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PREFACE

Physics is the most fundamental of the sciences, and some knowledge of it is
required in fields as disparate as chemistry, biology, engineering, medicine,
and architecture. Our experience in teaching physics to a wide variety of
audiences in the U.S. and Europe over many years is that, while students
may acquire some familiarity with formal concepts of physics, they are all
too often uneasy about applying these concepts in a variety of practical situa-
tions. As an elementary example, they may be able to quote the law of con-
servation of angular momentum in the absence of external torques, but be
quite unable to explain why a spinning top does not fall over. The physicist
Richard Feynman coined the phrase *“fragile knowledge” to describe this kind
of mismatch between knowledge of an idea and the ability to apply it.

In our view there is really only one way of acquiring a robust ability to use
physics: the repeated employment of physical concepts in a wide variety of
applications. Only then can students appreciate the strength of these ideas
and feel confident in using them. This book aims to meet this need by pro-
viding a large number of problems for individual study. We think it very
important to provide a full solution for each one, so that students can check
their progress or discover where they have gone wrong. We hope that users of
this book will be able to acquire a working knowledge of those parts of
physics they need for their science.

Calculation is an essential ingredient of physics: the ability to make quan-
titative statements which can be checked by observation and experiment is
the basis of the enormous success of modern science and technology. Never-
theless, in this book we have tried to avoid mathematical complications
which are not fundamental to understanding the physics. In particular we
make no use of calculus. It is worth pointing out that many practical situa-
tions that scientists encounter are too complex to allow detailed calculations.

vii
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PREFACE

In these cases a simple estimate is often quite sufficient to give great insight,
and is in any case an indispensable preliminary to any attempt at a more
elaborate treatment.

The book contains problems organized in three chapters, on mechanics,
electromagnetic theory, and the properties of matter and waves. We give brief
summaries of the relevant theory at the beginning of cach of the chapters.
These are not extensive, as this is not intended as a textbook, but they do cover
all of the topics, and establish the conventions we use. Solutions to each
problem are given in the second half of the book. We hope that users of the
book will attempt a problem before looking up the solution; even an unsuc-
cessful attempt brings the subject into much sharper focus than simply reading
the solution before appreciating the difficulty. Knowledge hard-won in this
way is the essence of a working grasp of physics, just as an athlete’s perfor-
mance owes much to long hours of training. Realistically, however, we expect
that some of the time this will not happen, particularly when the subject is
new. We hope we have provided enough problems so that the reader may, if
desired, use the first one or two solutions on any topic to “'spot the pattern,”
and thus acquire the ability to attempt the later problems without having to
look up the solution first. Accordingly, there is a general tendency for the
problems in a given area to be easier at the beginning than the end. However,
we have resisted any idea of doing this absolutely systematically, for the good
reasons that (a) the degree of difficulty of a problem is often a rather subjective
judgement, and (b) we do not want readers to expeer the problems to get too
difficult for them as the section proceeds. Indeed, we have deliberately
sprinkled some simpler problems over the sections to avoid this, so our advice
to the reader is always at least to try the problem before giving up!

We hope that this book will be useful to college and university under-
graduates in the physical and life sciences, engineering, medicine and archi-
tecture, as well as for some high school and secondary school courses. With
this in mind we have tried to include problems drawn directly from these
subjects, The enormous range of applicability of physics, from understanding
why black holes are black to why boiling frankfurters split lengthways, is for
us one of its great fascinations, and we hope we have managed to convey a
little of this in the book. We hope too that it will provide its readers with the
basis of a sound and adaptable knowledge of physics. As a very important
side-effect, we trust that it will be useful in preparing for examinations: most
common types of physics problems set at this level will be encountered here.
We make no apology to our colleagues in universities and schools for this —
after all, in an important sense the subject is defined by the huge range of
questions it can answer. A student who has acquired the ability to solve
problems (and so pass examinations) has a good grounding in physics, and
thoroughly deserves success.



NOTE ON UNITS

This books uses SI (meter—kilogram-second) units throughout, with one
exception: we follow the customary usage of gram moles, rather than kilo-
moles, in discussing gases. We sometimes state problems using conventional
non-SI units (e.g. km/h for speeds), but these are converted into SI units in
the solutions. Numerical answers are usually given to two significant figures.
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PART ONE

PROBLEMS



CHAPTER ONE

MECHANICS

Hl SUMMARY OF THEORY
1. Status of the Subject

Newtonian mechanics provides a complete description of virtually all
mechanical phenomena. The two exceptions to this statement concern (a)
speeds approaching that of light, and (b) lengths of order the size of atoms.

Note that air resistance is neglected in all problems unless the contrary is
explicitly stated.

2. Statics

@ Equilibrium of a body under external forces requires that their resultant is
Zero, i.e.

IF, = £F, = BF, =0, (1)

where F,, F,, F, are the three Cartesian components of the resultant force. If
the forces act on lines that all meet at a point, this condition is also sufficient.
It is then legitimate to represent all the forces as acting at the body’s center of
mass.
@ The center of mass is the pointd with coordinates (Xcn, Youts Zom }, where
By
= 2
Xcm T (2

etc. Here the summations extend over all the mass points of the body. The
position of the center of mass can often be found from symmetry require-
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ments. If two bodies of mass m,, m, are joined together so that their centers
of mass have coordinates (x,y;,2;), (xz,¥2,2;), the center of mass of the
combined body has coordinates given by applying (2) to them, i.e.

_ myxy, + max;

- my 4 my

@ If the external forces do not act along lines meeting at a point, we require in
addition to (1) that the resultant torque should vanish. In this book we
restrict attention to forces acting in a plane, and the torque condition for
equilibrium is

Xem , ete. (3)

£M, =0, 4)

where M is the product of the force and its perpendicular distance from the
axis through O. The torque is counted positive if the force tends to cause
anticlockwise rotation about the axis and negative otherwise. The position O
of the axis may be chosen freely: if there is an unknown force in the problem,
it is generally useful to choose O on the line of action of this force, so that its
torque vanishes. Given a point O such that M, = 0, then XM = 0 for any
other point 0'.

@ The frictional force f or Fy acting on a body has two forms: if the body is

static, and the normal reaction force between two surfaces is N, then f takes a
value no larger than a certain maximum, i.e.

fEuN. (5)

Here u, is a dimensionless quantity characteristic of the two surfaces, called
the coeflicient of static friction. Note that this equation does not determine
the actual value of f: this is found from the equilibrium conditions (1, 4). If
the force required to maintain equilibrium exceeds i, N, the bodies slide with
respect to each other, and the frictional force becomes

f=uN, (6)

where p is now the coefficient of sliding (or kinetic) friction.

3. Kinematics

@ Average speed = (distance traveled)/(time).

@ In adding two velocities (e, uy, u;) and (v, vy, v;), we must add component
by component, i.e. the resultant velocity is (i, + v, 4, + v, 4. +v;). This
form of addition (and subtraction) also applies to accelerations, momenta,
etc. and expresses what is sometimes called the paralfelogram (or triangle)
rule (see the Figure for the case of adding two vectors A, B in the plane).
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(A, + By

@ The relative velocity of a moving point A with respect to a moving point B,
whose velocities in a given reference frame are (u(4),,...,...),
(u(B),,...,...) is given by subtracting B's velocity from A's component by
component, i.e. by ([u(4), —u(B),],...,...).

. Acceleration = (change of velocity)/(time).

Note that zero acceleration does not automatically imply zero velocity: steady
motion has zero acceleration.

@ Under constant acceleration a, the velocity v and distance x traveled are
related to the elapsed time ¢ and initial velocity 1, by the three formulae

U=y +al, (7
v = of + 2ax, (8)
x=u.,:+§. (9)

In two- or three-dimensional motion these formulae can be used component
by component. If air resistance is neglected, projectiles have constant vertical
acceleration and zero horizontal acceleration.
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4. Newton's Second Law

@ The fundamental postulate of Newtonian mechanics explains what happens
when the resultant external force on a body does not vanish as in statics: the
resultant force on a body equals the rate of change of its momentum. Here
momentum = mass x velocity. If the mass of the body does not change (true
for all the problems in this book), we can write Newton’s second law in the
familiar form

TF, = may, (10)
TF, = ma,, (11)
$F, = ma,. (12)

These equations give us the accelerations in terms of the forces. Kinematics
can then be used to find the motion.

5. Work, Energy, and Power

@ Work = (force) x (distance moved in direction of force)
Thus if the motion makes angle # to the force F, the work done by the force
in moving distance / is
W = Flcos#. (13)
(Here it is assumed that the force F does not change during the motion
through /)

@ Power = rate of working. Thus, if work W is performed at a uniform rate in
time 1, the power is

P= ? (14)
@ A body of mass m moving with velocity v has kineric energy
T:%m&. (15)

@ If the body is raised through a height h against the Earth’s gravity, it gains
gravitational potential energy

U = mgh. (16)

@ The principle of conservation of energy states that the total energy of a closed
system remains constant. If the only forces acting on a mechanical system are
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conservative, no mechanical energy is converted to other forms, and the total
mechanical energy is conserved. The commonest example of a conservative
force is gravity: a body moving under gravity alone conserves the sum of its
kinetic and potential energies, i.e.

T 4 U = Lm? + mgh = constant. (17

Forces which are not conservative (e.g. [riction) and convert mechanical
energy to heat are called dissipative.

6. Impulse and Momentum

@ 1t follows from Newton's second law that the total tum of an isolated
system remains constant, i.e.

Emu, = constant, (18)
Emuy, = constant, (19)
Emv, = constant, (20)

where the summation is over all the bodies of the system.

In some cases we deal with systems where bodies move freely except for
large forces F, which act for short times 7 (e.g. collisional forces). In these
cases it is easier to deal with the product 7 = Ft, which is called the impulse.
From Newton’s second law it follows that the total impulse on a body gives
the change of its momentum.

In collision problems, the effects of the elastic forces of collision are
expressed in the coefficient of restitution e, defined by

(relative velocity after collision) = —e x (relative velocity before collision).

If e = 1, the collision is elastic and total mechanical energy is conserved. If
e < 1, the collision is inelastic and some of the mechanical energy is lost in the
collision, e.g. as heat, deformation of the bodies, etc.

7. Circular motion

@ The angular velocity of a point mass about another point is defined as

v
w=-
r

(21)
where v is the linear velocity of the mass perpendicular to the line joining the
two points, and r is the length of this line. Clearly, a rigid body rotates with
uniform angular velocity about any of its points.
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@ For a body to move in a circle of radius r with speed v requires centriperal
acceleration

2

a,:=§u;-=wzr (22)

directed towards the center of the circle. By Newton’s second law this
requires a centripetal force

2
F. = @ = mwtr (23)

directed towards the center of the circle, where m is the mass of the body.
@ Angular acceleration o = rate of change of angular velocity. If the angular
velocity changes by w at a uniform rate in time t, we have
a=-. {24)
t
If « is constant, there is a complete analogy with the case of constant linear
acceleration a, and the three formulae given for that case can be taken over
with the substitution of « for a, w for v and the angular displacement 8 for x.

@ Newton's second law applied to rotational motion of a particle of mass m
about a fixed point O implies that

EMg = mria. (25)

Thus if the total torque about O vanishes, the angular momentum mr*w is
conserved.

8. Harmonic motion

A body is undergoing simple harmonic motion when it moves in a straight line
under a restoring force proportional to the distance x from a fixed point. The
acceleration of such a body can be expressed as

a=—uw'x. (26)

Here w is the angular frequency. The concept can be extended to angular
motion. The motion repeats itself exactly after a time

2r
P==. (27)
P is called the period. The maximum displacement from the center of force
(e.g. x = 0) is called the amplitude. The period of a simple pendulum, a mass
suspended from a string of length / oscillating under gravity, is
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P=2r G) lf?—‘ {28)

independent of the mass and the amplitude of the motion, provided that this
remains small. The period of a mass m moving on a smooth horizontal table
attached to a spring of constant k whose other end is fixed is

p= 2ﬂ($)m, (29)

@ If simple harmonic motion of angular frequency w is initiated from rest with
displacement xy, the subsequent displacement is

x(t) = xpcoswt. (30)

If simple harmonic motion of angular frequency w is initiated from the origin
with speed vy, the subsequent displacement is

x(1) =%sinwr, (31

9. Gravitation

@ Newton’s law of universal gravitation states that the attractive gravitational
force between two point masses m,,m; is
Gmym;
F, grav — P (32)
where G is a universal constant, and d is the separation of the two masses.
The gravitational potential energy of the two masses is

G
U= Gmmy

(33)
It can be shown that the gravitational force exerted by a uniform sphere is the
same as if the sphere’s mass were all concentrated at its center.

For bodies close to the Earth, d is always effectively equal to the Earth’s
radius R,, so the downwards vertical force on a body of mass m is

F grav = ME, (34)
where g = GM,/R?, with M, = mass of the Earth. Here g is called the sur-

Sace gravity or the acceleration due to gravity. If the body is subject to
upwards vertical acceleration a, we define the effective gravity as

Lar =E+a (35)
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For example, at the Earth’s equator, some of the gravitational force must be
used to provide the centripetal acceleration needed to keep the body on the
Earth’s surface, so the effective gravity is lower there.

10.  Motion of a rigid body

@ A rigid body is one in which the distances between any of its particles remain
constant at all times.

@ The motion of a rigid body can be decomposed into the linear motion of its
center of mass, and rotations about the center of mass. The center of mass
motion is that of a point object of the same mass as the body. As explained
above, a rigid body has uniform angular velocity about any point.

@ If Newton's second law is applied to rotational motion about either any fixed
point O or the center of mass, it implies that
My = la, (36)
where
I=%m?A, (37

is called the moment of inertia about O. Here r is the perpendicular distance
of each point of mass m from the axis. The moment of inertia plays for
angular motion the role of the mass in linear motion. The moments of inertia
of simple bodies may be found easily, and are given in Table 1.

@ If the total torque about O vanishes, then the angular momentum Iw is con-
served. This is the analog of the conservation of (linear) momentum for an
isolated system referred to in Section 6 above.

The kinetic energy of rotation with angular velocity w about a point O is
1
T= ih.ﬁ, (38)

where [ is the relevant moment of inertia. The rate of increase of T is given
by the work done by the torques Mg, which is £M 8, where 6 is the angle
traveled in the direction of the torque.

The period of a physical pendulum undergoing simple harmonic motion is

12
P= 2=r(mgl,m) , (39)

where [ is the relevant moment of inertia, m the mass of the body, and lgy is
the distance of the center of mass from the pivot.
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TABLE 1. Moments of inertia of simple uniform

bodies of mass M about their symmetry
axes.

body [

circular hoop, radius r M7
cylindrical shell, radius r

circular disc, radius r i M
solid cylinder, radius r
rod, length / & MP
sphere, radius r i mA
B STATICS

Pl. Show that the center of mass of the Earth-Sun system is located inside the
Sun. (The Sun’s mass M, = 2 x 10° kg, the Earth’s mass M, = 6 x 10** kg,
the Sun’s radius Ry, =7x10°m, and the Earth-Sun distance
d,=15x% 10'" m.) Where is the center of mass of the Sun—Jupiter system?
(Jupiter's mass M, = 2 x 10% kg, Jupiter-Sun distance d; = 1.4 x 10> m.)
P2. A tennis racket can be approximated by a circular hoop of radius r and mass

P3.

P4.

my attached 1o a uniform shaft of length / and mass m;. Assuming that
r=1/2 and m; = my = m, find the position of the racket’s center of mass.

—

The tennis racket of the previous question is modified by adding a point mass
m;y = m/2 to the part of the rim furthest from the shaft. Find the new posi-
tion of the center of mass.

A pizza can be regarded as a uniform thin disk of radius r and mass m. A
narrow slice of angle # = 20 is cut out and eaten. Approximating the slice as
a triangle, where would you have to support the partly eaten pizza to hold it
in balance?
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P5.

P6.

Ships which have been emptied of cargo are often refilled with ballast (e.g.
sand, water). Why?

Given two sets of weighing scales and a long board, how could you determine
the position of the center of mass of a person?

. A mass rests on an inclined plane of angle # = 30°. The coefficient of static

friction is p, = 0.6. Draw a diagram showing all the forces acting on the
mass, and explain their origin. Calculate their values if the mass is
m = 5 kg. Verify that under these conditions the mass will not slide.

. A mass m = 10 kg hangs by two strings making angles o = 45° and 8 = 60°

to the vertical. The strings are connected through pulleys to two masses m,
and m; (see Figure). Find my,m; such that the mass hangs in equilibrium.

. A uniform sphere of mass m and radius » hangs from a string against a

smooth vertical wall, the line of the string passing through the ball's center
(see Figure). The string is attached at a height # = +/3r above the point where
the ball touches the wall. What is the tension T in the string, and the force F
exerted by the ball on the wall? If the wall is rough, with coefficient of static
friction p,, are these forces increased or reduced?

T
i
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P10

PII.

PI2.

A circus performer of mass m = 60 kg stands at the midpoint of a rope of
unstretched length /, = 6 m. It is known that the tension T in the rope is
proportional to the amount it is stretched, i.e. T =k(/ — ), where x is a
constant and / the actual length of the rope. How large must x be if the
performer is not to sink more than a distance h = 1 m below the endpoints of
the rope? With this value of x, how much would the rope extend if the
performer were to release one end of it and hang vertically from it?

A mass m is suspended from the center of a wire, which is stretched over two
supports of equal heights. The tensions at each end of the wire are T. Show
that however large 7' is made, the wire is never completely horizontal. Esti-
mate the angle to the horizontal if T = 100mg.

A patient’s leg is in traction with the arrangement shown in the Figure, with
W = 100 N. A student nurse moves the cord to an anchoring point nearer to
the patient, so that the two angles of the cord to the horizontal change from
a; = 45° to ay = 30°. Does this make any difference to the patient?
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PI3.

Pl4.

P15.

The human forearm can be approximated by a lever as shown in the Figure.
Given that L = 20/ and the arm weight is w, what muscle force F must be
exerted to lift a weight W with the arm at angle @ to the horizontal? Why is it
larger than W + w?

A box of mass m is pulled by a man holding a rope at an angle § to the
horizontal. A second man pulls horizontally in the opposite direction with a
force equal to twice the box’s weight. What is the maximum value 8, of @ such
that the box begins to move in the direction of the first man without being
lifted from the ground? What, in terms of mg, is the force P then exerted by
the first man?

A uniform rod of mass m can rotate freely around a horizontal axis O at one
end which is fixed to the floor. It is supported at an angle a = 45 to the floor
by a string attached to the other end making an angle 3 = 15° to the vertical,
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Plé.

PI7.

Pi8.

the free end of the string hanging vertically from a pulley and holding a mass
M (see Figure). Find M in terms of m if the system is in equilibrium. Calcu-
late the force P exerted by the floor on the axis O, and its direction. (Express
your answer in terms of m and g.)

A shop puts up a signboard of mass m hanging from the end of a rod of
length / and negligible mass, which is hinged to the shop wall at an axis O.
The rod is held horizontal by means of a wire attached to its midpoint and to
the wall, a height A above the hinge (see Figure). If the wire will break when
its tension T reaches Ty,,, = 3mg, what is the minimum height Ay, (in terms
of [) that the wire must be attached to the wall?

T

h

n

A rectangular door of mass M, width w and height A = 3w is supported on
two hinges located a distance d = w/4 from its upper and lower edges. If the
hinges are arranged so that the upper one carries the entire weight of the
door, find the forces (in terms of Mg) exerted on the door by the two hinges.

q

T

A uniform rod of mass m leans against a smooth vertical wall, making an
angle 8, with it. Its other end is supported by a smooth plane inclined at an
angle #, to the horizontal (see Figure). Find a relation between the angles
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NN

ENSSNNANANY

8, 6,. If 6, = 30° find the forces exerted by the wall and inclined plane on the
rod in terms of mg.

PI9. A uniform ladder leans against a smooth vertical wall, making an angle ¢
with a horizontal floor. The coefficient of static friction between the ladder
and the floor is u. Find (in terms of y) the minimum angle 8,, for which the
ladder does not slip.

P20. In the configuration of the previous problem, a repair worker whose mass is
twice that of the ladder wishes to climb to its top. What does the minimum

angle 6,, become?

.

P2l. A uniform rectangular platform of width L hangs by two ropes making
angles 8, = 30°,8, = 60° to the vertical. A load of twice the mass of the
platform is placed on it to keep it horizontal: how far from the edge of the
platform must it be?
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P23.

P24.

. A uniform circular cylinder of radius r has its base on a plane inclined at

angle & to the horizontal. The coefficient of static friction is y,. Find the
minimum height & of the cylinder such that it overturns rather than sliding.

The human jaw is worked by two pairs of muscles, positioned on each side of
the pivot (see Figure). [s it possible to arrange for there to be no reaction force
on the pivot when the jaw exerts a steady chewing force C upwards and the
lower muscle pair exerts a force L as shown? Find C in this case if the upper
and lower muscle pairs act at angles 6, = 50°,8, = 40° to the horizontal.

C Reattion to chewing force

A horizontal force F = 0.2 N acts on the tooth shown in the Figure. Find
the forces F,F, exerted by the jawbone on the root and vice versa, if
I =15cm, =2cm.

. A football player of height )i is subjected to a horizontal push at his

shoulders, which are a distance h/4 from his center of mass, which in turn
is a distance 54/8 from his feet (see Figure). To counteract the push he leans
forward at an angle # to the vertical. The coefficient of static friction between
the player’s feet and the pitch is . Find the minimum angle &, of lean such
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P27.

that the player slides backwards rather than being overturned by a strong
push.

A woman of mass m stands on one platform of a large beam balance and
pulls on a cord connected to the center of its nearer arm. The other platform
holds a mass M. What restrictions on M, m are required if the balance is to
remain level?

A

Cord
Woman pulling

M

A woman lifts a mass M by means of the double pulley arrangement shown in
the Figure. If all sections of the rope are regarded as vertical, the pulleys are
very light and friction is negligible, what force must she exert? If she wishes to
raise the mass through a height h, what length of rope must she puil down?

“
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P28. What happens to the results of the previous question if a second pair of
pulleys are added, as shown in the Figure?

Z

M

P29. Rotation of the shaft of the right-hand lever (of length b) in the Figure is
resisted by a frictional torque whose maximum possible value is G;. What
torque must be supplied to the shaft of the left-hand lever (length a) in order
to begin to turn it anticlockwise as shown? Repeat the calculation if the levers
are replaced by steadily turning gear wheels as shown. If the left-hand shaft is
rotated with angular velocity (2, what is the angular velocity of the right-hand

shaft?
A
Ll
| c— m—
<. . .
a
A
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P3l.

P32.

A cylindrical oil drum of mass m and radius R lies on a road against the curb,
which has height R/2 (see Figure). It is to be lifted gently (quasistatically) on
to the sidewalk by means of a rope wound around its circumference. What is
the minimum force F,, needed if the rope is pulled horizontally? What is the
magnitude and direction of the reaction force at the curb? Will the minimum
force F,, change as the drum is lifted? If the rope is pulled at an angle & to the
horizontal, for what value of # is the required force a minimum? What is the
value of this minimum force?

h=1iR

A drinking straw of length / is placed in a smooth hemispherical glass of
radius R resting on a horizontal table. Find its equilibrium position

(a) - if / < 2R,

(b) —if / > 2R, assuming that the straw does not fall out.

A woman lifts a mass M slowly by means of a pulley, placed at the height of
her hand (see Figure). Her forearm is = 24 em long, and her biceps muscles
are attached to it @ = 3 cm from the elbow joint. Estimate the tension T in
her biceps if her upper arm and forearm make angles 8, ¢ to the vertical. If
she keeps @ = ¢, does it get easier or harder to lift the mass as she raises it?
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P33.

A market stallholder erects an awning (see Figure) of mass M and breadth 2/.
The supports are placed a distance @ from the rear edge, which is secured by a
vertical rope. Find the force F on the supports. If instead a second set of
supports is placed a distance a from the front of the awning and the rope is
removed, what is the new force F on each of the sets of supports? Compare
the two cases if M =50 kg, /=1m, a= 10 cm.

Bl KINEMATICS

P34.

P35.

P36.

P37.

P38.

A train travels 50 km in half an hour. It then stops at a station for 20
minutes, before traveling for 2 hours at an average speed of 90 km/h.
What was the train’s average speed over the whole journey?

A car starts from rest and reaches a velocity of 100 km/h after accelerating
uniformly for 10s. What distance has it traveled? What was its average
velocity?

A train travels a distance s in a straight line. For the first half of the distance
its velocity has the constant value v, and for the second half it has the
constant value v,. What is the average velocity? Is it larger or smaller than
(v1 +v2)/2?

A police officer on a motorcycle chases a speeding car on a straight highway.
The car’s speed is constant at v, = 120 km/h, and the officer is a distance
d = 500 m behind it when she starts the chase with velocity v, = 180 km/h.
What is the police officer’s speed relative to the car? How long will it take her
to catch up with it?

Taking off from a point on the Equator in the late afternoon and flying due
West, passengers on the Concorde supersonic airliner see the sun set and then
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P40.
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P42.

P43.

P44,
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P47.

P48.

rise again ahead of them. Estimate Concorde's minimum speed. (Earth’s
radius = 6400 km.)

The maximum straight-line deceleration of a racing car under braking is
5ms~2. What is the minimum stopping distance of the car from a velocity
of 100 km/h? What does this distance become if the velocity has twice this
value?

A rocket-powered sled accelerates from rest. After ¢ = 10 s it has traveled a
distance x = 400 m. What is its speed in km/h at this point?

A ball is thrown vertically upwards with initial speed 10 ms™" from the edge
of a roof of height # = 20 m. How long does it take for the ball to hit the
ground? At what velocity does it hit the ground?

A stone is dropped from rest into a well. It is observed to hit the water after
2s. Find the distance down to the water surface. How fast must the stone be
thrown downwards in order to hit the surface after only 1s? What are the
impact velocities in the two cases?

A car and a truck start moving at the same time, but the truck starts some
distance ahead. The car and the truck move with constant accelerations
a; =2 ms™, ay=1 ms™* respectively. The car overtakes the truck after
the latter has moved 32 m. How long did it take the car to catch up with
the truck? What were the velocities of the car and the truck at that moment?
How far apart did the truck and the car start?

A rocket climbs vertically and is powered in such a way that it has constant
acceleration a. It reaches a height of 1 km with a velocity of 100 ms~'. What
is the value of a? How long does the rocket take to reach this 1 km height?

A bullet is fired vertically from a toy pistol with muzzle velocity 30 ms™'.
How high above the firing point does the bullet go before falling back under
gravity? What is its velocity 4 s after being fired? At what height is it then?

A body falls freely from rest to the ground a distance h below. In the last 1 s
of its flight it falls a distance #/2. What is A?

A man falls from rest from the top of a building of height H = 100 m. A time
t = 15 later, Superwoman swoops after him with initial speed v, downwards,
subsequently falling freely. She catches the man at a height & = 20 m above
the ground. What was vy?

A boy in an elevator throws a ball vertically upwards with speed
vo=5 m s”' relative to the elevator. The elevator has constant upward
acceleration a =2 m s™2, How long does it take for the ball to return to
the boy’s hand?



KINEMATICS 23

P49.

P50

P51.

P52.

P53.

P54.

P55

P56.

P57.

P58.

An artillery shell is fired from a cannon with an elevation of a = 30° and
muzzle velocity of vy = 300 m s™'. Find the time of flight of the shell, and its
range.

A certain athlete consistently throws a javelin at a speed of 25 ms™'. What is
her best distance? On one occasion the athlete released the javelin poorly, and
achieved only one half of this distance. At what elevation angle did she
release the javelin?

In the last problem, does the elevation angle for half distance depend on the
speed of the throw? Explain your answer.

A projectile is fired on level ground. Show that, for given range and initial
velocity the projection angle has two possible values, which are symmetrically
spaced each side of 45°.

In the movie Speed a bus has to leap a gap in an elevated freeway. If the bus
had speed vy = 100 km/h and the gap was x = 15m,
(a) — assuming the takeoff and landing points were at the same level, find
the angle of projection of the bus’s center of mass;
(b} — if the bus took off horizontally, how much lower must the landing
side have been than takeoff?

A rifleman aims directly and horizontally at a target at distance x on level
ground, and his bullet strikes a height / too low. If # < x, show that in order
to hit the target, he should aim a height h above it.

A transport airplane flies horizontally with a constant velocity of 600 km/h,
at a height of 2 km. Directly over a marker it releases an empty fuel tank.
How far ahead of the marker does the tank hit the ground? At this time, is
the airplane ahead or behind the tank?

An airplane in steady level flight with velocity v = 700 km/h releases a num-
ber of bombs at regular intervals Ar =1 5. A photograph of the release is
taken from an accompanying airplane. Describe the relative position of the
first airplane and the bombs on the photograph. How far apart are the
impact points of the bombs on the ground?

A combat tank fires a shell while moving on horizontal ground with velocity
#=10 m s~'. The gun is pointing directly forwards with elevation a = 5°,
and the muzzle velocity is vy = 1000 m s~'. The shell hits a target which is
moving directly away from the tank at w = 15 m s~'. How far from the tank
is the target at the moment of impact? How far apart were the tank and the
target when the shell was fired?

A softball is thrown at an angle of a = 60° above the horizontal. It lands a
distance d = 2 m from the edge of a flat roof, whose height is i = 20 m; the
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edge of the roof is [ = 38 m from the thrower (see Figure). At what speed was
the softball thrown?

P59. A projectile is Jaunched with horizontal and vertical velocity components u, 1.
Show that its trajectory is a parabola, and that the maximum height and the
range (on level ground) are h = o /g,r = 2uv/g, respectively.

P60. An athlete can throw the javelin at four times the speed at which she can run.
At what angle in her reference frame should she launch the javelin for max-
imum range?

P61. A small boy uses a pea-shooter to blow a pea directly at a cat in a tree. The
cat is startled by the noise of the boy blowing and falls vertically out of the
tree. Does the pea miss?

P62. A downhill skier approaches horizontally a hump of height # = 1 m which
levels out before steepening suddenly to an angle a = 25° to the horizontal
(see Figure). If her horizontal speed at the top of the hump is ¥ = 100 km/h,
how long does she spend in the air before landing down the slope? If the skier
is able to jump vertically at speed v = 5 m s, and she moves more quickly
when in contact with the snow than in the air, can you suggest a strategy for
improving her time?

P63. A man can swim at a speed v, = I m 5!, and wishes to cross a river of width
L = 100 m flowing at v, = 0.5 m s™' to reach his girlfriend who is directly
opposite him on the other bank. In what direction should the man swim so as
to reach her as soon as possible? How long will it take him?
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P65.

Two trains A and B are traveling in opposite directions along straight parallel
tracks at the same speed v = 60 km/h. A light airplane crosses above them. A
person on train A sees it cross at right angles, while a person on train B sees it
cross the track at an angle = 30°. At what angle o does the airplane cross
the track as seen from the ground? What is its ground speed v,?

Rain falls vertically at speed u on a man who runs at horizontal speed v.
Show that he sees the rain falling towards him at speed (uz +17 )” 2 and angle
¢ =tan”! v/u to the vertical. The man leans into the rain as he runs, at angle
@ to the vertical. His total frontal area is 4, and his total area viewed from
aboveis A,. If 4, < Ay, show that he gets least wet if he leans so that 6 = ¢. If
he runs a distance [ and there is mass p of water per unit volume of rain, show

that he absorbs a minimum total mass

(I(z + 1r2}”2

m=Alp "

(40)
of water.

A car rounds a bend in a road at a speed of 70 km/h and collides with a
second car that has emerged from a concealed side road 50 m from the bend.
Analysis of the damage to the cars shows that the collision took place at a
closing speed of 10 km/h or less. In making his insurance claim, the driver of
the first car asserts that the second car emerged from the side road in such
a way that the first car had only 4 m in which to brake. Is this version
plausible?

Il NEWTON'S SECOND LAW

P67. A mass m; = 1 kg lies on a smooth table and is attached by a string and a

frictionless pulley to a mass m, = 0.01 kg hanging from the edge of the table
(see Figure). The system is released from rest. Calculate the distance the mass
n1y moves across the table in the first 10s. How long will it take for this mass
to travel 1 m from its initial position?

my

my
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. A mass m = 20 kg is pulled upwards with constant acceleration by a cable

attached to a motor. The cable can withstand a maximal tension of 500 N.
What is the maximum acceleration ay,,, possible? If the acceleration has this
maximum value, what distance will the mass have moved after 2s, if it staris
from rest?

A smooth inclined plane has a slope of 30°. A body begins to move upwards
with initial velocity 5 ms~'. How long does it take for the body to begin to
slide down the plane again?

Two bodies are attached to the ends of a string hanging from a frictionless
pulley (see Figure). The masses of the two bodies are my =35 kg and
n; = 10 kg. Find the accelerations of the masses and the tension in the string.

v/

A subway train has constant acceleration a = 0.1g. In one of the cars a mass
m hangs from the ceiling by means of a string. Find the angle the string
makes to the vertical and the tension in the string in terms of m and g.

An elevator of mass M moves upwards with constant acceleration a = 0.1g,
pulled by a cable. What is the normal force exerted by the elevator floor on a
person of mass m standing inside it? What is the tension in the cable? Express
your answer in terms of M,m,g.

Two masses m, M lie on each side of a smooth wedge (see Figure), connected
by a string passing over a frictionless pulley. The wedge faces make angles
#, = 53" and 8, = 47° to the horizontal respectively. What value must the
ratio M /m take so that the masses remain stationary? What is the tension in
the string in this case, in terms of m, g?
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F74.

P75.

P76.

P78.

P79.

An experiment is performed to determine the value of the gravitational accel-
eration g on Earth. Two equal masses M hang at rest from the ends of a
string on each side of a frictionless pulley (see Figure). A mass m = 0.01M is
placed on the left-hand mass. After the heavier side has moved down by
h =1 m the small mass m is removed. The system continues to move for
the next 1s, covering a distance of H = 0.312 m. Find the value of g from
these data.

y

M

A rifleman holds his rifle at a height # = 1.5 m and fires horizontally over
level ground. The bullet lands at a distance s = 500 m from the muzzle of the
gun. What was the muzzle velocity of the bullet? The rifle barrel has length
1= 0.5 m. Assuming that the bullet has constant acceleration inside it, cal-
culate the force on the bullet, if its mass was 10 g.

A skydiver jumps from an airplane and acquires a falling velocity of 20 ms™'
before opening her parachute. As a result her falling velocity drops to Sms™'
in 5s. The skydiver has mass m = 50 kg. Assuming that the deceleration was
constant, find the total tension in the parachute cords and the resultant force
on the skydiver.

. The coefficient of sliding friction between the tires of a car and the road

surface is p = 0.5. The driver brakes sharply and locks the wheels. If the
velocity of the car before braking was vy = 60 km/h, how much time will
the car take to stop? What is the stopping distance?

The coefficient of kinetic friction between a sled of mass m = 10 kg and the
snow is u = 0.1. What horizontal force F is required to drag the sled at a
constant velocity?

A skier is stationary on a ski slope of angle a = 15°, The pressure of his skis
gradually melts the snow and reduces the effective coefficient of static friction
;. What is the value of this coefficient at the moment that the skier begins to
move? If the coefficient it of kinetic friction between the skis and the snow is
0.1, what is his velocity after 5s, and what distance has he then traveled?
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. A length of timber of mass M = 100 kg is dragged along the ground with a

force F = 300 N by means of a rope. The rope makes an angle of o = 30° to
the ground. The coefficient of friction between the timber and the ground is
1t = 0.2. Find the acceleration a of the timber. Find also the normal force N
exerted by the ground on the timber.

A body is given an initial sliding velocity vy = 10 ms ™' up an inclined plane
of slope o = 20° to the horizontal. The coefficient of friction is ¢ = 0.2. Find
the time t,,;, the body spends sliding up the slope before reversing its motion,
the distance s traveled to this point, and the time (4., to return to the
starting point.

P82. A mass m is placed on a rough inclined plane and attached by a string to a

P83.

P85.

hanging mass M over a frictionless pulley (see Figure). The angle o of the
slope is such that sina = 0.6. The coefficient of static friction between the
mass m and the plane is p, = 0.2. Show that equilibrium is possible only if M
lies between two values M, M; and find the values of M, M; in terms of m.

A uniform chain of total length / lies partly on a horizontal table, with a
length /; overhanging the edge. If y; is the coefficient of static friction, how
large can /; be if the chain is not to slide off the table?

. Two equal masses lie on each side of a rough wedge, connected by a string

passing over a frictionless pulley. The wedge faces make angles #; = 53° and
6, = 47° to the horizontal. Find the coefficient of (riction p for which the
masses move at constant velocity.

A mass m is held at rest on an inclined plane, whose slope is o, by means of a
horizontal force F (see Figure). The coefficient of static friction is y,. Find the
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maximum F allowed before the body starts to move up the plane. Express
your answer in terms of m, o, p, and g.

P86. A flatbed truck carries a box. The coefficient of static friction between the
box and the truck is u, = 0.3. What is the maximum acceleration the truck
driver can allow so that the box does not slide? In the case where this max-
imum acceleration is just exceeded, find the distance the box travels with
respect to the truck in the first 1s of the motion. Take the coefficient of sliding
friction as p = 0.2,

P87. A computer monitor stands on a personal computer resting on a horizontal
table. The monitor and computer have masses m, M = 2m respectively. A
student pulls the monitor horizontally with force F. The coefficients of fric-
tion between the computer and the table, and between the computer and the
monitor are both ;. What is the maximum allowed force F,,, such that the
monitor does not move with respect to the computer? Will the computer
move with respect to the table in this case? What happens if F = 2F,,,?
Justify your answer quantitatively.

P88. A book of mass M rests on a long table, with a piece of paper of mass
m=0.1M in between. The coefficient of friction between all surfaces is
u=0.1. The paper is pulled with horizontal force P (see Figure). What is
the minimum value of P required to cause any motion? With what force must
the page be pulled in order to extract it from between the book and the table?
Express your answers in units of Mg.

M WORK, ENERGY, AND POWER

P89. A child pushes a toy cart from rest on a smooth horizontal surface with a
force F = 5N, directed at an angle # = 10° below the horizontal (see Figure).
Calculate the work done by the child in 5s if the cart’s mass is m = 5 kg.
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P93.

P95,

P96,

. A train of mass m = 1000 metric tons accelerates from rest to a speed

v="72 km/h on a horizontal track. Calculate the work W done by the
locomotive engine, neglecting friction.

A bucket of water of mass m = 10 kg is raised from rest through a height of
h =10 m and placed on a platform. How much does its potential energy
increase? What was the work done against gravity?

A rollercoaster climbs to its maximum height &; = 50 m above ground, which
it passes with speed v; = 0.5 m s™". It then rolls down to a minimum height
hy =5 m before climbing again to a height of h; =20 m (seec Figure).
Neglecting friction, find the speed of the rollercoaster at these two points.

vy

he

A tennis player's serve gives the ball a kinetic energy T) = 10 J. Assuming
that she serves from a height & = 2 m above the level of the court, find the
speed with which the ball reaches the ground. Assume that the work done by
the ball against air resistance is W' = 5 J. (Mass m of a tennis ball = 60 g.)

. Show that the kinematic formula »* = vﬁ + 2ax for uniformly accelerated

straight-line motion can also be derived from energy conservation.

A high-jumper clears the bar at a height of & = 2 m with horizontal velocity
vy = 3 ms ™', Using conservation of energy, calculate the velocity with which
he hits the landing platform (1 m above ground) and the dircction of this
impact velocity.

An ambitious pole-vaulter wishes to clear a height i = 6,10 m. What is the
minimum velocity he must reach on the runway? Explain why this is a mini-
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A water-skier is towed by a boat with horizontal force F = 100 N. She
maintains a constant velocity v = 36 km/h. Find the work done against fric-
tional forces, such as water and air resistance, in 10s.

. Police drivers are taught that doubling the speed quadruples the braking

distance. Why?

A suitcase of mass m = 20 kg is dragged with a constant force F = 150 N
along an airport ramp of slope a = 30° up to a height h = 5 m (see Figure).
Find the coefficient p of sliding friction if the suitcase’s velocity is increased
from zero at the bottom of the ramp to v; =1 ms™' at the height .

£ @

o

®

Consider the pulley lifting arrangements of P27 and P28. Show that in each
case the tforal work done by the woman in raising the mass M through a
height /4 is the same, neglecting friction. Prove a similar result for the gear
wheel arrangement of P29. Is the neglect of friction realistic in practice?

A crane lifts a load of mass m = 500 kg vertically at constant speed
v=2ms . Find the power expended by the crane motor. What is the
work done by the crane if the load is lifted through h =20 m? A second
crane is able to lift the same load at twice the vertical speed. Find the power
expended and the work done in lifting the load through the same height.

An electric pump draws water from a well of depth d = 50m at a rate of 2 m’
per second. The water is cjected from the pump with velocity v, = 10 m s™'.
What is the power consumption of the pump if its efficiency is n = 0.8 (80%
efficiency)?

A car of mass M = 1000 kg decelerates from a velocity v = 100 km/h to a
stop in 1 = 10 s. At what average rate must the braking surfaces lose heat if
their temperature is not to rise significantly?

Animals of similar types but very different sizes tend all to be able to jump to
roughly similar maximum heights (e.g. various types of dogs, or fleas and
grasshoppers), although larger animals need more room to take off, roughly
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in proportion to their size. What does this suggest about the rate of energy
release by muscles in larger animals compared with smaller ones?

A mass m slides from rest at height & down a smooth curved surface which
becomes horizontal at zero height (see Figure). A spring is fixed horizontally
on the level part of the surface. Find the velocity of the mass immediately
before encountering the spring, in terms of g, & The spring constant is k.
When the mass encounters the spring it compresses it by an amount
x = h/10. Find & in terms of m, g, h. What height does the mass reach on
returning to the curved part of the surface, if there are no energy losses in the
spring?

k

v

A mass m is projected upwards with initial velocity v along an inclined plane
of slope a, with sina = 1/v/2 (see Figure). The coefficient of sliding friction is
p = 0.1. Using energy conservation, calculate the distance o the mass travels
up the slope. Express your answer in terms of v, g. What must the minimum
value of the coefficient of static friction u, be in order that the mass does not
slide back? If p, is smaller than this value, with what velocity does the mass
return to its starting point? Express your answer in terms of v.

N
o
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Plo8

P109.

PI10.

PIII.

PlI2.

PI13.

Pl14.

PI15.

PlL16.

. A bird and an inscct fly directly towards each other on a horizontal trajec-
tory. The mass of the bird is M and that of the insect is m. The corresponding
(constant) velocities are V', v. The bird swallows the insect and continues to
glide in the same direction. Find its velocity U after swallowing the insect.
Find U in terms of V in the case m = 0.01M and v = 10V.

A rifle has mass M = 3 kg and fires a bullet of mass m = 10 g with muzzle
velocity u = 700 m s~'. What is the recoil velocity v of the gun? From what
height i would you have to drop the rifle on to your shoulder to feel the same
kick?

A rocket works by reacting against the momentum of its exhaust gases. Why
are they often constructed with several stages?

A cue ball has velocity u and collides head-on with a stationary pool ball of
equal mass m on a smooth horizontal table. The collision is perfectly elastic
(mechanical energy is conserved). What are the velocities v;, v, of the two
balls after the collision?

In a one-dimensional collision, masses m;, m, have velocities uy, u; before the
collision and v, v; afterwards. Show that if mechanical energy is conserved
vy — vy = —(1; — uy), i.e. the bodies separate at the same speed they
approached.

An elementary particle of mass m; collides with a stationary proton of mass
m,. As a result of the collision the particle recoils along its direction of
approach. A second clementary particle of mass m, continues to move
forward after colliding with a proton. Give limits on the ratios
my[fmp, myfm,,

If the velocity of the incoming particle is u in each case, find the final
velocities of all the particles after the collisions in terms of u in the cases
my=m,/2,my = 2m,.

An elementary particle of mass m and velocity u collides with a stationary
proton of mass m,. Assuming that the total mechanical energy is conserved,
calculate what fraction of the particle’s energy is transferred to the proton.

A mass m; moving with velocity w, collides with a stationary mass m,. If the
coeflicient of restitution is e (< 1), find the velocity v, of m, after the colli-
sion. Show that very little of the original kinetic energy is transferred to my il
miy,m; are very different.

If you want to knock a nail into the floor, why is it preferable to use a
hammer than jump on the nail?
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A physicist observes the cue ball make a direct collision with a stationary
pool ball and follow it with significant velocity. He concludes that the coeffi-
cient of restitution of pool balls is significantly smaller than 1. Is he correct?

A baseball player swings the bat with velocity u; and hits a ball traveling with
velocity u, (where 1; < 0 of course) directly back towards the pitcher. If the
bat and ball have masses m, m;, with m; >> m,, and the collision is perfectly
clastic, show that the ball leaves the bat with velocity at most 2uy — u,.

