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PREFACE

Work on Deisboeck and Kresh's Complex Systems Science in BioMedicine
started years ago. In fact, thoughts and ideas leading up to this textbook date 
back to our first conversation, sometime in the fall of 1996. We quickly found 
common ground, and talked about emergence and self-organization and their 
relevance for medicine. We were both fascinated by the idea of complexity and 
marveled about its tremendous possibilities for cancer research, which was then 
and still is Tom's main scientific interest. Much has happened in science and 
technology since we first discussed our vision. For instance, in a remarkable 
international effort the human genome has been deciphered, nanotechnology has 
become a household name, and computing infrastructure, a critical enabler, is as 
powerful and affordable as ever before. 
 It is exactly because of this unprecedented progress that Complex Systems 
Science in BioMedicine is now making a case for a new approach in the life 
sciences. So let us start then with the obvious question first: why do we need a 
new fresh approach to ensure continued progress in the biomedical sciences? 
Did decades of methodically thorough research not yield great accomplishments 
and trigger an unparalleled productivity, with each year seeing thousands of 
scientific papers published in peer-reviewed journals? Certainly. Reductionism
has led to ever-growing knowledge about isolated molecular pathways and 
selected portions of disease processes. We concede, dissecting biological 
mechanisms into bits and pieces has been utterly successful—if the number of 
fragmented discoveries is to be the decisive parameter. However, if we take 
understanding connectivity across scales, or better yet, function as the yardstick 
for measuring scientific achievements, much less progress can be claimed. 
Neither the vision nor the technical tools necessary to achieve these goals are 
"mainstream" yet. But there are signs in the biomedical sciences that things are 
changing—clear signs. 
 Indeed, most of the field involved in mapping the human genome in the 
1990s is now engaged in functional genomics. Beginning to realize that the sum 
of its genes and proteins will not be able to explain a single cell's behavior, 
much less cell–cell interaction dynamics, let alone entire organ systems, we 
remember Aristotle, who had already argued that "The whole is more than the 
sum of its parts." For biomedicine it means that, no matter how many more 
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viii    PREFACE

details we enthusiastically discover on ever smaller scales, we fail in deducing 
the complexity of a cell or multicellular tissue on the basis of this fragmented 
knowledge alone. In other words, piecing it together afterwards will not work. 
We need a new scientific approach, one that takes the nonlinearity of the 
majority of biological processes as much into account as their multi-scaled 
character. We believe that we are at a crucial bifurcation, where we need to 
integrate knowledge rather than dissect it, where we need to collaborate 
intensely across disciplines, theoretically and experimentally, in order to move 
forward. Complex systems science can match this challenge. Intrinsically 
multidisciplinary, it comprises concepts and quantitative tools that enable us to 
investigate how multiple biological elements interact and how molecular 
networks guide cell behavior and ultimately determine tissue function. 
 You might wonder how this is any different from, say physiology, a 
cornerstone of classic biomedical training. Indeed, physiology, the science of 
how living organisms function, may well be regarded as a predecessor of what 
many in the computational biology community now call "systems biology" and 
which clearly overlaps with complexity science in its goals. Where they differ, 
however, is in the approach to get there. Complex systems science applies a set 
of concepts and quantitative tools that are based on analogy and commonality, if 
not universality, between distinctively different systems, biologically or 
otherwise. Let us give you an example. The reason my, i.e., Tom's, laboratory 
developed an agent-based model to study cancer cell migration was an 
admittedly rather tired look out of a window while approaching London's 
Heathrow Airport by night several years back. What caught my attention was 
that, from above, the busy suburbs and streets resembled the cellular clusters and 
path patterns of a growing biosystem where single cells rather than people 
represent the system's individual "agents." Could one possibly investigate the 
metabolism-driven interaction of a rapidly evolving multicellular system, 
internally and with its microenvironment, in a way similar to how social 
scientists analyze the adaptive, economically driven behavior seen in expanding 
human societies? If so, then why not try an urban-planning approach for cancer 
research in an effort to better understand the dynamics of growth, migration and 
aggregation in tumor cell populations? Chapter 6.3 (Part III) summarizes some 
of the intriguing results arising from this line of work. This example illustrates 
how complex systems science approaches the problem at hand with tools 
adapted from nonlinear dynamics, applying sometimes rather abstract modeling 
and simulation techniques ranging from network theory to agent-based 
frameworks. It follows a "top–down" concept based on the claim that 
abstraction, not simplification, is the key to understanding the complexity of 
interaction between multiple parts on and across various scales of interest. That, 
however, is distinctively different from classic physiology, which uses 
biophysics and engineering concepts to describe the biological entity of interest 
in as much detail as available and, thus, "bottom–up." Let us emphasize that 
tackling the very same scientific problem from two seemingly opposing sides 
should not be seen as much as a case of competing approaches but as an exciting 
opportunity to exploit their mutual strengths in going forward. 
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Complex Systems Science in BioMedicine presents some of the fundamental 
theoretical basics of this rapidly emerging field and exemplifies the potential of 
the new approach by studying such diverse areas as molecular networks and 
developmental processes, the immune and nervous systems, the heart, cancer, 
and multi-organ failure. In this effort, the book itself follows a multi-scaled
approach from molecular to macroscopic, thereby discussing both the normal 
and diseased states in selected topics. The invited contributions intentionally 
represent the dynamic state of the field in that biophysics, bioengineering, and 
computational biology modeling works are put side by side with complex 
systems-driven approaches. We believe that such juxtaposition not only anchors 
the new approach properly in established terrain but also helps showcase the 
differences. 
 A section on emergent technologies, no matter how long, can hardly ever be 
complete and, since the book was started years back, must run the risk of being 
outdated by the time of publication. By taking this risk we show by example that 
this novel approach has already led to and will continue to inspire design and 
development of cutting edge technology, ranging from micro-fluidics and 
innovative database management to multi-scale bioengineering, neuromorphic 
systems, functional MR imaging, and even operating room design. Undoubtedly, 
these and other techniques will feedback vital data and thus help complex 
systems science achieve its goals. 
 Finally, is there something like complex systems science at all or is it 
merely a powerful tool kit? As stated earlier and as reviewed in the book, there 
are certain techniques that are ubiquitous for the study of complex systems in 
economics, population dynamics, and biology. The title of the book reveals that 
we advocate the application of these techniques also to relevant areas in 
biomedicine where reductionism may have reached its limits. Nothing more, 
nothing less. As such, this book presents visionary ideas and their potential 
impact on future directions in biomedical research. It is not and cannot be 
definitive. Rather, we let the reader judge how far this, our field, has come, and 
if the presented work at this stage represents merely a promising, fresh approach 
or if it already signals the dawn of a new and yet to be fully defined science. 
 As described in detail in Yasha Kresh's introductory chapter, the origins of 
applying systems ideas in one form or another to the life sciences date back at 
least several decades. And while initial efforts to move complex systems further 
into the center of mainstream medicine were undertaken by a few pioneers, this 
has certainly changed. Over the last years, many colleagues have embraced the 
necessity of moving in this new direction, also documented by the enthusiastic 
feedback we received when we asked for participation in this multi-authored 
book. The newly established multidisciplinary graduate and postgraduate 
training curricula, sprouting complex systems-related academic centers as well 
as novel crosscutting grant funding programs, are testimony that these ideas are 
starting to catch on. What counts now are the steps we take in order to further 
foster this nascent development. As such, if Complex Systems Science in 
BioMedicine can help draw more attention to the application of complexity 
techniques to important questions in biomedicine and thus help support ongoing 
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and upcoming scientific, teaching, and training efforts, we will consider it 
successful. 
 The quest for novel ways of thinking was what brought us together back in 
1996, first as colleagues, now also as friends. It is the immense potential of 
complex systems science that provided a source of relentless energy for this 
textbook and that continues to fuel our scientific work. 

Thomas S. Deisboeck, MD Stuart A. Kauffman, MD 
Boston, Massachusetts Santa Fe, New Mexico 
 2004
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INTEGRATIVE SYSTEMS VIEW OF LIFE: 
PERSPECTIVES FROM GENERAL 

SYSTEMS THINKING 

J. Yasha Kresh 

Departments of Cardiothoracic Surgery and Medicine, 
Drexel University College of Medicine, Philadelphia 

The application of systems thinking and the principles of general systems science to 
problems in the life sciences is not a new endeavor. In the 1960s systems theory and bi-
ology attracted the interest of many notable biologists, cyberneticists, mathematicians, 
and engineers. The avalanche of new quantitative data (genome, proteome, physiome) in-
cited by the boundless advances in molecular and cellular biology has reawakened inter-
est in and kindled rediscovery of formal model-building techniques. The manifold 
perspectives presented in many ways is a re-embodiment of the general theory of organ-
ismic systems and serves as an impetus to suggest that organized complexity can be un-
derstood. The particular affinity expressed in this essay is a reflection of how closely my 
thinking is associated with the thoughts of Ludwig von Bertalanffy, Ervin Laszlo, and 
Robert Rosen. We are, by all accounts, at the threshold of a postgenomic era that truly 
belongs to the biology of systems. 

Thus, the task is not so much to see what no one yet has seen, 
but to think what nobody yet has thought about that which 
everybody sees. 
                                                                          —Schopenhauer

Systems here ... systems there ... systems everywhere 

Address correspondence to: J. Yasha Kresh, Departments of Cardiothoracic Surgery and Medi-
cine, Drexel University College of Medicine, 245 North 15th Street, MS#111, Philadelphia, PA 
19102-1192 (JKresh@DrexelMed.edu).



4 J. Y. KRESH 

1. INTRODUCTION

 The historical framework and ideas presented here feature the disciplines 
that spawned the science of complex systems (e.g., self-organizing, autopoietic 
networks, dissipative structures, chaos, fractals). In particular, we use general 
systems theory (GST), control system theory (i.e., cybernetics, homeodynam-
ics), and dynamical systems theory (nonlinear, chaotic), the forerunners of crea-
tive systems thinking, to formulate a coherent theory and elucidate the essential 
properties of biological phenomena such as structural and functional organiza-
tion, regulatory control mechanisms, and robustness and fragility. 

The defining aims of systems thinking:

— The Believing: why do I see what I see? 
— The Being: why do things stay the same? 
— The Becoming: why do things change? 

 The notion of a system comprised of interdependent elements has been the 
subject of human concern and inquiry for centuries. Man has explored the solar 
system and the constellations since the beginning of recorded time. We, as a 
species, have struggled with the complicated array of interconnected elements 
that control our internal and external world. The more formal understanding of a 
system, offered by systems science, as a complex of components and their inter-
actions has not changed dramatically through the years. 
 An inkling of systems science was anticipated by the Gestalten in physics, a 
natural worldview proposed in the 1920s. According to the great leader in the 
field of GST, Ludwig von Bertalanffy, the ideas of physical Gestalten were the 
precursors intended to elaborate the most general properties of inorganic com-
pared with organic systems. It is worth mentioning that physicists study closed 
systems, as compared with real systems, that communicate and exchange energy 
(information) with the environment and thus self-organize, learn, and adapt. Of 
particular note is the historical precedence that gave rise to the genesis of sys-
tems theory as a reaction to the confinement of reductionism and motivated by a 
keen desire to reestablish the unity of science. Some aspects of intellectual tradi-
tion and scientific history are worthy of repetition. 

Systems was and remains a fashionable catchword. In the introduction to his 
seminal book, General System Theory (1), von Bertalanffy wrote in 1967 that 
the concept of systems permeated all fields of science as well as popular think-
ing, jargon, and mass media. Common parlance continues to include concepts 
such as adaptation, control, differentiation, dynamic behavior, hierarchy, robust-
ness, reliability, and sensitivity. 
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 The reader is encouraged to visit the Principia Cybernetica website (http:// 
pespmc1.vub.ac.be), an extensive condensed repository of historical and con-
temporary thinking addressing the age-old philosophical question—What is the 
meaning of life?—by starting with a formal definition: 

Systems Theory:

The transdisciplinary study of the abstract organiza-
tion of phenomena, independent of their substance, 
type, or spatial or temporal scale of existence. It in-
vestigates both the principles common to all complex 
entities, and the (usually mathematical) models that 
can be used to describe them (2). 

2. GENERAL SYSTEM THEORY: THE LAWS OF 
INTEGRATED WHOLES

 Von Bertalanffy (1) developed the tenets of system theory in the late 1920s 
(when he himself was in his twenties). He drew attention to a new perspective as 
a method, which he called "organismic biology," that assigns a self-
organizational dynamics to biological systems. To this end he developed the 
kinetic theory of open systems, characterized by equifinality and steady state. 
His main goal was to unite metabolism, growth and morphogenesis, and sense 
physiology into a dynamic theory of stationary open systems. He spoke of it as 
an attempt at explanation, calling it "The System Theory of the Organism." It 
was not until the late 1940s that he recognized that "there exist models, princi-
ples and laws that apply to generalized systems or their subclasses irrespective 
of their particular kind, the nature of the component elements, and the relations 
or ‘forces’ between them. We postulate a new discipline called General System 
Theory." What sustains this systems view is the recognition that one cannot 
compute the behavior of the whole from the behavior of its parts. More impor-
tantly, the preservation of the multitude of interacting atoms, molecules, cells, 
tissues, and organs is valued by the complex of relationships that entail the or-
ganization and not by the individuality of their participation. 

When we try to pick up anything by itself
we find it is attached to everything in the universe. 

                                                                     —John Muir 

 This grand unification concept was criticized as pseudoscience and said to 
be an attempt to connect things holistically. Such criticisms would have dissi-
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pated with the recognition that GST is merely a perspective or paradigm and that 
such basic conceptual frameworks are central to the development of exact scien-
tific theory and a new way of doing science. GST was not meant to be a single 
overarching theory (which history tells us has a short-lived existence). Above 
all, it is a system-theory; it deals with systemic phenomena—organisms, groups, 
and the like (e.g., nations, economies, biosphere, astronomical universe). It 
views a system as an integrated whole of its subsidiary components, not a 
mechanistic aggregate of parts in isolable causal relations (3). 
 Some of the concepts and principles are rigorous enough to be considered 
laws in addition to providing a general framework for theory construction. "If 
this be considered not enough, the reader would do well to remember that a true 
general theory of all such varieties of systems would constitute a master science 
that would make Einstein's attempt at a unified field theory pale by comparison" 
(from Foreword by Ervin Laszlo for a collection of essays gathered together and 
published in honor of von Bertalanffy two years after his death in 1972). As it 
was then and remains now, the science of systems is not restricted to a particular 
level of biological order or set of relationships. This perspective is all inclusive; 
it allows us to look at a gene network or a cell as an integrated system or to look 
at the organ, the organism, the family unit, the community, nation, and the bio-
sphere as an organized system (see Figure 1). The concept of a holon (from the 
Greek holos = whole) is used to explain the unity of greater purpose. Arthur 
Koestler popularized this term to describe the hybrid nature of subwholes/parts 
in living systems (4). A natural byproduct of this view of a system is the holar-
chy that is formed in which systems are simultaneously self-contained wholes in 
relation to their subordinated parts and dependent parts when viewed by the 
overarching whole (Figure 2). The manifestation of a relationally distributed 
control structure is the creation of autonomous, self-reliant functional modules 
that can handle contingencies without central control or intervention. 

3. SYSTEMIC PRINCIPLES OF CYBERNETICS

Information is information not matter or energy. No material-
ism which does not admit this can survive at the present day. 

—Norbert Weiner 

 A special branch of general systems theory that studies systems that can be 
mapped using loops or looping structure became known as cybernetics. The 
term cybernetics stems from the Greek kybernetes (meaning steersman, gover-
nor, or pilot as in autopilot). It became known as a theory of the communication 
and control of regulatory feedback (information loop). The modern abstract 
view of cybernetics encompasses the study of systems (subsystems) and their 
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Figure 1. Holarchies and the order of nature: hierarchical structures/units of life leading to complexification 
in organizational order. The notion of entities that are "independent wholes" and "dependent" parts seen as 
an overarching assimilation of lower order "parts" into the adjoining level of "wholes." The part–whole 
Holon dualism allows for concurrent upward–downward causality (arrows) to coexist (4). The overarching 
levels of interconnected and interdependent continuum suggest an integrated worldview perspective and 
thinking. The basic causal tension between parts (i.e., mechanistic, reductionist, atomistic) and whole (i.e., 
organistic, systemic, ecological) is depicted by arrows. (Artwork by M. Clemens.) 
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control (Figure 3). Emphasis is placed on the mechanistic relations that hold 
between the different parts of a system (i.e., input-sensors, controller-centers, 
output-effectors). The basic premise of cybernetics is the transfer of information 
and the circular relations that define feedback, self-regulation, and autopoiesis. 
Cybernetics contributed the understanding of goal-directedness or purpose made 
possible by a negative feedback loop that minimizes the deviation between out-
come and desired goal (Figure 3). The brain–body coupling plays a prominent 
role in the cybernetic model of regulation and control. The foundation of closed-
loop autonomic control is information transmission and the enabling communi-
cation pathways, facilitated by sensors (i.e., chemoreceptors, mechanorecep-
tors/pressoreceptors) and effectors (e.g., sympathetic drive, endocrine release) 
that couple neural processes (e.g., medulla) to myriad regulatory processes (Fig-
ures 3 and 5). Considerable overlap exists between regulatory cycles and centers 
of the limbic system and the various homeostats that constitute the endocrine, 
immune, and nervous systems. A disturbance to organismic regulation can occur 
at multiple levels and is prone to modulation by sleep, wakefulness, and emo-
tional states. These closely coupled interactions give rise to a dynamic equilib-
rium of the controlled process, manifested as homeodynamic stability, an 

Figure 2. Abstract representation and synthesis of "Complex Systems," including their con-
stituent hierarchical organization entities (components/elements) and dynamic relations (rela-
tional emergent function). Note that order and common behavior may arise from both self-
organization and control structures. (Artwork by M. Clemens.)
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expression and capacity of complex systems to withstand fluctuational changes 
from internal and external environments (5,6). 

4. BIOLOGICAL SYSTEMATICS: UNDERSTANDING 
WHOLE SYSTEMS

 Cybernetics also deals with how living systems/subsystems regulate, con-
trol, and reproduce themselves and how, in turn, they can produce other subsys-
tems that are goal-directed, self-regulating, or self-reproducing. Cybernetics is 
concerned with understanding the self-organization of human, artificial, and 
natural systems including the understanding of its own functioning. Importantly, 
cybernetic systems do not have the means to evolve from a lesser to a more dif-
ferentiated state. Cybernetics was part of the systems thinking movement and an 
essential component in the growth of scientific knowledge in the 1940s, moti-
vated by a desire to understand life in its entirety. 
 W. Ross Ashby (7), Norbert Wiener (8), and Warren McCulluch (9) are 
credited (albeit, Ashby is less known) with the early formulation of cybernetics 
inquiry; they emphasized communication and control, the processes of self-

Figure 3. Canonical closed-loop control system organization depicting the flow of information 
as part of the conceptual (cybernetic) model of homeostatic (linear and nonlinear) regulation 
(systemic blood pressure and oxygenation). The block diagram generalizes the structure and 
function of the "Controller" (e.g., brain) and "Plant" (e.g., cardiovascular system); feedback is 
facilitated via chemomechanical sensors (receptors) and other "smart elements" (not easily 
localized) that can read signals and appraise status. Self-regulation can be achieved in the 
presence of noise or imposed disturbance (e.g., blood loss, posture/altitude changes). 
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organization and self-regulation, and circular causal feedback mechanisms in the 
animal and the machine (e.g., robots). Some of these systemic principles and 
perspectives were assimilated by computer/cognitive sciences and are credited 
with being at the core of neural network approaches in computing. In addition to 
the early emphasis placed upon the observed system, the importance of the ob-
server (see Figure 3) has to be considered. 

Who will integrate the integrators?
                             —Margaret Mead

 Heinz Foerster (10) recognized the need for a theory of the observer, i.e., 
description of the describer (see Figure 6). A strong case was made for the need 
of a transdisciplinary synthesis of a representational framework that can con-
solidate the concept of self-reference and the meaning of cognition and commu-
nication within the natural and social sciences, the humanities, and information 
science. Because the structure and function of a system cannot be understood in 
isolation, cybernetics and systems theory should be viewed as two facets of a 
single approach. 
 General system theory encompasses the cybernetic theory of feedback, 
which represents a special class of self-regulating systems. In both cases, the 
parts entail the structure and function of the whole and as such are not isolable. 
Nonetheless, a fundamental difference exists between GST and cybernetics, 
whereby the feedback mechanisms (see Figure 3) are controlled by local con-
straints in contrast to the free multilevel interplay of the network of reactions in 
dynamic living systems. Moreover, the regulative mechanisms of cybernetic 
systems are based on predetermined (fixed) structural feedback. This implies 
that they are closed systems with respect to exchange of energy and matter and 
as such do not have the essential characteristics of living systems whose compo-
nents undergo growth, development, and differentiation, which "shows the exis-
tence of a general systems theory that deals with formal characteristics of 
systems, concrete facts appearing as their special applications by defining vari-
ables and parameters. In still other terms, such examples show a formal uniform-
ity of nature" (1). The concept embraced by GST is a broader one and is 
responsible for the development of the modern studies of nonstationary struc-
tures and the dynamics of self-organization in our attempt to understand how the 
pattern formation functions (see Part II, chapter 4, by Wuchty, Ravasz, and 
Barabási). 
 In biology (as well as in behavioral and social sciences), one often encoun-
ters phenomena that are poorly explained by the inanimate system of physical 
laws. When analyzing living objects (or behavior), the tendency is to use func-
tional attributes of the component parts and biochemical processes that are hier-
archically organized to maintain the integrity, development, and progression of 
the system in question. This is not to suggest some vitalistic or metaphysical 
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purposiveness is at play, dedicated to preserving the omnipresent biological or-
der. A good example of organized complexity (i.e., superposition of system 
upon system) is the human immune system (see chapter 4.1 by Segel, Part III, 
this volume), which is comprised of nearly a trillion cells and hundreds of sig-
naling chemicals that regulate with exquisite precision the myriad pathogens that 
roam the body. The immune system parts are engaged without a central organ-
izer (albeit signals from the brain can modulate its action) to control the detailed 
action plan. 

Everything should be as simple as possible,
               but not simpler.

                            —Albert Einstein 

 To put the self-organized, parts-collective in perspective (see Figure 4), it is 
inviting to look at the complexity of information and energy processing that 
must take place in the human body as a whole. The human organism consists of 
roughly 50 trillion subsidiary component parts (cells), 40,000 different types of 
proteins, and a genetic code of approximately 1.5 GBytes (6 billion base pairs or 
3 million nucleotides/haploid genome). It is revealing to note that the average 

Figure 4. Types of systems with respect to methods of study and complexity ranking, as given 
by Weinberg (11). Conceptual representation and generalized systems view of "organized 
complexity." Note the ranking and association between uncertainty and complexity (11) and 
their mutual interaction in defining ranges of systems (from machines to random aggregates). 
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person is a carrier of some 40 billion fat cells all in pursuit of a collective (hips, 
thighs) or a community (organs, abdomen) to inhabit. These too are self-
sufficient part–whole cellular entities. The total power consumption of an adult 
human is that of a 100-watt light bulb. Each individual cell is an intricate self-
contained chemical computer that can perform over 10 million chemical reac-
tions per second. Correspondingly, the cerebral cortex of the human brain con-
tains nearly 20 billion neurons, each with over 2,000 synapses, ready to 
communicate and exchange signals with each other and the rest of the body. The 
power consumption of this subsystem is surprisingly high (~33% of body total), 
i.e., 1000 times greater energy utilization than other cell types. (Our mothers 
were quite insightful, insisting that we cover our heads on a cold day.) The 
unlikely comparison of neurons to their electronic equivalent translates into the 
sum total of transistors comprising 500 Pentium-4 microprocessors. The corre-
sponding processing power of the brain is estimated to be 50 terabits per second 
(compared to ~25 gigabits per second for a Pentium-4). For the brain the emer-
gent complex systems properties manifest attributes such as consciences, mem-
ory, and ability to learn. These system-derived properties cannot be understood 
by studying the neurons or their topological distribution. 
 Clearly, organismic processes are deliberately ordered to maintain and pre-
serve the integrity of the system. In contrast, the physicochemical processes oc-
curring in an organism that has been impaired (by disease, pathologic condition) 
still follow the conventional laws of physics but differ profoundly in terms of 
principles of relational organization and order from the identifiably normal 
(healthy) system. Molecular biology is not going to give us all the information 
we need. The information about the whole (collective behavior) is larger than 
the sum of the information about the parts, i.e., the missing link in the pervasive 
reductionism practiced today. What is especially needed is a coherent picture of 
how this information is being used to carry out biological functions. 

