connection mechanism

3. A component framework

Components are connected via the connection mechanism, which can
be visualized in connection diagrams. The component framework real-
izes components and connections and ensures that communication
works and constraints are maintained over the connections. For sys-
tems composed of acausal components the direction of data flow, that
is, the causality is automatically deduced by the compiler at compo-
sition time.

2.8.1 Components

Components are simply instances of Modelica classes. Those classes
should have well-defined interfaces, sometimes called ports, in Mod-
elica called connectors, for communication and coupling between a
component and the outside world.

A component is modeled independently of the environment where
it is used, which is essential for its reusability. This means that in
the definition of the component including its equations, only local
variables and connector variables can be used. No means of com-
munication between a component and the rest of the system, apart
from going via a connector, should be allowed. However, in Modelica
access of component data via dot notation is also possible. A com-
ponent may internally consist of other connected components, that is,
hierarchical modeling.

2.8.2 Connection Diagrams

Complex systems usually consist of large numbers of connected com-
ponents, of which many components can be hierarchically decomposed

2.8 The Modelica Software Component Model 59

into other components through several levels. To grasp this complex-
ity, a pictorial representation of components and connections is quite
important. Such graphic representation is available as connection dia-
grams, of which a schematic example is shown in Figure 2.9. We
have earlier presented a connection diagram of a simple circuit in
Figure 2.7.

Each rectangle in the diagram example represents a physical com-
ponent, for example, a resistor, a capacitor, a transistor, a mechanical
gear, a valve, and so forth. The connections represented by lines in
the diagram correspond to real, physical connections. For example,
connections can be realized by electrical wires, by the mechanical con-
nections, by pipes for fluids, by heat exchange between components,
and the like. The connectors, that is, interface points, are shown as
small square dots on the rectangle in the diagram. Variables at such
interface points define the interaction between the component repre-
sented by the rectangle and other components. A simple car example
of a connection diagram for an application in the mechanical domain
is shown in Figure 2.10.

The simple car model below includes variables for subcomponents
such as wheels, chassis, and control unit. A “comment” string after

component2component1

component3

Figure 2.9 Schematic picture of connection diagram for components.

Front wheels

Controller
Chassis

Rear wheels

Figure 2.10 Connection diagram for simple car model.

60 CHAPTER 2 A Quick Tour of Modelica

the class name briefly describes the class. The wheels are connected
to both the chassis and the controller. Connect equations are present
but are not shown in this partial example.

class Car "A car class to combine car components"
Wheel w1,w2,w3,w4 "Wheel one to four";
Chassis chassis "Chassis";
CarController controller "Car controller";
...

end Car;

2.8.3 Connectors and Connector Classes

Modelica connectors are instances of connector classes, which define
the variables that are part of the communication interface that is spec-
ified by a connector. Thus, connectors specify external interfaces for
interaction.

For example, Pin is a connector class that can be used to spec-
ify the external interfaces for electrical components (Fig. 2.11) that
have pins. The types Voltage and Current used within Pin are the
same as Real but with different associated units. From the Modelica
language point of view the types Voltage and Current are similar
to Real and are regarded as having equivalent types. Checking unit
compatibility within equations is optional.

type Voltage = Real(unit="V");
type Current = Real(unit="A");

The Pin connector class below contains two variables. The flow pre-
fix on the second variable indicates that this variable represents a flow
quantity, which has special significance for connections as explained
in the next section.

connector Pin
Voltage v;
flow Current i;

end Pin;

v

i

Figure 2.11 Component with one electrical Pin connector.

2.8 The Modelica Software Component Model 61

2.8.4 Connections

Connections between components can be established between con-
nectors of equivalent type. Modelica supports equation-based acausal
connections, which means that connections are realized as equations.
For acausal connections, the direction of data flow in the connec-
tion need not be known. Additionally, causal connections can be
established by connecting a connector with an output attribute to
a connector declared as input.

Two types of coupling can be established by connections, depend-
ing on whether the variables in the connected connectors are nonflow
(default) or declared using the flow prefix:

1. Equality coupling, for nonflow variables, according to Kirch-
hoff’s first law

2. Sum-to-zero coupling, for flow variables, according to Kirch-
hoff’s current law

For example, the keyword flow for the variable i of type Current

in the Pin connector class indicates that all currents in connected pins
are summed to zero, according to Kirchhoff’s current law.

Connection equations are used to connect instances of connection
classes. A connection equation connect(R1.p,R2.p), with R1.p

and R2.p of connector class Pin, connects the two pins (Fig. 2.12)
so that they form one node. This produces two equations, namely:

R1.p.v = R2.p.v
R1.p.i + R2.p.i = 0

The first equation says that the voltages of the connected wire ends
are the same. The second equation corresponds to Kirchhoff’s second
law, saying that the currents sum to zero at a node (assuming positive
value while flowing into the component). The sum-to-zero equations
are generated when the prefix flow is used. Similar laws apply to

R1 R2
++

R2.p.i

R2.p.vR1.p.v

R1.p.i

p p

Figure 2.12 Connecting two components that have electrical pins.

62 CHAPTER 2 A Quick Tour of Modelica

flows in piping networks and to forces and torques in mechanical
systems.

2.8.5 Implicit Connections with Inner/Outer

So far we have focused on explicit connections between connec-
tors where each connection is explicitly represented by a connect

equation and a corresponding line in a connection diagram. However,
when modeling certain kinds of large models with many interact-
ing components, this approach becomes rather clumsy because of the
large number of potential connections—a connection might be needed
between each pair of components. This is especially true for system
models involving force fields , which lead to a maximum of n × n
connections between the n components influenced by the force field
or 1 × n connections between a central object and n components if
intercomponent interaction is neglected.

For the case of 1 × n connections, instead of using a large number
of explicit connections, Modelica provides a convenient mechanism
for implicit connections between an object and n of its components
through the inner and outer declaration prefixes.

A rather common kind of implicit interaction is where a shared
attribute of a single environment object is accessed by a number of
components within that environment. For example, we might have
an environment including house components, each accessing a shared
environment temperature, or a circuit board environment with elec-
tronic components accessing the board temperature.

A Modelica environment component example model along these
lines is shown below, where a shared environment temperature vari-
able T0 is declared as a definition declaration marked by the keyword
inner. This declaration is implicitly accessed by the reference decla-
rations of T0 marked by the prefix outer in the components comp1
and comp2.

model Environment
import Modelica.Math.sin;
inner Real T0;
//Definition of actual environment temperature T0

Component comp1, comp2;
//Lookup match comp1.T0 = comp2.T0 = T0

parameter Real k=1;
equation

T0 = sin(k*time);
end Environment;

2.8 The Modelica Software Component Model 63

model Component
outer Real T0;
// Reference to temperature T0 defined in the environments

Real T;
equation
T = T0;

end Component;

2.8.6 Expandable Connectors for Information
Buses

It is common in engineering to have so-called information buses with
the purpose to transport information between various system compo-
nents, for example, sensors, actuators, and control units. Some buses
are even standardized (e.g., by IEEE), but usually rather generic to
allow many kinds of different components.

This is the key idea behind the expandable connector con-
struct in Modelica. An expandable connector acts like an information
bus since it is intended for connection to many kinds of components.
To make this possible it automatically expands the expandable con-
nector type to accommodate all the components connected to it with
their different interfaces. If an element with a certain name and type
is not present, it is added.

All fields in an expandable connector are seen as connector
instances even if they are not declared as such, that is, it is possible
to connect to for example, a Real variable.

Moreover, when two expandable connectors are connected, each
is augmented with the variables that are only declared in the other
expandable connector. This is repeated until all connected expand-
able connector instances have matching variables, that is, each of the
connector instances is expanded to be the union of all connector vari-
ables. If a variable appears as an input in one expandable connector, it
should appear as a noninput in at least one other expandable connector
instance in the connected set. The following is a small example:

expandable connector EngineBus
end EngineBus;

block Sensor
RealOutput speed;

end Sensor;

block Actuator

64 CHAPTER 2 A Quick Tour of Modelica

RealInput speed;
end Actuator;

model Engine
EngineBus bus;
Sensor sensor;
Actuator actuator;

equation
connect(bus.speed, sensor.speed);
// provides the non-input

connect(bus.speed, actuator.speed);
end Engine;

There are many more issues to consider when using expandable con-
nectors; see, for example, Modelica (2010) and Fritzson (2011).

2.8.7 Stream Connectors

In thermodynamics with fluid applications where there can be bi-
directional flows of matter with associated quantities, it turns out that
the two basic variable types in a connector—potential/nonflow vari-
ables and flow variables—are not sufficient to describe models that
result in a numerically sound solution approach. Such applications
typically have bi-directional flow of matter with convective transport
of specific quantities, such as specific enthalpy and chemical compo-
sition.

If we would use conventional connectors with flow and nonflow
variables, the corresponding models would include nonlinear systems
of equations with Boolean unknowns for the flow directions and sin-
gularities around zero flow. Such equation systems cannot be solved
reliably in general. The model formulations can be simplified when
formulating two different balance equations for the two possible flow
directions. This is, however, not possible only using flow and nonflow
variables.

This fundamental problem is addressed in Modelica by introducing
a third type of connector variable, called stream variable, declared
with the prefix stream. A stream variable describes a quantity that
is carried by a flow variable, that is, a purely convective transport
phenomenon.

2.9 Partial Classes 65

If at least one variable in a connector has the stream prefix, the
connector is called a stream connector and the corresponding variable
is called a stream variable. For example:

connector FluidPort
...
flow Real m−flow
"Flow of matter; m−flow>0 if flow into component";

stream Real h−outflow
"Specific variable in component if m−flow < 0"

end FluidPort

model FluidSystem
...
FluidComponent m1, m2, ..., mN;
FluidPort c1, c2, ..., cM;

equation
connect(m1.c, m2.c);
...
connect(m1.c, cM);
...

end FluidSystem;

For more details and further explanations, see Modelica (2010) and
Fritzson (2011).

2.9 PARTIAL CLASSES

A common property of many electrical components is that they have
two pins. This means that it is useful to define a “blueprint” model
class, for example, called TwoPin, that captures this common prop-
erty. This is a partial class since it does not contain enough equations
to completely specify its physical behavior and is therefore prefixed by
the keyword partial. Partial classes are usually known as abstract
classes in other object-oriented languages.

partial class TwoPin7

"Superclass of elements with two electrical pins"
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;

7This TwoPin class is referred to by the name Modelica.Electrical.Analog.

Interfaces.OnePort in the Modelica standard library since this is the name used by
electrical modeling experts. Here we use the more intuitive name TwoPin since the class
is used for components with two physical ports and not one. The OnePort naming is more
understandable if it is viewed as denoting composite ports containing two subports.

66 CHAPTER 2 A Quick Tour of Modelica

0 = p.i + n.i;
i = p.i;

end TwoPin;

The TwoPin class has two pins, p and n, a quantity v that defines
the voltage drop across the component, and a quantity i that defines
the current into pin p, through the component, and out from pin n

(Fig. 2.13). It is useful to label the pins differently, for example, p
and n, and using graphics, for example, filled and unfilled squares,
respectively, to obtain a well-defined sign for v and i, although there
is no physical difference between these pins in reality.

The equations define generic relations between quantities of simple
electrical components. In order to be useful, a constitutive equation
must be added that describes the specific physical characteristics of
the component.

2.9.1 Reuse of Partial Classes

Given the generic partial class TwoPin, it is now straightforward to
create the more specialized Resistor class by adding a constitutive
equation:

R*i = v;

This equation describes the specific physical characteristics of the rela-
tion between voltage and current for a resistor (Fig. 2.14).

class Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real R(unit="Ohm") "Resistance";

equation

n.v

+
p.i n.i

p.v

i

p n
v

−

Figure 2.13 Generic TwoPin class that describes the general structure of simple elec-
trical components with two pins.

Rp n
+

v
i

Figure 2.14 Resistor component.

2.11 Example: Electrical Component Library 67

R*i = v;
end Resistor;

A class for electrical capacitors can also reuse TwoPin in a similar
way, adding the constitutive equation for a capacitor (Fig. 2.15).

class Capacitor "Ideal electrical capacitor"
extends TwoPin;
parameter Real C(Unit="F") "Capacitance";

equation
C*der(v) = i;

end Capacitor;

During system simulation the variables i and v specified in the
above components evolve as functions of time. The solver of differen-
tial equations computes the values of v(t) and i (t) (where t is time)
such that C · v̇(t) = i (t) for all values of t , fulfilling the constitutive
equation for the capacitor.

2.10 COMPONENT LIBRARY
DESIGN AND USE

In a similar way as we previously created the resistor and capacitor
components, additional electrical component classes can be created,
forming a simple electrical component library that can be used for
application models such as the SimpleCircuit model. Component
libraries of reusable components are actually the key to effective mod-
eling of complex systems.

2.11 EXAMPLE: ELECTRICAL
COMPONENT LIBRARY

Below we show an example of designing a small library of electrical
components needed for the simple circuit example, as well as the
equations that can be extracted from these components.

np

+
vi

C

Figure 2.15 Capacitor component.

68 CHAPTER 2 A Quick Tour of Modelica

2.11.1 Resistor

Four equations can be extracted from the resistor model depicted in
Figures 2.14 and 2.16. The first three originate from the inherited
TwoPin class, whereas the last is the constitutive equation of the
resistor.

0 = p.i + n.i
v = p.v - n.v
i = p.i
v = R*i

2.11.2 Capacitor

The following four equations originate from the capacitor model
depicted in Figures 2.15 and 2.17, where the last equation is the
constitutive equation for the capacitor.

0 = p.i + n.i
v = p.v - n.v
i = p.i
i = C * der(v)

2.11.3 Inductor

The inductor class depicted in Figure 2.18 and shown below gives a
model for ideal electrical inductors.

class Inductor "Ideal electrical inductor"
extends TwoPin;

p.i

p.v

n.i

n.v

+

v

Figure 2.16 Resistor component.

p.i

p.v

n.i

n.v

+

v

Figure 2.17 Capacitor component.

2.11 Example: Electrical Component Library 69

p.i

p.v

n.i

n.v

+

v

Figure 2.18 Inductor component.

parameter Real L(unit="H") "Inductance";
equation
v = L*der(i);

end Inductor;

These equations can be extracted from the inductor class, where the
first three come from TwoPin as usual and the last is the constitutive
equation for the inductor.

0 = p.i + n.i
v = p.v - n.v
i = p.i
v = L * der(i)

2.11.4 Voltage Source

A class VsourceAC for the sine-wave voltage source to be used in
our circuit example is depicted in Figure 2.19 and can be defined as
below. This model as well as other Modelica models specify behavior
that evolves as a function of time. Note that a predefined variable
time is used. In order to keep the example simple, the constant PI
is explicitly declared even though it is usually imported from the
Modelica standard library.

class VsourceAC "Sin-wave voltage source"
extends TwoPin;
parameter Voltage VA = 220 "Amplitude";
parameter Real f(unit="Hz") = 50 "Frequency";
constant Real PI = 3.141592653589793;

equation

p.i

p.v

n.i

n.v
v

Figure 2.19 Voltage source component VsourceAC, where v(t) =

VA∗sin(2∗PI∗f∗time).

70 CHAPTER 2 A Quick Tour of Modelica

p.ip.v

Figure 2.20 Ground component.

v = VA*sin(2*PI*f*time);
end VsourceAC;

In this TwoPin-based model, four equations can be extracted from the
model, of which the first three are inherited from TwoPin:

0 = p.i + n.i
v = p.v - n.v
i = p.i
v = VA*sin(2*PI*f*time)

2.11.5 Ground

Finally, we define a class for ground points that can be instantiated
as a reference value for the voltage levels in electrical circuits. This
class has only one pin (Fig. 2.20).

class Ground "Ground"
Pin p;

equation
p.v = 0;

end Ground;

A single equation can be extracted from the Ground class.

p.v = 0

2.12 SIMPLE CIRCUIT MODEL

Having collected a small library of simple electrical components, we
can now put together the simple electrical circuit shown previously
and in Figure 2.21.

The two resistor instances R1 and R2 are declared with mod-
ification equations for their respective resistance parameter values.
Similarly, an instance C of the capacitor and an instance L of the
inductor are declared with modifiers for capacitance and inductance,

2.12 Simple Circuit Model 71

R1 = 10

C = 0.01 L = 0.1

R2 = 100

G

AC = 220

p
n

p

pp

p

p

n

n

nn

Figure 2.21 Simple circuit model.

respectively. The voltage source AC and the ground instance G have no
modifiers. Connect equations are provided to connect the components
in the circuit.

class SimpleCircuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC;
Ground G;

equation
connect(AC.p, R1.p); // 1, Capacitor circuit
connect(R1.n, C.p); // Wire 2
connect(C.n, AC.n); // Wire 3
connect(R1.p, R2.p); // 2, Inductor circuit
connect(R2.n, L.p); // Wire 5
connect(L.n, C.n); // Wire 6
connect(AC.n, G.p); // 7, Ground

end SimpleCircuit;

72 CHAPTER 2 A Quick Tour of Modelica

2.13 ARRAYS

An array is a collection of variables all of the same type. Elements of
an array are accessed through simple integer indexes, ranging from a
lower bound of 1 to an upper bound being the size of the respective
dimension. An array variable can be declared by appending dimensions
within square brackets after a class name, as in Java, or after a variable
name, as in the C language. For example:

Real[3] positionvector = {1,2,3};
Real[3,3] identitymatrix = {{1,0,0}, {0,1,0}, {0,0,1}};
Real[3,3,3] arr3d;

This declares a three-dimensional position vector, a transformation
matrix, and a three-dimensional array. Using the alternative syntax of
attaching dimensions after the variable name, the same declarations
can be expressed as:

Real positionvector[3] = {1,2,3};
Real identitymatrix[3,3] = {{1,0,0}, {0,1,0}, {0,0,1}};
Real arr3d[3,3,3];

In the first two array declarations, declaration equations have been
given, where the array constructor {} is used to construct array values
for defining positionvector and identitymatrix. Indexing of
an array A is written A[i,j,...], where 1 is the lower bound and
size(A,k) is the upper bound of the index for the k th dimension.
Submatrices can be formed by utilizing the : notation for index ranges,
for example, A[i1:i2, j1:j2], where a range i1:i2 means all
indexed elements starting with i1 up to and including i2.

Array expressions can be formed using the arithmetic operators
+, −, ∗, and /, since these can operate on either scalars, vectors,
matrices, or (when applicable) multidimensional arrays with elements
of type Real or Integer. The multiplication operator * denotes
scalar product when used between vectors, matrix multiplication when
used between matrices or between a matrix and a vector, and ele-
mentwise multiplication when used between an array and a scalar.
As an example, multiplying positionvector by the scalar 2 is
expressed by

positionvector*2

which gives the result

2.13 Arrays 73

{2,4,6}

In contrast to Java, arrays of dimensionality >1 in Modelica are always
rectangular as in Matlab or Fortran.

A number of built-in array functions are available, of which a few
are shown in the following list:

transpose(A) Permutes the first two dimensions of
array A.

zeros(n1,n2,n3,...) Returns an n1 × n2 × n3 × . . . zero-filled
integer array.

ones(n1,n2,n3,...) Returns an n1 × n2 × n3 × . . . one-filled
integer array.

fill(s,n1,n2,n3,...) Returns the n1 × n2 × n3 × . . . array
with all elements filled with the value
of the scalar expression s .

min(A) Returns the smallest element of array
expression A.

max(A) Returns the largest element of array
expression A.

sum(A) Returns the sum of all the elements of
array expression A.

A scalar Modelica function of a scalar argument is automatically gen-
eralized to be applicable also to arrays elementwise. For example, if
A is a vector of real numbers, then cos(A) is a vector where each
element is the result of applying the function cos to the corresponding
element in A. For example:

cos({1, 2, 3}) = {cos(1), cos(2), cos(3)}

General array concatenation can be done through the array concate-
nation operator cat(k,A,B,C,...) that concatenates the arrays
A,B,C,... along the k:th dimension. For example, cat(1,{2,3},
{5,8,4}) gives the result {2,3,5,8,4}.

The common special cases of concatenation along the first and
second dimensions are supported through the special syntax forms
[A;B;C;...] and [A,B,C,...], respectively. Both of these forms
can be mixed. In order to achieve compatibility with Matlab array
syntax, being a de facto standard, scalar and vector arguments to these
special operators are promoted to become matrices before performing
the concatenation. This gives the effect that a matrix can be constructed

74 CHAPTER 2 A Quick Tour of Modelica

from scalar expressions by separating rows by semicolons and columns
by commas. The example below creates an m × n matrix:

[expr11, expr12, ... expr1n;
expr21, expr22, ... expr2n;
...
exprm1, exprm2, ... exprmn]

It is instructive to follow the process of creating a matrix from scalar
expressions using these operators. For example:

[1,2;
3,4]

First, each scalar argument is promoted to become a matrix, giving

[{{1}}, {{2}};
{{3}}, {{4}}]

Since [... , ...] for concatenation along the second dimension
has higher priority than [... ; ...], which concatenates along the
first dimension, the first concatenation step gives

[{{1, 2}};
{{3, 4}}]

Finally, the row matrices are concatenated giving the desired 2 × 2
matrix:

{{1, 2}},
{3, 4}}

The special case of just one scalar argument can be used to create a
1×1 matrix. For example:

[1]

gives the matrix

{{1}}

2.14 ALGORITHMIC CONSTRUCTS

Even though equations are eminently suitable for modeling physical
systems and for a number of other tasks, there are situations where

2.14 Algorithmic Constructs 75

nondeclarative algorithmic constructs are needed. This is typically the
case for algorithms, that is, procedural descriptions of how to carry
out specific computations, usually consisting of a number of statements
that should be executed in the specified order.

2.14.1 Algorithm Sections and Assignment
Statements

In Modelica, algorithmic statements can occur only within algorithm
sections, starting with the keyword algorithm. Algorithm sections
may also be called algorithm equations, since an algorithm section
can be viewed as a group of equations involving one or more vari-
ables, and can appear among equation sections. Algorithm sections
are terminated by the appearance of one of the keywords equation,
public, protected, algorithm, or end.

algorithm
...
<statements>
...
<some other keyword>

An algorithm section embedded among equation sections can appear as
below, where the example algorithm section contains three assignment
statements.

equation
x = y*2;
z = w;

algorithm
x1 := z+x;
x2 := y-5;
x1 := x2+y;

equation
u = x1+x2;
...

Note that the code in the algorithm section, sometimes denoted
algorithm equation, uses the values of certain variables from
outside the algorithm. These variables are so-called input variables
to the algorithm—in this example x, y, and z. Analogously,
variables assigned values by the algorithm define the outputs of the

76 CHAPTER 2 A Quick Tour of Modelica

algorithm —in this example x1 and x2. This makes the semantics of
an algorithm section quite similar to a function with the algorithm
section as its body, and with input and output formal parameters
corresponding to inputs and outputs as described above.

2.14.2 Statements

In addition to assignment statements, which were used in the previous
example, a few other kinds of “algorithmic” statements are available
in Modelica: if-then-else statements, for loops, while loops,
return statements, and so on. The summation below uses both a while
loop and an if statement, where size (a,1) returns the size of
the first dimension of array a. The elseif and else parts of if

statements are optional.

sum := 0;
n := size(a,1);
while n>0 loop
if a[n]>0 then
sum := sum + a[n];

elseif a[n] > -1 then
sum := sum - a[n] -1;

else
sum := sum - a[n];

end if;
n := n-1;

end while;

Both for loops and while loops can be immediately terminated by
executing a break statement inside the loop. Such a statement just
consists of the keyword break followed by a semicolon.

Consider once more the computation of the polynomial presented
in Section 2.6.1 on repetitive equation structures.

y := a[1]+a[2]*x + a[3]*xˆ1 + ... + a[n+1]*xˆn;

When using equations to model the computation of the polynomial, it
was necessary to introduce an auxiliary vector xpowers for storing
the different powers of x. Alternatively, the same computation can be
expressed as an algorithm including a for loop as below. This can
be done without the need for an extra vector—it is enough to use a
scalar variable xpower for the most recently computed power of x.

2.14 Algorithmic Constructs 77

algorithm
y := 0;
xpower := 1;
for i in 1:n+1 loop
y := y + a[i]*xpower;
xpower := xpower*x;

end for;
...

2.14.3 Functions

Functions are a natural part of any mathematical model. A number
of mathematical functions like abs, sqrt, mod, and the like are pre-
defined in the Modelica language, whereas others such as sin, cos,
exp, and the like are available in the Modelica standard math library
Modelica.Math. The arithmetic operators +, −, ∗, / can be regarded
as functions that are used through a convenient operator syntax. Thus,
it is natural to have user-defined mathematical functions in the Model-
ica language. The body of a Modelica function is an algorithm section
that contains procedural algorithmic code to be executed when the
function is called. Formal parameters are specified using the input

keyword, whereas results are denoted using the output keyword.
This makes the syntax of function definitions quite close to Modelica
block class definitions.

Modelica functions are mathematical functions , that is, without
global side effects and with no memory. A Modelica function always
returns the same results given the same arguments. Below we show
the algorithmic code for polynomial evaluation in a function named
polynomialEvaluator.

function polynomialEvaluator
input Real a[:];
// Array, size defined at function call time

input Real x := 1.0;
// Default value 1.0 for x

output Real y;
protected
Real xpower;

algorithm
y := 0;
xpower := 1;
for i in 1:size(a,1) loop

78 CHAPTER 2 A Quick Tour of Modelica

y := y + a[i]*xpower;
xpower := xpower*x;

end for;
end polynomialEvaluator;

Functions are usually called with positional association of actual argu-
ments to formal parameters. For example, in the call below the actual
argument {1,2,3,4} becomes the value of the coefficient vector
a, and 21 becomes the value of the formal parameter x. Modelica
function parameters are read-only, that is, they may not be assigned
values within the code of the function. When a function is called using
positional argument association, the number of actual arguments and
formal parameters must be the same. The types of the actual argument
expressions must be compatible with the declared types of the corre-
sponding formal parameters. This allows passing array arguments of
arbitrary length to functions with array formal parameters with unspec-
ified length, as in the case of the input formal parameter a in the
polynomialEvaluator function.

p = polynomialEvaluator({1, 2, 3, 4}, 21);

The same call to the function polynomialEvaluator can instead be
made using named association of actual arguments to formal param-
eters, as in the next example. This has the advantage that the code
becomes more self-documenting as well as more flexible with respect
to code updates.

For example, if all calls to the function polynomialEvaluator

are made using named parameter association, the order between the
formal parameters a and x can be changed, and new formal parameters
with default values can be introduced in the function definitions with-
out causing any compilation errors at the call sites. Formal parameters
with default values need not be specified as actual arguments unless
those parameters should be assigned values different from the defaults.

p = polynomialEvaluator(a={1, 2, 3, 4}, x=21);

Functions can have multiple results. For example, the function f below
has three result parameters declared as three formal output parameters
r1, r2, and r3.

function f
input Real x;

2.14 Algorithmic Constructs 79

input Real y;
output Real r1;
output Real r2;
output Real r3;
...

end f;

Within algorithmic code multiresult functions may be called only in
special assignment statements, as the one below, where the variables
on the left-hand side are assigned the corresponding function results.

(a, b, c) := f(1.0, 2.0);

In equations a similar syntax is used:

(a, b, c) = f(1.0, 2.0);

A function is returned by reaching the end of the function or by
executing a return statement inside the function body.

2.14.4 Operator Overloading and Complex
Numbers

Function and operator overloading allow several definitions of the
same function or operator, but with a different set of input formal
parameter types for each definition. This allows, for example, to define
operators such as addition, multiplication, and so forth, of complex
numbers, using the ordinary + and ∗ operators but with new defini-
tions, or provide several definitions of a solve function for linear
matrix equation solution for different matrix representations such as
standard dense matrices, sparse matrices, symmetric matrices, and so
forth.

In fact, overloading already exists predefined to a limited extent
for certain operators in the Modelica language. For example, the plus
(+) operator for addition has several different definitions depending
on the data type:

• 1+2 means integer addition of two integer constants giving an
integer result, here 3.