A man sits at one end of a boxcar of internal length d, which is stationary on
very smooth level rails. He tries to get the boxcar moving by throwing his
boot, of mass m, at the opposite end with velocity ;. Describe what happens,
assuming the collision of the boot with the wall is completely inelastic (i.e. it
does not rebound from the wall at all), and the total mass of the boxcar and
man minus boot is M.

In the previous question, what happens if instead of a boot the man throws a
very bouncy ball, whose collision with the wall is completely elastic?

A basketball player bounces the ball (coefficient of restitution e) so that it hits
the floor vertically with velocity u;. At that moment he falls over so that the
ball bounces freely. If no other player intervenes, how high will the ball rise
on the first bounce, and on the second bounce?

In the previous question, how long does the player have to regain control of
the ball before it stops bouncing?

An artillery shell is fired at an angle # = 45° to the horizontal with velocity
vy =450ms~'. At the maximum height of its trajectory the shell explodes,
breaking into two parts of equal mass. One of these initially has zero velocity
with respect to the ground. How far from the firing point does the other part
fall back to the ground?

A ball of mass m= 0.1 kg hits a rigid vertical wall at right angles with
velocity u = 20 ms™!. The impact is a height # = 4.9 m above the ground.
It rebounds and falls to the ground a distance x = 15 m from the foot of the
wall. What is the impulse exerted by the wall on the ball? Was the collision
clastic?

A bullet of mass m = 10 g is fired horizontally into a wooden block of mass
M =7 kg, which lies on a smooth horizontal table. The bullet is embedded in
the block, and the block slides with velocity ¥ = 0.5 m s~ after the impact.
Find the muzzle velocity u of the gun firing the bullet, and the total mechan-
ical energy lost in the impact.

A wooden block of mass M = 10 kg hangs freely and at rest from vertical
strings. A bullet of mass m = 10 g is fired into it and it rises by & = 3 cm.
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What was the velocity u of the bullet? Where does most of its kinetic energy
go?

A dart of mass m is thrown horizontally with velocity u and sticks into a
wooden block of mass M = 8m, which slides on a smooth horizontal table.
The block’s motion is resisted by an elastic spring with constant & (see
Figure). Find the maximum distance through which the block compresses
the spring. Express your answer in terms of m, u and k.

A freight train moves steadily on a level track with velocity v = 108 km/h.
Snow falls vertically on to it, and accumulates on it at a constant rate
rm = 10kgs~". Calculate the additional power the locomotive must expend
in order to maintain the train's speed despite the snow.

A grain sack of mass M = 10 kg is dropped from a heightof A= Imontoa
platform. Calculate the impulse on the platform. Assume that the impact is
short enough that gravity does not change the momentum during impact.
If the impact lasts At = 0.1s, what is the average force on the platform
during the impact?
A steady stream of grain from a punctured sack falls vertically on a platform
from a height i = 1 m. Each grain lands without bouncing, and 1000 grains
land each second. Each grain has mass m = 10 g. What is the force on the
platform, assuming again that gravity does not change the momentum during
impact?
A soccer goalkeeper of mass m, = 80 kg punches a ball approaching him
horizontally. The ball has mass m,, = 0.5 kg and velocity ¥ = 1ms™'. Imme-
diately after the punch the ball moves horizontally away along the direction
of approach with velocity v = 0.8u. Assume that the impact lasts Ar = 0.2s.
What is the minimum value of the coefficient p, of static friction of the
goalkeeper and the ground if he does not slide backwards?

A boat and its occupant of total mass M, = 200 kg contains 10 sacks of coal
each of mass m = § kg. The boat is stationary because of engine failure. The
occupant tries to reach land by throwing the sacks horizontally out of the
boat. He throws each sack with a velocity v, relative to the boat. Assuming
no friction, what is the velocity after the first sack is thrown out? After the
second sack is thrown out? Express your result in terms of v,.

Two cars of masses m; = 1000kg and m; = 500kg, and velocities
1; = 18km/h and uw, = 36 km/h collide at a right-angled intersection, After
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PI35.

the collision they slide together as one. What direction (with respect to the
first car’s motion) do they move after the collision? With what velocity do
they move? How much mechanical energy was lost on the collision?

A cue ball hits a stationary pool ball of equal mass. After the collision the
velocities of the balls make angles #, ¢ to the original direction of motion of
the cue ball. Find a relation between 6 and ¢, if the collision is regarded as
elastic and the balls slide rather than rolling.

A stationary spaceship of mass M is abandoned in space and must be
destroyed by safety charges placed within it. The crew observe the explosion
from a safe distance, and see that it breaks the ship into three pieces. All three
pieces fly off in the same plane at angles 120° to each other. The velocitics of
the three fragments are measured to be v,2v and 3v. What expressions will
the crew find for the masses of the three fragments in terms of M? If all of the
explosion energy E goes into the kinetic energy of the fragments, what was £
in terms of M, v?

Il CIRCULAR AND HARMONIC MOTION

P136.

P137.

P138.

P139.

P140.

A spaceship of mass m = 10* kg is in uniform circular motion & = 200 km
above the surface of a planet of radius R = 5000 km. Each revolution takes
P = 2h. Calculate the tangential velocity v of the spaceship, its angular
velocity w, and the centripetal force required to keep it in this orbit.

A toy car of mass m = 0.1 kg is constrained to move in a circle of radius
r =1 m on a horizontal table by means of a string. Calculate the tension in
the string if the car has constant angular velocity w = 1 rad s~

A plumbline hangs in equilibrium at latitude A, Express the angle # between
the plumbline and the local vertical in terms of A, and the Earth’s radius,
angular velocity and gravity R,w,g. (Use the fact that g > R to simplify
your answer.) Taking R = 6400 km, what is the maximum possible value of
i#?

A sports car attempts to take a bend which is an arc of a circle of radius
r=100 m. The road is horizontal and the car has constant speed
v = 80 km/h. If the coefficient of static friction between the car tires and
the road surface is p, = 0.4, will the car stay on the road?

A mass m is attached to a string and whirled in a vertical circle at constant
speed. Calculate the difference between the tension at the lowest and highest
points of the circle.
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A mass m = 1 kg is attached to a string and whirled in a vertical circle at
constant speed. The radius of the circle is r = 1 m. What must the speed be to
keep the string taut?

In the arrangement described in P141 above, the string breaks when the mass
is at its lowest point. In what direction and with what speed does the mass
initially move?

A mass M moves in a vertical circle at the end of a string of length L. Its
velocity at the lowest point is vy. Show that when the string makes an angle #
to the downward vertical its tension is

T=M(Sgcosﬂ—2g+%).

A conical pendulum consists of a string of length / = 2 m and a bob of mass
m = 0.5 kg. The pendulum rotates at a frequency f = 2 turns per second
about the vertical. Calculate the tension T in the string and the angle a of
the string to the vertical.

An amusement park proprietor wishes to design a rollercoaster with a ver-
tical circular loop in the track, of radius R = 20 m. Before the cars reach the
loop, they descend from a maximum height /i, at which they have zero
velocity (see Figure). Assuming that the cars roll freely (no motor and no
friction), how large must & be to keep the cars on the track?

A bobsleigh run consists of banked curves. One of the curves is circular and
has radius » = 10 m, and is banked at an angle a = 60° to the horizontal.
Neglecting friction, what is the maximum velocity at which a bobsleigh can
take the curve?

A fighter airplane has maximum level speed v = Mc,, where M is the Mach
number and ¢, =~ 340 m s~ is the speed of sound. The maximum acceleration
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the pilots can withstand without blacking out is @ = 6g. How tight a turn can
the fighter make at top speed if M = 2? What if M = 3?

For the airplane of the previous question, what is the angle of banking to the
horizontal in its tightest turns? If the pilot’s mass is m = 65 kg, what is his
apparent weight in the turns? (The lift on an airplane acts perpendicular to its
wings.)

A rail track has bends with radius of curvature as small as r = 4 km. If the
passengers complain when accelerations exceed a =(0.05g, how fast can
trains travel? Comment on the feasibility of trains running at v = 400 km/h.

The dining car of a train uses water glasses of diameter d = 8 cm. If the
maximum centripetal acceleration of the train is a = 0.05g, how close to the
brim can these be filled without spilling?

(Hint: Remember that pressure = force per unit area, and consider the
equilibria of the horizontal and vertical columns of water meeting at a
point on the outer side of the glass.)

Two equal masses m are attached by a string. One mass lies at radial distance
r from the center of a horizontal turntable which rotates with constant angu-
lar velocity w = 6 rads™, while the second hangs from the string inside the
turntable’s hollow spindle (see Figure). The coefficient of static friction
between the turntable and the mass lying on it is g, = 0.5. Find the maximum
and minimum values royy, Fmin Of r such that the mass lying on the turntable
does not slide.

The bends on a cycle track are semicircular, and the track is banked at an
angle o to the horizontal. At what speed vy can a cycle and rider of mass M
take these bends in horizontal circular motion of radius r even if there is no
friction between the cycle tires and the track? Find the value of the frictional
force f if the speed is v; = 2uvy, and also if it is v2 = vy/2. (Assume that the
rider can always lean the cycle to avoid overturning.)
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A satellite is in a circular orbit whose height above the Earth is much less
than the latter’s radius R, = 6400 km. What is its period?

You are driving your car along a straight road at speed vy when you suddenly
come to a T-intersection a distance r ahead with a river along the far side (see
Figure). With maximum braking, the car would just stop without skidding
with its nose overhanging the rniver bank. Should you attempt to take the
turn?
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A pendulum has length / = I m. How many swings (to the nearest whole
number) does it perform in one hour?

A pendulum is suspended from the ceiling of an elevator and set swinging
while the elevator is at rest. A remote camera monitors the swing rate, How
could you tell if the clevator moves up or down?

When a mass m = 1 kg is hung vertically from a certain spring, it extends the
spring by Ax =0.1m. Find the period of oscillation of the mass-spring
system, if it lics on a smooth horizontal table.
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Two students have a spring (of unknown constant), two equal masses m and
a string whose length can be adjusted. They wish to construct two oscillating
devices (a mass—spring system and a pendulum) with exactly equal periods.
What should they do?

A mass m = 0.2 kg and a spring with constantk = 0.5 N m™" lie on a smooth
horizontal table. The mass is released a distance xy = 0.1 m from the equili-
brium point. At what later time does the mass first pass through the point
x; = 0.02 m from equilibrium? What is its velocity then?

A pendulum of length /=9.8m hangs in equilibrium and is then given
velocity v = 0.2ms™ at its lowest point. What is the amplitude of the sub-
sequent oscillation?

A spring of constant £ = 0.5Nm™' and an attached mass m oscillate on a
smooth horizontal table. When the mass is at position x; = 0.1 m its velocity
sy =1 ms~', and at x3 = —=0.2 m it has velocity v; = 0.5ms™". Find m
and the amplitude A of the motion.

A delicate piece of electronic equipment would be destroyed by vibration at
frequencies greater than v,, = 10 s™'. It is transported in a box supported by
four springs. The total mass of the equipment and the box is M = 5 kg. What
constant ¥ would you recommend for the springs?

A mass M = | kg is connected to two springs 1, 2 of constants k, = | Nm™',
ky = 2Nm™! and slides on a smooth horizontal table (see Figure). In the
equilibrium position it is given a velocity v, = 0.5ms™' towards spring 2.
How long will it take to reach its maximum compression of spring 17 What
will this be?

|
|
2 : k2
|
M
+
!
[

In the previous question, how long does it take for the mass to reach the
point where it compresses spring | by x = —0.1 m for the first time?

When connected to a spring, a mass oscillates on a smooth horizontal table
with period P. A second spring with the same constant is now connected
between the first spring and the mass. What is the new oscillation period?

A small platform of mass m = 1 kg lies on a smooth table and is attached to a
wall by a spring. A block of mass M = 4m lies on the platform. The plat-
form-block system oscillates bodily with frequency v = 1s 'and amplitude
A =0.1 m. Find the spring constant k and the maximum horizontal force
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exerted on the block during the motion. If the coefficient of friction between
the block and the platform is g, = 0.7, how large an amplitude can the
oscillation have without the block sliding from the platform?

M GRAVITATION

Plé7.

P168.

P169.

P170.

PI71.

PI172.

P173.
P174.

PI175.

Compute the gravitational attraction force between the Sun and the Earth.
(The mass of the Sun is 2 x 10™ kg, that of the Earth is 6 x 10* kg, and their
separation is d = 1.5 x 10" m.)

A planet has a circular orbit of radius @ about the Sun, of mass M. What is
the length P of the planet’s year in terms of these quantities? (The planet’s
mass is much smaller than the Sun’s.)

The effective gravity g at a point of the Earth's surface is defined by weigh-
ing an object and dividing the result by its known mass. What is the ratio of
the effective gravity between the Earth’s equator and the poles? (Assume the
Earth is a sphere of mass M, = 6 x 10* kg and radius R, = 6.4 x 10° m.)

What revolution period P, must a spherical celestial body of mass M and
radius R have if the effective gravity is zero at its equator? Find this value for
the Earth (mass M, = 6 x 10* kg, radius R, = 6400km).

Is it likely that a star can have a rotation period shorter than the value P,
defined in the previous question? The rotation periods of pulsars are detect-
able by radio astronomy and are found to be as short as £, =5x 10 s
Are they more likely to be white dwarf stars (mass M,, = 2 x 10™ kg, radius
R, =5000km) or neutron stars (mass M,=2x 10 kg, radius
R, = 10km)?

A certain planet has mass M, which is twice the mass M, of the Earth. On
the planet the weight of any body is hall the value it has on Earth. What is
the planet’s radius in terms of the Earth’s radius R,?

The Earth’s distance from the Sun is known to be a = 1.5 x 10" m (the
astronontical unit). Estimate the Sun’s mass M.

Estimate the mass M, of the Earth from the facts that g =9.8 m s and
R, = 6400 km.

A toy pistol uses a spring to fire a plastic bullet. On Earth the gun can propel
the bullet to a maximum height A, above the firing point. The gun is taken to
the Moon and fired by an astronaut, who observes that the bullet can reach a
height h,, = 6k,. Find the acceleration g, due to gravity on the Moon. (The
heights h,, h,, can be assumed much smaller than the radius of the Earth and
Moon respectively, and air resistance is to be neglected.)
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An artificial satellite is called geostationary if it orbits directly over the equa-
tor at exactly the same angular velocity as the Earth. Find the height of such
a satellite above the Earth. (Earth’s mass M, =6x 10* kg, radius
R, = 6.4 x10° m.)

Clearly, it would be useful to have a geostationary communications satellite
placed directly over every large city. Yet there are none. Why not?

A space shuttle is in a circular orbit at a height A above the Earth. A small
satellite is held above the shuttle (i.e. directly away from the Earth) by means
of a rod of length / and then released. What is its initial motion relative to the
shuttle?

The space shuttle of the previous question fires a retro rocket, i.c. one direc-
ted with its exhaust pointing forward. What will happen to the shuttle?

An artificial satellite is in a circular orbit of radius r about a planet of mass
M. Find its speed and angular momentum per unit mass. The planet’s atmo-
sphere exerts a drag on the satellite in such a way that its orbit remains
circular. Docs it slow down or speed up?

Show that the Sun’s gravitational pull on the Moon is more than twice as
large as the Earth’s, Why does the Moon not fly off? (Mass of Sun
M, =2x 10" kg, mass of Earth M, =6 x 10*kg; Sun-Earth distance
a=1.5x 10" m, Earth-Moon distance r = 3.9 x 10°m.)

A non-rotating planet of radius R has a circular orbit of radius @ about the
Sun (mass M). Show that on the planet’s surface, the effective inward grav-
itational acceleration gy is lowest at the points nearest to and furthest from
the Sun, and highest on the circle equidistant from these two points (see
Figure). Assuming a3 R, show that the difference in accelerations is
approximately JGMR_z‘aS.

c

To Sun A, B points of lowest g«
C - circle of highes! g«
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If in the previous problem the planet is completely covered by an ocean, what
is the ratio of its maximum to minimum depths? If the planet rotates, what
would the inhabitant of a small island observe?

Show that the Moon raises about twice the tide that the Sun does. When
would you expect the maximum and minimum tides to occur? (Masses
Mg, M, of Sun and Moon are 2 x 10%,7 x 10* kg; Earth-Sun distance
a=1.5x 10'"" m, Earth-Moon distance b = 3.8 x 10° m.)

Why are no tides observed on the Great Lakes or the Mediterranean?

Because the Earth does not rotate synchronously with the Moon, dissipation
in tides cause angular momentum to be transferred from the Earth’s spin to
the Moon’s orbit. Show that the Earth-Moon distance and the length of the
Earth day must be (slowly) increasing. If the process will stop when the
Earth-Moon distance is about 1.5 times its current value, what will the length
of the day be? (Earth’s mass M, = 6 x 10* kg, current Earth-Moon distance
b=38x10"m)

What is the escape velocity from Earth? (i.e. the velocity with which an
object must be launched in order to escape to infinity). (Earth mass
M, =6 x 10* kg, Earth radius R, = 6400 km.)

How does the escape velocity from Saturn compare with that from Earth
(compare P187)? (Saturn mass M, = 95M,, Saturn radius R, = 9.4R,.)

A space probe is launched, but by mishap achieves a vertical speed vy only
three-quarters of the escape velocity. It then goes into a circular orbit: find its
radius in terms of the Earth’s radius R,.

A rocket is launched from Earth (mass M,, radius R,) with velocity vy, and
reaches radial distance r = 6R, with velocity » = vy/10. Express v, in terms
of M, R,.

What is the maximum height that the rocket of the previous problem could
reach if launched vertically?

A space station orbits the Earth (radius R,) at height R,/2 above its surface.
What is its speed? The astronauts on board launch a rocket. What minimum
speed with respect to the station does it need in order to leave the Earth's
gravitational field?

The escape velocity from a black hole of mass M equals the speed of light c.
What is its radius? Evaluate this if (a) M = Sun’s mass M, (b) M = 3M,.
(Mg =2x10" kg)

Consider the 3M;, black hole of the previous question. How does its average
density compare with that of the atomic nucleus? (g, ~ 10" kg m's.)
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P195. The nuclei of some galaxies are thought to contain supermassive black holes
with M =3 x 10°ME,,. How do their average densities compare with that of
air? (pyiy = 1.3 kg m™3)

H RIGID BODY MOTION

P196. A car accelerates uniformly from rest for 10s, when its velocity is
v=10ms"". Assuming that the wheels do not slip, find the final angular
velocity w of the wheels and the angular acceleration . The radius of the
wheels is R = 0.5m.

P197. Four masses are attached to a massless circular hoop of radius R = 1 m as
shown in the Figure. Find the moment of inertia of the resulting configura-
tion about a perpendicular (z) axis through the hoop’s center (m; =1 kg,
my =2 kg, my =3 kg). A force F =5 N is applied tangentially to the rim of
the hoop. What is its angular acceleration a?

P198. In the previous problem, what are the moments of inertia 1,, I, about the x
and y axes respectively?

¥
My
my A m,
X
my

P199. A uniform circular cylinder of mass m, radius r and length / = r is allowed to
roll horizontally down an inclined plane of angle & = 60° to the horizontal
(see Figure). It starts from rest with its center of mass at a height s + r above
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P201.

P203.

P204.
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the base of the plane. Calculate the time ¢, for it to reach the bottom (i.e. to
roll through a height /). Compare your result with the corresponding time 1,
for a uniform sphere of mass m and radius r. Assume that there is no slipping
in cither case. Compare ¢, ¢, with the time f; for a mass to slide through the
same height without friction.

A solid uniform cylinder of mass m and radius r rolls without slipping down
an inclined plane with a vertical circular loop of radius R fixed at the bottom
(see Figure). The cylinder starts to roll from rest at height h. You may assume
that r < h,r << R. What is the minimum value 4, of & such that the cylinder
does not fall from the circular loop? A cylinder with the same mass m all
concentrated in a thin shell at radius r is released from rest at i = h,,. Does
this cylinder complete the loop or not?

A body of mass M has moment of inertia [ about an axis through its center
of mass. Show that its moment of inertia about a parallel axis a distance d
from the first is 7 + Md> (parallel axes theorem).

. A mass m hangs from a string whose other end is wound on a circular pulley

of mass M = 2m and radius R. The string does not stretch or slip. Find the
linear acceleration a and the string tension T in terms of m, g, and R. If the
mass starts from rest, calculate the total angular momentum L about the
pulley’s center after the mass has descended a height h = R.

A child’s top is given angular momentum L about a vertical axis. Why does it
not fall over until this has been lost? Explain qualitatively what happens if
one tries to push over a spinning top.

A rifiec barrel has a spiral groove which imparts spin to the bullet. Why?

A turntable consists of a thin horizontal disc of mass M and radius R, and
rotates without friction at constant angular speed w. At a certain instant a
drop of glue of mass m = M /10 falls vertically on to the turntable and
adheres to a point at a distance r = 3R/4 from the axis. Find the new angular
velocity of the turntable.
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A pendulum consists of a uniform rod AB of length [ = 0.5 m and mass
M = | kg. Calculate the period P of the pendulum in the cases

(#) — the pendulum is suspended from point A,

(b) — it is suspended from a point C such that AC =i = {/4.

. A skater spins with angular velocity w, = 6 rads™" with his arms extended.

How fast will he spin with his arms by his sides?

Treal the skater’s body as a uniform cylinder of radius R = 20 ¢cm; approx-
imate his arms as uniform rods of length L = 70 cm and mass m = 4.5 kg.
His total mass excluding arms is M = 70 kg.

. A man of mass m =80 kg stands on a flat horizontal disk of mass

M = 160 kg near its edge, at radius r = 2.5 m. The disk is free to rotate
about its axis. At a certain instant the man begins to walk around the disk
edge with constant velocity v =2 m s~ with respect to the Earth, I his feet
do not slip on the disk, how long will it take the man to return to the same
point on the disk? What will happen if the man stops walking?

A pool ball of mass m and radius R is given an initial sliding velocity v, (no
rotation) on a horizontal pool table. The coefficient of friction between the
ball and the table is p1. How long will it take for the ball to start a pure rolling
motion (no sliding)? What will be its velocity v at that poim?

A baseball player strikes the ball a distance x from the handle of the bat,
which has mass M and moment of inertia / about the center of mass, If the
latter lies a distance / from the handle, how should the player choose x so that
his hands experience no reaction force?

A pool ball has radius / and mass M. A player hits it a horizontal blow with
her cue at height i above the table. How should she choose & so that the ball
rolls without sliding?

In P208, if there is friction about the disk axis, what happens when the man
stops walking?




CHAPTER TWO

ELECTRICITY AND
MAGNETISM

I SUMMARY OF THEORY
1. Coulomb’s Law

@ The force between two charges gy, ¢, with separation r is

42
F= . 1
dmegr M
in vacuo (or air), where the charges are in coulombs (C). The force acts along
the line joining the charges, and is repulsive for charges of the same sign and
attractive for charges ol opposite sign. ¢ is a constant, the permeability of
vacuum.

2. Electric Field

@ We define the electric field E as the force on per unit static positive charge.
The units are N C~'. A general charge g experiences force ¢gE in the same
direction as E if ¢ > 0, and the opposite direction otherwise, The electric field
due to a point charge g is

4
E= dregr’ @

and is radial. If certain charge distributions produce clectric fields E,, Es, ...
at a point, the resultant electric field has components

Ex = EI, + Elh" (3)
and similarly for the other components E,, E..

47
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The electric charge and electric field vanish everywhere inside a perfect
conductor: all charge must be confined to a thin layer at the surface.
@ Gauss’s law states that the flux of electric field over a closed surface is 1 f€o
times the total charge enclosed. This agrees with (1) for a point charge, and
shows that for example

A

T Qwegr

(4)

at distance r from a very long line of charge, distributed at A C m.

3. Potential

@ The potential at a point is the work done against electric forces in moving unit
positive charge from infinity to the point. The units are volts = J C™'. The
work done in moving a charge from one point to another depends only on
the potential difference between the points, and not on the path between
them. The potential difference in a uniform field E between two points is

V = Ez, (5)
where z is the distance measured in the direction of the field. The potential at
distance r from a point charge ¢ is

q4

V= .
dmeyr

(6)

Inside a perfect conductor the potential is constant, since the field vanishes.

4. Capacitance

@ A capacitor is a device for storing charge, consisting of conductors sur-
rounded by an insulator or dielectric. The capacitance C of a capacitor is a
measure of its ability to store charge and is defined as

]
C= ms (7)

where g is the charge on either conductor and AV is the potential difference
causing the accumulation of this charge.

@ The capacitance of a parallel plate capacitor is

A
C= Kn‘foz. (8)
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where K is a dimensionless constant characteristic of the insulator between
the plates (the dielectric constant), 4 is the area of one plate, and d the plate
separation. It is assumed that 4 > d*,

@ If capacitances C), C,, ... are connected in series, the total capacitance is C,
where

St 9)

If they are connected in parallel the total capacitance is

C=C+GC+... (10)
@ The clectrostatic energy stored in a capacitor is

cv: vy ¢
U="5=3 "3 (1n

5. Current and Resistance

@ Electric current is defined as (charge transported)/(time). The electromotive
Jorce, usually abbreviated to emf, of a battery is equal to the potential dif-
ference (or voltage drop) between its terminals when no current flows.

@ The resistance R of part of an electric circuit is defined as the potential
difference required to make unit current flow. It is measured in ohms ().
The voltage required to make current [ flow is thus

V=IR, (12)

which is known as Ohm’s law.
@ The resistivity p of a medium is defined as

RA
p="7 (13)

where R is the resistance of a length / of a cylinder of cross-sectional area A
made of the medium. p is measured in Q) m.

@ The power dissipated in a resistor is

VZ
P=V!=.’2R=i. (14)

which is lost as heat.
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@ If resistors Ry, R, ... are connected in series the total resistance is
R=R+R+..., (15)

while if they are connected in parallel the total resistance is R, where

— = — ... (16)

@ The flow of current in a direct current (DC) circuit is determined by
Kirchhoff"s laws. These state that:
(a) — The total net current at each junction of a circuit is zero.
(b) — The total potential drop around any closed circuit is zero.
Note that in (a), currents are counted as having opposite signs when flowing
into and away from the junction. In (b) we must be careful to include all the
potential drops ¥ = IR caused by resistors, as well as any emf sources.

6. Magnetic Forces and Fields

@ A magnetic field is present if a charge experiences a force resulting from its
motion. The magnetic force F on a charge ¢ moving with velocity v at angle 8
to the field direction is

F = quBsiné, (17)

where the direction of F is given by the right-hand rule: point the extended
fingers of the right hand in the direction of the field and the thumb in the
direction of motion of the charge. The palm then pushes in the direction of
the magnetic force on a positive charge. The force is reversed if the charge is
negative. The unit of magnetic field is the resla (T), sometimes called the
weber per square meter. The Earth’s magnetic field is of the order 107* T.
The total force on a charge due to both electric and magnetic fields is usually
called the Lorentz force.
The force on a short length Af of wire carrying current 7 is

AF = [BAlsin®, (18)

with the direction given as before. The force exerted by uniform field B on
any length / of a straight wire is

F=1IBI. (19)
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@ A magnet of dipole moment p placed at angle 8 to the direction of a magnetic
field B will experience a torque

I'=—uBsind (20)
trying to align it to the field direction.
. All magnetic fields result from electric currents. The fields of permanent
magnets are caused by charge motions at a microscopic level.

Ampére’s law states that the sum of the products of the tangential magnetic
field with the length of each element of a closed curve is y; times the total
current enclosed by the curve. g is a constant, the permittivity of vacuum.

@ The field of a long straight wire carrying current [ is

g tal

2’

(21)
at distance r from the wire. The fieldlines are circles centered on the wire with
planes perpendicular to it.

The field inside a long solenoid with n loops per unit length carrying
current / has the constant value

B = pgnl (22)
in the interior.
The field inside a toroidal coil with N loops carrying current 7 is

poNT

b= 2xr

. (23)

where r is the radial distance of the point from the center of the torus.

@ The magnetic force per unit length between two long parallel wires with
separation d carrying currents [y, [ is

o= gt

~Homa (24)

The force is attractive if J; and [, are in the same direction and repulsive
otherwise.
7. Electromagnetic Induction
@ The magnetic flux ® through a surface of area A is defined as
@ = BA cos#, (25)

where # is the angle between the normal to the surface and the field direction,
and it is assumed that B and £ do not vary appreciably over the surface.



£2  PROBLEMS - CHAPTER 2. ELECTRICITY AND MAGNETISM

@ Faraday's law of magnetic induction states that the rate of change of magnetic
flux through a circuit is minus the induced emf in the circuit, i.e.

Ad

E=-ar

(26)
where A®, At are the changes in flux and time.

The minus sign in this equation expresses what is sometimes called Lenz’s
law: the induced emf is always in the direction opposing the change in mag-
netic flux that produced it.

As a corollary, one can show that the emf induced between the ends of a
rod of length / moving with uniform velocity v perpendicular to itself and at
angle 6 to the field is

£ = Blysin 27

The direction of the emf is given by the right-hand rule.

@ A time-varying current in a circuit induces an emf. This effect is called self~
inductance. If a change AT in time At induces emf V', we may write

Al
V=-L. (28)
The minus sign here again reflects Lenz's law. The coeflicient L is determined
by the geometry of the circuit and is called its self-inductance. The units of L
are henries (H).
The self-inductance of a coil of N turns, cross-sectional area 4 generating
magnetic field B from current / is

L=""C (29)

H ELECTRIC FORCES AND FIELDS

P213. Twochargesq, =2 x 107 Cand g, = 4 x 107° Care held a distance d = 1 m
apart. Calculate the force exerted by these two charges on a charge
Q= 1075C, if it is placed halfway between them. Is there a point between
the two charges where the force vanishes?

P214. Charges g, = 0.09 C, g, = 0.01 C are a distance / = | m apart. A charge Q is
held fixed on the line between them, a distance x from g,. What value must
Q, x have for gy, g, to feel no net force?
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P2l6.

P217.

P218.

P219.

A charge Q = 1C is at the origin of coordinates (see Figure). Calculate the
magnitude and direction of the force exerted on it by the charges
g =—-0.5x 10"C at position (0, 3), and g, = 10~°C at position (4, 0),
where all distances are in meters.

Q

Charges g, = —2 x 10°°Cand ¢, = 3 x 107 C are fixed at the points A;(8,0)
and A,(0,10) respectively in a Cartesian coordinate system, with the length
units being centimeters. Calculate the force on a charge g3 = —107°C placed
at the origin.

A small sphere carries charge Q and can slide freely on a horizontal insulating
rod of length /. Two [urther small spheres have charges ¢, 44 and are fixed to
the ends of the rod. Where does the sliding sphere come to rest?

Charges gy, §2, 41, 4 are placed at the corners of a square of side a =2 m. If
Gi=g:=¢=0=1Cand g3 = —(Q, find the electric field at the center of
the square.

In a hydrogen atom the electron is at a distance a = 5.28 x 10™"" m from the
nucleus, which consists of a single proton. What is the electric field of the
nucleus at the position of the electron? What is the force on the electron? If
the electron is in a uniform circular orbit around the nucleus what are its
speed and orbital period? (Treat the electron’s motion using classical
mechanics.)

. The electric field just above the Earth’s surface is known to be

E,=130N C'. Assuming that this field results from a spherically sym-
metrical charge distribution over the Earth, find the total charge Q. on
the Earth. (Earth’s radius R, = 6400 km.)

. Assuming that the Earth’s field mentioned in the last problem acts vertically,

what charge ¢ would a ball of mass m = 10 g have to have to hover in mid-air?

. Point charges ¢ and 9¢ are a distance / apart. Where should a third charge @

be placed so that the net force on all three charges vanishes? What is the
required value of Q7
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. Two horizontal plates of opposite charge create a constant electric field

Ey;=1000 N C' directed vertically downwards (see Figure). An electron
of mass m, and charge —e is fired horizontally with velocity vy = 0.1c
between the plates. Calculate the electron’s acceleration; if the plates have
length /y = 1 m, find the electron’s deflection from the horizontal when it
emerges. Neglect gravity in this calculation: is this justified?

. A beam of electrons is injected horizontally with velocity v, = 10 m s~ into

a vacuum tube in which there is a constant electric field Ey = 2000 N C™!

directed vertically upwards. At the end of the tube the beam hits a fluorescent

screen i = 10 cm lower than the injection point.

(a) If the polarity of the field is reversed what happens to the impact point?

(b) What is the horizontal distance / between the injection point and the
screen?

. In the cathode ray tube of a television set electrons are accelerated by a high

voltage V. They are then deflected by a pair of horizontal plates of separation
d, length [ and potential difference ¥ (see Figure). The electrons then hit a
fluorescent screen at distance L from the plates. How must ¥, be chosen so
that the electrons just clear the plates? (Neglect gravity.)

screen

. In an experiment to measure the electron charge —e (a modern version of

Millikan’s oil drop experiment) plastic balls of radius r = 107% cm and den-
sity p=0.8gem™ are placed in vacuum between two horizontal charged
plates, which create a uniform electric field E, directed vertically downwards.
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The field is gradually adjusted until some balls remain stationary. In
one experiment, balls were found to remain stationary for fields
E, =313x10°NC™', E,=3.69x 10°NC™. Assuming that the balls’
charges differ by exactly one electron, estimate e.

. Two masses m = 1 kg with equal charges Q are suspended by light strings of

length §y = 1 m from a point. The strings hang at 30° to the vertical; what is

a?

. Two small metal balls are tied together by a taut string of length d = | m.

The balls are electrically neutral and the string can withstand a maximum
tension T, = 1000 N. Calculate how many electrons would have to be
added in equal numbers to each ball before the string breaks. Is this a
large number compared to the number in a metal ball of mass 10g?

. Two alpha particles (helium nuclei, charge g, = 2¢ = 3.2 x 1077 C, mass

m, = 6.68 x 107%7 kg) arc a distance d = 2 x 10~*m apart. Calculate their
electrostatic repulsion. How does this force compare with their gravitational
attraction?

. What electric field E; is required to exert a force on an electron equal to its

weight on Earth? Compare this field with that produced by a proton at a
distance of @y = 107'" m (ay ~ typical size of an atom).

. A very long solid cylinder has radius R = 0.1 m and uniform charge density

2o =103 Cm™. Find the electric field at distance r from the axis inside the
cylinder in terms of r/R.

. A charge ¢ of mass m is constrained to move along the y-axis. Charges

Q = —¢g/2 are placed on the x-axis at positions x = a. Calculate the force
on the charge ¢ at any position y. Show that the origin is an equilibrium
point. Prove that for y < a the charge will oscillate about the origin. Find the
period of this oscillation if g = 107°C, m=1 kgand a =2 m.

. Electric charge is distributed at a line density A = —2 C m~" along an infinite

line. A point charge g = 0.01 C of mass m = | kg orbits in a circle whose
plane is perpendicular to the line, What is its velocity?

. Point charges ¢ and —g are located at points A4(0,—a) and B(0,q) in a

cartesian coordinate system (this type of arrangement is known as an electric
dipole). Find the electric field at any point on the x-axis. Show that for x > a
the field decays as x~°.

A large square insulating plate of side @ and negligible thickness is uniformly
charged with total charge 100Q. The plate is placed in the y—z plane. A
spherical shell of radius r is uniformly charged with total charge Q and has
its center at the point (d,0,0) (sec Figure). If 2 = 1004 and r = d/5, calculate
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the electric field at any point P, inside the shell, and at the point
P; =(d/2,d/2,0). Express your answer in terms of Q, €, and d.

P236. A uniformly charged insulating sphere of radius a is surrounded by a con-
centric conducting shell of inner and outer radii 2a, 3a. The total charge of
the conducting shell is zero and that of the insulating sphere is Q. Find the
electric field at all points. Plot your result.

P237. A point charge g is at the center of a thin spherical shell of radius R carrying
uniformly distributed charge —24. A second concentric shell of radius 2R has
uniformly distributed charge +4. Find the electric field £(r) for all values of
the radial coordinate r, and plot your results schematically.

P238. A long coaxial cable consists of a uniform cylindrical core of radius R with
uniform volume charge density p and a hollow cylindrical sheath of outer
radius 2R with surface charge density o (see Figure). What value must ¢ take
(in terms of p, R) so that the external electric field vanishes?

" (53!1‘&0\8
density
2R
(Volume
p charge)
density

P239. A very long cylinder of radius R has uniform charge density p C m~>. Find
the magnitude and direction of the electric field E everywhere. Plot E as a
function of r, the distance from the axis of the cylinder.

P240. A point charge g of mass m is released from rest at a distance d from an

infinite plane layer of surface charge ¢ = —g/ d*. The point charge can pass
through the layer without disturbing it. Find the acceleration and velocity of
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the charge as a function of position. Show that the motion is periodic and
find the period P.

Il ELECTROSTATIC POTENTIAL AND

P241.

P242.

P243.

P244.

P245.

P246.

CAPACITANCE

Two charges ¢, = 5 x 107* C and g, = =5 x 107® C are held at a distance of
d = 12 m. Calculate the electrostatic potential at the points A and B in the
Figure.

In order to hold a small charged body in equilibrium against gravity an
electric field £ = 2 x 10 NC™' is needed. What potential difference would
be required between two plates held & = 2 cm apart in order to achieve this
field?

An elementary particle of charge ¢ = +e and mass m = 2m, (m, is the proton
mass) falls from rest at infinity towards the Earth, assumed electrically
neutral. Find its kinetic encrgy T when it reaches a height A= 100 km
above the Earth's surface. (Mass M, of earth =6x IDI‘kg, radius
R, = 6400 km.)

The same particle is now projected from infinity towards the Earth with the
kinetic energy T found above, What must the total charge Q, on the Earth be
if the particle never reaches its surface?

An elementary particle of mass m and charge +e is projected with velocity v
at a much more massive particle of charge Ze, where Z > (0. What is the
closest possible approach distance b of the incident particle?

Two particles with electric charges g, = +2¢ and ¢, = —e have masses
my = 4m, and my = m, respectively. (—e is the electron charge and m, the
proton mass.) The particles are released from rest when very far apart, and
approach each other under their mutual electrostatic attraction. Find their
relative velocity when they are at a distance L = 10~° m apart.

An electron volt (eV) is an energy unit equal to the kinetic energy acquired by
an electron accelerated through a potential difference of 1 volt. This is a
common cnergy unit in atomic and nuclear physics. Express the unit in
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joules, given that the electron charge is e = —1.6 x 107" C. What potential
difference is required to accelerate an alpha particle (charge +2e) to an energy
of 10° ¢V?

Charges ¢, = 107°C, g2 =2 x 10™° C and ¢3 = =3 x 107° C are held at the
points (x; =0,y =0), (x = 3,5, =0),(x; = 1,y; = 4) of a Cartesian coor-
dinate system, the units of length being meters. Calculate the potential at the
point P with coordinates (2, 2).

A uniform electric field £, = 100 N C™' in the positive y-direction (see Fig-
ure) is maintained between the planes y = 0 and y = y; = 5 cm. What is the
potential difference AV between the two planes? A charge @y = 1 Cis moved
quasistatically from the upper plane [position (0, »,)] along the y-axis to the
lower plane, i.e. to (0,0). What is the mechanical work done? Show explicitly
that the same work is done if the charge is brought to the lower plane along a
diagonal path to the point (x;,0), where x; = 5 cm (see Figure).

x

The electric potential at a certain distance from a point charge is 500 volts.
The electric field at that point is 100N C™'. What is the value 0, of the
charge, and what is the distance of the point from the charge?

. Two points A and B lie a distance ¢ = 10m apart in the direction of a uni-

form electric field £ = 200 N C™', What is the potential difference between A
and B? What work is done moving a charge ¢ = —0.01 C from A to B
(a) — directly along the straight line AB; and
(b) — by moving 1 m from A to the left of the line, and then directly
towards B in a straight line?

. A spherical conducting shell of radius @ = 10 m is charged by attaching it to a

DC source of voltage £ = 1000 V. What is its final charge? How much work
is done in bringing a test charge ¢ = 1 uC from infinity to the surface of the
shell? If the test charge can penetrate the shell, is extra work required to bring
it to the center?
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. N = 1000 spherical drops of mercury (which can be regarded as a perfect

conductor) each of radius r all have the same potential ¥ when they are far
apart. They merge and form one spherical drop, Find the original charge on
cach drop, the charge Q on the merged drop, and its potential V,. (Express
your results in terms of r, " and physical constants.) How and why does the
total electrostatic energy change in the merging?

. In a Rutherford scattering experiment a beam of alpha particles, cach with

charge g, = 4e and energy E, = 1 MeV = 10° eV is incident on a gold foil,
See P246 for the definition of an electron volt (eV). What is the distance of
closest possible approach ¢ of an alpha particle to a gold nucleus (charge
Gau = 79¢)? What is the ratio of an alpha particle’s kinetic energy T, and its
electric potential energy U when it is a distance 24 from a gold nucleus?

. An clectron is accelerated through a potential difference of 1000 V, thus

acquiring kinetic energy E, = 1000 eV = 1 keV (see P246). What is its
velocity? If n = 10'°, such clectrons hit an electrode every second. What is
the force on the electrode? What is the force if the electrons are replaced by
protons of energy 1 keV?

. An accelerator creates an clectron beam equivalent to a current of / = 1074 A

and energy E, = 10" eV per electron. How many electrons would hit a target
in 1 s, and how much energy would be deposited?

. A parallel plate capacitor of capacitance C' = 107® F is connected through a

resistor R to a power supply £ = 1000 volts. What charge Q accumulates on
each plate? What is the energy thereby stored in the capacitor? When the
capacitor is fully charged it is disconnected from the circuit and the distance
between its plates is doubled. What is the stored energy now? Where did the
extra energy come from?

. To measure the capacitance of an electrometer it is first charged to a potential

Vp = 1350 V. It is then connected by a conducting wire to a distant metal
sphere of radius r = 3 em. As a result the electrometer’s potential drops to
¥y =900 V. What is the capacitance C of the electrometer, and the charges
0,0, on it before and after connecting it to the sphere?

. In the circuit shown in the Figure, the capacitance C; has the value 8 xF. The

space between the plates of C; is filled with material of dielectric constant

— G, = 244F
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K, = 3, and as a result C; = 24 uF. Calculate the potential differences ¥, V>
across the capacitors, and the fotal electrostatic energy stored in them. Recal-
culate these quantities if the dielectric material is removed from C;.

. Two capacitors C; and C, = 2C, are connected in a circuit with a switch

between them (see Figure). Initially the switch is open and C; holds charge Q.
The switch is closed and the system relaxes to a steady state. Find the poten-
tial ¥, electrostatic energy U and charge for each capacitor. Compare the
total electrostatic energy before and after closing the switch, expressed in
terms of C; and Q.

Switch /

AMAA
VYV

|1
1
C; = 2C,

. A capacitor has parallel square conducting plates of side / a distance

d = 1/100 apart (see Figure). It is filled with liquid of dielectric constant
K; =2 and connected to a fixed voltage V. The liquid slowly leaks out so
that its level decreases with velocity v. Find the capacitance C(r) and charge
0(1) as a function of time ¢ after the leak begins. Express your answer in
terms of I, v and physical constants.

dielectric liquid I/
leaking
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. A parallel plate capacitor has plate area 4 and holds charge Q. If the distance

between the plates is x, find the total clectrostatic energy stored in the capa-
citor. Hence show that the force between the plates is F = —0%/2¢,d. A
given capacitor has square plates of side / = 10 cm and is filled with material
of dielectric constant K; = 3. It is found that when the capacitor is uncharged
and lying on its side it can support a mass of no more than 200 kg before
collapsing. What is the maximum charge the capacitor can ever in principle
hold? What happens to this maximum if K, is halved?

A paralle] plate capacitor of area § and separation d (with § > d*) is con-
nected to a voltage source V' through a switch. Calculate the charge Q on
each plate, the electric field E between the plates, and the electrostatic energy
U in cach of the three cases below.
{a) — The switch is closed and the system reaches a steady state.
{b) - The switch is closed, the plates separation is increased to 24 and the
system reaches a steady state.
(c) — The switch is open, the plate separation is increased to 2d; the switch
is then closed and the system reaches steady state.
Express your answers in terms of S, d and V',

Two conducting spheres, of radii Ry = 0.2 m and R, = 0.1 m carry charges
g =6x10"%C, g =-2x10"% C and are placed at a distance > Ry, R,
from each other. They are then connected by a conducting wire: what are
their final charges?

. In the previous problem, find the total electrostatic energy of the two spheres

before and after connection (neglect their interaction energy as they are very
distant). Is it surprising that the two energies are not equal?

. A conducting sphere of radius R, = 1 m is charged by connecting it to a

potential ¥ =9 x 10° V. After it is fully charged it is disconnected. An
uncharged conducting sphere of radius R; = 2 m is brought into electrical
contact with the first sphere at large distance by means of a long wire and
then disconnected. What are the charges on the two spheres now?