4.1. Distributed and Shared Regulation

 The classical concept of cardiac neural regulation presumes that the neural 
efferent signals originate from extracardiac centers and, in particular, from the 
central nervous system (CNS). A byproduct of this supposition is that the 
cardiac afferent information is considered relevant and meaningful only if it is 
transmitted directly to the cardiovascular regulatory centers residing within the 
CNS. In this view, information processing is delegated exclusively to the CNS, 
whereas the intracardiac ganglia are assigned the passive role of a relay station. 
This limiting perspective of cardiac neural control is no longer tenable, 
particularly because it does not make allowances for the existence of the intrin-
sic components of neural regulation. In studies of patients undergoing heart 
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transplantation, it was observed that, although cardiac allografts are extrinsically 
decentralized, they retain a viable intrinsic neuronal system (12). 
 An increasing body of evidence has accumulated (5,12) identifying a vari-
ety of neural cells residing in the heart and having distinct and significant effects 
on cardiac performance. The premise that the heart is not merely a muscular 
pump but is endowed with a level of self-organized neuroendocrine self-
regulation is very compelling. In broader terms, the concept of self-regulation is 
based on the axiom that the heart is a regulatory system, integrating many com-
ponents, including endothelium-mediated control and afferent/efferent neural 
mechanisms, and thereby provides feedback of its beat-to-beat performance as a 
muscular pump (Figure 5). This view would suggest the existence of an intrinsic 
neural network processor. In fact, the intrinsic neural network is organized such 
that it functions as a neural center (heart brain) and can facilitate local control of 
the disparate heart functions and integrate them such that their responses are not 
merely parallel but tuned (optimized) to accommodate the varied influences on 
the heart. This local processor might behave as a functional intrinsic cardiac 
nervous system (ICNS). The conceptual understanding of the functional struc-
tures embodied by heart brain is schematized in Figure 8. 

Figure 5. Conceptual scheme of the intrinsic cardiac nervous system (ICNS). Intracardiac 
afferent neurons provide MECHANOsensitive and CHEMOsensitive input from atrial and 
ventricular tissues to the intrinsic efferent adrenergic and cholinergic cardiac neurons. CNS = 
central nervous system. For simplicity, the known sympathetic–parasympathetic interactions 
and other known efferent intracardiac neurons are not shown. Bold lines represent the path-
ways of extrinsic cardiac neural feedback control. Thin lines represent intrinsic cardiac neural 
pathways, the functional role of which remains to be established. 
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 The ICNS has many of the complex attributes associated with the CNS, 
incorporating afferent and efferent components mediating its activity. This form 
of functional organization provides the heart with the ability to fine tune its 
adaptive organ-system response. The inherent capacity of the cardiac ganglionic 
neurons to respond to local mechanical and chemical stimuli may facilitate the 
means for the adaptive intrinsic mechanism to operate under stress and patho-
physiologic conditions (i.e., neuropathy, transplantation, and aging). Ultimately, 
the intrinsic regulatory neurogenic mechanisms of the ICNS along with the CNS 
mutually negotiate the functional role that the autonomic nervous system plays 
in the control of the automaticity, electrical propagation, and contractility of the 
heart (12). 
 Likewise, there is compelling evidence of distributed feedbacks with multi-
ple overlapping and surprisingly conflicting short-term goals in the immune 
system (see chapters 4.1 [by Segel] and 4.2 [by Kepler], Part III, this volume). 
Information about and progress toward goals are being monitored from sensor 
detection and are broadcast to the system via vectors of signaling chemicals (i.e., 
cytokines). This sensor-driven strategy of distributed feedbacks helps improve 
the performance of a preferentially selected effector cell. 

4.2. Multilevel (Hierarchical/Heterarchical) and Distributed Organization

 Living systems are organized such that they manifest operational features 
ascribed to hierarchical and heterarchical structures. The functional organization 
is inherently a heterarchy of interrelations and as such has no obvious or fixed 
order rank. Unlike machines and/or mechanisms, the functional hierarchy does 
not dictate level and importance of cooperativity. 

No man is an island—he is a holon. A Janus-faced entity who, 
looking inward, sees himself as a self-contained unique whole, 
looking outward as a dependent part. 

—Arthur Koestler 

 The basic rules of distributed cooperation (i.e., superposition of system 
upon system) are inspired by precepts of holarchy, defined (4) as a hierarchical 
organization of self-regulating entities (holons) that function as autonomous 
wholes in supraordination to their parts and as dependent parts in subordination 
to controls on higher levels defining their function. This superposition perspec-
tive implies that natural systems are organized such that every system level (see 
Figure 1) is constrained by the immediate next level above it and similarly by 
the supporting level below it. This arrangement, in coordination with the local 



INTEGRATIVE SYSTEMS VIEW OF LIFE 15 

environment, promotes stability, robustness, and adaptation. Evolution seems to 
favor the building design of hierarchical order. The apparent advantages of a 
multilevel pyramid (see Figure 2), with simple systems at the bottom and more 
complex ones at the top, are the interfaces and linkages that are created by the 
intermediates. The nature of these subsystems is dualistic: they behave as inte-
grating wholes to their respective parts and as parts to their respective higher 
level wholes. The hierarchically organized benefit of this arrangement is inher-
ent in this modularity, whereby the decomposition into subsidiary parts does not 
ruin or unbalance the entirety of evolutionary organization. Herbert Simon (13) 
showed mathematically that complex systems evolve from simple systems with 
greater rapidity if stable intermediate forms exist than if they do not. 
 All in all, evolution keeps the conserved biological (sub)systems in check 
and thus robust to uncertainty in the local environment and to failure of the 
component wholes. It would seem that reductionism, in its current incarnation, is 
not likely to concatenate the fractionated parts together so as to make the selec-
tively disintegrated living organism whole again. 

4.3. Heterarchy (Def: The Other, the Alien + to Reign, to Govern)

 Organizational features embodied by heterarchical systems and the topo-
logic character of nested closed circuits, which were introduced nearly half a 
century ago by the neurophysiologist and cybernetician Warren McCulloch (9), 
can be considered a superset of the ordinary hierarchical forms. The concept of 
heterarchy captures the essence of networked dynamic structures, in which the 
center of control (authority) is redirected to whichever point is most relevant and 
useful to accomplish the purposive activities. This form of organizational diver-
sity is particularly prevalent in brain function and autonomic function. 

Today the network of relationships linking the human race to itself 
and to the rest of the biosphere is so complex that all aspects affect 
all others to an extraordinary degree. Someone should be studying 
the whole system, however crudely that has to be done, because no 
gluing together of partial studies of a complex nonlinear system can 
give a good idea of the behavior of the whole. 

—Murray Gell-Mann 

 The disintegration of a multilevel system can come about as a result of dys-
regulation in the level of communication (downward/upward causation). One 
can argue that the abnormal growth of individual cells (certain types of cancers) 
might be the result of loss of optimal amounts of communication (excessive,  
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diminished, interrupted) between the subsystems (see chapters 6.1 [by Pienta] 
and 6.2 [by Solé, Gonzáles García, and Costa], Part III, this volume) on the  
same level or across a heterarchical (9) network. Life is an emergent property of 
complex systems. Disorganization and disorder in biological systems are mani-
festations of general system failure (see chapter 7.2 by Buchman, Part III) and 
lie at the root of acute trauma, diseases, and senescence (see chapter 7.3 by Lip-
sitz, Part III). This observation must be considered in a context that recognizes 
the truism that biological disorder is functional disorder order (and the con-
verse). It remains unclear whether senescence is a passive process, brought 
about by loss in structural and metabolic integrity, or a direct consequence of 
changes in the epigenetic driving programs (reinforcement, reinitializa-
tion/rebooting) that ordinarily perpetuate the dynamic equilibrium (homeody-

Figure 6. Systems Methodology. The associated steps involved in constructing a systems 
theoretical model (e.g., visual, verbal, mathematical, computational simulation). The envi-
ronment acting through its operational agents (information, material flow, energy flow) alters 
the system's program and thereby the identifiable variables. Thereafter, the observer's speci-
fied program and the inherent limitations (e.g., cognitive, conceptual, and inferential) dictate 
the resultant (emergent) model. (Artwork by M. Clemens.) 
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namic (14) regulation) via the neural, endocrine, and immune communicative 
feedback/feedforward subsystems. From the thermodynamic perspective, if one 
follows the path that leads to system disorganization, the outcome is inevitable. 
The terminal state (death) is reached when a critical breakdown in the signaling 
network and in the connectivity of interacting organs, tissue, and cellular proc-
esses is breached. In the realm of scientific superstition, the observed changes in 
regulatory nets commit causation to a sure death. 

5. SYSTEMS BIOLOGY AND MATHEMATICAL MODELING

 The construction of mathematical models that realistically simulate whole-
organ function, or a signaling pathway that regulates cell processes such as cell 
replication, would be extremely complex and computationally intractable. The 
time scales of life events range from microseconds (molecular motion) to years 
(life span). The needed spatial resolution is equally enormous (1 nm ion channel 
pore size to 1 m body dimension). Clearly, a large assembly of models would be 
needed to cover the full span of biological hierarchy and order, each in turn able 
to couple to respective levels of known association (e.g., Human Physiome Pro-
ject).
 For example, it would seem straightforward that a simplified model system 
(e.g., myocardial tissue) that is restricted to only three cell types (neurocytes, 
endothelial, myocytes) can be fractionated into various two- and one-cell sys-
tems, each of which is suitably simplified to be understood in isolation. On 
closer examination (see Figures 7 and 8), it becomes obvious that the crucial 
integrity (stability) and information are completely lost. The simplest explana-
tion offered by system theory is that the fractionation methodologies and analy-
sis techniques used do not commute (see Figure 11) with the dynamic properties 
of the system as a whole. Moreover, the participation of the environment (local 
milieu) complicates the fractionation aftermath, destroying the dynamics of the 
system and its function, thereby preserving mutual information (e.g., genetic 
mutations and environment contribute to disease manifestation). It may interest 
the reader to know that this classic three-body problem is universally difficult to 
reconcile and that the acronym for the neural, endothelial, and muscle (NEM) 
cell arrangement means "No" in Hungarian. Surely, this is precisely what Ervin 
Laszlo (born in Budapest, 1932) would have said with regard to fractionation 
and coarse reductionism. The building of predicative models of cells, organs, 
and ultimately organisms need not be the sole course or salvation of reduction-
ism. Acquiring analytical data and methods for integrating the network of genes 
with cells and whole organism remains an important endeavor of systems biol-
ogy. Importantly, the quantitative understanding of the entire subcellular, cellu-
lar, or multicellular systems would dramatically alter the approach to and course 
of drug discovery and personalized medicine. 
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 As regards the relations among levels in the vast hierarchy-heterarchy of 
living order, researchers have expressed interest in simulating biological sys-
tems, i.e., bottom–up, commencing with single genes and protein molecules, or 
top–down, starting with large-scale physiological behavior (devoid of gene and 
protein–protein interactions). Notable modelers (see chapter 3.2 by Winslow, 
Part III, this volume) advocate a compromise, working in both directions from 
the middle (middle–out approach) because of the two levels of data-rich simula-
tion available using this approach (15). A limitation of mathematical and New-
tonian paradigms implies that living systems are in fact state-determined, i.e., 
explicit values can be specified that relate state variables to rates at all levels of 
organization. 

Figure 7. Three-Body Problem. The analytical solution to this problem is universally ir-
resolvable (not "integrable"). In this example the mutual interaction between three cell types 
(neurocytes, endothelial, and myocytes) cannot be predicted/understood in terms of reduced 
sets of interactions, further confounded by the "surrounding" environment (mechano- and 
chemomodulation). This form of autopoiesis suggests a mutual coevolution in function. The 
joint interaction is figuratively localized at the intersection of the virtual dynamic "orbits" 
(arrows). This is a well-known problem of celestial mechanics that remains unsolvable unless 
the interaction is confined to a single plane. 
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5.1. Transfer Function and Organizational Analysis

 In those cases (of which there are many) in which there is no biodynamic 
theory to explain system behavior, it is nonetheless possible to gain some under-
standing and derive an empirical inference as to the complex structure of system 
integrity by observing the outputs generated by the system itself (see Part II, 
chapters 1 [Shalizi] and 2 [Socolar], this volume): 

Input { PROCESS }   Output 

Figure 8. A web of intracellular–extracellular signaling pathways organized as complex regu-
latory networks. Shown for example purposes only is the intrinsic cardiac nested layers of 
self-regulation (see Figure 6). Diagrammatic generalization of the network of signaling events 
(receptor-ligand type) that mediate neuronal, hormonal, and mechanically dependent interac-
tion between Neural (N), Endothelial (E), and Myocardial (M) cells. The emergent extrinsic 
function is manifested as a finite and ordered (mechanistic) expression, limited in the degrees 
of operational freedom, i.e., much of the "internal complexity" is not made evident in the 
externalized homeokinetic functions of regulated stable systems. 
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 These measurable signal surrogates can be related to some relevant fea-
ture(s) of the system that generated them. In particular, an expression of the in-
terplay between perturbation (internal/external) to system function and the 
dynamic response of the regulatory processes, i.e., homeodynamic processes, 
can be inferred using nonlinear time-series signal analysis techniques (12). His-
torically, the cardiovascular system (heart rate, blood pressure fluctuations) has 
been the beneficiary of this approach, primarily because of the ease and accessi-
bility of system variables and the relatively well-characterized modulation of the 
autonomic response. This approach has gained considerable attention, not only 
in deciphering the dynamic structure that constitutes cardiovascular regulation 
but also as a window onto the genesis (conception, birth, puberty) and span 
(maturation, senescence, death) of human life. 
 The changes in physiological and functional decline accompanying aging 
(see chapters 3.2 [by Winslow] and 3.3 [by Glass], Part III, this volume) are an 
expression of the losses in the organizational integrity (loss of network connec-
tivity, signaling regimes). This form of organismic dysregulation of hierarchical 
(feedback and feedforward circuits) organization can be conceptualized by a 
complexification score that is intimately dependent on the degradation, instabil-
ity, and dropout of homeodynamic regulatory processes governing the trajectory 
of life including pathologic states, aging, and death. 
 Reconstituting the functional integrity of a biological system is not a simple 
act of replacing or putting the constituent parts back together. The main focus of 
biologists for the better part of the twentieth century was the disassembly of 
living systems to glean an understanding of the workings of the parts as mem-
bers of the whole. This reductionist approach started with the cell and systemati-
cally descended to the genome itself. Not surprisingly, this exuberance of effort 
gave rise to a monumental amount of information that is now begging for rein-
tegration into a systematic whole. The GST concepts promulgated throughout 
the 1960s have been resurrected in a reincarnated form—systems biology (16). 
Indeed, the lessons of our youthful past are visited upon us again. 
 Mihajlo Mesarovic (17) anticipated this disconnect in 1968: "It has been 
said too often, but has been really taken into account too seldom, that the theory 
and applications are intimately related and none can make significant progress 
without the other. Actually systems theorists tend to disregard this altogether 
and take the position that all that is needed next is that the biologists learn and 
apply systems theory. However, I would like to suggest that one of the many 
reasons for the existing lag is that systems theory has not been directly con-
cerned with some of the problems of vital importance in biology."
 The opportunity is ripe to revisit systems theory, its application to biology, 
and the lessons that can be learned from the early developments, the goal being 
to see how a more evolved perspective of living systems can provide a fresh 
look in the postgenome era of the transcriptome and proteome. Interest in formal 
mathematical models of biological hierarchical processes is increasing. The new 
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impetus is to model and treat the organization and regulation of genetic path-
ways as dynamic systems in which causation is a relationship, not between 
components, but between changes of states of a system (16). The general sys-
tems science paradigm, with its tool set for studying collective organization and 
emergent behavior, is a fitting natural conceptual framework for putting 
Humpty-Dumpty back together again. 

Humpty-Dumpty sat on a wall. 
Humpty-Dumpty had a great fall. 

All the king's horses and all the king's men, 
Couldn't put Humpty-Dumpty together again.

—Lewis Carroll

 System science is not a ready-made collection of defined principles of bio-
logical organization. It is a construct for building formal models that need not be 
mathematical. The system approach entails the application of system theory 
methodology to the analysis and scientific explanation of biological phenomena. 
Linus Pauling said, "Life is a relationship among molecules and not a property 
of any molecule." A coherent framework for studying multilevel systems and 
their relational interaction is indispensable if any progress is to be made in un-
derstanding complex biological organization. It would also seem logical that 
these relational interactions have to be accounted for in space (nanometer to 
meter span) and time (microsecond–years events). 
 An added systems complexity results when an attempt to alter and/or ma-
nipulate biological organization is formalized such that it manifests a mutually 
reinforcing "Systems Medicine" architecture (Figure 9). It is an inevitable fact 
that the human condition (problem solving skills) and perception, coupled with 
the accumulated knowledge and information processing skills (see Figure 9) 
contribute to the effective complexity of "manmade" cascading systems, i.e., 
man–machine, man–man interaction. A case in point is the resultant feedback 
and feedforward control loops of a clinician interacting (sensing, measuring) 
with the ailing patient while testing and/or modifying systems performance (see 
Figure 9). The apparent regulatory interactions and compounding of systems 
effectors creates the conditions where the "sensor-driven therapy" increases both 
the robustness and fragility of the integrated system. The manifested dynamics 
of a high-gain system are both powerful (can be curative) and dangerous (medi-
cal errors). 

6. EMERGENCE: COMPLEX ADAPTIVE SYSTEMS

 Many systems in nature comprise a large number of autonomous parts (sub-
systems) that interacting locally, in the absence of a high-level global controller,  
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and that can give rise to highly coordinated and optimized behavior. The com-
plex adaptive behavior of global-level structures that emerges is a consequence 
of nonlinear spatiotemporal interactions of local-level processes or subsystems 
(see Figure 10). This form of nested cooptation (across levels of organization) is 
evident in isolated cells, organisms, societies, and ecologies. Systems of this 
type are nonlinear, nonstationary, nonequlibrium, and nonreductionist, and are 
governed by universal principles of adaptation and self-organization in which 
control and order are emergent rather than predetermined. 
 From a system-theory standpoint, a system that is endowed with a greater 
number of degrees of freedom is more robust and has a greater ability to ac-
commodate imposed disturbances. In general, biological systems, independent 
of hierarchical organization (molecular to multicellular), normally operate such 
that a finite number of regulatory modes can be invoked. Chaotic systems are 
extremely susceptible to changes in initial conditions, i.e., small changes in a 
parameter of a chaotic system can produce a large change in the output, i.e., 
poised at the "edge of chaos" (18). This ability allows the system to switch 
quickly from one state to another. It may be that the chaotic regime enables a 
subsystem to exert its function such that regulatory changes can be achieved 
with minimal external input, reminiscent of self-organized criticality seen in 
other physical phenomena. From a standpoint of economy of performance (en-
ergy use, responsiveness), some upper limit must be set on the number of active 
degrees of freedom (control variables) that can or need be summoned. Most 

Figure 9. Systems-medicine conceptual framework: intertwined Man (Patient)–Machine 
(Sensors/Devices) and Patient–Clinician interaction and communication. The confluence of 
complexity and systems robustness gives rise to a mutually reinforcing state of fragility and 
risk. 
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physiological time-series data seem to be restricted in dimensional complexity to 
3 to 6 degrees of freedom (see chapter 3.3 [by Glass], part III, this volume). The 
whole–part dualistic nature of subsystems (e.g., heart), comprised of multiple 
nested loops of nonlinear interacting regulators (homeostats), make them espe-
cially suitable/prone to chaotic behavior and thus amenable to finer/rapid con-
trol/adaptation (12). 

6.1. The Living Organism as a Unit of Biological Organization

 The questions that persist about biological functions and their interrelation-
ships are: 

Does life get more complicated? i.e., more effective func-
tions are associated with more complex structures whereas 
diseases and death are the converse.

Figure 10. Complex Adaptive Systems (CAS) Schema. Many natural systems (e.g., immune, 
nervous system) are characterized by a behavior that is emergent as a result of often nonlinear 
spatiotemporal (complex) interactions among a large number of component "parts" at differ-
ent levels of organization. The three principal inputs that drive the dynamics of the CAS are 
information, matter, and energy. These systems tend to be nested and open to the environment 
(have history); the parts cannot contain the whole; they are relational (short-range acting); 
nonlinear; contain adaptive feedback loops (anticipatory) with boundaries that are difficult to 
demarcate before. (Artwork by M. Clemens.)
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 Are complex organisms better (more) adapted (adaptive) 
than simple organisms? i.e., is biology a relational science 
(not merely a complex system)-throwing away the physics 
and keeping the organization; or as Robert Rosen noted
"throwing away the polypeptide and keeping the active 
site" (19). 

 It is noteworthy that living systems are not known to be structurally stable 
(e.g., during morphogenesis and evolution); they are not highly ordered, i.e., the 
order is not great but it is special; they are not program-driven or state-variable 
determined, i.e., they are execution-driven; they are not digital-computational, 
and equally surprising is that they are not far removed informationally from 1/f 
noise communication (6,14). 
 An intriguing example of a subsystem assimilation challenge arises when a 
new organ (heart, kidney, liver, lung, tissue, cells) is transplanted to a recipient 
host. The explanatory model of the newly emergent functional order attributable 
to graft–host interaction may benefit by evoking organizing principles of coevo-
lution. The heart as an autonomous organ system is endowed with an adaptive 
plasticity (genotypic/phenotypic memory) and capacity to assimilate ("fitness 
capacity") within the host and in the process modify the environment, determin-
ing the fate of the body system as a whole. The principles by which emergent 
properties and the functional order of a self-organizing system, such as the heart, 
achieve homeodynamic stability provide a non-reductionist framework for un-
derstanding how biological systems adapt to the imposed internal and external 
stresses (e.g., organ/tissue replacement). The newly emergent dynamics arising 
after an organ (heart) transplantation may represent a more stable, versatile, and 
adaptive bipartite whole. The law of requisite variety, originally conceived by 
Ross Ashby (7), dictates that the variety in the control system must be equal to 
or larger than the variety of the perturbations in the local (body) environment, 
i.e., the larger the variety of actions available to a control system, the larger the 
variety of perturbations it is able to compensate/regulate. 
 The integrative collective behavior of living organisms cannot be reconsti-
tuted using the traditional reductionist approach, i.e., a mere assembly of parts or 
their subunits. The whole emanates/evolves relationally from the emergent in-
ternal requirements of the constitutive whole–part subsystem organization 
(3,11). A case in point is the dynamic rhythm patterns that evolve after cardiac 
transplantation. Over time, the generated patterns resulting from the reunifica-
tion that takes place within the milieu of the recipient are not specified in the 
equations of motion (5,12). The behavior of living systems must be treated as a 
special case in which the description and representation must be inferred directly 
from the system in question, much like general complex systems. This, of 
course, implies that no identifiable single mathematical theory of complex sys-
tems exists that begs for completely new scientific methodologies and experi-
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mental epistemologies, a new guide for thinking with emphasis placed on its 
relativity or situation-dependence approach. Specifically, Robert Rosen's model-
ing (19) relation (see Figure 11) is a tool for thinking about the relationship be-
tween natural systems and structures created (scientific process) for 
understanding such systems. Simple systems entail a largest model representa-
tion. Conversely, complex systems are not bounded and therefore no largest 
syntactic model can be found. The mechanistic metaphor simply will not do. 
 There is compelling evidence that malignant tumors behave as self-
organizing networks with properties of adaptive multicellular biosystems rather 
than as unorganized cell masses (see chapter 6.3, by Mansury and Deisboeck, 
part III, this volume). The emergence of networks with complex topology as 
diverse as the cell or the Internet that are driven by similar self-organizing proc-
esses suggests that they are governed by simple but generic laws. Analysis of the 
metabolic and protein networks of various organisms shows that cells and com-

Figure 11. Modeling/Abstraction Formalism: methodology of applying systems theory in 
biology, i.e., construction of a system and the constructive specifications (conceptual or oth-
erwise). A model only exists when the "modeling relation" commutes (1 = 2 + 3 + 4). The 
modeling relation involves a "Natural System" undergoing causal events, in the form of a 
"Formal System" undergoing, implication while connected by an encoding and decoding step. 
(Artwork by M. Clemens.)
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plex manmade networks (i.e., World Wide Web) share the same large-scale to-
pology (see Part II, chapter 4 [by Wuchty, Ravasz, and Barabási], this volume). 
The emergence of networks with complex topology as diverse as the cell or the 
Internet that are driven by similar self-organizing processes suggests that they 
are governed by simple but generic laws. Uncovering these organizing princi-
ples and the role they play in living processes is one of the major goals of post-
genomic biology. 
 In short, von Bertalanffy gave us a new paradigm for transdisciplinary 
thinking and synthesis. Considering the fact that many of our practical problems 
have to do with systemic phenomena (development, preservation, function), a 
means for system thinking is an essential component of the integration of scien-
tific knowledge. In that respect, systems theory is not meant to be another fin-
ished, unified theory to be verified or falsified and fitted either into the spectrum 
of valid scientific data or placed on the shelves of the history of science and left 
to the memory of time. 
 Perhaps this fear is unfounded, as demonstrated by the opening remarks 
made at the 3rd International Conference on Systems Biology held at the Karo-
linska Institute in 2003 (Måns Ehrenberg, chair): 

The Human Genome Project and recent advances in proteomics and 
DNA microarray technology highlight the need for systems-level in-
tegration of experiments and theory in order to understand the logic 
of life. This is the ambitious goal for systems biology, the quantita-
tive study of biological processes as integrated systems rather than as 
isolated parts (http://www.genome.org/cgi/doi/10.1101/gr.1765703). 
What is especially needed is a coherent picture of how this informa-
tion is being used to carry out biological functions. 

Parenthetically, the resurgence of a systems approach to biology has been 
largely based on the premise, as articulated by Leroy Hood, that systems biology 
must be able to capture the digital informational content of the genes and inte-
grate them together into networks so that we may begin to understand the logic 
of life. 