• 1.0+2.0 means floating-point number addition of two Real

constants giving a floating-point number result, here 3.0.

80 CHAPTER 2 A Quick Tour of Modelica

• "ab"+"2" means string concatenation of two string constants
giving a string result, here "ab2".

• {1,2}+{3,4} means integer vector addition of two integer
constant vectors giving a vector result, here {4,6}.

Overloaded operators for user-defined data types can be defined using
operator record and operator function declarations. Here we
show part of a complex numbers data type example:
operator record Complex "Record defining a Complex number"

Real re "Real part of complex number";
Real im "Imaginary part of complex number";

encapsulated operator 'constructor'
import Complex;

function fromReal
input Real re;
output Complex result = Complex(re=re, im=0.0);
annotation(Inline=true);

end fromReal;
end 'constructor';

encapsulated operator function '+'
import Complex;
input Complex c1;
input Complex c2;
output Complex result "Same as: c1 + c2";
annotation(Inline=true);

algorithm
result := Complex(c1.re + c2.re, c1.im + c2.im);

end '+';

end Complex;

In the above example we start as usual with the real and imaginary part
declarations of the re and im fields of the Complex operator record
definition. Then comes a constructor definition fromReal with only
one input argument instead of the two inputs of the default Complex
constructor implicitly defined by the Complex record definition, fol-
lowed by overloaded operator definition for '+'.

How can these definitions be used? Take a look at the following
small example:
Real a;
Complex b;
Complex c = a + b;

// Addition of Real number a and Complex number b

The interesting part is in the third line, which contains an addition
a+b of a Real number a and a Complex number b. There is no

2.14 Algorithmic Constructs 81

built-in addition operator for complex numbers, but we have the above
overloaded operator definition of '+' for two complex numbers. An
addition of two complex numbers would match this definition right
away in the lookup process.

However, in this case we have an addition of a real number and
a complex number. Fortunately, the lookup process for overloaded
binary operators can also handle this case if there is a constructor
function in the Complex record definition that can convert a real
number to a complex number. Here we have such a constructor called
fromReal.

Note that Complex is predefined in a Modelica library so that it
can be used directly.

2.14.5 External Functions

It is possible to call functions defined outside of the Modelica lan-
guage, implemented in C or Fortran. If no external language is spec-
ified, the implementation language is assumed to be C. The body of
an external function is marked with the keyword external in the
Modelica external function declaration.

function log
input Real x;
output Real y;

external
end log;

The external function interface supports a number of advanced features
such as in–out parameters, local work arrays, external function argu-
ment order, explicit specification of row-major versus column-major
array memory layout, and the like. For example, the formal parame-
ter Ares corresponds to an in–out parameter in the external function
leastSquares below, which has the value A as input default and
a different value as the result. It is possible to control the ordering
and usage of parameters to the function external to Modelica. This is
used below to explicitly pass sizes of array dimensions to the Fortran
routine called dgels. Some old-style Fortran routines like dgels

need work arrays, which is conveniently handled by local variable
declarations after the keyword protected.

function leastSquares "Solves a linear least squares problem"
input Real A[:,:];

82 CHAPTER 2 A Quick Tour of Modelica

input Real B[:,:];
output Real Ares[size(A,1),size(A,2)] := A;

//Factorization is returned in Ares for later use
output Real x[size(A,2),size(B,2)];

protected
Integer lwork = min(size(A,1),size(A,2))+

max(max(size(A,1),size(A,2)),size(B,2))*32;
Real work[lwork];
Integer info;
String transposed="NNNN";
// Workaround for passing CHARACTER data to
// Fortran routine

external "FORTRAN 77"
dgels(transposed, 100, size(A,1), size(A,2), size(B,2), Ares,

size(A,1), B, size(B,1), work, lwork, info);
end leastSquares;

2.14.6 Algorithms Viewed as Functions

The function concept is a basic building block when defining the
semantics or meaning of programming language constructs. Some pro-
gramming languages are completely defined in terms of mathematical
functions. This makes it useful to try to understand and define the
semantics of algorithm sections in Modelica in terms of functions.
For example, consider the algorithm section below, which occurs in
an equation context:

algorithm
y := x;
z := 2*y;
y := z+y;
...

This algorithm can be transformed into an equation and a function
as below, without changing its meaning. The equation equates the
output variables of the previous algorithm section with the results of
the function f. The function f has the inputs to the algorithm section
as its input formal parameters and the outputs as its result parameters.
The algorithmic code of the algorithm section has become the body
of the function f.

(y,z) = f(x);
...
function f
input Real x;
output Real y,z;

algorithm

2.15 Discrete Event and Hybrid Modeling 83

y := x;
z := 2*y;
y := z+y;

end f;

2.15 DISCRETE EVENT AND HYBRID
MODELING

Macroscopic physical systems in general evolve continuously as a
function of time, obeying the laws of physics. This includes the move-
ments of parts in mechanical systems, current and voltage levels in
electrical systems, chemical reactions, and so forth. Such systems are
said to have continuous dynamics.

On the other hand, it is sometimes beneficial to make the approxi-
mation that certain system components display discrete behavior, that
is, changes of values of system variables may occur instantaneously
and discontinuously at specific points in time.

In the real physical system the change can be very fast but not
instantaneous. Examples are collisions in mechanical systems, for
example, a bouncing ball that almost instantaneously changes direc-
tion, switches in electrical circuits with quickly changing voltage
levels, valves and pumps in chemical plants, and the like. We talk
about system components with discrete-time dynamics. The reason
to make the discrete approximation is to simplify the mathematical
model of the system, making the model more tractable and usually
speeding up the simulation of the model several orders of magnitude.

For this reason it is possible to have variables in Modelica models
of discrete-time variability , that is, the variables change value only at
specific points in time, so-called events , and keep their values constant
between events, as depicted in Figure 2.22. Examples of discrete-time
variables are Real variables declared with the prefix discrete or
Integer, Boolean, and enumeration variables, which are discrete
time by default and cannot be continuous time.

Since the discrete-time approximation can only be applied to cer-
tain subsystems, we often arrive at system models consisting of inter-
acting continuous and discrete components. Such a system is called
a hybrid system and the associated modeling techniques hybrid mod-
eling . The introduction of hybrid mathematical models creates new

84 CHAPTER 2 A Quick Tour of Modelica

TimeEvent 1 Event 2 Event 3

y

z

y,z

Figure 2.22 Discrete-time variable z changes value only at event instants, whereas
continuous-time variables like y may change value both between and at events.

difficulties for their solution, but the disadvantages are far outweighed
by the advantages.

Modelica provides two kinds of constructs for expressing hybrid
models: conditional expressions or equations to describe discontinu-
ous and conditional models and when equations to express equations
that are valid only at discontinuities, for example, when certain con-
ditions become true. For example, if-then-else conditional expressions
allow modeling of phenomena with different expressions in different
operating regions, as for the equation describing a limiter below.

y = if v > limit then limit else v;

A more complete example of a conditional model is the model of an
ideal diode. The characteristic of a real physical diode is depicted in
Figure 2.23, and the ideal diode characteristic in parameterized form
is shown in Figure 2.24.

i

v

Figure 2.23 Real diode characteristic.

2.15 Discrete Event and Hybrid Modeling 85

v

s = 0

s

s

i

i1 i2

v2 v2

v

Figure 2.24 Ideal diode characteristic.

Since the voltage level of the ideal diode would go to infinity in
an ordinary voltage–current diagram, a parameterized description is
more appropriate, where both the voltage v and the current i, same
as i1, are functions of the parameter s. When the diode is off, no
current flows and the voltage is negative, whereas when it is on, there
is no voltage drop over the diode and the current flows.

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off
then v=s;
else v=0; // conditional equations

end if;
i = if off then 0 else s;
// conditional expression

end Diode;

When equations have been introduced in Modelica to express instanta-
neous equations , that is, equations that are valid only at certain points
in time that, for example, occur at discontinuities when specific con-
ditions become true, so-called events . The syntax of when equations
for the case of a vector of conditions is shown below. The equations
in the when equation are activated when at least one of the conditions
becomes true and remain activated only for a time instant of zero
duration. A single condition is also possible.

86 CHAPTER 2 A Quick Tour of Modelica

when {condition1, condition2, ...} then
<equations>

end when;

A bouncing ball is a good example of a hybrid system for which the
when equation is appropriate when modeled. The motion of the ball
is characterized by the variable height above the ground and the
vertical velocity. The ball moves continuously between bounces,
whereas discrete changes occur at bounce times, as depicted in
Figure 2.25. When the ball bounces against the ground, its velocity
is reversed. An ideal ball would have an elasticity coefficient of 1
and would not lose any energy at a bounce. A more realistic ball, as
the one modeled below, has an elasticity coefficient of 0.9, making it
keep 90% of its speed after the bounce.

The bouncing ball model contains the two basic equations of
motion relating height and velocity as well as the acceleration caused
by the gravitational force. At the bounce instant the velocity is
suddenly reversed and slightly decreased, that is, velocity (after
bounce) = -c*velocity (before bounce), which is accomplished
by the special reinit syntactic form of instantaneous equation
for reinitialization: reinit (velocity,-c*pre(velocity)),
which in this case reinitializes the velocity variable.

model BouncingBall "Simple model of a bouncing ball"
constant Real g = 9.81 "Gravity constant";
parameter Real c = 0.9 "Coefficient of restitution";
parameter Real radius=0.1 "Radius of the ball";
Real height(start = 1) "Height of the ball center";
Real velocity(start = 0) "Velocity of the ball";

equation
der(height) = velocity;
der(velocity) = -g;
when height <= radius then

Figure 2.25 Bouncing ball.

2.16 Packages 87

reinit(velocity,-c*pre(velocity));
end when;

end BouncingBall;

Note that the equations within a when equation are active only during
the instant in time when the condition(s) of the when equation become
true, whereas the conditional equations within an if equation are
active as long as the condition of the if equation is true.

If we simulate this model long enough, the ball will fall through
the ground. This strange behavior of the simulation, called shattering
or the Zeno effect, is due to the limited precision of floating-point
numbers together with the event detection mechanism of the simulator
and occurs for some (unphysical) models where events may occur
infinitely close to each other. The real problem in this case is that
the model of the impact is not realistic—the law new_velocity =

-c*velocity does not hold for very small velocities. A simple fix
is to state a condition when the ball falls through the ground and then
switch to an equation stating that the ball is lying on the ground. A
better but more complicated solution is to switch to a more realistic
material model.

2.16 PACKAGES

Name conflicts are a major problem when developing reusable code,
for example, libraries of reusable Modelica classes and functions for
various application domains. No matter how carefully names are cho-
sen for classes and variables it is likely that someone else is using
some name for a different purpose. This problem gets worse if we
are using short descriptive names since such names are easy to use
and therefore quite popular, making them quite likely to be used in
another person’s code.

A common solution to avoid name collisions is to attach a short
prefix to a set of related names, which are grouped into a package.
For example, all names in the X-Windows toolkit have the prefix Xt,
and WIN32 is the prefix for the 32-bit Windows API. This works
reasonably well for a small number of packages, but the likelihood of
name collisions increases as the number of packages grows.

Many programming languages, for example, Java and Ada as well
as Modelica, provide a safer and more systematic way of avoiding
name collisions through the concept of package. A package is simply

88 CHAPTER 2 A Quick Tour of Modelica

a container or name space for names of classes, functions, constants,
and other allowed definitions. The package name is prefixed to all
definitions in the package using standard dot notation. Definitions can
be imported into the name space of a package.

Modelica has defined the package concept as a restriction and
enhancement of the class concept. Thus, inheritance could be used
for importing definitions into the name space of another package.
However, this gives conceptual modeling problems since inheritance
for import is not really a package specialization. Instead, an import

language construct is provided for Modelica packages. The type name
Voltage together with all other definitions in Modelica.SIunits

is imported in the example below, which makes it possible to use
it without prefix for declaration of the variable v. By contrast,
the declaration of the variable i uses the fully qualified name
Modelica.SIunits.Ampere of the type Ampere, even though
the short version also would have been possible. The fully qualified
long name for Ampere can be used since it is found using the
standard nested lookup of the Modelica standard library placed in a
conceptual top-level package.

package MyPack
import Modelica.SIunits.*;

class Foo;
Voltage v;
Modelica.SIunits.Ampere i;

end Foo;

end MyPack;

Importing definitions from one package into another package as in
the above example has the drawback that the introduction of new
definitions into a package may cause name clashes with definitions
in packages using that package. For example, if a definition named
v is introduced into the package Modelica.SIunits, a compilation
error would arise in the package MyPack.

An alternative solution to the short-name problem that does not
have the drawback of possible compilation errors when new definitions
are added to libraries is introducing short convenient name aliases for
prefixes instead of long package prefixes. This is possible using the
renaming form of import statement as in the package MyPack below,

2.17 Annotations 89

where the package name SI is introduced instead of the much longer
Modelica.SIunits.

Another disadvantage with the above package is that the Ampere
type is referred to using standard nested lookup and not via an explicit
import statement. Thus, in the worst case we may have to do the
following in order to find all such dependencies and the declarations
they refer to:

• Visually scan the whole source code of the current package,
which might be large.

• Search through all packages containing the current package, that
is, higher up in the package hierarchy, since standard nested
lookup allows used types and other definitions to be declared
anywhere above the current position in the hierarchy.

Instead, a well-designed package should state all its dependencies
explicitly through import statements, which are easy to find. We
can create such a package, for example, the package MyPack below,
by adding the prefix encapsulated in front of the package key-
word. This prevents nested lookup outside the package boundary,
ensuring that all dependencies on other packages outside the current
package have to be explicitly stated as import statements. This kind
of encapsulated package represents an independent unit of code and
corresponds more closely to the package concept found in many other
programming languages, for example, Java or Ada.
encapsulated package MyPack
import SI = Modelica.SIunits;
import Modelica;

class Foo;
SI.Voltage v;
Modelica.SIunits.Ampere i;

end Foo;
...

end MyPack;

2.17 ANNOTATIONS

A Modelica annotation is extra information associated with a Modelica
model. This additional information is used by Modelica environments,

90 CHAPTER 2 A Quick Tour of Modelica

for example, for supporting documentation or graphical model editing.
Most annotations do not influence the execution of a simulation, that
is, the same results should be obtained even if the annotations are
removed—but there are exceptions to this rule. The syntax of an
annotation is as follows:

annotation(annotation_elements)

where annotation_elements is a comma-separated list of annotation
elements that can be any kind of expression compatible with the
Modelica syntax. The following is a resistor class with its associ-
ated annotation for the icon representation of the resistor used in the
graphical model editor:

model Resistor
...
annotation(Icon(coordinateSystem(
preserveAspectRatio=true,
extent={{-100,-100},{100,100}}, grid={2,2}),
graphics={Rectangle(
extent={{-70,30},{70,-30}},
lineColor={0,0,255},fillColor={255,255,255},
fillPattern=FillPattern.Solid),
Line(points={{-90,0},{-70,0}},
color={0,0,255}),

...
);
end Resistor;

Another example is the predefined annotation choices used to gen-
erate menus for the graphical user interface:

annotation(choices(choice=1 "P", choice=2 "PI",
choice=3 "PID"));

The external function annotation arrayLayout can be used to explic-
itly give the layout of arrays, for example, if it deviates from the
defaults rowMajor and columnMajor order for the external lan-
guages C and Fortran 77, respectively.

This is one of the rare cases of an annotation influencing the
simulation results, since the wrong array layout annotation obviously
will have consequences for matrix computations. An example:

annotation(arrayLayout = "columnMajor");

2.19 Modelica Standard Libraries 91

2.18 NAMING CONVENTIONS

You may have noticed a certain style of naming classes and variables
in the examples in this chapter. In fact, certain naming conventions,
described below, are being adhered to. These naming conventions
have been adopted in the Modelica standard library, making the code
more readable and somewhat reducing the risk for name conflicts. The
naming conventions are largely followed in the examples in this book
and are recommended for Modelica code in general:

• Type and class names (but usually not functions) always start
with an uppercase letter, for example, Voltage.

• Variable names start with a lowercase letter, for example, body,
with the exception of some one-letter names such as T for tem-
perature.

• Names consisting of several words have each word capitalized,
with the initial word subject to the above rules, for example,
ElectricCurrent and bodyPart.

• The underscore character is only used at the end of a name, or
at the end of a word within a name, to characterize lower or
upper indices, for example, body_low_up.

• Preferred names for connector instances in (partial) models are
p and n for positive and negative connectors in electrical com-
ponents, and name variants containing a and b, for example,
flange_a and flange_b, for other kinds of otherwise identi-
cal connectors often occurring in two-sided components.

2.19 MODELICA STANDARD LIBRARIES

Much of the power of modeling with Modelica comes from the ease of
reusing model classes. Related classes in particular areas are grouped
into packages to make them easier to find.

A special package, called Modelica, is a standardized predefined
package that together with the Modelica Language is developed and
maintained by the Modelica Association. This package is also known
as the Modelica Standard Library . It provides constants, types,
connector classes, partial models, and model classes of components

92 CHAPTER 2 A Quick Tour of Modelica

from various application areas, which are grouped into subpackages
of the Modelica package, known as the Modelica standard libraries.

The following is a subset of the growing set of Modelica standard
libraries currently available:

Modelica.Constants Common constants from mathematics,
physics, and so on

Modelica.Icons Graphical layout of icon definitions used
in several packages

Modelica.Math Definitions of common mathematical
functions

Modelica.SIUnits Type definitions with SI (international
system of units) standard names and
units

Modelica.Electrical Common electrical component models
Modelica.Blocks Input–output blocks for use in block

diagrams
Modelica.Mechanics.

Translational

One-dimensional (1D) mechanical
translational components

Modelica.Mechanics.

Rotational

1D mechanical rotational components

Modelica.Mechanics.

MultiBody

MBS library—3D mechanical rigid
body multibody models

Modelica.Thermal Thermal phenomena, heat flow, and
other like components

... ...

Additional libraries are available in application areas such as ther-
modynamics, hydraulics, power systems, data communication, and so
forth.

The Modelica Standard Library can be used freely for both non-
commercial and commercial purposes under the conditions of The
Modelica License as stated in the front pages of this book. The full
documentation as well as the source code of these libraries appear at
the Modelica website.

So far the models presented have been constructed of components
from single-application domains. However, one of the main advan-
tages with Modelica is the ease of constructing multidomain models
simply by connecting components from different application domain
libraries. The DC (direct current) motor depicted in Figure 2.26
is one of the simplest examples illustrating this capability. This

2.19 Modelica Standard Libraries 93

inertia1

emf1

signalVoltage1

ground1

resistor1 inductor1

step1

Figure 2.26 Multidomain DCMotorCircuit model with mechanical, electrical, and
signal block components.

particular model contains components from the three domains,
mechanical, electrical, and signal blocks, corresponding to the
libraries Modelica.Mechanics, Modelica.Electrical, and
Modelica.Blocks.

Model classes from libraries are particularly easy to use and com-
bine when using a graphical model editor, as depicted in Figure 2.27,

Figure 2.27 Graphical editing of an electrical DC motor model, with the icons of the
Modelica.Mechanics.Rotational library in the left window.

94 CHAPTER 2 A Quick Tour of Modelica

where the DC motor model is being constructed. The left window
shows the Modelica.Mechanics.Rotational library, from which
icons can be dragged and dropped into the central window when per-
forming graphic design of the model.

2.20 IMPLEMENTATION AND EXECUTION
OF MODELICA

In order to gain a better understanding of how Modelica works, it is
useful to take a look at the process of translation and execution of a
Modelica model, which is sketched in Figure 2.28. First, the Modelica
source code is parsed and converted into an internal representation,
usually an abstract syntax tree. This representation is analyzed, type
checking is done, classes are inherited and expanded, modifications
and instantiations are performed, connect equations are converted to

Modelica
Source Code

Translator

Analyzer

Optimizer

Code
Generator

C Compiler

Simulation

Modelica model

Flat model

Sorted equations

Optimized sorted
equations

C Code

Executable

Figure 2.28 Stages of translating and executing a Modelica model.

2.20 Implementation and Execution of Modelica 95

standard equations, and so forth. The result of this analysis and transla-
tion process is a flat set of equations, constants, variables, and function
definitions. No trace of the object-oriented structure remains apart from
the dot notation within names.

After flattening, all of the equations are topologically sorted
according to the data flow dependencies between the equations. In
the case of general differential algebraic equations (DAEs), this is
not just sorting but also manipulation of the equations to convert
the coefficient matrix into block lower triangular form, a so-called
BLT transformation. Then an optimizer module containing algebraic
simplification algorithms, symbolic index reduction methods, and
the like eliminates most equations, keeping only a minimal set
that eventually will be solved numerically. As a trivial example,
if two syntactically equivalent equations appear, only one copy
of the equations is kept. Then independent equations in explicit
form are converted to assignment statements. This is possible since
the equations have been sorted and an execution order has been
established for evaluation of the equations in conjunction with the
iteration steps of the numeric solver. If a strongly connected set
of equations appears, this set is transformed by a symbolic solver,
which performs a number of algebraic transformations to simplify
the dependencies between the variables. It can sometimes solve a
system of differential equations if it has a symbolic solution. Finally,
C code is generated, and linked with a numeric equation solver that
solves the remaining, drastically reduced, equation system.

The approximations to initial values are taken from the model
definition or are interactively specified by the user. If necessary, the
user also specifies the parameter values. A numeric solver for differ-
ential algebraic equations (or in simple cases for ordinary differential
equations) computes the values of the variables during the specified
simulation interval [t0, t1]. The result of the dynamic system simu-
lation is a set of functions of time, such as R2.v(t) in the simple
circuit model. Those functions can be displayed as graphs and/or saved
in a file.

In most cases (but not always) the performance of generated sim-
ulation code (including the solver) is similar to handwritten C code.
Often Modelica is more efficient than straightforwardly written C code
because additional opportunities for symbolic optimization are used

96 CHAPTER 2 A Quick Tour of Modelica

by the system, compared to what a human programmer can manually
handle.

2.20.1 Hand Translation of the Simple Circuit
Model

Let us return once more to the simple circuit model, previously
depicted in Figure 2.7 but for the reader’s convenience also shown
below in Figure 2.29. It is instructive to translate this model by hand
in order to understand the process.

Classes, instances, and equations are translated into a flat set of
equations, constants, and variables (see the equations in Table 2.1),
according to the following rules:

1. For each class instance, add one copy of all equations of this
instance to the total differential algebraic equation (DAE)
system or ordinary differential equation system (ODE)—both
alternatives can be possible since a DAE in a number of cases
can be transformed into an ODE.

2. For each connection between instances within the model, add
connection equations to the DAE system so that nonflow vari-
ables are set equal and flow variables are summed to zero.

R1

CL

R2

+

++

N1

N2

N3N4
+ +

G

14

2

36 7

5
AC

Figure 2.29 SimpleCircuit model once more, with explicitly labeled connection
nodes N1, N2, N3, N4, and wires 1 to 7.

2.20 Implementation and Execution of Modelica 97

Table 2.1
Equations Extracted from Simple Circuit Model—an Implicit DAE
System

AC 0 = AC.p.i+AC.n.i L 0 = L.p.i+L.n.i

AC.v = Ac.p.v-AC.n.v L.v = L.p.v-L.n.v

AC.i = AC.p.i L.i = L.p.i

AC.v = AC.VA* L.v = L.L*der(L.i)

sin(2*AC.PI*

AC.f*time);

R1 0 = R1.p.i+R1.n.i G G.p.v = 0

R1.v = R1.p.v-R1.n.v

R1.i = R1.p.i

R1.v = R1.R*R1.i

R2 0 = R2.p.i+R2.n.i wires R1.p.v = AC.p.v // wire 1

R2.v = R2.p.v-R2.n.v C.p.v = R1.n.v // wire 2

R2.i = R2.p.i AC.n.v = C.n.v // wire 3

R2.v = R2.R*R2.i R2.p.v = R1.p.v // wire 4

L.p.v = R2.n.v // wire 5

L.n.v = C.n.v // wire 6

G.p.v = AC.n.v // wire 7

C 0 = C.p.i+C.n.i flow 0 = AC.p.i+R1.p.i+R2.p.i // N1

C.v = C.p.v-C.n.v at 0 = C.n.i+G.p.i+AC.n.i+L.n.i // N2

C.i = C.p.i node 0 = R1.n.i + C.p.i // N3

C.i = C.C*der(C.v) 0 = R2.n.i + L.p.i // N4

The equation v=p.v-n.v is defined by the class TwoPin. The
Resistor class inherits the TwoPin class, including this equation.
The SimpleCircuit class contains a variable R1 of type
Resistor. Therefore, we include this equation instantiated for R1

as R1.v=R1.p.v-R1.n.v into the system of equations.
The wire labeled 1 is represented in the model as connect

(AC.p, R1.p). The variables AC.p and R1.p have type Pin.
The variable v is a nonflow variable representing voltage potential.
Therefore, the equality equation R1.p.v=AC.p.v is generated.
Equality equations are always generated when nonflow variables are
connected.

Notice that another wire (labeled 4) is attached to the same
pin, R1.p. This is represented by an additional connect equation:
connect(R1.p.R2.p). The variable i is declared as a flow
variable. Thus, the equation AC.p.i+R1.p.i+R2.p.i=0 is

98 CHAPTER 2 A Quick Tour of Modelica

Table 2.2
Variables Extracted from Simple Circuit Model

R1.p.i R1.n.i R1.p.v R1.n.v R1.v

R1.i R2.p.i R2.n.i R2.p.v R2.n.v

R2.v R2.i C.p.i C.n.i C.p.v

C.n.v C.v C.i L.p.i L.n.i

L.p.v L.n.v L.v L.i AC.p.i

AC.n.i AC.p.v AC.n.v AC.v AC.i

G.p.i G.p.v

generated. Zero-sum equations are always generated when connecting
flow variables, corresponding to Kirchhoff’s second law.

The complete set of equations (see Table 2.1) generated from the
SimpleCircuit class consists of 32 differential algebraic equations.
These include 32 variables, as well as time and several parameters
and constants.

Table 2.2 gives the 32 variables in the system of equations,
of which 30 are algebraic variables since their derivatives do not
appear. Two variables, C.v and L.i, are dynamic variables since
their derivatives occur in the equations. In this simple example the
dynamic variables are state variables since the DAE reduces to
an ODE.

2.20.2 Transformation to State Space Form

The implicit differential algebraic system of equations (DAE system)
in Table 2.1 should be further transformed and simplified before apply-
ing a numerical solver. The next step is to identify the kind of variables
in the DAE system. We have the following four groups:

1. All constant variables, which are model parameters, thus eas-
ily modified between simulation runs and declared with the
prefixed keyword parameter, are collected into a parameter
vector p. All other constants can be replaced by their values,
thus disappearing as named constants.

2. Variables declared with the input attribute, that is, prefixed by
the input keyword, that appears in instances at the highest
hierarchical level, are collected into an input vector u.

2.20 Implementation and Execution of Modelica 99

3. Variables whose derivatives appear in the model (dynamic vari-
ables), that is, the der() operator is applied to those variables,
are collected into a state vector x .

4. All other variables are collected into a vector y of algebraic
variables, that is, their derivatives do not appear in the
model.

For our simple circuit model these four groups of variables are the
following:

p = {R1.R, R2.R, C.C, L.L, AC.VA, AC.f}
u = {AC.v}
x = {C.v,L.i}
y = {R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.v, R1.i, R2.p.i, R2.n.i,
R2.p.v, R2.n.v, R2.v, R2.i, C.p.i, C.n.i, C.p.v, C.n.v,
C.i, L.n.i,

L.p.v, L.n.v, L.v, AC.p.i, AC.n.i, AC.p.v, AC.n.v, AC.i, AC.v,
G.p.i, G.p.v}

We would like to express the problem as the smallest possible ODE
system (in the general case a DAE system) and compute the values
of all other variables from the solution of this minimal problem. The
system of equations should preferably be in explicit state space form
as below.