. Two spherical conducting shells have radii R =a,R; =3a and equal

charges g. What is the potential difference between them if they are:
(a) — far apart,
(b) — arranged with one concentrically inside the other?

. A point charge g is placed at the center of a perfectly conducting spherical

shell of inner and outer radii R,2R (see Figure). Find the electric field and
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potential at radii roy > 2R, ri, < R and r, with R <r. < 2R. Repeat the
calculation for the case where the shell is grounded (has zero potential).

. A plane parallel capacitor has square plates of side a and separation d < a

kept initially at a potential difference V. Material of dielectric constant
K, = 2 occupies half of the gap (see Figure). The material is now pulled
slowly out of the capacitor. Find the capacitance C(x) when the edge of
the dielectric is a distance x from the center of the capacitor (see Figure).
What current I flows in the circuit if the dielectric is removed at constant
velocity u?

Two thin concentric spherical shells of radii R4 = R, Rg = 2R each carry
uniformly distributed charge ¢. A third shell of radius R = R and uniformly
distributed charge —24 is at a distance > R from A, B. Calculate the electro-
static potential of each shell. If B and C are connected by a conducting wire,
what will their potentials be once the system reaches a steady state?

Electric fences are widely used in agriculture. If they are capable of giving a
large cow a noticeable shock, how are small birds able to sit on them quite
safely?
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A student uses a car battery (emf £ = 12 V) to power his electric razor. The
battery supplies charge Q = 0.5 C each second. What electron current flows
in the razor’s motor and what power does the battery supply?

A battery of emf £ = 6 V is connected to a resistance R. The current in the
circuit is measured to be 7 = 0.2 A and the voltage drop across the battery is
Vo = 5.8 V. Find the internal resistance R, of the battery.

. A battery of emf £ = 10 V and internal resistance r = 1 is connected to two

resistors R = 2. Calculate the current drawn from the battery if the resis-
tors R are connected:

{a) — in series;

(b} — in parallel.

A copper pipe of length / = 10 m has inner and outer radii ry = 0.9 cm,
r» = 1 em. The resistivity of copper is pe, = 1.75 x 107 Q m. Find the resis-
tance of the pipe.

Find the resistance of a copper wire of length / = 10 cm if the wire has:
(a) — cross-sectional area 4; = 3 mm*;
(b) — cylindrical radius r = 1 cm. (The resistivity p of copper is given in the
previous question.)

Consider the circuit shown in the Figure. R, is a variable resistor, and the
internal resistance of the batteries is negligible. If the emfs £ of the batteries
are 6 Vand R, = R; = 212, express the current [; in the resistor R, in terms
of R,. Is there a value of R, for which this current vanishes?

-

|'| j]
£ .-4:’ £

:: ) :i]-‘
A

AAA
WYV

Calculate the currents in the circuit in the Figure, where £, =7V, £ =3V,
Ry =45, R, =5, R; =8 Q, and the internal resistance of both batteries is
negligible.

]

< < <

> > >
A " R2
< < <
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Find the currents iy, i; and iy at point A of the electrical circuit shown in the
Figure.

R, =60 Ry =40

Ay

T T

-1

VY

E, =BV E,=4V

A bulb and an emf source are to be connected in parallel across points A and
B of the circuit shown in the Figure, What should the emf X be so that no
current passes through the bulb?

—M?w—r} A —r

=

. An ammeter (of resistance R,)} and a voltmeter (of resistance Ry ) are used to

calibrate a resistor. If the resistor is connected as in Figure 1, the ammeter
and voltmeter give readings I, ¥;, while they read I;, V5 in the arrangement
of Figure 2. The emf is the same in both cases. Express the resistance R in
terms of the measured current and voltage and R,, Ry in the two cases.
Under what conditions is it correct to say that both methods give the resis-
tance R as (measured voltage)/(measured current)?
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. An electric circuit consists of a power supply £ and two equal resistors R in

series (see Figure). A voltmeter of internal resistance r is used to measure the
potential differences ¥y, V3,. Find V4, V}, in terms of £, R and r.

. Consider the three circuits (a, b, ¢) shown in the Figure. In which circuit is the
dissipated electric power greatest? You may neglect the internal resistance of
the power supply £.

‘b
L RS R
RS 3
S =
> £

> > <
RS R E;

b) (c)

. An electric heater of resistance R = 502 is connected to a V¥ = 110 V power

supply for a time ¢ = 1 h. How much energy is used?

. If the cost of 1 kWh of electrical energy is 30 cents, how much does it cost to

use a 100 W lamp for 24 h?

. The starter motor of a car draws a current f =300 A from the ¥V =12V

battery. What is the power consumption? If the car starts only after 7 = 2 min,
how much energy is drawn from the battery?

. In the circuit shown in the Figure, the ammeter reading for the current is

taken
(a) — with both switches open;
{b) — with both switches closed.
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Ay = 311 :

AAAA
VWYY

R, =31l

£=12V

The readings are the same in the two cases. The power supply £ has negligible
internal resistance; using the values R; =3§), R, =20, Ry =30 and
& =12V, find the resistance R.

. Father and son disagree about how to light their Christmas tree with 8

identical bulbs, using a battery of emf £. The father wishes to connect the
bulbs in series, while the son argues that the bulbs will be brighter if con-
nected in parallel. Who is right?

In a military exercise a field telephone is a distance d =5 km from the
command post. The wires have resistance r = 6 2km™' and the telephone
has resistance Ry = 576 £2. Hoping to capture the line intact rather than
simply destroying it, the “‘enemy’ disables it by short-circuiting the pair of
telephone wires with a metal rod of unknown resistance. To try to discover
the problem, technicians measure the resistance R, of the circuit twice: with
the telephone connected they find R, = 120 2, and with it disconnected they
find R; = 150 ). How far along the line from the command post is the
problem? What is the resistance R, of the metal rod causing the short?

. Two bulbs A, B of resistance R, 2R are available to light a shared office and

P290.

can be connected ecither in series or parallel. The clerk sitting under bulb A
insists on connecting them so as to maximize the light from that bulb, while
the other clerk argues that it is better to maximize the total light output. Can
they agree on how to connect the bulbs? (Assume that the emitted light is
proportional to the dissipated power.)

Consider the circuit shown in the Figure. 4B is a uniform wire of resistance
R,p =209 and length | m. The point P is a moveable connection; when this

£ =2V

ARAAAAAAAAAAAAAAAAAAN
VWYYV VY VYV B

mA >A= 3001

£2
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is placed 60 cm from A, the milliammeter registers zero current. Neglecting
the internal resistances of the power supplies £, £, find £, and the potential
difference ¥y across the resistor R.

The connection P is moved so that it is 50 cm from A. Fmd the current / in
the milliammeter, and the new value of V.

In the circuit shown in the Figure, an emf source £ = 12 V and internal
resistance r =03 is connected to two resistors R =150 and
R; = 1.2 2. Two capacitors C; = 0.05 xF and C; = 0.02 uF are connected
in parallel to the resistors, and the switch S is open. Calculate the current in
the circuit and the charges @, Q: on the capacitors once a steady state is
reached. What values do these quantities take if the switch is closed and a
new steady state is reached?

,i 4 L
| R,H,
L3 7T

In the circuit shown in the Figure, calculate the currents /;, /5 in Ry, R;. What
is the potential difference V5, and what are the charges on all three capa-
citors? (E=10V, Ry =18, R, =40, C, =1 puF, C;=5uF)

>
> A,
>
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P293.

Two very long parallel wires are a distance d = 1 m apart and carry equal
and opposite currents of strength / = 1 A. Find the magnetic field between
the wires in their plane. An electron moves with velocity v = ¢/2 along the
line exactly halfway between the two wires in their plane (i.c. parallel to one
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of the currents). Find the magnetic force on it. What happens if the velocity is
reversed?

Two very long parallel conducting wires carry currents [y = 1 A, [, =2 A in
opposite directions. They hang horizontally from pylons by pairs of insulat-
ing cables, each of length a = 1 m, and are a distance d < a apart. The wires
have mass m per unit length and the cables make angles @ to the vertical (see
Figure). Find ¢ and the magnetic field at a point midway between the wires.

P295. A circular coil has N = 10,000 turns of wire arranged uniformly (see Figure).

P296.

The wire carries current / = 1 A and the inner and outer radii of the coil are
a=1m, b =2 m. Describe the resultant magnetic field everywhere on the
symmetry plane of the coil, and find the ficld strength at a distance r = 1.5 m
from the center of the coil.

circular coil

A slender solenoid of length / = 1 m is wound with two layers of wire. The
inner layer has Ny = 1000 turns and the outer one has N, = 2000 turns. Each
carries the same current / =2 A, but in opposite directions. What is the
magnetic field inside the solenoid?
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P297.

P298.

P299.

P300.

A homeowner tries to set up a simple electric doorbell mechanism (see
Figure). A permanent magnet of moment x4 = 10> A.m is suspended by
a wire that resists twisting. A solenoid of length / = 10 ¢m lies in the plane
of the magnet, at an angle # = 45° to its axis. Each loop of the solenoid has
resistance r = 1077 2, and the solenoid is connected to a battery of emf
E=12V. Atorque T, = 107 N.m is required to make the arm strike the
bell: will the mechanism function? (Assume that the magnetic field of the
solenoid at the permanent magnet is 0.01 of its value inside the solenoid.)

Parallel loops of radii rg, 2ry are a distance d = 4r; apart and carry currents [
in opposite senses. Find the magnetic field B at the point P halfway between
the loops as a function of 7, ry and physical constants,

A long wire carrying current / = 10 A lies in the plane of a rigid rectangular
loop carrying current I; = 1 A (see Figure), parallel to its longer sides. The
rectangle has sides @ = 0.2 m, » = 0.3 m as shown, and the wire isd = 0.25m
from the loop. Find the magnitude and direction of the resultant force on the
loop.

b (= b

The arrangement of the previous problem is used in the design of a magne-
tically levitated train. Many vertical loops (a rectangular coil) are fixed in
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P301.

P302.

P303.

P e W,

=
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coll
“',‘lp*"-‘ (viewed end-on)

cable

each carriage directly above a cable fixed to the track bed (see Figure). The
coil and carriage have the same length b. The carriage has weight per unit
length w kg m™'. How should the dimensions d, a be chosen so as to minimize
the power requirements? If d = 1 cm, w = 1000 kg m™~' and the trackbed
cable and coil each carry currents of 100 A, how many turns would the coil
need?

In the magnetically levitated train of the previous problem, three football
players each weighing 100 kg take their seats in a particular 1 m section of a
carriage. What happens to d?

A long wire carrying a current [ = 1 A is bent at its midpoint around one
quarter of a circle of radius r = 0.1 m, the straight parts of the wire being
perpendicular to each other (see Figure). Find the magnetic field at the
point O,

A horizontal conducting rod of length L and mass m can slide on a vertical
track (see Figure) and is in equilibrium at height L above a long horizontal
wire when both the rod and wire carry current 7, but in opposite directions.
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P304.

P305.

P306.

P307.

Find [/ in terms of m, L. If the current in the lower wire is suddenly doubled,
what is the initial acceleration of the rod?

A particle of charge g and mass m moves in the plane perpendicular to a
uniform magnetic field B. Show that the particle moves in a circle, and find
the angular frequency of the motion. What happens if the particle’s velocity
does not lie in the plane perpendicular to the field?

A cyclotron is a device in which electrons gyrate in a uniform magnetic field
B. In so doing they emit radio waves at the cyclotron frequency (see previous
problem). The inventor of the cyclotron, Ernest O. Lawrence, was able to tell
whether the apparatus was operating even when at home (and thus keep his
graduate students up to the mark) by tuning a radio receiver to the appro-
priate wavelength and listening for the hum. Lawrence’s original cyclotron
had B =4.1 x 107" T. What wavelength was his radio tuned to?

Three long wires carry currents /| = 8 A (horizontally), I, = I; A (horizon-
tally, but opposite to the first current), and 3 = I;/2 A (vertically down-
wards, perpendicular to the first two). Find the magnetic fields at the point
P indicated in the Figure, witha =1 m.

A particle of charge g and mass m is accelerated from rest by a constant
electric field £, acting over a length d (see Figure). It then encounters a region
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of constant magnetic field B, perpendicular to its velocity. Describe its sub-
sequent motion. For what value of B, will the particle re-enter the region of
constant electric field a distance 4 from the point at which it left?

The arrangement of the previous problem can be used to measure the ratio
g/m for unknown particles (the apparatus is called a mass spectrometer).
Using the results of the previous problem, find g/m for a particle whose
deflection 2R is measured to be D. If E, = 10° N/C, d =10 cm, By =0.1T
and D = 9.1cm, calculate ¢/m and compare it with the values for electrons
and protons.

Three types of particles are emitted by a certain radioactive sample. The
particles are accelerated by a very large potential difference ¥ and then
enter a region of constant magnetic field B directed perpendicular to their
motion. The radii of the particle orbits are in the ratio Ry : Ry : Ry =1:2:3
and their charges are equal. What can you infer about the particles’ masses?

A particle of mass m and charge ¢ moves with constant velocity v along the
negative x-axis, towards increasing x (sce Figure). Between x =0 and x =5
there is a region of uniform magnetic field B in the y-direction. Under what
conditions will the particle reach the region x > &7 If it does, at what angle to
the x-axis will it enter this region?

x=0 x=b

A charged particle is injected with velocity v into a region containing electric
and magnetic fields E, B, which are perpendicular to each other and also to
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P312.

P313.
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the particle’s velocity (see Figure). £ and B are adjusted so that the particle is
undeflected. Find its velocity v in terms of £ and B. How can this arrange-
ment be used to select only particles of a particular speed from a beam with a
range of speeds?

A slender solenoid of length L = 2 m with & = 10,000 turns carries a current
I =12 A. Inside the solenoid, near the midpoint, there is a rectangular con-
ducting loop ABCD (see Figure) with plane parallel to the axis of the sole-
noid. The loop has A8 = 10cm, BC = 6cm, and carries current i = 1 A. Find
the resultant force and torque on the loop.

A rectangular wire loop carries current [ and is free to rotate about its long
axis (length /) in a region of uniform magnetic field B. If its short axis has
length w, show that when the loop planc makes an angle # to the field (sce
Figure) the loop experiences a torque Bliwcosf about its axis. What
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happens if the current 7 is reversed each time the loop is perpendicular to
the field?

P314. A mass M with small electric charge g slides on a smooth inclined plane of
angle @ to the horizontal. A magnetic field B is directed perpendicular to the
section of the plane (see Figure). Calculate the acceleration of the mass when
its velocity is w.

8@

M, q

M ELECTROMAGNETIC INDUCTION

P315. A rectangular wire loop with sides /; =0.5 m, /, = 1 m is removed with
constant velocity v=3 m 5! paralle] to its longer sides from a region of
constant magnetic field By = 1 T perpendicular to its plane (see Figure). The
loop’s electrical resistance is R = 1.5 ©2. Find the current in the loop as a

o
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P31é.

P317.

P318.

P319.

function of the distance x of its leading edge from the boundary of the field
region.

A plane loop of wire of area A is rotated about an axis lying in its plane, in a
region of magnetic field B (see Figure). Show that a current flows alternately
in the wire in one direction and then reverses symmetrically each time the
loop is rotated. If the loop is rotated N times per second, show that the
average induced emf in one half of the cycle is 2NAB.

2]

Axis

An emf £, is used to drive a current /) through a long solenoid of cross-
sectional area 4 with n turns of wire per unit length and total resistance R,.
The emf alternates V times per second (see previous problem), and the sole-
noid is surrounded by a coil of m turns of wire per unit length. Show that
the average emf induced in the coil over one half of the cycle is
82 = ZNAﬂuﬂﬂhs”fR] .

The ends A, B of a conducting rod of length / = 1 m can slide freely while
maintaining electrical contact with a rectangular conducting loop KLMN
(see Figure). A constant magnetic field By =2 T is directed perpendicular
to the plane of the loop (into the page). Sides KM and LN have resistance
Riy =1 Q and Ry = 2 Q respectively, and the rest of the loop has negli-
gible resistance. The rod AB is moved with constant velocity v = 5ms”!
towards LN. What force must be applied to maintain this motion?

A long conducting wire is bent at an angle of 60° and lies in a plane perpen-
dicular to a uniform magnetic field By = 1 T. A second very long conducting
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P320.

wire is pulled with velocity v =2 m s~ while lying on top of the bent wire so

that the points of contact and the 60° vertex make an equilateral triangle (see
Figure). At time ¢ = 0 the triangle has side /, = 0.5 m. Both wires have uni-
form resistance per unit length r = 0.1 @ m™'. Assuming perfect contact
between the two wires, express the induced emf in the triangle as a function
of time in terms of By, v, §; and 1. What is the value of this emf at ¢ = 5 s? Find
the current in the triangle at this time.

An amusement park owner designs a new test-your-strength machine. Con-
testants propel a metal bob up a smooth vertical slide by means of a hammer
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P321.

P322.

P323.

P324.

P325.

P326.

P327.

P328

P329.

(see Figure). To measure the initial speed they give to the bob, the owner
decides to use the induction effect in the Earth’s magnetic field (B = 107 T):
the bob completes a circuit with the sides of the slide, and a voltmeter
measures the induced emf. If the bob is w = 10 cm wide, and contestants
typically manage to make the bob rise to heights # = 10 m, how sensitive
must the voltmeter be?

A plane conducting circular wire loop lies perpendicular to a uniform mag-
netic field B, and its area S(r) is changed as S{r) = Sy(1 —at) for0 <1 < 1 /e
(Sp, @ constant). The wire has resistance per unit length p 2 m™'. Find the
current in the wire.

A conducting loop of arca A = 1m? and N = 200 turns whose resistance is
R = 1.2 Qis situated in a region of constant external magnetic field 8 =0.6T
parallel to its axis. The loop is removed from the field region in a time
t = 107%s, Calculate the total work done,

A physicist works in a laboratory where the magnetic field is B, = 2T. She
wears a necklace enclosing area 4 = 0.01 m?® of field and having a resistance
r=0.01 2. Because of a power failure, the field decays to B, = 1 T in a time
= 107%s. Estimate the current in her necklace and the total heat produced.

To measure the field B between the poles of an electromagnet, a small test
loopofarca 4 = 10~* m?, resistance R = 10 Qand N = 20 turns is pulled out
of it. A galvanometer shows that a total charge @ =2 x 107°C passed
through the loop. What is 8?

A coil carries a current of /=10A. When the circuit is broken the
current decays to zero in a time Ar = 0.25s. The inductance of the coil is
L = 18 Henry. What is the average induced em{?

When a current in a certain coil varies at a rate of 50 A s™! the induced emf is
V' = 20 volts. What is the inductance of the coil?

A coil of N = 100 turns carries a current / = 5 A and creates a magnetic flux
@ = 10° T m®. What is its inductance L?

A rectangular loop of conducting wire has area 4 and N turns. It is free to
rotate about an axis of symmetry. A constant magnetic field B is present and
perpendicular to the axis. Find the induced emf as a function of time if the
loop is rotated at angular velocity w.

A device for measuring wind speed has two conical cups attached to a hor-
izontal rod of length L = 0.5 m (see Figure). The rod is attached to a vertical
axle, which rotates a vertical conducting wire loop of area 4 = 0.1 m* and
N =200 turns. The Earth’s magnetic field has horizontal component
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B=10"*T at this point. Find the maximum voltage induced by a wind of
speed v = 100 km/h, assuming that the cups rotate at exactly this speed.



CHAPTER THREE

MATTER AND WAVES

Il SUMMARY OF THEORY

1. Pressure

@ A force F acting perpendicularly on an area 4 exerts (average) pressure
F
P=—. 1
1 (n

@ The hydrostatic pressure at depth h below the surface of a fluid of mass
density p is

P = pgh (2

The hydrostatic pressure of the atmosphere is always close to P, = 10° Nm™?
at sea level. P, is called 1 atmosphere (1 atm).

@ Archimedes’ principle states that a body partly or wholly immersed in a fluid
experiences a buoyancy force equal to the weight of the fluid it displaces. This
force acts vertically upwards through the center of mass of the displaced fluid
(the center of flotation or buoyancy).

2. Membranes and Surface Tension
Flexible enclosures such as balloons or tires exert a tension force resisting the
pressure of their contents.

@ A spherical enclosure of radius r made of material exerting tension f per unit
length supports a pressure difference

79
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P-P.== 3)

between its interior and exterior. This is known as Laplace’s relation. For a
cylindrical enclosure the corresponding relation is

!
Pi-P,=1. @

@ The free surface of a liquid exerts a surfuce tension + per unit length. A
membrane made of such a liquid exerts tension per unit length ¢ = 2v. The
force of the liquid surface on a container is cos # per unit length, where 8 is
the contact angle, which depends on the liquid and the material of the con-
tainer.

3. Bernoulli'sTheorem

An incompressible fluid is one whose density p may be taken as constant.
Water is effectively incompressible under standard terrestrial conditions, and
so is air if we do not consider sonic or supersonic motions.

@ If the pressure in such a fluid is P at a point where the fluid velocity is v,
Bernoulli’s theorem states that

f + %sz + gy = constant (5)
P

along a streamline in the fluid. Here y is the vertical height above some
reference level in the fluid. This can be thought of as an equation of con-
servation of mechanical energy for the fluid.

4. ldeal Gases

@ A mole of a substance is an amount whose mass is a number of grams equal
to the molecular mass divided by the mass of a hydrogen atom my; (the molar
mass). Thus the molar mass of carbon 12 is 12 g. Note that the gram mole is
not an SI unit.

@ At conditions far removed from those under which they liquefy or solidify,
most common gases (air, hydrogen, oxygen, nitrogen, helium, etc.) can be
regarded as ideal (or perfect): a fixed mass obeys the ideal (or perfect) gas law

PV =nRT (6)

where P, V, and T are the pressure, volume, and absolute temperature T of
the gas, and » is the number of moles of gas. R is the universal gas constant.
We also use alternative forms of this relation, such as
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k
P=——pT, 7
Mrrp : M

where p is the mass density of the gas, k is Boltzmann’s constant and p is the
mean molecular mass, i.e. the mass of one molecule of the gas in units of the
mass my, of a hydrogen atom. This is consistent with the carlier form using R
if' it is remembered that the gram mole is not an SI unit. It is also sometimes
convenient to use the form PV = aRT with P in atm and V in liters. The
appropriate value of R can be found in the table of constants.

The absolute temperature T (measured in K) and the temperature ¢
(measured in °C) are related by T = 1 + 273.

5. Heat and Thermodynamics

@ The coefficient of linear expansion « is the fractional length by which a solid
expands when heated through 1°C. The coefficient of volume expansion -y is
the fractional volume increase when the solid is heated through 1°C.

@ The specific heat of a substance is the amount of heat required to raise the
temperature of unit mass of it by 1°C.

@ The mechanical equivalent of heat is approximately 4184 J/kcal, where 1 kcal
(kilocalorie) is the amount of heat required to raise the temperature of 1 kg of
water through 1°C.

@ The first law of thermodynamics expresses the conservation of heat and
mechanical energy in the form

AQ =AU+ AW, (8)

Here AQ is the heat energy flowing into the system, AU is the increase in
internal energy of the system, and AW is the work done by the system on its
surroundings. For example, a gas of pressure P whose volume increases by
AV performs work AW = PAV.

In an adiabatic process no heat is transferred to or from the system, so
AU+ AW =0.

@ The second law of thermodynamics states that heat flows from hotter to colder
bodies; reverse flows can be arranged, but only at the cost of supplying energy
to the system. When a system at absolute temperature 7" absorbs heat energy
AQ at equilibrium (i.c. slowly), its entropy S changes by an amount

_Aag
AS==2. 9)
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@ 1fa body of mass m and specific heat C per unit mass is heated from T, to T,
the total entropy change is

T
AS:mCln(—z). (10)
T,

@ Clearly the entropy remains constant in an adiabatic change. The second law
of thermodynamics can be restated in the form the entropy of a closed system
can never decrease. The entropy of an ideal gas of pressure P occupying
volume ¥ remains constant if the quantity PV is constant, where 7 is the
ratio of specific heats at constant pressure and constant volume. For an ideal
monatomic gas v = 5/3, and the full expression for the entropy is

3k k
S= InT+—1InV. (11)
2umpy gy
Using the ideal gas law to replace T by P, V" this indeed shows that PV/® =
constant if S is constant. The internal energy of an ideal monatomic gas is

3k
2umy
For a diatomic gas (e.g. O;) v=7/5.

U= nRT. (12)

6. KineticTheory of Gases

@ Kinetic theory treats gases as composed of discrete particles or molecules in
random motion.

The ideal gas law can be derived from the assumption that collisions of the

gas particles are perfectly elastic. The average kinetic energy of the particles is

3kT /2, where k is Boltzmann’s constant, so their average (root-mean-square)

speed is
Vems = (%) lﬂ' (13)

7. Light

@ Refraction of light is governed by two laws:
1. — At a boundary between two media, the incident and refracted rays
and the normal to the boundary all li¢ in the same plane.
2. — The angles of incidence and refraction 8,6, are related by

ny sinf; = nysin f,, (14)
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{Snell’s law), where n), n; are the refractive indices of the media contain-
ing the two rays, and the angles are measured from the normal to the
interface.

@ For spherical mirrors of curvature radius R we adopt the following conven-
tions: the focal length f = —R/2, where R < 0 for a concave mirror and
R >0 for a convex mirror. The object distance is & from the front of the
mirror, and the image distance is 5’ behind the mirror. These quantities are
related by the mirror equation

I 1 1

L 15

STYSF (15)
The image is virtual or imaginary if s' > 0 and real if s < 0. The magnifica-
tion m = 5'/s is positive for an upright image and negative for an inverted
image.

@ For thin lenses, we adopt the convention that the focal length f > 0 for
converging lenses and f < 0 for diverging lenses. The object distance s is
always positive and the image distance 5 is positive when it is on the opposite
side of the lens. These quantities are related by the thin lens equation

—s = (16)

A virtual image has 5’ < 0. The magnification m = —'/s is positive for an
upright image and negative for an inverted image.

@ The focal length f of a thin lens made of material of refractive index n is given
by the lensmaker’s equation

)

where R;, R, are the curvature radii of its two faces, counted positive if they
are convex and negative if concave.

@ The quantity P = 1/ is called the power of a lens, and is measured in m!=

diopters.

A mirror or lens is denoted f'/4 or f /8, etc. if its diameter is 1/4 or 1/8 of its
focal length /.

@ A wave disturbance (e.g. light, sound) propagating in the x-direction can be
represented as

Yix, 1) = Asin [2fruf—2—;rx], (18)
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Here A is the amplitude, v the frequency [measured in Hertz (Hz) = cyeless™']
and A the wavelength. The combination in square brackets is the phase ¢(x, ).
The phase velocity vy = Av. One sometimes also uses the angular frequency

w = 27w, which is measured in radians s~

@ A wave emitter in motion exhibits the Dappler effect: the frequency of the
received waves is raised (lowered) if the motion is towards (away from) the
observer. For light waves the frequency change is

Av v

T (19)
where ¢ is the phase velocity of the wave and v is the velocity along the line
joining the observer to the emitter: v > 0 implies motion away from the
observer. The corresponding wavelength change is

AX v

—_—=— 20
Ao« (20)
For sound waves the source velocity is added to the phase velocity, so a
stationary observer hears the frequency

vy
T
v+ v

V=14

(1

or wavelength

v+ v
v

A=X (22)

¥
Here v, is the velocity of sound, v is the velocity of the source away from the
observer, and the suffix 0 refers to the frequency and wavelength for a source
at rest.

@ Coherent waves have the same frequency and a fixed phase difference. Inter-
Sference occurs when two or more coherent waves interact. If the waves have
the same phase where they are combined, we have constructive interference
(e.g. greater light intensity); if they have phases that differ by = radians =
180°, this is destructive interference (reduced light intensity).

When parallel light rays of wavelength A are normally incident on two slits
separated by distance d, interference fringes are observed. Constructive inter-
ference occurs at angles #, to the original ray direction, where

dsinf, =n\, n=0,1,2,... (23)

This is also true for a diffraction grating with spacing d.
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Diffraction from a single slit of width D produces destructive interference
at angles @, to the original direction, where

Dsind,, = +mA, m=1,2,3,... (24)

8. Atomic Physics

@ The energy of a photon of frequency v is E = hv, where h is Planck’s con-
stant. The momentum of the photon is p = E/c = hv/e = h/A.

. The de Broglie wavelength of a body of momentum p is Ag = ii/p.

@ The uncertainty principle states that the uncertainties Ax, Ap in position and
momentum obey the inequality

AxApzh, (25)
where /i = h/(2%).

@ In the photoelectric effect, incident light of wavelength A releases a photo-
electron of energy

he
E, = 3 B, (26)

where B is a constant called the work fumction of the medium surface.

@ Light scattered through an angle # by free electrons of mass m, has its
wavelength A changed to X, where

XN = A+ A (1 =cosd). 27

Here A, = h/m,c = 0.024 A is the Compton wavelength of }he electron, and
lhjs is called Compton scattering. The Angstrom unit (A) is defined by
1A =10"m,

@ The energy levels of the Bohr model of the hydrogen atom are

E--5 (28)

where Ey = 13.6 ¢V is the Rydberg and n is the principal quantum number,
which takes integer values. When the electron jumps between these levels, the
energy of the emitted or absorbed photon is given by the difference E, — E,,.
The transitions down to n = 1 give spectral lines called the Lyman series, and
those to n = 2 the Balmer series. The lines appear in absorption if there is a
cooler transparent medium in front of a hotter one. In the limit n = o the
electron is no longer bound to the atom, which is therefore ionized. The
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ionization potential is the energy required to bring this about, which is
I, = Ey/n* for ionization from the nth bound level.

@ In radioactive decay the number of radioactive nuclei decreases in time
according to

N(1) = Npe ™, (29)

where A is the decay constant, characteristic of the nucleus, and e = 2.718 is
the base of natural logarithms. The half-life 1, ;; is the time in which one-half
of a large sample of the nuclei will decay. It is related to A by Aty > = 0.693.
The activity of the nucleus is defined by
AN
A= A (30)

where AN is the change in the number of nuclei in time interval At: one can
show that 4 = AN(1).

Nuclei of the same charge number Z but different mass number 4 are
called isoropes.

In beta decay a neutron disintegrates into a proton, an electron and an
antineutrino. This increases Z by one but leaves A unchanged.

9. Relativity

The theory of relativity is based on the postulate that the velocity of light in
free space is the same for all observers. As a consequence, observers moving
relative to each other with velocity v assign different values to various
physical quantities. The relations between them involve the quantity

"0 = (1 ~§)_”2A &)

@ Time dilation. A time interval 1, on a clock at rest with respect to an observer
is seen as having the value r when in motion, where

=iy, (32)
ty is the proper time.

@ Length contraction. An object of length /; when at rest with respect to an
observer (ly = the proper length) appears shortened to length / when in
motion, where

=2 (33)
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@ Simultaneity. Events occurring at different points but at the same instant for
one observer do not in general appear simultancous for another observer.

@ Relativistic velocity addition formula. If an object is seen by observer 1 to
move at velocity vy, and observer 1 is seen by a second observer (2) to move
at velocity v, in the same direction, then observer 2 sees the object moving
with velocity

v+
V= 34
l+ﬂ1'U2,-’r(,'2 ( ]

Thus V can never exceed ¢; no object can be accelerated to speeds > c.
@ The energy of a body of rest-mass m moving at speed v is
E = ymc*. (35)

It therefore has rest-mass energy Ey = mc® when v = 0. The momentum of the
body is

p = ymuv. (36)
These two quantities are related by

E* = p* + m*ct. (37)

B LIQUIDS AND GASES

P330. Oil is added to the right-hand arm of a U-tube containing water. The oil
floats above the water to a height of # = 10 cm. The top of the oil + water
column is a height & = 2 cm above the top of the water column in the other
arm (see Figure). Calculate the oil density py. Fluid of density p, is added to
the water column in the left arm to a height / = h/2. If the fluid levels in the
two arms are now equal, calculate p,.

water
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A hydraulic press contains oil of density gy = 800 kg m~?, and the areas of

the large and small cylinders are 4; = 0.5 m%, A, = 10™* m*. The mass of the
large piston is M, = 51 kg, while the small piston has an unknown mass m. If
an additional mass M = 510 kg is placed on the large piston, the press is in
balance with the small piston a height h =1 m above the large one (see
Figure). Find the mass m.

|MI
M, P27 777

Lol

How could you decide if a wedding ring is made of pure gold using sensitive
scales, a liquid volume measure, a length of thread, and a sample of pure
gold?

A woman of mass M = 60 kg has height &A= 1.6 m and shoulder width
w =45 cm. She wears shoes of length /=25 cm and average breadth
b=7 cm. Approximating the relevant areas as rectangles, what average
pressure does she exert

(a) — on the ground when standing,

(b) — on a bed when lying flat?
Why is it uncomfortable to liec on a hard floor? What pressure does the
woman exert if she puts her weight on stiletto heels of total area 4 = 2 cm?®?

The tires on a racing bicycle are inflated to a pressure P = 7atm. Does the
pressure gauge on the pump read 7atm? The combined mass of the bicycle
and rider is m = 70 kg. What is the total tire area in contact with the road?

Two cylinders of cross-sectional area 4 = 10 m? are fitted smoothly together
as shown in the Figure, and then evacuated. Masses M are hung from cables
attached to each of the cylinders. How large can the masses M be made
before the cylinders are pulled apart?




LIQUIDS AND GASES 89

P336.

P337.

P338.

P339.

P340.

P341.

P342.

A payload m = 200kg is held stationary by a balloon at a certain height
above the ground. The volume of the balloon is ¥, = 1000 m?, and is far
larger than that of the payload. Express the gas density g, inside the balloon
in terms of the air density p, at this height.

Early airships were filled with hydrogen rather than with helium, sometimes
with tragic consequences (e.g. the destruction by fire of the German airship
Hindenburg in 1937). One sometimes reads that the reason for using hydro-
gen was that, since the density py. of helium is twice that of hydrogen (py)
under the same conditions, twice the volume of helium would have been
needed to lift the same payload. Is this correct? (py = 0.09 kg m™?, air density
pa = 13kgm™)

A ball of uniform density 2/3 of that of water falls vertically into a pond from
a height & = 10 m above its surface. How deep below the surface can the ball
sink before buoyancy forces push it back? (Neglect the water drag on the
motion of the ball.)

A yacht is at rest on a small lake. What happens to the water level if the
yachtsman throws overboard (a) a buoy, and (b) an anchor?

A plastic cube of density p = 800kgm ™ and side a = Scm is floated in a
cylindrical water container of surface arca 4 = 100cm?, Find the resulting
increase i of the water height. A mass m is placed on the cube and just
submerges it. Find m.

A wooden cube of side @ = 0.1 m is just submerged in water when pressed
down with a force F = 3.43N. Calculate the density p of the wood. What
depth of the cube is submerged if it floats freely?

A cube of side @ is made of material of density p = 3p,,/4, where p,, is the
density of water, It is placed in a container with a square cross-section whose
side is @ + ¢, where ¢ < a, and whose height exceeds a (see Figure). Find the
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minimum volume ¥ of water that must be poured into the container to float
the cube. Can V¥ be made arbitrarily small by reducing ¢?

A solid cube of side 2 = 0.1 m hangs from a dynamometer (a spring measur-
ing force), and is submerged inside a container of liquid. The container holds
water, with above it a layer d = 0.2 m of oil of density p, = 500 kg m~>. In
equilibrium the base of the cube is a distance h = 0.02m below the water level
(see Figure), so that its upper face is below the surface of the oil. The
dynamometer reading is W = 0.49N. Calculate the mass M of the cube
and the hydrostatic pressure P at the base of the cube.

An iceberg has the shape of a cube and floats in seawater with #=2.5m
protruding above the surface. The densitics of ice, scawater, and fresh
water are p; = 900 kg m™, o, = 1300 kg m ™ and pr = 1000 kg m~? respec-
tively. Find

(a) — the submerged depth x, of the iceberg in the sea,

(b) — the submerged depth x in fresh water.
What fraction of the iceberg would be above the surface in the second case?

A certain liquid has density p, and surface tension - and contact angle # when
in contact with glass and air. Find the height i of the liquid in a glass tube of
cylindrical radius r immersed in this liquid.

Can capillary action account for sap rising in trees? (Assume surface tension
of sap is 7 = 0.07Nm™', contact angle # =0, sap density p= 10" kgm™,
tree capillary radius = 107> mm.)

A glass tube has a removable cap at one end, which tends to fall off when the
tube is inverted. The cap is made of material of density p = 700 kg m~* and is
d = 2 mm thick. For what tube radii » will wetting the end of the tube keep
the cap on when it is inverted? (Assume surface tension of water
+=0.07Nm™" and contact angles # = 0 where appropriate.)
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The pressures inside and outside a spherical membrane of radius r are P;, P,
with P; > P,. Show that the material of the membrane must exert total
tension per unit length ¢, where

Repeat the last question for the case of a cylindrical tube of radius r. Why do
boiling frankfurters tend to split lengthways rather than around their cross-
sections?

A tire on a racing bicycle is inflated to a pressure P; = 7 atm. The radius of
the tire is r = 1.5 cm. Find the tension in the walls.

What is the radius r of the smallest droplet that can form from water of
surface tension 7 = 0.07 N m ™" and vapor pressure P, = 2300 N m™?

A spherical balloon has interior pressure Py and radius ry, and is in equili-
brium inside an enclosure with pressure P, = 8P, /9. The enclosure is gradu-
ally evacuated. Assuming that the temperature is fixed and the tension ¢ per
unit length of the balloon material remains constant, show that the balloon
radius never exceeds 3r;.

The air sacs in the lungs (alveoli) can be approximated as small spherical
membranes of radius r containing air at atmospheric pressure Py. The pres-
sure P. in the chest cavity (pleural pressure) increases when the person
breathes out. Simultaneously, muscle contraction decreases r. These changes
are reversed as the person breathes in. Show that the membrane tension per
unit length ¢ must decrease as the person cxhales and increase as he inhales.

Two identical small balloons are inflated, one much more than the other.
They are then connected by a pipe which is closed by a valve between them.
The whole apparatus is placed in an evacuated enclosure. What happens
when the valve is opened?

(You may assume that the surface tension of the balloon material is inde-
pendent of the balloon’s size except when the balloon is smaller than a certain
spherical radius ry;,, below which the surface tension decreases.)

A container is filled with water to a depth H = 2.5 m. The container is tightly
sealed and above the water is air at pressure P, = 1.34 x 10° Nm™ (see
Figure). A small hole is drilled at a height =1 m above the bottom of
the container. What is the speed of the resulting jet of water? Compare
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your answer with the case of a container open at the top, but otherwise
identical.

When a doctor measures a patient’s blood pressure, the cuff is always placed
around the arm, rather than the ankle or other part of the body. Why?

A homeowner wishes to drain her swimming pool by siphoning the water,
whose depth is A, into a nearby gully a distance H below it, where H is much
larger than / (see Figure). She uses a pipe of cross-sectional area a, and the
pool water has surface area A. How long does it take to empty the pool if
h=2m, H=20m, A=50m’, a=5cm®

In the siphon arrangement of the last question, the pipe develops a leak at a
point above the water surface. What happens to the water flow? If there is no
leak, what is the effect of having air trapped in the pipe?

Water is pumped at a constant rate r = 6 m* min~' through a pipe. Near the
pump the pipe diameter is d, =0.2 m, but this widens to a diameter
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d> = 0.4 m in a horizontal section at a height # = 20 m above the pump (see
Figure). This section discharges into a container open to the atmosphere. At
what velocity does water leave the pipe?

In the last problem, what is the water pressure near the pump?

A wide container is filled with water up to a depth /. A small hole is drilled
in the container at a distance i below the water level, and a jet of water
emerges from it. How far from the container does the jet hit the ground?

A Venturi tube (see Figure) is used to measure the water speed v in a pipe by
comparing the pressures in the wide and narrow sections (cross-sectional
areas A, A" = 4/4). Find v if the difference in mercury levels is A = 25 mm.
(The density of mercury is pyg = 13,600 kg m™.)

The window and door of a room are both open. The door opens inwards:
why does it tend to slam shut if only slightly ajar?

Air of density p = 1 kg m~ flows smoothly and horizontally over the airfoil
shape shown in the Figure. The streamline path of air flowing above the
airflow is m times longer than that of the air flowing below it, which has
speed v. Show that the airfoil experiences an upward force

L:::%(mz-])mﬁ

per unit area. Assume that both streamlines pass through A and B.

An airplane of mass M = 500 kg has a total wing area 4 = 30 m?, and the
airfoil design is such that m = 1.1. Estimate the airplane’s minimum takeoff
speed at sea level (p = 1 kgm™>). How does this change in high-altitude air-
ports?

T~

[
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At high altitude the airplane of the last question can achieve a maximum
airspeed of vy, = 70 ms~'. The air density p decreases with height = as
p=1x 107" kgm™, where H = 23,000 m. What is the maximum height
that the airplane can in principle achieve?

In light of P364 can you suggest why the early airplanes (e.g. the Wright
brothers’) were all biplanes?

Two species of bird are very similar in every respect except that every dimen-
sion of one species is on average / times the corresponding dimension of the
other. How are their respective takeoff speeds for flight related?

A hydrofoil boat uses submerged fins with airfoil-type cross-sections to lift
the boat largely clear of the water and allow much higher speeds. Find the
condition for this to be achieved at water speed  and total hydrofoil area A,
if the water streamline path over the upper surface of the latter is m times
longer than over the lower surface and the boat has mass M. Show that 4,
can be much smaller than the wing area required for takeofT of an airplane of
the same mass, even with slower speeds v (compare P364).

When a yacht sails into the wind its sails adopt a curved shape as viewed
from above (see Figure). At a suitable angle to the wind direction the air on
the concave side of the sails moves much more slowly than that on the convex
side. If the average speed of the latter is w, the sails have total arca 4, and the
yacht steers at angle 8 to the wind direction (see Figure), show that the yacht
experiences total wind force
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in the forward direction, where p, is the air density.

The same yacht now sails with the wind more nearly behind it (see Figure:
at an angle ¢ < 90° from directly astern). If the wind has velocity w and the
boat’s forward speed is much less than this, find the maximum forward force
F, on the yacht and compare it with F, in the case # = ¢ = 45°.

The yacht of the previous question has submerged frontal cross-sectional
area Ay (see Figure). If the water density is p and the yacht moves at speed
v, show that it has to supply momentum = Afpvz per unit time to the water,
and thus estimate the drag force on it. Estimate the boat's speed vy, v, in
terms of w, A, Ar, p,. p, 8 and ¢ in the cases where it (1) sails into the wind,
and (2) has the wind behind it. Evaluate vy, v; for w = 30 km/h, 4 = 20 mz,
Ar=03m? 6 =¢=45 using p, = 1 kgm>, p=10" kgm™>.

The yacht considered in the last two problems has mass M, and the sub-
merged depth is approximately constant along its length /. The sails are
triangular and the mast has height / also (see Figure). Show that
Ayp = Mg/pl, and hence that the yacht should be designed to maximize the
quantity /M to achieve high speeds.

A yacht, as considered in the previous three problems, resists sideways
motions by means of its keel, which gives the boat total side-on
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cross-sectional area A,. Show that the boat should be designed so that
A, > Ayr. What is the usual way of achieving this?

A certain Grand Prix racing car has mass m = 1000 kg, and the coefficient of
sliding friction between its tires and the road is u = 0.5. What is the max-
imum speed at which it can take a level bend of radius of curvature
r=100m?

A very efficient wing of area 4 = 2m? is now fitted to the car, so that the air
passing above the wing moves much more slowly than the car’s speed v, while
that passing below moves at v. What is the new maximum speed around the
bend? (Air density p=1 kg m™>))

Is the wing of the last question more of an advantage on slow, tight corners
or fast, relatively gentle ones?

An ideal gas at temperature #; = 16°C is heated until its pressure and volume
are doubled: what is its final temperature?

A closed container of volume ¥, = 12 liters holds a mass m; = 0.858 kg of
oxygen. Itis known that the mass of a liter of oxygen at atmospheric pressure
is my; = 0.0015kg at the same temperature. What is the pressure in the con-
tainer?

A cylindrical container is enclosed by a piston of mass m = 21 kg and holds a
mass my = 0.17g of molecular hydrogen. The volume of hydrogen is
¥y = 1400cm® and the height of the piston is & = 40 cm (see Figure). Find
the atmospheric pressure P, outside the container if the absolute temperature
is T =300 K.

