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Preface

In the fall of 1987, I taught a graduate computer science course entitled
“Symbolic Computational Algebra” at New York University. A rough set
of class-notes grew out of this class and evolved into the following final
form at an excruciatingly slow pace over the last five years. This book also
benefited from the comments and experience of several people, some of
whom used the notes in various computer science and mathematics courses
at Carnegie-Mellon, Cornell, Princeton and UC Berkeley.

The book is meant for graduate students with a training in theoretical
computer science, who would like to either do research in computational
algebra or understand the algorithmic underpinnings of various commer-
cial symbolic computational systems: Mathematica, Maple or Axiom, for
instance. Also, it is hoped that other researchers in the robotics, solid
modeling, computational geometry and automated theorem proving com-
munities will find it useful as symbolic algebraic techniques have begun to
play an important role in these areas.

The main four topics–Gröbner bases, characteristic sets, resultants and
semialgebraic sets–were picked to reflect my original motivation. The choice
of the topics was partly influenced by the syllabii proposed by the Research
Institute for Symbolic Computation in Linz, Austria, and the discussions
in Hearn’s Report (“Future Directions for Research in Symbolic Computa-
tion”).

The book is meant to be covered in a one-semester graduate course
comprising about fifteen lectures. The book assumes very little background
other than what most beginning computer science graduate students have.
For these reasons, I have attempted to keep the book self-contained and
largely focussed on the very basic materials.

Since 1987, there has been an explosion of new ideas and techniques
in all the areas covered here (e.g., better complexity analysis of Gröbner
basis algorithms, many new applications, effective Nullstellensatz, multi-
variate resultants, generalized characteristic polynomial, new stratification
algorithms for semialgebraic sets, faster quantifier elimination algorithm
for Tarski sentences, etc.). However, none of these new topics could be in-
cluded here without distracting from my original intention. It is hoped that
this book will prepare readers to be able to study these topics on their own.
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Also, there have been several new textbooks in the area (by Akritas,
Davenport, Siret and Tournier, and Mignotte) and there are a few more
on the way (by Eisenbaud, Robbiano, Weispfenning and Becker, Yap, and
Zippel). All these books and the current book emphasize different mate-
rials, involve different degrees of depth and address different readerships.
An instructor, if he or she so desires, may choose to supplement the cur-
rent book by some of these other books in order to bring in such topics as
factorization, number-theoretic or group-theoretic algorithms, integration
or differential algebra.

The author is grateful to many of his colleagues at NYU and elsewhere
for their support, encouragement, help and advice. Namely, J. Canny, E.M.
Clarke, B. Chazelle, M. Davis, H.M. Edwards, A. Frieze, J. Gutierrez,
D. Kozen, R. Pollack, D. Scott, J. Spencer and C-K. Yap. I have also
benefited from close research collaboration with my colleague C-K. Yap
and my graduate students G. Gallo and P. Pedersen. Several students in
my class have helped me in transcribing the original notes and in preparing
some of the solutions to the exercises: P. Agarwal, G. Gallo, T. Johnson,
N. Oliver, P. Pedersen, R. Sundar, M. Teichman and P. Tetali.

I also thank my editors at Springer for their patience and support.
During the preparation of this book I had been supported by NSF and
ONR and I am gratified by the interest of my program officers: Kamal
Abdali and Ralph Wachter.

I would like to express my gratitude to Prof. Bill Wulf for his efforts to
perform miracles on my behalf during many of my personal and professional
crises. I would also like to thank my colleague Thomas Anantharaman for
reminding me of the power of intuition and for his friendship. Thanks are
due to Robin Mahapatra for his constant interest.

In the first draft of this manuscript, I had thanked my imaginary wife
for keeping my hypothetical sons out of my nonexistent hair. In the interim
five years, I have gained a wife Jane and two sons Sam and Tom, necessarily
in that order–but, alas, no hair. To them, I owe my deepest gratitude for
their understanding.

Last but not least, I thank Dick Aynes without whose unkind help this
book would have gone to press some four years ago.

B. Mishra
mishra@nyu.edu.arpa
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3.4.1 Expressing with the Gröbner Basis . . . . . . . . . . 89
3.4.2 Detachability . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Syzygy Computation . . . . . . . . . . . . . . . . . . . . . . 94
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3.7 Applications of Gröbner Bases Algorithms . . . . . . . . . . 104

3.7.1 Membership . . . . . . . . . . . . . . . . . . . . . . . 104
3.7.2 Congruence, Subideal and Ideal Equality . . . . . . 105
3.7.3 Sum and Product . . . . . . . . . . . . . . . . . . . . 105
3.7.4 Intersection . . . . . . . . . . . . . . . . . . . . . . . 106
3.7.5 Quotient . . . . . . . . . . . . . . . . . . . . . . . . . 107
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Solutions to Selected Problems . . . . . . . . . . . . . . . . 120
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . 132

4 Solving Systems of Polynomial Equations 133
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2 Triangular Set . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3 Some Algebraic Geometry . . . . . . . . . . . . . . . . . . . 138

4.3.1 Dimension of an Ideal . . . . . . . . . . . . . . . . . 141
4.3.2 Solvability: Hilbert’s Nullstellensatz . . . . . . . . . 142
4.3.3 Finite Solvability . . . . . . . . . . . . . . . . . . . . 145

4.4 Finding the Zeros . . . . . . . . . . . . . . . . . . . . . . . . 149
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Solutions to Selected Problems . . . . . . . . . . . . . . . . 157
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . 165

5 Characteristic Sets 167
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.2 Pseudodivision and Successive Pseudodivision . . . . . . . . 168
5.3 Characteristic Sets . . . . . . . . . . . . . . . . . . . . . . . 171
5.4 Properties of Characteristic Sets . . . . . . . . . . . . . . . 176
5.5 Wu-Ritt Process . . . . . . . . . . . . . . . . . . . . . . . . 178
5.6 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.7 Geometric Theorem Proving . . . . . . . . . . . . . . . . . . 186



Contents xi

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Solutions to Selected Problems . . . . . . . . . . . . . . . . 192
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . 196

6 An Algebraic Interlude 199
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.2 Unique Factorization Domain . . . . . . . . . . . . . . . . . 199
6.3 Principal Ideal Domain . . . . . . . . . . . . . . . . . . . . . 207
6.4 Euclidean Domain . . . . . . . . . . . . . . . . . . . . . . . 208
6.5 Gauss Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.6 Strongly Computable Euclidean Domains . . . . . . . . . . 212

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Solutions to Selected Problems . . . . . . . . . . . . . . . . 220
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . 223

7 Resultants and Subresultants 225
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.2 Resultants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.3 Homomorphisms and Resultants . . . . . . . . . . . . . . . 232

7.3.1 Evaluation Homomorphism . . . . . . . . . . . . . . 234
7.4 Repeated Factors in Polynomials and Discriminants . . . . 238
7.5 Determinant Polynomial . . . . . . . . . . . . . . . . . . . . 241

7.5.1 Pseudodivision: Revisited . . . . . . . . . . . . . . . 244
7.5.2 Homomorphism and Pseudoremainder . . . . . . . . 246

7.6 Polynomial Remainder Sequences . . . . . . . . . . . . . . . 247
7.7 Subresultants . . . . . . . . . . . . . . . . . . . . . . . . . . 250

7.7.1 Subresultants and Common Divisors . . . . . . . . . 256
7.8 Homomorphisms and Subresultants . . . . . . . . . . . . . . 262
7.9 Subresultant Chain . . . . . . . . . . . . . . . . . . . . . . . 265
7.10 Subresultant Chain Theorem . . . . . . . . . . . . . . . . . 274

7.10.1 Habicht’s Theorem . . . . . . . . . . . . . . . . . . . 274
7.10.2 Evaluation Homomorphisms . . . . . . . . . . . . . . 277
7.10.3 Subresultant Chain Theorem . . . . . . . . . . . . . 279
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Solutions to Selected Problems . . . . . . . . . . . . . . . . 292
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . 297

8 Real Algebra 297
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
8.2 Real Closed Fields . . . . . . . . . . . . . . . . . . . . . . . 298
8.3 Bounds on the Roots . . . . . . . . . . . . . . . . . . . . . . 306
8.4 Sturm’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 309
8.5 Real Algebraic Numbers . . . . . . . . . . . . . . . . . . . . 315

8.5.1 Real Algebraic Number Field . . . . . . . . . . . . . 316
8.5.2 Root Separation, Thom’s Lemma and Representation 319



xii Contents

8.6 Real Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 333
8.6.1 Real Algebraic Sets . . . . . . . . . . . . . . . . . . . 337
8.6.2 Delineability . . . . . . . . . . . . . . . . . . . . . . 339
8.6.3 Tarski-Seidenberg Theorem . . . . . . . . . . . . . . 345
8.6.4 Representation and Decomposition of Semialgebraic

Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
8.6.5 Cylindrical Algebraic Decomposition . . . . . . . . . 349
8.6.6 Tarski Geometry . . . . . . . . . . . . . . . . . . . . 354
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Solutions to Selected Problems . . . . . . . . . . . . . . . . 372
Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . 381

Appendix A: Matrix Algebra 385
A.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
A.2 Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
A.3 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . 388

Bibliography 391

Index 409



Chapter 1

Introduction

1.1 Prologue: Algebra and Algorithms

The birth and growth of both algebra and algorithms are strongly inter-
twined. The origins of both disciplines are usually traced back to Muha-
mmed ibn-Mūsa al-Khwarizmi al-Quturbulli, who was a prominent figure
in the court of Caliph Al-Mamun of the Abassid dynasty in Baghdad (813–
833 A.D.). Al-Khwarizmi’s contribution to Arabic and thus eventually to
Western (i.e., modern) mathematics is manifold: his was one of the first
efforts to synthesize Greek axiomatic mathematics with the Hindu algo-
rithmic mathematics. The results were the popularization of Hindu nu-
merals, decimal representation, computation with symbols, etc. His tome
“al-Jabr wal-Muqabala,” which was eventually translated into Latin by the
Englishman Robert of Chester under the title “Dicit Algoritmi,” gave rise
to the terms algebra (a corruption of “al-Jabr”) and algorithm (a corrup-
tion of the word “al-Khwarizmi”).

However, the two subjects developed at a rather different rate, between
two different communities. While the discipline of algorithms remained in
its suspended infancy for years, the subject of algebra grew at a prodigious
rate, and was soon to dominate most of mathematics.

The formulation of geometry in an algebraic setup was facilitated by
the introduction of coordinate geometry by the French mathematician
Descartes, and algebra caught the attention of the prominent mathemati-
cians of the era. The late nineteenth century saw the function-theoretic and
topological approach of Riemann, the more geometric approach of Brill and
Noether, and the purely algebraic approach of Kronecker, Dedekind and
Weber. The subject grew richer and deeper, with the work of many illus-
trious algebraists and algebraic geometers: Newton, Tschirnhausen, Euler,
Jacobi, Sylvester, Riemann, Cayley, Kronecker, Dedekind, Noether, Cre-
mona, Bertini, Segre, Castelnuovo, Enriques, Severi, Poincaré, Hurwitz,
Macaulay, Hilbert, Weil, Zariski, Hodge, Artin, Chevally, Kodaira, van der
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2 Introduction Chapter 1

Waerden, Hironaka, Abhyankar, Serre, Grothendieck, Mumford, Griffiths
and many others.

But soon algebra also lost its constructive foundation, so prominent in
the work of Newton, Tschirnhausen, Kronecker and Sylvester, and thereby
its role as a computational tool. For instance, under Bourbaki’s influence,
it became fashionable to bring into disrepute the beautiful and constructive
elimination theory, developed over half a century by Sylvester, Kronecker,
Mertens, König, Hurwitz and Macaulay. The revival of the field of con-
structive algebra is a rather recent phenomenon, and owes a good deal
to the work of Tarski, Seidenberg, Ritt, Collins, Hironaka, Buchberger,
Bishop, Richman and others. The views of a constructive algebraist are
closest to the ones we will take in the book. These views were rather
succinctly described by Hensel in the preface to Kronecker’s lectures on
number theory:

[Kronecker] believed that one could, and that one must, in these
parts of mathematics, frame each definition in such a way that one
can test in a finite number of steps whether it applies to any given
quantity. In the same way, a proof of the existence of a quantity
can only be regarded as fully rigorous when it contains a method by
which the quantity whose existence is to be proved can actually be
found.

The views of constructive algebraists are far from the accepted dogmas
of modern mathematics. As Harold M. Edwards [68] put it: “Kronecker’s
views are so antithetical to the prevailing views that the natural way for
most modern mathematicians to describe them is to use the word ‘heresy’.”

Now turning to the science of algorithms, we see that although for
many centuries there was much interest in mechanizing the computation
process, in the absence of a practical computer, there was no incentive
to study general-purpose algorithms. In the 1670’s, Gottfried Leibnitz in-
vented his so-called “Leibnitz Wheel,” which could add, subtract, multiply
and divide. On the subject of mechanization of computation, Leibnitz said
([192], pp. 180–181):

And now that we may give final praise to the machine we may
say that it will be desirable to all who are engaged in computa-
tions...managers of financial affairs, merchants, surveyors, geogra-
phers, navigators, astronomers....But limiting ourselves to scientific
uses, the old geometric and astronomic tables could be corrected and
new ones constructed....Also, the astronomers surely will not have
to continue to exercise the patience which is required for computa-
tion....For it is unworthy of excellent men to lose hours like slaves in
the labor of computation.

Leibnitz also sought a characteristica generalis , a symbolic language, to
be used in the translation of mathematical methods and statements into
algorithms and formulas. Many of Leibnitz’s other ideas, namely, the bi-
nary number system, calculus ratiocanator or calculus of reason, and lingua
characteristica, a universal language for mathematical discourse, were to
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influence modern-day computers, computation and logical reasoning. The
basic notions in calculus ratiocanator led to Boolean algebra, which, in
turn, formed the foundations for logic design, as developed by C. Shannon.

However, the technology of the time was inadequate for devising a prac-
tical computer. The best computational device Leibnitz could foresee was
a “learned committee” sitting around a table and saying:

“Lasst uns rechnen!”

In the nineteenth century, Charles Babbage conceived (but never con-
structed) a powerful calculating machine, which he called an analytical
engine. The proposed machine was to be an all-purpose automatic de-
vice, capable of handling problems in algebra and mathematical analysis;
in fact, of its power, Babbage said that “it could do everything but compose
country dances.” [102]

Except for these developments and a few others of similar nature, the
science of computation and algorithms remained mostly neglected in the
last century. In this century, essentially two events breathed life into these
subjects: One was the study concerning the foundations of mathematics,
as established in “Hilbert’s program,” and this effort resulted in Gödel’s in-
completeness theorems, various computational models put forth by Church,
Turing, Markov and Post, the interrelatedness of these models, the ex-
istence of a “universal” machine and the problem of computability (the
Entsheidungsproblem). The other event was the advent of modern high-
speed digital computers in the postwar period. During the Second World
War, the feasibility of a large-scale computing machine was demonstrated
by Colossus in the U.K. (under M.H.A. Newman) and the ENIAC in the
U.S.A. (under von Neumann, Eckert and Mauchly). After the war, a large
number of more and more powerful digital computers were developed, start-
ing with the design of EDVAC in the U.S.A. and Pilot ACE and DEDUCE
in the U.K.

Initially, the problems handled by these machines were purely numerical
in nature, but soon it was realized that these computers could manipulate
and compute with purely symbolic objects. It is amusing to observe that
this had not escaped one of the earliest “computer scientists,” Lady Ada
Augusta, Countess Lovelace. She wrote [102], while describing the capa-
bilities of Babbage’s analytical engine,

Many persons who are not conversant with mathematical studies
imagine that because the business of [Babbage’s analytical engine]
is to give its results in numerical notation, the nature of its process
must consequently be arithmetical rather than algebraic and ana-
lytical. This is an error. The engine can arrange and combine its
numerical quantities exactly as if they were letters or any other gen-
eral symbols; and, in fact, it might bring out its results in algebraic
notation were provisions made accordingly.
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The next major step was the creation of general-purpose programming
languages in various forms: as instructions, introduced by Post; as produc-
tions, independently introduced by Chomsky and Backus; and as functions,
as introduced by Church in λ-calculus. This was quickly followed by the de-
velopment of more powerful list processing languages by Newell and Simon
of Carnegie-Mellon University, and later the language Lisp by McCarthy
at M.I.T. The language Lisp played a key role in the rapid development of
the subjects of artificial intelligence (AI) and symbolic mathematical com-
putation. In 1953, some of the very first symbolic computational systems
were developed by Nolan of M.I.T. and Kahrimanian of Temple University.

In parallel, the science of design and complexity analysis of discrete
combinatorial algorithms has grown at an unprecedented rate in the last
three decades, influenced by the works of Dijkstra, Knuth, Scott, Floyd,
Hoare, Minsky, Rabin, Cook, Hopcroft, Karp, Tarjan, Hartmanis, Stern,
Davis, Schwartz, Pippenger, Blum, Aho, Ullman, Yao and others. Other
areas such as computational geometry, computational number theory, etc.
have emerged in recent times, and have enriched the subject of algorithms.
The field of computational algebra and algebraic geometry is a relative
newcomer, but holds the promise of adding a new dimension to the subject
of algorithms.

After a millennium, it appears that the subjects of algorithms and alge-
bra may finally converge and coexist in a fruitful symbiosis. We conclude
this section with the following quote from Edwards [68]:

I believe that Kronecker’s best hope of survival comes from a different
tendency in the mathematics of our day...., namely, the tendency,
fostered by the advent of computers, toward algorithmic thinking....
One has to ask oneself which examples can be tested on a computer, a
question which forces one to consider concrete algorithms and to try
to make them efficient. Because of this and because algorithms have
real-life applications of considerable importance, the development of
algorithms has become a respectable topic in its own right.

1.2 Motivations

What happened to Hilbert’s man in the street?

—Shreeram S. Abhyankar

There are essentially four groups of people, who have been instrumental in
the rapid growth of the subject of “algorithmic algebra.” Although, in some
sense, all of the four groups are working toward a common goal, namely,
that of developing an algorithmic (read, constructive) foundation for vari-
ous problems in algebra, their motivations differ slightly from one another.
The distinction is, however, somewhat artificial, and a considerable overlap
among these communities is ultimately unavoidable.
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1.2.1 Constructive Algebra

One of the main issues that concerns the constructive algebraists is that
of the philosophical foundations of mathematics. We have alluded to this
issue in the introductory section, and will refer to this as “the theological
issue.”

During the last century, the movement of “analysis” toward noncon-
structive concepts and methods of proof had a considerable ideological
impact on traditionally constructive areas such as algebra and number the-
ory. In this context, there were needs for a revision of what was under-
stood by the “foundations of mathematics.” Some mathematicians of the
time, most prominently Kronecker, attacked the emergent style of non-
constructivity and defended the traditional views of foundations espoused
by their predecessors. However, to most mathematicians of the time, the
constraints imposed by constructivity appeared needlessly shackling. It
was historically inevitable that the nonconstructivity implied in the Canto-
rian/Weirstrassian view of the foundation of mathematics would dominate.
Indeed, Dedekind, a student of Kronecker and a prominent algebraist on
his own, “insisted it was unnecessary—and he implied it was undesirable—
to provide an algorithmic description of an ideal, that is, a computation
which would allow one to determine whether a given ring element was or
was not in the ideal.”[67] Kronecker’s view, on the other hand, can be sur-
mised from the following excerpts from Edwards’ paper on “Kronecker’s
Views on the Foundations of Mathematics” [67]:

Kronecker believed God made the natural numbers and all the rest
was man’s work. We only know of this opinion by hearsay evidence,
however, and his paper Ueber den Zahlbegriff indicates to me that he
thought God made a bit more: Buchstabenrechnung , or calculation
with letters. In modern terms, Kronecker seems to envisage a cosmic
computer which computes not just with natural numbers, but with
polynomials with natural number coefficients (in any number of in-
determinates). That’s the God-given hardware. The man-made soft-
ware then creates negative numbers, fractions, algebraic irrationals,
and goes on from there. Kronecker believed that such a computer,
in the hands of an able enough programmer, was adequate for all the
purposes of higher mathematics.

A little further on, Edwards summarizes Kronecker’s views as follows:
“Kronecker believed that a mathematical concept was not well defined un-
til you had shown how, in each specific instance, to decide [algorithmically]
whether the definition was fulfilled or not.”

Having said this, let us use the following anecdote to illustrate the de-
bates of the time regarding the foundations of mathematics. This concerns
the seminal nonconstructive argument of Hilbert (Hilbert’s basis theorem)
that every ideal in the ring of polynomials in several variables over a field is
finitely generated. In applying this theorem to Gordon’s problem of finding
a finite set of generators for certain rings of invariant forms, Hilbert reduced
this problem to that of finding finite sets of generators for certain ideals.
As the rings and associated ideals are described in a finite way, Gordon
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expected an explicit description of the generators. Gordon had been able
to solve his problems for two variables in a constructive manner, and was
not happy with Hilbert’s solution. Gordon dismissed Hilbert’s solution as
follows:

“Das ist nicht Mathematik. Das ist Theologie.”

Hilbert was able to return to the original problem to give a satisfactory
construction. We will discuss this particular problem in greater detail.

A more clear and concrete view regarding constructivity appears to have
emerged only very recently. According to this view, the constructive alge-
bra differs significantly from the classical mathematics by its interpretation
of “existence of an object.” “In the classical interpretation, an object exists
if its nonexistence is contradictory. There is a clear distinction between this
meaning of existence and the constructive, algorithmic one, under which an
object exists only if we can construct it, at least in principle. As Bishop has
said, such ‘meaningful distinctions deserve to be maintained’.[23]” One can
further restrict what one means by the word “construction.” According to
G. Hermann, “the assertion that a computation can be carried through in
a finite number of steps shall mean that an upper bound for the number
of operations needed for the computation can be given. Thus, it does not
suffice, for example, to give a procedure for which one can theoretically
verify that it leads to the goal in a finite number of operations, so long as
no upper bound for the number of operations is known.”

There are other motivation for studying constructive algebra: it adds
depth and richness to classical algebra. For instance, given the latitude
one has in specifying ideals, Hilbert’s proof of the basis theorem had to
be nonconstructive—thus, in a constructive setting, one is led to explore a
much finer structure (such as Noetherianness, coherence) of the underlying
polynomial ring in order to provide a satisfactory answer.

And, of course, this provides a stepping stone for theoretical computer
scientists to study the design and implementation of efficient algorithms.
Once we understand what algebraic objects are amenable to constructive
treatment, we can study how we can improve the associated algorithms
and how these objects can be used to solve important practical problems.

1.2.2 Algorithmic and Computational Algebra

A prominent algebraic geometer advocating the algorithmic view point is
Abhyankar. In his paper “Historical Rambling in Algebraic Geometry,”
Abhyankar [2] categorizes algebraic geometry into three classes (roughly,
in terms of their algorithmic contents): “high school algebra” (Newton,
Tschirnhausen, Euler, Sylvester, Cayley, Kronecker, Macaulay), “college
algebra” (Dedekind, Noether, Krull, Zariski, Chevally, Cohen) and “uni-
versity algebra” (Serre, Cartan, Eilenberg, Grothendieck, Mumford), and
calls for a return to the algorithmic “high school algebra”:

The method of high-school algebra is powerful, beautiful and acces-
sible. So let us not be overwhelmed by the groups-rings-fields or the
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functorial arrows of [college or university] algebras and thereby lose
sight of the power of the explicit algorithmic processes given to us
by Newton, Tschirnhausen, Kronecker and Sylvester.

The theoretical computer scientists take Abhyankar’s viewpoint to the
extreme: they regard the existence of a construction as only a first step
toward a precise classification of the inherent computational complexity of
an algebraic problem. A theoretical computer scientist would be concerned
with questions of the following kinds:

• What are the resource complexities associated with an algebraic prob-
lem? Is a certain set of algebraic problems interreducible to one an-
other, thus making it sufficient to look for an efficient solution to any
one of the problems in the class? That is, are there classes of alge-
braic problems that are isomorphic to one another in terms of their
resource requirements? (Note that as algebraic problems, they may
be addressing rather unrelated questions.)

• Is a particular problem computationally feasible? If not, are there
restrictive specializations that can be made feasible? Can random-
ization help?

• How does the problem depend on various models of computation?
Can the problem be easily parallelized? Can preprocessing, or pre-
conditioning, help?

• What is the inherent complexity of the problem? Given an algorithm
for a problem, can we say whether it is the best possible solution in
terms of a particular resource complexity?

• What are the basic ingredients required to translate these algorithms
to usable implementations? For instance, how are numbers to be rep-
resented: in finite precision, or in infinite precision (algebraic num-
ber)? How are algebraic numbers to be stored internally: in terms
of an algorithm, or by its minimal polynomial and a straddling inter-
val? What kind of data structures are most suitable to a particular
problem?

1.2.3 Symbolic Computation

In 1953, the first modern computer programs to perform symbolic compu-
tation were realized in two master’s theses: one by H.G. Kahrimanian at
Temple University [108] and another by J.F. Nolan at the Massachusetts
Institute of Technology [157]. The differentiation program developed by
Kahrimanian for UNIVAC I took as its input an expression represented
as a linearized binary tree and produced the derivative of the expression.

After the development of the Lisp language by McCarthy, the prob-
lem of developing symbolic mathematical systems became relatively easy.
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James Slagle (a student of Minsky) developed an integration program called
SAINT in Lisp in 1962. The program was rudimentary and lacked a strong
mathematical foundation, but was still able to perform at the level of a
freshman calculus student.

During the early sixties, the next important step was the development
of general-purpose systems aimed at making computerized mathematical
computation accessible to laymen. Notable among such developments: AL-
PAK [27] and ALTRAN [25] at Bell Laboratories by a group headed by
W.S. Brown, and FORMAC [181] at I.B.M. under the guidance of J.E.
Sammet. FORMAC was somewhat limited in scope in comparison to
ALPAK and ALTRAN, since it dealt exclusively with polynomial and
rational functions.

Around the same time, G. Collins of the University of Wisconsin had
been developing PM [48], a polynomial manipulation system, which utilized
an efficient canonical recursive representation of polynomials and supported
arbitrary precision arithmetic. The PM system was later supplanted by
SAC-1 [49], which could perform operations on multivariate polynomials
and rational functions with infinite precision coefficients. The algorithms
in SAC-1 were based on the decision procedure invented by Tarski, Sei-
denberg and Cohen for the elementary theory of a real closed field. These
algorithms have widespread applications in various areas of computer sci-
ence and robotics, and will be discussed at length in this book. An improved
version of SAC-1, called SAC-2 [36] and written in an algebraic language
Aldes, succeeded the older system.

Staring in the late sixties, the focus shifted to the development of
symbolic manipulation systems that allowed a more natural interactive
usage. The significant systems in this category included: Engleman’s
MATHLAB-68 developed at M.I.T. [69], Tony Hearn’s REDUCE-2 de-
veloped at Rand and University of Utah [165], Barton, Bourne and Fitch’s
CAMAL system (CAMbridge ALgebra system) [71], Moses and Martin’s
MACSYMA developed under the MAC project at M.I.T. [88], Griesmer
and Jenks’s SCRATCHPAD system developed at I.B.M. [106] and more
recently Jenks and Sutor’s AXIOM system that evolved from SCRATCH-
PAD[107].

While a detailed comparison of these systems would be fairly hard, we
note that they differ from one another in their design goals. MATHLAB-
68 is a general-purpose system, designed to perform differentiation, polyno-
mial factorization, indefinite integration, direct and inverse Laplace trans-
forms and the solution of differential equations with symbolic coefficients.
REDUCE is a general-purpose software system with built-in algebraic sim-
plification mechanisms, and thus it allows a user to build his own programs
to solve “superdifficult” problems [165] with relative ease; this system has
been successfully used to solve problems in QED, QCD, celestial mechanics,
fluid mechanics, general relativity, plasma physics and various engineering
disciplines. CAMAL is a small, fast, powerful and yet general-purpose
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system consisting of three modules: F-module for Fourier series, E-module
for complex exponential series and H-module (the “Hump”), a general-
purpose package. In comparison to the above systems, both MACSYMA
and SCRATCHPAD systems are “giants” and are designed to incorpo-
rate all the state-of-the-art techniques in symbolic algebra and software
engineering.

The number of algebraic systems has grown at a tremendous rate in
the recent past. An estimate given by Pavelle, Rothstein and Fitch is
that in the last thirty years, about sixty systems have been developed for
doing some form of computer algebra. The more notable ones among these
are SMP, developed by Cole and Wolfram at CalTech and the Institute
for Advanced Studies, MAPLE, developed at the University of Waterloo,
Bergman’s PROLOG-based SYCOPHANTE system, Engeli’s SYMBAL
system, Rich and Stoutemyr’s muMATH system for I.B.M. PC’s and Jenks
and Sutors’s SCRATCHPAD/AXIOM system.

In the last few years, the general-purpose computer algebra system
MATHEMATICA [209] developed by Wolfram Research, Inc., and run-
ning on several personal computers (including Macintosh II and NeXT
computers) has brought symbolic computation to the domain of everyday
users. Other notable recent systems with similar interfaces and achieve-
ments include MAPLE and SCRATCHPAD/AXIOM. It is hoped these
systems will influence, to a substantial degree, the computing, reasoning
and teaching of mathematics [186].

The main goal of the researchers in this community has been to develop
algorithms that are efficient in practice. Other related issues that concern
this group involve developing languages ideal for symbolic computation,
easy-to-use user interfaces, graphical display of various algebraic objects
(i.e., algebraic curves, surfaces, etc.), and computer architecture best suited
for symbolic manipulation.

1.2.4 Applications

The last motivation for the study of computational algebra comes from its
wide variety of applications in biology (e.g., secondary structure of RNA),
chemistry (e.g., the nature of equilibria in a chemical process), physics
(e.g., evaluation of Feynman diagrams), mathematics (e.g., proof of the
Macdonald-Morris conjecture), computer science (e.g., design of the IEEE
standard arithmetic) and robotics (e.g., inverse kinematic solution of a mul-
tilinked robot). Some of the major applications of symbolic computational
algebra in various subareas of computer science are summarized as follows:

1. Robotics: Most of the applications of computational algebra in
robotics stem from the algebraico-geometric nature of robot kinemat-
ics. Important problems in this area include the kinematic modeling
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of a robot, the inverse kinematic solution for a robot, the computation
of the workspace and workspace singularities of a robot, the planning
of an obstacle-avoiding motion of a robot in a cluttered environment,
etc.

2. Vision: Most of the applications here involve the representation of
various surfaces (usually by simpler triangulated surfaces or general-
ized cones), the classification of various algebraic surfaces, the alge-
braic or geometric invariants associated with a surface, the effect of
various affine or projective transformation of a surface, the descrip-
tion of surface boundaries, etc.

3. Computer-Aided Design (CAD): Almost all applications of CAD
involve the description of surfaces, the generation of various auxil-
iary surfaces such as blending surfaces, smoothing surfaces, etc., the
parametrization of curves and surfaces, various Boolean operations
such as union and intersection of surfaces, etc.

Other applications include graphical editors, automated (geometric)
theorem proving, computational algebraic number theory, coding theory,
etc.

To give an example of the nature of the solution demanded by various
applications, we will discuss a few representative problems from robotics,
engineering and computer science.

Robot Motion Planning

• Given: The initial and final (desired) configurations of a robot (made
of rigid subparts) in two- or three-dimensional space.

The description of stationary obstacles in the space.

The obstacles and the subparts of the robot are assumed to be rep-
resented as the finite union and intersection of algebraic surfaces.

• Find: Whether there is a continuous motion of the robot from the
initial configuration to the final configuration.

The solution proceeds in several steps. The first main step involves
translating the problem to a parameter space, called the C-space. The
C-space (also called configuration space) is simply the space of all points
corresponding to all possible configurations of the robot.

The C-space is usually a low-dimensional (with the same dimension as
the number of degrees of freedom of the robot) algebraic manifold lying in
a possibly higher-dimensional Euclidean space. The description and com-
putation of the C-space are interesting problems in computational algebra,
and have been intensely studied.

The second step involves classifying the points of the C-space into two
classes:
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• Forbidden Points : A point of C-space is forbidden if the corresponding
configuration of the robot in the physical space would result in the
collision of two subparts of the robot and/or a subpart of the robot
with an obstacle.

• Free Points : A point of C-space that is not forbidden is called a free
point. It corresponds to a legal configuration of the robot amidst the
obstacles.

The description and computation of the free C-space and its (path) connect-
ed components are again important problems in computational algebra,
perhaps not dissimilar to the previous problems. Sometimes the free space
is represented by a stratification or a decomposition, and we will have to
do extra work to determine the connectivity properties.

Since the initial and final configurations correspond to two points in the
C-space, in order to solve the motion planning problem, we simply have to
test whether they lie in the same connected component of the free space.
This involves computing the adjacency relations among various strata of the
free space and representing them in a combinatorial structure, appropriate
for fast search algorithms in a computer.

Offset Surface Construction in Solid Modeling

• Given: A polynomial f(x, y, z), implicitly describing an algebraic
surface in the three-dimensional space. That is, the surface consists
of the following set of points:

{
p = 〈x, y, z〉 ∈ R3 : f(x, y, z) = 0

}
.

• Compute: The envelope of a family of spheres of radius r whose
centers lie on the surface f . Such a surface is called a (two-sided)
offset surface of f , and describes the set of points at a distance r on
both sides of f .

First we need to write down a set of equations describing the points on
the offset surface. Let p = 〈x, y, z〉 be a point on the offset surface and
q = 〈u, v, w〉 be a footprint of p on f ; that is, q is the point at which a
normal from p to f meets f . Let ~t1 = 〈t1,1, t1,2, t1,3〉 and ~t2 = 〈t2,1, t2,2,
t2,3〉 be two linearly independent tangent vectors to f at the point q. Then,
we see that the offset surface is given by:

{
p = 〈x, y, z〉 ∈ R3:
(
∃ 〈u, v, w〉 ∈ R3

) [
(x − u)2 + (y − v)2 + (z − w)2 − r2 = 0

∧ f(u, v, w) = 0
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∧ 〈x− u, y − v, z − w〉 · ~t1 = 0

∧ 〈x− u, y − v, z − w〉 · ~t2 = 0
]}
.

Thus the system of polynomial equations given below

(x− u)2 + (y − v)2 + (z − w)2 − r2 = 0, (1.1)

f(u, v, w) = 0, (1.2)

(x− u)t1,1 + (y − v)t1,2 + (z − w)t1,3 = 0, (1.3)

(x− u)t2,1 + (y − v)t2,2 + (z − w)t2,3 = 0, (1.4)

describes a hypersurface in the six-dimensional space with coordinates
(x, y, z, u, v, w), which, when projected onto the three-dimensional space
with coordinates (x, y, z), gives the offset surface in an implicit form. The
offset surface is computed by simply eliminating the variables u, v, w from
the preceding set of equations. Note that equation (1.1) states that the
point 〈x, y, z〉 on the offset surface is at a distance r from its footprint
〈u, v, w〉; the last three equations (1.2), (1.3), (1.4) ensure that 〈u, v, w〉
is, indeed, a footprint of 〈x, y, z〉.

The envelope method of computing the offset surface has several prob-
lematic features: The method does not deal with self-intersection in a clean
way and, sometimes, generates additional points not on the offset surface.
For a discussion of these problems, and their causes, see the book by C.M.
Hoffmann [99].

Geometric Theorem Proving

• Given: A geometric statement, consisting of a finite set of hypotheses
and a conclusion. It is assumed that the geometric predicates in the
hypotheses and the conclusion have been translated into an analytic
setting, by first assigning symbolic coordinates to the points and then
using the polynomial identities (involving only equalities) to describe
the geometric relations:

Hypotheses : f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0.

Conclusion : g(x1, . . . , xn) = 0.

• Decide: Whether the conclusion g = 0 is a consequence of the hy-
potheses (f1 = 0∧ · · · ∧ fr = 0). That is, whether the following
universally quantified first-order formula holds:

(
∀ x1, . . . , xn

) [ (
f1 = 0 ∧ · · · ∧ fr = 0

)
⇒ g = 0

]
. (1.5)
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One way to solve the problem is by first translating it into the follow-
ing form: Decide if the existentially quantified first-order formula, shown
below, is unsatisfiable:

(
∃ x1, . . . , xn, z

) [
f1 = 0 ∧ · · · ∧ fr = 0 ∧ gz − 1 = 0

]
. (1.6)

The logical equivalence of the formulas (1.5) and (1.6), when the underlying
domain is assumed to be a field, is fairly obvious. (Reader, please convince
yourself.)

However, the nature of the solutions may rely on different techniques,
depending on what we assume about the underlying fields: For instance, if
the underlying domain is assumed to be the field of real numbers (a real
closed field), then we may simply check whether the following multivariate
polynomial (in x1, . . ., xn, z) has no real root:

f2
1 + · · ·+ f2

r + (gz − 1)2.

If, on the other hand, the underlying domain is assumed to be the
field of complex numbers (an algebraically closed field), then we need to
check if it is possible to express 1 as a linear combination (with polynomial
coefficients) of the polynomials f1, . . . , fr and (gz − 1), i.e., whether 1
belongs to the ideal generated by f1, . . . , fr, (gz − 1). Another equivalent
formulation of the problem simply asks if g is in the radical of the ideal
generated by f1, . . . , fr. The correctness of these techniques follow via
Hilbert’s Nullstellensatz.

Later on in the book, we shall discuss, in detail, the algebraic problems
arising in both situations. (See Chapters 4 and 8.)

1.3 Algorithmic Notations

As our main goal will be to examine effective algorithms for computing with
various algebraic structures, we need a clear and unambiguous language for
describing these algorithms. In many cases, a step-by-step description of
algorithms in English will be adequate. But we prefer to present these
algorithms in a fairly high-level, well-structured computer language that
will borrow several concepts from ALGOL [206] and SETL [184]. Occa-
sionally, we will allow ourselves to describe some of the constituent steps,
in a language combining English, set theory and mathematical logic.

1.3.1 Data Structures

The primitive objects of our language will consist of simple algebraic ob-
jects such as Booleans , groups , rings , fields , etc., with their associated
algebraic operations. For instance, we may assume that the language pro-
vides mechanisms to represent real numbers, and supports operations such
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as addition, subtraction, multiplication and division. We shall assume that
each of these algebraic operations can be performed “effectively,” in the
sense that the operation produces the correct result in a finite amount of
time. We shall also regard an interval as a primitive: an interval [j..k] is a
sequence of integers j, j+1, . . ., k, if j ≤ k, and an empty sequence other-
wise. The notation i ∈ [j..k] (read, “i belongs to the interval [j..k]”) means
i is an integer such that j ≤ i ≤ k. Occasionally, we shall also use the
notation [j, k..l] (j 6= k) to represent the following arithmetic progression
of integers: j, j+(k− j), j+2(k− j), . . ., j+ ⌊(l− j)/(k− j)⌋(k− j). The
notation i ∈ [j, k..l] (read, “i belongs to the arithmetic progression [j, k..l]”)
means that i = j + a(k − j), for some integer 0 ≤ a ≤ ⌊(l− j)/(k − j)⌋.

The main composite objects in the language are tuples and sets . An
ordered n-tuple T = 〈x1, x2, . . ., xn〉 is an ordered sequence of n elements
(primitive or composite), some of which may be repeated. The size of the
tuple T is denoted by |T |, and gives the number of elements in T . The
empty tuple is denoted by 〈 〉. The ith element of an n-tuple T (1 ≤ i ≤ n)
is denoted by T [i]. A (j − i + 1) subtuple of an n-tuple T = 〈x1, x2, . . .,
xn〉 (1 ≤ i ≤ j ≤ n), consisting of elements xi through xj , is denoted by
T [i, j]. Note that T [i, i] is a 1-tuple 〈xi〉, whereas T [i] is simply the ith

element of T , xi. Given an m-tuple T1 = 〈x1,1, x1,2, . . ., x1,m〉 and an
n-tuple T2 = 〈x2,1, x2,2, . . ., x2,n〉, their concatenation, T1 ◦T2, denotes an
(m+ n)-tuple 〈x1,1, x1,2, . . ., x1,m, x2,1, x2,2, . . ., x2,n〉.

We can also represent arbitrary insertion and deletion on tuples by
combining the primitive operations subtuples and concatenation. Let T be
a tuple and x an arbitrary element. Then

Head(T ) ≡ return T [1]
Tail(T ) ≡ return T [|T |]
Push(x,T ) ≡ return 〈x〉 ◦ T
Pop(T ) ≡ return T [2..|T |]
Inject(x,T ) ≡ return T ◦ 〈x〉
Eject(T ) ≡ return T [1..|T | − 1]

Using these operations, we can implement stack (with head, push and pop),
queue (with head, inject and pop) or a deque (with head, tail, push, pop,
inject and eject).

A set S = {x1, x2, . . ., xn} is a finite collection of n distinct elements
(primitive or composite). The size of the set S is denoted by |S|, and gives
the number of elements in S. The empty set is denoted by ∅ (or, sometimes,
{ }). The operation Choose(S) returns some arbitrary element of the set
S. The main operations on the sets are set-union ∪, set-intersection ∩
and set-difference \: If S1 and S2 are two sets, then S1 ∪ S2 yields a set
consisting of the elements in S1 or S2, S1 ∩S2 yields a set consisting of the
elements in S1 and S2, and S1 \ S2 yields a set consisting of the elements
in S1 but not in S2.

We can also represent arbitrary insertion and deletion on sets by com-
bining the primitive set operations. Let S be a set and x an arbitrary
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element. Then

Insert(x,S) ≡ return S ∪ {x}
Delete(x,S) ≡ return S \ {x}

1.3.2 Control Structures

A program consists of a sequence of statements, the most basic operation
being the assignment. The symbol := denotes the assignment and the
symbol ; the sequencer or the statement separator. Thus the assignment
statement, xi := expression first evaluates the expression in the right-hand
side, then deposits the value of the expression in the location corresponding
to the variable xi in the left-hand side. We also write

〈x1, . . . , xn〉 := 〈expression1, . . . , expressionn〉

to denote the parallel assignment of the values of the components of the
n-tuple of expressions in the right-hand side, in the locations corresponding
to the n-tuple of variables 〈x1, . . . , xn〉 in the left-hand side. Interesting
examples of such parallel assignments are the following:

〈x, y〉 := 〈y, x〉

swaps the values of the variables x and y;

〈x1, . . . , xj−i+1〉 := 〈expression1, . . . , expressionn〉[i..j]

selects the values of the expressions i through j.
In a program, a Boolean expression corresponds to a propositional state-

ment consisting of atomic predicates, and the connectives or, and and
not. We also use the connectives cor (conditional or) and cand (con-
ditional and) with the following semantics: in “Boolean condition1 cor

Boolean condition2,” the second Boolean condition is evaluated, only if
the first condition evaluates to “false;” and in “Boolean condition1 cand

Boolean condition2,” the second Boolean condition is evaluated, only if the
first condition evaluates to “true.”

We use three main control structures:

If-Then-Else:

if Boolean condition1 then

statement 1

elsif Boolean condition2 then

statement 2

...
else statementn

end{if }
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The effect of this statement is to cause the following execution: First, the
Boolean conditions, Boolean condition1, Boolean condition2, . . ., are evalu-
ated sequentially until a “true” Boolean condition is encountered, at which
point, the corresponding statement is executed. If all the Boolean condi-
tions evaluate to “false,” then the last statement, statementn, is executed.

Loop: The loop statements appear in two flavors:

while Boolean condition loop

statement

end{loop }

The effect of this statement to cause the following execution: First, the
Boolean condition is evaluated, and if it evaluates to “true,” then the state-
ment is executed. At the end of the statement execution, the control passes
back to the beginning of the loop and this process is repeated as long as the
Boolean condition continues to evaluate to “true;” if the Boolean condition
evaluates to “false,” then the control passes to the next statement.

loop

statement

until Boolean condition

end{loop }

The effect of this statement to cause the following execution: First, the
statement is executed. At the end of the statement execution, the Boolean
condition is evaluated. If it evaluates to “false,” then the control passes
back to the beginning of the loop and the process is repeated; if the Boolean
condition evaluates to “true,” then the control passes to the next statement.

For-Loop: Generally, the for-loop statements appear in the following
form:

for every iterator value loop

statement

end{loop }

The effect of a for-loop statement is to cause the statement to be evaluated
once for each value of the iterator. An iterator may appear in one of the
following forms:

1. “i ∈ [j..k],” the statement is evaluated k − j + 1 times once for each
value of i (in the order, j, j + 1, . . ., k);

2. “i ∈ [j, k..l],” the statement is evaluated ⌊(l−j)/(k−j)⌋+1 times once
for each value of i (in the order j, k, . . ., j+ ⌊(l− j)/(k− j)⌋(k− j));
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3. “x ∈ T ,” where T is a tuple, the statement is evaluated |T | times
once for each value of x in T , according to the order imposed by T ;
and

4. “x ∈ S,” where S is a set, the statement is evaluated |S| times once
for each value of x in S, in some arbitrary order.

A program will be organized as a set of named modules. Each module
will be presented with its input and output specifications. The modules
can call each other in mutual-recursive or self-recursive fashion; a module
calls another module or itself by invoking the name of the called module
and passing a set of parameters by value. When a called module completes
its execution, it either returns a value or simply, passes the control back to
the calling module. For each module, we shall need to prove its correctness
and termination properties.

As an example of the usage of the notations developed in this section, let
us examine the following algorithm of Euclid to compute the GCD (greatest
common divisor) of two positive integers X and Y . In the program the
function Remainder(X , Y ) is assumed to produce the remainder, when Y
is divided by X .

GCD(X, Y )
Input: Two positive integers X and Y .
Output: The greatest common divisor of X and Y , i.e., a positive

integer that divides both X and Y and is divisible
by every divisor of both X and Y .

if X > Y then

〈X, Y 〉 := 〈Y, X〉
end{if };

while X does not divide Y loop

〈X, Y 〉 := 〈Remainder(X, Y ), X〉
end{loop };

return X;

end{GCD}

Theorem 1.3.1 The program GCD correctly computes the greatest com-
mon divisor of two positive integers.
proof.
Let 〈X0, Y0〉 be the input pair, and 〈X1, Y1〉, 〈X2, Y2〉, . . ., 〈Xn, Yn〉 be
the values of X and Y at each invocation of the while-loop. Since X0 >
X1 > · · ·Xn, and since they are all positive integers, the program must
terminate.

Furthermore, for all 0 ≤ i < n, every divisor of Xi and Yi is also a
divisor Xi+1, and every divisor of Xi+1 and Yi+1 is also a divisor of Yi.
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Hence,

GCD(X0, Y0) = GCD(X1, Y1) = · · · = GCD(Xn, Yn).

But since GCD(Xn, Yn) is clearly Xn, the value returned by the program,
Xn, is the greatest common divisor of X and Y .

1.4 Epilogue

We conclude this chapter with the following poem by Abhyankar, which
succinctly captures a new spirit of constructiveness in algebra:

Polynomials and Power Series,
May They Forever Rule the World

Shreeram S. Abhyankar

Polynomials and power series.
May they forever rule the world.

Eliminate, eliminate, eliminate.
Eliminate the eliminators of elimination theory.

As you must resist the superbourbaki coup,
so must you fight the little bourbakis too.

Kronecker, Kronecker, Kronecker above all
Kronecker, Mertens, Macaulay, and Sylvester.

Not the theology of Hilbert,
But the constructions of Gordon.

Not the surface of Riemann,
But the algorithm of Jacobi.

Ah! the beauty of the identity of Rogers and Ramanujan!
Can it be surpassed by Dirichlet and his principle?

Germs, viruses, fungi, and functors,
Stacks and sheaves of the lot
Fear them not
We shall be victors.

Come ye forward who dare present a functor,
We shall eliminate you
By resultants, discriminants, circulants and alternants.
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Given to us by Kronecker, Mertens, Sylvester.

Let not here enter the omologists, homologists,
And their cohorts the cohomologists crystalline

For this ground is sacred.

Onward Soldiers! defend your fortress,
Fight the Tor with a determinant long and tall,
But shun the Ext above all.

Morphic injectives, toxic projectives,
Etal, eclat, devious devisage,

Arrows poisonous large and small
May the armor of Tschirnhausen

Protect us from the scourge of them all.

You cannot conquer us with rings of Chow
And shrieks of Chern

For we, too, are armed with polygons of Newton
And algorithms of Perron.

To arms, to arms, fractions, continued or not,
Fear not the scheming ghost of Grothendieck

For the power of power series is with you,
May they converge or not
(May they be polynomials or not)
(May they terminate or not).

Can the followers of G by mere “smooth” talk
Ever make the singularity simple?

Long live Karl Weierstrass!

What need have we for rings Japanese, excellent or bad,
When, in person, Nagata himself is on our side.

What need to tensorize
When you can uniformize,

What need to homologize
When you can desingularize

(Is Hironaka on our side?)

Alas! Princeton and fair Harvard you, too,
Reduced to satellite in the Bur-Paris zoo.
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Chapter 2

Algebraic Preliminaries

2.1 Introduction to Rings and Ideals

In this chapter, we introduce some of the key concepts from commutative
algebra. Our focus will be on the concepts of rings, ideals and modules,
as they are going to play a very important role in the development of the
algebraic algorithms of the later chapters. In particular, we develop the
ideas leading to the definition of a basis of an ideal, a proof of Hilbert’s basis
theorem, and the definition of a Gröbner basis of an ideal in a polynomial
ring. Another important concept, to be developed, is that of a syzygy of a
finitely generated module.

First, we recall the definition of a group:

Definition 2.1.1 (Group) A group G is a nonempty set with a binary
operation (product , ·) such that

1. G is closed under the product operation.
(
∀ a, b ∈ G

) [
a · b ∈ G

]
.

2. The product operation is associative. That is,
(
∀ a, b, c ∈ G

) [
(a · b) · c = a · (b · c)

]
.

3. There exists (at least) one element e ∈ G, called the (left) identity,
so that (

∀ a ∈ G
) [

e · a = a
]
.

4. Every element of G has a (left) inverse:

(
∀ a ∈ G

) (
∃ a−1 ∈ G

) [
a−1 · a = e

]
.

23
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The set G is said to be a semigroup if it satisfies only the first two condi-
tions, i.e., it possesses an associative product operation, but does not have
an identity element.

A group is called Abelian (or commutative) if the product operation
commutes: (

∀ a, b ∈ G
) [

a · b = b · a
]
.

For instance, the set of bijective transformations of a nonempty set S,
with the product operation as the composite map, and the identity as the
identity map, form the so-called symmetric group of the set S, Sym S. In
particular, if S = {1, 2, . . ., n}, then Sym S = Sn, the symmetric group of
n letters ; the elements of Sn are the permutations of {1, 2, . . ., n}. If, on
the other hand, we had considered the set of all transformations (not just
the bijective ones) of a nonempty set S, the resulting structure would have
been a semigroup with identity element. (A transformation is invertible if
and only if it is bijective).

Other examples of groups are the following:

1. (Z, +, 0), the group of integers under addition; the (additive) inverse
of an integer a is −a.

2. (Q∗, ·, 1), the group of nonzero rational numbers under multiplica-
tion; the (multiplicative) inverse of a rational p/q is q/p.

3. The set of rotations about the origin in the Euclidean plane under
the operation of composition of rotations. The rotation through an
angle θ is represented by the map 〈x, y〉 7→ 〈x′, y′〉, where

x′ = x cos θ − y sin θ, y′ = x sin θ + y cos θ.

The following are some of the examples of semigroups:

1. (N, +, 0), the semigroup of natural numbers under addition. This
semigroup has zero (0) as its additive identity.

2. (Z, ·, 1), the semigroup of integers under multiplication. This semi-
group has one (1) as its multiplicative identity.

Definition 2.1.2 (Subgroup) A subgroup G′ of a group G is a nonempty
subset of G with the product operation inherited fromG, which satisfies the
four group postulates of Definition 2.1.1. Thus, the (left) identity element
e ∈ G also belongs to G′, and the following properties hold for G′:

(
∀ a, b ∈ G′

) [
a · b ∈ G′

]

and (
∀ a ∈ G′

) [
a−1 ∈ G′

]
.
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In fact, a subgroup can be characterized much more succinctly: a nonempty
subset G′ of a group G is a subgroup, if and only if

(
∀ a, b ∈ G′

) [
a · b−1 ∈ G′

]
.

If H ⊆ G is a subset of a group G, then the smallest subgroup (with
respect to inclusion) of G containing H is said to be the group generated
by H ; this subgroup consists of all the finite products of the elements of H
and their inverses.

If H1 and H2 are two arbitrary subsets of a group G, then we may
define the product of the subsets, H1H2, to be the subset of G, obtained
by the pointwise product of the elements of H1 with the elements of H2.
That is,

H1H2 =
{
h1h2 : h1 ∈ H1 and h2 ∈ H2

}
.

If H1 = {h1} is a singleton set, then we write h1H2 (respectively, H2h1) to
denote the subset H1H2 (respectively, H2H1).

We may observe that, if G1 is a subgroup of G, then the product
G1G1 = G1 is also a subgroup of G. In general, however, the product
of two subgroups G1 and G2 of a group G is not a subgroup of G, except
only when the subgroups G1 and G2 commute:

G1G2 = G2G1.

Definition 2.1.3 (Coset) If G′ is a subgroup of a group G, and a, an
element of G, then the subset aG′ is called a left coset , and the subset G′a
a right coset of G′ in G. If a ∈ G′, then aG′ = G′a = G′.

As each element a ∈ G belongs to exactly one (left or right) coset of
G′ (namely, aG′ or G′a), the family of (left or right) cosets constitutes a
partition of the group G.

All the cosets of a subgroup G′ have the same cardinality as G′, as can
be seen from the one-to-one mapping G′ → aG′, taking g ∈ G′ to ag ∈ aG′.

Definition 2.1.4 (Normal Subgroup) A subgroup G′ of a group G is
called a normal (or self-conjugate) subgroup of G if G′ commutes with every
element a ∈ G. That is,

(
∀ a ∈ G

) [
aG′ = G′a

]
.

Definition 2.1.5 (Quotient Group) If G′ is a normal subgroup of G,
then the set

G =
{
aG′ : a ∈ G

}
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consisting of the cosets of G′ forms a group (under the product operation
on subsets of G). The coset G′ is an identity element of the group G, since

(
∀ aG′ ∈ G

) [
G′ · aG′ = aG′ ·G′ = aG′

]
.

Furthermore,

(
∀ aG′, bG′ ∈ G

) [
aG′ · bG′ = abG′G′ = abG′ ∈ G

]
,

(
∀ aG′, bG′, cG′ ∈ G

) [
(aG′ · bG′) · cG′ = abcG′ = aG′ · (bG′ · cG′)

]

and every element aG′ has a left inverse (aG′)−1 = a−1G′, since

(
∀ aG′ ∈ G

) [
a−1G′ · aG′ = a−1aG′ = G′

]
.

The group of cosets of a normal subgroup G′ (i.e., G, in the preceding
discussion) is called a quotient group of G, with respect to G′, and is
denoted by G/G′.

If the group is Abelian, then every subgroup is a normal subgroup. Let
G be an Abelian group under a commutative addition operation (+) and
G′ a subgroup of G. In this case, the quotient group G/G′ consists of the
cosets a + G′, which are also called the residue classes of G modulo G′.
Two group elements a and b ∈ G are said to be congruent modulo G′, and
denoted

a ≡ b mod (G′),

if a+G′ = b+G′, i.e., a− b ∈ G′.
For example, the multiples of a positive integer m form a subgroup of

(Z, +, 0), and we write
a ≡ b mod (m),

if the difference a − b is divisible by m. The residue classes, in this case,
are cosets of the form i + mZ = {i + km : k ∈ Z}, (0 ≤ i < m), and are
called residue classes of Z mod m.

2.1.1 Rings and Ideals

Definition 2.1.6 (Ring) A ring R is a set with two binary operations
(addition, +, and multiplication, ·) such that we have the following:

1. R is an Abelian group with respect to addition. That is, R has a zero
element 0, and every x ∈ R has an additive inverse −x.

(
∀ x ∈ R

) (
∃ − x ∈ R

) [
x+ (−x) = 0

]
.
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2. R is a semigroup with respect to multiplication. Furthermore, mul-
tiplication is distributive over addition:
(
∀ x, y, z ∈ R

)

[
[x · (y + z) = x · y + x · z] and [(y + z) · x = y · x+ z · x]

]
.

We say R has an identity element if there is a 1 ∈ R such that
(
∀ x ∈ R

) [
x1 = 1x = x

]
.

The ring R is commutative if the multiplicative semigroup (R, ·) is com-
mutative: (

∀ x, y ∈ R
) [

xy = yx
]
.

The group (R, +, 0) is known as the additive group of the ring R.
Some examples of rings are the following: the integers, Z, the rational

numbers, Q, the real numbers, R, the complex numbers, C, polynomial
functions in n variables over an ambient ring R, R[x1, . . ., xn] and rational
functions in n variables over an ambient ring R, R(x1, . . ., xn). The set of
even numbers forms a ring without identity.

An interesting example of a finite ring, Z⋗, can be constructed by con-
sidering the residue classes of Z mod m. The residue class containing i
is

[i]m = i+mZ = {i+⋗k : k ∈ Z}.
We can define addition and multiplication operations on the elements of
Z⋗ as follows:

[i]m + [j]m = [i+ j]m and [i]m · [j]m = [ij]m.

It can be easily verified that Z⋗, as constructed above, is a commutative
ring with zero element [0]m and identity element [1]m; it is called the ring
of residue classes mod m. Z⋗ is a finite ring with m elements: [0]m, [1]m,
. . ., [m− 1]m. For the sake of convenience, Z⋗ is often represented by the
reduced system of residues mod m, i.e., the set {0, 1, . . ., m− 1}.

In what follows we assume that all of our rings are com-

mutative and include an identity element. Any violation

of this assumption will be stated explicitly.

A subring R′ of a ring R is a nonempty subset of R with the addition
and multiplication operations inherited from R, which satisfies the ring
postulates of Definition 2.1.6.

Definition 2.1.7 (Ideal) A subset I ⊆ R is an ideal if it satisfies the
following two conditions:
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1. I is an additive subgroup of the additive group of R:

(
∀ a, b ∈ I

) [
a− b ∈ I

]
.

2. RI ⊆ I; I is closed under multiplication with ring elements:

(
∀ a ∈ R

) (
∀ b ∈ I

) [
ab ∈ I

]
.

The ideals {0} and R are called the improper ideals of R; all other ideals
are proper .

A subset J of an ideal I in R is a subideal of I if J itself is an ideal in
R. We make the following observations:

1. If I is an ideal of R, then I is also a subring of R.

2. The converse of (1) is not true; that is, not all subrings of R are ideals.
For example, the subring Z ⊂ Q is not an ideal of the rationals. (The
set of integers is not closed under multiplication by a rational.)

Let a ∈ R. Then the principal ideal generated by a, denoted (a), is
given by

(a) = {ra : r ∈ R}, if 1 ∈ R.
The principal ideal generated by zero element is (0) = {0}, and the prin-
cipal ideal generated by identity element is (1) = R. Thus, the improper
ideals of the ring R are (0) and (1).

Let a1, . . ., ak ∈ R. Then the ideal generated by a1, . . ., ak is

(a1, . . . , ak) =
{ k∑

i=1

riai : ri ∈ R
}
.

A subset F ⊆ I that generates I is called a basis (or, a system of generators)
of the ideal I.

Definition 2.1.8 (Noetherian Ring) A ring R is called Noetherian if
any ideal of R has a finite system of generators.

Definition 2.1.9
An element x ∈ R is called a zero divisor if there exists y 6= 0 in R such

that xy = 0.
An element x ∈ R is nilpotent if xn = 0 for some n > 0. A nilpotent

element is a zero divisor, but not the converse.
An element x ∈ R is a unit if there exists y ∈ R such that xy = 1. The

element y is uniquely determined by x and is written as x−1. The units of
R form a multiplicative Abelian group.
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Definition 2.1.10
A ring R is called an integral domain if it has no nonzero zero divisor.
A ring R is called reduced if it has no nonzero nilpotent element.
A ring R is called a field if every nonzero element is a unit.

In an integral domain R, R \ {0} is closed under multiplication, and is
denoted by R∗; (R∗, ·) is itself a semigroup with respect to multiplication.
In a field K, the group of nonzero elements, (K∗, ·, 1) is known as the
multiplicative group of the field.

Some examples of fields are the following: the field of rational numbers,
Q, the field of real numbers, R, and the field of complex numbers, C. If p
is a prime number, then Zp (the ring of residue classes mod p) is a finite
field. If [s]p ∈ Z∗

p , then the set of elements

[s]p, [2s]p, . . . , [(p− 1)s]p

are all nonzero and distinct, and thus, for some s′ ∈ [1..p− 1], [s′s]p = [1]p;
hence, ([s]p)

−1 = [s′]p.
A subfield of a field is a subring which itself is a field. If K ′ is a subfield

of K, then we also say K is an extension field of K ′. Let a ∈ K; then the
smallest subfield (under inclusion) of K containing K ′ ∪ {a} is called the
extension of K ′ obtained by adjoining a to K ′, and denoted by K ′(a).

The set of rationals, Q, is a subfield of the field of real numbers, R. If
we adjoin an algebraic number, such as

√
2, to the field of rationals, Q,

then we get an extension field, Q(
√
2) ⊆ R.

Definition 2.1.11 A field is said to be a prime field , if it does not contain
any proper subfield. It can be shown that every field K contains a unique
prime field, which is isomorphic to either Q or Zp, for some prime number
p. We say the following:

1. A field K is of characteristic 0 (denoted characteristic K = 0) if its
prime field is isomorphic to Q.

2. A field K is of characteristic p > 0 (denoted characteristic K = p),
if its prime field is isomorphic to Zp.

Proposition 2.1.1 R 6= {0} is a field if and only if 1 ∈ R and there are
no proper ideals in R.
proof.
(⇒) Let R be a field, and I ⊆ R be an ideal of R. Assume that I 6= (0).
Hence there exists a nonzero element a ∈ I. Therefore, 1 = aa−1 ∈ I, i.e.,
I = (1) = R.

(⇐) Let a ∈ R be an arbitrary element of R. If a 6= 0, then the principal
ideal (a) generated by a must be distinct from the improper ideal (0). Since
R has no proper ideal, (a) = R. Hence there exists an x ∈ R such that
xa = 1, and a has an inverse in R. Thus R is a field.
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Corollary 2.1.2 Every field K is a Noetherian ring.
proof.
The ideals of K are simply (0) and (1), each of them generated by a single
element.

Let R 6= {0} be a commutative ring with identity, 1 and S ⊆ R, a
multiplicatively closed subset containing 1 (i.e., if s1 and s2 ∈ S, then
s1 · s2 ∈ S.) Let us consider the following equivalence relation “∼” on
R× S:

(
∀ 〈r1, s1〉, 〈r2, s2〉 ∈ R× S

)

[
〈r1, s1〉 ∼ 〈r2, s2〉 iff (∃ s3 ∈ S) [s3(s2r1 − r2s1) = 0]

]
.

Let RS = R×S/ ∼ be the set of equivalence classes on R×S with respect
to the equivalence relation ∼. The equivalence class containing 〈r, s〉 is
denoted by r/s. The addition and multiplication on RS are defined as
follows:

r1
s1

+
r2
s2

=
s2r1 + r2s1

s1s2
and

r1
s1
· r2
s2

=
r1r2
s1s2

.

The element 0/1 is the zero element of RS and 1/1 is the identity element
of RS . It is easy to verify that RS is a commutative ring. The ring RS is
called the ring of fractions or quotient ring of R with denominator set S.

If S is chosen to be the multiplicatively closed set of all non-zero divisors
of R, then RS is said to be the full ring of fractions or quotient ring of
R, and is denoted by Q(R). In this case, the equivalence relation can be
simplified as follows:

(
∀ 〈r1, s1〉, 〈r2, s2〉 ∈ R× S

)

[
〈r1, s1〉 ∼ 〈r2, s2〉 iff s2r1 = r2s1

]
.

If D is an integral domain and S = D∗, then DS can be shown to be a
field; DS is said to be the field of fractions or quotient field of D, and is
denoted by QF (D). The map

i : D → QF (D)

: d 7→ d/1

defines an embedding of the integral domain D in the field QF (D); the
elements of the form d

1 are the “improper fractions” in the field QF (D).
For example, if we choose D to be the integers Z, then QF (Z) is Q, the

field of rational numbers.
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2.1.2 Homomorphism, Contraction and Extension

Definition 2.1.12 (Ring Homomorphism) The map φ:R→ R′ is called
a ring homomorphism, if φ(1) = 1 and

(
∀ a, b ∈ R

) [
φ(a+ b) = φ(a) + φ(b) and φ(a b) = φ(a)φ(b)

]
.

That is, φ respects identity, addition and multiplication.

If φ:R→ R′ and ψ:R′ → R′′ are ring homomorphisms, then so is their
composition ψ ◦ φ.

The kernel of a homomorphism φ:R→ R′ is defined as:

kerφ =
{
a ∈ R : φ(a) = 0

}
.

The image of a homomorphism φ:R → R′ is defined as:

imφ =
{
a′ ∈ R′ :

(
∃ a ∈ R

) [
φ(a) = a′

]}
.

Let I be an ideal of a ring R. The quotient group R/I inherits a
uniquely defined multiplication from R which makes it into a ring, called
the quotient ring (or residue class ring) R/I. The elements of R/I are the
cosets of I in R, and the mapping

φ : R
onto→ R/I

: x 7→ x+ I

which maps x ∈ R to its coset x + I is a surjective ring homomorphism.
Thus the multiplication operation on R/I is as follows

(x+ I)(y + I) = xy + I.

This definition is consistent, since, if y + I = y′ + I, then y − y′ ∈ I, i.e.,
x(y − y′) = xy − xy′ ∈ I and xy + I = xy′ + I.

Proposition 2.1.3

1. For every ring homomorphism, φ, kerφ is an ideal.

2. Conversely, for every ideal I ⊆ R, I = kerφ for some ring homomor-
phism φ.

3. For every ring homomorphism, φ, imφ is a subring of R′.
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Consider the ring homomorphism

ψ : R/ kerφ
onto→ imφ

: x+ kerφ 7→ φ(x).

ψ is a ring isomorphism, since if ψ(x + kerφ) = ψ(y + kerφ) (i.e., φ(x) =
φ(y)), then φ(x − y) = φ(x) − φ(y) = 0 and x − y ∈ kerφ, thus, implying
that x+ kerφ = y + kerφ. Hence φ:R→ R′ induces a ring isomorphism:

R/ kerφ ∼= imφ.

Proposition 2.1.4 Let φ:R
onto→ R′ be a ring homomorphism of R onto R′.

1. If I ⊆ R is an ideal of R, then

φ(I) =
{
a′ ∈ R′ :

(
∃ a ∈ I

) [
φ(a) = a′

]}

is an ideal of R′. Similarly, if I ′ ⊆ R′ is an ideal of R′, then

φ−1(I ′) =
{
a ∈ R :

(
∃ a′ ∈ I ′

) [
φ(a) = a′

]}

is an ideal of R.

2. There is a one-to-one inclusions preserving correspondence between
the ideals I ′ of R′ and the ideals I of R which contain kerφ, such
that if I and I ′ correspond, then

φ(I) = I ′, φ−1(I ′) = I.

When I and I ′ correspond, φ induces a homomorphism of I onto I ′,
and

I/ kerφ ∼= I ′, R/I ∼= R′/I ′.

Definition 2.1.13 (Contraction and Extension) Let φ:R → R′ be a
ring homomorphism.

1. If I ′ ⊆ R′ is an ideal of R′ then the ideal

I ′c = φ−1(I ′) =
{
a ∈ R :

(
∃ a′ ∈ I ′

) [
φ(a) = a′

]}

in R is called the contracted ideal (or, simply, contraction) of I ′. If
the underlying homomorphism φ can be inferred from the context,
then we also use the notation I ′{R} for the contracted ideal. In
particular, if R is a subring of R′, then the ideal I ′{R} = R∩ I ′, and
it is the largest ideal in R contained in I ′.
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2. If I ⊆ R is an ideal of R, then the ideal

Ie = R′φ(I) =

({
a′ ∈ R′ :

(
∃ a ∈ I

) [
φ(a) = a′

]})
,

i.e., the ideal generated by φ(I) in R′ is called the extended ideal1

(or, simply, extension) of I. If the underlying homomorphism φ can
be inferred from the context, then we also use the notation I{R′} for
the extended ideal. In particular, if R is a subring of R′, then the
ideal I{R′} = R′I, and R′I is the smallest ideal in R′ which contains
I.

The following relations are satisfied by the contracted and extended
ideals:

1. I ′ ⊆ J ′ ⇒ I ′c ⊆ J ′c, and I ⊆ J ⇒ Ie ⊆ Je.

2. I ′ce ⊆ I ′, and Iec ⊇ I.
3. I ′cec = I ′c, and Iece = Ie.

The last relation says that if an ideal in R′ is an extended ideal, then it is
the extension of its contraction, and that if an ideal in R is a contracted
ideal, then it is the contraction of its extension.

Let C be the set of contracted ideals in R, and let E be the set of
extended ideals in R′. We see that the mapping I ′ 7→ I ′c and I 7→ Ie

are one-to-one and are inverse mappings of C onto E and of E onto C,
respectively.

2.1.3 Ideal Operations

Let I, J ⊆ R be ideals. Then the following ideal operations can be defined:

1. Sum: I + J =
{
a+ b : a ∈ I and b ∈ J

}
.

It is the smallest ideal containing both I and J .

2. Intersection: I ∩ J =
{
a : a ∈ I and a ∈ J

}
.

It is the largest ideal contained in both I and J .

3. Product: IJ =
{∑n

i=1 aibi : ai ∈ I, bi ∈ J and n ∈ N
}
.

We define the powers In (n ≥ 0) of an ideal I as follows: conven-
tionally, I0 = (1), and In = I In−1. Thus In (n > 0) is the ideal
generated by all products x1 x2 · · ·xn in which each factor xi belongs
to I.

1Note that φ(I) itself is not an ideal in R′ and hence, one needs to extend it sufficiently
to obtain the smallest ideal containing φ(I). Also, the notation R′φ(I) does not stand
for the elementwise product of the sets R′ and φ(I) as such a set is not necessarily an
ideal. R′φ(I) may be interpreted as the ideal product, which will be defined shortly.
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4. Quotient: I : J =
{
a ∈ R : aJ ⊆ I

}
.

The quotient (0) : J is called the annihilator of J (denoted annJ):
it is the set of all a ∈ R such that aJ = 0.

5. Radical:
√
I =

{
a ∈ R :

(
∃ n ∈ N

) [
a⋉ ∈ I

]}
.

The following are some interesting properties of the ideal operations:

1. The operations sum, intersection and product are all commutative
and associative.

2. Modular Law: If I ⊇ J , then I ∩ (J +K) = J + (I ∩K). This can
be also written as follows:

[I ⊇ J or I ⊇ K] ⇒ [I ∩ (J +K) = (I ∩ J) + (I ∩K)].

3. I(J +K) = IJ + IK.
Hence, (I + J)(I ∩ J) = I(I ∩ J) + J(I ∩ J) ⊆ IJ .

4. IJ ⊆ I ∩ J .
Two ideals I and J are called coprime (or comaximal), if I+J = (1).
Hence, we have IJ = I ∩J provided that I and J are coprime. [Note
that, in this case, I ∩ J = (I + J)(I ∩ J) ⊆ IJ .]

5. (a) I ⊆ I : J.

(b) (I : J)J ⊆ I.

(c)
(
(I : J) : K

)
= (I : JK) =

(
(I : K) : J

)
.

(d)
(⋂

i Ii : J
)

=
⋂

i(Ii : J).

(e)
(
I :
∑

i Ji

)
=
⋂

i(I : Ji).

6. (a)
√
I ⊇ I.

(b)
√√

I =
√
I.

(c)
√
IJ =

√
I ∩ J =

√
I ∩
√
J.

(d)
√
I = (1) iff I = (1).

(e)
√
I + J =

√√
I +
√
J.



Section 2.2 Polynomial Rings 35

2.2 Polynomial Rings

Let S be a ring, and x be a new symbol (called a variable, or indeterminate)
not belonging to S. An expression of the form

f(x) =
∑

i

aix
i, where ai ∈ S,

in which the sum is taken over a finite number of distinct integers i ≥ 0,
is called a univariate polynomial over the ring S. The ring elements ai’s
are called the coefficients of f . [It is implicitly assumed that ai = 0, if
ai is missing in the expression for f(x).] All powers of x are assumed to
commute with the ring elements: aix

i = xiai.
The operations addition and multiplication of two polynomials f(x) =∑

i aix
i and g(x) =

∑
j bjx

j are defined as follows:

f(x) + g(x) =
∑

k

ckx
k, where ck = ak + bk,

f(x) · g(x) =
∑

k

ckx
k, where ck =

∑

i+j=k

aibj.

It can be easily verified that the collection of polynomials with these addi-
tion and multiplication rules form a commutative ring with zero element 0
and identity element 1. The polynomial ring, thus obtained by adjoining
the symbol x to S, is denoted by R = S[x].

The degree of a nonzero polynomial f(x), (denoted deg(f)), is the high-
est power of x appearing in f ; by convention, deg(0) = −∞.

Let x1, . . ., xn be n distinct new symbols not belonging to S. Then the
ring R obtained by adjoining the variables x1, . . ., xn, successively, to S is
the ring of multivariate polynomials in x1, . . ., xn over the ring S:

R = S[x1] · · · [xn] = S[x1, . . . , xn].

Thus R consists of the multivariate polynomials of the form:

∑
ae1,...,enx

e1
1 · · ·xen

n .

A power product (or, a term) is an element of R of the form

p = xe1
1 · · ·xen

n , ei ≥ 0.

The total degree of the power product p is

deg(p) =
n∑

i=1

ei.
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The degree of p in any variable xi is degxi
(p) = ei. By the expression

PP(x1, . . ., xn), we denote the set of all power products involving the
variables x1, . . ., xn.

A power product p = xd1
1 · · ·xdn

n is a multiple of a power product q =
xe1

1 · · ·xen
n (denoted q | p), if

(
∀ 1 ≤ i ≤ n

) [
ei ≤ di

]
.

Synonymously, we say p is divisible by q. The least common multiple (LCM)
of two power products p = xd1

1 · · ·xdn
n and q = xe1

1 · · ·xen
n is given by

x
max(d1,e1)
1 · · ·xmax(dn,en)

n .

The greatest common divisor (GCD) of two power products p = xd1
1 · · ·xdn

n

and q = xe1

1 · · ·xen
n is given by

x
min(d1,e1)
1 · · ·xmin(dn,en)

n .

A monomial is an element of R of the form m = ap where a ∈ S is its
coefficient and p ∈ PP(x1, . . ., xn) is its power product . The total degree
of a monomial is simply the total degree of its power product.

Thus, a polynomial is simply a sum of a finite set of monomials. The
length of a polynomial is the number of nonzero monomials in it. The total
degree of a polynomial f [denoted deg(f)] is the maximum of the total
degrees of the monomials in it; again, by convention, deg(0) = −∞. Two
polynomials are equal, if they contain exactly the same set of monomials
(not including the monomials with zero coefficients).

2.2.1 Dickson’s Lemma

The following lemma about the power products due to Dickson has many
applications:

Lemma 2.2.1 (Dickson’s Lemma) Every set X ⊆ PP(x1, . . ., xn) of
power products contains a finite subset Y ⊆ X such that each p ∈ X is a
multiple of some power product in Y .
proof.
We use induction on the number n of variables. If n = 1 then we let Y
consist of the unique power product in X of minimum degree. So we may
assume n > 1. Pick any p0 ∈ X , say

p0 = xe1
1 · · ·xen

n .

Then every p ∈ X that is not divisible by p0 belongs to at least one of∑n
i=1 ei different sets: Let i = 1, . . ., n and j = 0, 1, . . ., ei − 1; then the
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set Xi,j consists of those power products p’s in X for which degxi
(p) = j.

Let X ′
i,j denote the set of power products obtained by omitting the factor

xj
i from power products in Xi,j. By the inductive hypothesis, there exist

finite subsets Y ′
i,j ⊆ X ′

i,j such that each power product in X ′
i,j is a multiple

of some power product in Y ′
i,j . We define Yi,j as

Yi,j = {p · xj
i : p ∈ Y ′

i,j}.

It is then clear that every power product in X is a multiple of some power
product in the finite set

Y =
(
{p0} ∪

⋃

i,j

Yi,j

)
⊆ X.

The proof of Dickson’s lemma (Lemma 2.2.1) can be understood picto-
rially as follows:

Consider the case when n = 2; then every power product xe1
1 x

e2
2 can be

associated with a representative point with coordinates (e1, e2) in N2. Note

that every power product x
e′
1

1 x
e′
2

2 with e′1 ≥ e1 and e′2 ≥ e2 is a multiple
of xe1

1 x
e2
2 ; these are the power products whose representative points are

above and to the right of the point (e1, e2): in Figure 2.1, the shaded
region represents all such points.

Thus, given a set X ⊆ PP(x1, x2), we consider their representative
points in N2. We first choose a power product xe1

1 x
e2
2 ∈ X . As all the

points of X in the shaded region are now “covered” by xe1
1 x

e2
2 , we only

need to choose enough points to cover the remaining points of X , which
belong to the region ([0..e1−1]×N)∪(N×[0..2−1]). For every i, 0 ≤ i < e1,
if

i′ = min
xi
1xk

2∈X
k,

then the power product xi
1x

i′

2 covers all the points of X in i×N. Similarly,
for every j, 0 ≤ j < e2, if

j′ = min
xk
1xj

2∈X
k,

then the power product xj′

1 x
j
2 covers all the points of X in N× .ג Thus the

finite set

{xe1
1 x

e2
2 } ∪ {xi

1x
i′

2 : 0 ≤ i < e1} ∪ {xj′

1 x
j
2 : 0 ≤ j < e2}

is the desired set Y ⊆ X .
Let R = S[x1, . . ., xn] be a polynomial ring over an ambient ring S. Let

G ⊆ R be a (possibly, infinite) set of monomials in R. An ideal I = (G),
generated by the elements of G is said to be a monomial ideal . Note that
if J  I is a subideal of I, then there exists a monomial m ∈ I \ J .
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xj′

1 x
j
2

xi
1x

i′

2

xe1
1 x

e2
2

j

i

e2

e1

x2

x1

Figure 2.1: A pictorial explanation of Dickson’s lemma

Theorem 2.2.2 Let K be a field, and I ⊆ K[x1, . . ., xn] be a monomial
ideal. Then I is finitely generated.

proof.
Let G be a (possibly, infinite) set of monomial generators of I. Let

X = {p ∈ PP(x1, . . . , xn) : ap ∈ G, for some a ∈ K}.

Note that (X) = (G) = I.

m = ap ∈ G ⇒ m ∈ (X), and

p ∈ X ⇒
(
∃ m = ap ∈ G

) [
p = a−1m ∈ (G)

]
.

Now, by Dickson’s lemma, X contains a finite subset Y ⊆ X such that
each p ∈ X is a multiple of a power product in Y .

Since Y ⊆ X , clearly (Y ) ⊆ (X). Conversely,

p ∈ X ⇒
(
∃ q ∈ Y

) [
q | p

]
⇒ p ∈ (Y ).

Thus (Y ) = (X) = I, and Y is a finite basis of I.
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2.2.2 Admissible Orderings on Power Products

Definition 2.2.1 (Admissible Ordering) A total ordering ≤
A

on the

set of power products PP(x1, . . ., xn) is said to be admissible if for all
power products p, p′, and q ∈ PP(x1, . . ., xn),

1. 1 ≤
A

p, and

2. p ≤
A

p′ ⇒ pq ≤
A

p′q.

Any total ordering that satisfies the second condition, but not necessarily
the first, is called a semiadmissible ordering.

Note that the only semiadmissible orderings on PP(x) are

1<
a

x<
a

x2<
a

· · · <
a

xn<
a

· · · and

· · · <
b

xn<
b

· · · <
b

x2<
b

x<
b

1,

of which only the first one is admissible.

We also write p<
A

q if p 6= q and p≤
A

q. Note that if a power product q is

a multiple of a power product p, then p≤
A

q, under any admissible ordering

≤
A

:

p | q ⇒
(
∃ a power product, p′

) [
p′p = q

]
;

but 1≤
A

p′, and thus, p≤
A

p′p = q.

Lemma 2.2.3 Every admissible ordering ≤
A

on PP is a well-ordering.

proof.
This follows from Dickson’s lemma: Suppose we have an infinite descending
sequence of power products

p1>
A

p2>
A

· · · >
A

pi>
A

· · · .

Let X = {p1, p2, . . ., pi, . . .} and let Y ⊆ X be a finite subset such that
every p ∈ X is a multiple of some power product in Y . Let p′ be the power
product that is smallest in Y under the ordering ≤

A

:

p′ = min
≤
A

Y.

Since the power products in X constitute an infinite descending sequence,

(
∃ q ∈ X

) [
q <

A

p′
]
.
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But, we know that (
∃ p ∈ Y

) [
p | q

]
.

Hence, (
∃ p ∈ Y

) [
p≤

A

q <
A

p′
]
,

contradicting the choice of p′.

Proposition 2.2.4 Let ≤
X

and ≤
Y

be two semiadmissible orderings on

PP(X) and PP(Y ), respectively.

1. Define ≤
L

on PP(X,Y ) as follows:

pq≤
L

p′q′, where p, p ∈ PP(X) and q, q′ ∈ PP(Y ),

if (i) p<
X

p′, or (ii) p = p′ and q≤
Y

q′.

2. Define ≤
R

on PP(X,Y ) as follows:

pq≤
R

p′q′, where p, p′ ∈ PP(X) and q, q′ ∈ PP(Y ),

if (i) q <
Y

q′, or (ii) q = q′ and p≤
X

p′.

Then both ≤
L

and ≤
R

are semiadmissible. Furthermore, if both ≤
X

and ≤
Y

are admissible, then so are both ≤
L

and ≤
R

.

Let p = xa1
1 x

a2
2 · · ·xan

n and q = xb1
1 x

b2
2 · · ·xbn

n be two power products in
PP(x1, x2, . . . , xn). We define two semiadmissible orderings, lexicographic
and reverse lexicographic as follows; their semiadmissibility follows from
the above proposition.

1. Lexicographic Ordering: ( >
LEX

)

We say p >
LEX

q if ai 6= bi for some i, and for the minimum such i,

ai > bi, i.e., the first nonzero entry in

〈a1, . . . , an〉 − 〈b1, . . . , bn〉
is positive. This is easily seen to be also an admissible ordering.
Note that, x1 >

LEX

x2 >
LEX

· · · >
LEX

xn. For example, in PP(w, x, y, z),

we have:

1 <
LEX

z <
LEX

z2 <
LEX

· · ·
<

LEX
y <

LEX
yz <

LEX
· · · <

LEX
y2 · · ·

<
LEX

x <
LEX

xz <
LEX

· · · <
LEX

xy <
LEX

· · · <
LEX

x2 · · ·
<

LEX
w <

LEX
wz <

LEX
· · · <

LEX
wy <

LEX
· · · <

LEX
wx <

LEX
· · · <

LEX
w2 · · ·
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2. Reverse Lexicographic Ordering: ( >
RLEX

)

We say p >
RLEX

q if ai 6= bi for some i, and for the maximum such i,

ai < bi, i.e., the last nonzero entry in

〈a1, . . . , an〉 − 〈b1, . . . , bn〉

is negative. This ordering is semiadmissible, but not admissible.
Note that x1 >

RLEX

x2 >
RLEX

· · · >
RLEX

xn. For example, in PP(w, x, y, z),

we have:

· · · <
RLEX

z2 <
RLEX

· · · <
RLEX

yz <
RLEX

· · · <
RLEX

xz <
RLEX

· · · <
RLEX

wz <
RLEX

z <
RLEX

· · · <
RLEX

y2 <
RLEX

· · · <
RLEX

xy <
RLEX

· · · <
RLEX

wy <
RLEX

y <
RLEX

· · · <
RLEX

x2 <
RLEX

· · · <
RLEX

wx <
RLEX

x <
RLEX

· · · <
RLEX

w2 <
RLEX

w <
RLEX

1.

Let p = xa1
1 x

a2
2 · · ·xan

n and q = xb1
1 x

b2
2 · · ·xbn

n be two power products in
PP(x1, x2, . . . , xn). We say p ≻

TOT

q, if deg(p) > deg(q). The order ≻
TOT

is

only a partial ordering, and hence not an admissible ordering. However,
we can make it an admissible ordering by refining it via a semiadmissible
ordering.

Let >
A

be a semiadmissible ordering. We define a new ordering >
TA

(the total ordering refined via >
A

) on PP(x1, . . ., xn) as follows: We say

p >
TA

q, if deg(p) > deg(q), or if, when deg(p) = deg(q), p>
A

q. That is, the

power products of different degrees are ordered by the degree, and within
the same degree the power products are ordered by >

A

.

Lemma 2.2.5 The ordering >
TA

is an admissible ordering.

proof.
Since >

TA

is a refinement of the total degree ordering, for all p ∈ PP, 1 ≤
TA

p.

Now assume that p ≤
TA

p′. Then if deg(p) < deg(p′), deg(pq) < deg(p′q) and

pq ≤
TA

p′q. Otherwise deg(p) = deg(p′) and p≤
A

p′. Hence deg(pq) = deg(p′q)

and by the semiadmissibility of >
A

, pq≤
A

p′q, and pq ≤
TA

p′q.

The next two admissible orderings have important applications in com-
putations involving homogeneous ideals2; by the proposition above, both
of them are admissible orderings.

2Roughly, a homogeneous polynomial is one in which every monomial is of the same
degree, and a homogeneous ideal is one with a basis consisting of a set of homogeneous
polynomials.
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1. Total Lexicographic Ordering: ( >
TLEX

)

We say p >
TLEX

q if

(a) deg(p) > deg(q), or else,

(b) In case deg(p) = deg(q), ai 6= bi for some i, and for the minimum
such i, ai > bi, i.e., the first nonzero entry in

〈a1, . . . , an〉 − 〈b1, . . . , bn〉

is positive.

For example, in PP(w, x, y, z), we have

1 <
TLEX

z <
TLEX

y <
TLEX

x <
TLEX

w <
TLEX

z2 <
TLEX

yz <
TLEX

y2 <
TLEX

xz <
TLEX

xy

<
TLEX

x2 <
TLEX

wz <
TLEX

wy <
TLEX

wx <
TLEX

w2 · · ·

2. Total Reverse Lexicographic Ordering:( >
TRLEX

)

We say p >
TRLEX

q if

(a) deg(p) > deg(q), or else,

(b) In case deg(p) = deg(q), ai 6= bi for some i, and for the maximum
such i, ai < bi, i.e., the last nonzero entry in

〈a1, . . . , an〉 − 〈b1, . . . , bn〉

is negative.

For example, in PP(w, x, y, z), we have

1 <
TRLEX

z <
TRLEX

y <
TRLEX

x <
TRLEX

w <
TRLEX

z2 <
TRLEX

yz <
TRLEX

xz <
TRLEX

wz

<
TRLEX

y2 <
TRLEX

xy <
TRLEX

wy <
TRLEX

x2 <
TRLEX

wx <
TRLEX

w2 · · ·

Henceforth, fix ≤
A

to be any admissible ordering. By an abuse of nota-

tion, we will say, for any two monomials m = ap and m′ = a′p′ (a, a′ ∈ S
and p, p′ ∈ PP), m≤

A

m′, if p≤
A

p′. We also assume that every polynomial

f ∈ R is written with its monomials ordered as a descending sequence un-
der >

A

, i.e., f = m1 +m2 + · · ·+mk, where each of mi’s is a monomial of

f , and m1>
A

m2>
A

· · · >
A

mk.
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Definition 2.2.2 (Head Monomial) Let f ∈ R be a polynomial. The
head monomial Hmono(f) of f is the monomial in f whose power product
is largest relative to ≤

A

, i.e., if f = m1 +m2 + · · · +mk, then Hmono(f) =

m1.
We define the head term of f (denoted, Hterm(f)) to be the power

product of Hmono(f) and the head coefficient of f (denoted, Hcoef(f)) to
be the coefficient of Hmono(f). Thus

Hmono(f) = Hcoef(f) ·Hterm(f).

By convention, Hcoef(0) = Hmono(0) = 0. We use the notation Tail(f) to
stand for f −Hmono(f).

For instance, relative to any admissible total degree ordering, the head
monomial of f = 4xy + y − 5 is Hmono(f) = 4xy, when f is considered to
be a polynomial in Z[x,y]. Notice that if we consider f to be an element
of (Z[x])[y], then, under any admissible ordering, the head monomial of
f is 4xy + y.

The lexicographic, total lexicographic and total reverse lexicographic
(admissible) orderings play certain important roles in various computa-
tions involving ideals, the last two of the above three admissible orderings
being very crucial in the case of homogeneous ideals. The reasons for their
importance are primarily the following:

1. The lexicographic ordering has the property that for each subring
S[xi, . . ., xn] ⊆ R, and each polynomial f ∈ R, f ∈ S[xi, . . ., xn] if
and only if Hmono(f) ∈ S[xi, . . ., xn].

2. The total lexicographic ordering has the property that for each sub-
ring S[xi, . . ., xn] ⊆ R, and each homogeneous polynomial f ∈ R,
f ∈ S[xi, . . ., xn] if and only if Hmono(f) ∈ S[xi, . . ., xn].

3. The total reverse lexicographic ordering has the property that for
each homogeneous polynomial f ∈ S[x1, . . ., xi], xi divides f if and
only if xi divides Hmono(f).

As a result, there is an elimination algorithm (similar to Gaussian elim-
ination for a system of linear equations) such that the elimination using
the lexicographic ordering (total lexicographic ordering) produces elements
of an ideal (homogeneous ideal) which are free of the first variable, and the
elimination using the total reverse lexicographic ordering produces elements
of a homogeneous ideal which are divisible by the last variable.
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2.3 Gröbner Bases

Definition 2.3.1 (Head Monomial Ideal) Let G ⊆ R be a subset of
R. The head monomial ideal of G [denoted Head(G)] is the ideal generated
by the head monomials of the elements of G, i.e.,

Head(G) =
(
{Hmono(f) : f ∈ G}

)
.