ẋ = f (x , t) (2.3)

That is, the derivative ẋ with respect to time of the state vector x
is equal to a function of the state vector x and time. Using an itera-
tive numerical solution method for this ordinary differential equation
system, at each iteration step, the derivative of the state vector is
computed from the state vector at the current point in time.

For the simple circuit model we have the following:

x = {C.v,L.i}, u = {AC.v}

(with constants: R1.R,R2.R,C.C,L.L,

ẋ = {der(C.v), der(L.i)} AC.VA,AC.f,AC.PI) (2.4)

2.20.3 Solution Method

We will use an iterative numerical solution method. First, assume that
an estimated value of the state vector x ={C.v,L.i} is available at

100 CHAPTER 2 A Quick Tour of Modelica

t=0 when the simulation starts. Use a numerical approximation for
the derivative ẋ [i.e., der(x)] at time t, for example:

der(x) = (x(t+h) - x(t))/h (2.5)

giving an approximation of x at time t+h:

x(t+ h) = x(t) + der(x)*h (2.6)

In this way the value of the state vector x is computed one step ahead
in time for each iteration, provided der(x) can be computed at the
current point in simulated time. However, the derivative der(x) of the
state vector can be computed from ẋ = f (x , t), that is, by selecting the
equations involving der(x), and algebraically extracting the variables
in the vector x in terms of other variables, as below:

der(C.v) = C.i/C.C

der(L.i) = L.v/L.L (2.7)

Other equations in the DAE system are needed to calculate the
unknowns C.i and L.v in the above equations. Starting with
C.i, using a number of different equations together with simple
substitutions and algebraic manipulations, we derive equations (2.8)
through (2.10) below.

C.i = R1.v/R1.R (2.8)

using: C.i = C.p.i = -R1.n.i = R1.p.i = R1.i

= R1.v/R1.R

R1.v = R1.p.v - R1.n.v = R1.p.v - C.v

using: R1.n.v = C.p.v = C.v+C.n.v

= C.v + AC.n.v (2.9)

= C.v + G.p.v = C.v + 0 = C.v

R1.p.v = AC.p.v = AC.VA*sin(2*AC.f*AC.PI*t)

using: AC.p.v = AC.v+AC.n.v = AC.v+G.p.v = (2.10)

= AC.VA*sin(2*AC.f*AC.PI*t)+0

2.20 Implementation and Execution of Modelica 101

In a similar fashion we derive equations (2.11) and (2.12) below:

L.v = L.p.v - L.n.v = R1.p.v - R2.v

using: L.p.v = R2.n.v = R1.p.v- R2.v (2.11)

and: L.n.v = C.n.v = AC.n.v = G.p.v = 0

R2.v = R2.R*L.p.i

using: R2.v = R2.R*R2.i = R2.R*R2.p.i (2.12)

= R2.R*(-R2.n.i) = R2.R*L.p.i

= R2.R*L.i

Collecting the five equations together:

C.i = R1.v/ R1.R

R1.v = R1.p.v - C.v

R1.p.v = AC.VA*sin(2*AC.f*AC.PI*time)

L.v = R1.p.v - R2.v

R2.v = R2.R*L.i (2.13)

By sorting the equations in data-dependency order, and converting the
equations to assignment statements—this is possible since all variable
values can now be computed in order—we arrive at the following
set of assignment statements to be computed at each iteration, given
values of C.v, L.i, and t at the same iteration:

R2.v := R2.R*L.i
R1.p.v := AC.VA*sin(2*AC.f*AC.PI*time)
L.v := R1.p.v - R2.v
R1.v := R1.p.v - C.v
C.i := R1.v/R1.R
der(L.i) := L.v/L.L
der(C.v) := C.i/C.C

These assignment statements can be subsequently converted to code in
some programming language, for example, C, and executed together
with an appropriate ODE solver, usually using better approximations
to derivatives and more sophisticated forward-stepping schemes than
the simple method described above, which, by the way, is called the
Euler integration method. The algebraic transformations and sorting
procedure that we somewhat painfully performed by hand on the sim-
ple circuit example can be performed completely automatically and

102 CHAPTER 2 A Quick Tour of Modelica

R
2
.
v

R
1
.
p
.
v

L
.
v

R
1
.
v

C
.
i

L
.
i

C
.
v

R2.v = R2.R*L.i 1 0 0 0 0 0 0
R1.p.v =

AC.VA*sin(2*AC.f*AC.PI*time)

0 1 0 0 0 0 0

L.v = R1.p.v R2.v 1 1 1 0 0 0 0
R1.v = R1.p.v C.v 0 1 0 1 0 0 0
C.i = R1.v/R1.R 0 0 0 0 1 0 0
der(L.i) = L.v/L.L 0 0 1 0 0 1 0
der(C.v) = C.i/C.C 0 0 0 0 1 0 1

Figure 2.30 Block lower triangular form of the SimpleCircuit example.

is known as BLT transformation, that is, conversion of the equation
system coefficient matrix into block lower triangular form (Fig. 2.30).
The remaining 26 algebraic variables in the equation system of the
simple circuit model that are not part of the minimal 7-variable kernel
ODE system solved above can be computed at leisure for those itera-
tions where their values are desired—this is not necessary for solving
the kernel ODE system.

It should be emphasized that the simple circuit example simulated
in Fig. 2.31 is trivial. Realistic simulation models often contain tens of
thousands of equations, nonlinear equations, hybrid models, and the
like. The symbolic transformations and reductions of equation systems
performed by a real Modelica compiler are much more complicated
than what has been shown in this example, for example, including
index reduction of equations and tearing of subsystems of equations,
see Fritzson (2004). Index reduction performs symbolic

simulate(SimpleCircuit,stopTime=5)]
plot(C.v, xrange={0,5})

1 2 3 4 5
t

−0.75

−0.5

−0.25

0.25

0.5

0.75

Figure 2.31 Simulation of the SimpleCircuit model with a plot of the voltage C.v

over the capacitor.

2.21 History 103

2.21 HISTORY

In September 1996, a group of tool designers, application experts,
and computer scientists joined forces to work together in the area
of object-oriented modeling technology and applications. The group
included specialists behind the object-oriented modeling languages
Dymola, Omola, ObjectMath, NMF (Neutral Modeling Format),
Allan-U.M.L, SIDOPS+, and Smile, even though not all were able to
attend the first meeting. Initially, the goal was to write a white paper
on object-oriented modeling language technology, including possible
unification of existing modeling languages, as part of an action in the
ESPRIT project Simulation in Europe Basic Research Working Group
(SiE-WG).

However, the work quickly focused on the more ambitious
goal of creating a new, unified object-oriented modeling language
based on the experience from the previous designs. The designers
made an effort to unify the concepts to create a common language,
starting the design from scratch. This new language is called
Modelica.

The group soon established itself as Technical Committee 1 within
EuroSim, and as the Technical Chapter on Modelica within the Society
for Computer Simulation International (SCS). In February 2000, the
Modelica Association was formed as an independent nonprofit interna-
tional organization for supporting and promoting the development and
dissemination of the Modelica Language and the Modelica Standard
Libraries.

The first Modelica language description, version 1.0, was put on
the Web in September 1997 by a group of proud designers, after a
number of intense design meetings. At the date of this writing, the
Modelica 3.2 specification is the most recent released–the result of a
large amount of work including 34 three-day design meetings. Seven
rather complete commercial tools supporting textual and graphical
model design and simulation with Modelica are currently available, as
well as an almost complete open-source implementation, and several
partial university prototypes. A large and growing Modelica Standard
Library is also available. The language is quickly spreading both in
industry and in academia.

104 CHAPTER 2 A Quick Tour of Modelica

If we trace back a few steps and think about the Modelica tech-
nology, two important points become apparent:

• Modelica includes equations , which is unusual in most program-
ming languages.

• The Modelica technology includes graphical editing for appli-
cation model design based on predefined components.

In fact, concerning the first point, equations were used very early in
human history—already in the third millennium b.c. At that point the
well-known equality sign for equations was not yet invented. That
happened much later—the equation sign was introduced by Robert
Recorde in 1557, in the form depicted in Figure 2.32.

However, it took a while for this invention to spread in Europe.
Even a hundred years later, Newton (in his Principia , Vol. 1, 1686)
still wrote his famous law of motion as text in Latin, as shown in
Figure 2.33. Translated to English this can be expressed as: “The
change of motion is proportional to the motive force impressed.”

In modern mathematical syntax, Newton’s law of motion appears
as follows:

d

dt
(m · v) =

∑
i

Fi (2.14)

Figure 2.32 Equation sign invented by Robert Recorde 1557. [Reproduced from
Figure 4.1-1 on page 81 in (Gottwald et al. (1989); courtesy Thompson Inc.]

Figure 2.33 Newton’s famous second law of motion in Latin. Translated to English
this becomes “The change of motion is proportional to the motive force impressed.”
[Reproduced from figure “Newton’s laws of motion” on page 51 in Fauvel et al. (1990);
courtesy Oxford University Press.]

2.21 History 105

This is an example of a differential equation. The first simulators to
solve such equations were analog. The idea is to model the system
in terms of ordinary differential equations and then make a physi-
cal device that obeys the equations. The first analog simulators were
mechanical devices, but from the 1950s on electronic analog simula-
tors became predominant. A number of electronic building blocks such
as adders, multipliers, integrators, and the like could be interconnected
by cables as depicted in Figure 2.34.

Concerning the further development, for a long time equations
were quite rare in computer languages. Early versions of Lisp systems
and computer algebra systems were being developed, but mostly for
formula manipulation rather than for direct simulation.

However, a number of simulation languages for digital computers
soon started to appear. The first equation-based modeling tool was
Speed-Up, a package for chemical engineering and design introduced
in 1964. Somewhat later, in 1967, Simula 67 appeared—the first
object-oriented programming language, with profound influence on
programming languages and somewhat later on modeling languages.
The same year the CSSL (Continuous System Simulation Language)

1

w

1/(Jl+Jm*n^2)

T2wdotSum
Step

PID

PID Controller

s
1

InertiaInductor

Ra/La

Gain

km

EMF2

km

EMF1
Ts

1
−

−
+

Wr Wl

−We

−e

e

C
−LaI

mknK

Ra
La

k
Ta

Figure 2.34 Analog computing vs. graphical block diagram modeling on modern digi-
tal computers. (Courtesy Karl-Johan AAström and Hilding Elmqvist.)

106 CHAPTER 2 A Quick Tour of Modelica

report unified existing notations for expressing continuous system sim-
ulation models and introduced a common form of causal “equation,”
for example:

variable = expression

v = INTEG(F)/m (2.15)

The second equation is a variant of the equation of motion: The veloc-
ity is the integral of the force divided by the mass. These are not
general equations in the mathematical sense since the causality is from
right to left, that is, an equation of the form expression = variable is
not allowed. However, it is still a definite step forward toward a more
general executable computer representation of equation-based mathe-
matical models. ACSL, first introduced in 1976, was a rather common
simulation system initially based on the CSSL standard.

An important pioneering predecessor to Modelica is Dymola
(Dynamic modeling language —not today’s Dymola tool, meaning
Dynamic modeling laboratory) described in Hilding Elmqvist’s Ph.D.
Thesis 1978. This was the first work to recognize the importance
of modeling with acausal equations together with hierarchical
submodels and methods for automatic symbolic manipulation to
support equation solution. The GASP-IV system in 1974 followed by
GASP-V 1979 introduced integrated continuous-discrete simulation.
The Omola language (1989) is a modeling language with full object
orientation including inheritance as well as hybrid simulation. The
Dymola language was later (1993) enhanced with inheritance, as well
as with mechanisms for discrete-event handling and more efficient
symbolic-numeric equation system solution methods.

Other early object-oriented acausal modeling languages include
NMF (Natural Model Format, 1989), primarily used for building sim-
ulation, Allan-U.M.L, SIDOPS+ supporting bond graph modeling, and
Smile (1995)—influenced by Objective C. Two other important lan-
guages that should be mentioned are ASCEND (1991) and gPROMS
(1994).

This author’s acquaintance with equation-based modeling and
problem solving started in 1975 by solving the Schrödinger equation
for a very specific case in solid-state physics, using the pseudopoten-
tial approximation. Later, in 1989, I initiated development of a new
object-oriented modeling language called ObjectMath together with
my brother Dag Fritzson. This was one of the earlier object-oriented

2.22 Summary 107

computer algebra and simulation systems, integrated with Mathe-
matica and with a general parameterized generic class concept, as
well as code generation to C++ for efficient simulation of industrial
applications. The fourth version of ObjectMath was completed in
the fall of 1996 when I decided to join the Modelica effort instead
of continuing with a fifth version of ObjectMath. Later, 1998, we
did the first formal executable specification of part of the Modelica
language which eventually developed into the OpenModelica open
source effort. In December 2007 I initiated the creation of the Open
Source Modelica Consortium with initially 7 members, which has
expanded to more than 35 members by June 2011.

Concerning the second aspect mentioned earlier—graphical spec-
ification of simulation models—Figure 2.34 tells an interesting story.
The upper part of Figure 2.34 shows the circuitry of an analog com-
puter with its building blocks connected by cables. The lower part of
the figure is a block diagram of very similar structure, directly inspired
by the analog computing paradigm but executed on digital computers.
Such block diagrams are typically constructed by common tools avail-
able today such as Simulink or SystemBuild. Block diagrams represent
causal equations since there is a specified data flow direction.

The connection diagrams used in Modelica graphical modeling
include connections between instances of classes containing acausal
equations, as first explored in the Hibliz system. This is a general-
ization inspired by the causal analog computing circuit diagrams and
block diagrams. The Modelica connection diagrams have the advan-
tage of supporting natural physical modeling since the topology of a
connection diagram directly corresponds to the structure and decom-
position of the modeled physical system.

2.22 SUMMARY

This chapter has given a quick overview of the most important con-
cepts and language constructs in Modelica. We have also defined
important concepts such as object-oriented mathematical modeling
and acausal physical modeling and briefly presented the concepts and
Modelica language constructs for defining components, connections,
and connectors. The chapter concludes with an in-depth example of
the translation and execution of a simple model and a short history of

108 CHAPTER 2 A Quick Tour of Modelica

equations and mathematical modeling languages up to and including
Modelica from ancient times until today.

2.23 LITERATURE

Many programming language books are organized according to a fairly
well-established pattern of first presenting a quick overview of the
language, followed by a more detailed presentation according to the
most important language concepts and syntactic structures.This book
is no exception to that rule, where this chapter constitutes the quick
overview. As in many other texts we start with a HelloWorld example,
for example, as in the Java programming language book (Arnold and
Gosling 1999), but with a different contents since printing an “Hello
World” message is not very relevant for an equation-based language.

The most important reference document for this chapter is the
Modelica tutorial (Modelica Association 2000), of which the first ver-
sion including a design rationale (Modelica Association 1997) was
edited primarily by Hilding Elmqvist. Several examples, code frag-
ments, and text fragments in this chapter are based on similar ones in
the tutorial, for example, the SimpleCircuit model with the simple
electrical components, the polynomialEvaluator, the low-pass fil-
ter, the ideal Diode, and the BouncingBall model. Figure 2.8 on
block-oriented modeling is also from the tutorial. Another important
reference document for this chapter is the Modelica language spec-
ification (Modelica Association 2010) Some formulations from the
Modelica specification regarding operator overloading and stream con-
nectors are reused in this chapter in order to state the same semantics.

The hand translation of the simple circuit model is inspired by a
similar but less elaborated example in a series of articles by Martin
Otter et al. (1999). The recent history of mathematical modeling
languages is described in some detail in Åström et al. (1998), whereas
bits and pieces of the ancient human history of the invention and use
of equations can be found in Gottwald et al. (1989), and the picture
on Newton’s second law in Latin in Fauvel et al. (1990). Early
work (GASP-IV) on combined continuous/discrete simulation is
described Pritsker (1974) followed by Cellier (1979) in the GASP-V
system. This author’s first simulation work involving solution of the
Schrödinger equation for a particular case is described in Fritzson
and Berggren (1976).

2.23 Literature 109

The predecessors of the Modelica language are briefly described
in Appendix F, including Dymola meaning the Dynamic Modeling
Language: (Elmqvist 1978; Elmqvist et al. 1996), Omola: (Mattsson
et al. 1993; Andersson 1994), ObjectMath: (Fritzson et al. 1992, 1995;
Viklund and Fritzson 1995), NMF: (Sahlin et al. 1996), and Smile:
(Ernst et al. 1997).

Speed-Up, the earliest equation-based simulation tool, is presented
in Sargent and Westerberg (1964), whereas Simula-67—the first
object-oriented programming language—is described in Birtwistle
et al. (1974). The early CSSL language specification is described in
Augustin et al. (1967), whereas the ACSL system is described in
Mitchell and Gauthier (1986). The Hibliz system for a hierarchical
graphical approach to modeling is presented in Elmqvist and Mattsson
(1982, and 1989).

Software component systems are presented in Assmann (2002)
and Szyperski (1997).

The Simulink system for block-oriented modeling is described
in MathWorks (2001), whereas the MATLAB language and tool are
described in MathWorks (2002).

The DrModelica electronic notebook with the examples and
exercises of this book has been inspired by DrScheme (Felleisen
et al. 1998) and DrJava (Allen et al. 2002), as well as by Math-
ematica (Wolfram 1997), a related electronic book for teaching
mathematics (Davis et al. 1994), and the MathModelica environment
(Fritzson, Engelson and Gunnarsson 1998; Fritzson, Gunnarsson
and Jirstrand 2002). The first version of DrModelica is described in
Lengquist-Sandelin and Monemar (2003a, 2003b).

There are general Modelica articles and books (Elmqvist and
Mattsson 1997; Fritzson and Engelson 1998; Elmqvist et al. 1999),
a series of 17 articles (in German) of which Otter (1999) is the first,
(Tiller 2001; Fritzson and Bunus 2002; Elmqvist et al. 2002; Fritzson
2004).

The proceedings from the following conferences, as well as some
not listed here, contain a number of Modelica-related papers: the Scan-
dinavian Simulation Conference (Fritzson 1999), and especially the
International Modelica Conferences (Fritzson 2000; Otter 2002; Fritz-
son 2003, Schmitz 2005, Kral and Haumer 2006; Bachmann 2008;
Casella 2009; Clauß 2011).

110 CHAPTER 2 A Quick Tour of Modelica

2.24 EXERCISES

2.1. What is a class?
Creating a Class : Create a class, Add, that calculates the sum of two
parameters, which are Integer numbers with given values.

2.2. What is an instance?
Creating Instances:

class Dog
constant Real legs = 4;
parameter String name = "Dummy";
end dog;

• Create an instance of the class Dog.
• Create another instance and give the dog the name "Tim".

2.3. Write a function, average, that returns the average of two Real values.
Make a function call to average with the input 4 and 6.

2.4. What do the terms partial, class, and extends stand for?

2.5. Inheritance: Consider the Bicycle class below.

record Bicycle
Boolean has−wheels = true;
Integer nrOfWheels = 2;

end Bicycle;

Define a record, ChildrensBike, that inherits from the class Bicycle
and is meant for kids. Give the variables values.

2.6. Declaration Equations and Normal Equations: Write a class,
Birthyear, which calculates the year of birth from this year together
with a person’s age. Point out the declaration equations and the
normal equations.

Modification Equation: Write an instance of the class Birthyear

above. The class, let’s call it MartinsBirthyear, will calculate Mar-
tin’s year of birth, call the variable martinsBirthyear, who is 29
years old. Point out the modification equation.

Check your answer, for example, by writing as below.8

val(martinsBirthday.birthYear, 0)

8Using the OpenModelica command line interface or OMNotebook commands, the
expression val(martinsBirthday.birthYear,0) means the birthYear value at
time=0, at the beginning of the simulation. It is also in many cases possible to inter-
actively enter an expression such as martinsBirthday.birthYear and get back the
result without giving the time argument.

2.24 Exercises 111

2.7. Classes:

class Ptest
parameter Real x;
parameter Real y;
Real z;
Real w;

equation
x + y = z;

end Ptest;

What is wrong with this class? Is there something missing?

2.8. Create a record containing several vectors and matrices:

• A vector containing the two Boolean values true and false

• A vector with five Integer values of your choice
• A matrix of three rows and four columns containing String values

of your choice
• A matrix of one row and five columns containing different Real

values, also those of your choice

2.9. Can you really put an algorithm section inside an equation section?

2.10. Writing an Algorithm Section: Create the class, Average, which cal-
culates the average between two integers, using an algorithm section.
Make an instance of the class and send in some values.

Simulate and then test the result of the instance class by writing
instanceVariable.classVariable.

2.11. (A harder exercise) Write a class, AverageExtended, that calculates
the average of four variables (a, b, c, and d). Make an instance of
the class and send in some values.

Simulate and then test the result of the instance class by writing
instanceVariable.classVariable.

2.12. If equation: Write a class Lights that sets the variable switch (integer)
to one if the lights are on and zero if the lights are off.

When equation: Write a class LightSwitch that is initially switched
off and switched on at time 5.

Tip: sample(start, interval) returns true and triggers time
events at time instants and rem(x, y) returns the integer remainder
of x/y such that div(x,y) * y + rem(x, y) = x.

2.13. What is a package?
Creating a Package: Create a package that contains a division func-

tion (that divides two Real numbers) and a constant k = 5.
Create a class, containing a variable x. The variable gets its value

from the division function inside the package, which divides 10 by 5.

CHAPTER 3

Classes and Inheritance

The fundamental unit of modeling in Modelica is the class. Classes
provide the structure for objects, also known as instances, and serve
as templates for creating objects from class definitions. Classes can
contain equations, which provide the basis for the executable code
that is used for computation in Modelica. Conventional algorithmic
code can also be part of classes. Interaction between objects of well-
structured classes in Modelica is usually done through so-called con-
nectors, which can be seen as “access ports” to objects. All data
objects in Modelica are instantiated from classes, including the basic
data types—Real, Integer, String, Boolean—and enumer-
ation types, which are built-in classes or class schemata.

A class in Modelica is essentially equivalent to a type. Decla-
rations are the syntactic constructs needed to introduce classes and
objects.

3.1 CONTRACT BETWEEN CLASS
DESIGNER AND USER

Object-oriented modeling languages try to separate the notion of what
an object is from how its behavior is implemented and specified in
detail. The “what” of an object in Modelica is usually described
through documentation including graphics and icons, together with
possible public connectors, variables, and other public elements, and

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

113

114 CHAPTER 3 Classes and Inheritance

their associated semantics. For example, the what of an object of class
Resistor is the documentation that it models a “realistic” ideal resis-
tor coupled with the fact that its interaction with the outside world is
through two connectors n, p of type Pin, and their semantics. This
combination—documentation, connectors and other public elements,
and semantics—is often described as a contract between the designer
of the class and the modeler who uses it, since the what part of the
contract specifies to the modeler what a class represents, whereas the
“how” provided by the class designer implements the required prop-
erties and behavior.

An incorrect, but common, assumption is that the connectors and
other public elements of a class (its “signature”) specify its entire con-
tract. This is not correct since the intended semantics of the class is also
part of the contract even though it might only be publicly described
in the documentation, and internally modeled through equations and
algorithms. Two classes, for example, a Resistor and a temperature-
dependent Resistor, may have the same signature in terms of con-
nectors but still not be equivalent since they have different semantics.
The contract of a class includes both the signature and the appropriate
part of its semantics together.

The how of an object is defined by its class. The implementation of
the behavior of the class is defined in terms of equations and possibly
algorithmic code. Each object is an instance of a class. Many objects
are composite objects that is, consist of instances of other classes.

3.2 A CLASS EXAMPLE

The basic properties of a class are given by:

• Data contained in variables declared in the class
• Behavior specified by equations together with possible algo-

rithms

Here is a simple class called CelestialBody that can be used to
store data related to celestial bodies such as the Earth, the moon,
asteroids, planets, comets, and stars:

class CelestialBody
constant Real g = 6.672e-11;

3.3 Variables 115

parameter Real radius;
parameter String name;
Real mass;

end CelestialBody;

The declaration of a class starts with a keyword such as class or model,
followed by the name of the class. A class declaration creates a type
name in Modelica, which makes it possible to declare variables of
that type, also known as objects or instances of that class, simply by
prefixing the type name to a variable name:

CelestialBody moon;

This declaration states that moon is a variable containing an object
of type CelestialBody. The declaration actually creates the object,
that is, allocates memory for the object. This is in contrast to a lan-
guage like Java, where an object declaration just creates a reference
to an object.

This first version of CelestialBody is not very well designed.
This is intentional, since we will demonstrate the value of certain
language features for improving the class in this and the following
two chapters.

3.3 VARIABLES

The variables belonging to a class are sometimes called record fields
or attributes; the CelestialBody variables radius, name, and
mass are examples. Every object of type CelestialBody has its own
instances of these variables. Since each separate object contains a dif-
ferent instance of the variables, this means that each object has its own
unique state. Changing the mass variable in one CelestialBody

object does not affect the mass variables in other CelestialBody
objects.

Certain programming languages, for example, Java and C++,
allow so-called static variables, also called class variables. Such vari-
ables are shared by all instances of a class. However, this kind of
variable is not available in Modelica.

A declaration of an instance of a class, for example, moon being
an instance of CelestialBody, allocates memory for the object and
initializes its variables to appropriate values. Three of the variables

116 CHAPTER 3 Classes and Inheritance

in the class CelestialBody have special status: the gravitational
constant g is a constant that never changes and can be substituted by
its value. The simulation parameters radius and name are examples
of a special kind of “constant,” denoted by the keyword parameter

in Modelica. Such simulation parameter constants are assigned their
values only at the start of the simulation and keep their values constant
during simulation.

In Modelica variables store results of computations performed
when solving the equations of a class together with equations from
other classes. During solution of time-dependent problems, the vari-
ables store results of the solution process at the current time instant.

As the reader may have noted, we use the terms object and
instance interchangeably with the same meaning; we also use the
terms record field, attribute, and variable interchangeably. Sometimes
the term variable is used interchangeably with instance or object ,
since a variable in Modelica always contains an instance of some
class.

3.3.1 Duplicate Variable Names

Duplicate variable names are not allowed in class declarations. The
name of a declared element, for example, a variable or local class,
must be different from the names of all other declared elements in the
class. For example, the following class is illegal:

class IllegalDuplicate
Real duplicate;
Integer duplicate;
// Error! Illegal duplicate variable name

end IllegalDuplicate;

3.3.2 Identical Variable Names and Type Names

The name of a variable is not allowed to be identical to its type
specifier. Consider the following erroneous class:

class IllegalTypeAsVariable
Voltage Voltage;
// Error! Variable name must be different from type

Voltage voltage;
// Ok! Voltage and voltage are different names

end IllegalTypeAsVariable;

3.4 Behavior as Equations 117

The first variable declaration is illegal since the variable name is identi-
cal to the type specifier of the declaration. The reason this is a problem
is that the Voltage type lookup from the second declaration would
be hidden by a variable with the same name. The second variable
declaration is legal since the lowercase variable name voltage is
different from its uppercase type name Voltage.

3.3.3 Initialization of Variables

The default-suggested (the solver may choose otherwise, if not fixed)
initial variable values are the following, if no explicit start values are
specified (see Section 2.3.2):

• The value zero as the default initial value for numeric variables
• The empty string "" for String variables
• The value false for Boolean variables
• The lowest enumeration value in an enumeration type for enu-

meration variables

However, local variables to functions have unspecified initial val-
ues if no defaults are explicitly given. Initial values can be explicitly
specified by setting the start attributes of instance variables equal to
some value, or providing initializing assignments when the instances
are local variables or formal parameters in functions. For example,
explicit start values are specified in the class Rocket shown in the
next section for the variables mass, altitude, and velocity.

3.4 BEHAVIOR AS EQUATIONS

Equations are the primary means of specifying the behavior of a class
in Modelica, even though algorithms and functions also are available.
The way in which the equations interact with equations from other
classes determines the solution process, that is, program execution,
where successive values of variables are computed over time. This
is exactly what happens during dynamic system simulation. During
solution of time-dependent problems, the variables store results of the
solution process at the current time instant.

118 CHAPTER 3 Classes and Inheritance

Altitude

ThrustApollo12

mg

Figure 3.1 Apollo12 rocket for landing on the moon.