-

Hy

N

A glass pipe of constant cross-sectional area 4 =10"" m? and length
{=1.14 m is sealed at one end and closed by a cork at the other. Inside

!
/
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the pipe there is a mercury column of length /; = 0.3 m. When the cork is
removed and the pipe held horizontally in the atmosphere, the air columns on
each side of the mercury have equal lengths /; = /; = 0.42 m (see Figure). The
pipe is now held vertically with the open end upwards. Find the length 7} of
the air column at its sealed end. What would be the length /{' of this column if
instead the pipe had been corked in the horizontal position before being
turned vertical? Assume that the temperature remains constant throughout.
The density of mercury is py, = 13,600 kg m2

A glass bulb of radius R = 1.5 cm is attached to a glass tube of cross-sec-
tional area 4 = 0.2 cm®. A mercury drop of length /;; = 6 cm seals the air in
the bulb and a length /, of the tube (see Figure). When the temperature is
t = 10°C and the tube is horizontal, we have /; = 17 cm; when the tempera-
ture is f = 20°C and the tube is vertical with the bulb at the bottom, we have
Iy = 13.3 cm. Find the atmospheric pressure P, given that the density of
mercury is py, = 13,600 kg m~>. (Assume constant temperature.)

Air Hg

H"_“_"J. I

A narrow glass tube of length / = 0.5 m is sealed at one end. The open end is
lowered vertically into a bath of mercury, which enters the tube and traps
some air in the upper end. When the sealed end of the tube is #; = 0.05 m
above the mercury level in the bath the mercury level in the tube is
hy =0.15 m below this level (see Figure 1). The tube is now raised so
that the sealed end is 4} = 0.45 m above the mercury level in the bath; the

Da

Fig 1
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level in the tube is now &y = 0.15 m above this level (see Figure 2). Find the
atmospheric pressure P,. At what height  must the sealed end of the tube be
placed so that the mercury in the tube is level with that in the bath? (Density
of mercury py, = 13,600 kg m™3; assume constant temperature.)

A solid cylinder of radius R = 0.5 m and height H = 1 m is drilled at one end
to make a concentric cylindrical cavity of radius r = R/2 and depth h = H /2.
The cylinder is placed in a large mercury bath with the drilled end lowest, and
floats with its upper face exactly at the level of the mercury (see Figure). The
atmospheric pressure is P, = 0.987 x 10° N. Calculate the pressure P, of the
air trapped in the cavity, the height y of the mercury in the cavity above the
cylinder’s base, and the density p of the cylinder material. (Density of mer-
cury = 13,600kgm™>))

i

7

Two containers of volumes V; = 2V, ¥, = V are connected by a narrow pipe
with a faucet (see Figure). With the faucet closed ¥, ¥; contain n, 2n moles
of a certain ideal gas respectively. The faucet is opened and the system
allowed to stabilize at constant temperature. Find the number of moles in
each container in terms of n.
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Two containers of volumes V', = 5 liters and V5 = 3 liters are connected by a
narrow pipe with a faucet. The larger container has a valve, which releases
gas if its pressure P| exceeds a value P_; = 3 atm. The absolute temperature
is T'=275 K, and with the faucet closed the containers hold ideal gas at
pressures Py = 2 atm, P, = 4 atm. What is the total number of moles in the
two containers? The faucet is now opened: does gas leak from the valve? If
the system is heated to 7’ = 400 K how many moles of gas will remain in the
containers?

Hl HEAT AND THERMODYNAMICS
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. A car’s fuel tank is filled to 97% of its capacity with a volume V{; of gasoline.
This process takes place at a temperature of ¢ = 0° C. The car is then trans-
ported by truck to a warm district, where the temperature is 1 = 40° C. Is
there a danger that the fuel will overflow the tank? (The volume expansion
coefficients of the gasoline and the metal of the tank are v5 = 9 x 107*°C™!
and yp = 107°°C7\.
The coefficient of thermal linear expansion of copper is a =4 x 107%°C1,
and its specific heat is C = 0.386 Jg~' °C~'. A square copper plate of side
10 ecm and mass 100 g is heated from 0°C to 100°C.

(a) — How much does the plate’s area increase?

(b) — How much heat does the plate absorb?

A solid has thermal linear expansion coefficient . Show that its volume
expansion coefficient is v = 3a.

A steel cube floats in a bath of mercury. What happens as the temperature
rises? (Coefficient of linear expansion of steel = a, = 1.2 x 107°°C™}, coeffi-
cient of volume expansion of mercury = 7,, = 1.8 x 107*°c™)

A heater is used to raise the temperature of water from f, = 10°C to
1, = 38° C. It has to supply V' =1 m’® of hot water per hour. What is the
minimum power that the heating element must supply? (The specific heat of
water is C,, = 4200 J kg '°C™")

An electric element of power P = 1 kW is used to heat a room of dimensions
4 % 5 % 2.5 meters. Assuming that the efficiency of heating the air in the room
is 75%, and that the air’s heat capacity is C, = 1500 ] m°C™!, how long
does it take to heat the air in the room from ¢, = 10°C to t; = 20°C?

To prepare coffee, water has to be boiled starting from room temperature
1, = 15°C. Assuming that the electric kettle is 50% efficient, how much does
it cost to boil 1 liter of water if electricity costs 10 cents per kWh?
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A container holds a total mass m = 1 g of gas molecules, each with velocity
v =600 m s~'. Find the total kinetic energy of the gas molecules.

An ice cube of mass m; = 40 g and temperature ¢; = —1°C is added to a glass
of coke (mass m, = 200 g) at room temperature ¢ = 20°C. Neglecting any
heat exchange between the drink (coke + ice) and its surroundings (glass +
air), what will the temperature of the coke be once the ice has melted com-
pletely? The specific heat of ice is €; = 2310 J kg™' °C~" and the latent heat
of melting is L; = 3.36 x 10°] kg~'. Assume that the coke has the same
specific heat as water.

Two animal species are similar in every respect except that every dimension
of one is | times the corresponding dimension of the other. The species
radiate excess heat from their surfaces and have plentiful supplies of the
same type of food. By considering the heat balance of cach species, explain
why few small mammals are found in polar regions.

A metal calorimeter has mass m, = 0.25 kg and contains m,. = 5 kg of water,
and the whole system is at a temperature f. = 10°C. A block of mass
n,, = 10 kg of the same metal as the calorimeter is removed from a container
of boiling water and placed in the water inside the calorimeter. The insulated
calorimeter—water-metal system reaches thermal equilibrium at a tempera-
ture of t = 51°C. Find the specific heat C,, of the metal.

A bullet of mass m = 10 g is fired with velocity v = 800 m s~' into a block
of mass M = 10 kg of material with specific heat € = 2000 J kg™' °C™".
Assuming that all of the bullet’s kinetic energy is used to heat the block
(cf. P125, P126), by how much does its temperature rise?

A copper calorimeter of mass m. = 125 g contains m; = 60 g of water at a
temperature of 1; = 24°C. A mass m; = 90 g of hotter water with tempera-
ture f, = 63°C is added, and the temperature of the calorimeter and water
stabilizes at 1y = 45°C. The calorimeter is perfectly insulated from its sur-
roundings. Find the specific heat C,, of copper in kcal kg~'°C™".

A mass m, =1 kg of cold water at temperature ¢, = 7°C is mixed with a mass
my =2 kg of hot water at 1, =37°C. You may assume that no heat is
exchanged with the surroundings, and that the total volume of water does
not change. Find the temperature ¢ of the mixture. Did the total internal
energy of the water change? What was the total entropy change?

A mass m, = 0.05 kg of an ideal gas is held at a temperature of t; = 0°Cina
container of constant volume. The gas absorbs a quantity of heat
AQ = 1.25 x 10° J, and as a result its pressure increases to three times its
inital value. What is the final temperature ¢, of the gas? What is its specific
heat at constant volume C (in J kg™')?
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A glassful of water of mass m,, = 0.25 kg is boiled at atmospheric pressure
and totally converted to steam. The latent heat of the water-steam transition
is L, = 540 kcal kg™'. Find the change of entropy.

A certain mass of gas is held at a pressure Py = 2 x 10° Nm~? and occupies a
volume ¥, = 1 m*. The gas expands at constant pressure until its volume is
doubled (i.e. P, = Py, ¥5 = 217). It is then held at constant volume while its
pressure is halved (i.e. Py = Py/2, V5= ¥3). A cyclic transformation (sce
Figure) is completed by an isobaric (constant pressure) compression
(Py = P3) to V5 = V,, followed by an isochoric (constant volume) transfor-
mation back to ¥y, P;. What is the work AW done by the gas? What is the
absorbed heat AQ?

P
A= 1 2
Pyt= 4 3
. 1
Vi Ve v

A glass sphere of volume 7 liters contains air at 27°C and is attached to a pipe
full of mercury as shown in the Figure. Initially the mercury is level with the
bottom of the sphere in both arms of the tube, and the outside pressure
is 760 mmHg. The air in the sphere is then heated so that the mercury
level is raised by 5 mm in the outer arm, If the cross-sectional area of the
pipe is 10 cm?, what is the temperature of the air in the sphere?
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An ideal gas of volume ¥, = 400 cm’® and temperature ¢; = 15°C expands
adiabatically. As a result its temperature drops to ; = 0°C. If the gas has
adiabatic index v = 1.4, what is the volume V; of the gas after the expansion?
The gas is then compressed isothermally until its pressure returns to the
initial value (before expansion). What is its volume now?

Five moles of an ideal monatomic gas expand adiabatically from an initial
temperature T) = 400 K and pressure P, = 10° N m™2 to a final pressure
P; =10° N m~2, Calculate the final temperature and the work done by the
gas.

The tires on a racing bicycle are generally inflated to pressures P = 6x atmo-
spheric. When the valve is sharply depressed, ice forms around it. Why?

Why does rain or snow tend to fall on the windward side of a mountain
range? Why is there often a warm dry wind on the other side? {e.g. the
Chinook on the eastern side of the Rockies.)

Consider the balloon of P352 above. If instead of the temperature being
fixed, the monatomic gas inside the balloon expands adiabatically, show
that its maximum radius is smaller than in P352. Why?

A certain mass of ideal gas, with constant-volume specific heat
Cy=10.6 Jmol™! K", is cooled at constant pressure Py = 10° Nm ™2 As a
result its volume decreases from V, =1 m? to half of this value. Find the
amount of heat lost by the gas in this process.

Two moles of an ideal monatomic gas expand isobarically (i.e. at constant
pressure) from an initial volume ¥, = 0.03 m® to a final volume ¥, = 0.07 m’.
The pressure throughout is P = 1.52 x 10° N m~2, Calculate the initial and
final temperatures Ty, T of the gas, the total amount of heat Q absorbed in
the process, and the change AS in the entropy of the gas.

Two solid bodies of equal masses m and temperatures 7 and 15 = 27T are
brought into contact. If their heat capacities are C; and C; = 1.5C,, what is
their common temperature, T', when they reach thermal equilibrium? Find
the entropy change AS for each body, and show that the total entropy of the
system has increased. Express your results in terms of T, C, and m.

A mass m = 0.16 kg of molecular oxygen (O;) at a temperature 7, = 300 K
and a pressure P, = latm = 10° N m™? is adiabatically compressed to a
pressure P; = 10atm. Calculate the final volume ¥, and temperature T of
the oxygen. What quantity of work AW is performed in the compression,
and what is the change AU of internal energy?

The volume of an ideal gas is doubled in a quasistatic isothermal process.
Find the change in the pressure P, temperature T, internal energy U, and
entropy S. Express the changes AP, AT,AU,AS in terms of the initial
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values Py, Ty, Uy, Sy, ¥y and n, the number of molar masses of gas. (Use the
formula AW = nRT In(V/V}) for the work done by an isothermal ideal gas
in expanding from volume ¥y to ¥).

A heat pump is used to heat a house by absorbing a certain heat quantity @,
from the outside air (temperature T5) and supplying a quantity of heat @, to
the house (temperature T}), with T, < T,. The machine works cyclically, and
on each cycle a quantity W of work is performed (by an electric motor). Find
the relation between @y, @4, and W. If the machine is completely efficient,
how much heat will be supplied to a house at 7} = 17°C with an outside
temperature T3 = —5°C for every joule of output from the electric motor?
N gas molecules, each with mass m, are confined in a cube of volume V.
Show that the pressure on the walls is

Nmv?
v
where v is the root-mean-square (rms) speed of the molecules, defined as

P=

&=%mﬁ+x@+mﬂ

Three gas molecules have speeds v; = 1,3 and 10 m s~ in the same direction.
Find (a) their average speed and (b) their rms speed v, where

1
2__ n
v _32¢,

Show that the rms speed of molecules of a gas is

kTN
v (_)
pimy

where T is the absolute temperature, R the gas constant, and u the mean
molecular mass.

Find the rms speed of oxygen molecules (mean molecular mass u = 32) and
hydrogen molecules (12 = 2) at room temperature (7" = 300 K).

A bottle of perfume is opened in one corner of a large room. Show that
typical molecular rms speeds do not give a good estimate of how soon you
would expect to notice the scent in a distant part of the room? Why not?

Show that the specific heat per unit mass at constant volume for a monatomic
gas is 3k /2pmy.

One kilojoule of energy is required to raise the temperature of a certain
mass of helium gas (u = 4) through 30 K. How much is needed to raise the
temperature of the same mass of argon (p = 40) by the same amount?
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Explain this result in terms of microscopic properties of the two gases. {Both
helium and argon are monoatomic.)

The gas in a cylinder is adiabatically compressed by a piston. By considering
microscopic processes, explain qualitatively why its temperature and pressure
rise.

A box containing gas is weighed on a scale. Most of the gas molecules are not
in contact with the base. Why does the scale nevertheless register the weight
of the gas as well as the box?

The escape speed from the Earth (see S187) is vy = 11.2 km s7'. At what
temperature would the following gases tend to escape from the Earth’s atmo-
sphere: nitrogen (p = 28), oxygen (1 = 32) and hydrogen (u = 2)?

M LIGHT AND WAVES

P422,

P423.

The base angles of a triangular glass prism are e = 30°, and its refractive
index is n = 1.414 (see Figure). Parallel light rays A and B are normally
incident on its base. What is the angle between the two emergent rays?

N

%

A light ray is incident on side 48 of an equilateral triangular prism at angle a
(see Figure). If a < 90° some of the light emerges through side AC, but if
a = 90°, no light emerges through this side. Calculate the refractive index n
of the prism glass.

A
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A light ray is incident at 40° on a glass plate of refractive index n = 1.3 and
width i = | cm, and emerges from the other side of it. Find the linear dis-
placement of the light ray caused by refraction.

A swimming pool is illuminated by an underwater point source of light.
Viewed from above the water at a horizontal distance d = I m the light is
seen at an angle #; = 30° (see Figure). How deep is it? (Refractive index n of
water = 1.3.)

A light ray is incident on the end of a straight optical fiber at angle #, and
enters the fiber at angle #; (see Figure). If the refractive index of the fiber is ,
what is the maximum value of #; such that the ray remains within the fiber?
(Express your answer in terms of n.)

2T

A beam of white light is incident at angle o = 30° on a water droplet with
refractive index n = n(A) given as a function of wavelength A (see Figure). As
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the ray emerges from the far side of the droplet it has been deflected through
an angle & from its original path. Calculate & as a function of A. If n(A} is such
that n = 1.53 for blue light and » = 1.52 for red light, by how much will the
corresponding deflections differ?

A candle is placed a distance s = 1.5 m along the axis of a convex spherical
mirror of curvature radius R = 1 m (see Figure). Find the position, nature,
and magnification of the image. Draw a schematic ray diagram.

; :

]
\

An object is on the axis of a concave spherical mirror of curvature radius
R = -2m. Its image is twice the object size and appears in front of the
mirror. Find the positions of the object and image, and supply a ray diagram.

An object is placed at a distance s = R/4 from a concave spherical mirror of
curvature radius R. Find the position and nature of the image. Draw a ray
diagram.

An experimenter wishes to produce an image of the coil of an electric lamp
on a wall, with the aid of a spherical mirror. The coil is a distance s = 0.1 m
from the mirror, which is itself @ = 3 m from the wall. What kind of mirror
(concave or convex, and what radius of curvature) should the experimenter
use? What is the image size if the coil is # = 0.5 cm long? Give a ray diagram.

Calculate the focal lengths of the following thin glass (n = 1.5) lenses:
(a) — biconvex, with radii Ry =1 m, R; = 1.3m,
(b) — biconcave, with the same radii,
(c) — concave-convex, with the same radii,
(d) — convex—concave, with the same radii,
(e) — one flat surface, the other convex with R; = 1.3 m.

A converging lens with focal length f = 10 cm is used to observe an insect of
size h. Find the position, nature and size (in terms of 4) of the image if

(a) — the insect is 5 = 5 cm [rom the lens, and

(b) — the insect is 5 = 15 cm from the lens.
Give a ray diagram in each case.
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A bright object is placed a distance s = 1 m from a converging lens of focal
length f = 0.5 m. A plane mirror is placed perpendicular to the optical axis
on the opposite side of the lens. How many images are formed? Determine
whether each image is real or virtual, and upright or inverted. Check your
conclusions by means of drawings.

A point light source is a height # = 50cm above a table. An experimenter
wishes to obtain a sharp image of the source at the table, using a converging
lens of focal length f = 8 cm. At what height x should she place the lens?

Show that the thin lens formula can be rewritten as

=,

where p, p’ are the distances of the object and image from the first and second
focal points.

Two thin lenses of focal lengths f;, /5> are placed in contact. Show that they
are equivalent to a thin lens with focal length f given by

I 1 1

z=—+=.
foh

Two lenses of power P| =2 diopters and P, = 0.5 diopters are placed in
contact. What is the power of the combined lens?

An optical doublet is formed from two lenses A, B made of glass of different
refractive indices n4,nz. Lens A has two convex sides of radius of curvature
R, and lens B has one flat side and one concave side of radius of curvature R.
Derive an expression for the power of the doublet.

Both refractive indices vary slightly with wavelength as follows:
ny=150,1.51,1.52 at red, yellow, and blue respectively, while
ng = 1.60,1.62,1.64 at the same wavelengths. Show that the doublet has
constant power at all three wavelengths.

A simple camera has a converging lens of focal length f = 5 cm and is used to
record sharp images of distant objects on film. If instead the objects are
s=1 m from the lens, by how much must the distance between the lens
and the film be changed?

Show that, except for extreme closeups, the magnification of a camera lens is
approximately proportional to the focal length of its lens. How are different
magnifications achieved in practice? Does this affect the field of view?

A photographer uses a camera with an f/8 lens and obtains a good picture
with an exposure of 0.02 s. The diaphragm is now stopped down to /16 and
the lighting conditions remain the same. What exposure is now required?
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. By changing the radii of its converging lens, and thus its focal length, the

human eye is able to produce a sharp image on the retina (at a fixed distance
from the lens) of objects at any distance from a certain minimum (the “least
distance of distinct vision™, or “near point™) up to infinity. If the near point is
a distance d, = 25 cm from the eye's lens, and the retina is 2.5 cm behind the
lens, by what factor must the eye muscles be able to change the lens’s focal
length?

A normal human eye can produce a sharp image of an object at any distance
beyond a near point (about 25 cm, see the previous problem) all the way out
to infinity. A certain person has an eye with a normal near point, but is
unable to see clearly objects beyond a far point at d; = 1m. How can her
vision be corrected?

A man has a near point at d, = 0.6 m from his eyes. What power glasses will
bring his near point to , = 0.25m?

The human eye can distinguish point objects down to angular separations
6y ~ 5 x 10~ rad (= 0.03° = 1.7"). If a person has a near point d, = 25 cm,
what is the size of the smallest detail that he can pick out?

A person with a near point d, = 25 cm uses a converging lens with a power of
10 diopters to view a very small object. Where must the object be placed with
respect to the lens for best results, and how large is the angular magnifica-
tion?

A microscope has an objective lens of focal length f; = 1 cm and an ocular
lens of focal length f; = 5 cm. What is its angular magnification? It is used to
view a specimen at distance 5, = 1.1 cm from the objective. What is the size
of the smallest detail that can be observed by a normal eye using the micro-
scope?

The focal length of a certain astronomical reflecting telescope is f = 15 m.
The image is viewed through an eyepiece of focal length f, = 3 cm. What is
the angular magnification? Why would it be difficult to build a refracting
telescope of the same magnification?

A wave is described by the formula

y(x, ) =0.1 sin[Zn(ﬁ - %)],

where y and x are in meters and 1 is in seconds. What are the amplitude A,
wavelength A, phase velocity v, and frequency v?

A sinusoidal wave of frequency » = 10° Hz has phase velocity v, = 500ms~",
What is its wavelength A? Find the distance between any two points with a
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phase difference A¢ = 7/6 rad at any given time. At a fixed point, by how
much does the phase change over a time interval Ar = 107% s?

A car driven by a physicist is stopped by a policeman who claims that it
passed a traffic light on red. The physicist tries to convince the policeman that
the light appeared as yellow because of the Doppler effect. Is the policeman
justified in giving the physicist a speeding ticket? (The wavelengths of red and
yellow light are 6900 A, 6000 A.)

A uniformly moving train sounds its horn as is passes a stationary observer.
The observer hears the horn note a factor 1.2 lower in frequency after it passes
than before. What is the train’s speed (speed of sound v, in air = 330ms™")?

A car horn moving at v = 40 m s~' towards a static pedestrian emits a sound
wave of frequency 1, = 500 Hz. The sound speed is v, = 340 m s~

(a) — What is the wavelength A emitted by the horn?

(b) — At what frequency 1 does the pedestrian hear the horn?

An astronomer uses a telescope and spectrograph to observe a set of absorp-
tion lines in the spectrum of a star. All of them are shifted slightly to the red
compared with the same lines in the Sun. In particular the He line
(Ao = 6562 A in the Sun) appears at A = 6563 A. What can you conclude
about the motion of the star?

An astronomer uses a telescope and spectrograph to observe the spectrum of
one star of a binary system (two stars orbiting about their common center of
mass). If he continues to observe for long enough, what will he notice?

Two identical sound sources 4 and B are 1 m apart under water and emit
sound waves of frequency v = 3500 Hz in phase with each other. A micro-
phone is placed on a line parallel 1o 48 at a distance L = 1000 m from AB.
Where should it be positioned so that the sound intensity is a local
maximum? (Speed of sound in water = 1500 m s™'.)

In the arrangement of the previous problem, the microphone is placed at
position x = 474.4 m. The emitted frequency is now adjusted in the range
2500 < v < 5500 Hz. What value should it take so that the microphone now
detects zero sound intensity?

A Young's double slit experiment is performed using light of wavelength \ =
5000 A, which emerges in phase from two slits a distance d =3 x 10™° cm
apart. A transparent sheet of thickness ¢ = 1.5 x 10~ c¢m is placed over one
of the slits. The refractive index of the material of this sheet is n = 1.17.
Where does the central maximum of the interference pattern now appear?

In a two-slit interference pattern (Young's experiment) the slits are a distance
d = 0.3 mm apart. A screen is placed at L = 1 m from the slits, which are
illuminated by light of one wavelength only (monochromatic beam). In the
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interference pattern on the screen the 8th maximum is a distance D = 1.46 cm
from the principal maximum. Find the wavelength A of the light in
nanometers.

P461. A spectrometer makes use of a grating with 5000 lines cm™'. At what angles
will maxima of light of wavelength A = 6563 A appear? If white light
(4000 A< X < 7000A) is analyzed by the spectrometer, over what range of
angles do the second- and third-order interference patterns overlap?

P462. A laser beam of light at A =6870 A passes through a slit of width
D =10"* cm. In what directions is the intensity zero? What happens if D
is doubled?

P463. A parallel beam of light of wavelength A = 7000 A passes through a narrow
slit in an opaque screen. It produces a central intensity maximum of width
Az = 1.4 cm (between the zeros on each side of the maximum) on a second
parallel screen L = 1 m from the first. What is the width of the slit?

P464. A thin uniform layer of oil of refractive index n = 1.25 lies on a perfectly
reflecting flat surface. A monochromatic light beam of wavelength A (in air} is
normally incident on the oil. In terms of A, for what thickness d of oil will the
reflected intensity be (a) a minimum, (b) 2 maximum?

P465. A mob official wishes not to be seen through the windows of her Mercedes in
daylight (dominant wavelength ). The refractive index of the car’s window
glass is n, = 1.4. To minimize light transmission, the mob’s engincer has the
windows coated with a thin layer of optical paint with refractive index
n, = 1.5. The width of the layer is chosen to be d = 7A,/2, where A, is the
light wavelength in the paint. Speculate on the engineer’s fate.

P466. A soap film (refractive index n = 1.3) is illluminated by monochromatic
light of wavelength A = 5200 A. Initially the film has thickness d; and its
transparency is maximal, but it is gradually stretched until its thickness
reaches d; and its transparency reaches a minimum. Find the possible
values of d) and d,.

Il ATOMIC AND NUCLEAR PHYSICS

P467. Calculate the de Broglie wavelength of electrons whose speed is
v, = 10" m s™'. What experiment could one perform to distinguish between
a beam of such electrons and a beam of photons having the same wavelength?

P468. In a certain metal, the binding energy of electrons (the work function) is
B=3x10""]. The metal is illluminated by a monochromatic beam of
light of wavelength X. What is the maximum value of X such that photo-
electrons are emitted? If A = 4.4 x 1077 m, calculate the maximum kinetic
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energy Epax of the photoelectrons and the stopping potential V,. How do
these two results depend on the intensity of the beam?

When illuminated by monochromatic light of wavelength A = 5500 A, a cer-
tain metal emits electrons with a maximum energy ol £, = 1.02 V. When the
metal is illuminated by monochromatic light of wavelength A" = 4800 A, the
maximum electron energy is £, = 1.35 eV. Find the value of Planck’s con-
stant & from these data. Can such an experiment be performed using any
metal? Explain your answer.

Calculate the number of photons emitted per second by a radio transmitter
broadcasting at a frequency of v = 1 MHz with power P = 10kW.

In a certain experiment, the position of an electron is determined to an
accuracy Ax = 107" m. Assuming that the electron is non-relativistic, what
is the most accurate knowledge we can hope to have about its velocity in this
experiment?

Find the energy (in both joules and electron volts) and momentum of an
X-ray photon of frequency v = 5 x 10" Hz.

The electron current in an X-ray tube is / = 16 mA, and the potential dif-
ference is AV = 12,000V. What is the shortest wavelength of the emitted
photons? How many electrons hit the anode per second?

What is the de Broglie wavelength of the Earth moving in its orbit? Using the
Bohr model for the Sun-Earth system, find the quantum number n of the
orbit. (You may assume that the Earth has mass M, =6 x 10** kg and
moves in a circular orbit of radius R = 1.5 x 10" m.) What can you say
about the applicability of quantum versus classical mechanics in this case?

Electrons are accelerated in a cathode ray tube by a potential difference of
V= 5000 V.
(a) - What is the de Broglie wavelength of the electrons?
(b) — What is the shortest wavelength of photons emitted by the anode
when electrons hit it?

A photon of wavelength A = 0.2 A encounters a stationary electron and is
scattered directly backwards. Calculate the final wavelength X' of the photon,
and the electron’s kinetic energy E. after the collision.

A gamma ray of wavelength A; = 0.0048 nm is Compton scattered at an
angle # from an electron at rest. After the scattering, the magnitudes of the
photon and electron momenta are equal. Find the angle # and the wavelength
A, of the photon after scattering.

The quantization condition of Bohr's theory of the hydrogen atom is
m,v,r, = nfi, where v,,r, are the velocity and radius of the nth electron
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orbit. Show that this is equivalent to requiring the circumference of the orbit
to be n times the electron’s de Broglie wavelength.

Use Bohr’s quantization condition (see previous question) and classical
mechanics to find the total energy of the nth orbit in the hydrogen atom.
Express the ground state energy in terms of physical constants.

An electron collides with a gas of atomic hydrogen, all of which is in the
ground state. What is the minimum energy (in eV) the electron must have to
cause the hydrogen to emit a Balmer line photon?

A hydrogen atom in the n = 4 state makes a transition to the ground state,
emitting one photon. Calculate the wavelength of the emitted photon and the
recoil velocity of the atom.

Calculate the energy of levels n = 100 and n = 1000 in the Bohr model of the
hydrogen atom. What can you say about the binding energy of the electron in
these orbits? Describe the spectrum of radiation emitted when such states
make a transition to a given low-lying level.

Use the Bohr model of the hydrogen atom to show that when an electron
jumps from the level n to level n — 1 the frequency of the emitted photon is
close to the electron rotation frequency (in Hz) if # is very large.

Figure | represents the energy levels of a certain atom. If a gas of such atoms
is irradiated by a beam of white light, what absorption lines are expected in
the spectrum, when the experiment is viewed along the beam axis (see Figure
2

53

(eV}

35
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An atom of singly ionized helium has a single electron, whose energy levels
are given by an expression similar to that of a hydrogen atom, i.e.
4F
E,=- n—;’ (38)

where Ey = 13.6 eV. What is the minimum energy required to ionize a helium
atom completely?

A beam of electromagnetic radiation has a continuous spectrum extending
between A, = 240 A and Apigh = 500 A: it is incident on an ensemble of
singly ionized helium atoms, which are all in the ground state. Calculate
the wavelengths of the absorption lines involving transitions from the ground
state seen if the experiment is viewed along the beam axis. How many dif-
ferent emission lines will be seen in this case? How many are seen if the
experiment is viewed [rom the side?

. A sample of sodium containing a certain concentration of the .lNaN isotope

is prepared. After 60 hours this concentration has fallen to 7% of its original
value. Calculate the half-life ¢, of i Na®.

An isotope of iron (Z = 26, 4 = 59) undergoes beta decay into a stable iso-
tope of cobalt. Find Z and A for the cobalt isotope. In 30 days the number of
radioactive iron atoms in a certain sample decreases from N; = 10° to
Ny = 6.25 x 10". What is the half-life of the iron isotope?

The half-lives of the two uranium isotopes U™, U™ are known to be
1,5(U®) = 4.5 5 107 yr, 1,5(U**) = 7.1 x 10* yr. If the Earth was formed
with equal amounts of the two isotopes, estimate its current age, given that
uranium ores are now 99.29% U™ and 0.71% U™’ by number.

The radioactive element '*C decays by beta emission. In a living organism the
activity of ¢ (i.c. the number of decays per minute per gram) is known to be
15.3. In a certain archaeological excavation a human bone is found in which
the activity is 1.96. The half-life of "*C is 1, = 5568 y. Estimate the age of
the bone.

When a helium nucleus is formed from two deuterium nuclei an energy
of 23.8 MeV is released. In the fission of U**® an energy of approximately
200 MeV is released. Compare the total amount of energy released in the
fusion of 1g of deuterium with that released in the fission of | g of U™,

B RELATIVITY

P491.

A body moves uniformly relative to an observer, who measures its length and
finds a value [ = l,/2, where [, is its proper length. What is the velocity v of
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the body? A clock moving with the body measures a time interval 7y =1 s
between two events. What does the observer measure for this interval?

An electron moves so that its total energy is twice its rest-mass energy. What
is its velocity? At what velocity is its momentum mie, where m is its rest-mass?

A certain elementary particle lives only a time 7 = 5 s before disintegrating.
What velocity must the particle have if it is to reach the Earth from the Sun
(distance [ = 1.5 x 10" m) before disintegrating?

A spaceship S; moves with uniform velocity v = 0.99¢ with respect to a space
station S;. The clocks in S; and S are synchronized at zero hours as the
spaceship passes the space station. The captain of S; sends a radio signal to
S> when his clock reads 1.00 hr. What will S,'s clock read when the signal
reaches it?

A spaceship moves with velocity v, = 0.6¢ directly towards a space station. It
fires a missile at the station with velocity v, = 0.5¢ with respect to itself.
What is the missile’s velocity with respect to the station? Repeat the calcula-
tion for the case v, = 0.001¢. Compare your results in both cases with the
answer given by the non-relativistic velocity addition formula: does the latter
provide a good approximation in either case?

A particle of mass m moves with velocity v = 0.8¢ in the laboratory frame
and collides with an identical stationary particle, combining with it to create
a new single particle of mass M and velocity V. Find M, V.

An electron and a positron (each of mass m, = 9.1 x 107" kg) collide with
velocities v = +0.6¢ in the laboratory frame, and gamma radiation is
emitted. Show that more than one photon must be emitted. If exactly two
photons are emitted show that they must move in opposite directions and
have equal energies E. Calculate E and the corresponding photon wavelength
A

A cosmic-ray source moves with velocity v, = 0.6¢ away from the Earth. In
its rest frame it emits protons with energy E = 2000 MeV in all directions.
Calculate the speed v, in the source frame and u;, in the Earth's frame
of a proton emitted towards the Earth. How long (in the Earth’s frame)
will it take for a proton to reach the Earth if emitted at a distance
1=10" km? What is the corresponding time in the proton’s frame?

(mp = 1.67 x 1077 kg.)

An alien spaceship moves with constant velocity v = 0.6¢ relative to the
Earth. It passes the Sun at a certain point on its way to the Earth (you
may neglect the Earth’s motion about the Sun in this problem). How long
does the Sun-Earth journey take according to a terrestrial observer? How

long do the aliens measure the trip as taking? (Earth-Sun distance
= 1.5 x 10* km.)
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When a spaceship passes the Earth, an alien aged 20 Earth-years falls in love
with a terrestrial student whom she sees on her monitor screen. At the time
the student is also exactly 20 years old. The relationship is discouraged by the
alien authorities and the spaceship continues to move at constant speed
v = 0.998¢. After one year (spaceship time) the alien is able to send a radio
message to the student. How old is the student when the message arrives at
Earth?
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Choosing the origin at the center of the Sun and the x-axis along the Sun—
planet direction, we have for the Earth-Sun system

0+ M.d, - M,

— no_ s
xCM_Mn+M M’d Ix107%x 1.5x 10" =45 % 10° m,

which is well inside the Sun, i.e. xcp < R
For the Jupiter—Sun system

0+M M
Xem = J—+JE% ;d, 10 x 14%x 107 =14 % 10° m

This is outside the Sun (about 2R, from its center).

We choose the origin of coordinates at the center of the hoop and the x-axis
along the shaft (see Figure). The positions (x,y), (xz,¥;) of the centers

4D
N/
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S3.

of mass of the hoop and shaft are obviously given by x, =0,
¥1 =0,x; =1,y =0, so the center of mass of the entire racket is given by
Xy Xy 1 1

ml.— =

*cum my +n Zm 2

with yey = 0. The center of mass is where the shaft joins the hoop. This is
obvious by symmetry, as the hoop and shaft have equal masses and their
centers of mass are equally spaced about that point.

In calculating xcy we have to add a mass my; =m/2 with coordinates
x3 = —I/2,y3 =0 to the expression in 52 above. This gives

x _—mifd+ml 3
MT T 5m2 100

The new center of mass is inside the hoop, a distance //5 from the point
where the shaft joins it.

. The center of mass of a triangle of uniform density and thickness is at its

centroid, i.e. the intersection of the medians (see Figure). The centroid divides
each of the medians in the ratio of 2:1, so the center of mass of the eaten slice
is at a position 2r/3 from the center of the pizza. Choosing the origin of
coordinates at the center of the pizza and the x-axis along the symmetry line
of the slice, the center of mass of the full pizza lies at x = 0, while those of the
slice and pizza minus slice lie at x, = 2r/3 and x,, respectively. Thus

o mX 4+ mux,

my+m,

N

Xu ¥

R

(e, ¥e) x
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where m,, m, are the masses of the slice and pizza minus slice. Since the pizza
is uniform m, = (20/360)m = 0.056m, and m, = m — m, = 0.944m, so
m, 0.667r x 0.056
Xy = —m—ex,—w = —0.04r.
Thus the balance point is shifted away from the original center of the pizza by
only 4% of the radius.

The ballast lowers the center of mass. This makes the boat more stable: if the
center of mass is too high, the boat may even capsize.

. The board is placed across the two scales as shown in the Figure, and the

person lies on it. The extra weights W, W, registered by the scales are noted.
If the scales are a distance d apart and the center of mass (CM) is a distance @
from the top of the left-hand scale, requiring EMy = 0 about the CM gives
Wia = Ws{d - a), i.e.

"zd

azW]'{'Wz.

We may regard this as the z coordinate of the CM.

The process is then repeated with the person standing facing a particular
direction, and then facing at right angles to it, giving also the x, y coordinates
of the CM.

e

The forces acting on the body are its weight W, the static frictional force f;
and the normal reaction force NV of the plane (see Figure). The latter two are
exerted by the inclined plane. The weight is a result of the Earth’s gravity. To
calculate the force we choose a Cartesian coordinate system with the y-axis
normal to the plane and the x-axis down it. In equilibrium, as here, we have
TF, = ©F, =0, or

Wsing —f, =0, (1)

N—Wecostt =0. (2)
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With W =mg this gives f, = mgsinf =5x98 xsin30° =245 N and
N =5x9.8 xcos30° =42.4 N. The maximum value the frictional forces
can have is /™" = Nu, = 42.4 x 0.6 = 25.4 N, and this exceeds the actual
value of f; we have calculated above, which prevents the body sliding. In
general, equations (1) and (2) show that f; = mgsinf and Nu, = p,mgcos8,
so that equilibrium is possible for f; < Np,, i.e. mgsin® < umgcos#, or
1, > tan#. Here tan 30° = 0.58 < 0.6, as required.

S8. Choosing the origin of coordinates at the mass m with the x,y axes res-
pectively horizontal and vertical, the conditions for equilibrium are
LF, =0,ZF, = 0. With T}, T; the tensions in the strings we have (see Figure)

Tycosa+ Theos 3 —mg =0
Tysina— Thsin3=0.

The second equation can be rewritten as T; = T sin 3/ sin &, allowing us to
eliminate T from the first equation:

Ty[cos asin 3 + sin acos 3] = mgsin o,

T

mg
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so using the trigonometric identity for sin (a + 3),

mgsina

2 Sin(a+ A)

The relation between T; and T shows that

mgsin 3

' Sntat 5

Now using o = 45°, 3 = 60° gives T| = 0.897mg, T; = 0.732mg. The equili-
brium of the two vertically hanging weights requires T, = myg, T; = mag,
and thus my = 0.897m = 8.97 kg, my = 0.732m = 7.32 kg.

Let the string make an angle « to the wall. As the wall is smooth, there is only
a normal reaction force N between it and the ball. Taking the x and y axes
horizontal and vertical, the equilibrium conditions £F, = 0, £F, = ( become
(see Figure)

N-=Tsina=0 (1)

Tcosa—mg=0. (2)

Then from (2), T = mg/cosa = mgseca. Since tana = r/h = 1/v/3, the
identity sec® & = 1 + tan® o shows that seca = 2;’\/3 so that T' = 2mg,-‘s/§.
Now (1) shows that N = mgtana = mg/V/3.

If the wall is rough, (2) above becomes instead

N+ Tecosa = mg. (3)
Eliminating N between (3) and (1) gives

_ mg
iy Sin o + cos '

\
{N x
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and (1) shows that

mg sin o
" uysine +cosa’

As can be seen, both 7" and N are reduced by nonzero p,: the effect of friction
is to help support the sphere, reducing the required tension in the string and
thus the normal force on the wall.

Taking the x and y axes horizontal and vertical, we see from the Figure that
the horizontal equilibrium condition £F, = 0 is satisfied by symmetry. With
o the angle of the two rope sections to the horizontal, the vertical equilibrium
condition £F, =0 is

2Tsina —mg = 0. (n
The length of the stretched rope is [ = ly/ cos a (each section is stretched by a

factor 1/ cosa), so that

r=nu—r.,)=uro( L 1).

cosa
Thus substituting for 7 in (1) shows that
2klp(1 — cos o) tan o = mg. (2)

The critical (maximum) angle a, has tana, = h/ly = 1/6, so that a. = 9.46°,
and cosc, = 0.986. From (2) we thus find that x must have at least the
value k. = mg2ltana (1 —cose,)]™" = 60 x 9.8(2 x 6 x 1/6 x 0.014)~"
=21x10* Nm™". If the performer hangs vertically from the rope, we must
have the equilibrium condition

mg=T=xr({l—k),

so that the extension of the rope is / — [y = mg/x = 60 x 9.8/2.1 x 10° =
0.028 m, i.e. less than 3 cm. The big difference from the earlier case results
from the fact that there the rope was almost horizontal, so that a much larger
tension was needed to balance the performer’s weight.
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This problem is a particular case of P8, withnow a = 3, T} = Ty = T. Using
the relation for T, or T, in S8

sina mg
sin2a  2cosa’

T=mg

Thus

m,
COsx = —g

r

A horizontal wire would have a = 90° or cos a = 0. For mt # 0 this is impos-
sible, however large T becomes. For T = 100mg we find o = 89.7°, i.e. the
wire makes an angle 0.3° to the horizontal.

The wire must always sag slightly in order to balance the weight of the
mass. Since the wire itself always has mass, it can never be stretched com-
pletely horizontal. This effect can be seen easily by looking at a tennis net.
The vertical equilibrium of the hanging weight, ©.F, = 0, gives T = W, where
T is the tension in the cord. Using £F, = 0 at the anchoring point gives a pull

P=2Tcosn

on the leg. With the data given, the nurse increases the pull from P; = 140 N
to P, = 170 N.

Requiring ©M, = 0 for the pivot O (the elbow),

LW cos# + %wcos& —{Feosf =0,

so that F = (L/)W + (L/2fjw = 20W 4+ 10w. This greatly exceeds W + w
because the arm is (deliberately) an ineflicient lever, as are most limbs. (An
efficient lever would require large muscle contractions for small movements.)
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SI5.

brium conditions are
Pcosf—2mg =0 (1
and
Psinf + N —mg =0, (2)

where N is the reaction force of the ground. If P is very slightly larger than
the value specified by these conditions, the box will begin to move towards
the first man. The condition specifying = 8, is N = 0, i.e. that the vertical
component of the first man’s pull would almost lift the box from the ground.
Thus from (2), Psinf, = mg. Now climinating P from (1), with 8 = 8, we get
tanf, = 0.5 or 8, = 26.57°. From (1) we get P = 2mg/cos#. = 2.2dmg.

As O is a fixed axis, we require XMy = 0. The torques acting at O are the
moments of the rod’s weight and the string tension T. Since the weight acts
through the midpoint of the rod, we must have

!Tsin&—%mgcosa:ﬂ, (1)

where / is the rod’s length and ¢ is the angle of the string to the rod (see
Figure). Note that we must use the force components acting perpendicular to
the rod in taking moments, otherwise we will introduce the internal forces
in the rod. Clearly #=90°-a -3, so (1) becomes Tcos (a+3)=
(1/2)mgcosa. From the vertical equilibrium of the hanging mass M we
have T = Mg, so

cos o cos45°
M= chos(a i mzcosﬁo“ =0.71m.

Let the reaction force P at the axis make an angle + to the horizontal (sec
Figure). With the x and y axes horizontal and vertical the equilibrium con-
ditions ©F, =0, IF, =0 become
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Pcosy—Tsin3=0,

Psiny + Tcos3—mg =0.

With T = Mg = 0.7lmg and 3 = 15°, these are
Pcosy =0.Tlmg x 0.26 = 0.185mg

Psiny = mg — 0.71lmg < 0.97 = 0.311mg.

Dividing the second

equation by the first we get tan-vy= 1.681, so

that 4 = 59.25°. Then from the first equation we get P = 0.185mg/cosy =
0.362mg.

S16. Let the wire make an angle a to the horizontal (see Figure). Then requiring
XMy = 0 about O gives

%Tsina —Img=0.

Thus T = 2mg/ sin . Clearly siner = h/[h* + (1/2)*]'/2. Writing x = h/I we

have

1
T= 2([ +ﬁ)mg.

When T = T, = 3mg we have x* = 1/2, so that Ay, = I/v2 = 0711,

T -

pd

r;e+uz_

mg

1

h

4
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Let the upper hinge be at A and the lower one at B and let the forces they
exert on the door be F, Fp. The center of mass of the door is at its center O.
Its weight acts vertically downwards through this point. Since hinge A4 carries
all of this weight, Fp must be purely horizontal, while F; must have both
horizontal and vertical components (see Figure). Requiring M ;, = 0 gives

—gMg+(h—2d)F3 =0.

With d = w/4 and h = 3w, we get Fy = Mg/5. The horizontal and vertical
equilibrium conditions ©F, = 0,£F, = 0 give

Fyeosa— Fg =0,

Fysina — Mg=0.

Thus rearranging and dividing these two equations gives tana = Mg/Fz = 5.
Hence a = 78.7°. The last equation now gives F; = Mg/sina = 1.02Mg.

The forces N;, N, exerted by the wall and plane are normal to these two
surfaces respectively (no friction). Thus N, is horizontal and N, makes an
angle 6, to the vertical (see Figure). Then the horizontal and vertical equili-
brium conditions LF, = 0,XF, = 0 imply

Nicosb; = mg, (1)
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N;sinﬁ‘g = N]. (2}
Dividing (2) by (1) gives tan#, = Ny/mg. Requiring EM, =0 about the
point A4 where the rod touches the inclined plane gives

IN;cost, = —;-mg sinf,

so that tan#; = 2N, /mg. Hence the required relation between the angles is
tan®; = 2tan6,. With 6, = 30°, this gives tan@, = 1.155, so 6, = 49.1°,
From (1) we get N; = mg/cosf; = 1.15mg, and substituting this into (2}
gives N) = Nysin#; = 1.15mg x (1/2) = 0.58mg.