7. THE COMPLEX SYSTEMS IN SYSTEMS BIOLOGY

 It would seem that we are back at the beginning, but this time with an ear-
nest desire to reassemble the complex collection of molecular-cellular pathways 
and networks in order to gain an understanding (i.e., prediction, control, design) 
of biology at progressively higher levels of organization. This integrative ap-
proach to systems biology, encompassing genomics, transcriptomics, pro-
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teomics, and metabolomics is now possible because of advances in high-
throughput technologies (e.g., microarrays, microfluidic devices) and a general 
acceptance of computational and mathematical models by the biology commu-
nity at large. The ability to analyze and simulate pathways, networks, and the 
spatial and temporal relationships between genes, transcripts, proteins, metabo-
lites, and cells is an important step in the attempt to attribute cause and effect in 
living systems (see chapters 1.1 [by Pedraza and Oudenaarden], 1.3 [by Wag-
ner], and 1.4 [by Dhar and Tomita], this volume). A quantitative understanding 
of entire subcellular, cellular, or multicellular systems could significantly alter 
the approach taken to personalized medicine and drug discovery. Clearly, the 
motivation to pursue the analysis of molecular pathways, networks, and regula-
tion of how the cell works as a whole system has been with us for some time. 
What has changed is the recognition that the parts list (i.e., human genome) or 
its sequence is a necessary but not sufficient ingredient for the synthesis. Sys-
tems biology is not an entirely new disciplinary domain of knowledge. In many 
ways, it is the recasting of cell physiology with a DNA-twist, i.e., a desire to 
dissect the emergent relational mechanisms that arise when traversing from the 
molecular to the systems level. The harnessing of interdisciplinary talents such 
as mathematics, computer science, and engineering is needed to develop the 
theoretical framework for complex systems biology (and medicine) problems. 

7.1. The Last Word on the Science of Organized Complexity

 Much of science in the past century has been concerned with analysis of 
parts; relatively little emphases has been placed on the synthesis and integration 
of concepts that constitute the logic of life. 
 Each chapter contribution to follow, by design, reflects the system view of 
biology or medicine. The chosen style and manor of system inquiry construction 
contribute and frame a scheme of ideas that are unflinchingly imaginative and 
connected without the burden of sustaining a unitary theory. The coalesced book 
is a system itself; as such, it has four interrelated and internally consistent as-
pects acting as a whole: systems philosophy, systems theory, systems methodol-
ogy (e.g., nanotechnology and microfluidics), and systems application. 

Any theory of wider scope implies a worldview ... any major 
development in science changes the world outlook and its 
"natural philosophy" ... 

—Ludwig von Bertalanffy, Robots, Men and Minds
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METHODS AND TECHNIQUES OF COMPLEX  
SYSTEMS SCIENCE: AN OVERVIEW 

Cosma Rohilla Shalizi 
Center for the Study of Complex Systems, 
University of Michigan, Ann Arbor

In this chapter, I review the main methods and techniques of complex systems science. 
As a first step, I distinguish among the broad patterns which recur across complex sys-
tems, the topics complex systems science commonly studies, the tools employed, and the 
foundational science of complex systems. The focus of this chapter is overwhelmingly on 
the third heading, that of tools. These in turn divide, roughly, into tools for analyzing 
data, tools for constructing and evaluating models, and tools for measuring complexity. I 
discuss the principles of statistical learning and model selection; time series analysis; cel-
lular automata; agent-based models; the evaluation of complex-systems models; informa-
tion theory; and ways of measuring complexity. Throughout, I give only rough outlines 
of techniques, so that readers, confronted with new problems, will have a sense of which 
ones might be suitable, and which ones definitely are not. 

1. INTRODUCTION

 A complex system, roughly speaking, is one with many parts, whose behav-
iors are both highly variable and strongly dependent on the behavior of the other 
parts. Clearly, this includes a large fraction of the universe! Nonetheless, it is not 
vacuously all-embracing: it excludes both systems whose parts just cannot do 
very much, and those whose parts are really independent of each other. "Com-
plex systems science" is the field whose ambition is to understand complex sys-
tems. Of course, this is a broad endeavor, overlapping with many even larger, 

Address correspondence to: Prof. Cosma Rohilla Shalizi, Statistics Department, Carnegie Mellon 
University, Pittsburgh, PA 15213 (cahalizi@stat.cmu.edu). 



34 C. R. SHALIZI 

better-established scientific fields. Having been asked by the editors to describe 
its methods and techniques, I begin by explaining what I feel does not fall within 
my charge, as indicated by Figure 1. 
 At the top of Figure 1 I have put "patterns." By this I mean more or less 
what people in software engineering do (1): a pattern is a recurring theme in the 
analysis of many different systems, a cross-systemic regularity. For instance, 
bacterial chemotaxis can be thought of as a way of resolving the tension be-
tween the exploitation of known resources, and costly exploration for new, po-
tentially more valuable, resources (Figure 2). This same tension is present in a 
vast range of adaptive systems. Whether the exploration–exploitation tradeoff 
arises among artificial agents, human decision-makers or colonial organisms, 
many of the issues are the same as in chemotaxis, and solutions and methods of 
investigation that apply in one case can profitably be tried in another (2,3). The 
pattern "tradeoff between exploitation and exploration" thus serves to orient us 
to broad features of novel situations. There are many other such patterns in 
complex systems science: "stability through hierarchically structured interac-
tions" (4), "positive feedback leading to highly skewed outcomes" (5), "local 
inhibition and long-rate activation create spatial patterns" (6), and so forth. 
 At the bottom of the quadrangle is "foundations," meaning attempts to build 
a basic, mathematical science concerned with such topics as the measurement of 

Figure 1. The quadrangle of complex systems. See text.
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complexity (10), the nature of organization (11), the relationship between physi-
cal processes and information and computation (12), and the origins of complex-
ity in nature and its increase (or decrease) over time. There is dispute whether 
such a science is possible, and if so whether it would be profitable. I think it is 
both possible and useful, but most of what has been done in this area is very far 
from being applicable to biomedical research. Accordingly, I shall pass it over, 
with the exception of a brief discussion of some work on measuring complexity 
and organization that is especially closely tied to data analysis. 
 "Topics" go in the left-hand corner. Here are what one might call the "ca-
nonical complex systems," the particular systems, natural, artificial and fictional, 
which complex systems science has traditionally and habitually sought to under-
stand. Here we find networks (see Part II, chapter 4, by Wuchty, Ravasz, and 
Barabási, this volume), turbulence (13), physicochemical pattern formation and 
biological morphogenesis (14,15), genetic algorithms (16,17), evolutionary dy-
namics (18,19), spin glasses (20,21), neuronal networks (see Part III, section 5, 
this volume), the immune system (see Part III, section 4, this volume), social 
insects, ant-like robotic systems, the evolution of cooperation, evolutionary eco-

Figure 2. Bacterial chemotaxis. Should the bacterium (center) exploit the currently available 
patch of food, or explore, in hopes of finding richer patches elsewhere (e.g., at right)? Many 
species solve this problem by performing a random walk (jagged line), tumbling randomly 
every so often. The frequency of tumbling increases when the concentration of nutrients is 
high, making the bacterium take long steps in resource-poor regions, and persist in resource-
rich ones (7–9). 
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nomics, etc.1 These topics all fall within our initial definition of "complexity," 
though whether they are studied together because of deep connections, or be-
cause of historical accidents and tradition, is a difficult question. In any event, 
this chapter will not describe the facts and particular models relevant to these 
topics. 
 Instead, this chapter is about the right-hand corner, "tools." Some are proce-
dures for analyzing data, some are for constructing and evaluating models, and 
some are for measuring the complexity of data or models. In this chapter I will 
restrict myself to methods which are generally accepted as valid (if not always 
widely applied), and seem promising for biomedical research. These still de-
mand a book, if not an encyclopedia, rather than a mere chapter! Accordingly, I 
will merely try to convey the essentials of the methods, with pointers to refer-
ences for details. The goal is for you to have a sense of which methods would be 
good things to try on your problem, rather than to tell you everything you need 
to know to implement them. 

1.1. Outline of This Chapter

 As mentioned above, the techniques of complex systems science can, for 
our purposes, be divided into three parts: those for analyzing data (perhaps 
without reference to a particular model), those for building and understanding 
models (often without data), and those for measuring complexity as such. This 
chapter will examine them in that order. 
 The first part, on data, opens with the general ideas of statistical learning 
and data mining (§2), namely developments in statistics and machine learning 
theory that extend statistical methods beyond their traditional domain of low-
dimensional, independent data. We then turn to time series analysis (§3), where 
there are two important streams of work, inspired by statistics and nonlinear 
dynamics. 
 The second part, on modeling, considers the most important and distinctive 
classes of models in complex systems. On the vital area of nonlinear dynamics,
let the reader consult Socolar (Part II, chapter 2, this volume). Cellular auto-
mata (§4) allow us to represent spatial dynamics in a way that is particularly 
suited to capturing strong local interactions, spatial heterogeneity, and large-
scale aggregate patterns. Complementary to cellular automata are agent-based 
models (§5), perhaps the most distinctive and most famous kind of model in 
complex systems science. A general section (§6) on evaluating complex mod-
els, including analytical methods, various sorts of simulation, and testing, closes 
this part of the chapter. 
 The third part of the chapter considers ways of measuring complexity. As a 
necessary preliminary, §7 introduces the concepts of information theory, with 
some remarks on its application to biological systems. Then §8 treats complex-
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ity measures, describing the main kinds of complexity measure, their relation-
ships, and their applicability to empirical questions. 
 The chapter ends with a guide to further reading, organized by section. 
These emphasize readable and thorough introductions and surveys over more 
advanced or historically important contributions. 

2. STATISTICAL LEARNING AND DATA-MINING

 Complex systems, we said, are those with many strongly interdependent 
parts. Thanks to comparatively recent developments in statistics and machine 
learning, it is now possible to infer reliable, predictive models from data, even 
when the data concern thousands of strongly dependent variables. Such data 
mining is now a routine part of many industries, and is increasingly important in 
research. While not, of course, a substitute for devising valid theoretical models, 
data mining can tell us what kinds of patterns are in the data, and so guide our 
model-building. 

2.1. Prediction and Model Selection

 The basic goal of any kind of data mining is prediction: some variables, let 
us call them X, are our inputs. The output is another variable or variables Y. We 
wish to use X to predict Y, or, more exactly, we wish to build a machine which 
will do the prediction for us: we will put in X at one end, and get a prediction for 
Y out at the other.2

 "Prediction" here covers a lot of ground. If Y are simply other variables like 
X, we sometimes call the problem regression. If they are X at another time, we 
have forecasting, or prediction in a strict sense of the word. If Y indicates mem-
bership in some set of discrete categories, we have classification. Similarly, our 
predictions for Y can take the form of distinct, particular values (point predic-
tions), of ranges or intervals we believe Y will fall into, or of entire probability 
distributions for Y, i.e., guesses as to the conditional distribution Pr(Y|X). One 
can get a point prediction from a distribution by finding its mean or mode, so 
distribution predictions are in a sense more complete, but they are also more 
computationally expensive to make, and harder to make successfully. 
 Whatever kind of prediction problem we are attempting, and with whatever 
kind of guesses we want our machine to make, we must be able to say whether 
or not they are good guesses; in fact we must be able to say just how much bad 
guesses cost us. That is, we need a loss function for predictions.3 We suppose 
that our machine has a number of knobs and dials we can adjust, and we refer to 
these parameters, collectively, as . The predictions we make, with inputs X and 
parameters , are f(X, ), and the loss from the error in these predictions, when 
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the actual outputs are Y, is L(Y,f(X, )). Given particular values y and x, we have 
the empirical loss L(y,f(x, )), or ˆ( )L  for short.4

 Now, a natural impulse at this point is to twist the knobs to make the loss 
small: i.e., to select the  that minimizes ˆ( )L ; let's write this as follows: ˆ  = 
argmin ˆ( )L . This procedure is sometimes called empirical risk minimiza-
tion, or ERM. (Of course, doing that minimization can itself be a tricky nonlin-
ear problem, but I will not cover optimization methods here.) The problem with 
ERM is that the ˆ  we get from this data will almost surely not be the same as 
the one we'd get from the next set of data. What we really care about, if we think 
it through, is not the error on any particular set of data, but the error we can ex-
pect on new data, E[L( )]. The former, ˆ( )L , is called the training or in-sample
or empirical error; the latter, E[L( )], the generalization or out-of-sample or 
true error. The difference between in-sample and out-of-sample errors is due to 
sampling noise, the fact that our data are not perfectly representative of the sys-
tem we're studying. There will be quirks in our data which are just due to 
chance, but if we minimize L̂ blindly, if we try to reproduce every feature of the 
data, we will be making a machine that reproduces the random quirks, which do 
not generalize, along with the predictive features. Think of the empirical error 
ˆ( )L  as the generalization error, E[L( )], plus a sampling fluctuation, . If we 

look at machines with low empirical errors, we will pick out ones with low true 
errors, which is good, but we will also pick out ones with large negative sam-
pling fluctuations, which is not good. Even if the sampling noise  is very small, 
ˆ  can be very different from min. We have what optimization theory calls an ill-

posed problem (22). 
 Having a higher-than-optimal generalization error because we paid too 
much attention to our data is called over-fitting. Just as we are often better off if 
we tactfully ignore our friends' and neighbors' little faults, we want to ignore the 
unrepresentative blemishes of our sample. Much of the theory of data mining is 
about avoiding over-fitting. Three of the commonest forms of tact it has devel-
oped are, in order of sophistication, cross-validation, regularization (or bold 
penalties) and capacity control.

2.1.1. Validation

 We would never over-fit if we knew how well our machine's predictions 
would generalize to new data. Since our data is never perfectly representative, 
we always have to estimate the generalization performance. The empirical error 
provides one estimate, but it's biased towards saying that the machine will do 
well (since we built it to do well on that data). If we had a second, independent 
set of data, we could evaluate our machine's predictions on it, and that would 
give us an unbiased estimate of its generalization. One way to do this is to take 
our original data and divide it, at random, into two parts, the training set and the 
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test set or validation set. We then use the training set to fit the machine, and 
evaluate its performance on the test set. (This is an instance of resampling our 
data, which is a useful trick in many contexts.) Because we've made sure the test 
set is independent of the training set, we get an unbiased estimate of the out-of-
sample performance. 
 In cross-validation, we divide our data into random training and test sets 
many different ways, fit a different machine for each training set, and compare 
their performances on their test sets, taking the one with the best test-set per-
formance. This reintroduces some bias—it could happen by chance that one test 
set reproduces the sampling quirks of its training set, favoring the model fit to 
the latter. But cross-validation generally reduces over-fitting, compared to sim-
ply minimizing the empirical error; it makes more efficient use of the data, 
though it cannot get rid of sampling noise altogether. 

2.1.2. Regularization or Penalization

 I said that the problem of minimizing the error is ill-posed, meaning that 
small changes in the errors can lead to big changes in the optimal parameters. A 
standard approach to ill-posed problems in optimization theory is called regu-
larization. Rather than trying to minimize ˆ( )L  alone, we minimize 

ˆ( ) ( ),L d+  [1] 

where d( ) is a regularizing or penalty function. Remember that ˆ( )L  = E[L( )] 
+ , where  is the sampling noise. If the penalty term is well-designed, then the 
 which minimizes 

E[L( )] +  + d( ) [2] 

will be close to the  that minimizes E[L( )]—it will cancel out the effects of 
favorable fluctuations. As we acquire more and more data,  0, so , too, goes 
to zero at an appropriate pace, and the penalized solution will converge on the 
machine with the best possible generalization error. 
 How then should we design penalty functions? The more knobs and dials 
there are on our machine, the more opportunities we have to get into mischief by 
matching chance quirks in the data. If one machine has fifty knobs and another 
fits the data just as well but has only a single knob, we should (the story goes) 
chose the latter—because it's less flexible the fact that it does well is a good in-
dication that it will still do well in the future. There are thus many regularization 
methods that add a penalty proportional to the number of knobs, or, more for-
mally, the number of parameters. These include the Akaike information crite-
rion or AIC (23) and the Bayesian information criterion or BIC (24,25). Other 
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methods penalize the "roughness" of a model, i.e., some measure of how much 
the prediction shifts with a small change in either the input or the parameters 
(26, ch. 10). A smooth function is less flexible, and so has less ability to match 
meaningless wiggles in the data. Another popular penalty method, the minimum 
description length principle of Rissanen, will be dealt with in §8.3 below. 
 Usually, regularization methods are justified by the idea that models can be 
more or less complex, and more complex ones are more liable to over-fit, all 
else being equal, so penalty terms should reflect complexity (Figure 3). There's 
something to this idea, but the usual way of putting it does not really work; see 
§2.3 below. 

2.1.3. Capacity Control

 Empirical risk minimization, we said, is apt to over-fit because we do not 
know the generalization errors, just the empirical errors. This would not be such 
a problem if we could guarantee that the in-sample performance was close to 
the out-of-sample performance. Even if the exact machine we got this way was 
not particularly close to the optimal machine, we'd then be guaranteed that our 
predictions were nearly optimal. We do not even need to guarantee that all the 

Figure 3. Empirical loss and generalization loss as a function of model complexity. 
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empirical errors are close to their true values, just that the smallest empirical 
error is close to the smallest generalization error. 
 Recall that ˆ( ) [ ( )]L L= +E . It is natural to assume that as our sample size 
N becomes larger, our sampling error  will approach zero. (We will return to 
this assumption below.) Suppose we could find a function (N) to bound our 
sampling error, such that | | (N). Then we could guarantee that our choice of 
model was approximately correct; if we wanted to be sure that our prediction 
errors were within  of the best possible, we would merely need to have N( ) = 

–1( ) data-points. 
 It should not be surprising to learn that we cannot, generally, make ap-
proximately correct guarantees. As the eminent forensic statistician C. Chan 
remarked, "Improbable events permit themselves the luxury of occurring" (27), 
and one of these indulgences could make the discrepancy between ˆ( )L  and 
E[L( )] very large. But if something like the law of large numbers holds, or the 
ergodic theorem (§3.2), then for every choice of ,

ˆPr(| ( ) [ ( )] | > ) 0,L LE  [3] 

for every positive .5  We should be able to find some function  such that 

ˆPr(| ( ) [ ( )] | > ) ( , , ),L L NE  [4] 

with limN (N, , ) = 0. Then, for any particular , we could give probably ap-
proximately correct (28) guarantees, and say that, e.g., to have 95% confidence 
that the true error is within 0.001 of the empirical error requires at least 144,000 
samples (or whatever the precise numbers may be). If we can give probably ap-
proximately correct (PAC) guarantees on the performance of one machine, we 
can give them for any finite collection of machines. But if we have infinitely 
many possible machines, might not there always be some of them which are 
misbehaving? Can we still give PAC guarantees when  is continuous? 
 The answer to this question depends on how flexible the set of machines 
is—its capacity. We need to know how easy it is to find a  such that f(X, ) will 
accommodate itself to any Y. This is measured by a quantity called the Vapnik-
Chervonenkis (VC) dimension (22).6 If the VC dimension d of a class of ma-
chines is finite, one can make a PAC guarantee that applies to all machines in 
the class simultaneously: 

( )ˆPr max | ( ) [ ( )] | ( , , ) ,L L N dE  [5] 

where the function (N,d, ) expresses the rate of convergence. It depends on the 
particular kind of loss function involved. For example, for binary classification, 
if the loss function is the fraction of inputs misclassified, 
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1 2 4
( , , ) (1 ln ) ln .

N
N d d

dN
= + +  [6] 

Notice that  is not an argument to , and does not appear in [6]. The rate of 
convergence is the same across all machines; this kind of result is thus called a 
uniform law of large numbers. The really remarkable thing about [5] is that it 
holds no matter what the sampling distribution is, so long as samples are inde-
pendent; it is a distribution-free result. 
 The VC bounds lead to a very nice learning scheme: simply apply empirical 
risk minimization, for a fixed class of machines, and then give a PAC guarantee 
that the one picked is, with high reliability, very close to the actual optimal 
machine. The VC bounds also lead an appealing penalization scheme, where the 
penalty is equal to our bound on the over-fitting, . Specifically, we set the term 

d( ) in [1] equal to the  in [5], ensuring, with high probability, that the  and 
d( ) terms in [2] cancel each other. This is structural risk minimization

(SRM). 
 It's important to realize that the VC dimension is not the same as the num-
ber of parameters. For some classes of functions, it is much lower than the num-
ber of parameters, and for others it's much higher. (There are examples of one-
parameter classes of functions with infinite VC dimension.) Determining the VC 
dimension often involves subtle combinatorial arguments, but many results are 
now available in the literature, and more are appearing all the time. There are 
even schemes for experimentally estimating the VC dimension (29). 
 Two caveats are in order. First, because the VC bounds are distribution-
free, they are really about the rate of convergence under the worst possible dis-
tribution, the one a malicious adversary out to foil our data mining would 
choose. This means that in practice, convergence is often much faster than [5] 
would indicate. Second, the usual proofs of the VC bounds all assume independ-
ent, identically distributed samples, though the relationship between X and Y can 
involve arbitrarily complicated dependencies.7 Recently, there has been much 
progress in proving uniform laws of large numbers for dependent sequences of 
samples, and structural risk minimization has been extended to what are called 
"mixing" processes (30), in effect including an extra term in the  function ap-
pearing in [5] that discounts the number of observations by their degree of mu-
tual dependence. 

2.2. Choice of Architecture

 The basic idea of data mining is to fit a model to data with minimal assump-
tions about what the correct model should be, or how the variables in the 
data are related. (This differs from such classical statistical questions as testing 
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specific hypotheses about specific models, such as the presence of interactions 
between certain variables.) This is facilitated by the development of extremely 
flexible classes of models, which are sometimes, misleadingly, called non-
parametric; a better name would be megaparametric. The idea behind mega-
parametric models is that they should be capable of approximating any func-
tion, at least any well-behaved function, to any desired accuracy, given enough 
capacity.
 The polynomials are a familiar example of a class of functions which can 
perform such universal approximation. Given any smooth function f, we can 
represent it by taking the Taylor series around our favorite point x0. Truncating 
that series gives an approximation to f:
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In fact, if f is an nth-order polynomial, the truncated series is exact, not an ap-
proximation. 
 To see why this is not a reason to use only polynomial models, think about 
what would happen if f(x) = sin x. We would need an infinite-order polynomial 
to completely represent f, and the generalization properties of finite-order ap-
proximations would generally be lousy: for one thing, f is bounded between –1 
and 1 everywhere, but any finite-order polynomial will start to zoom off to  or 
–  outside some range. Of course, this f would be really easy to approximate as 
a superposition of sines and cosines, which is another class of functions which is 
capable of universal approximation (better known, perhaps, as Fourier analysis). 
What one wants, naturally, is to choose a model class which gives a good ap-
proximation of the function at hand, at low order. We want low-order functions, 
both because computational demands rise with model order and because higher-
order models are more prone to over-fitting (VC dimension generally rises with 
model order). 
 To adequately describe all of the common model classes, or model archi-
tectures, used in the data mining literature would require another chapter ((31) 
and (32) are good for this.) Instead, I will merely name a few. 

Splines are piecewise polynomials, good for regression on bounded do-
mains; there is a very elegant theory for their estimation (33). 
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Neural networks or multilayer perceptrons have a devoted following, 
both for regression and classification (32). The application of VC theory to them 
is quite well-advanced (34,35), but there are many other approaches, including 
ones based on statistical mechanics (36). It is notoriously hard to understand 
why they make the predictions they do. 

Classification and regression trees (CART), introduced in the book of that 
name (37), recursively subdivide the input space, rather like the game of "twenty 
questions" ("Is the temperature above 20 centigrade? If so, is the glucose con-
centration above one millimole?," etc.); each question is a branch of the tree. All 
the cases at the end of one branch of the tree are treated equivalently. The result-
ing decision trees are easy to understand, and often similar to human decision 
heuristics (38). 

Kernel machines (22,39) apply nonlinear transformations to the 
input, mapping it to a much higher dimensional "feature space," where they 
apply linear prediction methods. This trick works because the VC dimension of 
linear methods is low, even in high-dimensional spaces. Kernel methods come 
in many flavors, of which the most popular, currently, are support vector 
machines (40). 

2.2.1. Predictive Versus Causal Models

 Predictive and descriptive models both are not necessarily causal. PAC-type 
results give us reliable prediction, assuming future data will come from the same
distribution as the past. In a causal model, however, we want to know how 
changes will propagate through the system. One difficulty is that these relation-
ships are one-way, whereas prediction is two-way (one can predict genetic vari-
ants from metabolic rates, but one cannot change genes by changing 
metabolism). The other is that it is hard (if not impossible) to tell if the predic-
tive relationships we have found are confounded by the influence of other vari-
ables and other relationships we have neglected. Despite these difficulties, the 
subject of causal inference from data is currently a very active area of research, 
and many methods have been proposed, generally under assumptions about the 
absence of feedback (41–43). When we have a causal or generative model, we 
can use very well-established techniques to infer the values of the hidden or la-
tent variables in the model from the values of their observed effects (41,44). 