The class Rocket embodies the equations of vertical motion for a
rocket (e.g., as depicted in Fig. 3.1), which is influenced by an external
gravitational force field gravity , and the force thrust from the
rocket motor, acting in the opposite direction to the gravitational force,
as in the expression for acceleration below:

acceleration = thrust − mass × gravity

mass
The following three equations are first-order differential equations stat-
ing well-known laws of motion between altitude, vertical velocity, and
acceleration:

mass′ = −massLossRate · abs(thrust)

altitude′ = velocity

velocity′ = acceleration

All these equations appear in the class Rocket below, where the
mathematical notation (′) for derivative has been replaced by the
pseudofunction der() in Modelica. The derivative of the rocket mass
is negative since the rocket fuel mass is proportional to the amount of
thrust from the rocket motor.

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust; // Thrust force on the rocket

3.5 Access Control 119

Real gravity; // Gravity force field
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

The following equation, specifying the strength of the gravitational
force field, is placed in the class MoonLanding in the next section
since it depends on both the mass of the rocket and the mass of the
moon:

gravity = gmoon · massmoon

(altitudeapollo + radiusmoon)2

The amount of thrust to be applied by the rocket motor is specific to
a particular class of landings and, therefore, also belongs to the class
MoonLanding:

thrust = if (time < thrustDecreaseTime)then
force1

else if (time < thrustEndTime)then
force2

else 0

3.5 ACCESS CONTROL

Members of a Modelica class can have two levels of visibility:
public or protected . The default is public if nothing else is
specified, for example, regarding the variables force1 and force2

in the class MoonLanding below. The public declaration of
force1, force2, apollo, and moon means that any code with
access to a MoonLanding instance can read or update those values.

The other possible level of visibility, specified by the keyword
protected—for example, for the variables thrustEndTime and
thrustDecreaseTime, means that only code inside the class as
well as code in classes that inherit this class are allowed access. Code
inside a class includes code from local classes. However, only code
inside the class is allowed access to the same instance of a protected
variable—classes that extend the class will naturally access another

120 CHAPTER 3 Classes and Inheritance

instance of a protected variable since declarations are “copied” at
inheritance. This is different from corresponding access rules for Java.

Note that an occurrence of one of the keywords public or
protected means that all member declarations following that
keyword assume the corresponding visibility until another occurrence
of one of those keywords.

The variables thrust gravity, and altitude belong to the
apollo instance of the Rocket class and are therefore prefixed
by apollo in references such as apollo.thrust. The gravita-
tional constant g, the mass, and the radius belong to the particular
celestial body called moon on which surface the apollo rocket is
landing.

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket apollo(name="apollo12");
CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity = moon.g * moon.mass /
(apollo.altitude + moon.radius)ˆ2;

end MoonLanding;

3.6 SIMULATING THE MOON LANDING
EXAMPLE

We simulate the MoonLanding model during the time interval
{0,230} by the following command, using the OpenModelica
simulation environment:

simulate(MoonLanding, stopTime=230)

Since the solution for the altitude of the Apollo rocket is a function
of time, it can be plotted in a diagram (Fig. 3.2). It starts at an alti-
tude of 59,404 m (not shown in the diagram) at time zero, gradually
reducing it until touchdown at the lunar surface when the altitude is
zero.

plot(apollo.altitude, xrange={0,208})

3.6 Simulating the Moon Landing Example 121

50 100 150 200

5000

10000

15000

20000

25000

30000
m

Figure 3.2 Altitude of the Apollo rocket over the lunar surface.

50 100 150 200 s

5000

10000

15000

20000

25000

30000

35000
N

Figure 3.3 Thrust from the rocket motor, with an initial high thrust f1 followed by a
lower thrust f2.

The thrust force from the rocket is initially high but is reduced to
a low level after 43.2 s, that is, the value of the simulation parameter
thrustDecreaseTime, as shown in Figure 3.3.

plot(apollo.thrust, xrange={0,208})

The mass of the rocket decreases from initially 1038.358 kg to
around 540 kg as the fuel is consumed (Fig. 3.4).

plot(apollo.mass, xrange={0,208})

The gravity field increases when the rocket gets closer to the lunar
surface, as depicted in Figure 3.5, where the gravity has increased to
1.63 N/kg after 200 s.

plot(apollo.gravity, xrange={0,208})

122 CHAPTER 3 Classes and Inheritance

50 100 150 200

575

600

625

650

675

700

Figure 3.4 Rocket mass decreases when the fuel is consumed.

50 100 150 200

1.58

1.59

1.61

1.62

1.63

Figure 3.5 Gradually increasing gravity when the rocket approaches the lunar surface.

The rocket initially has a high negative velocity when approaching
the lunar surface. This is reduced to zero at touchdown, giving a
smooth landing, as shown in Figure 3.6.

plot(apollo.velocity, xrange={0,208})

When experimenting with the MoonLanding model, the reader
might notice that the model is nonphysical, regarding at least one
important aspect of the landing. After touchdown when the speed has
been reduced to zero, if the simulation is allowed to continue, the speed
will increase again and the lander will accelerate toward the center of
the moon. This is because we have left out the ground contact force
from the lunar surface acting on the lander after it has landed, which
will prevent this from happening. It is left as an exercise to introduce
such a ground force into the MoonLanding model.

3.7 Inheritance 123

50 100 150 200

−400

−300

−200

−100

Figure 3.6 Vertical velocity relative to the lunar surface.

3.7 INHERITANCE

Let us regard an example of extending a very simple Modelica class,
for example, the class ColorData introduced in Section 2.4. We show
two classes named ColorData and Color, where the derived class
(subclass) Color inherits the variables to represent the color from
the base class (superclass) ColorData and adds an equation as a
constraint on the color values.

record ColorData
Real red;
Real blue;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

In the process of inheritance, the data and behavior of the super-
class in the form of variable and attribute declarations, equations, and
certain other contents are copied into the subclass. However, as we
already mentioned, before the copying is done certain type expansion,
checking, and modification operations are performed on the inherited
definitions. The expanded Color class is equivalent to the following
class:

class ExpandedColor
Real red;

124 CHAPTER 3 Classes and Inheritance

Real blue;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;

3.7.1 Inheritance of Equations

In the previous section we mentioned that inherited equations are
copied from the superclass or base class and inserted into the sub-
class or derived class. What happens if there already is an identical
equation locally declared in the derived class? In that case there will
be two identical equations, making the system overdetermined and
impossible to solve.

class Color2
extends Color;

equation
red + blue + green = 1;

end Color2;

The expanded Color2 class is equivalent to the following class:

class ExpandedColor2
Real red;
Real blue;
Real green;

equation
red + blue + green = 1;
red + blue + green = 1;

end ExpandedColor2;

3.7.2 Multiple Inheritance

Multiple inheritance, that is, several extends statements, is sup-
ported in Modelica. This is useful when a class wishes to include
several orthogonal kinds of behavior and data, for example, combining
geometry and color.

For example, the new class ColoredPoint inherits from multiple
classes, that is, uses multiple inheritance, to get the position variables
from class Point, as well as the color variables together with the
equation from class Color.

3.7 Inheritance 125

class Point
Real x;
Real y, z;

end Point;

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

In many object-oriented programming languages multiple inheritance
causes problems when the same definition is inherited twice, but
through different intermediate classes. A well-known case is the so-
called diamond inheritance (Fig. 3.7):

The class Point contains a coordinate position defined by the
variables x and y. The class VerticalLine inherits Point but also
adds the variable vlength for the line length. Analogously, the class
HorizontalLine inherits the position variables x, y and adds a
horizontal length. Finally, the class Rectangle is intended to have
position variables x, y, a vertical length, and a horizontal length.

class Point
Real x;
Real y;

end Point;

class VerticalLine
extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

Point

VerticalLine HorizontalLine

Rectangle

Figure 3.7 Diamond inheritance.

126 CHAPTER 3 Classes and Inheritance

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

The potential problem is that we have diamond inheritance since the
coordinate position defined by the variables x and y is inherited twice:
both from VerticalLine and from HorizontalLine. Should the
position variables from VerticalLine be used or the ones from
HorizontalLine? Is there some way to resolve the problem?

In fact, there is a way. In Modelica diamond inheritance is
not a problem since there is a rule stating that if several identical
declarations or equations are inherited, only one of them is kept.
Thus, there will be only one set of position variables in the class
Rectangle, making the total set of variables in the class the
following: x, y, vlength, and hlength. The same is true for the
classes Rectangle2 and Rectangle3 below.

class Rectangle2
extends Point;
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

class Rectangle3
Real x, y;
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

The reader might perhaps think that there could be cases where the
result depends on the relative order of the extends clauses. How-
ever, this is in fact not possible in Modelica, which we shall see in
Section 3.7.4.

3.7.3 Processing Declaration Elements
and Use Before Declare

In order to guarantee that declared elements can be used before they
are declared and that they do not depend on their order of declaration,
the lookup and analysis of element declarations within a class proceeds
as follows:

3.7 Inheritance 127

1. The names of declared local classes, variables, and other
attributes are found. Also, modifiers are merged with the local
element declarations, and redeclarations are applied.

2. Extends clauses are processed by lookup and expansion of
inherited classes. Their contents is expanded and inserted into
the current class. The lookup of the inherited classes should
be independent , that is, the analysis and expansion of one
extends clause should not be dependent on another.

3. All element declarations are expanded and type checked.

4. A check is performed that all elements with the same name are
identical.

The reason that all the names of local types, variables, and other
attributes need to be found first is that a use of an element can come
before its declaration . Therefore, the names of the elements of a class
need to be known before further expansion and type analysis is per-
formed.

For example, the classes Voltage and Lpin are used before they
are declared within the class C2:

class C2
Voltage v1, v2;
Lpin pn;

class Lpin
Real p;

end Lpin;

class Voltage = Real(unit="kV");
end C2;

3.7.4 Declaration Order of extends Clauses

We have already stated in Chapter 2 and in the previous section that
in Modelica the use of declared items is independent of the order
in which they are declared, except for function formal parameters
and record fields (variables). Thus, variables and classes can be used
before they are declared. This also applies to extends clauses. The
order in which extends clauses are stated within a class does not
matter with regard to declarations and equations inherited via those
extends clauses.

128 CHAPTER 3 Classes and Inheritance

3.7.5 The MoonLanding Example Using
Inheritance

In the MoonLanding example from Section 3.4 the declaration of cer-
tain variables like mass and name were repeated in each of the classes
CelestialBody and Rocket. This can be avoided by collecting
those variable declarations into a generic body class called Body, and
reusing these by inheriting Body into CelestialBody and Rocket.
This restructured MoonLanding example appears below. We have
replaced the general keyword class by the specialized class key-
word model, which has the same semantics as class apart from the
fact that it cannot be used in connections. The reason is that it is more
common practice to use the keyword model for modeling purposes
than to use the keyword class. The first model is the generic Body

class designed to be inherited by more specialized kinds of bodies.

model Body "generic body"
Real mass;
String name;

end Body;

The CelestialBody class inherits the generic Body class and is
in fact a specialized version of Body. Compare with the version
of CelestialBody without inheritance previously presented in
Section 3.4.

model CelestialBody "celestial body"
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

The Rocket class also inherits the generic Body class and can, of
course, be regarded as another specialized version of Body.

model Rocket "generic rocket class"
extends Body;
parameter Real massLossRate=0.000277;
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;
Real gravity;

equation

3.7 Inheritance 129

thrust - mass * gravity = mass * acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

The MoonLanding class below is identical to the one presented
in Section 3.4, apart from the change of keyword from class to
model.

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo12", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");

equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity = moon.g*moon.mass
/(apollo.altitude+moon.radius)ˆ2;
end Landing;

We simulate the restructured MoonLanding model during the time
interval {0, 230}:
simulate(MoonLanding, stopTime=230)

The result is identical to the simulation of MoonLanding in
Section 3.5, which it should be. See, for example, the altitude of the
Apollo rocket as a function of time, plotted in Figure 3.8.

plot(apollo.altitude, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000

Figure 3.8 Altitude of the Apollo rocket over the lunar surface.

130 CHAPTER 3 Classes and Inheritance

3.8 SUMMARY

This chapter has its focus on the most important structuring concept
in Modelica: the class concept. We started by a tutorial introduction
of the idea of contract between designer and user together with the
basics of Modelica classes as exemplified by the moon landing model.

3.9 LITERATURE

An important reference document for this chapter is the Modelica
language specification Modelica Association (2010). Several examples
in this chapter are based on similar examples in that document and
in Modelica Association (2000). In the beginning of this chapter we
mention the idea of a contract between software designers and users.
This is part of methods and principles for object-oriented modeling
and design of software described in Rumbaugh et al. (1991), Booch
(1991, 1994), and Meyer (1997). The moon landing example is based
on the same formulation of Newton’s equations as in the lunar landing
example in Cellier (1991).

CHAPTER 4

System Modeling

Methodology

So far in this text we have primarily discussed the principles of
object-oriented mathematical modeling, a number of Modelica lan-
guage constructs to support high-level model representation and a high
degree of model reuse, and many model examples that demonstrate
the use of these language constructs.

However, we have not yet presented any systematic method on
how to create a model of a system to be investigated. Nor have we pre-
viously presented the underlying mathematical state space equations
in any detail. These are the topics of the current chapter. However,
the state space representation presented here covers only the simple
case for continuous systems.

4.1 BUILDING SYSTEM MODELS

A basic question is: How do we arrive at reasonable mathematical
models of the systems we want to study and possibly simulate? That
is, what is an effective modeling process?

The application domain is of primary importance in all kinds of
modeling. We talk about physical modeling when the systems to be
modeled are described by natural laws of physics, chemistry, biology,
mechanical and electrical engineering, and the like, and these laws can

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

131

132 CHAPTER 4 System Modeling Methodology

be represented directly in the mathematical model we are constructing.
However, it does not really matter whether the application domain is
“physical” or not. There are laws governing economic systems, data
communication, information processing, and so forth that should be
more or less directly expressible in the model we are building when
using a high-level modeling approach. All of these laws are given by
the universe where we exist (but formulated by human beings) and
can be regarded as basic laws of nature.

At the start of a modeling effort we first need to identify which
application domains are involved regarding the system we want to
model, and for each of these domains find out the relevant governing
laws that influence the phenomena we want to study.

In order to be able to handle the complexity of large models and to
reduce the effort of model building by reusing model components, it
is quite useful to apply hierarchical decomposition and object-oriented
component-based techniques such as those advocated in this text. To
make this more clear, we will briefly contrast the traditional physical
modeling approach to the object-oriented component-based approach.

However, one should be aware that even the traditional approach
to physical modeling is “higher level” than certain other approaches
such as block-oriented modeling or direct programming in common
imperative languages, where the user has to manually convert
equations into assignment statements or blocks and manually
restructure the code to fit the data and signal flow context for a
specific model use.

4.1.1 Deductive Modeling Versus Inductive
Modeling

So far we have dealt almost exclusively with the so-called deductive
modeling approach, also called physical modeling approach, where
the behavior of a system is deduced from the application of natural
laws expressed in a model of the system. Such models are created
based on an understanding of the “physical” or “artificial” processes
underlying the system in question, which is the basis for the term
“physical modeling.”

However, in many cases, especially for biological and economic
systems, accurate knowledge about complex systems and their internal

4.1 Building System Models 133

processes may not be available to an extent that would be needed to
support physical modeling. In such application areas it is common to
use an entirely different approach to modeling. You make observations
about the system under study and then try to fit a hypothetical math-
ematical model to the observed data by adapting the model, typically
by finding values of unknown coefficients. This is called the inductive
modeling approach.

Inductive models are directly based on measured values. This
makes such models difficult to validate beyond the observed values.
For example, we would like to accommodate mechanisms in a sys-
tem model is such a way that disasters can be predicted and therefore
possibly prevented. However, this might be impossible without first
observing a real disaster event (that we would like to avoid by all
means) in the system. This is a clear disadvantage of inductive models.

Also notice that just by adding sufficiently many parameters to
an inductive model it is possible to fit virtually any model structure
to virtually any data. This is one of the most severe disadvantages of
inductive models since in this way one can be easily fooled concerning
their validity.

In the rest of this book we will mainly deal with the deductive or
physical modeling approach, except for a few biological application
examples where we present models that are partly inductive and partly
have some physical motivation.

4.1.2 Traditional Approach

The traditional methodology for physical modeling can be roughly
divided into three phases:

1. Basic structuring in terms of variables

2. Stating equations and functions

3. Converting the model to state space form

The first phase involves identification of which variables are of inter-
est, for example, for the intended use of the model, and the roles of
these variables. Which variables should be considered as inputs , for
example, external signals, as outputs , or as internal state variables?

134 CHAPTER 4 System Modeling Methodology

Which quantities are especially important for describing what happens
in the system? Which are time varying and which are approximately
constant? Which variables influence other variables?

The second phase involves stating the basic equations and formu-
las of the model. Here we have to look for the governing laws of the
application domains that are relevant for the model, for example, con-
servation equations of quantities of the same kind such as power in
related to power out, input flow rate related to output flow rates, and
conservation of quantities such as energy, mass, charge, information,
and the like. Formulate constitutive equations that relate quantities of
different kind , for example, relating voltage and current for a resistor,
input and output flows for a tank, input and output packets for a com-
munication link, and so forth. Also formulate relations, for example,
involving material properties and other system properties. Consider
the level of precision and appropriate approximation trade-offs in the
relationships.

The third phase involves converting the model in its current form
consisting of a set of variables and a set of equations to a state space
equation system representation that fits the numeric solver to be used.
A set of state variables needs to be chosen, their time derivatives
(for dynamic variables) expressed as functions of state variables and
input variables (for the case of state space equations in explicit form),
and the output variables expressed as functions of state variables and
input variables. If a few unnecessary state variables are included,
this causes no harm, just some unnecessary computation. This phase
is completely eliminated when using Modelica since the conversion
to state space form is performed automatically by the Modelica
compiler.

4.1.3 Object-Oriented Component-Based
Approach

When using the object-oriented component-based approach to
modeling we first try to understand the system structure and
decomposition in a hierarchical top-down manner. When the system
components and interactions between these components have been
roughly identified, we can apply the first two traditional modeling

4.1 Building System Models 135

phases of identifying variables and equations on each of these model
components. The object-oriented approach has the following phases:

1. Define the system briefly. What kind of system is it? What
does it do?

2. Decompose the system into its most important components .
Sketch model classes for these components, or use existing
classes from appropriate libraries.

3. Define communication, that is, determine interactions and com-
munication paths between these components.

4. Define interfaces , that is, determine the external ports/
connectors of each component for communication with other
components. Formulate appropriate connector classes that
allow a high degree of connectivity and reusability, while
still allowing an appropriate degree of type checking of
connections.

5. Recursively decompose model components of “high complex-
ity” further into a set of “smaller” subcomponents by restart-
ing from phase 2, until all components have been defined as
instances of predefined types, library classes, or new classes to
be defined by the user.

6. Formulate new model classes when needed, both base classes
and derived classes:

a. Declare new model classes for all model components that
are not instances of existing classes. Each new class should
include variables, equations, functions, and formulas rele-
vant to define the behavior of the component, according to
the principles already described for the first two phases of
the traditional modeling approach.

b. Declare possible base classes for increased reuse and main-
tainability by extracting common functionality and structural
similarities from component classes with similar properties.

To get more of a feeling for how the object-oriented modeling
approach works in practice, we will apply this method to modeling a
simple tank system described in Section 4.2.

136 CHAPTER 4 System Modeling Methodology

4.1.4 Top-Down Versus Bottom-Up Modeling

There are two related approaches to the structuring process when arriv-
ing at a model:

• Top-down modeling . This is useful when we know the
application area rather well and have an existing set of library
component models available. We start by defining the top-level
system model, gradually decomposing into subsystems, until
we arrive at subsystems that correspond to the component
models in our library.

• Bottom-up modeling . This approach is typically used when the
application is less well known, or when we do not have a ready-
made library at hand. First, we formulate the basic equations
and design small experimental models on the most important
phenomena to gain a basic understanding of the application
area. Typically, start with very simplified models and later add
more phenomena. After some experimentation we have gained
some understanding of the application area and can restructure
our model fragments into a set of model components. These
might have to be restructured several times if they turn out to
have problems when used for applications. We gradually build
more complex application models based on our components and
finally arrive at the desired application model.

In the following we give examples of both top-down and bottom-up
modeling. Section 4.3, on modeling of a DC motor from predefined
components, gives a typical example of top-down modeling. The small
tank modeling example described in Section 4.2 has some aspects
of bottom-up modeling since we start with a simple flat tank model
before creating component classes and forming the tank model. These
examples gradually grow into a set of components that are used for
the final application models.

4.1.5 Simplification of Models

It is sometimes the case that models are not precise enough to accu-
rately describe the phenomena at hand. Too extensive approximations
might have been done in certain parts of the model.

4.1 Building System Models 137

On the opposite side, even if we create a reasonable model accord-
ing to the above methodology, it is not uncommon that parts of the
model are too complex, which might lead to problems, for example:

• Too time-consuming simulations
• Numerical instabilities
• Difficulties in interpreting results due to too many low-level

model details

Thus, there are usually good reasons to consider simplification of a
model. It is sometimes hard to get the right balance between sim-
plicity and preciseness of models. This is more an art than a science
and requires substantial experience. The best way to acquire such
experience, however, is to keep on designing models together with
performing analysis and evaluation of their behavior. The following
are some hints of where to look for model simplifications, for example,
reduction of the number of state variables:

• Neglect small effects that are not important for the phenomena
to be modeled.

• Aggregate state variables into fewer variables. For example, the
temperatures at different points in a rod might sometimes be
represented by the mean temperature of the whole rod.

Focus modeling on phenomena whose time constants are in the inter-
esting range, that is:

• Approximate subsystems with very slow dynamics with con-
stants.

• Approximate subsystems with very fast dynamics with static
relationships, that is, not involving time derivatives of those
rapidly changing state variables.

An advantage of ignoring the very fast and the very slow dynamics
of a system is that the order of the model, that is, the number of state
variables, is reduced. Systems having model components with time
constants of the same order of magnitude are numerically simpler
and more efficient to simulate. On the other hand, certain systems

138 CHAPTER 4 System Modeling Methodology

have the intrinsic property of having a great spread of time constants.
Such systems give rise to stiff systems of differential equations, which
require certain adaptive numerical solvers for simulation.

4.2 MODELING A TANK SYSTEM

Regarding our exercise in modeling methodology, let us consider a
simple tank system example containing a level sensor and a controller
that is controlling a valve via an actuator (Fig. 4.1). The liquid level h
in the tank must be maintained at a fixed level as closely as possible.
Liquid enters the tank through a pipe from a source, and leaves the
tank via another pipe at a rate controlled by a valve.

4.2.1 Using the Traditional Approach

We first show the result of modeling the tank system using the tra-
ditional approach. A number of variables and equations related to
the tank system have been collected into the flat model presented in
the next section. At this stage we do not explain how the equations
have been derived and what exactly certain variables mean. This is
described in detail in subsequent sections where the object-oriented
approach to modeling the tank system is presented.

4.2.1.1 Flat Tank System Model

The FlatTank model is a “flat” model of the tank system with no
internal hierarchical “system structure” visible, that is, just a collection
of variables and equations that model the system dynamics. The inter-
nal system structure consisting of components, interfaces, couplings
between the components, and the like is not reflected by this model:

Level h

MaxLevel

Valve

LevelSensor

Out In

Controller

Tank

Source

Figure 4.1 Tank system with a tank, a source for liquid, and a controller.

4.2 Modeling a Tank System 139

model FlatTank
// Tank related variables and parameters
parameter Real flowLevel(unit="m3/s")=0.02;
parameter Real area(unit="m2") =1;
parameter Real flowGain(unit="m2/s") =0.05;
Real h(start=0,unit="m") "Tank level";
Real qInflow(unit="m3/s") "Flow through input

valve";
Real qOutflow(unit="m3/s") "Flow through output

valve";
// Controller related variables and parameters
parameter Real K=2 "Gain";
parameter Real T(unit="s")= 10 "Time constant";
parameter Real minV=0, maxV=10; // Limits for flow output
Real ref=0.25 "Reference level for control";
Real error "Deviation from reference level";
Real outCtr "Control signal without limiter";
Real x; "State variable for controller";

equation
assert (minV>=0,"minV must be greater or equal to zero");//
der(h) = (qInflow-qOutflow)/area; // Mass balance equation
qInflow = if time>150 then 3*flowLevel else flowLevel;
qOutflow = LimitValue(minV,maxV,-flowGain*outCtr);
error = ref-h;
der(x) = error/T;
outCtr = K*(error+x);

end FlatTank;

A limiter function is needed in the model to reflect minimum and
maximum flows through the output valve:

function LimitValue
input Real pMin;
input Real pMax;
input Real p;
output Real pLim;
algorithm
pLim := if p>pMax then pMax

else if p<pMin then pMin
else p;

end LimitValue;

Simulate the flat tank system model and plot the results (Fig. 4.2):

simulate(FlatTank, stopTime=250)
plot(h, stopTime=250)

4.2.2 Using the Object-Oriented
Component-Based Approach

When using the object-oriented component-based approach to mod-
eling, we first look for the internal structure of the tank system. Is

140 CHAPTER 4 System Modeling Methodology

50 100 150 200 250
Time

0.1

0.2

0.3

0.4

Figure 4.2 Simulation of the FlatTank model with plot of the tank level.

the tank system naturally decomposed into certain components? The
answer is yes. Several components are actually visible in the structure
diagram of the tank system in Figure 4.3, for example, the tank itself,
the liquid source, the level sensor, the valve, and the controller.

Thus, it appears that we have six components. However, since
we will choose very simple representations of the level sensor and
the valve, that is, just a single scalar variable for each of these two
components, we let these variables be simple Real variables in the
tank model instead of creating two new classes containing a single
variable each. Thus, we are left with three components that are to be
modeled explicitly as instances of new classes: the tank, the source,
and the controller.

TankPI

piContinuous

tank

tActuatortSensor

qIn qOut

cOutcIn

source

Figure 4.3 Tank system with a continuous PI controller and a source for liquid. Even
though we have used arrows for clarity, there need not be a signal direction—there are
only physical connections represented by equations.

4.2 Modeling a Tank System 141

The next stage is to determine the interactions and communication
paths between these components. It is fairly obvious that fluid flows
from the source to the tank via a pipe. Fluid also leaves the tank via
an outlet controlled by the valve. The controller needs measurements
of the fluid level from the sensor. Thus, a communication path from
the sensor of the tank to the controller needs to be established.

Communication paths need to be connected somewhere. There-
fore, connector instances need to be created for those components that
are connected, and connector classes declared when needed. In fact,
the system model should be designed so that the only communication
between a component and the rest of the system is via connectors.

Finally, we should think about reuse and generalizations of certain
components. Do we expect several variants of a component to be
needed? In that case it is useful to collect the basic functionality into
a base class, and let each variant be a specialization of that base class.
In the case of the tank system we expect to plug in several variants of
the controller, starting with a continuous proportional and integrating
(PI) controller. Thus, it is useful for us to create a base class for tank
system controllers.