SI9. Let Ny, N, be the normal reaction forces of the floor and wall, and / the
frictional force exerted by the floor. Let the ladder have mass M and length
L. Then the equilibrium conditions £F, = 0,XF, = 0 are

N2 —f:(], (l)

Ny —Mg=0. (2)
Requiring EM, = 0 about the point O where the ladder is in contact with the
floor (see Figure) gives

—LN;sin@ + ; Mgcost =0,

or

Nytanf =} Mg. (3)
Thus using (1) in (3) we get /' = Mg/2tan f. Equilibrium is possible as long as
[ is no larger than the maximum possible frictional force, i.e. f < Nyu. Now

Nyp = Mgp, using (2). Hence equilibrium requires tanf > 1/2u, ie.
0, = tan_l(l,f’2p].

Ny

N,

Mg
[}

f o

$20. The forces are as in the previous problem, with the addition of the worker’s
weight 2Myg acting at the top end of the ladder (see Figure). The equilibrium
conditions £F, = 0,5F, = 0 thus become
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Nz—f=01

N| —EMS—Mg—_—(L

or N = f, Ny = 3Mg. Requiring ZM, = 0 about the contact point O now
gives

~LN,sinf +§Mgcosﬂ + L x 2Mgcosf =0

or Nytané = (5/2)Mg. Thus / = 5Mg/2tan 8. As before we require f < Nyu
if the ladder is not to slip, which here becomes / < 3Mgpu. Hence the condi-
tion determining 8,, is tan 8 > 5/6p, i.e. 8,, = tan~"'(5/6y), which is of course
more restrictive than before.

Let the mass of the platform be M, and let the load (of mass M; = 2M) be at
distance x from its left-hand edge. If the tensions in the two ropes are T, T4,
the equilibrium conditions £F, = 0, XF, = 0 become

Tsin6, — Ty sinf; = 0, m

Tycosf), + Ty cos6, — 3Mg = 0. (2)

(See Figure.)
Requiring TMy = 0 about the position O of the load:

—xT\cost) — (%—-x)Mg-l— (L—x)Tycos6, =0. (3)

Substituting for the angles @,, #, as given, and dividing (3) by L/2, cquations
(1-3) become

TW3i=T, (4)

T\W3+ T, =6Mg, (5

\/??%Tl+ (1-2%)3;3: (1-%)7‘2. (6)



S22

§23.

S24.

Solving (4, 5) for Ty, T, gives T\ = (3v/3/2)Mg, T, = (3/2)Mg. Substituting
these values in (6) and dividing by Mg we get

9x x 3 X
YA (' *21) =z(‘ —z)'

with the solution x = L/8.

If the cylinder is not to slide we require tané < u, (see e.g. P7 above). It will
overturn if and only if its center of gravity lies vertically outside the base, i.c.
tan@ > r/(h/2) (see Figure). Combining these two requirements shows that
for h > 2r/tan® = 2r/p, the cylinder will overturn. Note that this require-
ment is independent of 8.

The reaction force at the pivot will vanish if the two muscle pairs are
arranged to be in vertical and horizontal equilibrium with the reaction
force C acting downwards. £F, = ( requires

Ucos#, — Lcos#y =0,
where U is the force exerted by the upper muscle pair. £F, = 0 gives
Usin@, + Lsint) — C = 0.

Eliminating U between these two equations gives C = L(tan6, cos#; + sin#,)
= 1.56L with the data given. This arrangement allows a larger biting or
chewing force than would be exerted by either muscle group alone, and
avoids creating large stresses on the jaw pivot.

Horizontal equilibrium £F, = 0 requires

F+F—F =0. (1)
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Requiring XM, = 0 about the root,
(h + L)F — LF, =0. (2)
From (2), Fy, = (L, + L)F/L =035N. From (1), , = F, - F=0.15N.

If the pushing force is P and the player’s mass is m, he will not overturn if the
torque of P around his feet is smaller than that of his weight, i.e. we require

(%+§)Pcos& < %mgsinﬂ_.

or tan@ > 7P/5mg. Horizontal equilibrium EF, = 0 requires P = f, where
[ < mgpis the frictional resistance at the player’s feet. Thus the player begins
to slide once P reaches the value mgp: he will not have overturned before this
happens provided that tan# > 7u/5. Hence the minimum angle of lean is
0,, = tan"'(T/5).

!

Assume that the balance is level. Let the force exerted by the woman on the
cord be F, and let the cord make an angle a to the vertical. Also, let the force
exerted by the woman on the floor because of her weight be N'. Clearly
N' = N, where N is the reaction force of the floor on the woman (see Figure).
Requiring M, = 0 about the pivot O of the balance we have

IN +§Fcosrx = IMg

where [ is the length of each arm of the balance. Canceling /,
N+1Fcosa= Mg (n

(the weights of each side of the balance cancel). The vertical equilibrium
condition £F, = 0 for the woman is (see Figure)

N+ Feosa =mg (2)



STATICS 133

§27.

S28.

S29.

as obviously F' = F. Eliminating F cos a between (1) and (2) gives
N =(2M —m)g, (3)
and thus from either (1) or (2) we get
Feosa = 2(m — M)g. (4)
We require N > 0 if the woman is to remain on the platform, i.e. 2M > m.
Since she pulls the string we must have Fcosa > 0, i.e. m > M. Combining

these two requirements, the balance can remain level [for a suitable force F
and angle o, cf. equation (4)] provided that m, M obey

M<m<2M.
£
I
| Lt
! o 1
A 0
1" NF
1
Mg N
Forces on
beam balance
N’ Forces on woman

If the lifting is slow, the situation is quasistatic. The pulley and mass are
supported by twao sections of rope, so £F, = 0 gives Mg = 2T or T = Mg/2.
The woman only has to exert a force equal to one-half of the weight to be
lifted. To lift the mass a height &, both the supporting section of rope must be
shortened by an amount /. Thus the woman has to pull down a length 2/ of
rope.

When the second pair of pulleys are added, the mass is supported by four
sections of rope, so the vertical equilibrium condition XF, =0 becomes
4T = Mg or T = Mg/4. The four sections cach have to be shortened by
an amount /1 to raise the mass, so the woman now has to pull down a length
4h of rope.

At the point A where the two levers touch, a torque G, on the left-hand shaft
produces an upward force F; = G,/a. To get the right-hand shaft just to turn
requires LF, = 0, i.e. F> must balance the resistive force F = G, /b. Thus the
required torque is G; = (a/b)G,. The calculation is precisely the same for the
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two gear wheels, as the teeth cause them to behave like a succession of levers,
and steady motion implies that the forces are again in balance at A.

As the gear wheels cannot slip relative to each other, the upward velocities
at A must be equal. If the right-hand wheel has angular velocity w we have
afl = bw, so w = (a/b)A2.

The last three questions illustrate the principle of gearing: a smaller (larger)
required force or torque corresponds to moving the load more slowly
(rapidly).

As the motion is quasistatic the forces and torques are effectively in equili-
brium at all times. Simple geometry shows that the radius from the center of
the cylinder to the contact point O makes an angle # = 60° to the vertical (see
Figure). When the rope is pulled horizontally, requiring EM, = 0 about O
gives

%RFM = Rmgsin#,

or F,, = mg\/3/3.

If the reaction force of the curb is G and it makes an angle a to the
horizontal, the equilibrium conditions £F, =0, LF, =0 are F = Gcosa,
mg = Gsina. Dividing these equations shows that tana = mg/F = /3, or
a = 60° for F = F,, as above. As lifting proceeds, the lever arm of the rope
pull F increases, while that of the weight decreases (see Figure), so we deduce
that F,, decreases during lifting.

If the direction of the pull is allowed to vary, the best angle is obviously the
one making the lever arm of the pull largest, i.e. perpendicular to the dia-
meter passing through O. This is clearly at 60° to the horizontal (see Figure).
Requiring ZM,; = 0 about O now gives

3
2RF, = ng%,

or Fp = (v3/4)mg.
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(a) If I < 2R the straw will slide until it reaches equilibrium, which by sym-
metry must occur when it is horizontal.

(b) If I > 2R the horizontal equilibrium position is unattainable, and part of
the straw will protrude from the glass (see Figure). Since the glass is smooth,
the forces N4, Np exerted at the lower and upper contact points must be
respectively perpendicular to the glass surface, i.e. directed towards the center
of curvature O of the glass, and perpendicular to the straw (see Figure).
Clearly the straw makes the same angle 4 with the horizontal and with N .
Further the length 4B is equal to 2Rcos 4. Now choosing the x-axis to lie
along the straw and the y-axis perpendicular to it, the equilibrium conditions
LF,=0,ZF, =0 become

Nycos 3= wsinfg, (1)

N,sin 3+ Ng = wcos 3, (2)
where w is the straw’s weight. Requiring XM, = 0 about A gives

2Rcos ANy — %wcos;’)‘ =0

or Ny = (I/4R)w. Substituting this into (2) gives
Nysin 8 = w(cos 3 — u), (3)
where we have written p = [/4R for convenience. Thus dividing (1) by (3)
gives
cosgd  sing
sing  (cosd—p)’

Multiplying out, and using the identity sin® 3 = 1 — cos? 3, we get a quadratic
equation for cos 3:

2¢os’ 3 — pcosB—1=0,

with the solution

cos @ =4[+ vp® + 8],
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The other solution has cos 3 < 0, which requires 3 > 90°, and is unphysical.
Hence in the equilibrium position 7 is specified by

212
cosﬂ:ﬁ{l+ [l + 123(?) ] }

and the length A8 is 2Rcos 3, i.e.

an=tfie[em(®)]7,

which should be larger than //2 if the straw is not to fall out of the glass.

The woman lifts the mass slowly, so we can regard the situation as close to
equilibrium. Using ©F, = 0 gives

Mg-R=0,

where R is the tension in the rope, so R = Mg. Requiring M = 0 about the
elbow joint E,

Tasin(# + ¢) = fRcos ¢.
Combining, we find

_ fRcos¢  8cosd
Tasin(@+¢) sm@+e) T

With § = ¢ we have sin(# + ¢) = sin20 = 2sinficos#), so T o< 1/sinf. The
required tension in the biceps increases rapidly as the mass is raised and
decreases.

Let the tension in the rope be 7. Using £F, = 0 we get
T+Mg=F.
Taking moments about the point where the supports join the awning,
al’ — (I —a)Mg = 0.

From the first equation T = F — Mg, so eliminating from the second gives
F = Mgl/a. If instead two symmetrical sets of supports are used, £F, =0
immediately shows that F = Mg/2. With the data given, we get F = 4900 N
in the first case and F = 245 N in the second.



KINEMATICS 137

[0 KINEMATICS

$34.

§35.

$36.

§37.

§38.

$39.

The average speed is the total distance divided by the total time. The distance
X, traveled after the stop is found from x =vr as x;, =90 x 2 = 180 km.
Thus the total distance is x = 50 + 180 = 230 km. The total time includes the
stopandis r =1/2+1/3+2=17/6 h (20min = 1/3 h). Hence the average
speed is v = x/r = 230/(17/6) = 81.2km/h.

To answer the question we need to find the car’s acceleration a. We must
convert the car’s velocity v to m s~ '. This gives v =100 x 1000/3600 =
278 ms~'. Now using the kinematical formula v = vy + at with v, = 0,1 =
10 s and v as above, we find a = v/t = 2. 78 m s~2. The distance follows upon
substituting these values into the formula x=uwyr+ar’/2, giving
x=2T78 x 102/’2 = 139 m. The average velocity is this distance divided by
the time 10s, i.e. 13.9ms™.

The average velacity is t,,, = §/1, where ¢ is the time to complete the journey.
Clearly 1 = s/2vy + s/2v, = s(vy + v2)/2v,v5. Thus

s 2uu

v .
I v+

ave —

This is always less than vpe,, = (v) +v3)/2 as the ratio is

e __duita_ (1

Umean (1:| + Ul}
and since (vy — 1:2]1 >0, we have nuy < t:f + v%, 50
duvy < vF 4+ 2um3 4 15 = (1) + v3)%, so the rhs of (1) is always < 1.

The relative speed is v, = v, — v, = 60 km/h. The officer has to travel
d=0.5 km relative to the car to catch it, so the time required is

t=djv,=05/60h = 30s.

Concorde flies at speed v from East to West, relative to the Earth’s atmo-
sphere which turns with the Earth at speed u = 2xR/d from West to East,
where R is the Earth’s radius and d is the length of the day. To make the Sun
rise again requires v > u = 27 x 6400/24 = 1675 km/h.

We wish to use the formula »* = vf; + 2ax; however, we must convert
the velocity units first. Thus vy = 100 km/h = 27.8 m s™'. Then with
a=-5ms™ (deceleration = negative acceleration) and v =0 (the car
comes to a stop) we find x = —u%,’Za = 77.3 m. If vy is increased by a factor
2, we see that x increases by a factor 22 = 4. Thus the new stopping distance
is 309 m.
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. Using the kinematic formula x=uvy+ar'/2 with v =0 we find

a=2x/f =2x400/10°=8 m s> Thus from v=1vy+ar we get
v=80m s, or a speed of 288 km/h.

In the kinematic formula x = vyf + ar* /2 we measure x upwards; we choose
the roof level as x = 0, so the ground level is x = =20 m. Also a = —g. Then
with vy = 10 m s~ we get —20 = 107 — 9.8!2_!2, ie.

4974 10t —20 =0.

The solution of this quadratic equation is 7 = (10 & /100 + 392)/9.8. The
negative root is not meaningful for this problem, so the answer required is the
positive root + = 3.28 s. The impact velocity follows from the kinematic for-
mula v = vy + ar. With vy, a as above and 1 = 3.28s we find v = —22.2ms ",
i.e. the ball hits the ground at 222ms™! (the negative sign shows that the

ball’s motion is downwards).

Choosing the positive x-direction downwards, we use the kinematic formula
X =t + a:2)’2. Here a = g since the motion is downwards. In the first case
we have vy = 0, thus x = 312}2 =098 x 22)’2 = 19.6 m; this is the distance to
the water surface. The impact velocity in this case is given by the formula
v=w+at=gt=98x2=196ms"'. To find the initial velocity vy in the
second case, we again use x = vgl + at® /2, but now with x set equal to 19.6
m,a=gand r =1 s. This gives 19.6 = vy x 1 + 9.8 x 12/2 = vy + 4.9. Thus
vg=19.6-49=147ms"'". Here the impact velocity is given by
v=rwy4al=147+98x1=245ms™",

The time needed for the car to overtake the truck is the time the truck
takes to travel 32 m. From the kinematic formula x = vur+ar2,f2 with
vy =0,a=a, = 1ms~%, we get 32 = /*/2 and thus 1 = v/64 = &s. The velo-
cities of the car and truck follow from the formula v = v, + at, using the
value of f above and @ = a;, a = a; respectively, with vy = 0 in both cases.
We find v, =2x 8 =16ms™" and v, =1 x8=8ms"'. We can find the
initial separation of the vehicles by subtracting 32 m (the distance traveled
by the truck) from the distance x; traveled by the car by the time
they are level. The latter is given by the formula x = vyr + ar’/2 with
tg=0,a=a,=2ms " and = 8s. This gives x; =2 x 82,!2 = 64 m. Thus
the initial separation was Ax = 64 — 32 =32 m.

. From the kinematic formula v* = v§ + 2ay with vy = 0 (the rocket starts

from rest), y=1000 m and v=100ms™' we find a=v*/2y=
10,000/2000 = 5 ms~>. The time follows from v = v, + a? with 1 = 0 as
above and a = 5ms™! as deduced: this gives 1 = v/a = 100/5 = 20s.

The bullet reaches its maximum height when its vertical velocity v = 0. From
the kinematic formula +* = 1§ + 2ay with vy =30 m/s, a = —g we find a
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maximum height y = t%,-"Zg = 900/(2 x 9.8) = 45.92 m. To find the velocity
after 4s we usc the formula v = vy+at with vy,a as above, to find
v=30-98x4=-92ms"". The negative sign shows that the bullet has
passed its greatest height and is falling back. The corresponding height is
given by the formula y = vyt + ar’“}’ 2 with vy, a as above and 1 = 4s. We get
y=30x4-98x16/2=120-784=41.6 m.

From the kinematic formula +* = 1§ + 2ay, with vy = 0,a =g,y = h/2 we
find the velocity v = /gh as the body starts the second half of its fall.
Now using y = vyt +ar’ /2 with vy =v=gh,a=g,y=h/2 we find it
falls the second half in a time ¢ satisfying

g = \/ght + %g:“.
Now we are told that r = 1 s, s0

h=2V08h+98,
implying

(h—9.8)" =39.2h

or i* — 58.8h + 96.04 = 0. This quadratic equation has two roots, namely
hy =57.1m and h; = 1.68m. The latter solution is clearly impossible, as
we know that the body falls for longer than 1 s, in which time it will have
covered more than g#/2 = 4.9 m. Thus & = 57.1m.

Using the kinematic formula y=uwyr+af’/2 with y=H —huv,=0,
a=g the man falls for a time f,, where H —h=gi%/2, ie. I,=
[2(H - h)/g)"? = 4.04 5. Superwoman falls the same distance in time
t,— 1= 3.04 s. Using the same kinematic formula again we have
H — h = vyt + gr*/2, or 80 = 3.0duy + 9.8 x 3.04>/2, s0 that vy = 11.4 ms™".

In the elevator frame the effective gravityisg.r =g+a=11.8m 572, and the
ball simply rises and falls with respect to the elevator and boy under this
acceleration. Using the kinematic formula

1 2
Y = ol = 5 8t

where y is the vertical distance from the boy's hand we see that y = 0 both at
t=0and at 1 = 2uy /g,y = 0.85 5.
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The time of flight is given simply by the vertical motion. This is governed by
the equation y = vyt — gr*/2. Here vy, = vysina with vy = 300ms™" the
muzzle velocity and a = 30° the elevation. The time of flight is given by
setting y = 0, which gives 0 = vg, 7 — gfz /2. The root t =0 is trivial (the
shell starts from y = 0 also), so we can divide through by ¢ in this equation
to get t=2uv,/g=300x0.5/49 =30.6s. The range follows from the
horizontal motion, which is simply constant velocity at vy, = vycos30° =
300 x 0.866 = 260ms™". Thus the range is x = vg,/ = 7956m.

The maximum distance is achieved when the elevation angle is 45°. We find
the time of flight, as before, from the equation of vertical motion, finding
t=2uvy, /g =2x 255in45°/9.8 = 50 x 0.71/9.8 = 3.625. The best distance is
thus x = vyl = 25c0s45° x 3.62 = 64m. To find the elevation of the faulty
throw, we note that the range can be written quite generally as
X = gyl = Uy, X 20, /8 = 218 sinarcos a/g. Using the trigonometric identity
sin2a = 2sinacos o, this is x = 1:5 sin2a/g. With x = 32m for this throw
and vy = 25ms™' as before, we find sin2a = 0.5. This has nwo solutions,
a = 15" and o = 90° — 15° = 75°, It is of course much more likely that the
faulty throw was too flat than too steep, i.e. a = 15°.

We can rewrite the general range formula x = uf sin 2a/g given in the last
solution as x = Xy, sin 2a, where Xpa, = vﬁ,‘g is the maximum range. This
shows that the maximum range is achieved when sin2a = 1, i.e. o = 45°, and
that half the maximum range is achieved when X, sin2a = x,,,/2, ie.
sin 2a = (.5, so that a = 15° or 75° for half the range, independent of vy.

From the general range formula x = 2:;;2] sinacosa/g used in the last two
answers, we sec that for given x and vy we have an equation for a,
i.e. sinacosa = gx/2u. If we find a solution o = &, of this equation, we
can sec that a; =90°—a; is also a solution, since sina; = cosa,
cos o = sina,. Clearly a; — 45° = 45° — .

(a) If the takeoff and landing points are at the same level we can use the range
formula (see last three answers) in the form sin2a = xg_.’ﬂ%. Withx=15m
and vy = 100 km/h=27.8 m s, this gives sin2a = 0.19, implying a = 5.5°
(the alternative possibility er = 84.5° is rather unlikely!).
(b) If the bus takes off horizontally, the time of flight across the gap is
= x/vy. Using the kinematic formula y = vy, + a:2f2 during this time the
bus falls a vertical distance y = gf* /2, since it has zero vertical velocity initi-
ally. With the data given we find y = ax° g‘2vﬁ =14m.

The time of flight follows from the horizontal motion as 1 = x/g, where vy is
the muzzle velocity. The kinematic formula y = vyt + art /2 with v, =0
shows that the bullet falls a distance k = gr® 2= g_\’z,:"ng below the horizon-
tal. If the rifle is aimed correctly at some angle « to the horizontal, the range
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formula used in S50 above requires that x = 21% sinacosa/g, so
sinacosa = xg/2d = h/x. For h << x, « is a small angle, so cosa = |
and tana = sinae = fi/x. The rifleman should aim at a point xtana =#h
above the target.

The time of flight is given by the vertical free-fall time from the airplane’s
height, with zero initial vertical velocity. Using y = vg,t — g’ /2 with vy, = 0
and y = —h we find t =+/2h/g. Here £ is the height, and y is negative
because it is measured from the airplane’s position. With /=2 km =
2000 m we get ¢ = 20.2s. The tank's horizontal velocity is the same as that
of the airplane and is thus wg, = 600km/h = 167ms~'. The horizontal
distance traveled by the tank after release is thus x =gt =
167 x 20.2 =3370m. As the airplane and tank have exactly the same
horizontal velocity, the airplane is always directly overhead the tank, includ-
ing at the moment of impact.

Since the bombs all have the same horizontal velocity as the bomber they lie
on a vertical line directly underneath it at all times (sec Figure). Each bomb
takes exactly the same time to hit the ground, so they do so at intervals
At =1 s. Their release points differed by vAr = 194 m, hence so do their
impact points.

The time of flight is given by the vertical motion as ¢ = 2vg, /g (see 549). With
vy, = vgsina = 1000 x 0.087 = 87ms™', we find 1 =2 x 87/9.8= 17.79 s.
The horizontal velocity of the shell with respect to the ground includes the
tank's velocity w and is vy, = vycosa + u = 1000 x 0.996 + 10 = 1006 ms™".
The range of the shell was therefore x = v f = 1006 x 17.79 = 17,897 m.
During the shell's flight, the tank advanced a distance wuf=
10 x 17.79 = 177.9 m, so the scparation of the tank and target at impact is
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the difference 17,897 — 177.9 = 17,719 m. The separation of the tank and
target at the moment of firing is the shell's range minus the distance
traveled by the target during the shell’s flight, ie. 17,897 —wi=
17,897 - 15 x 17.79 = 17,630 m.

The horizontal distance traveled by the softball is x=/+d=38+2=
40 m. The time of flight is thus ¢= x/fuv,, where vy, =vycosa=
tp/2 (cos 60° = 0.5) is the (constant) horizontal velocity of the ball, and v,
is the unknown velocity of the throw. Hence ¢ = 2x/vy = 80/vy s. Substitut-
ing this expression into the equation for vertical motion y = v, f — grf2
with vy, = vy sina = 0.866v; and y = h = 20 m we find

20 = 0.866v, x 80/vy — 9.8 x (80/vy)°/2.

i 20 = 69.3 — 31,360/13, or vy = V/31,360/49.3 = 25.2ms"",

Using the kinematic formulae, after time ¢ we have horizontal and vertical
displacements

X =ul, (1)

y=uvt— g (2)
Using (1) to eliminate ¢ = x/u, (2) becomes

v £
y=tx-£2 (3)
This is a parabola. Clearly y =0 at x =0 and x = r = 2uv/g. The height
follows either directly by putting x = r/2 = uv/g into the equation (3) of the
parabola, giving h = v*/2g, or by using the kinematic formula v, = v — gt for
the vertical motion, which gives ¢ = v/g for the time at which the projectile
reaches its greatest height (v, = 0 there); giving ¢ this value in (2) gives the
same value for A.

. The athlete needs to launch the javelin at 45° to the ground (as viewed by a

stationary observer) for maximum range (see S51). If she throws the javelin at
angle # in her own frame, she has to ensure that the horizontal and vertical
components of its initial velocity seen by a stationary observer are equal, i.e.

vsinf = ucosﬂ-{-;.

where v is the speed of the throw. Thus sin @ — cosf = 0.25, which is satisfied
for 8 = 55°,
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Equations (1-3) of §59 hold here too. As the pea is aimed directly at the cat,
the boy chose the velocity components u, v so that the straight line y/x = v/u
passes through the cat’s initial position. Equation (2) shows that at time ¢ the
pea is a distance g.rz,r’l below this line, But the cat falls from rest on this line,
s0 at time ¢ it too is a distance g!z /2 below this line. Thus when the pea
reaches the line of the cat’s fall it will have the same vertical displacement
from the line, i.e. it hits the cat.

The skier takes off from the top of the hump with horizontal and vertical
velocity components #,0. From equations (1, 2) of Solution 61 we
have horizontal and vertical displacements x = ut,y = —gr:,fZ at time t.
This gives the dashed trajectory in the Figure. The skier lands when
y=-xtana, or —gf’/2=—uftane, ie. t=(2u/g)tana. Using u=
100km/h =278 m s'], we find t = 56.7tan 25" = 2.65 s.

The vertical velocity v=5 m ™' allows the skier instead to “pre-jump”
the crest of the hump, i.c. take the trajectory indicated in the Figure by
the dotted curve, since h < v*/2g. If executed perfectly, this trajectory
would have takeoff speed given by w= (Egh)” <v and take a time
tore = w/g = (2h/g)"%. With the data given f,, = (2/9.8)'7 =045 s. The
pre-jump trajectory saves more than 2 s of time in the air. The speed differ-
ence between skiing on snow and airborne implies a significant overall time
saving, and pre-jumping is a standard competition technique.

The man should arrange that his velocity with respect to the river banks
points directly towards his girlfriend. Thus he should swim at angle o to
the shortest distance across the river, partly into the current so that he cancels
it, i.e. u,sina = v, (see Figure). Thus sina = v, /v, = 0.5, or a = 30°. His

P
}
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velocity across the river is then v,cose = 0.87ms™, so the crossing takes a
time t = L/0.87 = 115s = 1.9 min.
S64. We have the two velocity triangles shown in the Figure. Here Up4» Upp are the

S65.

airplane’s speed relative to trains A and B respectively. From that for A we
have that he sees the airplane’s speed as v,4 = vtana. Using this  in the
triangle for B we have wvtana =2vtanf, which gives tana=
2tan30° = 1.155 and thus a =49°. From the triangle for A we have
vy = v/ cosa = 60/ cos49” = 91.5km/h.

Vie Ve

In the runner’s reference frame the rain has a horizontal velocity compo-
nent exactly equal and opposite to the runner’s velocity (see Figure). The
total velocity of the rain is then (1% + uz)”z, at angle ¢ = tan™" v/u to the
vertical. If the runner leans forward at angle # he presents total effective
area 4 = Agsin(¢ — 0) + A, cos(¢ — ) to the rain (see Figure). If 4, < 4,
this is obviously smallest when # = ¢, so that 4 = A4,, i.e. all the rain falls
on the runner’s head and shoulders. As it falls with velocity (u* +1*)'/? and
effective density p, the total mass of water absorbed in unit time is
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A,p(t® + v*)'/%. The runner spends a time //v in the rain, so the minimum
amount of water he absorbs is

- @ + )72

m= A,lpf,

Thus even if the runner could run much faster than the rain falls (v > u) he
would still absorb at least a mass 4,/p of water (actually much more, as he
cannot lean forward at an angle #=¢ = tan™! vfu=90°!). In practice
v < u, and m == A Jpujv. This gives the answer to the often-asked question
as to whether running faster in rain merely gets the runner wet faster - on
the contrary, doubling the speed v actually halves the mass of water
absorbed.

S66. The main problem in believing the man's claim are the accelerations
required to reduce the relative speed of the two cars to 10 km/h or less.
If the second car did not manage to turn and accelerate significantly, the
first car must have braked hard enough to reduce its speed from
to=70km/h=1944 m s™' to =10 km/h = 2.77m s~' in a distance
x = 4m. Using the kinematic formula v* = v} + 2ax we find an acceleration
a=—46 m s, or a = —4.7g. This is far more rapid braking than is likely
(typically |a| < g) even allowing for the first driver’s reaction time. If
instead the second car managed to turn and accelerate to 60 km/h in 4
m, the same formula requires the car to have an acceleration a = 3.5g. This
is again implausibly high. Obviously one can imagine a combination of
these two possibilities in which the first car slowed somewhat and the
second accelerated by some amount. However, in all cases the required
accelerations are too large to be believable.

[0 NEWTON'’S SECOND LAW

S$67. To find how the masses move we need their accelerations. In this problem
they have the same value a because the string is under tension, The only force
acting in the direction of motion on the mass m, is the string tension T (see
Figure), so the equation of motion of m; is

ma=T.
The forces acting on mass m, are T and its own weight m,g (see Figure), so
ma=mg-T.
Adding these two equations climinates T, i.e.

(my +mp)a = myg,
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S0
m
a= I g
my -+ m;

With the masses given we find @ = 0.097m s~2, From the kinematic formula
X = vot + ar* /2 with vy = 0,1 = 105, we get the distance traveled in the first
10 s as x =4.85m. The same formula gives the time to travel a distance
x =1 m from rest as 7 = \/2x/a. Here this is 4.545.

The resultant upward force on the mass is £F, = T — mg, where T is the
tension. From Newton’s second law we have a = XF,/m = T/m — g. The
maximum acceleration follows upon substituting the maximum allowed
tension T = 500 N, giving ag,, = 500/20—-98 =152m s™%. Using this
acceleration in the kinematic formula y = vyt +ar’/2 with vy =0 and
t=2s we get y= ]5,2x22f2=30,4m for the distance the mass has
traveled.

The motion up the inclined plane is one-dimensional, and we define the
distance from the initial position to be x. To use the kinematic formulae
we first need the acceleration. The resultant force component on the body
in the x-direction is £F, = —mgsina (see Figure). (The resultant force
normal to the plane is zero as the component of weight in this direction is
balanced by the normal reaction force of the plane.) Thus the acceleration is
a=XF,/m=—gsina. In this case a=230" and thus a=-gx05=
—4.9ms™% The kinematic formula to use here is v = vy +at. With v =0
(the turning point) and vy = 5 m s~ we get = —yp/a = 5/4.9 = 1.02s,
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We take the motion of the lighter body to define the positive x-direction.
(The heavier body moves downwards.) Considering each body separately, we
can use Newton's second law and the resultant forces on them to write

ma=YXF(l)=T-mg,

mya=XF (2)=mg-T,

where a is the common acceleration of the two masses (see Figure). Adding
the two equations we find (m, + m;)a = (m; — m)g, and thus
iy —m

a= ,
my +

giving a¢=35x9.8/15=327ms % From either of the equations we
can now find 7' by substituting for a. From the first equation we find
T=m{a+g)=5x%x(327+98)=6535N.

x

/'_"\

B

Let the angle we seek be # and the tension be T. The resultant forces on the
mass in the x and y directions are then (see Figure) EF, = T'siné,
IF, = Tcos# — mg. There is no vertical motion, so £F, =0, but in the
horizontal direction, Newton’s second law requires £F, = ma. Thus

Tcosf—mg=10

Tsinf = ma.
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Putting a = 0.1g in the second equation and rearranging the first we get
T costt = mg, T'sin@ = 0.1ng. Dividing the second equation by the first we
get tanf = 0.1, with the solution # = 5.7°. Using this value in the first equa-
tion we find T = mg/ cos 5.7° = 1.005mg. Note that the tension is larger than
the weight, because the subway car accelerates the mass through the tension
in the string.

In the vertical direction, the forces acting on the person are ZF, = N — mg,
where N is the normal force exerted by the clevator floor. By Newton's
second law, £F, = ma, so N = m{a + g) = 1.1lmg. (Note: this is the person’s
cffective weight.) The vertical force on the elevator and its contents is
LF,=T—Mg-mg. By Newton's second law this is equal to
(M+m)a=01(M+m)g. Thus T—(M+m)g=01(M+mg, so T=
L1(M + m)g.

The motion of each mass is one-dimensional, and they must move equal

amounts along the wedge faces. The resultant forces on the masses along
the wedge flaces to the left can be written as

F, =mgsinf, - T

YF, =T — Mgsinf,.

If the masses are to remain stationary, both resultant forces must vanish.
With sin53° = 0.8,5in37° = 0.6 this gives 0.8mg — T =0,T — 0.6Mg = 0.
Eliminating T between these equations gives 0.8mg = 0.6Mg, so M/m =
0.8/0.6 = 1.33. The tension T follows from the first relation as 7" = 0.8mg.

After the additional mass m has been added, the resultant forces on
each mass are LF, = (M +m)g— T, LF, = T — Mg. Each mass has the
same acceleration a, which by Newton's second law obeys IF, =
(M + m)a,X.F; = Ma. Substituting these expressions into the first pair of
equations gives

(M4+m)g—T = (M +m)a,

T — Mg = Ma.

Adding these equations climinates T, and we get (M +m)g — Mg =
(M+m)a+Ma, so mg=Q2M+mla or a=mg/(2M+m)=
0.01Mg/(2M + 0.01M) = 4.98 x 1073g. After the extra mass is removed,
the masses move with a constant velocity (the forces balance) whose value
is v=H/t =0.312/1 = 0.312ms~". This is also the velocity acquired after
accelerating under the extra weight. Using the formula v = vg + 2ax
with vy=0,x=h=1m, and a as above, we get o° =2ah=
2x 498 x 107 x 1 = 9.96 x 107%g. Using v =0.312ms ™" as found above
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gives g = [).3]21;’9.96 x 107 =9.7Tms 2. (The deviation from the best
value g = 9.81 ms™? is a result of experimental error.)

The bullet’s time of flight is equal to the free-fall time from rest at height A,
since the bullet had zero initial vertical velocity. Thus using y = vgt — grl /2
with vy = 0,y = =/ we find 1 = /2h/g = /2 x 1.5/9.8 = 0.553s. The hor-
izontal range s and the time ¢ give the muzzle velocity from the relation
x = vt with x =5=500 m and ¢ = 0.553s. Hence v=s/t =904ms'. To
find the force on the bullet we need the acceleration it experiences inside the
gun, This is given by the formula v* = v§ + 2ax with v, = 0 (the bullet accel-
erates from rest) and x=/=0.5 m. Thus a= UZ,QI = 9042}‘2 x0.5=
8.17 x 10°ms™. The force on the bullet is (by Newton's second law)
F = ma, where m = 0.01 kg, so that F = 8170 N.

We choose the downward direction of motion as positive. We can find the
acceleration from the kinematic formula v = vy + ar with v, =20ms™, v=
Sms ' and t=5s. Thus a = (v —1vy)/t = (5 - 20)/5 = —=15/5 = —=3ms~2.
The minus sign shows that the skydiver decelerates. The forces acting on the
skydiver during deceleration are her weight mg downwards and the tension
T in the parachute cords upwards. Hence the resultant downward force is
LF,=mg—T. Using Newton's second law this is equal to ma, so
mg— T =ma. Hence T =m(g —a) = 50(9.8 — (=3)) = 50 x 12.8 = 640N.
The resultant force on the skydiver is XF, =mg—T = 50 x 9.8 — 640 =
—150N. Note that this is equal to ma, as it must be according to Newton’s
second law. The force acts upwards, as the skydiver’s downward motion is
decelerated.

During braking the resultant horizontal force on the car is

where /= uN is the frictional force and we have chosen the x-direction to lie
in the direction of motion. Here ¥ is the normal force exerted by the road on
the car tires. The vertical resultant force on the car vanishes, i.c.

EF,=N-mg=0,

so that f = uN = pmg. Newton’s second law for the horizontal motion gives
ma = EF, = —f = —pmg. Thus @ = —pg. The negative sign implies decelera-
tion.

Using the kinematic formula v = v + at with v = 0 (complete stop) and a
as above, we get the stopping time ! = —vy/a=vy/(pg). Since vy =
60km/h = 16.67ms™' this gives the stopping time t = 16.67/(0.5x% 9.8) =
3.4s. The stopping distance follows from the formula x = vgt+ alzﬂ =
16.67 x 3.4 — 0.5 % 9.8 x 3.4°/2 = 28.4m.
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The horizontal and vertical forces acting on the sled (see Figure) give the
resultant forces £F, = F — f, ¥F, = N — mg where f is the [rictional foree
and N is the normal force exerted by the snow. For constant velocity both
resultant forces must vanish, so that F = f and N = mg. The frictional force
is given by f =puN, so using the value for N we find f = umg: thus
F=f=pumg=01x%x10x98=98N.

§79.

mg

Choosing the x-coordinate to run downwards along the slope and the y-
coordinate as its upward normal, the resultant forces on the static skier are
(see Figure) ©F, = mgsina — f,LF, = N —mgcosa. Both resultant forces
vanish, so that

N =mgcosa,

f =mgsina.

Until the skier begins to move, f is smaller than u,N; the motion starts
when f = p,N. Substituting this into the second equation and dividing it
by the first, we find p, = tan o = tan 15° = 0.268 (cf. P7). After the motion
starts, the coefficient of friction drops to a value p = 0.1, and f = pN always
holds. Now, X©F, has the nonzero value mgsina — uN, where N is the
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same as before. Replacing N in the last expression, we get LF, =
mgsina — pmg cos . Newton's second law now gives the acceleration

a=YXF./m=g(sina—- pcosa) or

a=9.8 x (sin15° — 0.1cos 15°) = 1.59ms ™2,

The velocity v and distance x after 5s follow from the kinematic formulae
v = u + at, x = vyt + ar* /2 respectively. With vy = 0 and a as found above
these give v=1.59 x 5 =795ms ' and x = 1.59 x 5%/2=19.9 m.

. Using the Figure, we see that

YF,=Fcosa—f,

):]FJ. = Fsina+ N — Mg,

where f is the frictional force given by f = N, with N the normal force on
the timber. Using Newton's second law, £F, = Ma, where a is the accelera-
tion, and EF, = 0. (The rope docs not lift the timber completely off the
ground: if it did, N would become formally negative.) Substituting these
three relations into the pair of equations above, we get

Ma = Fcosa — pN,

0= Fsina+ N - Mg.

From the second equation, N = Mg — Fsina. Putting this into the first
equation gives

Ma = Fcosa — u(Mg — Fsina) = F(cosa + usina) — uMg.

Substituting the numerical values given we get a =3x 0.97-0.2x | x 9.8,
i.e. a=0.95ms 2. From the equation for N we find

N =100 x 9.8 — 300 x 0.5 = 830N.
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Note that this is positive, but smaller than the weight Mg of the timber, as the
dragging force has an upward component.

We take the x-direction to run up the slope, and the y-direction normal to the
slope. The resultant forces on the body in its upward motion are (see Figure 1)

EF, = —mgsina—f,

LF, =N —-mgcosa.

With EF,=0 and f=pN as usual, we get (eliminating N)
LF, = —mgsine — ungcosa.  The  acceleration a; follows from
Newton's second law ie. a =ZXF,/m=—g(sina+ ucosa) ie.
a, = —9.8(0.342+0.2x 0.940) = —5.19ms%, The negative sign implies
that this is downwards. The time ¢, is given by the formula v = vy + at
with v=0 (turning point), v, = 10 ms! and a=a, as above. We find
typy = —tg/ay = —10/(=5.19) = 1.93s. The distance s can be found from
s=Xx=upt+ a.rz,r’z with vy =10ms™!, a=a =-519ms? and
I =ty =193s. We find s = 10 x 1.93 - 5.19% (1‘93}2,!'2 = 9.63 m.

In the downward motion, the resultant force in the y-direction is the same,
but the frictional force f is reversed in the formula for £ F,, because friction
always opposes the motion (see Figure 2). This gives XF, =
—mgsina + pmgeosa, and thus the acceleration a; = —g(sina — pcosa)
in the downward motion. Hence a:=—9.8(0.342 -0.2 x 0.940) =
—1.51ms 2. The time tiown fOllows from the formula x = vgr +a.'2f2 with
vp = 0 (turning point), x = —s (the motion is downwards, i.e. to negative x)
and @ = az. Thus tyewn = /2(—5)/az = /2 x 9.63/1.51 = 3.57s.

Fig 1 Upward motion Fig 2 Downward motion

. Let the tension in the string be 7. If T is too large the mass m moves

upwards. The maximum allowed value follows from 7'\ =mgsina+f,
where [ =pu,N=pugmg is the frictional force (see Figure). Thus
Ty = mg(sin a + p, cosa).
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The resultant force on the other mass m is
EF, =mgsinf, — T — pmgcosb,.
Motion at constant velocity implies that both forces vanish. Adding the
two equations with EF, =YXF =0, we get 0= mg(sinf), —sind,)
—umg(costy + cosf;). Thus = (0.8 —0.6)/(0.8 +0.6) = 0.2/1.4 = 0.143,
S85. We take the x-direction up the slope and the y-direction normal to it. At the
moment when the mass begins to move, F = F,,, and the resultant forces
(see Figure) are
EF, = Fyycosa — mgsina — u,N,
LF, = N — Fyysina — mgcosa.
Both forces must vanish, so we can use the second equation to write
N = Fosina + mgeosa
and thus
Fo - sin o + i, COS &
mae T cosa — p, sina
$86. As long as the box remains stationary on the accelerating truck their accel-

erations are the same. The only horizontal force acting on the box is friction
(see Figure). Hence in this case we must have f = ma, where [ is the frictional
force, m is the mass of the box and « is the acceleration. Since f has a
maximum value [, = p,N = pmg, we obtain the maximum allowed accel-
eration of the truck as a, = p,g = 0.3 x 9.8 = 2.94 ms~2.
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If this is even slightly exceeded, the coefficient of friction drops to u = 0.2.
Again the only horizontal force on the box is friction, but now this is too
small to prevent the box sliding backwards with respect to the truck. We now
have f = ma,, where f is now the sliding frictional force f = uN = umg
and a, is the acceleration of the box with respect to the ground. Thus
y, =,l"/m = ug= D‘Zg = l.96ms'2A

The distances x,, x; traveled by the truck and the box relative to the
ground in the first second are given by the formula x = uyt +a[2f2. The
initial velocity vy with respect to the ground is the same for the truck and
the box, so

a,t
X, =yl + 5

ﬂb{z
Xp = vpf + =5

The distance traveled by the box with respect to the truck is Ax = x;, — x,.
Subtracting the first equation from the second we get Ax = (a; — a,jf2 /2.
Note that a;, — a, is the acceleration of the box with respect to the truck.
This gives Ax = (1.96 — 2.94)/2 = —0.49 m. Thus the box slides 0.49 m
backwards on the truck in time 1 = 1s.

Clearly the monitor cannot move with respect to the computer without also
moving with respect to the table. The condition that the monitor should not
move with respect to the table is found from the balance of horizontal forces
on the monitor. This gives F — f; = 0 (see Figure). Since f; has a maximum
value of umg, this gives Fy,, = pmg. We can now show that the full monitor—
computer system does not move in this case. The external horizontal force
acting on this system is £F, = F — f3, where f; is the frictional force between
the computer and the table. For the case F = F,,, = wng, we see that this is
less than the maximum allowed value 3umg of f, so the system remains at
rest. Hence the monitor does not move with respect to the computer either.
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Adding the two equations and solving for P gives
P=(M+m)a+ pg).

Now f; has a maximum value f;(max) = uMg, so since f; = Ma, aalso hasa
maximum value dy,,, = f;(max)/M = pug. Above this value the book cannot
accelerate as fast as the paper, which can therefore be extracted. Substituting
@ = Gy, into the equation for P above gives P= (M +m)(ug+ pg) =
2u(M +m)g = 0.22Mg. Thus Poae = 0.22Mg.

[0 WORK, ENERGY AND POWER

589.

S90.

S9L.

§92.

Only the horizontal component of the force F does work (there is no motion
in the wvertical direction). The horizontal component is F, = Fcosf =
5x0.984 = 4.92N. To find the work done we need the distance traveled
in 5 s. Newton’s second law gives the horizontal acceleration as a=
F./m=492/5=098 ms ™. The distance traveled follows from the formula
x =gt +ar’/2 = 0.98 x 5°/2 = 12.3m. Thus the work done is W = F,x =
492 % 12.3=260.5J.

The train initially has no kinetic energy (77 = 0), but eventually acquires
a speed of v=72 km/h=20ms’ ' It therefore has kinetic energy
Ty =m?/2 = 10° x 10° x 20°/2 = 2 x 10* 1. This energy was all supplied
by the motor, which did no other work, so that W =T, - T} =2 x 10° 1.
The increase AU in the gravitational potential energy is the difference
between the energies in the final and initial states. Thus AU =
mgy; —mgy, = mgh, where m=10 kg is the mass of the bucket and
contents, ys,y, are the final and initial heights of the bucket measured
from an arbitrary origin, and h=10m is their difference. Thus
AU =10%9.8 x 10 = 980 J. The work donc against gravity must equal
the change of potential energy (there is no kinetic energy in either the initial
or final state). Thus W = AU =980 J.