2.3. Occam's Razor and Complexity in Prediction

 Often, regularization methods are thought to be penalizing the complexity of 
the model, and so implementing some version of Occam's Razor. Just as Occam 
said "entities are not to be multiplied beyond necessity,"8 we say "parameters 
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should not be multiplied beyond necessity," or, "the model should be no rougher 
than necessary." This takes complexity to be a property of an individual model, 
and the hope is that a simple model that can predict the training data will also be 
able to predict new data. Under many circumstances, one can prove that as the 
size of a sample approaches infinity regularization will converge on the correct 
model, the one with the best generalization performance (26). But one can often 
prove exactly the same thing about ERM without any regularization or penaliza-
tion at all; this is what the VC bounds [5] accomplish. While regularization 
methods often do well in practice, so, too, does straight ERM. If we compare the 
performance of regularization methods to straight empirical error minimization 
on artificial examples, where we can calculate the generalization performance 
exactly, regularization sometimes conveys no clear advantage at all (45). 
 Contrast this with what happens in structural risk minimization. There our 
complexity penalty depends solely on the VC dimension of the class of models 
we're using. A simple, inflexible model which we find only because we're look-
ing at a complex, flexible class is penalized just as much as the most wiggly 
member of that class. Experimentally, SRM does work better than simple ERM, 
or than traditional penalization methods. 
 A simple example may help illuminate why this is so. Suppose we're inter-
ested in binary classification, and we find a machine  that correctly classifies a 
million independent data points. If the real error rate (= generalization error) for 
 was one in a hundred thousand, the chance that it would correctly classify a 

million data points would be 
610(0.99999)  4.5  10–5. If  was the very first pa-

rameter setting we checked, we could be quite confident that its true error rate 
was much less than 10–5, no matter how complicated the function f(X, ) looked. 
But if we've looked at ten million parameter settings before finding , then the 
odds are quite good that, among the machines with an error rate of 10–5, we'd 
find several that correctly classify all the points in the training set, so the fact 
that  does is not good evidence that it's the best machine.9 What matters is not 
how much algebra is involved in making the predictions once we've chosen ,
but how many alternatives to  we've tried out and rejected. The VC dimension 
lets us apply this kind of reasoning rigorously and without needing to know the 
details of the process by which we generate and evaluate models. 
 The upshot is that the kind of complexity which matters for learning, and so 
for Occam's Razor, is the complexity of classes of models, not of individual 
models nor of the system being modeled. It is important to keep this point in 
mind when we try to measure the complexity of systems (§8). 

2.4. Relation of Complex Systems Science to Statistics

 Complex systems scientists often regard the field of statistics as irrelevant 
to understanding such systems. This is understandable, since the exposure most 
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scientists have to statistics (e.g., the "research methods" courses traditional in 
the life and social sciences) typically deal with systems with only a few vari-
ables and with explicit assumptions of independence, or only very weak depend-
ence. The kind of modern methods we have just seen, amenable to large systems 
and strong dependence, are rarely taught in such courses, or even mentioned. 
Considering the shaky grasp many students have on even the basic principles of 
statistical inference, this is perhaps wise. Still, it leads to even quite eminent 
researchers in complexity making disparaging remarks about statistics (e.g., 
"statistical hypothesis testing, that substitute for thought"), while actually rein-
venting tools and concepts which have long been familiar to statisticians. 
 For their part, many statisticians tend to overlook the very existence of 
complex systems science as a separate discipline. One may hope that the in-
creasing interest from both fields on topics such as bioinformatics and networks 
will lead to greater mutual appreciation. 

3. TIME SERIES ANALYSIS

 There are two main schools of time series analysis. The older one has a long 
pedigree in applied statistics (46), and is prevalent among statisticians, social 
scientists (especially econometricians), and engineers. The younger school, de-
veloped essentially since the 1970s, comes out of physics and nonlinear dynam-
ics. The first views time series as samples from a stochastic process, and applies 
a mixture of traditional statistical tools and assumptions (linear regression, the 
properties of Gaussian distributions) and the analysis of the Fourier spectrum. 
The second school views time series as distorted or noisy measurements of an 
underlying dynamical system, which it aims to reconstruct. 
 The separation between the two schools is in part due to the fact that, when 
statistical methods for time series analysis were first being formalized, in the 
1920s and 1930s, dynamical systems theory was literally just beginning. The 
real development of nonlinear dynamics into a powerful discipline has mostly 
taken place since the 1960s, by which point the statistical theory had acquired a 
research agenda with a lot of momentum. In turn, many of the physicists in-
volved in experimental nonlinear dynamics in the 1980s and early 1990s were 
fairly cavalier about statistical issues, and some happily reported results which 
should have been left in their file-drawers. 
 There are welcome signs, however, that the two streams of thought are coa-
lescing. Since the 1960s, statisticians have increasingly come to realize the vir-
tues of what they call "state-space models," which are just what the physicists 
have in mind with their dynamical systems. The physicists, in turn, have become 
more sensitive to statistical issues, and there is even now some cross-
disciplinary work. In this section, I will try, so far as possible, to use the state-
space idea as a common framework to present both sets of methods. 
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3.1. The State-Space Picture

 The state is a vector-valued function of time, xt. In discrete time, this 
evolves according to some map, 

xt+1 F(xt,t, t), [10] 

where the map F is allowed to depend on time t and a sequence of independent 
random variables t. In continuous time, we do not specify the evolution of the 
state directly, but rather the rates of change of the components of the state, 

( , , ).t

dx
F x t

dt
=  [11] 

Since our data are generally taken in discrete time, I will restrict myself to con-
sidering that case from now on; almost everything carries over to continuous 
time naturally. The evolution of x is, so to speak, self-contained, or more pre-
cisely Markovian: all the information needed to determine the future is con-
tained in the present state xt, and earlier states are irrelevant. (This is basically 
how physicists define "state" (46).) Indeed, it is often reasonable to assume that 
F is independent of time, so that the dynamics are autonomous (in the terminol-
ogy of dynamics) or homogeneous (in that of statistics). If we could look at the 
series of states, then, we would find it had many properties which made it very 
convenient to analyze. 
 Sadly, however, we do not observe the state x; what we observe or measure 
is y, which is generally a noisy, nonlinear function of the state: yt = h(xt, t), 
where t is measurement noise. Whether y, too, has the convenient properties 
depends on h, and usually y is not convenient. Matters are made more compli-
cated by the fact that we do not, in typical cases, know the observation function 
h, nor the state-dynamics F, nor even, really, what space x lives in. The goal of 
time-series methods is to make educated guess about all these things, so as to 
better predict and understand the evolution of temporal data. 
 In the ideal case, simply from a knowledge of y, we would be able to iden-
tify the state space, the dynamics, and the observation function. As a matter of 
pure mathematical possibility, this can be done for essentially arbitrary time 
series (48,49). Nobody, however, knows how to do this with complete generality 
in practice. Rather, one makes certain assumptions about, say, the state space, 
which are strong enough that the remaining details can be filled in using y. Then 
one checks the result for accuracy and plausibility, i.e., for the kinds of errors 
which would result from breaking those assumptions (50). 
 Subsequent parts of this section describe classes of such methods. First, 
however, I describe some of the general properties of time series, and general 
measurements which can be made upon them. 
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Notation. There is no completely uniform notation for time series. Since it 
will be convenient to refer to sequences of consecutive values. I will write all 
the measurements starting at s and ending at t as ys

t. Further, I will abbreviate the 
set of all measurements up to time t, 1ty + , as yt

–, and the future starting from t,
y t+1, as yt

+.

3.2. General Properties of Time Series

 One of the most commonly assumed properties of a time series is stationar-
ity, which comes in two forms: strong or strict stationarity, and weak, wide-
sense or second-order stationarity. Strong stationarity is the property that the 
probability distribution of sequences of observations does not change over time. 
That is, 

Pr( ) Pr( )t h t h
t tY Y+ + +

+=  [12] 

for all lengths of time h and all shifts forwards or backwards in time . When a 
series is described as "stationary" without qualification, it depends on context 
whether strong or weak stationarity is meant. 
 Weak stationarity, on the other hand, is the property that the first and sec-
ond moments of the distribution do not change over time. 

E[Yt] = E[Yt+ ], [13] 

E[YtYt+h] = E[Yt+ Yt+ +h]. [14] 

If Y is a Gaussian process, then the two senses of stationarity are equivalent. 
Note that both sorts of stationarity are statements about the true distribution, and 
so cannot be simply read off from measurements. 
 Strong stationarity implies a property called ergodicity, which is much 
more generally applicable. Roughly speaking, a series is ergodic if any suffi-
ciently long sample is representative of the entire process. More exactly, con-
sider the time-average of a well-behaved function f of Y,
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This is generally a random quantity, since it depends on where the trajectory 
started at t1, and any random motion which may have taken place between then 
and t2. Its distribution generally depends on the precise values of t1 and t2. The 
series Y is ergodic if almost all time-averages converge eventually, i.e., if 
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lim
t T

tT
f f
+
=  [16] 

for some constant f  independent of the starting time t, the starting point Yt, or 
the trajectory Yt . Ergodic theorems specify conditions under which ergodicity 
holds; surprisingly, even completely deterministic dynamical systems can be 
ergodic. 
 Ergodicity is such an important property because it means that statistical 
methods are very directly applicable. Simply by waiting long enough one can 
obtain an estimate of any desired property that will be closely representative of 
the future of the process. Statistical inference is possible for non-ergodic proc-
esses, but it is considerably more difficult, and often requires multiple time se-
ries (51,52). 
 One of the most basic means of studying a time series is to compute the 
autocorrelation function (ACF), which measures the linear dependence be-
tween the values of the series at different points in time. This starts with auto-
covariance function:

C(s,t) E[(ys – E[ys]) (yt –E[yt])]. [17] 

(Statistical physicists, unlike everyone else, call this the "correlation function.") 
The autocorrelation itself is the autocovariance, normalized by the variability of 
the series: 

( , )
( , ) ,

( , ) ( , )

C s t
s t

C s s C t t
 [18] 

 is 1 when ys is a linear function of yt. Note that the definition is symmetric, so 
(s,t) = (t,s). For stationary or weakly stationary processes, one can show that 

depends only on the difference between t and s. In this case one just writes 
( ), with one argument. (0) = 1, always. The time tc such that (tc) = 1/e is 

called the (auto)correlation time of the series. 
 The correlation function is a time-domain property, since it is basically 
about the series considered as a sequence of values at distinct times. There are 
also frequency-domain properties, which depend on reexpressing the series as a 
sum of sines and cosines with definite frequencies. A function of time y has a 
Fourier transform that is a function of frequency, y :

y y= , [19] 
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assuming the time series runs from t = 1 to t = T. (Rather than separating out 
the sine and cosine terms, it is easier to use the complex-number representation, 
via ei  = cos  + i sin .) The inverse Fourier transform recovers the original 
function: 

1y y= , [21] 

21
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The Fourier transform is a linear operator, in the sense that (x + y) = x + y.
Moreover, it represents series we are interested in as a sum of trigonometric 
functions, which are themselves solutions to linear differential equations. These 
facts lead to extremely powerful frequency-domain techniques for studying lin-
ear systems. Of course, the Fourier transform is always valid, whether the sys-
tem concerned is linear or not, and it may well be useful, though that is not 
guaranteed. 
 The squared absolute value of the Fourier transform, 2( ) | |f y= , is called 
the spectral density or power spectrum. For stationary processes, the power 
spectrum f( ) is the Fourier transform of the autocovariance function C( ) (a 
result called the Wiener-Khinchin theorem). An important consequence is that a 
Gaussian process is completely specified by its power spectrum. In particular, 
consider a sequence of independent Gaussian variables, each with variance 2.
Because they are perfectly uncorrelated, C(0) = 2, and C( ) = 0 for any  0. 
The Fourier transform of such a C( ) is just f( ) = 2, independent of —every 
frequency has just as much power. Because white light has equal power in every 
color of the spectrum, such a process is called white noise. Correlated proc-
esses, with uneven power spectra, are sometimes called colored noise, and there 
is an elaborate terminology of red, pink, brown, etc., noises (53, ch. 3). 
 The easiest way to estimate the power spectrum is simply to take the Fou-
rier transform of the time series, using, e.g., the fast Fourier transform algorithm 
(54). Equivalently, one might calculate the autocovariance and Fourier trans-
form in that manner. Either way, one has an estimate of the spectrum, which is 
called the periodogram. It is unbiased, in that the expected value of the perio-
dogram at a given frequency is the true power at that frequency. Unfortunately, 
it is not consistent—the variance around the true value does not shrink as the 
series grows. The easiest way to overcome this is to apply any of several well-
known smoothing functions to the periodogram, a procedure called windowing
(55). (Standard software packages will accomplish this automatically.) 
 The Fourier transform takes the original series and decomposes it into a 
sum of sines and cosines. This is possible because any reasonable function can 
be represented in this way. The trigonometric functions are thus a basis for the 
space of functions. There are many other possible bases, and one can equally 
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well perform the same kind of decomposition in any other basis. The trigono-
metric basis is particularly useful for stationary time series because the basis 
functions are themselves evenly spread over all times (56, ch. 2). Other bases, 
localized in time, are more convenient for nonstationary situations. The most 
well-known of these alternate bases, currently, are wavelets (57), but there is, 
literally, no counting the other possibilities. 

3.3. The Traditional Statistical Approach

 The traditional statistical approach to time series is to represent them 
through linear models of the kind familiar from applied statistics. 
 The most basic kind of model is that of a moving average, which is espe-
cially appropriate if x is highly correlated up to some lag, say q, after which the 
ACF decays rapidly. The moving average model represents x as the result of 
smoothing q + 1 independent random variables. Specifically, the MA(q) model 
of a weakly stationary series is 

1

q

t t k t k
k

y w w
=

= + + , [23] 

where  is the mean of y, the i are constants and the wt are white noise variables. 
q is called the order of the model. Note that there is no direct dependence be-
tween successive values of y; they are all functions of the white noise series w.
Note also that yt and yt+q+1 are completely independent; after q time-steps, the 
effects of what happened at time t disappear. 
 Another basic model is that of an autoregressive process, where the next 
value of y is a linear combination of the preceding values of y. Specifically, an 
AR(p) model is 

1

p

t k t k t
k

y y w
=

= + + , [24] 

where i are constants and 
1

p

k k=
= + . The order of the model, again is p.

This is the multiple regression of applied statistics transposed directly on to time 
series, and is surprisingly effective. Here, unlike the moving average case, ef-
fects propagate indefinitely—changing yt can affect all subsequent values of y.
The remote past only becomes irrelevant if one controls for the last p values of 
the series. If the noise term wt were absent, an AR(p) model would be a pth or-
der linear difference equation, the solution to which would be some combination 
of exponential growth, exponential decay and harmonic oscillation. With noise, 
they become oscillators under stochastic forcing (58). 
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 The natural combination of the two types of model is the autoregressive 
moving average model, ARMA(p,q): 

1 1

p q

t k t k t k t k
k k

y y w w
=

= + + + . [25] 

This combines the oscillations of the AR models with the correlated driving 
noise of the MA models. An AR(p) model is the same as an ARMA(p,0) model, 
and likewise an MA(q) model is an ARMA(0,q) model. 
 It is convenient, at this point in our exposition, to introduce the notion of the 
back-shift operator B,

Byt = yt–1, [26] 

and the AR and MA polynomials,
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respectively. Then, formally speaking, in an ARMA process is 

(B)yt = (B)wt. [29] 

The advantage of doing this is that one can determine many properties of an 
ARMA process by algebra on the polynomials. For instance, two important 
properties we want a model to have are invertibility and causality. We say that 
the model is invertible if the sequence of noise variables wt can be determined 
uniquely from the observations yt; in this case we can write it as an MA( )
model. This is possible just when (z) has no roots inside the unit circle. Simi-
larly, we say the model is causal if it can be written as an AR( ) model, without 
reference to any future values. When this is true, (z) also has no roots inside the 
unit circle. 
 If we have a causal, invertible ARMA model, with known parameters, we 
can work out the sequence of noise terms, or innovations wt associated with our 
measured values yt. Then, if we want to forecast what happens past the end of 
our series, we can simply extrapolate forward, getting predictions 1 2ˆ ˆ, ,T Ty y+ +  etc. 
Conversely, if we knew the innovation sequence, we could determine the pa-
rameters  and . When both are unknown, as is the case when we want to fit a 
model, we need to determine them jointly (55). In particular, a common proce-
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dure is to work forward through the data, trying to predict the value at each time 
on the basis of the past of the series; the sum of the squared differences between 
these predicted values tŷ  and the actual ones yt forms the empirical loss: 

2

1

ˆ( )
T

t t
i

L y y
=

= . [30] 

For this loss function, in particular, there are very fast standard algorithms, and 
the estimates of  and  converge on their true values, provided one has the right 
model order. 
 This leads naturally to the question of how one determines the order of 
ARMA model to use, i.e., how one picks p and q. This is precisely a model se-
lection task, as discussed in §2. All methods described there are potentially ap-
plicable; cross-validation and regularization are more commonly used than 
capacity control. Many software packages will easily implement selection ac-
cording to the AIC, for instance. 
 The power spectrum of an ARMA(p,q) process can be given in closed form: 
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Thus, the parameters of an ARMA process can be estimated directly from the 
power spectrum, if you have a reliable estimate of the spectrum. Conversely, 
different hypotheses about the parameters can be checked from spectral data. 
 All ARMA models are weakly stationary; to apply them to nonstationary 
data one must transform the data so as to make it stationary. A common trans-
formation is differencing, i.e., applying operations of the form 

yt = yt – yt-1, [32] 

which tends to eliminate regular trends. In terms of the back-shift operator, 

yt = (1 – B)yt, [33] 

and higher-order differences are 

dyt = (1 – B)dyt. [34] 

Having differenced the data to our satisfaction, say d times, we then fit an 
ARMA model to it. The result is an autoregressive integrated moving average
model, ARIMA(p,d,q) (59), given by 
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(B)(1 – B)dyt = (B)wt, [35] 

As mentioned above (§3.1), ARMA and ARIMA models can be recast in state 
space terms, so that our y is a noisy measurement of a hidden x (60). For these 
models, both the dynamics and the observation functions are linear, that is, xt+1 = 
Axt + t and yt = Bxt + t, for some matrices A and B. The matrices can be deter-
mined from the  and  parameters, though the relation is a bit too involved to 
give here. 

3.3.1. Applicability of Linear Statistical Models

 It is often possible to describe a nonlinear dynamical system through an 
effective linear statistical model, provided the nonlinearities are cooperative 
enough to appear as noise (61). It is an under-appreciated fact that this is at least 
sometimes true even of turbulent flows (62,63); the generality of such an ap-
proach is not known. Certainly, if you care only about predicting a time series, 
and not about its structure, it is always a good idea to try a linear model first, 
even if you know that the real dynamics are highly nonlinear. 

3.3.2. Extensions

 While standard linear models are more flexible than one might think, they 
do have their limits, and recognition of this has spurred work on many exten-
sions and variants. Here I briefly discuss a few of these. 

Long Memory. The correlations of standard ARMA and ARIMA models 
decay fairly rapidly, in general exponentially; /( ) ,ct tt e where c is the corre-
lation time. For some series, however, c is effectively infinite, and (t) t–  for 
some exponent . These are long-memory processes, because they remain sub-
stantially correlated over very long times. These can still be accommodated 
within the ARIMA framework, formally, by introducing the idea of fractional
differencing, or, in continuous time, fractional derivatives (64,53). Often long-
memory processes are self-similar, which can simplify their statistical estima-
tion (65). 

Volatility. All ARMA and even ARIMA models assume constant variance. 
If the variance is itself variable, it can be worthwhile to model it. Autoregres-
sive conditionally heteroscedastic (ARCH) models assume a fixed mean value 
for yr, but a variance which is an auto-regression on yt

2. Generalized ARCH
(GARCH) models expand the regression to include the (unobserved) earlier 
variances. ARCH and GARCH models are especially suitable for processes that 
display clustered volatility, periods of extreme fluctuation separated by 
stretches of comparative calm. 
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Nonlinear and Nonparametric Models. Nonlinear models are obviously 
appealing, and when a particular parametric form of model is available, rea-
sonably straightforward modifications of the linear machinery can be used to fit, 
evaluate and forecast the model (55, chap. 9). However, it is often impractical to 
settle on a good parametric form beforehand. In these cases, one must turn to 
nonparametric models, as discussed in §2.2; neural networks are a particular 
favorite here (35). The so-called kernel smoothing methods are also particu-
larly well-developed for time series, and often perform almost as well as para-
metric models (66). Finally, information theory provides universal prediction 
methods, which promise to asymptotically approach the best possible predic-
tion, starting from exactly no background knowledge. This power is paid for by 
demanding a long initial training phase used to infer the structure of the process, 
when predictions are much worse than many other methods could deliver (67). 

3.4. The Nonlinear Dynamics Approach

 The younger approach to the analysis of time series comes from nonlinear 
dynamics, and is intimately bound up with the state-space approach described in 
§3.1 above. The idea is that the dynamics on the state space can be determined 
directly from observations, at least if certain conditions are met. 
 The central result here is the Takens Embedding Theorem (68); a simpli-
fied, slightly inaccurate version is as follows. Suppose the d-dimensional state 
vector xt evolves according to an unknown but continuous and (crucially) deter-
ministic dynamic. Suppose, too, that the one-dimensional observable y is a 
smooth function of x, and "coupled" to all the components of x. Now at any time 
we can look not just at the present measurement y(t), but also at observations 
made at times removed from us by multiples of some lag : yt– , yt–2 , etc. If we 
use k lags, we have a k-dimensional vector. One might expect that, as the num-
ber of lags is increased, the motion in the lagged space will become more and 
more predictable, and perhaps in the limit k  would become deterministic. In 
fact, the dynamics of the lagged vectors become deterministic at a finite dimen-
sion; not only that, but the deterministic dynamics are completely equivalent to 
those of the original state space! (More exactly, they are related by a smooth, 
invertible change of coordinates, or diffeomorphism.) The magic embedding 
dimension k is at most 2d + 1, and often less. 
 Given an appropriate reconstruction via embedding, one can investigate 
many aspects of the dynamics. Because the reconstructed space is related to the 
original state space by a smooth change of coordinates, any geometric property 
that survives such treatment is the same for both spaces. These include the di-
mension of the attractor, the Lyapunov exponents (which measure the degree of 
sensitivity to initial conditions), and certain qualitative properties of the autocor-
relation function and power spectrum ("correlation dimension"). Also preserved 
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is the relation of "closeness" among trajectories—two trajectories that are close 
in the state space will be close in the embedding space, and vice versa. This 
leads to a popular and robust scheme for nonlinear prediction, the method of 
analogs: when one wants to predict the next step of the series, take the current 
point in the embedding space, find a similar one with a known successor, and 
predict that the current point will do the analogous thing. Many refinements are 
possible, such as taking a weighted average of nearest neighbors, or selecting an 
analog at random, with a probability decreasing rapidly with distance. Alter-
nately, one can simply fit non-parametric predictors on the embedding space. 
(See (69) for a review.) Closely related is the idea of noise reduction, using the 
structure of the embedding-space to filter out some of the effects of measure-
ment noise. This can work even when the statistical character of the noise is 
unknown (see (69) again). 
 Determining the number of lags, and the lag itself, is a problem of model 
selection, just as in §2, and can be approached in that spirit. An obvious ap-
proach is to minimize the in-sample forecasting error, as with ARMA models; 
recent work along these lines (70,71) uses the minimum description length prin-
ciple (described in §8.3.1 below) to control over-fitting. A more common proce-
dure for determining the embedding dimension, however, is the false nearest 
neighbor method (72). The idea is that if the current embedding dimension k is 
sufficient to resolve the dynamics, k + 1 would be too, and the reconstructed 
state space will not change very much. In particular, points which were close 
together in the dimension-k embedding should remain close in the dimension-k
+ 1 embedding. Conversely, if the embedding dimension is too small, points that 
are really far apart will be brought artificially close together (just as projecting a 
sphere on to a disk brings together points on the opposite side of a sphere). The 
particular algorithm of Kennel et al. (72), which has proved very practical, is to 
take each point in the k-dimensional embedding, find its nearest neighbor in that 
embedding, and then calculate the distance between them. One then calculates 
how much further apart they would be if one used a k+1-dimensional embed-
ding. If this extra distance is more than a certain fixed multiple of the original 
distance, they are said to be "false nearest neighbors." (Ratios of 2 to 15 are 
common, but the precise value does not seem to matter very much.) One then 
repeats the process at dimension k + 1, stopping when the proportion of false 
nearest neighbors becomes zero, or at any rate sufficiently small. Here, the loss 
function used to guide model selection is the number of false nearest neighbors, 
and the standard prescriptions amount to empirical risk minimization. One rea-
son simple ERM works well here is that the problem is intrinsically finite-
dimensional (via the Takens result). 
 Unfortunately, the data required for calculations of quantities like dimen-
sions and exponents to be reliable can be quite voluminous. Approximately 
102+0.4D data-points are necessary to adequately reconstruct an attractor of dimen-
sion D (73, pp. 317–319). (Even this is more optimistic than the widely quoted, 
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if apparently pessimistic, calculation of (74), that attractor reconstruction with 
an embedding dimension of k needs 42k data-points!) In the early days of the 
application of embedding methods to experimental data, these limitations were 
not well appreciated, leading to many calculations of low-dimensional determi-
nistic chaos in EEG and EKG series, economic time series, etc., which did not 
stand up to further scrutiny. This in turn brought some discredit on the methods 
themselves, which was not really fair. More positively, it also led to the devel-
opment of ideas such as surrogate-data methods. Suppose you have found 
what seems like a good embedding, and it appears that your series was produced 
by an underlying deterministic attractor of dimension D. One way to test this 
hypothesis would be to see what kind of results your embedding method would 
give if applied to similar but non-deterministic data. Concretely, you find a sto-
chastic model with similar statistical properties (e.g., an ARMA model with the 
same power spectrum), and simulate many time series from this model. You 
apply your embedding method to each of these surrogate data series, getting 
the approximate distribution of apparent "attractor" dimensions when there 
really is no attractor. If the dimension measured from the original data is not 
significantly different from what one would expect under this null hypothesis, 
the evidence for an attractor (at least from this source) is weak. To apply surro-
gate data tests well, one must be very careful in constructing the null model, as it 
is easy to use over-simple null models, biasing the test towards apparent deter-
minism. 
 A few further cautions on embedding methods are in order. While in princi-
ple any lag  is suitable, in practice both very long and very short lags lead to 
pathologies. A common practice is to set the lag to the autocorrelation time (see 
above), or the first minimum of the mutual information function (see §7 below), 
the notion being that this most nearly achieves a genuinely "new" measurement 
(75). There is some evidence that the mutual information method works better 
(76). Again, while in principle almost any smooth observation function will do, 
given enough data, in practice some make it much easier to reconstruct the dy-
namics; several indices of observability try to quantify this (77). Finally, it 
strictly applies only to deterministic observations of deterministic systems. Em-
bedding approaches are reasonably robust to a degree of noise in the observa-
tions. They do not cope at all well, however, to noise in the dynamics itself. To 
anthropomorphize a little, when confronted by apparent non-determinism, they 
respond by adding more dimensions, and so distinguishing apparently similar 
cases. Thus, when confronted with data that really are stochastic, they will infer 
an infinite number of dimensions, which is correct in a way, but definitely not 
helpful. These remarks should not be taken to belittle the very real power of 
nonlinear dynamics methods. Applied skillfully, they are powerful tools for un-
derstanding the behavior of complex systems, especially for probing aspects of 
their structure which are not directly accessible. 
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3.5. Filtering and State Estimation