4.2.3 Tank System with a Continuous PI
Controller

The structure of the tank system model developed using the object-
oriented component-based approach is clearly visible in Figure 4.3.
The three components of the tank system—the tank, the PI controller,
and the source of liquid—are explicit in Figure 4.3 and in the decla-
ration of the class TankPI below.

model TankPI
LiquidSource source(flowLevel=0.02);
PIcontinuousController piContinuous(ref=0.25);
Tank tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

Tank instances are connected to controllers and liquid sources
through their connectors. The tank has four connectors: qIn for

142 CHAPTER 4 System Modeling Methodology

input flow, qOut for output flow, tSensor for providing fluid level
measurements, and tActuator for setting the position of the valve
at the outlet of the tank. The central equation regulating the behavior
of the tank is the mass balance equation, which in the current simple
form assumes constant pressure. The output flow is related to the
valve position by a flowGain parameter and by a limiter that
guarantees that the flow does not exceed what corresponds to the
open/closed positions of the valve.

model Tank
ReadSignal tSensor “Connector, sensor reading tank level (m)”;
ActSignal tActuator “Connector, actuator controlling input flow”;
LiquidFlow qIn “Connector, flow (m3/s) through input valve”;
LiquidFlow qOut “Connector, flow (m3/s) through output valve”;
parameter Real area(unit="m2") = 0.5;
parameter Real flowGain(unit="m2/s") = 0.05;
parameter Real minV=0, maxV=10; // Limits for output valve flow
Real h(start=0.0, unit="m") "Tank level";
equation

assert (minV>=0,"minV minimum Valve level must be >= 0");
der(h)=(qIn.lflow-qOut.lflow)/area;// Mass balance equation
qOut.lflow = LimitValue(minV,maxV,
-flowGain*tActuator.act);

tSensor.val = h;
end Tank;

As already stated, the tank has four connectors. These are instances
of the following three connector classes:

connector ReadSignal "Reading fluid level"
Real val(unit="m");

end ReadSignal;

connector ActSignal"Signal to actuator for setting valve position"
Real act;

end ActSignal;

connector LiquidFlow "Liquid flow at inlets or outlets"
Real lflow(unit="m3/s");

end LiquidFlow;

The fluid entering the tank must come from somewhere. Therefore,
we have a liquid source component in the tank system. The flow
increases sharply at time = 150 to factor of 3 of the previous flow
level, which creates an interesting control problem that the controller
of the tank has to handle.

4.2 Modeling a Tank System 143

model LiquidSource
LiquidFlow qOut;
parameter flowLevel = 0.02;

equation
qOut.lflow = if time>150 then 3*flowLevel else flowLevel;

end LiquidSource;

The controller needs to be specified. We will initially choose a PI
controller but later replace this by other kinds of controllers. The
behavior of a continuous PI controller is primarily defined by the
following two equations:

dx

dt
= error

T
outCtr = K (error + x) (4.1)

Here x is the controller state variable, error is the difference between
the reference level and the actual level of obtained from the sensor,
T is the time constant of the controller, outCtr is the control
signal to the actuator for controlling the valve position, and K is
the gain factor. These two equations are placed in the controller
class PIcontinuousController, which extends the BaseCon-
troller class defined later.

model PIcontinuousController
extends BaseController(K=2,T=10);
Real x "State variable of continuous PI controller";

equation
der(x) = error/T;
outCtr = K*(error+x);

end PIcontinuousController;

By integrating the first equation, thus obtaining x , and substituting
into the second equation, we obtain the following expression for the
control signal, containing terms that are directly proportional to the
error signal and to the integral of the error signal, respectively, that
is, a PI controller.

outCtr = K

(
error +

∫
error

T
dt

)
(4.2)

Both the PI controller and the proportional, integrating, derivative
(PID) controller to be defined later inherit the partial controller class
BaseController, containing common parameters, state variables,
and two connectors: one to read the sensor and one to control the
valve actuator.

144 CHAPTER 4 System Modeling Methodology

50 100 150 200 250
Time

0.1

0.2

0.3

0.4

Figure 4.4 Tank level response for the TankPI system containing a PI controller.

In fact, the BaseController class also can be reused when defin-
ing discrete PI and PID controllers for the same tank example in
Figure 4.3. Discrete controllers repeatedly sample the fluid level and
produce a control signal that changes value at discrete points in time
with a periodicity of Ts.

partial model BaseController
parameter Real Ts(unit="s")=0.1 “Time period between discrete samples”;
parameter Real K=2 “Gain”;
parameter Real T=10(unit="s") “Time constant”;
ReadSignal cIn “Input sensor level, connector”;
ActSignal cOut “Control to actuator, connector”;
parameter Real ref “Reference level”;
Real error “Deviation from reference level”;
Real outCtr “Output control signal”;

equation
error = ref-cIn.val;
cOut.act = outCtr;

end BaseController;

We simulate the TankPI model and obtain the same response as for
the FlatTank model, which is not surprising given that both models
have the same basic equations (Fig. 4.4):

simulate(TankPI, stopTime=250)
plot(tank.h)

4.2.4 Tank with Continuous PID Controller

We define a TankPID system as the same as the TankPI system
except that the PI controller has been replaced by a PID controller.
Here we see a clear advantage of the object-oriented component-
based approach over the traditional modeling approach, since system

4.2 Modeling a Tank System 145

TankPID

pidContinuous

Tank

tActuatortSensor

qIn qOut

cOutcIn

Source

Figure 4.5 Tank system with the PI controller replaced by a PID controller.

components can be easily replaced and changed in a plug-and-play
manner (Fig. 4.5).

The Modelica class declaration for the TankPID system appears
as follows:

model TankPID
LiquidSource source(flowLevel=0.02);
PIDcontinuousController pidContinuous(ref=0.25);
Tank tank(area=1);

equation
connect(source.qOut, tank.qIn);
connect(tank.tActuator, pidContinuous.cOut);
connect(tank.tSensor, pidContinuous.cIn);

end TankPID;

A PID controller model can be derived in a similar way as was done
for the PI controller. PID controllers react quicker to instantaneous
changes than PI controllers due to the term containing the derivative.
A PI controller on the other hand puts somewhat more emphasis on
compensating slower changes. The basic equations for a PID controller
are the following:

dx

dt
= error

T

y = T
d error

dt
(4.3)

outCtr = K (error + x + y)

We create a PIDcontinuousController class containing the three
defining equations:

model PIDcontinuousController
extends BaseController(K=2,T=10);
Real x; // State variable of continuous PID controller
Real y; // State variable of continuous PID controller

146 CHAPTER 4 System Modeling Methodology

50 100 150 200 250
Time

0.1

0.2

0.3

0.4

Figure 4.6 Tank level response for the TankPID system containing a PID controller.

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

By integrating the first equation and substituting x and y into the third
equation, we obtain an expression for the control signal that contains
terms directly proportional, proportional to the integral, and propor-
tional to the derivative of the error signal, that is, a PID controller.

outCtr = K

(
error +

∫
error

T
dt + T

d error

dt

)
(4.4)

We simulate the tank model once more but now including the PID
controller (Fig. 4.6):

simulate(TankPID, stopTime=250)
plot(tank.h)

The tank level as a function of time of the simulated system is quite
similar to the corresponding system with a PI controller, but with
somewhat faster control to restore the reference level after quick
changes of the input flow.

The diagram in Figure 4.7 shows the simulation results from both
TankPI and TankPID plotted in the same diagram for comparison.

simulate(compareControllers, stopTime=250)
plot({tankPI.h,tankPID.h})

4.2 Modeling a Tank System 147

50 100 150 200 250 time

0.1

0.2

0.3

0.4

tankPI.h
tankPID.h

Figure 4.7 Comparison of TankPI and TankPID simulations.

TanksConnectedPI

piContinuous

tank1

tActuatortSensor

qIn qOut

cOutcIn
piContinuous

tank2

tActuatortSensor

qIn qOut

cOutcIn

Source

Figure 4.8 Two connected tanks with PI controllers and a source for liquid connected
to the first tank.

4.2.5 Two Tanks Connected Together

The advantages of the object-oriented component-based approach to
modeling become even more apparent when combining several com-
ponents in different ways, as in the example depicted in Figure 4.8
where two tanks are connected in series, which is not uncommon in
the process industry.

The Modelica model TanksConnectedPI corresponding to
Figure 4.8 appears as follows:

model TanksConnectedPI
LiquidSource source(flowLevel=0.02);
Tank tank1(area=1);
Tank tank2(area=1.3);
PIcontinuousController piContinuous1(ref=0.25);
PIcontinuousController piContinuous2(ref=0.4);

148 CHAPTER 4 System Modeling Methodology

100 200 300 400
Time

0.2

0.4

0.6

0.8
tank2.h

tank1.h

Figure 4.9 Tank level responses for two tanks connected in series.

equation
connect(source.qOut,tank1.qIn);
connect(tank1.tActuator,piContinuous1.cOut);
connect(tank1.tSensor,piContinuous1.cIn);
connect(tank1.qOut,tank2.qIn);
connect(tank2.tActuator,piContinuous2.cOut);
connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;

We simulate the connected tank system. We clearly see the tank
level responses of the first and second tank to the changes in fluid
flow from the source, where the response from the first tank, of
course, appears earlier in time than the response of the second tank
(Fig. 4.9):

simulate(TanksConnectedPI, stopTime=400)
plot({tank1.h,tank2.h})

4.3 TOP-DOWN MODELING OF A DC
MOTOR FROM PREDEFINED
COMPONENTS

In this section we illustrate the object-oriented component-based mod-
eling process when using predefined library classes by sketching the
design of a DC motor servo model. We do not go into any detail since
the previous tank example was presented in quite some detail.

4.3 Top-Down Modeling of a DC Motor from Predefined Components 149

4.3.1 Defining the System

What does a DC motor servo do? It is a motor, the speed of which can
be controlled by some kind of regulator (Fig. 4.10). Since it is a servo,
it needs to maintain a specified rotational speed despite a varying load.
Presumably, it contains an electric motor, some mechanical rotational
transmissions and loads, some kind of control to regulate the rotational
speed, and some electric circuits since the control system needs electric
connections to the rest of the system, and there are electric parts of the
motor. The reader may have noticed that it is hard to define a system
without describing its parts, that is, we are already into the system
decomposition phase.

4.3.2 Decomposing into Subsystems
and Sketching Communication

In this phase we decompose the system into major subsystems and
sketch communication between those subsystems. As already noted in
the system definition phase, the system contains rotational mechanical
parts including the motor and loads, an electric circuit model con-
taining the electric parts of the DC motor together with its electric
interface, and a controller subsystem that regulates the speed of the
DC motor by controlling the current fed to the motor. Thus, there
are three subsystems as depicted in Figure 4.11: controller, an electric
circuit, and a rotational mechanics subsystem.

Figure 4.10 A DC motor servo.

Controller Electrical
Circuit

Rotational
Mechanics

Figure 4.11 Subsystems and their connections.

150 CHAPTER 4 System Modeling Methodology

Regarding the communication between the subsystems, the con-
troller must be connected to the electric circuit since it controls the
current to the motor. The electric circuit also needs to be connected
to the rotational mechanical parts in order that electrical energy can
be converted to rotational energy. Finally, a feedback loop including
a sensor of the rotational speed is necessary for the controller to do
its job properly. The commutation links are sketched in Figure 4.11.

4.3.3 Modeling the Subsystems

The next phase is to model the subsystems by further decomposition.
We start by modeling the controller and manage to find classes in
the standard Modelica library for a feedback summation node and a
PI controller. We also add a step function block as an example of a
control signal. All these parts are shown in Figure 4.12.

The second major component to decompose is the electric circuit
part of the DC motor (Fig. 4.13). Here we have identified the standard
parts of a DC motor such as a signal-controlled electric voltage gener-
ator, a ground component needed in all electric circuits, a resistor, an
inductor representing the coil of the motor, and an electromotive force
(emf) converter to convert electric energy to rotational movement.

The third subsystem, depicted in Figure 4.14, contains three
mechanical rotational loads with inertia, one ideal gear, one rotational
spring, and one speed sensor for measuring the rotational speed
needed as information for the controller.

Controller Electrical
Circuit

Rotational
Mechanics

− PI

feedback1

PI1step1

Figure 4.12 Modeling the controller.

4.3 Top-Down Modeling of a DC Motor from Predefined Components 151

Controller Electrical
Circuit

Rotational
Mechanics

resistor1 inductor1

signalVoltage1
EMF1

ground1

Figure 4.13 Modeling the electric circuit.

inertia1 inertia2 inertia3idealGear1 spring1

speedSensor1

Controller Electrical
Circuit

Rotational
Mechanics

Figure 4.14 Modeling the mechanical subsystem including the speed sensor.

4.3.4 Modeling Parts in the Subsystems

We managed to find all the needed parts as predefined models in the
Modelica class library. If that would not have been the case, we would
also have needed to define appropriate model classes and identified
the equations for those classes, as sketched for the parts of the control
subsystem in Figure 4.15, the electric subsystem in Figure 4.16, and
the rotational mechanics subsystem in Figure 4.17.

The electric subsystem depicted in Figure 4.16 contains electrical
components with associated basic equations, for example, a resistor,
an inductor, a signal voltage source, and an emf component.

152 CHAPTER 4 System Modeling Methodology

− PI

feedback1

PI1step1

e = ωref − ωout

ωout

ωref

ωref = UnitStep[t]















∫ edt

T

Tf
e +u = K

0

1

U

Figure 4.15 Basic equations and components in the control subsystem.

resistor1 inductor1

signalVoltage1
EMF1

ground1

v = u
uR = Ri dt

diuL = L

uemf = k1ωemf

k1

1i =v − uR − uL − uemf = 0
τemf

Figure 4.16 Defining classes and basic equations for components in the electric sub-
system.

The rotational mechanics subsystem depicted in Figure 4.17 contains
a number of components such as inertias, a gear, a rotational spring,
and a speed sensor.

inertia1 inertia2 inertia3idealGear1 spring1

speedSensor1

= Temf + T1dt2
d2θ1J1 = = T2 + T3dt2

d2θ2J2 = = Temfdt2
d2θ3J3 =

= ωoutdt
dθ3

T2T1

T4 = k3 (θ3 − θ2)
θ2 = kθ1

T3

T3 = T4

T4 Tload
θ2θ1 θ3

θefm

T3 =
1
k2

ωout

Tefm

T1

Figure 4.17 Defining classes and basic equations for components in the rotational
mechanics subsystem.

4.4 Designing Interfaces–Connector Classes 153

inertia1 inertia2 inertia3idealGear1 spring1

speedSensor1

resistor1 inductor1

signalVoltage1 EMF1

ground1

− PI

feedback1

PI1step1

Control Electric RotationalMechanics

Figure 4.18 Finalizing the interfaces and connections between the subsystems, includ-
ing the feedback loop.

4.3.5 Defining the Interfaces and Connections

When each subsystem has been defined from predefined models, the
interfaces to the subsystem are given by the connectors of those com-
ponents that interact with other subsystems. Each subsystem has to be
defined to enable communication with the other subsystems according
to the previously sketched commutation structure. This requires the
connector classes to be carefully chosen to be type compatible. Actu-
ally, the selection and definition of these connector interfaces is one
of the most important steps in the design of a model.

The completed model of the DC motor servo is depicted in
Figure 4.18, including the three subsystems and the feedback loop.

4.4 DESIGNING
INTERFACES–CONNECTOR CLASSES

As in all system design, defining the interfaces between the compo-
nents of a system model is one of the most important design tasks
since this lays the foundation for the communication between the
components, thereby also heavily influencing the decomposition of
the model.

Most important is to identify the basic requirements behind
the design of component interfaces, that is, connector classes, that
influence their structure. These requirements can be briefly stated as
follows:

154 CHAPTER 4 System Modeling Methodology

• It should be easy and natural to connect components. For inter-
faces to models of physical components it must be physically
possible to connect those components.

• Component interfaces should facilitate reuse of existing model
components in class libraries.

Fulfilling these goals requires careful design of connector classes. The
number of connector classes should be kept small in order to avoid
unnecessary mismatches between connectors due to different names
and types of variables in the connectors.

Experience shows that it is surprisingly difficult to design con-
nector classes that satisfy these requirements. There is a tendency
for extraneous details that are created during software (model) devel-
opment for various computational needs to creep into the interfaces,
thereby making them harder to use and preventing component reuse.
Therefore, one should keep the connector classes as simple as possible
and try to avoid introducing variables that are not really necessary.

A good rule of thumb when designing connector classes for models
of physical components is to identify the characteristics of (acausal)
interaction in the physical real world between these components. The
interaction characteristics should be simplified and abstracted to an
appropriate level and reflected in the design of the connector classes.
For nonphysical components, for example, signal blocks and software
components in general, one has to work hard on finding the appropriate
level of abstraction in the interfaces and trying these in practice for
feedback on ease of use and reusability. The Modelica standard library
contains a large number of well-designed connector classes that can
serve as inspiration when designing new interfaces.

There are basically three different kinds of connector classes,
reflecting three design situations:

1. If there is some kind of interaction between two physical com-
ponents involving energy flow , a combination of one potential
and one flow variable in the appropriate domain should be
used for the connector class.

2. If information or signals are exchanged between components,
input/output signal variables should be used in the connec-
tor class.

4.6 Literature 155

3. For complex interactions between components, involving sev-
eral interactions of types 1 and 2 above, a hierarchically struc-
tured composite connector class is designed that includes one
or more connectors of the appropriate type 1, 2, or 3.

When all the connectors of a component have been designed accord-
ing to the three principles above, the formulation of the rest of the
component class follows partly from the constraints implied by these
connectors. However, these guidelines should not be followed blindly.
There are several examples of domains with special conditions that
deviate slightly from the above rules.

4.5 SUMMARY

In this chapter we have presented an object-oriented component-based
process on how to arrive at mathematical models of the systems in
which we are interested. System modeling is illustrated on a two-
tank example, both using the flat approach and the object-oriented
approach.

4.6 LITERATURE

General principles for object-oriented modeling and design are
described in Rumbaugh (1991) and Booch (1991). A general
discussion of block-oriented model design principles can be found
in Ljung and Glad (1994), whereas Andersson (1994) describes
object-oriented mathematical modeling in some depth.

Many concepts and terms in software engineering and in mod-
eling/simulation are described in the standard software engineering
glossary: (IEEE Std 610.12-1990) together with the IEEE standard
glossary of modeling and simulation (IEEE Std 610.3-1989).

CHAPTER 5

The Modelica

Standard Library

Much of the power of modeling with Modelica comes from the ease of
reusing model classes. Related classes in particular areas are grouped
into packages, which make them easier to find. This chapter gives a
quick overview of some common Modelica packages.

A special package, called Modelica, is a standardized predefined
package that together with the Modelica Language is developed and
maintained by the Modelica Association. This package is also known
as the Modelica Standard Library . It provides constants, types, con-
nector classes, partial models, and model classes of components from
various application areas, which are grouped into subpackages of the
Modelica package.

The Modelica Standard Library can be used freely for both non-
commercial and commercial purposes under the conditions of The
Modelica License as stated in the front pages of this book. The full
documentation as well as the source code of these libraries appear
at the Modelica website: http://www.modelica.org/library/.
These libraries are often included in Modelica tool distributions.

Version 3.1 of the Modelica standard library from August, 2009,
contains about 920 models and blocks, and 610 functions in the sub-
libraries listed in Table 5.1.

A subpackage named Interfaces occurs as part of several pack-
ages. It contains interface definitions in terms of connector classes

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

157

T
a
b

le
5

.1
M

ai
n

S
u

b
lib

ra
ri

es
o

f
th

e
M

o
d

el
ic

a
S

ta
n

d
ar

d
Li

b
ra

ry
V

er
si

o
n

3.
1

C
4

R
3

R
 =

 0
.0

00
1

C
 =

 1
e-

10
G

nd
6

M
od

el
ic

a.
E

le
ct

ri
ca

l.A
na

lo
g

A
na

lo
g

el
ec

tr
ic

al
an

d
el

ec
tr

on
ic

co
m

po
ne

nt
s

su
ch

as
re

si
st

or
,

ca
pa

ci
to

r,
tr

an
sf

or
m

er
s,

di
od

es
,

tr
an

si
st

or
s,

tr
an

sm
is

si
on

lin
es

,
sw

itc
he

s,
so

ur
ce

s,
se

ns
or

s.

O
r1

>
=

1

A
nd

2

&&
M

od
el

ic
a.

E
le

ct
ri

ca
l.D

ig
it

al
D

ig
ita

l
el

ec
tr

ic
al

co
m

po
ne

nt
s

ba
se

d
on

V
H

D
L

(I
E

E
E

19
99

)
w

ith
ni

ne
va

lu
ed

lo
gi

c.
C

on
ta

in
s

de
la

ys
,

ga
te

s,
so

ur
ce

s,
an

d
co

nv
er

te
rs

be
tw

ee
n

2-
,

3-
,

4-
,

an
d

9-
va

lu
ed

lo
gi

c.

S
ta

rt
2

m
 =

 m

A
IM

C
1

M
od

el
ic

a.
E

le
ct

ri
ca

l.M
ac

hi
ne

s
U

nc
on

tr
ol

le
d,

el
ec

tr
ic

al
m

ac
hi

ne
s,

su
ch

as
as

yn
ch

ro
no

us
,

sy
nc

hr
on

ou
s,

an
d

di
re

ct
cu

rr
en

t
m

ot
or

s
an

d
ge

ne
ra

to
rs

.

158

in
er

tia
2

J
=

 0
.2

C
3

pl
an

et
ar

y1
pl

an
et

ar
y2

ra
tio

 =
 1

00
/4

0
ra

tio
 =

 1
00

/2
0

M
od

el
ic

a.
M

ec
ha

ni
cs

.R
ot

at
io

na
l

O
ne

-d
im

en
si

on
al

ro
ta

tio
na

l
m

ec
ha

ni
ca

l
sy

st
em

s,
su

ch
as

dr
iv

e
tr

ai
ns

,
pl

an
et

ar
y

ge
ar

.
C

on
ta

in
s

in
er

tia
,

sp
ri

ng
,

ge
ar

bo
x,

be
ar

in
g

fr
ic

tio
n,

cl
ut

ch
,

br
ak

e,
ba

ck
la

sh
,

to
rq

ue
,

et
c.

O
ut

er
C

on
ta

ct
A

S
pr

in
gP

la
te

A
M

od
el

ic
a.

M
ec

ha
ni

cs
.T

ra
ns

la
ti

on
al

O
ne

-d
im

en
si

on
al

tr
an

sl
at

io
na

l
m

ec
ha

ni
ca

l
sy

st
em

s,
su

ch
as

m
as

s,
st

op
,

sp
ri

ng
,

ba
ck

la
sh

,
an

d
fo

rc
e.

w
or

ld
y

x
n

=
 {

0,
0,

1}
re

vo
lu

te
 1

a
b

a
b

r
=

 {
0.

5,
0,

0}
r

=
 {

0.
5,

0,
0}

bo
xB

od
y1

bo
xB

od
y2

re
vo

lu
te

2

n
=

 {
0,

0,
1}

da
m

pe
r

d
=

 0
.1

M
od

el
ic

a.
M

ec
ha

ni
cs

.M
ul

ti
B

od
y

T
hr

ee
-d

im
en

si
on

al
m

ec
ha

ni
ca

l
sy

st
em

s
co

ns
is

tin
g

of
jo

in
ts

,b
od

ie
s,

fo
rc

e,
an

d
se

ns
or

el
em

en
ts

.
Jo

in
ts

ca
n

be
dr

iv
en

by
el

em
en

ts
of

th
e

R
ot

at
io

na
l

li
br

ar
y.

E
ve

ry
el

em
en

t
ha

s
a

de
fa

ul
t

an
im

at
io

n.

(c
on

ti
nu

ed
)

159

T
a
b

le
5

.1
M

ai
n

S
u

b
lib

ra
ri

es
o

f
th

e
M

o
d

el
ic

a
S

ta
n

d
ar

d
Li

b
ra

ry
V

er
si

o
n

3.
1

(C
on

tin
ue

d
)

0
5

10

1020304050 −1
00

15
20

25
30

fo
g

re
gi

on

M
ol

lie
r

D
ia

gr
am

, 1
.0

13
 b

ar

h1+x in KJ/Kg dry air

x
in

 g
m

oi
st

ur
e/

K
g d

ry
 a

ir

M
od

el
ic

a.
M

ed
ia

L
ar

ge
m

ed
ia

li
br

ar
y

fo
r

si
ng

le
an

d
m

ul
ti

pl
e

su
bs

ta
nc

e
flu

id
s

w
it

h
on

e
an

d
m

ul
ti

pl
e

ph
as

es
:

•
H

ig
h-

pr
ec

is
io

n
ga

s
m

od
el

s
ba

se
d

on
th

e
N

A
SA

G
le

nn
co

ef
fic

ie
nt

s
+

m
ix

tu
re

s
be

tw
ee

n
th

es
e

ga
s

m
od

el
s

•
Si

m
pl

e
an

d
hi

gh
-p

re
ci

si
on

w
at

er
m

od
el

s
(I

A
PW

S/
IF

97
)

•
D

ry
an

d
m

oi
st

ai
r

m
od

el
s

•
Ta

bl
e-

ba
se

d
in

co
m

pr
es

si
bl

e
m

ed
ia

.
•

Si
m

pl
e

li
qu

id
m

od
el

s
w

it
h

li
ne

ar
co

m
pr

es
si

bi
li

ty

pi
pe

pu
m

p

convection

am
bi

en
t

M
od

el
ic

a.
T

he
rm

al
Si

m
pl

e
th

er
m

o-
flu

id
pi

pe
flo

w
,

es
pe

ci
al

ly
fo

r
m

ac
hi

ne
co

ol
in

g
sy

st
em

s
w

ith
w

at
er

or
ai

r
flu

id
.

C
on

ta
in

s
pi

pe
s,

pu
m

ps
,

va
lv

es
,

se
ns

or
s,

so
ur

ce
s,

et
c.

Fu
rt

he
rm

or
e,

lu
m

pe
d

he
at

tr
an

sf
er

co
m

po
ne

nt
s

ar
e

pr
es

en
t,

su
ch

as
he

at
ca

pa
ci

to
r,

th
er

m
al

co
nd

uc
to

r,
co

nv
ec

tio
n,

bo
dy

ra
di

at
io

n,
et

c.

160

P
I

ta
bl

e
fe

ed
ba

ck
P

I

T
 =

 0
.1

M
od

el
ic

a.
B

lo
ck

s
C

on
ti

nu
ou

s
an

d
di

sc
re

te
in

pu
t/

ou
tp

ut
bl

oc
ks

.
C

on
ta

in
s

tr
an

sf
er

fu
nc

tio
ns

,
lin

ea
r

st
at

e
sp

ac
e

sy
st

em
s,

no
nl

in
ea

r,
m

at
he

m
at

ic
al

,
lo

gi
ca

l,
ta

bl
e,

so
ur

ce
bl

oc
ks

.

>
=

in
iti

al
S

te
p

tr
an

si
tio

n1
st

ep

ac
tiv

e

tim
er

tr
ue

tr
an

si
tio

n2 1

1

1

M
od

el
ic

a.
St

at
eG

ra
ph

H
ie

ra
rc

hi
ca

l
st

at
e

di
ag

ra
m

s
w

ith
si

m
ila

r
m

od
el

in
g

po
w

er
as

St
at

ec
ha

rt
s.

M
od

el
ic

a
is

us
ed

as
sy

nc
hr

on
ou

s
“a

ct
io

n”
la

ng
ua

ge
.

D
et

er
m

in
is

tic
be

ha
vi

or
is

gu
ar

an
te

ed
.

(c
on

ti
nu

ed
)

161

T
a
b

le
5

.1
M

ai
n

S
u

b
lib

ra
ri

es
o

f
th

e
M

o
d

el
ic

a
S

ta
n

d
ar

d
Li

b
ra

ry
V

er
si

o
n

3.
1

(C
on

tin
ue

d
)

i
m
p
o
r
t

M
o
d
e
l
i
c
a
.
M
a
t
h
.
M
a
t
r
i
c
e
s
;

M
od

el
ic

a.
M

at
h.

M
at

ri
ce

s/
M

od
el

ic
a.

U
ti

lit
ie

s
A
=

[
1
,
2
,
3
;

3
,
4
,
5
;

2
,
1
,
4
]
;

b
=

{
1
0
,
2
2
,
1
2
}
;

x
=

M
a
t
r
i
c
e
s
.
s
o
l
v
e
(
A
,
b
)
;

M
a
t
r
i
c
e
s
.
e
i
g
e
n
V
a
l
u
e
s
(
A
)
;

Fu
nc

tio
ns

op
er

at
in

g
on

m
at

ri
ce

s,
e.

g.
,

to
so

lv
e

lin
ea

r
sy

st
em

s
an

d
co

m
pu

te
ei

ge
n

an
d

si
ng

ul
ar

va
lu

es
.