Definition 2.3.2 (Gröbner Basis) A subset G of an ideal I ⊆ R in R
is called a Gröbner basis of the ideal I if

Head(G) = Head(I),

i.e., if the set of monomials {Hmono(f) : f ∈ G} is a basis of Head(I).

If, in the definitions of head monomial, head monomial ideal and Gröbner
basis, the underlying admissible ordering >

A

is not readily decipherable,

then we explicitly state which ordering is involved by a suitable subscript.

Notice that since G = I satisfies the above condition, every ideal has
a Gröbner basis. Also, an ideal can have many distinct Gröbner bases.
For instance, if G is a Gröbner basis for I, then so is every G′, G ⊆ G′ ⊆
I. However, since a Gröbner basis need not be finite, as such, it is not
computationally very beneficial. Also, in general (for arbitrary ring S), we
do not know how to compute a Gröbner basis effectively.

Further, notice that if G ⊆ I, then Head(G) ⊆ Head(I). Hence,
to demonstrate that G is a Gröbner basis of I, it suffices to show that
Head(G) ⊇ Head(I).

The following theorem justifies the term “basis” in a Gröbner basis:

Theorem 2.3.1 Let I ⊆ R be an ideal of R, and G a subset of I. Then

Head(G) = Head(I) ⇒ (G) = I.

That is, every Gröbner basis of an ideal generates the ideal.
proof.
Since G ⊆ I, we have (G) ⊆ I. If (G) 6= I then we may choose an f ∈ I\(G)
such that Hmono(f) is minimal with respect to the underlying admissible
well-ordering, say ≤

A

, among all such polynomials. Thus, Hmono(f) ∈
Head(I) = Head(G):

Hmono(f) =
∑

gi∈G

tiHmono(gi), ti ∈ R,
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and

f ′ = Tail(f)−
∑

tiTail(gi) = f −
∑

tigi ∈ I.

Clearly, f ′ ∈ I\(G), since, otherwise, f = f ′+
∑
tigi would be in (G). But,

Hmono(f ′)<
A

Hmono(f), since every monomial in Tail(f) as well as every

monomial in each of tiTail(gi) is smaller than Hmono(f); consequently, we
have a contradiction in our choice of f . Hence, (G) = I, i.e., every Gröbner
basis of an ideal generates the ideal.

Corollary 2.3.2

1. Two ideals I and J with the same Gröbner basis G are the same:
I = (G) = J .

2. If J ⊆ I are ideal of R, and Head(J) = Head(I), then J = I.

proof.
(1) is simply a restatement of the previous theorem. (2) follows from (1)
since J is a Gröbner basis for both I and J .

Theorem 2.3.3 The subset G ⊆ I is a Gröbner basis of an ideal I of R
with respect to an admissible ordering >

A

if and only if each polynomial

h ∈ I can be expressed as

h =
∑

gi∈G

figi, fi ∈ R,

such that Hterm(fi)Hterm(gi)≤
A

Hterm(h).

proof.
(⇒) Let h ∈ I. Inductively, assume that the theorem holds for all h′<

A

h.

Since Hmono(h) ∈ Head(I) = Head(G), it is possible to write

Hmono(h) =
∑

gi∈G

aipiHmono(gi), ai ∈ S, pi ∈ PP(x1, . . . , xn)

such that pi Hterm(gi) = Hterm(h).
Let

h′ = Tail(h)−
∑

aipiTail(gi) = h−
∑

aipigi.

Since Hmono(h′)<
A

Hmono(h), by the inductive hypothesis, we can write h
as

h = h′ +
∑

aipigi =
∑

f ′
ig

′
i +
∑

aipigi,

such that Hterm(f ′
i)Hterm(g′i)≤

A

Hterm(h′)<
A

Hterm(h) and pi Hterm(gi)

≤
A

Hterm(h).
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(⇐) Without loss of generality, we assume that h ∈ I is expressed as

h = a1p1g1 + · · ·+ akpkgk, ai ∈ S, pi ∈ PP(x1, . . . , xn), gi ∈ G,
such that pi Hterm(gi)≤

A

Hterm(h).

Let L be the set of indices such that

L =
{
i ∈ {1, . . . , k} : Hterm(h) = piHterm(gi)

}
.

Since Hterm(h)≥
A

pi Hterm(gi), L 6= ∅.
Equating terms of equal degree in the previous expression for h, we get

Hcoef(h) =
∑

i∈L aiHcoef(gi). Hence

Hmono(h) = Hcoef(h)Hterm(h)

=
∑

i∈L

aiHcoef(gi) pi Hterm(gi)

=
∑

i∈L

aipiHmono(gi),

i.e., Head(G) ⊇ Head(I), and G is a Gröbner basis of I.

2.3.1 Gröbner Bases in K[x1, x2, . . . , xn]

Let K be any arbitrary field, and K[x1, x2, . . . , xn] be the polynomial ring
over the field K in variables x1, x2, . . ., and xn.

Theorem 2.3.4 Every ideal I of K[x1, x2, . . ., xn] has a finite Gröbner
basis.
proof.
Let <

A

be an arbitrary but fixed admissible ordering on PP(x1, . . ., xn).

Let X = {Hterm(f) : f ∈ I} be a subset of PP(x1, x2, . . . , xn). Then
by Dickson’s lemma, there is a finite subset Y ⊆ X such that every power
product of X is divisible by a power product of Y . Define an injective map
Φ:Y → I, as follows: for each power product p ∈ Y choose a polynomial
g = Φ(p) ∈ I such that Hterm(g) = p. This map is well defined, since every
p ∈ Y is a head term of some polynomial in I; it is injective, since p, q ∈ Y
and p 6= q implies that Hterm(Φ(p)) 6= Hterm(Φ(q)), and Φ(p) 6= Φ(q).

Let G = Φ(Y ) ⊆ I. From the finiteness of Y , it trivially follows that G
is finite. But, by proceeding as in the proof of Theorem 2.2.2, we see that

Head(G) = (Y ) = (X) = Head(I),

and G is a Gröbner basis for I.

Corollary 2.3.5 For any field K,

1. Every ideal of K[x1, x2, . . . , xn] has a finite system of generators.

2. K[x1, x2, . . . , xn] is a Noetherian ring.
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2.3.2 Hilbert’s Basis Theorem

Proposition 2.3.6 Let R be a ring. Then the following three statements
are equivalent:

1. R is Noetherian.

2. The ascending chain condition (ACC) for ideals holds:
Any ascending chain of ideals of R

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

becomes stationary. That is, there exists an n0 (1 ≤ n0) such that
for all n > n0, In0 = In.

3. The maximal condition for ideals holds:
Any nonempty set of ideals of R contains a maximal element (with
respect to inclusion).

proof.
(1⇒ 2):
For a chain of ideals of R

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

I =
⋃∞

n=1 In is also an ideal of R. (f , g ∈ I implies that for large enough
n0, f , g ∈ In0 ; hence f − g ∈ In0 ⊆ I. f ∈ I implies that for large enough
n0, f ∈ In0 ; hence for all h ∈ R, h · f ∈ In0 ⊆ I.)

By hypothesis, I is finitely generated: I = (f1, f2, . . . , fm), fi ∈ R. For
sufficiently large n0 we have fi ∈ In0 (i = 1, . . . ,m). Thus

I = (f1, f2, . . . , fm) ⊆ In0 ⊆ In0+1 ⊆ · · · ⊆ I,

and for all n > n0, In0 = In = I.

(2⇒ 1):
Assume to the contrary. Then there is an ideal I of R, which is not finitely
generated. If f1, f2, . . ., fm ∈ I, then (f1, f2, . . . , fm)  I. Hence there is
an fm+1 ∈ I, fm+1 6∈ (f1, f2, . . . , fm). Thus

(f1, f2, . . . , fm)  (f1, f2, . . . , fm, fm+1).

Thus we can construct an infinite (nonstationary) ascending chain of ideals

(f1)  (f1, f2)  (f1, f2, f3)  · · · ,

in direct contradiction to our hypothesis.
(2⇒ 3):
Suppose there is a nonempty set I of ideals ofR without a maximal element.
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For each I1 ∈ I there is an I2 ∈ I with I1  I2. In this way one can
construct a nonstationary ascending chain of ideals:

I1  I2  · · ·  In  · · · ,

contradicting the hypothesis.

(3⇒ 2):
Apply the maximal condition to the set of ideals in a chain of ideals to
obtain an In0 , maximal among the ideals (under inclusion). Thus for all
n > n0, In0 6⊂ In, i.e., In0 = In.

Theorem 2.3.7 (Hilbert’s Basis Theorem) If R is a Noetherian ring,
so is R[x].
proof.
Assume that R is Noetherian, but R[x] is not. We shall derive a contra-
diction.

Then R[x] must contain an ideal I, which is not finitely generated. Let
f1 ∈ I be a polynomial of least degree. If fk (k ≥ 1) has already been
chosen, choose fk+1, the polynomial of least degree in I \ (f1, f2, . . . , fk).
Since I is not finitely generated such a sequence of choices can be carried
on.

Let nk = deg(fk) and ak ∈ R, the leading coefficient of fk (k = 1, 2, . . .).
Observe that

• n1 ≤ n2 ≤ · · ·, simply by the choice of fk’s;

• (a1) ⊆ (a1, a2) ⊆ · · · (a1, a2, . . . , ak) ⊆ (a1, a2, . . . , ak, ak+1) ⊆ · · · is a
chain of ideals that must become stationary, as R is Noetherian. That
is, for some k, (a1, a2, . . . , ak) = (a1, a2, . . . , ak, ak+1), and ak+1 =
b1a1 + b2a2 + · · · bkak, bi ∈ R.

Now consider the polynomial

g = fk+1 − b1xnk+1−n1f1 − · · · − bkxnk+1−nkfk.

Notice that (1) deg g < deg fk+1, (2) g ∈ I and (3) g 6∈ (f1, f2, . . . , fk).
[Otherwise, it would imply that fk+1 ∈ (f1, f2, . . . , fk).] But this contra-
dicts our choice of fk+1 as a least-degree polynomial in I \ (f1, f2, . . . , fk).

Corollary 2.3.8

1. If R is a Noetherian ring, so is every polynomial ring R[x1, x2, . . . , xn].

2. Let R be a Noetherian ring and S an extension ring of R that is
finitely generated over R, in the ring sense. (S is a homomorphic
image of a polynomial ring R[x1, . . . , xn].) Then S is Noetherian.

3. For any field K, K[x1, x2, . . . , xn] is a Noetherian ring.
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2.3.3 Finite Gröbner Bases

Theorem 2.3.9 Let S be a Noetherian ring. Then every ideal of R =
S[x1, x2, . . ., xn] has a finite Gröbner basis.
proof.
Since S is Noetherian, by Hilbert’s basis theorem, so is R = S[x1,
x2, . . ., xn]. Let <

A

be an arbitrary but fixed admissible ordering on

PP (x1, x2, . . . , xn).
Let I be an ideal in R, and Head(I), the monomial ideal generated by

the head monomials of the polynomials in I. Let us choose a polynomial
g1 ∈ I; if G1 = {g1} ⊆ I is not a Gröbner basis of I, then Head(G1)  
Head(I), and there is a polynomial g2 ∈ I such that Hmono(g2) ∈ Head(I)\
Head(G1). Clearly, G2 = {g1, g2} ⊆ I and Head(G1)  Head(G2).

In the (k+1)th step, assume that we have chosen a set Gk = {g1, g2, . . .,
gk} ⊆ I. Now, if Gk is not a Gröbner basis for I, then there is a gk+1 ∈ I
such that

Hmono(gk+1) ∈ Head(I) \Head(Gk),

and Gk+1 = Gk ∪ {gk+1} ⊆ I and Head(Gk)  Head(Gk+1). But, since R
is Noetherian, it cannot have a nonstationary ascending chain of ideals

Head(G1)  Head(G2)  · · ·  Head(Gk)  · · · ,

and there is some n ≥ 1 such that Head(Gn) = Head(I). But since Gn ⊆ I,
we see that Gn = {g1, g2, . . . , gn} is a finite Gröbner basis for I with respect
to the admissible ordering <

A

.

2.4 Modules and Syzygies

Definition 2.4.1 (Modules) Given a ring S, an Abelian group M , and
a mapping

µ : S ×M →M

: 〈s, x〉 7→ sx,

we say M is an S-module if, for all s, t ∈ S and x, y ∈ M , the following
axioms are satisfied:

s(x+ y) = sx+ sy,

(s+ t)x = sx+ tx,

(st)x = s(tx),

1x = x.

Thus, an S-module is an additive Abelian group M on which the ring S
acts linearly.
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If S is a field K, then a K-module is said to be a K-vector space.
Note that if S is any ring, then any ideal I ⊆ S is an S-module. In

particular, S itself is an S-module. Also, every Abelian group (G, +, 0)
is a Z-module: here, the mapping 〈n, x〉 7→ nx (n ∈ Z, x ∈ G) has the
following outcome:

nx =





x+ x+ · · ·+ x︸ ︷︷ ︸
n

if n > 0;

0 if n = 0;

(−x) + (−x) + · · ·+ (−x)︸ ︷︷ ︸
n

if n < 0.

Let S 6= {0} be a ring, T ⊆ S, a multiplicatively closed subset and M ,
an S-module. Consider the following equivalence relation “∼” on M × T :

(
∀ 〈x1, a1〉, 〈x2, a2〉 ∈M × T

)

[
〈x1, a1〉 ∼ 〈x2, a2〉 iff (∃ a3 ∈ T ) [a3(a2x1 − x2a1) = 0]

]
.

Let MT = M × T/ ∼ be the set of equivalence classes on M × T with
respect to the equivalence relation ∼. The equivalence class containing
〈x, a〉 is denoted by x/a. MT can be made into an ST -module with the
obvious definitions of addition and scalar multiplication. MT is called the
module of fractions of M with denominator set T .

Definition 2.4.2 (Module Homomorphisms) Let S be a ring and let
M and N be S-modules. Then a mapping

φ:M → N

is said to be an S-module homomorphism if, for all s ∈ S and x, y ∈M ,

φ(x + y) = φ(x) + φ(y) and φ(sx) = sφ(x),

i.e., S acts linearly with respect to φ.
Let φ be an S-module homomorphism as before. We define the kernel

of φ to be

kerφ = {x ∈M : φ(x) = 0}
and the image of φ to be

imφ = {φ(x) ∈ N : x ∈M}.

It can be verified that kerφ and imφ are both S-modules.
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Definition 2.4.3 (Submodule) Let S be a ring and M an S-module.
Then M ′ is a said to be a submodule of M if M ′ is a subgroup of M and
M ′ is an S-module, i.e., M ′ is closed under multiplication by the elements
of S.

Definition 2.4.4 (Quotient Submodule) Given S, M and M ′ as in the
previous definition (Definition 2.4.3), we make the quotient Abelian group
M/M ′ an S-module by allowing it to inherit an S-module structure in a
natural manner. In particular, we make the natural definition for multipli-
cation in M/M ′: for s ∈ S and x ∈M ,

s(x+M ′) = sx+M ′.

This definition is consistent, since, if x + M ′ = y + M ′, i.e., x − y ∈ M ′

then s(x− y) = sx− sy ∈M ′ and sx+M ′ = sy +M ′. The axioms for an
S-module (as in Definition 2.4.1) follow quite easily.

The S-module M/M ′ thus defined is called the quotient submodule of
M by M ′, and the mapping

φ : M
onto→ M/M ′

: x 7→ x+M ′,

is a surjective S-module homomorphism.

Definition 2.4.5 (Module Operations) Let S be a ring, I be an ideal
of S, M be an S-module and

M = (Mi)i∈I ,

a family of submodules of M ; then:

1. Sum:

∑

i∈I

Mi =

{∑

i∈I

xi :
xi ∈Mi, and all but finitely
many of xi’s are zero

}

is a submodule of M . Thus
∑
Mi consists of all sums formed by

taking exactly one element from each submodule in a finite subfamily
ofM.

2. Intersection: ⋂

i∈I

Mi,

is a submodule of M .
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3. Product:

IM =
{ n∑

i=1

aixi : ai ∈ I, xi ∈M and n ∈ Z
}
,

is a submodule of M .

4. Quotient: Let N and P be two submodules of M :

N : P =
{
a ∈ S : aP ⊆ N

}
,

is an ideal of S. The quotient 0 : M is an ideal and is called the
annihilator of M (denoted annM).

An S-module M is faithful if annM = 0.

Definition 2.4.6 (Generators) Let S be a ring and let M be an S-
module. Note that, for any x ∈M ,

Sx = {sx : s ∈ S}

is a submodule of M . Let

X = {xi}i∈I

be a (possibly, infinite) subset of M . X is said to be a system of generators
of M , if

M =
∑

i∈I

Sxi.

Equivalently, X is a system of generators of M if every element x ∈M can
be expressed in the form ∑

i∈J

sixi,

where J ⊆ I is a finite subset of the index set and si ∈ S and xi ∈ X .

If S is a ring and M is an S-module, M is said to be finitely generated if
M has a finite set of generators, and cyclic (or monogenic) if it is generated
by only one element. A system of generators u1, . . ., un of an S-module M
is a basis of M , if

∑
aiui = 0 ⇒

(
∀ i
) [

ai = 0
]
,

i.e., M has a linearly independent system of generators. M is called free
(of rank n) if it has a basis of size n.
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If S is a ring, then it is natural to make Sn into an S-module, M , by
defining, for any 〈s1, . . ., sn〉, 〈t1, . . ., tn〉 ∈ Sn and any s ∈ S,

0 = 〈0, . . . , 0〉,
〈s1, . . . , sn〉+ 〈t1, . . . , tn〉 = 〈s1 + t1, . . . , sn + tn〉 and

s〈t1, . . . , tn〉 = 〈st1, . . . , stn〉.

It is easy to see that M = Sn is a free S-module of rank n.

Definition 2.4.7 (Noetherian Modules) An S-moduleM is called Noe-
therian if every submodule N of M is finitely generated.

Proposition 2.4.1 If S is a Noetherian ring, then Sn (n < ∞) is a
Noetherian S-module.
proof.
Let N be a submodule of Sn. We proceed by induction on n: If n = 1, then
there is nothing to prove, since, in this case, N ⊆ S1 = S is a submodule
and hence an ideal in S, thus possessing a finite set of generators. If n > 1,
then let

I =
{
s ∈ S : (∃ s2, . . . , sn ∈ S) [〈s, s2, . . . , sn〉 ∈ N ]

}
.

I is clearly an ideal in S, so I has a finite set of generators {s1,1, . . . , s1,k}.
Pick s1, . . ., sk ∈ N such that for i = 1, . . ., k, si has as first component
s1,i. For an arbitrary element s = 〈s1, s2, . . ., sn〉 ∈ N , we can express s1
as

s1 =

k∑

i=1

ris1,i, for some r1, . . . , rk ∈ S.

Now, note that

s′ = s−
k∑

i=1

risi

is of the form 〈0, s∗2, . . ., s
∗
n〉 ∈ N ′, where N ′ is the following submodule of

Sn:

N ′ = {s = 〈0, s2, . . . , sn〉 : s ∈ N}.
But the mapping

φ : N ′ → Sn−1

: 〈0, s2, . . . , sn〉 7→ 〈s2, . . . , sn〉

is a homomorphism with the kernel (0, 0, . . ., 0). Thus φ is an isomorphism
of N ′ into its image imφ ⊆ Sn−1. Hence, by induction, imφ a submodule
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of Sn−1 has a finite system of generators, and so does N ′. Let {t1, . . ., tl}
be such a system of generators. Then, since

s′ = s−
k∑

i=1

risi =
l∑

i=1

qiti, where qi, ri ∈ S

and

s =

k∑

i=1

risi +

l∑

i=1

qiti,

{s1, . . ., sk, t1, . . ., tl} is a finite system of generators of N .

Definition 2.4.8 (Syzygies) Let S be a ring and let M = (x1, . . ., xq)
be a finitely generated S-module. Note that

φ : Sq →M

: 〈s1, . . . , sq〉 7→ s1x1 + · · ·+ sqxq

is an S-module homomorphism. Thus

K = kerφ = {〈s1, . . . , sq〉 ∈ Sq | s1x1 + . . .+ sqxq = 0},

is a submodule of Sq; K is said to be the (first module of ) syzygies of M
[with respect to the system of generators {x1, . . ., xq} of M ] and is denoted
S(M).

Proposition 2.4.2 If S is a Noetherian ring and M is a finitely generated
S-module, then S(M), the syzygy of M , is finitely generated.
proof.
If M = (x1, x2, . . ., xq), then S(M) is a submodule of a Noetherian S-
module, Sq. Thus, by Proposition 2.4.1, S(M), the syzygy of M is also
finitely generated.

Given S, a Noetherian ring, and M = (x1, . . ., xq), a finitely generated
S-module, we have S(M) = (s1, . . ., sp) where

s1 = 〈s1,1, s1,2, . . . , s1,q〉
s2 = 〈s2,1, s2,2, . . . , s2,q〉

...

sp = 〈sp,1, sp,2, . . . , sp,q〉

and, for i = 1, . . ., p

si,1x1 + · · ·+ si,qxq = 0.
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If u1x1 + u2x2 + · · ·+ uqxq = 0, then 〈u1, u2, . . ., uq〉 = u ∈ S(M); so
there are v1, v2, . . ., vp ∈ S such that

u = v1s1 + v2s2 + · · ·+ vpsp.

This is equivalent to the following:

u1 = v1s1,1 + v2s2,1 + · · ·+ vpsp,1

u2 = v1s1,2 + v2s2,2 + · · ·+ vpsp,2

...

uq = v1s1,q + v2s2,q + · · ·+ vpsp,q.

2.5 S-Polynomials

Definition 2.5.1 (S-Polynomials) Let S be a ring; R = S[x1, . . ., xn]
be a ring of polynomials over S; G ⊆ R be a finite subset; and

F = {f1, . . . , fq} ⊆ G.

Set

T =
{
t1 = Hcoef(f1), . . . , tq = Hcoef(fq)

}
⊆ S

and

J = (t1, . . . , tq),

the ideal in S generated by T . From the previous discussion, we can write
the syzygy of J , S(J) ⊆ Sq, by its system of generators, {s1, . . ., sp}, where
si ∈ Sq, i = 1, . . ., p. That is,

S(J) =
(
〈s1,1, s1,2, . . . , s1,q〉,

...

〈sp,1, sp,2, . . . , sp,q〉
)
.

We define the set of S-polynomials of F , which we denote by SP (F ), to be
the set {h1,F , . . ., hp,F }, where, for i = 1, . . ., p,

hi,F = si,1 ·
m

Hterm(f1)
· f1 + · · ·+ si,q ·

m

Hterm(fq)
· fq,

where m = LCM(Hterm(f1), . . . ,Hterm(fq)).
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Note that if we simplify the expression for an S-polynomial, say hi,F ,
we get

hi,F = si,1t1 ·m+ si,1 ·
m

Hterm(f1)
·Tail(f1) + · · ·

+ si,qtq ·m+ si,q ·
m

Hterm(fq)
· Tail(fq)

= (si,1t1 + · · ·+ si,qtq)m

+ si,1 ·
m

Hterm(f1)
· Tail(f1) + · · ·+ si,q ·

m

Hterm(fq)
· Tail(fq)

= si,1 ·
m

Hterm(f1)
·Tail(f1) + · · ·+ si,q ·

m

Hterm(fq)
·Tail(fq).

Thus, Hterm(hi,F )<
A

m = LCM
(
Hterm(fi) : fi ∈ F

)
.

Theorem 2.5.1 Let F = {f1, . . ., fq} be as in the previous definition.
Assume that for some u1, . . ., uq ∈ S, p1, . . ., pq ∈ PP(x1, . . ., xn),

h =

q∑

i=1

uipifi,

and that p1 Hterm(f1) = · · · = pqHterm(fq) = M >
A

Hterm(h).

Thus,
q∑

i=1

uipi Hmono(fi) = 0.

Then we can express h in terms of the S-polynomialsof the set F as follows:

h =

p∑

j=1

vj,F rF hj,F ,

where vj,F ∈ S, rF ∈ PP(x1, . . ., xn) and hj,F ’s are S-polynomialsof F ,
SP (F ). Furthermore,

rF Hterm
(
hj,F

)
<
A

M = pi Hterm(fi).

proof.
Let

t1 = Hcoef(f1), . . . , tq = Hcoef(fq) and J = (t1, . . . , tq).

Let a system of generators for the syzygy of J , S(J), be given as follows:

S(J) =
(
〈s1,1, s1,2, . . . , s1,q〉,

...

〈sp,1, sp,2, . . . , sp,q〉
)
.
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Since
q∑

i=1

uipi Hmono(fi) = M ·
q∑

i=1

uiti = 0,

there exist v1, . . ., vp ∈ S such that

u1 =

p∑

j=1

vjsj,1, . . . , uq =

p∑

j=1

vjsj,q.

Now, if we let m = LCM
(
Hterm(f1), . . . ,Hterm(fq)

)
, then it is clear that

m | piHterm(fi), for all i,

i.e., there is some power product r ∈ PP(x1, . . ., xn) such that

m · r = M = pi · Hterm(fi), for all i.

Thus, we can rewrite h as follows:

h =




p∑

j=1

vjsj,1


 r · m

Hterm(f1)
· f1 + · · ·

+




p∑

j=1

vjsj,q


 r · m

Hterm(fq)
· fq

= v1r · h1,F + · · ·+ vpr · hp,F .

Also, for all i, Hterm(r)Hterm(hi,F ) <
A

r ·m = pi Hterm(fi).

Definition 2.5.2 (Syzygy Condition for a Finite Set G) Let S be a
ring, and let

G = {g1, g2, . . . , gm} ⊆ S[x1, . . . , xn],

be a finite set of polynomials. We say G satisfies the syzygy condition if
for every subset F ⊆ G and every S-polynomial h ∈ SP (F ), h can be
expressed as

h =
m∑

i=1

figi,

where fi ∈ S[x1, . . . , xn] and Hterm(h)≥
A

Hterm(fi)Hterm(gi).

Now we are ready to give a new characterization of a Gröbner basis in
terms of the syzygy condition:
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Theorem 2.5.2 Let I be an ideal in R = S[x1, . . ., xn], and

G = {g1, . . . , gm} ⊆ I,

a finite subset of I. Then the following three statements are equivalent:

1. Head(G) = Head(I).

2.
(
∀ f ∈ I

) [
f =

∑
gi∈G figi

]
, where

fi ∈ S[x1, . . ., xn] and Hterm(f)≥
A

Hterm(fi)Hterm(gi), for all i.

3. (G) = I and G satisfies the syzygy condition.
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proof.
(1⇔ 2):
The equivalence of (1) and (2) is simply Theorem 2.3.3.

(2⇒ 3):
Note first that (2) establishes G as a Gröbner basis (by Theorem 2.3.3) and
that (G) = I (by Theorem 2.3.1). Furthermore, if F ⊆ G and h ∈ SP (F ),
then h ∈ I; thus by condition (2) itself,

h =
∑

gi∈G

figi,

where fi ∈ S[x1, . . . , xn] and Hterm(h)≥
A

Hterm(fi)Hterm(gi). But this is

precisely the syzygy condition.

(3⇒ 2):
We assume to the contrary, i.e., condition (3) holds, but not (2); we shall
derive a contradiction.

We first define height of a sequence

H =
〈
hi : 1 ≤ i ≤ m, and hi ∈ R

〉

(with respect to G and the admissible ordering <
A

) as

Height(H) = max
>
A

{
Hterm(hi)Hterm(gi) : 1 ≤ i ≤ m

}
.

Since by (3), (G) = I, every f ∈ I can be expressed as

m∑

i=1

figi, fi ∈ S[x1, . . . , xn].

Furthermore, since (2) is assumed to be false, we can choose an f ∈ I such
that

Height
(〈
f1, . . . , fm

〉)
>
A

Hterm(f).

We assume that the representation of f is so chosen that it is of a minimal
height , M . Let

F =
{
gi ∈ G : Hterm(fi)Hterm(gi) = M

}
.

Without loss of generality, we may assume that F consists of the first k
elements of G. Thus

f =

k∑

i=1

Hmono(fi)gi +

k∑

i=1

Tail(fi)gi +

m∑

i=k+1

figi,
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where

Hterm(fi)Hterm(gi) = M, 1 ≤ i ≤ k,
Hterm(Tail(fi))Hterm(gi) <

A

M, 1 ≤ i ≤ k and

Hterm(fi)Hterm(gi) <
A

M, k + 1 ≤ i ≤ m.

Since f <
A

M , we see that

Hterm(f1)Hterm(g1) = · · · = Hterm(fk)Hterm(gk)

= M >
A

Hterm
( k∑

i=1

Hmono(fi)gi

)
.

As noted before (Theorem 2.5.1), we see that the expression
∑k

i=1 Hmono(fi)gi

can be expressed in terms of SP (F ), the S-polynomials of F . Thus we may
write f as

f =
∑

j

vj,F rF hj,F +

k∑

i=1

Tail(fi)gi +

m∑

i=k+1

figi.

But since rF Hterm(hj,F ) <
A

Hterm(fi)Hterm(gi) = M, 1 ≤ i ≤ k,
and since, by the syzygy condition, each

hj,F =
∑

i

fi,j,F gi

with Hterm(hj,F )≥
A

Hterm(fi,j,F ) Hterm(gi), we get

f =
∑

j

∑

i

(
vj,F rF fi,j,F

)
gi +

k∑

i=1

Tail(fi)gi +

m∑

i=k+1

figi.

But, by the previous arguments,

Hterm
(
vj,F rF fi,j,F

)
Hterm(gi) ≤

A

Hterm(rF ) Hterm(fi,j,F ) Hterm(gi)

≤
A

Hterm(rF ) Hterm(hj,F ) <
A

M,

and hence, we can express f differently as

f =

m∑

i=1

f ′
igi,

with Height(〈f ′
1, . . . , f

′
m〉)<

A

M, and thus contradicting our choice of the

representation of f relative to G.
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Problems

Problem 2.1
Show the following:
(i) An element r ∈ R of the ring R is a unit if and only if (r) = (1).
(ii) If r is a unit and x is nilpotent in the ring R, then r+ x is again a

unit.

Problem 2.2
Prove that if I1 and I2, as well as I1 and I3 are coprime, then I1 and

I2 I3 are coprime. Hence, if I1, I2, . . ., In are pairwise coprime, then

I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In.

Problem 2.3
Let I1, I2 ⊆ R be two ideals with bases B1 and B2, respectively. Which

of the following statements are true? Justify your answers.
(i) B1 ∪B2 is a basis for I1 + I2.
(ii) {b1 · b2 : b1 ∈ B1 and b2 ∈ B2} is a basis for I1I2.
(iii) {bi1bi2 · · · bin : bi1 , bi2 , . . . , bin ∈ B1} is a basis for In

1 .
(iv) Let f ∈ R, and C1, a basis for I1 ∩ (f). Then, every c1 ∈ C1 is

divisible by f , and {c1/f : c1 ∈ C1} is a basis for (I1 : (f)).

Problem 2.4
Let I, J , K be ideals in a ring R. Prove the following:
(i) Modular law : If I ⊇ J or I ⊇ K, then I∩(J+K) = (I∩J)+(I∩K).
(ii) I ⊆ I : J , and (I : J)J ⊆ I.
(iii) (

⋂
i Ii : J) =

⋂
i(Ii : J), and (I :

∑
i Ji) =

⋂
i(I : Ji).

(iv)
√
I ⊇ I, and

√√
I =
√
I.

Problem 2.5
For each k = 1, . . . , n, we define a function Uk as follows:

Uk : PP(x1, x2, . . . , xn) → R

: p = xa1
1 xa2

2 · · ·xan
n 7→ uk,1a1 + uk,2a2 + · · · + uk,nan,

where each of uk,l (k = 1, . . . , n, l = 1, . . . , n) is a nonnegative real number.
Assume that Uk’s are so chosen that 〈U1(p), . . . , Un(p)〉 = 〈0, . . . , 0〉 if and
only if p = 1. We define an ordering >

U

on the power products as follows:

given two power products p, q ∈ PP(x1, x2, . . . , xn), we say p>
U

q, if the

first nonzero entry of

〈U1(p), U2(p), . . . , Un(p)〉 − 〈U1(q), U2(q), . . . , Un(q)〉
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is positive.
Show that the ordering >

U

is an admissible ordering. Characterize the

admissible orderings >
LEX

, >
TLEX

and >
TRLEX

in terms of appropriately chosen

functions Uk.

Problem 2.6
Let (x2 + y2), (xy) ⊆ Q[x,y] be two ideals with Gröbner bases {x2 +

y2} and {xy}, respectively, with respect to the >
TRLEX

(with x >
TRLEX

y). Is

{x2 + y2, xy} a Gröbner basis for (x2 + y2) + (xy) under >
TRLEX

?

Problem 2.7
Let <

A

be a fixed but arbitrary admissible ordering on PP(x1, . . ., xn).

Consider the following procedure (possibly, nonterminating) to compute a
basis for an ideal in the polynomial ring R = S[x1, . . . , xn]:

G := {0};
while (G) 6= I loop

Choose f ∈ I \ (G), such that Hmono(f) is the smallest
among all such elements with respect to <

A
;

G := G ∪ {f};
end{loop }

Which of the following statements are true? Justify your answers.
(i) The procedure terminates if S is Noetherian.
(ii) The procedure is an effective algorithm.
(iii) Let fi be the element of I that is added to G in the ith iteration.

Then Hterm(f1)≤
A

Hterm(f2)≤
A

· · · ≤
A

Hterm(fn)≤
A

· · ·
(iv) The set G at the termination is a Gröbner basis for I.

Problem 2.8
Consider the polynomial ring R = S[x1, . . ., xn], with total reverse

lexicographic admissible ordering >
TRLEX

such that x1 >
TRLEX

· · · >
TRLEX

xn.

The homogeneous part of a polynomial f ∈ R of degree d (denoted fd) is
simply the sum of all the monomials of degree d in f . An ideal I ⊆ R is
said to be homogeneous if the following condition holds: f ∈ I implies that
for all d ≥ 0, fd ∈ I

Prove that: If G is a Gröbner basis for a homogeneous ideal I with
respect to >

TRLEX

in R, then G ∪ {xi, . . . , xn} is a Gröbner basis for (I, xi,

. . ., xn) (1 ≤ i ≤ n) with respect to >
TRLEX

in R.

Hint: First show that (Head(I), xi, . . . , xn) = Head(I, xi, . . . , xn),
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Problem 2.9
LetK be a field and I an ideal in K[x1, x2, . . ., xn]. Let G be a maximal

subset of I satisfying the following two conditions:

1. All f ∈ G are monic, i.e., Hcoef(f) = 1.

2. For all f ∈ G and g ∈ I, Hterm(f) 6= Hterm(g) implies that Hterm(g)
does not divide Hterm(f).

(i) Show that G is finite.
(ii) Prove that G is a Gröbner basis for I.
(iii) A Gröbner basis Gmin for an ideal I is a minimal Gröbner basis

for I, if no proper subset of Gmin is a Gröbner basis for I.
Show that G (defined earlier) is a minimal Gröbner basis for I.
(iv) Let G be a Gröbner basis (not necessarily finite) for an ideal I of

K[x1, x2, . . . , xn]. Then there is a finite minimal Gröbner basis G′ ⊆ G for
I.

Problem 2.10
(i) Given as input a0, a1, . . ., an and b0, b1, . . ., bn integers, write an

algorithm that computes all the coefficients of

(a0 + a1x+ · · ·+ anx
n)(b0 + b1x+ · · ·+ bnx

n).

Your algorithm should work in O(n2) operations.
(ii) Show that given M and v, two positive integers, there is a unique

polynomial
p(x) = p0 + p1x+ · · ·+ pnx

n

satisfying the following two conditions:

1. p0, p1, . . ., pn are all integers in the range [0,M − 1], and

2. p(M) = v

(iii) Devise an algorithm that on input a0, a1, . . ., an; M integers
evaluates

a0 + a1M + · · ·+ anM
n.

Your algorithm should work in O(n) operations.
(iv) Use (ii) and (iii) to develop an algorithm for polynomial multi-

plication [as in (i)] that uses O(n) arithmetic operations (i.e., additions,
multiplications, divisions, etc.).

(v) Comment on your algorithm for (iv). What is the bit-complexity
of your algorithm?
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Solutions to Selected Problems

Problem 2.3
All but the last statement are true. Since the proofs for the first three

assertions are fairly simple, we shall concentrate on the last statement.
(iv) Here is a counterexample (due to Giovanni Gallo of University of

Catania):

Let R = Q[x,y]/(y5) be a ring, f = y2 ∈ R and I1 = (xy), an ideal
in R. Since xy2 ∈ (y2) and xy2 ∈ (xy), clearly, xy2 ∈ I ∩ (f). Conversely,
if a ∈ I ∩ (f), then a must be r · xy2 for some r ∈ R. Hence, a ∈ (xy2),
and (xy2) = I ∩ (f).

On the other hand, as, for all k ≥ 3,

yk · f ≡ y2+k ≡ 0 mod (y5),

yk ∈ I : (f). But, for any k > 0, yk 6∈ (x). Therefore, {x} is not a basis for
I : (f). In fact, for this example, {x, y3} is a basis for I : (f) = (xy) : (y2),
for the following reasons: If a ∈ (xy) : (y2), then the following statements
are all equivalent.

ay2 ∈ (xy) ⇔ ay2 ∈ (xy) ∩ (y2) = (xy2)

⇔ ay2 ≡ rxy2 mod (y5), r ∈ R
⇔ (a− rx)y2 = sy5, s ∈ R
⇔ a = rx + sy3, r, s ∈ R.

However, if f ∈ R is not a nonzero zero divisor, or if R is an integral
domain, then the statement holds. Let a 6= 0 ∈ I : (f). Then af ∈ I, and
af 6= 0. Thus, af =

∑
ci∈C rici and a =

∑
ci∈C rici/f exists. Hence, a ∈

({c/f : c ∈ C}) . As, for all ci ∈ C, ci/f ∈ I : (f), we see that {c/f : c ∈ C}
is a basis for I : (f).

In general, the following holds:

Let f ∈ R, C be a basis for I∩(f), and D be a basis for ann (f).
Then, every c ∈ C is divisible by f , and {c/f : c ∈ C} ∪D is a
basis for I : (f).

af ∈ I ⇔ af ∈ I ∩ (f) = (C)

⇔ af −
∑

ci∈C

rici = 0, ri ∈ R

⇔
(
a−

∑

ci∈C

ri
ci
f

)
f = 0

⇔
(
a−

∑

ci∈C

ri
ci
f

)
∈ ann (f)
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⇔ a =
∑

ci∈C

ri
ci
f

+
∑

di∈D

sidi, ri, si ∈ R

⇔ a ∈
({

c

f
| c ∈ C

}
∪D

)
.

Thus {c/f : c ∈ C} ∪D is a basis for I : (f).

Problem 2.7
Let Gi denote {f1, . . ., fi}.
(i) True. The termination of the procedure directly follows from the

ascending chain condition (ACC) property of the Noetherian ring as

(G1)  (G2)  (G3)  · · · .

(ii) False. This algorithm is not effective because it does not say how
to find f ∈ I \ (G).

(iii) True. The condition Hterm(f1)≤
A

Hterm(f2)≤
A

· · · follows immedi-

ately from the fact that, at each step, we choose an fi such that Hmono(fi)
is the smallest among all elements of I \ (Gi−1). Indeed, if it were not true,
then there would be i and j (j < i) such that

Hterm(fi)<
A

Hterm(fj).

Assume that among all such elements fi is the first element which violates
the property. But, since (Gj−1) ⊂ (Gi−1), and since fi ∈ I \ (Gi−1), we
have fi ∈ I \ (Gj−1). Since, Hterm(fi)<

A

Hterm(fj), the algorithm would

have chosen fi in the jth step, instead of fj , contradicting the hypothesis.

(iv) False. Consider the ideal I = (xy, x2 + y2) ⊆ Q[x,y]. Let the
first polynomial chosen be f1 = xy ∈ I \ (0) as Hmono(f1) is the smallest
among all such elments (with respect to <

TRLEX

). Similarly, let the second

polynomial chosen be f2 = x2 + y2 ∈ I \ (xy) as Hmono(f2) is the smallest
among all such elments (with respect to <

TRLEX

). As I = (f1, f2), the

algorithm terminates with G = {f1, f2}. Thus Head(G) = (xy, x2). Since
y3 = y(x2 + y2) − x(xy) ∈ I, we have y3 ∈ Head(I) \ Head(G), and G is
not a Gröbner basis of I.

Problem 2.8
Since G ⊆ I, we have (G, xi, . . ., xn) ⊆ (I, xi, . . ., xn) and Head(G, xi,

. . ., xn) ⊆ Head(I, xi, . . ., xn). Hence, we only need to show that Head(G,
xi, . . ., xn) ⊇ Head(I, xi, . . ., xn).

Following the hint, we proceed as follows: Let fd ∈ (I, xi, . . ., xn) be a
homogeneous polynomial of degree d. Then, if Hmono(fd) ∈ (xi, . . ., xn),
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then, plainly, Hmono(fd) ∈ (Head(I), xi, . . ., xn). Otherwise, Hmono(fd)
is not divisible by any of the xj ’s and fd can be expressed as follows:

fd = gd + hixi + · · ·+ hnxn, gd ∈ I, and hi, . . . , hn ∈ S[x1, . . . , xn].

Since Hmono(fd) ∈ PP(x1, . . ., xn), by the choice of our admissible
ordering, Hmono(fd) >

TRLEX

Hmono(hjxj), and thus

Hmono(fd) = Hmono(gd) ∈ Head(I) ⊆ (Head(I), xi, . . . , xn).

This proves that

(Head(I), xi, . . . , xn) ⊇ Head(I, xi, . . . , xn)

⊇ (Head(I), xi, . . . , xn).

Since Head(G, xi, . . ., xn) ⊇ (Head(G), xi, . . ., xn), using the hint, we
have

Head(G, xi, . . . , xn)

⊇ (Head(G), xi, . . . , xn)

= (Head(I), xi, . . . , xn) (G is a Gröbner basis for I)

⊇ Head(I, xi, . . . , xn),

as claimed.

Problem 2.9
Since K is a field, for all a ∈ K, a−1 ∈ K. Hence,

(
∀ f ∈ I

) (
∃ f ′ ∈ I

) [
Hterm(f) = Hterm(f ′), but Hcoef(f ′) = 1

]
.

Moreover, for all a ∈ K, af ′ ∈ I.
(i) Let the set of power products, Ĝ, be the set of head terms of G:

Ĝ = {Hterm(f) : f ∈ G}.

Let Hterm(f) and Hterm(g) be two distinct power products in Ĝ. Then
f ∈ G ⊆ I and g ∈ G ⊆ I. Thus, by condition (2), Hterm(f) is not a

multiple of Hterm(g), nor the converse. But, then by Dickson’s lemma, Ĝ

is finite, and so is G, since there is a bijective map between G and Ĝ.

(ii) We claim that

(
∀ h ∈ I

) (
∃ f ∈ G

) [
Hterm(h) = p ·Hterm(f)

]
,

where p ∈ PP(x1, . . . , xn).
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Indeed if it were not true, then we could choose a “smallest” h ∈ I [i.e.,
the Hterm(h) is minimal under the chosen admissible ordering ≤

A

] violating

the above condition. Without loss of generality, we assume that h is monic.
If g ∈ I is a polynomial with a distinct Hterm from h such that

Hterm(g) divides Hterm(h), then Hterm(g)<
A

Hterm(h), and by the choice

of h, Hterm(g) is a multiple of Hterm(f), for some f ∈ G. But, this con-
tradicts the assumption that Hterm(h) is not divisible by Hterm(f), as
f ∈ G.

Thus, for all g ∈ I, Hterm(h) 6= Hterm(g) implies that Hterm(g) does
not divide Hterm(h). But, if this is the case, then G ∪ {h} also satisfies
conditions (1) and (2), which contradicts the maximality of G.

Now, we see that if h ∈ I, then

Hmono(h) = Hcoef(h) · Hterm(h) = Hcoef(h) · pHterm(f),

where f ∈ G, p ∈ PP(x1, . . . , xn)

⇒ Hmono(h) ∈ Head(G).

Therefore Head(I) ⊆ Head(G); hence G is a Gröbner basis for I.

(iii) Suppose G is not a minimal Gröbner basis for I. Let G′  G be
a minimal Gröbner basis. Let f ∈ G \ G′. By the construction of G, for
all g ∈ G′ ⊂ I, Hterm(g) does not divide Hterm(f). Thus Hterm(f) ∈
Head(G) \Head(G′). This leads us to the conclusion that

Head(G′) 6= Head(G) = Head(I).

Thus G′ is not a Gröbner basis, as assumed.

(iv) Let G′ ⊆ G be a minimal Gröbner basis for I. Without loss of
generality, assume that all the polynomials of G′ are monic. Let f , g ∈ G′

with distinct Hterm’s. We claim that Hterm(f) does not divide Hterm(g).
Since, otherwise,

Head(I) = Head(G′) = Head (G′ \ {g}) ,

and, G′ \ {g}  G′ would be a Gröbner basis for I, contradicting the
minimality of G′. Thus, by Dickson’s lemma the set of power products,

Ĝ′ = {Hterm(g) | g ∈ G′},

is finite and so is G′.

Problem 2.10
(i) Let C = {c2n, c2n−1, . . ., c0} be the coefficients of

(anx
n + · · ·+ a1x+ a0) · (bnxn + · · ·+ b1x+ b0).
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Then

∀i,1≤i≤2n ci =

i∑

j=0

aj · bi−j , where ai, bi = 0, for i > n.

Since ci is a sum of at most n products, it can be computed using O(n)
arithmetic operations. Hence C can be computed in O(n2) time assuming
that each arithmetic operations takes O(1) time.

(ii) Let
p(x) = p0 + p1x+ · · ·+ pnx

n.

Consider

n = min
j

{
M j > v

}
− 1, and

pi = Quotient
(
v,M i

)
mod M, 0 ≤ i ≤ n.

It is obvious that 0 ≤ pi < M and also

p(M) =

n∑

i=0

piM
i =

n∑

i=0

[
Quotient

(
v,M i

)
mod M

]
·M i

=

n∑

i=0

[
Quotient

(
v,M i

)

−Quotient
(
Quotient

(
v,M i

)
,M
)
·M

]
·M i

=

n∑

i=0

[
Quotient

(
v,M i

)
·M i −Quotient

(
v,M i+1

)
·M i+1

]

= Quotient (v, 1)−Quotient
(
v,Mn+1

)
·Mn+1.

But Mn+1 > v, therefore Quotient(v,Mn+1) = 0 which implies p(M) = v.
The uniqueness follows from the fact that p = (pn, . . ., p0) gives the

unique representation of v in radix M . Since each pi can be computed
using O(1) arithmetic operations (using the fact that M i = M i−1 ·M), we
can find all pi in O(n) time.

(iii) We can write the polynomial as

a0 +M (a1 + · · ·+M (an−1 +Man) · · ·) .
If we compute the above expression from the innermost level to the outer-
most, we need only O(n) arithmetic operations and therefore p(M) can be
computed using O(n) operations.

(iv) Let

A[x] = a0 + a1x+ · · ·+ anx
n,

B[x] = b0 + b1x+ · · ·+ bnx
n, and

C[x] = A[x] · B[x].
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Assume that

α = max{a0, a1, . . . , an, b0, b1, . . . , bn};

choose M = (n+ 2) · α. We claim that

ci = Quotient
(
A[M ] ·B[M ],M i

)
mod M.

ci =
∑i

j=0 ajbi−j < (n+2)α = M . On the other hand C[M ] = A[M ]·B[M ]
and therefore from the previous part it follows that there is a unique de-
composition of C[M ], such that it can be written as a polynomial whose
coefficients are the same as in the above equality. Hence, the above ex-
pression correctly gives the coefficients. Moreover A[M ] and B[M ] can be
computed using O(n) arithmetic operations, and once we have C[M ], we
can obtain all ci using O(n) arithmetic operations which shows that the
total operations required are bounded by O(n).

(v) Since M = (n + 2)α, it needs b = O(log n + logα) bits. Using
Schönhage-Strassen’s algorithm, two n-bit integers can be multiplied in
O(n log n log logn) time. In our cases the largest number that we multiply is
Mn which requires nb bits. Hence the time complexity of one multiplication
is O(nb(log nb)(log lognb)) and since there are O(n) multiplications, the
total bit complexity is bounded by O(n2b(lognb)(log lognb)).

Note: (Matrix Multiplication) Given two n×n matrices, A and B, we can
compute C = A ·B, using O(n2) operations as follows: We can represent A
as a vector of its rows, i.e., A = {a1, a2, . . ., an}, where ai = {ai,1, ai,2, . . .,
ai,n}. Similarly, we can consider B as a vector of columns, each column
denoted by bj = {b1,j, b2,j, . . ., bn,j}. If we treat ai and bj as polynomials,
where

ai(x) = ai,1 + ai,2x+ · · ·+ ai,nx
n−1, and

bj(x) = b1,jx
n−1 + · · ·+ bn−1,jx+ bn,j,

then ci,j =
∑n

k=1 ai,kbk,j is nothing but the coefficient of xn−1 in the
polynomial ai(x) ·bj(x). Now, to compute C, we proceed as follows, choose
M = (n + 2) max1≤i,j≤n{ai,j , bi,j}, and compute a1(M), . . ., an(M),
b1(M), . . ., bn(M). Then

ci,j = Quotient
(
ai(M) · bj(M),Mn−1

)
mod M.

Each of ai(M)’s and bj(M)’s can be computed using O(n) operations, and
each ci,j can be computed using O(1) operations. Therefore, the matrix C
can be computed using O(n2) arithmetic operations.



70 Algebraic Preliminaries Chapter 2

Bibliographic Notes

There are several excellent textbooks on algebra which cover in greater detail
most of the topics discussed in this chapter (groups, rings, ideals, modules and
syzygies): for example, Atiyah and Macdonald [9], Herstein [94], Jacobson [105],
Kostrikin [120], Matsumura [141, 142], van der Waerden [204] and Zariski and
Samuel [216].

Dickson’s lemma for power products first appears in [62]. For homogeneous
ideals in K[x1, . . ., xn], the concept of a basis was given by Hilbert [95], and
Hilbert’s basis theorem (Hilbert Basissatz) now appears in all textbooks on alge-
bra, in its dehomogenized version.

The concept and use of admissible orderings (also called term orderings)
seems to have first appeared in the work of Buchberger [33] and then was further
generalized by several authors. First characterization of all possible orderings
appeared in the work of Robbiano [175, 176], and a more constructive character-
ization appears in the papers by Dubé et al. [64, 65].
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begun to be widely understood, several survey and expository papers on the topic
have appeared: for instance, Barkee [12], Barkee and Ecks [11], Buchberger [33],
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The method of Gröbner bases (G-bases) was introduced in 1965 by
Buchberger and starting from 1976, studied in a sequence of articles
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for standard bases play the role of the maximal terms for Gröbner
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alizing and suitably modifying Buchberger’s algorithm for G-bases.
The strict interrelation between the two concepts (and algorithms to
compute them) is made clear in [Lazard’s work[128]].



Chapter 3

Computational Ideal

Theory

3.1 Introduction

In the previous chapter, we saw that an ideal in a Noetherian ring admits
a finite Gröbner basis (Theorem 2.3.9). However, in order to develop con-
structive methods that compute a Gröbner basis of an ideal, we need to
endow the underlying ring with certain additional constructive properties.
Two such properties we consider in detail, are detachability and syzygy-
solvability. A computable Noetherian ring with such properties will be
referred to as a strongly computable ring.

Thus, we will start with the notion of a strongly computable ring, and
then provide an algorithm that computes a Gröbner basis for an ideal in
S[x1, . . ., xn], assuming that S is a strongly computable ring. Along the
way, we shall also develop the concept of a head reduction1, which, along
with the notion of S-polynomial, will provide the basic ingredients for the
algorithm.

Next, we will provide a stronger form of Hilbert’s basis theorem: namely,
we shall see that if S is a strongly computable ring, so is S[x1, . . ., xn].

We will conclude this chapter with a sampling of various applications
of the Gröbner basis algorithm to computational ideal theory. Examples of
such applications include ideal membership, ideal congruence, ideal equal-
ity, syzygy basis construction, sum, product , intersection and quotient op-
erations on ideals.

1Some authors simply use the term reduction for what we call head reduction here.
However, we will reserve the term reduction for a slightly stronger process that was first
introduced and used by Buchberger.

71
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3.2 Strongly Computable Ring

Definition 3.2.1 (Computable Ring) A ring S is said to be computable
if for given r, s ∈ S, there are algorithmic procedures to compute −r, r+s,
r · s. If, additionally S is a field, then we assume that for a given nonzero
field element r ∈ S (r 6= 0), there is an algorithmic procedure to compute
r−1.

Definition 3.2.2 (Detachable Ring) Let S be a ring, s ∈ S and {s1,
. . ., sq} ⊆ S. S is said to be detachable if there is an algorithm to decide
whether s ∈ (s1, . . ., sq). If so, the algorithm produces a set {t1, . . .,
tq} ⊆ S, such that

s = t1 s1 + · · ·+ tq sq.

Definition 3.2.3 (Syzygy-Solvable Ring) A ring S is said to be syzygy-
solvable if for any given {s1, . . ., sq} ⊆ S, there is an algorithm to compute
a (finite) syzygy basis, t1, . . ., tp for the S-module S(s1, . . ., sq) such that

1. For all 1 ≤ i ≤ p, ∑j ti,j sj = 0.

2. For any 〈u1, . . ., uq〉 = u ∈ Sq,
∑

j ujsj = 0

⇒
(
∃ v = 〈v1, . . . , vp〉 ∈ Sp

) [
u = v1 t1 + · · ·+ vp tp

]
.

Definition 3.2.4 (Strongly Computable Ring) A ring S is said to be
strongly computable if it satisfies the following four conditions:

1. S is Noetherian,

2. S is computable,

3. S is detachable, and

4. S is syzygy-solvable.

Let S be a ring and R = S[x1, . . ., xn] be a ring of polynomials. Let
≥
A

be a fixed but arbitrary computable admissible ordering on PP(x1, . . .,

xn). Assume that G ⊆ R and f ∈ R. Then the problems of (1) deciding
whether Hmono(f) ∈ Head(G) and (2) computing the S-polynomials of G
reduce to simpler detachability and syzygy solvability problems in the ring
S, respectively. The following lemma shows the relationship between the
membership problem for the head monomial ideal and detachability.
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Lemma 3.2.1 Let Gf =
{
g ∈ G : Hterm(g) | Hterm(f)

}
.

Then Hmono(f) ∈ Head(G) if and only if

Hcoef(f) ∈
(
{Hcoef(g) : g ∈ Gf}

)
.

proof.
(⇒) Since Hmono(f) ∈ Head(G), it is possible to write

Hmono(f) =
∑

gi∈G

ai · pi ·Hmono(gi), ai ∈ S and pi ∈ PP(x1, . . . , xn)

such that pi · Hterm(gi) = Hterm(f) (i.e., gi ∈ Gf ). Therefore,

Hmono(f) =
∑

gi∈Gf

ai · Hcoef(gi) · Hterm(f)

⇒ Hcoef(f) =
∑

gi∈Gf

ai · Hcoef(gi)

⇒ Hcoef(f) ∈
(
{Hcoef(g) : g ∈ Gf}

)
.

(⇐) Hcoef(f) =
∑

gi∈Gf

ai · Hcoef(gi), ai ∈ S

⇒ Hmono(f) = Hcoef(f) ·Hterm(f)

=
∑

gi∈Gf

ai
Hterm(f)

Hterm(gi)
· Hmono(gi) ∈ Head(G),

since
(
∀ g ∈ Gf

) [ Hterm(f)

Hterm(gi)
∈ PP(x1, . . . , xn)

]
.

3.2.1 Example: Computable Field

Most of the commonly used rings do satisfy the requirements to be strongly
computable. We give two examples in this section: namely, the computable
fields (e.g., field of rationals, Q or field of integer mod a prime, Zp) and the
ring of integers, Z.

Example 3.2.5 (A Computable Field Is Strongly Computable.) Let
S = K be a computable field. We show that K is strongly computable.

1. K is Noetherian; recall that a field can have only improper ideals
which are obviously finitely generated.
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2. K is computable, by assumption.

3. K is detachable. Let a ∈ K and {a1, . . ., aq} ⊆ K. If a 6= 0 but
a1 = a2 = · · · = aq = 0, then a 6∈ (a1, . . ., aq); otherwise, assume
that some ai 6= 0 and has a multiplicative inverse a−1

i . Then

a = 0 · a1 + · · ·+ 0 · ai−1 + a · a−1
i · ai + · · ·+ 0 · aq.

4. K is syzygy-solvable. Let {a1, . . ., aq} ⊆ K (without loss of general-
ity, we may assume that every ai 6= 0). Then the syzygy of (a1, . . .,
aq) is a (q − 1)-dimensional vector space, orthogonal to the vector
〈a1, . . ., aq〉, with the following basis:

t1 = 〈a−1
1 , −a−1

2 , 0, . . . , 0〉
t2 = 〈0, a−1

2 , −a−1
3 , . . . , 0〉

...

tq−1 = 〈0, 0, . . . , a−1
q−1, −a−1

q 〉

To verify that it is really a syzygy basis, notice that it satisfies both
conditions of the definition of syzygy solvability.

The first condition holds, since, for all i,
∑q

j=1 ti,jaj = 0.

ti · a = 0 · 1 + · · ·+ a−1
i · ai − a−1

i+1 · ai+1 + · · ·+ 0 · aq

= 1− 1 = 0.

Let d = 〈d1, . . ., dq〉 such that
∑q

j=1 djaj = 0. Then, in order to
satisfy the second condition, we need to determine a tuple v = 〈v1,
. . ., vq−1〉 such that

d = v1 · t1 + · · ·+ vq−1 · tq−1.

We choose v as follows:

v1 = a1 · d1

v2 = a1 · d1 + a2 · d2

...

vi = a1 · d1 + a2 · d2 + · · ·+ ai · di

...

vq−1 = a1 · d1 + a2 · d2 + · · ·+ aq−1 · dq−1

Then the jth component of v1 · t1 + · · ·+ vq−1 · tq−1 is computed as
follows:
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• The first component is v1 · a−1
1 = a1 · d1 · a−1

1 = d1.

• For 1 < j < q, the jth component is

vj · tj,j + vj−1 · tj−1,j

= (a1 · d1 + · · ·+ aj · dj) · a−1
j

− (a1 · d1 + · · ·+ aj−1 · dj−1) · a−1
j

= aj · dj · a−1
j = dj .

• Finally, the qth component is

−vq−1 · a−1
q = −(a1 · d1 + · · ·+ aq−1 · dq−1) · a−1

q .

But
∑q

j=1 djaj = 0; therefore, −a1 ·d1−· · ·−aq−1 ·dq−1 = aq ·dq ,

and the qth component is simply aq ·dq ·a−1
q = dq. Thus ti’s form

a basis for the syzygy of (a1, . . ., aq).

S-Polynomials in K[x1, . . ., xn]

Lemma 3.2.2 Let G ⊆ K[x1, . . ., xn] be a finite set of polynomials over
a field K and let

S(gj, gk) =
m

Hmono(gj)
· gj −

m

Hmono(gk)
· gk

where gj, gk ∈ G and gj 6= gk, m = LCM(Hterm(gj), Hterm(gk)).
Then G satisfies the syzygy condition if and only if every S(gj, gk) can

be expressed as

S(gj , gk) =
∑

figi, fi ∈ K[x1, . . . xn] and gi ∈ G,

where Hterm(S(gj, gk))≥
A

Hterm(fi)Hterm(gi).

proof.
We need to observe that every S(gj, gk) is an S-polynomial for the set
{gj, gk} ⊆ G and every S-polynomial of any subset of G can be expressed
as a power-product times some S(gj, gk).

Let {g1, . . ., gq} ⊆ G, and
{
a1 = Hcoef(g1), . . . , aq = Hcoef(gq)

}
⊆ K.

In the syzygy basis for (a1, . . ., aq), each tℓ has only two nonzero entries;
namely, a−1

j and −a−1
k . Hence, each S-polynomial of G has the following

form:

Hcoef(gj)
−1 · M

Hterm(gj)
· gj −Hcoef(gk)−1 · M

Hterm(gk)
· gk,
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whereM = LCM(Hterm(g1), . . ., Hterm(gq)) = p·LCM(Hterm(gj), Hterm(gk)),
which can be written as

p · S(gj , gk), p ∈ PP(x1, . . . , xn).

In view of the above lemma, we shall often refer to S(gj , gk)’s as S-polynomials
while working over a field.

3.2.2 Example: Ring of Integers

Example 3.2.6 (Ring of Integers Is Strongly Computable.) Let S =
Z be the ring of integers. We recall the following useful property of Z: for
any {a1, . . ., aq} ⊆ Z,

(
∃ b ∈ Z

) [
() = (a1, . . . ,aq)

]
,

and

1. b = GCD(a1, . . ., aq). Let

a′1 =
a1

b
, a′2 =

a2

b
, . . . , a′q =

aq

b
.

2. Since b ∈ (a1, . . ., aq),

(
∃ c1, . . . , cq ∈ Z

) [
= 1a1 + · · ·+ qaq

]
.

Note that b, c1, . . ., cq can be computed using Euclid’s algorithm; the
details of Euclid’s algorithm can be found in Knuth [116].

Now, we show that Z is strongly computable.

1. Z is Noetherian. This follows from the fact that every ideal in Z is
generated by a single element in Z. (That is, every ideal of Z is a
principal ideal and thus Z is a principal ideal domain.)

2. Z is computable. The necessary algorithms are easy to construct.

3. Z is detachable. Let a ∈ Z, {a1, . . ., aq} ⊆ Z and b = GCD(a1, . . .,
aq). If b ∤ a, then a 6∈ (b) = (a1, . . ., aq); otherwise, a ∈ (b) = (a1,
. . ., aq). Now, if a = d · b, then

a = (d · c1)a1 + · · ·+ (d · cq)aq,

where c1, . . ., cq are obtained from Euclid’s algorithm.

4. Z is syzygy-solvable. Let {a1, . . ., aq} ⊆ Z,

b = GCD(a1, . . . , aq) = c1a1 + · · ·+ cqaq,
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and a′i = ai/b (for i = 1, . . ., q). Then the syzygy of (a1, . . ., aq) has
the following basis:

t1 = 〈(c2a′2 + · · ·+ cqa
′
q), −c2a′1, . . . , −cqa′1〉

t2 = 〈−c1a′2, (c1a
′
1 + c3a

′
3 + · · ·+ cqa

′
q), −c3a′2, . . . , −cqa′2〉

...

tq = 〈−c1a′q, . . . , −cq−1a
′
q, (c1a

′
1 + · · ·+ cq−1a

′
q−1)〉

To verify that it is really a syzygy basis, we need to show that it
satisfies both conditions of the definition of syzygy solvability.

The first condition holds, since, for all i,
∑q

j=1 ti,jaj = 0.

q∑

j=1

ti,jaj

= − c1 a′i a1 − · · · − ci−1 a
′
i ai−1

+ c1 a
′
1 ai + · · ·+ ci−1 a

′
i−1 ai + ci+1 a

′
i+1 ai + · · ·+ cq a

′
q ai

− ci+1 a
′
i ai+1 − · · · − cq a′i aq

= − c1
aia1

b
− · · · − ci−1

aiai−1

b

+ c1
a1ai

b
+ · · ·+ ci−1

ai−1ai

b
+ ci+1

ai+1ai

b
+ · · ·+ cq

aqai

b

− ci+1
aiai+1

b
− · · · − cq

aiaq

b
= 0.

Let d = 〈d1, . . ., dq〉 such that
∑q

j=1 djaj = 0. Then, in order to
satisfy the second condition, we need to determine a tuple v = 〈v1,
. . ., vq−1〉 such that

d = v1 · t1 + · · ·+ vq−1 · tq−1.

We show that the choice v = d satisfies the condition, that is, the jth

component of d1t1 + · · ·+ dqtq is dj itself. The jth component is

d1 t1,j + d2 t2,j + · · ·+ dq tq,j

= − d1 cj a
′
1 − d2 cj a

′
2 − · · · − dj−1 cj a

′
j−1

+ dj

(
c1 a

′
1 + · · ·+ cj−1 a

′
j−1 + cj+1 a

′
j+1 + · · ·+ cq a

′
q

)

− dj+1 cj a
′
j+1 − · · · − dq cj a

′
q

= − cj
(
d1a1 + · · ·+ dj−1aj−1 + dj+1aj+1 + · · ·+ dqaq

b

)

+ dj

(
c1a1 + · · ·+ cj−1aj−1 + cj+1aj+1 + · · ·+ cqaq

b

)
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= −cj
(−djaj

b

)

+ dj

(
c1a1 + · · ·+ cj−1aj−1 + cj+1aj+1 + · · ·+ cqaq

b

)

(Using the fact that
∑

j

djaj = 0)

= dj

(
c1a1 + · · ·+ cqaq

b

)

= dj . (Since
∑

i

ciai = b)

Thus ti’s form a basis for the syzygy of (a1, . . ., aq).

Remark 3.2.7 There is another syzygy basis for (a1, . . ., aq) ⊆ Z with
a somewhat simpler structure. Let {a1, . . ., aq} ⊆ Z, b = GCD(a1, . . .,
aq) = c1a1 + · · ·+ cqaq and bi,j = GCD(ai, aj). Then the syzygy basis for
(a1, . . ., aq) can be given as follows:

τi,j =
〈
0, . . . , 0,

aj

bi,j︸︷︷︸
position i

, 0, . . . , 0, − ai

bi,j︸ ︷︷ ︸
position j

, 0, . . . , 0
〉
,

for 1 ≤ i < j ≤ q.
It now remains to check that both conditions for syzygy-solvability are

satisfied.

1.
∑

j

τi,jaj =
aj · ai

bi,j
− ai · aj

bi,j
= 0.

2. Since t1, . . ., tq is a syzygy basis (i.e., any element u of syzygy can be
written as a linear combination of ti’s), it is enough to show that each
ti can be written as a linear combination of τi,j . Note that b | bi,j .
Let b′i,j = bi,j/b. Then

− c1 b′1,i τ1,i − c2 b′2,i τ2,i − · · · − ci−1 b
′
i−1,i τi−1,i

+ ci+1 b
′
i,i+1 τi,i+1 + · · ·+ cq b

′
i,q τi,q

=
〈
−c1

ai

b
, 0, . . . , 0, c1

a1

b
, 0, . . . , 0

〉

+
〈
0, −c2

ai

b
, 0, . . . , 0, c2

a2

b
, 0, . . . , 0

〉

+ · · ·
+
〈
0, . . . , 0, −ci−1

ai

b
, ci−1

ai−1

b
, 0, . . . , 0

〉

+
〈
0, . . . , 0, ci+1

ai+1

b
, −ci+1

ai

b
, 0, . . . , 0

〉
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+
〈
0, . . . , 0, ci+2

ai+2

b
, 0, −ci+2

ai

b
, 0, . . . , 0

〉

+ · · ·
+
〈
0, . . . , 0, cq

aq

b
, 0, . . . , 0, −cq

ai

b

〉

= 〈−c1 a′i, −c2 a′i, . . . , −ci−1 a
′
i,

(c1 a
′
1 + · · ·+ ci−1 a

′
i−1 + ci+1 a

′
i+1 + · · ·+ cq a

′
q),

−ci+1 a
′
i, . . . , −cq a′i〉

= ti.

S-Polynomials in Z[x1, . . ., xn]

Lemma 3.2.3 Let G ⊆ Z[x1, . . ., xn] be a finite set of polynomials over
the ring of integers Z and let

S(gj, gk) =
m̂

Hmono(gj)
· gj −

m̂

Hmono(gk)
· gk

where gj, gk ∈ G, gj 6= gk and m̂ = LCM(Hmono(gj), Hmono(gk)).
Then G satisfies the syzygy condition if and only if every S(gj, gk) can

be expressed as

S(gj, gk) =
∑

figi, fi ∈ Z[x1, . . .x⋉] and ði ∈ G,

where Hterm(S(gj, gk))≥
A

Hterm(fi)Hterm(gi).

proof.
The proof proceeds in a manner similar to the case for a field K (see
Lemma 3.2.2). Let {g1, . . ., gq} ⊆ G, and

{
a1 = Hcoef(g1), . . . , aq = Hcoef(gq)

}
⊆ Z.

We have seen that a basis for the syzygy of (a1, . . ., aq) can be written as
follows:

τj,k =
〈
0, . . . , 0,

ak

bj,k︸︷︷︸
position j

, 0, . . . , 0, − aj

bj,k︸ ︷︷ ︸
position k

, 0, . . . , 0
〉
,

for 1 ≤ j < k ≤ q. Hence, each S-polynomial of G has the following form:

Hcoef(gj)

GCD(Hcoef(gj), Hcoef(gk))
· M

Hterm(gj)
gj

− Hcoef(gk)

GCD(Hcoef(gj), Hcoef(gk))
· M

Hterm(gk)
gk
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=
LCM(Hcoef(gj), Hcoef(gk))M

Hmono(gj)
gj −

LCM(Hcoef(gj), Hcoef(gk))M

Hmono(gk)
gk

= p · S(gj , gk), where

M = LCM(Hterm(g1), . . . ,Hterm(gq))

= pLCM(Hterm(gj),Hmono(gk)), and p ∈ PP(x1, . . . , xn).

In view of the above lemma, we also refer to S(gj, gk)’s as S-polynomials
while working over the integers.
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3.3 Head Reductions and Gröbner Bases

In this section, we shall develop an algorithm to compute a Gröbner basis
of an ideal in a polynomial ring over an ambient, strongly computable ring.
First we need one key ingredient: head reduction.

Definition 3.3.1 (Head Reductions) Let S be a ring, let R = S[x1,
. . ., xn], let ≥

A

be a fixed but arbitrary admissible ordering on PP(x1, . . .,

xn), and let G = {g1, g2, . . ., gm} ⊆ R be a finite set of polynomials. We
say f ∈ R is head-reducible modulo G if f 6= 0 and Hmono(f) ∈ Head(G).

If f is head-reducible modulo G and, specifically,

Hmono(f) =

m∑

i=1

aipi Hmono(gi), where ai ∈ S, pi ∈ PP(x1, . . . , xn)

and piHterm(gi) = Hterm(f), then the polynomial

h = f −
m∑

i=1

aipi gi

is said to be a head-reduct of f modulo G, and is denoted by

f
G,h−→h.

We also write
G,h−→
∗

for the reflexive and transitive closure of
G,h−→; that is,

f
G,h−→
∗
h,

if there is a finite sequence h1, h2, . . ., hn (n ≥ 1) such that h1 = f , hn = h,
and

hi
G,h−→hi+1, for i = 1, . . . , n− 1.

If f is not head-reducible modulo G, or if f = 0, we use the (perhaps,
unfortunate) notation

f
G,h−→ f.

Definition 3.3.2 (Head-Normal Forms) We say h is a normal form of
f modulo G under head-reduction (briefly, head-normal form or simply,
normal form if there is no confusion) if

f
G,h−→
∗
h

G,h−→h.

We write NFh
G(f) for the set of head-normal forms of f modulo G.
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Theorem 3.3.1 If S is a ring, R = S[x1, . . ., xn] and G = {g1, g2, . . .,
gm} ⊆ R, then (

∀ f ∈ R
) [

NFh
G(f) 6= ∅

]
.

proof.
We proceed by well-founded induction on Hterm(f) with respect to the
well-ordering >

A

.

Suppose f = 0. Then Hmono(f) = 0 and

NFh
G(f) = {0} 6= ∅.

Henceforth, assume that f 6= 0, and thus Hmono(f) 6= 0. To handle the
base case, note that if Hterm(f) = 1, then either Hmono(f) 6∈ Head(G), in
which case f is already head-reduced modulo G and

NFh
G(f) = {f} 6= ∅;

or Hmono(f) ∈ Head(G), in which case f head-reduces to 0 modulo G and

NFh
G(f) = {0} 6= ∅.

To handle the inductive case (Hterm(f)>
A

1), we assume by the induc-

tive hypothesis that for all h ∈ R

Hterm(h)<
A

Hterm(f) ⇒ NFh
G(h) 6= ∅.

As before, either Hmono(f) 6∈ Head(G), in which case f is already head-
reduced modulo G and

NFh
G(f) = {f} 6= ∅;

or Hmono(f) ∈ Head(G), in which case f head-reduces to h modulo G and

Hterm(h)<
A

Hterm(f) and NFh
G(f) ⊇ NFh

G(h) 6= ∅.

Theorem 3.3.2 Let S be a ring, R = S[x1, . . ., xn], I be an ideal in R,
and let G = {g1, g2, . . ., gm} ⊆ I be a finite subset. Then the following
three statements are equivalent:

1. Head(G) = Head(I).

2. Every f ∈ I head-reduces to 0 modulo G:
(
∀ f ∈ I

) [
f

G,h−→
∗

0
]
.

3. (G) = I and

(
∀ F ⊆ G

) (
∀ h ∈ SP (F )

) [
h

G,h−→
∗

0
]
.
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proof.
[(1)⇒ (2)]
We proceed by induction on Hmono(f) with respect to the well-ordering
>
A

.

If f = 0 then we are done. Thus we may assume that f 6= 0 and f ∈ I,
and that, by the inductive hypothesis, for all h ∈ I

Hterm(h)<
A

Hterm(f) ⇒ h
G,h−→
∗

0.

Since f ∈ I, Hmono(f) ∈ Head(I) = Head(G) and f head-reduces to some
h ∈ I, i.e.,

f
G,h−→h, Hterm(h)<

A

Hterm(f), and h ∈ I.

If h = 0 then we are done; otherwise, by the inductive hypothesis,

f
G,h−→h

G,h−→
∗

0.

[(2)⇒ (1)]

Note that if f
G,h−→
∗

0 then f can be expressed as

f =

m∑

i=1

figi where fi ∈ S[x1, . . . , xn], and

Hterm(f)≥
A

Hterm(fi)Hterm(gi), i = 1, . . . ,m.

Thus, condition (2) implies that G is a Gröbner basis and Head(G) =
Head(I).

[(1)⇒ (3)]
Since G ⊆ I and Head(G) = Head(I), G generates I. Furthermore, every
S-polynomial h ∈ SP (F ) (F ⊆ G) is an element of I, and thus

(
∀ F ⊆ G

) (
∀ h ∈ SP (F )

) [
h

G,h−→
∗

0
]
.

[(3)⇒ (1)]
Note that the condition,

(
∀ F ⊆ G

) (
∀ h ∈ SP (F )

) [
h

G,h−→
∗

0
]
.

simply implies that G satisfies the syzygy condition.
Since we also assume that (G) = I, by Theorem 2.5.2, we conclude that

Head(G) = Head(I).
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3.3.1 Algorithm to Compute Head Reduction

In this subsection, we present an algorithm that computes the head reduc-
tion and then, using this algorithm, we develop an algorithm for Gröbner
basis.

OneHeadReduction(f, G)
Input: f ∈ R; G ⊆ R, G = finite.

Output: h such that f
G,h−→h.

if f = 0 or Hcoef(f) 6∈
„
{Hcoef(g): g ∈ Gf}

«
then

return f ;
else

Let Hcoef(f) =
X

gi∈Gf

ai · Hcoef(gi), ai ∈ S;

return f −
X

gi∈G

ai · Hterm(f)

Hterm(gi)
· gi;

end{if };
end{OneHeadReduction}

Using the above routine, we can compute the head reduction of a given
polynomial f .

HeadReduction(f, G)
Input: f ∈ R; G ⊆ R, G = finite.

Output: h such that f
G,h−→
∗

h
G,h−→h.

h := f ; h′ := f ;

loop

h := h′;
h′ := OneHeadReduction(h, G);

until h = h′;

return h;

end{HeadReduction}

Correctness and Termination:
The correctness of the algorithm HeadReduction follows directly

from the definition of the head reduction.
In order to prove the termination properties, notice that the until loop

satisfies the following loop-invariant at the end of the loop

Hterm(h) ≥
A

Hterm(h′), i.e.,

h 6= h′ ⇒ Hterm(h) >
A

Hterm(h′).
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Thus, the head terms of h′ are monotonically decreasing, and since >
A

is a well-ordering, we cannot have an infinite sequence of h′’s. Thus, the
algorithm HeadReduction must eventually terminate.

3.3.2 Algorithm to Compute Gröbner Bases

Now we are in position to give an algorithm that computes the Gröbner
basis for a finitely generated ideal.

First, we present a routine which checks if a given basis G is a Gröbner
basis for the ideal generated by G and it returns an S-polynomial of G if
G is not a Gröbner basis for (G).

GröbnerP(G)
Input: G ⊆ R, G = finite.

Output: S(G) =
[

∅6=F⊆G

NFh
G(SP (F )),

= head-normal forms of all the S-polynomials.

S(G) = {0}, if G is Gröbner basis of (G);
S(G) 6= {0}, if G is not a Gröbner basis of (G).

S := ∅;

for every nonempty subset F ⊆ G loop

Compute S′ = the S-polynomials of F ;
for every h′ ∈ S′ loop

S := S ∪ {HeadReduction (h′, G)}
end{loop };

end{loop };

return S;

end{GröbnerP}

Correctness and Termination:
The correctness of the algorithm GröbnerP is a simple consequence

of the characterization of Gröbner bases in terms of the syzygy condition:

G = Gröbner basis for (G)

if and only if

(
∀ F ⊆ G, F 6= ∅

) (
∀ hF ∈ SP (F )

) [
hF

G,h−→
∗

0
]
.
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Termination, on the other hand, is a simple consequence of the following
obvious conditions:

1. Finiteness of the set of S-polynomials SP (F ) of F .

2. Termination of the head reduction.

Now, we give the main algorithm which computes a Gröbner basis for
an ideal generated by a given finite basis H :

Gröbner(H)
Input: H ⊆ R, H = finite.
Output: G ⊆ R, G = Gröbner basis for (H).

G := H ;
S := GröbnerP(G);

while S 6= {0} loop

G := G ∪ S;
S := GröbnerP(G);

end{loop };

return G;

end{Gröbner}

Correctness and Termination:
The correctness of the algorithm Gröbner follows from the following

two facts:

1. Let Gi be the value of G while the loop is executed the ith time.
Thus,

H = G0 ⊆ G1 ⊆ G2 ⊆ · · · .
The algorithm maintains the following loop invariant:

(
∀ i
) [

(Gi) = (H)
]
.

• (Gi) ⊆ (H). Since, S ⊆ (Gi−1) = (H), we have

Gi = Gi−1 ∪ S ⊆ (H) ⇒ (Gi) ⊆ (H).

• Conversely, since H ⊆ Gi, we have (H) ⊆ (Gi).
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2. At termination, the syzygy condition is satisfied:

(
∀ F ⊆ G, F 6= ∅

) (
∀ hF ∈ SP (F )

) [
hF

G,h−→
∗

0
]

if and only if

S = GröbnerP(G) = 0.

Next we show that, as a result of the Noetherianness of R, the termi-
nating condition “S = {0}” must eventually be satisfied:

S = GröbnerP(Gi) 6= {0}
⇒

(
∃ h ∈ S

) [
Hmono(h) 6∈ Head(Gi)

]

⇒ Gi+1 = Gi ∪ S and Head(Gi)  Head(Gi+1)

But, in R, it is impossible to obtain a strictly ascending chain of ideals;
that is, eventually,

(
∃ ℓ
) [

S = GröbnerP(Gℓ) = {0}
]
.

Note that the algorithm given above is a very high-level description.
It does not say anything about how to compute it efficiently. There are
several issues involved here; for example, how to represent a multivariate
polynomial so that all of the operations can be done efficiently, how to
find ai in OneHeadReduction quickly, how to compute S-polynomials
efficiently, etc.

The Gröbner basis algorithm is usually presented somewhat differently.
In order to keep the exposition simpler, we have essentially divided the
algorithm into two routines: (1) a predicate that decides if a given basis is
a Gröbner basis (GröbnerP) and (2) a procedure that keeps enlarging a
given set until it satisfies the preceding predicate (Gröbner). We conclude
this section with the presentation of the Gröbner basis algorithm in its more
widely used form:
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Gröbner(H)
Input: H ⊆ R, H = finite.
Output: G ⊆ R, G = Gröbner basis for (H).

G := H ;
while there is some nonempty subset F ⊆ G

such that some S-polynomial h ∈ SP (F )
does not head-reduce to 0

loop

h′ := HeadReduction(h, G);
Comment: By assumption h′ 6= 0.

G := G ∪ {h′};
end{loop };
return G;

end{Gröbner}

3.4 Detachability Computation

Let us now consider the detachability property of a polynomial ring R =
S[x1, . . ., xn], given that the underlying ring of coefficients S itself is
strongly computable. In particular, we will explore the algorithmic con-
structions for detachability, building up on our Gröbner basis algorithm of
the previous section. It is not hard to see that the existence of a finite and
computable Gröbner basis in R allows one to solve the problem of ideal
membership as follows:

IdealMembership(f,H)
Input: H ⊆ R and a polynomial f ∈ R; H = finite.
Output: true , if f ∈ (H).

To solve this problem, first compute G = the Gröbner basis for H , and
output True if HeadReduction (f, G) = 0; otherwise, output False. The
correctness follows from the fact that f ∈ (H) if and only if f ∈ (G), i.e.,

if and only if f
G,h−→
∗

0.

The above algorithm can be easily modified to express the polynomial
f as a linear combination of the polynomials in the Gröbner basis G. But
in order to solve the detachability problem, we need to do a little more, i.e.
express f as a linear combination of the elements of H .
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The easiest way to do this is to precompute the expressions for each
element of G as linear combinations of the elements of H , and then substi-
tute these expressions in the equation for f , which expresses f as a linear
combination of the polynomials of G. We show, in detail, how this can
be accomplished with appropriate modifications of the algorithms: One-
HeadReduction, HeadReduction and Gröbner.

3.4.1 Expressing with the Gröbner Basis

Given a finite set of generators H = {h1, . . ., hl} ⊆ R, and a (finite)
Gröbner basis G = {g1, . . ., gm}, of the ideal (H), there are two matrices:

1. an l ×m matrix X = {xi,j} in Rl×m, and

2. an l ×m matrix Y = {yi,j} in Rl×m

such that

g1 = x1,1h1 + · · ·+ xl,1hl

...
gm = x1,mh1 + · · ·+ xl,mhl





i.e.,




g1
...
gm


 = XT



h1

...
hl


 ,

and

h1 = y1,1g1 + · · ·+ y1,mgm

...
hl = yl,1g1 + · · ·+ yl,mgm





i.e.,



h1

...
hl


 = Y




g1
...
gm


 .

Thus, in order to solve the detachability problem for R, we need to
solve the following problem:

Input: H = {h1, . . ., hl} ⊆ R; H = finite.
Output: G = {g1, . . ., gm}, a Gröbner basis for (H);

Matrix X = {xi,j} ∈ Rl×m, and
Matrix Y = {yi,j} ∈ Rl×m.

Let us begin by modifying OneHeadReduction and HeadReduc-
tion, such that the NewHeadReduction solves the following problem:
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Input: G = {g1, . . ., gm} ⊆ R, and f ∈ R.
Output: h =HeadReduction(f, G), and express it as

f = y1g1 + · · · + ymgm + h.

We proceed by making changes to the algorithm OneHeadReduction
as follows:

NewOneHeadReduction(f,G)
Input: f ∈ R; G ⊆ R, G = finite.

Output: h such that f
G,h−→h, and

y1, . . ., ym such that f = y1g1 + · · · + ymgm + h.

if f = 0 or Hcoef(f) 6∈
„
{Hcoef(g): g ∈ Gf}

«
then

return

fi
y1 := 0, . . . , ym := 0, h := f

fl
;

else

Let Hcoef(f) =
X

gij
∈Gf

aij · Hcoef(gij ), aij ∈ S

return

fi
y1 := 0, . . . ,

yi1 := ai1 · Hterm(f)

Hterm(gi1)
, . . . , yik := aik · Hterm(f)

Hterm(gik)
, . . . ,

ym := 0,

h := f −
X

gij
∈Gf

aij · Hterm(f)

Hterm(gij )
gij

fl
;

Comment: {i1, . . ., ik} ⊆ {1, . . ., m}.
end{if };

end{NewOneHeadReduction}

To see that the algorithm is correct, all we need to observe is the fol-
lowing:

f = ai1 ·
Hterm(f)

Hterm(gi1)
gi1 + · · ·+ aik

· Hterm(f)

Hterm(gik
)
gik

+ h

= yi1 gi1 + · · ·+ yik
gik

+ h

= y1 g1 + · · ·+ ym gm + h.

[Since all the yi’s except yij ’s are 0.]
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Now we can modify the HeadReduction algorithm to keep track of the
coefficient polynomials as it repeatedly “calls” NewOneHeadReduction.
The correctness of the algorithm can be shown by an inductive argument
over the number of iterations of the main loop.

NewHeadReduction(f, G)
Input: f ∈ R; G ⊆ R, G = finite.

Output: h such that f
G,h−→
∗

h
G,h−→h, and

y1, . . ., ym such that f = y1g1 + · · · + ymgm + h.

〈y1, . . . , ym, h〉 := 〈0, . . . , 0, f〉;
〈y′

1, . . . , y
′
m, h′〉 := 〈0, . . . , 0, f〉;

loop

h := h′

〈y1, . . . , ym〉 := 〈y1, . . . , ym〉 + 〈y′
1, . . . , y

′
m〉;

〈y′
1, . . . , y

′
m, h′〉 := NewOneHeadReduction(h, G)

until h = h′;

return 〈y1, . . . , ym, h〉;
end{NewHeadReduction}

Now we are ready to modify the algorithm Gröbner (on page 88) in
such a way that it also produces the X and Y matrices as by-products.

The main idea is to incrementally compute the X matrix (expressing G
in terms of H) as the computation of G progresses: Initially, we begin with
G = H , and the X matrix is simply an identity matrix. At any point in the
loop, as we add a new elment g to G, we know how to express the new g in
terms of the elements of G computed so far. But, now, using the currently
computed matrix, we can also express g in terms of H , and hence the new
row of X . Again by an induction on the number of iterations of the main
loop, the correctness of the computation of X can be demonstrated.

The computation of the Y matrix is, in fact, relatively easy. Since at
the termination G is a Gröbner basis and since each element hi ∈ H is in

the ideal (G) = (H), hi
G,h−→
∗

0, and the algorithm NewHeadReduction

gives the ith row of Y :

hi = yi,1 g1 + yi,2 g2 + · · ·+ yi,m gm.

NewGröbner(H)
Input: H ⊆ R, H = finite.
Output: G ⊆ R, G = Gröbner basis for (H), and

the matrices X and Y , relating G and H .
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g1 := h1;
〈x1,1, x2,1, . . . xl,1〉 := 〈1, 0, . . . , 0〉;
g2 := h2;
〈x1,2, x2,2, . . . xl,2〉 := 〈0, 1, . . . , 0〉;

...
gl := hl;
〈x1,l, x2,l, . . . xl,l〉 := 〈0, 0, . . . , 1〉;
Comment: G = H and X = the identity matrix.

k := l;
while there is some nonempty subset F ⊆ G

such that some S-polynomial h ∈ SP (F )
does not head-reduce to 0

loop

Let h = a1g1 + · · · + akgk;
〈y1, . . . , yk, h′〉 := NewHeadReduction(h, {g1, . . . , gk});
Comment: Note that

h′ = h − y1g1 − · · · − ykgk

= (a1 − y1)g1 + · · · + (ak − yk)gk

= (a1 − y1)(x1,1h1 + · · · + xl,1hl)

+ · · ·
+ (ak − yk)(x1,kh1 + · · · + xl,khl)

=
“
(a1 − y1)x1,1 + · · · + (ak − yk)x1,k

”
h1

+ · · ·
+

“
(a1 − y1)xl,1 + · · · + (ak − yk)xl,k

”
hl

end{Comment};
gk+1 := h′;
〈x1,k+1, x2,k+1, . . . xl,k+1〉 :=

〈(a1 − y1)x1,1 + · · · + (ak − yk)x1,k,
(a1 − y1)x2,1 + · · · + (ak − yk)x2,k,
. . . ,
(a1 − y1)xl,1 + · · · + (ak − yk)xl,k〉;

G := G ∪ {h′};
k := k + 1;

end{loop };
〈y1,1, y1,2, . . . , y1,m〉 := NewHeadReduction(h1, G)[1..m];
〈y2,1, y2,2, . . . , y2,m〉 := NewHeadReduction(h2, G)[1..m];

...
〈yl,1, yl,2, . . . , yl,m〉 := NewHeadReduction(h2, G)[1..m];
return 〈G, X, Y 〉;

end{NewGröbner}
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3.4.2 Detachability

Using the machinery developed in the previous subsection, we are now
ready to solve the detachability problem for the polynomial ring, R = S[x1,
. . ., xn].

Detach(f, H)
Input: H = {h1, . . . , hl} ⊆ R, H = finite, and an f ∈ R.
Output: Decide whether f ∈ (H),

If so, then return {x1, . . . , xl}
such that f = x1h1 + · · · + xlhl;
Otherwise, return False.

〈G, X, Y 〉 := NewGröbner(H);

Comment: G = Gröbner basis for (H);
the matrices X and Y relate G and H .

end{Comment};

〈y1, . . . , ym, h〉 := NewHeadReduction(f, G);
if h = 0 then

Comment: f ∈ (G) = (H), and

f = y1g1 + · · · + ymgm

= (y1x1,1 + · · · + ymx1,m)h1

+ · · ·
+ (y1xl,1 + · · · + ymxl,m)hl

end{Comment};

return {y1x1,1 + · · · + ymx1,m, . . . , y1xl,1 + · · · + ymxl,m};
else

return false ;
end{if };

end{Detach}

Proving the correctness of the algorithm is now a fairly simple matter.

Note that f ∈ (H) if and only if f ∈ (G), i.e., if and only if f
G,h−→
∗

0. In

this case, the algorithm NewHeadReduction determines the fact that f
reduces to zero and that f can be expressed in terms of gi’s as follows

f = y1 g1 + · · ·+ ym gm.