 Suppose we have a state-space model for our time series, and some observa-
tions y, can we find the state x? This is the problem of filtering or state estima-
tion. Clearly, it is not the same as the problem of finding a model in the first 
place, but it is closely related, and also a problem in statistical inference. 
 In this context, a filter is a function which provides an estimate tx̂  of xt on 
the basis of observations up to and including10 time t: tx̂  = f(y0

t). A filter is re-
cursive11 if it estimates the state at t on the basis of its estimate at t – 1 and the 
new observation: tx̂  = f( tx 1ˆ ,yt). Recursive filters are especially suited to online 
use, since one does not need to retain the complete sequence of previous obser-
vations, merely the most recent estimate of the state. As with prediction in gen-
eral, filters can be designed to provide either point estimates of the state, or 
distributional estimates. Ideally, in the latter case, we would get the conditional 
distribution, Pr(Xt = x|Y1

t = y1

t), and in the former case the conditional expecta-
tion, x x Pr(Xt = x|Y1

t = y1

t)dx.
 Given the frequency with which the problem of state estimation shows up in 
different disciplines, and its general importance when it does appear, much 
thought has been devoted to it over many years. The problem of optimal linear
filters for stationary processes was solved independently by two of the "grandfa-
thers" of complex systems science, Norbert Wiener and A.N. Kolmogorov, dur-
ing the Second World War (78,79). In the 1960s, Kalman and Bucy (80–82) 
solved the problem of optimal recursive filtering, assuming linear dynamics, 
linear observations and additive noise. In the resulting Kalman filter, the new 
estimate of the state is a weighted combination of the old state, extrapolated 
forward, and the state that would be inferred from the new observation alone. 
The requirement of linear dynamics can be relaxed slightly with what's called 
the "extended Kalman filter," essentially by linearizing the dynamics around the 
current estimated state. 
 Nonlinear solutions go back to pioneering work of Stratonovich (83) and 
Kushner (84) in the later 1960s, who gave optimal, recursive solutions. Unlike 
the Wiener or Kalman filters, which give point estimates, the Stratonovich-
Kushner approach calculates the complete conditional distribution of the state; 
point estimates take the form of the mean or the most probable state (85). In 
most circumstances, the strictly optimal filter is hopelessly impractical numeri-
cally. Modern developments, however, have opened up some very important 
lines of approach to practical nonlinear filters (86), including approaches that 
exploit the geometry of the nonlinear dynamics (87,88), as well as more mun-
dane methods that yield tractable numerical approximations to the optimal filters 
(89,90). Noise reduction methods (§3.4) and hidden Markov models (§3.6) can 
also be regarded as nonlinear filters. 
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3.6. Symbolic or Categorical Time Series

 The methods we have considered so far are intended for time series taking 
continuous values. An alternative is to break the range of the time series into 
discrete categories (generally only finitely many of them); these categories are 
sometimes called symbols, and the study of these time series symbolic dynam-
ics. Modeling and prediction then reduces to a (perhaps more tractable) problem 
in discrete probability, and many methods can be used that are simply inapplica-
ble to continuous-valued series (10). Of course, if a bad discretization is chosen, 
the results of such methods are pretty well meaningless, but sometimes one gets 
data that are already nicely discrete—human languages, the sequences of bio-
polymers, neuronal spike trains, etc. We shall return to the issue of discretization 
below, but for the moment we will simply consider the applicable methods for 
discrete-valued, discrete-time series, however obtained. 
 Formally, we take a continuous variable z and partition its range into a 
number of discrete cells, each labeled by a different symbol from some alpha-
bet; the partition gives us a discrete variable y = (z). A word or string is just a 
sequence of symbols, y0y1 ... yn. A time series z0

n naturally generates a string 
(z0

n) (z0) (z1) ... (zn). In general, not every possible string can actually be 
generated by the dynamics of the system we're considering. The set of allowed 
sequences is called the language. A sequence that is never generated is said to 
be forbidden. In a slightly inconsistent metaphor, the rules that specify the al-
lowed words of a language are called its grammar. To each grammar there cor-
responds an abstract machine or automaton that can determine whether a given 
word belongs to the language, or, equivalently, generate all and only the allowed 
words of the language. The generative versions of these automata are stochastic, 
i.e., they generate different words with different probabilities, matching the sta-
tistics of (z).
 By imposing restrictions on the forms the grammatical rules can take, or, 
equivalently, on the memory available to the automaton, we can divide all lan-
guages into four nested classes, a hierarchical classification due to Chomsky 
(91). At the bottom are the members of the weakest, most restricted class, the 
regular languages generated by automata within only a fixed, finite memory for 
past symbols (finite state machines). Above them are the context free lan-
guages, whose grammars do not depend on context; the corresponding machines 
are stack automata, which can store an unlimited number of symbols in their 
memory, but on a strictly first-in, first-out basis. Then come the context-
sensitive languages; and at the very top, the unrestricted languages, generated 
by universal computers. Each stage in the hierarchy can simulate all those be-
neath it. 
 We may seem to have departed very far from dynamics, but actually this is 
not so. Because different languages classes are distinguished by different kinds 
of memories, they have very different correlation properties (§3.2), mutual in-



60 C. R. SHALIZI 

formation functions (§7), and so forth—see (10) for details. Moreover, it is often 
easier to determine these properties from a system's grammar than from direct 
examination of sequence statistics, especially since specialized techniques are 
available for grammatical inference (92,93). 

3.6.1. Hidden Markov Models

 The most important special case of this general picture is that of regular 
languages. These, we said, are generated by machines with only a finite mem-
ory. More exactly, there is a finite set of states x, with two properties: 

1. The distribution of yt depends solely on xt, and 

2. The distribution of xt+1 depends solely on xt.

That is, the x sequence is a Markov chain, and the observed y sequence is a 
noisy function of that chain. Such models are very familiar in signal processing 
(94), bioinformatics (95), and elsewhere, under the name of hidden Markov 
models (HMMs). They can be thought of as a generalization of ordinary 
Markov chains to the state-space picture described in §3.1. HMMs are particu-
larly useful in filtering applications, since very efficient algorithms exist for 
determining the most probable values of x from the observed sequence y. The 
expectation-maximization (EM) algorithm (96) even allows us to simultane-
ously infer the most probable hidden states and the most probable parameters for 
the model. 

3.6.2. Variable-Length Markov Models

 The main limitation of ordinary HMMs methods, even the EM algorithm, is 
that they assume a fixed architecture for the states, and a fixed relationship 
between the states and the observations. That is to say, they are not geared to-
wards inferring the structure of the model. One could apply the model-selection 
techniques of §2, but methods of direct inference have also been developed. A 
popular one relies on variable-length Markov models, also called context
trees or probabilistic suffix trees (97–100). 
 A suffix here is the string at the end of the y time series at a given time, so, 
for example, the binary series abbabbabb has suffixes b, bb, abb, babb, etc., but 
not bab. A suffix is a context if the future of the series is independent of its past, 
given the suffix. Context-tree algorithms try to identify contexts by iteratively 
considering longer and longer suffixes, until they find one that seems to be a 
context. For instance, in a binary series, such an algorithm would first try 
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whether the suffices a and b are contexts, i.e., whether the conditional distribu-
tion Pr(Yt+1|Yt = a) can be distinguished from Pr(Yt+1|Yt = a, Y–

t-1), and likewise for 
Yt = b. It could happen that a is a context but b is not, in which case the algo-
rithm will try ab and bb, and so on. If one sets xt equal to the context at time t, xt

is a Markov chain. This is called a variable-length Markov model because the 
contexts can be of different lengths. 
 Once a set of contexts has been found, they can be used for prediction. Each 
context corresponds to a different distribution for one-step-ahead predictions, 
and so one just needs to find the context of the current time series. One could 
apply state-estimation techniques to find the context, but an easier solution is to 
use the construction process of the contexts to build a decision tree (§2), where 
the first level looks at Yt, the second at Yt–1, and so forth. 
 Variable-length Markov models are conceptually simple, flexible, fast, and 
frequently more accurate than other ways of approaching the symbolic dynamics 
of experimental systems (101). However, not every regular language can be rep-
resented by a finite number of contexts. This weakness can be remedied by mov-
ing to a more powerful class of models, discussed next. 

3.6.3. Causal-State Models, Observable-Operator Models,  
  and Predictive-State Representations

 In discussing the state-space picture in §3.1 above, we saw that the state of 
a system is basically defined by specifying its future time-evolution, to the ex-
tent that it can be specified. Viewed in this way, a state Xt corresponds to a dis-
tribution over future observables Yt+1

+. One natural way of finding such 
distributions is to look at the conditional distribution of the future observations, 
given the previous history, i.e., Pr(Yt+1

+|Yt

– = yt

–). For a given stochastic process or 
dynamical system, there will be a certain characteristic family of such condi-
tional distributions. One can then consider the distribution-valued process gen-
erated by the original, observed process. It turns out that the former is always a 
Markov process, and that the original process can be expressed as a function of 
this Markov process plus noise. In fact, the distribution-valued process has all 
the properties one would want of a state-space model of the observations 
(48,49). The conditional distributions, then, can be treated as states. 
 This remarkable fact has led to techniques for modeling discrete-valued 
time series, all of which attempt to capture the conditional-distribution states, 
and all of which are strictly more powerful than VLMMs. There are at least 
three: the causal-state models or causal-state machines (CSMs),12 introduced 
by Crutchfield and Young (102), the observable operator models (OOMs) in-
troduced by Jaeger (103), and the predictive state representations (PSRs) in-
troduced by Littman, Sutton, and Singh (104). The simplest way of thinking of 
such objects is that they are VLMMs where a context or state can contain more 
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than one suffix, adding expressive power and allowing them to give compact 
representations of a wider range of processes. (See (105) for more on this point, 
with examples.) 
 All three techniques—CSMs, OOMs and PSRs—are basically equivalent, 
though they differ in their formalisms and their emphases. CSMs focus on repre-
senting states as classes of histories with the same conditional distributions, i.e., 
as suffixes sharing a single context. (They also feature in the "statistical fore-
casting" approach to measuring complexity, discussed in §8.3.2 below.) OOMs 
are named after the operators that update the state; there is one such operator for 
each possible observation. PSRs, finally, emphasize the fact that one does not 
actually need to know the probability of every possible string of future observa-
tions, but just a restricted subset of key trajectories, called "tests." In point of 
fact, all of them can be regarded as special cases of more general prior construc-
tions due to Salmon ("statistical relevance basis") (106,107) and Knight ("meas-
ure-theoretic prediction process") (48,49), which were themselves independent. 
(This area of the literature is more than usually tangled.) 
 Efficient reconstruction algorithms or discovery procedures exist for 
building CSMs (105) and OOMs (103) directly from data. (There is currently no 
such discovery procedure for PSRs, though there are parameter-estimation algo-
rithms (108).) These algorithms are reliable, in the sense that, given enough 
data, the probability that they build the wrong set of states becomes arbitrarily 
small. Experimentally, selecting an HMM architecture through cross-validation 
never does better than reconstruction, and often much worse (105). 
 While these models are more powerful than VLMMs, there are still many 
stochastic processes that cannot be represented in this form; or, rather, their rep-
resentation requires an infinite number of states (109,110). This is mathemati-
cally unproblematic, though reconstruction will then become much harder. (For 
technical reasons, it seems likely to be easier to carry through for OOMs or 
PSRs than for CSMs.) In fact, one can show that these techniques would work 
straightforwardly on continuous-valued, continuous-time processes, if only we 
knew the necessary conditional distributions (48,111). Devising a reconstruction 
algorithm suitable for this setting is an extremely challenging and completely 
unsolved problem; even parameter estimation is difficult, and currently only 
possible under quite restrictive assumptions (112). 

3.6.4. Generating Partitions

 So far, everything has assumed that we are either observing truly discrete 
quantities, or that we have a fixed discretization of our continuous observations. 
In the latter case, it is natural to wonder how much difference the discretization 
makes. The answer, it turns out, is quite a lot; changing the partition can lead to 



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 63

completely different symbolic dynamics (113–115). How then might we choose 
a good partition? 
 Nonlinear dynamics provides an answer, at least for deterministic systems, 
in the idea of a generating partition (10,116). Suppose we have a continuous 
state x and a deterministic map on the state F, as in §3.1. Under a partitioning ,
each point x in the state space will generate an infinite sequence of symbols, 

(x), as follows: (x), (F(x)), (F2(x)), .... The partition  is generating if each 
point x corresponds to a unique symbol sequence, i.e., if  is invertible. Thus, 
no information is lost in going from the continuous state to the discrete symbol 
sequence.13 While one must know the continuous map F to determine exact gen-
erating partitions, there are reasonable algorithms for approximating them from 
data, particularly in combination with embedding methods (75,117,118). When 
the underlying dynamics are stochastic, however, the situation is much more 
complicated (119). 

4. CELLULAR AUTOMATA

Cellular automata are one of the more popular and distinctive classes of 
models of complex systems. Originally introduced by von Neumann as a way of 
studying the possibility of mechanical self-reproduction, they have established 
niches for themselves in foundational questions relating physics to computation 
in statistical mechanics, fluid dynamics, and pattern formation. Within that last, 
perhaps the most relevant to the present purpose, they have been extensively and 
successfully applied to physical and chemical pattern formation, and, somewhat 
more speculatively, to biological development and to ecological dynamics. In-
teresting attempts to apply them to questions like the development of cities and 
regional economies lie outside the scope of this chapter. 

4.1. A Basic Explanation of CA

 Take a board, and divide it up into squares, like a chess- or checkerboard. 
These are the cells. Each cell has one of a finite number of distinct colors—red 
and black, say, or (to be patriotic) red, white, and blue. (We do not allow con-
tinuous shading, and every cell has just one color.) Now we come to the 
"automaton" part. Sitting somewhere to one side of the board is a clock, and 
every time the clock ticks the colors of the cells change. Each cell looks at the 
colors of the nearby cells, and its own color, and then applies a definite rule, the 
transition rule, specified in advance, to decide its color in the next clock-tick; 
and all the cells change at the same time. (The rule can say "stay the same.") 
Each cell is a sort of very stupid computer—in the jargon, a finite-state 
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automaton—and so the whole board is called a cellular automaton, or CA. To 
run it, you color the cells in your favorite pattern, start the clock, and stand back. 
 Let us follow this concrete picture with one more technical and abstract. 
The cells do not have to be colored, of course; all that's important is that each 
cell is in one of a finite number of states at any given time. By custom they're 
written as the integers, starting from 0, but any "finite alphabet" will do. Usually 
the number of states is small, under ten, but in principle any finite number is 
allowed. What counts as the "nearby cells," the neighborhood, varies from 
automaton to automaton; sometimes just the four cells on the principal direc-
tions, sometimes the corner cells, sometimes a block or diamond of larger size; 
in principle any arbitrary shape. You do not need to stick to a chessboard; you 
can use any regular pattern of cells that will fill the plane (or "tessellate" it; an 
old name for cellular automata is tessellation structures). And you do not have 
to stick to the plane; any number of dimensions is allowed. There are various 
tricks for handling the edges of the space; the one which has "all the advantages 
of theft over honest toil" is to assume an infinite board. 

Cellular Automata as Parallel Computers. CA are synchronous massive-
ly parallel computers, with each cell being a finite state transducer, taking input 
from its neighbors and making its own state available as output. From this per-
spective, the remarkable thing about CA is that they are computationally univer-
sal, able to calculate any (classically) computable function; one can use finite-
state machines, the least powerful kind of computer, to build devices equivalent 
to Turing machines, the most powerful kind of computer. The computational 
power of different physically motivated CA is an important topic in complex 
systems (120,121), though it must be confessed that CA with very different 
computational powers can have very similar behavior in most other  respects. 

Cellular Automata as Discrete Field Theories. From the perspective 
of physics, a CA is a "digitized" classical field theory, in which space, time, 
and the field (state) are all discrete. Thus fluid mechanics, continuum mechan-
ics, and electromagnetism can all be simulated by CA14; typically,  however, 
the physical relevance of a CA comes not from accurately simulating some 
field theory at the microscopic level, but from the large-scale phenomena they 
generate. 
 Take, for example, simulating fluid mechanics, where CA are also called 
lattice gases or lattice fluids. In the "HPP" (122) rule, a typical lattice gas with 
a square grid, there are four species of "fluid particle," which travel along the 
four principal directions. If two cells moving in opposite directions try to occupy 
the same location at the same time, they collide, and move off at right angles to 
their original axis Figure 4). Each cell thus contains only an integer number of 
particles, and only a discrete number of values of momentum are possible. If 
one takes averages over reasonably large regions, however, then density and 
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momentum approximately obey the equations of continuous fluid mechanics. 
Numerical experiments show that this rule reproduces many fluid phenomena, 
such as diffusion, sound, shockwaves, etc. However, with this rule, the agree-
ment with fluid mechanics is only approximate. In particular, the square lattice 
makes the large-scale dynamics anisotropic, which is unphysical. This in turn 
can be overcome in several ways—for instance, by using a hexagonal lattice 
(123). The principle here—get the key parts of the small-scale "microphysics" 
right, and the interesting "macrophysics" will take care of itself—is extensively 
applied in studying pattern formation, including such biologically relevant phe-
nomena as phase separation (124), excitable media (125), and the self-assembly 
of micelles (126,127). 

5. AGENT-BASED MODELS

 If there is any one technique associated with complex systems science, it is 
agent-based modeling. An agent-based model is a computational model that 
represents individual agents and their collective behavior. What, exactly, do we 
mean by "agent"? Stuart Kauffman has offered15 the following apt definition: 
"An agent is a thing which does things to things." That is, an agent is a persistent 
thing that has some state we find worth representing, and which interacts with 
other agents, mutually modifying each others' states. The components of an 
agent-based model are a collection of agents and their states, the rules governing 
the interactions of the agents, and the environment within which they live. (The 
environment need not be represented in the model if its effects are constant.) 
The state of an agent can be arbitrarily simple, say just position, or the color of a 
cell in a CA. (At this end, agent-based models blend with traditional stochastic 

Figure 4. Collisions in the HPP lattice gas rule. Horizontal collisions produce vertically mov-
ing particles (top) and vice versa (middle). Particles moving at right angles pass by each other 
unchanged (bottom, omitting the reflections and rotations of this figure). 
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models.) States can also be extremely complicated, including, possibly, sophisti-
cated internal models of the agent's world. 
 Here is an example to make this concrete. In epidemiology, there is a classic 
kind of model of the spread of a disease through a population called an "SIR" 
model (128, §4). It has three classes of people—the susceptible, who have yet to 
be exposed to the disease; the infected, who have it and can pass it on; and the 
resistant or recovered, who have survived the disease and cannot be reinfected. 
A traditional approach to an SIR model would have three variables, namely the 
number of people in each of the three categories, S(t), I(t), R(t), and would have 
some deterministic or stochastic dynamics in terms of those variables. For in-
stance, in a deterministic SIR model, one might have 
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, [37] 

R(t + 1) – R(t) = bI(t), [38] 

which we could interpret by saying that (i) the probability of a susceptible per-
son being infected is proportional to the fraction of the population which is al-
ready infected, (ii) infected people get better at a rate b, and (iii) infected people 
die at a rate c. (This is not a particularly realistic SIR model.) In a stochastic 
model, we would treat the right-hand sides of [36]–[38] as the mean changes in 
the three variables, with (say) Poisson-distributed fluctuations, taking care that, 
e.g., the fluctuation in the aI/(R + S + I) term in [36] is the same as that in [37]. 
The thing to note is that, whether deterministic or stochastic, the whole model is 
cast in terms of the aggregate quantities S, I and R, and those aggregate variables 
are what we would represent computationally. 
 In an agent-based model of the same dynamics, we would represent each
individual in the population as a distinct agent, which could be in one of three 
states, S, I, and R. A simple interaction rule would be that at each time-step, each 
agent selects another from the population entirely at random. If a susceptible 
agent (i.e., one in state S) picks an infectious agent (i.e., one in state I), it be-
comes infected with probability a. Infectious agents die with probability b and 
recover with probability c; recovered agents never change their state. So far, we 
have merely reproduced the stochastic version of [36]–[38], while using many 
more variables. The power of agent-based modeling only reveals itself when we 
implement more interesting interaction rules. For instance, it would be easy to 
assign each agent a position, and make two agents more likely to interact if they 
are close. We could add visible symptoms that are imperfectly associated with 
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the disease, and a tendency not to interact with symptomatic individuals. We 
could make the degree of aversion to symptomatic agents part of the agents' 
state. All of this is easy to implement in the model, even in combination, but not
easy to do in a more traditional, aggregated model. Sometimes it would be all 
but impossible; an excellent case in point is the highly sophisticated model of 
HIV epidemiology produced by Jacquez, Koopman, Simon, and collaborators 
(129,130), incorporating multiple routes of transmission, highly non-random 
mixing of types, and time-varying infectiousness. 
 Agent-based models steer you towards representing individuals, their be-
haviors and their interactions, rather than aggregates and their dynamics. 
Whether this is a good thing depends, of course, on what you know, and what 
you hope to learn. If you know a lot about individuals, agent-based models can 
help you leverage that knowledge into information about collective dynamics. 
This is particularly helpful if the population is heterogeneous, since you can 
represent the different types of individuals in the population by different states 
for agents. This requires a bit of effort on your part, but often not nearly so much 
as it would to represent the heterogeneity in an aggregated model. Conversely, if 
you think you have the collective dynamics down, an ABM will let you check 
whether a candidate for an individual-level mechanism really will produce them. 
(But see §6, below.) 
 Ideally, there are no "mass nouns" in an ABM, nothing represented by a 
smeared-out "how much": everything should be represented by some definite 
number of distinctly located agents. At most, some aggregate variables may be 
stuffed into the environment part of the model, but only simple and homogene-
ous ones. Of course, the level of disaggregation at which it is useful to call 
something an agent is a matter for particular applications, and need not be the 
same for every agent in a model. (E.g., one might want to model an entire organ 
as a single agent, while another, more interesting organ is broken up into multi-
ple interacting agents, along anatomical or functional lines.) Sometimes it's just 
not practical to represent everything which we know is an individual thing by its 
own agent: imagine trying to do chemical thermodynamics by tracking the inter-
actions of a mole of molecules. Such cases demand either giving up on agent-
based modeling (fortunately, the law of mass action works pretty well in chem-
istry), or using fictitious agents that represent substantial, but not too large, col-
lections of individuals. 
 Models describing the collective dynamics of aggregate variables are some-
times called "equation-based models," in contrast to agent-based models. This is 
sloppy, however: it is always possible, though generally tedious and unillumi-
nating, to write down a set of equations that describe the dynamics of an agent-
based model. Rather than drawing a false contrast between agents and equations, 
it would be better to compare ABMs to "aggregate models," "collective models," 
or perhaps "factor models." 
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5.1. Computational Implementation: Agents are Objects

 The nicest way to computationally implement the commitment of distinctly 
representing each agent is to make agents objects, which are, to oversimplify 
slightly, data structures that have internal states, and interact with each other by 
passing messages. While objects are not necessary for agent-based models, they 
do make programming them much easier, especially if the agents have much 
more state than, say, just a position and a type. If you try to implement models 
with sophisticated agents without using objects, the odds are good that you will 
find yourself reinventing well-known features of object-oriented programming. 
(Historically, object-oriented programming began with languages for simulation 
modeling (131).) You might as well save your time, and do those things right,
by using objects in the first place. 
 Generally speaking, computational implementations of ABMs contain many 
non-agent objects, engaged in various housekeeping tasks, or implementing the 
functions agents are supposed to perform. For instance, an agent, say a rat, 
might be supposed to memorize a sequence, say, of turns in a maze. One way of 
implementing this would be to use a linked list, which is an object itself. Such 
objects do not represent actual features of the model, and it should be possible to 
vary them without interfering with the model's behavior. Which objects are 
picked out as agents is to some degree a matter of convenience and taste. It is 
common, for instance, to have mobile agents interacting on astatic environment. 
If the environment is an object, modelers may or may not speak of it as an "envi-
ronment agent," and little seems to hinge on whether or not they do. 
 There are several programming environments designed to facilitate agent-
based modeling. Perhaps the best known of these is (www.swarm.org), which 
works very flexibly with several languages, is extensively documented, and has 
a large user community, though it presently (2004) lacks an institutional home. 
REPAST, while conceptually similar, is open-source (repast.sourceforge.net) and 
is associated with the University of Chicago. STARLOGO, and its successor, 
NETLOGO (ccl.sesp.northwestern.edu/netlogo), are extensions of the popular 
LOGO language to handle multiple interacting "turtles," i.e., agents. Like Logo, 
children can learn to use them (132), but they are fairly easy for adults, too, and 
certainly give a feel for working with ABMs. 