We choose the ground as the zero-point of gravitational potential energy.
The total energy of the rollercoaster remains fixed as friction is neglected.
Its value can be found at the first point (maximum height) as E =
h+U = muf,*’Z + mgh,. At the second (minimum height) point the energy
is E=T,+ U, =muv3/2 +mgh,. Equating these two expressions we get
o = v} + glhy — hy). Thus
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S104.

S105.
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Since the motion 1s uniform, the vertical forces on the load must balance, i.e.
F = mg, where F is the force exerted by the cranc on the load. The power
follows from the formula P = Fu, giving P = mgv = 500 x 9.8 x 2 = 9800 W.
To find the work done by the crane we use W = Fh since the force is con-
stant, Thus W = 500 x 20 = 1000 J.

Since the second crane lifts the load at twice the above speed, its power is
larger by a factor of 2. The work, however, has the same value, since both the
force and the height are the same as in the first crane.

The work done by the pump in ejecting a mass m of water is given
by conservation of energy: W=E-E=T-T\+U,-U, =
mu%,!Z + mgd, since the water in the well is at rest and we can take its surface
as the zero-point of potential energy (we assume that the water level does not
change significantly during pumping). Thus the effective power Py of the
pump is given by

W m v
Pd’f—-T-—T(‘E“i'gd).

The flow rate 2 m® per second implies mft=2x 10°kgs~!, since 1m® of
water has a mass of 10° kg. Substituting also v, = 10 m s”'and d = 50 m,
we get Pp=2x 103(]00{2 + 9.8 x 50) = 10B0kW. The efficiency n = 0.8
implies that P,y = 0.8P, so that the power consumed is P = Py /0.8 =
1350 kW,

The car’s original kinetic energy is 7' = mvz,a'Z has to be dissipated in time 1,
so the average rate of working of the brakes is P = mv*/2t = 10°x (2'1’]!!)2 /
(2 % 10) = 38.6 kW. (100 km/h = 27.8 m s~'.) All of this goes initially into
heating the braking surfaces, so they must lose at this rate in order not to
heat up.

Animals jumping to the same heights & gain the same potential energy
V/m = mgh/m = gh per unit mass. Since their muscle masses scale with
their total masses, this suggests that the total energy supplied per unit muscle
mass is similar in similar animals. The vertical speed required is similar (of
order (Zgh)"'r 2}, but larger animals need more room to achieve it, suggesting
that the rate of cnergy release is lower for larger animals, roughly as (™',
where / is the size.

We write U, U, for the gravitational and elastic potential energies. The
energy of the mass-spring system is constant. Initially it is £ = U, = mgh,
since the mass is at rest and the spring is relaxed. On the level surface
E =m 2, since the mass is at zero height and the spring is still relaxed.

Thus v = /2gh.
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After the mass encounters the spring, it compresses it until all the energy is
in the form of elastic potential energy (maximal compression, zero velocity,
zero height), Thus E = U, = kx*/2. Equating this to the first expression for
E and using x = h/10 gives khz,f'?.ﬂo = mgh, i.e. k=200mg/h. Since no
energy is lost, the mass returns to exactly the same height i after the spring
relaxes.

Energy conservation applied to the motion between the initial (1) and highest
(2) positions gives

Ei=E+W,

where W is the work done against friction. With £; = mb‘zfz,Eg = mgh=
mgdsina = mgd /2, and W = fd = uNd = pmgdcosa = 0.1mgd/+/2 this
gives

¢ _gd Olgd _Llgd

2 V2 V2 V2
Thus d = v*/(1.1v/2g).

As we saw in P7, the mass can only rest in equilibrium under gravity and
friction on an inclined plane if u, > tana. Here tana =1, so that the
required g, is 1. In practice this is impossible.

Using energy conservation for the downward motion gives

Ey=E 4+ W,

where Ej is the energy when the mass returns to its starting point, and W' is
the work done against friction on the descent, Because the normal force is the
same, the distance traveled is the same, and the coefficient of friction has not
changed, W’ = W = 0.1mgd/v2 = 0.0454mv?, where we have substituted
d=1 J(1.1v/2g) from above. Further, E, =mgd/v2 = 0.454m. Thus
Ey = Ey — W' =0.409m”. Equating this to mu}/2 gives vy = 0.905v for
the return velocity. This is smaller than the initial velocity, since energy
has been lost performing work against friction.

0 MOMENTUM AND IMPULSE

S108.

Horizontal momentum is conserved as there are no external horizontal
forces, i.e. the total momenta before and after the collision are equal. Choos-
ing the bird"s motion to define the positive x-direction, we have

MV —mv= (M +mU.
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S
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Thus U= (MV —mv)/(M +m). For the case given we get U=
(MV —0.01M x 10V)/(M +0.01M) = 09MV /1.01M = 0.89FV. Note that
energy is not conserved in this case: some is lost from the mechanical system.

Conservation of momentum implies Mv + piu = 0, where v is the velocity of
the gun after firing. Thus v= —mu/M = —2.3ms '. The minus sign here
shows that the gun recoils, with recoil velocity [v] = 2.3ms™". To reach this
speed by being dropped from rest, the kinematic formula +* = o + 2ax
shows that an initial height & rvz,’Zg = 0.28 m is required.

To achieve the highest terminal velocity, conservation of momentum shows
that one needs to maximize the momentum of the exhaust fuel and minimize
the final mass of the rocket. Rockets thus use powerful fuels (high exhaust
velocity) and carry as large a mass of it as possible. Once a fuel tank is empty,
it is jettisoned, reducing the propelled mass and thus raising the final speed.

Momentum conservation gives
mu+ 0 = mu, + muvy, ()

where v, v, are the final velocities of the cue ball and pool ball respectively.
As there are two unknowns in this equation we must use a second relation.
This is supplied by mechanical energy conservation, i.e.

é

S
u =m2 =2
mE+0—m2+mz. (2)

Rearranging and canceling m we get

Uy T H= Uy, (3}
v -1 =13 )

Dividing (4) by (3), we get
vt u=1. (5)

Adding this to (3) we get 2v; =0, so v; = 0. Thus from (5) v; = u. The cue
ball stops dead and the pool ball moves off with the cue ball's original
velocity. Note that the restriction to pure sliding motion is unrealistic in
practice, as the energy in the rolling motion of the balls is usually significant
and causes them to behave differently (see S117).

Momentum conservation gives
nyty + Moy = My 4+ mov;.
Energy conservation gives

Ly +imyd = myad + Iy
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We can rewite these equations as

my(u) — vy) = my(vy — wy),

my(uy — v )y +vy) = ma(vy = wp)(vy + ).
Dividing these equations gives u; + vy = v; + 4, or
v =1y = —(uy — ;)
as required.
We treat both cases simultaneously by writing m for the mass of the incoming
particle and u, v for its velocities before and after collision. The proton velo-
city after collision is v,. We assume that no external forces act on the parti-

cles, and that they collide elastically. Then both momentum and mechanical
energy are conserved.

mu = muv + myu, (1)
and
mé  m’ mpvg
— 2R 2
2 -2 T2 @
Rearranging we get
m
— = P
u—v=-"t (3)
and
2?2
@i = @)
Dividing (4) by (3) gives
U+ U=, (5)

Adding (5) and (3) gives 2u = (1 + m,/m)v,. Thus

2m
= .
m-+m,

Up

Using this in (5) gives
_m-m,

n o+,

Assume u > 0 in both cases. In the first collision we have v = v; < (. Thus
m = my < m,. In the second collision we have v = v; > 0,50 m = my > m,. A
lighter particle recoils from a stationary target, while a heavier one moves

forward after collision.



164

SOLUTIONS — CHAPTER I. MECHANICS

Sli4,

SI15.

Using the last two equations twice, with m = my = m, /2, m = m; = 2m,,
we get final velocities v, = 2u/3, v= —u/3 and v, = 4u/3, v=1u/3.
From the previous problem, the proton’s velocity after collision is

2m
Up = u.
m-+mg

Its total energy (all kinetic, = m_,.vf,,-’ 2) is therefore

2m
E,= izx .
(m + m,)
All of this energy was transferred from the incoming particle, so AE = E,.
The incoming particle had energy E = muzﬂ, S0
AE  4mmy
E " (m+my)

independent of u. Note that if the incoming particle is an electron,
m = m, < my, so this fraction becomes AE/E = 4m_/m, < 1. If the incom-
ing particle is much more massive than the proton, m > m,, the transfer is
similarly inefficient. Only when the masses are comparable is the transfer
significant,
Momentum conservation gives
myuy = mvy + M,

and the energy equation is now

vy — v = ey, (1)
Eliminating v, between these equations gives

_ m (1 +e)
ny +mz

uy, (2

so that the ratio of the kinetic energy of m» after the collision to that of m,
before it is

%m;t% _ 2y

ﬁ = ( + e) —_—-

pRL L () + my)

For > m, this ratio is (1+e)’my/m; < 1, and for my, < m; it is
(1 + e)*m, /my < 1. (Compare with S114, where e = 1,)
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We must supply a fixed amount of energy to drive the nail in. From the
previous answer we see that energy transfer in a collision is efficient only if
the bodies have similar masses. So jumping on a nail wastes a lot of energy.
The collision with your shoes is also likely to be more inelastic (e < 1) than
hammering it, wasting even more energy.

Equation (2) of S115 gives

v =%(] + euy.

Equation (1) of §115 gives
1
v =1 — €y =§{l —t‘]iﬂ

for the velocity of the cue ball after the collision, since m; = m,. At first sight
it appears that the physicist is right, since if e is close to 1, v; must be much
smaller than v,. However, the argument is correct only if the cue ball was in
pure sliding motion, whereas in reality it is usually rolling. The spin of the
ball then causes the ball to continue to move after the collision. (A purely
sliding ball stops almost dead at impact — this is a szun shot. The ball must be
cued at exactly one-half of its height for this to happen. See $211.)

Momentum conservation gives
myuy 4+ myty = myvy 4+ mavy (1)

as before, where vy, vy are the velocities of the bat and ball respectively. We
can use the result of the last question to express the elastic (energy conserva-
tion) condition as

Uy =) =Ny — ).

We wish to find 15 = v; 4+ w; — 15, so we need to eliminate the unknown v;.
Using (1) we have
—T + By — Mty
" S

N
50
M,
vy =20y — uy +— (13 — ).
m

For m, > m; the term in brackets is negligible, and we get v; = 2u) — 1. As
the term in brackets is negative, this is the maximum value of v,. Faster
pitches can be hit further. However, even the slowest ball is of no use if
the hitter’s value of 2u, is already large enough for a home run.
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position and some other point. Note that the center of mass of the system
remains stationary at all times.

Immediately before hitting the floor for the first time, the ball has velocity ug
downwards. The coefficient of restitution e is defined so that (velocity of
separation) = e x (velocity of approach). Here the separation velocity is
the upward velocity «; immediately after the bounce, so that 1, = eu,. The
kinematic formula v* = v} + 2ax now gives the height reached on the first
bounce as

x| =17/28 = €15/2g.

Clearly, the ball hits the ground for the second time with velocity u,, and
leaves it with upward velocity i, = eu,. The same kinematic calculation now
shows that the ball reaches a height

xy = /2 = €'uy/2g

on the second bounce. By the same reasoning, after n bounces the ball
reaches height x, = e™xy, with x; = 13/2g.

From the kinematic formula v = vy + ar with v= 0,73 = 4, and a = —g the
time to reach the top of the first bounce is 1,/2 = 1, /g, so the total time
between first and second impacts is 1, = 2u) /g = 2euy/g. After the second
impact the upward velocity is us = eu; = e*uy, so the time between second
and third impacts is t; = 2us/g = 2¢’uy/g. In an exactly similar way, we see
that the time between the nth and (n + 1)th impact is 1, = 2¢"uy/g. Hence the
total time before bouncing stops is

2
Ihounce =%(1 teted +E 4.0

The quantity in brackets is an infinite geometric series, whose sum is
(1—¢)”". [If this result is unfamiliar, let S=1+e+¢e* +¢€' +..., then
eS=e+e +¢ ..., so subtracting we find that S(1 —e) =1, hence the
result.] Thus

uy e

Thounce =

gi-e

The highest point is reached when the vertical velocity v, = 0. Using the
formula v, = v, —gt with v, =1w,siné, this happens at time 7, =
vpsin@/g. The corresponding horizontal distance is X, = vy, since the
horizontal motion is uniform. Thus x,, = vﬁ sinfcosf/g (note that this is
half the total range of the shell).
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Momentum conservation requires that
mu=(M+m)V, (1
where ¥ is the velocity of the block and embedded bullet after impact. The
latter thus has kinetic energy T = (M + m)Vzg’Z, which is all converted to
gravitational potential energy (M + m)gh, i.c. V= 2gh. Using this in (1)
gives
(M +m)
- m

(2gh)""%.

With the data given we find u = 768 m s~'. The kinetic energy T of the block
and bullet can be rewritten, using (1), as

m 1
r= M+ mimuz'
so only a fraction m/M ~ 1073 of the bullet’s kinetic energy was used to raise

the block. Almost all of it ended up heating the block slightly (cf. S114-
S116).

Conservation of horizontal momentum gives

mu = (m+8m)V,

where V" is the velocity of the dart and block after impact (assumed to be
almost instantaneous). Therefore F = u/9. This is the initial velocity just
after impact: the motion of the block and dart is resisted by the spring.
Total mechanical energy is conserved in the subsequent compression of the
spring, so E; = Ej, where E; is the total energy at maximum compression
and E, is the kinetic energy just after impact. Thus

1
2

where x,, is the maximum compression of the spring. With V' as above, this

gives
. _ [mu
Xn =153

The locomotive must expend more power because the accumulating snow
increases the mass and hence the momentum of the train. In a very short
interval A¢, the accumulated mass is Am = r, At. Hence the momentum
change of the train is Ap = A(mv) = r,,Atv. The extra force the locomotive
must exert is thus

—Iz-k.r,z,, =<=9my?,
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The power required to maintain the constant speed v with this F is P=
Fv = r,v*. With v=108 km/h = 30ms~', and r,, = 10kgs™', we find P =
9000 W = 9 kW,

We choose the downward vertical as the positive direction. The velocity of
the sack just before impact is given by the free-fall formula v = /Zgh. Since
the sack comes to a stop, its entire momentum is lost. Thus the momentum
change of the sack is

Ap=ps—p =0—-Mv=-Mu

Hence the impulse on the sack is J, = Ap = —Muv. The impulse on the
platform is J, = —J;, = Mv (Newton’s third law). From the data given
Jy=MyZgh=10xvZx98x 1 =443kgms™".

The average force on the platform follows from FAt = J, where At is the
duration of the impact. With Az =0.1s and J =J, as above, we find the
average force on the platform £, = J,/Ar =443 N,

Momentum conservation is nor violated here: the sack and the Earth share
the final momentum. Because the mass of the Earth is so high, the recoil is
negligible. Momentum is a/ways conserved in collision problems; mechanical
energy need not be (as here).

As in the previous problem, the impact velocity is v = /2gh. Thus the
momentum of each grain changes by —mv on landing; the momentum of
the platform therefore changes by mv as each grain lands. Denote by R the
number rate at which grains are deposited on the platform. The correspond-
ing rate of momentum deposition is Ap/Af = Rmuv, and this is therefore the
impact force F exerted by the stream of grain. With the data given
F = Rmy/Zgh = (1000 x 0.01)v2 x 9.8 = 44.3 N.

We take the positive direction as that away from the goalkeeper. The
momentum change of the ball during impact is Ap=p,—p; =
myv — my(—u) = my(u + v). This is the impulse J, on the ball. The impulse
on the goalkeeper is equal and opposite, i.e. J, = —J, = —m (1 + v). Thus
the force exerted on the goalkeeper during the punch is F, =J, /Ar=
—my(u+v)/Ar

If the goalkeeper is not to slide backwards, the resultant force on him
immediately after the punch must be zero. Thus f + F, = 0, where f is the
frictional force. Thus f = —F, = m,(u+ v)/ At Since { < ji,m,g, we require
pymg > my(u -+ v)/At. Rearranging, this gives

my (u+v) i
Hs my, gAt T mgAt’

because v = 0.8u. With the data given this implies
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Most of this energy goes into deforming the cars.

S134. We take the x-direction in the direction of the cue ball’s original motion, and
the y-direction at right angles to it (see Figure). Let the cue ball’s approach
velocity be u and the velocities of the cue ball and object ball after collision be
vy, .

Conservation of x-momentum gives
mu = mv, cos # + muy, cos ¢ (1
and conservation of y-momentum gives
0 = mu, sinf — muv, sin . (2}
Conservation of energy (all kinetic) gives

] 1 1
im'ar2 = imuf + Emv%. (3)

Note that the mass m of each ball cancels from all of the equations.
From (2) we get

vy 8inf = vy sin g, (4)
so eliminating v; from (1) gives

vy sin fcos ¢
u = v costl + ————

sin ¢
Thus
u = D8Nl +9) (5)
sing
¥
Uy
<

e
<

Uy
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F=m— = muw'r
r
and substituting the values of m,w and r we get T = F = 0.1 N.
S138. The forces acting on the plumbline bob (mass m) are its weight mg and the

tension T of the string. The resultant of these must provide the centripetal
force F, = mRuw’cos A towards the Earth’s axis (see Figure). Taking the x-
and y-directions along the local horizontal (North) and vertical (towards the
center of the Earth) we have in the x-direction

YF, = T'sinf,
and in the y-direction
YF, = mg — Tcosé.
In the x, y system, the centripetal force has components

F.. = mRuw” cos Asin A,

F,= mRu? cos® A,
Hence setting BF, = F,,, LF, = F,, gives
T'sin# = mRu’ cos Asin A,

mg — T'cos = mRur cos® \.
Eliminating 7" between these two equations gives

Ru? cos Asin A

tanf = —————.
g — Rucos? A

Hanging point
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LF = Tigw — mg, ()
while at the highest point
ZF = Tyigh + mg. (2)
The value of LF is the same in both equations, so subtracting (2) from (1)
gives Tigw — Thish = 2mg.
This is independent of the speed and the radius of the circle.
S141. When the string makes an angle 8 to the vertical (see Figure) the centripetal

S142,

force is T + mgcos#. This must be constant in uniform circular motion, so
the minimum tension T is reached when cos @ has its maximum value 1, i.e. at
the highest point. Here
o
T+mg= m?‘

To keep the string taut requires 7 > 0, i.e. v* > rg, or
v > /g
1

With the data given the velocity must exceed 3.13 m s,

When the string breaks the mass is moving horizontally, so by Newton’s first
law it will initially continue to do so, with the velocity v it had before the
string broke. Thereafter it will fall under gravity and hit the ground. In a
recent survey, U.S. college students were asked a similar question. A majority
(including many science majors) believed that the mass would initially fly
radially outwards along the line of the string (here vertically downwards)!
Surveys in other countries give similar results. Remember, the string tension
is not resisting a tendency of the mass to fly radially outwards, but forcing the
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But the bob’s speed is v = 2z R/, and R = /sina, so (2) gives
Tsinog = 47|2f2mR = 47r2f2mlsin o,

so that T'= 41r2f2m:' =158 N.

Equation (1) now gives cosa = mg/T = 0.031 so that a = 88.2°, i.e. the
pendulum is almost horizontal.

S145, Clearly the cars are in most danger of falling from the circular loop at its
highest point (sce Figure). There

N—i—mg:m%, ()
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where v is the velocity at this point and N is the track’s force on the car; this

is normal to the track as there is no friction. In (1) » must be large enough to

make N positive, or the cars will detach from the track. Thus we require
v > Rg. (2)

Mechanical energy is conserved, so equating its values at the high point & and
the top of the loop, we get

mgh = %rm,'z + 2mgR,

or
2
L4
h=—+2R.
2g

By (2), h> R/2+2R=25R.
In practice i must be appreciably higher, because of frictional losses.

5146, The forces on the bobsleigh are shown in the Figure. The resultant vertical
force must vanish, so that

LF,=Ncosa—mg =0, (1

where N is the force exerted by the track on the bobsleigh (normal to its
surface as there is no friction) and m is the mass of the bobsleigh. The
resultant horizental force must supply the centripetal force required to
keep the bobsleigh in circular motion. Thus

2

LF, =Nsina= m%, ()

Eliminating N we get
v = rgtana.

With the data given, the maximum v = 13.0 m s\,

If the speed exceeds this value, the bobsleigh moves outwards and therefore

- track
P

mg
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inner side (point B). At B the water pressure is equal to the atmospheric value
Py. To supply the centripetal acceleration to a horizontal column of water of
unit cross-sectional area requires a pressure

P= Po‘i'j’)dﬂ'

where p is the water density (pressure = force per unit area). To maintain the
vertical balance of the water above A (height /) requires

P = Py + pgh.

Eliminating P — Py between these equations shows that da = gh. With
a < 0.05¢ we find & <0.05d = 0.4cm. Of course it would be advisable to
allow more room between water and brim than this to cover other possible
disturbances.

SI51. The resultant horizontal force on the mass on the turntable must equal the
centripetal force mw?r. At ry,, the frictional force f opposes the tendency to
move outwards (see Figure), so

T +f = M o, (1)
at inner radius at outer radius
N N
“'_"!mﬂ"'—-
2 2 '£EE:|_|
mg mg
Fimas |
r |

mg
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where T is the tension in the string. The latter must equal the weight of the
hanging mass, i.e. T = mg, while f = ugng. Substituting in (1) we get
mg + pmg = nwzrmu,
so that
g
Tmax = _‘2(] +.|u':)-
w
At r = ryj, the mass on the turntable is on the verge of moving inwards (see
Figure), so that the frictional force is reversed as compared to (1), i.e.
T —f = Wzrmin.
Substituting T = mg, f = u,mg as before we find
g
Tmin = ?(] - ).
With the data given we find rp, = (9.8/36)(1 +0.5) =041 m, ry, =
(9.8/36)(1 - 0.5) = 0.14m.
S152. In the case of no friction, the resultant horizontal and vertical forces on the

cycle and rider are (see Figure)
YF, = Nsina,
EF, = Ncosa —mg,

where N is the normal force exerted by the track on the cycle tires. To supply
the centripetal force as the cycle performs the turn requires LF, = mi/r,
while £F, must vanish as there is no vertical motion. Thus

2

iy

Nsina=m—,
r

(1)

Ncosa =mg. (2)

Dividing (1) by (2) gives tana = 13/(rg), so that v, = (rgtana)'?,
At speed vy = 2, the cycle and rider are in danger of sliding upwards, so
the frictional force f acts downwards (see Figure). Thus

EF,:Nsino+fc05ﬂ=m§, (3)

LF, = Ncosa —fsina—mg=0. (4)

From (4) we have ¥ = ftana + mg/(cos ), so substituting into (3) we find

3
. vy
ftanasina + mgtana + fcosa = m?l_.
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Y
N —
I
I
|
i
i
V=V,
V=V,
VoY,
ie.
- 2 k]
sin” o Hin
f +cosa | =m— — mgtana.
COs v r

Using the trigonometric identity sin’ o + cos’ a = 1, the coefficient of f in
this equation is 1/{cosa), so we get

f= m—cosa — mg sina.
r
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SI153.

S154.

S155.

S156.

SI57.

S158.

Substituting v; = 2vy = 2(rgtan a]m we get
= dmgsina — mgsina = 3Img sina.
S

When the speed is v; = vy/2, the cycle and rider are in danger of sliding down
the banking so the frictional force f acts upwards (see Figure). Thus
2

EF;:NS]BG—-_}’COSC&‘:M%,

LF, = Ncosa +fsina —mg = 0.

Eliminating N between these two equations similarly as in the previous case,
we get
: v}
[ =mgsina —m—cosa;
¥

12

substituting v; = 1p/2 = (rgtana) /2 now gives

f=mgsina — .],—mgsin a= %mgsin a.

Note that to find the coefficient of friction we would have to divide the
expressions for f by those for & in each case.

If the satellite has mass m and speed v its weight mg must supply
the centripetal acceleration mv’/R,, so that v = (gR,)"/>. The period is
2nR,fv = Zﬂ(R,fg)”z = 85 min. Typically the period for low-Earth-orbit
satellites is nearer to 90 min.

No! The maximum controlled deceleration a of the car is given by the kine-
matic formula o* = vj + 2ax as a = —$/2r. To turn the car in a curve of
radius r requires centripetal acceleration —1.%,":', i.e twice as much. (Clearly
turning the car also introduces additional risks such as skidding and over-
turning.)

The period of the pendulum is P = 2x(//g)"/*. With / = | m we find P =255,
so it performs 1800 swings in one hour,

Accelerating the elevator upwards by a increases the effective gravity )gm to
g + a (see S48 or §72). The pendulum period is proportional to g;f} ? and
therefore shortens. The reverse happens if the elevator accelerates down-
wards.

Hooke’s law states that the force F exerted when the spring extension is x
is F=—kx. Here this becomes mg =kAx, so the spring constant
k = mg/Ax = 98 Nm™'. The period of the system is P = 27:'(.»:,:’!()"‘fz =0.63s.
The students should first measure the spring constant by hanging a mass m
from it. As in the previous answer they get k£ = mg/Ax, and the mass—spring
system has period P = 2*.-r|[m,hfc)1‘f 2= 27r(Axfg)” LA pendulum formed by
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SI59.

S160.

Slél.

S162.

Slé3.

Sle4.

hanging a mass from the string has period P’ = 2x(i/g)'/>. They must
arrange the string length exactly equal to the spring extension, if possible.

The motion is described by
x(#) = xpcoswt,
where w = (k/m)"/, (Note that we must express wt in radians here.) It thus
reaches x; at time f = w! cos'l(x“r’xo). With the data given we find
f =08T7s.
The velocity follows from energy conservation:
Lkexd = Liexd + Jm?,
so that v = [k(x} — x})/m]"? =0.16 m 7.
Energy conservation can be expressed as

v utdt =,

where w is the angular frequency, d is the distance traveled by the end of the
pendulum and C is a constant. Since v = vy when d =0, and v = 0 when
d = A (the amplitude) we have 4 = vy/w = v/l/g = 0.2 m.

Energy conservation requires that E = mv?/2 + kx*/2 remain constant. Thus

mvf + kx% = ml:% + ka3,
so that m = k(x3 — x})/(v} — +3) = 0.02 kg. The amplitude is given by setting
vy = 0, Xy = A, 50 that kA®> = muv} + kx}, leading to 4 = 0.22 m with the data
given.
The four springs can act together as a single spring of constant 4k and thus

oscillate at frequency
1 fak\'?

We must ensure that this is smaller than v, = 10s™', so we require
k < 1007*M = 4935Nm™~'. Other modes of oscillation (e.g. rocking) will
have lower frequencies, so this is the required limit.

The two springs behave as one spring of constant k =k, +k; =3 Nm™".
The maximum compression of spring 1 occurs after 3/4 of an oscillation
period, i.e. after a time 3P/4 = (37/2)(M/k)"/* = 2.75. The maximum com-
pression is the amplitude A4, which from energy conservation (see S160) is
A=v fw=uv(M/k)*=029m,

The motion of the mass is given by

x(1) = Asinwr
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S165.

Sl66.

with wr in radians. Here 4 =0.29 m (see previous answer), and w=
(k/M)"* = 1.73rads™!. Hence the time at which x=—-0.1 m is =
(1/w)sin™'(x/A). Because x < 0 we have to convert the negative value of
6 =sin"'(x/4) (in radians) to 2% —[6]. With the data given we find
t=342s.

Two springs connected “in series™ in this way have an effective constant &’
given by

11 + 1.2

Kok kK

so k'=k/2. The oscillation period P =2m(m/k)'? changes to P =
2n(m/k')"? = V2P.

The oscillation frequency is w = 27w = (k_z‘m,m)” 2, where Mg =m+M=
Smi is the total oscillating mass. Thus here k = wzmm, = 471 % 5m, which
gives k=197 Nm™".

The maximum horizontal force is exerted on the block when the accelera-
tion a is a maximum, which happens at x = 4. Then |a|,,, = kA/5m, and
we have F,,, = Mla|,,, = 4kA/5. For the case 4 = 0.1 m given this implies
Fae = 158 N,

In all cases this force must be supplied by friction, f, i.e. f = 4kA/5. But f
is limited by /< p, Mg = 4umg, so the maximum possible amplitude A,, is
given by

4kA,,
—5 = 4umg

or A, = Smy.g/k =0.174 m.

[0 GRAVITATION

Sle7.

Slé8.

From the formula

_GM\M,
T

with M| = Sun’s mass, M, = Earth’s mass, and the data given, we find
F=67x10"%2x 10 x 6 x 10*/(1.5 x 10'")* = 3.57 x 102 N.

The planet’s angular velocity is w = 2x/P. If the planet has mass m, the
gravitational force F = GM,m/d® must supply the centripetal force
F, = maw® = ma(2x/P)* required to keep it in a circular orbit. Equating
F,F, gives

F
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S169.

Thus the planet’s year is

_ 2w 32
P= 7{0’&!;,«)”2 a’*.

This relation is true even if the planet’s orbit is elliptical and a is the semi-
major axis (in practice all planetary orbits are slightly elliptical), and is
known as Kepler's third law.

By definition the weight is equal to the normal force N that must be exerted
by the Earth’s surface on the mass in equilibrium. At the equator the resul-
tant force on a mass m is

ZF, = FL’ - N_.

where Fg is the gravitational force on the mass (see Figure). This must supply
the centripetal force mw’ R, needed to keep the mass in circular motion with
angular velocity w. Substituting F, = GMm/r?, we find

GM,
N=F,-%ZF, = R;m - NMZR,,

€

where M, is the Earth’s mass. By definition g,y = N/m, so at the equator
G L3

gar(eq) = ;; — W R.. )

N smaller at equator than
at pole
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SI77.

S178.

S179.

GMm
Fﬁ = T‘
where m is the mass of the satellite. This must equal the centripetal force
mu? R required to keep the satellite in uniform circular motion with angular
velocity w = 2r/24 radh™' = 7.27 x 107 rad 57", i.e.

GMm 2
7 =mw R,

so that we require R = (GM., /u?)'/. Inserting the values of M, and w we find
R=424x% 10" m. Subtracting the Earth’s radius R,, we find the height of the
satellite as h = R — R, = 3.60 x 10" m.

This large value (almost 6R,) explains the high cost of launching such
satellites. Because they remain fixed over the Earth they are nevertheless
indispensable for communications, etc.

The satellite must orbit the center of the Earth. A geostationary satellite over
a point not on the equator would not do this.

The shuttle’s orbit has radius @ = R, + H, where R, is the Earth’s radius. If
its velocity and mass are M, v, the gravitational and centripetal forces on it
(see e.g. S176) are

GM .M M
r=——=— Fe=—r

a a
where M, is the Earth's mass. These forces are in balance as the shuttleisina
circular orbit, so v* = GM, /a. The satellite (mass m) has the same angular
velocity w = v/a = (GM,/ ]"’rz, but is held at a radius a + h, so the corre-

sponding forces on it are

_ GMm
(a+hy?*'

GM.m

fo=m(a+h) ==

e

(a+h) > f,.

Gravity is therefore unable to supply the required centripetal force to keep
the satellite in an orbit of radius a + A, and the initial motion is outwards, i.e.
away from the shuttle and the Earth. (The satellite will go into a slightly
elliptical orbit.)

The retro rocket gives forward momentum to its exhaust gases. Since the
shuttle and rocket are a closed system, momentum is conserved and this must
slow the shuttle slightly. Gravity will now be larger than the centripetal force
needed to hold the shuttle in its original orbit, and it will fall to a lower
altitude (in fact its orbit will become elliptical, as for the satellite in the
previous question). This is the basic method for bringing the shuttle back
to Earth.
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$180.

Si8l.

S182.

The gravitational acceleration F = GM/r* of the satellite must supply its
centripetal acceleration +*/r. Equating, we find v = (GM/r)'/?. The angular
momentum per unit mass is i = re = (GMr)"r 2 The atmospheric drag exerts
a torque on the satellite’s motion, which reduces its angular momentum per
unit mass /. Since & o r'/% o< 1/v, this actually speeds the satellite up. This
occurs because the satellite goes into an orbit at smaller r. It is a general
property of gravitating systems that a loss of total (kinetic plus potential)
energy always leads to an increase of kinetic energy, while the potential
energy becomes more negative.

The ratio of the Sun's pull to the Earth's is M r*/M,a® = 2.3. In fact both
the Earth and the Moon are in nearly circular orbits about the Sun. They
perturb each other’s orbits — viewed from the Sun, the Moon performs a tiny
“rosette” about the Earth’s orbit (see Figure). The Moon cannot leave its
orbit (and us) because of its angular momentum about the Sun.

)
/{}—’%
/

A point on the planet’s surface has to move in a circle about the Sun with
angular velocity w, so the effective gravity is gy = N/m, where N is the
normal force exerted by the ground on a body of mass m. From the Figure
we find

M
+G—m2 —mg = mu’(a— R),
(a=R)
for the point nearest to the Sun, so that
GM
g =8 — ———+ (a— R} . (1)
@R

For the point furthest from the Sun we find

GMm
mg+m—N = mu(a + R),
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S184.

S185.

S186.

P = pgerh,

where p is the density of water and P is the pressure at the bottom of the
ocean. If the ocean is static, P must be the same all over the planet, so

h o gat.

The ocean is thus deepest (h = d) at the nearest and furthest points to the
Sun, and shallowest (4 = s5) on the circle equidistant from them. The ratio of
depths is

where we have used g = Gm,/ R?, with m, the planet’s mass, in the last step.
As the planet rotates, an observer on a small island would notice the ocean
level rise and fall twice per revolution (i.c. twice per “day”), reaching its
maximum height as the island passes through its nearest and furthest points
from the Sun.

From the last equation of the previous answer, the ratio of lunar and solar
tides is Ma’/ M@b" = 2.15. The tides are then highest when the Sun and
Moon line up on either the same or opposite sides of the Earth, i.c. new moon
or full moon. These are the so-called spring tides. The tides are lowest when
the Sun and Moon pull at right angles at the Earth, and give the so-called
neap tides. The answers given above predict the height of the tides on a planet
completely covered by water, and give a value of order 0.5 m. Far from land,
this is about the observed change in the height of the ocecans. The tides
observed near coasts can be much larger, as they result from water moving
about in regions of varying depth in response to the change in g.y.

The Great Lakes and the Mediterranean are much smaller than the Earth’s
size, S0 g is practically constant over them. They are almost landlocked, so
as gur varies over the day their base pressures P simply vary in response,
leaving their heights effectively unchanged, i.e. P o gqy. This is impossible in
the oceans as water flows to make P the same in regions with different g..
The angular momentum of the Moon is L,, = M,,(GM,b)'/* (see $180). The
Earth’s spin angular momentum is L, = JQ), where ) = 27 /(day) is its angu-
lar velocity in rads™" and I is the relevant moment of inertia. The angular
momentum of the Earth-Moon system is conserved, so that L, + L,, = C or

IR+ M (GMH'? = C, (1

where C is a constant. Since L, decreases, L,, must increase, so b increases.
Tidal dissipation will stop when the Earth spins synchronously with the
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S190.

SI91.

SI92.

Energy conservation requires

1 2 GMm 1 5, GMm
—my — .
r

2:m0 - R, 2m (1)
where m is the rocket mass. Thus
ﬁ—u“:zit{'(l -%) (2)
At r=6R, we have v = v,/10, so (1) gives
212 _ SGM,.
3R,

or vy = L3(GM./R,)".

The maximum height r is reached when v = 0, i.e. all kinetic energy has been
converted into potential energy. Using energy conservation, expressed by
equation (1) of the previous solution, with #+ =0 and v, = I.3(GM¢/R,)”2,
we find

GM, GM, 2GM
r - Rf E

or
=L 0s84s)
% 845),

giving r = 6.45R,.
The Earth’s gravitational pull must supply the centripetal acceleration
needed to keep the station in a circular orbit at any r, so

v GM,
roor
Thus with r = 3R,/2 we find v = (2GM,/3R,)'/%.

To achieve escape from 3R, /2 the minimum speed vz with respect to the
Earth must satisfy

1 GM,

g e

3" 3R
by energy conservation. Thus vy = (4GM,/3R,)"/?. The most efficient way to
arrange this is to use the speed the station already has. Then only a speed
¥, = vg — v =0.34(GM,/R,)""? is needed. The rocket is fired in the direction
of the station’s motion.
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S193. Using equation (1) of $187 gives
GM
R=—n.
P
With the data given we find R = 3 km and 9 km for the 1M, and 3M, black
holes respectively. In reality we need to use the General Theory of Relativity
to evaluate R. However, the calculation given here, first performed by
Laplace and Michell at the end of the 18th century, gives essentially the
correct answer.
S194. Using the previous solution, the average density is
M 18 -3
p=4ﬂ_R3=2 x 107" kg m
with the data given, so the densities are comparable. A neutron star has
R =10 km with M = M, and so also has nuclear density; the nucleons of
its matter are as tightly packed as in an atomic nucleus.
S195. Since for black holes R oc M, the average density found in the previous

solution can be rewritten as

1.8 x 10" 4
p=———
(M/M5)

so with M/M, =3 x 10° we get p = 2kg m™?, i.e. less than twice the density

of air. Black holes are not necessarily very dense!

0 RIGID BODY MOTION

S196.

S197.

Using v = wR, we get w = v/R = 10/0.5 = 20 rad s'. As the acceleration is
uniform, we have w = wy + at, so that o = (w — wy)/t. Withwy =0,1=10s
and w as above, we find o = 2 rad s7%.

The moment of inertia is

I=3Ym? =mR* + R + 2m;R* = 9 kg m™.
Newton's second law applied to circular motion gives
I'=la,
where I is the torque. In our case I' = RF, so

' RF 1x5 2
a—!— =0 =0.56 rad s°.
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| &L

mg

The angular momentum after the mass descends a height R is L=
Ter 4+ muR, where v is the mass’s velocity and  the corresponding angular
velocity of the pulley at this time. Since @ =u/R (no-slip) and
I'=MR2=mR" as before, we have L =2muR. The velocity follows
from the kinematic formula v’ = o + 2ax with 1y =0, a=g/2 and x = R.
This gives v = (gR)"” and thus L = 2m{gR)'*.

§203. By conservation of angular momentum the top must maintain the value L in
the vertical direction. If it is pushed through an angle # away from the
vertical, this component of angular momentum becomes Lcos#, so the deficit
(1 — cos#)L has to be made up somehow. The top achieves this by precessing,
i.e. it rotales its spin axis around the vertical. This rotational motion returns
the missing vertical comp of I Onee L is reduced to
a small value (the angular momentum is gradually transferred 1o the surface
on which the top rests, through friction at the point), the precession angle &
gets so large that the sides of the top hit the surface and it falls over.

S204. The bullet acquires angular momentum about an axis parallel to the barrel.
Because angular momentum is conserved (see previous solution) this keeps
the bullet pointing stably in this direction and so improves accuracy.

5205. Conservation of angular momentum gives
Tw= I +mrd,

where o' is the new angular velocity of the turntable + glue. Thus
of = Laf(f+m*). With I = MR*{2,m = M /10 and r = 3R/4, we find

MR

N, || < S
MR + L MO0.T57R e
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S206.

5207.

A pendulum of moment of inertia 7 and mass M has period

I 12
P=2g|——— y
(MSLC.-.;)

where Lgyy is the distance of the center of mass from the pivol.

(a) Here /= MP/12+ MPj/a=MP/3 (parallel axes theorem) and
Loy =172, Thus P =27(21/3g)* = 1.16 5.

{b) The moment of inertia here is given by I = Iy + M R, where R is the
distance of the pivot from the center of mass (parallel axes theorem). Thus

MP 1 2
"'F“"M(i_"‘) s

since ey = MI*/12 for a uniform rod. Moreover Ly = R = 1/2 — [, With
le = 1/4 we have

MP n? )
I_F-'-M(Z) = 0.146M7

and Ley = /4. Thus P = 2x(0.146//0.25g)"/* = 1.08 s.

By the parallel axes theorem (see P201) the moment of inertia of an extended
arm about the skater’s axis is mL?/12 + m(L/2 -+ R)?. If the arms are by the
skater’s side, the moment of inertia is just mR. Thus the moments of inertia
before and after he drops his arms are

Iy =

MR 5 mL?
12

= —+m(§+R)z},
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S211.

s2i2.

1@‘"' Y

|

If x >/, this rotation produces a linear velocity at the bat’s base in the
opposite direction from v (see Figure). The reaction force at the player's
hands vanishes if the total velocity there is zero, i.e. the batl pivots about
the player's hands. The condition for thisis v = lw, i.e. p/M = I(x ~ )p/I, or
1
h=1 +E'

If the bat is regarded as a uniform rod of length 2/, the appropriate value of J
is I = MI* /3, so x = 4//3, i.e. the player should aim to strike the ball about
two-thirds of the length of the bat from the handle. This is the so-called
center of percussion or “sweet spot.” An impact here gives the feeling of
hitting the ball “off the meat,” i.e. without jarring the hands.

This is actually exactly the same physical problem as studied in the previous
question. Here the point where the ball rests on the table plays the role of the
baseball player’s hands. The condition that the ball should initially pivot
about this point is
I
h=1+ E
as before. With 7 = QMIE,’S for a sphere, we find A = 71/5, i.e. the player
should cue the ball 7/10 of a diameter above the table. The cushions on a
pool table are at this height so that a rolling ball rebounds without skidding.

If there is friction at the disk axis, angular momentum is lost by the disk to
the Earth. When the man stops walking, the disk’s angular momentum is
now too small to cancel his angular momentum completely, so he and the
disk rotate slowly in his forward direction.



CHAPTER TWO

ELECTRICITY AND
MAGNETISM

] ELECTRIC FORCES AND FIELDS

S213. As Q has the same sign as gy, ¢, the forces on it are both repulsive. Thus
taking the direction from ¢, to ¢, as positive (see Figurc) the net force on Q is

Q2 G0 g [‘IL 42 ]
F=F-F=-1%____1Y __ %Y |il_ , 1
! 2 dmepx?  dmey(d —x)7  dmeo (X (d - I)z M
where x is the distance of @ from g,.
With x = d/2 we find

4 _ .
F:Fﬁﬂ(q,-ql)ﬂxgx 10° x 107° x (-2 x 107°) = —7.2 N.

The force acts on @ in the direction of ¢,. We can find the point where the
force vanishes by setting F = 0 in equation (1). Thus

Qa__ @ _,
= PRt
(d-x)
or
o\ _d-x_d_,
q x  x
F; F»d
+ i +
X + o-x
i Q

q:
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S214.

S215.

d
T @l W

Substituting we find x = 1/(1 +2"%) = 0.414 m.
The total forces Fy, > on gy, ¢, should vanish, i.c.

- (ng 0@ _

1 (04 @0 )
F=— 2%, B¢ ) _y,
! 4rrco( [T
Eliminating ¢,4, ,J’fz gives
4 42

AT

2
X _ q i -3
I—x g2

and x = 3//4 = 0.75 m. Using (1) we get 0 = —q;_{xzf.’z) =-56x10"C.
The resultant force F is the sum of the clectrostatic forces F), F> exerted by
cach charge. We must add these forces component by component, so that

so that

Fy = F + Fy,

Fy = Fyy + By,

Now F), = 0 (force only along the y-axis) and similarly F5, = 0. Thus

¥
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S2l6.

S217.

~ -10g; -9x10°x10™°
T dre 2 16

= —563 N (repulsion),

-10q 9x10°x05%10°
dmey yi 9

Thus F = (51)02 “+ 5632)]“r2 = 753 N. From the Figure this force makes an
angle a to the negative x-axis, where tana = |F,|/|F,], i.e. a = 41.6°.

F,=F,= = 500 N (attraction).

See the Figure. The first charge gives a force F, along the x-axis:

—2x107°%x 107°

q1q3 ]
= =9x10 = —2813 N,
T dmegxd (0.08)*
while the second charge gives a force along the y-axis:
G243 03x 107 x 107
== 10— =27N.
P dwegy3 (0.1

The total force is therefore F = (FZ + F2)"/* =39 N, acting at an angle
a=tan"' |Fy/Fy| = 43.83" to the x-axis in the negative-x, positive-y direc-
tion.

This is essentially the same as the second part of $213, since the forces on the
sliding sphere are opposed whatever the sign of . Substituting
d =1,q;/q; = 4 into equation (1) of $213 shows that

S -
T 4473

i.e. the sliding sphere will be in equilibrium at distance //3 from the smaller
charge q,.
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s218.

S219.

$220.