The rest of the algorithm simply re-expresses gi’s in terms of hi’s using the
matrix X .
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3.5 Syzygy Computation

Now, we are ready to consider the syzygy solvability property of a polyno-
mial ring R = S[x1, . . ., xn], where we again assume that the underlying
ring of coefficients S is strongly computable. As in the previous section,
the algorithmic constructions for syzygy solvability will rely on our Gröbner
basis algorithm developed earlier. In order to keep our exposition simple,
we shall proceed in two stages: First, we will solve the problem for a spe-
cial case, where we compute the syzygies of a set which is also a Gröbner
basis of its ideal. Next, we deal with the general case, where the set is any
arbitrary finite subset of R.

3.5.1 Syzygy of a Gröbner Basis: Special Case

We start with the following simple case: Compute the syzygies of the set
of polynomials

G = {g1, . . . , gq} ⊆ R,
where G is a Gröbner basis for (G) (under some fixed admissible ordering).

Input: G = {g1, . . ., gq} ⊆ R; G = finite.
G = a Gröbner basis for (G).

Output: A finite basis, {t1, . . ., tp} for the R-module S(G) ⊆ Rq.

Let T denote the following p× q matrix over R:

T =



t1
...
tp


 =



t1,1 . . . t1,q

...
. . .

...
tp,1 . . . tp,q


 , where ti,j ∈ R

such that

1. For all 1 ≤ i ≤ p, ∑

j

ti,j gj = 0.

2. For any 〈u1, . . ., uq〉 = u ∈ Rq

∑

j

uj gj = 0

⇒
(
∃ v = 〈v1, . . . , vp〉 ∈ Rp

) [
u = v1 t1 + · · ·+ vp tp

]
.



Section 3.5 Syzygy Computation 95

Let F = {gi1 , . . ., gik
} ⊆ G be a nonempty subset of G. Let

s = 〈si1 , . . . , sik
〉 ∈ Sk

be a tuple in the syzygy basis for {Hcoef(gi1), . . ., Hcoef(gik
)} ⊆ Sk. In T ,

we have an entry, t, for each such F and s as explained below:

• Let h be the S-polynomial corresponding to the subset F and the
tuple s. That is,

h = si1 ·
m

Hterm(gi1)
· gi1 + · · ·+ sik

· m

Hterm(gik
)
· gik

,

where m = LCM(Hterm(gi1), . . . ,Hterm(gik
)).

• Since G is a Gröbner basis, we have

h
G,h−→
∗

0

and h can be expressed as follows (since R is detachable):

h = f1 · g1 + · · ·+ fq · gq,

where m>
A

Hterm(h) ≥
A

hterm(fi)Hterm(gi), for all i.

• Let t, now, be given by the following q-tuple (in Rq).

t =
〈
−f1, . . . ,

−fi1−1, si1 ·
m

Hterm(gi1)
− fi1 , −fi1+1,

. . . ,

−fik−1, sik
· m

Hterm(gik
)
− fik

, −fik+1,

. . . , −fq

〉
.

• From the discussions in the previous section, we know that all of
the above steps are computable, since, by assumption, S is strongly
computable.
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The correctness of the above procedure is a direct consequence of the
following observations:

1. Each tj (1 ≤ j ≤ p) satisfies the following condition:

tj,1 · g1 + · · ·+ tj,q · gq

= si1 ·
m

Hterm(gi1)
· gi1 + · · ·+ sik

· m

Hterm(gik
)
· gik

−f1 · g1 − · · · − fq · gq

= h− h = 0.

Thus tj is in the R-module of the syzygies of G.

2. Let u = 〈u1, . . . , uq〉 be an arbitrary element of the R-module S(G).
We need to show u can be expressed as a linear combination of tj ’s,
i.e., that there are v1, . . ., vp ∈ R such that

u = v1 t1 + · · ·+ vp tp.

Given a u, we define as its height , the power-product M , where

M = max
>
A

{
Hterm(ui)Hterm(gi) : 1 ≤ i ≤ q

}
.

Now, assume to the contrary, i.e., there exists a u ∈ Rq so that we
obtain the following:

(a) u ∈ S(G).

(b) u 6∈ R t1 + · · ·+R tp.

(c) Every element of Rq satisfying the above two conditions has a
height no smaller than that of u. The existence of u is guaranteed
by our hypothesis and the well-foundedness of the admissible
ordering <

A

.

We shall derive a contradiction!
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• M = the height of u.

L = {i1, . . . , ik} ⊆ {1, . . . , q} such that

(1) j ∈ L ⇒ Hterm(uj)Hterm(gj) = M.

(2) j 6∈ L ⇒ Hterm(uj)Hterm(gj)<
A

M.

• Since u1 · g1 + · · ·+ uq · gq = 0, we see that

Hcoef(ui1) · Hcoef(gi1) + · · ·+ Hcoef(uik
) ·Hcoef(gik

) = 0.

Let

S =



s1
...
sl


 =



s1,1 . . . s1,k

...
. . .

...
sl,1 . . . sl,k


 , where si,j ∈ S

be a basis for the S-module, S
(
Hcoef(gi1), . . . ,Hcoef(gik

)
)
.

Hence there exist v′1, . . ., v
′
l ∈ S such that

〈Hcoef(ui1), . . . ,Hcoef(uik
)〉 = v′1 · s1 + · · ·+ v′l · sl.

• Let m = LCM
(
Hterm(gi1), . . . ,Hterm(gik

)
)
, and Q =

M

m
. Thus

m ·Q = M = Hterm(ui1)Hterm(gi1) = · · · = Hterm(uik
)Hterm(gik

).

• The following key observation is needed in the rest of the proof:

Hmono(ui1) · gi1 + · · ·+ Hmono(uik
) · gik

=

[
v′1 ·Q ·

(
s1,1 m

Hterm(gi1)

)
+ · · ·+ v′l ·Q ·

(
sl,1 m

Hterm(gi1)

)]
· gi1

+ · · ·

+

[
v′1 ·Q ·

(
s1,k m

Hterm(gik
)

)
+ · · ·+ v′l ·Q ·

(
sl,k m

Hterm(gik
)

)]
· gik

.

• Let t′1, . . ., t
′
l be the elements of the basis T for S(G), each corre-

sponding to an S-polynomial for a subset F = {gi1 , . . ., gik
} and an

element of {s1, . . ., sl}.
Let

u′ = 〈u′1, . . . , u′q〉 = u− v′1 ·Q · t′1 − · · · − v′l ·Q · t′l.
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By the construction, we see the following:

1. u′ ∈ S(G).

2. u′ 6∈ R t1 + · · ·+R tp, since, otherwise, we can also find v1, . . .,
vp ∈ R such that

u = v1 · t1 + · · ·+ vp · tp.

3. If we now show that the height of u′ is smaller than M under the
admissible ordering <

A

, then we have the desired contradiction.

• Note that the expression u′1 g1 + · · ·+ u′q gq is equal to

u1g1 + · · ·+ Tail(ui1)gi1 + · · ·
+ Tail(uik )gik + · · ·+ uqgq

+ Hmono(ui1)gi1 + · · ·
+ Hmono(uik )gik + · · ·

−v′
1 Q

2
4−f ′

1,1g1 − · · ·+
„

s1,1
m

Hterm(gi1)
− f ′

1,i1

«
gi1 + · · ·

+

„
s1,k

m

Hterm(gik)
− f ′

1,ik

«
gik + · · · − f ′

1,qgq

3
5

...

−v′
l Q

2
4−f ′

l,1g1 − · · ·+
„

sl,1
m

Hterm(gi1)
− f ′

l,i1

«
gi1 + · · ·

+

„
sl,k

m

Hterm(gik)
− f ′

l,ik

«
gik + · · · − f ′

l,qgq

3
5.

Thus we see that for all j (1 ≤ j ≤ q)

u′
j =

8
<
:

Tail(uj) + v′
1 Q f ′

1,j + · · · + v′
l Q f ′

l,j , if j ∈ {i1, . . . , ik}

uj + v′
1 Q f ′

1,j + · · · + v′
l Q f ′

l,j , if j 6∈ {i1, . . . , ik}

In both cases, Hterm(u′j)Hterm(gj)<
A

M , and u′ has a height smaller

than that of u, contrary to our hypothesis about the minimality of
the height of the selected u. Thus

S(G) = Rt1 + · · ·+Rtp

and T is a basis for the syzygies of G.
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Furthermore, our arguments also provide an algorithm that decides if
a given u ∈ Rq is in the syzygy of a set G and, additionally, if possible
(i.e., if u ∈ S(G)), expresses u as a linear combination of the syzygy basis
computed earlier.

Input: u = 〈u1, . . . , uq〉 ∈ Rq,
G is a finite Gröbner basis for (G),
T = {t1, . . . , tp} is a basis for S(G).

Decide: Whether u ∈ S(G). If so, then compute the coefficients
v1, . . ., vp ∈ R such that u = v1 t1 + · · · + vp tp.

if u1 g1 + · · · + uq gq 6= 0 then

return with failure;

w := u;
〈v1, . . . , vp〉 := 〈0, . . . , 0〉;
while w 6= 〈0, . . . , 0〉 loop

L :=


ia : Hterm(wiagia) = height(w)

ff
;

Comment: L = {i1, . . . , ik};

Q :=
height(w)

LCM(Hterm(gi1), . . . , Hterm(gik))
;

Compute s1, . . ., sl, a basis for
the syzygies of {Hcoef(gi1), . . . , Hcoef(gik)};

K :=


jb : tjb = basis element in T for F and sb

ff
;

Comment: K = {j1, . . . , jl};

Compute vj1 , . . . , vjl ∈ S such that
〈Hcoef(ui1), . . . , Hcoef(uik )〉 = vj1 s1 + · · · + vjl sl;

〈v1, . . . , vp〉 := 〈v1, . . . , vp〉 + 〈0, . . . , vj1 , . . . , vjl , . . . , 0〉;
w := w − Q

»
vj1 tj1 + · · · + vjl tjl

–
;

end{loop };
return 〈v1, . . . , vp〉;

3.5.2 Syzygy of a Set: General Case

Now, we are ready to consider the syzygy computation problem in the most
general setting.

Input: H = {h1, . . ., hl} ⊆ R; H = finite.

Output: A finite basis {w1, . . ., wr} for the R-module S(H) ⊆ Rl.
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Let W denote the following r × l matrix over R:

W =



w1

...
wr


 =



w1,1 . . . w1,l

...
. . .

...
wr,1 . . . wr,l


 , where wi,j ∈ R

such that for all 1 ≤ i ≤ r,
∑

j

wi,j hj = 0

and if ∑

j

uj hj = 0, where u1, . . . , ul ∈ R

then

u = 〈u1, . . . , ul〉
= v1 w1 + · · ·+ vr wr, where v1, . . . , vr ∈ R.

• Let G = {g1, . . ., gm} = a Gröbner basis for (H).

• Let T be given by

T =



t1
...
tp


 =



t1,1 . . . t1,m

...
. . .

...
tp,1 . . . tp,m


 , where ti,j ∈ R

be a basis for the R-module S(G). This can be computed using the
algorithm of the previous subsection.

• Let Y be an l ×m matrix, Y = {yi,j} ∈ Rl×m

Y =



y1,1 . . . y1,m

...
. . .

...
yl,1 . . . yl,m




such that

h1 = y1,1g1 + · · ·+ y1,mgm

...
hl = yl,1g1 + · · ·+ yl,mgm





i.e.,



h1

...
hl


 = Y




g1
...
gm


 ,

and let X be an l ×m matrix, X = {xi,j} ∈ Rl×m

X =



x1,1 . . . x1,m

...
. . .

...
xl,1 . . . xl,m


 ,
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such that

g1 = x1,1h1 + · · ·+ xl,1hl

...
gm = x1,mh1 + · · ·+ xl,mhl





i.e.,




g1
...
gm


 = XT



h1

...
hl


 .

Both X and Y can be computed by the modified Gröbner basis al-
gorithm of the previous section.

We now claim that W is given by the following l × (l + p) matrix:

W =

[
Il − Y XT

TXT

]
=




w1

...
wl

wl+1

...
wl+p




.

Next we show that w1, . . ., wl, indeed, form a basis for the R-module
S(H).

1. Consider first wi (1 ≤ i ≤ l)

wi,1 h1 + · · ·+ wi,i hi + · · ·+ wi,l hl

= − (yi,1 x1,1 + · · ·+ yi,m x1,m)h1

+ · · ·
+ hi − (yi,1 xi,1 + · · ·+ yi,m xi,m)hi

+ · · ·
− (yi,1 xl,1 + · · ·+ yi,m xl,m)hl

= hi − yi,1 g1 − · · · − yi,m gm

= hi − hi = 0.

2. Next consider wi (l + 1 ≤ i ≤ l + p)

wi,1 h1 + · · ·+ wi,i hi + · · ·+ wi,l hl

= (ti,1 x1,1 + · · ·+ ti,m x1,m)h1

+ · · ·
+ (ti,1 xl,1 + · · ·+ ti,m xl,m)hl

= ti,1 g1 + · · ·+ ti,m gm

= 0.
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Thus S(H) ⊇ R w1 + · · ·+R wl+p.
Conversely, let u = 〈u1, . . ., ul〉 ∈ S(H), i.e.,

u1 h1 + · · ·+ ul hl = 0.

Let

ũ1 = u1 y1,1 + · · ·+ ul yl,1

...

ũm = u1 y1,m + · · ·+ ul yl,m.

Thus
ũ1 g1 + · · ·+ ũm gm = u1 h1 + · · ·+ ul hl = 0,

and there exist v′1, . . ., v
′
p ∈ R such that

〈ũ1, . . . , ũm〉 = v′1 t1 + · · ·+ v′p tp.

We show that

u = 〈u1, . . . , ul〉
= u1 w1 + · · ·+ ul wl + v′1 wl+1 + · · ·+ v′p wl+p.

Consider the jth component of the expression on the right-hand side:

u1 w1,j + · · · + ul wl,j + v′
1 wl+1,j + · · · + v′

p wl+p,j

= − u1(y1,1 xj,1 + · · · + y1,m xj,m)

− · · ·
+ uj − uj(yj,1 xj,1 + · · · + yj,m xj,m)

− · · ·
− ul(yl,1 xj,1 + · · · + yl,m xj,m)

+ v′
1(t1,1 xj,1 + · · · + t1,m xj,m)

+ · · ·
+ v′

p(tp,1 xj,1 + · · · + tp,m xj,m)

= uj

+ (−u1 y1,1 − · · · − ul yl,1 + v′
1 t1,1 + · · · + v′

p tp,1)xj,1

+ · · ·
+ (−u1 y1,m − · · · − ul yl,m + v′

1 t1,m + · · · + v′
p tp,m)xj,m

= uj + (−fu1 + fu1)xj,1 + · · · + (−fum + fum)xj,m

= uj .
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Thus
S(H) ⊆ R w1 + · · ·+R wl+p ⊆ S(H),

and w1, . . ., wl+p is a basis for S(H).
Using the arguments developed here, we can generalize the algorithm of

the previous subsection. That is, we devise an algorithm which decides if a
given u ∈ Rl is in the syzygy of an arbitrary subset H ⊆ R and, addition-
ally, when possible (i.e., u ∈ S(H)), expresses u as a linear combination of
the syzygy basis W of H .

Input: u = 〈u1, . . . , ul〉 ∈ Rl,
H = {h1, . . . , hl} ⊆ R, H = finite.
W = {w1, . . . , wl+p} is a basis for S(H),
(as in this section.)

Decide: Whether u ∈ S(H). If so, then compute the coefficients
v1, . . ., vl+p ∈ R such that u = v1 w1 + · · · + vl+p wl+p

if u1h1 + · · · + ulhl 6= 0 then

return with failure;

Let G, T , X and Y be as defined earlier;

Let fu1 =
Pl

j=1 uj yj,1, . . ., fum =
Pl

j=1 uj yj,m;

Compute v′
1, . . . , v

′
p ∈ R such that

〈fu1, . . . , fum〉 = v′
1 t1 + · · · + v′

p tp;
Comment: 〈fu1, . . . , fum〉 ∈ S(G).

return 〈u1, . . . , ul, v
′
1, . . . , v

′
p〉.

3.6 Hilbert’s Basis Theorem: Revisited

We can now summarize the discussions of the earlier sections to provide a
stronger version of the classical Hilbert’s basis theorem.

Recall that earlier we defined a ring to be strongly computable if it is
Noetherian, computable (i.e., it has algorithms for the ring operations),
detachable (i.e., it has algorithms for the ideal membership problem) and
syzygy-solvable (i.e., it has algorithms to compute a basis for the module
of syzygies). We want to show that a polynomial ring over a strongly
computable ring is itself a strongly computable.

Theorem 3.6.1 If S is a strongly computable ring, then the polynomial
ring R = S[x1, x2, . . ., xn] over S in n variables is also a strongly com-
putable ring.
proof.
Our arguments depend on the existence of an algorithm to compute a
Gröbner basis for an ideal in R, with respect to some fixed but arbitrary
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admissible ordering. In the previous sections we have seen that if the
admissible ordering is computable, then this is possible, since S is strongly
computable. Assume that the admissible ordering of choice is computable,
e.g., purely lexicographic ordering.

1. R is Noetherian by Hilbert’s basis theorem.

2. R is computable, since it is straightforward to develop algorithms to
(additively) invert a polynomial as well as to multiply and add two
polynomials; these algorithms are based on the algorithms for the
ring operations in S.

3. R is detachable. See Section 3.4 on detachability computation.

4. R is syzygy-solvable. See the Section 3.5 on syzygy computation.

3.7 Applications of Gröbner Bases

Algorithms

In this section, we consider algorithms for various operations on ideals in
a strongly computable ring, R. Thus we assume that all the ideals in this
ring are presented in a finitary way, i.e., by their finite bases.

We have already seen how the ideal membership problem can be solved
using Gröbner basis. It is quite easy to devise algorithms for ideal congru-
ence, subideal and ideal equality problems, simply building on the mem-
bership algorithm.

The operations sum and product are also trivial; the operations inter-
section and quotient are somewhat involved and require the algorithm to
find a syzygy basis. The operation radical requires several concepts, not
discussed so far.

3.7.1 Membership

IdealMembership(f, H)
Input: H ⊆ R and a polynomial f ∈ R, H = finite.
Output: True, if f ∈ (H).

1. Compute G, the Gröbner basis for H .

2. Output True, if HeadReduction(f, G) = 0; otherwise False.

The correctness follows from the fact that f ∈ (H) iff f ∈ (G) iff f
G,h−→
∗

0.
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3.7.2 Congruence, Subideal and Ideal Equality

Ideal Congruence

We define, for any ideal I ⊆ R, an equivalence relation ≡ modI (congru-
ence modulo the ideal I) over R, as follows:

(
∀ f, g ∈ R

) [
f ≡ g mod I iff f − g ∈ I

]
.

IdealCongruence(f, g, H)
Input: H ⊆ R and polynomials f, g ∈ R; H , finite.
Output: True, if f ≡ g mod (H).

Output True, if f − g ∈ (H) (using membership algorithm); otherwise
return False. The correctness of the algorithm follows directly from the
definition of congruence.

Subideal

Subideal(H1, H2)
Input: H1, H2 ⊆ R; H1 and H2, finite.
Output: True, if (H1) ⊆ (H2).

Output True, if
(
∀ h1 ∈ H1

) [
h1 ∈ (H2)

]
(use membership algo-

rithm); otherwise return False.

Ideal Equality

IdealEquality(H1, H2)
Input: H1, H2 ⊆ R; H1 and H2, finite.
Output: True, if (H1) = (H2).

Output True, if (H1) ⊆ (H2) and (H2) ⊆ (H1); otherwise output
False.

3.7.3 Sum and Product

Ideal Sum

IdealSum(H1, H2)
Input: H1 = {h1, . . ., hr}, H2 = {hr+1, . . ., hs} ⊆ R; H1 and H2, finite.

Output: A finite basis H for the ideal (H1) + (H2).

Output simply H =
{
h1, . . . , hr, hr+1, . . . , hs

}
.
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Ideal Product

IdealProduct(H1, H2)
Input: H1 = {h1, . . ., hr}, H2 = {hr+1, . . ., hs} ⊆ R; H1 and H2, finite.

Output: A finite basis H for the ideal (H1) · (H2).

Output simply H =
{
(h1 · hr+1), . . . , (h1 · hs), . . . ,

(hr · hr+1), . . . , (hr · hs)
}
.

3.7.4 Intersection

IdealIntersection(H1, H2)
Input: H1 = {h1, . . ., hr}, H2 = {hr+1, . . ., hs} ⊆ R; H1 and H2, finite.

Output: A finite basis for the ideal (H1) ∩ (H2).

The main idea is to solve the following linear equation

u1 h1 + · · ·+ ur hr = ur+1 hr+1 + · · ·+ us hs, (3.1)

then the ideal (H1) ∩ (H2) is equal to the following ideal

{
u1 h1 + · · ·+ ur hr:

(
∃ ur+1, . . . , us

) [
〈u1, . . . , us〉 is a solution of the equation 3.1

] }
.

Let W be a syzygy basis for {h1, . . ., hr, hr+1, . . ., hs}:

W =



w1

...
wp


 =



w1,1 · · · w1,r w1,r+1 · · · w1,s

...
. . .

...
...

. . .
...

wp,1 · · · wp,r wp,r+1 · · · wp,s


 .

We claim that

(h̃1, . . . , h̃p)

=
(
(w1,1 h1 + · · ·+ w1,r hr), . . . , (wp,1 h1 + · · ·+ wp,r hr)

)

= (H1) ∩ (H2).

Proof of the Claim:

(⇒) For all 1 ≤ i ≤ p:
h̃i = wi,1 h1 + · · ·+ wi,r hr ∈ (H1),

and
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h̃i = −wi,r+1 hr+1 − · · · − wi,s hs ∈ (H2),

and for all i, h̃i ∈ (H1) ∩ (H2).
(⇐) Conversely, assume that h ∈ (H1) ∩ (H2). Then

h = u1 h1 + · · ·+ ur hr, (since h ∈ (H1))

= ur+1 hr+1 + · · ·+ us hs, (since h ∈ (H2))

Thus

u1 h1 + · · ·+ ur hr − ur+1 hr+1 − · · · − us hs = 0,

and
u = 〈u1, . . . , ur,−ur+1, . . . ,−us〉 ∈ R w1 + · · ·+R wp.

That is, there exist v1, . . ., vp ∈ R such that

u = v1 w1 + · · ·+ vp wp.

Thus

h = u1 h1 + · · ·+ ur hr

=
(
v1 w1,1 + · · ·+ vp wp,1

)
h1

+ · · ·
+
(
v1 w1,r + · · ·+ vp wp,r

)
hr

= v1

(
w1,1 h1 + · · ·+ w1,r hr

)

+ · · ·
+ vp

(
wp,1 h1 + · · ·+ wp,r hr

)

= v1 h̃1 + · · ·+ vp h̃p

∈
(
h̃1, . . . , h̃p

)
.

3.7.5 Quotient

Ideal Quotient, (H) : (f)

IdealQuotient(f, H)
Input: f ∈ R, H = {h1, . . ., hr} ⊆ R; H , finite.

Output: A finite basis for the ideal (H) : (f).

As before, the main idea is to solve the following linear equation

u1 h1 + · · ·+ ur hr = ur+1 f. (3.2)
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Then the ideal (H) : (f) is equal to the following ideal

{
ur+1:

(
∃ u1, . . . , ur

)

[
〈u1, . . . , ur, ur+1〉 is a solution of the equation 3.2

]}
.

Let W be a syzygy basis for {h1, . . ., hr, f}:

W =



w1

...
wp


 =



w1,1 · · · w1,r w1,r+1

...
. . .

...
...

wp,1 · · · wp,r wp,r+1


 .

We claim that
(w1,r+1, . . . , wp,r+1) = (H) : (f).

Proof of the Claim:

(⇒) For all 1 ≤ i ≤ p:

wi,r+1 f = −wi,1 h1 − · · · − wi,r hr ∈ (H).

Hence wi,r+1 ∈ (H) : (f).
(⇐) Conversely, assume that u ∈ (H) : (f), i.e., u · f ∈ (H). Then

u · f = u1 h1 + · · ·+ ur hr,

and
u = 〈u1, . . . , ur,−u〉 ∈ R w1 + · · ·+R wp.

That is, there exist v1, . . ., vp ∈ R such that

u = v1 w1 + · · ·+ vp wp.

Thus

u = −v1 w1,r+1 − · · · − vp wp,r+1

∈ (w1,r+1, . . . , wp,r+1).

Ideal Quotient, (H1) : (H2)

IdealQuotient(H1, H2)
Input: H1 = {h1, . . ., hr}, H2 = {hr+1, . . ., hs} ⊆ R; H1 and H2, finite.

Output: A finite basis for the ideal (H1) : (H2).
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Note that

(H1) : (H2) =


(H1) :

s∑

j=r+1

(hj)


 =

s⋂

j=r+1

(
(H1) : (hj)

)
.

One direction follows from the arguments below:

u ∈ (H1) : (H2) ⇒ u (H2) ⊆ (H1)

⇒
(
∀ r + 1 ≤ j ≤ s

) [
u · hj ∈ (H1)

]

⇒ u ∈
s⋂

j=r+1

(
(H1) : (hj)

)
.

Conversely,

u ∈
s⋂

j=r+1

(
(H1) : (hj)

)

⇒
(
∀ r + 1 ≤ j ≤ s

) [
u · hj ∈ (H1)

]

⇒
(
∀ f1, . . . , fr ∈ R

) [
u (f1 h1 + · · ·+ fr hr) ∈ (H1)

]

⇒ u (H2) ⊆ (H1)

⇒ u ∈ (H1) : (H2).

Hence (H1) : (H2) can be computed using the algorithm for computing
the quotient, (H) : (f), and the algorithm for computing the intersection
of two ideals.

Problems

Problem 3.1
Let f1, f2, . . ., fs ∈ K[x] be a set of univariate polynomials with coef-

ficients in a field K. Show that the ideal generated by fi’s has a Gröbner
basis with a single element (i.e., K[x] is a principal ideal domain). You
may not use any fact other than the properties of the Gröbner basis.

In the case s = 2, what is the relation between Buchberger’s algorithm
to compute a Gröbner basis and Euclid’s algorithm to compute the g.c.d.
of two univariate polynomials?

Problem 3.2
Prove the following:
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(i) Let G ⊆ I be a Gröbner basis of an ideal I of R = S[x1, . . ., xn]. Is
it true that for every f ∈ R, |NFh

G(f)| = 1? Is it true that for every f ∈ I,
|NFh

G(f)| = 1?
Hint: Consider a Gröbner basis {x2 + 1, y3 + 1} for the ideal (x2 +

1, y3+1) of Q[x,y] (with respect to <
TLEX

). Can a polynomial, say x6y6 +

xy2 + x+ 1, have more than one normal forms (under the head-reduction)
with respect to the given Gröbner basis?

(ii) A Gröbner basis Gmin for an ideal I is a minimal Gröbner basis for
I, if no proper subset of Gmin is a Gröbner basis for I.

A Gröbner basis Gshr for an ideal I is a self-head-reduced Gröbner basis
for I, if every nonzero g ∈ Gshr is head-reduced modulo Gshr \ {g}.

Let G be a Gröbner basis for an ideal I of R such that 0 6∈ G. Show that
G is a minimal Gröbner basis for I if and only if G is a self-head-reduced
Gröbner basis for I.

Problem 3.3
A basis F for an ideal I is said to be a minimal basis for I, if no proper

subset of F is also a basis for I.
(i) Let F be a self-head-reduced Gröbner basis such that |F | ≤ 2. Show

that F is a minimal basis for (F ).
(ii) Consider the following basis F for the ideal (F ) ⊆ R[x,y]:

F = {x2 − y, xy − 1, y2 − x},
Show that F is a self-head-reduced , minimal Gröbner basis for (F ) under
any admissible total-degree ordering but not a minimal basis for (F ).

Hint: (x2 − y, xy − 1, y2 − x) = (xy − 1, y2 − x).

Problem 3.4
Let S be a ring, let R = S[x1, . . ., xn], let ≥

lex

be the fixed admissible

ordering of choice on PP(x1, . . ., xn).
Let G = {g1, g2, . . ., gs} ⊆ R be a finite set of polynomials, and f ∈ R

an arbitrary polynomial such that

f
G,h−→ f1

G,h−→ f2
G,h−→· · · G,h−→ fm

G,h−→ fm.

Show that, if the d and D, respectively, bound the degrees (in each
variable) of the polynomials in G and of the polynomial f , then

m ≤
(
D

d
+ 1

)n

(d+ 1)n(n+1)/2.

Hint: If π = xα1
1 xα2

2 · · ·xαn
n is an arbitrary power product, then we

assign it a weight as follows:

WG(π) = α1(d+ 1)n−1 + α2(d+ 1)n−1 + · · ·+ αn(d+ 1)0.
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Let the weight of a multivariate polynomial be defined to be the biggest of
the weights of its power products; that is,

if f = a1π1 + a2π2 + · · ·+ aℓπℓ, then WG(f) = max
i
WG(πi).

The rest follows from the following two observations:

1. WG(fm) ≤ WG(fm−1) ≤ · · · ≤ WG(f1) ≤ WG(f).

2. The Hmono(fi)’s are all distinct.

Problem 3.5
Let S = Noetherian, computable and syzygy-solvable ring. We say S

is 1-detachable if, given {f1, . . ., fr} ⊆ S, there is an algorithm to decide
whether 1 ∈ (f1, . . ., fr), and if so, to express 1 as

1 = h1 · f1 + · · ·+ hr · fr, h1, . . . , hr ∈ S.

Show that S is 1-detachable if and only if S is detachable.

Problem 3.6
Let S = Noetherian, computable and detachable ring.

• We say S is intersection-solvable if, given F1 = {f1, . . ., fr} and
F2 = {fr+1, . . ., fs}, F1, F2 ⊆ S, there is an algorithm to compute a
finite basis for (F1) ∩ (F2).

• We say S is quotient-solvable if, given F1 = {f1, . . ., fr} and F2 =
{fr+1, . . ., fs}, F1, F2 ⊆ S, there is an algorithm to compute a finite
basis for (F1) : (F2).

• We say S is annihilator-solvable if, given f ∈ S, there is an algorithm
to compute a finite basis for ann f .

Show that the following three statements are equivalent:

1. S is syzygy-solvable.

2. S is quotient-solvable.

3. S is intersection-solvable and annihilator-solvable.

Problem 3.7
Let S be a Noetherian ring, such that, given a subset F ⊆ S[t], there is

an algorithm to compute a finite basis of the contraction of (F ) to S, i.e.,

(F )
{
S[t]

}
∩ S.
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In this case, we say S is contraction-solvable.
(i) Show that S is intersection-solvable.
Hint: Show that if I1 and I2 are two ideals in S, then

I1 ∩ I2 = (t I1 + (1− t)I2)
{
S[t]

}
∩ S.

(ii) Show that if S is strongly computable, then S is contraction-
solvable.

Problem 3.8
Consider an ideal M ⊆ Z[x1, x2, . . ., xn] generated by a finite set

M = {M1, M2, . . ., Mν} ⊂ Z[x1, x2, . . ., xn]. Let A ∈ Z[x1, x2, . . .,
xn] be a multivariate polynomial with integer coefficients, whose terms
are ordered according to the lexicographic ordering, with the biggest term
occurring first.

If Hmono(Mi) divides Hmono(A) and

A′ = A− Hmono(A)

Hmono(Mi)
Mi

= − Hmono(A)

Hmono(Mi)
Tail(Mi) + Tail(A),

then we say that Mi reduces A to A′ and we denote this by the expression

A
Mi,h−→ A′.

Note that, as earlier,
M,h−→
∗

is the reflexive and transitive closure of
Mi,h−→ (for some Mi ∈M).

A set of generators M = {M1, M2, . . ., Mν} of the idealM is an E-basis
of the ideal if

A ∈M ⇔ A
M,h−→
∗

0.

Let Mi and Mj be two distinct polynomials in the ideal M. Then we
define the S-polynomial of Mi and Mj (denoted, S(Mi,Mj)) as follows:

S(Mi,Mj) =
m̂

Hmono(Mi)
Mi −

m̂

Hmono(Mj)
Mj ,

where m̂ = LCM{Hmono(Mi), Hmono(Mj)}.
For every nonempty subset M′ = {Mi1 , . . ., Miµ} ⊆M, we let

q = gcd
{
Hcoef(Mi1), . . . ,Hcoef(Miµ)

}

= a1Hcoef(Mi1) + · · ·+ aµHcoef(Miµ),
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where q, a1, . . ., aµ ∈ Z, and we let,

π = LCM
{
Hterm(Mi1), . . . ,Hterm(Miµ)

}

whence,

q · π = a1
π

Hterm(Mi1)
Hmono(Mi1) + · · ·+ aµ

π

Hterm(Miµ)
Hmono(Miµ)

and clearly q · π ∈ Head(M1, . . ., Mν). Thus, for every such M′ we define

ψ(M′) = a1
π

Hterm(Mi1)
Mi1 + · · ·+ aµ

π

Hterm(Miµ)
Miµ .

This leads us to define the Ψ expansion of M to be

Ψ(M) = Ψ
(
{M1, . . . ,Mν}

)

=
{
M1, . . . ,Mν

} ⋃ {
ψ(M′) : ∅  M′ ⊆M

∧
(
∀1 ≤ i ≤ ν

) [
Hmono(Mi) ∤ Hmono(ψ(M′))

]}

= {P1, . . . , Pλ} = P,

where we have removed duplicates or multiples with respect to the head
monomials.

Show that the following algorithm computes an E-basis of an ideal
M⊆ Z[x1, x2, . . ., xn] generated by a finite set M = {M1, M2, . . ., Mν}.

E-Basis Algorithm:

Input: M ⊆ Z[x1 , . . ., xn],
M = finite.

Output: P ⊆ Z[x1 , . . ., xn],
(P) = (M), and P satisfies the property (E).

P := M; P := Ψ(P);
Pairs := {{Mi, Mj} : Mi, Mj ∈ P and Mi 6= Mj};

while Pairs 6= ∅ loop

Choose {Mi, Mj}, any pair in Pairs;
Pairs := Pairs \{{Mi, Mj}};
Compute a normal form P of S(Mi, Mj) with respect to some

choice of sequence of reductions modulo P;

P = NFh
P(S(Mi, Mj));

if P 6= 0 then

P := P ∪ {P}; P := Ψ(P);
Pairs := {{Mi, Mj} : Mi, Mj ∈ P and Mi 6= Mj};

end{if };
end{loop };
return P;

end{E-Basis Algorithm}.
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Problem 3.9
Let S = K be a field and R = K[x1, . . ., xn] be the ring of polynomials

in the variables x1, . . ., xn over K.
Given two polynomials f , g ∈ R, we say f is completely reducible by g

if Hmono(g) divides some monomial m in f . Say m = a ·Hmono(g). Then
we say the polynomial h = f − a · g is the complete-reduct of f by g and
denote the relationship by

f
g,c−→h.

If G is a set of polynomials, we write f
G,c−→h if f

g,c−→h holds for some g ∈ G.
If there is a finite sequence h1, . . ., hn (n ≥ 1) such that h1 = f, hn = h

and hi
G,c−→hi+1 for i = 1, . . . , n− 1, then we write

f
G,c−→
∗
h.

If f is not reducible by any g ∈ G, we indicate this by writing f
G,c−→ f . We

say h is a normal form of f modulo G under complete-reduction (briefly,

complete-normal form) if f
G,c−→
∗
h

G,c−→h, and we write NFc
G(f) for the set

of all complete-normal forms of f modulo G.
Show that

1. The complete-normal form of f is not unique in general. That is, it
is possible that

|NFc
G(f)| > 1.

2. The complete-normal form of f is well-defined. That is, it is not
possible that

|NFc
G(f)| = 0,

(i.e., the complete-reduction process always terminates).

Problem 3.10
Consider the following set G = {g1, . . ., gn+1} ⊆ Q[x1, . . ., xn], a

polynomial f ∈ Q[x1, . . ., xn] and the admissible ordering >
lex

.

x1 >
lex

x2 >
lex

· · · >
lex

xn.

Let d > 0 and D > 0 be two positive integers. Assume that

g1 = x1 − xd
2x

d
3 · · ·xd

n

g2 = x2 − xd
3 · · ·xd

n

...

gn−1 = xn−1 − xd
n

gn = x2
n − xn

gn+1 = xn − 1
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and
f = xD

1 xn.

Show that there is a complete reduction sequence

f
G,c−→ f1

G,c−→ f2
G,c−→· · · G,c−→ fm,

such that
m ≥ 2(d+1)n−1D.

Problem 3.11
Let K be a field and R = K[x1, . . ., xn] be the multivariate polynomial

ring, as in Problem 3.9. Let f , g ∈ R; we define the S-polynomial S(f, g)
of f and g as follows:

S(f, g) =
m

Hmono(f)
· f − m

Hmono(g)
· g,

where m = LCM(Hterm(f),Hterm(g)).
Let I ⊆ R be an ideal in R. Show that the following three statements

are equivalent:

1. G ⊆ I and Head(G) = Head(I).

2. G ⊆ I and for all f ∈ I,
f

G,c−→
∗

0.

3. (G) = I and for all f , g ∈ G (f 6= g),

S(f, g)
G,c−→
∗

0.

Problem 3.12
Let K be a field and R = K[x1, . . ., xn] be the multivariate polynomial

ring, as in Problem 3.9.
(i) Show that the following two statements are equivalent:

1. G is a Gröbner basis for I.

2. (G) = I and for all f ∈ R, |NFc
G(f)| = 1.

Hint: You may need to show by induction that

f
G,c←→
∗
g iff f ≡ g mod (G).

(ii) Let (F ) ⊆ K[x1, . . ., xn] be an ideal and ≡ mod (F ) the usual
congruence relation on R = K[x1, . . ., xn].
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A canonical simplifier for ≡ mod (F ) on R is an algorithm C with input
and output in R such that for all f , g ∈ R,

f ≡ C(f) mod (F )

and
f ≡ g mod (F ) =⇒ C(f) = C(g).

Notice that the function C gives a unique representative in each equivalence
class of T/ ∼. We call C(f) a canonical form of f .

Devise a canonical simplifier algorithm.

Problem 3.13
Let K be a field and R = K[x1, . . ., xn] be the multivariate polynomial

ring, as in Problem 3.9. A set G ⊆ R is a minimal Gröbner basis of the
ideal (G), if

(
∀ g ∈ G

) [
G \ {g} is not a Gröbner basis of (G)

]
.

Show that if G and G′ are two minimal Gröbner bases for the same
ideal, then they have the same cardinality, |G| = |G′|.

Hint: Show that (1) the set of head terms in G is equal to the set of
head terms in G′ and (2) no two polynomials in G (or G′) have the same
head term.

Problem 3.14
Let K be a field and R = K[x1, . . ., xn] be the multivariate polynomial

ring, as in Problem 3.9. A basis F ⊆ R is self-reduced if either F = {0} or
else 0 6∈ F and (

∀ f ∈ F
) [

f
F\{f},c
−−−−→ f

]

We call a Gröbner basis G ⊆ R reduced if

1. either G = {0} or else for all g ∈ G, Hcoef(g) = 1;

2. G is self-reduced.

(i) Devise algorithmic procedures to compute the self-reduced and re-
duced Gröbner bases of an ideal (F ).

(ii) Prove that the reduced Gröbner basis of an ideal in K[x1, . . ., xn]
is unique (relative to choice of the admissible ordering).

Note: You may want to use the fact that a reduced Gröbner basis is
a minimal Gröbner basis.
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Problem 3.15
Consider the ideal I = (xy + y, xz + 1) ⊆ Q[̥,y,x]. Use the lexico-

graphic ordering, with

z <
LEX

y <
LEX

x.

(i) Show that the following is a minimal Gröbner basis for I:

G = {xy + y, xz + 1, yz − y}.

(ii) Prove that that G is also a Gröbner basis for I (with respect to
degree ordering of x) when it is considered as an ideal in the polynomial
ring (Q[̥,y])[x] with variables x and coefficients in Q[̥,y].

(iii) Show that G is not a minimal Gröbner basis for I{(Q[̥,y])[x]}.
Compute a minimal Gröbner basis G′ ⊂ G for I{(Q[̥,y])[x]}. Is G′ also
a Gröbner basis for I{Q[̥,y,x]}?

Hint: Show that

Hmonox(xy + y) = xy

= y(xz)− x(yz − y)
= yHmonox(xz + 1)− xHmonox(yz − y),

where Hmonox(f) = head monomial of f ∈ (Q[̥,y])[x], when f is
treated as a univariate polynomial in x. After throwing (xy + y) out of
G, you can obtain a minimal Gröbner basis.

Problem 3.16
Consider the polynomial ring R = S[x1, . . ., xn]. The homogeneous

part of a polynomial f ∈ R of degree d (denoted fd) is simply the sum of
all the monomials of degree d in f . A polynomial is homogeneous if all of its
monomials are of same degree. An ideal I ⊆ R is said to be homogeneous,
if the following condition holds: f ∈ I implies that for all d ≥ 0, fd ∈ I

(i) Prove: An ideal I ⊆ R is homogeneous if and only if I has a basis
consisting only of homogeneous polynomials.

(ii) Given an effective procedure to test if an element f ∈ R belongs to
an ideal I ⊆ R, devise an algorithm to test if I is homogeneous.

(iii) Let I ⊆ R be a homogeneous ideal, and G a Gröbner basis for I
(under some admissible ordering >

A

). Define

G′
d =

{
gd : gd is a homogeneous part of some g ∈ G of degree d

}
,

and

G′ =

+∞⋃

d=−∞
G′

d.
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Prove that G′ is a homogeneous Gröbner basis for I (under >
A

).

(iii) Let K = field. Show that an ideal I ⊆ K[x1, . . ., xn] is homoge-
neous if and only if it has a reduced Gröbner basis, each of whose element
is homogeneous.

Problem 3.17
Let G be a homogeneous Gröbner basis for I with respect to >

TRLEX

, in

S[x1, . . ., xn]. Define Ĝ(d) as follows:
Let g ∈ S[x1, . . ., xn] be a polynomial, and d ∈ N a positive integer.

Then

ĝ(d) =





g

xm
n

, if g is divisible by xm
n ,

but not by xm+1
n , for some 0 ≤ m < d,

g

xd
n

, otherwise.

,

and
Ĝ(d) = {ĝ(d) : g ∈ G}.

Show that Ĝ(d) is a homogeneous Gröbner basis for I : (xd
n) with respect

to >
TRLEX

.

Problem 3.18
We define a polynomial expression over the ring Z involving n variables

x1, x2, . . ., xn as follows: P = 1, P = xi (i ∈ {1, . . . , n}) are polynomial
expressions; if P and Q are two polynomial expressions, then so are a1 ·
P + a2 ·Q and a1 · P ·Q (a1, a2 ∈ Z).

Example: (x2 − y2)− (x+ y)(x− y − 1).
With each polynomial expression, P , we associate the polynomial ob-

tained by expanding the polynomial into the simplified form and call it
P̂—for instance, the polynomial associated with the expression in the ex-
ample is x+ y.

Given a polynomial expression P1, let d1 be the degree of x1 in P̂1, and
P̂2x

d1
1 be the corresponding term in P̂1 (considered as a polynomial in x1

over the ring Z[x2, . . . ,x⋉]); and let d2 be the degree of x2 in P̂2, and so
on, up to dn.

(i) Suppose P is not identically zero. Let Ii ⊆ Z be an interval in Z
(i ∈ {1, . . . , n}). Show that in the set I1 × I2 × · · · × In ⊆ Z⋉, P has at
most N real zeroes, where

N = |I1 × I2 × · · · × In|
(
d1

|I1|
+

d2

|I2|
+ · · ·+ dn

|In|

)
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(ii) Let P be a polynomial expression, not identically zero, and C > 1
a constant. Let I = I1 = · · · = In be intervals in Z such that |I| ≥ C ·
deg P̂ . Show that the probability that P evaluates to zero at a (uniformly)
randomly chosen point in In is bounded by C−1 from above.

(iii) Devise a probabilistic algorithm to test whether a given polynomial
expression is identically zero.
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Solutions to Selected Problems

Problem 3.1

Lemma: Given I = (f1, . . . , fs) is an ideal in K[x], where K is a field,
if f = xn + a1x

n−1 + · · ·+ an is a monic polynomial of minimal degree in
I, then G = {f} is a Gröbner basis for I.

proof.
Note first that f has the minimal degree among the polynomials of I, since
if there exists an f ′ ∈ I, deg(f ′) < deg(f), then f ′/Hcoef(f ′) ∈ I would
contradict our choice of f .

Since {f} ⊆ I, it is sufficient to show that Head(I) ⊆ Head({f}). For
any g = b0x

m + b1x
m−1+ · · · +bm ∈ I, Hmono(g) = b0x

m, and n ≤ m by
choice. Thus, Hmono(f) | Hmono(g), and Hmono(g) ∈ Head({f}).

Case s = 2: Both head reductions and S-polynomials do the same
thing and correspond to one step of polynomial division. Suppose fi−1 =
a0x

n +a1x
n−1 + · · ·+an, and fi = b0x

m +b1x
m−1 + · · ·+bm, where n ≤ m;

then the following are all equivalent:

S(fi, fi−1) = fi −
(
b0
a0

)
xm−n fi−1,

fi =

(
b0
a0

)
xm−n fi−1 + S(fi, fi−1),

fi
fi−1−→ S(fi, fi−1).

Because the quotients are restricted to monomials, we get only one step of
a complete polynomial division of the type occurring in Euclid’s algorithm.
We observe that it is never necessary to multiply both fi and fi−1 by a
power product to find the LCM of the head monomials.

When we run the Gröbner basis algorithm starting with two univariate
polynomials, the S-polynomial computations generate remainders, which
then get reduced to normal-forms. The normal-form computations apply
head reductions which again compute remainders. The algorithm may be
viewed as a “disorganized” Euclidean algorithm, in which remaindering is
done in a nondeterministic fashion. As soon as the g.c.d. of the inputs ap-
pears (as it must, since we can simulate the Euclidean g.c.d. computation
by making the right nondeterministic choices), then all the normal forms
of S-polynomials necessarily reduce to zero, and the algorithm terminates.
As we are not trying to produce a “reduced” Gröbner basis, it will contain
along with the g.c.d. also the input polynomials and all the reduced re-
mainders generated along the way. The g.c.d. can be extracted by simply
searching for the lowest-degree polynomial in the basis.
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Problem 3.2

(i) In general, for f ∈ R, NFh
G(f) is not unique. For instance, if we

head-reduce x6y6 + xy2 + x+ 1, first using x2 + 1 as long as possible and
then using y3 + 1, we get xy2 + x. On the other hand, if we head-reduce
the same polynomial, first using y3 +1 as long as possible and then x2 +1,
we get xy2 + x2 + x+ 1. Thus,

∣∣∣NFh
G(x6y6 + xy2 + x+ 1)

∣∣∣ > 1.

Let f ∈ I, and f ′ ∈ NFh
G(f). Thus, f ′ ∈ I. If f ′ 6= 0 then Hmono(f ′) ∈

Head(G), and f ′ is head-reducible. As f ′ is a normal-form, f ′ must be 0.
Therefore, NFh

G(f) = {0}.
(ii) Let Gmin be minimal Gröbner basis, which is not a self-head-

reduced Gröbner basis. Then there is a nonzero g ∈ Gmin which is head-
reducible modulo Gmin \{g}. Thus, Hmono(g) ∈ Head(Gmin \{g}). There-
fore,

Head(I) = Head(G) = Head(Gmin\{g})+(Hmono(g)) = Head(Gmin\{g}),

and Gmin \ {g}  Gmin is a Gröbner basis for I, which contradicts the
minimality of Gmin.

Conversely, let Gshr be a self-head-reduced Gröbner basis, which is not
minimal. Then there is a nonzero g ∈ Gshr such that G′ = Gshr \ {g} is a
Gröbner basis for I. But then

Hmono(g) ∈ Head(I) = Head(G′),

and g is head-reducible modulo Gshr \ {g}, which contradicts the self-head-
reducibility of Gshr.

Problem 3.5
Let S be Noetherian, computable and syzygy-solvable ring. If S is

detachable, then obviously it is also 1-detachable, as 1-detachability is a
special case of detachability.

Claim: Let f1, . . ., fr, s ∈ S, and let the syzygy-basis for {f1, . . ., fr, s},
be v1, . . ., vp, where, for i = 1, . . ., p, vi = 〈wi,1, . . . , wi,r+1〉 ∈ Sr+1. Then

1. 1 = u1 w1,r+1 + · · ·+ up wp,r+1, for some ui ∈ S

⇒ s = t1 f1 + · · ·+ tr fr, where ti = −
p∑

j=1

ujwj,i.

2. 1 ∈ (w1,r+1, . . . , wp,r+1) ⇔ s ∈ (f1, . . . , fr).
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Proof of Claim The proof is as follows. Let 1 = u1 w1,r+1+· · ·+up wp,r+1.
Since, for all j = 1, . . ., p,

wj,1 f1 + · · ·+ wj,r fr + wj,r+1 s = 0,

we have

u1

(
w1,1 f1 + · · ·+ w1,r fr + w1,r+1 s

)
+ · · ·

+ up

(
wp,1 f1 + · · ·+ wp,r fr + wp,r+1 s

)
= 0

⇒
p∑

i=1

ui wi,1 f1 + · · ·+
p∑

i=1

ui wi,r fr +

p∑

i=1

ui wi,r+1 s = 0

⇒ −t1 f1 − · · · − tr fr + s = 0

⇒ s = t1 f1 + · · ·+ tr fr.

Thus
1 ∈ (w1,r+1, . . . , wp,r+1) ⇒ s ∈ (f1, . . . , fr).

Conversely, assume that s ∈ (f1, . . . , fr). Thus, s = t1 f1 + · · ·+ tr fr, and
−t1 f1 − · · · − tr fr + s = 0. Since v1, . . ., vp is the syzygy-basis, we can
find u1, . . ., up such that

〈−t1, . . . ,−tr, 1〉 = u1 v1 + · · ·+ up vp.

Thus, u1 w1,r+1 + · · ·up wp,r+1 = 1. Hence, 1 ∈ (w1,r+1, . . ., wp,r+1).
(End of Claim.)

Let us assume that S is 1-detachable. Let f1, . . ., fr, s ∈ S, and let
the syzygy-basis for {f1, . . ., fr, s}, be v1, . . ., vp, as before. (The syzygy-
basis can be computed as S is a syzygy-solvable ring.) If 1 6∈ (w1,r+1, . . .,
wp,r+1), then s 6∈ (f1, . . ., fr). Otherwise, we can express 1 as

1 = u1 w1,r+1 + · · ·+ up wp,r+1,

using the 1-detachability of S. But by the claim, we see that

s = t1 f1 + · · ·+ tr fr,

where ti = −∑p
j=1 ujwj,i. Thus S is detachable.

Problem 3.6
(1) ⇒ (3): See the application section (§3.7), in particular the sub-

sections on intersection (Subsection 3.7.4, pp. 106) and quotient (Subsec-
tion 3.7.5, pp. 107).

(3) ⇒ (2): Note that

(F1) : (F2) =


(F1) :

s∑

j=r+1

(fj)


 =

s⋂

j=r+1

((F1) : (fj)).
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Also, for each fj (j = r + 1, . . ., s), if Cj is a basis for (F1) ∩ (fj), and Dj

is a basis for ann (fj), then

Bj =

{
c

fj
: c ∈ Cj

}
∪Dj

is a basis for (F1) : (fj). As S is intersection-solvable and annihilator-
solvable, all the Bj ’s can be computed; and as S is intersection-solvable, a
basis for (F1) : (F2) can also be computed. Thus S is quotient-solvable.

(2) ⇒ (1): Let B(s) =
{
b
(s)
s,1, . . . , b

(s)
s,ps

}
be a basis for the ideal (0) :

(fs) = ann (fs).

Let B(s) ⊆ Ss be a set of s-tuples given by

{ 〈
0, . . . , 0︸ ︷︷ ︸

s−1

, b
(s)
s,1

〉
,

...〈
0, . . . , 0︸ ︷︷ ︸

s−1

, b
(s)
s,ps

〉 }
.

Note that both B(s) and B(s) are constructible as the ring S is assumed to

be quotient-solvable, and for each ω̄ = 〈0, . . . , 0︸ ︷︷ ︸
s−1

, b
(s)
s,j〉 ∈ B(s),

0 f1 + · · ·+ 0 fs−1 + b
(s)
s,j fs = 0.

Hence ω̄ ∈ S({f1, . . ., fs}).
Now, for r (1 ≤ r < s), let B(r) =

{
b
(r)
r,1, . . . , b

(r)
r,pr

}
be a basis for the

ideal (fr+1, . . . , fs) : (fr).
Assume that for each j ∈ {1, . . ., pr},

b
(r)
r,j fr = −b(r)

r+1,j fr+1 − · · · − b(r)
s,j fs ∈ (fr+1, . . . , fs),

i.e.,

b
(r)
r,j fr + b

(r)
r+1,j fr+1 + · · ·+ b

(r)
s,j fs = 0.

Let B(r) ⊆ Ss be a set of s-tuples given by

{ 〈
0, . . . , 0︸ ︷︷ ︸

r−1

, b
(r)
r,1, b

(r)
r+1,1, . . . , b

(r)
s,1

〉
,

...〈
0, . . . , 0︸ ︷︷ ︸

r−1

, b
(r)
r,pr , b

(r)
r+1,pr

, . . . , b
(r)
s,pr

〉 }
.
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Note that B(r) can be computed as S is quotient-solvable; b
(r)
r+1,j, . . ., b

(r)
s,j

(1 ≤ j ≤ pr) can be computed as S is detachable. Thus, finally, the set B(r)

is constructible for a Noetherian, computable, detachable and quotient-

solvable ring S. Also, for each ω̄ = 〈0, . . . , 0︸ ︷︷ ︸
r−1

, b
(r)
r,j , b

(r)
r+1,j, . . ., b

(r)
s,j〉 ∈ B(r),

0 f1 + · · ·+ 0 fr−1b
(r)
r,j fr + b

(r)
r+1,j fr+1 + · · ·+ b

(r)
s,j fs = 0.

Hence ω̄ ∈ S({f1, . . ., fs}).
Now, we claim that the set B = B(1) ∪ B(2) ∪ · · · ∪ B(s) is in fact a

syzygy basis for {f1, f2, . . ., fs}. We have already seen that if ω̄ ∈ B then
ω̄ ∈ S({f1, . . ., fs}). Thus, it remains to be checked that every s-tuple
〈c1, c2, . . . , cs〉 ∈ Ss satisfying the condition

c1 f1 + c2 f2 + · · ·+ cs fs = 0

can be expressed as a linear combination of the elements of B. Assume to
the contrary. Then there is an s-tuple γ̄ = 〈0, . . . , 0︸ ︷︷ ︸

r−1

, cr, . . . , cs〉 (r possibly

1) in S({f1, . . ., fs}), not expressible as a linear combination of the elements
of B; assume that γ̄ is so chosen that r takes the largest possible value.

We first notice that, since

cr fr = −cr+1 fr+1 − · · · − cs fs ∈ (fr+1, . . . , fs),

it follows that cr ∈ (fr+1, . . . , fs) : (fr). Thus

cr = u1 b
(r)
r,1 + · · ·+ upr b

(r)
r,pr

.

Now, consider the s-tuple γ̄′ = 〈0, . . . , 0︸ ︷︷ ︸
r

, c′r+1, . . . , c
′
s〉, where

c′r+1 = cr+1 −
(
u1 b

(r)
r+1,1 + · · ·+ upr b

(r)
r+1,pr

)
,

...

c′s = cs −
(
u1 b

(r)
s,1 + · · ·+ upr b

(r)
s,pr

)
.

But

c′r+1 fr+1 + · · ·+ c′s fs

= cr fr + cr+1 fr+1 + · · ·+ cs fs

−
pr∑

j=1

uj

(
b
(r)
r,j fr + · · ·+ b

(r)
s,j fs

)

= 0.
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Thus γ̄′ ∈ S({f1, . . ., fs}). Since γ̄ is not expressible as a linear combination
of the elements of B, and since (γ̄ − γ̄′) is a linear combination of the

elments of B(r) ⊆ B, the s-tuple γ̄′ itself cannot be expressed as a linear
combination of the elements of B. But this contradicts the maximality
of the initial prefix of 0’s in the choice of the s-tuple, γ̄. Indeed, every
element of S({f1, . . ., fs}) must be expressible as a linear combination of
the elements of B, and B is a syzygy basis for {f1, . . ., fs}, as claimed.
Thus the ring S is syzygy-solvable.

Problem 3.7
(i) We first prove the statement in the hint:

c ∈ (t I1, (1− t)I2){S[t]} ∩ S

⇔ c =
k∑

i=0

ait
i+1 +

k∑

i=0

bit
i −

k∑

i=0

bit
i+1 ∈ S, ai ∈ I1, bi ∈ I2

⇔ c = (ak − bk)tk+1 +

k∑

i=1

(ai−1 + bi − bi−1)t
i + b0 ∈ S

⇔ ak − bk = ak−1 + bk − bk−1 = · · · = a0 + b1 − b0 = 0,

and c = b0 ∈ S
⇔ b0 = a0 + a1 + · · ·+ ak = c ∈ S
⇔ c ∈ I1 and c ∈ I2
⇔ c ∈ I1 ∩ I2.

Therefore, contraction-solvability of S implies intersection-solvability of S.

(ii) It was shown in Section 3.3 that the strong-computability of S
implies that a Gröbner basis G for (F ) ⊆ S[t] can be computed with
respect to the admissible ordering >

LEX

(in this case, it is simply the degree

ordering). We now claim that G∩S is a Gröbner basis (also finite) for the
contraction of (F ), (F ){S[t]} ∩ S (in S). Thus if S is strongly computable
then S is contraction-solvable.

To justify the claim, we make the following observations:

(
∀ f ∈ S[t]

) [
Hmono(f) ∈ S ⇔ f ∈ S

]

(i.e., if the highest-order term in f does not involve t, then no term of f
involves t, and vice versa).

Thus,

Head(G ∩ S) = Head(G) ∩ S = Head(I) ∩ S = Head(I ∩ S).
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Problem 3.9

(i) Let G = {x2 − 1, x2 − x} and let f = x2, then NFc
G(f) ⊇ {1, x},

showing that |NFc
G(f)| > 1.

(ii) In this case, we have to simply show that the complete-reduction
process always terminates. We start with a definition. Let X be any set
with a total ordering ≤ and let S(X) be the set of all finite decreasing
sequences of elements of X :

S(X) = {〈x1, . . . , xn〉 : xi ∈ X,x1 > x2 > · · · > xn} .

Let S(X) have the following induced total-ordering:

〈x1, . . . , xn〉 ≤′ 〈y1, . . . , ym〉,

if either for some i < min(n,m), x1 = y1, . . ., xi = yi and xi+1 < yi+1,
or else the sequence 〈x1, . . ., xn〉 is a prefix of the sequence 〈y1, . . ., ym〉
(thus, n < m).

Claim: If X is well-ordered by ≤, then S(X) is well-ordered under the
induced ordering.

Proof of Claim For the sake of contradiction, suppose σ1 >
′ σ2 >

′ · · · is
an infinite descending chain in S(X). Let σi = (xi,1, . . ., xi,n(i)). There
are two cases.

(i) The n(i)’s are bounded, say k = max{n(i) : i = 1, 2, · · ·}. We use
induction on k. We get an immediate contradiction for k = 1, so assume
k > 1. If there are infinitely many i’s such that n(i) = 1, then we get a
contradiction from the subsequence consisting of such σi’s. Hence we may
assume that the n(i)’s are all greater than 1. Now there is an i0 such that
for all i ≥ i0, xi,1 = xi+1,1. Let σ′

i = (xi,2, . . ., xi,n(i)) be obtained from
σi by omitting the leading item in the sequence. Then the sequence σ′

i0
,

σ′
i0+1, · · · constitutes a strictly decreasing infinite chain with each σ′

i of
length < k. This contradicts the inductive hypothesis.

(ii) The n(i)’s are unbounded. By taking a subsequence if necessary,
we may assume that n(i) is strictly increasing in i. Define m(1) to be the
largest index such that xm(1),1 = xj,1 for all j ≥ m(1). For each i > 1 define
m(i) to be the largest index greater than m(i− 1) such that xm(i),i = xj,i

for all j ≥ m(i). Note that the sequence

xm(1),1, xm(2),2, xm(3),3, . . .

is strictly decreasing. This contradicts the well-foundedness of X .
(End of Claim.)

Now to see that the complete-reduction process terminates, we pro-
ceed as follows: We map a polynomial g to the sequence of monomials
ḡ = 〈m1, . . ., mk〉, where mi’s are the monomials occurring in g and
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m1>
A

m2>
A

· · · >
A

mk. By our claim, the set of ḡ’s are well-ordered un-

der the induced ordering >
A

′. It is seen that if g
G,c−→h, then ḡ >

A

′h̄. The

termination of the complete-reduction is equivalent to the well-foundedness
of the induced ordering.

Problem 3.11
(1) ⇒ (2):

G ⊆ I and Head(G) = Head(I)

⇒
(
∀ f ∈ I

) [
f

G,h−→
∗

0
]

⇒
(
∀ f ∈ I

) [
f

G,c−→
∗

0
]
,

(since f
G,h−→ g ⇒ f

G,c−→ g.)

(2) ⇒ (3): (i)
(
∀ f ∈ I

) [
f

G,c−→
∗

0
]
⇒ f =

∑

gi∈G

figi ⇒ f ∈ (G),

which implies I ⊆ (G) but G ⊆ I, therefore (G) = I.
(ii)

(
∀ f, g ∈ G, f 6= g

) [
S(f, g) =

m

Hmono(f)
· f − m

Hmono(g)
· g ∈ I

]

⇒
(
∀ f, g ∈ G, f 6= g

) [
S(f, g)

G,c−→
∗

0
]
.

(3) ⇒ (1): As (G) = I, G ⊆ I. Let, for each F ⊆ G, SP (F ) stand for
the set of S-polynomials of F .

(
∀ f, g ∈ G, f 6= g

) [
S(f, g)

G,c−→
∗

0
]

⇒
(
∀ F ⊆ G

) (
∀ hF ∈ SP (F )

) [
hF

G,c−→
∗

0
]

⇒
(
∀ F ⊆ G

) (
∀ hF ∈ SP (F )

) [
hF =

∑

gi∈G

figi

]
, such that

Hterm(hF )≥
A

Hterm(figi) for all i

⇒ G satisfies the syzygy-condition.

It then follows that Head(G) = Head(I).

Problem 3.12
(i) (1) ⇒ (2): Let g, g′ ∈ NFc

G(f). Then f − g ∈ I and f − g′ ∈ I
and therefore g − g′ ∈ I. Then by previous part g − g′ G,c−→

∗
0. But g − g′ is
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in normal form with respect to complete-reduction as g, g′ are themselves
in normal form. Hence g − g′ = 0, and g = g′. Since, for all f ∈ R,
|NFc

G(f)| > 0, we see that |NFc
G(f)| = 1.

(2) ⇒ (1):
We begin by proving the statement in the hint.

Claim: For all G ⊆ R, and f , g ∈ R, f ≡ g mod (G) if and only if

f
G,c←→
∗
g.

Proof of Claim
(⇐)
This is easily shown by induction on the number of steps between f and g.
Let

f = g0
G,c←→ g1

G,c←→· · · G,c←→ gk = g

for some k ≥ 0. The result is trivial for k = 0. Otherwise, by induction,
g1− gk ∈ (G) and it is seen directly from the definition that g0− g1 ∈ (G).
Thus g0 ≡ gk mod (G).

(⇒)
If f − g ∈ (G), then we can express f − g as

∑m
i=1 αitifi, where each

αi ∈ K, and ti is a power-product and the fi are members of G. If m = 0
the result is trivial. If m ≥ 1 then we can write g′ = g + αmfm and

f − g′ =
∑m−1

i=1 αitifi. By induction hypothesis, f
G,c←→
∗
g′. We also have

that g′−g = αmtmfm
G,c−→ 0. Let t = Hterm(tmfm). It is clear that t occurs

in g and g′ with some (possibly zero) coefficients α and α′ (respectively)

such that αm = α′ − α. Thus g
G,c−→
∗

(g − αtmfm), and g′
G,c−→
∗

(g′ − α′tmfm),

i.e., g
G,c←→
∗
g′. This shows f

G,c←→
∗
g′

G,c←→
∗
g.

(End of Claim.)
Now, going back to our original problem, we see that since (G) = I,

G ⊆ I. Furthermore,

f ∈ I ⇒ f ≡ 0 mod (G)

⇒ f
G,c←→
∗

0

⇒ f = g0
G,c←→ g1

G,c←→· · · G,c←→ gk = 0

⇒
(
∀ 0 ≤ i ≤ k

) [
NFc

G(gi) ∩NFc
G(gi+1) 6= ∅

]

⇒ NFc
G(f) = NFc

G(gi) = NFc
G(gi+1) = NFc

G(0) = 0,

for all i, 0 ≤ i < k,

(since |NFc
G(gi)| = 1, for all i, 0 ≤ i < k)

⇒ f
G,c−→
∗

0.

Hence G ⊆ I, and for all f ∈ I, f G,c−→
∗

0, and G is a Gröbner basis for I.
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(ii) Let G be a Gröbner basis for (F ). Then use the algorithm that
on input of f ∈ K[x1, . . ., xn] produces its normal-form (under complete
reduction) modulo G, i.e., C(f) = NFc

G(f). The rest follows from the
preceding part and the well-known properties of Gröbner bases.

Problem 3.14

(i) The following two routines terminate correctly with the self-reduced
and reduced Gröbner bases of an ideal (F ).

SelfReduce(F )
Input: F a finite set of polynomials in K[x1, . . ., xn].
Output: R a self-reduced basis for (F ).

loop

R := ∅; self-reduced := true

while F 6= ∅ loop

Choose f from F and set F := F \ {f};
g := NFc

(R∪F )(f);

if g 6= 0 then R := R ∪ {g};
self-reduced := (g = f) and self-reduced;

end{while }
F := R;

until self-reduced
end{loop };
return (R);

end{SelfReduce}.

The routine SelfReduce terminates and is correct.

In each iteration of the inner while-loop (except for the terminating it-
eration) there is a selected polynomial f that must be subject to a reducing
transformation, i.e., g 6= NFc

(R∪F )(f). If f = f0, f1, . . ., constitute the suc-
cessive transformed versions of f , then it is easily seen that the sequence
of fi’s is finite. Since this is true for every f in the original F , there can
only be a finite number of iterations.

The correctness follows trivially from the definition, once we observe
that the ideal (F ∪R) remains invariant over the loops.
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Reduce(F )
Input: F a finite set of polynomials in K[x1, . . ., xn].
Output: G a reduced Gröbner basis for (F ).

G := SelfReduce(F );

B :=


{f, g} : f, g ∈ G, f 6= g

ff
;

while B 6= ∅ loop

Choose {f, g} to be any pair in B;
B := B \ {{f, g}};
h := S(f, g);
h′ := NFc

G(h);
if h′ 6= 0 then

G := SelfReduce(G ∪ {h′});
B := {{f, g} : f, g ∈ G, f 6= g};

end{if };
end{while };
for every f ∈ G loop

G := (G \ {f}) ∪ {f/Hcoef(f)};
return (G);

end{Reduce}.

The routine Reduce terminates and is correct.

The termination and the fact that the output G of the routine is a
Gröbner basis of (F ) can be proven easily in a manner similar to the proof
for the Gröbner basis algorithm. (Use the ascending chain condition and
syzygy condition.) When the algorithm terminates, clearly the basis is
self-reduced and each element of the basis is monic.

(ii)

Theorem The reduced Gröbner basis of an ideal in K[x1, . . ., xn] is
unique (relative to the choice of an admissible ordering).

proof.
Let G,G′ be two reduced Gröbner bases for the same ideal. We obtain a
contradiction by supposing that there is some polynomial g in G−G′. By
the preceding problem, there is some other polynomial g′ in G′ − G such
that Hmono(g) = Hmono(g′) [recall that Hcoef(g) = 1 = Hcoef(g′)].

Let h = g − g′. Then

h 6= 0 and h
G,c−→
∗

0,

since G is a Gröbner basis. So some term t occurring in h can be eliminated
by a complete-reduction by some f ∈ G. Now t must occur in g or g′. If t
occurs in g, then g is reducible by f , contradicting the assumption that G is
reduced. If t occurs in g′ then let f ′ ∈ G′ such that Hterm(f ′) = Hterm(f).
Again g′ is reducible by f ′, contradicting the original assumption that G′

is reduced.
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Problem 3.18
(i) We can write P (x1, . . ., xn) as

P (X) = P (x1, . . . , xn) = Pd1(x2, . . . , xn)xd1
1 + · · ·+ P0(x2, . . . , xn)

If P (X) 6≡ 0, then for a fixed value of X , P (X) can be zero because of two
reasons: (a) x1 is a root of the univariate polynomial P (X) with Pj(x2,
. . ., xn) (0 ≤ j ≤ d1) as coefficients, or (b) for each j (0 ≤ j ≤ d1), Pj(x2,
. . ., xn) = 0. For a fixed value of x2, . . ., xn, there are only d1 zeroes of
P (X) and each xj can assume only one of the |Ij | values; therefore, there
are at most d1 ·

∏n
j=2 |Ij | zeroes of the first kind. The total number of

zeroes of the second kind are obviously bounded by the number of zeroes
of Pd1(x2, . . ., xn). Let Z[P (X)] denote the zeroes of P (X). Then we have
the following recurrence:

|Z[P (X)]| ≤ d1 ·
n∏

j=2

|Ij | + |Z (Pd1(x2, . . . , xn)) | · |I1|

Therefore,

|Z(P (X))|∏n
j=1 |Ij |

≤ |Z(Pd1(x2, . . . , xn))|∏n
j=2 |Ij |

+
d1

|I1|

≤
n∑

j=1

dj

|Ij |
,

which gives the required inequality.

(ii) Since there are at most
∏n

j=1 |Ij | total possible values of P , the
probability

p = Pr [P (X) = 0 : P 6≡ 0] ≤ |Z(P )|∏n
j=1 |Ij |

.

If |Ij | = |I| (1 ≤ j ≤ n), then the probability is bounded by

p = Pr [P (X) = 0 : P 6≡ 0] ≤
n∑

j=1

dj

|I| =
1

|I|
∑

j=1

dj =
1

|I| deg(P )

Therefore, if |I| ≥ C · deg(P ), then p ≤ C−1.

(iii) One possible way to check if P ≡ 0 is to choose x1, . . ., xn randomly
and evaluate P at this set of values. If P (X) 6= 0, then obviously P 6≡ 0;
otherwise, return with P ≡ 0. If the algorithm returns P ≡ 0, then the
probability of error is bounded by p. Therefore, if we choose |I| = ⌈ 1ε ·
deg(P )⌉, then the algorithm returns the correct answer with probability
≥ 1− ε, for any 0 < ε < 1.
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However, this algorithm is not very practical because |I| may be very
large, in which case all sorts of computational problems arise. One simple
solution is to evaluate the polynomial for several sets of values, instead of
evaluating it for only one set of values. However, we need to repeat the
steps only if P (X) = 0. Therefore, the modified algorithm works as follows.
Repeat the following steps k (where k is a fixed number) times:

1. Choose randomly x1, . . ., xn in the range |I|.

2. Evaluate P at this set of values.

3. If P 6= 0, then return with P 6≡ 0.

Now the probability that P evaluates to zero, all of k times, even though
P 6≡ 0, is at most C−k, provided that |I| ≥ C ·deg(P ). By choosing, C = 2
and k = ⌈log 1

ε ⌉, we can ensure that the algorithm is correct with the
probability at least 1− ε. If P has m terms, then the running time of the
algorithm is bounded by O(kn(m + deg(P ))). In order to ensure that the
probability of error is o(1), we may choose k = Θ(logn); then the running
time of the algorithm is O((m + deg(P ))n log n), and the probability of
correctness becomes 1−

(
1

nO(1)

)
.

Another way to reduce the range of |I| is to use modular arithmetic. In
particular, we can perform all calculations modulo q where q is some prime
number.
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ever, note that a (Gröbner) basis constructed inductively in this manner will
correspond only to one fixed admissible ordering (namely, lexicographic). For
some related developments, also see Ayoub [10], Buchberger [31], Kandri-Rody



Bibliographic Notes 133

and Kapur [110], Kapur and Narendran [115], Lankford [126], Pan [159], Schaller
[182], Shtokhamer [190], Szekeres [199], Trinks [202] and Watt [207]. Additional
related materials can also be found in a special issue on “Computational Aspects
of Commutative Algebra” in the Journal of Symbolic Computation (Vol. 6, Nos. 2
& 3, 1988).

The question of degree bounds and computational complexity for the Gröbner
basis in various settings is still not completely resolved. However, quite a lot is
now known for the case when the underlying ring of polynomials is K[x1, . . .,
xn], where K = a field. Let D(n, d), I(n, d) and S(n, d) denote the following:

1. D(n, d) is the minimum integer such that, for any ordering and for any
ideal I ⊆ K[x1, . . ., xn] generated by a set of polynomials of degree no
larger than d, there exists a Gröbner basis whose elements have degree no
larger than D(n, d). D′(n, d) is a similar degree bound for the special case
where the ordering is assumed to be degree-compatible.

2. Similarly, S(n, d) is the minimum integer such that, for any set of poly-
nomials {g1, . . ., gm} ⊆ K[x1, . . ., xn], all of degree no larger than d, the
module of solutions of the following equation:

h1 g1 + · · · + hm gm = 0

has a basis whose elements have degree no larger than S(n, d).

3. Finally, I(n, d) is the minimum integer such that, for any set of polynomials
{g1, . . ., gm} ⊆ K[x1, . . ., xn] and a polynomial f ∈ (g1, . . ., gm), all of
degree no larger than d, the following equation

h1 g1 + · · · + hm gm = f

has a solution of degree no larger than I(n, d).

Following summary is taken from Gallo[76]:

1. Relationship among D(n, d), D′(n, d), I(n, d) and S(n, d):

(a) S(n, d) ≤ D(n, d) (Giusti[82]).

(b) S(n, d) ≤ I(n, d) ≤ S(n, d)O(n) (Lazard[129]).

(c) D′(n, d) ≤ D(n, d) (Yap[214]).

2. Upper bounds for I(n, d) and S(n, d):

(a) S(n, d) ≤ d + 2(md)2
n−1

(Hermann[93] and Seidenberg[187]).

(b) I(n, d) ≤ 2(2d)2
n−1

(Masser and Wüstholz[140]).

(c) S(n, d) ≤ d2(log 3/ log 4)n

(Lazard[129]).

(d) I(n, d) ≤ d2(log 3/ log 4)n+O(log n)

(Lazard[129]).

3. Upper bounds for D(n, d):

(a) D(n, d) = O(d2O(n)

) for homogeneous ideals in generic position
(Giusti[82]).

(b) D(n, d) ≤ h2n

, where h = the regularity bound is no larger than d2n

(Möller and Mora[150] and Giusti[82]).
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(c) D(n, d) ≤ d2n

(Dubé[66]).

4. Lower bounds D(n, d), D′(n, d), I(n, d) and S(n, d):

(a) D(n, d ≥ D′(n, d) (Yap[214]).

(b) D′(n, d) ≥ Ω(d2n

) (Möller and Mora[150] and Huynh[103]).

(c) I(n, d) ≥ d2n′

and S(n, d) ≥ d2n′

, where n′ ≈ n/10 (Mayr and
Meyer[143] and Bayer and Stillman[18]).

(d) I(n, d) ≥ d2n′′

and S(n, d) ≥ d2n′′

, where n′′ ≈ n/2 (Yap[214]).

One interesting open question is to close the gap in the following bounds:

d2n/2 ≤ S(n, d) ≤ d2(log 3/ log 4)n

.

However, much less is known for the case when the underlying ring of polynomials
is over the integers Z[x1 , . . ., xn]. Let D(n, d) and I(n, d) denote the degree
bounds in this case as earlier. Gallo and Mishra[79] have recently shown that

D(n, d) ≤ F4n+8(1+max(n, c, d, m)) and I(n, d) ≤ F4n+8(1+max(n, c, d, m)),

where c and d are the coefficient and degree bounds, respectively, on the input
polynomials and Fk is the kth function in the Wainer hierarchy. Note that if n,
the number of variables, is assumed to be fixed, then these are primitive recursive
bounds.

The set of applications discussed in this chapter are taken from the papers
by Buchberger [33], Gianni et al. [81], Spear [193] and some unpublished course
notes of Bayer and Stillman.

Problems 3.4 and 3.10 are based on some results in Dubé et al. [64]; Prob-
lem 3.7 is taken from Gianni et al. [81]; Problem 3.8 is from Gallo and Mishra
[79]; Problems 3.9, 3.11, 3.12 and 3.14 are based on the results of Buchberger [33]
(also see Mishra and Yap [149]) and Problem 3.18 is due to Schwartz [183].

In this chapter, what we refer to as a Gröbner basis is sometimes called a
“weak Gröbner basis” in order to differentiate it from a stronger form, which has
the following two properties (and depends on the associated reduction r):

G ⊆ R is a “strong Gröbner basis” of (G), if

1.

„
∀ f ∈ (G)

« »
NFr

G(f) = 0

–
and

2.

„
∀ f ∈ R

« »
|NFr

G(f)| = 1

–
.

That is, every element of the ring reduces to a unique normal form, which is

0, if additionally the element is in the ideal. The Gröbner bases defined in this

chapter only satisfy the first condition. Existence, construction and properties of

strong Gröbner bases have been studied extensively; see Kapur and Narendran

[115].



Chapter 4

Solving Systems of

Polynomial Equations

4.1 Introduction

The Gröbner basis algorithm can be seen to be a generalization of the clas-
sical Gaussian elimination algorithm from a set of linear multivariate poly-
nomials to an arbitrary set of multivariate polynomials. The S-polynomial
and reduction processes take the place of the pivoting step of the Gaussian
algorithm. Taking this analogy much further, one can devise a construc-
tive procedure to compute the set of solutions of a system of arbitrary
multivariate polynomial equations:

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,

...

fr(x1, . . . , xn) = 0,

i.e., compute the set of points where all the polynomials vanish:

{
〈ξ1, . . . , ξn〉 : fi(ξ1, . . . , ξn) = 0, for all 1 ≤ i ≤ r

}
.

In this chapter, we shall explore this process in greater details.
Just as the Gaussian algorithm produces a triangular set of linear equa-

tions, the Gröbner basis algorithm under the purely lexicographic ordering
also produces a triangular set of polynomials, where the concept of a trian-
gular set is suitably generalized. Roughly speaking, the constructed basis
can be partitioned into classes of polynomial systems, where the last class
involves only the last variable, the class before the last involves only the

133



134 Solving Systems of Polynomial Equations Chapter 4

last two variables, etc., and each of these classes also satisfies certain ad-
ditional algebraic properties in order to guarantee that the set of solutions
of the last k classes contain the set of solutions of the last (k + 1) classes.
At this point, it is not hard to see how to obtain the set of solutions of
the original system of polynomial equations by a simple back substitution
process: first solve the last class of univariate polynomials; then substitute
each of these solutions in the class of polynomials immediately preceding
it, thus obtaining a set of univariate polynomials, which can now be easily
solved, and so on.

These intuitions have to be clearly formalized. We shall first define
the concept of a triangular set in the general setting and study how such
a triangular set can be computed using the Gröbner basis algorithm of
the previous chapter. After a short digression into algebraic geometry, we
shall describe the complete algorithms to decide if a system of equations is
solvable and to solve the system of equations, in the special case when it has
finitely many solutions. A key lemma from algebraic geometry, Hilbert’s
Nullstellensatz , plays an important role here and will be presented in detail.

4.2 Triangular Set

Let G ⊂ S[x1, . . ., xn] be a finite set of polynomials. Let the set G be
partitioned into (n+ 1) classes G0, G1, . . ., Gn as follows:

G0 = G ∩ S[x1, x2, . . . , xn] \ S[x2, . . . , xn]

= the set of polynomials in G involving the variable x1,

and possibly, the variables x2, . . ., xn.

G1 = G ∩ S[x2, x3, . . . , xn] \ S[x3, . . . , xn]

= the set of polynomials in G involving the variable x2,

and possibly, the variables x3, . . ., xn.

...

Gn−1 = G ∩ S[xn] \ S
= the set of polynomials in G involving the variable xn.

Gn = G ∩ S

= the set of constant polynomials in G.

That is, Gi is the polynomials in G that contain xi+1 but do not contain
any xj for j ≤ i.
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Definition 4.2.1 (Triangular Form) The ordered set of polynomials con-
sisting of polynomials in G0 followed by polynomials in G1 and so on up
to Gn is said to be a triangular form of G.

Definition 4.2.2 (Strongly Triangular Form) Let K be a field, and
G ⊂ K[x1, . . ., xn] a finite subset of K[x1, . . ., xn]. We say a triangular
form of G is in strongly triangular form if

1. (Gn) = (G ∩K) = (0), and

2. For each i (0 ≤ i < n), there is a gi ∈ Gi containing a monomial of
the form

a xd
i+1, where a ∈ K and d > 0.

For a given set of polynomials G, if the generators of (G) can be put
into a strongly triangular form, then we shall show that there is a finite,
nonempty set of common zeros for the system of polynomial equations
given by G. While this statement needs to be made formal, first, note that
every element in the ideal (G) must vanish at every common zero of G.
Therefore we see that any other basis of (G) must have exactly the same
set of zeros as G. Intuitively, condition 1 tells us that the set is nonempty
as otherwise we have that a (nonzero) constant is equal to zero. Condition
2 tells us that the set has a finite number of common zeros, as the following
example shows:

Example 4.2.3 Consider three systems of polynomial equations: G′, G′′

and G′′′ ⊆ C[x1,x2], in their triangular forms:

G′ = {x1x2 − x2, x2
2 − 1},

G′′ = {x1x2 − x2, x2
2}, and

G′′′ = {x1x2 − x2}.

Just by looking at the polynomials in G′
0, G

′′
0 or G′′′

0 , we cannot tell
whether the system of equations will have finitely many zeroes or not.

• In the first case, x2 can take the values +1 and −1, since x2
2 = 1. We

see that, after substituting x2 = +1 in the equation x1x2−x2, one of
the common zeroes of G′ is (+1,+1), and after substituting x2 = −1
in the same equation x1x2 − x2, the other common zero is (+1,−1).
Thus G′ has finitely many common zeroes. In fact (G′) has a basis

{x1 − 1, x2
2 − 1},

and this basis is in strongly triangular form.
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• In the second case, x2 can take the value 0 (with multiplicity 2),
since x2

2 = 0. We see that, when we substitute x2 = 0 in the equation
x1x2 − x2, the equation becomes identically zero, thus showing that
for all ξ ∈ C, (ξ, 0) is a common zero. Thus G′′ has infinitely many
zeroes. In fact, G′′ cannot be written in a strongly triangular form.

• In the third case, we see that for all ξ, ζ ∈ C, G′′′ vanishes at (ξ, 0)
and (1, ζ). Again G′′′ has infinitely many zeroes, and G′′′ cannot be
written in a strongly triangular form.

Definition 4.2.4 (Elimination Ideal) Let I ⊆ S[x1, . . ., xn] be an ideal
in the polynomial ring S[x1, . . ., xn]. We define the ith elimination ideal
of I, Ii, to be:

Ii = I ∩ S[xi+1, . . . , xn], (0 ≤ i ≤ n).

That is,

I0 = I

I1 = I ∩ S[x2, . . . , xn]

= the contraction of I to the subring S[x2, . . . , xn].

...

In−1 = I ∩ S[xn]

= the contraction of I to the subring S[xn].

In = I ∩ S
= the contraction of I to the subring S.

Now, given a set of polynomial equations {f1 = 0, . . ., fr = 0}, we
would like to generate a new basis G = {g1, . . ., gs} for the ideal I = (f1,
. . ., fr) such that when we consider the triangular form of G, it has the
additional algebraic property that

n⋃

j=i

Gj is a basis for the ith elimination ideal Ii.

Since Ii−1 ⊇ Ii, we shall see that this implies that the set of solutions of
the system of polynomials given by

⋃n
j=i Gj contains the set of solutions

of
⋃n

j=i−1 Gj , as desired. As a matter of fact, we shall achieve a somewhat
stronger property: our computed basis G will be a Gröbner basis of I and
the set

⋃n
j=i Gj will also be a Gröbner basis of Ii with respect to the same

lexicographic admissible ordering.
In order to simplify our proofs, we shall use the following generalization

of lexicographic ordering.
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Definition 4.2.5 (A Generalized Lexicographic Ordering) Consider
the ring R = S[X , Y ] = S[x1, . . ., xn, y1, . . ., ym]. Let >

X

, >
Y

be two ad-

missible orderings on PP(X) and PP(Y ), respectively.
Define the admissible ordering >

L

on PP(X,Y ) as follows:

p q >
L

p′ q′
{

if p>
X

p′ or

if p = p′ and q >
Y

q′,

where p, p′ ∈ PP(X) and q, q′ ∈ PP(Y ).

Theorem 4.2.1 If G is a Gröbner basis for I with respect to >
L

in S[X,Y ],

then G ∩ S[Y ] is a Gröbner basis for I ∩ S[Y ] with respect to >
Y

in S[Y ].

proof.
(1) By the definition of >

L

, we have, for every f ∈ S[X,Y ],

HmonoL(f) ∈ S[Y ] ⇔ f ∈ S[Y ];

that is, a polynomial whose head term is in PP(Y ) cannot include any
power product involving xi ∈ X . Hence

HeadY(G ∩ S[Y ]) = HeadL(G ∩ S[Y ])

= HeadL(G) ∩ S[Y ] = HeadL(I) ∩ S[Y ]

(Since G is a Gröbner basis for I)

= HeadL(I ∩ S[Y ]) = HeadY(I ∩ S[Y ]).

(2) Since G ⊆ I, clearly G ∩ S[Y ] ⊆ I ∩ S[Y ].
(3) Thus G ∩ S[Y ] is also a Gröbner basis for I{S[Y ]} with respect to

>
Y

in S[Y ].

In other words, it is easy to find a basis for a contraction if >
L

preserves

the underlying admissible orderings. A useful corollary to the theorem is:

Corollary 4.2.2 If G is a Gröbner basis of I with respect to >
LEX

in S[x1,

. . ., xn] ( assuming x1 >
LEX

· · · >
LEX

xn), then for each i = 0, . . ., n,

1. G ∩ S[xi+1, . . ., xn] is a Gröbner basis for I ∩ S[xi+1, . . ., xn] with
respect to >

LEX

in S[xi+1, . . ., xn] (assuming xi+1 >
LEX

· · · >
LEX

xn).

2. Equivalently,
⋃n

j=i Gj is a Gröbner basis for the ith elimination ideal

Ii with respect to >
LEX

.

As a result of the preceding corollary, we may simply refer to a Gröbner
basis of an ideal with respect to the purely lexicographic admissible ordering
as its triangular set .
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4.3 Some Algebraic Geometry

From now on, we will only consider polynomial rings L[x1, . . . , xn] where
L is an algebraically closed field.

Definition 4.3.1 (Algebraically Closed Field) A field L is called al-
gebraically closed if every polynomial in L[x] splits into linear factors, i.e.,
every nonconstant polynomial in L[x] has a zero in L.

Example 4.3.2 (1) C = Field of complex numbers is algebraically closed.
(2) R = Field of reals is not an algebraically closed field, since for

example x2 + 1 ∈ R[x] has no real zero.

In general, we could study the geometric properties by considering any
arbitrary field K. Then, of course, we would have to answer the question:
what do we mean by a solution? That is, where do the solutions live? For
instance, we could run into the problem that if we consider the field of
rational numbers, K = Q, then an equation of the kind x2 + y2 + z2 = 1
has no solution. The usual remedy is to take solutions whose components
all lie in an algebraically closed extension of the field K. Sometimes, even
more generality is necessary: one considers an extension field Ω which is not
only algebraically closed, but has the additional property that the degree
of transcendency of Ω over K is infinite. The field Ω is called a universal
domain. However, we have simply opted to ignore these difficulties by
working over a sufficiently general field.

We shall use the following notations:

A = L[x1, . . . , xn] = Polynomial ring in n variables over L.

An = Affine n-space with coordinates in L,

(n-tuples of elements in L).

Definition 4.3.3 (Zero Set, Zero Map) Let F ⊆ A be a subset of poly-
nomials in A. Then the set

Z(F ) =
{
P ∈ An :

(
∀ f ∈ F

) [
f(P ) = 0

]}
,

is the zero set of F . The map

Z : {Subsets of A} → {Subsets of An}
: F 7→ Z(F )

is the zero map.

Some authors also refer to a zero set as a variety. In consistence with
the accepted terminology, we shall not make any distinction between zero
sets and varieties.
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Definition 4.3.4 (Ideal, Ideal Map) Let X ⊆ An be a set of points in
the affine n-space, An. Then the ideal

I(X) =
{
f ∈ A :

(
∀ P ∈ X

) [
f(P ) = 0

]}
,

is the ideal of X .

(
Note:

(
∀ P ∈ X

) [
f(P ) = 0 ∧ g(P ) = 0

]

⇒
(
∀ P ∈ X

) [
(f − g)(P ) = 0

]
,

and
(
∀ P ∈ X

) [
f(P ) = 0

]

⇒
(
∀ h ∈ A

) (
∀ P ∈ X

) [
(hf)(P ) = 0

]
,

i.e.,

(
∀ f, g ∈ I(X)

) (
∀ h ∈ A

) [
f − g ∈ I(X) and hf ∈ I(X)

]
.

Thus, I(X) is in fact an ideal.
)

The map

I : {Subsets of An} → {Subsets of A}
: X 7→ I(X)

is the ideal map.

Definition 4.3.5 (Algebraic Set) A set X ⊆ An is said to be an alge-
braic set if X is a zero set of some set of polynomials F ⊆ A.

X = Z(F ).

The following proposition shows that the zero set of a system of poly-
nomials does not change as we augment this set by additional polynomials
generated by linear combinations of the original polynomials. In other
words, the geometric problem remains unchanged if we replace the system
of polynomials by the ideal they generate or if we replace it by another
system of generators for their ideal.
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Proposition 4.3.1 Let F ⊆ A be a basis for some ideal I ⊆ A, i.e.,
(F ) = I. Then the zero set of F and the zero set of I are the same.