5.2. Three Things Which Are Not Agent-Based Models

 Not everything which involves the word "agent" is connected to agent-
based modeling. 

Representative agent models are not ABMs. In these models, the response 
of a population to environmental conditions is found by picking out a single
typical or representative agent, determining its behavior, and assuming that eve-
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ryone else does likewise. This is sometimes reasonable, but it's clearly diametri-
cally opposed to what an ABM is supposed to be. 

Software agents are not ABMs. Software agents are a very useful and rap-
idly developing technology (133, ch. 2); an agent, here, is roughly a piece of 
code that interacts with other software and with pieces of the real world 
autonomously. Agents index the Web for search engines, engage in automated 
trading, and help manage parts of the North American electrical power grid, 
among other things. Some agent software systems are inspired by ABMs (134). 
When one wants to model their behavior, an ABM is a natural tool (but not the 
only one by any means: see (135)). But a set of software agents running the 
Michigan power grid is not a model of anything, it's doing something. 
 Finally, multi-agent systems (136) and rational agents (137) in artificial 
intelligence are not ABMs. The interest of this work is in understanding, and 
especially designing, systems capable of sophisticated, autonomous cognitive 
behavior; many people in this field would restrict the word "agent" to apply only 
to things capable, in some sense, of having "beliefs, desires, and intentions." 
While these are certainly complex systems, they are not usually intended to be 
models of anything else. One can, of course, press them into service as models 
(138), but generally this will be no more than a heuristic device. 

5.3. The Simplicity of Complex Systems Models

 One striking feature of agent-based models, and indeed of complex systems 
models in general, is how simple they are. Often, agents have only a few possi-
ble states, and only a handful of kinds of interaction. This practice has three mo-
tivations: (i) A model as detailed as the system being studied would be as hard 
to understand as that system. (ii) Many people working in complex systems sci-
ence want to show that a certain set of mechanisms are sufficient to generate 
some phenomenon, like cooperation among unrelated organisms, or the forma-
tion of striped patterns. Hence using simple models, which contain only those 
mechanisms, makes the case. (iii) Statistical physicists, in particular, have a long 
tradition of using highly simplified models as caricatures of real systems. 
 All three motives are appropriate, in their place. (i) is completely unexcep-
tionable; abstracting away from irrelevant detail is always worthwhile, so long 
as it really is irrelevant. (ii) is also fair enough, though one should be careful that 
the mechanisms in one's model can still generate the phenomenon when they 
interact with other effects as well. (iii) works very nicely in statistical physics 
itself, where there are powerful mathematical results relating to the renormaliza-
tion group (139) and bifurcation theory (14), which allow one to extract certain 
kinds of quantitative results from simplified models that share certain qualitative
characteristics with real systems. (We have seen a related principle when dis-
cussing cellular automata models above.) There is, however, little reason to 



70 C. R. SHALIZI 

think that these universality results apply to most complex systems, let alone 
ones with adaptive agents! 

6. EVALUATING MODELS OF COMPLEX SYSTEMS

 We do not build models for their own sake; we want to see what they do, 
and we want to compare what they do both to reality and to other models. This 
kind of evaluation of models is a problem for all areas of science, and as such 
little useful general advice can be given. However, there are some issues that are 
peculiar to models of complex systems, or especially acute for them, and I will 
try to provide some guidance here, moving from figuring out just what your 
model does, to comparing your model to data, to comparing it to other models. 

6.1. Simulation

 The most basic way to see what your model does is to run it; to do a simula-
tion. Even though a model is entirely a human construct, every aspect of its be-
havior following logically from its premises and initial conditions, the frailty of 
human nature is such that we generally cannot perceive those consequences, not 
with any accuracy. If the model involves a large number of components that 
interact strongly with each other—if, that is to say, it's a good model of a com-
plex system—our powers of deduction are generally overwhelmed by the mass 
of relevant, interconnected detail. Computer simulation then comes to our aid, 
because computers have no trouble remembering large quantities of detail, nor 
in following instructions. 

6.1.1. Direct Simulation

 Direct simulation—simply starting the model and letting it go—has two 
main uses. One is to get a sense of the typical behavior, or of the range of behav-
ior. The other, more quantitative, use is to determine the distribution of impor-
tant quantities, including time series. If one randomizes initial conditions, and 
collects data over multiple runs, one can estimate the distribution of desired 
quantities with great accuracy. This is exploited in the time-series method of 
surrogate data (above), but the idea applies quite generally. 
 Individual simulation runs for models of complex systems can be reasona-
bly expensive in terms of time and computing power; large numbers of runs, 
which are really needed to have confidence in the results, are correspondingly 
more costly. Few things are more dispiriting than to expend such quantities of 
time and care, only to end up with ambiguous results. It is almost always 
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worthwhile, therefore, to carefully think through what you want to measure, and 
why, before running anything. In particular, if you are trying to judge the merits 
of competing models, effort put into figuring out how and where they are most
different will generally be well-rewarded. The theory of experimental design 
offers extensive guidance on how to devise informative series of experiments, 
both for model comparison and for other purposes, and by and large the princi-
ples apply to simulations as well as to real experiments. 

6.1.2. Monte Carlo Methods

Monte Carlo is the name of a broad, slightly indistinct family for using 
random processes to estimate deterministic quantities, especially the properties 
of probability distributions. A classic example will serve to illustrate the basic 
idea, on which there are many, many refinements. 
 Consider the problem of determining the area A under an curve given by a 
known but irregular function f(x). In principle, you could integrate f to find this 
area, but suppose that numerical integration is infeasible for some reason. (We 
will come back to this point presently.) A Monte Carlo solution to this problem 
is as follows: pick points at random, uniformly over the square. The probability 
p that a point falls in the shaded region is equal to the fraction of the square oc-
cupied by the shading: p = A/s2. If we pick n points independently, and x of them 
fall in the shaded region, then x/n p (by the law of large numbers), and s2x/n
A. s2x/n provides us with a stochastic estimate of the integral. Moreover, this is a 
probably approximately correct (§2.1.3) estimate, and we can expect, from basic 
probability theory, that the standard deviation of the estimate around its true 
value will be proportional to n–1/2, which is not bad.16 However, when faced with 
such a claim, one should always ask what the proportionality constant is, and 
whether it is the best achievable. Here it is not: the equally simple, if less visual, 
scheme of just picking values of x uniformly and averaging the resulting values 
of f(x) always has a smaller standard deviation (140, ch. 5). 
 This example, while time-honored and visually clear, does not show Monte 
Carlo to its best advantage; there are few one-dimensional integrals that cannot 
be done better by ordinary, non-stochastic numerical methods. But numerical 
integration becomes computationally intractable when the domain of integration 
has a large number of dimensions, where "large" begins somewhere between 
four and ten. Monte Carlo is much more indifferent to the dimensionality of the 
space: we could replicate our example with a 999-dimensional hypersurface in a 
1000-dimensional space, and we'd still get estimates that converged like n–1/2, so 
achieving an accuracy of  will require evaluating the function f only O( –2)
times. 
 Our example was artificially simple in another way, in that we used a uni-
form distribution over the entire space. Often, what we want is to compute the 
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expectation of some function f(x) with a nonuniform probability p(x). This is just 
an integral, f(x)p(x)dx, so we could sample points uniformly and compute 
f(x)p(x) for each one. But if some points have very low probability, so they only 
make a small contribution to the integral, spending time evaluating the function 
there is a bit of a waste. A better strategy would be to pick points according to 
the actual probability distribution. This can sometimes be done directly, espe-
cially if p(x) is of a particularly nice form. A very general and clever indirect 
scheme is as follows (14). We want a whole sequence of points, x1, x2, ... xn. We 
pick the first one however we like, and after that we pick successive points ac-
cording to some Markov chain: that is, the distribution of xi+1 depends only on xi,
according to some fixed function q(xi, xi+1). Under some mild conditions,17 the 
distribution of xt approaches a stationary distribution q*(x) at large times t. If we 
could ensure that q*(x) = p(x), we would know that the Markov chain was con-
verging to our distribution, and then, by the ergodic theorem, averaging f(x)
along a trajectory would give the expected value of f(x). One way to ensure this 
is to use the "detailed balance" condition of the invariant distribution, that the 
total probability of going from x to y must equal the total probability of going 
the other way: 

p(x)q(x,y) = p(y), [39] 

( , ) ( )
( , )

( , ) ( )

q x y p y
h x y

q y x p x
= . [40] 

So now we just need to make sure that [40] is satisfied. One way to do this is to 
set q(x,y) = min(1,h(x,y)); this was the original proposal of Metropolis et al. 
(141). Another is q(x,y) = (h(x,y))/(1 + h(x,y)). This method is what physicists 
usually mean by "Monte Carlo," but statisticians call it Markov chain Monte 
Carlo, or "MCMC." While we can now estimate the properties of basically arbi-
trary distributions, we no longer have independent samples, so evaluating the 
accuracy of our estimates is no longer a matter of trivial probability.18 An im-
mense range of refinements have been developed over the last fifty years, ad-
dressing these and other points; see the further reading section for details. 
 Keep in mind that Monte Carlo is a stochastic simulation method only in a 
special sense—it simulates the probability distribution p(x), not the mecha-
nism that generated that distribution. The dynamics of Markov chain Monte 
Carlo, in particular, often bear no resemblance whatsoever to those of the 
real system.19 Since the point of Monte Carlo is to tell us about the properties of 
p(x) (what is the expectation value of this function? what is the probability of 
configurations with this property? etc.), the actual trajectory of the Markov 
chain is of no interest. This point sometimes confuses those more used to direct 
simulation methods. 
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6.2. Analytical Techniques

 Naturally enough, analytical techniques are not among the tools that first 
come to mind for dealing with complex systems; in fact, they often do not come 
to mind at all. This is unfortunate, because a lot of intelligence has been devoted 
to devising approximate analytical techniques for classes of models that include 
many of those commonly used for complex systems. A general advantage of 
analytical techniques is that they are often fairly insensitive to many details of 
the model. Since any model we construct of a complex system is almost cer-
tainly much simpler than the system itself, a great many of its details are just 
wrong. If we can extract nontrivial results insensitive to those details, we have 
less reason to worry about this. 
 One particularly useful, yet neglected, body of approximate analytical tech-
niques relies on the fact that many complex systems models are Markovian. In 
an agent-based model, for instance, the next state of an agent generally depends 
only on its present state, and the present states of the agents it interacts with. If 
there is a fixed interaction graph, the agents form a Markov random field on that 
graph. There are now very powerful and computationally efficient methods for 
evaluating many properties of Markov chains (58,142), Markov random fields 
(143), and (closely related) graphical models (144) without simulation. The re-
cent books of Peyton Young (145) and Sutton (146) provide nice instances of 
using analytical results about Markov processes to solve models of complex 
social systems, without impractical numerical experiments. 

6.3. Comparisons with Data

6.3.1. General Issues

 We can only compare particular aspects of a model of a system to particular 
kinds of data about that system. The most any experimental test can tell us, 
therefore, is how similar the model is to the system in that respect. One may 
think of an experimental comparison as a test for a particular kind of error, one 
of the infinite number of mistakes which we could make in building a model. A 
good test is one which is very likely to alert us to an error, if we have made it, 
but not otherwise (50). 
 These ought to be things every schoolchild knows about testing hypotheses. 
It is very easy, however, to blithely ignore these truisms when confronted with, 
on the one hand, a system with many strongly interdependent parts, and, on the 
other hand, a model that tries to mirror that complexity. We must decide which 
features of the model ought to be similar to the system, and how similar. It is 
important not only that our model be able to adequately reproduce those phe-
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nomena, but that it not entail badly distorted or nonexistent phenomena in other 
respects. 

6.3.2. Two Stories and Some Morals

 Let me give two examples from very early in the study of complex systems, 
which nicely illustrate some fundamental points. 
 The first has to do with pattern formation in chemical oscillators (147). Cer-
tain mixtures of chemicals in aqueous solution, most famously the Belusov-
Zhabotinsky reagent, can not only undergo cyclic chemical reactions, but will 
form rotating spiral waves, starting from an initial featureless state. This is a 
visually compelling example of self-organization, and much effort has been de-
voted to understanding it. One of the more popular early models was the "Brus-
selator" advanced by Prigogine and his colleagues at the Free University of 
Brussels; many similarly named variants developed. Brusselator-type models 
correctly predicted that these media would support spiral waves. They all, fur-
ther, predicted that the spirals would form only when the homogeneous configu-
ration was unstable, and that then they would form spontaneously. It proved 
very easy, however, to prepare the Belusov-Zhabotisnky reagent in such a way 
that it was "perfectly stable in its uniform quiescence," yet still able to produce 
spiral waves if excited (e.g., by being touched with a hot wire) (148). The Brus-
selator and its variants were simply unable to accommodate these phenomena, 
and had to be discarded in favor of other models. The fact that these were quali-
tative results, rather than quantitative ones, if anything made it more imperative 
to get rid of the Brusselator. 
 The second story concerns the work of Varela and Maturana on "autopoe-
sis." In a famous paper (149), they claimed to exhibit a computational model of 
a simple artificial chemistry where membranes not only formed spontaneously, 
but a kind of metabolism self-organized to sustain the membranes. This work 
influenced not just complex systems science but theoretical biology, psychol-
ogy, and even sociology (150). When, in the 1990s, McMullin made the first 
serious effort to reproduce the results, based on the description of the model in 
the paper, that description proved not to match the published simulation results. 
The discrepancy was only resolved by the fortuitous rediscovery of a mass of 
papers, including Fortran code, that Varela had left behind in Chile when forced 
into exile by the fascist regime. These revealed a crucial change in one particular 
reaction made all the difference between successful autopoesis and its absence. 
(For the full story, see (151,152).) Many similar stories could be told of other 
models in complex systems (153); this one is distinguished by McMullin's un-
usual tenacity in trying to replicate the results, Varela's admirable willingness to 
assist him, and the happy ending. 
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 The story of autopoesis is especially rich in morals. (1) Replication is essen-
tial. (2) It is a good idea to share not just data but programs. (3) Always test the 
robustness of our model to changes in its parameters. (This is fairly common.) 
(4) Always test your model for robustness to small changes in qualitative as-
sumptions. If your model calls for a given effect, there are usually several 
mechanisms that could accomplish it. If it does not matter which mechanism 
you actually use, the result is that much more robust. Conversely, if it does mat-
ter, the overall adequacy of the model can be tested by checking whether that
mechanism is actually present in the system. Altogether too few people perform 
such tests. 

6.3.3. Comparing Macro-data and Micro-models

 Data are often available only about large aggregates, while models, espe-
cially agent-based models, are about individual behavior. One way of comparing 
such models to data is to compute the necessary aggregates, from direct simula-
tion, Monte Carlo, etc. The problem is that many different models can give the 
same aggregated behavior, so this does not provide a powerful test between dif-
ferent models. Ideally, we'd work back from aggregate data to individual behav-
iors, which is known, somewhat confusingly, as ecological inference. In 
general, the ecological inference problem itself does not have a unique solution. 
But the aggregate data, if used intelligently, can often put fairly tight constraints 
on the individual behaviors, and micro-scale can be directly checked against 
those constraints. Much of the work here has been done by social scientists, es-
pecially American political scientists concerned with issues arising from the 
Voting Rights Act (154), but the methods they have developed are very general, 
and could profitably be applied to agent-based models in the biological sciences, 
though, to my knowledge, they have yet to be. 

6.4. Comparison to Other Models

 Are there other ways of generating the data? There generally are, at least if 
"the data" are some very gross, highly summarized pattern. This makes it impor-
tant to look for differential signatures, places where discrepancies between dif-
ferent generative mechanisms give one some leverage. Given two mechanisms 
that can both account for our phenomenon, we should look for some other quan-
tity whose behavior will be different under the two hypotheses. Ideally, in fact, 
we would look for the statistic on which the two kinds of model are most diver-
gent. The literature on experimental design is relevant here again, since it con-
siders such problems under the heading of model discrimination, seeking to 
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maximize the power of experiments (or simulations) to distinguish between dif-
ferent classes of models (155,156). 
 Perhaps no aspect of methodology is more neglected in complex systems 
science than this one. While it is always perfectly legitimate to announce a new 
mechanism as a way of generating a phenomenon, it is far too common for it to 
be called the way to do it, and vanishingly rare to find an examination of how it 
differs from previously proposed mechanisms. Newman and Palmer's work on 
extinction models (157) stands out in this regard for its painstaking examination 
of the ways of discriminating between the various proposals in the literature. 

7. INFORMATION THEORY

 Information theory began as a branch of communications engineering, 
quantifying the length of codes needed to represent randomly varying signals, 
and the rate at which data can be transmitted over noisy channels. The concepts 
needed to solve these problems turn out to be quite fundamental measures of the 
uncertainty, variability, and the interdependence of different variables. Informa-
tion theory thus is an important tool for studying complex systems, and in addi-
tion is indispensable for understanding complexity measures (§8). 

7.1. Basic Definitions

 Our notation and terminology follows that of Cover and Thomas's standard 
textbook (158). 
 Given a random variable X taking values in a discrete set , the entropy or 
information content H[X] of X is 

2[ ] Pr( ) log Pr( )
a

H X X a X a= = . [41] 

H[X] is the expectation value of –log2 Pr(X). It represents the uncertainty in X,
interpreted as the mean number of binary distinctions (bits) needed to identify 
the value of X. Alternately, it is the minimum number of bits needed to encode 
or describe X. Note that H[X] = 0 if and only if X is (almost surely) constant. 
 The joint entropy H[X,Y] of two variables X and Y is the entropy of their 
joint distribution: 

2
,

[ , ] Pr( , ) log Pr( , )
a b

H X Y X a Y b X a Y b= = = = . [42] 

 The conditional entropy of X given Y is 
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H[X|Y] H[X,Y] – H[Y]. [43] 

H[X|Y] is the average uncertainty remaining in X, given a knowledge of Y.
 The mutual information I[X;Y] between X and Y is 

I[X;Y] H[X] – H[X|Y]. [44] 

It gives the reduction in X's uncertainty due to knowledge of Y and is symmetric 
in X and Y. We can also define higher-order mutual informations, such as the 
third-order information I[X;Y;Z],

I[X;Y;Z] H[X] + H[Y] + H[Z] – H[X,Y,Z], [45] 

and so on for higher orders. These functions reflect the joint dependence among 
the variables. 
 Mutual information is a special case of the relative entropy, also called the 
Kullback-Leibler divergence (or distance). Given two distributions (not vari-
ables), P and Q, the entropy of Q relative to P is 

P( )
(P || Q) ( ) log

Q( )x

x
D P x

x
. [46] 

D measures how far apart the two distributions are, since D(P||Q)  0, and 
D(P||Q) = 0 implies the two distributions are equal almost everywhere. The di-
vergence can be interpreted either in terms of codes (see below), or in terms of 
statistical tests (159). Roughly speaking, given n samples drawn from the distri-
bution P, the probability of our accepting the false hypothesis that the distribu-
tion is Q can go down no faster than 2–nD(P||Q). The mutual information I[X;Y] is 
the divergence between the joint distribution Pr(X,Y), and the product of the 
marginal distributions, Pr(X)Pr(Y), and so measures the departure from inde-
pendence.
 Some extra information-theoretic quantities make sense for time series and 
stochastic processes. Supposing we have a process X  = ...,X–2,X–1,X0,X1,X2,..., we 
can define its mutual information function by analogy with the autocovariance 
function (see §3.2), 

( , ) [ ; ]s tX
I s t I X X= , [47] 

( ) [ ; ]t tX
I I X X += , [48] 
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where the second form is valid only for strictly stationary processes. The mutual 
information function measures the degree to which different parts of the series 
are dependent on each other. 
 The entropy rate h of a stochastic process is 

1
0lim [ | ]LL

h H X X , [49] 

1
0[ | ]H X X= . [50] 

(the limit always exists for stationary processes), where h measures the process's 
unpredictability, in the sense that it is the uncertainty which remains in the next 
measurement even given complete knowledge of its past. In nonlinear dynamics, 
h is called the Kolmogorov-Sinai (KS) entropy.
 For continuous variables, one can define the entropy via an integral, 

H[X]  – p(x) log p(x)dx, [51] 

with the subtlety that the continuous entropy not only can be negative, but de-
pends on the coordinate system used for x. The relative entropy also has the ob-
vious definition, 

( )
(P || Q) ( ) log

( )

p x
D p x dx

q x
, [52] 

but is coordinate-independent and non-negative. So, hence, is the mutual infor-
mation. 

Optimal Coding. One of the basic results of information theory concerns 
codes, or schemes for representing random variables by bit strings. That is, we 
want a scheme that associates each value of a random variable X with a bit 
string. Clearly, if we want to keep the average length of our code-words small, 
we should give shorter codes to the more common values of X. It turns out that 
the average code-length is minimized if we use –log Pr(x) bits to encode x, and it 
is always possible to come within one bit of this. Then, on average, we will use 
E[–log Pr(x)] = H[X] bits. 
 This presumes we know the true probabilities. If we think the true distribu-
tion is Q when it is really P, we will, on average, use E[–log Q(x)] H[X]. This 
quantity is called the cross-entropy or inaccuracy, and is equal to H[X] + 
D(P||Q). Thus, finding the correct probability distribution is equivalent to mini-
mizing the cross-entropy, or the relative entropy (160). 
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The Khinchin Axioms and Rényi Information. In 1953, A.I. Khinchin 
published a list of four reasonable-looking axioms fora measure of the informa-
tion H[X] associated with a random variable X (161). He then proved that the 
Shannon information was the unique functional satisfying the axioms, up to an 
overall multiplicative constant. (The choice of this constant is equivalent to the 
choice of the base for logarithms.) The axioms were as follows. 

The information is a functional of the probability distribution of X,
and not on any of its other properties. In particular, if f is any in-
vertible function, H[X] = H[f(X)].

The information is maximal for the uniform distribution, where all 
events are equally probable. 

The information is unchanged by enlarging the probability space 
with events of zero probability. 

If the probability space is divided into two subspaces, so that X is 
split into two variables Y and Z, the total information is equal to the 
information content of the marginal distribution of one subspace, 
plus the mean information of the conditional distribution of the 
other subspace: H[X] = H[Y] + E[H(Z|Y)].

A similar axiomatic treatment can be given for the mutual information and the 
relative entropy. 
 While the first three of Khinchin's axioms are all highly plausible, the fourth 
is somewhat awkward. It is intuitively more plausible to merely require that, if Y
and Z are independent, then H[Y,Z] = H[Y] + H[Z]. If the fourth axiom is weak-
ened in this way, however, there is no longer only a single functional satisfying 
the axioms. Instead, any of the infinite family of entropies introduced by Rényi 
satisfies the axioms. The Rényi entropy of order , with  any non-negative 
real number, is 

: 0

1
[ ] log

1
i

i
i p

H X p
>

 [53] 

in the discrete case, and the corresponding integral in the continuous case. The 
parameter  can be thought of as gauging how strongly the entropy is biased 
towards low-probability events. As  0, low-probability events count more, 
until at  = 0, all possible events receive equal weight. (This is sometimes called 
the topological entropy.) As , only the highest-probability event contrib-
utes to the sum. One can show that, as  1, H [X] H[X], i.e., one recovers 
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the ordinary Shannon entropy in the limit. There are entropy rates corresponding 
to all the Rényi entropies, defined just like the ordinary entropy rate. For dy-
namical systems, these are related to the fractal dimensions of the attractor 
(162,163). 
 The Rényi divergences bear the same relation to the Rényi entropies as 
the Kullback-Leibler divergence does to the Shannon entropy. The defining 
formula is 

1
(P || Q) log

1
i

i
i

p
D q

q
, [54] 

and similarly for the continuous case. Once again, 1lim D (P||Q) = D(P||Q). 
For all  > 0, D (P||Q)  0, and is equal to zero if and only if P and Q are the 
same. (If  = 0, then a vanishing Rényi divergence only means that the supports 
of the two distributions are the same.) The Rényi entropy H [X] is nonincreasing 
as  grows, whereas the Rényi divergence D (P||Q) is nondecreasing. 