§221.

s$222,

The diagonals of the square cross at right angles, so we take them as the axes
of a coordinate system with origin at the center (see Figure). The ficld E at
the center is the sum of the fields produced by each charge. The latter are
directed radially about each charge, with strength g/ |[4:r.sud2 ), where d, the
distance of each charge from the center, is half of the diagonal length, i.e.
d = av'2/2. Since the fields are radial, the x and y components of E are

Er=51+53=%(_§+%) =0,

B E - (2,2 _ ¢
E=btb=ra (d2+d2) = el

Substituting @ = 1C, etc. we find a field £ =9 x 10° N/C in the —y-direc-
tion, i.e. towards the charge —Q.

”\\ F4
.
.0 a o’
1 2

E;

E‘
E:
E‘

b

QO
(=]

The proton has charge g=+4e=1.6x 107'"C, so the electric field is
E=q/{47rq,al)=5.17x 10'"NC™', and the force on the electron is
F =¢E =826x10"" N inwards. In circular motion this must supply the
centripetal force F =m,vf{a. where m,,v, are the electron’s mass and
velocity. Hence v, = .::F,.-’ml.)]“f2 =220 10°ms™' and the period is P=
2rafv, = 2x(ma/F)"? = 1.51 x 107 5.

By Gauss’s law the charge and field are connected by Q, = 41 R°E, =
592 x 10°C.

Vertical force balance requires gE = mg or g = mg/E. Substituting m =
0.01 kgand E = E, = 130 N C™' gives g = 9.8 x 0.01/130 = 7.54 x 107* C.

As the first two charges have the same sign, the charge Q must lie on the line
joining them, as otherwise the component of force on @ towards that line
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$223.

$224.

does not vanish. To overcome the electrostatic repulsion between the original
pair of charges, Q must clearly have the opposite sign and lie between them.
Let its distance from charge ¢ be x (see Figure). Then the vanishing of the
electrostatic forces on the charges ¢,9¢ and Q gives us the three equations

90 %" _

?-:—?—U (1)
9% %0 _
T'Fm—o (2)
990 _9Q_, 3)

I—xp &

We note that (3) is automatically satisfied if (1, 2) hold, as can be seen by
subtracting (1) from (2). From (3) we get 9x* = (/ — x]z. or taking the square
root of each side, / — x = +3x. This leads to x = //4, —{/2. Only the first root
is physical, the second spurious root being introduced by the operation of
taking the square root above. With x =1//4 we now find from (1) that
Q = -9x°q/* = —94/16. As expected, Q turns out to be negative.

-
q 'i p 1 9g

The force on the electron is F = eE, upwards (as the electron’s charge is
negative). Thus its acceleration is a = eEy/m, = 1.76 x 10" m s>, This is
far larger than g =9.8 m s 2, so the neglect of gravity is justified. The
horizontal motion is uniform, so time of flight between the plates is
t =lyfvy = 10/y/c, and the deflection is y = ar’/2 = 50alj/c* = 0.098 m
upwards.

S—
|

No horizontal forces act on the electrons in the beam, so at time ¢ after
injection they are at horizontal distance x = v,¢. In the vertical direction
gravity is negligible in comparison with the Coulomb force —ek,, which
produces a constant acceleration —eEy/m,. The vertical displacement at
time ¢ is thus y = —{,’ED(Z,:" 2m,. Eliminating ¢ we find the path

E;
‘}{X) =" ‘ n":xz'
1.V
(a) Reversing the field raises the beam symmetrically, so it hits the screen at
10 ecm above the horizontal.
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§225.

§226.

$227.

(b) At x =1/ we have y = —h(= —10 cm), so substituting in the equation
above we find / = (2mhfeEy)' v, = 2.4 cm.

The electrons acquire horizontal velocity v, given by energy conservation:
;%mavi = ] - eV|'

ie v, = (2917;‘1'1'1‘.)"'r 2 The potential difference ¥ between the plates gives an
electric field £ = ¥p/d, which deflects the electrons. This implies constant
vertical acceleration a = eE/m, = eVp/(m,d): the electrons spend a time
t = Ifvy = I(m,/2eV)"* passing between the plates, so using the kinematic
formula y = yy + a12)’2 the deflection is

_eVPﬁ_eVP 2 M, EVP

Yo md2 md %V adv’

The maximum deflection which still allows the electrons to miss the plates is
y =d/2, and this requires Vp = Z(d,:’f)zV,

Let the balls have charges g,,4;. Then vertical force balance requires
—E g, = mg,—E>q; = mg, where m = 411'r:p,r’3 is the ball’s mass. Using
p=08 g ecm™ = Ii(l('.‘kgm_3 we find m =3.35x 10" kg, and hence
g1 =-326x10"C, g;=-489%107°C. Hence —e=—(q,—q:)=
1.59 x 107" C. Note that in reality we cannot be sure that the charges differ
by exactly —e, rather than some multiple of it. In practice the experimenter
looks to find the smallest charge difference; all other differences should be
integer multiples of this one.

From the Figure, we have for each mass
T'sinf = F,,
Tcosl =mg

so that the electrostatic repulsive force is

F, = mgtané. ()
But we have
1
¢ Aney d*
and
d = 2l sinf.

Thus
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A
i
2rrlE(r) = — ﬁrz.!'po,
£
or
poR r 6 -
E(r)= = =5.66 x 10" — N c!

§232. From the Figure we have the force components

F, =10, (by symmetry)

-1 & y ___-l_ d
dmey (@ +)7) /@ + 7 Ameg (@ + 2)

1
F, = —24“02d2~oba =

Thus for y = 0 we have F, = F, =0, so that the origin is indeed an equili-
brium point. For y < a we can neg}cct the term y2 in the denominator, so
that

F,=——=
! 411'(0&3}
¥
q
o Ta d
, % N
/’ \\
;’ -
—qh a a4 g x
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§233.

§234.

S235.

This is the equation for simple harmonic motion, with frequency w given by
dividing the coefficient of y by the mass m and taking the square root, i.e.
w= (qzﬂrrcua}m)m =335 rad s~'. Hence the period is P = 27/w = 0.019s.
The electric field E of the line charge is radial. We apply Gauss’s law 1o a
cylinder of radius R and length { about the line charge. The flux of electric
field is ® = 2aRIE and must equal 1/e, times the enclosed charge, ¢ = M, so
that E = A/(2mey R). The resulting clectrostatic force on the orbiting charge is
qE, which acts radially inwards, as A < 0. For this to supply the centripetal
force, mv?/ R, requires v* = —Ag/(2meym). Note that the radius of the orbit
drops out. Inserting the values given shows that v =19 x 10* m s™',

On the x-axis the field components are (see Figure)
1 (qcosﬂ geosf\
T dreg \ 2+ x+a -
I (—gsind gsiné 1 q .
E, = 5 - 5] == 6.
Y Ameg (J»:‘-i—t;l2 x? +a') 4meg 12 T2
Now sinf = a(x* +a*) ™', so
_ 1 2gqa
ameg (32 + @)
Clearly, for x 3> a we have E, o x .
¥
+q .E“
a \'“'*-._ -
x e
M x
a -
//
_q (A

We can regard the plate as infinite with uniform surface charge density
o = 1000/ 4 = 1000/(100d)* = 107°Q/d". Then Gauss’s law shows that
the resulting electric field has components EP™ = a/(2¢) = 5 x 107°Q/
(egd®); EP™® = 0. We must add to this the field of the shell. This is zero inside
the shell, and equal to that of a point charge Q outside it (by Gauss's law).
Hence inside the shell
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Eo=EMe =5x 107 L
fndz

E,=0.
QOutside the shell (see Figure) for any point P(x, y)
Ex = E|;Ialr + E;h:ll = Efiau _ E“"‘”cosct,

sQ 10 o
_SXIO (gaa 4#50(d—x) +y2 [(d—,‘c)z-l-}zllﬂ

and

E E‘}"]l Eel gin gy = —— ! Qz Y
dreg (d — x)7 + 37 [(d — x)* + 7'

This is the general result for any point (x,y) outside the shell but not very
close to the edges of the plate. Substituting x = y = d/2 for point P, we find

Q
E, = -0.107—5

ed®’

Q
Ey =013 5.

The magnitude of the resultant field is thus

- 2 wr @ _ o562
= @107+ 0.1F)' 7 = 0156,

and it makes an angle # with the negative x-direction, where

Ll

{
B N
N
|

o




SOLUTIONS — CHAPTER 2. ELECTRICITY AND MAGNETISM

$237.

just as for a point charge. For 2a < r < 3a we have E(r) = 0, as this is the
interior of a perfect conductor; a charge —Q will be induced on the inside of
the shell. For r > 3a we have

o
E(r)=—2—
") dmegr’
as a charge +Q is induced on the outside of the shell. See Figure for a graph
of E(r).

E(r) follows in each region (see Figure) by using Gauss’s law. Inside the first
sphere, a surface of constant r encloses total charge ¢, while between the two
spheres the total enclosed charge is —2g + g = —g. Outside both spheres the
enclosed charge is zero. Thus for 0 < r < R we have E(r) = ¢q/ [41rcnr2); for
R < r < 2R we have E(r) = —q/(4meyr?); and for r > 2R we have E(r) = 0.

9 __
4me,A?
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§238.

$239.

Note that E(r) is discontinuous at each of the spheres (see Figure). This is
characteristic of the effect of charge layers.

By Gauss’s law (sec $233) the external clectric field is E, = A/(2wreyr), where
A is the total linear charge density (i.e. charge per unit length). Here
A= Acore + Asheatns and unit length of the core and sheath have charges
Acore = pr’, Asheath = 27Ra. To arrange that E(r) = 0 everywhere we must
choose o so that A =0, i.e. ¢ = —pR/2.

By symmetry the field is directed radially outwards and depends only on r.
Gauss’s law applied to a cylinder of length L and radius r < R gives

2rrLE = l rrrsz
o

s0 that E(r) = pr/2¢.
For r > R Gauss's law gives

1
2mrLE = C—er'sz
0

since the whole charge is included. Thus E(r) = Rp/(2eyr). These results are
sketched in the Figure.

e ————
f/ N

/ r)ﬂ\‘

l'!
R —
L I__{fB’,j_“_
m

p
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5242,

S243.

5244,

5245,

Substituting we find ¥z =3x 9 x 10° x (1/12) x (25x 107 =5 x 107%) =
—56.3 volts.

For uniform fields we have AV = Ed. With E=2x 10* N/Cand d = 2 cm
we find AV =2 x 10* x 0.02 = 400 volts.

If the Earth is electrically neutral, we have only kinetic (7') and gravitational

potential energy (U). Conservation of energy thus gives T + U = constant.
At infinity both 7" and U are zero, so the constant here is zero, and hence

Thus
T =2GM.m,/(R, +h)
=2x67x 107" x 6 x 10% x 1.67 x 10777 /(6.5 x 10°%)
=2x107"].

If the Earth is positively charged the particle must do work against the
electrical potential ¥ (r) = Q,/4megr, so conservation of energy now requires
T+ U+ gV = constant. At infinity we have T=0,U =¥ =0, and the
particle will just fail to reach the Earth’s surface if T =0 at r = R,. Thus
the minimum charge @, on the Earth is given by

_ Qe 2GM.m,

~ 4reR, R,
Using the expression for 7" found above we note that the second term on the
ths is T(R, + h)/R,. This gives 0, = dnegT(2R, + h)fe = 1.8 x 107 C.
The closest approach is achieved when the particle is incident head-on: con-
servation of energy (cf. the previous answer) gives

1 a2
3™ " dmegh

where b is the closest approach distance. Thus
B Zé
2regmvt
The stationary particle behaves as if it had “'size” b and cross-sectional area
o ~7h%. In an electrically charged gas (a plasma) v can be related to the

temperature, and ¢ can be used to estimate properties such as thermal con-
ductivity, etc.

When the particles are at rest their total linear momentum and energy are
both zero (no kinetic energy and negligible potential energy). Momentum is
conserved as there are no external forces, so that
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S246.

5247.

S248.

myy +myvy =0
where v, and v, are the velocity components of the two particles when they
are a distance L apart. No work is done on the system, so the sum of the
kinetic and electrostatic polemia] energies is conserved at zero, i.e.

q142 =0.

—m|v2+ mzvi +arc L —

Substituting v, from the first equation into the second we get:

my _~hi
a +m:)m1vf T 2mel’
and using the data given
2
e
= 20megLm,
Thus, choosing v; > 0 we have v; = 5.25 x 10°ms™, v, = —(myfma)vy =
—2.1 x 10*ms™". The particles’ relative velocity is v, — v, = 2.63 x 10*ms™".

From the definition, 1eV = 1.6 x 107" x 1 = 1.6 x 107" J, we can find the
required potential difference AV from
AV = 5'
q

where E is the energy. Measuring £ in eV and q in electron charges gives AV
in volts. Thus AV = 10°/2 = 5 x 10* volts.

The potential at P is
_ qi

V() =D
where d; is the distance of the charge g; from P. Since
dy = [(x; - 2)* + (3, — 2)"]"/%, we find
10°¢ 1 2 3
dmeg \[22 + 22]"- (1242972 (1242972
Since the field is uniform we have AV = Ed = Egy,. With E; = 100 N/C and
¥y =5cm = 0.05m, we find AV = 100 x 0.05 = 5 volts.

We can calculate the work W using the formula W = Fd cos 8, where F is
the constant electrostatic force, d the straight-line distance moved, and # the
angle between the path and the force. In the present case we must exert a
force F = EyQ to drag the charge quasistatically in the negative y-direction,
and the work done in the two cases is

= EyQoy1,

V(P)=—

) =843 V.
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5249.

§250.

§251.

§252.

and
Wy = EgQo(x +31)"/* cos ),

using d = y; in the first case and d = (x} -+-yf]”"’ in the second. Substituting
cosf =y, (x} + y3) 7"/, we see that W = EyQuy), so that in both cases the
work done is W = W5 = Eyy @y = 5 J. The same result follows immediately
from the energy conservation law W = Uy — U, where Uy, U; are the final
and initial potential energies, as Uy — U; = QyAV.

For a point charge we have
_ 1 o
B = e
1 O
V(r) pr—

Dividing these two equations gives V/E =r, so r = 500/100 = 5 m. Using
this value in the formula for V' gives @y = dmegrV = 2.78 x 1077 C.

The potential difference AV = ¥y — V4 between A and B is just minus the
field multiplied by the distance AB, i.e. AV = —Ed ==2000 V.

(a) The charge ¢ is negative, so work must be done to move it to lower
potential. The total work done is W = (force)x(distance moved) =
|gEd| = |gAV]| =201.

(b) The work done moving a charge in a static electric field depends only on
the endpoints of the path, and not on its shape, so the charge from A to B by
any other route, including the one specified here, is exactly the same as along
AB, ie. 20 L.

The potential of the charged shell is ¥ = £ = 10 V. Since V = Q/(4weya)
we have Q =4rqlVa=1.1x 10°°C. The work done is W =gV =
1076 x 10> = 107 J. If the charge penetrates the shell, no extra work is
required to bring it to the center, as the potential is constant inside the shell.

For a charged spherical shell we have V' = g/(4weyr) so ¢ = 4wey Vr. By con-
servation of charge @ = 1000 = 4000w¢y ¥'r. The total volume of the merged
drop must be the sum of the individual volumes, as mercury is incompres-
sible, so 47R"/3 = 1000 x 47r° /3, i.e. R = 10r. Thus

Q 40007y Vr

= = _ V.
U7 4reR 40mey 100

The electrostatic energy of a spherical conductor is

qz

- Bﬂfﬂf '

U
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§259.

5260.

(Note that these values satisfy V) + V, =&, as they must.) The stored
electrostatic energy is

_0F _

Ur—zcr-l].(]]l AR
After the dielectric is removed, the capacitance Cs is decreased by the factor
K, so that its new value C} is C, = C3/K,; = 8 uF. The two capacitors are
now equal, making the calculation easier. Thus V) = V; = £/2 =30V, and
Up=2U, =2(C,V}/2) =72 107 1.
The total capacitance of the two capacitors connected in parallel after the
circuit is closed is Cy = C| + C; = €| + 2C, = 3C,. The total charge is con-
served, i.e. Q7 = @, so the voltage on both capacitors will be

. _9r_ @
h=h=¢ "3
The charges on each are then

=0V =%,

@ =GV, =20V, =¥'

and the energies are

_ar [
L==3 9C,
Thus Uy = 0*/6C,. Initially we had Uy = U, = Q?/2C,, which was larger.

Energy was released in sharing the charge out between the two capacitors
(currents dissipate heat).

= V=

If the level of dielectric liquid has fallen a distance vt = h < [ we have two
capacitors in parallel, i.e.

Ih

Cl(f)=€um

= lmeUI,

Cy(1) = Kﬁu% = 200€y(f — vi).

Thus C(1) = C; + Cy = 100ey(2/ — vt) until # = {/v, when C(¢) stays constant
at C = 100¢y/. The charge is just C(r)V.
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$263.

S264.

After the spheres are connected, charge will flow until the spheres are at the
same potential. The potential of a conducting sphere with charge Q and
radius R is V = Q/4neyR, so charge flows until the charges on the spheres
are 0y, 0y, with Q,/Ry = 02/ R; or

0= Q2R /Ry. (1)
Moreover charge must be conserved in the flow, so that
O +0r=q + 42

Hence eliminating Q, we find
R
Qz(] +?;) =+

or

0 _lg+ @R
T Ri+R

Then (1) gives

_ (@ + )R, )

Q Ri+ Ry

With the values given we get @, =2.67 x 107 C, 0, =1.33x 107° C.

Each conducting sphere is a capacitor, so that the stored electrical energy is
U= CVz,f'Z =QV/2, where C,V,Q are the capacitance, potential and
charge. Since V' = @/4meyR for a sphere of radius R, we have total energy

;(i,ﬁ)

i= sﬂéo R] Rz

before the spheres are connected, and

1 (0 0
”f—m(i*‘z

after connection. Substituting the data from the previous problem and its
answer we find U; = 9.9 x 10737, Ur = 2.4 % 107° J. As can be seen, the final
energy is lower. This is to be expected, as the currents flowing in the con-
nected system must dissipate some energy as heat.
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S265.

§266.

The first sphere will accumulate charge ¢, such that its potential
Vi =q,/4megRy reaches the external potential V. Thus g, = 4w VR, =
10°% C. When the two spheres are connected, charge will flow until the
two potentials are equal, ie. they will have charges Q,,Q; with
Q/Ry = Q2/Ry and @y + Q> = ¢,. Thus @, =20, and 0, + 0, = 107° C,
implying @, =3.33x 1077 C, 0, = 6.66 x 1077 C.

{a) Here the shells are independent, so
__4q
drega’
a4
° 12rga’
and the potential difference is
q
AV =V -V = .
! © bmega

(b) See the Figure. The potential of the inner sphere has the value
V) = gq/(4mepa) resulting from its own charge, plus the potential ¥, of the
outer sphere. Hence ¥ = ¥{ + V>, so

q

AV=V1—V2=V[=ﬁ‘

(The outer sphere behaves as if it had a total charge 2¢, so that its potential is
V2 = (1/4me)(29/3a).)

(@)

S$267. The field inside a perfect conductor must vanish, so by Gauss’s law, charges

—q and +g are induced on the inner and outer surfaces of the shell respec-
tively. Thus

E(rou) :aﬁ! E(r)=0

0 ow
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5268.

and

q

E(rin) = pro—

The potentials follow by superposition, i.e.

4
Vrow) = e

1 fq gq q) q
Vir)—— (4 9,9\ __9
(re) 4me (rc re *3R 8meyR’

and

1 (g9 49 4 9 (9 _24
Ving) =—[+-2 4+ L) =2 (L _ 1)
(rin) = e (ri,, RT3R) " e \ry 2R
If the shell is grounded its potential is zero, so that the charge on its outer
surface vanishes. However, Gauss's law still requires a charge —g on the inner

surface. The ficlds and potentials are calculated as above, but now with no
charge on the shell’s outer surface. Thus

q
dmegr?,’

E{ront) = E(I‘}) =0, E(ri.n) =

and
V{rnut) =WV(r.) =0,

1 fqg ¢
Virp)=—(—-%).
)= s (2 )
We can regard the capacitor as the superposition of two parallel capacitors at
the same voltage, with one containing the dielectric. Their capacitances are

_Kacoa fa
Cl_ d 3 X
and
_fafa
Cy= d (2+x)
Thus

Cx)=C+ G ='E£' [%I(Kd—k 1) +ax(1 - KJ)]_

With K;=2 this gives C(x)= (e/d)(3¢°/2 — ax), which reduces to
C = ga*/d for x = a/2 (all the dielectric removed) as it should.
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5269.

To find the current we need the charge

[/~
Q(x)=C(x)V = % (%az - ax).
In a time interval As the dielectric moves a distance Ax = uAt. The charge
changes by AQ = —¢;VaAx/d (i.c. it decreases). Thus

_ & _ _euVaE _ _quau

AT d A d

The large distance between C and the AB system allows us to assume that
they do not influence each other. Then

=1 -2__ _a«
4meg R 2megR’

I

Ve

Voot 4,1 4 _ 4
B 4rey2R " dmeg 2R dmegR’
1 1 3
V= . & + L = 4 ,
dmeg R 4men 2R 8mepR
where we have used the fact that the potential is constant inside a spherical
shell in writing the last equation. After B and C are connected, charge flows
between them until their potentials become equal. If the new charges are
Oy, Oc, conservation of charge gives

Op+Qc=9—24=—q. m
Since the new Vp, ¥ are equal,

1 fH‘Qs: 1 Q¢
4mey 2R dmey R’

or
g+ 0p=20c. (2)

(1,2) are two equations for Qg, Qc, with the solution Q¢ = 0,Qp = —q. The
potentials become

_ 1 q 1 i= q
47 4rey R 4meg2R  8megR’

I g-¢q
Vg = -1
B~ 4re; 2R

=0,

Ve =0.
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§278.

§279.

$280.

Ery , &
— _Z"'_II )
i} 1~ 1t
I
< <
A, D 2A, Q 2R,
< <
b
———

7 =81, + 4l
i= sz - 8[3

Using (1) we find
7= 125 + 4b, (2)
i= ng - 811 (3)

Multiplying (2) by 2 and (3) by 3 and adding gives [ = 1 A, so from (2) or (3)
I =0.25 A, and from (1) I; = 1.25 A.

Using Kirchhoffs laws
=10 +i
£| = i:R| + f;RJ

—E: = !.| Rz + f}RJ.

With the values of Ry, R;,&,,&; given, the first equation simplifies the other
two to

4i, +7ih =3
31'.[ + 2!’2 = —l,
which have the solution iy = —1 A, i; =1 A. There is no current in the

resistor Ry, as iy = i) + i, = 0.

The current in the original circuit is 7 = (2£ — £)}/4R = £/4R clockwise,
Thus the voltage drop between A and B is Vy — Vy = —fR+2E=TE/4.
The emf X must be in the same direction as the two in the original circuit,
with magnitude X = 7£/4.

For the case shown in Figure 1, we have V,, = V. But by Kirchhoff’s laws

Vap = [{R4 + R),
50
Vi=nh(R,+R),
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voltmeter will measure ¥, = RI,. To find I, we first calculate the equivalent
resistance of the whole circuit:

1 r+R

Rr =R+ sin~ 73R ™

Thus

£ Er+R)

"R R R 0

We can find /; from the fact that the potential drop through the resistor
between ¢ and b must be the same as that through the voltmeter between the
same points, i.e.

Rh = J'U - 11).
Solving for I, we get
r
h= R+ rL

Substituting for 7 from (1) we get
P Er+R) r
'""Y¥RTR2r+R “(2r+R)

and therefore

r
By symmetry we get the same result for V).

Note that if r > R we have V, = V), =~ £/2, very close to the value in the
circuit without the voltmeter. However, if the internal resistance r is not
much larger than the resistances R, the voltmeter will draw a significant
current and thus reduce the voltage drop V;, or V, below this value,

r

_®_,ww_

R b AR
€ AAAA AAAA
VWV VWV

e
IL '_}

£
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$282.

§283.
S284.
§285.
$286.

The equivalent resistance in each of the three cases is

1 R
R =R+ R

R, =R+ R=2R,

and
1 3R
Re=R+ I/JR+1/R™ 2~
The dissipated power is
52
Thus
£ 162 282
Fa=2 Bo=3x P=3%

The dissipated power is largest in circuit (a).

The power dissipated is P = I°R = V*/R = 242 W, The total energy used is
E=Pr=87x10°1 = 0242 kWh.

The total energy used is E = Pr = 0.1 x 24 = 2.4 kWh. The cost is therefore
2.4 x 30 = 72 cents.

The power is P=IF = 3.6 kW. The total energy is £ = Pt =432 kJ or
0.12 kWh.

(a) When the switches are open, we have a single circuit with a current

£

(b) When both switches are closed, the resistor R, is shorted out, so the
equivalent circuit is as shown in the Figure. The current through the ammeter
is again [ = 1.5 A, so the potential difference between a and b is

Vi =TRy =45 V.

But since a and b are also connected through the power supply and resistor
R,, we also have

Vab 28— !|R1.
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§289.

5$290.

d

i A ™
o

2

:: Ry As

phone command post
<
short

X

With the data given we find x=3.0km. From (2) we find R, =
Ry—2xr=1141.

If the bulbs are connected in parallel the total resistance Ry is given by

J_1,1_3

Ry R 2R 2R’
so the total current is [ = £/ Ry = 3E/2R where £ is the mains voltage. The
currents [, [z through the bulbs obey

Iy 2R
A"z
Is R
and Kirchhoff’s laws require
3&
I+lp=1=—
at+1p R

so I, =E&/R and Iy = £/2R. The emitted powers are Py =El, = E/R,
Py=El;=E/2R and the total power is P = P4+ Py =3E/2R. If the
bulbs are connected in series, the total resistance is Ry = R+ 2R = 3R,
and the current is J=&/3R. The powers are P,=IiR=E /IR,
Py =I3.2R = 26*/9R, and the total power is P = £2/3R. Thus bulb A is
brighter when the connection is in parallel, which also maximizes the total
power output. The two clerks can agree.

In the first case no current flows in the circuit involving &;; the current in the
circuit involving &, is

&
L =—=0.1A.
""" Rus

The resistance of the interval AP is
Rip= Ryp(AP/AB) =20 x (60/100) = 12 Q,

s0 V4p = I} R4p = 1.2 V. This must equal the potential difference £ given by
the power supply, i.e. £; = 1.2 V. Also V = 0, since there is no current in R.
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§292.

But the capacitors are no longer connected in series, so we have
Vi=IR; =6 V and V;=1IR, =48 V. Thus Q; = C;¥; =03 uC and
Qz = Cz Vz = 0.096 ,‘J.C

The current flowing in both resistors is the same:
£
Lh=L=I=——=1A.
! 2 R+ Ry

The potential difference V5 follows from the voltage drop across Ry:
VAB = "RZ =8V, Thus QZ = C: V2 = Cz VAH = 40}1C Also Q| = C1 V| =
C Vg =8 puC.

(O MAGNETIC FORCES AND FIELDS

§293.

We take the origin of coordinates half-way between the two wires, the x-axis
perpendicular to them and the y-axis parallel to them (see Figure). Each wire
produces a magnetic field acting in circles centered on it and thus in the +z-
direction at points in the x,y plane. With the orientations shown in the
Figure both fields point inte the plane (—z-direction) between the two
wires, so the total field is the sum:

_ 27 Ho 21
B(x) = "'.rr d+2x 2md-2x'
ie.
41d
B(x) = 21r =T

for —d/2 < x < d/2. With the data given B(x) =8 x 1077(1 —=4x")"" T. At
x=0 B=8x 10" T and the force is F = evB=ecB/2=192x 107" N,
acting in the x-direction if the velocity is in the y-direction. If the velocity is
reversed the force points in the —x-direction.

|
!

¥




240

SOLUTIONS — CHAPTER 2. ELECTRICITY AND MAGNETISM

$294.

5295.

The magnetic force between the wires is F,, = poli/>/(2nd) per unit length,
and the weight per unit length is W = mg. In equilibrium (see Figure) the
tension T in a cable must satisfy Tcosf = W, Tsin@ = F,,, so

F, LT
tang = - — H00172

: (1)

We can eliminate d since sinfl = d/(2a). Using the fact that d < a we see
that 8 is also small, so that sin# = tan#. Hence substituting d ~ 2atanf
into (1) gives tan® @ = gl J»/4nga. With the data given we find tanf =
(2x 1077/9.8)"% = 1.43 x 107, s0 that # = 8.2 x 107*°. The magnetic field
at the midpoint is the superposition of the fields produced by each wire, i.c.

_Ho(h  h
B= (dfz * dxz)-‘
where both fields point vertically downwards. Using /2 = atan# we find
B=2x10"x3/(143x107%) =42x 107 T.

By Ampére’s law the field vanishes outside the coil. By symmetry it is circular
(clockwise, by the right hand rule) inside the coil, and its magnitude depends
only on r. Using Ampére’s law for a circular path inside the coil (see Figure)
gives

1
—B(r)2xr=NI, a<r<b.
Ho
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5299.

_ pgfrz
ERTEI

where r is the loop radius and x the distance along the axis from the center of
the loop (the sign is determined by the right hand rule; see Figure). Using this
with the data given yields Bp = B, — By =

sol (2rg)? solre ( 4 1 ) siol

- = - ol _ 004420
24 +43)7 23 +a2)P \2x87 2x57) g T hy

The magnetic field of the long wire points everywhere into the plane of the
loop (see Figure), with magnitude

Ml
B =422, M
where x is measured from the wire to the loop. By symmetry the forces on
sides AB and CD of the loop cancel out, and the forces F ¢, Fgp on AC, BD

only have x-components. With the current directions shown (see Figure) we
find the resultant force

1

Fro Fao
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$300

§301.

S302.

F = Fyc+ Fpp = 1,B(d)b — 1, B(d + a)b.
Using (1) we find

el |1 1
F= 2 b[zhd+a] @)

leading to a foree F = 1.067 x 10~% N directed away from the wire.

If there are N turns on a coil, the rhs of equation (2) of the previous problem
is multiplied by N. Each coil must supply a force F = wb to balance the
weight of the train, so from the modified equation (2) above we require

NI, [l 1 ]
W= 2
2T

d d+al

Since w is fixed, to minimize [ and I; we need to maximize the term in square
brackets. We can make the negative part of this term negligible by choosing
a > d. Then the requirement simplifies to

NI
ol »

W RS

Evidently we will minimize [, ], by making N as large as possible and d as
small as possible. (The latter requirement makes it very easy to arrange that
a > d.) For the data given, (1) shows that N =5 x 1061-.-‘&;‘!!1 = 5000.

From equation (1) of the previous question, the condition for balance is
d o< 1/w. The football players increase w from 1000 kgm" to 1300kg m™,
s0 d decreases from 1 ¢cm to 1 x 1000/1300 = 0.77 ¢m.

The magnetic ficld at a distance r from a very long straight wire carrying
current [ has circular symmetry about the wire and strength

_ml
B_Zfrr‘

By symmetry it is clear that one half of the wire contributes exactly one half
of this expression. The field at O is the superposition of two such half-infinite
wires (at right angles), giving total field B, = p,//(2nr), together with the
field of a quarter-circle loop at its center. Since the field of a full circular loop
at the center is B = pol/(2r), the quarter loop adds a contribution
B; = pyl [(8r). Hence the total field at O is

]
B=B,+B = (%%)‘%“;0.28 xl_'zﬁiﬂl-gﬂﬁ,sz x 107 T.

The direction of the field is fixed by the right hand rule (into the page).
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§303.

$304.

§305.

The magnetic force between the rod and the wire is

so the equilibrium condition £F = —mg + F,, = 0 becomes
£o P -mg=0,
2T

so that 1 = (2mmg/pg)'>.

If the current in the wire is doubled, F, becomes Fj, = pyl*/w, so
Newton's second law LF = F,,, — mg = ma gives ma = 2mg — mg = mg, i.e
the initial acceleration a is exactly g, upwards.

The force on the particle is quB, directed perpendicular to the motion. This
force can do no work, so the particle must move at constant speed in a circle,
the magnetic force supplying the required centripetal force. If the radius of
the circle is R, we must have

mvz

The angular frequency is defined as w = v/R, so from (1) we find directly that
w = gB/m. This is called the gyrofrequency, Larmor frequency or cyclotron
Sfrequency of the particle. Charged particles gyrate about magnetic fieldlines
at this characteristic frequency: note that it is independent of their velocity.

If the velocity is not in the plane perpendicular to the field, we can consider
the instantaneous components v,,w, perpendicular and parallel to it. The
parallel component v produces zero magnetic force, while v, as before
produces a force perpendicular to the field and always directed towards a
particular fieldline. Since there is no force component along the fieldline, the
particle moves with constant velocity v along it while gyrating about it as
before. The combination of these two motions is a spiral centered on the
fieldline.

The angular frequency w (measured in rads™ is related to the circular fre-
quency v (measured in cycles/s = Hertz) by w = 2mv. The wavelength A is
given by this frequency as A = ¢/v with ¢ the speed of light (see Chapter 3).
Here w=eBfm, (see previous problem), so v =eB/2wxm, and hence
A = 2xm,cfeB. With the data given, A = 26 m.
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$306. Taking P as the origin of the coordinate system shown in the Figure, at P we

have
. Ho ![ a
B = =
. = Bysind 2”“24_4“2)”2(“24_4“2)”2,
~ ol 4 2a
ByuBz_Blcnsn_EE_E(GZ_;_MZ)HZ(E-{-MZ)I}Q’
_h
B’_bm'
Thus
ko hy
¥ 2r5a’
kD
B"--I’.ﬁlﬂa'
_th
F 2nla’

Substituting the numerical values given we get B, = 3.2 x 1077T, B, =
16 %1077 T, B,=8x 1077 T, so B= (B + B + B)'/* =8.76 x107" T.

¥
B

L] x

S307. The electric field exerts a constant force ¢, in the direction on motion of the
particle, and so performs total work gEyd on it. This must all go into kinetic
energy, so that the particle encounters the magnetic field region with velocity
v given by

5mvz = qEyd,
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§308.

$309.

S3l0.

i.e. v = (2qE,d/m)"*. The magnetic force acts perpendicular to the particle’s
motion and thus does no work on it, so that its speced remains constant and it
moves in a circle (see e.g. S304). The radius R of the circle is fixed by the
condition that the magnetic force guvB; should provide the centripetal force
mv*/R. Thus quB = mvz,(R or

R=Z2= (2”'5““{)1;'2. (1)

T qBy \ 4B

With B; as shown the particle will move up the page in a semi-circle, re-
entering the electric field region at a point 2R above its entry point. For this
distance to be d we require 2R =d, ie. d=2(2mE,d/qB3)'", giving
By = (8mEy/qd)"?.

Using equation (1) of the last solution, we find D = 2R = 2(2mEyd/ qBﬁ)” 2
or g/m = 8Eod /(B3 D?). With the data given we find g/m = 9.67 x 10° C/kg.
For an clectron the corresponding ratio is —e/m, = —1.76 x 10" C/kg, and
for a proton we get a ratio e/m, = 9.58 x 10® C/kg. The particle is probably a
proton, as the deflection D is similar to that expected (making due allowance
for experimental error). Note that the electron deflection would have the
opposite sign, i.e. be on the opposite side of the initial track.

Let the particle masses be my, m,, m;. Their velocities vy, v5, v; on entering the
magnetic field region are given by energy conservation, i.c.

1
imlv;; =gV

so that v; = (2¢g¥ /m,)""?, etc. As the magnetic force acts perpendicular to the
motion it does no work, so the velocities remain at these values, Each particle
moves in a circle (see S304 and subsequent problems). The radii, etc. of the
orbits follow from the equations of motion, in which the Lorentz force qu B,
ctc. must supply the centripetal force mlv'ff R, so that

172
_muy 2V 12
Ry = 9B (__qB) my'" etc.

Thus the masses are in the ratios niy : m, : my = R% : Rg : R§ =1:4:9.

The particle will begin to move in a circle of radius R = mu/q8 (sce previous
problems). Obviously if R < b the particle will not reach x =5, and the
condition for this is v < v, = bgB/m. If v is larger than this, the particle
will reach x = b and continue in a straight line. From the Figure showing
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S314.

angles, so the loop continues to revolve. This is the principle of the DC
electric motor.

The forces acting on the mass are shown in the Figure. The magnetic Lorentz
force quB, where u is the velocity, acts normal to the plane and the mass’s
motion (as the magnetic force always does). Assuming that g is small enough
that the mass does not leave the plane, the acceleration in the plane is
unaffected, and is given by Newton’s second law as

a= % = gsind.

If the plane is not smooth the magnetic force will change a by changing N
and thus the frictional force.

[J ELECTROMAGNETIC INDUCTION

S315.

Let x be the distance of the leading side of the loop from the boundary of the
magnetic field region. Then the magnetic flux through the loop is

= Byly (I, - x)

for 0 < x < f,. For x < 0 all of the loop is in the field region, so the flux has
the constant value © = Byl,/;, and for x > /, the flux is zero. Hence the flux
changes only for 0 < x < I, and induces an emf

Ad

E=—7r = By

= —anﬂ)
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§320.

§321.

§322.

§323.

$324.

The resistance of the triangular loop at any time is R = 3/r, which increases
with time in exactly the same way as £ o /. Hence the current in the triangle is
_ Bylv By

and is independent of time.

With the bob at height x the magnetic flux is & = Bwx, so the induced emf is
&£ = —Bwuv, where v is the speed. If the bob reaches height A, the kinematic
formula v* = v} — 2gh shows that the initial speed is vy = v/2gh. The largest
induced emf is thus

Emax = —Bw\/2gh.

B cannot exceed 10~* T, and could be lower if the slide is not oriented exactly
perpendicular to the local magnetic field. With the values given for w,h we
find |Epax] = 1.4 x 107* V. The voltmeter must be able to measure voltages of
this order of magnitude. (Note that the magnetic force is always negligible
compared with gravity.)

The magnetic flux is & = BS(r) = BS,(1 — ar), so the rate of change, and
thus the induced emf, is £ = —A®/Ar = S;Ba. The current direction is
determined by Lenz's law. The strength of the current is I(¢) = £/R, where
R = 2xr(t)p. With r(r) = [S(s)/n]'?, we find

_aB[ 5 17
'(’)'Tp[r(l—ar)] '

A flux ®=NAB is removed in t=10""s, so the induced emf is
€= NAB/t=12x10° V. This produces a current | = £/R = NAB/(Ri)
and the dissipated power is P=E&*/R=(NAB)/(RF)=12x10" W,
The total work done is W = Pt = (NAB)*J(R*) = 1.2 x 107 J.

This shows the very large mechanical power required to remove conduc-
tors rapidly from magnetic field regions, and the dangers of rapidly decaying
fields.

We have AP = (B, — B;)A, so the induced emf is &= Ad/r=
1 x0.01/0.001 = 10 V. The current is [ = &£/r = 1000 A, the dissipated
power is P =& = 10 W and the total heat produced is Pr = 10 J. While
this is not large, it is extremely localized, and the very high current
I =1000 A is very dangerous. People working in regions of high magnetic
field are strongly advised not to wear any conducting loops (e.g. bangles,
rings).

The flux through the loop was ® = NBA and was reduced to zero in time ¢, so
the induced emf is £ = NBA/t. The currentis I = £/R = NBA/(Rt) and the
total charge passed was Q = It = NBA/R, so
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QR 2x10°x10 2
B==—"=——— = 10°T
NA 20 x 104
with the data given.

$325. The induced emf ¥ is given by

A1

At’
where A = 10 A is the change in the current in time Ar. With the data given,
we find ¥ =18 x 10/0.25 =720 V.

§326. The relation

V=L

A

shows that L = V/(Al/At). Here L =20/50 = 0.4 H.

$327. Using
N®
L=
we find
-5
L=M=2x 107 H =02 mH.

$328. At time 7 the normal to the loop plane makes an angle & = wr to the magnetic
field direction (see Figure), where we have chosen to measure ¢ from the
instant when the normal is parallel to the field. The magnetic flux through
the loop is therefore

¢ = NABcoswt.

The induced emf £ is minus the rate of change of ¢ with time ¢. To find this
we consider the small change A® in @ which occurs when ¢ increases to
t+ Ar. We have

® + AP = NABcosw(t + At) = NAB{coswi cos wAt — sinwe sinwAr),

using the identity cos{@ + b) = cosacos b — sinasin b. Now since At is small,
we have

coswAr=1,

sinwAl = whAt,

where wAf is measured in radians. Then the first term on the rhs above is just
® itself, so we find that in time Atr, ® changes by an amount
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] LIQUIDS AND GASES

§330. In equilibrium the pressure of fluid in the left and right arms must be equal.

By symmetry the water columns below the level of the oil are in balance, so
we have to balance the oil column of height & against the remaining water
column of height (h — d) in the left arm (see Figure in the Problem), i.e.

pohg = p,(h - d)g,

where p, = 1000 kg m™ is the density of water. Thus

po = p“.% =0.8p, = 800 kg m*.
When the second fluid is added, we must balance the oil column of height A
against a column of the same height, but which is half water and half the

second fluid (see Figure). Thus

h h
Pogh = pug5 + pag5-

253
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S331.

§332.

§333.

§334.

Multiplying each side by 2/h and rearranging we find
Py = 2po — p, = (1600 — 1000) = 600 kg m™—>.

The hydrostatic pressure immediately below the large piston is Py =
Py+ (M + M)g/A,, where P, is the atmospheric pressure. In equilibrium
this must equal the hydrostatic pressure Py a distance & below the small
piston. Since Py = P, + mg/A, + pogh, setting Py, = Py gives

(M +M)g mg

A A, + pogh.

Rearranging, we find
m=(M+ M) ‘-:: — pohA, = 561 x (1074/0.5) — 800 x 1 x 10~ = 0.032 kg.
!

Any impurity will alter the density of the gold in the ring (usually lower it).
The balance gives the ring's weight. Filling the volume measure to the brim
and submerging the ring in it using the thread gives the ring volume when it is
removed, so the density can be found. Archimedes is said to have been led to
his principle by this type of experiment. (He was asked by the King of
Syracuse to determine the purity of his crown: when he found it impure,
the unfortunate goldsmith was executed.)

(a) When standing, the woman’s weight Mg is distributed over her shoe soles,
of area roughly 2bl. The pressure is thus P~ Mg/2hl =~ 16,800 N m~2,

(b) When lying, the weight is distributed over an area = hw, 5o the pressure is
P~ Mg/hw~820 N m~>. Lying on the floor is uncomfortable since much
less of the body is in contact with it than in a bed, so the pressure is much
higher on those areas.

The stiletto heels have area 4=2x10"*m? so the pressure is
P = Mg/A =3 x 10° N m™>. Even static pressures of this order are sufficient
to cause damage to floors.

The pressure gauge measures excess pressure, i.e. P — P4, where P, is atmo-
spheric pressure, so it reads 6 atm. (It reads P = 0 before inflating, when the
pressure inside the tire is clearly P,!)

In equilibrium the road exerts a reaction force P = 7P per unit area of tire
in contact with it. This reaction pressure balances not only the weight per
unit area of the rider and cycle, but also that of the atmosphere above.
Exactly 1P, is used for the latter purpose, so it is the excess pressure 6P,
which balances the weight. The tires deform so that a total area A4 is in
contact with the road, and then

6P4A =mg.
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§335.

S336.

§337.

§338.

Thus 4 = mg/6P, =70 x 9.8/6 x 10° = 1.1 x 107 m?, i.e. 4 =11 cm®.
The cylinders are held together by the atmospheric pressure on their cross-
sections. When M is maximal, the reaction force between the two cylinders
vanishes, i.e. they are about to be pulled apart. Since the cables each have
tensions 7' = Mg, horizontal equilibrium LF, = 0 requires

AP, = Mg,

soM=AP,/g=1.02x 10° kg =~ 102 tonnes. For any other shape only the
projected cross-sectional area is relevant (see $348). In a famous experiment
teams of horses were unable to prise apart a pair of evacuated hemispheres
(*“‘the Magdeburg spheres”).

The buoyancy force Fy on the balloon and payload must balance their
combined weight W. By Archimedes' principle Fg=p,Vg, and W =
(Mg +m)g = ppVpg + mg. Thus

Vg + mg = p,Vig,

or
b= Pa— = p— 02 kgm™>.
Vs

Note that this is possible only if p, > gy = 0.2kg m™3,i.e. the balloon cannot
be lifted to a height at which the air density is lower than the value p; =
nif V. (This is effectively the average density of the balloon and payload.)