Z(F ) = Z(I).

proof.
(1) Since F ⊆ I, we immediately see that

Z(F ) ⊇ Z(I).

That is,

P ∈ Z(I) ⇒
(
∀ f ∈ I

) [
f(P ) = 0

]

⇒
(
∀ f ∈ F

) [
f(P ) = 0

]
⇒ P ∈ Z(F ).

(2) Conversely, let F = {f1, . . ., fr}.

P ∈ Z(F ) ⇒ f1(P ) = · · · = fr(P ) = 0

⇒
(
∀ f = h1f1 + · · ·+ hrfr

) [
f(P ) = 0

]

⇒
(
∀ f ∈ I

) [
f(P ) = 0

]
⇒ P ∈ Z(I).

Thus, we could have defined an algebraic set to be the zero set of some
ideal. Note that an empty set ∅ is an algebraic set as it is the zero set of
the improper ideal A = (1) and An is the zero set of the zero ideal (0).
Note that it is possible for different ideals to define the same algebraic set.
Also algebraic sets are closed under set theoretic operations such as union
and intersection.

Following properties can be demonstrated trivially; we leave the proof
as an exercise for the readers:

Proposition 4.3.2 We have the following:

1. If I and J are ideals, then

I ⊆ J ⇒ Z(I) ⊇ Z(J).

2. If I and J are ideals, then Z(I)∪Z(J) and Z(I)∩Z(J) are algebraic
sets and

Z(I) ∪ Z(J) = Z(I ∩ J) = Z(I · J),

Z(I) ∩ Z(J) = Z(I + J).
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Proposition 4.3.3 Let A = L[x1, x2, . . ., xn] and B = L[x2, . . ., xn] be
two polynomial rings. Let Π be a projection map from An to An−1, defined
as follows:

Π : An → An−1

: 〈ξ1, ξ2, . . . , ξn〉 7→ (ξ2, . . . , ξn).

If I ⊆ A is an ideal in A, and J = I ∩B a contraction of I to B, then

Π(Z(I)) ⊆ Z(J).

Finally,

Proposition 4.3.4 Let V ⊆ An and W ⊆ Am be algebraic sets. Then the
product V ×W ⊆ An+m,

V ×W =
{
〈ξ1, . . . , ξn, ζ1, . . . , ζm〉 ∈ An+m :

〈ξ1, . . . , ξn〉 ∈ V and 〈ζ1, . . . , ζm〉 ∈ W
}

is also an algebraic set. Furthermore,

I(V ×W ) = IL[x1, . . . , xn, y1, . . . , ym] + JL[x1, . . . , xn, y1, . . . , ym],

where I is the ideal of V in L[x1, . . ., xn] and J is the ideal of W in L[y1,
. . ., ym].

4.3.1 Dimension of an Ideal

Definition 4.3.6 (Dimension) Let I be an ideal in the ring K[x1, . . .,
xn], where K is an arbitrary field. Assume that the set of variables xπ(1) =
u1, . . ., xπ(l) = ul forms the largest subset of {x1, . . ., xn} such that

I ∩K[u1, . . . , ul] = (0),

i.e., there is no nontrivial relation among the ui’s.
Then u1, . . ., ul are said to be the independent variables with respect

to I and the remaining r = (n− l) variables, xπ(l+1) = v1, . . ., xπ(n) = vr

are the dependent variables with respect to I.
Also l is said to be the dimension of the ideal I (dim I = l), and

r = (n− l), its codimension.

Suppose, now, that the variables x1, . . ., xn are so ordered that the de-
pendent variables v1, . . ., vr appear earlier than the independent variables
u1, . . ., ul in the sequence, and that we write the polynomial ring as K[v1,
. . ., vr, u1, . . ., ul] = K[V, U ]. As in our earlier definition, consider the
following generalized lexicographic ordering:
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Let >
V

, >
U

be two admissible orderings on PP(V ) and PP(U), respec-

tively. The admissible ordering >
L

on PP(V, U) is derived as follows: For

all p, p′ ∈ PP(V ) and q, q′ ∈ PP(U),

p q >
L

p′ q′ if p>
V

p′ or if p = p′ and q >
U

q′.

Now by Theorem 4.2.1, we see that if G is a Gröbner basis for I with
respect to >

L

inK[V, U ], then G∩K[U ] is a Gröbner basis for I∩K[U ] = (0)

with respect to >
U

in K[U ]. In particular, if G is a reduced Gröbner basis

then G ∩K[U ] is either an empty set or {0}.
Thus by considering all possible partitions of the set of variables X into

two disjoint subsets V and U , and by computing the Gröbner basis with
respect to a lexicographic ordering such that

(
∀ v ∈ V

) (
∀ u ∈ U

) [
v >

LEX

u
]

one can compute the set of independent variables and hence the dimension
of the ideal I.

While the above argument shows that the independent variables and
hence the dimension of an ideal can be effectively computed, the procedure
outlined here is not the most efficient; some of the recent results [61] have
improved the computational complexity of the problem significantly, both
in sequential and parallel computational domains.

4.3.2 Solvability: Hilbert’s Nullstellensatz

Next, we shall develop a key theorem from algebraic geometry: Hilbert’s
Nullstellensatz . Using this theorem, we shall see how Gröbner bases can be
advantageously used to settle several important questions about solvability,
number of zeros, and, finally, finding the zeros of a system of polynomials
F .

Theorem 4.3.5 (Hilbert’s Nullstellensatz) If L is algebraically closed
and I ⊂ A = L[x1, . . ., xn] is an ideal, then

I = L[x1, . . . , xn] if and only if Z(I) = ∅.

proof sketch.
If I = A, then I = (1) and it is easily seen that Z(I) = ∅.

We prove the converse by contradiction. Let M be a maximal ideal
containing I such that 1 6∈M :

I ⊆M  (1).
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Since A is Noetherian, such an ideal exists. (Show that this is a consequence
of the ascending chain condition).

The residue class ring F = A/M has no improper ideal and has a unit;
thus, it is a field.

To every polynomial f(x1, . . ., xn) ∈ A assign an element of the residue
class ring F = A/M , given by the natural ring homomorphism. Since
M 6= A, every element a of L will correspond to the distinct element
a = a+M . [Otherwise, if a 6= b (a, b ∈ L) and a = b, then a− b ∈ M ; so
1 = (a− b)(a− b)−1 would be ∈M .]

Let 〈x1, . . ., xn〉 ∈ Fn be the images of 〈x1, . . ., xn〉 under the natural
ring homomorphism from A into A/M . Since, the ring operations in A/M
are naturally induced from the same operations in A, and a ∈ L maps into
itself, we see that, for every f ∈ I ⊆ M , f(x1, . . ., xn) = 0, i.e., I has a
zero in Fn.

But F contains the field L (up to an isomorphism) and F arises from
L through ring adjunction of the residue classes xi of xi. Since L is alge-
braically closed, there is an L-homomorphism

φ:F → L.

Thus (
∀ f ∈ I

) [
f(φ(x1), . . . , φ(xn)) = 0

]
.

Hence 〈φ(x1), . . ., φ(xn)〉 ∈ Ln is in Z(I) and Z(I) 6= ∅.

An immediate corollary of Nullstellensatz is the following:

Corollary 4.3.6 Let F ⊆ L[x1, . . . , xn], where L is an algebraically closed
field. Then

Z(F ) = ∅ iff 1 ∈ (F )

proof.
(⇒)

Z(F ) = ∅ ⇒ Z((F )) = ∅
⇒ (F ) = L[x1, . . . , xn]

⇒ 1 ∈ (F ).

(⇐)

1 ∈ (F ) ∧ Z(F ) 6= ∅ ⇒
(
∃ P ∈ Z(F )

) [
1(P ) = 1 = 0

]

⇒ Contradiction, since, in L, 1 6= 0.
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Definition 4.3.7 (Solvable System of Polynomials) Let F ⊆ L[x1,
. . ., xn] be a system of polynomials. F is said to be solvable if the sys-
tem of polynomial equations has a common zero, i.e.,

if Z(F ) 6= ∅.

Corollary 4.3.7 Let F ⊆ L[x1, . . . , xn] and G be a Gröbner basis for (F ).
Then F is unsolvable if and only if there is a nonzero c ∈ G ∩ L.
proof.
(⇒)

Z(F ) = ∅ ⇒ 1 ∈ (F ) ⇒ 1
G,h−→
∗

0

⇒
(
∃ c 6= 0, c ∈ L

) [
c ∈ G

]

⇒
(
∃ c 6= 0

) [
c ∈ G ∩ L

]
.

(⇐)

c ∈ G ∩ L, c 6= 0 ⇒ c−1c = 1 ∈ (G)

⇒ 1 ∈ (F ) ⇒ Z(F ) = ∅.

Another version of Hilbert’s Nullstellensatz that we will find useful is
as follows:

Theorem 4.3.8 Let f ∈ L[x1, . . ., xn], where L is an algebraically closed
field. Let F = {f1, . . ., fr} ⊆ L[x1, . . ., xn]. Then if f vanishes at all
common zeros of F , there is some natural number q such that f q ∈ (F ),
i.e., f ∈

√
(F ).

proof.
(1) f = 0. Then as 0 ∈ (F ), there is nothing to prove.

(2) f 6= 0. Consider the polynomials f1, . . ., fr, 1− zf ∈ L[x1, . . ., xn,
z]. These do not have a common zero, since if P = 〈ξ1, . . ., ξn, ξ〉 ∈ An+1

is a common zero of f1, . . ., fr, then

(1− zf)(P ) = 1− ξ · f(ξ1, . . . , ξn) = 1 6= 0.

By the first form of this theorem, we know that

1 ∈ (f1, . . . , fr, 1− zf)
⇒ 1 = g1f1 + · · ·+ grfr + g(1− zf)

where g1, . . ., gr, g ∈ L[x1, . . ., xn, z]

⇒ Substitute 1/f for z and the last term disappears:
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1 =
g′1
f q1

f1 + · · ·+ g′r
f qr

fr

where g′1, . . ., g
′
r ∈ L[x1, . . ., xn]

⇒ f q = g′′1f1 + · · ·+ g′′r fr

where g′′1 , . . ., g′′r ∈ L[x1, . . ., xn] and q = max{q1, . . ., qr}
⇒ f q ∈ (F ).

That Theorem 4.3.8 implies Theorem 4.3.5 follows from the following
observation:

Z(I) = ∅ ⇔ 1 vanishes at every common zero of I

⇔ 1 ∈ I ⇔ I = (1) = L[x1, . . . , xn].

Application: Solvability

Solvability(F )
Input: F = {f1, . . ., fr} ⊆ L[x1, . . ., xn],

L = An algebraically closed field.
Output: True, if F has a solution in An.

Compute G, the Gröbner basis of (F ). Output False, if there is a
nonzero c in G ∩ L; otherwise return True.

4.3.3 Finite Solvability

Definition 4.3.8 (Finite Solvability) Let F ⊆ L[x1, . . ., xn] be a sys-
tem of polynomials. F is said to be finitely solvable if:

1. F is solvable.

2. The system of polynomial equations has finitely many zeroes.

We will see that this exactly corresponds to the case when the ideal
generated by F is a proper zero-dimensional ideal. Also, we will see that
this corresponds exactly to the case when we can find a set of generators
of (F ), expressible in a strongly triangular form.

Theorem 4.3.9 Let F ⊂ L[x1, . . ., xn] be a system of polynomial equa-
tions. Then the following three statements are equivalent:

1. F is finitely solvable;

2. (F ) is a proper zero-dimensional ideal; and

3. If G is a Gröbner basis of (F ) with respect to >
LEX

, then G can be

expressed in strongly triangular form.
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proof.
(1⇒ 2):
As F is solvable, (F ) 6= (1), i.e., (F ) ∩ L = (0). Assume that

〈ξ1,1, . . . , ξ1,n〉
...

〈ξm,1, . . . , ξm,n〉

are the finite set of common zeros of F . Define

f(xi) = (xi − ξ1,i) · · · (xi − ξm,i).

We see that f(xi) is a degree m univariate polynomial in xi that vanishes
at all common zeroes of F . Thus

(
∃ q > 0

) [
f(xi)

q ∈ (F )
]
.

Thus,
(F ) ∩ L[xi] 6= (0),

and (F ) is zero-dimensional . Also, since (0)  (F )  (1), (F ) is also
proper.

(2⇒ 3):
Since (F ) is a proper zero-dimensional ideal, we have (F ) ∩ L = (0), and

(
∀ xi

) [
(F ) ∩ L[xi] 6= (0)

]
,

i.e., (
∀ xi

) (
∃ f(xi) ∈ L[xi]

) [
f(xi) ∈ (F )

]
.

Since G is a Gröbner basis of (F ), we see that

Hmono(f(xi)) = xDi

i ∈ Head(G).

Together with the fact that (G ∩ L) = 0, we get

(
∃ gi ∈ G

) [
Hterm(g) = xdi

i

]
, di ≤ Di.

Since we have chosen >
LEX

as our admissible ordering,

gi ∈ L[xi, . . . , xn] \ L[xi + 1, . . . , xn]

and it follows that for all i (0 ≤ i < n) there exists a gi+1 ∈ Gi such that
gi+1 has a monomial of the form a · xd

i+1 (a ∈ L and d > 0). Thus, G,
a Gröbner basis of (F ) with respect to >

LEX

, can be expressed in strongly

triangular form.
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(3⇒ 1):
Let I = (F ) = (G), be the ideal generated by F . It follows that

Z(I) = Z(F ) = Z(G).

Thus it suffices to show that I is finitely solvable.

1. Since (G ∩ L) = I ∩ L = (0), 1 6∈ I, and I is solvable.

2. We will prove by induction on i that for all i (0 ≤ i < n), the ith

elimination ideal, Ii has finitely many zeroes. We recall that by a
previous theorem

Ii = (Ĝi)

where Ĝi =
⋃n

j=i Gj , and Ĝi is in strongly triangular form.

• Base Case: i = n− 1.
Gn−1 consists of univariate polynomials in xn. Since Gn−1 is strongly
triangular, there is some polynomial p(xn) in Gn−1 of maximum de-
gree dn. Thus p(xn) has finitely many zeros (at most dn of them).
Since we are looking for common zeros of In−1, and since p(xn) ∈
In−1, we see that In−1 has finitely many zeros (not more than dn).

• Induction Case: i < n− 1.
By the inductive hypothesis, the (i + 1)th elimination ideal Ii+1 has
finitely many zeroes, say Di+2 of them.

Let Π be the projection map defined as follows:

Π : An−i → An−i−1

: 〈ξi+1, ξi+2, . . . , ξn〉 7→ 〈ξi+2, . . . , ξn〉.

We partition the zero set of the ith elimination ideal Ii, Z(Ii) into
equivalence classes under the following equivalence relation: P , Q ∈
Z(Ii)

P ∼ Q iff Π(P ) = Π(Q).

By Theorem 4.3.3, and the inductive hypothesis, the number of equiv-
alence classes is finite, in fact, less than or equal to Di+2. Let p(xi+1,

xi+2, . . ., xn) ∈ Ĝi be a polynomial containing a monomial of the

form a · xdi+1

i+1 (a ∈ L and di+1 > 0)—assume that di+1 takes the
highest possible value. If

[P ]∼ = {Q: Π(Q) = 〈ξi+2, . . . , ξn〉}
is an equivalence class of P , a common zero of Ii, then ξ (where
Q = 〈ξ, ξi+2, . . ., ξn) ∈ [P ]∼) is a zero of the univariate polynomial
p(xi+1, ξi+1, . . ., ξn). Thus

|[P ]∼| ≤ di+1

and Ii has finitely many zeros (not more than di+1 ·Di+2).
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(-1, +1)

(+1, -1)

Figure 4.1: The zeros of x1x2 + 1 = 0 and x2
2 − 1 = 0.

The above argument also provides an upper bound on the number of
zeros of the system of polynomials F , which is

d1 · d2 · · ·dn

where di is the highest degree of a term of the form xdi

i of a polynomial in
Gi−1.

Example 4.3.9 Suppose we want to solve the following system of polyno-
mial equations:

{x1x2 + 1, x2
2 − 1} ⊆ C[x1,x2].

The zeros of the system are (−1,+1) and (+1,−1), as can be seen from
Figure 4.1.

Clearly the system is finitely solvable.
Now if we compute a Gröbner basis of the above system with respect

to >
LEX

(with x1 >
LEX

x2), then the resulting system is strongly triangular, as

given below:
{x1 + x2, x2

2 − 1}.
We solve for x2 to get x2 = {+1,−1}. After substituting these values for x2

in the first equation, we get the solutions (x1, x2) = {(−1,+1), (+1,−1)}.

Application: Finite Solvability

FiniteSolvability(F )
Input: F = {f1, . . ., fr} ⊂ L[x1, . . ., xn],

L = An algebraically closed field.
Output: True, if F has finitely many solutions in An.
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(-1,+1)

(+1,-1)

Figure 4.2: The zeros of x1 + x2 = 0 and x2
2 − 1 = 0.

Compute G, the Gröbner basis of (F ) with respect to >
LEX

. Output

True, if G is solvable, and is in strongly triangular form; False, otherwise.

4.4 Finding the Zeros

Now we are ready to gather all the ideas developed here and devise an
algorithm to find the zeros of a system of polynomials. The algorithm
works by successively computing the common zeros of the ith elimination
ideal and then extending these to the common zeros of the (i− 1)th ideal.

The algorithm involves computing the zeros of a univariate polynomial;
while this is a hard problem for large-degree polynomials, the algorithm as-
sumes this can be computed by some oracle. An interesting open problem,
thus, is to study how this algorithm interfaces with various finite-precision
(numeric) and infinite-precision (symbolic) algorithms available for com-
puting the zeros of a univariate polynomial.

However, the main appeal of the following algorithm is that we can
turn a multivariate problem into a sequence of univariate problems via the
Gröbner basis.
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FindZeros(F )

Input: F = {f1, . . . , fr} ⊂ L[x1, . . . , xn],
L = An algebraically closed field.

Output: The zeros of F in An if F is finitely solvable.

Compute G a Gröbner basis of (F ) with respect to >
LEX

;

if G is not in strongly triangular form then

return with failure

end{if };

H := {g ∈ Gn−1};
pn−1 := the GCD of the polynomials in H ;
Xn−1 := {〈ξn〉 : p(ξn) = 0};

for i := n − 1 down to 1 loop

Xi−1 := ∅;

for all 〈ξi+1, . . ., ξn〉 ∈ Xi loop

H := {g(xi, ξi+1, . . ., ξn) : g ∈ Gi−1};
pi−1 := the GCD of the polynomials in H ;

if pi−1 6∈ L then

Xi−1 := Xi−1∪
{〈ξi, ξi+1, . . ., ξn〉 : pi−1(ξi) = 0};

end{if };
end{loop };

end{loop };

return (X0);

end{FindZeros}

Theorem 4.4.1 Let F = {f1, . . ., fr} ⊂ L[x1, . . ., xn] and L, an alge-
braically closed field. Assume that there is an effective procedure to compute
the zeros of a univariate polynomial in L[x].

Then in finite number of steps, the algorithm FindZeros computes the
zeros of F in An if F is finitely solvable.

proof.
The termination of the algorithm easily follows from the fact that there
are effective procedures to compute a Gröbner basis, to check if a system
is in strongly triangular form, to compute the GCD of a set of univariate
polynomials and to compute the zeros of a univariate polynomial.

Assume that F is finitely solvable. We want to show that

X0 = Z(F ).
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It is easily seen that every element of X0 is a zero of (G) and thus of
the polynomials in F : X0 ⊆ Z(F ).

To see the converse, we argue by induction on i that for all i (0 ≤ i < n),

Z((F )i) ⊆ Xi,

where (F )i is the ith elimination ideal of F .

• Base Case: i = n− 1.
By a previous theorem, we know that (F )n−1 = (Gn−1∪Gn) = (Gn), since
(Gn) = (0), by assumption. Since Gn−1 ⊆ L[xn], a principal ideal domain,
(Gn−1) = (pn−1), where pn−1 is a GCD of Gn−1. Thus, if 〈ξn〉 is a zero of
Gn−1, then 〈ξn〉 is also a zero of pn−1, and 〈ξn〉 ∈ Xn−1.

• Induction Case: i < n− 1.
By the inductive hypothesis, the zeros of (F )i+1 are in Xi+1. Let Π be the
projection map defined as follows:

Π : An−i → An−i−1

: 〈ξi+1, ξi+2, . . . , ξn〉 7→ 〈ξi+2, . . . , ξn〉.

Let 〈ξi+1, ξi+2, . . ., ξn〉 be a zero of (F )i. Then

〈ξi+2, . . . , ξn〉 = Π(〈ξi+1, ξi+2, . . . , ξn〉) ∈ Z((F )i+1) ⊆ Xi+1.

Since

(F )i =




n⋃

j=i

Gj


 ,

we see that 〈ξi+1, ξi+2, . . ., ξn〉 is a zero of Gi, and 〈ξi〉 is a zero of the set

H = {g(xi+1, ξi+2, . . . , ξn): g ∈ Gi}.

But since H ⊆ L[xi+1], a principal ideal domain, we see that 〈ξi+1〉 is also
a zero of pi, the GCD of the polynomials in H .

Thus

〈ξi+1, ξi+2, . . . , ξn〉 ∈ Xi,

and we see that

X0 ⊆ Z(F ) = Z((F )0) ⊆ X0,

and X0 = Z(F ), as we wanted to show.
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Problems

Problem 4.1
Prove that if I and J are ideals then Z(I)∪Z(J) and Z(I)∩Z(J) are

algebraic sets and

Z(I) ∪ Z(J) = Z(I ∩ J) = Z(I · J),

Z(I) ∩ Z(J) = Z(I + J).

Problem 4.2
(i) Let f1, . . ., fr, g1, . . ., gs ∈ L[x1, . . ., xn] be a finite set of multivari-

ate polynomials over an algebraically closed field L. Devise a procedure to
decide if there is a point p ∈ Ln such that

f1(p) = 0, . . . , fr(p) = 0 and
g1(p) 6= 0, . . . , gs(p) 6= 0.

(ii) Let f1, . . ., fr, g1, . . ., gs and h ∈ L[x1, . . ., xn] be a finite set
of multivariate polynomials over an algebraically closed field L. Devise a
procedure to decide if the following statement is true:

(
∀ p ∈ Ln

)

[ (
f1(p) = 0 ∧ · · · ∧ fr(p) = 0 ∧ g1(p) 6= 0 ∧ · · · ∧ gs(p) 6= 0

)

⇒ h(p) = 0

]
.

Problem 4.3
Given f ∈ L[x1, . . ., xn] and a finite set of polynomials F = {f1, . . .,

fr} ⊆ L[x1, . . ., xn] (L = an algebraically closed field), devise an algorithm
for the radical ideal membership problem, i.e., an algorithm that decides if

f ∈
√

(F ).

If so, express f q (for an appropriate q ∈ N) as follows:

f q = h1 f1 + · · ·+ hr fr where fi ∈ L[x1, . . . , xn].

Problem 4.4
Consider the following well-known NP-complete problems:
(i) Satisfiability: Let u1, . . ., un be a set of Boolean variables that

can take one of two truth values: true and false. If u is a variable, then u
and u are literals with the condition that if u holds true, then u holds false
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and vice versa. A 3-CNF formula is a conjunction of clauses where each
clause is a disjunction of exactly three literals. For instance:

(u1 ∨ u3 ∨ u8) ∧ (u2 ∨ u3 ∨ u7) ∧ (u4 ∨ u5 ∨ u6) ∧ (u3 ∨ u5 ∨ u8).

A 3-CNF formula is said to be satisfiable if it is possible to assign to each
variable a truth value so that the formula evaluates to true (i.e., at least
one literal in each clause has the value true).

Satisfiability(C)
Input: A 3-CNF formula C over a set of variables u1, . . ., un.

Output: If C is satisfiable then return True;
Otherwise, return False.

(ii) Graph 3-Colorability: Given an undirected graph G = (V,E),
it is said to be K-colorable, if there is a mapping f : V → [1..K] such that
every pair of adjacent vertices are assigned distinct colors.

3-Colorability(G)
Input: An undirected graph G = (V, E).

Output: If G is 3-colorable then return True;
Otherwise, return False.

(iii) Hamiltonian Path: For an undirected graph G = (V,E), a
simple path in G is a sequence of distinct vertices, 〈v1, v2, . . ., vk〉, such
that [vi, vi+1] ∈ E (1 ≤ i < k). A Hamiltonian path in G from s to t
(s, t ∈ V , s and t are distinct) is a simple path from s to t that includes all
the vertices of G.

Hamiltonian(G, s, t)
Input: An undirected graph G and two distinct vertices s and t.

Output: If G has a Hamiltonian path from s to t then return True;
Otherwise, return False.

Show that in each case, one can find a set of polynomials f1, . . ., fr ∈
L[x1, . . ., xm] [where m, r, max(deg(fi)) are polynomially bounded by
the input size of the problem instances] such that the problem has an
affirmative answer if and only if the corresponding system of polynomial
equations is solvable.
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Problem 4.5
One can define inductively a mapping from the class of Boolean formulas

over {u1, . . ., un} to the ring Z2[x1, . . ., xn] as follows:

Φ : Boolean formulas → Z2[x1, . . . , xn]
: ui 7→ xi

: F ∨G 7→ Φ(F ) ·Φ(G) + Φ(F ) + Φ(G)
: F ∧G 7→ Φ(F ) ·Φ(G)
: ¬F 7→ Φ(F ) + 1.

This mapping usually follows from the classical Stone isomorphism lemma
of logic.

(i.a) Consider a system of polynomials over Z2:

G =





x2
1 + x1 = 0
x2

2 + x2 = 0
...

x2
n + xn = 0





(4.1)

Show that the set of solutions of equation 4.1 in any algebraically closed
field containing Z2 is simply (Z2)⋉.

(i.b) Let f ∈ Z2[x1, . . ., xn] be a polynomial that vanishes at all the
points of (Z2)⋉. Show that f ∈ (G).

(ii.a) Consider a truth assignment

T : {u1, . . . , un} → {true, false}

and a vector vT associated with it:

vT = 〈a1, . . . , an〉 where ai =





1 if T (ui) = true

0 if T (ui) = false

Show that a Boolean formula evaluates to true (respectively, false) under
a truth assignment T if and only if Φ(F )(vT ) = 1 (respectively, = 0).

(ii.b) Show that F = satisfiable if and only if Φ(F ) 6∈ (G).
(ii.c) Show that F = tautology if and only if 1 + Φ(F ) ∈ (G).

Problem 4.6
We use the same notations as those of the preceding problem. Let

g =
(
∀ u1, . . . , un−m

) (
∃ un−m+1, . . . , un

) [
F (u1, . . . , um)

]

be a statement, in which F is a quantifier-free logical formula over the
variables u1, . . ., un.
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Let

NFc
G(Φ(F ))

= f0(x1, . . . , xn−m) +
∑

i>0

fi(x1, . . . , xn−m) pi(xn−m+1, . . . , xn)

where pi ∈ PP(xn−m+1, . . ., xn). (See Problem 3.9).
Prove that g holds if and only if

1 + f0 ∈
(
f1, f2, . . . , x

2
1 + x1, x

2
2 + x2, · · · , x2

n + xn

)
.

Problem 4.7
If I is a zero-dimensional prime ideal in K[x1, . . ., xn], then show that

I can be generated by n polynomials: I = (g1, . . ., gn) where gi ∈ K[xi,
. . ., xn].

Problem 4.8
Consider two planar curves P (x, y) and Q(x, y) in R[x, y]. Let G be

a reduced Gröbner basis of the following ideal in R[a, b, u, x, y]:

(P (a, b), Q(a, b), u− (a− x)(b − y))

computed with respect to a pure lexicographic ordering with a >
LEX

b >
LEX

u.

Let V (u, x, y) be the polynomial in G ∩ R[≅,x,y].
Assume that Vp(u) = V (u, x0, y0) (for some p = 〈x0, y0〉 ∈ R2) is a

nonzero square-free polynomial in R[≅].
Show that the number of positive real roots of Vp(u) is exactly equal

to the number of real zeros of (P,Q) lying in the top-right and bottom-left
orthants centered at p, i.e.,

{〈a, b〉 : (a > x0, b > y0) or (a < x0, b < y0)}.

Problem 4.9
Let R = K[x1, . . ., xn] be a polynomial ring over the field K and I

an ideal of R. Then the equivalence relation ≡ mod I partitions the ring
R into equivalence classes such that f , g ∈ R belong to the same class if
f ≡ g mod I. The equivalence classes of R are called its residue classes
modulo I. We use the notation R/I to represent the set of residue classes
of R with respect to I.

Let f denote the set {g : f ≡ g mod I}. Check that the map f 7→ f is
the natural ring homomorphism of R onto R/I. We sometimes write f + I
for f . R/I is called the residue class ring modulo I.

(i) Prove the following statements:
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1. R/I is a vector space over K.

2. Let G be a Gröbner basis, and let

B = {p : p ∈ PP(x1, . . . , xn) such that p is not a multiple

of the Hterm of any of the polynomials in G}.

Then B is a linearly independent (vector space) basis of R/(G) over
K.

(ii) Devise an algorithm to decide if R/(F ) is a finite-dimensional vector
space for a given set of polynomials F ⊆ R.

(iii) Devise an algorithm to compute the basis of a residue class ring
R/(F ), where F ⊆ R and (F ) is a zero-dimensional ideal. Also compute
the “multiplication table” for the computed basis B; if pi, pj ∈ B, then
the (pi, pj)

th entry of the multiplication table gives a linear representation
of pi · pj in terms of the basis elements in B.

Problem 4.10
Let K be a computable field and <

A

be a fixed but arbitrary computable

admissible ordering on PP(x1, . . ., xn). Assume that G ⊆ K[x1, . . ., xn] is
a finite Gröbner basis of (G) with respect to <

A

. Devise an algorithm to

find

p ∈ (G) ∩K[x1]

where p is a univariate polynomial of minimal degree in x1. Your algorithm
must not recompute a new Gröbner basis.

Problem 4.11
Let I ⊆ k[x1, x2, . . ., xn] be a zero-dimensional ideal in a ring of

multivariate polynomials over an arbitrary field. Let D1, D2, . . ., Dn be a
sequence of nonnegative numbers such that

(
∀ 1 ≤ i ≤ n

) (
∃ fi ∈ I ∩ k[xi]

) [
fi 6= 0 and deg(fi) ≤ Di

]
.

Show that I has a Gröbner basis G with respect to total lexicographic
ordering such that

(
∀ g ∈ G

) [
deg(g) ≤

n∑

i=1

Di

]
.



Solutions to Selected Problems 157

Problem 4.12
A plane curve C is said to be given by its (polynomial) parametric form

〈p(t), q(t)〉, if

C =
{
〈α, β〉 ∈ R2 :

(
∃ τ ∈ R

) [
α = p(τ) and β = q(τ)

]}
.

Similarly, a plane curve C is said to be given by its implicit form f(x, y),
if

C = {〈α, β〉 ∈ R2 : ℧(α, β) = 0}.
Give an algorithm that takes as its input a curve in its polynomial

parametric form and produces its implicit form.

Solutions to Selected Problems

Problem 4.1
First, we show that Z(I) ∪ Z(J) = Z(IJ) = Z(I ∩ J).

(1) P ∈ Z(IJ) ∧ P 6∈ Z(I)

⇒
(
∀ f ∈ I

) (
∀ g ∈ J

) [
fg(P ) = 0

]
∧
(
∃ f ∈ I

) [
f(P ) 6= 0

]

⇒
(
∀ g ∈ J

) [
g(P ) = 0

]

⇒ P ∈ Z(J)

Hence,
Z(I) ∪ Z(J) ⊇ Z(IJ).

(2) Since IJ ⊆ I ∩ J , we have

Z(IJ) ⊇ Z(I ∩ J).

(3) Lastly, we see that

(I ∩ J ⊆ I) ∧ (I ∩ J ⊆ J)

⇒ Z(I ∩ J) ⊇ Z(I) ∧ Z(I ∩ J) ⊇ Z(J)

⇒ Z(I ∩ J) ⊇ Z(I) ∪ Z(J).

Hence,

Z(I) ∪ Z(J) ⊇ Z(IJ) ⊇ Z(I ∩ J) ⊇ Z(I) ∪ Z(J),

thus implying that all of these sets are equal.
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Next, we show that Z(I) ∩ Z(J) = Z(I + J).

P ∈ Z(I) ∩ Z(J)

⇔
(
∀ f ∈ I

) [
f(P ) = 0

]
∧
(
∀ g ∈ J

) [
g(P ) = 0

]

⇔
(
∀ h ∈ I + J

) [
h(P ) = 0

]

⇔ P ∈ Z(I + J).

Problem 4.2
(i) The problem can be reduced to an instance of solvability of a system

of polynomial equations by means of the following artifice due to A. Rabi-
nowitsch (Math. Ann., 102:518). Consider the following set of equations
in L[x1, . . ., xn, z]:

f1 = 0

... (4.2)

fr = 0

(1− g1 · · · gs · z) = 0.

Then, we claim that the following system is solvable if and only if the
system in equation 4.2 is solvable:

f1 = 0

...

fr = 0 (4.3)

g1 6= 0

...

gs 6= 0.

Assume that p = 〈ξ1, . . ., ξn〉 ∈ Ln is a solution for the system in equa-

tion 4.3. Let ζ =
(
g1(p) · · · gs(p)

)−1

. Such a ζ exists, since g1(p) · · · gs(p) 6=
0 and we are working in a field L. It is now trivial to see that p′ = 〈ξ1, . . .,
ξn, ζ〉 ∈ Ln+1 is a solution for the system in equation 4.2.

Conversely, if p′ = 〈ξ1, . . ., ξn, ζ〉 ∈ Ln+1 is a solution for the sys-
tem in equation 4.3, then p = 〈ξ1, . . ., ξn〉 ∈ Ln is a solution for the
system in equation 4.3. Clearly, f1(p) = 0, . . ., fr(p) = 0. Additionally,
g1(p) · · · gs(p) 6= 0, since, otherwise, (1−g1 · · · gs ·z)(p′) would have been 1.
Since, we are working over a field, it follows that g1(p) 6= 0, . . ., gs(p) 6= 0.
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Thus it suffices to check that

1 6∈
(
f1, . . . , fr, (1− g1 · · · gs · z)

)
.

(ii) By using a sequence of logical identities, it is easy to show that the
formula

(
∀ p ∈ Ln

)

[ (
f1(p) = 0 ∧ · · · ∧ fr(p) = 0 ∧ g1(p) 6= 0 ∧ · · · ∧ gs(p) 6= 0

)

⇒ h(p) = 0

]
(4.4)

is equivalent to the following:

(
¬∃ p ∈ Ln

)

[
f1(p) = 0 ∧ · · · ∧ fr(p) = 0 ∧ g1(p) 6= 0 ∧ · · · ∧ gs(p) 6= 0 ∧ h(p) 6= 0

]
.

Thus formula 4.4 holds true if and only if the following system of equations
in L[x1, . . ., xn, z] is unsolvable:

f1 = 0

...

fr = 0

(1− g1 · · · gs · h · z) = 0

is unsolvable, i.e, if

1 ∈
(
f1, . . . , fr, (1− g1 · · · gs · h · z)

)
.

Problem 4.4
(i) We shall construct a set of polynomials over C[x1T, x1F , . . ., xnT ,

xnF , z] such that the system of equations has a solution if and only if the
given 3-CNF formula is satisfiable. For each variable ui we introduce two
variables, xiT and xiF , and the following set of equations:

x2
iT − xiT = 0

x2
iF − xiF = 0 (4.5)

xiT + xiF − 1 = 0
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These equations guarantee that xiT and xiF only take the values 0 and 1
and that if xiT takes the value 1, then xiF must take the value 0, and vice
versa.

Now for each literal we define a mapping T where

T (ui) = xiT and T (ui) = xiF .

Now, extend the mapping T to a clause C = (u ∨ u′ ∨ u′′) as follows:

T (u ∨ u′ ∨ u′′) = T (u) + T (u′) + T (u′′).

Finally, extend the mapping T to a 3-CNF formula C1 ∧ · · · ∧ Cm:

T (C1 ∧ · · · ∧ Cm) = 1− z
m∏

i=1

T (Ci). (4.6)

For instance, the polynomial associated with the 3-CNF example in the
problem will be

1−z(x1T +x3F +x8T ) (x2F +x3T +x7F ) (x4F +x5F +x6F ) (x3F +x5T +x8F ).

Clearly, if the 3-CNF formula is satisfiable, then the system of equations
(4.5) and (4.6) have a solution. (If ui is true then let xiT = 1 and xiF = 0,
etc., and since for each clause Ci evaluates to true, T (Ci) 6= 0 and for some
value of z ∈ C equation 4.6 vanishes.)

Conversely, if the constructed system of equations has a solution then
for each such solution, xiT takes a value in {0, 1}; assign ui the truth value
true iff xiT = 1. Such a truth assignment obviously satisfies the 3-CNF.

The solution uses 2n + 1 variables and 3n + 1 equations each of total
degree ≤ (m+1). Note that the equation T (C1 ∧ · · ·∧Cm) can be reduced
in polynomial time (using complete-reduction) by the equations {x2

iT −
xiT , x

2
iF − xiF : 1 ≤ i ≤ n} to yield an equation of degree 1 in each

variable.
A much simpler solution can be constructed, by considering the follow-

ing polynomials in C[x1, . . ., xn]. For each Boolean variable ui, associate

a variable xi. Define a mapping T̃ over the literals as follows:

T̃ (ui) = (xi − 1) and T̃ (ui) = xi.

Now, extend the mapping T̃ to a clause C = (u ∨ u′ ∨ u′′) as follows:

T̃ (u ∨ u′ ∨ u′′) = T̃ (u) · T̃ (u′) · T̃ (u′′).

For the given 3-CNF formula C1∧· · ·∧Cm, construct the following system
of equations:

T̃ (C1) = 0, . . . , T̃ (Cm) = 0.
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It is easily seen that the system of equations is solvable if and only if the
original 3-CNF formula is satisfiable.

For the example 3-CNF formula, the system of equations is the follow-
ing:

(x1 − 1) x3 (x8 − 1) = 0

x2 (x3 − 1) x7 = 0

x4 x5 x6 = 0

x3 (x5 − 1) x8 = 0.

This solution uses n variables and m equations each of total degree 3.

(ii) Again we shall work over the field C and make use of the three cube
roots of unity: 1, ω and ω2—these three constants will be used to represent
the three colors. For each vertex vi, associate a variable xi and introduce
the following equation into the system:

x3
i − 1 = 0.

This “enforces” that the vertex vi takes a color in {1, ω, ω2}. Now the con-
dition that each pair of adjacent vertices [vi, vj ] ∈ E are assigned distinct
colors can be “enforced” by the following set of equations:

x2
i + xi xj + x2

j = 0, where [vi, vj ] ∈ E.
It is not hard to show that the graph is 3-colorable if and only if the
constructed system of equations in C[x1, . . ., xn] (n = |V |) has a solution
in C⋉.

The solution uses |V | variables and |V | + |E| equations each of total
degree at most 3.

(iii) As before, our construction will be over the algebraically closed
field, C. Without loss of generality assume that s = v1 and t = vn. It
suffices to find a bijective map f : V → [1..n] such that f(v1) = 1, f(vn) =
n and such that if f maps two vertices to successive values (i.e., k and
k + 1), then the vertices must be adjacent.

For each vertex vi, associate a variable xi and additionally, introduce
two auxiliary variable z and z′. The bijectivity of f can be “enforced” by
the following sets of equations:

x1 − 1 = 0, xn − n = 0
(xi − 1) (xi − 2) · · · (xi − n) = 0 for 1 < i < k

1− z
∏

1≤i<j≤n

(xi − xj) = 0

The last condition (i.e., (∀ [vi, vj ] 6∈ E) [|f(vi)− f(vj)| 6= 1] ) can be “en-
forced” by the following set of equations:

1 + z′ − (xi − xj)
2 z′ = 0, for all 1 ≤ i < j ≤ n such that [vi, vj ] 6∈ E.
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The solution uses |V | + 2 variables and O(|V |2) equations of each of
total degree at most |V |2.

Problem 4.5
(i.a) Note that G is already in strongly triangular form and one can

apply the algorithm in this chapter to find the zeros (finitely many) of G.
It is now trivial to see that

Z(G) = {ξ1 : ξ21 + ξ1 = 0} × · · · × {ξn : ξn
1 + ξn = 0} = (Z2)

n.

(i.b) Let h = NFc
G(f) (see Problem 3.9). Clearly, h vanishes at the

common zeroes of G if and only if f vanishes at the common zeroes of G.
Also, since the polynomials of G are all univariate and of degree 2, h is of
degree ≤ 1 in each variable.

Now we claim that if h vanishes at all (Z2)
n points (common zeroes of

G), then h must be identically zero. If h is univariate, then this is obvious.
In order to prove this inductively, assume that the claim has been proven
for all such k-variate polynomials and we want to prove for the case when
h is (k+ 1)-variate. Without loss of generality assume that the variable x1

occurs in h. Thus, we can express h as follows:

h = x1 h
′(x2, . . . , xk) + h′′(x2, . . . , xk)

If h 6≡ 0, then not both h′ and h′′ are identically zero. Thus for some point

〈ξ2, . . . , ξk〉 ∈ (Z2)
k,

h′ 6= 0 or h′′ 6= 0 (by the inductive argument). Case 1: If h′′ 6= 0, then h
does not vanish at 〈0, ξ2, . . . , ξk〉. Case 2: If h′′ = 0 and h′ 6= 0, then h does
not vanish at 〈1, ξ2, . . . , ξk〉. In either case, we get a contradiction. Thus
we conclude that h ≡ 0.

Since G is a Gröbner basis for (G), we conclude that

f vanishes at the common zeroes of G

⇒ f
G,c−→
∗
h = 0

⇒ f ∈ (G).

(ii.a) The proof follows by a simple structural induction on the Boolean
formulas. We omit the details.

(ii.b) Clearly f is satisfiable if and only if there is a truth assignment
for which f evaluates to true. This is equivalent to saying

(
∃ p ∈ (Z2)

n
) [

Φ(F )(p) = 1
]
,
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i.e., Φ(F ) does not vanish at all the common zeros of G. The rest follows
by the results of the preceding parts.

(ii.c)

f = tautology

⇔ Φ(F )(p) = 1, for all p ∈ (Z2)
n

⇔ 1 + Φ(F ) vanishes at all p ∈ (Z2)
n

⇔ 1 + Φ(F ) ∈ (G).

Problem 4.9
(i) Proof of the statements:

Lemma 4.4.2 1. R/I is a vector space over K.

2. Let G be a Gröbner basis, and let

B = {p : p ∈ PP(x1, . . . , xn) such that p is not a multiple

of the Hterm of any of the polynomials in G}. (4.7)

Then B is a linearly independent (vector space) basis of R/(G) over
K.

proof.
The first statement is trivial; simply check that

a(f + g + I) = a f + b g + I,

(a+ b)(f + I) = a f + b f + I,

(ab)(f + I) = a(b f + I),

1(f + I) = f + I,

where a, b ∈ K and f , g ∈ K[x1, . . ., xn].
Let f = f + (G) be an element of R/(G) and let

NFc
G(f) = c1 · p1 + · · ·+ cl · pl,

where ci ∈ K and pi ∈ PP(x1, . . ., xn). Hence, for all 1 ≤ i ≤ l, pi is not
a multiple of the Hterm of any polynomial in G, and pi ∈ B. Since we can
write f as

f = c1 · p1 + · · ·+ cl · pl,

B spans the vector space R/(G).
Furthermore, the elements of B are linearly independent. Assume that

for some p1, . . ., pm ∈ B, we have

c1 · p1 + · · ·+ cm · pm = 0, where ci ∈ K.
In other words,

f = c1 · p1 + · · ·+ cm · pm ∈ (G).

Hence NFc
G(f) = f = 0, i.e., c1 = · · · = cm = 0.
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(ii) Finite-Dimensionality of a Residue Class Ring

FiniteDimensionality(F )
Input: F ⊆ R.

Output: True, if R/(F ) finite-dimensional.

Compute G, the Gröbner basis of (F ). Output true if for all i (1 ≤ i ≤
n), a power product of the form xji

i (ji ≥ 0) occurs among the Hterms of
the polynomials in G; otherwise, false [i.e., (F ) is zero-dimensional]. To
see that this works, note that if for some i, none of the power products of
Hterms in G has the required form, then we get an infinity number of basis
elements as xi, x

2
i , x

3
i , . . ., etc., are not reducible. The converse is simple.

(iii) Basis of a Residue Class Ring

BasisComputation(F )
Input: F ⊆ R.

Assume that R/(F ) is a finite-dimensional vector space.

Output: (1) A basis B of the vector space R/(F );
(2) The “multiplication table” for R/(F ):

the (pi, pj)
th entry of the table gives a linear representation

of pi · pj in terms of the basis elements in B.

Compute G, the Gröbner basis of (F ). Let the set B be as in equa-
tion (4.7). This is easily computed. For each pi, pj ∈ B, compute the
normal form of pi · pj :

NFc
G(pi · pj) = c1 · p1 + · · ·+ cm · pm.

Then the (pi, pj)
th entry of the multiplication table is

c1 · p1 + · · ·+ cm · pm.

The correctness of the procedure follows immediately from Lemma 4.4.2.

Problem 4.11
We are told that there is a system of nontrivial univariate polynomials

f1(x1) = a1,0x
d1
1 + a1,1x

d1−1
1 + · · ·+ a1,d1 ,

f2(x2) = a2,0x
d2
2 + a2,1x

d2−1
2 + · · ·+ a2,d2 ,

...
fn(xn) = an,0x

dn
n + an,1x

dn−1
n + · · ·+ an,dn

in the ideal I ⊂ k[x1, . . . , xn], where (∀i) [di ≤ Di], and D1, . . . , Dn is a
fixed sequence of nonnegative integers.
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Let G be a minimal Gröbner basis for I (in the sense of Problem 3.2)
with respect to the total lexicographic ordering where x1 >

LEX

x2 >
LEX

· · · >
LEX

xn.

We may assume that distinct elements of G have distinct head terms, since
if not, throw out one or the other without altering Head(G). Then for all
g ∈ G satisfying the following conditions

Hterm(g) 6= Hterm(f1),

Hterm(g) 6= Hterm(f2),

...

Hterm(g) 6= Hterm(fn),

we know that Hterm(fi) (1 ≤ i ≤ n) does not divide Hterm(g), since fi ∈ I.
Thus,

(
∀ g ∈ G

) [
deg(Hterm(g)) ≤ max

(
n∑

i=1

(Di − 1), D1, . . . , Dn

)

≤
n∑

i=1

Di

]
.

But, since the Gröbner basis is computed with respect to a total lexico-
graphic ordering, each monomial of each g ∈ G has a total degree smaller
than the total degree of the headterm, and

(
∀ g ∈ G

) [
deg(g) ≤

n∑

i=1

Di

]
.
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be a polynomial with deg(h) = δ. Then h vanishes at the common
zeros of I , i.e.,

h ∈
√

I

if and only if

„
∃ b1, . . . , bs ∈ K[x1, . . . , xn]

« "
hq =

sX

i=1

bifi,

#
,

where q ≤ 2(d + 1)n and deg(bifi) ≤ 2(δ + 1)(d + 1)n, 1 ≤ i ≤ r.
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related ideas [162]. Problem 4.9 is based on Buchberger’s algorithm [33].



Chapter 5

Characteristic Sets

5.1 Introduction

The concept of a characteristic sets was discovered in the late forties by
J.F. Ritt (see his now classic book Differential Algebra [174]) in an effort to
extend some of the constructive algebraic methods to differential algebra.
However, the concept languished in near oblivion until the seventies when
the Chinese mathematician Wu Wen-Tsün [209–211] realized its power in
the case where Ritt’s techniques are specialized to commutative algebra.
In particular, he exhibited its effectiveness (largely through empirical evi-
dence) as a powerful tool for mechanical geometric theorem proving. This
proved to be a turning point; a renewed interest in the subject has con-
tributed to a better understanding of the power of Ritt’s techniques in
effectively solving many algebraic and algebraico-geometric problems.

For a system of algebraic equations, its characteristic set is a certain
effectively constructible triangular set of equations that preserves many of
the interesting geometric properties of the original system [47,76–78,173]
However, while it shares certain similarities with the triangular forms of
the previous chapter, it is smaller in size but fails to retain certain algebraic
properties. In particular, a characteristic set of a system of polynomials
{F} is not a basis of the ideal (F ). But because of their power in geometric
settings, characteristic sets do provide an alternative and relatively efficient
method for solving problems in algebraic geometry.

Recently, the constructivity of Ritt’s characteristic set has been ex-
plicitly demonstrated [78]. The original Wu-Ritt process , first devised by
Ritt [174], subsequently modified by Wu [209-211] and widely implemented
[47], computes only an extended characteristic set. Furthermore, the Wu-
Ritt process , as it is, has a worst-case time complexity which can only be

167
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expressed as a nonelementary1 function of the input size and thus, in prin-
ciple, is infeasible. This difficulty has been alleviated by some of the recent
algorithms devised by Gallo and Mishra [76, 77].

In this chapter, we begin by discussing the pseudodivision process.
Next, we shall introduce the concept of a characteristic set, followed by
a survey of the original Wu-Ritt process, and its applications in geometric
theorem proving. We shall also sketch some of the key ideas that have led
to recent efficient algorithms for computing a characteristic set.

5.2 Pseudodivision and

Successive Pseudodivision

Let S be a commutative ring. As a convention, we define deg(0) = −∞.

Theorem 5.2.1 (Pseudodivision) Let f(x) and g(x) 6= 0 be two poly-
nomials in S[x] of respective degrees n and m:

f(x) = bnx
n + · · ·+ b0,

g(x) = amx
m + · · ·+ a0.

Let δ = max(m− n+ 1, 0). Then there exist polynomials q(x) and r(x) in
S[x] such that

bδng(x) = q(x)f(x) + r(x) and deg(r) < deg(f).

Moreover, if bn is not a zero divisor in S, then q(x) and r(x) are unique.
proof.
We can show the existence of the polynomials q(x) and r(x) by induction
on m:
• Base Case: m < n
Take q(x) = 0 and r(x) = g(x).
• Induction Case: m ≥ n
The polynomial

ĝ(x) = bn · g(x)− amx
m−n · f(x)

has degree at most (m− 1). By the inductive hypothesis, there exist poly-
nomials q̂(x) and r̂(x) such that

bm−n
n

(
bn · g(x)− amx

m−n · f(x)
)

= q̂(x) · f(x) + r̂(x) and deg(r̂) < deg(f).

1For a discussion of the nonelementary computational problems, see pp. 419–423 of
the algorithms text by Aho et al. [3]. Roughly, a problem is said to have a nonelementary
complexity, if its complexity cannot be bounded by a function that involves only a fixed
number of iterations of the exponential function.
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Taking q(x) = amb
m−n
n xm−n + q̂(x) and r(x) = r̂(x),

bδng(x) = q(x)f(x) + r(x) and deg(r) < deg(f).

Proof of Uniqueness:
Suppose that bn is not a zero divisor in S and we have

bδng(x) = q(x) · f(x) + r(x) and deg(r) < deg(f)

= q̂(x) · f(x) + r̂(x) and deg(r̂) < deg(f).

If q(x) − q̂(x) 6= 0, then [q(x) − q̂(x)]f(x) 6= 0 and has degree at least n,
since bn is not a zero divisor. However, this is impossible since

deg(r − r̂) < deg(f) and (q(x) − q̂(x))f(x) = r̂(x) − r(x).

Thus q(x) − q̂(x) = 0 = r̂(x)− r(x).

Definition 5.2.1 (Pseudodivision) For any two polynomials g(x) and
f(x) 6= 0 in S[x], we shall call polynomials q(x) and r(x) in S[x] the
pseudoquotient and the pseudoremainder , respectively, of g(x) with respect
to f(x) [denoted PQuotient(g, f) and PRemainder(g, f)] if

bδng(x) = q(x) · f(x) + r(x) and deg(r) < n,

where m = deg(g), n = deg(f), bn = Hcoef(f) and δ = max(m− n+ 1, 0).
Also, if g = PRemainder(g, f), then g(x) is said to be reduced with respect
to f(x).

Remark 5.2.2 If S is an integral domain, the pseudoquotient and the
pseudoremainder of any pair of polynomials in S[x] are unique.

The above argument leads to a recursive algorithm for pseudodivision:

PseudoDivisionRec(g(x), f(x))

Input: f(x) = bnxn + · · · + b0 6= 0 ∈ S[x],
g(x) = amxm + · · · + a0 ∈ S[x].

Output: q(x) = PQuotient(g, f), and r(x) = PRemainder(g, f).

if m < n then

〈q(x), r(x)〉 := 〈0, g(x)〉;
else

〈q(x), r(x)〉 :=
PseudoDivisionRec(bng(x) − amxm−nf(x), f(x));

q(x) := ambm−n
n xm−n + q(x)

end{if };
end{PseudoDivisionRec}



170 Characteristic Sets Chapter 5

To derive an iterative algorithm, we introduce an integer variable k
and develop a loop that decrements k from m to (n− 1), maintaining the
following assertion invariant:

bδng(x) = q(x) · f(x) + bk−n+1
n · r(x).

Let us represent q(x) and r(x) by their respective coefficient vectors

〈qm−n, . . . , q0〉 and 〈rm, . . . , r0〉.

PseudoDivisionIt(g(x), f(x))

Input: f(x) = bnxn + · · · + b0 6= 0 ∈ S[x],
g(x) = amxm + · · · + a0 ∈ S[x].

Output: q(x) = PQuotient(g, f), and r(x) = PRemainder(g, f).

for i := 0 to m − n loop qi := 0;
for i := 0 to m loop ri := ai;
for k := m down to n loop

qk−n := rk · bk−n
n ;

for j := 1 to n loop

rk−j := bn · rk−j − rk · bn−j ;
for j := 0 to k − n − 1 loop

rj := bn · rj ;
end{loop };

end{PseudoDivisionIt}

The notion of a pseudodivision can be suitably generalized so that given
two nonzero polynomials f(x) ∈ S[x] and g(x, y1, . . ., ym) ∈ S[x, y1, . . .,
ym], we can determine two polynomials q(x, y1, . . ., ym) [pseudoquotient]
and r(x, y1, . . ., ym) [pseudoremainder] such that

bδng(x, y) = q(x, y) · f(x) + r(x, y), and degx(r) < deg(f),

where degx denotes the maximal degree of x in a polynomial containing
the variable x and bn = Hcoef(f) and δ = max(degx(g) − degx(f) + 1,
0). In order to give prominence to the fact that the pseudodivision was
performed with respect to the variable x, we may sometime write

q(x, y) = PQuotient(g, f, x) and r(x, y) = PRemainder(g, f, x).

Theorem 5.2.2 (Successive Pseudodivision) Consider the following tri-
angular form

f1(u1, . . . , ud, x1)
f2(u1, . . . , ud, x1, x2)

...
fr(u1, . . . , ud, x1, . . . , xr)
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and polynomial g = g1(u1, . . ., ud, x1, . . ., xr) all in the ring S[u1, . . .,
ud, x1, . . ., xr]. Let the following sequence of polynomials be obtained by
successive pseudodivisions:

rr = g

rr−1 = PRemainder(rr , fr, xr)

rr−2 = PRemainder(rr−1, fr−1, xr−1)

...

r0 = PRemainder(r1, f1, x1).

The polynomial r0 ∈ S[u1, . . ., ud, x1, . . ., xr ] is said to be the generalized
pseudoremainder of g with respect to f1, . . ., fr and denoted

r0 = PRemainder
(
g, {f1, . . . , fr}

)
.

We also say g is reduced with respect to f1, . . ., fr if

g = PRemainder
(
g, {f1, . . . , fr}

)
.

Furthermore, there are nonnegative integers δ1, . . ., δr and polynomials q1,
. . ., qr such that

1. bδr
r · · · bδ1

1 g = q1 · f1 + · · ·+ qr · fr + r0,

where b1 = Hcoef(f1) ∈ S[u1, . . . , ud],

...

br = Hcoef(fr) ∈ S[u1, . . . , ud, x1, . . . , xr−1].

2. degxi
(r0) < degxi

(fi), for i = 1, . . ., r.

proof.
The proof is by induction on r and by repeated applications of the pseu-
dodivision theorem given in the beginning of the section.

5.3 Characteristic Sets

Let K[x1, . . ., xn] denote the ring of polynomials in n variables, with
coefficients in a field K. Consider a fixed ordering on the set of variables;
without loss of generality, we may assume that the given ordering is the
following:

x1 ≺ x2 ≺ · · · ≺ xn.
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Definition 5.3.1 (Class and Class Degree) Let f ∈ K[x1, . . ., xn] be
a multivariate polynomial with coefficients in K. A variable xj is said to
be effectively present in f if some monomial in f with nonzero coefficient
contains a (strictly) positive power of xj .

For 1 ≤ j ≤ n, degree of f with respect to xj , degxj
(f), is defined to be

the maximum degree of the variable xj in f .
The class and the class degree (Cdeg) of a polynomial f ∈ K[x1, . . .,

xn] with respect to a given ordering is defined as follows:

1. If no variable xj is effectively present in f , (i.e., f ∈ K), then, by
convention,

Class(f) = 0 and Cdeg(f) = 0.

2. Otherwise, if xj is effectively present in f , and no xi ≻ xj is effec-
tively present in f (i.e., f ∈ K[x1, . . ., xj ] \K[x1, . . ., xj−1]), then

Class(f) = j and Cdeg(f) = degxj
(f).

Thus, with each polynomial f ∈ K[x1, . . ., xn], we can associate a pair of
integers, its type:

Type : K[x1, . . . , xn]→ N× N
: f 7→ 〈Class(f),Cdeg(f)〉.

Definition 5.3.2 (Ordering on the Polynomials) Given two polyno-
mials f1 and f2 ∈ K[x1, . . ., xn], we say f1 is of lower rank than f2,

f1 ≺ f2,
if either

1. Class(f1) < Class(f2), or

2. Class(f1) = Class(f2) and Cdeg(f1) < Cdeg(f2).

This is equivalent to saying that the polynomials are ordered according to
the lexicographic order on their types:

f1 ≺ f2 iff Type(f1) <
LEX

Type(f2).

Note that there are distinct polynomials f1 and f2 that are not comparable
under the preceding order. In this case, Type(f1) = Type(f2), and f1 and
f2 are said to be of the same rank , f1 ∼ f2.

Thus, a polynomial f of class j and class degree d can be written as

f = Id(x1, . . . , xj−1)x
d
j

+ Id−1(x1, . . . , xj−1)x
d−1
j + · · ·+ I0(x1, . . . , xj−1), (5.1)

where Il(x1, . . ., xj−1) ∈ K[x1, . . ., xj−1] (l = 0, 1, . . ., d).
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Definition 5.3.3 (Initial Polynomial) Given a polynomial f of class j
and class degree d, its initial polynomial , In(f), is defined to be the poly-
nomial Id(x1, . . ., xj−1) as in equation (5.1).

As a special case of Theorem 5.2.1, we get the following:

Corollary 5.3.1 (Pseudodivision Lemma) Consider two polynomials
f and g ∈ K[x1, . . . xn], with Class(f) = j. Then using the pseudodi-
vision process, we can write

In(f)αg = qf + r, (5.2)

where degxj
(r) < degxj

(f) and α ≤ degxj
(g)− degxj

(f) + 1.

If α is assumed to be the smallest possible power satisfying equa-
tion (5.2), then the pseudoquotient and the pseudoremainder are unique.
Also, polynomial g is reduced with respect to f if g = PRemainder(g, f).

Definition 5.3.4 (Ascending Set) A sequence of polynomials F = 〈f1,
f2, . . ., fr〉 ⊆ K[x1, . . ., xn] is said to be an ascending set (or chain), if one
of the following two conditions holds:

1. r = 1 and f1 is not identically zero;

2. r > 1, and 0 < Class(f1) < Class(f2) < · · · < Class(fr) ≤ n,
and each fi is reduced with respect to the preceding polynomials,
fj’s (1 ≤ j < i).

Every ascending set is finite and has at most n elements. The dimension
of an ascending set F = 〈f1, f2, . . ., fr〉, dimF , is defined to be (n − r).

Thus, with each ascending set F we can associate an (n+ 1)-vector, its
type,

Type: Family of ascending sets → (N ∪ {∞})n+1
,

where ∞ is assumed to be greater than any integer. For all 0 ≤ i ≤ n, the
ith component of the vector is

Type (F) [i] =





Cdeg(g), if
(
∃g ∈ F

) [
Class(g) = i

]
;

∞, otherwise.

Definition 5.3.5 (Ordering on the Ascending Sets) Given two ascend-
ing sets

F = 〈f1, . . . , fr〉 and G = 〈g1, . . . , gs〉 ,
we say F is of lower rank than G, F ≺ G, if one of the following two
conditions is satisfied,
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1. There exists an index i ≤ min{r, s} such that

(
∀ 1 ≤ j < i

) [
fj ∼ gj

]
and

[
fi ≺ gi

]
;

2. r > s and
(
∀ 1 ≤ j ≤ s

) [
fj ∼ gj

]
.

Note that there are distinct ascending sets F and G that are not comparable
under the preceding order. In this case r = s, and (∀ 1 ≤ j ≤ s) [fj ∼ gj ] ,
and F and G are said to be of the same rank , F ∼ G.

Hence,
F ≺ G iff Type (F) <

LEX

Type (G) .

Thus the map, type, is a partially ordered homomorphism from the family
of ascending sets to (N∪{∞})⋉+1, where (N∪{∞})⋉+1 is ordered by the
lexicographic order. Hence, the family of ascending sets endowed with the
ordering “≺” is a well-ordered set.

Definition 5.3.6 (Characteristic Set) Let I be an ideal in K[x1, . . .,
xn]. Consider the family of all ascending sets, each of whose components
is in I,

SI =
{
F = 〈f1, . . . , fr〉 : F is an ascending set and fi ∈ I, 1 ≤ i ≤ r

}
.

A minimal element in SI (with respect to the ≺ order on ascending sets)
is said to be a characteristic set of the ideal I.

We remark that if G is a characteristic set of I, then

n ≥ |G| ≥ n− dim I.

Since G is an ascending set, by definition, n ≥ |G|. The other inequality
can be shown as follows: Consider some arbitrary ordering of variables
and assume that |G| = k and the class variables are vk, . . ., v1. Let the
remaining variables be called u1, . . ., ul. We claim that u’s must all be
independent .

I ∩K[u1, . . . , ul] = (0).

Then n− k = l ≤ dim I and |G| = k ≥ n− dim I.
The proof of the claim is by contradiction: Suppose that the claim is

false, i.e., (
∃ f(u1, . . . , ul) 6= 0

) [
f ∈ I ∩K[u1, . . . , ul]

]
.

Assume that f(u1, . . . , ul) is of class uj. Also, f is reduced with respect
to those polynomials of G with lower ranks. Then one can add f to G to
get an ascending set of lower rank, which is impossible, by the definition
of characteristic set.
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Also, observe that, for a given ordering of the variables, the characteris-
tic set of an ideal is not necessarily unique. However, any two characteristic
sets of an ideal must be of the same rank.

Corollary 5.3.2 (Successive Pseudodivision Lemma) Consider an as-
cending set F = 〈f1, f2, . . ., fr〉 ⊆ K[x1, . . ., xn], and a polynomial
g ∈ K[x1, . . ., xn]. Then using the successive pseudodivision (see Theo-
rem 5.2.2), we can find a sequence of polynomials (called a pseudoremain-
der chain), g0, g1, . . ., gr = g, such that for each 1 ≤ i ≤ r, the following
equation holds,

(
∃ q′i

) (
∃ αi

) [
In(fi)

αigi = q′ifi + gi−1

]

where gi−1 is reduced with respect to fi and αi assumes the smallest possi-
ble power, achievable. Thus, the pseudoremainder chain is uniquely deter-
mined. Moreover, each gi−1 is reduced with respect to fi, fi+1, . . ., fr.

In(fr)
αr In(fr−1)

αr−1 · · · In(f1)
α1g =

r∑

i=1

qifi + g0. (5.3)

The polynomial g0 ∈ K[x1, . . ., xn] is said to be the (generalized) pseu-
doremainder of g with respect to the ascending set F ,

g0 = PRemainder (g,F) .

By the earlier observations, g0 is uniquely determined, and reduced with
respect to f1, f2, . . ., fr. We say a polynomial g is reduced with respect
to an ascending set F if g = PRemainder (g,F) .

For an ascending set F , we describe the set of all polynomials that are
pseudodivisible by F , by the following notation:

M(F) =
{
g ∈ K[x1, . . . , xn] : PRemainder(g,F) = 0

}
.

Theorem 5.3.3 Let I be an ideal in K[x1, . . ., xn]. Then the ascending
set G = 〈g1, . . ., gr〉 is a characteristic set of I if and only if

(
∀ f ∈ I

) [
PRemainder(f,G) = 0

]
.

proof.
Suppose G is a characteristic set of I, but that there is a nonzero polynomial
h ∈ I reduced with respect to G, i.e., PRemainder(h,G) = h 6= 0. If
Class(h) ≤ Class(g1), then 〈h〉 ∈ SI is an ascending set lower than G, a
contradiction. If on the other hand,

0 < Class(g1) < · · · < Class(gj) < Class(h)

[and Class(h) ≤ min(Class(gj+1), n)], then G′ = 〈g1, . . ., gj, h〉 ∈ SI is an
ascending set lower than G:
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1. If j = r, then G′ is a longer sequence than G, and G is a prefix of G′.

2. If j < r and Class(h) < Class(gj+1), then there is nothing to show.

3. Finally, if j < r and Class(h) = Class(gj+1), then, since h is reduced,
we have Cdeg(h) < Cdeg(gj+1) thus showing that F ≺ G.

This also contradicts our initial assumption that G is a characteristic set
of I.

Conversely, suppose G is an ascending set but not a characteristic set
of I and that every h ∈ I reduces with respect to G. By assumption, there
is another ascending set G′ ∈ SI that is lower than G. Let g′i 6= 0 be the
leftmost entry of G′ not occurring in G. By definition, then, g′i ∈ I is a
polynomial with PRemainder(g′i,G) = g′i 6= 0—which leads to the desired
contradiction.

One interesting implication of this theorem is that if g ∈ G, a charac-
teristic set of I, then g ∈ I but In(g) 6∈ I. Simply observe that

PRemainder(In(g),G) = In(g) 6= 0.

5.4 Properties of Characteristic Sets

The main properties of characteristic sets are summarized in the next the-
orem. As in the previous chapter, for any set of polynomials F = {f1, . . .,
fr} ⊆ L[x1, . . ., xn], (L = and algebraically closed field)2we write Z(F ),
to denote its zero set :

Z(F ) =
{
〈ξ1, . . . , ξn〉 ∈ Ln :

(
∀ f ∈ F

) [
f(ξ1, . . . , ξn) = 0

] }
.

By F∞, we shall denote the set of all finite products of

In(f1), . . . , In(fr),

and, for any ideal I in L[x1, . . ., xn], we use the notation I:F∞ for

{
h :
(
∃ f ∈ F∞

) [
hf ∈ I

] }
.

It is easily seen that I:F∞ is itself an ideal. Note that, for an ascending
set F = 〈f1, . . ., fr〉,

PRemainder(h,F) = 0 ⇒ h ∈ (F):F∞,

2All the geometric arguments in this chapter do work out, even when we consider a
ring of polynomials over an arbitrary field K and consider the zeros over any algebraic
extension of K. However, for the sake of simplicity, we shall work over an algebraically
closed field.
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since PRemainder(h,F) = 0 implies that we can write

In(fr)
αr · · · In(f1)

α1 h = q1 f1 + · · ·+ qr fr,

for some nonnegative integers α1, . . ., αr and polynomials q1, . . ., qr ∈ L[x1,
. . ., xn].

Theorem 5.4.1 Let I be an ideal in L[x1, . . ., xn] generated by F = {f1,
. . ., fs}. Let G = 〈g1, . . ., gr〉 be a characteristic set of I, and let J = (g1,
. . ., gr) ⊆ I be the ideal generated by the elements of G. Then

1. J ⊆ I ⊆ J :G∞.

2. Z(G) \
(⋃r

i=1 Z
(
In(gi)

))
⊆ Z(I) ⊆ Z(G).

3. I = prime ideal ⇒ I ∩ G∞ = ∅ and I = J :G∞.
proof.
First, make the following two observations:

1. J = (g1, . . . , gr) ⊆ I [ because gi ∈ I by definition].

2. In(gi) 6∈ I [ because PRemainder(In(gi),G) = In(gi) 6= 0].

Assertion (1) follows from the first observation and the fact that
(
∀ f ∈ I

) [
PRemainder(f,G) = 0

]
;

thus, for some element In(gr)
αr In(gr−1)

αr−1 · · · In(g1)
α1 = g ∈ G∞,

g f =

r∑

i=1

qi gi ∈ J.

Assertion (2) follows from the previous assertion and the elementary
properties of the zero sets of polynomials. Thus,

Z(I) ⊆ Z(J) = Z(G).

Hence, it suffices to prove that

Z(G) \
(

r⋃

i=1

Z
(
In(gi)

))
⊆ Z(I).

Let P ∈ Ln be a point in the zero set Z(G) \
(⋃r

i=1 Z
(
In(gi)

))
. Let

f ∈ I. Then there exists a g =
∏r

i=1 In(gi)
αi ∈ G∞ such that gf ∈ J .

Thus, g(P ) f(P ) = 0. But by assumption, g(P ) 6= 0. Then f(P ) = 0, as is
to be shown.

To see the last assertion, observe that if I is a prime ideal, then we have
the following:
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• If some g ∈ G∞ belongs to I, then so does one of the factors of g,
say In(gi). But this contradicts the second observation made in the
beginning of this proof.

• Consider an f ∈ J :G∞. By definition, there exists a g ∈ G∞ such
that

gf ∈ J ⊆ I and g 6∈ I.

From the primality of I, conclude that f ∈ I. That is, J :G∞ = I.

The inclusions in assertion (2) of Theorem 5.4.1 can be strict. Consider
the ideal I = (x2 +y2−1, xy) and suppose x ≺ y. A possible characteristic
set for I is {x3 − x, xy} whose zeroes are a set of higher dimension than
the zeroes of I. Removing from it the zeroes of the initial of xy, i.e., the
line of equation y = 0 one gets only two of the four original points in Z(I).

One way to interpret the preceding theorem is to say that constructing
characteristic sets helps only in answering geometrical questions, but not
with general algebraic problems. In particular, we see that characteristic
sets are not powerful enough to handle the general membership problem for
an arbitrary ideal . However, as an immediate consequence of the theorem,
we do have the following:

PRemainder(f,G) = 0 ⇔ f ∈ I,

provided that I is prime.

5.5 Wu-Ritt Process

Now, let us consider the following triangulation process, due to J.F. Ritt
and Wu Wen-Tsün, which computes a so-called extended characteristic set
of an ideal by repeated applications of the generalized pseudodivision. His-
torically, this represents the first effort to effectively construct a triangular
set corresponding to a system of differential equations. Here, we focus just
on the algebraic analog.

Definition 5.5.1 (Ritt’s Principle) Let F = {f1, . . ., fs} ⊆ K[x1, . . .,
xn] be a finite nonempty set of polynomials, and I = (F ) be the ideal
generated by F . An ascending set G satisfying either of the following two
properties is called an extended characteristic set of F .

1. G consists of a polynomial in K ∩ I, or

2. G = 〈g1, . . ., gr〉 with Class(g1) > 0 and such that

gi ∈ I, for all i = 1, . . . , r,

PRemainder(fj ,G) = 0, for all j = 1, . . . , s.
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The following algorithm, the Wu-Ritt Process, computes an ex-
tended characteristic set by repeatedly adding the pseudoremainders R
(obtained by successive pseudodivisions by a partially constructed mini-
mum ascending chain) to F and then choosing a minimal ascending set in
the enlarged set R ∪ F .

Wu-Ritt Process(F )
Input: F = {f1, . . ., fs} ⊆ K[x1, . . ., xn].
Output: G, an extended characteristic set of F .

G := ∅; R := ∅;
loop

F := F ∪ R; F ′ := F ; R := ∅;
while F ′ 6= ∅ loop

Choose a polynomial f ∈ F ′ of minimal rank ;
F ′ := F ′ \ {g : Class(g) = Class(f) and

g is not reduced with respect to f};
G := G ∪ {f};

end{loop };
for all f ∈ F \ G loop

if r := PRemainder(f,G) 6= 0 then

R := R ∪ {r};
end{if };

end{loop };
until R = ∅;
return G;
end{Wu-Ritt Process}.

It is trivial to see that when the algorithm terminates, it, in fact, returns
an ascending set G that satisfies the conditions given in Definition 5.5.1.
The termination follows from the following observations:

Let F ⊆ K[x1, . . ., xn] be a (possibly, infinite) set of polynomials.
Consider the family of all ascending sets, each of whose components is in
F ,

SF =
{
F = 〈f1, . . . , fr〉 : F is an ascending set and fi ∈ F, 1 ≤ i ≤ r

}
.

A minimal element in SF (with respect to the ≺ order on ascending sets)
is denoted as MinASC(F ). The following easy proposition can be shown;
the proof is similar to that of Theorem 5.3.3.

Proposition 5.5.1 Let F be as above. Let g be a polynomial reduced with
respect to MinASC(F ). Then

MinASC(F ∪ {g}) ≺ MinASC(F ).

proof.
Let MinASC(F ) = 〈f1, . . ., fr〉. By assumption, g is reduced with respect
to F , i.e.,

PRemainder(g, F ) = g 6= 0.
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If Class(g) ≤ Class(f1), then 〈g〉 is an ascending set of F ∪ {g} lower
than MinASC(F ).

If on the other hand,

0 < Class(f1) < · · · < Class(fj) < Class(g)

[and Class(g) ≤ min(Class(fj+1), n) ], then 〈g1, . . ., gj , h〉 is an ascending
set of F ∪ {g} lower than MinASC(F ). For more details, see the proof of
Theorem 5.3.3.

Now, let Fi be the set of polynomials obtained at the beginning of the
ith iteration of the loop (lines 2–15). Starting from the set Fi, the algorithm
constructs the ascending chain Gi = MinASC(Fi) in the loop (lines 4–9).
Now, if Ri [constructed by the loop (lines 10–14)] is nonempty, then each
element of Ri is reduced with respect to Gi. Now, since

Fi+1 = Fi ∪Ri,

we observe that

MinASC(F0) ≻ MinASC(F1) ≻ · · · ≻ MinASC(Fi) ≻ · · ·

Since the “≻” is a well-ordering on the ascending sets, the chain above
must be finite and the algorithm must terminate. However, it can be
shown that the number of steps the algorithm may take in the worst case
can be nonelementary in the parameters n (the number of variables) and
d (the maximum degree of the polynomials) (see [78]).

In general, an extended characteristic set of an ideal is not a character-
istic set of the ideal. However, an extended characteristic set does satisfy
the following property, in a manner similar to a characteristic set.

Theorem 5.5.2 Let F ⊆ L[x1, . . ., xn] (L = an algebraically closed field)
be a basis of an ideal I, with an extended characteristic set G = 〈g1, . . .,
gr〉. Then

Z(G) \
(

r⋃

i=1

Z
(
In(gi)

))
⊆ Z(I) ⊆ Z(G).

proof.
Let

M(G) =
{
f : PRemainder(f,G) = 0

}
.

denote, as before, the set of all polynomials that are pseudodivisible by G.
Thus, by the properties of an extended characteristic set,

(G) ⊆ I ⊆
(
M(G)

)
,
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since by definition, F ⊆M(G). Using the elementary properties of the zero
sets of polynomials, we get

Z
(
M(G)

)
⊆ Z(I) ⊆ Z(G).

Hence, it suffices to prove that

Z(G) \
(

r⋃

i=1

Z
(
In(gi)

))
⊆ Z

(
M(G)

)
.

Let P ∈ Ln be a point in the zero set Z(G) \
(⋃r

i=1Z
(
In(gi)

))
. Let

f ∈M(G). Then there exists a g =
∏r

i=1 In(gi)
αi ∈ G∞ such that gf ∈ J .

Thus, g(P ) f(P ) = 0. But by assumption, g(P ) 6= 0. Then f(P ) = 0, as is
to be shown.

5.6 Computation

Let I ⊆ K[x1, . . ., xn] be an ideal generated by a set of s generators, f1,
. . ., fs, in the ring of polynomials in n variables over the field K. Further,
assume that each of the polynomial fi in the given set of generators has its
“total” degree, Tdeg bounded by d:

(
∀ 1 ≤ i ≤ s

) [
Tdeg(fi) ≤ d

]
,

where by Tdeg(f), we denote
∑

i degxi
(f). Note that deg(fi) ≤ Tdeg(fi) ≤

n deg(fi).
Let G = 〈g1, . . ., gr〉 be a characteristic set of the ideal I with respect

to an ordering of the variables that will satisfy certain conditions to be
discusses later.

Our approach will be as follows: first, using an effective version of
Nullstellensatz3, we shall derive a degree bound for a characteristic set of
a zero-dimensional ideal, and then use a “lifting” procedure to obtain a
bound for the more general cases. Equipped with these bounds, we can
exhaustively search a bounded portion of the ring for a characteristic set;
the search process can be made very efficient by using simple ideas from
linear algebra.

Let us begin with the case when our ideal I is zero-dimensional. Note
that every zero-dimensional ideal I contains a univariate polynomial hj(xj),
in each variable xj , since by definition:

I ∩K[xj ] 6= (0), for all j = 1, . . . , n.

3Originally due to Brownawell [29] and later sharpened by Kollár [118]—see the
Bibliographic Notes of Chapter 4.
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Since the sequence 〈h1, . . ., hn〉 is clearly an ascending set in SI , we get
a similar bound on the class degrees of the polynomials in a characteristic
set of I. Bounds on the total degrees of G follow.

1. Clearly, Class(gj) = Class(hj) = j.

2. Cdeg(gj) ≤ Cdeg(hj) ≤ deg(hj).

3. For all 1 ≤ i < j, degxi
(gj) < degxi

(gi), as gj is reduced with respect
to the preceding gi’s. Thus

Tdeg(gj) ≤
(

j∑

i=1

Cdeg(gi)

)
− j + 1 ≤ n

(
max

i
deg(hi)

)
.

By combining bounds obtained by a version of Bezout’s inequality4 with
the effective Nullstellensatz, we can show that maxi deg(hi) ≤ 2(d + 1)2n,
if Tdeg(fi)’s are all bounded by d. In fact the following stronger theorem
holds:

Theorem 5.6.1 (Zero-Dimensional Upper Bound Theorem) Let I =
(f1, . . ., fs) be a zero-dimensional ideal in K[x1, . . ., xn], where K is an
arbitrary field, and Tdeg(fi) ≤ d, 1 ≤ i ≤ s. Then I has a characteristic
set G = 〈g1, . . ., gn〉 with respect to the ordering,

x1 ≺ x2 ≺ · · · ≺ xn,

where for all 1 ≤ j ≤ n,

1. Class(gj) = j.

2. Tdeg(gj) ≤ 2n(d+ 1)2n.

3.

(
∃ aj,1, . . . , aj,s ∈ K[x1, . . . , xn]

) [
gj =

s∑

i=1

aj,ifi,

]
,

and Tdeg(aj,ifi) ≤ 8n(d+ 1)2n, 1 ≤ i ≤ s.

The results on the bounds for a characteristic set of a zero-dimensional
ideal can be extended to the more general classes of ideals, by a “lifting”
process used by Gallo and Mishra [77], leading to the following general
result:

4This effective version of Bezout’s inequality is due to Heintz [90] and states the
following:

Let I be a zero-dimensional ideal in L[x1, . . ., xn] generated by a set of
polynomials of degree no larger than d. Then |Z(I)| ≤ 2(d + 1)n.
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Theorem 5.6.2 (General Upper Bound Theorem) Let I = (f1, . . .,
fs) be an ideal in K[x1, . . ., xn], where K is an arbitrary field, and
Tdeg(fi) ≤ d, 1 ≤ i ≤ s. Assume that x1, . . ., xl are the independent
variables with respect to I. That is, these independent variables form the
largest subset of {x1, . . ., xn} such that

I ∩K[x1, . . . , xl] 6= (0).

Let r = n− dim I = n− l. Then I has a characteristic set G = 〈g1, . . .,
gr〉 with respect to the ordering

x1 ≺ x2 ≺ · · · ≺ xn,

where for all 1 ≤ j ≤ r,

1. Class(gj) = j + l.

2. Tdeg(gj) ≤ D1 = 4(s+ 1)(9r)2rd(d+ 1)4r2

.

3.

(
∃ aj,1, . . . , aj,s ∈ K[x1, . . . , xn]

) [
gj =

s∑

i=1

aj,ifi,

]
,

and Tdeg(aj,ifi) ≤ D2 = 11(s+ 1)(9r)2rd(d+ 1)4r2

, 1 ≤ i ≤ s.

We are now ready to see how one can compute a characteristic set of
an ideal, by using the degree bounds of the general upper bound theorem
and fairly simple ideas from linear algebra. In particular, we shall assume
that we have available to us effective algorithms for computing the rank
and determinants of matrices over an arbitrary field.

Let I be an ideal given by a set of generators {f1, . . ., fs} ∈ K[x1, . . .,
xn], where K is an arbitrary field, Tdeg(fi) ≤ d. Assume that after some
reordering of the variables, the variables x1, . . ., xn are so arranged that
the first l of them are independent with respect to I, and the remaining
(n− l) variables, dependent .

x1 ≺ x2 ≺ · · · ≺ xn.

See Chapter 4 for further discussion on how dependent and independent
variables can be computed.

Assume, inductively, that the first (j − 1) elements g1, . . ., gj−1, of a
characteristic set, G, of I have been computed, and we wish to compute the
jth element gj of G. By Theorem 5.6.2, we know that Class(g1) = (l + 1),
. . ., Class(gj−1) = (l + j − 1) and Class(gj) = (l + j). Let

Cdeg(g1) = dl+1, . . . ,Cdeg(gj−1) = dl+j−1.
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Thus, the polynomial gj sought must be a nonzero polynomial of least
degree in xl+j , in I ∩K[x1, . . ., xl+j ] such that

degxl+1
(g1) < dl+1, . . . , degxl+j−1

< dl+j−1.

Furthermore, we know, from the general upper bound theorem, that

(
∃ aj,1, . . . , aj,s ∈ K[x1, . . . , xn]

) [
gj =

s∑

i=1

aj,i fi,

]
, (5.4)

and Tdeg(gj), Tdeg(aj,i fi) ≤ D = max(D1, D2), 1 ≤ i ≤ s. Thus gj

satisfying all the properties can be determined by solving an appropriate
system of linear equations.

Let M1, M2, . . ., Mρ be an enumeration of all the power products in
x1, . . ., xn [called, PP(x1, . . ., xn)] of degree less than D; thus ρ satisfies
the following bound,

ρ =

(
D + n

n

)
.

The enumeration on the power products is assumed to be so chosen that
the indices λ < µ only if one of the following three conditions is satisfied:

1. Mλ ∈ PP(x1, . . ., xl+j) and Mµ ∈ PP(x1, . . ., xn)\PP(x1, . . ., xl+j).

2. Mλ, Mµ ∈ PP(x1, . . ., xl+j) and

(
∀ l < i < l + j

)[
degxi

(Mλ) < di

]

and (
∃ l < i < l + j

)[
degxi

(Mµ) ≥ di

]
.

3. Mλ, Mµ ∈ PP(x1, . . ., xl+j),

(
∀ l < i < l + j

) [
degxi

(Mλ), degxi
(Mµ) < di

]
,

and degxl+j
(Mλ) < degxl+j

(Mµ).

Let us express ai,j and gj symbolically as follows:

ai,j =

ρ∑

λ=1

α(i−1)+λMλ, 1 ≤ i ≤ s,

gj =

ρ∑

µ=1

βµMµ.
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By equating the the terms of the same monomials on both sides of equa-
tion (5.4)

(
∃ aj,1, . . . , aj,s ∈ K[x1, . . . , xn]

) [
gj =

s∑

i=1

aj,ifi,

]
,

we get at most (
d+ l + j

l + j

)
· ρ ≤ (d+ 1)nρ

equations, in (s + 1)ρ unknowns, α’s and β’s. We represent the homoge-
neous system as follows:

[
A1 · · ·Asρ

...B1 · · ·Bρ

]




α1

...
αsρ

· · ·
β1

...
βρ




= 0.

Any solution of this system that minimizes the index of the last nonzero
entry of the β’s will correspond to the desired gj . The existence of a
solution of the desired nature follows from Theorem 5.6.2, and the rest
follows simply from the choice of the ordering on the power products. (The
reader may check!)

Let λ1(= 1), λ2, . . ., λl and m, be a sequence of indices such that, for
1 ≤ i < l,

0 < rank
[
A1 · · ·Aλi

]

= rank
[
A1 · · ·Aλi+1

]
= · · · = rank

[
A1 · · ·Aλi+1−1

]

< rank
[
A1 · · ·Aλi+1

]
,

and

rank
[
A1 · · ·Asρ

]
< rank

[
A1 · · ·Asρ

...B1

]

< · · · < rank
[
A1 · · ·Asρ

...B1 · · ·Bm−1

]

= rank
[
A1 · · ·AsρB1 · · ·Bm

]
.

Then, we know that in the desired solution all the α’s and β’s, not including
αλ1 , . . ., αλl

and β1, . . ., βm, must be zero. Thus, we need to solve the
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following system of linear equations

[
Aλ1 · · ·Aλl

... B1 · · ·Bm−1

]




αλ1

...
αλl

· · ·
β1

...
βm−1




= Bm.

This linear algebraic problem can be easily solved to derive the element,
gj , a monic polynomial given by:

gj = Mm − βm−1Mm−1 − · · · − β1M1.

Thus the procedure outlined here is completely effective.

Theorem 5.6.3 Let I = (f1, . . ., fs) be an ideal in K[x1, . . ., xn], where
K is an arbitrary field, and Tdeg(fi) ≤ d, 1 ≤ i ≤ s. Then with respect to
any ordering on the variables:

x1 ≺ x2 ≺ · · · ≺ xn,

where the first dim(I)-many variables are independent, one can effectively
compute a characteristic set of I.

5.7 Geometric Theorem Proving

Let us consider how the concepts of characteristic sets (or extended char-
acteristic sets) can be used in a simple geometric theorem prover. The
first such mechanical theorem prover, devised by Wu Wen-Tsün [209-211]
in China, has come to be known as the China prover and has been success-
fully used to prove many classical and some new theorems in plane analytic
geometry. Some further improvements in this direction has been achieved
by Shang-Ching Chou [47].

Other approaches, based on different constructive methods in computer
algebra, have also been proposed for this problem: For instance, Kutzler
and Stifter [122], Kapur [111] and Kapur and Narendra [114] have proposed
methods based on Gröbner bases; Carrá and Gallo [42] and Gallo [75]
have devised a method using the dimension of the underlying algebraic
variety; J.W. Hong [101] has introduced a seminumerical algorithm using
an interesting gap theorem and “proof-by-example” techniques.



Section 5.7 Geometric Theorem Proving 187

The method based on the Wu-Ritt characteristic sets is not, however, a
real theorem prover, in the sense that it does not follow any logical proof-
theoretic techniques; it simply takes an algebraic translation of a set of
geometric statements and tries to verify its validity in the manner to be
made more precise. For most of the geometric statements, however, the
translation from geometry to algebra is far from being completely auto-
mated. The fundamental principle that the translation method relies on is
fairly simple, i.e., the classical coordinate method of Descartes introduced
in the 17th century.

Definition 5.7.1 (Elementary Geometry Statement) By an elemen-
tary geometry statement , we mean a formula of the following kind:

(
f1 = 0 ∧ f2 = 0 ∧ · · · ∧ fs = 0

)
⇒

(
g = 0

)
, (5.5)

where the fi’s and g are polynomials in L[x1, . . ., xn], the variables xi’s
are assumed to be bound by universal quantification and their ranges are
assumed to be the field L, the base field of the underlying geometry. We
further assume that the base field L is algebraically closed.

The conjunct
∧

i(fi = 0) is called the premise of the geometry state-
ment, and will be assumed to be nontrivial, i.e., the set of points in Ln

satisfying the premise is nonempty. The statement g = 0 is its conclusion.
To prove a statement, then, is to show that a geometric formula is valid.

However, one problem with the above algebraic statement is that it does
not mention certain geometric degeneracies that are implicitly excluded:
For instance, when a geometric statement mentions a triangle, it is con-
ventionally assumed to mean those nondegenerate triangles whose vertices
are noncollinear. But, on the other hand, spelling out all the conceiv-
able geometric degeneracies makes the process unappealingly cumbersome.
Wu’s approach permits one to circumvent this problem as it produces these
nondegeneracy conditions as a natural by-product. In fact, Wu’s approach
proves an elementary geometry statement, in the sense that it shows that
the conclusion is true whenever the premises are generically true.5 Follow-
ing Wu, in this case, we will say that the corresponding geometric statement
is generically true.

The Wu’s algorithm is as follows: Assume that the input to the al-
gorithm is an elementary geometry formula which is obtained after the
theorem has been translated algebraically.

5In geometric terms, it shows that the conclusion polynomial vanishes on some open

subset (under the Zariski topology) of the zero set of the system of polynomials, f1, f2,
. . ., fs.
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Wu’s Algorithm(F )
Input: Premises = F = {f1, . . ., fs} ⊆ L[x1, . . ., xn],

Conclusion = g ∈ L[x1, . . ., xn].
Output: Trivial, if the premises are contradictory;

True, if the geometry statement is generically true.

Compute G, a characteristic set of (F );
if G = 〈1〉 then

return Trivial;
elsif PRemainder(g,G) = 0 then

return True;
else

return Unconfirmed;

end{Wu’s Algorithm}.

In order to understand Wu’s algorithm we need to make the following
observations:

• If G = 〈1〉, then, since every gi ∈ G also belongs to the ideal (F ),
we see that (F ) = (1) and that Z(F ) = ∅. In this case, the system
of premises are inconsistent and the geometry statement is trivially
true.

Also observe that if the ideal (F ) = (1), then, by definition, its
characteristic set must be 〈1〉. Thus, the algorithm always correctly
detects a trivial geometry statement.