M
or

eo
ve

r,
fu

nc
ti

on
s

ar
e

pr
ov

id
ed

to
op

er
at

e
on

st
ri

ng
s,

st
re

am
s,

an
d

fil
es

.

M
od

el
ic

a.
C

on
st

an
ts

,M
od

el
ic

a.
Ic

on
s,

M
od

el
ic

a.
SI

un
it

s
U

ti
li

ty
li

br
ar

ie
s

to
pr

ov
id

e:
t
y
p
e

A
n
g
l
e
=
R
e
a
l
(

f
i
n
a
l

q
u
a
n
t
i
t
y
=
"
A
n
g
l
e
"
,

f
i
n
a
l
u
n
i
t

=
"
r
a
d
"
,

d
i
s
p
l
a
y
U
n
i
t

=
"
d
e
g
"
)
;

•
O

ft
en

us
ed

co
ns

ta
nt

s
su

ch
as

e,
π

,
R

.
•

A
lib

ra
ry

of
ic

on
s

th
at

ca
n

be
us

ed
in

m
od

el
s

•
A

bo
ut

45
0

pr
ed

efi
ne

d
ty

pe
s,

su
ch

as
m

as
s,

an
gl

e,
tim

e,
ba

se
d

on
th

e
in

te
rn

at
io

na
l

st
an

da
rd

on
un

its
.

162

The Modelica Standard Library 163

for the application area covered by the package in question, as well as
commonly used partial classes to be reused by the other subpackages
within that package.

Also, a subpackage Examples contains example models on how
to use the classes of the package in question in many libraries. Some
libraries with sublibraries are shown in Table 5.2.

Table 5.2
Selected Libraries with Examples of Sublibraries Interfaces
and Examples

Modelica Standard library from the Modelica
Association including the following
sublibraries:

Blocks

Interfaces

Continuous

...

Input/output blocks for use in block
diagrams.

Interfaces sublibrary to Blocks.
Continuous control blocks with

internal states.

Electrical Common electrical component models
Analog

Interfaces, Basic, Ideal,

Sensors, Sources,

Examples,

Lines, Semiconductors

Analog electrical component models
Analog electrical sublibraries.
Analog electrical sublibraries.
Analog electrical sublibraries.
Analog electrical sublibraries.

Digital

...

Digital electrical components.

Mechanics

Rotational

Interfaces, Sensors,

Examples, ...

General mechanical library.
1D rotational mechanical component
models.

Rotational sublibraries.
1D translational mechanical
components.

Translational sublibraries.

Translational

Interfaces, Sensors,

Examples

3D mechanical systems—MultiBody
library.

MultiBody sublibraries.
MultiBody sublibraries.
MultiBody sublibraries.

... . . .

164 CHAPTER 5 The Modelica Standard Library

Table 5.3
Selection of Additional Free Modelica Libraries

ModelicaAdditions: Old collection of additional Modelica
libraries Blocks,
PetriNets, Tables, HeatFlow1D,
MultiBody.

Blocks

Discrete

Logical

Multiplexer

Additional input/output blocks.
Discrete input/output blocks with

fixed sample period.
Boolean input/output blocks.
Combine and split-signal connectors

of Real.

PetriNets Petri nets and state transition diagrams.
Tables Table lookup in 1 and 2 dimensions.
HeatFlow1D 1D heat flow.
MultiBody 3D mechanical systems—old MBS

library with some connection
restrictions and manual handling of
kinematic loops.

Interfaces,Joints,CutJoints Old MBS sublibraries
Forces, Parts, Sensors, Old MBS sublibraries
Examples Old MBS sublibrary

SPOT Power systems in transient and
steady-state mode, 2007

ExtendedPetriNets Extended Petri net library, 2002
ThermoFluid Old (superseded) library on

thermodynamics and
thermohydraulics, steam power
plants, and process systems.

SystemDynamics System dynamics a la J. Forrester,
2007.

QSSFluidFlow Quasi-steady-state fluid flows.
Fuzzy Control Fuzzy control library.
VehicleDynamics Dynamics of vehicle chassis

(obsolete), 2003 (replaced by
commercial library)

NeuralNetwork Neural network mathematical models,
2006

WasteWater Wastewater treatment plants, 2003
ATPlus Building simulation and control (fuzzy

control included), 2005

The Modelica Standard Library 165

Table 5.3
(Continued)

MotorCycleDynamics Dynamics and control of motorcycles,
2009

SPICElib Some capabilities of electric circuit
simulator PSPICE, 2003

BondLib Bond graph modeling of physical
systems, 2007

MultiBondLib Multibond graph modeling of physical
systems, 2007

ModelicaDEVS DEVS discrete event modeling, 2006
External.Media Library External fluid property computation,

2008
VirtualLabBuilder Implementation of virtual labs, 2007

There is also a number of free Modelica libraries that are not part
of the Modelica Standard Library and have not yet been “certified”
by the Modelica Association. The quality of these libraries is vary-
ing. Some are well documented and tested, whereas this is not the
case for certain other libraries. The number of libraries available at
the Modelica Association website is growing rapidly. Table 5.3 is a
subset snapshot of the status in September 2009. Several commercial
libraries, usually not free of charge, are also available.

When developing an application or a library in some application
area, it is wise to use the standardized quantity types available
in Modelica.SIunits and the standard connectors available
in the corresponding Interfaces subpackage, for example,
Modelica.Blocks.Interfaces of the Modelica Standard
Library, in order that model components based on the same physical
abstraction have compatible interfaces and can be connected together.

In Table 5.4 elementary connector classes are defined where poten-
tial variables are connector variables without the flow prefix and flow
variables have the flow prefix.

In all domains two equivalent connectors are usually defined,
for example, DigitalInput–DigitalOutput, HeatPort_a–

HeatPort_b, and so forth. The variable declarations of these
connectors are identical , only the icons are different in order that it
is easy to distinguish two connectors of the same domain that are
attached at the same component model.

T
a
b

le
5

.4

B
as

ic
C

o
n

n
ec

to
r

C
la

ss
es

fo
r

C
o

m
m

o
n

ly
U

se
d

M
o

d
el

ic
a

Li
b

ra
ri

es

Po
te

nt
ia

l
Fl

ow
D

om
ai

n
V

ar
ia

bl
es

V
ar

ia
bl

es
C

on
ne

ct
or

D
efi

ni
ti

on
Ic

on
s

E
le

ct
ri

ca
l

an
al

og
E

le
ct

ri
ca

l
po

te
nt

ia
l

E
le

ct
ri

ca
l

cu
rr

en
t

M
od

el
ic

a.
E

le
ct

ri
ca

l.A
na

lo
g.

In
te

rf
ac

es
.P

in
,

.P
os

iti
ve

Pi
n,

.N
eg

at
iv

eP
in

E
le

ct
ri

ca
l

m
ul

tip
ha

se
V

ec
to

r
of

el
ec

tr
ic

al
pi

ns
M

od
el

ic
a.

E
le

ct
ri

ca
l.M

ul
tiP

ha
se

.I
nt

er
fa

ce
s.

Pl
ug

,
.P

os
iti

ve
Pl

ug
,

.N
eg

at
iv

eP
lu

g

E
le

ct
ri

ca
l

sp
ac

e
ph

as
or

2
el

ec
tr

ic
al

po
te

nt
ia

ls
2

el
ec

tr
ic

al
cu

rr
en

ts
M

od
el

ic
a.

E
le

ct
ri

ca
l.M

ac
hi

ne
s.

In
te

rf
ac

es
Sp

ac
eP

ha
so

r

E
le

ct
ri

ca
l

di
gi

ta
l

In
te

ge
r

(1
.9

)
—

M
od

el
ic

a.
E

le
ct

ri
ca

l.D
ig

ita
l.I

nt
er

fa
ce

s.
D

ig
it

al
Si

gn
al

,
.D

ig
it

al
In

pu
t,

D
ig

it
al

O
ut

pu
t

T
ra

ns
la

tio
na

l
D

is
ta

nc
e

C
ut

-f
or

ce
M

od
el

ic
a.

M
ec

ha
ni

cs
.T

ra
ns

la
tio

na
l.I

nt
er

fa
ce

s.
Fl

an
ge

_a
,

.F
la

ng
e_

b

R
ot

at
io

na
l

A
ng

le
C

ut
-t

or
qu

e
M

od
el

ic
a.

M
ec

ha
ni

cs
.R

ot
at

io
na

l.I
nt

er
fa

ce
s.

Fl
an

ge
_a

,
.F

la
ng

e_
b

3D
m

ec
ha

ni
cs

Po
si

tio
n

ve
ct

or
or

ie
nt

at
io

n
ob

je
ct

C
ut

-f
or

ce
ve

ct
or

;
cu

t-
to

rq
ue

ve
ct

or

M
od

el
ic

a.
M

ec
ha

ni
cs

.M
ul

tiB
od

y.
In

te
rf

ac
es

.
Fr

am
e,

.F
ra

m
e_

a,
.F

ra
m

e_
b,

.F
ra

m
e_

re
so

lv
e

166

Si
m

pl
e

flu
id

flo
w

Pr
es

su
re

-s
pe

ci
fic

en
th

al
py

m
as

s
flo

w
ra

te
en

th
al

py
flo

w
ra

te

M
od

el
ic

a.
T

he
rm

al
.F

lu
id

H
ea

tF
lo

w
.I

nt
er

fa
ce

s.
Fl

ow
Po

rt
,

.F
lo

w
Po

rt
_a

,
.F

lo
w

Po
rt

_b

H
ea

t
tr

an
sf

er
Te

m
pe

ra
tu

re
he

at
flo

w
ra

te
M

od
el

ic
a.

T
he

rm
al

.H
ea

tT
ra

ns
fe

r.
In

te
rf

ac
es

.
H

ea
tP

or
t,

.H
ea

tP
or

t_
a,

.H
ea

tP
or

t_
b

B
lo

ck
di

ag
ra

m
R

ea
l,

In
te

ge
r,

B
oo

le
an

M
od

el
ic

a.
B

lo
ck

s.
In

te
rf

ac
es

.R
ea

lS
ig

na
l,

.R
ea

lI
np

ut
,

.R
ea

lO
ut

pu
t.I

nt
eg

er
Si

gn
al

,
.I

nt
eg

er
In

pu
t,

.I
nt

eg
er

O
ut

pu
t.B

oo
le

an
Si

gn
al

,
.B

oo
le

an
In

pu
t,

.B
oo

le
an

O
ut

pu
t

St
at

e
m

ac
hi

ne
B

oo
le

an
va

ri
ab

le
s

(o
cc

up
ie

d,
M

od
el

ic
a.

St
at

eG
ra

ph
.I

nt
er

fa
ce

s.
St

ep
_i

n,
.S

te
p_

ou
t,

.T
ra

ns
iti

on
_i

n,
.T

ra
ns

it
io

n_
ou

t
se

t,
av

ai
la

bl
e,

re
se

t)

T
he

rm
ofl

ui
d

flo
w

Pr
es

su
re

M
as

s
flo

w
ra

te
M

od
el

ic
a_

Fl
ui

d.
In

te
rf

ac
es

.F
lu

id
Po

rt
,

.F
lu

id
Po

rt
_a

,
.F

lu
id

Po
rt

_b
St

re
am

va
ri

ab
le

s
(i

f
m

flo
w

<
0)

:
sp

ec
.

en
th

al
py

,
m

as
s

fr
ac

tio
ns

(m
i/

m
)

ex
tr

a
pr

op
er

ty
fr

ac
ti

on
s

(c
i/

m
)

M
ag

ne
ti

c
M

ag
ne

ti
c

po
te

nt
ia

l
M

ag
ne

tic
flu

x
M

ag
ne

tic
.I

nt
er

fa
ce

s.
M

ag
ne

tic
Po

rt
,

.P
os

iti
ve

M
ag

ne
tic

Po
rt

,.N
eg

at
iv

eM
ag

ne
tic

Po
rt

167

168 CHAPTER 5 The Modelica Standard Library

5.1 SUMMARY

This chapter has very briefly described the Modelica library structure,
Version 3.1, as presented in the Modelica Language Specification 3.2
and at the Modelica Association web page at the time of this writ-
ing, including the Modelica Standard Library. The set of available
libraries is growing quickly, however, the existing Modelica standard
sublibraries are rather well-tested and have so far mostly gone through
small evolutionary enhancements.

5.2 LITERATURE

All the free Modelica libraries described here, including both docu-
mentation and source code, can be found on the Modelica Association
website, www.modelica.org. Documentation for several commer-
cial libraries is also available on the Modelica website.

The most important reference for this chapter is Chapter 19 in the
Modelica Language Specification (Modelica Association 2010), from
which Tables 5.1 and 5.4 have been reused. Those tables were created
by Martin Otter.

APPENDIX A

Glossary

algorithm section: part of a class definition consisting of the keyword
algorithm followed by a sequence of statements. Like an equation, an
algorithm section relates variables, i.e., constrains the values that these
variables can take simultaneously. In contrast to an equation section, an
algorithm section distinguishes inputs from outputs: An algorithm section
specifies how to compute output variables as a function of given input
variables. (See Section 2.14.)

array or array variable: variable that contains array elements. For an array,
the ordering of its elements matters: The k th element in the sequence of
elements of an array x is the array element with index k , denoted x[k].
All elements of an array have the same type. An array element may again
be an array, i.e., arrays can be nested. An array element is hence referenced
using n indices in general, where n is the number of dimensions of the
array. Special cases are matrix (n = 2) and vector (n = 1). Array integer
indices start with 1, not zero, i.e., the lower bound is 1. (See Section 2.13.)

array constructor: array can be built using the array function—with the
shorthand curly braces {a , b, . . .}, and can also include an iterator to build
an array of expressions. (See Section 2.13.)

array element: element contained in an array. An array element has no
identifier. Instead array elements are referenced by array access expressions
called indices that use enumeration values or positive integer index values.
(See Section 2.13.)

assignment: statement of the form x := expr. The expression expr must
not have higher variability than x . (See Section 2.14.1.)

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

169

170 APPENDIX A Glossary

attribute: property (or kind of record field) contained in a scalar variable,
such as min, max, and unit. All attributes are predefined and
attribute values can only be defined using a modification, such as in
Real x(unit="kg"). Attributes cannot be accessed using dot notation
and are not constrained by equations and algorithm sections. For example,
in Real x(unit="kg") = y; only the values of x and y are declared
to be equal, but not their unit attributes, nor any other attribute of x and
y. (See Section 2.3.5.)

base class: class A is called a base class of B, if class B extends class A.
This relation is specified by an extends clause in B or in one of B’s base
classes. A class inherits all elements from its base classes and may modify
all nonfinal elements inherited from base classes. (See Section 3.7.)

binding equation: either a declaration equation or an element modification
for the value of the variable. A variable with a binding equation has its
value bound to some expression. (See Section 2.6.)

class: description that generates an object called instance. The description
consists of a class definition, a modification environment that modifies the
class definition, an optional list of dimension expressions if the class is an
array class, and a lexically enclosing class for all classes. (See Section 2.3)

class type or inheritance interface: property of a class, consisting of a
number of attributes and a set of public or protected elements consisting
of element name, element type, and element attributes.

declaration assignment: assignment of the form x := expression defined
by a variable declaration in a function. This is similar to a declaration
equation, but different since an assigned variable usually can be assigned
multiple times. (See Section 2.14.3.)

declaration equation: equation of the form x = expression defined by
a component declaration. The expression must not have higher variabil-
ity than the declared component x . Unlike other equations, a declaration
equation can be overridden (replaced or removed) by an element modifi-
cation. (See Section 2.6.)

derived class or subclass: class B is called derived from A, if B extends A.
(See Section 2.4.)

element: part of a class definition, one of: class definition, component decla-
ration, or extends clause. Component declarations and class definitions are
called named elements. An element is either inherited from a base class or
local.

element modification: part of a modification, overrides the declaration
equation in the class used by the instance generated by the modified

Glossary 171

element. Example: vcc(unit="V")=1000. (See Sections 2.6 and 2.3.4.)

element redeclaration: part of a modification, replaces one of the named
elements possibly used to build the instance generated by the element
that contains the redeclaration. Example: redeclare type Voltage

= Real(unit="V") replaces type Voltage. (See Section 2.5.)

encapsulated: class prefix that makes the class not depend on where it is
placed in the package hierarchy, since its lookup is stopped at the class
boundary. (See Section 2.16.)

equation: equality relation that is part of a class definition. A scalar equation
relates scalar variables, i.e., constrains the values that these variables can
take simultaneously. When n − 1 variables of an equation containing n
variables are known, the value of the nth variable can be inferred (solved
for). In contrast to a statement in an algorithm section, an equation does
not define for which of its variable it is to be solved. Special cases are:
initial equations, instantaneous equations, and declaration equations. (See
Section 2.6)

event: something that occurs instantaneously at a specific time or when
a specific condition occurs. Events are, for example, defined by the
condition occurring in a when clause, if clause, or if expression. (See
Section 2.15.)

expression: term built from operators, function references, variables/named
constants, or variable references (referring to variables) and literals. Each
expression has a type and a variability. (See Sections 2.1.1 and 2.1.3.)

extends clause: unnamed element of a class definition that uses a name and
an optional modification to specify inheritance of a base class of the class
defined using the class definition. (See Section 2.4.)

flattening: computation that creates a flattened class of a given class,
where all inheritance, modification, etc. has been performed and all
names resolved, consisting of a flat set of equations, algorithm sections,
component declarations, and functions. (See Section 2.20.1.)

function: class of the specialized class function. (See Section 2.14.3.)

function subtype: class A is a function subtype of B iff A is a subtype
of B and the additional formal parameters of function A that are not in
function B are defined in such a way (e.g., additional formal parameters
need to have default values) that A can be called at places where B is
called. For more information, see Chapter 3 of Fritzson (2004) or Fritzson
(2012).

identifier: atomic (not composed) name. Example: Resistor. (See
Section 2.1.1 for names of variables.)

172 APPENDIX A Glossary

index or subscript: expression, typically of Integer type or the colon symbol
(:), used to reference an element (or a range of elements) of an array. (See
Section 2.13.)

inheritance interface or class type: property of a class, consisting of a
number of attributes and a set of public or protected elements consisting
of element name, element type, and element attributes. (See Sections 2.9
and 2.4.)

instance: object generated by a class. An instance contains zero or more
components (i.e., instances), equations, algorithms, and local classes. An
instance has a type. Basically, two instances have the same type, if their
important attributes are the same and their public components and classes
have pairwise equal identifiers and types. More specific type equivalence
definitions are given, e.g., for functions. (See Section 2.13.)

instantaneous: equation or statement is instantaneous if it holds only at
events, i.e., at single points in time. The equations and statements of a
when clause are instantaneous. (See Section 2.15.)

literal: real, integer, Boolean, enumeration, or string constant value, i.e., a
literal. Used to build expressions. (See Section 2.1.3.)

matrix: array where the number of dimensions is 2. (See Section 2.13.)

modification: part of an element. Modifies the instance generated by that
element. A modification contains element modifications and element redec-
larations. (See Section 2.3.4.)

name: Sequence of one or more identifiers. Used to reference a class or
an instance. A class name is resolved in the scope of a class, which
defines a set of visible classes. Example name: “Ele.Resistor ”. (See
Sections 2.16 and 2.18.)

operator record: record with user-defined operations, defining, e.g., multi-
plication and addition. (See Section 2.14.4.)

partial: class that is incomplete and cannot be instantiated; useful, e.g., as a
base class. (See Section 2.9.)

predefined type: one of the types Real, Boolean, Integer, String,
and types defined as enumeration types. The attribute declarations of
the predefined types define attributes such as min, max, and unit. (See
Section 2.1.1.)

prefix: property of an element of a class definition that can be present or not
be present, e.g., final, public, flow.

predefined type: one of the built-in types Real, Boolean, IntegerType,
String, enumeration(. . .). (See Section 2.1.1.)

Glossary 173

redeclaration: modifier with the keyword redeclare that changes a
replaceable element. (See Section 2.5.)

replaceable: element that can be replaced by a different element having a
compatible type. (See Section 2.5.)

restricted subtyping: type A is a restricted subtype of type B iff A is a
subtype of B, and all public components present in A but not in B must be
default connectable. This is used to avoid introducing, via a redeclaration,
an unconnected connector in the object/class of type A at a level where a
connection is not possible. (See Section 2.5.1 and Chapter 3 of Fritzson,
2004.)

scalar or scalar variable: variable that is not an array. (See Sections 2.1.1
and 2.13.)

simple type: Real, Boolean, Integer, String, and enumeration types.
(See Section 2.1.1.)

specialized class: one of the following: model, connector, package, record,
operator record, block, function, operator function, and type. The class
specialization represents assertions regarding the content of the class and
restricts its use in other classes, as well as providing enhancements com-
pared to the basic class concept. For example, a class having the pack-
age class specialization must only contain classes and constants. (See
Section 2.3.3.)

subtype compatible: relation between types. A is a subtype of B iff a number
of properties of A and B are the same and all important elements of B have
corresponding elements in A with the same names and their types being
subtypes of corresponding element types in B. (See Chapter 3 of Fritzson,
2004.)

supertype: relation between types. The inverse of subtype. A is a subtype
of B means that B is a supertype or base type of A. (See Section 2.4.)

type: property of an instance, expression, consisting of a number of attributes
and a set of public elements consisting of element name, element type,
and element attributes. Note: The concept of class type is a property of a
class definition and also includes protected elements. Class type is used in
certain subtype relationships, e.g., regarding inheritance. (See Chapter 3 of
Fritzson, 2004.)

variability: property of an expression, which can have one of the following
four values:

◦ continuous : an expression that may change its value at any point in time.
◦ discrete: may change its value only at events during simulation.

174 APPENDIX A Glossary

◦ parameter : constant during the entire simulation, but can be changed
before each simulation and appears in tool menus. The default parameter
values of models are often nonphysical and are recommended to be
changed before simulation.

◦ constant : constant during the entire simulation; can be used and defined
in a package.

Assignments x:=expr and binding equations x=expr must satisfy a vari-
ability constraint: The expression must not have a higher variability than
variable x. (See Section 2.1.4.)

variable: instance (object) generated by a variable or constant declaration.
Special kinds of variables are scalars, arrays, and attributes. (See
Sections 2.1.1 and 2.3.1.)

variable declaration: element of a class definition that generates a variable,
parameter, or constant. A variable declaration specifies (1) a variable name,
i.e., an identifier; (2) the class to be flattened in order to generate the
variable; and (3) an optional Boolean parameter expression. Generation of
the variable is suppressed if this parameter expression evaluates to false. A
variable declaration may be overridden by an element redeclaration. (See
Sections 2.3.1, 2.1.1, and 2.1.3.)

variable reference: expression containing a sequence of identifiers and
indices. A variable reference is equivalent to the referenced object.
A variable reference is resolved (evaluated) in the scope of a class
(or expression for the case of a local iterator variable). A scope
defines a set of visible variables and classes. Example reference:
Ele.Resistor.u[21].r (See Sections 2.1.1 and 2.13.)

vector: array where the number of dimensions is 1. (See Section 2.13.)

LITERATURE

This glossary has been slightly adapted from the Modelica language
specification 3.2 (Modelica Association 2010). The first version of the
glossary was developed by Jakob Mauss. The current version contains
contributions from many Modelica Association members.

APPENDIX B

OpenModelica

and OMNotebook

Commands

This appendix gives a short overview of the OpenModelica commands,
and a quick introduction to the OMNotebook electronic book, which
can be used for Modelica textual modeling.

B.1 OMNOTEBOOK INTERACTIVE
ELECTRONIC BOOK

Interactive electronic notebooks are active documents that may con-
tain technical computations and text as well as graphics. Hence, these
documents are suitable to be used for teaching and experimentation,
simulation scripting, model documentation and storage, and the like.
OMNotebook is an open-source implementation of such an electronic
book, which belongs to the OpenModelica tool set.

• OMNotebook and the DrModelica documents are auto-
matically installed when you install OpenModelica. To
start OMNotebook on Windows use the program menu
OpenModelica->OMNotebook, or double click on the .onb

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

175

176 APPENDIX B OpenModelica and OMNotebook Commands

file you would like to open. The DrModelica.onb document
is automatically opened when you start OMNotebook.

• To evaluate a cell, just click in the specific cell and press Shift +
Enter. You can also evaluate a sequence of cells by clicking on
a cell marker to the right, and pressing Shift + Enter.

• If you end a command by a semicolon (;), the value of the
command will not be returned in an output cell.

• When using or saving your own files it is useful to first change
the directory to the path where your files are located. This can
be done by the cd() command.

• To perform a simulation, first evaluate the cell (cells) contain-
ing the model by clicking on it and pressing Shift + Enter.
Then you have to evaluate a simulate command, for example,
by typing "simulate(modelname, startTime=0,

stopTime=25); in a Modelica input cell, and pressing
Shift + Enter.

• You can save typing by just writing the initial part of a com-
mand, e.g., sim for simulate, and push shift-tab. Then the com-
mand will be automatically expanded and completed.

• When writing Modelica code, a special ModelicaInput cell
must be used.

• You can create new input cells by the Cell->Input Cell pull-
down menu command, or by the short-cut command ctrl-shift-I,
whereas a new cell with the same text style as the one above
can be created by the short-cut command Alt + Enter.

After simulating a class, it is possible to plot or just look at the values
of the variables in the class by evaluating the plot command or the
val command.

Variable names given to the plot command refer to the most
recently simulated model—you do not need to provide the modelname
as a prefix.

For a more extensive tutorial explanation on how to use a note-
book, see the notebook chapter in the OpenModelica Users Guide,
which is included in the OpenModelica installation and can be reached
under the (Windows) program menu item for OpenModelica.

B.1 OMNotebook Interactive Electronic Book 177

The DrModelica notebook has been developed to facilitate learning
the Modelica language as well as providing an introduction to object-
oriented modeling and simulation. It is based on, and is supplementary
material to, the Modelica book: Principles of Object-Oriented Model-
ing and Simulation with Modelica (Fritzson 2004). All of the examples
and exercises in DrModelica and the page references are from that
book. Most of the text in DrModelica is also based on that book.

178 APPENDIX B OpenModelica and OMNotebook Commands

B.2 COMMON COMMANDS AND SMALL
EXAMPLES

The following session in OpenModelica illustrates the very common
combination of a simulation command followed by a plot command:

> simulate(myCircuit, stopTime=10.0)
> plot({R1.v})

Scripting commands are useful for simulation, loading and saving
classes, reading and storing data, plotting of results, and various other
tasks.

The arguments passed to a scripting function should follow syn-
tactic and typing rules for Modelica and for the scripting function
in question. In the following tables we briefly indicate the types of
formal parameters to the functions by the following notation:

• String typed argument, for example, "hello",
"myfile.mo"

• TypeName—class, package, or function name, for example,
MyClass, Modelica.Math

• VariableName—variable name, for example, v1, v2,
vars1[2].x, and so forth

• Integer or Real typed argument, for example, 35, 3.14,
xintvariable

• options—optional parameters with named formal parameter
passing

The most common commands are shown below; the full set of com-
mands is presented in the next section.
simulate (className, options). Translate and simulate a

model, with optional start time, stop time, and optional number of
simulation intervals or steps for which the simulation results will be
computed. Many steps will give higher time resolution, but occupy
more space and take longer to compute. The default number of
intervals is 500.

Inputs: TypeName className; Real startTime;

Real stopTime; Integer numberOfIntervals;

Real outputInterval; String method;

B.3 Complete List of Commands 179

Real tolerance; Real fixedStepSize;

Outputs: SimulationResult simRes;

Example 1 : simulate(myClass);
Example 2 : simulate(myClass, startTime=0,
stopTime=2, numberOfIntervals=1000,
tolerance=1e-10);.

plot(variables, options). Plot a single variable or several
variables from the most recently simulated model, where variables is
a single name or a vector of variable names if several variables should
be plotted with one curve each. The optional parameters xrange and
yrange allows you to specify the plot intervals in the diagram.