By Archimedes’ principle, the payload mass M plus the mass of supporting
gas (H or He) must equal the mass of air displaced if the balloon is to rise, i.e.
M = Vi(pa — pu) = Vie(Pa — pric)s

when Vy, Vg, are the required volumes of hydrogen and helium, so

@zpﬂ——p“: 1.3-0.09 = 1.08
VH Pa — PHe 1.3-2x0.09 o

The volumes are not very different. The main reason for using hydrogen was
the difficulty and expense of producing so much helium,

Above the surface the ball falls under gravity, so using the kinematic formula
= v,z, — 2gy with vy = 0, we see that it enters the water (y = —h) with
velocity v = (Egh]” 2. When the ball is under the surface the resultant upward
force acting on it is F=p,Vg—p, Ve, where V is its volume and
s = (2/3)p, its density (i.e. buoyancy minus weight). Since its mass is
m = Vg, its upward acceleration is
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$340.

F ,
a=—= (p_.._ l)g:l}.ig.
m Po

Using the kinematic formula o* =1} +2av with initial velocity
vy = —(2gh)"/?, we find that the ball's downward motion is brought to a
halt (v = 0) at a depth

(a) By Archimedes’ principle, the buoy displaces its own weight of water
whether inside or outside the vacht, so the water level remains unchanged.
(b) The anchor displaces its own weight of water when inside the boat, but
less when it sinks (it just displaces its own velume of water, which weighs
less). The water level drops.

Let the cube be submerged to a depth x (see Figure). By Archimedes’ prin-
ciple the buoyancy force on the cube is Fp = V,p,g, where V; is the sub-
merged volume, i.e. ¥, = a’x, and p, is the density of water. In equilibrium
Fp must balance the cube’s weight W = Fpg with V = @. Thus from
Fy = W we find

dzxp“.=ﬂjp,

i.e. x=(p/py)a = 0.8 x 0.05=0.04 m. The submerged volume is therefore
V,= ax = l[{l',()S)2 % 0.04 = 10~* m®. This is also the volume of the water
displaced. The new height of the water is

Vg + ¥,
Pogy = ———,
Inew y
whereas the original height was
¥o
hold = 7 .

Thus h = fipey — g = V,/A =1074/10"2 = 1072 m,
When the mass m is added, the weight W is increased to W' =
W + mg = Vpg + mg. The buoyancy force becomes F = Vp,g as now the
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whole cube is submerged. Requiring Fy = W' for equilibrium as before, we
find

Vp.g = Vpg + mg,
so m = (p, — p)V = (1000 — 800) x (0.05)* = 0.025 kg = 25 g.
By Archimedes’ principle, the buoyancy force Fy on the cube when it is just
submerged is (see Figure) Fp = p, Vg, where p, is the density of water and

V = & the volume of the submerged cube. This must balance the weight plus
the downward force F, i.e.

pVe+F=p,Vg.
Thus
F 3.43 4
= === 1000 — —22"__ — 650 k .
L . s 107x98 gm

When the cube floats freely, it is submerged only to a depth h, say, so the
submerged volume is a’h and by Archimedes’ principle the buoyancy force
becomes Fy = p,,.azhg. This now balances just the weight pa’g of the cube, so

pua’hg = pa'g,
or h = (p/py)a = (650/1000) x 0.1 = 0.065 m.

The cube has total mass M = 3a’p,,/4, and will float when it displaces a mass
M of water. Since ¢ < a, the base area of the container is very close to a*, so
the water must reach a height h = 3a/4 (see Figure in the problem). The
minimum volume of water needed to float the cube is thus

c 3
V_4xah§_§a2c‘

where we have considered only the water around the four sides of the cube.
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We see that V' becomes arbitrarily small as we decrease ¢: the pressure at a
given depth below the surface of a continuous body of fluid is precisely the
same no matter how little of it there is. In practice the lower limit on the
volume of water occurs when there is so little of it that surface tension breaks
it up and it is no longer a continuous fluid.

By Archimedes’ principle the buoyancy force is given by the combined
weights of water and oil displaced (see Figure in problem), i.e.
Fy = poahg + p,a’(a - h)g

The dynamometer reading W, gives the force supplied by the spring, which
must equal the difference between the cube’s weight Mg and the buoyancy
force Fg, i.e.

WD=Mg—F3.
Thus
_Wp+Fg
g

M -?+azlowh+pa(a —n)

= 0.05 + (0.1)2[1000 x 0.02 + 500 x 0.08] = 0.65 kg.

The hydrostatic pressure P at the base of the cube is given by the depths of oil
and water above that level, ie. P=p.gd + p,gh=1176 N m2.

(a) The iceberg's volume is ¥ = (h +x,)3, so that its mass is M = p,V =
p,-(h+.\:,)3, and its weight is W = Mg. By Archimedes’ principle this must
equal the weight of seawater displaced, which is M'g = p,V'g, where
V' = x,(h + x,) is the submerged volume. Equating M and M' we find

pilh+ x,)° = pox,(h+ x,)
which gives
pilh+ x,) = pex,
so that

PJ"&

-
and thus with the data given x, = 5.625 m.
(b) In fresh water the iceberg displaces a mass pe(h+ x_,]zxf, which by
Archimedes’ principle again must equal M = p,(h+ .r,)a. Thus x; =
0.9(2.5 + x,) m, and using x, from the answer to (a), we find x; = 7.313m.
Since the side of the iceberg is 2.5 + x, = 8.125m, only 81.25cm or one-tenth
is above the surface.
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The upward force excrted by surface tension (see Figure) is F; = 2wrycosf.
This must balance the weight W = m?hpg of the column of liquid, i.c.
F, = W. Thus

)
h='*‘;‘fa, 1)
I

a

|
NI

Using equation (1) of the previous answer with # = 0, surface tension can
hold a column of sap of height / = 2 x 0.07/(10* x 9.8 x 10~°) = 1.4 m. As
trees grow considerably taller than this, capillary action cannot be significant.

Assume that a very thin film of water fills the gap between the cap and the
tube. Neglecting the mass of the water, the upward surface tension force
F, = 2rry must balance the weight mg of the cap plus the reaction R of
the tube (see Figure). Now m = :'rrzdp, so F, = mg + R implics

mg
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2ary = wr'dpg + R.
or

2y R

dpg  wrdpg

Since R is positive, the largest r is given by R =0, i.e. when the surface
tension force just balances the weight of the cap. This gives rp., =
2y/(dpg) =2 % 0.07/(2 % 107 x 700 x 98)=001m = 1 cm.

Imagine the sphere cut in half. The total outward pressure force on one
hemisphere is given by the pressure difference P; — P, multiplied by the
projected area ar* of the hemisphere, because all components of this force
other than the perpendicular outward one cancel by symmetry. This outward
force must be balanced by the tension in the membrane, which by definition is
2qrt. Thus (P; — P,)xr® = 271, or

2t
Pi-P,==. (n

Since the liquid walls have both an inner and an outer surface, the total
tension 1 is twice the surface tension, i.e. { = 27, and

4y
Pi—Py=—. (2)

Consider a length / of the tube, the excess pressure inside the section of tube
being maintained by inserting bungs in either end. Imagine the tube now cut
in half along its axis. The net outward pressure force again involves the
projected area, and is thus 2r/(P; — P,). The tension force in the walls is
2/t (the bungs exert no tension), so equilibrium requires 2r/(P; — P,) = 2t or

Pi-P,=-. (1
As before, if we consider surface tension we have ¢ = 2+ as there are two
surfaces, so

2
P,-P,,=-:i. @)

In both cases we see that the tension required to contain a given pressure
difference P; — P, varies as the curvature radius r. Along the cylinder we have
r = o0, 50 boiling frankfurters split here first. This is why boiling frankfurters
tend to split lengthways.

A short section of the tire can be regarded as straight, so the considerations
of the previous question apply. With P, =7 atm, P, =1 atm, we usec
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equation (1) of the previous answer to get t= (P, — P,)r= 6Py =
6% 10° x 1.5 x 1072 = 9000 Nm™' with the data given.

When the droplet is on the point of evaporating the surface tension force
just balances the vapor pressure force. As the droplet has only an outer
surface we use equation (1) of §348 with 1=+ to get r=24/(P; - P,) =
24/P, =2 % 0.07/2300 = 6.1 x 10"’ m = 6.1 x 10> mm with the data given.
The pressure P; inside the balloon must obey

Pi-P,==. (1)

Initially P, = P\, P, =8P, /9 and r = r|, s0

P 2t

9
As P, is reduced r increases. Its largest possible radius r, is given by setting
P, =0 in (1). The pressure inside the balloon changes to P, because of
expansion, so

2t
Pg—r—z.

Dividing these two equations shows that

P] 9!’2
— == 1
Pyoon M

But since the temperature is fixed, Pr* = constant (perfect gas law), i.e.

P_n
R @

Comparing these two equations we see that r; = 3ry.

The tension in the membrane must balance the pressure excess of the air sac,
so from equation (1) of S348 we can write

(Py—P)r=2r

In breathing out, both rand P, — P, decrease (the latter because P. increases
and P, is fixed). Equilibrium cannot be maintained unless  decreases. These
changes are reversed in inhaling, so ¢ increases. (If equilibrium failed in either
state, the air sacs would either collapse or rupture.) The adjustment in ¢ is
provided by a protein — surfactant — which is very elastic. Asthma is asso-
ciated with a failure of this mechanism to work properly.
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One might expect air to flow along the pipe to equalize the size of the two
balloons. But amazingly, this is wrong: if the two balloons have spherical
radii r;, r, and interior air pressures P;;, P;, we must have

2t
Pil_Pozr_lls (N
PQ_P0=233 {2}
r2

(cf. eqn (1) of S348). here P, is the pressure in the enclosure and ¢, t; the
surface tensions of the balloon material at radii ry, r;. These can be assumed
constant (f; = t; = t) provided that each balloon is larger than the minimum
radius ryip. Thus if r; > r; we must have P;; < Py, i.e. the smaller balloon
has a larger interior pressure (remember that it is hardest to blow up a
balloon at the beginning, and this gets easier as the balloon expands!).
Thus once the valve is opened, air will rush from the smaller balloon (making
it smaller still) to the larger one (expanding it further). The air pressure inside
the two connected balloons will equalize at some value P; with
P;) < P; < Py. Equations (1, 2) then require 1;/1; = r,/r; < 1, i.e. the smaller
balloon must contract below ry;, and make ; <, =1.

Note that even if we had started with two balloons with equal interior
pressures P;;, P, a small perturbation making one of the pressures (say
P;) even slightly larger than the other would have started this process off,
and again we would have ended with one larger balloon (large r;) and one
small balloon with ry < Fupin.

Bernoulli’s theorem states that the quantity

P 1
'E'PEIJZ +gh

is constant along a streamline in a fluid, where P, p, v are the fluid pressure,
density and velocity and /& the height of the point considered. Thus consider-
ing a streamline from the water surface (where v is effectively zero, P = P,
and h = H) to the hole in the container (where the pressure is atmospheric,
i.e. P= P,), we have

Py 1

PA k)
—+gH=—+43v"+gh
p p 2

Thus the jet velocity v is given by

13=23(H—!|)+2-}%. (1)
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reduce its cross-sectional area a at some point, and hence reduce the flow
rate. Siphons work well only if the pipe has no leaks and all of the air is
carefully removed (e.g. here by filling the pipe from the lower end using a
hosepipe before submerging the upper end in the pool).

The water velocity follows from mass conservation: in one second the mass of
water flowing with velocity v past a point where the pipe cross-section is A is
Q = pvA = pr, where p is the water density. This must be constant in steady
flow. Since p is constant (water is incompressible), this requires r = v4 =
constant. Converting the water rate r to MKS units, r=6 m min~' =
0.1 m*s™". Further, the values of 4 at the two ends of the pipe are 4, =
7dj /4 = 0.031 m? near the pump, and A, = 7d3 /4 = 0.126 m’ at the other
end. Thus v; =r/4; =3.2 m s~', and water leaves the pipe at velocity
vy =r/d;=08ms".
The pressure P, near the pump follows on using Bernoulli's theorem:

P11, P 2

> +2vf == +5 +gh
Since the upper end of the pipe is open to the atmosphere, P; = P, so

1
Py =5p(13 —vi) + pgh+ P,

With the data given, the results of the previous problem, and p=
10°kgm™, we find P, =1x 1000 (0.8% —3.2%) + 1000 x 9.8 x 20 + 10° =
291 x 10° Nm™.

Considering a streamline from the water surface down to the hole, Bernoulli's
theorem gives

P Py 1
AL 0+gh="24+_v 40,
P p 2

where v is the (horizontal) velocity of the jet at the hole; this uses the facts
that the pressure at both places is close to atmospheric, and the water
velocity at the surface is very small because the container is wide. Thus
v=(2gh)'.

The jet is initially horizontal, but falls vertically from rest under gravity, so
we can treat it like a projectile. Using x = vot + ar’ /2 with vy = 0,a = —g,
the time to fall a distance x = —(H — /) to the ground is

- [2(H - h}] 172
p .

During this time the jet travels a horizontal distance
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s =vt = 2Mh(H - B)]'*.

Thus the jet has the biggest range (= H) when it is about halfway down the
filled part of the container ( = H/2). Very short ranges result from holes
near the water surface (h — 0: little pressure head to drive the jet) and near
the base of the container (h — H: jet emerges too close to the ground).

From Bernoulli’s theorem we have

(URPSIETE B
P+ipuﬂ2_ﬂ+2pnﬂ 1 (l)

where P v/ are the pressure and velocity in the narrow section. Mass con-
servation, i.e.

peAv = pn'ArU'
gives ¥ = v(A/A') = 4v, so substituting this into (1) and rearranging we get
AP~
167 — 2 = 2P P) P)
P

or ! = (2/15)[(P - P')/p,). But hydrostatic equilibrium of the mercury
requires

P_F“pl-!gghn
S0
(2 P [2x13,600 x 9.8 x 2.5 x 1073\ _ -
”"(Ezg") _( L =067 ms.
Let the window and doorway have effective open cross-sectional areas

A, Ay If Ay < 4, e.p. the door is only slightly ajar, any air drafl entering
the window must produce an air current with higher velocity on the open
(outer) side of the door than the other side (see Figure). Hence by Bernoulli’s
theorem there is an excess pressure on the inside and the door slams. The

window
'

%/
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door will not slam if opened sufficiently wide as the pressure torque on the
door is smaller than the frictional torque at the hinges.

The upward force (/iff) arises because the air must flow more swiftly over the
airfoil than below it, lowering the air pressure there. The height difference
between the top and bottom paths is negligible, so Bernoulli’s theorem gives

ﬂ f_& mit
p 2 p 2

1

where Py, P, are the air pressures on the lower and upper surfaces. (Air is
effectively incompressible if v is subsonic.) The speed above the airfoil is mv
as the flow is steady. The pressure difference acting vertically upwards is thus

m2—1v2
2 M

The airplane will take off once the total lift force F; = A(P; — P,) exceeds its
weight Mg. Hence the minimum takeoff speed is given by

Py —Py=

%A(mz -t = Mg,

or

. 2Mg
P = (m* = 1)dp’

With the data given, we find v=[2x 500 x 9.8/(0.21 x 30)]'/* =
394ms' = 142 km/h. At high-altitude airports, p is significantly smaller,
and by (1) we see that the takeoff speed has to rise as p~ 12,

The application of Bernoulli’s theorem to airplane wings is subtle, as can
be seen by considering the fact that airplanes can fly upside-down! The angle
of the airplane to the horizontal (the angle of attack) is important in under-
standing this, as it determines the effective streamline ratio m.

(1

From equation (1) of the previous answer we have

_ Mg
P —nar

Setting v = vy, gives the lowest density pug,, which gives enough lift
to support the airplane’s weight. With the data given we get pu, =
2 x 500 x 9.8/(0.21 x 30 x 702) =0.32kg m. Using the formula for p(z)
gives a maximum height z,,,, = —H10g4 prmin- Thus 2, = 23,000 x 0.50 =
11,500 m = 11.5 km.

The main problem for early airplanes was the lack of sufficiently powerful
engines to produce high takeoff speeds v. From equation (1) of $364 we see
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that v is reduced by making A large. This could have been achieved by
increasing the wingspan, but it was difficult to produce a strong wing of
great length. The easiest way of increasing 4 was to stack shorter wings
above each other, i.e. biplanes (or triplanes).

As in P364 the lift force is F oc Av®, where A is the wing area. At takeofT this
just equals the weight Mg, where M is the bird’s mass. Clearly A scales as 2,
while M scales as /°, since the average densities of the species are the same.
Thus F, o< Av? o P2, while Mg o< P'. Therefore F, = Mg requires v x {'/7,
Larger birds have higher takeoff speeds. and often have to run to achieve the
necessary lift (e.g. flamingoes).

This calculation here is essentially the same as in $364. The condition to lift
the boat from the water is [cf. equation (1} of S364]

2 2Mg
(m2 - I)Ahpw '

The great difference here in comparison with P364 is that p, is 1000 times
larger than p for air. Thus even with & smaller than an airplane’s takeoff
speed, 4, can be made much smaller than A, i.e. hydrofoils are much smaller
than airplane wings.

u

Applied to the sail, Bernoulli’s theorem gives

P luzzpa
Pa 2 Pa

where P, is the pressure on the convex side of the sail, P, is atmospheric
pressure, and w = w is the air speed along the convex side of the sail. This
produces a force F=(P,— P))4 mAp_,u-zﬂ acting towards the convex
side (the air speed on the concave side is negligible), and so a force
F, = Fsin8 ~ (Ap,w*/2) sin# in the direction of the yacht's motion.

If the wind comes from behind the boat, the sails are best deployed per-
pendicular to the wind velocity (see Figure). Since the yacht usually moves
more slowly than the wind, essentially all of the wind's momentum is lost to
the boat. Per unit area of the sails, the wind momentum is p,w, and this
arrives (and is lost) at velocity w. Hence the total wind momentum trans-
ferred to the boat per unit time is ~ Ap,,u'z. By Newton’s second law, this is
the total force on the boat. The component F; of this in the forward direction
is just given by multiplying by cos¢, giving F,~ Apw?cos¢. For
0 = ¢ = 45°, we have sin® = cos¢ = 1/v/2 and

A p‘,wz

V2

Ap“wz
ik

F| = , Fy=

so that Fy = Fp/2.
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By Archimedes’ principle, the weight of the boat is equal to that of the water
displaced, i.e. Mg = Aglp. Also the sail area is A = */2. Substituting for
Ag, A into (1, 2) of the previous solution shows that for any angles 8, ¢

3N 12
v, by X (!ﬁ") w.

Since p,, w are fixed, high sailing speeds are achieved by making P;’M as
large as possible. Long slender vachts are much faster than short stubby ones.

The drag force resisting the sideways motion is r-zA,mz, where s is the
sideways velocity component. Equating this to the sideways forces
Fycosf, Fysing (cf. S369) shows that s will be as small as possible if
Agp > Ap,. To give high forward speed, equations (1, 2) of 5370 show
that Ap, should be as large as possible in comparison with A7p. These two
requirements are only compatible if 4, > A,. Again we see that an efficient
vacht should be slender. A, is made large in practice by making the keel deep,
as this also gives stability against the tendency of the wind pressure on the
sails to push the boat over.

The maximum speed v is fixed by the requirement that the inward frictional
force N should supply the centripetal force ni’ /r, where N is the normal
reaction of the track on the car. If there is no wing on the car, N = mg, and
we find

vz(no wing) = urg.

If the wing is present we have an extra downforce given by Bernoulli's
theorem:

P P 1

A=t

pp 2
with P, = atmospheric pressure and P the pressure below the wing. Thus
N=mg+ A(Py—P)=mg +%Ap1:2. With again mvz;'r = uN we get

pmg
mjr— pdp/2’ (1)

which of course reduces to the previous formula if the downforce is absent
(formally if 4 =0). With the data given we find v(no wing) = 80 km/h,
v(wing} = 82 km/h. Although this is small, it is a significant advantage, so
the size and pitch of wings is strictly regulated in motor sport.

v (wing) =

Tight corners have small r, while gentle ones have large r. From equation (1)
of the last answer we see that on gentle corners the “wing” term pdp/2 is
more nearly comparable to the other term m/r in the denominator, and thus
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has a greater effect. Wings give less advantage on tight corners because the
lower speeds make the Bernoulli effect less important.

Using the ideal gas law in the form
PV _ B,
nn n
with V, =2V, P; = 2P, we get T; =47 for the relation of absolute tem-
peratures. With T, = 1, + 273 = 289 K we find T; = 1156 K, or 1, = 883°C.
The ideal gas law can be expressed as

P= 5,(.i'}",
I

where (R/u)T is constant at a fixed temperature (i, the mean molecular
weight, is fixed by the gas composition). Thus P/p = constant, or PV /m =
constant in our case. Hence, writing V4 for 1 liter,

PV _ PV,

]

my my
or

oV, 0858 1 _ 6 -2
P VP‘_D_mi5]2x105_4.77x10 Nm™2

If the hydrogen pressure is Py we have

P+ % = Py,

where S is the cross-sectional area of the container, i.e. § = Vy/h. Thus
- p, &
PA = Pf VH .

We can find the hydrogen pressure from the equation of state: under the
stated conditions hydrogen behaves as an ideal gas, so
RT
Py =ny—,
o=y
where R is the gas constant, ny the number of moles of molecular hydrogen
in my =0.17 g and T the temperature. Hence

Pq=(nyRT - mgh)VL.
H

Now ny = 0.17/2 = 0.085 as the molar mass of molecular hydrogen is 2 g.
Thus

1

Py = (0.085x 8.31 x 300 21 X 9.8 x 0.4) 1oy = 9.26 x 10° Nm™2,
o
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At the base of the cylinder the pressure given by the trapped air and the
column y of mercury must equal that in the mercury bath at depth H, i.e.

Py + puggy = P, + puggH. (1)
Also, the trapped air obeys Boyle's law (ideal gas law at constant tempera-
ture), so

PV =PV
where ¥ = 7r°h (the original air volume), and ¥, = rrz(h -y, e
Py(h—y) = Pyh. (2)

Eliminating P; between (1) and (2) gives

P4h
h—:y+PHg£y=P,¢+ﬂHg§H-

Multiplying through by {h — y) this gives a quadratic equation for y, which
after simplification becomes
- (:—"+k+ﬁ)y+m:=o,
lgg
or with the data given
¥ =224y +05=0,
with the solutions y = 0.25, 2.0. Only the first is physical (the other has
y>h), so y=025m. P, follows casily from (2) as
Py =Pshf(h—y) =2P; =197 x 10°Nm 2,
The density p follows from Archimedes’ principle: the buoyancy force
Fg = Vypyyg must equal the weight W = ¥V pg, where ¥ is the displaced
fluid volume = (volume of solid cylinder -+ trapped air) = =R*H — mr'y,
and V, is the solid cylinder volume = wR*H — nr°h. Setting Fy = W gives
V4 RH-Py  1-025@/H)
P= Py = e g, T PR T 035 0.5
Using the result of the previous part, this implies p = 13,600 x (0.94/0.88) =
14,600 kg m .
After the faucet is opened the total number of moles is the same as before, i.e.
My = 1 + 2n = 3n. The total volume is 3% so the gas density is 3n/3V = n/V
moles/unit volume. By the ideal gas law the pressure is

n
P=RT ()

where R is the gas constant and T the absolute temperature. This must also
be the pressure in each of the containers, so applying the ideal gas law to
them in turn gives
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Ve = (1 +vpA)Vy = 1.0004¥ 7.

Substituting V5 =0.97¥r into the first equation, we find Vg =
1.036 x 0.97V; = 1.0049¥. Thus V¢ > V4 at 40° C. The fuel will overflow.
Note that this result is independent of the volumes Vi, ¥ of the tank and
gasoline, and depends only on their relative size.

(a) Each side of the plate increases by a factor (1 + aAT), where AT is the
temperature increase. Since oAT <« 1, the area increases by a factor
(1 +aAT)’ 1 +20AT. Thus the coefficient A of surface expansion is
approximately twice the lincar coefficient (3~ 2a =8 x 107 °C™"). The
increase in surface area S = 100 cm’ is therefore

AS = ASAT =8 x 107% x 100 x 100 = 0.08 cm®.

(b) From the definition, the amount of heat absorbed is Q = CmAT, where
m = 100 g is the mass. Thus

0 = 0.386 x 100 x 100 J = 3860 ]

Consider a cube of the solid, If there is a small temperature rise AT, its sides
increase from a to a(l +aAT), so its volume increases from V =d’ to
V+ AV = 93(1 + aAT)’. Since AT < 1, the rhs is approximately
a"(l + 3aAT). But by definition this is ¥(l +yAT) = a’(l +~AT), so we
must have v = 3a.
By Archimedes’ principle the steel cube displaces its own mass of mercury, so
it floats to a depth d given by m = d*pd, i.e.

m

d=— 1

pp (1)
where g is the density of mercury. Before heating, a has the value a,, and after
heating this becomes a = ay(1 + a,T), where T is the temperature rise.
Simultancously the density of mercury decreases from py to py(l + 7 T) !
because the same mass of mercury occupies a larger volume. The equilibrium
condition (1) becomes

_m 1+ 9T ~dy 1+ 5T
@po(l +a,7) " 1+2a,T
where d, was the original depth, since a, T < 1. With the data given we find
1+1.8x107°'T
d = dy ————
T+24x10°T

which is > 4 and increases with T. The level of the mercury bath rises
because of the expansion of mercury, and the cube floats slightly more deeply
than before.
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mammals have to maintain constant body temperature, so it is preferable to
have large / in polar regions.

Conservation of heat energy implies that the heat lost by the metal block is
gained by the calorimeter and the water within it, i.e.

M, Gty ~ 1) = m Cpp(t — 1.} + m, C, (1 — 1),

where 1,, = 100°C is the metal temperature before immersion in the calori-
meter, and C,, = 4200 kg™' °C™! is the specific heat of water. Thus

10C,,(100 — 51) = 0.25C,,(51 — 10) + 5 x 4200(51 — 10),
or
479.75C,, = 8.61 x 10°,

so that C,, = 1795J kg™’ °C~!. This is about 0.43 of the specific heat of water.

If the temperature rise is Ar °C, the block’s heat energy increases by
Q = CMA¢. This is all supplied by the kinetic energy nn?/2 of the bullet,
so conservation of energy gives At = m'Z{ZMC =0.16"C.

Since the calorimeter is insulated, no heat energy is lost, and the heat gained
by the calorimeter and contents must balance that lost by the hot water, i.e.

(m.Coy +mC)(t3 = 1)) +mxCo(ty — 1) =0

Here C,, is the specific heat of water, which is 1 keal kg'1 *C~! by the defini-
tion of the kilocalorie. With the data given we find

(0.125C, + 0.06)(45 — 24) + 0.09(45 — 63) =0,

giving Co, = 0.137 keal kg~'°C™".
With C,, the specific heat of water, conservation of heat energy gives

(my + m)Cot = m Coty +myCyt,

since no heat is exchanged with the surroundings. Thus

rzmm +m2f2= 1 XT+2X37:2?°C.
my +m; 3

The total internal energy change AU is zero since both W (the work done)
and AQ = AQ, + AQ, (the total heat absorbed) are zero. However, there is
a nonzero entropy change AS = AS; + AS; (entropy of mixing), since the
heat transfers AQy, AQ> = —AQ, are not performed at the same tempera-
tures. Thus using the second law of thermodynamics, TAS, = m;C, AT,
etc., where T is the absolute temperature, leads to AS, = m,C,, In(T/T,),
ete, and hence
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The air in the tire expands and cools adiabatically as it rushes out of the
valve. Equation (1) of the previous problem gives a quantitative estimate;
with P, = P,/6,~ = 1.4 (appropriate for air), and T} =290 K, we find
T, =174 K, or =99°C! Of course there is very little cool air, so the ice
soon disappears. A similar effect causes the tiny cloud of water vapor seen
on opening coke or champagne bottles.

On the windward side the air rises; here the pressure is lower, so the moisture-
laden air has expanded. The expansion is too rapid for much heat to be lost
or gained, so it is effectively adiabatic, and the air cools, causing the water
vapor to condense and fall as rain or snow. On the other side, the air falls and
is adiabatically compressed, so its temperature rises. This gives a warm dry
wind. Another example is the Féhn north of the Alps.

The derivation of equation (1) is still valid, so

A} Q)

P,
but equation (2) is no longer valid, as the gas now expands adiabatically not
isothermally. We replace (2) using the adiabatic relation PV = constant.
Since v = 5/3 for a monatomic gas and V r, this requires Pr’ = constant,
s0 (2) is replaced by

Rl b
= @)
Eliminating P, /P, between (1) and (2") now gives ry = v/3r, as opposed to
r, = 3r) in the isothermal case. The greater expansion in that case results
from the fact that energy is being fed into the gas there to keep its tempera-

ture constant. This meant that more work could be done expanding the
balloon against the tension in the walls.

The change takes place at constant pressure, for which the specific heat is
Cp = Cy + R (the extra term R comes from the work done against the
pressure). Then

AQ = nCpAT = n(Cy + R)(T> = T)) = (ﬁ; + l)mm — nRT)).

Using the ideal gas law, we can replace nRT>, nRT, by PyV,, PyV, respec-
tively, so

AQ = (—+1)P0(V,— V) = (83l+1)105(05- 1) = —5.36 x 10* J.

The negative sign shows that heat energy has been lost from the gas.
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From the ideal gas law we have PV, = nRT|, PV, = nRT;, with n = 2. Thus
Ty =PV\/2R, T = PV, /2R, and we find T, =274.3 K, T, =640.2 K.
Using the first law of thermodynamics we have

0=AU+AW,

where AU = U, - U, is the increase in internal energy, and AW =
P(V>—V,), the work done by the gas in the expansion. Since
U= (3/2}nRT =3RT for an ideal monatomic gas, and PV =
nRT = 2RT, we have

Q=3R(T;-T))+2R(T, - T))=5R(T, - T))

=5 x8.31(640.2 — 274.3) = 1.52 x 10° 1.

The entropy change of an ideal monatomic gas is
3 T
Enklnﬁ
so that here AS =3x8.31In(640.2/274.3) + 2 x 8.31In(0.07/0.03) =
352JK°"

Heat flows from body 2 to 1 as T, > T. The heat absorbed by body 1 must
be exactly that lost by body 2, i.e.

Vs
+nR lnF,

AS =

0=AQ, +AQ; = mC AT, +mC,AT,
where AT, =T =Ty, ATy =T - Ty = T - 2T}. With C; = 1.5C,, we get
0= J’.IIC|(T - Ti) + l.SmC1(T - ZT])

ie. T = 16T}
The entropy changes are

T
AS) =mC, ln-TTl,

T T
A8y =mC; ln?2 = 1.5mC, lnz—n,

Substituting 7' = .67}, we get AS, =mCInl.6 =047TmC,, AS,=
1.5mC, In{1.6/2) = —0.335mC,. Clearly AS = AS, + AS, > 0, as required
by the second law of thermodynamics. Note that this occurs because in the
expression AS = AQ/T it is the body with the smaller value of T which has
AQ > 0, i.e. heat flows from the hotter body to the cooler body.

The initial volume ¥, is given by using the ideal gas law PV, = nRT)
(m = number of moles, R = gas constant). For O, the molar mass is
my; = 32 g, so the number of moles here is m/my, = 160/32 = 5.
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Thus

v, = ’“:,T‘ =5 x 8.31 x 300/10° = 0.125 m’.
H

In an adiabatic process we have Py V] = P,V], or using the ideal gas law,
V] ' = To¥; ", where v = 7/5 for a diatomic gas. Thus

Ly
V= (%) Vi = (0.1)"7 x 0.125 = 0.024 m’

and
-1
Ty = (?) 7, = (0.125/0.024)° x 300 = 580 K.
2

As the process is adiabatic, there is no entropy change, i.e. AS = 0. Then
using the second law of thermodynamics we have AU = —AW, i.e. all of the
work done in compressing the gas goes into raising the internal energy of the
oxygen. For a diatomic gas we have U = (5/2)aRT, so

AU = %nRAT =12.5x 5 x 8.31(580 — 300) = 2.91 x 10* J.

This is also the work done in the compression.

Since the process is isothermal, 7" does not change, so
AT =0.

In an ideal gas at fixed temperature, we have PV = constant, so PV = Py V),
or P = Py(Vy/V) = Py/2 (since V' = 2V). Thus

ap=-To.

The internal energy of a fixed mass of an ideal gas depends only on the
temperature [U = (3/2)nRT, with n the number of moles and R the gas
constant]. Thus U does not change, i.e.

AU =0.

Using the first law of thermodynamics, we have AU = Q — AW, where
O is the heat absorbed by the system and AW the work done by it. Here
AU =0, so Q= AW and we have Q = TAS (quasistatic process). Thus
AS=AW/T. Now we use AW =nRTIn(V/V,) as given. In our case
ViVy=2,s0

AS =nRIn2 =0.693nR.
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kT
U=r—r.
2pmy
At constant volume the first law of thermodynamics implies AQ = AU, so
the specific heat per unit mass at constant volume is

¢, 80 _AU_ 3k

The energy required to heat the same mass of helium and argon through the
same temperature is inversely proportional to the mean molecular mass .
Thus the heat required for the argon sample is 1 x 4/40 = 0.1 kJ. Physically
this lower value results from the fact that an argon atom is more massive
than a helium atom, and so there are fewer argon atoms in the same mass.
Since each atom has the same energy 3k7/2 at a given temperature, less heat
is required to raise the temperature of the argon sample.

As the piston moves inwards, molecules hitting it rebound with greater
kinetic energies. If the piston moves in at speed u, it sees each molecule
elastically reflected at speeds v, + u, so they have x-velocities v, + 2 in the
laboratory reference frame. Collisions between molecules share this extra
energy and raise the rms speed v and thus the temperature, If the compression
is adiabatic, this happens before any of this extra energy is lost to the sur-
roundings. In summary, the piston does work against the gas pressure, and
this heats the gas. The pressure is raised because the momentum transfer
between the piston and the gas molecules is increased.

The gas molecules at the base have on average gained kinetic energy mgh
compared with those at the top (which have higher potential energy). This
raises the pressure at the base by Nmgh = pgh, where N is the number of
molecules per unit volume, i.e. by precisely the amount required to bear the
total weight of the gas. Hence the full weight of the gas registers on the scale.
The same argument shows that the pressure at every height in the gas is
exactly that required to support the weight of the gas above that height.

Equation (1) of S415 shows that v = (3kT /umy)"/2, so the escape tempera-
ture T is given by setting this equal to v, i.c.

T = B
3k
Thus lighter compounds escape at lower temperatures. With the data given,
we find v=278T"% m s for oxygen. For this to reach v, requires
T =1.6 x 10° K. Similarly for nitrogen we find 7 = 1.4 x 10° K, and for
hydrogen T = 1 x 10* K. This difference is important in explaining why the
Earth has lost most of the hydrogen in its original atmosphere, but retains the
oxygen and nitrogen.
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The focal length of a convex mirror is f = —R/2 = —0.5 m. The formula
/s — 1/5' = 1/f gives the image distance s’ as

11,12

§ 157053

so that s = 0.375 m (i.e. the image is behind the mirror). The magnification is
m=5'[s =0.375/1.5 = 0.25, so the image is virtual, upright, and smaller. See
Figure for the ray diagram.

The mirror has focal length f = —R/2 = | m, so using 1/5 — 1/5' = 1/f with
s = =25 (5 < 0) (since |m| = |s'/s| = 2) gives

l+ l =1

s 2
Thus s = 1.5 m, 5’ = =25 = —3 m. Since m = ' /s < 0, the image is real and
inverted. See Figure for the ray diagram.

Since R < 0, we have f > 0 and /' = R/2. Using the mirror formula with the
data given implies

x| -
-
= v
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(d) Ry =1m, R; = -1.3m, so

1 1 1 -1
f— OS(T—E) =0.115m™",
i.e. /= 8.67 m (converging lens).

{€) Ry = 00, R; = 1.3 m. We find /' = 2.6 m (converging lens).

{a) Using 1 /5 + 1/5’ = 1/f withf = 10 cm and 5 = 5 cm, we get s’ = —10 cm.
The image is on the same side of the lens (behind the insect) and is virtual. Its
size i’ follows from m = —5'/s =2, i.e. H =2h. It is twice the size and
upright.

(b) With f = 10 cm and s = 15 cm, the lens formula now gives s' = 30 cm.
The image is on the far side of the lens from the insect and is real. From
m=—s'{s= =2, we have k' = =2k, ie. the image is twice the size and
inverted, Note that the image suddenly shifts when the object reaches the
focal point. See Figures | and 2 for the ray diagrams for cases (a) and (b)
respectively.

Fig 1

Fig 2 I

We first find the image created by the lens. Using 1/s+1/s' = 1/f with
S=05mand s =1 m, wefind & = 1 m. This first image is real and inverted.
It forms the object for the mirror, and creates a second image a distance | m
behind the mirror. This image is virtual, and remains inverted (sec Figure 1).
This second image itself acts as an object for the lens, at a distance s = 3 m.
The lens formula gives s = 0.6 m for the resulting image. This third image is
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thus on the same side of the lens as the object, real, and upright (see Figure
2). In summary:

First image: real, inverted, 1 m on the opposite side of the lens from
the object.
Second image: virtual, inverted, 1 m behind the mirror.

Third image: real, upright, 0.6m from the lens on the side of the
object.

S435. Using the thin lens formula with object distance s = i — x,5 = x gives

L1
h—x x [

Substituting, we obtain a quadratic equation for x (expressed in cm):
X% — 50x + 400 = 0.

This has the two solutions x; = 40 ¢cm, x; = 10 cm. Both of these positions
produce a sharp image: exchanging x, and x, simply exchanges s and ¥,
which must be possible, since they appear symmetrically in the lens formula.
The case x = x; has s = 10 cm, s’ = 40 and has magnification 4, while the
opposite case x = x, has 5 = 40 cm, 5’ = 10 and magnification 0.25.
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From the definitions, p=s—f,p' =5 —f, so

pp =55 — (s+5)f + 1.

But multiplying through the thin lens formula by ss'f shows that s’ =
(s + 5')f. Hence the first two terms above cancel, and pp’ = f*. This form
of the thin lens formula was given by Newton.
We use the fact that the focal length is the image position for an object at
infinity (putting s = oo in the lens formula implies s* = f). Thus for the first
lens the image is at s; = f;. This forms the object for the second lens, with
position 5, = —s) (sign conventions ensure that this expression holds in all
cases). Hence 52 = —f], so using

L1l

52 J’z S
we find

1. 1.1
nohof
But s} is the image position for an object at infinity for the combined lens, i.c.
its focal length f. Thus

1. 1.1
foh A
The power is 1/f, where f is the focal length, and is measured in diopters
(meters™') if f is in meters. By the previous answer, the powers of lenses

placed in contact simply add, so the combined lens has power P=
Py + Py = 2.5 diopters.

Using the lensmaker’s formula

we get

and so
PZPA‘FP‘&:%[ZNA—HH“]]-

With the data given, we see that P = 0.4/ R at all three wavelengths. Doublets
are often used to correct chromatic aberration, i.e. the variation of focal
length with color.
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Let the lens-film distance be s'. With s = oo (distant objects), the lens for-
mula gives 5’ = f = 5 cm if the image is to be in focus.

If the objects are at s = | m, the lens formula gives

FARTTIES

i.e. &’ = 5.26 cm. The lens must be moved 0.26 cm away from the film.

. If s> f we find from 1/s+ 1/s' = 1/f that 5’ = f (see previous solution).

The magnification is thus m = —/s &~ —f /s (the minus sign means that the
image is inverted). Hence to change magnification we have to change lenses,
so cameras often have interchangeable lenses. For very high magnification,
we need very long focal length lenses (which have to be placed further from
the film). As the film is the same size, higher magnification lenses have smaller
fields of view.

. The effective diameter of the lens has been reduced by a factor 2 and there-

fore the arca by a factor 4. The rate at which light illuminates the film is
reduced by the same factor, so the photographer must increase the exposure
time from (.02 s to 0.08 5.

. We have 5’ = 2.5 cm in all cases (fixed retina-lens distance), while 5 ranges

over d, < s < oc. Thus 1/s has the range 1/d >, 1/s > 0. Using the lens
formula 1/s = 1/f — 1/s with f and d, measured in cm, we find

L1 ]
25°F25  d,

With d, = 25 cm, we get 2.27 cm < f < 2.50 cm. The eye muscles must be
able to alter /' (and therefore the radius of curvature of the lens) by a factor
2.5/2.27 = 1.1 (i.c. by 10%).

The person is short-sighted. Her vision can be corrected by placing a lens in
front of the eye such that an object at infinity produces an image at a distance
< dy. Thus for this lens s = 20,5 = —1 m (the image has to be in front of the
eye so as to serve as an object for its lens). The lens formula then gives
f =5 = —1m. This is a diverging lens, with power P = —1 diopters (m™').

The man is long-sighted. When an object is at d, = 0.25 m, it must appear to
be at d, = 0.6 m, i.e. it must form a virtual image there. Using the thin lens
formula with s = d}, s’ = —d,, we find the required focal length f or power P,

p1_1

1 . .
7 d_,’, - d_. = 2.33 diopters.
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Thus he needs glasses with converging lenses of focal length f = 0.43 m. In
most people the near point retreats with age. Reading glasses are required at
the latest by the age at which it reaches the length of the arms!

The distance between two objects subtends a larger angle the closer they are
to the eye; but the eye cannot focus properly if they are placed closer than the
near point. Thus the smallest scale s that the man can distinguish must
subtend the minimum angle #; at the near point, i.e. 5 = tyd, = 0.125 mm.
Note that this formula is correct with #; in radians.

The object is placed just inside the focal point so that it produces a very
distant virtual image (see Figure), which can be viewed with comfort. The
angular magnification M = #;/8,, where 6, is the angular size of the image as
seen through the lens, and 6, that seen by the unaided eye at the near point.
From the Figure, and assuming that h < f,d,, we have 0, = h/f, while
0, = h/d,. (These results use the facts that tan# = @ for very small angles ¢
expressed in radians and that the object is very close to the focal point.) Since
the power D = 1/f, we have M = d,/f = d,D = 2.5 with the data given.

i \ I
1 u).’ \\_

. The specimen is very close to the focal point of the objective (see Figure), so

the lincar magnification of the objective is

where ¥ is the distance of the real image from the lens.

This magnified real image is the object for the ocular, arranged to be just
inside its focal point. The ocular acts as a simple magnifier (see the previous
solution), with angular magnification M, = d,/f>, where d, is the near point
of the user’s eye. Thus the overall angular magnification is
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6563 — 6562 4
v—-ch_ 1.52 % 107 7¢,
i.e. v =46 km s~ away from the observer (v is counted positive for motion
away, i.e. redshifts). We can say nothing about the transverse motion.

The star’s radial velocity (see previous solution) will oscillate back and forth
periodically. The mean value gives the radial velocity of the center of mass of
the binary system. The amplitude of the radial velocity oscillations and
Kepler’s laws can be combined to constrain or even measure the masses of
the stars of the binary.

The wavelength of the emitted sound is A = v,/v = 1500/3500 = 0.4286 m.
Local maxima appear where constructive interference occurs, i.c. when the
path lengths from A and B to the microphone differ by an integer number of
wavelengths. This happens at angles & to the symmetry line (see Figure) such
that

dsiné@, = nA,

where n is a positive integer. (This formula holds when d < L as is the case
here.) Since d = 1 m, we have sin 8, = 0.4286n. We thus have solutions up to
n=2,ie. 8 =0;sinf; = 0.4286 or 6, = 25.38°; sind, = 0.8572 or #, = 59°.
The detector should thus be placed at distances x,, = Ltan#, from the sym-
metry line, i.e. at x5 = 0,x; = 474.4 m, or x; = 1664 m.

D {microphone}

We get destructive interference, i.e zero sound intensity, when the path
lengths from A and B differ by exactly half a wavelength, i.e.

2m—1
2
(the paths differ by an odd number of half-wavelengths). With ¢ = 1 m and
#,, = 25.38° (specifying the position x = 474.4 m), we get
2m—1
2

dsind,, =

Am=1,23 ..

A= 0.4286 m,
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50 using A = v,/ we have

2m—1 1500
== m=(2m—1}x 1750 Hz.

For m=1 and m > 3, v is respectively below the minimum frequency and
above the maximum frequency; for m = 2, we have v = 5250 Hz, which is the
required answer.

Without the sheet the phase difference at the central maximum (on the sym-
metry line) is zero, i.e. (2n/\)d sin@ = 0, where # = 0. With the sheet in place
(see Figure), this is no longer true because of the change of wavelength inside
the sheet. Let the angle at which the total phase difference A is zero be 8
(see Figure).

The total phase change has a geometrical contribution

Ad, = ? sin @,

and dispersion contribution (caused by the different refractive index in the

sheet)
t 1 1
Ay =2 — [ ———
4 ﬂcos&(.\ A,)

with A, = A/n. Thus
27, . t
Ad = A‘l’xﬁ-.ﬁq’g —‘—A'- [dsmﬂ—@{n—- ]]]
Equating this to zero the central maximum appears at

dsinfcosf =t(n—1),

or
sin26 = %(n =1).

With the data given, we find sin26 = 0.17 or 8 = 4.9,
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