• Suppose G = 〈g1, . . ., gr〉 6= 〈1〉. If r = PRemainder(g,G) = 0, then

In(gr)
αr In(gr−1)

αr−1 · · · In(g1)
α1g =

r∑

i=1

qigi ∈ (f1, . . . , fs). (5.6)

Thus at every point P ∈ Ln, at which fi’s (hence, gi’s) vanish, but not
In(gi)’s, we note that the conclusion polynomial g must also vanish.
The clause

In(g1) = 0 ∨ · · · ∨ In(gr) = 0

has been interpreted by Wu as the associated degeneracy condition
for the original geometry statement. Thus, when Wu’s algorithm
returns the value “true,” the following holds:

(
∀ P ∈ Ln

) [(
f1(P ) = 0 ∧ · · · ∧ fs(P ) = 0

)
∧

¬
(
In(g1)(P ) = 0 ∨ · · · ∨ In(gr)(P ) = 0

)

⇒ g(P ) = 0

]
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Geometrically, we have

Z(g) ⊇ Z(f1, . . . , fs) \
r⋃

i=1

Z(In(gi)).

One problem with Wu’s algorithm, as presented here, is that it is not
complete, and in fact, it is only the first half of the algorithm developed
by Wu. Nevertheless, just this portion of the algorithm has found many
applications, as one can argue heuristically that the algorithm succeeds in
vast majority of the cases [47].

Wu’s algorithm guarantees that whenever the algorithm claims that a
statement is generically true, it is indeed so; however, the converse does
not hold. In fact, we may have a conclusion g that vanishes on some open
set of the zero set of the premises, but Wu’s algorithm may fail to detect
this without further decomposition of the characteristic set.

Even the complete Wu’s algorithm has several hard-to-eliminate draw-
backs. First, it is unable to work with arbitrary fields (not algebraically
closed, e.g., R). If propositions about real geometry are investigated in
this way, a false proposition will be rejected (because it is false also in the
complex field), but sometimes a true theorem (over real closed field) may
unfortunately be rejected. For example, consider the hypothesis x2+y2 = 0
and the conclusion y = 0. This is of course true in R2 but false in C2.

Lastly, the method is unable to handle inequalities. So geometric propo-
sitions involving “internal ,” “external ,” or “between” are not in the range
of such a prover. In this sense, the so called “Wu geometry” is smaller
in scope than the more general “Tarski geometry” which includes all the
propositions that can be proved by real quantifier elimination algorithms
[91]. We shall come back to these questions later in the book.

Problems

Problem 5.1
Show that a characteristic set of an ideal is not necessarily its basis.
Hint: Consider the ideal generated by the set of polynomials F =

{x2 +y2−1, xy} ⊂ Q[x, y]. Show that G = {x3−x, xy} is a characteristic
set of (F ) under the ordering x ≺ y. However, (G)  (F ).

Problem 5.2
True or False:

1. I = (1) if and only if its characteristic set is 〈1〉.

2. I = (1) if and only if its extended characteristic set is 〈1〉.
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Problem 5.3
Show that a characteristic set is an extended characteristic set but not

the converse.

Problem 5.4
Using the characteristic set algorithm, devise solutions for the following

two problems:
(i)

Solvability(F )
Input: F = {f1, . . ., fr} ⊆ L[x1, . . ., xn],

L = An algebraically closed field.
Output: True, if F has a solution in Ln.

(ii)

FiniteSolvability(F )
Input: F = {f1, . . ., fr} ⊂ L[x1, . . ., xn],

L = An algebraically closed field.
Output: True, if F has finitely many solutions in Ln.

Problem 5.5
Let H = {h1, h2, . . ., hn} ⊆ K[x1, x2, . . ., xn] (K = a field) be a set of

univariate monic polynomials, one in each variable:

hj(xj) ∈ K[xj ] \K and In(hj) = 1.

Then show that H = 〈h1, h2, . . ., hn〉 is a characteristic set of (H) with
respect to the following ordering of the variables:

x1 ≺ x2 ≺ · · · ≺ xn.

Problem 5.6
Let F :K[x1, . . ., xn]→ K[x1, . . ., xn] be a K-endomorphism, where F

may be written as F = (f1, . . ., fn) (where fi ∈ K[x1, . . ., xn]). F is said
to be invertible if each variable xi can be expressed as a polynomial of f1,
. . ., fn.

Show that that F is invertible with inverse G = (g1, . . ., gn) if and only
if

G = {x1 − g1(y1, . . . , yn), . . . , xn − gn(y1, . . . , yn)}
is a characteristic set of the ideal

I = (y1 − f1(x1, . . . , xn), . . . , yn − fn(x1, . . . , xn))

of K[y1, . . ., yn, x1, . . ., xn].
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Problem 5.7
Let L be an algebraically closed field, and let I be an ideal in L[x1, . . .,

xn], generated by the following n polynomials, F = {f1, . . ., fn}, each of
degree d:

f1 = x1 − xd
n,

f2 = x2 − xd
1,

...

fn−1 = xn−1 − xd
n−2,

fn = xn − xd
n−1.

Then show that independent of the ordering on the variables, we have the
following:

1. Every characteristic set of F is of degree D ≥ dn.

2. Every extended characteristic set of F is of degree D ≥ dn.

Problem 5.8
Show that the number of pseudodivision steps, T (n, d) that the Wu-Ritt

process may use in the worst case is nonelementary in the parameters n
(the number of variables) and d (the maximum degree of the polynomials),
independent of the ordering on the variables:

x1 ≺ x2 ≺ · · · ≺ xn.

In particular, show that

T (0, d) = 1,

T (n, d) ≤ T
(
n− 1, c′(1 +

√
2)d
)

+ d, n ≥ 1,

leading to

T (n, d) ≤ c · d(1 +
√

2)d(1+
√

2)·
··

d(1+
√

2)d

︸ ︷︷ ︸
n

.

Problem 5.9
Consider an ascending set F = 〈f1, . . ., fr〉 ⊆ K[x1, . . ., xn] and a

polynomial g ∈ K[x1, . . . xn], where K is an arbitrary field, Tdeg(fi) ≤ d,
for all 1 ≤ i ≤ s, and Tdeg(g) ≤ δ.

If g0 = PRemainder(g,F) is the generalized pseudoremainder of g with
respect to F then show that

Tdeg(g0) ≤ (d+ 1)r(δ + 1).

Also, devise an algorithm that can compute the generalized pseudoremain-
der g0 using O(δO(n)(d+ 1)O(nr)) arithmetic operations.
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Problem 5.10
Consider the following algorithm for geometric theorem proving using

the Gröbner basis algorithm:

Kapur’s Algorithm(F )
Input: Premises = F = {f1, . . ., fs} ⊆ L[x1, . . ., xn],

Conclusion = g ∈ L[x1, . . ., xn].
Output: Trivial, if the premises are contradictory;

True, if the geometry statement is generically true;
Return the nondegeneracy condition g′ = 0.

Compute G1, a minimal Gröbner basis of (F );
Compute G2, a minimal Gröbner basis of (F ∪ {gz − 1});
Comment: The last computation is done in the ring L[x1, . . ., xn, z];
if G1 = {1} then

return Trivial;
elsif G2 = {1} then

return True, nondegeneracy condition g′ = 1;
Comment: No nondegeneracy condition is necessary;

else for every gi ∈ G2 ∩ L[x1, . . ., xn] loop

if gi 6∈ (F ) and 1 6∈ (F ∪ {giz − 1}) then

return True, nondegeneracy condition g′ = gi;
end{if };

return Unconfirmed;

end{Kapur’s Algorithm}.

Prove that the above algorithm is correct.
Note that for a given set of premises F = {f1, . . ., fs} and a conclusion

g we shall say g′ represents a nondegeneracy condition if and only if

(
∀ P ∈ Ln

) [(
f1(P ) = 0∧ · · · ∧ fs(P ) = 0

)
∧
(
g′(P ) 6= 0

)
⇒ g(P ) = 0

]
,

but not the following:

(
∀ P ∈ Ln

) [(
f1(P ) = 0 ∧ · · · ∧ fs(P ) = 0

)
⇒ g′(P ) = 0

]
.

Solutions to Selected Problems

Problem 5.2
(1) True. Since a characteristic set G of an ideal I is a subset of I, we

have
(1) ⊆ (G) ⊆ I ⊆ (1).
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The converse is a trivial consequence of the minimality of the characteristic
set among the ascending chains.

(2) As earlier, an extended characteristic set G′ is a subset of the ideal
I, and 1 ∈ G′ implies that I = (1).

However the converse is not necessarily true. Consider the ideal gen-
erated by the polynomials: F = {x2 + 2x + 1, xy2 + y2 + x} ⊂ Q[x, y].
It is easily seen (applying the Wu-Ritt process, for instance) that F is an
extended characteristic set of (F ). However, (F ) = (1), while its extended
characteristic set does not contain 1. Note that

1 = (y4 + 2y2 + 1)(x2 + 2x+ 1)

− (xy2 + y2 + x+ 2)(xy2 + y2 + x)

∈ (F ).

Problem 5.5
First, note that H is an extended characteristic set of H (with respect

to the ordering x1 ≺ x2 ≺ · · · ≺ xn); this is easily seen by an application
of the Wu-Ritt process to the set H . Thus

H ⊆M(H).

We claim that the set M(H) is an ideal. Thus

(H) ⊆
(
M(H)

)
=M(H),

and H is a characteristic set of (H), since
(
∀ f ∈ (H)

) [
PRemainder(f,H) = 0

]
.

In order to prove the claim, we make the following simple observations:

1. Since In(hj) = 1, for all 1 ≤ j ≤ n,
[
PRemainder(g′,H) = g′0 ∧ PRemainder(g′′,H) = g′′0

]

⇒ (A) PRemainder(g′ + g′′,H) = g′0 + g′′0

(B) PRemainder(cg′,H) = cg′0,
(
∀ c ∈ K

)
.

2. Since hj ∈ K[xj ] \K, for all 1 ≤ j ≤ n,
[
PRemainder(g′,H) = 0

]
⇒ PRemainder(xig

′,H) = 0,
(
∀ xi

)
.

Assume that hi = xd
i + cd−1x

d−1
i + · · · + c0, and let the following

sequence
g′0(= 0), g′1, . . . , g

′
i−1, . . . , g

′
n(= g′)
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denote the sequence of pseudoremainders, obtained by dividing g′ by
H. If degxi

g′i−1 < (d− 1), then, clearly,

PRemainder(xig
′,H) = PRemainder

(
xig

′, 〈hi−1, . . . , h1〉
)

= 0.

Otherwise, degxi
g′i−1 = (d− 1), and

xig
′
i−1 = αd(x1, . . . , xi−1, xi+1, . . . , xn)xd

i

+ αd−1(x1, . . . , xi−1, xi+1, . . . , xn)xd−1
i + · · ·

+ α1(x1, . . . , xi−1, xi+1, . . . , xn)xi,

where PRemainder(αk, 〈hi−1, . . . , h1〉) = 0. But

PRemainder(xig
′
i−1, hi)

= (αd−1 − cd−1αd)x
d−1
i + · · ·+ (α1 − c1αd)xi − c0αd,

and, by (1), PRemainder((αk − ckαd), 〈hi−1, . . . , h1〉) = 0.
Hence

PRemainder(xig
′,H)

= PRemainder
(
PRemainder(xig

′
i−1, hi), 〈hi−1, . . . , h1〉

)
= 0.

Thus if g′, g′′ ∈ M(H) and f ∈ K[x1, . . ., xn], then, by observation
(1A), g′+g′′ ∈M(H) and, by observations (1) and (2), fg′ ∈ M(H).

A somewhat indirect proof of the statement may be obtained by first
observing that H is a Gröbner basis of the ideal (H) (with respect to any
admissible ordering), which immediately implies that

(
∀ g ∈ (H)

) (
∀ 1 ≤ j ≤ n

) [
degxj

(g) ≥ Cdeg(hj)
]
.

Since, Class(hj) = j, and since it has the minimal possible class degree,
indeed, H is a characteristic set of (H).

Problem 5.7

Let π ∈ Sn be a permutation of [1..n], and the arbitrary but fixed
ordering on the variables be the following

xi = xπ(1) ≺ xπ(2) ≺ · · · ≺ xπ(n).

Note that I∩
(
L[xi]\L

)
contains a nonzero polynomial xi−xdn

i of minimal
possible degree, dn.
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1. Let G = 〈g1, . . . , gr〉 be a characteristic set of F with respect to the
chosen ordering. Since dim I = 0,

|G| = n and g1 ∈ I ∩
(
L[xi] \ L

)
.

Thus, D ≥ Cdeg(g1) = min
{
deg(f): f ∈ I ∩ (L[xi] \ L)

}
= dn.

2. Let G′ = 〈g′1, . . . , g′r〉 be an extended characteristic set of F with
respect to the chosen ordering. By an examination of the Wu-Ritt
process, we see that In(g′j) = 1, for all 1 ≤ j ≤ r, and

⋃
Z
(
In(g′j)

)
= ∅ and Z(G′) = Z(I) = a finite set.

Hence
|G′| = n and g1 ∈ I ∩

(
L[xi] \ L

)
.

Thus, D ≥ Cdeg(g1) = min
{
deg(f): f ∈ I ∩ (L[xi] \ L)

}
≥ dn.

Problem 5.10
Note that the conditions for g′ to represent nondegeneracy are equiva-

lent to the following:

g′ 6∈
√

(F ) and gg′ ∈
√

(F ).

Or in geometric terms:

Z(g) ⊇ Z(F ) \ Z(g′) 6= ∅.

We shall need the following two facts:
• Fact 1 :

g ∈
√

(F ) ⇔ 1 ∈ (F ∪ {gz − 1}).
See the proof of Theorem 4.3.8.

• Fact 2 :

g′ ∈ (F ∪ {gz − 1}) ∩ L[x1, . . . , xn] ∧ g′ 6∈ (F )

⇒ gg′ ∈
√

(F ).

By assumption, we can express g′ as follows:

g′ = h1 f1 + · · ·+ hs fs + h(gz − 1),

where h 6= 0. Now after substituting 1/g for z and noting that the last
term disappears, we see that for some natural number q, we have

g′ gq = h′1 f1 + · · ·+ h′s fs ∈ (F ).
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Thus (gg′)q ∈ (F ) and gg′ ∈
√

(F ).
Thus it is easy to see that if the algorithm outputs “true” with a non-

degeneracy condition g′, then g = 0 in fact follows from f1 = 0, . . ., fs = 0,
under the assumption that g′ 6= 0.

Now assume that p is a nondegeneracy condition for the theorem. We
wish to show that the algorithm will produce a nondegeneracy condition
in this case. By assumption p 6∈

√
(F ) but pg ∈

√
(F ). Thus,

pmgm ∈ (F ) ⇒ zm(pmgm)− pm(gmzm − 1) = pm ∈ (F ∪ {gz − 1}),
but by assumption, pm 6∈ (F ).

But since pm G−→
∗

0, [G = Gröbner(F ∪ {gz − 1})] there is a gi ∈ (F ∪
{gz−1})∩L[x1, . . . , xn] but gi 6∈ (F ); and the algorithm will produce such
a gi, since not all such gi’s can be

√
(F ).
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Let F : K[x1, . . ., xn] → K[x1, . . ., xn] be a K-endomorphism, where
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is a nonzero element in the field K.
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The following computational complexity result [77] for characteristic sets is
now known:

Complexity of Characteristic Sets.

Let I = (f1, . . ., fs) be an ideal in K[x1, . . ., xn], where K is an
arbitrary field, and Tdeg(fi) ≤ d, 1 ≤ i ≤ s. Then with respect to
any ordering on the indeterminates,

x1 ≺ x2 ≺ · · · ≺ xn,

where the first dim(I)-many variables are independent, one can com-

pute a characteristic set of I , in O
“
sO(n)(d + 1)O(n3)

”
sequential

time or O
`
n7 log2(s + d + 1)

´
parallel time. The polynomials in the

computed characteristic set are of degree O
“
s(d + 1)O(n2)

”
.
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Although the concept characteristic set has proven to be quite useful in the
realm of geometry, several extensions are necessary to improve its power: one
such idea is that of an irreducible characteristic set.

Irreducible Characteristic Set.

Let I = (f1, . . ., fs) be an l-dimensional ideal in K[x1, . . ., xn]. Fur-
ther, assume that the first l variables, x1, . . ., xl, are the independent
variables, the last r = (n− l) variables, xl+1, . . ., xn, the dependent
variables, and the ordering on the variables is the following:

x1 ≺ · · · ≺ xl ≺ xl+1 ≺ · · · ≺ xn.

A characteristic set of I , G = 〈g1, . . ., gr〉, is said to be an irreducible

characteristic set of I , if

g1 = irreducible over K1 = K(x1, . . . , xl)

g2 = irreducible over K2 = QF

„
K1[xl+1]/(g1)

«

...

gj = irreducible over Kj = QF

„
Kj−1[xl+j−1]/(gj−1)

«

...

gr = irreducible over Kr = QF

„
Kr−1[xr−1]/(gr−1)

«

where QF denotes the field of fractions over an integral domain.

This definition above is constructive, in the sense that the irreducibility of
an ascending set can be tested algorithmically, since there are factorization algo-
rithms over a field and over the successive algebraic extensions of a given field.

The significance of the notion of an irreducible characteristic set becomes
clear from the following proposition whose proof, using the concept of a generic

point of an irreducible variety, can be found in [174] or [211]:

Let I be an ideal, and G a characteristic set of I . Then

G is irreducible ⇔ I is prime.

The idea of irreducible characteristic set extends the domain of applicability
to a larger class of algebraic problems.

1. Test for Deciding Primality of an Ideal: This can be achieved by us-
ing the characteristic set algorithm together with the test for irreducibility
of a univariate polynomial over an arbitrary field.

2. Test for Deciding Membership in a Prime Ideal: Recall that if I =
prime and its characteristic set is G, then

g ∈ I ⇔ PRemainder(g,G) = 0.
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3. For a given ideal I , by using the factorization algorithm, one can construct
a sequence of irreducible characteristic sets G1, . . ., Gk such that

Z(I) = Z(G1) ∪ · · · ∪ Z(Gk).

Thus,

g ∈
√

I ⇔
„
∀ i

« »
PRemainder(g,Gi) = 0

–
.

4. Lastly, using above geometric decomposition, one can construct a complete

scheme for geometric theorem proving, where one decides if a formula of
the kind

„
∀ P ∈ Ln

« 2
4

„
f1(P ) = 0 ∧ · · · ∧ fs(P ) = 0

«
∧

¬
„

In(g1)(P ) = 0 ∨ · · · ∨ In(gr)(P ) = 0

«

⇒ g(P ) = 0

3
5,

is “generically true.”



Chapter 6

An Algebraic Interlude

6.1 Introduction

Before we move on to the topics of resultants and an algorithmic treatment
of real algebra, we shall take a short pause to study in this chapter the
unique factorization domain, the principal ideal domain, and the Euclidean
domain. Of course, readers familiar with these topics may safely skip this
chapter and go directly to the next chapter.

In what follows we shall let S denote a commutative ring

with identity.

6.2 Unique Factorization Domain

Divisibility

Definition 6.2.1 (Divisor) In a commutative ring S (with identity), we
have the following:

• A ring element s is said to be a divisor (or factor) of u (denoted s | u)
if (

∃ t ∈ S
) [

u = s · t
]
,

that is, u ∈ (s). If s | u, we also say u is a multiple of s (or u divisible
by s).

• Let s1, . . ., sr ∈ S be a set of ring elements. We say s is a common
divisor of s1, . . ., sr if

s | s1, . . . , s | sr.

199
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Thus

s1 ∈ (s) ∧ · · · ∧ sr ∈ (s) and (s1, . . . , sr) ⊆ (s).

We say s is a maximal common divisor of s1, . . ., sr if s is maximal
among all common divisors of s1, . . ., sr, under the partial ordering
≻, defined as s ≻ t if t | s. Thus a maximal common divisor of s1,
. . ., sr is the generator of a minimal principal ideal containing the
ideal (s1, . . ., sr).

We say s is a common multiple of s1, . . ., sr if

s1 | s, . . . , sr | s.

Thus

s ∈ (s1) ∧ · · · ∧ s ∈ (sr) and (s) ⊆ (s1) ∩ · · · ∩ (sr).

We say s is a minimal common multiple of s1, . . ., sr if s is minimal
among all common multiples of s1, . . ., sr, under the partial ordering
≻, defined as s ≻ t if t | s. Thus a minimal common multiple of s1,
. . ., sr is the generator of a maximal principal ideal contained in the
ideal (s1, . . ., sr).

If
u = s · t, u, s, t ∈ S,

then we say u admits a factorization into factors s and t.
If ε is a unit (invertible element) of S, then every ring element u admits

a factorization
u = u ε−1 · ε.

Such factorizations where one factor is a unit is called a trivial factorization;
uε−1 is a trivial factor of u.

Definition 6.2.2 (Indecomposable Element) A nonunit ring element
u is said to be an indecomposable element of S if u admits only trivial
factorization of the kind u = s · t where s or t is a unit.

Definition 6.2.3 (Prime Element) A nonunit ring element u is said to
be a prime element of S if for all s, t ∈ S

u | s · t ⇒ u | s ∨ u | t.

Definition 6.2.4 (Associates) Two ring elements s, t ∈ S are said to be
associates in S (denoted, s ≈ t) if s = t · ε and ε is a unit of S, i.e., if and
only if t is a trivial factor of s.

Thus, if s ≈ t, then s | t and t | s, and they generate the same principal
ideal, i.e., (s) = (t). However, the converse is not necessarily true.

Clearly, ≈ is an equivalence relation.
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A ring element s is said to be a proper divisor (or proper factor) of u
(denoted, s ‖ u) if s is a factor of u but not a trivial factor of u, i.e.,

s | u ∧ s 6≈ u.

Note that (u)  (s) implies that s ‖ u, but not necessarily the converse.
Let S be an integral domain with identity, i.e., it has no nonzero zero

divisor. Then the following propositions hold:

Proposition 6.2.1 Every pair of domain elements s and t generating the
same principal ideal are associates. That is, (s) = (t) implies that s ≈ t.
proof.
If (s) = (t) = (0), then s = 0 and t = 0, and there is nothing more to
prove. Hence assume that s 6= 0 and t 6= 0. Since (s) = (t), we have

s = t · ε and t = s · ε′.

Thus s = s · ε′ · ε. Since S is an integral domain and s 6= 0, ε · ε′ = 1, and
ε is a unit in S. That is, s ≈ t.

Proposition 6.2.2 Let s and u be two domain elements, such that s | u
and u | s. Then (s) = (u), and s and u are associates.

Proposition 6.2.3 A domain element s is a proper divisor of u if s | u
but u ∤ s. Thus s ‖ u if and only if (u)  (s).

Proposition 6.2.4 Assume that S is Noetherian. Then, every nonunit of
S is a finite product of indecomposable elements.
proof.
Let u be a nonunit of S. If u is indecomposable, there is nothing more to
prove. Otherwise, u admits a nontrivial factorization u = s · t, where both
s and t are nonunits. Continuing this way we see that u admits a factoriza-
tion into indecomposable elements. The finiteness of this factorization is a
consequence of the Noetherianness of S as follows: Since s ‖ u and t ‖ u,

(u)  (s) and (u)  (t).

If u admits a factorization into infinitely many indecomposable elements,
then so does one of s and t, and we can construct a nonstationary ascending
chain of ideals by repeating the above process, which would contradict the
Noetherianity of S.

Proposition 6.2.5 Every nonzero prime domain element u is indecom-
posable.
proof.
Assume that u admits a factorization u = s · t. Thus s | u and t | u.
Furthermore, since u is prime, and u | s · t, either u | s or u | t (or both).
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Without loss of generality assume that u | s. Hence u ≈ s, and s = u · ε.
Thus

u = s · t = u · εt
⇒ εt = 1 (since u 6= 0 and S is an integral domain.)

⇒ t is a unit of S

⇒ u admits only trivial factorizations

⇒ u is indecomposable.

Unique Factorization Domain

We consider an integral domain S. In the following discussions, the zero
element of S will be excluded from the consideration.

Definition 6.2.5 (Unique Factorization Domain: UFD) Let S be an
integral domain with identity. We say S is a unique factorization domain
(or briefly, a UFD) if it satisfies the following two conditions:

1. Every nonunit of S is a finite product of indecomposable elements.

2. The factorization, obtained as above, is unique, ignoring order and
unit factors.

More explicitly, the second condition in the above definition means the
following: If a = p1 · · · pm = q1 · · · qm, where pi and qj are indecomposable,
then m = n, and on renumbering the indices of qj ’s, we have pi ≈ qi, i = 1,
. . ., m.

Theorem 6.2.6 An integral domain S with identity is a unique factoriza-
tion domain if and only if we have the following:

1. Every nonunit of S is a finite product of indecomposable elements.

2. Every indecomposable element of S is a (nonzero) prime element of
S.

proof.
Since the first condition is the same as the first condition of the definition,
we focus only on the second condition of the statement.

(⇒) Let u be an indecomposable element of S. Assume that u | s · t, i.e.,
u · v = s · t. Let

s =
∏

i

p′i, t =
∏

j

p′′j , and v =
∏

k

qk
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be factorizations of s, t, and v, respectively, into indecomposable elements.
Thus

u ·
(∏

k

qk

)
=

(∏

i

p′i

)
·


∏

j

p′′j


 ,

and by the uniqueness of the factorization, we see that u is an associate of
either a p′i or a p′′j . Thus u | s or u | t.
(⇐) Let u be a nonunit element of S which admits a factorization into
s indecomposable elements. We shall prove our assertion by induction on
the number s.

• Base Case: s = 1.
In this case u is indecomposable, and has exactly one obvious factorization.
• Induction Case: s > 1.
Assume that u has two factorizations into indecomposable elements one of
which involves exactly s factors:

u =

s∏

i=1

pi =

t∏

j=1

p′j .

Since p1 is a nonzero prime element dividing the product p′1 · · · p′t, p1 must
divide one of the elements p′1, . . ., p

′
t. Let, say, p1 divide p′1. Thus p′1 = p1 ·t,

and since p′1 is indecomposable, t = ε must be a unit of S, and p1 ≈ p′1.
Thus

p1 ·
s∏

i=2

pi = p1 · ε
t∏

j=2

p′j ,

and since p1 6= 0 and S is an integral domain, we have

s∏

i=2

pi = ε

t∏

j=2

p′j ,

the left-hand side involving exactly (s − 1) indecomposable factors. Thus
by our induction hypothesis, the above two factorizations differ only in the
order of the factors and by unit factors. Thus the assertion of the theorem
follows.

Greatest Common Divisor and

Least Common Multiplier

Let S be a unique factorization domain, and s1, . . ., sr ∈ S be a set of
elements in S. Let u be a maximal common divisor and v be a common
divisor of s1, . . ., sr. If v is a unit of S, then v | u. Hence assume that v
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is a nonunit. Then u must be a nonunit. Let u and v admit factorization
into decomposable elements, as follows:

u =
∏

i

pi, v =
∏

j

p′j.

Then each p′j is an associate of some indecomposable factor of each of s1,
. . ., sr, and thus an associate of some pi. Arguing this way we see that
v | u. Thus if u and v are two maximal common divisors of s1, . . ., sr,
then u | v and v | u, and u ≈ v. Hence s1, . . ., sr have a maximal common
divisor u, unique up to a unit factor; such a maximal common divisor u is
said to be a GCD of s1, . . ., sr:

u = GCD(s1, . . . , sr).

Similarly, we can show that s1, . . ., sr have a minimal common multiplier
w, unique up to a unit factor; such a minimal common multiplier w is said
to be a LCM of s1, . . ., sr:

w = LCM(s1, . . . , sr).

It is also easy to show that

1. u = GCD(s1, . . ., sr) ≈ GCD(GCD(s1, . . ., sr−1), sr)).

2. w = LCM(s1, . . ., sr) ≈ LCM(LCM(s1, . . ., sr−1), sr)).

3. GCD(s1, . . ., sr) · LCM(s1, . . ., sr) ≈ s1 · · · sr.

We can also define GCD and LCM somewhat differently as follows:

Definition 6.2.6 (Greatest Common Divisor) In a unique factoriza-
tion domain, any set of elements s1, . . ., sr has a greatest common divisor
(GCD), that is, an element u which is defined as follows:

1. u is a common divisor of s1, . . ., sr.

2. If v is a common divisor of s1, . . ., sr, then v divides u.

Definition 6.2.7 (Least Common Multiplier) In a unique factoriza-
tion domain, any set of elements s1, . . ., sr has a least common multiplier
(LCM), that is, an element w which is defined as follows:

1. w is a common multiplier of s1, . . ., sr.

2. If v is a common multiplier of s1, . . ., sr, then v is divisible by w.
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Definition 6.2.8 (Coprimality) Let S be a unique factorization domain
with identity. If GCD(s, t) is a unit of S, then s and t are said to be
relatively prime (or coprime).

The following are important but straightforward properties of relatively
prime elements:

• If s and t are coprime and t | s · u, then t | u.

• If s and t are coprime and if s | u and t | u, then s · t | u.

Primitive Polynomials

Let S be a unique factorization domain, and S[x] be the ring of uni-
variate polynomials over S. Let f(x) ∈ S[x] be a univariate polynomial of
degree r ≥ 0 with coefficients in S:

f(x) = sr x
r + sr−1 x

r−1 + · · ·+ s0, s0, . . . sr ∈ S.

The coefficient of the highest-degree monomial of f(x), sr, is said to be the
head coefficient of f(x), Hcoef(f).

Lemma 6.2.7 Every nonunit of S[x] is a finite product of indecomposable
elements.
proof.
Since S is an integral domain, so is S[x]:

If f(x) 6= 0 and g(x) 6= 0 but f(x)·g(x) = 0, then Hcoef(f) 6= 0,
Hcoef(g) 6= 0 and Hcoef(f) · Hcoef(g) = 0.

Furthermore, by Hilbert’s basis theorem, since S is Noetherian, so is
S[x]. Thus S[x] is a Noetherian integral domain and the lemma follows
immediately.

Definition 6.2.9 Let f(x) ∈ S[x] be a univariate polynomial of degree
r ≥ 0 with coefficients in S:

f(x) = sr x
r + sr−1 x

r−1 + · · ·+ s0, s0, . . . sr ∈ S.

If GCD(s0, . . ., sr) is a unit of S, then we say f(x) is a primitive
polynomial , and if sr = Hcoef(f) is a unit of S, then we say f(x) is monic.

We also call GCD(s0, . . ., sr), the content of the polynomial f(x)
Content(f). Thus Content(f) is unique up to a unit factor.

Any polynomial f(x) ∈ S[x] can thus be written as

f(x) = s · g(x),
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where s = Content(f), and g(x) is a primitive polynomial. Here g(x) is
called the primitive part of f(x):

f(x) = Content(f) · Primitive(f).

Since the content of f is unique up to a unit factor, and since S is an
integral domain, it follows that Primitive(f) is also unique up to a multiple
factor.

Lemma 6.2.8 In a unique factorization domain S, the product of two
primitive polynomials is a primitive polynomial. Thus if f(x), g(x) ∈ S[x],
then

Content(f · g) ≈ Content(f) ·Content(g),

Primitive(f · g) ≈ Primitive(f) · Primitive(g).

proof.
Assume that p(x) and q(x) are two primitive polynomials whose product
p(x) · q(x) is not primitive:

p(x) = an x
n + · · ·+ ar x

r + · · ·+ a1 x+ a0,

q(x) = bm xm + · · ·+ bs x
s + · · ·+ b1 x+ b0.

Since p(x) · q(x) is not primitive, there is a (nonzero) prime element p′ ∈ S
that divides the coefficients of p(x) ·q(x). Furthermore, since p(x) and q(x)
are primitive, we can choose ar and bs such that

ar = the least indexed coefficient of p(x) not divisible by p′,

bs = the least indexed coefficient of q(x) not divisible by p′.

But the (r + s)th coefficient of p(x) · q(x) is given by

cr+s = ar · bs + ar+1 · bs−1 + · · ·+ ar−1 · bs+1 + ar−2 · bs+2 + · · · .

Since p′ | ai (0 ≤ i < r), p′ | bj (0 ≤ j < s) and p′ | cr+s, we conclude that
p′ | ar · bs. Since p′ is a prime element, p′ | ar or p′ | bs. In either case, we
derive a contradiction to our choice of ar and bs.

Let f(x) and g(x) ∈ S[x]. Let Primitive(f)Primitive(g) be a primitive
polynomial h(x). Then

Content(f · g) Primitive(f · g) = Content(f) · Content(g) h(x).

Thus

Content(f · g) ≈ Content(f) · Content(g),

Primitive(f · g) ≈ h(x) = Primitive(f) · Primitive(g),

as was to be shown.
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6.3 Principal Ideal Domain

Definition 6.3.1 (Principal Ideal Domain: PID) Let S be an inte-
gral domain with identity. We say S is a principal ideal domain (or, briefly,
a PID) if every ideal of S is a principal ideal, i.e., generated by a single
ring element.

Let S be a principal ideal domain with identity. Then the following
statements hold.

Proposition 6.3.1 Every principal ideal domain is Noetherian.
proof.
Since every ideal in a principal ideal domain is finitely generated (actually,
generated by one ring element), a principal ideal domain is Noetherian.

Proposition 6.3.2 Every nonunit of S is a finite product of indecompos-
able elements.
proof.
Follows from Theorem 6.2.4, since every principal ideal domain is a Noethe-
rian integral domain.

Proposition 6.3.3 Let u be an indecomposable element of S. Then (u) is
a maximal ideal of S, in the sense that every ideal of S properly containing
(u) is the entire ring.
proof.
Let (v) be an ideal of S such that (u)  (v). Thus v | u and u 6≈ v. Hence
u = r · v, where r is not a unit. Since u admits only trivial factorizations
v must be unit of S, and (v) = S.

Proposition 6.3.4 Let u be a nonzero prime element of S. Then (u) is a
maximal ideal of S.
proof.
Simply note that u is an indecomposable element of S.

Proposition 6.3.5 Let u be an indecomposable element of S. Then u is
a nonzero prime element of S.
proof.
Assume that u | s · t. If u | s, then there is nothing more to prove. Hence,
assume that u ∤ s. Hence (u)  (u, s) = (1). Thus there exist elements a
and b such that

1 = a · u+ b · s and t = at · u+ b · st.

Thus u | t, and u is a prime element of S.

Corollary 6.3.6 Every principal ideal domain is a unique factorization
domain.
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Note that

If S is a principal ideal domain, and if {u} is a basis for the
principal ideal (u) = (s1, . . ., sr), then

u = GCD(s1, . . . , sr),

and if {w} is a basis for the principal ideal (w) = (s1) ∩ · · · ∩
(sr), then

w = LCM(s1, . . . , sr).

6.4 Euclidean Domain

Definition 6.4.1 (Euclidean Domain) Let S be a commutative ring
(with identity). Let g be a map from S \ {0} into N, which associates
to every nonzero ring element s a nonnegative integer g(s) as follows:

1. (Ordering on S)

(
∀ s, t ∈ S, s 6= 0, t 6= 0

) [
s · t 6= 0 ∧ g(s · t) ≥ g(s)

]
.

That is, S does not contain a nonzero zero divisor, i.e., S is an integral
domain. The map g defines an ordering on the elements of S that
preserves multiplication. In particular,

(
∀ s ∈ S, s 6= 0

) [
g(s) = g(1 · s) ≥ g(1)

]
.

2. (Division Algorithm)

(
∀ s, t ∈ S, s 6= 0

) (
∃ q, r ∈ S

)

[
(t = q · s+ r) ∧

(
r = 0 ∨ g(r) < g(s)

)]
.

That is, for any two ring elements s, t ∈ S (s 6= 0), there is an
expression

t = q · s+ r (q = quotient, r = remainder)

in which either r = 0 or g(r) < g(s).

Such a ring S is said to be a Euclidean domain.
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Remark 6.4.2 For our purpose, we will make further assumption that the
map g and the division process are actually computable.

Given two elements, s, s′ ∈ S, we say s E s′ if g(s) ≤ g(s′). Let I be
an ideal in an Euclidean domain. Define m̂(I) as follows:

m̂(I) =





0, if I = (0);

min⊳(I \ {0}), otherwise.

That is, if I = (0), then m̂(I) = 0; otherwise, m̂(I) is a nonzero s ∈ I such
that for all s′ ∈ I either s′ = 0 or g(s′) ≥ g(s).

Clearly, such a map m̂ exists, since the range of g is a subset of the set
of nonnegative integers.

Also, if I 6= (0), then define ĝ(I) to be g(m̂(I)).

Proposition 6.4.1 If I ⊆ S is an ideal in a Euclidean domain S, then I
is a principal ideal generated by m̂(I).
proof.
There are two cases to consider:

• Case 1: I = (0).
Since I is a principal ideal generated by 0, there is nothing more to
prove.

• Case 2: I 6= (0).
Let s = m̂(I), and t ∈ I be an arbitrary element of the ideal I. Since
S has a division algorithm, and s 6= 0, we can express t as

t = q s+ r, q, r ∈ S,

such that r = 0 or g(r) < g(s).

But r = t− q s ∈ I, and thus by our choice of s, r = 0 or g(r) ≥ g(s).
Thus we conclude that r = 0, and

(
∀ t ∈ I

) [
t = q s ∈ (s)

]
.

Hence I ⊆ (s) ⊆ I, and I is a principal ideal generated by m̂(I).

Corollary 6.4.2 Every Euclidean domain is

• Noetherian;

• a principal ideal domain;

• a unique factorization domain.
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Proposition 6.4.3 Let I1 and I2 be two ideals in a Euclidean domain,
such that I1 6= (0), I2 6= (0), and I1  I2. Then ĝ(I1) > ĝ(I2).
proof.
Let s1 = m̂(I1) and s2 = m̂(I2). By the hypothesis of the proposition,
s1 6= 0, and s2 6= 0. Now, by definition,

(
∀ s ∈ (s2)

) [
s = 0 ∨ g(s) ≥ g(s2)

]
.

By condition 2 of Definition 6.4.1, there exist q1 and r1 such that

s2 = q1 s1 + r1,

where r1 = 0 or ĝ(I1) = g(s1) > g(r1).
Furthermore, since I1 ⊆ I2, we see that q1 s1 ∈ I2, and r1 = s2− q1 s1 ∈

I2. Thus r1 = 0 or g(r1) ≥ g(s2) = ĝ(I2).
Thus combining the above observations, we see that r1 = 0 or ĝ(I1) >

g(r1) ≥ ĝ(I2). However, r1 = 0 would imply that s2 = q1 s1 ∈ I1, and
I2 = (s2) ⊆ I1, contrary to our hypothesis.

Note the following:

If S is a Euclidean domain, and if u = m̂((s1, . . ., sr)), then

u = GCD(s1, . . . , sr),

and if w = m̂((s1) ∩ · · · ∩ (sr)), then

w = LCM(s1, . . . , sr).

Example 6.4.3 (Examples of Euclidean Domains)

1. S = K, a field. Let g be the map

g : K \ {0} → N

: s 7→ 0.

Both the conditions are trivially satisfied. Note that for any two s,
t ∈ S (s 6= 0)

t = (t · s−1) · s+ 0.

2. S = Z, the ring of integers. Let g be the map

g : Z \ {0} → N

: s 7→ |s|.
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3. S = K[x], the ring of univariate polynomials over the field K. Let g
be the map

g : K[x] \ {0} → N

: f 7→ deg(f).

Corollary 6.4.4 Every field is a Euclidean domain

6.5 Gauss Lemma

Since S is an integral domain, we can define its field of fractions (i.e.,

quotient field), S̃ as

S̃ =
{s
t

: s ∈ S and t ∈ S \ {0}
}

with the addition, multiplication, and multiplicative inverse defined, re-
spectively, as below:

s1
t1

+
s2
t2

=
s1 · t2 + s2 · t1

t1 · t2
,

s1
t1
· s2
t2

=
s1 · s2
t1 · t2

,

(
s1
t1

)−1

=
t1
s1
, if s1 6= 0.

Since S̃[x] is a Euclidean domain, S̃[x] is a unique factorization domain.
Let

f̃(x) =
f(x)

b
, b ∈ S \ {0}, and f(x) ∈ S[x].

Then we associate f(x) with f̃(x). Conversely, if f(x) ∈ S[x], then we

associate f̃(x) = f(x) ∈ S̃[x] with f(x).

Lemma 6.5.1 Every indecomposable element of S[x] is a nonzero prime
element.
proof.
Assume to the contrary, i.e., for some indecomposable element p(x) ∈ S[x]
there are two polynomials f(x) and g(x) ∈ S[x] such that

p(x) ∤ f(x), p(x) ∤ g(x), but p(x) | f(x) g(x).

There two cases to consider.
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• Case 1: deg(p) = 0, and p is an indecomposable element of S.

Note that p | h(x) if and only if p | Content(h). Thus p is a prime
element of S, and

p ∤ Content(f), p ∤ Content(g), but p | Content(f)Content(g),

which leads to a contradiction.

• Case 2: deg(p) > 0, and p(x) is a primitive indecomposable polyno-
mial of S[x].

Thus p̃(x) is an indecomposable (thus, a prime) element of S̃[x]:
Since if

p̃(x) = h̃(x) · h̃′(x) =
h(x)

b
· h

′(x)

b′

then bb′ p(x) = h(x) · h′(x) and

p(x) = Primitive(h) · Primitive(h′).

Also note that p(x) | h(x) if and only if p̃(x) | h̃(x). If h′(x) · p(x) =

h(x), then h̃′(x) · p̃(x) = h̃(x) and p̃(x) | h̃(x). Conversely, if p̃(x) |
h̃(x), then h̃′(x) · p̃(x) = h̃(x). Thus

h′(x)

b′
· p(x) =

h(x)

b
,

and bh′(x) · p(x) = b′h(x). Thus

Primitive(h′) · p(x) = Primitive(h) and p(x) | h(x).

Thus p(x) is a prime element of S̃[x], and

p̃(x) ∤ f̃(x), p̃(x) ∤ g̃(x), but p̃(x) | f̃(x) · g̃(x),

which leads to a contradiction.

Theorem 6.5.2 (Gauss Lemma) If S is a unique factorization domain,
then so is S[x].

6.6 Strongly Computable Euclidean

Domains

Recall that every Euclidean domain is Noetherian. We further assume the
following:
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1. The Euclidean domain S under consideration is computable, i.e., for
all s and u ∈ S there are effective algorithms to compute

−s, s+ u, and s · u.

2. For the given Euclidean domain S with the map

g:S \ {0} → N,

there are effective algorithms to compute g(s), for all nonzero s ∈ S
and to compute the quotient q = q(s, u) and the remainder r = r(s, u)
of s and u ∈ S, s 6= 0:

u = q · s+ r, such that r = 0 ∨ g(r) < g(s).

In order to show that a Euclidean domain S satisfying the above two
computability conditions is in fact strongly computable, we need to demon-
strate that S is detachable and syzygy-solvable.

Detachability: Using Euclid’s Algorithm

Let S be a Euclidean domain with the computability properties dis-
cussed earlier. We shall present an extended version of Euclid’s algorithm,
which, given a set of elements s1, . . ., sr ∈ S, computes s = GCD(s1, . . .,
sr), and a set of elements u1, . . ., ur such that

s = u1 · s1 + · · · + ur · sr.

Note that (s) = (s1, . . ., sr), and the detachability of S proceeds as follows:

Let t ∈ S, {s1, . . ., sr} ⊆ S and s = GCD(s1, . . ., sr). If s ∤ t,
then t 6∈ (s) = (s1, . . ., sr), otherwise t ∈ (s) = (s1, . . ., sr)
and if t = v · s, then

t = (v · u1)s1 + · · · + (v · ur)sr

where s and u1, . . ., ur are obtained from the extended Euclid’s
algorithm.

Next, we present a generalized extended Euclid’s algorithm based on
successive division:
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Extended-Euclid(s1, . . ., sr)

Input: s1, . . ., sr ∈ S.
Output: s = GCD(s1, . . ., sr) ∈ S and 〈u1, . . ., ur〉 ∈ Sr such that

s = u1 · s1 + · · · + ur · sr.

if s1 = · · · = sr then return 〈1, 0, . . . , 0; s1〉;

Assume that g(s1) 6= 0, . . ., g(sr) 6= 0, and
g(s1) ≤ · · · ≤ g(sr);

Insert the following elements into a queue Q
in the ascending order of their g values;

〈w1,1, . . . , w1,r; w1〉 := 〈1, 0, . . . , 0; s1〉;
...

〈wr,1, . . . , wr,r; wr〉 := 〈0, 0, . . . , 1; sr〉;

while Q is nonempty loop

if |Q| = 1 then

return the queue element 〈w1,1, . . . , w1,r; w1〉;
end{if };

Dequeue the following first two elements of the queue Q:
〈w1,1, . . . , w1,r; w1〉 and 〈w2,1, . . . , w2,r; w2〉;

Let w2 = q · w1 + r;
Comment: This is computed by an application of the

division algorithm;

Enqueue 〈w1,1, . . . , w1,r; w1〉 in the queue Q;
if r 6= 0 then

Enqueue 〈w2,1, . . . , w2,r; w2〉 − q · 〈w2,1, . . . , w2,r; w2〉;
end{if };

end{loop };
end{Extended-Euclid}

The correctness and termination of the algorithm follows from the fol-
lowing easily verifiable facts. Assume that at the beginning of each iteration
the queue Q contains the following t (0 ≤ t ≤ r) elements

w1 = 〈w1,1, . . . , w1,r;w1〉,
...

wt = 〈wt,1, . . . , wt,r;wt〉.

1. g(w1) ≤ · · · ≤ g(wt).

2. For all j (0 ≤ j ≤ t),

wj,1 · s1 + · · · + wj,r · sr = wj .
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3. (w1, . . ., wt) = (s1, . . ., sr).

4. If the queue Q = [w1, . . ., wt] before the main loop and Q′ = [w′
1,

. . ., w′
t′ ] at the end of the main loop, then

g(w1) ≥ g(w′
1) and t ≥ t′,

with one of the inequalities being strict.

As an immediate consequence of (4), we get the termination with a
single tuple

〈w1,1, . . . , w1,r;w1〉.
Since (w1) = (s1, . . ., sr) by (3), we have

w1 = GCD(s1, . . . , sr)

at the termination. The rest follows from the condition (2).
Since GCD(s1, . . ., sr) = GCD(GCD(s1, . . ., sr−1), sr), we could have

computed the GCD of a set of elements by repeated applications of Euclid’s
successive division algorithm for pairwise GCD. Note that the pairwise
GCD algorithm computes the GCD of a pair of elements s1 and s2 with
a time complexity of O(g · C), where g = min(g(s1), g(s2)) and C = cost
of a division step. The algorithm presented here derives its advantage
from computing the pairwise GCD’s in an increasing order of the g-values,
starting with si of the smallest g(si), and thus has a time complexity of

O
(
(g + r) · C

)
,

where g = min(g(s1), . . ., g(sr)).

Syzygy-Solvability

Let {s1, . . ., sr} ⊆ S. In this subsection, we show that the Euclidean
domain S is syzygy-solvable.

s = GCD(s1, . . . , sr) = u1 · s1 + · · ·+ ur · sr

and s′i = si/s for i = 1, . . ., r.
Then the syzygy basis for (s1, . . ., sr) is given by

t1 = 〈(u2s
′
2 + · · ·+ urs

′
r), −u2s

′
1, . . . , −urs

′
1〉

t2 = 〈−u1s
′
2, (u1s

′
1 + u3s

′
3 + · · ·+ urs

′
r), −u3s

′
2, . . . , −urs

′
2〉

...

tr = 〈−u1s
′
r, . . . , −ur−1s

′
r, (u1s

′
1 + · · ·+ ur−1s

′
r−1)〉
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To see that 〈t1, . . ., tr〉 is really a basis for syzygy, we may prove the two
required conditions, as in the case of Z.

There is another syzygy basis for (s1, . . ., sr) which has a simpler struc-
ture. Let {s1, . . ., sr} ⊆ S,

s = GCD(s1, . . . , sr) = u1 · s1 + · · ·+ ur · sr,

and si,j = GCD(si, sj) for all 1 ≤ i < j ≤ r. Then the syzygy basis for
(s1, . . ., sr) is given by the following basis:

τi,j =
〈
0, . . . , 0,

sj

si,j︸︷︷︸
position i

, 0, . . . , 0, − si

si,j︸ ︷︷ ︸
position j

, 0, . . . , 0
〉
,

for 1 ≤ i < j ≤ q. Again the arguments to prove that it is a basis for the
module of syzygies is identical to that given in the case of Z. The proofs
are left to the reader.

Problems

Problem 6.1
(i) Show that the extended Euclidean algorithm can compute the GCD

of two integers b1 and b2 in time Θ(log |b1|+ log |b2|+ 1) time.
(ii) What is the time complexity of the extended Euclidean algorithm

for computing the GCD of r integers b1, . . ., br.
(iii) Devise an efficient algorithm to determine if the following linear

diophantine equation with rational coefficients has an integral solution:

b1 x1 + · · ·+ br xr = c.

Problem 6.2
The complex numbers α = a+ i b (a and b are integers) form the ring of

Gaussian integers : if α = a+ i b and γ = c+ i d are two Gaussian integers,
then

α+ γ = (a+ c) + i(b+ d),

−α = −a− i b,
α · γ = (ac− bd) + i(ad+ bc).

Let g(α) be defined to be the norm of α, given by a2 + b2. Show that the
ring of Gaussian integers with the above g map forms a Euclidean domain.
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Problem 6.3
Prove the following:
Let S be a unique factorization domain. Then every prime element of

S generates a prime ideal and every nonprime element of S generates a
nonprime ideal.

Problem 6.4
Let S be a Euclidean domain with identity.
(i) Show that if s1 and s2 are two nonzero elements in S such that

s1 | s2, then s1 ‖ s2 if and only if g(s2) > g(s1).
(ii) Using the above proposition, prove the following:
Let s ∈ S be a nonunit element. Then s can be expressed as a finite

product of indecomposable elements of S.

Problem 6.5
Let S be a unique factorization domain, and A(x) and B(x) ∈ S[x] two

univariate polynomials of respective degrees m and n, m ≥ n.
(i) Show that

Content(GCD(A,B)) ≈ GCD(Content(A),Content(B)),

Primitive(GCD(A,B)) ≈ GCD(Primitive(A),Primitive(B)).

(ii) Let m ≥ n > k. Show that deg(GCD(A,B)) ≥ k + 1 if and only if
there exist polynomials T (x) and U(x) (not both zero) such that

A(x) T (x) +B(x) U(x) = 0, deg(T ) ≤ n− k − 1,

deg(U) ≤ m− k − 1.

(iii) Let m ≥ n > k. Suppose that deg(GCD(A,B)) ≥ k. Then for all
T (x) and U(x) [not both zero, and deg(T ) ≤ n−k−1, deg(U) ≤ m−k−1],
the polynomial C(x) = A(x) T (x) + B(x) U(x) is either zero or of degree
at least k.

Problem 6.6
Consider a Noetherian UFD that, in addition to the ring operations,

allows constructive algorithms for
(a) factorization and
(b) 1-detachability for relatively prime elements, i.e.,

if 1 = GCD(p1, p2)

then
(
compute a1, a2

) [
1 = a1p1 + a2p2

]

Show that such a UFD is a strongly computable ring.
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Problem 6.7
Let S be an integral domain and I1, . . ., Ir, pairwise coprime ideals of

S. Prove that there exists a natural isomorphism

S/
⋂

i

Ii ∼=
∏

i

(S/Ii) .

As an immediate consequence of the above statement, we get the fol-
lowing corollaries Chinese remainder theorems:

(i) Let m1, . . ., mr be pairwise coprime integers. Then for any set a1,
. . ., ar of integers, the following system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ar (mod mr)

admits an integer solution.
(ii) Let f1(x), . . ., fr(x) ∈ K[x] be pairwise coprime univariate poly-

nomials over the field K. Then for any set a1(x), . . ., ar(x) of polynomials,
the following system of congruences

g(x) ≡ a1(x) [mod f1(x)]

g(x) ≡ a2(x) [mod f2(x)]

...

g(x) ≡ ar(x) [mod fr(x)]

admits a polynomial solution g.
Finally, devise an algorithm to solve the congruence relations in each

case.
Hint: First, show that there is always a solution to the following sys-

tem of congruences, for each i:

x ≡ 0 (mod I1)

x ≡ 0 (mod I2)

...

x ≡ 1 (mod Ii)

...

x ≡ 0 (mod Ir).

For each 1 ≤ j ≤ r (j 6= i), we can choose pj ∈ Ii and qj ∈ Ij such that

pj + qj = 1.
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Then the following x is a desired solution to the system of congruences:

x = q1 · · · qi−1 qi+1 · · · qr
= (1− p1) · · · (1− pi−1) (1− pi+1) · · · (1− pr)

Now it remains to be shown that the solution to a general system of
congruences can be obtained as a linear combination of the solutions to
such special systems.

Problem 6.8
Let f(x) ∈ Zp[x] (p = a prime) be a square-free polynomial with the

following factorization into irreducible polynomials:

f(x) = f1(x) · · · fr(x),

where no factor occurs more than once.
(i) Show that given a set of r distinct elements a1, . . ., ar ∈ Zp, there

exists a polynomial g(x) [deg(g) < deg(f)] such that

fi(x) | g(x)− ai.

(ii) Show that

g(x)p − g(x) ≡ g(x) (g(x)− 1) · · · (g(x) − p+ 1) ≡ 0 (mod f(x)),

for some g(x) ∈ Zp[x] \ Zp, deg(g) < deg(f).

Problem 6.9
Let f(x) ∈ Zp[x] (p = a prime). Show the following:
(i) Suppose that there is a polynomial g ∈ Zp[x], deg(g) < deg(f),

such that

g(x)p − g(x) ≡ 0 [mod f(x)].

Then, for some a ∈ Zp, GCD(f, g(x)− a) = a polynomial factor of f(x).
(ii) Conclude that

f ∈ Zp[x] is an irreducible polynomial

if and only if

g(x)p − g(x) ≡ 0 [mod f(x)], deg(g) < deg(f),

has no polynomial solution.
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Problem 6.10

(i) Using linear algebra, devise an efficient algorithm to determine a
polynomial solution g(x) ∈ Zp[x] (p = a prime) for the following congru-
ence equation

g(x)p − g(x) ≡ 0 [mod f(x)], deg(g) < deg(f),

where f(x) ∈ Zp[x] is given.

(ii) Devise an algorithm to factor a square-free polynomial f(x) ∈ Zp[x].

Problem 6.11

Let f(x) ∈ Z[x], and say it factorizes as f = g h.

Show that for all k > 0, if fk ≡ f(mod pk), gk ≡ g(mod pk) and
hk ≡ h(mod pk) then

fk ≡ gk hk (mod pk).

Devise an algorithm which, given f and a factorization (mod pk) (p =
a prime),

fk ≡ gk hk (mod pk),

can compute a factorization (mod pk+1)

fk+1 ≡ gk+1 hk+1 (mod pk+1).

Solutions to Selected Problems

Problem 6.2

We will show that ring of Gaussian integers satisfy all three conditions
of the Euclidean domain.

1. α · γ = (ac− bd) + i(ad+ bc).

If α, γ 6= 0 but α · γ = 0, then ac = bd, ad = −bc (i.e., abd2 =
−abc2), and therefore d2 = −c2, which is impossible as a, b, c, d ∈ Z.
Hence

α, γ 6= 0 ⇒ αγ 6= 0.

2. g(α · γ) ≥ g(α) and g(α · γ) ≥ g(γ).

g(α · γ) = (ac− bd)2 + (ad+ bc)2

= (ac)2 + (bd)2 + (ad)2 + (bc)2 ≥ a2 + b2 = g(α)
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3. Let γ denote the complex conjugate of γ, i.e., γ = a−i b, if γ = a+i b.
Let α ·γ = p+ i q and γ ·γ = n, n ∈ Z. Let p = q1n+r1, q = q2n+r2,
where |r1|, |r2| ≤ n/2. Then obviously

α · γ = (q1 + i q2)︸ ︷︷ ︸
=q

·n+ (r1 + i r2)︸ ︷︷ ︸
=r

= q γ · γ + r,

and

r21 + r22 ≤
(

1

4

)
(n2 + n2) < g(n) = g(γ · γ).

Also,
g(r) = g(α · γ − qγ · γ) < g(γ · γ)

But g(α·γ−qγ ·γ) = g(α−qγ)g(γ) and g(γγ) = g(γ)g(γ). Therefore

g(α− qγ)g(γ) < g(γ)g(γ).

Since γ 6= 0, g(γ) is a positive integer. Therefore, g(α− qγ) ≤ g(γ).
Hence, we can write α = qγ + r′, where r′ = α− qγ.

Problem 6.4
Let S be a Euclidean domain with identity.
(i) Let s1 and s2 be two elements in S such that s1 | s2. Then s1 ‖ s2

if and only if g(s2) > g(s1).

Proof.
Since s1 | s2, g(s1) ≥ g(s2). But (s1) = (s2) implies that g(s1) ≥ g(s2) ≥
g(s1), and g(s1) = g(s2). And (s2)  (s1) implies that g(s2) > g(s1).
Hence (s2)  (s1) if and only if g(s2) > g(s1).

The rest follows from the fact that s1 ‖ s2 if and only if s1 | s2 and
s1 6≈ s2, that is, if and only if (s2)  (s1).

(ii) Let s ∈ S be a nonunit element in the Euclidean domain S. Then
s can be expressed as a finite product of indecomposable elements of S.

Proof.
The proof is by a complete induction on g(s).
• Case 1: s = nonunit indecomposable element.
In this case there is nothing more to prove.
• Case 2: s = nonunit decomposable element.
Assume that s admits a nontrivial factorization s = t1 · t2, where neither
t1 nor t2 is a unit. Thus t1 | s and t1 6≈ t2, and t1 ‖ s. Similarly t2 ‖ s.
Then g(t1) < g(s) and g(t2) < g(s). By the induction hypothesis, t1 and
t2 can be expressed as finite products of indecomposable elements, and so
can be s.
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Problem 6.5
(i)

GCD(A,B) = GCD
(
Content(A) · Primitive(A),

Content(B) · Primitive(B)
)
.

Let g = GCD(Content(A), Content(B)) and

u =
Content(A)

g
, v =

Content(B)

g
,

where u and v are relatively prime.

GCD(A,B) = GCD
(
g uPrimitive(A), g v Primitive(B)

)

= g ·GCD
(
uPrimitive(A), vPrimitive(B)

)
.

We claim that

GCD
(
uPrimitive(A), vPrimitive(B)

)

≈ GCD
(
Primitive(A), Primitive(B)

)

It is obvious that

GCD
(
Primitive(A), Primitive(B)

)

| GCD
(
uPrimitive(A), vPrimitive(B)

)
.

If they are not associates, then (∃ c ∈ S[x]) such that c is not a unit and

c ·GCD
(
Primitive(A), Primitive(B)

)

| GCD
(
uPrimitive(A), vPrimitive(B)

)
,

but c cannot have degree > 0, therefore c ∈ S which implies that c | u and
c | v, contradicting the fact that u and v are relatively prime. Therefore,

GCD(A,B)

= GCD
(
Content(A),Content(B)

)
·GCD

(
Primitive(A),Primitive(B)

)
.

But Content(GCD(Primitive(A),Primitive(B))) is a unit. Hence,

Content(GCD(A,B)) ≈ GCD(Content(A),Content(B)),

Primitive(GCD(A,B)) ≈ GCD(Primitive(A),Primitive(B)).
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(ii) Let G(x) = GCD(A(x), B(x)) and A(x) = G(x) · U(x), B(x) =
G(x) · T (x). Since deg(G(x)) ≥ k + 1, deg(U(x)) ≤ m − k − 1 and
deg(T (x)) ≤ n− k − 1,

A(x) T (x)−B(x) U(x) = G(x) U(x) T (x)−G(x) T (x) U(x) = 0.

Conversely, let

A(x) T (x) +B(x) U(x) = 0, deg(T ) ≤ n− k − 1,

deg(U) ≤ m− k − 1.

Since S[x] is UFD, we can have unique factorization of A(x), B(x), T (x),
U(x). Let

G(x) = GCD
(
A(x), U(x)

)
, deg(G) ≤ m− k − 1.

Let A(x) = G(x) · P (x); then P (x) and U(x) are relatively prime, and
therefore P (x) | B(x). But deg(P (x)) = deg(A(x)) − deg(G(x)) ≥ k + 1.
Since P (x) divides A(x) as well as B(x),

P (x) | GCD
(
A(x), B(x)

)
.

Then deg(GCD(A(x), B(x))) ≥ deg(P (x)) ≥ k + 1.

(iii) Let G(x) = GCD(A(x), B(x)),

A(x) = G(x) P (x) and B(x) = G(x) Q(x).

Therefore

C(x) = G(x)P (x)U(x) +G(x)Q(x)T (x)

= G(x) ·
(
P (x) U(x) +Q(x) T (x)

)
.

If P (x)U(x) + Q(x)T (x) is not zero, then by the property of Euclidean
domain, deg(C(x)) ≥ deg(G(x)) ≥ k.
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Chapter 7

Resultants and

Subresultants

7.1 Introduction

In this chapter we shall study resultant , an important and classical idea
in constructive algebra, whose development owes considerably to such lu-
minaries as Bezout, Cayley, Euler, Hurwitz, and Sylvester, among others.
In recent time, resultant has continued to receive much attention both as
the starting point for the elimination theory as well as for the compu-
tational efficiency of various constructive algebraic algorithms these ideas
lead to; fundamental developments in these directions are due to Hermann,
Kronecker, Macaulay, and Noether. Some of the close relatives, e.g., dis-
criminant and subresultant , also enjoy widespread applications. Other ap-
plications and generalizations of these ideas occur in Sturm sequences and
algebraic cell decomposition—the subjects of the next chapter.

Burnside and Panton define a resultant as follows [35]:

Being given a system of n equations, homogeneous between
n−1 variables, if we combine these equations in such a manner
as to eliminate the variables, and obtain an equation R = 0
containing only the coefficients of the equations, the quantity
R is, when expressed in a rational and integral form, called the
Resultant or Eliminant .

Thus, a resultant is a purely algebraic condition expressed in terms of
the coefficients of a given system of polynomials, which is satisfied if and
only if the given system of equations has a common solution. There have
been historically two ways to view the development of resultant: the first
algebraic and the second geometric.

In the first case, one starts from Hilbert’s Nullstellensatz, which states,

225
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for instance, that given a pair of univariate polynomials f1 and f2 (say over
a field), they have no common solution exactly when there exist polynomi-
als g1 and g2 satisfying the following:

f1 g1 + f2 g2 = 1.

A quick examination would convince the reader that if such polynomials
g1 and g2 exist then their degrees could be bounded as follows: deg(g1) <
deg(f2), and deg(g2) < deg(f1); and that their existence can be determined
by only examining the coefficients of f1 and f2. Thus, at least in principle,
an algebraic criterion can be constructed to decide if the polynomials have a
common zero. This is essentially Sylvester’s dialytic method of elimination.

In the second case, one examines the zeroes (in an algebraic extension)
of the polynomials. Say the zeros of f1 are α1, α2, . . ., and the zeros of f2,
β1, β2, . . .. Then the following is clearly a necessary and sufficient algebraic
condition for f1 and f2 to have a common solution:

C
∏

(αi − βj) = Cf1

∏
f2(αi) = Cf2

∏
f1(βj) = 0,

where C’s are nonzero constants. Since these conditions are symmetric in
the α’s as well as β’s, one can express the above conditions in terms of the
coefficients of f1 and f2 (which are also symmetric polynomials of α’s and
β’s, respectively).

These discussions should make apparent that resultants are also inti-
mately connected to the computation of GCD of two polynomials and the
related Bézout’s identity:

f1 g1 + f2 g2 = GCD(f1, f2).

In an exploration of the extension of the extended Euclidean algorithm to
the polynomials, we shall also encounter polynomial remainder sequences,
the connection between pseudodivision and resultant-like structures (in
particular, subresultants), and various efficient computational techniques.

This chapter is organized as follows: Sections 7.2 and 7.3 introduce
resultant in a rather general setting and discuss some of their properties.
Section 7.4 discusses discriminants—a concept useful in testing whether a
polynomial in a unique factorization domain has repeated factors. Next,
in Section 7.5, we consider a generalization of the division operation from
Euclidean domains to commutative rings by the “pseudodivision” and how
it leads to an “extended Euclidean algorithm” for polynomials. We also
describe determinant polynomials, a useful tool in proving results about
pseudodivision. Section 7.6 touches upon the subject of polynomial re-
mainder sequences, which is then related to the concept of subresultants
and subresultant chains. The last two sections explore these connections
in greater details.
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7.2 Resultants

Let S be a commutative ring with identity. Let A(x) and B(x) ∈ S[x] be
univariate polynomials of respective positive degrees m and n with coeffi-
cients in the ring S.

A(x) = amx
m + am−1x

m−1 + · · ·+ a0, deg(A) = m, and

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b0, deg(B) = n.

Definition 7.2.1 (Sylvester Matrix) The Sylvester matrix of A(x) and
B(x) ∈ S[x], denoted Sylvester(A,B), is the following (m + n) × (m + n)
matrix over S:

Sylvester(A, B)

=

2
66666666666664

am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

. . .
. . .

am am−1 · · · a0

bn bn−1 · · · · · · b0

bn bn−1 · · · · · · b0

. . .
. . .

. . .
. . .

bn bn−1 · · · · · · b0

3
77777777777775

9
>>>=
>>>;

n staggered
rows of
coefficients
of A

9
>>>=
>>>;

m staggered
rows of
coefficients
of B

In particular, the first n rows of the Sylvester matrix correspond to the poly-
nomials xn−1A(x), xn−2A(x), . . ., A(x), and the lastm rows, to xm−1B(x),
xm−2B(x), . . ., B(x).

Definition 7.2.2 (Resultant) The resultant of A(x) and B(x), denoted
Resultant(A,B), is the determinant of the Sylvester matrix Sylvester(A,B),
and thus is an element of S.

Since Sylvester(B,A) can be obtained by m · n row transpositions, we
see that

Resultant(B,A) = det(Sylvester(B,A))

= (−1)mn det(Sylvester(A,B))

= (−1)mnResultant(A,B).
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Properties of Resultant

Lemma 7.2.1 Let S be a commutative ring with identity, and A(x) and
B(x) ∈ S[x] be univariate polynomials of respective positive degrees m and
n with coefficients in the ring S. Then there exist polynomials T (x) and
U(x) ∈ S[x] such that

A(x) · T (x) +B(x) · U(x) = Resultant(A,B),

where deg(T ) < deg(B) = n and deg(U) < deg(A) = m.
proof.
Consider the Sylvester matrix of A and B:

Sylvester(A, B)

=

2
66666666666664

am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

. . .
. . .

am am−1 · · · a0

bn bn−1 · · · · · · b0

bn bn−1 · · · · · · b0

. . .
. . .

. . .
. . .

bn bn−1 · · · · · · b0

3
77777777777775

9
>>>=
>>>;

n rows

9
>>>=
>>>;

m rows

Let us create a new matrix M ′ from M by following elementary matrix
operations:

1. First, multiply the ith column by xm+n−i and add to the last column
of M .

2. All but the last column of M ′ are same as those of M .

By definition,

Resultant(A,B) = det(M) = det(M ′).

We observe that matrix M ′ is as follows:

Sylvester(A, B)

=

2
66666666666666666664

am am−1 · · · a0

Pm
i=0 aix

n+i−1

am am−1 · · · a0

Pm
i=0 aix

n+i−2

. . .
. . .

. . .
. . .

am am−1 · · · Pm
i=0 aix

i

bn bn−1 · · · · · · b0

Pn
i=0 bix

m+i−1

bn bn−1 · · · · · · b0

Pn
i=0 bix

m+i−2

. . .
. . .

. . .
. . .

bn bn−1 · · · · · · Pn
i=0 bix

i

3
77777777777777777775

9
>>>>>=
>>>>>;

n rows

9
>>>>>=
>>>>>;

m rows
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=

2
66666666666666666664

am am−1 · · · a0 xn−1A(x)

am am−1 · · · a0 xn−2A(x)

. . .
. . .

. . .
. . .

am am−1 · · · A(x)

bn bn−1 · · · · · · b0 xm−1B(x)

bn bn−1 · · · · · · b0 xm−2B(x)

. . .
. . .

. . .
. . .

bn bn−1 · · · · · · B(x)

3
77777777777777777775

9
>>>>>=
>>>>>;

n rows

9
>>>>>=
>>>>>;

m rows

Note that since the last column of the matrix M ′ is simply

[
xn−1A(x), . . . , A(x), xm−1B(x), . . . , B(x)

]T
,

we can compute the det(M ′) explicitly by expanding the determinant with
respect to its last column. We then have the following:

Resultant(A,B) = det(M ′)

= xn−1A(x) ·M ′
1,m+n + · · ·+ A(x) ·M ′

n,m+n

+ xm−1B(x) ·M ′
n+1,m+n + · · ·+B(x) ·M ′

m+n,m+n

= A(x)
(
M ′

1,m+nx
n−1 + · · ·+M ′

n,m+n

)

+B(x)
(
M ′

n+1,m+nx
m−1 + · · ·+M ′

m+n,m+n

)

= A(x) · T (x) +B(x) · U(x).

Note that the coefficients of T (x) and U(x) are cofactors of the last column
of M ′, and hence of M , and are ring elements in S.

Clearly,

deg(T ) ≤ n− 1 < deg(B) and deg(U) ≤ m− 1 < deg(A).

Lemma 7.2.2 Let A(x) and B(x) be univariate polynomials of respective
positive degrees m and n, over an integral domain S. Then

Resultant(A,B) = 0

if and only if there exist nonzero polynomials T (x) and U(x) over S such
that

A(x) · T (x) +B(x) · U(x) = 0,
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where deg(T ) < deg(B) = n, and deg(U) < deg(A) = m.
proof.
(⇒) By Lemma 7.2.1, Resultant(A,B) = 0 implies that there exist uni-
variate polynomials T (x), U(x) ∈ S[X ] such that

A(x) · T (x) +B(x) · U(x) = Resultant(A,B) = 0,

where deg(T ) < deg(B) = n and deg(U) < deg(A) = m.
Thus we may assume that

T (x) = tn−1x
n−1 + tn−2x

n−2 + · · ·+ t0,

U(x) = um−1x
m−1 + um−2x

m−2 + · · ·+ u0,

where ti, ui ∈ S.
We claim that not all ti’s and ui’s are zero. Since

A(x) · T (x) +B(x) · U(x) = 0,

we have

tn−1 · am + um−1 · bn = 0
tn−1 · am−1 + tn−2 · am + um−1 · bn−1 + um−2 · bn = 0

...
t1 · a0 + t0 · a1 + u1 · b0 + u0 · b1 = 0
t0 · a0 + u0 · b0 = 0,

(7.1)

i.e.,

Sylvester(A,B)T ·




tn−1

...
t0
um−1

...
u0




=




0
...
0
0
...
0




.

But since det(Sylvester(A,B)) = Resultant(A,B) = 0 by assumption, and
since we are working over an integral domain, the system of equations 7.1
has a nontrivial solution. That is, not all ti’s and ui’s are zero, as claimed.

(⇐) Conversely, assume the existence of T (x) and U(x) as in the state-
ment of the lemma:

T (x) = tpx
p + tp−1x

p−1 + · · ·+ t0,

U(x) = uqx
q + uq−1x

q−1 + · · ·+ u0,

where
tp 6= 0, uq 6= 0, p < n, and q < m.
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We may then write T (x) and U(x) as below, while tacitly assuming
that

tn−1 = · · · = tp+1 = 0, tp 6= 0, um−1 = · · · = uq+1 = 0, and uq 6= 0 :

T (x) = tn−1x
n−1 + tn−2x

n−2 + · · ·+ t0, tn−1 6= 0,

U(x) = um−1x
m−1 + um−2x

m−2 + · · ·+ u0, um−1 6= 0.

Now, expanding the expression A(x) · T (x) + B(x) · U(x) = 0, we see
that the following linear system

Sylvester(A,B)T ·




tn−1

...
t0
um−1

...
u0




=




0
...
0
0
...
0




,

has a nontrivial solution. Since Sylvester(A,B) is over an integral domain
S, we have

det(Sylvester(A,B)) = Resultant(A,B) = 0.

Lemma 7.2.3 Let S be a unique factorization domain with identity, and
A(x) and B(x) be univariate polynomials of positive degrees with coeffi-
cients in S. Then

Resultant(A,B) = 0

if and only if A(x) and B(x) have a common divisor of positive degree.
proof.
(⇐) Assume that A(x) and B(x) have a common divisor C(x) of positive
degree. Then, since S is an integral domain,

A(x) = C(x) · U(x), deg(U) < deg(A), and

B(x) = C(x) · T (x), deg(T ) < deg(B).

Therefore,

A(x) · T (x) +B(x) · (−U(x))

= C(x) · T (x) · U(x)− C(x) · T (x) · U(x) = 0.

Thus by Lemma 7.2.2, Resultant(A,B) = 0.
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(⇒) Since Resultant(A,B) = 0, we know by Lemma 7.2.2 that there exist
two nonzero polynomials T (x) and U(x) ∈ S[x] such that

A(x) · T (x)−B(x) · U(x) = Resultant(A,B) = 0,

where deg(T ) < deg(B) = n, deg(U) < deg(A) = m, and

A(x) · T (x) = B(x) · U(x).

By the Gauss lemma, S[x] is also a unique factorization domain. Therefore,

Primitive(A) · Primitive(T ) = Primitive(B) · Primitive(U).

Thus

A1(x) · · ·Am′(x) · T1(x) · · · Tp′(x) = B1(x) · · ·Bn′(x) · U1(x) · · ·Uq′(x),

where

A1(x) · · ·Am′(x) is a primitive factorization of A(x),

T1(x) · · ·Tp′(x) is a primitive factorization of T (x),

B1(x) · · ·Bn′(x) is a primitive factorization of B(x),

U1(x) · · ·Uq′(x) is a primitive factorization of U(x).

By the uniqueness of the factorization, each Ai(x) is an associate of a Bj(x)
or an associate of a Uk(x). Since deg(A1 · · ·Am′) > deg(U1 · · ·Uq′), there
must exist an Ai(x) that is an associate of a Bj(x).

Therefore, Ai(x) is a primitive polynomial of positive degree, and is a
divisor of both A(x) and B(x).

7.3 Homomorphisms and Resultants

Let S and S∗ be commutative rings with identities, and

φ : S → S∗

be a ring homomorphism of S into S∗.
Note that φ induces a ring homomorphism of S[x] into S∗[x], also de-

noted by φ, as follows:

φ : S[X ]→ S∗[x]

: amx
m + am−1x

m−1 + · · ·+ a0

7→ φ(am)xm + φ(am−1)x
m−1 + · · ·+ φ(a0).
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Lemma 7.3.1 Let A(x) =
∑m

i=0 aix
i and B(x) =

∑n
i=0 bix

i be two uni-
variate polynomials over the ring S with deg(A) = m > 0 and deg(B) =
n > 0. If

deg(φ(A)) = m and deg(φ(B)) = k, (0 ≤ k ≤ n),

then

φ(Resultant(A,B)) = φ(am)n−k ·Resultant (φ(A), φ(B)) .

proof.
Let

A∗ = φ(A) = φ(am)xm + φ(am−1)x
m−1 + · · ·+ φ(a0), and

B∗ = φ(B) = φ(bk)xk + φ(bk−1)x
k−1 + · · ·+ φ(b0).

Then, M , the Sylvester matrix of A(x) and B(x), is

M = Sylvester(A,B)

=

2
66666666666664

am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

. . .
. . .

am am−1 · · · a0

bn bn−1 · · · · · · b0

bn bn−1 · · · · · · b0

. . .
. . .

. . .
. . .

bn bn−1 · · · · · · b0

3
77777777777775

9
>>>=
>>>;

n rows

9
>>>=
>>>;

m rows

and M∗, the Sylvester matrix of A∗(x) and B∗(x), is

M∗ = Sylvester(A∗, B∗) =

2
66666666666664

φ(am) φ(am−1) · · · φ(a0)
φ(am) φ(am−1) · · · φ(a0)

. . .
. . .

. . .
. . .

φ(am) φ(am−1) · · · φ(a0)
φ(bk) φ(bk−1) · · · · · · φ(b0)

φ(bk) φ(bk−1) · · · · · · φ(b0)

. . .
. . .

. . .
. . .

φ(bk) φ(bk−1) · · · · · · φ(b0)

3
77777777777775

9
>>>=
>>>;

k
rows

9
>>>=
>>>;

m
rows

The matrix M∗ is obtained from M by the following process:

1. First, the matrix, φ(M), is computed by replacing the entry ai by
φ(ai) (for all 0 ≤ i ≤ m), and by replacing the entry bj by φ(bj) (for
all 0 ≤ j ≤ n). By assumption

φ(bn) = · · · = φ(bk+1) = 0.
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2. Next, from φ(M), the first (n − k) rows and (n − k) columns are
deleted, yielding an (m+ k)× (m+ k) matrix equal to M∗.

Thus

φ(M)

=

2
666666666664

φ(am) φ(am−1) · · · φ(a0)

. . .
. . .

. . .
. . .

φ(am) φ(am−1) · · · φ(a0)

0 M∗

3
777777777775

9
>=
>;

(n − k)
rows

9
>>>>=
>>>>;

(m + k)
rows

Therefore,

φ(Resultant(A,B)) = φ(det(Sylvester(A,B)))

= det(φ(M)) = φ(am)n−k · det(φ(M∗))

= φ(am)n−k · φ(det(Sylvester(A∗, B∗)))

= φ(am)n−k · φ(Resultant(A∗, B∗)).

Therefore,

φ(Resultant(A,B)) = φ(am)n−k · φ(Resultant(A∗, B∗)).

7.3.1 Evaluation Homomorphism

Let S be a commutative ring with an identity, and 〈α1, . . . , αr〉 ∈ Sr be
an r-tuple. Define a ring homomorphism φα1,...,αr , called the evaluation
homomorphism, as follows:

φα1,...,αr : S[x1, . . . , xr]→ S

: x1 7→ α1,

...

: xr 7→ αr.

Note that, if F (x1, . . ., xr) ∈ S[x1, . . ., xr], then we shall write

F (α1, . . . , αr) for φα1,...,αr(F ).
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Definition 7.3.1 Let S be a commutative ring with an identity, and

A(x1, . . . , xr) =

m∑

i=0

Ai(x1, . . . , xr−1)x
i
r ∈ S[x1, . . . , xr], and

B(x1, . . . , xr) =

n∑

i=0

Bi(x1, . . . , xr−1)x
i
r ∈ S[x1, . . . , xr ].

be two polynomials in S[x1, . . ., xr] of respective positive degrees m and n
in xr. Let

Resultantxr (A,B)

=

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

Am Am−1 · · · A0

Am Am−1 · · · A0

. . .
. . .

. . .
. . .

Am Am−1 · · · A0

Bn Bn−1 · · · · · · B0

Bn Bn−1 · · · · · · B0

. . .
. . .

. . .
. . .

Bn Bn−1 · · · · · · B0

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

9
>>>=
>>>;

n rows

9
>>>=
>>>;

m rows

be the resultant of two multivariate polynomials A(x1, . . ., xr) and B(x1,
. . ., xr), with respect to xr.

Lemma 7.3.2 Let L be an algebraically closed field, and let

Resultantxr (A,B) = C(x1, . . . , xr−1)

be the resultant of the multivariate polynomials,

A(x1, . . . , xr) =

m∑

i=0

Ai(x1, . . . , xr−1)x
i
r ∈ L[x1, . . . , xr], and

B(x1, . . . , xr) =

n∑

i=0

Bi(x1, . . . , xr−1)x
i
r ∈ L[x1, . . . , xr].

with respect to xr. Then

1. If 〈α1, . . . , αr〉 ∈ Lr is a common zero of A(x1, . . . , xr) and B(x1,
. . ., xr), then C(α1, . . . , αr−1) = 0.

2. Conversely, if C(α1, . . . , αr−1) = 0, then at least one of the following
four conditions holds:

(a) Am(α1, . . . , αr−1) = · · · = A0(α1, . . . , αr−1) = 0, or

(b) Bn(α1, . . . , αr−1) = · · · = B0(α1, . . . , αr−1) = 0, or
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(c) Am(α1, . . . , αr−1) = Bn(α1, . . . , αr−1) = 0, or

(d) for some αr ∈ L, 〈α1, . . . , αr〉 is a common zero of both A(x1,
. . ., xr) and B(x1, . . ., xr).

proof.
(1) Since there exist T and U in L[x1, . . ., xr−1] such that

A · T +B · U = C,

we have

C(α1, . . . , αr−1)

= A(α1, . . . , αr) · T (α1, . . . , αr) +B(α1, . . . , αr) · U(α1, . . . , αr)

= 0,

as A(α1, . . . , αr) = B(α1, . . . , αr) = 0, by assumption.

(2) Next, assume that C(α1, . . ., αr−1) = 0, but that conditions (a),
(b), and (c) are not satisfied. Then there are two cases to consider:

1. Am(α1, . . ., αr−1) 6= 0 and
for some k (0 ≤ k ≤ n), Bk(α1, . . ., αr−1) 6= 0
(k is assumed to be the largest such index).

2. Bn(α1, . . ., αr−1) 6= 0 and
for some k (0 ≤ k ≤ m), Ak(α1, . . ., αr−1) 6= 0
(k is assumed to be the largest such index).

Since Resultant(B,A) = (−1)mnResultant(A,B) = ±C, cases (1) and
(2) are symmetric, and without any loss of generality, we may only deal
with the first case.

Let φ = φα1,...,αr−1 be the evaluation homomorphism defined earlier.
Thus,

0 = φ(C)

= φ(Resultant(A,B))

= φ(Am)n−k · Resultant(φ(A), φ(B)),

and Resultant(φ(A), φ(B)) = 0, since φ(Am) = Am(α1, . . ., αr−1) 6= 0.
If k = 0, then

Resultant(φ(A), φ(B)) = φ(B0)
m

= B0(α1, . . . , αr−1)
m 6= 0 (by assumption).

Hence k > 0 and φ(A) and φ(B) are of positive degree and have a
common divisor of positive degree, say D(xr).
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Since L is algebraically closed, D(xr) has at least one zero, say αr.
Therefore,

A(α1, . . . , αr−1, xr) = D(xr) · Ã(xr), and

B(α1, . . . , αr−1, xr) = D(xr) · B̃(xr),

and 〈α1, . . ., αr−1, αr〉 is a common zero of A and B.

Now, consider two univariate polynomials

A(x) = amx
m + am−1x

m−1 + · · ·+ a0, deg(A) = m > 0,

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b0, deg(B) = n > 0,

of positive degrees, with formal (symbolic) coefficients am, am−1, . . ., a0

and bn, bn−1, . . ., b0, respectively.
We consider A(x) and B(x) to be univariate polynomials in the ring

(
Z[a⋗, . . . ,a0,⋉, . . . , 0]

)
[x].

Thus, the resultant of A(x) and B(x) with respect to x is a polynomial in
the ring

Z[a⋗, . . . ,a0,⋉, . . . , 0].

Now, if we consider the evaluation homomorphism

φᾱ,β̄ = φαm,...,α0,βn,...,β0

from Z[a⋗, . . . ,a0,⋉, . . . , 0] into a unique factorization domain S as fol-
lows:

φᾱ,β̄ : Z[am, . . . , a0, bn, . . . , b0]→ S,

: am 7→ αm,

...

: a0 7→ α0,

: bn 7→ β0,

...

: b0 7→ β0,

: 0 7→ 0,

: n 7→ 1 + · · ·+ 1︸ ︷︷ ︸
n times

,

then we can show the following:
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Lemma 7.3.3 Let A(x) and B(x) be two univariate polynomials with for-
mal coefficients am, . . . , a0, and bn, . . . , b0, respectively. Let φᾱ,β̄ be any
evaluation homomorphism for which αm 6= 0, and βn 6= 0.

Then the necessary and sufficient condition that φᾱ,β̄A(x) and φᾱ,β̄B(x)
have a common divisor of positive degree is:

〈αm, . . ., α0, βn, . . ., β0〉 satisfies the equation

Resultant(A,B) = 0,

where Resultant(A,B) ∈ Z[a⋗, . . . ,a0,⋉, . . . , 0].

proof.
Let 〈αm, . . ., α0, βn, . . ., β0〉 ∈ Sm+n+2 be a solution to the equation
Resultant(A,B) = 0. Let

φᾱ,β̄(A) = αmx
m + αm−1x

m−1 + · · ·+ α0,

φᾱ,β̄(B) = βnx
n + βn−1x

n−1 + · · ·+ β0;

then

Resultant
(
φᾱ,β̄(A), φᾱ,β̄(B)

)
= φᾱ,β̄ (Resultant(A,B)) = 0,

and φᾱ,β̄A(x) and φᾱ,β̄B(x) have a common divisor of positive degree.

Conversely, let

φᾱ,β̄(A) = αmx
m + αm−1x

m−1 + · · ·+ α0 and

φᾱ,β̄(B) = βnx
n + βn−1x

n−1 + · · ·+ β0

have a common divisor of positive degree. The assertion above implies that

φᾱ,β̄ (Resultant(A,B)) = Resultant
(
φᾱ,β̄(A), φᾱ,β̄(B)

)
= 0,

and so 〈αm, . . ., α0, βn, . . ., β0〉 ∈ Sm+n+2 is a solution to the equation
Resultant(A,B) = 0.

7.4 Repeated Factors in Polynomials and

Discriminants

Let U be a unique factorization domain of characteristic 0, i.e., satisfying
the following condition:

n = 1 + · · ·+ 1︸ ︷︷ ︸
n

6= 0, for any positive integer n.
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Definition 7.4.1 (Differentiation Operator) The formal differentiation
operator is a map

D : U [x] → U [x]

a 7→ 0

A(x) = amx
m + · · ·+ a0 7→ A′(x) = mamx

m−1 + · · ·+ a1

where a, a0, . . . , am ∈ U and m am = am + · · ·+ am︸ ︷︷ ︸
m

.

Let A(x), B(x), A1(x), . . . , Am(x) ∈ U [x]. Then

1. If A(x) ∈ U , then A′(x) = 0. Otherwise, deg(A′(x)) = deg(A(x))−1.

2. D(−A(x)) = −D(A(x)).

3. D(A(x) +B(x)) = D(A(x)) +D(B(x)).

4. D(A(x) ·B(x)) = D(A(x)) ·B(x) +A(x) ·D(B(x)). [Chain Rule]

5. For all i (1 ≤ i ≤ m),

D (A1(x) · · ·Am(x))

= Ai(x) ·D




m∏

j=1

j 6=i

Aj(x)


+D(Ai(x)) ·




m∏

j=1

j 6=i

Aj(x)




=

m∑

i=1

D(Ai(x)) ·




m∏

j=1

j 6=i

Aj(x)


 .

Definition 7.4.2 (Square-Free Polynomial) Let A(x) ∈ U [x] be fac-
torized into indecomposable factors as follows :

A(x) = A1(x) · · ·Am′(x)

A(x) is square-free (i.e., has no repeated factor of positive degree) if

(
∀ 1 ≤ i < j ≤ m′

) [
Ai(x) 6≈ Aj(x) ∨ deg(Ai) = 0

]
.

If (
∃ 1 ≤ i < j ≤ m′

) [
Ai(x) ≈ Aj(x) ∧ deg(Ai) > 0

]
,

then Ai(x) is called a repeated factor of A(x).
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Theorem 7.4.1 A polynomial A(x) ∈ U [x] of degree at least 2 has a re-
peated factor if and only if Resultant(A,A′) = 0.
proof.
Let

A(x) = A1(x) · · ·Am′(x)

Resultant(A,A′) = 0

⇔ A(x) and A′(x) have a common divisor of positive degree

⇔
(
∃ 1 ≤ i ≤ m′

) [
Ai(x) | A′(x) ∧ deg(Ai) > 0

]

⇔ Ai(x) |
m′∏

j=1

j 6=i

Aj(x) and deg(Ai) > 0

[Since Ai(x) ∤ A′
i(x) as deg(A′

i) < deg(Ai).]

⇔
(
∃ 1 ≤ i < j ≤ m′

) [
Ai(x) ≈ Aj(x) ∧ deg(Ai) > 0

]

⇔ A(x) has a repeated factor.

Definition 7.4.3 (Discriminant) The discriminant of a polynomial

A(x) = amx
m + · · ·+ a0, m ≥ 2

is

Discriminant(A) = (−1)m(m−1)/2 ×

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

1 am−1 · · · a1 a0

am am−1 · · · a1 a0

. . .
. . .

. . .
. . .

am am−1 · · · a1 a0

m (m − 1)am−1 · · · a1

mam (m − 1)am−1 · · · a1

. . .
. . .

. . .
. . .

mam (m − 1)am−1 · · · a1

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

9
>>>=
>>>;

(m − 1)

rows

9
>>>=
>>>;

m
rows

i.e., Resultant(A,A′) = (−1)m(m−1)/2 am Discriminant(A).

Since U is an integral domain, we see the following:

Corollary 7.4.2 A polynomial A(x) ∈ U [x] of degree at least 2 has a
repeated factor if and only if

Discriminant(A) = 0.
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Example 7.4.4 The discriminant of the quadratic polynomial

A(x) = ax2 + bx+ c

is

Discriminant(A) = (−1)2·
1
2

∣∣∣∣∣∣

1 b c
2 b 0
0 2a b

∣∣∣∣∣∣

= (−1)

∣∣∣∣∣∣

1 b c
0 −b −2c
0 2a b

∣∣∣∣∣∣
= (−1)(−b2 + 4ac) = b2 − 4ac.

Thus A(x) has a repeated factor if and only if b2 − 4ac = 0.

Thus, we see that discriminant allows us to reduce the problem of test-
ing whether a polynomial has repeated factors to a simple determinant
evaluation—a well-studied problem having efficient algorithms even when
U is an arbitrary ring with identity.

7.5 Determinant Polynomial

As before, let S be a commutative ring.

Definition 7.5.1 (Determinant Polynomial) Letm and n be two non-
negative integers and M ∈ Sm×n be an m× n matrix with elements from
S. Define M (i) ∈ Sm×m, for i = m, . . . , n as the m×m square submatrix
of M consisting of the first (m − 1) columns of M and the ith column of
M , i.e.,

M (i) =




M1,1 · · · M1,(m−1) M1,i

M2,1 · · · M2,(m−1) M2,i

...
. . .