Inputs: VariableName variables; String title;
Boolean legend; Boolean gridLines;

Real xrange[2] i.e. {xmin,xmax};
Real yrange[2] i.e. {ymin,ymax};
Outputs: Boolean res;

Example 1 : plot(x)
Example 2 : plot(x,xrange={1,2},yrange={0,10})
Example 3 : plot({x,y,z}) // Plot 3 curves, for x, y, and z.
quit(). Leave and quit the OpenModelica environment.

B.3 COMPLETE LIST OF COMMANDS

Below is the complete list of basic OpenModelica scripting commands.
An additional set of more advanced commands for use by software
clients is described in the OpenModelica System Documentation.

First, we show an interactive OpenModelica session using a few
of the commands. The interactive command line interface can be used
from the OpenModelica tools OMNotebook, OMShell, or from the
command line in the OpenModelica MDT Eclipse plug-in.

>> model Test Real y=1.5; end Test;
{Test}

>> instantiateModel(Test)
"fclass Test
Real y = 1.5;
end Test;
"

180 APPENDIX B OpenModelica and OMNotebook Commands

>> list(Test)
"model Test
Real y=1.5;

end Test;
"

>> plot(y)

>> a:=1:10
{1,2,3,4,5,6,7,8,9,10}

>> a*2
{2,4,6,8,10,12,14,16,18,20}

>> clearVariables()
true

>> clear()
true

>> getClassNames()
{}

Here is the complete list of basic commands in OpenModelica.

cd() Return the current directory as a string.
Outputs: String dir;

cd(dir) Change directory to directory dir given as a string.
Inputs: String dir;

Outputs: Boolean res;
Example: cd("C:\MyModelica\Mydir")

checkModel (className) Flatten model, optimize equations, and
report errors.
Input : TypeName className;

Outputs: Boolean res;
Example: checkModel(myClass)

clear() Clears all loaded definitions, including variables and classes.
Outputs: Boolean res;

clearVariables() Clear all user-defined variables.
Outputs: Boolean res;

clearClasses() Clear all class definitions.
Outputs: Boolean res;
clearLog() Clear the log.
Outputs: Boolean res;

B.3 Complete List of Commands 181

closePlots() Close all plot windows.
Outputs: Boolean res;

dumpXMLDAE (modelname,...) Export an XML representation of
a flattened and optimized model, according to several optional param-
eters.
exportDAEtoMatlab (name) Export a Matlab representation of a
model.
getLog() Return log as a string.
Outputs: String log;

help() Print help text of commands returned as a string.
instantiateModel (modelName) Flatten model, and return a
string containing the flat class definition.
Input : TypeName className;

Outputs: String flatModel;

list() Return a string containing all loaded class definitions.
Outputs: String classDefs;

list(className) Return a string containing the class definition of
the named class.
Input : TypeName className;

Outputs: String classDef;

listVariables() Return a vector of the names of the currently
defined variables.
Outputs: VariableNam[:] names;
Example: listVariables() returns {x,y, ...}

loadFile (fileName) Load Modelica file (.mo) with name given
as string argument filename.
Input : String fileName Outputs: Boolean res;

Example: loadFile("../myLibrary/myModels.mo"
loadModel (className) Load the file corresponding to the class-
Name, using the Modelica class name to filename mapping to locate
the file, searching from the path indicated by the environment variable
OPENMODELICALIBRARY

Note: if, e.g., loadModel(Modelica) fails, you may have
OPENMODELICALIBRARY pointing at the wrong location.
Input : TypeName className

Outputs: Boolean res;

Example1 : loadModel(Modelica.Electrical)
plot(variables, options) Plot a single variable or several vari-
ables from the most recently simulated model, where variables is

182 APPENDIX B OpenModelica and OMNotebook Commands

single name or a vector of variable names if several variables should be
plotted, one curve each. The optional parameters xrange and yrange
allows you to specify the plot intervals in the diagram.
Input : VariableName variables; String title;

Boolean legend; Boolean gridLines;

Real xrange[2], i.e., {xmin,xmax};
Real yrange[2], i.e., {ymin,ymax};

Outputs: Boolean res;

Example 1 : plot(x)
Example 2 : plot(x,xrange={1,2},yrange={0,10})
Example 3 : plot({x,y,z}) // Plot 3 curves, for x, y, and z.
plotParametric (variables1, variables2, options)

Plot each pair of corresponding variables from the vectors of variables
or single variables variables1, variables2 as a parametric plot.
Input : VariableName variables1[:];

VariableName

variables2[size(variables1,1)]; String title;

Boolean legend; Boolean gridLines;

Real range[2,2];

Outputs: Boolean res;

Example 1 : plotParametric(x,y)
Example 2 : plotParametric({x1,x2,x3}, {y1,y2,y3})

plot2(variables, options) Another implementation (in Java)
called plot2, that supports most of the options of plot().
plotParametric2 (variables1, variables2, options)

Another function implementation (in Java) called plotParametric2,
that supports most of the options of plotParametric.
plotVectors(v1, v2, options) Plot vectors v1 and v2 as an
x-y plot. Inputs: VariableName v1;

VariableName v2; Outputs: Boolean res;
quit() Leave and quit the OpenModelica environment.
readFile (fileName) Load file given as string fileName and
return a string containing the file contents.
Input : String fileName; String matrixName;
int nRows; int nColumns;

Outputs: Real res[nRows,nColumns];

Example 1 : readFile("myModel/myModelr.mo")
readMatrix (fileName, matrixName) Read a matrix from a
file given fileName and matrixName.

B.3 Complete List of Commands 183

Input : String fileName; String matrixName;

Outputs: Boolean matrix[:,:];

readMatrix (fileName, matrixName, nRows, nColumns)

Read a matrix from a file, given filename, matrix name, #rows, and
#columns.
Input : String fileName; String matrixName;
int nRows; int nColumns;

Outputs: Real res[nRows,nColumns];

readMatrixSize (fileName, matrixName) Read the
matrix dimension from a file given a matrix name.
Input : String fileName; String matrixName;

Outputs: Integer sizes[2];

readSimulation Result(fileName, variables, size)

Read the simulation result for a list of variables and return
a matrix of values (each column as a vector or values for a
variable.) The size of the result (previously obtained from calling
readSimulation-ResultSize is given as input.
Input : String fileName; VariableName variables[:];

Integer size;

Outputs: Real res[size(variables,1),size)];

readSimulation ResultSize (fileName) Read the size of a
simulation result, i.e., the number of computed and stored simulation
points of the trajectory vector, from a file.
Input : String fileName; Outputs: Integer size;

runScript (fileName) Execute script file with filename given as
string argument fileName.
Input : String fileName; Outputs: Boolean res;

Outputs: runScript("simulation.mos")
saveLog(fileName) Save the simulation log with error messages
to a file.
Input : String fileName; Outputs: Boolean res;

saveModel (fileName, className) Save the model/class with
name className in the file given by the string argument fileName.
Input : String fileName; TypeName className

Outputs: Boolean res;

saveTotalModel (fileName, className) Save total class def-
inition into file of a class.
Input : String fileName; TypeName className;

Outputs: Boolean res;

184 APPENDIX B OpenModelica and OMNotebook Commands

simulate (className, options) Translate and simulate a
model, with optional start time, stop time, and optional number of
simulation intervals or steps for which the simulation results will be
computed. Many steps will give higher time resolution, but occupy
more space and take longer to compute. The default number of
intervals is 500.
Input : TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;
Real outputInterval; String method;
Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;
Example 1 : simulate(myClass);
Example 2 : simulate(myClass, startTime=0,

stopTime=2, numberOfIntervals=1000,
tolerance=1e-10);.
system(str) Execute str as a system(shell) command in the oper-
ating system; return integer success value. Output into stdout from a
shell command is put into the console window.
Input : String str; Outputs: Integer res;

Example: system("touch myFile")

timing(expr) Evaluate expression expr and return the number of
seconds (elapsed time) of the evaluation.
Input : Expression expr; Outputs: Integer res;

Example: timing(x*4711+5)
translateModel (className) Flatten model, optimize
equations, and generate code.
Input : TypeName className;

Outputs: SimulationObject res;

typeOf(variable) Return the type of the variable as a string.
Input : VariableName variable;

Outputs: String res;

Example: typeOf(R1.v)
val(variable, timepoint) Return the value of the simulation
result variable evaluated or interpolated at the timepoint. Results
from the most recent simulation are used.
Input : VariableName variable; Real timepoint;

Outputs: Real res;

Example 1 : val(x,0)
Example 2 : val(y.field,1.5)

Literature 185

writeMatrix (fileName, matrixName, matrix) Write
matrix to file given a matrix name and a matrix.
Input : String fileName;

String matrixName; Real matrix[:,:];

Outputs: Boolean res;

B.4 OMSHELL AND DYMOLA

OMShell

OMShell is a very simple command line interface to OpenModelica.
Note that OMNotebook is usually recommended for beginners since
it has more error checking. OMShell has the following extra facilities
to navigate among commands:

• Exit OMShell by pressing Ctrl-d.
• Up arrow—Get previously given command.
• Down arrow—Get next command.
• Tab—Command completion of the builtin OpenModelica com-

mands.
• Circulate through the commands by only using tab key.

Dymola Scripting

Dymola is a widely used commercial modeling and simulation tool for
Modelica. The scripting language for Dymola is similar to the Open-
Modelica one, but there are some differences, most notably the use
of strings, for example, "Modelica.Mechanics", for class names
and variable names instead of using the names directly, for example,
Modelica.Mechanics, as in OpenModelica scripting.

Below is an example of a Dymola script file for the
CoupledClutches example in the standard Modelica library. For
a complete list of Dymola scripting commands, consult the Dymola
users guide.

translateModel("Modelica.Mechanics.Rotational.
Examples.CoupledClutches")

experiment(StopTime=1.2)
simulate
plot({"J1.w","J2.w","J3.w","J4.w"});

186 APPENDIX B OpenModelica and OMNotebook Commands

LITERATURE

An overview of OpenModelica can be found in Fritzson et al. (2005).
Literate Programming (Knuth 1984) is a form of programming where
programs are integrated with documentation in the same document.
Mathematica notebooks (Wolfram 1997) is one of the first WYSIWYG
(What-You-See-Is-What-You-Get) systems that support Literate Pro-
gramming. Such notebooks were used early with Modelica, for
example, in the MathModelica modeling and simulation environment;
see Fritzson (2006) and Chapter 19 in Fritzson (2004). The
DrModelica notebook has been developed to facilitate learning
the Modelica language as well as providing an introduction to
object-oriented modeling and simulation. It is based on, and is
supplementary material to, the Modelica book (Fritzson 2004).
Dymola (Dassault Systemes 2011) is an industrial-strength tool for
modeling and simulation. MathModelica (MathCore 2011) is another
commercial tool for Modelica modeling and simulation.)

APPENDIX C

Textual Modeling

with OMNotebook

and DrModelica

This appendix presents a few textual modeling exercises with
Modelica that can, for example, be used in a minicourse on modeling
and simulation. It is particularly simple to run the exercises in the
OMNotebook electronic book, which is part of OpenModelica,
downloadable from www.openmodelica.org. After installation, start
OMNotebook from the menu OpenModelica->OMNotebook. You
can find OMNotebook and OpenModelica commands in Appendix B.

When OMNotebook is started, the DrModelica notebook is auto-
matically opened. This notebook has been developed to facilitate learn-
ing the Modelica language as well as providing an introduction to
object-oriented modeling and simulation. It is based on, and is sup-
plementary material to, the Modelica book (Fritzson 2004). All of the
examples and exercises in DrModelica and the page references are
from that book. Most of the text in DrModelica is also based on that
book.

The following set of exercises, downloadable from the web page
of this book at www.openmodelica.org, can be used with any Model-
ica tool. If OpenModelica is used, they can be accessed by opening the
document TextualModelingExercises.onb in the testmodels

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

187

188 APPENDIX C Textual Modeling with OMNotebook and DrModelica

directory in the OpenModelica installation, for example, by double-
clicking on the file or using the File->Open pull-down menu com-
mand in OMNotebook.

C.1 HELLOWORLD

Simulate and plot the following example in the exercise notebook with
one differential equation and one initial condition. Do a slight change
in the model, resimulate, and replot.

model HelloWorld "A simple equation"
Real x(start=1);

equation
der(x)= -x;

end HelloWorld;

Give a partial simulate command, for example, simul, in an input
cell (can be created by ctrl-shift-I) in the notebook, push shift-tab for
command completion, fill in the name HelloWorld, and simulate it!

Before command completion:

simul

After command completion using shift-tab:

simulate(modelname, startTime=0, stopTime=1,
numberOfIntervals=500, tolerance=1e-4)

After filling in HelloWorld:

simulate(HelloWorld, startTime=0, stopTime=1,
numberOfIntervals=500, tolerance=1e-4)

Fill in a plot command in an input cell (can also be expanded by
command completion):

plot(x)

Take a look at the interpolated value of the variable x at time=0.5
using the val(variableName, time) function:

val(x,0.5)

Also take a look at the value at time=0.0:

val(x,0.0)

C.4 Hybrid Modeling with BouncingBall 189

C.2 TRY DRMODELICA WITH VANDERPOL
AND DAEEXAMPLE MODELS

Locate the VanDerPol model in DrModelica (link from DrModelica
Section 2.1), run it, change it slightly, and rerun it.

Change the simulation stopTime to 10, then simulate and plot.
Change the lambda parameter in the model to 10, then simulate

for 50 s and plot. Why is the plot looking like this?.
Locate the DAEExample in DrModelica. Simulate and plot.

C.3 SIMPLE EQUATION SYSTEM

Make a Modelica model that solves the following equation system
with initial conditions, simulate, and plot the results:

ẋ = 2*x*y-3*x
ẏ = 5*y-7*x*y
x(0) = 2
y(0) = 3

C.4 HYBRID MODELING WITH
BOUNCINGBALL

Locate the BouncingBall model in one of the hybrid modeling sections
of DrModelica (e.g., the when equations link in Section 2.9), run it,
plot the curves, change it slightly, rerun it, plot it again, and observe
the difference.

Locate the BouncingBall model in one of the hybrid modeling
sections of DrModelica (the when equations link in Section 2.9), run
it, change it slightly, and rerun it.

A bouncing ball

190 APPENDIX C Textual Modeling with OMNotebook and DrModelica

C.5 HYBRID MODELING WITH SAMPLE

Make a square signal with a period of 1 s and that starts at t = 2.5 s.
Note that it is possible to use either an equation or an algorithm
solution. Hint: An easy way is to use sample(...) to generate events,
and define a variable that switches sign at each event.

C.6 FUNCTIONS AND ALGORITHM
SECTIONS

1. Write a function, sum, which calculates the sum of real num-
bers, for a vector of arbitrary size.

2. Write a function, average, which calculates the average of real
numbers, in a vector of arbitrary size. The function average

should make use of a function call to sum.

C.7 ADDING A CONNECTED COMPONENT
TO AN EXISTING CIRCUIT

Add a capacitor between the R2 component and the R1 component
and an inductor between the R1 and voltage component. Use the
SimpleCircuit model below and Modelica standard library com-
ponents.

loadModel(Modelica);

model SimpleCircuit
import Modelica.Electrical.Analog;
Analog.Basic.Resistor R1(R = 10);
Analog.Basic.Capacitor C(C = 0.01);
Analog.Basic.Resistor R2(R = 100);
Analog.Basic.Inductor L(L = 0.1);
Analog.Sources.SineVoltage AC(V = 220);
Analog.Basic.Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);

C.8 Detailed Modeling of an Electric Circuit 191

connect(L.n, C.n);
connect(AC.n, G.p);

end SimpleCircuit;

4 N1 1

6 37
G

C

R1

N45

L

R2 +
u(t)

2
N3

+

+

+

+

N2

This example illustrates that it can sometimes be rather incon-
venient to use textual modeling compared to graphical modeling. If
you wish, you can verify the result using a graphical model editor as
described in Appendix D.

C.8 DETAILED MODELING OF AN
ELECTRIC CIRCUIT

This exercise consists of building a number of electrical components.
Here follows the equations that describe each component. You can skip
the equations subsection if you are already familiar with the equations.

C.8.1 Equations

The ground element

vp = 0

where vp is the potential of the ground element.
A resistor

ip + in = 0

u = vp − vn

u = Rip

192 APPENDIX C Textual Modeling with OMNotebook and DrModelica

where ip and in represent the currents into the positive and negative
pin (or port) of the resistor, vp and vn the corresponding potentials, u
the voltage over the resistor, and R the resistance.

An inductor
ip + in = 0

u = vp − vn

u = Li ′
p

where ip and in represent the currents into the positive and negative
pin (or port) of the inductor, vp and vn the corresponding potentials, u
the voltage over the inductor, L the inductance, and i ′

p the derivative
of the positive pin current.

A voltage source

ip + in = 0

u = vp − vn

u = V

where ip and in represent the currents into the positive and negative pin
(or port) of the voltage source, vp and vn the corresponding potentials,
u the voltage over the voltage source, and V the constant voltage.

C.8.2 Implementation

Build Modelica models for the above-mentioned model components
(ground element, resistor, inductor, voltage source, etc.). A connector
class representing an electrical pin should ri4w5 be defined. Observe
that the first two equations defining each electrical component with
two pins above are equal. Utilize this observation to define a partial
model, TwoPin, to be used in the definition of any electrical two-pin
component. Hence a total of six components (Pin, Ground, TwoPin,
Resistor, Inductor, and a VoltageSource) should be built.

Use the defined components to build a model of a circuit diagram
and simulate the behavior of the circuit.

User-Defined Types

First define the types Voltage and Current:

type Voltage = Real;
type Current = Real;

C.8 Detailed Modeling of an Electric Circuit 193

Pin

The Pin has a potential, v , and current variable, i . According to
Kirchhoff’s laws, potentials are set equal and currents summed to
zero at connections. Hence, v is a potential nonflow variable and i is
a flow variable:

connector Pin
...
...

end Pin;

Ground

The Ground component has a positive Pin and a simple equation:

model Ground
Pin p;

equation
...

end Ground;

TwoPin

The TwoPin element has a positive and negative Pin, a voltage u

and a current i defined (the current i does not appear in the equations
above and is only introduced to simplify notation):

model TwoPin
Pin p, n;
...
...

equation
...
...
...

end TwoPin;

Resistor

To define the resistor, the partial model TwoPin is extended, and we
only add a declaration of the parameter R together with Ohm’s law
that relates voltage and current to each other:

model Resistor
extends TwoPin;

194 APPENDIX C Textual Modeling with OMNotebook and DrModelica

...
equation
...

end Resistor;

An equivalent model without use of a partial model would appear as
follows:

model Resistor
...
...
...
...
...

equation
...
...
...
...

end Resistor;

Note: The extends clause in the Modelica language can be thought
of as just copying and pasting information from the partial model.

Inductor

The equation relating voltage and current for an inductor together with
the inductance L are added to the partial model:

model Inductor
...
...

equation
...

end Inductor;

VoltageSource

Here the partial model is extended with the trivial equation that the
voltage between the positive and negative pins of the voltage source
is kept constant:

model VoltageSource
...
...

equation

C.8 Detailed Modeling of an Electric Circuit 195

...
end VoltageSource;

C.8.3 Putting the Circuit Together

Below is an example of a simple circuit where we instantiate the
parameters of the components to other values than the default:

model Circuit
Resistor R1(R=0.9);
Inductor L1(L=0.01);
Ground G;
VoltageSource EE(V=5);

equation
connect(EE.p, R1.p);
connect(R1.n, L1.p);
connect(L1.n, G.p);
connect(EE.n, G.p);

end Circuit;

C.8.4 Simulation of the Circuit

Simulate the circuit:

simulate(Circuit, startTime=0, stopTime=1)

Several signals can be plotted, for example, R1.i, which is the current
through the resistor R1:

plot(R1.i)

APPENDIX D

Graphical Modeling

Exercises

The following small graphical modeling examples can be used with
any Modelica tool graphic model editor.

D.1 SIMPLE DC MOTOR

Make a simple DC motor using the Modelica standard library that has
the following structure:

R

u emf

J

L

Save the model from the graphic editor, either simulate it directly
from the graphic editor or load it and simulate it (using OMShell
or OMNotebook) for 15 s and plot the variables for the outgoing

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

197

198 APPENDIX D Graphical Modeling Exercises

rotational speed on the inertia axis and the voltage on the voltage
source (denoted u in the figure) in the same plot.

Hint 1: You should look for model components in Modelica.

Electrical.Analogue.Basic, Modelica.Electrical.Ana-

logue.Sources, Modelica.Mechanics.Rotational, and so
forth.

Hint 2: if you have difficulty finding the names of the variables
to plot, you can flatten the model by calling instantiateModel (in
OMNotebook or OMShell), which exposes all variable names.

D.2 DC MOTOR WITH SPRING
AND INERTIA

Add a torsional spring to the outgoing shaft and another inertia ele-
ment. Simulate again and look at the results. Adjust some parameters
to make a rather stiff spring.

Resistor1 Inductor1

ConstantVoltage1
EMF1 Inertia1 Inertia2Spring1

Ground1

D.3 DC MOTOR WITH CONTROLLER

Add a PI controller to the system and try to control the rotational speed
of the outgoing shaft. Verify the result using a step signal for input.
Tune the PI controller by changing its parameters in the graphical
editor.

D.4 DC Motor as a Generator 199

PI

PI1

Resistor1 Inductor1

SignalVoltage1
EMF1 Inertia1 Inertia2Spring1

Ground1

w

SpeedSensor1
Feedback1Step1

D.4 DC MOTOR AS A GENERATOR

What is needed if you want to make a hybrid DC motor, that is, a
DC motor that also can act like a generator for a limited time? Make
it work like a DC motor for the first 20 s, then apply a counteracting
torque on the outgoing axis for the next 20 s, and then turn off the
counteracting torque, that is, you would like to have a torque pulse
starting at 20 s and lasting 20 s. Draw the following connection dia-
gram in a graphic model editor, and adjust the starting times and signal
height for the Step 1 and Step 2 signal models to get the desired torque
pulse.

Resistor1 Inductor1

ConstantVoltage1
EMF1 Inertia1 Inertia2Spring1

Ground1

+Step2

Step1

Add1 tau
Torque1

References

Allaby, Michael. Citric acid cycle. A Dictionary of Plant Sciences , 1998.
http://www.encyclopedia.com/topic/citric_acid.aspx

Allen, Eric, Robert Cartwright and Brian Stoler. DrJava: A Lightweight Pedagogic
Environment for Java. In Proceedings of the 33rd ACM Technical Symposium on
Computer Science Education (SIGCSE 2002), Cincinnati, Feb. 27–Mar. 3, 2002.

Andersson, Mats. Combined Object-Oriented Modelling in Omola. In Stephenson
(ed.), Proceedings of the 1992 European Simulation Multiconference (ESM’92),
York, UK,Society for Computer Simulation International, June 1992.

Andersson, Mats. Object-Oriented Modeling and Simulation of Hybrid Systems, Ph.D.
thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Swe-
den, 1994.

Arnold, Ken and James Gosling. The Java Programming Language, Addison-Wesley,
Reading, MA, 1999.

Ashby, W. Ross. An Introduction to Cybernetics , Chapman & Hall, London, 1956,
p. 39.

Åström, Karl-Johan, Hilding Elmqvist and Sven-Erik Mattsson. Evolution of
Continuous-Time Modeling and Simulation. In Zobel and Moeller (eds.), Proceed-
ings of the 12th European Simulation Multiconference (ESM’98), pp. 9–18, Society
for Computer Simulation International, Manchester, UK, 1998.

Augustin, Donald C., Mark S. Fineberg, Bruce B. Johnson, Robert N. Linebarger, F.
John Sansom and Jon C. Strauss. The SCi Continuous System Simulation Language
(CSSL). Simulation , 9: 281–303, 1967.

Assmann, Uwe. Invasive Software Composition , Springer Verlag, Berlin, 1993.

Bachmann, Bernard (ed.). Proceedings of the 6th International Modelica Conference.
Available at www.modelica.org. Bielefeld University, Bielefeld, Germany, March
3–4, 2008.

Birtwistle, G. M., Ole Johan Dahl, B. Myhrhaug and Kristen Nygaard. SIMULA
BEGIN . Auerbach Publishers, Inc., Boca Raton, FL, 1973.

Brenan, K., S. Campbell and L. Petzold. Numerical Solution of Initial-Value Problems
in Ordinary Differential-Algebraic Equations . North Holland Publishing, New York,
1989.

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

201

202 References

Booch, Grady. Object Oriented Design with Applications. Benjamin/Cummings,
1991.

Booch, Grady. Object-Oriented Analysis and Design, Addison-Wesley, 1994.

Brück, Dag, Hilding Elmqvist, Sven-Erik Mattsson and Hans Olsson. Dymola for
Multi-Engineering Modeling and Simulation. In Proceedings of the 2nd Interna-
tional Modelica Conference, Oberpfaffenhofen, Germany, Mar. 18–19, 2002.

Bunus, Peter, Vadim Engelson and Peter Fritzson. Mechanical Models Translation
and Simulation in Modelica. In Proceedings of Modelica Workshop 2000, Lund
University, Lund, Sweden, Oct. 23–24, 2000.

Casella, Francesco (ed.). Proceedings of the 7th International Modelica Conference.
Available at www.modelica.org. Como, Italy, March 3–4, 2009.

Cellier, Francois E. Combined Continuous/Discrete System Simulation by Use of
Digital Computers: Techniques and Tools. Ph.D. thesis, ETH, Zurich, 1979.

Cellier, Francois E., Continuous System Modelling , Springer Verlag, Berlin, 1991.

Clauß, Christoph. Proceedings of the 8th International Modelica Conference. Avail-
able at www.modelica.org. Dresden, Germany, March 20–22, 2011.

Davis, Bill, Horacio Porta and Jerry Uhl. Calculus & Mathematica Vector Calculus:
Measuring in Two and Three Dimensions . Addison-Wesley, Reading, MA, 1994.

Dynasim AB. Dymola—Dynamic Modeling Laboratory, Users Manual, Version
5.0. Dynasim AB, Lund, Sweden, Changed 2010 to Dassault Systemes, Sweden.
www.3ds.com/products/catia/portfolio/dymola, 2003.

Elmqvist, Hilding. A Structured Model Language for Large Continuous Systems.
Ph.D. thesis, TFRT-1015, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, 1978.

Elmqvist, Hilding and Sven-Erik Mattsson. A Graphical Approach to Documentation
and Implementation of Control Systems. In Proceedings of the Third IFAC/IFIP
Symposium on Software for Computer Control (SOCOCO’82), Madrid, Spain.
Pergamon Press, Oxford, 1982.

Elmqvist, Hilding, Francois Cellier and Martin Otter. Object-Oriented Modeling of
Hybrid Systems. In Proceedings of the European Simulation Symposium (ESS’93).
Society of Computer Simulation, 1993.

Elmqvist, Hilding, Dag Bruck and Martin Otter. Dymola—User’s Manual. Dynasim
AB, Research Park Ideon, SE-223 70, Lund, Sweden, 1996.

Elmqvist, Hilding, and Sven-Erik Mattsson. Modelica: The Next Generation Modeling
Language—An International Design Effort. In Proceedings of First World Congress
of System Simulation, Singapore, Sept. 1–3, 1997.

Elmqvist, Hilding, Sven-Erik Mattsson and Martin Otter. Modelica—A Language
for Physical System Modeling, Visualization and Interaction. In Proceedings of the
1999 IEEE Symposium on Computer-Aided Control System Design (CACSD’99),
Hawaii, Aug. 22–27, 1999.

Elmqvist, Hilding, Martin Otter, Sven-Erik Mattsson and Hans Olsson. Modeling,
Simulation, and Optimization with Modelica and Dymola. Book draft, 246 pages.
Dynasim AB, Lund, Sweden, Oct. 2002.

References 203

Engelson, Vadim, Håkan Larsson and Peter Fritzson. A Design, Simulation, and Visu-
alization Environment for Object-Oriented Mechanical and Multi-Domain Models
in Modelica. In Proceedings of the IEEE International Conference on Information
Visualization, pp. 188–193, London, July 14–16, 1999.