Estimation of Information-Theoretic Quantities. In applications, we will 
often want to estimate theoretic quantities, such as the Shannon entropy or the 
mutual information, from empirical or simulation data. Restricting our attention, 
for the moment, to the case of discrete-valued variables, the empirical distribu-
tion will generally converge on the true distribution, and so the entropy (say) of 
the empirical distribution ("sample entropy") will also converge on the true en-
tropy. However, it is not the case that the sample entropy is an unbiased estimate 
of the true entropy. The Shannon (and Rényi) entropies are measures of varia-
tion, like the variance, and sampling tends to reduce variation. Just as the sample 
variance is a negatively biased estimate of the true variance, sample entropy is a 
negatively biased estimate of the true entropy, and so sample mutual information 
is a positively biased estimate of true information. Understanding and control-
ling the bias, as well as the sampling fluctuations, can be very important. 
 Victor (164) has given an elegant method for calculating the bias of the 
sample entropy; remarkably, the leading-order term depends only on the alpha-
bet size k and the number of samples N, and is (k –1)/2N. Higher-order terms, 
however, depend on the true distribution. Recently, Kraskov et al. (165) have 
published an adaptive algorithm for estimating mutual information, which has 
very good properties in terms of both bias and variance. Finally, the estimation 
of entropy rates is a somewhat tricky matter. The best practices are to either use 
an algorithm of the type given by (166), or to fit a properly dynamical model. 
(For discrete data, variable-length Markov chains, discussed in §3.6.2 above, 
generally work very well, and the entropy rate can be calculated from them very 
simply.) Another popular approach is to run one's time series through a standard 
compression algorithm, such as gzip, dividing the size in bits of the output by 
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the number of symbols in the input (167). This is an absolutely horrible idea; 
even under the circumstances under which it gives a consistent estimate of the 
entropy rate, it converges much more slowly, and runs more slowly, than em-
ploying either of the two techniques just mentioned (168,169).20

7.2. Applications of Information Theory

 Beyond its original home in communications engineering, information the-
ory has found a multitude of applications in statistics (159,160) and learning 
theory (144,170). Scientifically, it is very natural to consider some biological 
systems as communications channels, and so analyze their information content; 
this has been particularly successful for biopolymer sequences (171) and espe-
cially for neural systems, where the analysis of neural codes depends vitally on 
information theory (172,173). However, there is nothing prohibiting the applica-
tion of information theory to systems that are not designed to function as com-
munications devices; the concepts involved require only well-defined 
probability distributions. For instance, in nonlinear dynamics (174,175) informa-
tion-theoretic notions are very important in characterizing different kinds of 
dynamical system (see also §3.6). Even more closely tied to complex systems 
science is the literature on "physics and information" or "physics and computa-
tion," which investigates the relationships between the mechanical principles of 
physics and information theory, e.g., Landauer's principle, that erasing (but not 
storing) a bit of information at temperature T produces kBT ln 2 joules of heat, 
where kB is Boltzmann's constant. 

8. COMPLEXITY MEASURES

 We have already given some thought to complexity, both in our initial 
rough definition of "complex system" and in our consideration of machine learn-
ing and Occam's Razor. In the latter, we saw that the relevant sense 
of"complexity" has to do with families of models: a model class is complex if it 
requires large amounts of data to reliably find the best model in the class. On the 
other hand, we initially said that a complex system is one with many highly 
variable, strongly interdependent parts. Here, we will consider various proposals 
for putting some mathematical spine into that notion of a system's complexity, 
as well as the relationship to the notion of complexity of learning. 
 Most measures of complexity for systems formalize the intuition that some-
thing is complex if it is difficult to describe adequately. The first mathematical 
theory based on this idea was proposed by Kolmogorov; while it is not good for 
analyzing empirical complex systems, it was very important historically, and 
makes a good point of entry into the field. 
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8.1. Algorithmic Complexity

 Consider a collection of measured data-values, stored in digitized form on a 
computer. We would like to say that they are complex if they are hard to de-
scribe, and measure their complexity by the difficulty of describing them. The 
central idea of Kolmogorov complexity (proposed independently by Solomonoff 
(176) and Chaitin) is that one can describe the data set by writing a program 
which will reproduce the data. The difficulty of description is then measured by 
the length of the program. Anyone with much experience of other people's code 
will appreciate that it is always possible to write a longer, slower program to do 
a given job, so what we are really interested in is the shortest program that can 
exactly replicate the data. 
 To introduce some symbols, let x be the data, and |x| their size in bits. The 
Kolmogorov or algorithmic complexity of x, K(x), is the length of the shortest 
program that will output x and then stop.21 Clearly, there is always some pro-
gram which will output x and then stop, for instance, "print(x); end." Thus 
K(x)  |x| + c, where c is the length of the print and end instructions. This is what 
one might call a literal description of the data. If one cannot do better than this—
if K(x)  |x|—then x is highly complex. Some data, however, is highly com-
pressible. For instance, if x consists of the second quadrillion digits of , a very 
short program suffices to generate it.22

 As you may already suspect, the number of simple data sets is quite limited. 
Suppose we have a data set of size n bits, and we want to compress it by k bits, 
i.e., find a program for it which is n – k bits long. There are at most 2n-k programs 
of that length, so of all the 2n data sets of size n, the fraction that can be com-
pressed by k bits is at most 2–k. The precise degree of compression does not mat-
ter—when we look at large data sets, almost all of them are highly complex. If 
we pick a large data set at random, then the odds are very good that it will be 
complex. We can state this more exactly if we think about our data as consisting 
of the first n measurements from some sequence, and let n grow. That is, x = x1

n,
and we are interested in the asymptotic behavior of K(x1

n). If the measurements 
xi are independent and identically distributed (IID), then K(x1

n)/|x|  1 almost 
surely; IID sequences are incompressible. If x is a realization of a stationary 
(but not necessarily IID) random process X , then (177,10) 

1( )
lim ( )

n

n

K X
h X

n
=E , [55] 

the entropy rate (§7) of X . Thus, random data has high complexity, and the 
complexity of a random process grows at a rate that just measures its unpredict-
ability. 
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 This observation goes the other way: complex data look random. The heu-
ristic idea is that if there were any regularities in the data, we could use them to 
shave at least a little bit off the length of the minimal program. What one can 
show formally is that incompressible sequences have all the properties of IID 
sequences—they obey the law of large numbers and the central limit theorem, 
pass all statistical tests for randomness, etc. In fact, this possibility, of defining 
"random" as "incompressible," is what originally motivated Kolmogorov's work 
(107, ch. 3). 
 Kolmogorov complexity is thus a very important notion for the foundations 
of probability theory, and it has extensive applications in theoretical computer 
science (177) and even some aspects of statistical physics (178). Unfortunately, 
it is quite useless as a measure of the complexity of natural systems. This is so 
for two reasons. First, as we have just seen, it is maximized by independent ran-
dom variables; we want strong dependence. Second, and perhaps more funda-
mental, it is simply not possible to calculate Kolmogorov complexity. For deep 
reasons related to Gödel's Theorem, there cannot be any procedure for calculat-
ing K(x), nor are there any accurate approximation procedures (177). 
 Many scientists are strangely in denial about the Kolmogorov complexity, 
in that they think they can calculate it. Apparently unaware of the mathematical 
results, but aware of the relationship between Kolmogorov complexity and data 
compression, they reason that file compression utilities should provide an esti-
mate of the algorithmic information content. Thus one finds many papers which 
might be titled gzip as a measure of complexity,"23 and the practice is even 
recommended by some otherwise-reliable sources (e.g., (73)). However, this is 
simply a confused idea, with absolutely nothing to be said in its defense. 

8.2. Refinements of Algorithmic Complexity 

 We saw just now that algorithmic information is really a measure of ran-
domness, and that it is maximized by collections of independent random vari-
ables. Since complex systems have many strongly dependent variables, it 
follows that the Kolmogorov notion is not the one we really want to measure. It 
has long been recognized that we really want something which is small both for 
systems which are strongly ordered (i.e., have only a small range of allowable 
behavior) and for those which are strongly disordered (i.e., have independent 
parts). Many ways of modifying the algorithmic information to achieve this have 
been proposed; two of them are especially noteworthy. 

8.2.1. Logical Depth

 Bennett (179–181) proposed the notion of the logical depth of data as a 
measure of its complexity. Roughly speaking, the logical depth L(x) of x is the 
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number of computational steps the minimal program for x must execute. For 
incompressible data, the minimal program is print(x), so L(x)  |x|. For peri-
odic data, the minimal program cycles over printing out one period over and 
over, so L(x)  |x| again. For some compressible data, however, the minimal 
program must do nontrivial computations, which are time-consuming. Thus, to 
produce the second quadrillion digits of , the minimal program is one that cal-
culates the digits, and this takes considerably more time than reading them out 
of a list. Thus,  is deep, while random or periodic data are shallow. 
 While logical depth is a clever and appealing idea, it suffers from a number 
of drawbacks. First, real data are not, so far as we know, actually produced by 
running their minimal programs,24 and the run-time of that program has no 
known physical significance, and that's not for lack of attempts to find one 
(182). Second, and perhaps more decisively, there is still no procedure for find-
ing the minimal program. 

8.2.2. Algorithmic Statistics

 Perhaps the most important modification of the Kolmogorov complexity is 
that proposed by Gács, Tromp and Vitanyi (183), under the label of "algorithmic 
statistics." Observe that, when speaking of the minimal program for x, I said 
nothing about the inputs to the program; these are to be built in to the code. It is 
this which accounts for the length of the programs needed to generate random 
sequences: almost all of the length of print(x) comes from x, not print(). 
This suggests splitting the minimal program into two components, a "model" 
part, the program properly speaking, and a "data" part, the inputs to the program. 
We want to put all the regularities in x into the model, and all the arbitrary, noisy 
parts of x into the inputs. Just as in probability theory a "statistic" is a function of 
the data that summarizes the information they convey, Gács et al. regard the 
model part of the program as an algorithmic statistic, summarizing its regulari-
ties. To avoid the trivial regularity of print() when possible, they define a no-
tion of a sufficient algorithmic statistic, based on the idea that x should be in 
some sense a typical output of the model (see their paper for details). They then 
define the complexity of x, or, as they prefer to call it, the sophistication, as the 
length of the shortest sufficient algorithmic statistic. 
 Like logical depth, sophistication is supposed to discount the purely random 
part of algorithmic complexity. Unlike logical depth, it stays within the confines 
of description in doing so; programs, here, are just a particular, mathematically 
tractable, kind of description. Unfortunately, the sophistication is still uncom-
putable, so there is no real way of applying algorithmic statistics. 
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8.3. Statistical Measures of Complexity

 The basic problem with algorithmic complexity and its extensions is that 
they are all about finding the shortest way of exactly describing a single con-
figuration. Even if we could compute these measures, we might suspect, on the 
basis of our discussion of over-fitting in §2 above, that this is not what we want. 
Many of the details of any particular set of data are just noise, and will not gen-
eralize to other data sets obtained from the same system. If we want to charac-
terize the complexity of the system, it is precisely the generalizations that we 
want, and not the noisy particulars. Looking at the sophistication, we saw the 
idea of picking out, from the overall description, the part which describes the 
regularities of the data. This idea becomes useful and operational when we 
abandon the goal of exact description, and allow ourselves to recognize that the 
world is full of noise, which is easy to describe statistically; we want a statisti-
cal, and not an algorithmic, measure of complexity. 
 I will begin with what is undoubtedly the most widely used statistical meas-
ure of complexity, Rissanen's stochastic complexity, which can also be consid-
ered a method of model selection. Then I will look at three attempts to isolate 
the complexity of the system as such, by considering how much information 
would be required to predict its behavior, if we had an optimal statistical model 
of the system. 

8.3.1. Stochastic Complexity and the Minimum Description Length

 Suppose we have a statistical model with some parameter , and we observe 
the data x. The model assigns a certain likelihood to the data, Pr (X = x). One 
can make this into a loss function by taking its negative logarithm: L( ,x) = –log 
Pr (X = x). Maximum likelihood estimation minimizes this loss function. We 
also learned, in §7, that if Pr  is the correct probability distribution, the optimal 
coding scheme will use –log Pr (X = x) bits to encode x. Thus, maximizing the 
likelihood can also be thought of as minimizing the encoded length of the data. 
 However, we do not yet have a complete description: we have an encoded 
version of the data, but we have not said what the encoding scheme, i.e., the 
model, is. Thus, the total description length has two parts: 

C(x, , ) = L(x, ) + D( , ), [56] 

where D( , ) is the number of bits we need to specify  from among the set of 
all our models . L(x, ) represents the "noisy" or arbitrary part of the descrip-
tion, the one which will not generalize; the model represents the part which does 
generalize. If D( , ) gives short codes to simple models, we have the desired 
kind of tradeoff, where we can reduce the part of the data that looks like noise 
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only by using a more elaborate model. The minimum description length prin-
ciple (184,185) enjoins us to pick the model that minimizes the description 
length, and the stochastic complexity of the data is that minimized description-
length: 

MDL arg min ( , , )C x= , [57] 

SC min ( , , )C x= . [58] 

Under not-too-onerous conditions on the underlying data-generating process and 
the model class  (185, ch. 3), as we provide more data MDL will converge on 
the model in  that minimizes the generalization error, which here is just the 
same as minimizing the Kullback-Leibler divergence from the true distribution.25

 Regarded as a principle of model selection, MDL has proved very success-
ful in many applications, even when dealing with quite intricate, hierarchically 
layered model classes ((186) presents a nice recent application to a biomedical 
complex system; see §3.4 for applications to state-space reconstruction.) It is 
important to recognize, however, that most of this success comes from carefully 
tuning the model-coding term D( , ) so that models that do not generalize well 
turn out to have long encodings. This is perfectly legitimate, but it relies on the 
tact and judgment of the scientist, and often, in dealing with a complex system, 
we have no idea, or at least no good idea, what generalizes and what does not. If 
we were malicious, or short-sighted, we could always ensure that the particular 
data we got have a stochastic complexity of just one bit.26 The model that gives 
us this complexity will then have absolutely horrible generalization properties.27

 Whatever its merits as a model selection method, stochastic complexity 
does not make a good measure of the complexity of natural systems. There are 
at least three reasons for this. 

1. The dependence on the model-encoding scheme, already dis-
cussed. 

2. The log-likelihood term, L(x, ) in CSC can be decomposed into 
two parts, one of which is related to the entropy rate of the 
data-generating process, and so reflects its intrinsic unpredict-
ability. The other, however, indicates the degree to which even 
the most accurate model in  is misspecified. Thus it reflects 
our ineptness as modelers, rather than any characteristic of the 
process. 

3. Finally, the stochastic complexity reflects the need to specify 
some particular model, and to represent this specification. 
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While this is necessarily a part of the modeling process for us, 
it seems to have no physical significance; the system does not 
need to represent its organization, it just has it. 

8.3.2. Complexity via Prediction

Forecast Complexity and Predictive Information. Motivated in part by 
concerns such as these, Grassberger (187) suggested a new and highly satisfac-
tory approach to system complexity: complexity is the amount of information 
required for optimal prediction. Let us first see why this idea is plausible, and 
then see how it can be implemented in practice. (My argument does not follow 
that of Grassberger particularly closely. Also, while I confine myself to time 
series, for clarity, the argument generalizes to any kind of prediction (188).) 
 We have seen that there is a limit on the accuracy of any prediction of a 
given system, set by the characteristics of the system itself (limited precision of 
measurement, sensitive dependence on initial conditions, etc.). Suppose we had 
a model that was maximally predictive, i.e., its predictions were at this limit of 
accuracy. Prediction, as I said, is always a matter of mapping inputs to outputs; 
here the inputs are the previous values of the time series. However, not all as-
pects of the entire past are relevant. In the extreme case of independent, identi-
cally distributed values, no aspects of the past are relevant. In the case of 
periodic sequences with period p, one only needs to know which of the p phases 
the sequence is in. If we ask how much information about the past is relevant in 
these two cases, the answers are clearly 0 and log p, respectively. If one is deal-
ing with a Markov chain, only the present state is relevant, so the amount of 
information needed for optimal prediction is just equal to the amount of infor-
mation needed to specify the current state. One thus has the nice feeling that 
both highly random (IID) and highly ordered (low-period deterministic) se-
quences are of low complexity, and more interesting cases can get high scores. 
 More formally, any predictor f will translate the past of the sequence x– into 
an effective state, s = f(x–), and then make its prediction on the basis of s. (This 
is true whether f is formally a state-space model or not.) The amount of informa-
tion required to specify the state is H[S]. We can take this to be the complexity 
of f. Now, if we confine our attention to the set  of maximally predictive 
models, we can define what Grassberger called the "true measure complexity" or 
"forecast complexity" of the process as the minimal amount of information 
needed for optimal prediction: 

min [ ( )]
f

C H f X= . [59] 
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 Grassberger did not provide a procedure for finding the maximally predic-
tive models, nor for minimizing the information required among them. He did, 
however, make the following observation. A basic result of information theory, 
called the data-processing inequality, says that I[A;B] I[f(A);B], for any vari-
ables A and B—we cannot get more information out of data by processing it than 
was in there to begin with. Since the state of the predictor is a function of the 
past, it follows that I[X–;X+] I[f(X–);X+]. Presumably, for optimal predictors, the 
two informations are equal—the predictor's state is just as informative as the 
original data. (Otherwise, the model would be missing some potential predictive 
power.) But another basic inequality is that H[A] I[A;B]—no variable contains 
more information about another than it does about itself. So, for optimal models, 
H[f(X–)] I[X–;X+]. The latter quantity, which Grassberger called the effective
measure complexity, can be estimated purely from data, without intervening 
models. This quantity—the mutual information between the past and the fu-
ture—has been rediscovered many times, in many contexts, and called excess 
entropy (in statistical mechanics), stored information (189), complexity (190–
192), or predictive information (193); the last name is perhaps the clearest. 
Since it quantifies the degree of statistical dependence between the past and the 
future, it is clearly appealing as a measure of complexity. 

Grassberger-Crutchfield-Young Statistical Complexity. The forecasting 
complexity notion was made fully operational by Crutchfield and Young 
(102,194), who provided an effective procedure for finding the minimal maxi-
mally predictive model and its states. They began by defining the causal states
of a process, as follows. For each history x–, there is some conditional distribu-
tion of future observations, Pr(X+|x–). Two histories x1

– and x2

– are equivalent if 
Pr(X+|x1

–) = Pr(X+|x2

–). Write the set of all histories equivalent to x– as [x–]. We 
now have a function  that maps each history into its equivalence class: (x–) = 
[x–]. Clearly, Pr(X+| (x–)) = Pr(X+|x–). Crutchfield and Young accordingly pro-
posed to forget the particular history and retain only its equivalence class, which 
they claimed would involve no loss of predictive power; this was later proved to 
be correct (195, theorem 1). They called the equivalence classes the "causal 
states" of the process, and claimed which these were the simplest states with 
maximal predictive power; this is also was right (195, theorem 2). Finally, one 
can show that the causal states are the unique optimal states (195, theorem 3); 
any other optimal predictor is really a disguised version of the causal states. Ac-
cordingly, they defined the statistical complexity of a process C as the informa-
tion content of its causal states. 
 Because the causal states are purely an objective property of the process 
being considered, C is too; it does not depend at all on our modeling or means of 
description. It is equal to the length of the shortest description of the past that is 
relevant to the actual dynamics of the system. As we argued should be the case 
above, for IID sequences it is exactly 0, and for periodic sequences it is log p.
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One can show (195, theorems 5 and 6) that the statistical complexity is always at 
least as large as the predictive information, and generally that it measures how 
far the system departs from statistical independence. 
 The causal states have, from a statistical point of view, quite a number of 
desirable properties. The maximal prediction property corresponds exactly to 
that of being a sufficient statistic (159); in fact they are minimal sufficient statis-
tics (159,165). The sequence of states of the process form a Markov chain. Re-
ferring back to our discussion of filtering and state estimation (§3.5), one can 
design a recursive filter that will eventually estimate the causal state without any 
error at all; moreover, it is always clear whether the filter has "locked on" to the 
correct state or not. 
 All of these properties of the causal states and the statistical complexity 
extend naturally to spatially extended systems, including, but not limited to, 
cellular automata (196,197). Each point in space then has its own set of causal 
states, which form not a Markov chain but a Markov field, and the local causal 
state is the minimal sufficient statistic for predicting the future of that point. The 
recursion properties carry over, not just temporally but spatially: the state at one 
point, at one time, helps determine not only the state at that same point at later 
times, but also the state at neighboring points at the same time. The statistical 
complexity, in these spatial systems, becomes the amount of information needed 
about the past of a given point in order to optimally predict its future. Systems 
with a high degree of local statistical complexity are ones with intricate spatio-
temporal organization, and, experimentally, increasing statistical complexity 
gives a precise formalization of intuitive notions of self-organization (197). 
 Crutchfield and Young were inspired by analogies to the theory of abstract 
automata, which led them to call their theory, somewhat confusingly, computa-
tional mechanics. Their specific initial claims for the causal states were based 
on a procedure for deriving the minimal automaton capable of producing a given 
family of sequences28 known as Nerode equivalence classing (198). In addition 
to the theoretical development, the analogy to Nerode equivalence-classing led 
them to describe a procedure (102) for estimating the causal states and the -
machine from empirical data, at least in the case of discrete sequences. This 
Crutchfield-Young algorithm has actually been successfully used to analyze 
empirical data, for instance, geomagnetic fluctuations (199). The algorithm has, 
however, been superseded by a newer algorithm that uses the known properties 
of the causal states to guide the model discovery process (105) (see §3.6.3 
above).
 Let me sum up. The Grassberger-Crutchfield-Young statistical complexity 
is an objective property of the system being studied. This reflects the intrinsic
difficulty of predicting it, namely the amount of information that is actually 
relevant to the system's dynamics. It is low both for highly disordered and trivi-
ally ordered systems. Above all, it is calculable, and has actually been calculated 
for a range of natural and mathematical systems. While the initial formulation 
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was entirely in terms of discrete time series, the theory can be extended straight-
forwardly to spatially extended dynamical systems (196), where it quantifies 
self-organization (197), to controlled dynamical systems and transducers, and to 
prediction problems generally (188). 

8.4. Power Law Distributions

 Over the last decade or so, it has become reasonably common to see people 
(especially physicists) claiming that some system or other is complex, because it 
exhibits a power law distribution of event sizes. Despite its popularity, this is 
simply a fallacy. No one has demonstrated any relation between power laws and 
any kind of formal complexity measure. Nor is there any link tying power laws 
to our intuitive idea of complex systems as ones with strongly interdependent 
parts. 
 It is true that, in equilibrium statistical mechanics, one does not find power 
laws except near phase transitions (200), when the system is complex by our 
standard. This has encouraged physicists to equate power laws as such with 
complexity. Despite this, it has been known for half a century (5) that there are 
many, many ways of generating power laws, just as there are many mechanisms 
that can produce Poisson distributions, or Gaussians. Perhaps the simplest one 
is that recently demonstrated by Reed and Hughes (201), namely exponen-
tial growth coupled with random observation times. The observation of power 
laws alone thus says nothing about complexity (except in thermodynamic equi-
librium!), and certainly is not a reliable sign of some specific favored mecha-
nism, such as self-organized criticality (202,203) or highly optimized tolerance 
(204–206). 

8.4.1. Statistical Issues Relating to Power Laws

 The statistics of power laws are poorly understood within the field of com-
plex systems, to a degree that is quite surprising considering how much attention 
has been paid to them. To be quite honest, there is little reason to think that 
many of the things claimed to be power laws actually are such, as opposed to 
some other kind of heavy-tailed distribution. This brief section will attempt to 
inoculate the reader against some common mistakes, most of which are related 
to the fact that a power law makes a straight line on a log-log plot. Since it 
would be impractical to cite all papers that commit these mistakes, and unfair to 
cite only some of them, I will omit references here; interested readers will be 
able to assemble collections of their own very rapidly. 
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Parameter Estimation. Presuming that something is a power law, a natural 
way of estimating its exponent is to use linear regression to find the line of best 
fit to the points on the log-log plot. This is actually a consistent estimator, if the 
data really do come from a power law. However, the loss function used in linear 
regression is the sum of the squared distances between the line and the points 
("least squares"). In general, the line minimizing the sum of squared errors is not
a valid probability distribution, and so this is simply not a reliable way to esti-
mate the distribution.
 One is much better off using maximum likelihood to estimate the 
parameter. With a discrete variable, the probability function is expressed as 

follows: Pr(X = x) = x– / ( ), where ( ) = 
1k

k
=

 is the Riemann zeta 

function, which ensures that the probability is normalized. Thus the maximum 
likelihood estimate of the exponent is obtained by minimizing the negative log-

likelihood, L( ) = i  log xi + log ( ), i.e., L( ) is our loss function. In the 

continuous case, the probability density is (  –1 )c –1/x , with x c > 0. 

Error Estimation. Most programs used to perform linear regression also 
provide an estimate of the standard error in the estimated slope, and one some-
times sees this reported as the uncertainty in the power law. This is an entirely 
unacceptable procedure. Those calculations of the standard error assume that 
measured values having Gaussian fluctuations around their true means. Here 
that would mean that the log of the empirical relative frequency is equal to the 
log of the probability plus Gaussian noise. However, by the central limit theo-
rem, one knows that the relative frequency is equal to the probability plus Gaus-
sian noise, so the former condition does not hold. Notice that one can obtain 
asymptotically reliable standard errors from maximum likelihood estimation. 