...
...

Mm,1 · · · Mm,(m−1) Mm,i


 .

The determinant polynomial of M

DetPol(M) =

n∑

i=m

det(M (i))xn−i.

Note that DetPol(M) = 0 if n < m. Otherwise, deg(DetPol(M)) ≤ n−m,
the equality holds when det(M (m)) 6= 0.
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From the definition, it is easy to see that, if m ≤ n then

DetPol(M) =

∣∣∣∣∣∣∣∣∣

M1,1 · · · M1,(m−1)

∑n
i=m M1,ix

n−i

M2,1 · · · M2,(m−1)

∑n
i=m M2,ix

n−i

...
. . .

...
...

Mm,1 · · · Mm,(m−1)

∑n
i=m Mm,ix

n−i

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

M1,1 · · · M1,(m−1)

∑n
i=1M1,ix

n−i

M2,1 · · · M2,(m−1)

∑n
i=1M2,ix

n−i

...
. . .

...
...

Mm,1 · · · Mm,(m−1)

∑n
i=1Mm,ix

n−i

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

M1,1 · · · M1,(m−1)

∑n−1
i=0 M1,n−ix

i

M2,1 · · · M2,(m−1)

∑n−1
i=0 M2,n−ix

i

...
. . .

...
...

Mm,1 · · · Mm,(m−1)

∑n−1
i=0 Mm,n−ix

i

∣∣∣∣∣∣∣∣∣

∈
(n−1∑

i=0

M1,n−ix
i,

n−1∑

i=0

M2,n−ix
i, . . . ,

n−1∑

i=0

Mm,n−ix
i
)
.

Let A1(x), . . . , Am(x) be a set of polynomials in S[x] such that

n = 1 + max
1≤i≤m

{
deg(Ai)

}
.

The matrix of A1, . . . , Am, M = Matrix(A1, . . ., Am) ∈ Sm×n is defined
by:

Mij = coefficient of xn−j in Ai(x).

Define the determinant polynomial of A1, . . . , Am to be

DetPol(A1, . . . , Am) = DetPol(Matrix(A1, . . . , Am)).

Note that DetPol(A1, . . . , Am) = 0 when n < m.

The determinant polynomial satisfies the following properties:

1. For any polynomial A(x) = amx
m + · · ·+ a0 ∈ S[x],

Matrix(A) = [am, . . . , a0], a 1× (m+ 1) matrix;

DetPol(A) = amx
m + · · ·+ a0 = A(x).

2. DetPol(. . ., Ai, . . ., Aj , . . .) = −DetPol(. . ., Aj , . . ., Ai, . . .).
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3. For any a ∈ S,

DetPol(. . . , a · Ai, . . .) = a ·DetPol(. . . , Ai, . . .).

4. For any a1, . . ., ai−1, ai+1, . . ., am ∈ S,

DetPol
(
. . . , Ai−1, Ai +

m∑

j=1

j 6=i

ajAj , Ai+1, . . .
)

= DetPol(. . . , Ai−1, Ai, Ai+1, . . .).

Theorem 7.5.1 Let A(x) and B(x) 6= 0 be polynomials in S[x] with re-
spective degrees k and n. Let m be an integer that is at least k and let

δ = max(m− n+ 1, 0) and δ′ = max(k − n+ 1, 0).

Then

DetPol(xm−nB, xm−n−1B, . . . , B, A)

= bδ−δ′

n ·DetPol(xk−nB, xk−n−1B, . . . , B, A)

[Note: If p < 0, then DetPol(xpB, xp−1B, . . . , B, A) = DetPol(A) = A.]

proof.
There are three cases to consider.

• Case 1 (k < n): That is, δ′ = 0: Thus

bδ−δ′

n DetPol(xk−nB, . . . , B, A) = bδnDetPol(A).

– Subcase A (m < n): That is, δ = 0: Thus

bδnDetPol(A) = DetPol(A)

= DetPol(xm−nB, . . . , B, A).

– Subcase B (m ≥ n): That is, δ > 0: Thus

bδnDetPol(A)

= DetPol




bn · · · b0
. . .

. . .
. . .

bn · · · b0

0 0 · · · 0 ak · · · a0







δ rows

+}
1 row

= DetPol(xm−nB, . . . , B, A).
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• Case 2 (k ≥ n = 0): Thus

DetPol(xm−nB, . . . , B,A) = 0

= DetPol(xk−nB, . . . , B,A)

= bδ−δ′

n DetPol(xk−nB, . . . , B,A).

• Case 3 (k ≥ n > 0): Thus

bδ−δ′

n DetPol(xk−nB, . . . , B,A)

= bδ−δ′

n DetPol




bn · · · b0
. . .

. . .
. . .

bn · · · b0

ak · · · an · · · a0







δ′ rows

+}
1 row

= DetPol




bn · · · b0
. . .

. . .
. . .

bn · · · b0

0 · · · · · · 0 ak · · · an · · · a0







δ rows

+}
1 row

= DetPol(xm−nB, . . . , B, A).

7.5.1 Pseudodivision: Revisited

Recall the discussion on pseudodivision from Chapter 5. We had shown
the following: Let S be a commutative ring.

Theorem 7.5.2 Let A(x) and B(x) 6= 0 be two polynomials in S[x] of
respective degrees m and n:

A(x) = amx
m + am−1x

m−1 + · · ·+ a0

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b0

Let δ = max(m − n + 1, 0). Then there exist polynomials Q(x) and R(x)
in S[x] such that

bδnA(x) = Q(x)B(x) +R(x) and deg(R) < deg(B).

If bn is not a zero divisor in S, then Q(x) and R(x) are unique.

For the given polynomials A(x) and B(x) 6= 0 in S[x], we refer to
the polynomials Q(x) and R(x) in S[x] the pseudoquotient and the pseu-
doremainder of A(x) with respect to B(x) [denoted PQuotient(A,B) and
PRemainder(A,B)], respectively.

Algorithms to compute the pseudoquotient and pseudoremainder may
be found in Chapter 5. Here we shall explore some interesting relations
between pseudodivision and determinant polynomial.
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Theorem 7.5.3 Let A(x) and B(x) 6= 0 be polynomials in S[x] of respec-
tive degrees m and n and bn = Hcoef(B). Let δ = max(m−n+1, 0). Then
a pseudoremainder of A(x) and B(x) is given by:

bδnPRemainder(A,B) = bδnDetPol(xm−nB, . . . , B, A)

proof.
Let

PQuotient(A,B) = Q(x) = qm−nx
m−n + · · ·+ q0

PRemainder(A,B) = R(x).

Then

bδn ·A(x) = (qm−nx
m−n + · · ·+ q0) ·B(x) +R(x)

= qm−nx
m−nB(x) + · · ·+ q0B(x) +R(x).

Hence, we see that

bδn DetPol(xm−nB, . . . , B, A)

= DetPol(xm−nB, . . . , B, bδnA)

= DetPol(xm−nB, . . . , B, bδnA− qm−nx
m−nB − · · · − q0B)

= DetPol(xm−nB, . . . , B, R)

= bδnR,

since

Matrix(xm−nB, . . . , B,R)

=




bn bn−1 · · · b0
. . .

. . .
. . .

bn bn−1 · · · b0

rp · · · r0








(m− n+ 1) rows

+}
1 row

where

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b0

R(X) = rpx
p + rp−1x

p−1 + · · ·+ r0, and p < n.

Corollary 7.5.4 If in the above theorem bn is not a zero divisor, then

PRemainder(A,B) = DetPol(xm−nB, xm−n−1B, . . . , B, A).



246 Resultants and Subresultants Chapter 7

7.5.2 Homomorphism and Pseudoremainder

Let S and S∗ be two commutative rings and φ:S → S∗ be a ring homomor-
phism. Then φ induces a homomorphism of S[x] into S∗[x] (also denoted
φ):

a 7→ φ(a)

amx
m + · · ·+ a0 7→ φ(am)xm + · · ·+ φ(a0),

where a, am, . . . , a0 ∈ S.
For any set of polynomials A1, . . . , Am ∈ S[x],

φ(DetPol(A1, . . . , Am)) = DetPol(φ(A1), . . . , φ(Am)).

provided max(deg(Ai)) = max(deg(φ(Ai))).

Theorem 7.5.5 Let A(x) and B(x) 6= 0 be two polynomials in S[x] of
respective degrees m and n, and bn = Hcoef(B). Let

δ = max(m− n+ 1, 0),

k = deg(φ(A)) ≤ m,

n = deg(φ(B)), and

δ′ = max(k − n+ 1, 0).

Then

φ(bn)δ φ(PRemainder(A,B)) = φ(bn)2δ−δ′

PRemainder(φ(A), φ(B)).

proof.
φ(bn)δ φ(PRemainder(A,B))

= φ(bδn PRemainder(A,B))

= φ(bδn DetPol(xm−nB, . . . , B, A))

= φ(bn)δ DetPol(xm−nφ(B), . . . , φ(B), φ(A))

= φ(bn)2δ−δ′

DetPol(xk−nφ(B), . . . , φ(B), φ(A))

= φ(bn)2δ−δ′

PRemainder(φ(A), φ(B)).

Corollary 7.5.6 If in the above theorem φ(bn) is not a zero divisor of S∗,
then

φ(PRemainder(A,B)) = φ(bn)δ−δ′

PRemainder(φ(A), φ(B)).

Theorem 7.5.7 Let A(x) and B(x) 6= 0 be polynomials in S[x] of re-
spective degrees m and n, and bn = Hcoef(B). Let deg(aA) = k and
deg(bB) = n, for some a, b ∈ S. Let

δ = max(m− n+ 1, 0) and δ′ = max(k − n+ 1, 0).
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Then

bδn a b
δ+δ′

PRemainder(A,B) = b2δ−δ′

n bδ PRemainder(aA, bB).

proof.
bδn a b

δ+δ′
PRemainder(A,B)

= bδn a b
δ+δ′

DetPol(xm−nB, . . . , B, A)

= bδn b
δ+δ′

DetPol(xm−nB, . . . , B, aA)

= b2δ−δ′

n bδ+δ′

DetPol(xk−nB, . . . , B, aA)

= b2δ−δ′

n bδ DetPol(xk−nbB, . . . , bB, aA)

= b2δ−δ′

n bδ PRemainder(aA, bB).

Corollary 7.5.8 In the above theorem:

1. If neither bn nor b is a zero divisor, then

abδ
′

PRemainder(A,B) = bδ−δ′

n PRemainder(aA, bB).

2. If S is an integral domain and a 6= 0, then

δ = δ′ and

PRemainder(aA, bB) = abδPRemainder(A,B).

7.6 Polynomial Remainder Sequences

Let S be an integral domain.

Definition 7.6.1 (Similar Polynomials) Two polynomials A(x) and
B(x) in S[x] are similar , denoted

A(x) ∼ B(x),

if there exist a, b ∈ S such that aA(x) = bB(x). We say a and b are
coefficients of similarity of A(x) and B(x).

Note that if a and b are units of S, then A(x) and B(x) are associates,
A(x) ≈ B(x).

Now we can introduce the concept of a polynomial remainder sequence
(or, briefly, PRS) as follows:

Definition 7.6.2 (Polynomial Remainder Sequence: PRS) Given
S an integral domain, and F1(x), F2(x) ∈ S[x], with deg(F1) ≥ deg(F2), the
sequence F1, F2, . . ., Fk of nonzero polynomials is a polynomial remainder
sequence (or, briefly, PRS) for F1 and F2 if we have the following:
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1. For all i = 3, . . ., k,

Fi ∼ PRemainder(Fi−2, Fi−1) 6= 0.

2. The sequence terminates with PRemainder(Fk−1, Fk) = 0.

The following two polynomial remainder sequences are of considerable
interest:

• Euclidean Polynomial Remainder Sequence, EPRS:

The polynomial remainder sequence given by the following,

Fi = PRemainder(Fi−2, Fi−1) 6= 0, i = 3, . . . k, and

PRemainder(Fk−1, Fk) = 0,

is said to be a Euclidean polynomial remainder sequence.

• Primitive Polynomial Remainder Sequence, PPRS:

The polynomial remainder sequence given by the following,

Fi = Primitive(PRemainder(Fi−2, Fi−1)) 6= 0, i = 3, . . . k, and

PRemainder(Fk−1, Fk) = 0,

is said to be a primitive polynomial remainder sequence.

From the definition, we see that there must exist nonzero ei, fi ∈ S and
Qi−1(x) ∼ PQuotient(Fi−2, Fi−1) such that

eiFi−2 = Qi−1Fi−1 + fiFi, and

deg(Fi) < deg(Fi−1), for i = 3, . . . , k,

i.e., fiFi = eiFi−2 −Qi−1Fi−1, for all i.
Also observe that, since pseudodivision is unique, the PRS(F1, F2) is

unique up to similarity. Furthermore,

GCD(F1, F2) ∼ GCD(F2, F3) ∼ · · · ∼ GCD(Fk−1, Fk) ∼ Fk,

so that the PRS essentially computes the GCD of F1 and F2 up to similarity.
In defining PPRS, we have reduced the pseudoremainder to its prim-

itive part at each stage of the PRS computation in order to try to limit
the growth of polynomial coefficients. However, this incurs a (sometimes)
prohibitively high additional cost of computing the contents of each Fi.

Definition 7.6.3 (PRS Based on a Sequence) Let S and (thus) S[x]
be UFD’s, and F1(x), F2(x) ∈ S[x] be two nonzero univariate polynomials,
with deg(F1) ≥ deg(F2). Let F1, F2, . . ., Fk be a PRS such that

βi · Fi = PRemainder(Fi−2, Fi−1), i = 3, . . . , k,
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where βi ∈ S, and βi | Content(PRemainder(Fi−2, Fi−1)); then (F1, . . .,
Fk) is a PRS “based on the sequence” β = 〈1, 1, β3, . . ., βk〉.

Conversely, given a sequence β = 〈1, 1, β3, . . ., βk〉 (with elements in
S), if it is possible to define a PRS bases on β as follows:

Fi =
PRemainder(Fi−2, Fi−1)

βi
6= 0, i = 3, . . . k, and

PRemainder(Fk−1, Fk) = 0,

then we call β a well-defined sequence. Note that not all sequences are
well-defined, and thus it is not possible to obtain a polynomial remainder
sequence based on an arbitrary sequence.

In particular, the primitive polynomial remainder sequence

Fi = Primitive(PRemainder(Fi−2, Fi−1)) 6= 0, i = 3, . . . k, and

PRemainder(Fk−1, Fk) = 0,

is based on

β =

〈
1, 1, Content(PRemainder(F1, F2)), . . . ,

Content(PRemainder(Fk−2, Fk−1))

〉
.

Definition 7.6.4 (Subresultant Polynomial Remainder Sequence:
SPRS) Let S be a UFD, and F1(x), F2(x) ∈ S[x] be two nonzero uni-
variate polynomials, with deg(F1) ≥ deg(F2). Let F1, F2, . . ., Fk be a
sequence recursively defined with the following initial conditions:

∆1 = 0, ∆2 = deg(F1)− deg(F2) + 1
b1 = 1, b2 = Hcoef(F2)
ψ1 = 1, ψ2 = (b2)

∆2−1

and
β1 = β2 = 1 and β3 = (−1)

∆2

and the following recurrences:

• For i = 3, . . ., k,

Fi =
PRemainder(Fi−2, Fi−1)

βi

∆i = deg(Fi−1)− deg(Fi) + 1

bi = Hcoef(Fi)

ψi = ψi−1

(
bi
ψi−1

)∆i−1

.
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• For i = 3, . . ., k − 1,

βi+1 = (−1)
∆i(ψi−1)

∆i−1 bi−1.

• PRemainder(Fk−1, Fk) = 0.

The sequence of polynomials 〈F1, F2, . . ., Fk〉 is called a subresultant
polynomial remainder sequence (or briefly, SPRS ).

The above definition is somewhat incomplete, since it is not immediately
seen that ψ’s are in the domain S or, equivalently, that the sequence β is
well-defined. Subsequently, we shall study the well-definedness of β, define
the notion of subresultant , and show various relations between the SPRS
and the subresultant chain.

The sequence SPRS occupies a special position in computational alge-
bra, since it allows computation of polynomial remainder sequences without
excessive growth in the size of the coefficients, or unduly high inefficiency.

The coefficients of the polynomials involved in EPRS are usually very
large. In the computation of PPRS, on the other hand, we have to compute
the contents of the polynomials (using the extended Euclidean algorithm),
which makes the algorithms highly inefficient. We will see that the subre-
sultant PRS seeks a middle ground between these two extreme cases.

7.7 Subresultants

We now define the notion of subresultants and then pursue a detailed mo-
tivation for this definition.

Definition 7.7.1 (Subresultant) Let S be a commutative ring with iden-
tity and let A(x), B(x) ∈ S[x] be two univariate polynomials with respec-
tive positive degrees m and n:

A(x) = amx
m + am−1x

m−1 + · · ·+ a0, deg(A) = m > 0,

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b0, deg(B) = n > 0,

and let

λ = min(m,n) and µ = max(m,n)− 1.

For all i in the range (0 ≤ i < λ), the ith subresultant of A and B is
defined as follows:

1. The 0th subresultant is simply the resultant of the polynomials A and
B. Thus



Section 7.7 Subresultants 251

SubRes0(A, B) = Resultant(A, B)

=

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

am · · · a1 a0 xn−1A(x)

. . .
. . .

. . .
. . .

...
am · · · a1 a0 xA(x)

am · · · a1 A(x)

bn · · · b1 b0 xm−1B(x)

. . .
. . .

. . .
. . .

...
bm · · · b1 b0 xB(x)

bm · · · b1 B(x)

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

9
>>>=
>>>;

n rows

9
>>>=
>>>;

m rows

2. For all i, (0 < i < λ), the ith subresultant is:

SubResi(A,B)

=

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

am · · · a1 a0 xn−i−1A(x)
. . .

. . .
. . .

. . .
...

am · · · ai+1 ai xA(x)
am · · · ai+1 A(x)

bn · · · b1 b0 xm−i−1B(x)
. . .

. . .
. . .

. . .
...

bm · · · bi+1 bi xB(x)
bm · · · bi+1 B(x)

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

9
>>>=
>>>;

(n − i) rows

9
>>>=
>>>;

(m − i) rows

The matrix in the above definition is obtained from the previous one
by removing the top i rows that include the coefficients of A and the
top i rows that include the coefficients of B. The first i columns now
contain only zeroes, and they are removed. Finally, the i columns
preceding the last column are also removed. Thus, in total, 2i rows
and 2i columns are removed to yield a square matrix.

Using elementary column transforms we also see that

SubResi(A, B)

=

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

am · · · a1 a0 0
. . .

. . .
. . .

. . .
...

am · · · ai+1 ai

Pi−1
j=0 xj+1aj

am · · · ai+1

Pi
j=0 xjaj

bn · · · b1 b0 0

. . .
. . .

. . .
. . .

...

bm · · · bi+1 bi

Pi−1
j=0 xj+1bj

bm · · · bi+1

Pi
j=0 xjbj

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

9
>>>>=
>>>>;

(n − i) rows

9
>>>>=
>>>>;

(m − i) rows
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= DetPol

„
xn−i−1A, . . . , xA,A, xm−i−1B, . . . , xB,B

«
.

That is, if

Mi =




am · · · a0

. . .
. . .

am · · · a0

bn · · · b0
. . .

. . .

bn · · · b0




︸ ︷︷ ︸
m+n−i





(n− i)
rows





(m− i)
rows

i.e., the matrix obtained from the Sylvester matrix of A and B, by deleting

1. the first i rows corresponding to A (the upper half),

2. the first i rows corresponding to B (the lower half), and

3. the first i columns, then

SubResi(A,B) = DetPol (Mi)

= det
(
M

(m+n−2i)
i

)
xi + · · ·+ det

(
M

(m+n−i)
i

)
.

Thus deg(SubResi) ≤ i, with equality, if M
(m+n−2i)
i is nonsingular. The

nominal head coefficient of the SubResi, M
(m+n−2i)
i , will be referred to as

the ith principal subresultant coefficient (of A and B):

PSCi(A,B) = NHcoef
(
SubResi(A,B)

)
= det

(
M

(m+n−2i)
i

)
.

Let S be a commutative ring with identity and let A(x), B(x) ∈ S[x] be
two univariate polynomials with respective positive degrees m and n and
let

λ = min(m,n) and µ = max(m,n)− 1,
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as before. We extend the definition of the ith subresultant of A and B, for
all i (0 ≤ i < µ) as follows:

• Case 1: (0 ≤ i < λ).

SubResi(A,B)

=

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

am · · · a1 a0 xn−i−1A(x)
. . .

. . .
. . .

. . .
...

am · · · ai+1 ai xA(x)
am · · · ai+1 A(x)

bn · · · b1 b0 xm−i−1B(x)

. . .
. . .

. . .
. . .

...
bn · · · bi+1 bi xB(x)

bn · · · bi+1 B(x)

˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛

9
>>>=
>>>;

(n − i) rows

9
>>>=
>>>;

(m − i) rows

• Case 2: (i = λ).

Since we are assuming that λ < µ, then |m− n| − 1 > 0, so we have
either m > n + 1 or n > m + 1, with λ = n or λ = m, respectively.
The two cases are symmetrical. If λ = n, then

SubResλ(A, B)

= det

2
6664

bn · · · xm−n−1B(x)

. . .
...

bn xB(x)
B(x)

3
7775

9
>>>=
>>>;

(m − n) rows

Hence

SubResλ(A,B) = bm−n−1
n ·B(x)

= Hcoef(B)m−n−1 · B.

In the other case, if λ = m, then

SubResλ(A,B) = Hcoef(A)n−m−1 · A.

Alternatively, we may write

SubResλ(A,B) = Hcoef(C)|m−n|−1 · C,
where

C =




A, if deg(B) > deg(A) + 1;
B, if deg(A) > deg(B) + 1;
undefined, otherwise.

• Case 3: (λ < i < µ).

SubResi(A,B) = 0.

Note that in all cases where SubResi is defined,

deg(SubResi) ≤ i.
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Depending on whether the inequality in the above relation is strict, we
classify the SubResi as defective or regular, respectively. More formally,
we have the following:

Definition 7.7.2 (Defective and Regular Subresultants) A subresul-
tant Si, (0 ≤ i ≤ µ) is said to be defective of degree r if

r = deg(Si) < i;

otherwise, Si is said to be regular .

Sometimes it will be useful to use the following alternative definition of
the subresultants in terms of the determinant polynomials .

Proposition 7.7.1 Let S be a commutative ring with identity and let
A(x), B(x) ∈ S[x] be two univariate polynomials with respective positive
degrees m and n, and let

λ = min(m,n) and µ = max(m,n)− 1,

as before. Then the ith subresultant of A and B, for all i (0 ≤ i < µ), is
given by:

• Case 1: (0 ≤ i < λ).

SubResi(A,B) = DetPol
(
xn−i−1A, . . . , xA,A, xm−i−1B, . . . , xB,B

)
.

• Case 2: (i = λ).

SubResλ(A,B)

=





DetPol
(
xn−m−1A, . . . , xA,A

)

= Hcoef(A)n−m−1 · A, if deg(B) > deg(A) + 1;

DetPol
(
xm−n−1B, . . . , xB,B

)

= Hcoef(B)m−n−1 · A, if deg(A) > deg(B) + 1.

• Case 3: (λ < i < µ).

SubResi(A,B) = 0.

Lemma 7.7.2 Let S be a commutative ring with identity, and A(x) and
B(x) be univariate polynomials of respective positive degrees m and n with
coefficients in the ring S, and let

λ = min(m,n) and µ = max(m,n)− 1,
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as before. Then for all i, (0 ≤ i < µ)

SubResi(A,B) = (−1)
(m−i)(n−i)

SubResi(B,A).

proof.
There are three cases to consider:

1. For all 0 ≤ i < λ

Matrix
(
xm−i−1B, . . . , xB, B, xn−i−1A, . . . , xA, A

)

can be obtained from the matrix

Matrix
(
xn−i−1A, . . . , xA, A, xm−i−1A, . . . , xB, B

)

by (m− i)(n− i) row transpositions.

2. For i = λ then (m− n)(n− n) = 0 and

SubResi(A,B) = SubResi(B,A).

3. Finally, for all λ < i < µ,

SubResi(A,B) = SubResi(B,A) = 0.

Lemma 7.7.3 Let S be a commutative ring with identity, and A(x), B(x)
univariate polynomials of respective positive degrees m and n with coeffi-
cients in the ring S; m ≥ n > 0. Let

λ = min(m,n) = n and δ = m− n+ 1.

Then

bδn SubResλ−1(A,B) = bδn DetPol(A, xm−nB, xm−n−1B, . . . , xB, B)

= (−1)
m−n+1

DetPol(xm−nB, . . . , xB, B, bδnA)

= (−1)
δ
bδn PRemainder(A,B).

Specifically, if S is an integral domain, then

PRemainder(A,B) = (−1)m−n+1 SubResn−1(A,B).
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7.7.1 Subresultants and Common Divisors

Lemma 7.7.4 Let S be a commutative ring with identity, and A(x) and
B(x) ∈ S[x] be univariate polynomials of respective positive degrees m and
n with coefficients in the ring S. Then there exist polynomials Ti(x) and
Ui(x) ∈ S[x] such that for all 0 ≤ i < max(m,n)− 1

A(x) · Ti(x) +B(x) · Ui(x) = SubResi(A,B),

where

deg(Ti) < deg(B)− i = n− i and deg(Ui) < deg(A)− i = m− i.

proof.
Clearly, the lemma holds trivially for all min(m,n) ≤ i < max(m,n) − 1.
Hence, we deal with the case: 0 ≤ i < λ = min(m,n).

Let us expand the following matrix (the ith Sylvester matrix) about the
last column:

Pi =

2
6666666666666664

am · · · a1 a0 xn−i−1A(x)

. . .
. . .

. . .
. . .

...
am · · · ai+1 ai xA(x)

am · · · ai+1 A(x)

bn · · · b1 b0 xm−i−1B(x)
. . .

. . .
. . .

. . .
...

bm · · · bi+1 bi xB(x)
bm · · · bi+1 B(x)

3
7777777777777775

9
>>>=
>>>;

(n − i) rows

9
>>>=
>>>;

(m − i) rows

Thus,

SubResi(A, B)

= xn−i−1A(x) · P1,m+n−2i + · · · + A(x) · Pn−i,m+n−2i

+ xm−i−1B(x) · Pn−i+1,m+n−2i + · · · + B(x) · Pm+n−2i,m+n−2i

= A(x)
“
P1,m+n−2ix

n−i−1 + · · · + Pn−i,m+n−2i

”

+ B(x)
“
Pn−i+1,m+n−2ix

m−i−1 + · · · + Pm+n−2i,m+n−2i

”

= A(x) · Ti(x) + B(x) · Ui(x);

the coefficients of Ti(x) and Ui(x) are the cofactors of the last column of
Pi and (thus) ring elements in S:

deg(Ti) < deg(B)− i = n− i and deg(Ui) < deg(A)− i = m− i.
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Lemma 7.7.5 Let A(x) and B(x) be univariate polynomials of respective
positive degrees m and n, over an integral domain S. Further assume that
there exist polynomials Ti(x) and Ui(x) (not all zero) over S such that for
all 0 ≤ i < max(m,n)− 1

A(x) · Ti(x) +B(x) · Ui(x) = 0,

with

deg(Ti) < n− i and deg(Ui) < m− i.

Then

SubResi(A,B) = 0.

proof.
The proof is a simple generalization of the corresponding lemma regarding
resultants.

Again, the lemma holds trivially for all min(m,n) ≤ i < max(m,n)−1.
Hence, we deal with the case: 0 ≤ i < λ = min(m,n).

Without loss of generality, we may assume the existence of polynomials

Ti(x) (deg(Ti) = n− i− 1) and Ui(x)(deg(Ui) < m− i− 1)

satisfying the assertion in the statement of the lemma:

Ti(x) = tn−i−1 x
n−i−1 + tn−i−2 x

n−i−2 + · · ·+ t0,

Ui(x) = um−i−1 x
m−i−1 + um−i−2 x

m−i−2 + · · ·+ u0,

not all tj ’s and uj’s zero.

Now, expanding the equation

A(x) · Ti(x) +B(x) · Ui(x) = 0,

i.e.,

(
amx

m + · · ·+ a0

) (
tn−i−1x

n−i−1 + · · ·+ t0

)

+
(
bnx

n + · · ·+ b0

) (
um−i−1x

m−i−1 + · · ·+ u0

)
= 0
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and equating the powers of equal degree, we get the following system of
(m+ n− i) linear equations in (m+ n− 2i) variables:

tn−i−1 · am + um−i−1 · bn = 0
tn−i−1 · am−1 + tn−i−2 · am + um−i−1 · bn−1 + um−i−2 · bn = 0

...
ti+1 · a0 + · · · + t0 · ai+1 + ui+1 · b0 + · · · + u0 · bi+1 = 0

ti · a0 + · · · + t0 · ai + ui · b0 + · · · + u0 · bi = 0
ti−1 · a0 + · · · + t0 · ai−1 + ui−1 · b0 + · · · + u0 · bi−1 = 0

...
t1 · a0 + t0 · a1 + u1 · b0 + u0 · b1 = 0

t0 · a0 + u0 · b0 = 0.

(7.2)

Next, multiplying the last i equations by xi, xi−1, . . ., x and 1, in that
order, and adding them together, we get a new system of (m+n−2i) linear
equations in (m+ n− 2i) variables (over S[x]):

tn−i−1 · am + um−i−1 · bn = 0

tn−i−1 · am−1 + tn−i−2 · am + um−i−1 · bn−1 + um−i−2 · bn = 0

...

ti+1 · a0 + · · ·+ t0 · ai+1 + ui+1 · b0 + · · ·+ u0 · bi+1 = 0

tix
i · a0 + · · ·+ t1x ·

i−1∑

j=0

xjaj + t0 ·
i∑

j=0

xjaj

+ uix
i · b0 + · · ·+ u1x ·

i−1∑

j=0

xjbj + u0 ·
i∑

j=0

xjbj = 0.

But since the above system of equations has a nontrivial solution, we
immediately conclude that the corresponding matrix has a determinant
equal to zero, i.e.,

det
(
SubResi(A,B)

)
= 0.

Lemma 7.7.6 Let A(x) and B(x), as before, be univariate polynomials of
respective positive degrees m and n, over an integral domain S. Then, for
all 0 ≤ i < max(m,n) − 1, the ith principal subresultant coefficient of A
and B vanishes, i.e.,

PSCi(A,B) = 0

if and only if there exist polynomials Ti(x), Ui(x) and Ci(x) (not all zero)
over S such that

A(x) · Ti(x) +B(x) · Ui(x) = Ci(x), (7.3)
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where

deg(Ti) < n− i, deg(Ui) < m− i, and deg(Ci) < i.

proof.
As before, the lemma holds trivially for all

min(m,n) ≤ i < max(m,n)− 1.

(⇐) Note that we can write Ti(x), Ui(x) and Ci(x) symbolically as

Ti(x) = tn−i−1 x
n−i−1 + tn−i−2 x

n−i−2 + · · ·+ t0,

Ui(x) = um−i−1 x
m−i−1 + um−i−2 x

m−i−2 + · · ·+ u0,

Ci(x) = ci−1 x
i−1 + ci−2 x

i−2 + · · ·+ c0,

where by assumption not all tj ’s, uj’s and cj ’s are zero.
Now expanding equation (7.3), we get the following system of (m+n−i)

linear equations in (m+ n− i) variables:

tn−i−1 · am + um−i−1 · bn = 0
tn−i−1 · am−1 + tn−i−2 · am + um−i−1 · bn−1 + um−i−2 · bn = 0

...
ti+1 · a0 + · · · + t0 · ai+1 + ui+1 · b0 + · · · + u0 · bi+1 = 0

ti · a0 + · · · + t0 · ai + ui · b0 + · · · + u0 · bi = 0
ti−1 · a0 + · · · + t0 · ai−1 + ui−1 · b0 + · · · + u0 · bi−1 − ci−1 = 0

...
t1 · a0 + t0 · a1 + u1 · b0 + u0 · b1 − c1 = 0

t0 · a0 + u0 · b0 − c0 = 0.

(7.4)

Now consider the matrix M associated with the above set of linear
equations:

MT

=

2
66666666666666666666664

am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

. . .
. . .

. . .
. . .

am am−1 · · · ai−1 · · · a0

bn bn−1 · · · · · · b0

bn bn−1 · · · · · · b0

. . .
. . .

. . .
. . .

. . .

bn bn−1 · · · bi−1 · · · b0

−1
−1

. . .

−1

3
77777777777777777777775

9
>>>=
>>>;

(n − i)
rows

9
>>>=
>>>;

(m − i)
rows

9
>>>=
>>>;

i
rows
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Since the system of equations (7.4) has a nontrivial solution, we see that
det(MT ) = 0. But since the (m+n−2i)×(m+n−2i) principal submatrix

of M is same as M
(m+n−2i)
i , where

Mi =




am · · · a0

. . .
. . .

am · · · a0

bn · · · b0
. . .

. . .

bn · · · b0




︸ ︷︷ ︸
m+n−i





(n− i)
rows





(m− i)
rows

,

we have

det(MT ) = (−1)i det
(
M

(m+n−2i)
i

)
= (−1)i PSCi(A,B) = 0.

Here, we have used the fact that:

SubResi(A,B) = DetPol (Mi)

= det
(
M

(m+n−2i)
i

)
xi + · · ·+ det

(
M

(m+n−i)
i

)
.

(⇒) In the forward direction, we note that, if PSCi(A,B) = 0, then

det(MT ) = 0,

and that the system of linear equations (7.4) has a nontrivial solution, i.e.,
condition (7.3) of the lemma holds.

Lemma 7.7.7 Let S be a unique factorization domain with identity, and
A(x) and B(x) be univariate polynomials of positive degrees m and n, re-
spectively, with coefficients in S. Then, for all 0 ≤ i < min(m,n):

A(x) · Ti(x) +B(x) · Ui(x) = 0,

where deg(Ti) < n− i and deg(Ui) < m− i, if and only if A(x) and B(x)
have a common divisor of degree > i.
proof.
Let D(x) be a common divisor of A(x) and B(x) and of highest degree
among all such. Then A(x) and B(x) can be expressed as follows:

A(x) = U ′(x) D(x) and B(x) = T ′(x) D(x),

where, by assumption, U ′(x) and T ′(x) do not have a nonconstant common
divisor. Also, note that deg(U ′) = m− deg(D) and deg(T ′) = n− deg(D).
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(⇐) If we assume that deg(D) > i, then choose Ti = T ′ and Ui = −U ′.
Thus

A(x) · T ′(x) −B(x) · U ′(x) = 0,

where deg(T ′) < n− i and deg(−U ′) < m− i.
(⇒) In the other direction, since

A(x) · Ti(x) +B(x) · Ui(x) = 0,

we also have

U ′(x) · Ti(x) + T ′(x) · Ui(x) = 0 or U ′(x) · Ti(x) = −T ′(x) · Ui(x).

Now, since U ′(x) and T ′(x) do not have a nonconstant common divisor,
every divisor of U ′(x) must be an associate of a divisor of Ui(x), i.e.,

deg(U ′) ≤ deg(Ui) < m− i.

In other words,

deg(U ′) = m− deg(D) < m− i ⇒ deg(D) > i.

Lemma 7.7.8 Let S be a unique factorization domain with identity, and
A(x) and B(x) be univariate polynomials of positive degrees m and n, re-
spectively, with coefficients in S. Then, for all 0 ≤ i < min(m,n), the
following three statements are equivalent:

1. A(x) and B(x) have a common divisor of degree > i;

2.
(
∀ j ≤ i

) [
SubResj(A,B) = 0

]
;

3.
(
∀ j ≤ i

) [
PSCj(A,B) = 0

]
.

proof.
[(1)⇒ (2)]
Since A and B have a common divisor of degree > i, (i.e., A and B have a
common divisor of degree > j, for all j ≤ i), we have, for all j ≤ i,

A(x) · Tj(x) +B(x) · Uj(x) = 0,

where deg(Tj) < n− j and deg(Uj) < m− i

⇒
(
∀ j ≤ i

) [
SubResj(A,B) = 0

]
. (Lemma 7.7.5)

[(2)⇒ (3)]
This holds trivially.
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[(3)⇒ (1)]
The proof is by induction on all j ≤ i.

• Base Case: Clearly, PSC0(A,B) = 0 implies that Resultant(A,B) =
0 and that A and B have a common divisor of degree > 0

• Induction Case: Assume that the inductive hypothesis holds for
j − 1, and we show the case for j > 0:

PSCj(A,B) = 0
and A and B have a common zero of degree > j − 1

⇒
(
∃ Cj(x), deg(Cj) < j

) [
A(x) · Tj(x) +B(x) · Uj(x) = Cj(x)

]

deg(Tj) < n− j, deg(Uj) < m− j

(But since A and B are both divisible by a polynomial of degree ≥ j,
so is the polynomial Cj ;thus, implying that Cj(x) = 0.)

⇒ A(x) · Tj(x) +B(x) · Uj(x) = 0
deg(Tj) < n− j, deg(Uj) < m− j

⇒ A and B have a common divisor of degree > j.

Corollary 7.7.9 Let S be a unique factorization domain with identity,
and A(x) and B(x) be univariate polynomials of positive degrees m and n,
respectively, with coefficients in S. Then, for all 0 < i ≤ min(m,n), the
following three statements are equivalent:

1. A(x) and B(x) have a common divisor of degree = i;

2.
(
∀ j < i

) [
SubResj(A,B) = 0

]
∧ SubResi(A,B) 6= 0;

3.
(
∀ j < i

) [
PSCj(A,B) = 0

]
∧ PSCi(A,B) 6= 0.

7.8 Homomorphisms and Subresultants

Let S and S∗ be commutative rings with identities, and φ:S → S∗ be a ring
homomorphism of S into S∗. Note that φ induces a ring homomorphism
of S[x] into S∗[x], also denoted by φ, as follows:

φ : S[X ]→ S∗[x]

: amx
m + am−1x

m−1 + · · ·+ a0

7→ φ(am)xm + φ(am−1)x
m−1 + · · ·+ φ(a0).
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Lemma 7.8.1 Let S be a commutative ring with identity, and A(x) and
B(x) be univariate polynomials of respective positive degrees m and n with
coefficients in the ring S, as before.

A(x) = am xm + am−1 x
m−1 + · · ·+ a0, and

B(x) = bn x
n + bn−1 x

n−1 · · ·+ b0,

where
deg(A) = m > 0 and deg(B) = n > 0.

If
deg(φ(A)) = m and deg(φ(B)) = k, (0 ≤ k ≤ n),

then for all 0 ≤ i < max(m, k)− 1

φ(SubResi(A,B)) = φ(am)n−kSubResi(φ(A), φ(B)).

proof.
Let

µ = max(m,n)− 1, λ = min(m,n)

µ′ = max(m, k)− 1, λ′ = min(m, k).

Clearly λ′ ≤ λ.

• Case A: For i (0 ≤ i < λ′), and thus i < λ.

φ(SubResi(A,B))

= DetPol

(
xn−i−1φ(A), . . . , xφ(A), φ(A),

xm−i−1φ(B), . . . , xφ(B), φ(B)

)

= φ(am)
n−k

DetPol

(
xk−i−1φ(A), . . . , xφ(A), φ(A),

xm−i−1φ(B), . . . , xφ(B), φ(B)

)

= φ(am)
n−k

SubResi(φ(A), φ(B)).

• Case B: For i = λ′ there are two cases to consider:

– (Subcase I) λ′ = k, and thus λ′ < λ, and i < λ.

φ(SubResi(A,B))

= DetPol

(
xn−k−1φ(A), . . . , xφ(A), φ(A),
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xm−k−1φ(B), . . . , xφ(B), φ(B)

)

= φ(am)
n−k

DetPol

(
xm−k−1φ(B), . . . , xφ(B), φ(B)

)

= φ(am)n−k SubResi(φ(A), φ(B)).

Note that deg(φ(A)) > deg(φ(B)) + 1.

– (Subcase II) λ′ = m, and so λ′ = λ and deg(A) < deg(B) + 1.

φ(SubResi(A,B))

= DetPol

(
xn−m−1φ(A), . . . , xφ(A), φ(A)

)

= φ(am)
n−k

DetPol

(
xk−m−1φ(A), . . . , xφ(A), φ(A)

)

= φ(am)
n−k

SubResi(φ(A), φ(B)).

• Case C: For all i (λ′ < i < µ′).

φ(SubResi(A,B))

=





DetPol

(
xn−i−1φ(A), . . . , xφ(A), φ(A),

xm−i−1φ(B), . . . , xφ(B), φ(B)

)
, if i < λ

DetPol(xm−n−1φ(B), . . . , xφ(B), φ(B)), if i = n = λ

φ(0), if λ < i < µ

= 0

= φ(am)n−k SubResi(φ(A), φ(B)).

Corollary 7.8.2 Let S be a commutative ring with identity, and A(x) and
B(x) be univariate polynomials of respective positive degrees m and n with
coefficients in the ring S, as before.

A(x) = am xm + am−1 x
m−1 + · · ·+ a0, and

B(x) = bn x
n + bn−1 x

n−1 + · · ·+ b0.

Let

deg(A) = m > 0,

deg(B) = n > 0,

deg(φ(A)) = l, (0 < l ≤ m) and

deg(φ(B)) = k, (0 < k ≤ n);

then for all 0 ≤ i < max(l, k)− 1
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1. if l = m and k = n, then

φ(SubResi(A,B)) = SubResi(φ(A), φ(B));

2. if l < m and k = n, then

φ(SubResi(A,B)) = φ(bn)m−l · SubResi(φ(A), φ(B));

3. if l = m and k < n, then

φ(SubResi(A,B)) = φ(am)
n−k · SubResi(φ(A), φ(B));

4. if l < m and k < n, then

φ(SubResi(A,B)) = 0.

proof.
We will show case (2). Case (3) is symmetrical, and the other cases are
immediate.

SubResi(A,B) = (−1)
(m−i)(n−i)

SubResi(B,A)

φ(SubResi(B,A)) = φ(bn)
m−l

SubResi(φ(B), φ(A))

SubResi(φ(B), φ(A)) = (−1)
(m−i)(n−i)

SubResi(φ(A), φ(B))

and therefore

φ(SubResi(A,B))

= (−1)(m−i)(n−i) φ(bn)m−l (−1)(m−i)(n−i) SubResi(φ(A), φ(B))

= φ(bn)m−l SubResi(φ(A), φ(B)).

7.9 Subresultant Chain

Definition 7.9.1 (Subresultant Chain and PSC Chain) Let S be a
commutative ring with identity and let A(x), B(x) ∈ S[x] be two univariate
polynomials with respective positive degrees n1 and n2, n1 ≥ n2:

A(x) = an1x
n1 + an1−1x

n1−1 + · · ·+ a0, deg(A) = n1 > 0, and

B(x) = bn2x
n2 + bn2−1x

n2−1 + · · ·+ b0, deg(B) = n2 > 0.

Let

n =

{
n1 − 1, if n1 > n2,
n2, otherwise.
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The sequence of univariate polynomials in S[x]

〈
Sn+1 = A,

Sn = B,

Sn−1 = SubResn−1(A,B),

...

S0 = SubRes0(A,B)

〉

is said to be the subresultant chain of A and B
The sequence of ring elements

〈
PSCn+1 = 1,

PSCn = NHcoef(Sn),

PSCn−1 = NHcoef(Sn−1),

...

PSC1 = NHcoef(S1),

PSC0 = NHcoef(S0)

〉

is said to be the principal subresultant coefficient chain of A and B.
By NHcoef, here, we denote the “nominal head coefficient” of a poly-

nomial, i.e., the coefficient associated with the highest possible degree the
polynomial may have — the so-called “nominal degree.”

Definition 7.9.2 (Defective and Regular Subresultant Chain) A
subresultant chain is said to be defective if any of its members is defective,
i.e., for some (0 ≤ i ≤ µ)

r = deg(Si) < i;

otherwise it is regular .

In order to understand the relation between subresultant chain and
PRS’s (polynomial remainder sequences), particularly the subresultant PRS,
we need to explore the gap structure of a subresultant chain, which occurs
when the subresultant chain is defective. This will be formally described
by the subresultant chain theorem in the next section. However, in this
section, we will simply state the theorem, provide simple intuitions behind
the theorem and then go on to prove some important results about the
relations that exist between subresultant chain and PRS’s.
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Case 1 Case 2

deg(A) > deg(B) deg(A) = deg(B)

Figure 7.1: Subresultant chains and their gap structures.

In Figure 7.1, we display the gap structure of a subresultant chain by
diagrams in which each rectangle of width (i+ 1) denotes a polynomial of
degree i. In each case, the top-most rectangle denotes the polynomial A
of degree n1 and the one below it denotes the polynomial B of degree n2.
Loos [134] attributes this pictorial representation to Habicht.

We begin with the following definition of the block structures of a sub-
resultant chain:

Definition 7.9.3 (Blocks of a Subresultant Chain) A subresultant
chain can be divided into blocks of (consecutive) subresultants such that if

〈
Si, Si−1, . . . , Sj+1, Sj

〉
, n+ 1 ≥ i ≥ j ≥ 0,

is a block, then, we have the following:

1. Either j = 0 and Si = Si−1 = · · · = Sj+1 = Sj = 0,
(This is the last block in which each subresultant is zero; this is the
so-called zero block . Note that, in this case, Si−1 6= 0. Further, there
can only be at most one such block.)

2. Or Si 6= 0, Sj 6= 0, Si ∼ Sj and Si−1 = · · · = Sj+1 = 0.
(This is a so-called nonzero block . In this case, Sj is always regular
and if i > j, then Si is defective.)
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Thus, every defective subresultant Si of degree r corresponds to a unique
regular subresultant Sj , j = r, both belonging to the same nonzero block,
and are similar. As an immediate consequence of the subresultant chain
theorem, we will see that any subresultant chain can be partitioned into a
sequence of blocks, of which possibly the last one may be a zero block. It
then follows that there cannot be two consecutive nonzero defective subre-
sultants.

We write the nonzero blocks of a subresultant chain as follows:
〈
S0, S1, . . . , Sl

〉
.

The first subresultant in the ith nonzero block will be called the top element,
S⇑(i) (possibly, defective) and the last subresultant, the bottom element,
S⇓(i) (always, regular). The PSC, R⇓(i) can be defined, similarly.

Let

d(i) = deg(S⇓(i))

e(i) = deg(S⇓(i−1))− 1 = d(i− 1)− 1

δi+1 = deg(S⇓(i−1))− deg(S⇓(i)) + 1

= d(i− 1)− d(i) + 1.

At this point, it is useful to state the subresultant chain theorem and
recast it in terms of our notations in the context of the block structures:

Theorem 7.9.1 (Subresultant Chain Theorem) Let S be an integral
domain and let 〈

Sn+1, Sn, Sn−1, . . . , S0

〉

be a subresultant chain of Sn+1 and Sn in S[x] (deg(Sn+1) ≥ deg(Sn)).

1. For j = 1, . . ., n, if Sj+1 and Sj are both regular, then

(−Rj+1)
2
Sj−1 = PRemainder (Sj+1, Sj) .

2. For j = 1, . . ., n, if Sj+1 is regular and Sj is defective of degree r
(r < j), then

Sj−1 = Sj−2 = · · · = Sr+1 = 0,

(Rj+1)
j−r Sr = Hcoef (Sj)

j−r Sj , r ≥ 0,

(−Rj+1)
j−r+2

Sr−1 = PRemainder (Sj+1, Sj) , r ≥ 1.

The intuition behind this theorem can be seen from the pictorial de-
scriptions of the subresultants given in Figure 7.2.

If we could write Sj+1 and Sj symbolically as polynomials of degrees
(j + 1) and j respectively, then the kth subresultant (symbolically) would
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be given by the determinant polynomial of a matrix Mk whose top (j − k)
rows would come from the coefficients of Sj+1 and the bottom (j + 1− k)
rows would come from the coefficients of Sj . However, in order to obtain
the kth subresultant (numerically) of the polynomials Sj+1 and Sj , we have
to eliminate the last (j − r) rows corresponding to Sj+1 from the Mk (in
the upper half) and force the entries corresponding to (j − r) higher-order
coefficients of Sj to vanish in Mk (in the lower half).

1. If r < k < j, then j − r exceeds j − k and the matrix Mk would have
0’s on the main diagonal, thus making its determinant polynomial
equal 0:

Sj−1 = Sj−2 = · · · = Sr+1 = 0.

2. If k = r, then j − r equals j − k and the main diagonal of Mk would
have nonzero head coefficients of Sj+1 and Sj and its determinant
polynomial would be a polynomial similar to Sj :

Sr ∼ Sj .

3. If k = r − 1, then evaluating the determinant polynomial of Mk, we
see that

Sr−1 ∼ DetPol(Sj+1, x
j+1−rSj , . . . , Sj)

∼ PRemainder(Sj+1, Sj).

However, one caveat with the above line of reasoning is that it uses the
false premise

φ(SubResk(A,B)) = SubResk(φ(A), φ(B)).

for an evaluation homomorphism φ. The falsity of such a statement has
been indicated in Corollary 7.8.2. A more careful and rather technical proof
for the subresultant chain theorem is postponed.

Corollary 7.9.2 Let S be an integral domain and let

〈
S0, S1, . . . , Sl

〉

be a sequence of nonzero blocks of a subresultant chain of Sn+1 and Sn in
S[x] (deg(Sn+1) ≥ deg(Sn)).

Then

(
R⇓(i−1)

)δi+1−2
S⇓(i) = Hcoef

(
S⇑(i)

)δi+1−2
S⇑(i),

(
−R⇓(i−1)

)δi+1
S⇑(i+1) = PRemainder

(
S⇓(i−1), S⇑(i)

)
.
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Case 3

Case 2

Case 1

j − r terms of Sj = 0

j − r terms of Sj = 0

j − r + 2

j − r + 1

j − r + 1

j − r

j − k + 1

j − k

j − r terms of Sj = 0

Figure 7.2: Intuitive arguments for the subresultant chain theorem.
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proof.
Simply observe that if we let

Sj+1 = S⇓(i−1) and Sj = S⇑(i),

then
Sr = S⇓(i) and Sr−1 = S⇑(i+1),

and
Rj+1 = R⇓(i−1) and Rj = 0,

Rr = R⇓(i) and Rr−1 = 0.

Also note that

j − r = d(i− 1)− d(i)− 1 = δi+1 − 2.

Hence, we see that

S⇓(i) ∼ S⇑(i) and

S⇑(i+1) ∼ PRemainder
(
S⇓(i−1), S⇑(i)

)

⇒
S⇓(i+1) ∼ PRemainder

(
S⇓(i−1), S⇓(i)

)
.

The corollary below follows:

Corollary 7.9.3 Let S be an integral domain, and let F1(x), F2(x) ∈ S[x]
(deg(F1) ≥ deg(F2)).

Now, consider their polynomial remainder sequence: F1, F2, . . ., Fk

and their subresultant chain, with the following sequence of nonzero blocks:
〈
S0, S1, . . . , Sl

〉
.

Then the elements of the polynomial remainder sequence are similar to
the regular subresultants, in their respective order, i.e.,

1. k = l + 1.

2. S⇓(i) ∼ Fi+1.

In fact, a much stronger result can be shown. Recall the definition of a
subresultant polynomial remainder sequence of two univariate polynomials
F1 and F2 (deg(F1) ≥ deg(F2)) over a UFD, S:

∆1 = 0, ∆2 = deg(F1)− deg(F2) + 1
b1 = 1, b2 = Hcoef(F2)
ψ1 = 1, ψ2 = (b2)

∆2−1

and
β1 = β2 = 1 and β3 = (−1)

∆2

Furthermore,
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• For i = 3, . . ., k,

Fi =
PRemainder(Fi−2, Fi−1)

βi

∆i = deg(Fi−1)− deg(Fi) + 1

bi = Hcoef(Fi)

ψi = ψi−1

(
bi
ψi−1

)∆i−1

.

• For i = 3, . . ., k − 1,

βi+1 = (−1)
∆i(ψi−1)

∆i−1 bi−1.

Theorem 7.9.4 Let S be a UFD, and let F1(x), F2(x) ∈ S[x] with deg(F1) ≥
deg(F2).

Now, consider their subresultant polynomial remainder sequence: F1,
F2, . . ., Fk and their subresultant chain, with the following sequence of
nonzero blocks: 〈

S0, S1, . . . , Sl

〉
.

Then

1. Fi+1 = S⇑(i), i = 0, . . ., k − 1.

2. ψi+1 = R⇓(i), i = 0, . . ., k − 1.

proof.
First, as a consequence of Corollary 7.9.3, we see that

∆i = δi, i = 0, . . . , k.

The rest of the proof is by induction.
Claim 1 :
(1) Assume that both (1) and (2) hold for all j = 0, . . ., i, (i ≥ 2), we
shall prove (1) for i+ 1.

βi+2 Fi+2

= PRemainder (Fi, Fi+1)

= PRemainder
(
S⇑(i−1), S⇑(i)

)

= PRemainder

((
R⇓(i−2)

Hcoef(S⇑(i−1))

)∆i−2

S⇓(i−1), S⇑(i)

)

=

(
R⇓(i−2)

Hcoef(S⇑(i−1))

)∆i−2

PRemainder
(
S⇓(i−1), S⇑(i)

)



Section 7.9 Subresultant Chain 273

=

(
R⇓(i−2)

Hcoef(S⇑(i−1))

)∆i−2 (
−R⇓(i−1)

)∆i+1
S⇑(i+1)

= (−1)∆i+1

(
ψi−1

Hcoef(Fi)

)∆i−2

(ψi)
∆i+1 S⇑(i+1)

= (−1)∆i+1

(
ψi−1

bi

)∆i−2

(ψi)
∆i+1 S⇑(i+1)

= (−1)∆i+1 (ψi)
∆i+1−1 ψi

(
ψi−1

bi

)∆i−2

S⇑(i+1)

= (−1)∆i+1 (ψi)
∆i+1−1

bi S⇑(i+1)

= βi+2 S⇑(i+1).

Since we are working over a UFD, we can clear βi+2 from both sides to
get

Fi+2 = S⇑(i+1).

Claim 2 :
(2) Assume that (1) holds all j = 0, . . ., i and (2) holds for all j = 0, . . .,
i− 1, (i ≥ 1), we shall prove (2) for i.

Note that

ψi+1 = ψi

(
bi+1

ψi

)∆i+1−1

=
Hcoef(Fi+1)

∆i+1−1

ψ
∆i+1−2
i

=
Hcoef(S⇑(i))

∆i+1−1

R⇓(i−1)
∆i+1−2

.

But since,

(
R⇓(i−1)

)∆i+1−2
S⇓(i) = Hcoef

(
S⇑(i)

)∆i+1−2
S⇑(i),

equating the coefficients, we have

(
R⇓(i−1)

)∆i+1−2
R⇓(i) = Hcoef

(
S⇑(i)

)∆i+1−1
.

Hence
ψi+1 = R⇓(i),

as we are working over a UFD.
In order to complete the proof, we need to take care of the following

base cases:

1. i = 0:

F1 = Sn+1 = S⇑(0) and ψ1 = 1 = Rn+1 = R⇓(0).
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2. i = 1:

F2 = Sn = S⇑(1).

By claim 1:

ψ2 = R⇓(1).

3. i = 2:

F3 =
PRemainder(F1, F2)

β3

=
PRemainder(F1, F2)

(−1)∆2

=
PRemainder(S⇑(0), S⇑(1)

(−ψ1)∆2

=
PRemainder(S⇓(0), S⇑(1)

(−R⇓(0))∆2

= S⇑(2).

The rest follows by induction, using the claims (1) and (2) proven ear-
lier.

7.10 Subresultant Chain Theorem

Here, we shall provide a rigorous proof for the subresultant chain theorem.
The proof begins with Habicht’s theorem, which considers subresultant
chains of two univariate polynomials of degrees (n+1) and n, respectively,
and both with symbolic coefficients.

The rest of the proof hinges on a generalization of Habicht’s theorem,
obtained by applying evaluation homomorphisms. This generalization di-
rectly leads to a proof of the subresultant chain theorem.

7.10.1 Habicht’s Theorem

Consider two univariate polynomials

A(x) = amx
m + am−1x

m−1 + · · ·+ a0, deg(A) = m > 0, and

B(x) = bnx
n + bn−1x

n−1 + · · ·+ b0, deg(B) = n > 0,

of positive degrees, with formal coefficients am, am−1, . . ., a0 and bn, bn−1,
. . ., b0, respectively.

We shall treat A(x) and B(x) as polynomials in x over the ring

Z[a⋗, . . . ,a0,⋉, . . . , 0].
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Thus the subresultants of A(x) and B(x) are in

(Z[a⋗, . . . ,a0,⋉, . . . , 0]) [x].

In this section, we assume that

deg(A) = m = n+ 1.

Thus the subresultant chain of A and B is
〈
Sn+1 = A,

Sn = B,

Sn−1 = SubResn−1(A,B),

...

S1 = SubRes1(A,B),

S0 = SubRes0(A,B)

〉
.

Lemma 7.10.1 Let A(x) and B(x) be two univariate polynomials of re-
spective degrees n + 1 and n, with formal coefficients an+1,an,. . .,a0 and
bn, bn−1, . . ., b0, respectively. Then

1. SubResn−1(A,B) = PRemainder(A,B)

2. For i = 0, . . ., n− 2,

b2(n−i−1)
n SubResi(A,B) = SubResi(B,PRemainder(A,B)).

proof.
First, note that

b2n SubResn−1(A,B)

= b2n DetPol(A, xB, B)

= b2n (−1)2 DetPol(xB, B, A)

= b2n PRemainder(A,B)

Since there are no nonzero zero divisors in Z[a⋗, . . ., a0, bn, . . ., b0], we
may clear the b2n from both sides to find

SubResn−1(A,B) = PRemainder(A,B).

Secondly,

b
2(n−i)
n SubResi(A,B)

= b
2(n−i)
n DetPol(xn−i−1A, . . . , xA, A, xn−iB, . . . , xB, B)

= DetPol(xn−i−1b2nA, . . . , xb
2
nA, b

2
nA, xn−iB, . . . , xB, B)
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[But b2n A = (q1x+q0) B+R, where R = PRemainder(A,B) and deg(R) =
n− 1.]

= DetPol(xn−i−1R, . . . , xR, R, xn−iB, . . . , xB, B)

= (−1)
(n−i)(n−i+1)

DetPol(xn−iB, . . . , xB, B, xn−i−1R, . . . , xR, R)
= 1 · b2n DetPol(xn−i−2B, . . . , xB, B, xn−i−1R, . . . , xR, R)
= b2nSubResi(B,R).

Since bn 6= 0 and not a zero divisor in Z[a⋗, . . ., a0, bn, . . ., b0], and
R = PRemainder(A,B), we have

b2(n−i−1)
n SubResi(A,B) = SubResi(B,PRemainder(A,B)).

Theorem 7.10.2 (Habicht’s Theorem) Let A(x) and B(x) be two uni-
variate polynomials of respective degrees n+1 and n, with formal coefficients
an+1,an,. . .,a0 and bn, bn−1, . . ., b0, respectively.

Let 〈Sn+1, Sn, . . ., S0〉 be the subresultant chain of A and B. Let Rj

(0 ≤ j ≤ n + 1) be the jth principal subresultant coefficient of A and B.
Then for all j = 1, . . . , n

a) R2
j+1Sj−1 = PRemainder(Sj+1, Sj), and

b) R
2(j−i)
j+1 Si = SubResi(Sj+1, Sj), for i = 0, . . . , j − 1.

proof.
The proof is by induction on j:

• Base Case: (j = n).
Rn+1 = 1; therefore,

a) Sn−1 = SubResn−1(Sn+1, Sn) (by definition)
= PRemainder(Sn+1, Sn) (by the previous lemma)

b) Si = SubResi(Sn+1, Sn) (by definition)
= SubResi(A,B) i = 0, . . . , n− 1.

• Induction Case: Assume that the inductive hypotheses hold for
n, n− 1, . . . , j + 1 and consider the case when j < n.

b) R
2(j−i+1)
j+2 R

2(j−i)
j+1 Si

= R
2(j−i)
j+1 SubResi(Sj+2, Sj+1)

= SubResi(Sj+1, PRemainder(Sj+2, Sj+1)) (by the previous

lemma)

= SubResi(Sj+1, R
2
j+2 Sj) (using part a) inductively)
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= DetPol

(
xj−i−1Sj+1, . . . , xSj+1, Sj+1,

xj−i R2
j+2 Sj , . . . , xR

2
j+2 Sj , R

2
j+2 Sj

)

= R
2(j−i+1)
j+2 DetPol

(
xj−i−1Sj+1, . . . , xSj+1, Sj+1,

xj−iSj, . . . , xSj , Sj

)

= R
2(j−i+1)
j+2 SubResi(Sj+1, Sj),

where the R
2(j−i+1)
j+2 terms cancel from both sides to produce

R
2(j−i)
j+1 Si = SubResi(Sj+1, Sj), for i = 0, . . . , n− 1.

a) In particular, for i = j − 1 we get

R2
j+1Sj−1 = SubResj−1(Sj+1, Sj)

= PRemainder(Sj+1, Sj).

7.10.2 Evaluation Homomorphisms

Let S∗ be a commutative ring with identity, and φ an evaluation homo-
morphism defined as:

φ : Z[am, . . . , a0, bn, . . . , b0]→ S∗,

: ai 7→ a∗i , for i = 0, . . . ,m,

: bj 7→ b∗j , for j = 0, . . . , n,

: 1 7→ 1, 0 7→ 0,

: k 7→ 1 + · · ·+ 1︸ ︷︷ ︸
k−times

.

Lemma 7.10.3 Let A(x) and B(x) be two univariate polynomials of re-
spective positive degrees n+1 and n, with formal coefficients an+1,an,. . .,a0

and bn,bn−1,. . .,b0, respectively. Let
〈
Sn+1, Sn, Sn−1, . . . , S1, S0

〉

be the subresultant chain of A and B. Let φ be the evaluation homomor-
phism defined above. If φ(Sj+1) is regular and φ(Sj) is defective of degree
r, then

1. φ(Rj+1)
2 φ(Sj−1) = φ(Rj+1)

4 φ(Sj−2) = · · ·

= φ(Rj+1)
2(j−r−1)

φ(Sr+1) = 0.
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2. φ(Rj+1)
2(j−r)

φ(Sr)

=
(
Hcoef(φ(Sj+1))Hcoef(φ(Sj))

)j−r

φ(Sj).

3. φ(Rj+1)
2(j−r+1)

Hcoef(φ(Sj))
j−r+2

φ(Sr−1)

= (−1)
j−r+2

Hcoef(φ(Sj+1))
j−r

Hcoef(φ(Sj))
j−r+2

× PRemainder(φ(Sj+1), φ(Sj)).

proof.
Since

deg(φ(Sj+1)) = j + 1, deg(φ(Sj)) = r,

and, for all i (0 ≤ i < j),

R
2(j−i)
j+1 Si = SubResi(Sj+1, Sj),

we see that

φ(Rj+1)
2(j−i)φ(Si) = φ(SubResi(Sj+1, Sj))

= φ(Hcoef(Sj+1))
j−r

SubResi(φ(Sj+1), φ(Sj))

= Hcoef(φ(Sj+1))
j−r

SubResi(φ(Sj+1), φ(Sj)).

But

SubResi(φ(Sj+1), φ(Sj))

=





0, if r < i < j;

Hcoef(φ(Sj))
j−r

φ(Sj), if i = r, and deg(φ(Sj)) + 1
< deg(φ(Sj+1)).

For i = r − 1,

Hcoef(φ(Sj))
j−r+2

SubResi(φ(Sj+1), φ(Sj))

= (−1)
j−r+2

Hcoef(φ(Sj))
j−r+2

PRemainder(φ(Sj+1), φ(Sj)).

Therefore, we have the following:

1. For i = r + 1, . . ., j − 1,

φ(Rj+1)
2(j−i)

φ(Si) = 0.

2. For i = r,

φ(Rj+1)
2(j−r) φ(Sr) =

(
Hcoef(φ(Sj+1))Hcoef(φ(Sj))

)j−r

φ(Sj).
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3. For i = r − 1,

φ(Rj+1)
2(j−r+1) Hcoef(φ(Sj))

j−r+2 φ(Sr−1)

= (−1)
j−r+2

Hcoef(φ(Sj+1))
j−r

Hcoef(φ(Sj))
j−r+2

× PRemainder(φ(Sj+1), φ(Sj)).

Corollary 7.10.4 Let A(x) and B(x) be two univariate polynomials of re-
spective positive degrees n+1 and n, with formal coefficients an+1,an,. . .,a0

and bn,bn−1,. . .,b0, respectively. Let
〈
Sn+1, Sn, Sn−1, . . . , S1, S0

〉

be the subresultant chain of A and B. Let φ be an evaluation homomor-
phism from Z[a⋉+1, . . ., a0, bn, . . ., b0] into an integral domain S∗.

If φ(Sj+1) is regular and φ(Sj) is defective of degree r, then

1. φ(Sj−1) = φ(Sj−2) = · · · = φ(Sr+1) = 0.

2. If j = n, then

φ(Sr) =
(
Hcoef(φ(Sn+1))Hcoef(φ(Sn))

)n−r

φ(Sn).

If j < n, then

φ(Rj+1)
(j−r)

φ(Sr) = Hcoef(φ(Sj))
j−r

φ(Sj),

since φ(Sj+1) is regular and φ(Rj+1) = Hcoef(φ(Sj+1)).

3. If j = n, then

φ(Sr−1) =
(
−Hcoef(φ(Sn+1))

)n−r

PRemainder(φ(Sn+1), φ(Sn)).

If j < n, then

φ(−Rj+1)
j−r+2

φ(Sr−1) = PRemainder(φ(Sj+1), φ(Sj)),

since φ(Sj+1) is regular and φ(Rj+1) = Hcoef(φ(Sj+1)).

7.10.3 Subresultant Chain Theorem

Now we are ready to prove the main theorem of this section, the subresultant
chain theorem.

Let S∗ be an integral domain, and A∗(x) and B∗(x) be two univariate
polynomials in S∗[x] of respective positive degrees n1 and n2 (n1 ≥ n2):

A∗(x) = a∗n1
xn1 + · · ·+ a∗0, and

B∗(x) = b∗n2
xn2 + · · ·+ b∗0.
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If n1 > n2, then we set n1 = n+ 1 and specialize

b∗n = · · · = b∗n2+1 = 0.

If n1 = n2, then we set n2 = n and specialize

a∗n+1 = 0.

Therefore,

n =

{
n1 − 1, if n1 > n2,
n2, otherwise.

The next theorem connects the sparsity in the head coefficients of S∗
j with

the gap structure of the chain.

Theorem 7.10.5 (Subresultant Chain Theorem) Let

〈
S∗

n+1, S
∗
n, S

∗
n−1, . . . , S

∗
0

〉

be a subresultant chain of S∗
n+1 and S∗

n in S∗[x].

1. For j = 1, . . ., n, if S∗
j+1 and S∗

j are both regular, then

(
−R∗

j+1

)2
S∗

j−1 = PRemainder
(
S∗

j+1, S
∗
j

)
. (7.5)

2. For j = 1, . . ., n, if S∗
j+1 is regular and S∗

j is defective of degree r
(r < j), then

S∗
j−1 = S∗

j−2 = · · · = S∗
r+1 = 0, (7.6)

(
R∗

j+1

)j−r
S∗

r = Hcoef
(
S∗

j

)j−r
S∗

j , r ≥ 0, (7.7)
(
−R∗

j+1

)j−r+2
S∗

r−1 = PRemainder
(
S∗

j+1, S
∗
j

)
, r ≥ 1. (7.8)

proof.
Since the first case is a simple consequence of Habicht’s theorem (Corol-
lary 7.10.4), we will focus only on the case when S∗

j+1 is regular and S∗
j is

defective of degree r (r < j). Let

A(x) = an+1 x
n+1 + · · ·+ a0, and

B(x) = bn x
n + · · ·+ b0,

be two univariate polynomials with formal coefficients an+1, . . ., a0 and bn,
. . ., b0, respectively. Let

〈
Sn+1, Sn, Sn−1, . . . , S0

〉
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be a subresultant chain of A and B (in Z[a⋉+1, . . ., a0, bn, . . ., b0]) with
the principal subresultant coefficient chain:

〈
1, Rn, Rn−1, . . . , R0

〉
.

We define two evaluation homomorphisms φ1 and φ2, corresponding
respectively to the two cases (1) n1 > n2 (i.e., n = n1− 1) and (2) n1 = n2

(i.e., n = n2).

• Case 1: If n1 > n2 (i.e., n = n1 − 1), then

φ1 : Z[an+1, . . . , a0, bn, . . . , b0]→ S∗

: ai 7→ a∗i , for i = 0, . . . , n+ 1,

: bj 7→ 0, for j = n2 + 1, . . . , n,

: bj 7→ b∗j , for j = 0, . . . , n2,

: 1 7→ 1, 0 7→ 0.

• Case 2: If n1 = n2 (i.e., n = n2), then

φ2 : Z[an+1, . . . , a0, bn, . . . , b0]→ S∗

: an+1 7→ 0,

: ai 7→ a∗i , for i = 0, . . . , n,

: bj 7→ b∗j , for j = 0, . . . , n,

: 1 7→ 1, 0 7→ 0.

The following observations are immediate consequences of Corollary 7.8.2:

• In either case (i.e., k = 1, 2), for all i (0 ≤ i < n),

φk(Si) = φk(SubResi(A,B))

=




φ1(an+1)

n−n2SubResi(φ1(A), φ1(B)), if k = 1,

φ2(bn)n+1−n1SubResi(φ2(A), φ2(B)), if k = 2,

=





(
a∗n+1

)n−n2
S∗

i , if k = 1,

(b∗n)
n−n1+1

S∗
i , if k = 2.

• In either case (i.e., k = 1, 2), for all i (0 ≤ i ≤ n+ 1),

1. φk(Si) is regular if and only if S∗
i is regular, and

2. φk(Si) is defective of degree r if and only if S∗
i is defective of

degree r.
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Thus, for all j = 1, . . ., n, if S∗
j+1 is regular and S∗

j is defective of
degree r, then for both k = 1, 2, φk(Sj+1) is regular and φk(Sj) is
defective of degree r.

• In either case (i.e., k = 1, 2), if S∗
i is regular, then for all i (0 ≤ i ≤ n),

φk(Ri) = φk(Hcoef(Si)) = Hcoef (φk(Si))

=





(
a∗n+1

)n−n2
R∗

i , if k = 1,

(b∗n)
n−n1+1

R∗
i , if k = 2.

Now, we are ready to prove the lemma. We first consider the special case
when j = n, and then consider the general case j < n.

• Case 1 : j = n.
That is, S∗

n+1 is regular and S∗
n is defective of degree r < n. Thus

S∗
n+1 = a∗n+1x

n+1 + · · ·+ a∗0,

S∗
n = b∗rx

r + · · ·+ b∗0.

Thus n1 = n+ 1, and n2 = r < n, and the case 1 (i.e., n1 > n2) holds. We
also see that

λ∗ = min(n+ 1, r) = r.

Hence, by the definition of subresultant chains, we get equation (7.6):

S∗
n−1 = S∗

n−2 = · · · = S∗
r+1 = 0;

equation (7.7):

(
R∗

n+1

)n−r
S∗

r = S∗
r (since R∗

n+1 = 1)

= Hcoef (S∗
n)

n+1−r−1
S∗

n

= Hcoef (S∗
n)

n−r
S∗

n;

and equation (7.8):

(
−R∗

n+1

)n−r+2
S∗

r−1 = (−1)n−r+2 S∗
r−1 (since R∗

n+1 = 1)

= (−1)n−r+2 (−1)n+1−r+1 PRemainder
(
S∗

n+1, S
∗
n

)

(using Lemma 7.7.3)

= PRemainder
(
S∗

n+1, S
∗
n

)
.

• Case 2 : j < n.
That is, for k = 1, 2, φk(Sj+1) is regular and φk(Sj) is defective of degree
r < j. By Habicht’s theorem (Corollary 7.10.4):

φk(Sj−1) = φk(Sj−2) = · · · = φk(Sr+1) = 0,
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and




(
a∗n+1

)n−n2
S∗

j−1 = · · · =
(
a∗n+1

)n−n2
S∗

r+1 = 0, if k = 1,

(b∗n)
n−n1+1

S∗
j−1 = · · · = (b∗n)

n−n1+1
S∗

r+1 = 0, if k = 2.

In either case, we get equation (7.6):

S∗
j−1 = S∗

j−2 = · · · = S∗
r+1 = 0.

Again by Habicht’s theorem (Corollary 7.10.4), we have for k = 1, 2,

φk(Rj+1)
j−r φk(Sr) = Hcoef (φk(Sj))

j−r
φk(Sj).

Thus




(
a∗n+1

)(j−r)(n−n2) (
R∗

j+1

)j−r (
a∗n+1

)n−n2
S∗

r

=
((
a∗n+1

)n−n2
Hcoef

(
S∗

j

))j−r (
a∗n+1

)n−n2
S∗

j , if k = 1,

(b∗n)(j−r)(n−n1+1) (R∗
j+1

)j−r
(b∗n)n−n1+1 S∗

r

=
(
(b∗n)

n−n1+1
Hcoef

(
S∗

j

))j−r

(b∗n)
n−n1+1

S∗
j , if k = 2.

Thus after cancellation we have equation (7.7):

(
R∗

j+1

)j−r
S∗

r = Hcoef
(
S∗

j

)j−r
S∗

j .

Lastly, by another application of Habicht’s theorem (Corollary 7.10.4), we
have for k = 1, 2,

φk(−Rj+1)
j−r+2 φk(Sr−1) = PRemainder (φk(Sj+1), φk(Sj)) .

Thus




(
−
(
a∗n+1

)n−n2
R∗

j+1

)j−r+2 (
a∗n+1

)n−n2
S∗

r−1

= PRemainder
((
a∗n+1

)n−n2
S∗

j+1,
(
a∗n+1

)n−n2
S∗

j

)

=
(
a∗n+1

)n−n2
(
a∗n+1

)(n−n2)(j−r+2)

×PRemainder
(
S∗

j+1, S
∗
j

)
if k = 1,

(
− (b∗n)

n−n1+1
R∗

j+1

)j−r+2

(b∗n)
n−n1+1

S∗
r−1

= PRemainder
(
(b∗n)

n−n1+1
S∗

j+1, (b∗n)
n−n1+1

S∗
j

)

= (b∗n)n−n1+1 (b∗n)(n−n1+1)(j−r+2)

×PRemainder
(
S∗

j+1, S
∗
j

)
if k = 2.
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Thus after cancellation we have equation (7.8):

(
−R∗

j+1

)j−r+2
S∗

r−1 = PRemainder
(
S∗

j+1, S
∗
j

)
.

Problems

Problem 7.1
Devise a simple algorithm to compute the maximal square-free factor

of a polynomial A(x) over a field K of characteristic 0.

Problem 7.2
Consider the resultant of two polynomials A(x) and B(x) over a field

K:

A(x) = am xm + am−1 x
m−1 + · · ·+ a0,

B(x) = bn x
n + bn−1 x

n−1 + · · ·+ b0,

of respective degrees m ≥ 0 and n ≥ 0, respectively.
Show that the Resultant(A,B) satisfies the following three conditions:

1. Resultant(A, b0) = bm0 .

2. Resultant(B,A) = (−1)mnResultant(A,B).

3. If m ≤ n and R(x) is the remainder of B(x) with respect to A(x)
[i.e., B(x) = Q(x) · A(x) +R(X), deg(R) is minimal], then

Resultant(A,B) = an−m
m Resultant(A,R).

Show that these three properties define the resultant uniquely.

Hint: Note that the resultant of two polynomials in K[x] can be
uniquely computed by using Euclid’s algorithm and keeping track of the
head coefficients. This algorithm also leads to a uniqueness proof by an
induction on min(deg(A), deg(B)).

Problem 7.3
Using the results from Problem 7.2, show the following:
Let A(x) and B(x) be two polynomials over an algebraically closed field

L:

A(x) = am xm + am−1 x
m−1 + · · ·+ a0,

B(x) = bn x
n + bn−1 x

n−1 + · · ·+ b0,

of respective degrees m ≥ 0 and n ≥ 0, respectively. Then
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(i) Resultant(A,B) = 0 if and only if A and B have a common zero.
(ii) Let

A(x) = am (x − α1)(x− α2) · · · (x− αm),

B(x) = bn (x − β1)(x− β2) · · · (x− βn);

then

Resultant(A,B) = an
mb

m
n

m∏

i=1

n∏

j=1

(αi − βj).

Problem 7.4
Consider a monic polynomial f(x) ∈ K[x] (K = a field) of degree n and

with n zeros α1, α2, . . ., αn in the field K (or some algebraic extension of
K). Let

f(x) = (x− α1)(x − α2) · · · (x− αn)

= xn + an−1x
n−1 + · · ·+ akx

k + · · ·+ a0.

Prove that the following formulas, called Vieta’s formulas, hold:

an−1 = −(α1 + α2 + · · ·+ αn),

...

ak = (−1)n−k
∑

i1<i2<···<in−k

(
αi1 αi2 · · · αin−k

)
,

...

a0 = (−1)nα1 α2 · · · αn.

Thus the coefficients of f are symmetric functions of the zeros. Here,
symmetric functions are those functions that remain invariant with respect
to the permutation of its variables.

Problem 7.5
Consider the following ring automorphism defined over S[x1, x2, . . .,

xn] (S = an integral domain) with respect to a permutation π ∈ Sn:

Π : S[x1, x2, . . . , xn]→ S[x1, x2, . . . , xn]

: f(x1, x2, . . . , xn) 7→ f
(
xπ−1(1), xπ−1(2), . . . , xπ−1(n)

)
.

The polynomial is symmetric if Π(f) = f for all π ∈ Sn.
Consider the following two classes of symmetric polynomials:

1. Elementary Symmetric Polynomials

sk(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · ·xik
, k = 1, 2, . . . , n.
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2. Power Sum Symmetric Polynomials

pk(x1, x2, . . . , xn) =
n∑

i=1

xk
i , k = 1, 2, . . . .

Prove that the following formulas, called Newton’s formulas , relate the
pk’s to sk’s:

pk − pk−1s1 + pk−2s2 + · · ·+ (−1)k−1p1sk−1 + (−1)kksk = 0,

for 1 ≤ k ≤ n, and

pk − pk−1s1 + pk−2s2 + · · ·+ (−1)n−1pk−n+1sn−1 + (−1)npk−nsn = 0,

for k > n.

Problem 7.6
Consider the following matrix, Vn, called a Vandermonde matrix:

Vn =




1 1 · · · 1
x1 x2 · · · xn

...
...

. . .
...

xn−2
1 xn−2

2 · · · xn−2
n

xn−1
1 xn−1

2 · · · xn−1
n



.

Show that the determinant of Vn over a field K is given by

det(Vn) =
∏

1≤i<j≤n

(xj − xi).

Hint: The proof is by induction on n. As det(Vn) vanishes when xn

in the last column is replaced by xi (1 ≤ i < n), clearly (xn−xi) | det(Vn).
After eliminating all such factors, it can be seen that

det(Vn) = det(Vn−1)

n−1∏

i=1

(xn − xi),

(consider the coefficients of xn−1
n in the above equation).

Using the above facts show the following: Let f(x) ∈ L[x] be a univari-
ate polynomial of degree n over an algebraically closed field L and with n
roots: α1, α2, . . ., αn. Then

Discriminant(f) =

∣∣∣∣∣∣∣∣∣∣∣

n p1 p2 · · · pn−1

p1 p2 p3 · · · pn

p2 p3 p4 · · · pn+1

...
...

...
. . .

...
pn−1 pn pn+1 · · · p2n−2

∣∣∣∣∣∣∣∣∣∣∣

,

where pk =
∑n

i=1 α
k
i (k = 1, . . ., 2n− 2).
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Problem 7.7
Prove the following identities: Let A(x), B(x) and C(x) ∈ K[x] be

three univariate polynomials of degrees m, n, and p, respectively.

1. Resultant(A(x), x − y) = (−1)m A(y).

2. Resultant(AB, C) = Resultant(A,C) Resultant(B,C).

3. Discriminant(AB)

= Discriminant(A) Discriminant(B) |Resultant(A,B)|2.

Problem 7.8
Let K be a field and A(x) ∈ K[x] be a monic polynomial:

A(x) = xm + am−1 x
m−1 + · · ·+ a1 x+ a0.

The following matrix CA ∈ Km×m is called a companion matrix of the
polynomial A:

C = CA =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −am−2 −am−1



.

Prove that the characteristic polynomial of the companion matrix CA is

χ(CA) = det (λIm − CA) = A(λ).

Now, if B(x) ∈ K[x] is another monic polynomial

B(x) = xn + bn−1 x
n−1 + · · ·+ b1 x+ b0,

and if we consider the following m×m matrix:

B(CA) = Cn
A + bn−1 C

n−1
A + · · ·+ b1 CA + b0 Im

then show that
det(B(CA)) = Resultant(A,B).

Problem 7.9
Let A0(x), A1(x), . . ., An(x) ∈ K[x] (K is a field).
Let y be a new indeterminate, and consider the following bivariate poly-

nomial:
A(x, y) = An−1(x) y

n−1 + · · ·+A1(x) y +A0(x),

where A is regarded as a polynomial in x with coefficients in K(y).
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(i) Show that the GCD of A and An (when treated as polynomials in
K(y)[x]) is the same as the GCD of A0, A1, . . ., An (in k[x]).

(ii) Construct the Sylvester matrix My of the polynomials A and An

[with coefficients in K(y)] and show that det(My) vanishes identically if
and only if the polynomials A0, A1, . . ., An have a nonconstant divisor.

Problem 7.10

Let A(x, y) and B(x, y) ∈ K[x, y] be two homogeneous polynomials of
degrees m and n, respectively:

A(x, y) = amx
m + am−1x

m−1y + · · ·+ a0y
m, and

B(x, y) = bnx
n + bn−1x

n−1y + · · ·+ b0y
n.

Prove that every factor of a homogeneous polynomial is also homoge-
neous.

Prove the following statement:

A and B have a common factor of degree ≥ k if and only if the
rank of the following matrix is less than m+ n− 2k + 2:

2
66666666666664

am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

. . .
. . .

am am−1 · · · a0

bn bn−1 · · · · · · b0

bn bn−1 · · · · · · b0

. . .
. . .

. . .
. . .

bn bn−1 · · · · · · b0

3
77777777777775

9
>>>=
>>>;

(n − k + 1)
rows

9
>>>=
>>>;

(m − k + 1)
rows

Problem 7.11

Consider r homogeneous polynomials A1, A2, . . ., Ar in K[x, y] having
the same degree n:

A1(x, y) = a1,nx
n + a1,n−1x

n−1y + · · ·+ a1,0y
n,

A2(x, y) = a2,nx
n + a2,n−1x

n−1y + · · ·+ a2,0y
n,

...

Ar(x, y) = ar,nx
n + ar,n−1x

n−1y + · · ·+ ar,0y
n.

Consider the following matrix Sl consisting of r blocks of rows, where



Problems 289

each block of rows consists of l − n+ 1 rows of ai,.’s:

Sl =

2
666666666666666664

a1,n a1,n−1 · · · a1,0

a1,n a1,n−1 · · · a1,0

. . .
. . .

. . .
. . .

a1,n a1,n−1 · · · a1,0

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
ar,n ar,n−1 · · · · · · ar,0

ar,n ar,n−1 · · · · · · ar,0

. . .
. . .

. . .
. . .

ar,n ar,n−1 · · · · · · ar,0

3
777777777777777775

.

Show that the r polynomials A1, A2, . . ., Ar have a common divisor of
degree ≥ k if and only if the matrix S2n−k has rank less than (2n− k+ 1).

Generalize this theorem to the case where A1, A2, . . ., Ar have different
degrees: n1, n2, . . ., nr.

Hint: Use the fact that in order for a polynomial to be a common
divisor of A1, A2, . . ., Ar, it is necessary and sufficient that it is a common
divisor of

A1u1 +A2u2 + · · ·+Arur and A1v1 +A2v2 + · · ·+ Arvr,

where u’s and v’s represent 2r indeterminates. The resultant of these newly
constructed polynomials is related to the so-called Kronecker’s U -resultant.

Problem 7.12
Let A1, A2, . . ., Ar be r polynomials in K[x, y] (K = a field). Show

that the number of common zeroes of the Ai’s satisfy the following bound:

|Z(A1, A2, . . . , Ar)| ≤ 2
(
max

i
degx(Ai)

) (
max

i
degy(Ai)

)
,

where degx(A) and degy(A) are the degrees of A with respect to x and y.
Hint: Use the idea of U -resultant (Problem 7.11) once again. Also,

show that there exist polynomials A1, A2, . . ., Ar ∈ K[x, y] such that

|Z(A1, A2, . . . , Ar)| =
(
max

i
degx(Ai)

) (
max

i
degy(Ai)

)
.

Problem 7.13
Let S be a UFD and let F1(x) and F2(x) ∈ S[x] be two univariate

polynomials with
deg(F1) < deg(F2).

Let n = max(deg(F1), deg(F2)) = deg(F2). Define the subresultant
chain of F1 and F2 as

〈
Sn+1 = F1,
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Sn = F2,

Sn−1 = F1,

Sn−2 = SubResn−2(F1, F2),

...

S0 = SubRes0(F1, F2)

〉

and the principal subresultant coefficients as
〈

PSCn+1 = 1,

PSCn = NHcoef(Sn),

PSCn−1 = NHcoef(Sn−1),

PSCn−2 = NHcoef(Sn−2),

...,

PSC1 = NHcoef(S1),

PSC0 = NHcoef(S0)

〉

Also modify the definition of subresultant polynomial remainder se-
quence by redefining ∆i as

∆1 = 0,

∆i = max(deg(Fi−1)− deg(Fi) + 1, 0), i = 2, 3, . . . ,

(bi, ψi, βi and Fi stay just as in the text).
Prove Theorem 7.9.4 for this case:

deg(F1) < deg(F2).

Note that you will need to prove the subresultant chain theorem for this
case also.

Problem 7.14
Give a direct proof for the following statement (i.e., do not use the

identities involving determinant polynomials):

Let S be a unique factorization domain. Let A(x), B(x) ∈ S[x]
be two univariate polynomials of degree m and n, respectively,
and α, β ∈ S. Then

PRemainder(αA(x), βB(x)) = αβδPRemainder(A(x), B(x)),

where δ = max{m− n+ 1, 0}.



Problems 291

Problem 7.15
Let S be a unique factorization domain, and F1, F2, . . ., Fk be a Eu-

clidean polynomial remainder sequence (deg(F1) ≥ deg(F2)).
(i) Let

∆i = deg(Fi−1)− deg(Fi) + 1, i = 2, . . . , k.

Let c1, c2, . . ., cl, . . ., ck be the sequence of the contents of the polynomials
Fi’s.

For all m ≥ l prove that

c
∆l ∆l+1···∆m−1

l | cm.

(ii) Using (i), show that the sizes of the coefficients in an Euclidean
polynomial remainder sequence of two polynomials over Z grow at an ex-
ponential rate.

Problem 7.16
(i) Let A be an n × n matrix over the integers Z. Prove the following

inequality, the Hadamard inequality,

| det(A)| ≤
n∏

i=1




n∑

j=1

a2
i,j




1/2

.

Hint: Consider the matrix AAT .
(ii) Using (i), show that the sizes of the coefficients in a subresultant

polynomial remainder sequence of two polynomials over Z grow at a (small)
polynomial rate. That is, show that if Fm is the mth polynomial in the
subresultant polynomial remainder sequence of F1(x) and F2(x) ∈ Z, then
the sizes of the coefficients of Fm are

O

„
(deg(F1) + deg(F2) − 2 deg(Fm)) log(size(F1, F2)(deg(F1) + deg(F2))

«
.

Problem 7.17
Let S be a unique factorization domain, and F1, F2, . . ., Fk be a Eu-

clidean polynomial remainder sequence (deg(F1) ≥ deg(F2)). Let

∆i = deg(Fi−1)− deg(Fi) + 1, i = 2, . . . , k,

and
ci = Content(Fi), i = 1, . . . , k.

(i) A sequence β = 〈β1 = 1, β2 = 1, β3, . . ., βk〉 is well-defined if and
only if (

βi−2 β
∆i−1

i−1 βi

)
| ci, i = 3, . . . , k.
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(ii) Let F ′
1 = F1, F

′
2 = F2,

F ′
i =

PRemainder(F ′
i−2, F

′
i−1)

βi
, i = 3, . . . , k.

Show that

Fi =
(
αiβi−2 β

∆i−1

i−1 βi

)
F ′

i , i = 3, . . . , k,

where α1 = α2 = 1 and

αi = αi−2 α
∆i−1

i−1 βi−4 β
∆i−3+∆i−1

i−3 β
(∆i−2)(∆i−1)
i−2 , i = 3, . . . , k.

Solutions to Selected Problems

Problem 7.3
(i) Consider the sequence of polynomials defined by repeated appli-

cations of Euclidean divisions:

R0 = A

R1 = B

R2 = Remainder(R0, R1)

...

Ri = Remainder(Ri−2, Ri−1)

...

Rk = Remainder(Rk−2, Rk−1) = r0 ∈ L.

where without loss of generality, we have assumed that deg(A) ≥ deg(B).
We have assumed that R0, R1, . . ., Rk−1 are all nonconstant polynomials
over L. By the results of Problem 7.2, we see that

Resultant(A,B) = Resultant(R0, R1) = 0 if and only if r0 = 0

if and only if A and B have a common nonconstant factor.

(ii) First note that, for any αi,

B(αi) = bn (αi − β1)(αi − β2) · · · (αi − βn),

and hence
m∏

i=1

B(αi) = bmn

m∏

i=1

n∏

j=1

(αi − βj).
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Thus, it suffices to prove that

Resultant(A,B) = an
m

m∏

i=1

B(αi).

The proof follows by showing that the right-hand side of the equation
above satisfies all three properties of Problem 7.2: Properties (1) and (2)
are trivial. To see property (3) note that

If R(x) is the remainder of B(x) with respect to A(x), then

B(αi) = Q(αi)A(αi) +R(αi) = R(αi).