Ernst, Thilo, Stephan Jähnichen and Matthias Klose. The Architecture of the Smile/M
Simulation Environment. In Proceedings 15th IMACS World Congress on Scien-
tific Computation, Modelling and Applied Mathematics, Vol. 6, Berlin, Germany,
pp. 653–658. See also http://www.first.gmd.de/smile/smile0.html, 1997.

Fauvel, John, Raymond Flood, Michael Shortland and Robin Wilson. LET NEWTON
BE! A New Perspective on His Life and Works, Second Edition. Oxford University
Press, Oxford, 1990.

Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt and Shiram Krishnamurthi.
The DrScheme Project: An Overview. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation (PLDI’98),
Montreal, Canada, June 17–19, 1998.

Fritzson, Dag and Patrik Nordling. Solving Ordinary Differential Equations on Parallel
Computers Applied to Dynamic Rolling Bearing Simulation. In Parallel Program-
ming and Applications , P. Fritzson, and L. Finmo (eds.), IOS Press, 1995.

Fritzson, Peter and Karl-Fredrik Berggren. Pseudo-Potential Calculations for
Expanded Crystalline Mercury, Journal of Solid State Physics , 1976.

Fritzson, Peter. Towards a Distributed Programming Environment based on Incre-
mental Compilation. Ph.D. thesis, 161 pages. Dissertation no. 109, Linköping
University, Apr. 13, 1984.

Fritzson, Peter and Dag Fritzson. The Need for High-Level Programming Support in
Scientific Computing—Applied to Mechanical Analysis. Computers and Structures ,
45(2): 387–295, 1992.

Fritzson, Peter, Lars Viklund, Johan Herber and Dag Fritzson. Industrial Application
of Object-Oriented Mathematical Modeling and Computer Algebra in Mechani-
cal Analysis, In Proceedings of TOOLS EUROPE’92, Dortmund, Germany, Mar.
30–Apr. 2. Prentice Hall, 1992.

Fritzson, Peter, Lars Viklund, Dag Fritzson and Johan Herber. High Level Math-
ematical Modeling and Programming in Scientific Computing, IEEE Software,
pp. 77–87, July 1995.

Fritzson, Peter and Vadim Engelson. Modelica—A Unified Object-Oriented Language
for System Modeling and Simulation. Proceedings of the 12th European Conference
on Object-Oriented Programming (ECOOP’98), Brussels, Belgium, July 20–24,
1998.

Fritzson, Peter, Vadim Engelson and Johan Gunnarsson. An Integrated Modelica Envi-
ronment for Modeling, Documentation and Simulation. In Proceedings of Summer
Computer Simulation Conference ’98, Reno, Nevada, July 19–22, 1998.

Fritzson, Peter (ed.). Proceedings of SIMS’99—The 1999 Conference of the Scan-
dinavian Simulation Society, Linköping, Sweden, Oct. 18–19, 1999. Available at
www.scansims.org.

204 References

Fritzson, Peter (ed.). Proceedings of Modelica 2000 Workshop, Lund University,
Lund, Sweden, Oct. 23–24, 2000. Available at www.modelica.org.

Fritzson, Peter and Peter Bunus. Modelica—A General Object-Oriented Language
for Continuous and Discrete-Event System Modeling and Simulation. Proceedings
of the 35th Annual Simulation Symposium, San Diego, California, Apr. 14–18.
2002.

Fritzson, Peter, Peter Aronsson, Peter Bunus, Vadim Engelson, Henrik Johansson,
Andreas Karström and Levon Saldamli. The Open Source Modelica Project. In
Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Ger-
many, Mar. 18–19, 2002.

Fritzson Peter, Mats Jirstrand and Johan Gunnarsson. MathModelica—An Exten-
sible Modeling and Simulation Environment with Integrated Graphics and Liter-
ate Programming. In Proceedings of the 2nd International Modelica Conference,
Oberpfaffenhofen, Germany, Mar. 18–19, 2002. Available at www.ida.liu.se/labs/
pelab/modelica/ and at www.modelica.org.

Fritzson, Peter (ed.). Proceedings of the 3rd International Modelica Confer-
ence. Linköping University, Linköping, Sweden, Nov 3–4, 2003. Available at
www.modelica.org.

Fritzson Peter. Principles of Object Oriented Modeling and Simulation with Modelica
2.1 , Wiley-IEEE Press, Hoboken, NJ, 2004

Fritzson Peter, Peter Aronsson, Håkan Lundvall, Kaj Nyström, Adrian Pop, Levon
Saldamli and David Broman. The OpenModelica Modeling, Simulation, and Soft-
ware Development Environment. In Simulation News Europe, 44/45, December
2005. See also: http://www.openmodelica.org

Fritzson, Peter. MathModelica—An Object Oriented Mathematical Modeling and
Simulation Environment. Mathematica Journal 10(1), February. 2006.

Fritzson, Peter. Electronic Supplementary Material to Introduction to Mod-
eling and Simulation of Technical and Physical Systems with Modelica.
www.openmodelica.org, July 2011.

Gottwald, S., W. Gellert (Contributor), and H. Kuestner (Contributor). The VNR
Concise Encyclopedia of Mathematics . Second edition, Van Nostrand Reinhold,
New York, 1989.

Hairer, E., S. P. Nørsett and G. Wanner. Solving Ordinary Differential Equations I.
Nonstiff Problems , Second Edition. Springer Series in Computational Mathematics,
Springer Verlag, Berlin, 1992.

Hairer, E. and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems . Springer Series in Computational Mathematics,
Springer Verlag, Berlin, 1991.

Hyötyniemi, Heikki. Towards New Languages for Systems Modeling. In Proceedings
of SIMS 2002, Oulu, Finland, Sept. 26–27, 2002, Available at www.scansims.org.

IEEE. Std 610.3–1989. IEEE Standard Glossary of Modeling and Simulation Termi-
nology , 1989.

References 205

IEEE Std 610.12–1990. IEEE Standard Glossary of Software Engineering Terminol-
ogy , 1990.

IEEE Std 1076.1–1999. IEEE Computer Society Design Automation Standards Com-
mittee, USA. IEEE Standard VHDL Analog and Mixed-Signal Extensions , Dec. 23,
1999.

Knuth, Donald E. Literate Programming. The Computer Journal , 27(2): 97–111, May
1984.

Kral, Christian and Anton Haumer. Proceedings of the 6th International Modelica
Conference. Available at www.modelica.org. Vienna, Austria, Sept 4–6, 2006.

Kågedal, David and Peter Fritzson. Generating a Modelica Compiler from Natu-
ral Semantics Specifications. In Proceedings of the Summer Computer Simulation
Conference’98, Reno, Nevada, July 19–22 1998.

Lengquist Sandelin, Eva-Lena and Susanna Monemar. DrModelica—An Experimen-
tal Computer-Based Teaching Material for Modelica. Master’s thesis, LITH-IDA-
Ex03/3, Department of Computer and Information Science, Linköping University,
Linköping, Sweden, 2003.

Lengquist Sandelin, Eva-Lena, Susanna Monemar, Peter Fritzson and Peter
Bunus. DrModelica—A Web-Based Teaching Environment for Modelica. In Pro-
ceedings of the 44th Scandinavian Conference on Simulation and Modeling
(SIMS’2003),Västerås, Sweden, Sept. 18–19, 2003. Available at www.scansims.org.

Ljung, Lennart and Torkel Glad. Modeling of Dynamic Systems , Prentice Hall, 1994.

MathCore Engineering AB. Home page: www.mathcore.com. MathCore Engineering
AB, Linköping, Sweden, 2003.

MathWorks Inc. Simulink User’s Guide, 2001

MathWorks Inc. MATLAB User’s Guide, 2002.

Mattsson, Sven-Erik, Mats Andersson and Karl-Johan Åström. Object-Oriented Mod-
elling and Simulation. In Linkens (ed.), CAD for Control Systems , Chapter 2,
pp. 31–69. Marcel Dekker, New York, 1993.

Meyer, Bertrand. Object-Oriented Software Construction, Second Edition, Prentice-
Hall, Englewood Cliffs, 1997.

Mitchell, Edward E. L. and Joseph S. Gauthier. ACSL: Advanced Continuous Simula-
tion Language—User Guide and Reference Manual . Mitchell & Gauthier Assoc.,
Concord, Mass, 1986.

Modelica Assocation. Home page: www.modelica.org. Last accessed 2010.

Modelica Association. Modelica—A Unified Object-Oriented Language for Physical
Systems Modeling: Tutorial and Design Rationale Version 1.0, Sept. 1997.

Modelica Association. Modelica—A Unified Object-Oriented Language for Phys-
ical Systems Modeling: Tutorial, Version 1.4., Dec. 15, 2000. Available at
http://www.modelica.org

Modelica Association. Modelica—A Unified Object-Oriented Language for Physical
Systems Modeling: Language Specification Version 3.2., March 2010. Available at
http://www.modelica.org

ObjectMath Home page: http://www.ida.liu.se/labs/pelab/omath.

206 References

OpenModelica page: http://www.openmodelica.org.

Otter, Martin, Hilding Elmqvist, and Francois Cellier. Modeling of Multibody Systems
with the Object-Oriented Modeling Language Dymola, Nonlinear Dynamics, 9,
pp. 91–112. Kluwer Academic Publishers, 1996.

Otter, Martin. Objektorientierte Modellierung Physikalischer Systeme, Teil 1:
Übersicht. In Automatisierungstechnik , 47(1): A1–A4. 1999. In German, the first
in a series of 17 articles, 1999.

Otter, Martin (ed.) Proceedings of the 2nd International Modelica Conference. Avail-
able at www.modelica.org. Oberpfaffenhofen, Germany, Mar. 18–19, 2002.

Otter, Martin, Hilding Elmqvist and Sven-Erik Mattsson. The New Modelica Multi-
Body Library. Proceedings of the 3rd International Modelica ConferenceLinköping,
Sweden, Nov 3–4, 2003. Available at www.modelica.org

PELAB. Page on Modelica Research at PELAB, Programming Environment Labora-
tory, Dept. of Computer and Information Science, Linköping University, Sweden,
2003. Available at www.ida.liu.se/labs/pelab/modelica,

Piela, P. C., T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND—An
Object-Oriented Computer Environment for Modeling and Analysis: The Modeling
Language, Computers and Chemical Engineering , 15(1): 53–72, 1991. Web page:
(http://www.cs.cmu.edu/∼ascend/Home.html)

Pritsker, A. and B. Alan. The GASP IV Simulation Language. Wiley, New York, 1974.

Rumbaugh, J. M., M. Blaha, W. Premerlain, F. Eddy and W. Lorensen. Object Ori-
ented Modeling and Design. Prentice-Hall, 1991.

Sahlin, Per. and E. F. Sowell. A Neutral Format for Building Simulation Models. In
Proceedings of the Conference on Building Simulation, IBPSA, Vancouver, Canada,
1989.

Sargent, R. W. H. and Westerberg, A. W. Speed-Up in Chemical Engineering Design,
Transaction Institute in Chemical Engineering, 1964.

Schmitz, Gerhard (ed.). Proceedings of the 4th International Modelica Conference.
Available at www.modelica.org. Technical University Hamburg-Harburg, Germany,
March 7–8, 2005.

Shumate, Ken and Marilyn Keller. Software Specification and Design: A Disciplined
Approach for Real-Time Systems . Wiley, New York, 1992.

Stevens, Richard, Peter Brook, Ken Jackson and Stuart Arnold. Systems Engineering:
Coping with Complexity . Prentice-Hall, London, 1998.

Szyperski, Clemens. Component Software—Beyond Object-Oriented Programming .
Addison-Wesley, Reading, MA, 1997.

Tiller, Michael. Introduction to Physical Modeling with Modelica. Kluwer, Amster-
dam, 2001.

Viklund Lars, and Peter Fritzson. ObjectMath—An Object-Oriented Language and
Environment for Symbolic and Numerical Processing in Scientific Computing, Sci-
entific Programming , 4: 229–250, 1995.

Wolfram, Stephen. The Mathematica Book . Wolfram Media Inc, 1997.

Wolfram, Stephen. A New Kind of Science. Wolfram Media Inc, 2002.

Index

abs function, 77
abstract class, 65
abstract syntax, 94
acausal, 4, 54–58, 61, 106–107,

154
acausal modeling, 54–57
access control, 119–120
algebraic equation, 15, 31, 33–34,

95–96, 98
algorithm, 74–83
algorithmic constructs, 74–75
algorithms, 74–83
aliases, 88
Allan-U.M.L, 103, 106
altitude, 117–121
Analog computing, 107
analog simulators, 105
analyzing models

model verification, 13–14
model-based diagnosis, 13
sensitivity analysis, 12

analyzing models, 12–14
annotation, 89–90
Apollo12, 118
application expertise, 11
array

concatenation, 73–74, 80
arrays, 72–74
assert function, 139, 142
attribute, 115–117, 123, 127
attributes

max, 46–47
min, 46–47
start, 46–47

Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica,
First Edition. By Peter Fritzson
 2011 the Institute of Electrical and Electronics Engineers, Inc. Published 2011 by John Wiley & Sons, Inc.

base class, 47, 123–124, 135, 141
biochemical application, 22
block, 44
block diagram, 92, 105, 107, 163, 167
Block lower triangular, 102
block oriented modeling, 55–57,

108–109, 132
BLT transformation, 95, 102
Boolean, 35–36, 39, 46, 64, 83, 85,

110–111, 113, 117, 164, 167
bottom-up modeling, 136
BouncingBall model, 108, 189
built-in

data types, 35–36
functions, 77–79
time variable, 83–84
types, 50–51

capacitor, 16–17, 55–56, 59, 67–68,
70–71

causality, 44–45, 54–55, 58, 106
fixed, 44
prefix, 44

CelestialBody class, 128
class, 30
class parameters

instances, 48–50
types, 50–51

classes, 113–130
generic, 48–51
restricted, 44

ColorData record, 123
ColoredClass, 50–51
comments, 37–38

207

208 Index

complex, 36, 80–81
complex number, 36, 79–81
component library

design, 67
use, 67

components, 58
conditional expressions, 84
connect, 45
connect equation, 52, 55, 60, 62, 71, 94,

97
connection diagrams, 58–60
connections, 61–62
connector, 60
conservation equations, 134
constant, 38

declarations, 37
literals, 38
variables, 39

constants, 38
constitutive equations

definition, 134
continuous PI controller, 141–144
continuous PID controller, 144–147
contract designer-user, 113–114
controllable, 4–5, 8
Controller model, 145

DAE See differential algebraic equation
DAEexample model, 34
dangerous, 9
declaration

order, 126–127
processing, 126

declarations, 113
declarative programming, 39
deductive modeling, 132–133
der, 30, 32, 99–100, 118
derivative See der
derived class, 47, 123–124
differential algebraic equation, 31,

33–34, 95–96, 98
Diode model, 84–85
discrete event, 83–87
disturbance inputs, 5
duplicate, 116
Dymola, 103, 106, 109

dynamic model
continuous-time, 17–18
discrete-time, 17–18

electrical circuits, 70, 83
else, 36, 39, 41, 43
elseif, 48, 76
encapsulated, 80, 89
end, 79
enumeration, 36, 38, 46, 83, 113, 117
Equality coupling, 61
equation, 79, 82
Equation sign, 104
equations

differential-algebraic, 31, 33–34,
95–96, 98

euler integration method, 101
EuroSim, 103
event, 83–87
example

electrical component library, 67–70
examples

moon landing, 120–123
execution, 94–102
expandable connector, 63–64
expensive, 5, 9, 12
experiments, 5
explicit equation, 95
expressions

conditional, 84–85
extends, 127
external functions, 81–82

false, 35–36, 39
fill function, 73
FiltersInSeries model, 46
flat tank system, 138–139
flattening, 95
flow, 61, 64
flow variables, 61, 64, 66
FMI, for fully qualified name, 88
function(s), 80

abs, 77
assert, 139, 142
fill, 73
initial, 52

Index 209

matrix, 72–74
max, 82
min, 82
mod, 77
reinit, 86
results, 39, 43, 79
size, 76
sqrt, 77
sum, 76
transpose, 73
zeros, 73

gas turbine model, 22–23
GASP-IV, 106, 108
getting started, 30–34
gravity, 3, 33, 38, 86, 118–121
GreenClass, 49–51
ground, 70

HelloWorld model, 32
history, 103–107
hybrid modeling, 83–87

Ideal diode, 84–85, 108
identical names, 116–117
if, 76
IllegalDuplicate class, 116
implementation, 94–102
implementation phase, 21
import, 80–81
inductive modeling, 132–133
inductor, 768–769
industry robot, 22
information bus, 63
inheritance

equation, 124
MoonLanding model, 120, 122
multiple, 124–126

initial function, 52
initialization, 43–44
input, 45, 61, 75, 77, 98
inputs, 4–5, 54–55, 178–180
instance, 30, 40
instance parameters, 48

Integer, 36, 38, 46, 53, 72–73,
79–80, 82–83, 166–167, 178,
183–184

integration phase, 21
internal representation, 94
internal states, 5, 163

keyword, 114
algorithm, 75
annotation, 89–90
block, 44–45
class, 41–47
connect, 45
connector, 44–45, 60
constant, 38
else, 76
elseif, 76
encapsulated, 89
end, 79
equation
extends, 127
false, 35–36, 39, 117
flow, 61, 64
for functions, 44–45, 77–79
if, 76
import, 80–81
inputs, 4–5, 54–55, 178–180
model, 44
output, 45
package, 44–45, 87–89
parameter, 35, 38–39, 48–51
protected, 42, 75, 81, 119–120
public, 42, 75, 119–120
record, 44–45
variables, 115–117

languages
ACSL, 106, 109
Ada, 48, 87, 89
ASCEND, 106
C, 39, 72, 81, 90
C++, 107
CSSL, 105–106, 109
Fortran, 39, 73, 81–82
gPROMS, 106
Haskell, 48

210 Index

languages (Continued)
Java, 42, 72, 89, 108, 115, 182
Lisp, 105
ObjectMath, 103, 106–107, 109
Omola, 103, 106, 109
Simula, 39, 105, 109
Smalltalk, 39
Standard ML, 48

leastSquares function, 81
local variables, 117
loops, 76
LowPassFilter model, 46
lumped, 14

mathematical model, 14–19
mathematical modeling, 39–40
MathModelica, 109, 186
Matlab, 73, 109
matrix function, 72–74
max attribute, 46–47
max function, 82
mental model, 6
message passing, 40
min attribute, 46–47
min function, 80
mod function, 77
model, 19, 23, 40, 44, 48, 52, 114,

126
dynamic, 16–17
mathematical, 14–19
mental, 6
physical, 6–7
qualitative, 18–19
quantitative, 18–19
static, 16–17
verbal, 6

Modelica, 1–2, 29–107
Association, 157, 163, 165
Standard Library, 2, 91–94, 157–168

modeling, 19–21
modification, 45–46
ModifiedFiltersInSeries model,

46
MoonLanding class, 129
multiple inheritance, 124–126

naming conventions, 91
Newton, 104
NMF, 103, 106, 109
node, 61, 96–97, 50

object, 113–115
ObjectMath, 103, 106–107, 109
observable, 4–5, 8
Omola, 103, 106, 109
operator function, 80
operator overloading, 79–81, 108
operator record, 80
operators

*, 77, 79
/, 77, 79
+, 77, 79
der, 30, 32, 99–100, 118

output, 45–46, 61
outputs, 4–5

package(s), 87–89
parameter(s), 48–50, 76–78
parsed, 94
partial, 54, 65–67
partial class, 66–67
pendulum, 3, 33–34
Pendulum model, 34
Person record, 44
physical model, 6–7
physical modeling, 55–57
planar pendulum, 33
plot, 32, 34
plotParametric, 36, 182
polynomial equation, 53
polynomialEvaluator function, 77–78,

108
primitive data types, 36
Principia, 104
product deployment, 20–21
product design, 19–21
protected, 42, 81, 119
public, 42, 75, 120

qualitative models, 18–19
quantitative model, 18–19

Index 211

Real, 46–47
record, 44–45
record field, 115–116
reinit function, 86
repetitive equation structures, 53–54
replaceable, 48–50
requirements analysis, 19–20
resistor, 17, 68
reusability, 58, 135, 154
reuse, 45–46, 66–67
Robert Recorde, 104
Rocket class, 118, 120

SCS, 103
SIDOPS+,106
SimpleCircuit, 55–56, 96–98, 102
SimpleCircuit class, 97–98
simulate, 34, 36
simulation, 7–10, 120–123
simulation languages, 105
size function, 72, 76
Smile, 103, 106, 109
software and knowledge engineering, 11
software component model, 57–65
solar-heated, 3
solver, 31, 43, 67, 95, 117, 134, 138
sorting, 101
specialized class, 44–45, 128
Speed-Up, 105, 109
sqrt function, 77
standard libraries, 91–94
start attribute, 31, 43, 52–53, 117
start values, 39
state space form, 98–99
statements, 76–77
static model, 16–17
stiff, 138
stream, 64
stream connector, 64–65, 108
stream variable, 64–65
String, 36, 46
subclass, 47, 123–124
subcomponent, 11, 59, 135

subsystem verification, 20–21
sum function, 76
Sum-to-zero coupling, 61
superclass, 47, 123–124
system design phase, 20
system model, 21–27, 131–155
system models

examples, 21–27
systems

artificial, 3–4
natural, 3–4

tank system, 138–148
A thermodynamic system, 22
thrust, 118–119
time, 69
tolerances, 12
top-down modeling, 136
transpose function, 73
Triangle model, 42–43
TwoPin class, 65–68
types, 116
Boolean, 35–36, 39, 117
built-in, 36, 46, 77, 113
integer, 36, 46, 83
Real, 36, 46, 83
String, 36, 46, 83

units, 13, 60, 92, 162

validation phase, 21
VanDerPol model, 35, 189
variables, 7–9, 14–15, 17–19, 30–32,

35–42, 43–45, 115, 116
verbal model, 6
virtual prototypes, 7, 19, 21
voltage, 52
voltage source, 69–71, 151, 192,

194–195, 198

Yellowclass, 49

zeros function, 73

D
o

	Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica
	Contents
	Preface
	1. Basic Concepts
	1.1 Systems and Experiments
	1.1.1 Natural and Artificial Systems
	1.1.2 Experiments

	1.2 The Model Concept
	1.3 Simulation
	1.3.1 Reasons for Simulation
	1.3.2 Dangers of Simulation

	1.4 Building Models
	1.5 Analyzing Models
	1.5.1 Sensitivity Analysis
	1.5.2 Model-Based Diagnosis
	1.5.3 Model Verification and Validation

	1.6 Kinds of Mathematical Models
	1.6.1 Kinds of Equations
	1.6.2 Dynamic Versus Static Models
	1.6.3 Continuous-Time Versus Discrete-Time Dynamic Models
	1.6.4 Quantitative Versus Qualitative Models

	1.7 Using Modeling and Simulation in Product Design
	1.8 Examples of System Models
	1.9 Summary
	1.10 Literature

	2. A Quick Tour of Modelica
	2.1 Getting Started with Modelica
	2.1.1 Variables and Predefined Types
	2.1.2 Comments
	2.1.3 Constants
	2.1.4 Variability
	2.1.5 Default start Values

	2.2 Object-Oriented Mathematical Modeling
	2.3 Classes and Instances
	2.3.1 Creating Instances
	2.3.2 Initialization
	2.3.3 Specialized Classes
	2.3.4 Reuse of Classes by Modifications
	2.3.5 Built-in Classes and Attributes

	2.4 Inheritance
	2.5 Generic Classes
	2.5.1 Class Parameters as Instances
	2.5.2 Class Parameters as Types

	2.6 Equations
	2.6.1 Repetitive Equation Structures
	2.6.2 Partial Differential Equations

	2.7 Acausal Physical Modeling
	2.7.1 Physical Modeling Versus Block-Oriented Modeling

	2.8 The Modelica Software Component Model
	2.8.1 Components
	2.8.2 Connection Diagrams
	2.8.3 Connectors and Connector Classes
	2.8.4 Connections
	2.8.5 Implicit Connections with Inner/Outer
	2.8.6 Expandable Connectors for Information Buses
	2.8.7 Stream Connectors

	2.9 Partial Classes
	2.9.1 Reuse of Partial Classes

	2.10 Component Library Design and Use
	2.11 Example: Electrical Component Library
	2.11.1 Resistor
	2.11.2 Capacitor
	2.11.3 Inductor
	2.11.4 Voltage Source
	2.11.5 Ground

	2.12 Simple Circuit Model
	2.13 Arrays
	2.14 Algorithmic Constructs
	2.14.1 Algorithm Sections and Assignment Statements
	2.14.2 Statements
	2.14.3 Functions
	2.14.4 Operator Overloading and Complex Numbers
	2.14.5 External Functions
	2.14.6 Algorithms Viewed as Functions

	2.15 Discrete Event and Hybrid Modeling
	2.16 Packages
	2.17 Annotations
	2.18 Naming Conventions
	2.19 Modelica Standard Libraries
	2.20 Implementation and Execution of Modelica
	2.20.1 Hand Translation of the Simple Circuit Model
	2.20.2 Transformation to State Space Form
	2.20.3 Solution Method

	2.21 History
	2.22 Summary
	2.23 Literature
	2.24 Exercises

	3. Classes and Inheritance
	3.1 Contract Between Class Designer and User
	3.2 A Class Example
	3.3 Variables
	3.3.1 Duplicate Variable Names
	3.3.2 Identical Variable Names and Type Names
	3.3.3 Initialization of Variables

	3.4 Behavior as Equations
	3.5 Access Control
	3.6 Simulating the Moon Landing Example
	3.7 Inheritance
	3.7.1 Inheritance of Equations
	3.7.2 Multiple Inheritance
	3.7.3 Processing Declaration Elements and Use Before Declare
	3.7.4 Declaration Order of extends Clauses
	3.7.5 The MoonLanding Example Using Inheritance

	3.8 Summary
	3.9 Literature

	4. System Modeling Methodology
	4.1 Building System Models
	4.1.1 Deductive Modeling Versus Inductive Modeling
	4.1.2 Traditional Approach
	4.1.3 Object-Oriented Component-Based Approach
	4.1.4 Top-Down Versus Bottom-Up Modeling
	4.1.5 Simplification of Models

	4.2 Modeling a Tank System
	4.2.1 Using the Traditional Approach
	4.2.2 Using the Object-Oriented Component-Based Approach
	4.2.3 Tank System with a Continuous PI Controller
	4.2.4 Tank with Continuous PID Controller
	4.2.5 Two Tanks Connected Together

	4.3 Top-Down Modeling of a DC Motor from Predefined Components
	4.3.1 Defining the System
	4.3.2 Decomposing into Subsystems and Sketching Communication
	4.3.3 Modeling the Subsystems
	4.3.4 Modeling Parts in the Subsystems
	4.3.5 Defining the Interfaces and Connections

	4.4 Designing Interfaces–Connector Classes
	4.5 Summary
	4.6 Literature

	5. The Modelica Standard Library
	5.1 Summary
	5.2 Literature

	A. Glossary
	Literature

	B. OpenModelica and OMNotebook Commands
	B.1 OMNotebook Interactive Electronic Book
	B.2 Common Commands and Small Examples
	B.3 Complete List of Commands
	B.4 OMShell and Dymola
	OMShell
	Dymola Scripting

	Literature

	C. Textual Modeling with OMNotebook and DrModelica
	C.1 HelloWorld
	C.2 Try DrModelica with VanDerPol and DAEExample Models
	C.3 Simple Equation System
	C.4 Hybrid Modeling with BouncingBall
	C.5 Hybrid Modeling with Sample
	C.6 Functions and Algorithm Sections
	C.7 Adding a Connected Component to an Existing Circuit
	C.8 Detailed Modeling of an Electric Circuit
	C.8.1 Equations
	C.8.2 Implementation
	C.8.3 Putting the Circuit Together
	C.8.4 Simulation of the Circuit

	D. Graphical Modeling Exercises
	D.1 Simple DC Motor
	D.2 DC Motor with Spring and Inertia
	D.3 DC Motor with Controller
	D.4 DC Motor as a Generator
	References

	Index