Thus,

Resultant(A,B) = an
m

m∏

i=1

B(αi)

= (−1)mn bmn

n∏

j=1

A(βj)

= an
m bmn

m∏

i=1

n∏

j=1

(αi − βj).

Problem 7.8
Note that the characteristic polynomial of CA can be calculated as

follows:

χ(CA) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 · · · 0 0
0 λ −1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ −1
a0 a1 a2 · · · am−2 λ+ am−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Thus, by using the results of Problem 7.3 (and working over algebraic
closure of K), we have:

χ(CA) = Resultantx

(
λx− 1,

a0x
m−1 + a1x

m−2 + · · ·+ am−2x+ am−1 + λ
)

= λm−1

(
a0

(
1

λ

)m−1

+ a1

(
1

λ

)m−2

+ · · ·

+ am−2

(
1

λ

)
+ am−1 + λ

)
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[since Resultant(a(x − α), F (x)) = adeg(F ) · F (α).]

= λm + am−1λ
m−1 + · · ·+ a1λ+ a0.

= A(λ).

A somewhat direct argument can be given by noting that CA represents
a linear transformation φ, over K[x]/(A(x)), the residue class ring modulo
the ideal generated by A(x):

φ : K[x]/(A(x))→ K[x]/(A(x))

: B(x) 7→ x · B(x) mod A(x)

In particular, if α is a root of A(x), then α is an eigenvalue of CA with
eigenvector

(1, α, α2, . . . , αm−1)T ,

since



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
−a0 −a1 −a2 · · · −am−2 −am−1



·




1
α
α2

...
αm−1




=




α
α2

α3

...
−a0 − a1α− · · · − am−1α

m−1




=




α
α2

α3

...
αm −A(α)




= α ·




1
α
α2

...
αm−1



.

Now since χ(CA) is clearly a monic polynomial of degree m with the
same roots as A(x), we have

χ(CA) = det (λIm − CA) = A(λ).

The proof for the second part proceeds by showing that the eigenvalues
of the matrix B(CA) are simply B(λi)’s, where λi’s are respectively the
eigenvalues of CA and hence zeroes of A:

If vi is an eigenvector of CA with eigenvalue λi, then

B(CA) · vi = Cn
A · vi + bn−1C

n−1
A · vi + · · ·+ b1CA · vi + b0vi
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= λn
i vi + bn−1λ

n−1
i vi + · · ·+ b1λivi + b0vi

(since Ck
A · vi = Ck−1

A λivi = · · · = λk
i vi)

= B(λi)vi.

Hence, vi is an eigenvector of B(CA) with eigenvalue B(λi), and the deter-
minant of B(CA) is simply the product of the eigenvalues B(λi)’s.

Now, it follows that

det(B(CA)) =

m∏

i=1

B(λi) = Resultant(A,B).

Problem 7.14

Proposition 7.10.6 Let S be a unique factorization domain. Let A(x),
B(x) ∈ S[x] be two univariate polynomials of degree m and n, respectively,
and α, β ∈ S. Then

PRemainder(αA(x), βB(x)) = αβδPRemainder(A(x), B(x)),

where δ = max{m− n+ 1, 0}.
proof.
Let

R(x) = PRemainder(A(x), B(x)) and

R′(x) = PRemainder(αA(x), βB(x)).

Then
bδnA(x) = Q(x) ·B(x) +R(x)

Therefore,

(βbn)δ · αA(x) = αβδQ(x) · B(x) + αβδ ·R(x).

Since the second term on the right-hand side has degree less than n, R′(x) =
αβδR(x) as desired.

Problem 7.15
This is a simple consequence of the preceding problem. Define a se-

quence γ1, γ2, . . ., as

γ1 = 1

γ2 = 1

...
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γl−1 = 1

γl = cl
...

γm = c
∆l ∆l+1···∆m−1

l

...

Clearly γi|ci, 1 ≤ l. We want to prove the statement for m > l assuming
that it is true up to m− 1.

We may write Fi = γiGi, for 1 ≤ i < m. Then

Fm = PRemainder(Fm−2, Fm−1)

= PRemainder(γm−2Gm−2, γm−1Gm−1)

= γm−2 γ
∆m−1

m−1 PRemainder(Gm−2, Gm−1).

Thus γm = c
∆l ∆l+1···∆m−1

l = γ
∆m−1

m−1 divides the coefficients of Fm and
thus γm | Content(Fm).

The second part is a simple consequence of the above observations:
since ∆l ≥ 2 for all l > 2,

c2
m−l

l |cm, m ≥ l > 2;

and the size of cm is of the order Ω
(
2m size(cl)

)
.

Problem 7.17
The solution builds on Problem 7.14.
(i) The “only-if” part is obvious as βi divides ci. The “if” part follows

from part (ii) of this problem.
(ii) We will prove that

Fi = αi βi−2 β
∆i−1

i−1 βi F
′
i ,

where α1 = α2 = 1 and

αi = αi−2 α
∆i−1

i−1 βi−4 β
∆i−3+∆i−1

i−3 β
(∆i−2)(∆i−1)
i−2 .

We use induction on i. For i = 1, the relation is true by definition itself.
Assume it is true for all i′ < i. Now consider i′ = i.

Fi = PRemainder(Fi−2, Fi−1)

= PRemainder
(

αi−2 βi−4 β
∆i−3

i−3 βi−2 F
′
i−2,

αi−1 βi−3 β
∆i−2

i−2 βi−1 F
′
i−1

)

= αi−2 βi−4 β
∆i−3

i−3

(
αi−1 βi−3 β

∆i−2

i−2

)∆i−1
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βi−2 β
∆i−1

i−1 PRemainder(F ′
i−2, F

′
i−1)

= αi βi−2 β
∆i−1

i−1 PRemainder(F ′
i−2, F

′
i−1)

= αi βi−2 β
∆i−1

i−1 βi F
′
i .
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Chapter 8

Real Algebra

8.1 Introduction

In this chapter, we focus our attention on real algebra and real geometry.
We deal with algebraic problems with a formulation over real numbers, R
(or more generally, over real closed fields). The underlying (real) geometry
provides a rich set of mechanisms to describe such topological notions as
“between,” “above/below,” “internal/external,” since it can use the inher-
ent order relation (<) of the real (or, real closed) field. As a result, the
subject has found many applications in such practical areas as computer-
aided manufacturing, computational geometry, computer vision, geometric
theorem proving, robotics , and solid modeling, etc., and thus has generated
a renewed interest. We concentrate on the following key ingredients of real
algebra: Sturm theory, algebraic numbers, and semialgebraic geometry.

We start our discussions with some preparation for the classical Sturm’s
theorem, which permits us to determine the exact number of real roots of
a real polynomial in an interval.

Our starting point is with Artin and Schreier’s theory of formally real
fields developed in the late 20’s. In particular, we focus our attention
on the real closed fields , which are the formally real fields maximal under
algebraic extension. Intuitively, real closed fields are “almost algebraically
closed” as they are only missing

√
−1, and thus capture some of the most

essential properties of the field of real numbers, R. [More formally, if K
is a real closed field, then K(

√
−1) is algebraically closed.] With these

preparations, we move on to Sturm theory in a rather general setting.
Next, we consider a particularly interesting subclass of real numbers,

R: the field of real algebraic numbers, A. Both real algebraic numbers and
integers are useful to computer scientists because they provide an effective
way of representing infinite precision numbers that crop up in computa-
tions involving an algebraic formulation. In many situations, where it is

297
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paramount that the computed answers be at least topologically consistent
(possibly incorrect)—a weaker requirement, which is nevertheless quite sat-
isfactory in many situations—computing with algebraic numbers provides
a practical solution.

Finally, we study how building up on Sturm theory and algebraic num-
ber representations one can devise a decision procedure for a wide class
of geometric statements: the Tarski sentences . Roughly speaking, if such
statements have a feasible real model, then they have a model that can be
described by algebraic numbers and few auxiliary rational polynomials. Be-
cause algebraic numbers can be finitely described, the corresponding finite
model can be sought for in a bounded amount of time.

Using these methods, one can consider the geometric objects defined
by algebraic equations and inequations (i.e., semialgebraic sets), their de-
compositions (e.g., cylindrical algebraic decomposition), various topological
properties (e.g., connectivity), triangulations, stratifications, etc. We only
deal with some of the very basic problems in this field.

8.2 Real Closed Fields

We begin with a few definitions.

Definition 8.2.1 (Ordered Field) An ordered field K is a commutative
field K together with a subset P , the set of positive elements, of K such
that we obtain the following:

1. 0 6∈ P .

2. If a ∈ K, then either a ∈ P , a = 0, or −a ∈ P .

3. P is closed under addition and multiplication. If a, b ∈ P , then so
are a+ b and a b.

Clearly, in a field K with a linear ordering >, one can identify P , the
set of positive elements, as follows:

• If a > 0, we say a is positive; P = {a ∈ K : a > 0}.
• If −a > 0, we say a is negative; N = {a ∈ K : −a > 0}.

Therefore, K = P ∪ {0} ∪N .
We can introduce an ordering in the ordered field K (or more precisely,

〈K, P 〉) by defining
a > b if (a− b) ∈ P.

This ordering relation “>” is a strict linear ordering on the elements of K:

(a) a > b ⇒
(
∀ c ∈ K

) [
a+ c > b+ c

]

(b) a > b ⇒
(
∀ c ∈ P

) [
a c > b c

]

(c) a > b, a > 0, b > 0 ⇒ b−1 > a−1
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Thus, we could have defined an ordered field in terms of a binary tran-
sitive relation > as follows:

1. Trichotomy: a = 0 or a > 0 or −a > 0.

2. Closure Under Additions and Multiplications: a > 0 and b > 0 ⇒
a b > 0 and a+ b > 0.

In an ordered field, we can define various notions of intervals just as on
the real line:

• Closed Interval :

[a, b] = {x ∈ K : a ≤ x ≤ b}.

• Open Interval :

(a, b) = {x ∈ K : a < x < b}.

• Half-Open Intervals :

(a, b] = {x ∈ K : a < x ≤ b} and [a, b) = {x ∈ K : a ≤ x < b}.

Definition 8.2.2 (Absolute Value) Absolute value of an element a ∈ K
is defined to be

|a| =





a, if a ≥ 0;

−a, if a < 0.

(a) |a+ b| ≤ |a|+ |b|,
(b) |a b| = |a| |b|.

Definition 8.2.3 (Sign Function) The sign of an element a ∈ K is de-
fined to be

sgn(a) =





+1, if a > 0;
−1, if a < 0;
0, if a = 0.

(a) a = sgn(a) |a| and |a| = sgn(a) a.
(b) sgn(a b) = sgn(a) sgn(b).

In an ordered field K with 1,

−1 < 0 < 1,

since if −1 > 0 then (−1) + (−1)2 = 0 > 0, which is impossible.
In any ordered field K,

a 6= 0 ⇒ a2 = (−a)2 = |a|2 > 0 > −1.



300 Real Algebra Chapter 8

Hence,

1.
√
−1 6∈ K.

2. If a1, a2, . . ., ar are 6= 0, then
∑
a2

i > 0 > −1, since

∑
a2

i =
∑
|a2

i | ≥
∣∣∣
∑

a2
i

∣∣∣ > 0,

and the relation
∑
a2

i = 0 has the only solution ai = 0, for all i.
Additionally, we see that in an ordered field −1 cannot be expressed
as a sum of squares.

The discussion above leads to the following definition:

Definition 8.2.4 (Formally Real Field) A field K is called formally
real if the only relations in K of the form

∑r
i=1 a

2
i = 0 are those for which

every ai = 0.

From the preceding discussions we conclude that

Corollary 8.2.1

1. Every ordered field is formally real.

2. K is formally real if and only if −1 is not a sum of squares of elements
of K.

3. A formally real field is necessarily of characteristic zero.

proof.
(1) See the preceding discussion.
(2) First note that if for some bi’s,

n∑

i=1

b2i = −1,

then the relation (b1)
2 + · · · + (bn)2 + (1)2 = 0 is a nontrivial solution of

the equation
∑n+1

i=1 a
2
i = 0, and K is not a formally real field. Conversely,

if K is not a formally real field, then for some set of nonzero bi ∈ K (i = 0,
. . ., n), we have

b20 + b21 + · · ·+ b2n = 0,

or
(b1/b0)

2 + · · ·+ (bn/b0)
2 = −1.

Clearly, bi/b0 are defined and in K.
(3) Note that in a field of characteristic p, we have

12 + · · ·+ 12

︸ ︷︷ ︸
p-many

= 0.
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Definition 8.2.5 (Induced Ordering) If K ′ is subfield of an ordered
field 〈K, P 〉, then K ′ is ordered relative to P ′ = K ′ ∩ P . We call this the
induced ordering in K ′.

Definition 8.2.6 (Order Isomorphism) If 〈K,P 〉 and 〈K ′, P ′〉 are any
two ordered fields, then an isomorphism η of K into K ′ is called an order
isomorphism if η(P ) ⊆ P ′. This implies that η(0) = 0, η(N) ⊆ N ′ and, if
η is surjective, then η(P ) = P ′ and η(N) = N ′.

Definition 8.2.7 (Archimedean Ordered Field) The ordering of a field
is called Archimedean if for every field element a, there exists a natural
number n > a, where n stands for

1 + · · ·+ 1︸ ︷︷ ︸
n-many

.

In this case there exists also a number −n < a for every a, and a fraction
1/n < a for every positive a.

Note that the ordering of the field of rational numbers, Q, is Archimedean.
As an immediate corollary, we have:

Corollary 8.2.2 For any two elements a < b in an Archimedean ordered
field, K, there are infinitely many points between a and b.
proof.
First note that, in K, there is an infinite strictly increasing sequence of
elements in K:

1 < n1 < n2 < n3 < · · · .
Let k be the smallest index such that (b − a) > n−1

k , then

a < (b− n−1
k ) < (b − n−1

k+1) < (b − n−1
k+2) < · · ·

and each such element (b − n−1
k+j) is between a and b.

Definition 8.2.8 (Real Closed Fields) We call an ordered field 〈K,P 〉
real closed , if it has the following properties:

1. Every positive element of K has a square root in K.

2. Every polynomial f(x) ∈ K[x] of odd degree has a root in K.

An alternative definition for a real closed field K is the following:

K is formally real and no proper algebraic extension of K is
formally real.

We will say more about this later. We state a fundamental result without
proof.
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Theorem 8.2.3 (Fundamental Theorem of Algebra) If K is a real
closed field, then K(

√
−1) is algebraically closed.

An immediate corollary of the fundamental theorem of algebra is the fol-
lowing:

Corollary 8.2.4 The monic irreducible polynomials in K[x] (K = real
closed) are either of degree one or two.

Furthermore, if K is real closed, then its subfield of elements which are
algebraic over Q (⊂ R) is real closed. As before, in a real closed field, we
write b > a for b− a ∈ P .

A classical example of a real closed field is, of course, R, the field of real
numbers.

Lemma 8.2.5 A degree two monic polynomial x2 + ax+ b ∈ K[x] over a
real closed field, K, is irreducible if and only if a2 < 4b.
proof.
Write the degree two monic polynomial in the following form:

x2 + ax+ b =
(
x+

a

2

)2

+ (4b− a2).

The proof is by following the three possible cases:
Case (1): 4b > a2.

4b > a2 ⇒ x2 + ax+ b =
(
x+

a

2

)2

+
( c

2

)2

[Note that, by definition, c exists, since 4b−a2 ∈ P and K is real closed.
Also c2 = |c|2 > 0.]

⇒
(
∀ x ∈ K

) [
x2 + ax+ b > 0

]

⇒ x2 + ax+ b = irreducible.

Case (2): 4b = a2.

4b = a2 ⇒ x2 + ax+ b =
(
x+

a

2

)2

⇒ x2 + ax+ b = reducible.

Case (3): 4b < a2.

4b < a2 ⇒ a2 − 4b ∈ P
⇒

(
∃ c ∈ K, c 6= 0

)
[c2 = a2 − 4b]

⇒ x2 + ax+ b =
(
x+

a

2

)2

−
( c

2

)2

⇒ x2 + ax+ b = reducible.
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Lemma 8.2.6 A real closed field has a unique ordering endowing it with
the structure of an ordered field. That is, any automorphism of a real closed
field is an order isomorphism.

proof.
Consider a real closed field K, and let K2 be the set of elements consisting
of squares of nonzero elements of K. Now, consider 〈K, P 〉, some arbitrary
ordered field structure on K.

We know that K2 ⊆ P . Conversely, select an element b ∈ P ; by
definition, for some a ∈ K, (a 6= 0) a2 = b. Hence, b ∈ K2, and K2 = P .

The unique ordering is then given by >, with b > a if and only if
b− a ∈ K2.

It is now useful to go back to the alternative definition:

Theorem 8.2.7 An ordered field K is real closed if and only if

1. K is formally real, and

2. no proper algebraic extension of K is formally real.

proof.
(⇒) Since every ordered field is necessarily formally real, the first condi-
tion is easily satisfied.

We only need to consider extensions of the kind K(
√
γ), where x2 − γ

is an irreducible polynomial in K. Thus 0 < −4γ, or γ 6∈ K2, the set of
squares of nonzero elements of K. Hence −γ ∈ K2 and −γ = a2. But then
in K(

√
γ),

(√
γ

a

)2

= −1,

thus showing that K(
√
γ) is not formally real.

(⇐) In the converse direction, first consider the field K with the ordering
defined by P = K2 (whereK2, as before, denotes the squares of the nonzero
elements in K). There are essentially two objectives: First, to prove that
〈K, K2〉 is an ordered field; second, to show that every polynomial equation
of odd degree is solvable. We proceed in order.

The only difficult part is to show that for every a ∈ K (a 6= 0), either
a ∈ K2 or −a ∈ K2. Other conditions are trivially satisfied since the sums
of squares are squares and the products of squares are obviously squares.
Suppose a is not a square, then x2 − a is irreducible and K(

√
a) is not

formally real, i.e.,

−1 =
∑

(αi + βi

√
a)2

=
∑

α2
i + a

∑
β2

i + 2
√
a
∑

αiβi.
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But then the last term should vanish, since otherwise
√
a would be a zero

of the following polynomial in K[x]:

x2
∑

β2
i + 2x

∑
αiβi + (1 +

∑
α2

i ) = 0.

Thus

−a =
1 +

∑
α2

i∑
β2

i

∈ K2,

as both numerator and denominator are in K2.
The second part is shown by contradiction. Consider the smallest odd

degree irreducible polynomial f(x) ∈ K[x]. [Clearly, deg(f) > 1.] Let ξ be
a root of f ; then K(ξ) is not formally real:

−1 =
∑

gi(ξ)
2,

where deg(gi) < deg(f). Then we see that

−1 =
∑

gi(x)
2 + h(x)f(x),

by virtue of the isomorphism betweenK(ξ) andK[x]/(f(x)). By examining
the above identity, we see that h is of odd degree and deg(h) < deg(f).
Now substituting a root ξ′ of h, in to the above equation, we get

−1 =
∑

gi(ξ
′)2.

We conclude that h is irreducible and that our original choice of f leads to
a contradiction.

Theorem 8.2.8 Let K be a real closed field and f(x) ∈ K[x]. If a, b ∈ K
(a < b) and f(a) f(b) < 0, then there exists a root of f(x) which lies between
a and b, i.e., (

∃ c ∈ (a, b)
) [

f(c) = 0
]
.

proof.
Assume f(x) is monic. Then f(x) factors in K[x] as

f(x) = (x− r1) · · · (x− rm) · g1(x) · · · gs(x),

where each gi(x) = x2 + cix + di is, by an earlier corollary, an irreducible
monic polynomial of degree 2 and

(
∀ u ∈ K

) [
gi(u) > 0

]
,

i.e., the quadratic factors are always nonnegative. We know that

(
∀ 1 ≤ i ≤ m

) [
a 6= ri and b 6= ri

]
,



Section 8.3 Bounds on the Roots 305

since f(a) f(b) 6= 0.
Let us now consider the effect of each root ri on

f(a) f(b) =
∏

(a− ri)(b− ri)× some nonnegative value,

a < ri ∧ b < ri ⇒ (a− ri)(b− ri) > 0,

a > ri ∧ b > ri ⇒ (a− ri)(b− ri) > 0,

a < ri ∧ b > ri ⇒ (a− ri)(b− ri) < 0.

This implies that if a root lies between a and b, then it contributes a
negative sign to f(a) f(b); and if ri does not lie between a and b, then it
does not affect the sign of f(a) f(b).

Hence f(a) f(b) < 0 implies that there exist an odd number (and hence
at least one) of roots of f(x) between a and b.

Corollary 8.2.9 Let K be a real closed field and f(x) ∈ K[x] such that
f(c) > 0. Then it is possible to choose an interval [a, b] containing c such
that (

∀ u ∈ [a, b]
) [

f(u) > 0
]
.

Theorem 8.2.10 (Rolle’s Theorem) Let K be a real closed field and
f(x) ∈ K[x]. If a, b ∈ K (a < b) and f(a) = f(b) = 0, then

(
∃ c ∈ (a, b)

) [
D(f)(c) = 0

]
,

where D denotes the formal differentiation operator.
proof.
Without loss of generality assume that a and b are two consecutive roots
of the monic polynomial f(x), of respective multiplicities m and n:

f(x) = (x− a)m(x − b)ng(x).

Now
D(f)(x) = (x− a)m−1 (x− b)n−1ḡ(x),

where ḡ(x) is given by

ḡ(x) = [m(x− b) + n(x− a)]g(x) + (x− a)(x − b)D(g)(x).

Now, note that

ḡ(a)ḡ(b) = −mn(a− b)2g(a)g(b) < 0,

as by assumption g does not have a root in (a, b), and sgn(g(u)) is un-
changed for all u ∈ [a, b].

Now by our previous theorem:
(
∃ c ∈ (a, b)

) [
ḡ(c) = 0

]
.

Hence D(f)(c) = (c− a)m−1(c− b)n−1ḡ(c) = 0.
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8.3 Bounds on the Roots

Given a polynomial f , we obtain bounds on its roots by showing that every
root u must be in an interval u ∈ (M1,M2), or equivalently

(
∀ u 6∈ (M1,M2)

) [
f(u) 6= 0

]
.

We set out to find such M1 and M2 as functions of the sizes of the coef-
ficients. Note that then, |M1| = |M2|, since if u is a zero of f(x), −u is a
zero of f̃(x) = f(−x) and the sizes of f and f̃ are same. Thus, we seek
bounds of the kind |u| < M for the roots u of f .

Theorem 8.3.1 Let K be an ordered field, and

f(x) = xn + an−1x
n−1 + · · ·+ a0,

a monic polynomial with coefficients in K. Let M and N denote the fol-
lowings:

M = M(f) = max(1, |an−1|+ · · ·+ |a0|),
N = N(f) = 1 + max(|an−1|, . . . , |a0|).

1. If |u| ≥M , then |f(u)| > 0.

2. If |u| ≥ N , then |f(u)| > 0.

proof.
First note that (

∀ u
) [
|f(u)| ≥ 0

]
.

We may only consider a root u of f , |u| > 1. Note that

f(u) = 0 ⇒ f(u) = un + an−1u
n−1 + · · ·+ a0 = 0

⇒ |u|n ≤ |an−1| · |u|n−1 + · · ·+ |a0|.

Thus,

(1) |u|n ≤ |an−1| · |u|n−1 + · · ·+ |a0|
⇒ |u|n < M · |u|n−1

⇒ |u| < M.

(2) |u|n ≤ |an−1| · |u|n−1 + · · ·+ |a0|

⇒ |u|n ≤ (N − 1) · (|u|n−1 + · · ·+ 1) <
(N − 1) · |u|n
|u| − 1

⇒ |u| − 1 < N − 1

⇒ |u| < N.
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Hence, (
∀ |u| ≥M, |u| ≥ N

) [
|f(u)| > 0

]
.

The corollary below follows:

Corollary 8.3.2 (Cauchy’s Inequality) Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0.

be a polynomial over K, an ordered field.
Then any nonzero root u of f must satisfy the followings:

(1)
|a0|

|a0|+ max(|an|, . . . , |a1|)
< |u| <

|an|+ max(|an−1|, . . . , |a0|)
|an|

;

(2)
min(f)

min(f) + max(f)
< |u| <

min(f) + max(f)

min(f)
,

where

min(f) = min{|ai| : ai 6= 0} and max(f) = max{|ai| : ai 6= 0}.

proof.
This is a direct consequence of the preceding theorem. Assume, without
loss of generality, that u is a nonzero root of f(x)

f(x) = anx
n + an−1x

n−1 + · · ·+ amx
m, am−1 = · · · = a0 = 0.

Then clearly, u is a root of

anx
n−m + an−1x

n−m−1 + · · ·+ am,

and u−1 is a root of

amx
n−m + am+1x

n−m−1 + · · ·+ an.

Using the preceding theorem:

|u| < |an|+ max(|an−1|, . . . , |am|)
|an|

≤ min(f) + max(f)

min(f)
,

and

|u−1| < |am|+ max(|am+1|, . . . , |an|)
|am|

≤ min(f) + max(f)

min(f)
.

As a result, we have

|am|
|am|+ max(|an|, . . . , |am+1|)

< |u| < |an|+ max(|an−1|, . . . , |am|)
|an|

,

and
min(f)

min(f) + max(f)
< |u| < min(f) + max(f)

min(f)
.



308 Real Algebra Chapter 8

Using Cauchy’s and Landau’s inequalities, we can prove the following
useful theorem:

Theorem 8.3.3 Let f(x) ∈ Z[x] be an integral polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a0.

Let

‖f‖1 = |an|+ |an−1|+ · · ·+ |a0|,
‖f‖2 = (a2

n + a2
n−1 + · · ·+ a2

0)
1
2 , and

‖f‖∞ = max(|an|, |an−1|, . . . , |a0|).

Then all the real roots of f are in the intervals (−‖f‖1, ‖f‖1), [−‖f‖2,
‖f‖2] and (−1− ‖f‖∞, 1 + ‖f‖∞).

Also for every nonzero real root u of f ,

|u| > 1

1 + ‖f‖∞
.

proof.
(1) All the real roots of f are in the intervals (−‖f‖1, ‖f‖1).

Since f(x) is integral (i.e., if ai 6= 0, then |ai| ≥ 1),

‖f‖1 = |an|+ |an−1|+ · · ·+ |a0|
≥ 1 + |an−1|+ · · ·+ |a0|

≥ max

(
1,

∣∣∣∣
an−1

an

∣∣∣∣+ · · ·+
∣∣∣∣
a0

an

∣∣∣∣
)
,

which is no other than the M of Theorem 8.3.1.

(2) All the real roots of f are in the intervals (−1− ‖f‖∞, 1 + ‖f‖∞).
As before, we use the fact that, if ai 6= 0, then |ai| ≥ 1.

1 + ‖f‖∞ = 1 + max(|an|, |an−1|, . . . , |a0|)
≥ 1 + max(1, |an−1|, . . . , |a0|)

≥ 1 + max

(∣∣∣∣
an−1

an

∣∣∣∣ , . . . ,
∣∣∣∣
a0

an

∣∣∣∣
)
,

which equals the N of Theorem 8.3.1.

(3) All the real roots of f are in the intervals [−‖f‖2, ‖f‖2]. This is a
direct consequence of Landau’s inequality, which states that if α1, α2, . . .,
αk are roots of f , then

|an|
∏

max(1, αi) ≤ ‖f‖2.
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8.4 Sturm’s Theorem

Consider a polynomial f(x) ∈ K[x] where K is a real closed field. A
classical technique due to Sturm shows how to compute the real zeros of
f(x) in an interval [a, b]. The recipe is as follows:

1. First compute a special sequence of polynomials sturm(f) = 〈h0(x) =
f(x), h1(x), . . ., hs(x)〉, which will be called a Sturm sequence.

2. Next compute the “variations in sign” for the sequences sturm(f)(a) =
〈h0(a), h1(a), . . ., hs(a)〉 and sturm(f)(b) = 〈h0(b), h1(b), . . .,
hs(b)〉—denoted, respectively, by Vara(sturm(f)) and Varb(sturm(f)).

3. Then

# real zeros of f(x) in (a, b) = Vara(sturm(f))−Varb(sturm(f)).

However, these notions need to be formalized further. In this section,
we shall start with a slightly general version of the statement above: the
Sturm-Tarski theorem. Later on we shall study some generalizations to
higher dimensions.

Definition 8.4.1 (Variations in Sign) If c = 〈c1, . . ., cm〉 is a finite
sequence of nonzero elements of a real closed field K, then we define the
number of variations in sign of c to be

∣∣∣
{
i : 1 ≤ i < m and ci · ci+1 < 0

}∣∣∣.

In general, If c = 〈c1, . . ., cm〉 is an arbitrary sequence of elements of K,
then we define the number of variations in sign of c, denoted Var(c), to be
the number of variations in the sign of the abbreviated sequence abb(c),
which is obtained by omitting the zeros in c.

Thus, Var(c) is the number of times the entries of c change sign when
scanned sequentially from left to right.

For example, 〈1, 0, 0, 2, −1, 0, 3, 4, −2〉 has three variations in sign.
Note that for any nonzero a ∈ K

Var(c) = Var(a c),

where a 〈c1, . . ., cm〉 = 〈a c1, . . ., a cm〉. Similarly, if ci · ci+1 < 0 then for
any a ∈ K

Var(〈c1, . . . , ci, ci+1, . . . , cm〉) = Var(〈c1, . . . , ci, a, ci+1, . . . , cm〉).

For a vector of polynomials F = 〈f1(x), . . ., fm(x)〉 ∈ K[x]m and a field
element a ∈ K, we write Vara(F ) for Var(F (a)):

Vara(F ) = Var(F (a)) = Var(〈f1(a), . . . , fm(a)〉).
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Definition 8.4.2 (Standard Sturm Sequence) The standard Sturm se-
quence (or, canonical Sturm sequence) of a pair of polynomials f(x) and
g(x) ∈ K[x] (K = a field) is

sturm(f, g) =
〈
h0(x), h1(x), . . . , hs(x)

〉
,

where

h0(x) = f(x)
h1(x) = g(x)
h0(x) = q1(x) h1(x) − h2(x), deg(h2) < deg(h1)

...
hi−1(x) = qi(x) hi(x)− hi+1(x), deg(hi+1) < deg(hi)

...
hs−1(x) = qs(x) hs(x).

Note that the standard sequence is termwise similar to the polynomial
remainder sequence, except that we take the negation of the remainder
at each step, i.e., it is based on the sequence 〈1, 1, −1, −1, . . .〉. Also
note that for any f(x) and g(x), the last element in their standard Sturm
sequence, sturm(f, g), is in fact their GCD (up to a sign); in particular,
hs(x) | hi(x) (0 ≤ i ≤ s). In this case, we may consider their “suppressed”
Sturm sequence,

h̃i(x) =
hi(x)

hs(x)
.

Note, h̃s(x) = 1. Furthermore, for any i > 0, we also have

h̃i−1(x) = qi(x) h̃i(x) − h̃i+1(x).

Lemma 8.4.1 Let f(x) and g(x) ∈ K[x], K = a real closed field, be a pair
of polynomials with a standard Sturm sequence,

sturm(f, g) = H =
〈
h0(x), h1(x), . . . , hs(x)

〉
.

Let [a, b] be an interval (a < b) not containing a zero of f(x) = h0(x).
Then

Vara(sturm(f, g))−Varb(sturm(f, g)) = 0.

proof.
Let us consider an arbitrary subinterval [a′, b′] ⊆ [a, b] such that it contains
at most one zero of the suppressed sequence

H̃ = 〈h̃0(x), h̃1(x), . . . , h̃s(x)〉.
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It suffices to show that

Vara′(sturm(f, g))−Varb′(sturm(f, g)) = 0.

Since the interval does not contain a zero of h0, nor does it contain a zero
of h̃0.

Now, if the interval does not contain a zero of any element of H̃ , then
h̃i(a

′) h̃i(b
′) > 0 for all i and

Vara′(H̃)−Varb′(H̃) = 0.

Alternatively, assume that the interval contains a zero of h̃i ∈ H̃ , i.e.,
for some c ∈ [a′, b′], h̃i(c) = 0 (i > 0). Then

h̃i−1(c) = qi(c) h̃i(c)− h̃i+1(c) = −h̃i+1(c)

⇒ h̃i−1(c) h̃i+1(c) = −h̃2
i+1(c) < 0.

Since h̃i+1(c) = 0 would imply that h̃i(c) = h̃i+1(c) = · · · = h̃s(c) = 0,
contradicting the fact that h̃s = 1. Thus,

h̃i−1(c) · h̃i+1(c) < 0

⇒ h̃i−1(a
′) · h̃i+1(a

′) < 0 ∧ h̃i−1(b
′) · h̃i+1(b

′) < 0,

which results in

Vara′(H̃) = Var(h̃0(a
′), . . . , h̃i−1(a

′), h̃i+1(a
′), . . . , h̃s(a

′))

= Var(h̃0(b
′), . . . , h̃i−1(b

′), h̃i+1(b
′), . . . , h̃s(b

′))

= Varb′(H̃).

Thus, in either case

Vara′(H̃)−Varb′(H̃) = 0.

Thus

Vara′(sturm(f, g))−Varb′(sturm(f, g))

= Vara′(hs(a
′) H̃)−Varb′(hs(b

′) H̃)

= Vara′(H̃)−Varb′(H̃)

= 0.

Clearly, the interval [a, b] can be partitioned into finitely many subintervals
such that over each subinterval there is no net change in the variation, thus
proving that there is no net change over the entire interval [a, b], either.

Let D:K[x]→ K[x] be the (formal) derivative map:

D : xn 7→ n · xn−1

: a 7→ 0, a ∈ K.
Assume that f(x) ∈ K[x] is an arbitrary polynomial over a real closed

field K and f ′(x) = D(f(x)) its formal derivative with respect to x.
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Lemma 8.4.2 Let f(x) and g(x) ∈ K[x], K = a real closed field. Consider
a standard Sturm sequence of the polynomials f(x) and f ′(x) g(x),

sturm(f, f ′g) = H =
〈
h0(x), h1(x), . . . , hs(x)

〉
.

Let [a, b] be an interval (a < b) containing exactly one zero c ∈ (a, b) of
f(x) = h0(x). Then

Vara(sturm(f, f ′g))−Varb(sturm(f, f ′g)) = sgn(g(c)).

proof.
Without loss of generality, we may assume that none of the hi(x)’s vanish
in either of the half-open intervals: [a, c) and (c, b].

Let us write f(x) and g(x) as follows:

f(x) = (x− c)r φ(x) and g(x) = (x − c)s ψ(x), r > 0, s ≥ 0,

where, by assumption, we have φ(c) 6= 0 and ψ(c) 6= 0.
Then,

f ′(x) = (x− c)r−1
[
rφ(x) + (x− c)φ′(x)

]
.

Thus

f(x) f ′(x)g(x) = (x− c)2r+s−1
[
rφ2(x)ψ(x) + (x− c)φ(x)φ′(x)ψ(x)

]
.

Now, we are ready to consider each of the cases:

• Case 1: s = 0, i.e., g(c) 6= 0.
In that case,

f(x) f ′(x)g(x) = (x − c)2r−1
[
rφ2(x)ψ(x) + (x − c)φ(x)φ′(x)ψ(x)

]
,

an odd function of x in the neighborhood of c ∈ [a, b]. If g(c) > 0,
then in the neighborhood of c,

f(x)f ′(x)g(x) = (x− c)2r−1[k+ + ǫ],

where k+ = rφ2(c)ψ(c) > 0. Thus to the left of c, f(x) and f ′(x)g(x)
have opposite signs and to the right same signs, implying a loss of
sign as one moves from left to right past c:

Vara(sturm(f, f ′g))−Varb(sturm(f, f ′g)) = +1.

Similarly, if g(c) < 0, then in the neighborhood of c,

f(x)f ′(x)g(x) = (x− c)2r−1[k− + ǫ],

where k− = rφ2(c)ψ(c) < 0. Thus to the left of c f(x) and f ′(x)g(x)
have same signs and to the right opposite signs, implying a gain of
sign:

Vara(sturm(f, f ′g))−Varb(sturm(f, f ′g)) = −1.
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• Case 2: s > 0, i.e., g(c) = 0.

1. SubCase 2A: s = 1.
In this case

h0(x) = f(x) = (x− c)r φ(x), and

h1(x) = f ′(x)g(x) = (x− c)r [rφ(x)ψ(x) + (x− c)φ′(x)ψ(x)].

Thus

h̃0(x) =
h0(x)

(x − c)r
= φ(x),

h̃1(x) =
h1(x)

(x − c)r
= rφ(x)ψ(x) + (x− c)φ′(x)ψ(x).

Hence the suppressed sequence has no zero in the interval [a, b],
and thus the suppressed sequence undergoes no net variation of
signs. Arguing as in the previous lemma, we have:

Vara(sturm(f, f ′g))−Varb(sturm(f, f ′g)) = 0.

2. SubCase 2B: s > 1.
In this case deg(h0) = deg(f) < deg(f ′g) = deg(h1); thus,

h2(x) = −h0(x),

i.e., the first and third entry in the sequence have exactly the op-
posite signs. Again considering the suppressed sequence, we see
that the suppressed sequence (and hence the original sequence)
suffers zero net variation of signs. Hence:

Vara(sturm(f, f ′g))−Varb(sturm(f, f ′g)) = 0.

Theorem 8.4.3 (General Sturm-Tarski Theorem) Let f(x) and g(x)
be two polynomials with coefficients in a real closed field K and let

sturm(f, f ′g) =
〈

h0(x) = f(x),

h1(x) = f ′(x)g(x),

h2(x),

...

hs(x)
〉
,

where hi’s are related by the following relations (i > 0):

hi−1(x) = qi(x) hi(x)− hi+1(x), deg(hi+1) < deg(hi).
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Then for any interval [a, b] ⊆ K (a < b):

Var
[
sturm(f, f ′g)

]b
a

= cf

[
g > 0

]b
a
− cf

[
g < 0

]b
a
,

where

Var
[
sturm(f, f ′g)

]b
a

, Vara(sturm(f, f ′g))−Varb(sturm(f, f ′g)).

and cf [P ]ba counts the number of distinct roots (∈ K, and without counting
multiplicity) of f in the interval (a, b) ⊆ K at which the predicate P holds.

proof.
Take all the roots of all the polynomials hj(x)’s in the Sturm sequence, and
decompose the interval [a, b] into finitely many subintervals each containing
at most one of these roots.

The rest follows from the preceding two lemmas, since

Var
[
sturm(f, f ′g)

]b
a

=
∑

c∈(a,b), f(c)=0

sgn(g(c)).

Corollary 8.4.4 Let f(x) be a polynomial with coefficients in a real closed
field K.

f(x) = anx
n + an−1x

n−1 + · · ·+ a0.

Then

1. For any interval [a, b] ⊆ K (a < b):

Var
[
sturm(f, f ′)

]b
a

= #distinct roots ∈ K of f in the interval (a, b).

2. Let L ∈ K be such that all the roots of f(x) are in the interval (−L,
+L); e.g.,

L =
|an|+ max(|an−1|, . . . , |a0|)

|an|
.

Then the total number of distinct roots of f in K is given by

Var
[
sturm(f, f ′)

]+L

−L
= Var−L(sturm(f, f ′))−Var+L(sturm(f, f ′)).

proof.
(1) The first part is a corollary of the preceding theorem, with g taken to
be the constant positive function 1.

(2) The second part follows from the first, once we observe that all the
roots of f lie in the interval [−L,+L].



Section 8.5 Real Algebraic Numbers 315

Corollary 8.4.5 Let f(x) and g(x) be two polynomials with coefficients in
a real closed field K, and assume that

f(x) and f ′(x)g(x) are relatively prime.

Then

Var
[
sturm(f, g)

]b
a

= cf

[
(f ′g) > 0

]b
a
− cf

[
(f ′g) < 0

]b
a
.

Corollary 8.4.6 Let f(x) and g(x) be two polynomials with coefficients in
a real closed field K. For any interval [a, b] ⊆ K (a < b), we have

cf

»
g = 0

–b

a

+ cf

»
g > 0

–b

a

+ cf

»
g < 0

–b

a

= Var

»
sturm(f, f ′)

–b

a

,

cf

»
g > 0

–b

a

− cf

»
g < 0

–b

a

= Var

»
sturm(f, f ′g)

–b

a

,

cf

»
g > 0

–b

a

+ cf

»
g < 0

–b

a

= Var

»
sturm(f, f ′g2)

–b

a

.

Thus the previous corollary can be expressed as follows,




1 1 1

0 1 −1

0 1 1







cf

[
g = 0

]b
a

cf

[
g > 0

]b
a

cf

[
g < 0

]b
a




=




Var
[
sturm(f, f ′)

]b
a

Var
[
sturm(f, f ′g)

]b
a

Var
[
sturm(f, f ′g2)

]b
a




,

or equivalently:




1 0 −1

0 1
2

1
2

0 − 1
2

1
2







Var
[
sturm(f, f ′)

]b
a

Var
[
sturm(f, f ′g)

]b
a

Var
[
sturm(f, f ′g2)

]b
a




=




cf

[
g = 0

]b
a

cf

[
g > 0

]b
a

cf

[
g < 0

]b
a




.

8.5 Real Algebraic Numbers

In this section, we study how real algebraic numbers may be described and
manipulated. We shall introduce some machinery for this purpose, i.e.,
root separation and Thom’s lemma.
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8.5.1 Real Algebraic Number Field

Consider a field E. Let F be subfield in E. An element u ∈ E is said to
be algebraic over F if for some nonzero polynomial f(x) ∈ F [x], f(u) = 0;
otherwise, it is transcendental over F .

Similarly, let S be a subring of E. An element u ∈ E is said to be
integral over S if for some monic polynomial f(x) ∈ S[x], f(u) = 0.

For example, if we take E = C, and F = Q, then the elements of C
that are algebraic over Q are the algebraic numbers; they are simply the
algebraic closure of Q: Q. Similarly, if we take S = Z, then the elements
of C that are integral over Z are the algebraic integers .

Other useful examples are obtained by takingE = R, F = Q and S = Z;
they give rise to the real algebraic numbers and real algebraic integers—
topics of this section; they are in a very real sense a significant fragment of
“computable numbers” and thus very important.

Definition 8.5.1 (Real Algebraic Number) A real number is said to
be a real algebraic number if it is a root of a univariate polynomial f(x) ∈
Z[x] with integer coefficients.

Example 8.5.2 Some examples of real algebraic numbers:

1. All integers:
n ∈ Z is a root of x− n = 0.

2. All rational numbers:

α =
p

q
∈ Q (q 6= 0) is a root of qx− p = 0.

3. All real radicals of rational numbers:

β = n
√
p/q ∈ R (p ≥ 0, q > 0) is a root of qxn − p = 0.

Definition 8.5.3 (Real Algebraic Integer) A real number is said to be
a real algebraic integer if it is a root of a univariate monic polynomial
f(x) ∈ Z[x] with integer coefficients.

Example 8.5.4 The golden ratio,

ξ =
1 +
√

5

2
,

is an algebraic integer, since ξ is a root of the monic polynomial

x2 − x− 1.
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Lemma 8.5.1 Every real algebraic number can be expressed as a real al-
gebraic integer divided by an integer.

(This is a corollary of the following general theorem; the proof
given here is the same as the general proof, mutatis mutandis .
Every algebraic number is a ratio of an algebraic integer and an
integer.)

proof.
Consider a real algebraic number ξ. By definition,

ξ = a real algebraic number

⇔ ξ = real root of a polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ Z[x], a⋉ 6= 0.

Now, if we multiply f(x) by an−1
n , we have

an−1
n f(x)

= an−1
n an x

n + an−1
n an−1 x

n−1 + · · ·+ an−1
n a0

= (anx)
n + an−1(anx)

n−1 + · · ·+ a0a
n−1
n .

Clearly, anξ is a real root of the polynomial

g(y) = yn + an−1y
n−1 + · · ·+ a0a

n−1
n ∈ Z[y],

as g(anξ) = an−1
n f(ξ) = 0. Thus anξ a real algebraic integer, for some

an ∈ Z \ {0}.

Lemma 8.5.2

1. If α, β are real algebraic numbers, then so are −α, α−1 (α 6= 0),
α+ β, and α · β.

2. If α, β are real algebraic integers, then so are −α, α+ β, and α · β.

proof.

1. (a) If α is a real algebraic number (defined as a real root of f(x) ∈
Z[x]), then −α is also a real algebraic number.

α = a real root of f(x) = anx
n + an−1x

n−1 + · · ·+ a0

⇔ −α = a real root of an(−x)n + an−1(−x)n−1 + · · ·+ a0

⇔ −α = a real root of

(−1)nanx
n + (−1)n−1an−1(−x)n−1 + · · ·+ a0 ∈ Z[x].

(b) If α is a real algebraic integer, then −α is also a real algebraic
integer.
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2. If α is a nonzero real algebraic number (defined as a real root of
f(x) ∈ Z[x]), then 1/α is also a real algebraic number.

α = a real root of f(x) = anx
n + an−1x

n−1 + · · ·+ a0

⇔ 1/α = a real root of

xnan

(
1

x

)n

+ xnan−1

(
1

x

)n−1

+ · · ·+ xna0

⇔ 1/α = a real root of a0x
n + a1x

n−1 + · · ·+ an ∈ Z[x].

Note that, if α is a nonzero real algebraic integer, then 1/α is a real
algebraic number, but not necessarily a real algebraic integer.

3. (a) If α and β are real algebraic numbers (defined as real roots of
f(x) and g(x) ∈ Z[x], respectively), then α + β is also a real
algebraic number, defined as a real root of

Resultanty(f(x− y), g(y)).

α = a real root of f(x) and β = a real root of g(x)

⇔ x− α = a real root of f(x− y) ∈ (Z[x])[y],

β = a real root of g(y) ∈ (Z[x])[y] and

x− α = β = a common real root of f(x− y) and g(y)

⇔ x = α+ β = a real root of

Resultanty(f(x− y), g(y)) ∈ Z[x].

(b) If α and β are real algebraic integers, then α + β is also a real
algebraic integer.

4. (a) If α and β are real algebraic numbers (defined as real roots of
f(x) and g(x) ∈ Z[x], respectively), then αβ is also a real
algebraic number, defined as a real root of

Resultanty

(
ymf

(
x

y

)
, g(y)

)
, where m = deg(f).

α = a real root of f(x) and β = a real root of g(x)

⇔ x

α
= a real root of ymf

(
x

y

)
∈ (Z[x])[y],

β = a real root of g(y) ∈ (Z[x])[y] and

x

α
= β = a common real root of ymf

(
x

y

)
and g(y)

⇔ x = αβ = a real root of

Resultanty

(
ymf

(
x

y

)
, g(y)

)
∈ Z[x].
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(b) If α and β are real algebraic integers, then αβ is also a real
algebraic integer.

Corollary 8.5.3

1. The real algebraic integers form a ring.

2. The real algebraic numbers form a field, denoted by A.

Since an algebraic number α, by definition, is a root of a nonzero poly-
nomial f(x) over Z, we may say that f is α’s polynomial . Additionally,
if f is of minimal degree among all such polynomials, then we say that it
is α’s minimal polynomial . The degree of a nonzero algebraic number is
the degree of its minimal polynomial; and by convention, the degree of 0 is
−∞. It is not hard to see that an algebraic number has a unique minimal
polynomial modulo associativity; that is, if f(x) and g(x) are two minimal
polynomials of an algebraic number α, then f(x) ≈ g(x).

If we further assume that α is a real algebraic number, then we can talk
about its minimal polynomial and degree just as before.

Theorem 8.5.4 The field of real algebraic numbers, A, is an Archimedean
real closed field.
proof.
Since A ⊂ R and since R itself is an ordered field, the induced ordering on
A defines the unique ordering.
A is Archimedean: Consider a real algebraic number α, defined by its

minimal polynomial f(x) ∈ Z[x]:

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

and let N = 1 + max(|an−1|, . . ., |a0|) ∈ Z. Then α < N .
A is real closed: Clearly every positive real algebraic number α (defined

by its minimal polynomial f(x) ∈ Z[x]) has a square root
√
α ∈ A defined

by a polynomial f(x2) ∈ Z[x]. Also if f(x) ∈ A[x] is a polynomial of odd
degree, then as its complex roots appear in pair, it must have at least one
real root; it is clear that this root is in A.

8.5.2 Root Separation, Thom’s Lemma and

Representation

Given a real algebraic number α, we will see that it can be finitely rep-
resented by its polynomial and some additional information that identifies
the root, if α’s polynomial has more than one real root.

If we want a succinct representation, then we must represent α by its
minimal polynomial or simply a polynomial of sufficiently small degree
(e.g., by asking that its polynomial is square-free). In many cases, if we re-
quire that even the intermediate computations be performed with succinct
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representations, then the cost of the computation may become prohibitive,
as we will need to perform polynomial factorization over Z at each step.
Thus the prudent choice seems to be to represent the inputs and outputs
succinctly, while adopting a more flexible representation for intermediate
computation.

Now coming back to the component of the representation that identifies
the root, we have essentially three choices: order (where we assume the real
roots are indexed from left to right), sign (by a vector of signs) and interval
(an interval [a, b] ⊂ R that contains exactly one root). Again the choice
may be predicated by the succinctness, the model of computation, and the
application.

Before we go into the details, we shall discuss some of the necessary tech-
nical background: namely, root separation, Fourier sequence and Thom’s
lemma.

Root Separation

In this section, we shall study the distribution of the real roots of an
integral polynomial f(x) ∈ Z[x]. In particular, we need to determine how
small the distance between a pair of distinct real roots may be as some
function of the size of their polynomial. Using these bounds, we will be
able to construct an interval [a, b] (a, b ∈ Q) containing exactly one real
root of an integral polynomial f(x), i.e., an interval that can isolate a real
root of f(x).

We keep our treatment general by taking f(x) to be an arbitrary poly-
nomial (not just square-free polynomials). Other bounds in the literature
include cases (1) where f(x) may be a rational complex polynomial or a
Gaussian polynomial; (2) where f(x) is square-free or irreducible; or (3)
when we consider complex roots of f(x). For our purpose, it is sufficient to
deal with the separation among the real roots of an integral polynomial.

Definition 8.5.5 (Real Root Separation) If the distinct real roots of
f(x) ∈ Z[x] are α1, . . ., αl (l ≥ 2),

α1 < α2 < · · · < αl,

then define the separation1 of f to be

Separation(f) = min
1≤i<j≤l

(αj − αi).

If f has less than two distinct roots, then Separation(f) =∞.

The following bound is due to S.M. Rump:

1Or more exactly, real separation.
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Theorem 8.5.5 (Rump’s Bound) Let f(x) ∈ Z[x] be an integral poly-
nomial as follows:

f(x) = anx
n + an−1x

n−1 + · · ·+ a0, ai ∈ Z.

Then2

Separation(f) >
1

nn+1(1 + ‖f‖1)2n
.

proof.
Let h ∈ R be such that, for any arbitrary real root, α, of f , the polynomial
f remains nonzero through out the interval (α, α+ h). Then, clearly,

Separation(f) > h.

Using the intermediate value theorem (see Problem 8.2), we have

f(α+ h) = f(α) + hf ′(µ), for some µ ∈ (α, α + h).

Since f(α) = 0, we have

h =
|f(α+ h)|
|f ′(µ)| .

Thus we can obtain our bounds by choosing h such that |f(α + h)| is
“fairly large” and |f ′(µ)|, “fairly small,” for all µ ∈ (α, α + h). Thus the
polynomial needs enough space to go from a “fairly large” value to 0 at a
“fairly small” rate.

Let β be a real root of f(x) such that β is immediately to the right of
α. Then there are following two cases to consider:

• Case 1: |α| < 1 < |β|.
We consider the situation −1 < α < 1 < β, as we can always achieve
this, by replacing f(x) by f(−x), if necessary. Take α+ h = 1. Then

1. |f(α+ h)| ≥ 1, since f(1) 6= 0.

2. Since µ ≤ 1, we have

|f ′(µ)| ≤ |nan|+ |(n− 1)an−1|+ · · ·+ |a1| ≤ n‖f‖1.

Thus

Separation(f) > h ≥ 1

n‖f‖1
>

1

nn+1(1 + ‖f‖1)2n
.

2Note: A tighter bound is also given by Rump:

Separation(f) >
2
√

2

nn/2+1(1 + ‖f‖1)n
.
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For the next case, we need the following technical lemma:

Lemma 8.5.6 Let f(x) ∈ Z[x] be an integral polynomial as in the theo-
rem. If γ satisfies

f ′(γ) = 0, but f(γ) 6= 0,

then

|f(γ)| > 1

nn(1 + ‖f‖1)2n−1
.

proof.
Consider the polynomials f ′(x) and f̃(x, y) = f(x) − y. Since γ is a zero
of f ′(x) and 〈γ, f(γ)〉 is a zero of f̃(x, y), we see that f(γ) 6= 0 is a root of

R(y) = Resultantx(f ′(x), f̃(x, y)).

Using the Hadamard-Collins-Horowitz inequality theorem (with 1-norm)
(see Problem 8.11), we get

‖R‖∞ ≤ (‖f‖1 + 1)n−1 (n‖f‖1)n,

and
1 + ‖R‖∞ < nn(1 + ‖f‖1)2n−1.

Since f(γ) is a nonzero root of the integral polynomial R(y), we have

|f(γ)| >
1

1 + ‖R‖∞
>

1

nn(1 + ‖f‖1)2n−1
.

(End of Lemma)

• Case 2: |α|, |β| ≤ 1.
By Rolle’s theorem there is a γ ∈ (α, β), where f ′(γ) = 0. Take
α+ h = γ. Then

1. By Lemma 8.5.6,

|f(α+ h)| = |f(γ)| >
1

nn(1 + ‖f‖1)2n−1
.

2. As before, since µ ≤ 1, we have

|f ′(µ)| ≤ n‖f‖1.

Thus

Separation(f) > h

>
1

nn(1 + ‖f‖1)2n−1)(n‖f‖1)

>
1

nn+1(1 + ‖f‖1)2n
.
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Note: The remaining case |α|, |β| ≥ 1, requires no further justifica-
tion as the following argument shows: Consider the polynomial xn f(1/x).
Then α−1 and β−1 are two consecutive roots of the new polynomial of same
“size” as f(x); |α−1|, |β−1| ≤ 1; and

β − α ≥ β − α
α β

= α−1 − β−1.

But using case 2, we get

Separation(f) > β − α >
1

nn+1(1 + ‖f‖1)2n
.

Let r = p/q ∈ Q be a rational number (p, q ∈ Z). We define size of r
as

size(r) = |p|+ |q|.

Theorem 8.5.7 Let f(x) ∈ Z[x] be an integral polynomial of degree n.
Then between any two real roots of f(x) there is a rational number r of size

size(r) < 2 · nn+1(1 + ‖f‖1)2n+1.

proof.
Consider two consecutive roots of f(x): α < β . Let Q ∈ Z be

Q = nn+1(1 + ‖f‖1)2n.

Consider all the rational numbers with Q in the denominator:

. . . ,− i

Q
,− i− 1

Q
, . . . ,− 2

Q
,− 1

Q
, 0,

1

Q
,

2

Q
, . . . ,

i− 1

Q
,
i

Q
, . . .

Since
β − α > 1/Q,

for some P ,

α <
P

Q
< β < ‖f‖1,

since β is a root of f .
Hence

|P | < nn+1(1 + ‖f‖1)2n+1.

Thus the size of r = P/Q is

size(r) < 2 · nn+1(1 + ‖f‖1)2n+1.

Definition 8.5.6 (Isolating Interval) An isolating interval for an inte-
gral polynomial f(x) ∈ Z[x] is an interval [a, b] (a, b ∈ Q), in which there
is precisely one real root of the polynomial.
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By the preceding theorem, we see that for every real root of an integral
polynomial, we can find an isolating interval. Furthermore,

Corollary 8.5.8 Every isolating interval of a degree n integral polynomial
f(x) ∈ Z[x] is of the form [a, b], (a, b ∈ Q) and size(a) and size(b) are no
larger than

2 · nn+1(1 + ‖f‖1)2n+1.

Hence every isolating interval can be represented with O(n(lg n+β(f)))
bits, where β(f) = O(lg ‖f‖1) is the bit-complexity of the polynomial f(x)
in any reasonable binary encoding. An important related computational
problem is the so-called root isolation problem, where we are asked to com-
pute an isolating interval of an integral polynomial f(x).

RootIsolation(f(x))

Input: f(x) ∈ Z[x]}; deg(f) = n.

Output: An isolating interval [a, b] (a, b ∈ Q),
containing a real root of f(x).

Let S = sturm(f, f ′), be a Sturm sequence;
a := −‖f‖1; b := ‖f‖1;

if Vara(S) = Varb(S) then return failure;

while Vara(S) − Varb(S) > 1 loop

c := (a + b)/2;

if Vara(S) > Varc(S) then b := c else a := c
end{if };

end{loop };

return [a, b];

end{RootIsolation}
Note that each polynomial of the Sturm sequence can be evaluated by

O(n) arithmetic operations, and since there are at most n polynomials in
the sequence, each successive refinement of the interval [a, b] (by binary
division) takes O(n2) time. Thus the time complexity of root isolation is

O(n2) ·O
(

lg

(
2‖f‖1

Separation(f)

))
,

which is simplified to

O

(
n2 lg

(
2‖f‖1

n−n−1(1 + ‖f‖1)−2n

))

= O
(
n2 lg

(
2nn+1(1 + ‖f‖1)2n+1

))

= O(n3(lgn+ β(f))),
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where β(f), as before, is the bit-complexity of the polynomial f(x).

Fourier Sequence and Thom’s Lemma

Definition 8.5.7 (Fourier Sequence) Let f(x) ∈ R[x] be a real uni-
variate polynomial of degree n. Its Fourier sequence is defined to be the
following sequence of polynomials:

fourier(f) =
〈

f (0)(x) = f(x),

f (1)(x) = f ′(x),

f (2)(x),

...

f (n)(x)
〉
,

where f (i) denotes the ith derivative of f with respect to x.

Note that fourier(f ′) is a suffix of fourier(f) of length n; in general,
fourier(f (i)) is a suffix of fourier(f) of length n− i+ 1.

Lemma 8.5.9 (Little Thom’s Lemma) Let f(x) ∈ R[x] be a real uni-
variate polynomial of degree n. Given a sign sequence s:

s = 〈s0, s1, s2, . . . , sn〉,

we define the sign-invariant region of R determined by s with respect to
fourier(f) as follows:

R(s) =
{
ξ ∈ R : sgn(℧(i)(ξ)) = ∼i, for all i = 0, . . . ,⋉

}
.

Then every nonempty R(s) must be connected, i.e., consist of a single in-
terval.
proof.
The proof is by induction on n. The base case (when n = 0) is trivial,
since, in this case, either R(s) = R (if sgn(f(x)) = s0) or R(s) = ∅ (if
sgn(f(x)) 6= s0).

Consider the induction case when n > 0. By the inductive hypothesis,
we know that the sign-invariant region determined by s′,

s′ = 〈s1, s2, . . . , sn〉,

with respect to fourier(f ′) is either ∅ or a single interval. If it is empty,
then there is nothing to prove. Thus we may assume that

R(s′) 6= ∅.
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Now, let us enumerate the distinct real roots of f(x):

ξ1 < ξ2 < · · · < ξm.

Note that if R(s′) consists of more than one interval, then a subsequence
of real roots

ξi < ξi+1 < · · · < ξj , j − i > i

must lie in the interval R(s′). Now, since there are at least two roots ξi and
ξi+1 ∈ R(s′), then, by Rolle’s theorem, for some ξ′ ∈ R(s′) (ξi < ξ′ < ξi+1),
f ′(ξ′) = 0. Thus,

(
∀ x ∈ R(s′)

) [
f ′(x) = 0

]
⇒ f ′(x) ≡ 0 ⇒ deg(f) = 0,

a contradiction.

Corollary 8.5.10 Consider two real roots ξ and ζ of a real univariate
polynomial f(x) ∈ R[x] of positive degree n > 0. Then ξ = ζ, if, for some
0 ≤ m < n, the following conditions hold:

f (m)(ξ) = f (m)(ζ) = 0, ,

sgn(f (m+1)(ξ) = sgn(f (m+1)(ζ),

...

sgn(f (n)(ξ) = sgn(f (n)(ζ).

proof.
Let

s′′ = 〈0, sgn(f (m+1)(ξ), . . . , sgn(f (n)(ξ)〉,
and R(s′′) be the sign-invariant region determined by s′′ with respect to
fourier(f (m)). Since ξ and ζ ∈ R(s′′), we see that R(s′′) is a nonempty
interval, over which f (m) vanishes. Hence f (m) is identically zero. But this
would contradict the fact that deg(f) = n > m ≥ 0.

Let us define sgnξ(fourier(f)) to be the sign sequence obtained by
evaluating the polynomials of fourier(f) at ξ:

sgnξ(fourier(f))

=
〈
sgn(f(ξ)), sgn(f ′(ξ)), sgn(f (2)(ξ)), . . . , sgn(f (n)(ξ))

〉
.

As an immediate corollary of Thom’s lemma, we have:

Corollary 8.5.11 Let ξ and ζ be two real roots of a real univariate poly-
nomial f(x) ∈ R[x] of positive degree n > 0. Then ξ = ζ, if the following
condition holds:

sgnξ(fourier(f ′)) = sgnζ(fourier(f ′)).
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Representation of Real Algebraic Numbers

A real algebraic number α ∈ A can be represented by its polynomial
f(x) ∈ Z[x], an integral polynomial with α as a root, and additional
information identifying this particular root. Let

f(x) = an x
n + an−1 x

n−1 + · · ·+ a0, deg(f) = n,

and assume that the distinct real roots of f(x) have been enumerated as
follows:

α1 < α2 < · · · < αj−1 < αj = α < αj+1 < · · · < αl,

where l ≤ n = deg(f).
While in certain cases (i.e., for input and output), we may require f(x)

to be a minimal polynomial α, in general, we relax this condition.
The Following is a list of possible representations of α:

1. Order Representation: The algebraic number α is represented as
a pair consisting of its polynomial, f , and its index, j, in the sequence
enumerating the real roots of f :

〈α〉o = 〈f, j〉.
Clearly, this representation requires only O(n lg ‖f‖1 + logn) bits.

2. Sign Representation: The algebraic number α is represented as
a pair consisting of its polynomial, f , and a sign sequence, s, repre-
senting the signs of the Fourier sequence of f ′ evaluated at the root
α:

〈α〉s = 〈f, s = sgnα(fourier(f ′))〉.
The validity of this representation follows easily from the Little Thom’s
theorem. The sign representation requires only O(n lg ‖f‖1 +n) bits.

3. Interval Representation: The algebraic number α is represented
as a triple consisting of its polynomial, f , and the two end points of
an isolating interval, (l, r) (l, r ∈ Q, l < r) containing only α:

〈α〉i = 〈f, l, r〉.
By definition,

max(αj−1,−1− ‖f‖∞) < l < αj = α < r < min(αj+1, 1 + ‖f‖∞),

using our bounds for the real root separation, we see that the interval
representation requires only O(n lg ‖f‖1 + n lg n) bits.

Additionally, we require that the representation be normalized in the
sense that if α 6= 0 then 0 6∈ (l, r), i.e., l and r have the same sign. We
will provide a simple algorithm to normalize any arbitrary interval
representation.
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Example 8.5.8 Consider the representations of the following two alge-
braic numbers −

√
2 +
√

3 and
√

2 +
√

3:

〈−
√

2 +
√

3〉o = 〈x4 − 10x2 + 1, 3〉,
〈
√

2 +
√

3〉o = 〈x4 − 10x2 + 1, 4〉,

〈−
√

2 +
√

3〉s = 〈x4 − 10x2 + 1, (−1,−1,+1)〉,
〈
√

2 +
√

3〉s = 〈x4 − 10x2 + 1, (+1,+1,+1)〉,

〈−
√

2 +
√

3〉i = 〈x4 − 10x2 + 1, 1/11, 1/2〉,
〈
√

2 +
√

3〉i = 〈x4 − 10x2 + 1, 3, 7/2〉.

Here, we shall concentrate only on the interval representation, as it appears
to be the best representation for a wide class of models of computation.
While some recent research indicates that the sign representation leads to
certain efficient parallel algebraic algorithms, it has yet to find widespread
usage. Moreover, many of the key algebraic ideas are easier to explain
for interval representation than the others. Henceforth, unless explicitly
stated, we shall assume that the real algebraic numbers are given in the
interval representation and are written without a subscript:

〈α〉 = 〈f, l, r〉.

The following interval arithmetic operations simplify our later exposi-
tion:

Let I1 = (l1, r1) = {x : l1 < x < r1} and I2 = (l2, r2) = {x : l2 <
x < r2} be two real intervals; then

I1 + I2 = (l1 + l2, r1 + r2)

= {x+ y : l1 < x < r1 and l2 < x < r2},

I1 − I2 = (l1 − r2, r1 − l2)
= {x− y : l1 < x < r1 and l2 < x < r2},

I1 · I2 = (min(l1l2, l1r2, r1l2, r1r2), max(l1l2, l1r2, r1l2, r1r2))

= {xy : l1 < x < r1 and l2 < x < r2}.

We begin by describing algorithms for normalization, refinement and
sign evaluation.
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Normalization

Normalize(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.

Output: A representation of α = 〈f, l′, r′〉 such that 0 6∈ (l′, r′).

p := 1/(1 + ‖f‖∞);

if Varl(S) > Var−p(S) then

return α = 〈f, l, −p〉
elsif Var−p(S) > Varp(S) then

return α = 0
else

return α = 〈f, p, r〉
end{if };

end{Normalize}

The correctness of the theorem is a straightforward consequence of
Sturm’s theorem and bounds on the nonzero zeros of f . It is easily seen
that the algorithm requires O(n2) arithmetic operations.

Refinement

Refine(α)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A.

Output: A finer representation of α = 〈f, l′, r′〉 such that
2(r′ − l′) ≤ (r − l).

Let S = sturm(f, f ′) be a Sturm sequence;

m := (l + r)/2;

if Varl(S) > Varm(S) then

return 〈f, l, m〉
else

return 〈f, m, r〉
end{if };

end{Refine}

Again the correctness of the algorithm follows from the Sturm’s theorem
and its time complexity is O(n2).



330 Real Algebra Chapter 8

Sign Evaluation

Sign(α, g)
Input: A real algebraic number α = 〈f, l, r〉 ∈ A, and

a univariate rational polynomial g(x) ∈ Q[x].

Output: sgn(g(α)) = sign of g at α.

Let Sg = sturm(f, f ′g), be a Sturm sequence;

return Varl(Sg) − Varr(Sg);
end{Sign}

The correctness of the algorithm follows from Sturm-Tarski theorem,
since

Varl(sturm(f, f ′g))−Varr(sturm(f, f ′g))

= cf

[
g > 0

]r
l
− cf

[
g < 0

]r
l

=





+1, if g(α) > 0;
0, if g(α) = 0;
−1, if g(α) < 0;

and since f has only one root α in the interval (l, r). The algorithm has
a time complexity of O(n2). This algorithm has several applications: for
instance, one can compare an algebraic number α with a rational number
p/q by evaluating the sign of the polynomial qx− p at α; one can compute
the multiplicity of a root α of a polynomial f by computing the signs of
the polynomials f ′, f (2), f (3), etc., at α.

Conversion Among Representations

Interval representation to order representation:

IntervalToOrder(α)
Input: A real algebraic number 〈α〉i = 〈f, l, r〉 ∈ A.

Output: Its order representation 〈α〉o = 〈f, j〉.

Let S = sturm(f, f ′) be a Sturm sequence;

return 〈f, Var(−1−‖f‖∞)(S) − Varr(S)〉;
end{IntervalToOrder}
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Interval representation to sign representation:

IntervalToSign(α)
Input: A real algebraic number 〈α〉i = 〈f, l, r〉 ∈ A.

Output: Its sign representation 〈α〉s = 〈f, s〉.

Let 〈f ′, f (2), . . . , f (n)〉 = fourier(f ′);

s :=

fi
Sign(α, f ′),

Sign(α, f (2)),
...

Sign(α, f (n))

fl
;

return 〈f, s〉;
end{IntervalToOrder}

Again, the correctness of these algorithms follow from Sturm-Tarski
theorem. The algorithms IntervalToOrder has a time complexity of
O(n2), and IntervalToSign has a complexity of O(n3).

Arithmetic Operations

Additive inverse:

AdditiveInverse(α)
Input: A real algebraic number 〈α〉 = 〈f, l, r〉 ∈ A.

Output: −α in its interval representation.

return 〈f(−x), −r,−l〉;
end{AdditiveInverse}

The correctness follows from the fact that if α is a root of f(x), then
−α is a root of f(−x). Clearly, the algorithm has a linear time complexity.

Multiplicative inverse:

MultiplicativeInverse(α)
Input: A nonzero real algebraic number 〈α〉 = 〈f, l, r〉 ∈ A.

Output: 1/α in its interval representation.

return

fi
xdeg(f) f

„
1

x

«
,

1

r
,
1

l

fl
;

end{MultiplicativeInverse}
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The correctness follows from the fact that if α is a root of f(x), then
1/α is a root of xdeg(f) f(1/x). Again, the algorithm has a linear time
complexity.

Addition:

Addition(α1, α2)
Input: Two real algebraic numbers

〈α1〉 = 〈f1, l1, r1〉 and 〈α2〉 = 〈f2, l2, r2〉 ∈ A.

Output: α1 + α2 = α3 = 〈f3, l3, r3〉 in its interval representation.

f3 := Resultanty(f1(x − y), f2(y));

S := sturm(f3, f
′
3);

l3 := l1 + l2;
r3 := r1 + r2;

while Varl3(S) − Varr3(S) > 1 loop

〈f1, l1, r1〉 := Refine(〈f1, l1, r1〉);
〈f2, l2, r2〉 := Refine(〈f2, l2, r2〉);

l3 := l1 + l2;
r3 := r1 + r2;

end{loop };

return 〈f3, l3, r3〉;
end{Addition}

The correctness of the algorithm follows from the main properties of
the resultant and the repeated refinement process yielding an isolating in-
terval. The resulting polynomial f3 in this algorithm has the following size
complexities:

deg(f3) ≤ n1 n2,

‖f3‖1 ≤ 2O(n1n2) ‖f1‖n2
1 ‖f2‖n1

1 ,

where deg(f1) = n1 and deg(f2) = n2. It can now be shown that the
complexity of the algorithm is O(n3

1n
4
2 lg ‖f1‖1 + n4

1n
3
2 lg ‖f2‖1).
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Multiplication:

Multiplication(α1, α2)
Input: Two real algebraic numbers

〈α1〉 = 〈f1, l1, r1〉 and 〈α2〉 = 〈f2, l2, r2〉 ∈ A.

Output: α1 · α2 = α3 = 〈f3, l3, r3〉 in its interval representation.

f3 := Resultanty

0
@ydeg(f1) f1

„
x

y

«
, f2(y)

1
A;

S := sturm(f3, f
′
3);

l3 := min(l1l2, l1r2, r1l2, r1r2);
r3 := max(l1l2, l1r2, r1l2, r1r2);

while Varl3(S) − Varr3(S) > 1 loop

〈f1, l1, r1〉 := Refine(〈f1, l1, r1〉);
〈f2, l2, r2〉 := Refine(〈f2, l2, r2〉);

l3 := min(l1l2, l1r2, r1l2, r1r2);
r3 := max(l1l2, l1r2, r1l2, r1r2);

end{loop };

return 〈f3, l3, r3〉;
end{Multiplication}

The correctness of the multiplication algorithm can be proven as before.
The size complexities of the polynomial f3 are:

deg(f3) ≤ n1 n2,

‖f3‖1 ≤ n1 n2 ‖f1‖n2
1 ‖f2‖n1

1 ,

where deg(f1) = n1 and deg(f2) = n2. Thus, the complexity of the algo-
rithm is O(n3

1n
4
2 lg ‖f1‖1 + n4

1n
3
2 lg ‖f2‖1).

8.6 Real Geometry

Definition 8.6.1 (Semialgebraic Sets) A subset S ⊆ R⋉ is a said to
be a semialgebraic set if it can be determined by a set-theoretic expression
of the following form:

S =

m⋃

i=1

li⋂

j=1

{
〈ξ1, . . . , ξn〉 ∈ R⋉ : sgn(℧i,ג(ξ1, . . . , ξ⋉)) = ∼i,ג

}
,
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where fi,j ’s are multivariate polynomials in R[x1, . . ., xn]:

fi,j(x1, . . . , xn) ∈ R[x1, . . . ,x⋉], i = 1, . . . ,⋗, ג = 1, . . . ,⋖i,

and si,j ’s are corresponding set of signs in {−1, 0, +1}.

Such sets arise naturally in solid modeling (as constructive solid geomet-
ric models), in robotics (as kinematic constraint relations on the possible
configurations of a rigid mechanical system) and in computational algebraic
geometry (as classical loci describing convolutes, evolutes and envelopes).

Note that the semialgebraic sets correspond to the minimal class of
subsets of R⋉ of the following forms:

1. Subsets defined by an algebraic inequality:

S =
{
〈ξ1, . . . , ξn〉 ∈ R⋉ : ℧(ξ1, . . . , ξ⋉) > 0

}
,

where f(x1, . . ., xn) ∈ R[x1, . . ., xn].

2. Subsets closed under following set-theoretic operations, complemen-
tation, union and intersection. That is, if S1 and S2 are two semial-
gebraic sets, then so are

Sc
1 =

{
p = 〈ξ1, . . . , ξn〉 ∈ R⋉ : p 6∈ S1

}
,

S1 ∪ S2 =
{
p = 〈ξ1, . . . , ξn〉 ∈ R⋉ : p ∈ S1 or p ∈ S2

}
,

S1 ∩ S2 =
{
p = 〈ξ1, . . . , ξn〉 ∈ R⋉ : p ∈ S1 and p ∈ S2

}
.

After certain simplifications, we can also formulate a semialgebraic set
in the following equivalent manner: it is a finite union of sets of the form
shown below:

S =
{
〈ξ1, . . . , ξn〉 :

g1(ξ1, . . . , ξn) = · · · = gr(ξ1, . . . , ξn) = 0,

gr+1(ξ1, . . . , ξn) > 0, . . . , gs(ξ1, . . . , ξn) > 0
}
,

where the gi(x1, . . ., xn) ∈ R[x1, . . ., xn] (i = 1, . . ., s).
It is also not hard to see that every propositional algebraic sentence

composed of algebraic inequalities and Boolean connectives defines a semi-
algebraic set. In such sentences,

1. A constant is a real number;

2. An algebraic variable assumes a real number as its value; there are
finitely many such algebraic variables: x1, x2, . . ., xn.
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3. An algebraic expression is a constant, or a variable, or an expression
combining two algebraic expressions by an arithmetic operator: “+”
(addition), “−” (subtraction), “·” (multiplication) and “/” (division).

4. An atomic Boolean predicate is an expression comparing two arith-
metic expressions by a binary relational operator: “=” (equation),
“ 6=” (inequation), “>” (strictly greater), “<” (strictly less), “≥”
(greater than or equal to) and “≤” (less than or equal to).

5. A propositional sentence is an atomic Boolean predicate, a negation of
a propositional sentence given by the unary Boolean connective: “¬”
(negation), or a sentence combining two propositional sentences by
a binary Boolean connective: “⇒” (implication), “∧” (conjunction)
and “∨” (disjunction).

Thus another definition of semialgebraic sets can be given in terms
of a propositional algebraic sentence ψ(x1, . . ., xn) involving n algebraic
variables: This is a subset S ⊆ R⋉ determined by ψ as follows:

S =
{
〈ξ1, . . . , ξn〉 ∈ R⋉ : ψ(ξ1, . . . , ξ⋉) = True

}
.

It turns out that if we enlarge our propositional sentences to include
first-order universal and existential quantifiers (the so-called Tarski sen-
tences), then the set determined by such sentences (Tarski sets) are also
semialgebraic sets. That is, quantifiers do not add any additional power!
This result follows from Tarski’s famous quantifier elimination theorem,
which states that any set S determined by a quantified sentence is also
determined by a quantifier-free sentence ψ′, or

Proposition 8.6.1 Every Tarski set has a quantifier-free defining sen-
tence.

Later on in this section, we shall come back to a more detailed discussion
of Tarski sentences and some results on an effective procedure to decide if
a given Tarski sentence is true—geometric theorem proving problem.

Example 8.6.2 Some examples of such propositional algebraic sentences
include the following:

1.

φ1(x1, x2, . . . , xn) = x2
1 + x2

2 + · · ·+ x2
n < 0.

The semialgebraic set defined by φ1 is the empty set.

2.

(x4 − 10x2 + 1 = 0) ∧ (2x < 7) ∧ (x > 3)

defines the only root of the polynomial x4 − 10x2 + 1 in the isolating
interval [3, 7/2]—namely, the real algebraic number

√
2 +
√

3.
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3.

(x2 + bx+ c = 0) ∧ (y2 + by + c = 0) ∧ (x 6= y),

which has a real solution 〈x, y〉 if and only if b2 > 4c, i.e., when the
quadratic polynomial x2 + bx+ c has two distinct real roots.

The following properties of semialgebraic sets are noteworthy:

• A semialgebraic set S is semialgebraically connected , if it is not the
union of two disjoint nonempty semialgebraic sets.

A semialgebraic set S is semialgebraically path connected if for every
pair of points p, q ∈ S there is a semialgebraic path connecting p and
q (one-dimensional semialgebraic set containing p and q) that lies in
S.

• A semialgebraic set is semialgebraically connected if and only if it is
semialgebraically path connected. Working over the real numbers, it
can be seen that a semialgebraic set is semialgebraically path con-
nected if and only if it is path connected . Thus, we may say a semial-
gebraic set is connected when we mean any of the preceding notions
of connectedness.

• A connected component (semialgebraically connected component) of a
semialgebraic set S is a maximal (semialgebraically) connected subset
of S.

• Every semialgebraic set has a finite number of connected components.

• If S is a semialgebraic set, then its interior , int(S), closure, S, and
boundary ∂(S) = S \ int(S) are all semialgebraic.

• For any semialgebraic subset S ⊆ R⋉, a semialgebraic decomposition
of S is a finite collection K of disjoint connected semialgebraic subsets
of S whose union is S. Every semialgebraic set admits a semialgebraic
decomposition.

Let F = {fi,j : i = 1, . . ., m, j = 1, . . ., li} ⊆ R[x1, . . ., xn] be a set
of real multivariate polynomials in n variables. Any point p = 〈ξ1,
. . ., ξn〉 ∈ R⋉ has a sign assignment with respect to F as follows:

sgnF (p) =
〈
sgn(fi,j(ξ1, . . . , ξn)) : i = 1, . . . ,m, j = 1, . . . , li

〉
.

Using sign assignments, we can define the following equivalence rela-
tion: Given two points p, q ∈ R⋉, we say

p ∼F q, if and only if sgnF (p) = sgnF (q).
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Now consider the partition of R⋉ defined by the equivalence relation
∼F ; each equivalence class is a semialgebraic set comprising finitely
many connected semialgebraic components. Each such equivalence
class is called a sign class of F .

Clearly, the collection of semialgebraic components of all the sign
classes, K, provides a semialgebraic decomposition of R⋉. Further-
more, if S ⊆ R⋉ is a semialgebraic set defined by some subset of F ,
then it is easily seen that

{
C ∈ K : C ∩ S 6= ∅

}
,

defines a semialgebraic decomposition of the semialgebraic set S.

• A semialgebraic cell-complex (cellular decomposition) for F is a semi-
algebraic decomposition of R⋉ into finitely many disjoint semialge-
braic subsets, {Ci}, called cells such that we have the following:

1. Each cell Ci is homeomorphic to Rδ(i), 0 ≤ δ(i) ≤ n. δ(i) is
called the dimension of the cell Ci, and Ci is called a δ(i)-cell .

2. Closure of each cell Ci, Ci, is a union of some cells Cj ’s:

Ci =
⋃

j

Cj .

3. Each Ci is contained in some semialgebraic sign class of F—that
is, the sign of each fi,j ∈ F is invariant in each Ci.

Subsequently, we shall study a particularly “nice” semialgebraic cell-
complex that is obtained by Collin’s cylindrical algebraic decomposi-
tion or CAD.

8.6.1 Real Algebraic Sets

A special class of semialgebraic sets are the real algebraic sets determined
by a conjunction of algebraic equalities.

Definition 8.6.3 (Real Algebraic Sets) A subset Z ⊆ R⋉ is a said to
be a real algebraic set , if it can be determined by a system of algebraic
equations as follows:

Z =
{
〈ξ1, . . . , ξn〉 ∈ R⋉ : ℧1(ξ1, . . . , ξ⋉) = · · · = ℧⋗(ξ1, . . . , ξ⋉) = 0

}
,

where fi’s are multivariate polynomials in R[x1, . . ., xn].
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x

y

Projection of Z

Z

Figure 8.1: Projection of a real algebraic set Z.

Note that a real algebraic set Z could have been defined by a single
algebraic equation as follows:

Z =
{
〈ξ1, . . . , ξn〉 ∈ R⋉ : ℧2

1(ξ1, . . . , ξ⋉) + · · ·+ ℧2
⋗(ξ1, . . . , ξ⋉) = 0

}
,

as we are working over the field of reals, R.
While real algebraic sets are quite interesting for the same reasons as

complex algebraic varieties, they lack certain “nice” geometric properties
and hence, are somewhat unwieldy. For instance, real algebraic sets are not
closed under projection onto a subspace.

Consider the following simple real algebraic set defining a parabola:

Z =
{
〈x, y〉 ∈ R2 : x = y2

}
.

If πx is a projection map defined as follows:

π : R2 → R

: 〈x, y〉 7→ x,

then
π(Z) = {x ∈ R : x ≥ 0}.

See Figure 8.1.
Clearly, π(Z) is not algebraic, since only algebraic sets in R are finite

or entire R. However, it is semialgebraic. Additionally, we shall see that
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semialgebraic sets are closed under projection as well as various other set-
theoretic operations. In fact, semialgebraic sets are the smallest class of
subsets of R⋉ containing real algebraic sets and closed under projection.
In the next two subsection, we shall develop some machinery that among
other things shows that semialgebraic sets are closed under projection.

8.6.2 Delineability

Let fi(x1, . . ., xn−1, xn) ∈ R[x1, . . ., xn−1, xn] be a polynomial in n
variables:

fi(x1, . . . , xn−1, xn) = fdi

i (x1, . . . , xn−1) x
di
n

+ · · ·+ f0
i (x1, . . . , xn−1),

where f j
i ’s are in R[x1, . . ., xn−1]. Let p′ = 〈ξ1, . . ., ξn−1〉 ∈ R⋉−1. Then

we write

fi,p′(xn) = fdi

i (p′) xdi
n + · · ·+ f0

i (p′),

for the univariate polynomial obtained by substituting p′ for the first (n−1)
variables.

Definition 8.6.4 (Delineable Sets) Let

F =
{

f1(x1, . . . , xn),

f2(x1, . . . , xn),

...

fs(x1, . . . , xn)
}
⊆ R[x1, . . . , xn]

be a set of s n-variate real polynomials. Let C ⊆ R⋉−1 be a nonempty set
homeomorphic to Rδ (0 ≤ δ ≤ n− 1).

We say F is delineable on C (or, C is F -delineable), if it satisfies the
following invariant properties:

1. For every 1 ≤ i ≤ s, the total number of complex roots of fi,p′ (count-
ing multiplicity) remains invariant as p′ varies over C.

2. For every 1 ≤ i ≤ s, the number of distinct complex roots of fi,p′ (not
counting multiplicity) remains invariant as p′ varies over C.

3. For every 1 ≤ i < j ≤ s, the total number of common complex roots
of fi,p′ and fj,p′ (counting multiplicity) remains invariant as p′ varies
over C.
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Theorem 8.6.2 Let F ⊆ R[x1, . . ., xn] be a set of polynomials as in
the preceding definition, and let C ⊆ R⋉−1 be a connected maximal F-
delineable set. Then C is semialgebraic.
proof.
We show that all the three invariant properties of the definition for delin-
eability have semialgebraic characterizations.

(1) The first condition states that
(
∀ i
) (
∀ p′ ∈ C

) [
|Z(fi,p′)| = invariant

]
,

where Z(f) denotes the complex roots of f . This condition is simply equiv-
alent to saying that “deg(fi,p′) is invariant (say, ki).” A straightforward
semialgebraic characterization is as follows:

(
∀ 1 ≤ i ≤ s

) (
∃ 0 ≤ ki ≤ di

)

[
(∀ k > ki) [fk

i (x1, . . . , xn−1) = 0] ∧ fki

i (x1, . . . , xn−1) 6= 0
]

holds for all p′ ∈ C.
(2) The second condition, in view of the first condition, can be restated

as follows:(
∀ i
) (
∀ p′ ∈ C

) [
|CZ(fi,p′ , Dxn(fi,p′))| = invariant

]
,

where Dxn denotes the formal derivative operator with respect to the vari-
able xn and CZ(f, g) denotes the common complex roots of f and g. Using
principal subresultant coefficients, we can provide the following semialge-
braic characterization:(

∀ 1 ≤ i ≤ s
) (
∃ 0 ≤ li ≤ di − 1

)

[
(∀ l < li) [PSCxn

l (fi(x1, . . . , xn), Dxn(fi(x1, . . . , xn))) = 0]

∧ PSCxn

li
(fi(x1, . . . , xn), Dxn(fi(x1, . . . , xn))) 6= 0

]

holds for all p′ ∈ C; here PSCxn

l denotes the lth principal subresultant
coefficient with respect to xn.

(3) Finally, the last condition can be restated as follows:
(
∀ i 6= j

) (
∀ p′ ∈ C

) [
|CZ(fi,p′ , fj,p′)| = invariant

]
.

Using principal subresultant coefficients, we can provide the following semi-
algebraic characterization:

(
∀ 1 ≤ i < j ≤ s

) (
∃ 0 ≤ mij ≤ min(di, dj)

)

[
(∀ m < mij) [PSCxn

m (fi(x1, . . . , xn), fj(x1, . . . , xn)) = 0]

∧ PSCxn
mij

(fi(x1, . . . , xn), fj(x1, . . . , xn)) 6= 0
]
,
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holds for all p′ ∈ C; here PSCxn
m denotes the mth principal subresultant

coefficient with respect to xn.

In summary, given a set of polynomials, F ∈ R[x1, . . ., xn], as shown
below, we can compute another set of (n− 1)-variate polynomials, Φ(F) ∈
R[x1, . . ., xn−1], which precisely characterizes the connected maximal
F -delineable subsets of R⋉−1. Let

F =
{
f1, f2, . . . , fs

}
;

then

Φ(F) =
{
fk

i (x1, . . . , xn−1 : 1 ≤ i ≤ s, 0 ≤ k ≤ di

}

∪
{

PSCxn

l (fi(x1, . . . , xn), Dxn(fi(x1, . . . , xn)) :

1 ≤ i ≤ s, 0 ≤ l ≤ di − 1
}

∪
{

PSCxn
m (fi(x1, . . . , xn), fj(x1, . . . , xn)) :

1 ≤ i < j ≤ s, 0 ≤ m ≤ min(di, dj)
}
.

Now, we come to the next important property that delineability pro-
vides. Clearly, by definition, the total number of distinct complex roots of
the set of polynomials F is invariant over the connected set C ⊆ R⋉−1. But
it is also true that the total number of distinct real roots of F is invariant
over the set C.

Consider an arbitrary polynomial fi ∈ F ; since it has real coefficients,
its complex roots must occur in conjugate pairs. Thus as fi,p′ varies to
fi,q′ such that some pair of complex conjugate roots (which are necessarily
distinct) coalesce into a real root (of multiplicity two), somewhere along
a path from p′ to q′ the total number of distinct roots of f must have
dropped. Thus a transition from a nonreal root to a real root is impossible
over C. Similar arguments also show that a transition from a real root to
a nonreal is impossible as it would imply a splitting of a real root into a
pair of distinct complex conjugate roots.

More formally, we argue as follows:

Lemma 8.6.3 Let F ⊆ R[x1, . . ., xn] be a set of polynomials as before,
and let C ⊆ R⋉−1 be a connected F-delineable set. Then the total number
of distinct real roots of F is locally invariant over the set C.
proof.
Consider a polynomial fi ∈ F . Let p′ and q′ be two points in C such that
‖p′ − q′‖ < ǫ and assume that every root of fi,p′ differs from some root of
fi,q′ by no more that

δ <

(
1

2

)
Separation(fi,p′),
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where Separation denotes the complex root separation of fi,p′ .
Now, let zj be a complex root of fi,p′ such that a disc of radius δ centered

around zj in the complex plane contains a real root yj of fi,q′ . But then it
can also be shown that yj is also in a disc of radius δ about zj , the complex
conjugate of zj . But then zj and zj would be closer to each other than
Separation(fi,p′), contradicting our choice of δ. Thus the total number of
distinct complex roots as well as the total number of distinct real roots of
fi remains invariant in any small neighborhood of a point p′ ∈ C.

Lemma 8.6.4 Let F ⊆ R[x1, . . ., xn] and C ⊆ R⋉−1 be a connected F-
delineable set, as in the previous lemma. Then the total number of distinct
real roots of F is invariant over the set C.
proof.
Let p′ and q′ be two arbitrary points in C connected by a path γ : [0, 1]→ C
such that γ(0) = p′ and γ(1) = q′. Since γ can be chosen to be contin-
uous (even semialgebraic) the image of the compact set [0, 1] under γ,
Γ = γ([0, 1]) is also compact. At every point r′ ∈ Γ there is a small neigh-
borhood N(r′) over which the total number of distinct real roots of F
remains invariant. Now, since the path Γ has a finite cover of such neigh-
borhoods N(r′1), N(r′2), . . ., N(r′k) over each of which the total number
of distinct real roots remain invariant, this number also remains invariant
over the entire path Γ. Hence, as C is path connected, the lemma follows
immediately.

As an immediate corollary of the preceding lemmas we have the follow-
ing:

Corollary 8.6.5 Let F ⊆ R[x1, . . ., xn] be a set of polynomials, deline-
able on a connected set C ⊆ R⋉−1.

1. The complex roots of F vary continuously over C.

2. The real roots of F vary continuously over C, while maintaining their
order; i.e., the jth smallest real root of F varies continuously over C.

Using this corollary, we can describe how the real roots are structured
above C. Consider the cylinder over C obtained by taking the direct prod-
uct of C with the two-point compactification of the reals, R∪{±∞}. Note
that the two-point compactification makes it possible to deal with vertical
asymptotes of the real hypersurfaces defined by F .

The cylinder C × (R ∪ {±∞}) can be partitioned as follows:

Definition 8.6.5 (Sections and Sectors) Suppose F ⊆ R[x1, . . ., xn]
is delineable on a connected set C ⊆ R⋉−1. Assume that F has finitely
many distinct real roots over C, given by m continuous functions

r1(p
′), r2(p

′), . . . , rm(p′),
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Figure 8.2: Sectors and sections over C.

where rj denotes the jth smallest root of F . (See Figure 8.2). Then we
have the following:

1. The jth F -section over C is
{
〈p′, xn〉 : p′ ∈ C, xn = rj(p

′)
}
.

2. The jth (0 < j < n) intermediate F -sector over C is
{
〈p′, xn〉 : p′ ∈ C, rj(p′) < xn < rj+1(p

′)
}
.

The lower semiinfinite F -sector over C is
{
〈p′, xn〉 : p′ ∈ C, xn < r1(p

′)
}
.
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Figure 8.3: Sectors and sections for the parabola example.

The upper semiinfinite F -sector over C is

{
〈p′, xn〉 : p′ ∈ C, xn > rm(p′)

}
.

Example 8.6.6 Consider the real polynomial f(x, y) = y2 − x ∈ R[x, y]
defining a parabola in the plane (see Figure 8.3). Note that

f(x, y) = y2 (1) + y1 (0) + y0 (−x),

and thus
f2(x) = 1, f1(x) = 0, and f0(x) = −x.

Since the subresultant chain of f = y2 − x and f ′ = Dy(f) = 2y are given
by

SubRes2(f, f
′) = y2 − x

SubRes1(f, f
′) = 2y

SubRes0(f, f
′) = −4x,

the principal subresultant coefficients are

PSC2(x) = 1, PSC1 = 2, and PSC0 = −4x.

Thus
Φ({f}) = {1, x},
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and the maximal connected f -delineable sets are A = [−∞, 0), B = [0, 0]
and C = (0,+∞]. There is only one infinite sector over A, as for every
x ∈ A, y2 − x has no real zero. There are two semiinfinite sectors and
one section over B, as y2 − x has one zero (of multiplicity two) at y = 0.
Finally, there are three sectors and two sections over C, as for every x ∈ C,
y2 − x has two distinct real zeros (each of multiplicity one).

Note that as we traverse along the x-axis from −∞ to +∞, we see that
y2−x has two distinct complex zeros for all x < 0, which coalesce into one
real zero at x = 0 and then split into two distinct real zeros for x > 0.

Observe that the F -sections and sectors are uniquely defined by the
distinct real root functions of F :

r1(p
′), r2(p

′), . . . , rm(p′),

where it is implicitly assumed that not all fi,p′ ≡ 0 (fi ∈ F). It is sometimes
easier to use a single multivariate polynomial g = Π(F)(x1, . . ., xn) with

g′p(xn) = g(p′, xn)

vanishing precisely at the distinct roots r1(p
′), r2(p′), . . . , rm(p′).

Π(F)(x1, . . . , xn) =
∏

fi∈F ,fi,p′ 6≡0

fi(x1, . . . , xn),

where p′ ∈ C, a connected F -delineable set. By convention, we shall have
Π(F) = 1, if all fi,p′ ≡ 0 (fi ∈ F). Also, when Π(F) = constant, the
cylinder over C will have exactly one infinite F -sector: C × {R ∪ {±∞}.

8.6.3 Tarski-Seidenberg Theorem

As an immediate consequence of the preceding discussions, we are now
ready to show that semialgebraic sets are closed under projection. A more
general result in this direction is the famous Tarski-Seidenberg theorem.

Definition 8.6.7 (Semialgebraic Map) A map ψ : S → T , from a
semialgebraic set S ⊆ R⋗ to a semialgebraic set T ⊆ R⋉ is said to be
a semialgebraic map, if its graph

{
〈s, ψ(s)〉 ∈ R⋗+⋉ : ∼ ∈ S

}

is a semialgebraic set in R⋗+⋉.

Theorem 8.6.6 (Tarski-Seidenberg Theorem) Let S be a semialge-
braic set in R⋗ and

ψ : R⋗ → R⋉
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be a semialgebraic map; then ψ(S) is semialgebraic in R⋉.
proof.
The proof is by induction on m. We start by considering the base case
m = 1. Then the graph of ψ, say V , is a semialgebraic set in R⋉+1 and
the image of S, ψ(S), is a subset of R⋉. After suitable renaming of the
coordinates, we can so arrange that V is defined by a set of polynomials
F ⊆ R[x1, . . ., xn+1] and ψ(S) = π(V ) is the projection of V onto the
first n coordinates:

π : Rn+1 → R⋉

: 〈ξ1, . . . , ξn, ξn+1〉 7→ 〈ξ1, . . . , ξn〉.

Corresponding to the set F , we can define the set of polynomials Φ(F) as
earlier. Now, note that if C is a cell of a sign-invariant cell decomposition,
K of R⋉, defined by Φ(F), then C is a maximal connected F -delineable
set.

Next, we claim that for every C ∈ K,

C ∩ π(V ) 6= ∅ ⇒ C ⊆ π(V ).

To see this, note that since C ∩ π(V ) 6= ∅, there is a point p ∈ V , such
that p′ = π(p) ∈ C. Thus p belongs to some F -section or sector defined by
some real functions ri(p

′) and ri+1(p
′). Now consider an arbitrary point

q′ ∈ C; since C is path connected, there is a path γ′ : [0, 1] → C such
that γ′(0) = p′ and γ′(1) = q′. This path can be lifted to a path in V , by
defining γ : [0, 1]→ V as follows:

γ(t) =
ri+1(γ

′(t))[p− ri(p′)]− ri(γ′(t))[p− ri+1(p
′)]

ri+1(p′)− ri(p′)
,

where t ∈ [0, 1].

Clearly, the path γ([0, 1]) ∈ V ; π(γ(t)) = γ′(t), and q′ ∈ π(V ), as
required. Hence ψ(S) = π(V ) can be expressed as a union of finitely many
semialgebraic cells of the decomposition K, since

π(V ) ⊆
⋃ {

C : C ∩ π(V ) 6= ∅
}
⊆ π(V ).

Hence, ψ(S) is semialgebraic in R⋉.
For m > 1, the proof proceeds by induction, as any projection from

Π : R⋗×R⋉ → R⋉ can be expressed as a composition of the following two
projection maps: Π′ : R⋗−1 × R⋉+1 → R⋉+1 and π′ : R⋉+1 → R⋉.

Corollary 8.6.7 Let S be a semialgebraic set in R⋗ and

ψ : R⋗ → R⋉
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be a polynomial map; then ψ(S) is semialgebraic in R⋉.
proof.
Let ψ be given by the following sequence of polynomials

gk(x1, . . . , xm) ∈ R[x1, . . . ,x⋗], k = 1, . . . ,⋉.

Then the graph of the map is defined by

(S × R⋉) ∩ T,

where

T =
{
〈ξ1, . . . , ξm, ζ1, . . . , ζn〉 ∈ R⋗+⋉ :

gk(ξ1, . . . , ξm)− ζk = 0, for all k = 1, . . . , n
}
.

Thus ψ is a semialgebraic map and the rest follows from the Tarski-Seidenberg
theorem.

8.6.4 Representation and Decomposition of

Semialgebraic Sets

Using the ideas developed in this chapter (i.e., Sturm’s theory and real al-
gebraic numbers), we can already see how semialgebraic sets in R∪ {±∞}
can be represented and manipulated easily. In this one-dimensional case,
the semialgebraic sets can be represented as a union of finitely many inter-
vals whose endpoints are real algebraic numbers. For instance, given a set
of univariate defining polynomials:

F =
{
fi,j(x) ∈ Q[x] : i = 1, . . . ,⋗, ג = 1, . . . ,⋖i

}
,

we may enumerate all the real roots of the fi,j’s (i.e., the real roots of the
single polynomial F =

∏
i,j fi,j) as

−∞ < ξ1 < ξ2 < · · · < ξi−1 < ξi < ξi+1 < · · · < ξs < +∞,

and consider the following finite set K of elementary intervals defined by
these roots:

[−∞, ξ1), [ξ1, ξ1], (ξ1, ξ2), . . . ,

(ξi−1, ξi), [ξi, ξi], (ξi, ξi+1), . . . , [ξs, ξs], (ξs,+∞].

Note that, these intervals are defined by real algebraic numbers with defin-
ing polynomial

Π(F) =
∏

fi,j 6≡0∈F
fi,j(x).
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Now, any semialgebraic set in S ⊆ R ∪ {±∞} defined by F :

S =

m⋃

i=1

li⋂

j=1

{
ξ ∈ R ∪ {±∞} : sgn(℧i,ג(ξ)) = ∼i,ג

}
,

where si,j ∈ {−1, 0,+1}, can be seen to be the union of a subset of elemen-
tary intervals in K. Furthermore, this subset can be identified as follows: if,
for every interval C ∈ K, we have a sample point αC ∈ C, then C belongs
to S if and only if (

∀ i, j
) [

sgn(fi,j(α)) = si,j

]
.

For each interval C ∈ K, we can compute a sample point (an algebraic
number) αC as follows:

αC =





ξ1 − 1, if C = [−∞, ξ1);
ξi, if C = [ξi, ξi];
(ξi + ξi+1)/2, if C = (ξi, ξi+1);
ξs + 1, if C = (ξs,+∞].

Note that the computation of the sample points in the intervals, their
representations, and the evaluation of other polynomials at these points
can all be performed by the Sturm theory developed earlier.

A generalization of the above representation to higher dimensions can
be provided by using the machinery developed for delineability. In order
to represent a semialgebraic set S ⊆ R⋉, we may assume recursively that
we can represent its projection π(S) ⊆ R⋉−1 (also a semialgebraic set),
and then represent S as a union of the sectors and sections in the cylinders
above each cell of a semialgebraic decomposition of π(S). This also leads
to a semialgebraic decomposition of S.

We can further assign an algebraic sample point in each cell of the
decomposition of S recursively as follows: Assume that the (algebraic)
sample points for each cell of π(S) have already been computed recursively.
Note that a vertical line passing through a sample point of π(S) intersects
the sections above the corresponding cell at algebraic points. From these
algebraic points, we can derive the algebraic sample points for the cells of
S, in a manner similar to the one-dimensional case.

If F is a defining set for S ⊆ R⋉, then for no additional cost, we
may in fact compute a sign invariant semialgebraic decomposition of R⋉

for all the sign classes of F , using the procedure described above. Such
a decomposition leads to a semialgebraic cell-complex, called cylindrical
algebraic decomposition (CAD). This notion will be made more precise
below. Note that since we have an algebraic sample point for each cell,
we can compute the sign assignment with respect to F of each cell of
the decomposition and hence determine exactly those cells whose union
constitutes S.
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8.6.5 Cylindrical Algebraic Decomposition

Definition 8.6.8 [Cylindrical Algebraic Decomposition (CAD)] A
cylindrical algebraic decomposition (CAD) of R⋉ is defined inductively as
follows:

• Base Case: n = 1.
A partition of R1 into a finite set of algebraic numbers, and into the
finite and infinite open intervals bounded by these numbers.

• Inductive Case: n > 1.
Assume inductively that we have a CAD K′ of R⋉−1. Define a CAD
K of R⋉ via an auxiliary polynomial

gC′(x, xn) = gC′(x1, . . . , xn−1, xn) ∈ Q[x1, . . . ,x⋉],

one per each C′ ∈ K′. The cells of K are of two kinds:

1. For each C′ ∈ K′,

C′ × (R ∪ {±∞}) = cylindrical over C.

2. For each cell C′ ∈ K′, the polynomial gC′(p′, xn) has m distinct
real roots for each p′ ∈ C′:

r1(p
′), r2(p

′), . . . , rm(p′),

each ri being a continuous function of p′. The following sectors
and sections are cylindrical over C′:

C∗
0 =

{
〈p′, xn〉 : xn ∈ [−∞, r1(p′))

}
,

C1 =
{
〈p′, xn〉 : xn ∈ [r1(p

′), r1(p
′)]
}
,

C∗
1 =

{
〈p′, xn〉 : xn ∈ (r1(p

′), r2(p
′))
}
,

C2 =
{
〈p′, xn〉 : xn ∈ [r2(p

′), r2(p
′)]
}
,

...

Cm =
{
〈p′, xn〉 : xn ∈ [rm(p′), rm(p′)]

}
,

C∗
m =

{
〈p′, xn〉 : xn ∈ (rm(p′),+∞]

}
.

See Figure 8.4 for an example of a cylindrical algebraic decomposition of
R2.

Let

F =
{
fi,j(x1, . . . , xn) ∈ Q[x1, . . . ,x⋉] : i = 1, . . . ,⋗, ג = 1, . . . ,⋖i

}
.

In order to compute a cylindrical algebraic decomposition of R⋉, which is
F -sign-invariant, we follow the following three steps:
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cba d e

Figure 8.4: Cylindrical algebraic decomposition.

1. Project: Compute the (n− 1)-variate polynomials Φ(F). Note that
if |F| is the number of polynomials in F and d is the maximum degree
of any polynomial in F , then

|Φ(F)| = O(d |F|2) and deg(Φ(F)) = O(d2).

2. Recur: Apply the algorithm recursively to compute a CAD of R⋉−1

which is Φ(F)-sign-invariant.

3. Lift: Lift the Φ(F)-sign-invariant CAD of R⋉−1 up to a F -sign-
invariant CAD of R⋉ using the auxiliary polynomial Π(F) of degree
no larger than d |F|.

It is easy to see how to modify the above procedure in order that we
also have a sample point (with algebraic number coordinates) for each cell
of the final cell decomposition. The complete algorithm is as follows:

CAD(F)
Input: F ⊆ Q[x1 , . . . ,x⋉ ].

Output: A F-sign-invariant CAD of R⋉ .

if n = 1 then
Decompose R ∪ {±∞} by the set of real roots of the polynomials
of F ; Compute the sample points to be these real roots and their
midpoints;
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elsif n > 1 then

Construct Φ(F) ⊆ Q[x1 , . . ., xn−1];

K′ := CAD(Φ(F));

Comment: K′ is a Φ(F)-sign-invariant CAD of R⋉−1 .

for each C′ ∈ K′ loop
Construct Π(F), the product of those polynomials of F
that do not vanish at some sample point αC′ ∈ C′; De-
compose R∪{±∞} by the roots of Π(F) into sections and
sectors;
Comment: The decomposition leads to a decomposition
KC′ of C′ × (R ∪ {±∞});

The sample points above C′:

〈αC′ , r1(αC′) − 1〉,
〈αC′ , r1(αC′)〉,

〈αC′ , (r1(αC′), r2(αC′))/2〉,
〈αC′ , r2(αC′)〉,

...
〈αC′ , rm(αC′)〉,

〈αC′ , rm(αC′) + 1〉,

where ri’s are the real root functions for Π(F);

Each cell of the KC′ has a propositional defining sentence
involving sign sequences for Φ(F) and F ;

end{loop };

K :=
S

C′∈K′ KC′ ;
end{if };

return K;

end{CAD}

Complexity

If we assume that the dimension n is a fixed constant, then the algorithm
CAD is polynomial in |F| and deg(F). However, the algorithm can be
easily seen to be double exponential in n as the number of polynomials
produced at the lowest dimension is

(
|F| deg(F)

)2O(n)

,

each of degree no larger than d2O(n)

. Also, the number of cells produced
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by the algorithm is given by the double exponential function

(
|F| deg(F)

)2O(n)

,

while it is known that the total number of F -sign-invariant connected com-
ponents are bounded by the following single-exponential function:

(
O(|F| deg(F))

n

)n

.

In summary, we have the following:

Theorem 8.6.8 (Collin’s Theorem) Given a finite set of multivariate
polynomials

F ⊆ Q[x1, . . . ,x⋉],

we can effectively construct the followings:

• An F-sign-invariant cylindrical algebraic decomposition of K of R⋉

into semialgebraic connected cells. Each cell C ∈ K is homeomorphic
to Rδ, for some 0 ≤ δ ≤ n.

• A sample algebraic point pC in each cell C ∈ K and defining polyno-
mials for each sample point pC .

• Quantifier-free defining sentences for each cell C ∈ K.

Furthermore, the cylindrical algebraic decomposition produced by the
CAD algorithm is a cell complex , if the set of defining polynomials

F ⊆ Q[x1, . . . ,x⋉],

is well-based in R⋉ in the sense that the following nondegeneracy conditions
hold:

1. For all p′ ∈ R⋉−1,
(
∀ fi ∈ F

) [
fi(p

′, xn) 6≡ 0
]
.

2. Φ(F) is well-based in R⋉−1. That is, For all p′′ ∈ R⋉−2,

(
∀ gj ∈ Φ(F)

) [
gj(p

′′, xn−1) 6≡ 0
]
,

and so on.

The resulting CAD is said to be well-based . Also note that, given an
F , there is always a linear change of coordinates that results in a well-
based system of polynomials. As a matter of fact, any random change of
coordinates will result in a well-based system almost surely.
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Theorem 8.6.9 If the cellular decomposition K produced by the CAD al-
gorithm is well-based, then K is a semialgebraic cell complex.
proof.
As a result of Collin’s theorem, we only need to show that

Closure of each cell Ci ∈ K, Ci is a union of some cells Cj ’s :

Ci =
⋃

j

Cj .

The proof proceeds by induction on the dimension, n. When n = 1, it
is easy to see that the decomposition is a cell complex as the decomposition
consists of zero-dimensional closed cells (points) or one-dimensional open
cells (open intervals) whose limit points (endpoints of the interval) are
included in the decomposition.

Let Ci ∈ K be a cell in R⋉, which is cylindrical over some cell C′
k ∈ K′,

a CAD of R⋉−1. By the inductive hypothesis, we may assume that K′ is
a cell complex and

C′
k = C′

k ∪ C′
k1
∪ C′

k2
∪ · · · ∪ C′

kl
,

where C′
ki

’s are in K′.
We show that

1. If Ci is a section, then Ci consists of

(a) Ci itself.

(b) Limit points of Ci. These are comprised of sections cylindrical
over cells in ∂C′

k.

2. If Ci is a sector, then Ci consists of:

(a) Ci itself.

(b) Limit points of Ci. These are comprised of upper and lower
bounding sections for Ci, cylindrical over C′

K , and sectors and
sections cylindrical over cells in ∂C′

k.

The key idea is to show that, since sections are given by some continuous
real root function rj(p

′), the closure of a particular section Ci is simply the
image of a real root function over some cell C′

km
⊆ ∂C′

k which extends
rj(p

′).
The proof is by contradiction: consider a sequence of points p′1, p

′
2, p

′
3,

. . ., in C′
k, which converges to some point p′∗ ∈ C′

k1
⊆ ∂C′

k, say. This
sequence of points can be lifted to a sequence of points in the section Ci

by the real root function rj :

p1 = 〈p′1, rj(p′1)〉, p2 = 〈p′2, rj(p′2)〉, p3 = 〈p′3, rj(p′3)〉, . . . .
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For every neighborhood N containing p′∗, consider its image under the
map rj . The intersection of all such neighborhoods must be a connected
interval of J ⊆ p′∗ × R. Also, all the defining polynomials F must vanish
over J . But as a direct consequence of the well-basedness assumption, we
find that J must be a point contained in the image of a real root function
overC′

k1
⊆ ∂C′

k. The rest follows from a direct examination of the geometry
of a cylindrical algebraic decomposition.

The resulting cell complex is usually represented by a labeled directed
graph G = 〈V , E, δ, σ〉, where

V = vertices representing the cells

E = edges representing the incidence relation among the cells

uEv ⇔ Cu ⊆ Cv

δ : V → N = dimension of the cells

σ : V → {−1, 0,+1} = sign assignment to the cells

Such a graph allows one to study the connectivity structures of the
cylindrical decomposition, and has important applications to robotics path
planning. G is said to be a connectivity graph of a cell complex .

8.6.6 Tarski Geometry

Tarski sentences are semantic clauses in a first-order language (defined
by Tarski in 1930) of equalities, inequalities, and inequations of algebraic
functions over the real. Such sentences may be constructed by introducing
the following quantifiers, “∀” (universal quantifier) and “∃” (existential
quantifier), to the propositional algebraic sentences. The quantifiers are
assumed to range over the real numbers.

Let Q stand for a quantifier (either universal ∀ or existential ∃). If
φ(y1, . . ., yr) is a propositional algebraic sentence, then it is also a first-
order algebraic sentence. All The variables y’s are free in φ. Let Φ(y1,
. . ., yr) and Ψ(z1, . . ., zs) be two first-order algebraic sentences (with free
variables y’s and z’s, respectively); then a sentence combining Φ and Ψ by
a Boolean connective is a first-order algebraic sentence with free variables
{yi} ∪ {zi}. Lastly, let Φ(y1, . . ., yr, x) be a first-order algebraic sentence
(with free variables x and y), then

(
Q x

) [
Φ(y1, . . . , yr, x)

]

is a first-order algebraic sentence with only y’s as the free variables. The
variable x is bound in (Q x)[Φ].
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A Tarski sentence Φ(y1, . . ., yr) with free variable y’s is said to be true,
if for all 〈ζ1, . . ., ζr〉 ∈ Rr

Φ(ζ1, . . . , ζr) = True.

Example 8.6.9 1. Let f(x) ∈ Z[x] have the following real roots:

α1 < · · · < αj−1 < αj < · · · .

Then the algebraic number αj can be expressed as

f(y) = 0 ∧
(
∃ x1, . . . , xj−1

)

[
(x2 − x1 > 0) ∧ · · · ∧ (xj−1 − xj−2 > 0)

∧ (f(x1) = 0) ∧ · · · ∧ (f(xj−1) = 0)

∧ (∀ z) [(f(z) = 0 ∧ y − z > 0)

⇒ ((z − x1 = 0) ∨ · · · ∨ (z − xj−1 = 0))]
]
.

If (l, r) is an isolating interval for αj , we could also express the real
root αj by the following Tarski sentence:

(f(y) = 0) ∧ (y − l > 0) ∧ (r − y > 0)

∧
(
∀ x
) [

((x− y 6= 0) ∧ (x− l > 0) ∧ (r − x > 0)) ⇒ f(x) 6= 0
]
.

2. Consider the following Tarski sentence:

(
∃ x
) (
∀ y
) [

(y2 − x > 0)
]
.

The sentence can be seen to be true, since if we choose a strictly
negative number as a value for x, then for all y, the difference of y2

and x is always strictly positive.

Next, consider the following Tarski sentence:

(
∃ x
) (
∀ y
) [

(y2 − x < 0)
]
.

The sentence can be seen to be false.

3. Let S ⊆ R⋉ be a semialgebraic set; then its closure S can be defined
by the following Tarski sentence:

Ψ(x̄) =
(
∀ ǫ
) [

(ǫ > 0) ⇒ (∃ ȳ) [ΦS(ȳ) ∧ ‖x̄− ȳ‖2 < ǫ]
]
,

where ΦS is a defining formula for S. S = {x̄ : Ψ(x̄)}.
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4. Let C1 and C2 be two cells of a cylindrical algebraic decomposition
of R⋉, with defining formulas ΦC1 and ΦC2 , respectively. C1 and C2

are adjacent if and only if

C1 ∩C2 6= ∅ or C1 ∩ C2 6= ∅.

The following Tarski sentence characterizes the adjacency relation:

(
∃ x̄
)(
∀ ǫ
)(
∃ ȳ
)

[
(((ǫ > 0) ∧ΦC1(x̄)) ⇒ (ΦC2(ȳ) ∧ (‖x̄− ȳ‖2 < ǫ)))

∨ (((ǫ > 0) ∧ ΦC2(x̄)) ⇒ (ΦC2(ȳ) ∧ (‖x̄− ȳ‖2 < ǫ)))
]
.

Since we shall produce an effective decision procedure for Tarski sen-
tences, we see that one can construct the connectivity graph of a cell
complex effectively, provided that we have the defining formulas for
the cells of the cell complex.

A Tarski sentence is said to be prenex if it has the form

(
Q x1

) (
Q x2

)
· · ·
(
Q xn

) [
φ(y1, y2, . . . , yr, x1, . . . , xn)

]
,

where φ is quantifier-free. The string of quantifiers (Q x1) (Q x2) · · · (Q xn)
is called the prefix and φ is called the matrix . Given a Tarski sentence Ψ,
a prenex Tarski sentence logically equivalent to Ψ is called its prenex form.

The following procedure shows that for every Tarski sentence, one can
find its prenex form:

1. Step 1: Eliminate redundant quantifiers. Replace a subformula
(Q x)[Φ] by Φ, if x does not occur in Φ.

2. Step 2: Rename variables such that the same variable does not occur
as free and bound. If there are two subformulas Ψ(x) and (Q x)[Φ(x)]
at the same level, replace the latter by (Q xnew)[Φ(xnew)], where xnew

is a new variable not occurring before.

3. Step 3: Move negations (¬) inward.

¬(∀ x)[Φ(x)] → (∃ x)[¬Φ(x)]
¬(∃ x)[Φ(x)] → (∀ x)[¬Φ(x)]
¬(Φ ∨Ψ) → (¬Φ ∧ ¬Ψ)
¬(Φ ∧Ψ) → (¬Φ ∨ ¬Ψ)
¬¬Φ → Φ
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4. Step 4: Push quantifiers to the left.

(Q x)[Φ(x)] ∧Ψ → (Q x)[Φ(x) ∧Ψ]
(Q x)[Φ(x)] ∨Ψ → (Q x)[Φ(x) ∨Ψ]
Ψ ∧ (Q x)[Φ(x)] → (Q x)[Ψ ∧ Φ(x)]
Ψ ∨ (Q x)[Φ(x)] → (Q x)[Ψ ∨ Φ(x)]

Example 8.6.10 Consider the following Tarski sentence:
(
∀ x
) [

((∀ y) [f(x) = 0] ∨ (∀ z) [g(z, y) > 0]) ⇒ ¬(∀ y) [h(x, y) ≤ 0]
]
.

After eliminating redundant quantifiers and renaming variables,
(
∀ x
) [

([f(x) = 0] ∨ (∀ z) [g(z, y) > 0]) ⇒ ¬(∀ w) [h(x,w) ≤ 0]
]
.

After simplification, we have
(
∀ x
) [

([f(x) 6= 0] ∧ ¬(∀ z) [g(z, y) > 0]) ∨ ¬(∀ w) [h(x,w) ≤ 0]
]
.

After moving negations inward,
(
∀ x
) [

([f(x) 6= 0] ∧ (∃ z) [g(z, y) ≤ 0]) ∨ (∃ w) [h(x,w) > 0]
]
.

After pushing the quantifiers outward,
(
∀ x
) (
∃ z
) (
∃ w
) [

((f(x) 6= 0) ∧ (g(z, y) ≤ 0)) ∨ (h(x,w) > 0)
]
.

Finally, we are ready to consider an effective procedure to decide whether
a given Tarski sentence Ψ(x1, . . ., xr) is true. Here x1, . . ., xr are assumed
to be its free variables, and the polynomials occurring in Ψ are assumed to
have rational coefficients.

As a result of our earlier discussion, we may assume that our Tarski
sentence is presented in its prenex form and that it is universally closed
with respect to its free variables.

(∀ x1) · · · (∀ xr) Ψ(x1, . . . , xr)

= (∀ x1) · · · (∀ xr) (Qxr+1) · · · (Qxn) [ψ(x1, . . . , xr , xr+1, . . . , xn)],

ψ is a quantifier-free matrix. Thus from now on we deal only with prenex
Tarski sentences with no free variable and where the variables are so ordered
that in the prefix the n variables appear in the order

x1, x2, . . . , xn.

One can describe the decision procedure for such a Tarski sentence in
terms of a Player-Adversary game. We start with the following illustra-
tions:
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Example 8.6.11 1. The game for the following Tarski sentence pro-
ceeds as shown below:

(
∃ x
) (
∀ y
) [

(y2 − x > 0)
]
.

The first quantifier is ∃ and the first move is Player’s. Player chooses
a strictly negative number for x, say −1. The second quantifier is
a ∀ and the next move is Adversary’s. Now independent of what
Adversary chooses for y, we see that

y2 − (−1) = y2 + 1 > 0.

The matrix is true, and hence Player wins and the Tarski sentence is
true.

2. Next consider the game for the following Tarski sentence:

(
∃ x
) (
∀ y
) [

(y2 − x < 0)
]
.

Again the first quantifier is ∃ and the first move is Player’s. Let
Player choose x = a. The second quantifier is a ∀ and the next move
is Adversary’s. Adversary chooses y = a+ (1/2), and we have

y2 − x = (a+ 1/2)2 − a = a2 + 1/4 > 0.

The matrix is false, and hence Adversary wins and the Tarski sentence
is false.

Thus given a Tarski sentence

(Q1x1) · · · (Qnxn) [ψ(x1, . . . , xn)],

the ith (i = 1, . . ., n) move is as follows: Assume the values selected up to
this point are

ζ1, ζ2, . . . , ζi−1

• If the ith quantifier Qi is ∃, then it is Player’s move; otherwise, if Qi

is ∀, then it is Adversary’s move.

• If it is Player’s move, he selects xi = ζi in order to force a win for
himself, i.e., he tries to make the following hold:

(Qi+1xi+1) · · · (Qnxn) [ψ(ζ1, . . . , ζi, xi+1, . . . , xn)] = True.

If it is Adversary’s move, he selects xi = ζi in order to force a win
for himself, i.e., he tries to make the following hold:

(Qi+1xi+1) · · · (Qnxn) [ψ(ζ1, . . . , ζi, xi+1, . . . , xn)] = False.
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After all ζi’s have been chosen, we evaluate

ψ(ζ1, . . . , ζn);

If it is true, then Player wins (i.e., the Tarski sentence is true); otherwise,
Adversary wins (i.e., the Tarski sentence is false). Thus, the sequence of
choices in this game results in a point

p = 〈ζ1, . . . , ζn〉 ∈ R⋉,

and the final outcome depends on this point p.
Let F ⊆ Q[x1, . . ., xn] be the set of polynomials appearing in the

matrix ψ. Now consider a cylindrical algebraic decomposition K of R⋉ for
F . Let Cp ∈ K be the cell containing p. If q ∈ Cp is a sample point in the
cell Cp

q = 〈α1, . . . , αn〉 ∈ R⋉,

then the αi’s constitute a winning strategy for Player (respectively, Ad-
versary) if and only if ζi’s also constitute a winning strategy for Player
(respectively, Adversary). Thus, the search could have been conducted only
over the coordinates of the sample points in the cylindrical algebraic decom-
position. This leads to an effective procedure, once a cylindrical algebraic
decomposition for F , endowed with the sample points, have been computed.

Since the cylindrical algebraic decomposition produces a sequence of
decompositions:

K1 of R1, K2 of R2, . . . , K⋉ of R⋉,

such that the each cell Ci−1,j of Ki is cylindrical over some cell Ci−1 of
Ki−1, the search progresses by first finding cells C1 of K1 such that

(Q2x2) · · · (Qnxn) [ψ(αC1 , x2, . . . , xn)] = True.

For each C1, the search continues over cells C12 of K2 cylindrical over C1

such that

(Q3x3) · · · (Qnxn) [ψ(αC1 , αC12 , x3, . . . , xn)] = True,

etc. Finally, at the bottom level the truth properties of the matrix ψ are
evaluated at all the sample points.

This produces a tree structure, where each node at the (i − 1)th level
corresponds to a cell Ci−1 ∈ Ki−1 and its children correspond to the cells
Ci−1,j ∈ Ki that are cylindrical overCi−1. The leaves of the tree correspond
to the cells of the final decomposition K = Kn. Using the game-theoretic
nature of the problem discussed earlier we can further label every node at
the (i−1)th level “AND” (respectively, “OR”) if Qi is a universal quantifier
∀ (respectively, ∃). Such a tree is a so-called AND-OR tree.
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The tree may be evaluated as follows: First label the leaves true or
false, depending on whether the matrix ψ evaluates to true or false in
the corresponding cell. Note that the truth value of ψ depends only on
the sign assignment of the cell. Inductively, assuming all the nodes up to
level (i − 1) have been labeled, an ith level node is labeled true if it is an
AND (respectively, OR) node and all (respectively, some) of its children
are labeled true. Finally, the Tarski sentence is true if and only if the root
of the tree is labeled true. This constitutes a decision procedure for the
Tarski sentences.

Consider a sample point

p = 〈α1, α2, . . . , αn〉,
in some cell C ∈ K. Assume that the algebraic number αi has an interval
representation 〈fi, li, ri〉. The truth value at a leaf corresponding to C,
(i.e., ψ(α1, . . ., αn)) can be expressed by the following logically equivalent
quantifier-free sentences involving only polynomials with rational coeffi-
cients:

(f1(z1) = f2(z2) = · · · = fn(zn) = 0)

∧ (l1 < z1 < r1) ∧ · · · ∧ (ln < zn < rn)

∧ ψ(z1, z2, . . . , zn).

Thus each leaf of the AND-OR tree can be expressed as a quantifier-free
sentence as above. Now, the tree itself can be expressed as a quantifier-
free sentence involving conjunctions and disjunctions for the AND and OR
nodes, respectively. Clearly, all the polynomials involved are over Q.

For examples, consider the sentences
(
∃ x
) (
∀ y
) [

(y2 − x > 0)
]

and (
∃ x
) (
∀ y
) [

(y2 − x < 0)
]
.

The sample points for a CAD of y2 − x are as follows:

(−1, 0),





(0, 1)
(0, 0)

(0,−1)



 ,





(1, 2)
(1, 1)

(1, 1/2)
(1, 0)

(1,−1/2)
(1,−1)
(1,−2)





The equivalent quantifier-free sentences are

(0 > −1)

∨ (1 > 0) ∧ (0 > 0) ∧ (1 > 0)

∨ (4 > 1) ∧ (1 > 1) ∧ (1/4 > 1) ∧ (0 > 1) ∧ (1/4 > 1) ∧ (1 > 1) ∧ (4 > 1),
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and

(0 < −1)

∨ (1 < 0) ∧ (0 < 0) ∧ (1 < 0)

∨ (4 < 1) ∧ (1 < 1) ∧ (1/4 < 1) ∧ (0 < 1) ∧ (1/4 < 1) ∧ (1 < 1) ∧ (4 < 1).

By a simple examination we see that the first sentence is true, while the
second is false.

In summary, we have the following:

Theorem 8.6.10 Let Φ be a Tarski sentence involving polynomials with
rational coefficients. Then we have the following:

• There is an effective decision procedure for Φ.

• There is a quantifier-free propositional sentence φ logically equiva-
lent to Φ. The sentence φ involves only polynomials with rational
coefficients.

Corollary 8.6.11 Tarski sets (subsets of R⋉ defined by a Tarski sentence)
are exactly the semialgebraic sets.

Problems

Problem 8.1
In an ordered field K, we define |x| for all x ∈ K as follows:

|x| =
{
x, if x ≥ 0;
−x, if x < 0.

Prove that for all x, y ∈ K,
(i) |x+ y| ≤ |x|+ |y|.
(ii) |x y| = |x| |y|.

Problem 8.2
Give a proof for the following:

Let K be a real closed field and f(x) ∈ K[x]. If a, b ∈ K, a < b, then

(
∃ c ∈ (a, b)

) [
f(b)− f(a) = (b− a)D(f)(c)

]
.

This is the so-called intermediate value theorem.
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Problem 8.3
Is it true that every integral polynomial f(x) ∈ Z[x] has all its real

roots in the closed interval [−‖f‖∞, ‖f‖∞]?
Hint: Consider the polynomial x2 − x− 1.

Problem 8.4
Show that an algebraic number has a unique minimal polynomial up to

associativity.

Problem 8.5
Consider a real univariate polynomial

f(x) = xn + an−1x
n−1 + · · ·+ amx

m + a1x+ a0 ∈ R[x],

and u a real root of f .
(i) Lagrange-Maclaurin’s Inequality. Let

an−1 ≥ 0, . . . , am−1 ≥ 0, and am < 0.

Prove that

u < 1 +
(
min(ai)

)1/(n−m)

.

Hint: Assume that u > 1 and

0 = f(u) = un + an−1u
n−1 + · · ·+ amu

m + a1u+ a0

> un −min(ai)(u
m + um−1 + · · ·+ u+ 1)

= un −min(ai)

(
um+1 − 1

u− 1

)
.

(ii) Cauchy’s Inequality. Let

am1 < 0, am2 < 0, . . . , amk
< 0, (m1 > m2 > · · · > mk),

be the only negative coefficients of f . Prove that

u ≤ max
j

(
(k |amj |)1/(n−mj)

)
.

Hint: Assume that u > 1 and

0 = f(u) = un + an−1u
n−1 + · · ·+ amu

m + a1u+ a0

> un − am1u
m1 − · · · − amk

umk

≥ un − kmax
j

(|amj |umj ).
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Problem 8.6
Let f(x) ∈ R[x] be a univariate real polynomial of positive degree

n > 0.
(i) Consider f ’s Fourier sequence:

fourier(f) =
〈

f (0)(x) = f(x),

f (1)(x) = f ′(x),

f (2)(x),

...

f (n)(x)
〉
,

where f (i) denotes the ith derivative of f with respect to x. Prove the
following:

Budan-Fourier Theorem.

Let f(x) ∈ R[x] and a and b ∈ R be two real numbers with
a < b. Then

# real roots of f (counted with multiplicity) in (a, b)


≤ Vara(fourier(f))−Varb(fourier(f)), and

≡ Vara(fourier(f))−Varb(fourier(f)) (mod2).

(ii) Using the Budan-Fourier theorem, present a proof for the following:

Descartes’ Theorem.

Let f(x) ∈ R[x] be as follows:

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

and
V (f) = Var(〈an, an−1, . . . , a0〉).

Then the number of strictly positive real roots of f (counted
with multiplicity) does not exceed V (f) and is congruent to
V (f) (mod2).

Problem 8.7
Let 〈h0, h1, . . ., hs〉 be a Sturm sequence of f and f ′.
Let V be the number of sign variations in the sequence

v = 〈Hcoef(h0), Hcoef(h1), . . . , Hcoef(hs)〉,
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and W be the number of sign variations in the sequence

w = 〈SHcoef(h0), SHcoef(h1), . . . , SHcoef(hs)〉,

where Hcoef(h) is the leading coefficient of h and

SHcoef(h) = (−1)deg(h)Hcoef(h)

is the “sign-adjusted” leading coefficient of h.
Show that the number of distinct real roots of f is W − V .
Compute v and w for a quadratic polynomial x2 + bx + c. What is

W − V as a function of b and c? Can you derive an algebraic criterion for
the number of real zeros of x2 + bx+ c?

Problem 8.8
Let f , g1 and g2 be a simple set of polynomials in K[x] (K = a real

closed field), in the sense that all their roots are distinct, i.e., they are all
square-free and pairwise relatively prime.

(i) For any interval [a, b] ⊆ K (a < b), show that




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







cf

[
g1 > 0, g2 > 0

]b
a

cf

[
g1 > 0, g2 < 0

]b
a

cf

[
g1 < 0, g2 > 0

]b
a

cf

[
g1 < 0, g2 < 0

]b
a




=




Var
[
sturm(f, f ′)

]b
a

Var
[
sturm(f, f ′g1)

]b
a

Var
[
sturm(f, f ′g2)

]b
a

Var
[
sturm(f, f ′g1g2)

]b
a




.

(ii) Show how the preceding formulation can be generalized to the case
when f , g1 and g2 are not simple.
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(iii) Show how to obtain a further generalization of this formulation
when there are more than two g’s: f , g1, g2, . . ., gn.

(iv) Suppose you are given a system of polynomial inequalities, involv-
ing polynomials g1, g2, . . ., gn in R[x], as follows:

g1(x) ≶ 0,

g2(x) ≶ 0,

...

gn(x) ≶ 0,

where the notation “gi(x) ≶ 0” represents one of the following three re-
lations: gi(x) < 0, gi(x) = 0 or gi(x) > 0. Using the formulation (iii)
and linear algebra, devise a process to determine if there is a solution x at
which all the inequalities are satisfied.

Hint: Construct a sequence f , g1, g2, . . ., gn as in (iii), where f is
such that, for any sign assignment to gi’s, the interval corresponding to
this assignment, f has a zero:

G(x) = g1(x) g2(x) · · · gn(x),

G̃(x) =
G(x)

GCD(G(x), G′(x))
.

Let
f(x) = G̃(x) G̃′(x)(x −N)(x+N),

where

N = 1 + max

∣∣∣∣
ai

ak

∣∣∣∣ ,

the ai’s are coefficients of G̃(x), and ak = Hcoef(G̃(x)).

Problem 8.9
Let f(x) and g(x) ∈ Z[x] be two arbitrary integral polynomials of

positive degrees m = deg(f) and n = deg(g), respectively. Show that

(
∀ α, s.t. g(α) = 0

) [
f(α) = 0 or |f(α)| > 1

1 + ‖g‖m1 (1 + ‖f‖1)n

]
.

Hint: Consider the zeros of the resultant, Resultantx(g(x), f(x) − y).

Problem 8.10
Consider the following monic irreducible integral polynomial f(x),

f(x) = xn − 2(ax− 1)2, n ≥ 3, a ≥ 3, a ∈ Z.
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Show that

Separation(f) < 2
1

(‖f‖1/4)n+2/4
.

Hint: Show that f(1/a) > 0 and f(1/a± h) < 0, for h = a−(n+2)/2.

Problem 8.11 (Hadamard-Collins-Horowitz Inequality.)
If S is a commutative ring, a seminorm for S is a function

ν:S → {r ≥ 0 : r ∈ R}

satisfying the following three conditions: For all a, b ∈ S,

ν(a) = 0 ⇔ a = 0, (8.1)

ν(a+ b) ≤ ν(a) + ν(b), (8.2)

ν(a b) ≤ ν(a) ν(b). (8.3)

(i) Show that ‖a‖1 = |a| is a seminorm for the integers Z.
(ii) Show the following:

1. If ν is a seminorm over S, then its extension to S[x] defined below

ν(anx
n + an−1x

n−1 + · · ·+ a0) = ν(an) + ν(an−1) + · · ·+ ν(a0)

is also a seminorm over S[x].

2. If ν is a seminorm over S, then its extension to an arbitrary matrix
M ∈ Sm×n

ν(M) =
m∑

i=1

n∑

j=1

ν(Mi,j)

satisfies the conditions (8.1), (8.2) and (8.3), whenever the operations
are defined.

(iii) If M is a square matrix over a commutative ring S with a seminorm
ν, then show that the following generalization of Hadamard’s inequality
holds:

ν(detM) ≤
∏

i

ν(Mi),

where Mi is the ith row of M and detM is the determinant of M .

Problem 8.12
Consider an n× n polynomial matrix with integral polynomial entries

M(x) =




A1,1(x) A1,2(x) · · · A1,n(x)
A2,1(x) A2,2(x) · · · A2,n(x)

...
...

. . .
...

An,1(x) An,2(x) · · · An,n(x)


 .
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Prove that

det(M(x)) ≡ 0 ⇔ det

(
M

(
1

2(adn)n

))
= 0,

where
a = max

i,j
‖Ai,j‖∞ and d = max

i,j
deg(Ai,j).

Problem 8.13
Consider two real algebraic numbers α and β defined by two polynomials

f(x) and g(x) of respective positive degrees m and n. Prove that if α 6= β
then

∆ = |α− β| >
1

2(n+1)(m+1) ‖f‖n1 ‖g‖m1
.

Problem 8.14
Let f(x) ∈ C[x] be an arbitrary polynomial:

f(x) = cnx
n + cn−1x

n−1 + · · ·+ c0.

Consider the usual norm for complex numbers:

|a+ ib| = (a2 + b2)1/2.

The 1-norm of f can now defined to be

‖f‖1 = |cn|+ |cn−1|+ · · ·+ |c0|.

Let the zeros of f be enumerateed as

|ξ1| ≤ |ξ2| ≤ · · · |ξm| ≤ 1 < |ξm+1| ≤ · · · ≤ |ξn|,

counting each zero as many times as its multiplicity.
LetM(f) be defined as

M(f) =

∣∣∣∣∣cn
n∏

i=1

max(1, ξi)

∣∣∣∣∣ = |cn|
n∏

i=1

max(1, |ξi|).

First we want to derive the following relations:

M(f) ≤ ‖f‖1 ≤ 2nM(f).

(i) Prove that

‖f‖1 =
∑
|cnξi1ξi2 · · · ξil

| ≤ 2nM(f).
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(ii) Next show that

logM(f) =
1

2π

∫ 2π

0

log |f(eit)| dt ≤ max
1≤t≤2π

log |f(eit)| ≤ log ‖f‖1,

Thus, concluding that
M(f) ≤ ‖f‖1.

Hint: Use Jensen’s integral formula:

1

2π

∫ 2π

0

log |F (ρeit)| dt = log |F (0)|+
m∑

i=1

log
ρ

|ξi|
, F (0) 6= 0,

where F (x) is a function of the complex variable, regular on the circle of
radius ρ. The zeros of F in |x| ≤ ρ are given as ξ1, . . ., ξm.

(iii) Using these inequalities show that, if f is factorized as follows

f(x) = f1(x) f2(x) · · · fs(x),

then
‖f1‖1 ‖f2‖1 · · · ‖fs‖1 ≤ 2deg(f) ‖f‖1.

Problem 8.15
Let f(x) be a polynomial with zeros in C. Then we denote its complex

root separation by ∆(f):

∆(f) = min{|α− β| : α 6= β ∈ C ∧ ℧(α) = ℧(β) = 0}.

Let f(x) be an integral polynomial:

f(x) = anx
n + an−1x

n−1 + · · ·+ a0.

Prove the following:
(i) If f(x) is square-free, then

∆(f) >
√

3 n−(n+2)/2 ‖f‖−(n−1)
1 .

(ii) In general,

∆(f) >
√

3 2−n(n−1) n−(n+2)/2 ‖f‖−(n−1)
1 .

Problem 8.16
(i) Devise a simple and efficient (O(n3 lg n)-time)algorithm to convert

a real algebraic number from its order representation to its interval repre-
sentation.

(ii) Prove the following corollary of Thom’s lemma:
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Consider two real roots ξ and ζ of a real univariate polynomial
f(x) ∈ R[x] of positive degree n > 0. Then

ξ > ζ

if and only if, for some 0 ≤ m < n, the following conditions
hold:

sgn(f (m)(ξ)) 6= sgn(f (m)(ζ))

sgn(f (m+1)(ξ)) = sgn(f (m+1)(ζ)),

...

sgn(f (n)(ξ)) = sgn(f (n)(ζ)).

and

1. either sgn(f (m+1)) = +1 and f (m)(ξ) > f (m)(ζ),

2. or sgn(f (m+1)) = −1 and f (m)(ξ) < f (m)(ζ).

(iii) Using the corollary above, devise an efficient (O(n3 lg2 n)-time)
algorithm to convert a real algebraic number from its sign representation
to its interval representation.

Problem 8.17
Prove that if S is a semialgebraic set then its interior, int(S), closure

S, and boundary ∂(S) = S \ int(S) are all semialgebraic.

Problem 8.18
Show that every semialgebraic set is locally connected.

Problem 8.19
Let S ⊆ R⋉ be a semialgebraic set. Prove that for some m ∈ N, there

is a real algebraic set T ⊆ R⋉+⋗ such that

π(T ) = S,

where
π : Rn+m → R⋉

: 〈ξ1, . . . , ξn, ξn+1, . . . , ξn+m〉 7→ 〈ξ1, . . . , ξn〉
is a natural projection map.

Thus, show that semialgebraic sets constitute the smallest class of sub-
sets of R⋉ closed under projection and containing real algebraic sets.
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Hint: Let S ⊆ R⋉ be defined as follows:

S =
{
〈x1, . . . , xn〉 ∈ R⋉ : sgn(℧i(x1, . . . ,x⋉)) = ∼i

}
,

where i = 1, . . ., m. Let us now define T as follows:

T =
{
〈x1, . . . , xn, xn+1, . . . , xn+m〉 ∈ R⋉ :

∑

j;sj<0

(x2
n+jfj + 1)2 +

∑

j;sj=0

f2
j +

∑

j;sj>0

(x2
n+jfj − 1)2 = 0

}
.

Verify that S = π(T ).

Problem 8.20
A robotic system R is defined to be a finite collection of rigid compact

subparts {
B1, B2, . . . , Bm

}
,

where each subpart is assumed to be defined by a piecewise algebraic sur-
face.

A configuration is an n-tuple of parameters that describes the positions
and the orientations of the subparts uniquely; the corresponding space of
parameters R⋉ is called a configuration space.

Additionally, we may assume that between every pair of subparts Bi

and Bj at most one of the following holonomic kinematic constraints may
exist:

• Revolute Joint: There is a fixed axis L through a pair of points
pi ∈ Bi and pj ∈ Bj such that Bi and Bj are only allowed to rotate
about L.

• Prismatic Joint: There is a fixed axis L through a pair of points
pi ∈ Bi and pj ∈ Bj such that Bi and Bj are only allowed to translate
about L.

(i) Bi’s are assumed to be able to take any configuration subject to the
kinematic constraints such that no two subpart occupies the same space.

A point of the configuration space corresponding to such a configuration
is said to be free. Otherwise, it is called forbidden. The collection of points
of configuration space that are free are said to constitute the free space,
and its complement forbidden space.

Show that the free and forbidden spaces are semialgebraic subsets of
R⋉.

(ii) Given an initial and a desired final configurations of the robotic
system, R, the motion planning problem is to decide whether there is a
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continuous motion of the subparts from the initial to the final configuration
that avoids collision and respects the kinematic constraints.

Devise an algorithm to solve the motion planning problem.
Hint: First compute the connectivity graph for the polynomials defin-

ing the free space, and show that there is a continuous motion from one
configuration in a free cell to another configuration in a free cell, if there is
a path between the vertices corresponding to the respective free cells.

Problem 8.21
Consider the following set of N = 22n

complex numbers corresponding
to the N th roots of unity:

{
αi + iβi : i = 1, . . . , N

}
⊆ C.

Define
Sn =

{
〈αi, βi〉 : i = 1, . . . , N

}
⊆ R2.

Show that there is a Tarski sentence Ψn(x, y) with two free variables (x
and y) and O(n) quantifiers, O(n) variables, O(n) real linear polynomials,
and O(1) real quadratic polynomial such that

{
〈α, β〉 : Ψn(α, β) = True

}
= Sn.

Problem 8.22
(i.a) Let gi(x, y) and gj(x, y) ∈ R[x,y]. Define

D(gi) = isolated points of gi = 0;

D(gi, gj) = isolated points of gi = 0 and gj = 0

\ (D(gi) ∪D(gj)).

If gi(x, y) and gj(x, y) are irreducible polynomials, show that

|D(gi)| ≤ (deg(gi))
2 and |D(gi, gj)| ≤ 2 deg(gi) deg(gj).

(i.b) Given a quantifier-free sentence in two variables x and y, involving
polynomials

F =
{
f1(x, y), f2(x, y), . . . , fm(x, y)

}
⊆ R[x,y],

show that every isolated point is either in some D(gi) or some D(gi, gj),
where gi’s and gj ’s are irreducible factors of fi’s.

(i.c) Show that the total number of isolated points of a quantifier-free
sentence defined by F is bounded from above by

(
m∑

i=1

deg(fi)

)2

.
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Problem 8.23
As direct consequences of the preceding two problems, show the follow-

ing:
(i) For every n ∈ N, there exists a quantified Tarski sentence Ψn with

n quantifiers, of length O(n), and degree O(1) such that any quantifier-free
sentence ψn logically equivalent to Ψn must involve polynomials of

degree = 22Ω(n)

and length = 22Ω(n)

.

(ii) For every n ∈ N, there exists a quantified Tarski sentence Ψn with
n quantifiers, of length O(n), and degree O(1) such that Ψn induces a
cylindrical decomposition, Kn, of R⋗ (m = O(n)) with

|Kn| = 22Ω(n)

cells.

(iii) Thus, argue that both quantifier elimination problem and cylindri-
cal algebraic decomposition problem have double exponential lower bounds
for their time complexity as a function of the input size.

Solutions to Selected Problems

Problem 8.2
First, we choose a linear function f̄(x) such that

f̃(x) = f(x)− f̄(x),

vanishes at the points a and b. Hence,

f̄(a) = f(a) and f̄(b) = f(b).

Thus,

D(f̄) =
f(b)− f(a)

b− a ,

and

f̄(x) =
f(b)− f(a)

b− a x+
bf(a)

b − a −
af(b)

b − a .

Now we can apply Rolle’s theorem to f̃(x) as f̃(a) = f̃(b) = 0:

(
∃ c ∈ (a, b)

) [
D(f̃)(c) = D(f)(c)−D(f̄)(c) = 0

]
.

But since, D(f̄) = (f(b)− f(a))/(b− a), we have the necessary conclusion.
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We may rewrite the formula above in the following form:

f(b) = f(a) + f ′(c)(b − a), for some c ∈ (a, b).

Problem 8.4
Consider an algebraic number α. Let f(x) and g(x) ∈ Z[x] be two

nonzero minimal polynomials of α. Clearly f(x) and g(x) have the same
degree. Thus, if we consider the following polynomial

r(x) = Hcoef(g) f(x)−Hcoef(f) g(x) ∈ Z[x],

then deg(r) < deg(f) = deg(g) and r(α) = Hcoef(g) f(α)−Hcoef(f) g(α) =
0. Thus r(x) must be identically zero as, otherwise, it would contradict our
assumption that f(x) and g(x) were two minimal polynomials of α. Thus

Hcoef(g) f(x) = Hcoef(f) g(x) and f(x) ≈ g(x).

Problem 8.6
(i) Using Taylor’s expansion theorem, we may express the values of the

Fourier sequence in a neighborhood of a real number c as follows:

f(c+ ǫ) = f(c) + ǫf (1)(c) +
ǫ2

2!
f (2)(c) + · · ·+ ǫm

m!
f (m)(c)

+ · · ·+ ǫn

n!
f (n)(c),

f (1)(c+ ǫ) = f (1)(c) + ǫf (2)(c) +
ǫ2

2!
f (3)(c) + · · ·+ ǫm−1

(m+ 1)!
f (m)(c)

+ · · ·+ ǫn−1

(n− 1)!
f (n)(c),

...

f (m)(c+ ǫ) = f (m)(c) + ǫf (m+1)(c) + · · ·+ ǫn−m

(n−m)!
f (n)(c),

...

f (n)(c+ ǫ) = f (n)(c).

Let us now consider an interval [a, b] containing exactly one real root c
of f with multiplicity m. Note that it suffices to consider the sign variations
in some interval (c− ǫ, c+ ǫ) ⊆ [a, b]. Clearly:

f (0)(c) = f (1)(c) = · · · = f (m−1)(c) = 0 and f (m)(c) 6= 0.
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Let s = sgn(f (m)(c)). Hence

sgn(f(c− ǫ)) = (−1)ms, s = sgn(f(c+ ǫ)),

sgn(f (1)(c− ǫ)) = (−1)m−1s, s = sgn(f (1)(c+ ǫ)),
...

...

sgn(f (m)(c− ǫ)) = s = sgn(f (m)(c+ ǫ)),

sgn(f (m+1)(c− ǫ)) = sgn(f (m+1)(c)) = sgn(f (m+1)(c+ ǫ)),
...

...

sgn(f (n)(c− ǫ)) = sgn(f (n)(c)) = sgn(f (n)(c+ ǫ)).

Thus it is easily seen that the sequence at the left has exactly m more sign
variations than the sequence at the right. Hence, in this case,

# real roots of f (counted with multiplicity) in (a, b)

= Vara(fourier(f))−Varb(fourier(f)),

Next let us consider an interval [a, b] containing exactly one real root c
of f (k) (k > 0) with multiplicity l. Let m = k + l. As before, it suffices to
consider the sign variations in some interval (c− ǫ, c+ ǫ) ⊆ [a, b]. Clearly:

f (k)(c) = f (k+1)(c) = · · · = f (m−1)(c) = 0 and f (m)(c) 6= 0.

Let s = sgn(f (m)(c)). Hence

sgn(f(c− ǫ)) = sgn(f(c)) = sgn(f(c+ ǫ)),
...

...
sgn(f (k−1)(c− ǫ)) = sgn(f (k−1)(c)) = sgn(f (1)(c+ ǫ)),

sgn(f (k)(c− ǫ)) = (−1)ls, s = sgn(f (k)(c+ ǫ)),
sgn(f (k+1)(c− ǫ)) = (−1)l−1s, s = sgn(f (k+1)(c+ ǫ)),

...
...

sgn(f (m)(c− ǫ)) = s = sgn(f (m)(c+ ǫ)),

sgn(f (m+1)(c− ǫ)) = sgn(f (m+1)(c)) = sgn(f (m+1)(c+ ǫ)),
...

...

sgn(f (n)(c− ǫ)) = sgn(f (n)(c)) = sgn(f (n)(c+ ǫ)).

We only need to consider the sign variations form c − ǫ to c + ǫ for the
following subsequence:

〈f (k−1), f (k), . . . , f (m), f (m+1)〉.

There are two cases to consider:
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1. sgn(f (k−1)(c)) = sgn(f (m+1)(c)), in which case the subsequence has
even number of sign variations both at c− ǫ and c+ ǫ, and

2. sgn(f (k−1)(c)) 6= sgn(f (m+1)(c)), in which case the subsequence has
odd number of sign variations both at c− ǫ and c+ ǫ;

and in either case the subsequence at the left has more sign variations than
the subsequence at the right. Thus,

0




≤ Vara(fourier(f))−Varb(fourier(f)) and

≡ Vara(fourier(f))−Varb(fourier(f)) (mod2).

(ii) Using Budan-Fourier theorem, we have

# strictly positive real roots of f (counted with multiplicity)


≤ Var0(fourier(f))−Var∞(fourier(f)) and

≡ Var0(fourier(f))−Var∞(fourier(f)) (mod2).

Thus Descartes’ theorem follows, once we show that

Var0(fourier(f)) = V (f) and Var∞(fourier(f)) = 0.

This is obvious as

sgn0(fourier(f)) = sgn(〈a0, a1, 2a2, . . . ,m!am, . . . , n!an〉),

and
sgn∞(fourier(f)) = sgn(〈an, an, an, . . . , an, . . . , an〉).

Problem 8.10
First note that

‖f‖1 = 2a2 + 4a+ 3 ≤ (2 + 4/3 + 1/3)a2, for all a ≥ 3.

Hence a ≥
√
‖f‖1/2 and it suffices to show that

Separation(f) < 2h = 2a−(n+2)/2.

Next observe that since

f(x) = xn − 2a2x2 + 4ax− 2, and

f(−x) = (−1)nxn − 2a2x2 − 4ax− 2,

by Descartes’ rule, f has at most two positive real roots and at most one
negative real root.
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Clearly,
f(1/a) = (1/a)n > 0.

Now, notice that

f(1/a± h) = (1/a± h)n − 2(a(1/a± h)− 1)2 = (1/a± h)n − 2a2h2.

Thus, choosing h = a−(n+2)/2, we have

(1/a± h)n ≤ (a−1 + a−(n+2)/2)n = (1 + a−n/2)na−n <

(
413

243

)
a−n,

and

f(1/a± h) <

(
413

243

)
a−n − 2a2a−(n+2) < 0.

Thus, f has two positive real roots in the open interval (1/a− h, 1/a+ h)
and

Separation(f) < min(1/a− h, 2h) = 2h = 2a−(n+2)/2.

Problem 8.11
(i) and (ii) are tedious but straightforward.

(iii) The proof is by induction on the order of the matrix n. The case
n = 1 is trivial. Consider an n× n matrix M , n > 1. Let Mi,j denote the
(i, j)th entry of M and let M ′

i,j denote the (i, j)th minor of M (i.e., the

submatrix of M obtained by deleting the ith row and jth column). Since

ν(det(M)) ≤
n∑

j=1

ν(M1,j)ν(det(M ′
1,j))

(by Laplace expansion formula for determinants)

≤
n∑

j=1

(
ν(M1,j)

n∏

i=2

ν(Mi)

)

(since every row of M ′
1,j is a subrow of some Mi, i ≥ 2)

=

n∏

i=2

ν(Mi)




n∑

j=1

ν(M1,j)




≤
n∏

i=1

ν(Mi).

Problem 8.13
Let δ = α − β. Then 〈δ, β〉 is a zero of f̃(x, y) = f(x + y) and β is a

zero of g(y). Thus δ is a nonzero root of the polynomial

R(y) = Resultanty(f̃(x, y), g(y)),
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and

∆ = |δ| > 1

1 + ‖R‖∞
.

Now,

‖R‖∞ ≤ ‖R‖1 ≤ ‖f̃(x, y)‖n1‖g(y)‖m1 .

Observe that the 1-norm of f̃(x, y) is taken over Z[x,y]. Now writing

f(x) = amxm + am−1x
m−1 + · · ·+ a0

we have

f̃(x, y) = f(x+ y) = am(x+ y)m + am−1(x+ y)m−1 + · · ·+ a0

=

m∑

i=0

ai

i∑

j=0

(
i

j

)
xi−jyj

=

m∑

j=0




m∑

i=j

ai

(
i

j

)
xi−j


 yj

=

m∑

j=0

Aj(x)y
j .

Thus

‖f̃(x, y)‖1 = ‖Am(x)‖1 + · · ·+ ‖A0(x)‖1

≤
m∑

j=0

‖f‖∞
m∑

i=j

(
i

j

)

≤ ‖f‖∞
m∑

i=0

i∑

j=0

(
i

j

)

≤ ‖f‖1
m∑

i=0

2i < ‖f‖12m+1.

Thus

‖R‖∞ < 2n(m+1)‖f‖n1 ‖g‖m1 ,

and

∆ >
1

1 + ‖R‖∞
> 2−(n+1)(m+1)‖f‖−n

1 ‖g‖−m
1 .

Problem 8.15

(i) Let the roots of f be enumerated as ξ1, ξ2, . . ., ξn. Now consider
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the determinant of the following Vandermonde matrix:

Vn =




1 1 · · · 1
ξ1 ξ2 · · · ξn
...

...
. . .

...
ξn−2
1 ξn−2

2 · · · ξn−2
n

ξn−1
1 ξn−1

2 · · · ξn−1
n



.

Since det(VnV
T
n ) = Discriminant(f) 6= 0 (f is square-free) and since f

is integral, we have
| detVn| ≥ 1.

Now if we subtract the jth column of Vn from its ith column, then this
elementary matrix operation does not change det Vn, and we have

detVn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 0 · · · 1
ξ1 ξ2 · · · ξi − ξj · · · ξn
...

...
. . .

...
. . .

...
ξd
1 ξd

2 · · · ξd
i − ξd

j · · · ξd
n

...
...

. . .
...

. . .
...

ξn−2
1 ξn−2

2 · · · ξn−2
i − ξn−2

j · · · ξn−2
n

ξn−1
1 ξn−1

2 · · · ξn−1
i − ξn−1

j · · · ξn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using the Hadamard inequality, we have

1 ≤ | detVn|

≤
(n−1∑

d=1

|ξd
i − ξd

j |2
)1/2 ∏

k 6=i

(n−1∑

d=0

|ξk|2d
)1/2

.

Now

|ξd
i − ξd

j | = |ξi − ξj | |ξd−1
i + ξd−2

i ξj + · · ·+ ξd−1
j |

≤ d|ξi − ξj | |ξi|d−1,

assuming |ξi| ≥ |ξj |.
Hence,

n−1∑

d=1

|ξd
i − ξd

j |2 <

(
n3

3

)
|ξi − ξj |2 max(1, |ξi|)2n−2.

Similarly,
n−1∑

d=0

|ξk|2d < n max(1, |ξk|)2n−2.
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Thus, combining these inequalities, we get

1 < |ξi − ξj |
(
nn−1

(
n3

3

))1/2 n∏

k=1

max(1, |ξk|)n−1.

and

|ξi − ξj | >
√

3

n(n+2)/2 M(f)n−1
.

Thus since M(f) ≤ ‖f‖1, we have the result

∆(f) >

√
3

n(n+2)/2 ‖f‖n−1
1

.

(ii) Assume that f(x) is not square-free. Then its square-free factor
g(x) is given by

g(x) =
f(x)

GCD(f(x), f ′(x))
, and ‖g‖1 ≤ 2n‖f‖1.

Then writing m = deg(g),

∆(f) = ∆(g)

>

√
3

m(m+2)/2 ‖g‖m−1
1

>

√
3

m(m+2)/2 (2n‖f‖1)m−1

>

√
3

2n(n−1) n(n+2)/2 ‖f‖n−1
1

.

Problem 8.18
Let S ⊆ R⋉ be a semialgebraic set. Let p ∈ S be an arbitrary point of

S and consider a small open neighborhood of p defined as follows:

NS,ǫ(p) = S ∩ {q : ‖p− q‖2 < ǫ},

for some ǫ > 0. Clearly, NS,ǫ is a semialgebraic set defined by a set of
polynomials Fǫ. Now consider a cylindrical algebraic decomposition Kǫ of
R⋉ defined by Fǫ. Note that Kǫ has finitely many cells and that for every
ǫ there is an open connected cell Cǫ ⊆ NS,ǫ(p) such that

p ∈ Cǫ ⊆ S.

Thus S is locally connected.
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Problem 8.21

The proof is in two steps: First, we shall construct a sequence of complex
quantified sentences Φk’s each equivalent to a single polynomial as follows:

Φk(z0, zk) : z22k

k = z0.

In the second step, we shall obtain a sequence of real quantified sentences
Ψk’s each being an equivalent real version of Φk.

Ψk(ℜ(z0),ℑ(z0),ℜ(zk),ℑ(zk)) :(
ℜ
(

[ℜ(zk) + iℑ(zk)]2
2k
)

= ℜ(z0)

)

∧
(
ℑ
(

[ℜ(zk) + iℑ(zk)]2
2k
)

= ℑ(z0)

)
,

where ℜ(z) and ℑ(z) stand, respectively, for the real and imaginary parts
of z. Now renaming x = ℜ(zk) and y = ℑ(zk) and letting z0 = 1 (i.e.,
ℜ(z0) = 1 and ℑ(z0) = 0, we get the final Tarski sentence.

Base Case: k = 0, N = 220

= 2:

Φ0(z0, z1) : z2
1 = z0.

Thus Ψ0 is

Ψ0(ℜ(z0),ℑ(z0),ℜ(z1),ℑ(z1)) :

(ℜ(z1)
2 −ℑ(z1)

2 = ℜ(z0)) ∧ (2ℜ(z1) ℑ(z1) = ℑ(z0)),

or, after renaming

Ψ0(x, y) ≡ Ψ0(1, 0, x, y) ≡ (x2 − y2 − 1 = 0) ∧ (xy = 0).

Induction Case: k > 0, N = 22k

:
We would like to define

Φk(z0, zk) ≡
(
∃ w
) [

(Φk−1(w, zk)) ∧ (Φk−1(z0, w))
]
.

Thus Φk is equivalent to saying

(
z22k−1

k = w

)
∧
(
w22k−1

= z0

)
≡ z22k

k = z0.

However, in this case the formula size becomes “exponentially large”! We
avoid the exponential growth by making sure that only one copy of Φk−1
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appears in the definition of Φk as follows:

Φk(z0, zk) ≡
(
∃ w
) (
∀ z′, z′′

)

[
[(z′ = zk) ∧ (z′′ = w)] ∨ [(z′ = w) ∧ (z′′ = z0)]

⇒ (Φk−1(z
′, z′′))

]
.

Thus

Ψk(ℜ(z0),ℑ(z0),ℜ(zk),ℑ(zk))

≡
(
∃ u, v

) (
∀ x′, y′, x′′, y′′

)

[
[[(x′ 6= ℜ(zk)) ∨ (y′ 6= ℑ(zk)) ∨ (x′′ 6= u) ∨ (y′′ 6= v)]

∧ [(x′ 6= u) ∨ (y′ 6= v) ∨ (x′′ 6= ℜ(z0)) ∨ (y′′ 6= ℑ(Z0))]]

∨ Ψk−1(x
′, y′, x′′, y′′)

]
.

Finally, after renaming, we have

Ψk(x, y) ≡ Ψk(1, 0, x, y).
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[166-169] and Weispfenning [208].

Assume that the given Tarski sentence involves the multivariate polynomials
F in n variables and has ω alternating quantifiers

Q1, . . . ,Qω, Qi 6= Qi+1,

with the ith quantifier involving ni variables.
The time complexity of the currently best sequential algorithm is

„
|F| deg(F)

«Q

O(ni)

,

and the time complexity of the currently best parallel algorithm is

»Y
O(ni)

„
|F| deg(F)

«–O(1)

.

For more details, see the survey paper by Renegar [170].
On the general subject of real algebra, the reader may consult the following

books by Bochnak et al. [21] and Benedetti and Risler [20]. Also, consult the
special issue of J. Symbolic Computation entitled “Algorithms in Real Algebraic
Geometry” (Volume 5, Nos. 1 & 2, February/April 1988).

Problem 8.8 is based on the work of Ben-Or et al. [19]. Problem 8.9 is

taken from Rump’s paper (lemma 2) [180]. Problem 8.10 is due to Mignotte

[144]. The inequality of Problem 8.11 was derived by Collins and Horowitz [54].

Problem 8.13 is motivated by [54], though Collins and Horowitz’s techniques
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will produce a somewhat sharper bound. Problems 8.14 and 8.15 are due to

Mahler [136, 137]. Problem 8.16 (ii) is from [55]. A solution to robot motion

planning problem (Problem 8.20) was given by Reif [166] and Schwartz and Sharir

[185]. A more efficient solution is due to Canny [40] and uses a stratification to

study connectivity of semialgebraic sets. Problems 8.21, 8.22 and 8.23 are due to

Davenport and Heintz [57].



Appendix A:

Matrix Algebra

A.1 Matrices

Let S be a commutative ring. We write Mm×n(S) ∈ Sm×n to denote
the class of matrices with m rows and n columns and with entries in S.
Consider A ∈Mm×n(S):

A = (ai,j) =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n




We write A·,i to denote the ith column of A and Ai,·, to denote he ith

row. We also write Ai,j to denote the submatrix of A obtained from A by
deleting the ith row and the jth column.

The transpose of a matrix A is the matrix AT obtained by exchanging
the rows and columns of A:

AT = (aj,i).

The class of n × n square matrices with entries in S is denoted by
Mn(S). The set of such matrices form a ring, with matrix addition and
matrix multiplication, defined as follows.

Assume A and B ∈Mn(S). Then

C = A+B ⇒ ci,j = ai,j + bi,j , i = 1, . . . , n, j = 1, . . . , n,

and

C = A ·B ⇒ ci,j =

n∑

k=1

ai,k bk,j , i = 1, . . . , n, j = 1, . . . , n.

385
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The additive identity is the zero matrix 0n and the multiplicative iden-
tity is the “identity” matrix In:

0n =




0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 , In =




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 .

A.2 Determinant

Definition A.2.1 (Determinant) The determinant of an n × n square
matrix A = (ai,j) is defined by the following Laplace expansion formula:

det(A) =





a1,1, if n = 1;

∑n
i=1(−1)i+1ai,1 det(Ai,1), if n > 1.

We also write |A| to mean det(A). Let us define A′
i,j the (i, j)th cofactor

of A as
A′

i,j = (−1)i+j det(Ai,j),

where, as before, Ai,j is the submatrix of A obtained from A by deleting
the ith row and the jth column.

The n × n matrix adj (A) = (A′
i,j)

T ∈ Mn(S), whose (i, j)th entry is

the (j, i)th cofactor of A, is called the adjoint of A.
The Laplace expansion formula can be generalized as follows:

Expansion with respect to the ith row:

det(A) =

n∑

j=1

ai,j A
′
i,j ,

where A′
i,j are the cofactors of A.

Expansion with respect to the jth column:

det(A) =

n∑

i=1

ai,j A
′
i,j ,

where A′
i,j are again the cofactors of A.

Thus,
A · adj (A) = adj (A) · A = det(A) · I.
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Let π ∈ Sn be a permutation of [1, n] ⊂ Z. Define the sign of a
permutation π as follows:

sgn(i) = +1, i = identity permutation

sgn(τ) = −1, τ = transposition permutation

sgn(π1π2) = sgn(π1) sgn(π2),

where π1 and π2 are arbitrary permutations. Then

det(A) =
∑

π∈Sn

sgn(π)

n∏

i=1

ai,π(i).

The following properties of determinant can be easily demonstrated:

1.

det(AT ) = det(A), where A ∈Mn(S).

2.

det(A B) = det(A) det(B), where A,B ∈Mn(S).

3. If A·,i = A·,j (i 6= j), then

det(A) = 0.

4. Let A, B, and C ∈ Mn(S) be three n × n square matrices whose
columns are all identical except the ith column:

A·,j = B·,j = C·,j , for all j 6= i,

A·,i = ξ B·,i + ζ C·,i,

where ξ, ζ ∈ S. Then

det(A) = ξ det(B) + ζ det(C).

5. If Â is obtained by replacing its ith column by a linear combination
of all the column vectors as follows:

Â·,i = ξ1 A·,1 + · · ·+ ξi A·,i + · · ·+ ξn A·,n,

then
det(Â) = ξi det(A).
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A.3 Linear Equations

Next, we consider a system of n linear equations in n variables over a
commutative ring S:

a1,1 x1 + a1,2 x2 + · · ·+ a1,n xn = 0
a2,1 x1 + a2,2 x2 + · · ·+ a2,n xn = 0

...
an,1 x1 + an,2 x2 + · · ·+ an,n xn = 0.

(A.4)

The system of equation (A.4) is said to have a nontrivial solution, if it is
satisfied by some assignment x1 = ξ1, . . ., xn = ξn, ξi ∈ S and not all ξi
zero.

The matrix associated with the above system of equations is denoted
by A:

A =




a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


 (A.5)

Theorem A.3.1 If the system of linear equations (A.4) has a nontrivial
solution, then the determinant of its associated matrix A, det(A) is a zero
divisor in S.

Specifically, if S = an integral domain and equation (A.4) has a non-
trivial solution, then det(A) = 0.

proof.
Suppose that 〈ξ1, ξ2, . . ., ξn〉 is a nontrivial solution of (A.4). Assume

without loss of generality that ξ1 6= 0. Let Â be obtained by replacing the
first column of A by

ξ1 A·,1 + ξ2 A·,2 + · · ·+ ξnA·,n = 0.

Then,

det(Â) = ξ1 det(A) = 0.

Lemma A.3.2 Let S be a commutative ring. Consider the following two
systems of linear equations:
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a1,1 x1 + a1,2 x2 + · · ·+ a1,n xn = 0

...

ai,1 x1 + ai,2 x2 + · · ·+ ai,n xn = 0

... (A.6)

aj,1 x1 + aj,2 x2 + · · ·+ aj,n xn = 0

...

an,1 x1 + an,2 x2 + · · ·+ an,n xn = 0,

and

a1,1 x1 + a1,2 x2 + · · ·+ a1,n xn = 0

...

âi,1 x1 + âi,2 x2 + · · ·+ âi,n xn = 0

... (A.7)

aj,1 x1 + aj,2 x2 + · · ·+ aj,n xn = 0

...

an,1 x1 + an,2 x2 + · · ·+ an,n xn = 0,

where either

1.

âi,1 = µ ai,1, . . . , âi,n = µ ai,n, µ 6= zero divisor ∈ S, or ,

2.

âi,1 = ai,1 + aj,1, . . . , âi,n = ai,n + aj,n.

If the system of equations (A.7) has a nontrivial solution, then so does the
system of equations (A.6), and vice versa.

proof.
Let 〈ξ1, ξ2, . . ., ξn〉 be a nontrivial solution of the system (A.7).

Then, in the first case (where âi,k = µ ai,k), 〈µ ξ1, µ ξ2, . . ., µ ξn〉 is a
solution of (A.6), and since µ is not a zero divisor, this is also a nontrivial
solution.

Similarly, in the second case (where âi,k = ai,k + aj,k), 〈ξ1, ξ2, . . ., ξn〉
is clearly a nontrivial solution of (A.6).
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Theorem A.3.3 Consider a system of equations over an integral domain
S as in (A.4) with the associated matrix A as shown in (A.5).

Then the system of equations (A.4) has a nontrivial solution if and only
if det(A) = 0.
proof.
(⇒) The forward direction is simply Theorem A.3.1.
(⇐) The converse can be shown by induction on the size n of the matrix
A. If n = 1, the proof is trivial. Hence, assume that n > 1.

Starting with the original system of equations modify all but the first
equation such that the last (n− 1) equations only involve the last (n− 1)
variables: x2, . . ., xn.

Without loss of generality, assume that a1,1 6= 0.
The ith equation is modified by subtracting an ai,1 multiple of the first

equation from an a1,1 multiple of the ith equation. This has the effect of
eliminating the first variable from all but the first equation. The resulting
system may be written as

a1,1 x1 + a1,2 x2 + · · · + a1,n xn = 0
â2,2 x2 + · · · + â2,n xn = 0

...
ân,2 x2 + · · · + ân,n xn = 0,

and by the preceding lemma, has a nontrivial solution if and only if (A.4)
does.

The associated matrix is given by:

Â =




a1,1 a1,2 · · · a1,n

0 â2,2 · · · â2,n

...
...

. . .
...

0 ân,2 · · · ân,n


 =




a1,1 a1,2 · · · a1,n

0
...
0

Â1,1




Since det(A) = det(Â) = a1,1 det(Â1,1) = 0, and since a1,1 6= 0,

det(Â1,1) = 0. Thus by the inductive hypothesis, the following system:

â2,2 x2 + · · · + â2,n xn = 0
...

ân,2 x2 + · · · + ân,n xn = 0.

has a nontrivial solution, say 〈ξ2, . . ., ξn〉. Then,

〈
−(a1,2ξ2 + · · ·+ a1,nξn), a1,1ξ2, · · · , a1,1ξn

〉
,

is a nontrivial solution of the original system of equation (A.4).
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Computing Gröbner Bases of Zero-Dimensional Ideals, Volume 94
of Progress in Mathematics, Effective Methods in Algebraic Geome-
try, (edited by F. Mora and C. Traverso), pp. 227–234. Birkhäuser,
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groups, 14, 24, 69

Abelian, 24
coset, 25
examples, 24
left coset, 25
product of subsets, 25
quotient, 26
right coset, 25
subgroup, 25
symmetric, 24

Gröbner algorithm, 85
Gröbner algorithm, modified, 88, 90
GröbnerP algorithm, 84
Gröbner basis, 20, 23, 44, 69, 79, 84–85

algorithm, 80, 85
applications, 71, 103–108
complexity, 131–132

H-bases, 70
Habicht’s theorem, 274–275
head coefficient, 43, 205
head monomial, 43

examples, 43
head coefficient, 43, 205
head term, 43

head monomial ideal, 44
head reducible, 80
head reduct, 80
head reduction, 71, 80
HeadReduction algorithm, 83
HeadReduction algorithm, modified,

88–90
Hensel’s lemma, 223
Hilbert Basissatz, 69
Hilbert’s basis theorem, 6, 23, 48, 69,

71
stronger form, 102–103

Hilbert’s Nullstellensatz, 13, 134, 142–
143, 182, 226

Hilbert’s program, 3
homomorphism, 31

image, 31
kernel, 31
module, 50

ideal, 23, 28, 69, 139
annihilator, 34
basis, 23, 28
codimension, 141
comaximal, 34
contraction, 32
coprime, 34
dimension, 141
extension, 33
generated by, 28
Gröbner basis, 23
Hilbert’s basis theorem, 23
ideal operations, 33
improper, 28
intersection, 33
modular law, 34
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monomial ideal, 37
power, 33
principal, 28
product, 33, 71, 103–104
properties of ideal operations, 34
proper, 28
quotient, 34, 103, 106–107
radical, 34
subideal, 28
sum, 33, 103–104
system of generators, 28
zero-dimensional, 145

ideal congruence, 71
ideal congruence problem, 103
ideal equality, 71
ideal equality problem, 103–104
ideal intersection, 103, 105
ideal map, 139
ideal membership, 71
ideal membership problem, 87, 103, 178

prime ideal, 178, 197
using characteristic sets, 178

ideal operations, 33, 103–107
IEEE, The Institute of Electrical and

Electronics Engineers, 21
if-then-else statement, 16
indecomposable element, 200
independent variables, 141
indeterminate, 35
initial polynomial, 173
integral domain, 29
integral element, 316
intersection of ideals, 71
interval, 14, 299

closed, 299
half-open, 299
open, 299

interval representation, 327
IntervalToOrder conversion algorithm

for algebraic numbers, 330–
331

isolating interval, 324
ISSAC, International Symposium on Sym-

bolic and Algebraic Compu-
tation, 21

Kapur’s Algorithm, 192

Jacobian conjecture, 196
Journal of Symbolic Computation, JSC,

21

Laplace expansion formula, 386
least common multiple, LCM, 36, 204
Leibnitz wheel, 3
lexicographic ordering, 40, 136

generalization, 137, 142
lingua characteristica, 3
LISP, 4
loop statement,

until, 16
while, 16

Macdonald-Morris conjecture, 9
MACSYMA, 8, 9
Maple, 9
Mathematica, 9
MATHLAB-68, 8, 9
matrix, 385

addition, 385
adjoint, 386
cofactor, 386
determinant, 386
identity matrix, 386
multiplication, 385
submatrix, 385

matrix of a polynomial, 242
maximal common divisor, 204
mechanical theorem proving, 167
minimal ascending set, 179–180
minimal common multiplier, 204
minimal polynomial, 319
modular law, 34
module, 23, 50, 69

basis, 52
examples, 50
free, 52
homomorphism, 50
module of fractions, 50
Noetherian, 53
quotient submodule, 51
submodule, 51
syzygy, 23, 54

module homomorphism, 50



Index 413

module of fractions, 50
monic polynomial, 205
monogenic submodule, 52
monomial, 36

degree, 36
head monomial, 43

monomial ideal, 37
head monomial ideal, 44

multiple, 199
common multiple, 200
minimal common multiple, 200

Multiplication algorithm for algebraic
numbers, 333

MultiplicativeInverse algorithm for
algebraic numbers, 331

muMATH, 9

NewGröbner algorithm, 90
NewHeadReduction algorithm, 88, 90
NewOneHeadReduction algorithm, 88
nilpotent, 29
Noetherianness, 6
noncommutative ring, 69
normal form, 80
Normalize algorithm for algebraic num-

bers, 329
Nullstellensatz, 13, 134, 142–143, 182,

226

offset surface, 11
OneHeadReduction algorithm, 83
OneHeadReduction algorithm, mod-

ified, 88
order isomorphism, 301
order representation, 327
ordered field, 298

Archimedean, 301
induced ordering, 301

ordering, ≺, 171

parallelization, 7
path connected, 336
Pilot ACE, 3
pivoting, 133
PM, 8
polynomial, 35, 36

degree, 35, 36
length, 36
multivariate, 35
ordering, 172
rank, 172
repeated factor, 239
ring, 35
similarity, 247
square-free, 239
univariate, 35

polynomial remainder sequence, PRS,
226, 247–249, 266, 271

Euclidean polynomial remainder se-
quence, EPRS, 248

primitive polynomial remainder se-
quence, PPRS, 248

power product, 36
admissible ordering, 39
divisibility, 36
greatest common divisor, 36
least common multiple, 36
multiple, 36
semiadmissible ordering, 39
total degree, 36

prenex form, 356
matrix, 356
prefix, 356

primality testing, 197
prime element, 200

relatively prime, 205
prime field, 29
primitive polynomial, 205–206
primitive polynomial remainder sequence,

PPRS, 248
principal ideal domain, PID, 199, 207,

209
principal subresultant coefficient, PSC,

252, 266
principal subresultant coefficient chain,

266
product of ideals, 71
PROLOG, 9
proof by example, 186
propositional algebraic sentences, 335
pseudodivision, 168, 169, 173, 226, 244

quotient, 169
reduced, 169
remainder, 169

pseudoquotient, 169, 245
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pseudoremainder, 169, 245
homomorphism, 246

pseudoremainder chain, 175
PseudoDivisionIt algorithm, 170
PseudoDivisionRec algorithm, 170

quantifier elimination, 335
queue, 14
quotient,

field, 30
group, 26
of ideals, 71
ring, 30–31
submodule, 51

randomization, 7
real algebra, 301
real algebraic geometry, 20
real algebraic integer, 298, 316
real algebraic number, 298, 316, 347

addition, 332
additive inverse, 331
arithmetic operations, 331
conversion, 330
degree, 319
interval representation, 320, 327
minimal polynomial, 319–320
multiplication, 333
multiplicative inverse, 331
normalization, 328–329
order representation, 320, 327
polynomial, 319
refinement, 328–329
representation, 327
sign evaluation, 328, 330
sign representation, 320, 327

real algebraic sets, 337–338
projection, 339

real closed field, 189, 297, 301
real geometry, 297, 334
real root separation, 320

Rump’s bound, 321
REDUCE, 8, 9
Refine algorithm, 329
reduction, 71, 133
repeated factor, 239
representation, 7

residue class, 26

ring, 31

of Z mod m, 26

resultant, 225, 227, 235, 296

common divisor, 261–262

evaluation homomorphism, 234

homomorphism, 232

properties, 228, 230–231, 260–262

reverse lexicographic ordering, 40–41

ring, 14, 23, 27, 69

addition, 27

additive group of the ring, 27

commutative, 27

computable, 72

detachable, 72

examples, 27

of fractions, 30

full quotient ring, 30

homomorphism, 31

multiplication, 27

Noetherian, 28

polynomial ring, 35

quotient ring, 30–31

reduced, 29

residue class ring, 31

residue classes mod m, Z⋗ , 27

strongly computable, 71–72, 102

subring, 27–28

syzygy-solvable, 72
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RISC-LINZ, Research Institute for Sym-
bolic Computation at the Jo-
hannes Kepler University, Linz,
Austria, 21

Ritt’s principle, 178
robotics, 9–10, 297–298, 334
Rolle’s theorem, 305
root separation, 315, 320
RootIsolation algorithm, 324
Rump’s bound, 321

S-polynomials, 55, 71, 75, 79, 133
SAC-1, 8
SAINT, 8
SAME, Symbolic and Algebraic Manip-

ulation in Europe, 21
sample point, 348
SCRATCHPAD, 8, 9
sections, 343
sectors, 343

intermediate, 343
lower semiinfinite, 343
upper semiinfinite, 343

semiadmissible ordering, 39
examples, 40
lexicographic, 40
reverse lexicographic, 40, 41

semialgebraic cell-complex, 337
semialgebraic decomposition, 336
semialgebraic map, 345
semialgebraic set, 298, 334–335
semialgebraically connected, 336
semialgebraically path connected, 336
semigroup, 24
set, 14

choose, 14
deletion, 15
difference, 14
empty set, 14
insertion, 15
intersection, 14
union, 14

SETL, 13
Sign algorithm for algebraic numbers,

330
sign,

assignment, 337
class, 337

invariance, 327
representation, 327
variation, 309

similar polynomials, 247
SMP, 9
solid modeling, 297–298, 334
solvability, 142, 145, 190

finite, 145, 149
Solvability algorithm, 145
solving a system of polynomial equa-

tions, 133, 144
square-free polynomial, 239
stack, 14
standard bases, 70
statement separator, 15
Stone isomorphism lemma, 154
stratification, 298
strongly computable ring, 71–72, 102

Euclidean domain, 213
example, 73, 76

strongly triangular form, 135–136
Sturm sequence, 225

canonical, 310
standard, 310
suppressed, 310

Sturm’s theorem, 297, 309, 347
Sturm-Tarski theorem, 309, 314, 330
subalgebra, 69
subfield, 29

examples, 29
subgroup, 25

generated by a subset, 25
normal, 25
self-conjugate, 25

subideal, 103–104
submatrix, 385
submodule, 51

annihilator, 52
cyclic, 52
finitely generated, 52
monogenic, 52
product, 52
quotient, 52
sum, 52
system of generators, 52

subresultant, 225–226, 250
defective, 254
evaluation homomorphism, 277, 279
homomorphism, 262–263, 265
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properties, 256, 258
regular, 254
relation with determinant polyno-

mial, 254
subresultant chain, 266, 271–272

block structures, 266–267
defective, 266
nonzero block, 267
regular, 266
zero block, 267

subresultant chain theorem, 266, 268–
269, 274, 279, 296

subresultant polynomial remainder se-
quence, SPRS, 249, 271–272,
296

subring, 27
successive division, 213
successive pseudodivision, 171
successive pseudodivision lemma, 175
Sycophante, 9
Sylvester matrix, 227
Sylvester’s dialytic method of elimina-

tion, 226, 296
Symbal, 9
symmetric group, 24
symmetric polynomial, 226
system of linear equations, 388

nontrivial solution, 388
syzygy, 23, 54, 69

S-polynomials, 55, 71, 75, 79, 133
condition, 57

syzygy basis, 71
syzygy computation, 93–102
syzygy condition, 57
syzygy solvability, 71–72, 93–102, 213,

215
Euclidean domain, 215

Tarski geometry, 189, 354
Tarski sentence, 298, 335, 354
Tarski set, 335
Tarski-Seidenberg theorem, 345
term ordering, 69

Thom’s lemma, 315, 320, 325
total degree, Tdeg, 181
total lexicographic ordering, 42
total reverse lexicographic ordering, 42
transcendental element, 316
triangular form, 135–136, 167

strong, 135
triangular set, 134, 137
triangulation, 298
tuple, 14

concatenation, 14
deletion, 14
eject, 14
empty, 14
head, 14
inject, 14
insertion, 14
pop, 14
push, 14
subtuple, 14
tail, 14

unique factorization domain, UFD, 199,
202, 209

unit, 29
universal domain, 138

valuation, 69
variable, 35
variety, 138
vector space, 50

well-based polynomials, 352
Wu geometry, 189
Wu’s Algorithm, 188
Wu-Ritt process, 168, 179

zero divisor, 29
zero map, 138
zero set, 138, 176
zeros of a system of polynomials, 149–

150
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