Validation, R2. Perhaps the most pernicious error is that of trying to vali-
date the assumption of a power law distribution by either eye-balling the fit to a 
straight line, or evaluating it using the R2 statistic, i.e., the fraction of the vari-
ance accounted for by the least-squares regression line. Unfortunately, while 
these procedures are good at confirming that something is a power law, if it 
really is (low Type I error, or high statistical significance), they are very bad at 
alerting you to things that are not power laws (they have a very high rate of 
Type II error, or low statistical power). The basic problem here is that any
smooth curve looks like a straight line, if you confine your attention to a suffi-
ciently small region—and for some non–power-law distributions, such "suffi-
ciently small" regions can extend over multiple orders of magnitude. 
 To illustrate this last point, consider Figure 5, made by generating 10,000 
random numbers according to a log-normal distribution, with a mean log of 0 
and a standard deviation in the log of 3. Restricting attention to the "tail" of ran-
dom numbers 1, and doing a usual least-squares fit, gives the line shown in 
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Figure 6. One might hope that it would be easy to tell that this data does not 
come from a power law, since there are a rather large number of observations 
(5,112), extending over a wide domain (more than four orders of magnitude). 
Nonetheless, R2 is 0.962. This, in and of itself, constitutes a demonstration that 
getting a high R2 is not a reliable indicator that one's data was generated by a 
power law.29

An Illustration: Blogging. An amusing empirical illustration of the diffi-
culty of distinguishing between power laws and other heavy-tailed distributions 
is provided by political weblogs, or "blogs"—websites run by individuals or 
small groups providing links and commentary on news, political events, and the 
writings of other blogs. A rough indication of the prominence of a blog is pro-
vided by the number of other blogs linking to it—its in-degree. (For more on 
network terminology, see Part II, chapter 4, by Wuchty, Ravasz and Barabási, 
this volume.) A widely read essay by Shirky claimed that the distribution of in-
degree follows a power law, and used that fact, and the literature on the growth 
of scale-free networks, to draw a number of conclusions about the social organi-
zation of the blogging community (207). A more recent paper by Drenzer and 
Farrell (208), in the course of studying the role played by blogs in general politi-
cal debate, re-examined the supposed power-law distribution.30 Using a large 
population of inter-connected blogs, they found a definitely heavy-tailed distri-
bution which, on a log-log plot, was quite noticeably concave (Figure 7); none-
theless, R2 for the conventional regression line was 0.898. 

Figure 5. Distribution of 10,000 random numbers, generated according to a log-normal distri-
bution with E[log X] = 0 and (log X) = 3. 
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 Maximum likelihood fitting of a power law distribution gave  = –1.30 
0.006, with a negative log-likelihood of 18481.51. Similarly fitting a log-normal 
distribution gave E[log X] = 2.60  0.02 and (log X) = 1.48  0.02, with a 
negative log-likelihood of 17,218.22. As one can see from Figure 8, the log-
normal provides a very good fit to almost all of the data, whereas even the best 
fitting power-law distribution is not very good at all.31

 A rigorous application of the logic of error testing (50) would now consider 
the probability of getting at least this good a fit to a log-normal if the data were 
actually generated by a power law. However, since in this case the data were 
e18481.51–17218.22  13 million times more likely under the log-normal distribution, 
any sane test would reject the power-law hypothesis. 

8.5. Other Measures of Complexity

 Considerations of space preclude an adequate discussion of further 
complexity measures. It will have to suffice to point to some of the leading ones. 
The thermodynamic depth of Lloyd and Pagels (182) measures the amount 
of information required to specify a trajectory leading to a final state, and 
is related both to departure from thermodynamic equilibrium and to retrodiction 
(209). Huberman and Hogg (210), and later Wolpert and Macready (211), 
proposed to measure complexity as the dissimilarity between different levels 
of a given system, on the grounds that self-similar structures are actually very 

Figure 6. Inability of linear regression on log-log plots to correctly identify power law distri-
butions. Simulation data (circles) and resulting least-squares fit (line) for the 5,112 points in 
Figure 5 for which x  1. The R2 of the regression line is 0.962. 
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easy to describe. (Say what one level looks like, and then add that all the rest are 
the same!) Wolpert and Macready's measure of self-dissimilarity is, in turn, 
closely related to a complexity measure proposed by Sporns, Tononi, and 
Edelman (212–214) for biological networks, which is roughly the amount of 
information present in higher-order interactions between nodes which is not 
accounted for by the lower-order interactions. Badii and Politi (10) propose a 
number of further hierarchical scaling complexities, including one that 
measures how slowly predictions converge as more information about the past 
becomes available. Other interesting approaches include the information 
fluctuation measure of Bates and Shepard (215), and the predictability indices 
of the "school of Rome" (216). 

8.6. Relevance of Complexity Measures

 Why measure complexity at all? Suppose you are interested in the patterns 
of gene expressions in tumor cells and how they differ from those of normal 
cells. Why should you care if I analyze your data and declare that (say) healthy 
cells have a more complex expression pattern? Assuming you are not a 
numerologist, the only reason you should care is if you can learn something 
from that number—if the complexity I report tells you something about the 

Figure 7. Empirical distribution of the in-degrees of political weblogs ("blogs"). Horizontal 
axis: number of incoming links d; vertical axis: fraction of all blogs with at least that many 
links, Pr(D d); both axes are on a log-log scale. Circles show the actual distribution; the 
straight line is a least-squares fit to these values. This does not produce a properly normalized 
probability distribution but it does have an R2 of 0.898, despite the clear concavity of the curve. 



METHODS AND TECHNIQUES OF COMPLEX SYSTEMS SCIENCE 95

thermodynamics of the system, how it responds to fluctuations, how easy it is to 
control, etc. A good complexity measure, in other words, is one which is 
relevant to many other aspects of the system measured. A bad complexity 
measure lacks such relevance; a really bad complexity measure would be 
positively misleading, lumping together things with no real connection or 
similarity just because they get the same score. My survey here has focused on 
complexity measures that have some claim to relevance, deliberately avoiding 
the large number of other measures which lack it (216). 

9. GUIDE TO FURTHER READING

9.1. General

 There is no systematic or academically detailed survey of the "patterns" of 
complex systems, but there are several sound informal discussions: Axelrod and 
Cohen (218), Flake (219), Holland (220), and Simon (221). The book by Simon, 
in particular, repays careful study. 
 On the "topics," the only books I can recommend are the ones by Boccara 
(222) and Flake (219). The former emphasizes topics from physics, chemistry, 
population ecology, and epidemiology, along with analytical methods, espe-
cially from nonlinear dynamics. Some sections will be easier to understand if 
one is familiar with statistical mechanics at the level of, e.g., (200), but this is 

Figure 8. Maximum likelihood fits of log-normal (solid line) and power law (dashed line) 
distributions to the data from Figure 7 (circles); axes as in that figure. Note the extremely tight 
fit of the log-normal over the whole range of the curve, and the general failure of the power-
law distribution. 
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not essential. It does not, however, describe any models of adaptation, learning, 
evolution, etc. Many of those topics are covered in Flake's book, which however 
is written at a much lower level of mathematical sophistication. 
 On foundational issues about complexity, the best available surveys 
(10,195) both neglect the more biological aspects of the area, and assume ad-
vanced knowledge of statistical mechanics on the part of their readers. 

9.2. Data Mining and Statistical Learning

 There are now two excellent introductions to statistical learning and data 
mining: (223) and (31). The former is more interested in computational issues 
and the initial treatment of data; the latter gives more emphasis to pure statistical 
aspects. Both are recommended unreservedly. Baldi and Brunak (95) introduce 
machine learning via its applications to bioinformatics, and this may be espe-
cially suitable for readers of the present volume. 
 For readers seriously interested in understanding the theoretical basis of 
machine learning, (224) is a good starting point. The work of Vapnik 
(22,225,226) is fundamental; the presentation in (22) is enlivened by many 
strong and idiosyncratic opinions, pungently expressed. (40) describes the very 
useful class of models called "support vector machines," as well as giving an 
extremely clear exposition of key aspects of statistical learning theory. Those 
interested in going further will find that most of the relevant literature is still in 
the form of journals—Machine Learning, Journal of Machine Learning Re-
search (free online at www.jmlr.org), Neural Computation—and especially an-
nual conference proceedings—Computational Learning Theory (COLT), Inter-
national Conference on Machine Learning (ICML), Uncertainty in Artificial 
Intelligence (UAI), Knowledge Discovery in Databases (KDD), Neural Informa-
tion Processing Systems (NIPS), and the regional versions of them (EuroCOLT, 
Pacific KDD, etc.). 
 Much of what has been said about model selection could equally well have 
been said about what engineers call system identification, and in fact is said in 
good modern treatments of that area, of which (227) may be particularly rec-
ommended. 
 In many respects, data mining is an extension of exploratory data analysis; 
the classic work by Tukey (228) is still worth reading. No discussion of drawing 
inferences from data would be complete without mentioning the beautiful books 
by Tufte (229–231). 

9.3. Time Series

 Perhaps the best all-around references for the nonlinear dynamics approach 
are (60) and (232). The former, in particular, succeeds in integrating standard 
principles of statistical inference into the nonlinear dynamics method. (73), 
while less advanced than those two books, is a model of clarity, and contains an 
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integrated primer on chaotic dynamics besides. Ruelle's little book (16) is much
more subtle than it looks, full of deep insights. The SFI proceedings volumes 
(233,234) are very worthwhile. The journals Physica D, Physical Review E, and 
Chaos often have new developments. 
 From the statistical wing, one of the best recent textbooks is (55); there are 
many, many others. That by Durbin and Koopman (60) is particularly strong on 
the state-space point of view. The one by (235) Azencott and Dacunha-Castelle 
is admirably clear on both the aims of time series analysis, and the statistical 
theory underlying classical methods; unfortunately it typography is less easy to 
read than it should be. (236) provides a comprehensive and up-to-date view of 
the statistical theory for modern models, including strongly nonlinear and non-
Gaussian models. While many of the results are directly useful in application, 
the proofs rely on advanced theoretical statistics, in particular the geometric 
approach pioneered by the Japanese school of Amari et al. (237). This informa-
tion geometry has itself been applied by Ay to the study of complex systems 
(238,239). 
 At the interface between the statistical and the dynamical points of view, 
there is an interesting conference proceedings (240) and a useful book by Tong 
(241). Pearson's book (242) on discrete-time models is very good on many im-
portant issues related to model selection, and exemplifies the habit of control 
theorists of cheerful stealing whatever seems helpful. 

Filtering. Linear filters are well-described by many textbooks in control 
theory (e.g., (243)), signal processing, time series analysis (e.g., (55)), and sto-
chastic dynamics (e.g., (58)). 
 (89) provides a readable introduction to optimal nonlinear estimation, draws 
interesting analogies to nonequilibrium statistical mechanics and turbulence, and
describes a reasonable approximation scheme. (90) is an up-to-date textbook, 
covering both linear and nonlinear methods, and including a concise exposition 
of the essential parts of stochastic calculus. The website run by R.W.R. Darling, 
www.nonlinearfiltering.webhop.net, provides a good overview and extensive 
pointers to the literature. 

Symbolic Dynamics and Hidden Markov Models. On symbolic dynam-
ics, formal languages and hidden Markov models generally, see (10). (198) is a 
good first course on formal languages and automata theory. Charniak is a very 
readable introduction to grammatical inference. (244) is an advanced treatment 
of symbolic dynamics emphasizing applications; by contrast, (116) focuses on 
algebraic, pure-mathematical aspects of the subject. (163) is good on the sto-
chastic properties of symbolic-dynamical representations. Gershenfeld (245) 
gives a good motivating discussion of hidden Markov models, as does Baldi and 
Brunak (95), while (94) describes advanced methods related to statistical signal 
processing. Open-source code for reconstructing causal-state models from state 
is available from http://bactra.org/CSSR. 
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9.4. Cellular Automata

General. There is unfortunately no completely satisfactory unified treat-
ment of cellular automata above the recreational. Ilachinski (246) attempts a 
general survey aimed at readers in the physical sciences, and is fairly satisfac-
tory on purely mathematical aspects, but is more out of date than its year of pub-
lication suggests. Chopard and Droz (247) has good material on models of 
pattern formation missing from Ilachinski, but the English is often choppy. Tof-
foli and Margolus (248) is inspiring and sound, though cast on a piece of hard-
ware and a programming environment that are sadly no longer supported. Much 
useful material on CA modeling has appeared in conference proceedings (249–
251).

CA as Self-Reproducing Machines. The evolution of CA begins in (252), 
continues in (253), and is brought up to the modern era in (254); the last is a 
beautiful, thought-provoking and modest book, sadly out of print. The modern 
era itself opens with (255). 

Mathematical and Automata-Theoretic Aspects. Many of the papers in 
(256) are interesting. Ilachinski (146), as mentioned, provides a good survey. 
The Gutowitz volume (250) has good material on this topic, too. (257) is up-to-
date. 

Lattice gases. (124) is a good introduction, and (258) somewhat more ad-
vanced. The pair of proceedings edited by Doolen (259,260) describe many in-
teresting applications, and contain useful survey and pedagogical articles. (There 
is little overlap between the two volumes.) 

9.5. Agent-Based Modeling

 There do not seem to be any useful textbooks or monographs on agent-
based modeling. The Artificial Life conference proceedings, starting with (255), 
were a prime source of inspiration for agent-based modeling, along with the 
work of Axelrod (261). (262) is also worth reading. The journal Artificial Life
continues to be relevant, along with the From Animals to Animats conference 
series. Epstein and Axtell's book (263) is in many ways the flagship of the 
"minimalist" approach to ABMs; while the arguments in its favor (e.g., 
(264,265)) are often framed in terms of social science, many apply with equal 
force to biology.32 (266) illustrates how ABMs can be combined with extensive 
real-world data. Other notable publications on agent-based models include 
(267), spanning social science and evolutionary biology, (268) on agent-based 
models of morphogenesis, and (269) on biological self-organization. 
 (131) introduces object-oriented programming and the popular Java pro-
gramming language at the same time; it also discusses the roots of object-
orientation in computer simulation. There are many, many other books on ob-
ject-oriented programming. 
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9.6. Evaluating Models of Complex Systems

 Honerkamp (58) is great, but curiously almost unknown. Gershenfeld (245) 
is an extraordinary readable encyclopedia of applied mathematics, especially 
methods which can be used on real data. Gardiner (270) is also useful. 

Monte Carlo. The old book by Hammersley and Handscomb (140) is con-
cise, clear, and has no particular prerequisites beyond a working knowledge of 
calculus and probability. (271) and (272) are both good introductions for readers 
with some grasp of statistical mechanics. There are also very nice discussions in 
(58,31,142). Beckerman (143) makes Monte Carlo methods the starting point for 
a fascinating and highly unconventional exploration of statistical mechanics, 
Markov random fields, synchronization, and cooperative computation in neural 
and perceptual systems. 

Experimental design. Bypass the cookbook texts on standard designs, and 
consult Atkinson and Donev (155) directly. 

Ecological inference. (273) is at once a good introduction, and the source 
of important and practical new methods. 

9.7. Information Theory

 Information theory appeared in essentially its modern form with Shannon's 
classic paper (274), though there had been predecessors in both communications 
(275) and statistics, notably Fisher (see Kullback (159) for an exposition of 
these notions), and similar ideas were developed by Wiener and von Neumann, 
more or less independently of Shannon (56). Cover and Thomas (158) is, de-
servedly, the standard modern textbook and reference; it is highly suitable as an 
introduction, and handles almost every question most users will, in practice, 
want to ask. (276) is a more mathematically rigorous treatment, now free online. 
On neural information theory, (172) is seminal, well-written, still very valuable, 
and largely self-contained. On the relationship between physics and information, 
the best reference is still the volume edited by Zurek (12), and the thought-
provoking paper by Margolus. 

9.8. Complexity Measures

 The best available survey of complexity measures is that by Badii and Politi 
(10); the volume edited by Peliti and Vulpiani (277), while dated, is still valu-
able. Edmonds (278) is an online bibliography, fairly comprehensive through 
1997. (195) has an extensive literature review. 
 On Kolmogorov complexity, see Li and Vitanyi (177). While the idea of 
measuring complexity by the length of descriptions is usually credited to the trio 
of Kolmogorov, Solomonoff, and Chaitin, it is implicit in von Neumann's 1949 
lectures on the "Theory and Organization of Complicated Automata" (252, Part 
I, especially pp. 42–56). 
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 On MDL, see Rissanen's book (185), and Grünwald's lecture notes (270). 
Vapnik (22) argues that when MDL converges on the optimal model, SRM will 
too, but he assumes independent data. 
 On statistical complexity and causal states, see (195) for a self-contained 
treatment, and (188) for extensions of the theory. 
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11. NOTES

 1. Several books pretend to give a unified presentation of the topics. To 
date, the only one worth reading is (222), which however omits all models of 
adaptive systems. 
 2. Not all data mining is strictly for predictive models. One can also mine 
for purely descriptive models, which try to, say, cluster the data points so that 
more similar ones are closer together, or just assign an overall likelihood score. 
These, too, can be regarded as minimizing a cost function (e.g., the dissimilarity 
within clusters plus the similarity across clusters). The important point is that 
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good descriptions, in this sense, are implicitly predictive, either about other as-
pects of the data or about further data from the same source. 
 3. A subtle issue can arise here, in that not all errors need be equally bad for 
us. In scientific applications, we normally aim at accuracy as such, and so all 
errors are equally bad. But in other applications, we might care very much about 
otherwise small inaccuracies in some circumstances, and shrug off large inaccu-
racies in others. A well-designed loss function will represent these desires. This 
does not change the basic principles of learning, but it can matter a great deal for 
the final machine (280). 
 4. Here and throughout, I try to follow the standard notation of probability 
theory, so capital letters (X, Y, etc.) denote random variables, and lower-case 
ones particular values or realizations—so X = the role of a die, whereas x = 5 
(say). 
 5. This is called the convergence in probability of ˆ( )L  to its mean value. 
For a practical introduction to such convergence properties, the necessary and 
sufficient conditions for them to obtain, and some thoughts about what one can 
do, statistically, when they do not, see (51). 
 6. The precise definition of the VC dimension is somewhat involved, and 
omitted here for brevity's sake. See (224,40) for clear discussions. 
 7. For instance, one can apply the independent-sample theory to learning 
feedback control systems (281). 
 8. Actually, the principle goes back to Aristotle at least, and while Occam 
used it often, he never used exactly those words (282, translator's introduction). 
 9. This is very close to the notion of the power of a statistical hypothesis 
test (283), and almost exactly the same as the severity of such a test (50). 
 10. One could, of course, build a filter that uses later y values as well; this is 
a non-causal or smoothing filter. This is clearly not suitable for estimating the 
state in real time, but often gives more accurate estimates when it is applicable. 
The discussion in the text generally applies to smoothing filters, at some cost in 
extra notation. 
 11. Equivalent terms are future-resolving or right-resolving (from nonlin-
ear dynamics) and deterministic (the highly confusing contribution of automata 
theory). 
 12. Early publications on this work started with the assumption that the dis-
crete values were obtained by dividing continuous measurements into bins of 
width , and so called the resulting models " -machines." This name is unfortu-
nate: that is usually a bad way of discretizing data (§3.6.4); the quantity  plays 
no role in the actual theory, and the name is more than usually impenetrable to 
outsiders. While I have used it extensively myself, it should probably be 
avoided. 
 13. An alternate definition (10) looks at the entropy rate (§7) of the symbol 
sequences: a generating partition is one that maximizes the entropy rate, which 
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is the same as maximizing the extra information about the initial condition x
provided by each symbol of the sequence (x).
 14. Quantum versions of CA are an active topic of investigation, but 
unlikely to be of biological relevance (246). 
 15. In a talk at the Santa Fe Institute, summer of 2000; the formula does not 
seem to have been published. 
 16. A simple argument just invokes the central limit theorem. The number 
of points falling within the shaded region has a binomial distribution, 
with success parameter p, so asymptotically x/n has a Gaussian distribution 
with mean p and standard deviation (1 ) /p p n . A nonasymptotic result 
comes from Chernoff's inequality (281), which tells us that, for all n, we have 
Pr(|x/n – p| ) < 2e–2n 2.
 17. The chain needs to be irreducible, meaning one can go from any point to 
any other point, and positive recurrent, meaning that there's a positive probabil-
ity of returning to any point infinitely often. 
 18. Unless our choices for the transition probabilities are fairly perverse, the 
central limit theorem still holds, so asymptotically our estimate still has a Gaus-
sian distribution around the true value, and still converges as N–1/2 for large 
enough N, but determining what's "large enough" is trickier. 
 19. An important exception is the case of equilibrium statistical mechanics, 
where the dynamics under the Metropolis algorithm are like the real dynamics. 
 20. For a pedagogical discussion, with examples, of how compression algo-
rithms may be misused, see http://bactra.org/notebooks/cep-gzip.html. 
 21. The issue of what language to write the program in is secondary; writing 
a program to convert from one language to another just adds on a constant to the 
length of the overall program, and we will shortly see why additive constants are 
not important here. 
 22. Very short programs can calculate  to arbitrary accuracy, and the 
length of these programs does not grow as the number of digits calculated does. 
So one could run one of these programs until it had produced the first two quad-
rillion digits, and then erase the first half of the output, and stop. 
 23. (167) is perhaps the most notorious; see (168) and especially (169) for 
critiques. 
 24. It is certainly legitimate to regard any dynamical process as also a com-
putational process, (284–286,195), so one could argue that the data are produced 
by some kind of program. But even so, this computational process generally 
does not resemble that of the minimal Kolmogorov program at all. 
 25. It is important to note (185, ch. 3) that if we allowed any possible model 
in , finding the minimum would, once again, be incomputable. This restriction 
to a definite, perhaps hierarchically organized, class of models is vitally impor-
tant. 
 26. Take our favorite class of models, and add on deterministic models that 
produce particular fixed blocks of data with probability 1. For any of these mod-
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els , L(x, ) is either 0 (if x is what that model happens to generate) or . Then, 
once we have our data, and find a  that generates that and nothing but that, rear-
range the coding scheme so that D( , ) = 1; this is always possible. Thus, 
CSC(x, ) = 1 bit. 
 27. This does not contradict the convergence result of the last paragraph; 
one of the not-too-onerous conditions mentioned in the previous paragraph is 
that the coding scheme remain fixed, and we're violating that. 
 28. Technically, a given regular language (§3.6). 
 29. If I replace the random data by the exact log-normal probability distri-
bution over the same range, and do a least-squares fit to that, the R2 actually in-
creases, to 0.994. 
 30. Professors Drenzer and Farrell kindly shared their data with me, but the 
figures and analysis that follow are my own. 
 31. Note that the log-normal curve fitted to the whole data continues to 
match the data well even in the tail. For further discussion, omitted here for rea-
sons of space, see http://bactra.org/weblog/232.html. 
 32. In reading this literature, it may be helpful to bear in mind that by 
"methodological individualism," social scientists mean roughly what biologists 
do by "reductionism." 
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NONLINEAR DYNAMICAL SYSTEMS 

Joshua E. S. Socolar 
Physics Department, Duke University, Durham, North Carolina 

The concepts and techniques developed by mathematicians, physicists, and engineers to 
characterize and predict the behavior of nonlinear dynamical systems are now being ap-
plied to a wide variety of biomedical problems. This chapter serves as an introduction to 
the central elements of the analysis of nonlinear dynamics systems. The fundamental dis-
tinctions between linear and nonlinear systems are described and the basic vocabulary 
used in studies of nonlinear dynamics introduced. Key concepts are illustrated with clas-
sic examples ranging from simple bistability and hysteresis in a damped, driven oscillator 
to spatiotemporal modes and chaos in large systems, and to multiple attractors in complex 
Boolean networks. The goal is to give readers less familiar with nonlinear dynamics a 
conceptual framework for understanding other chapters in this volume. 

1. INTRODUCTION

 The latter half of the twentieth century saw remarkable advances in our un-
derstanding of physical systems governed by nonlinear equations of motion. 
This development has changed the scientific worldview in profound ways, si-
multaneously supplying a dose of humility—the recognition that deterministic 
equations do not guarantee quantitative predictability—and a great deal of in-
sight into the qualitative and statistical aspects of dynamical systems. One of the 
byproducts has been the realization that the mathematical constructs developed 
for modeling simple physical systems can be fruitfully applied to more complex 
systems, some of which are of great interest to the biomedical community. Ex-
amples range from electrical signal propagation in cardiac tissue, where one 
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might well expect physical theory to play a significant role, to the logic of neural 
networks or gene regulation, where the role of physical/mathematical modeling 
may be less obvious. 
 The establishment of a connection between physical theory and biomedical 
observations generally involves a combination of fundamental physical reason-
ing and a posteriori model validation. The field of nonlinear dynamics is of cru-
cial importance for both purposes. It provides both the techniques for analyzing 
the equations of motion that emerge from the physical theory and a useful lan-
guage for framing questions and guiding the process of model validation (as 
noted by Shalizi, Part II, chapter 1, this volume). Because the concept of a 
nonlinear dynamical system is rich enough to encompass an extremely broad 
range of processes in which the future configurations of a system are determined 
by its past configurations, the methods of analysis developed in the field are 
useful in a huge variety of contexts. 
 To appreciate the validity of a particular research result involving the appli-
cation of nonlinear dynamical theory and properly interpret the specific conclu-
sions, it is important to grasp the broad conceptual basis of the work. The 
purpose of this chapter is to explain the meaning and crucial consequences of 
nonlinearity so as to provide an operational understanding of the principles un-
derlying the modeling discussed in other chapters. (Almost all of the chapters in 
the present volume rely on techniques and approaches whose roots lie in the 
development of nonlinear dynamics as a discipline. The chapters by Subrama-
nian and Narang [Part III, chapter 2.2], Lubkin [Part III, chapter 3.1], Tabak 
[Part III, chapter 5.2], Solé [Part III, chapter 6.2], and Segel [Part III, chapter 
4.1] all make direct reference to nonlinear dynamical models of precisely the 
sort discussed here.) Along the way, certain fundamental terms will be defined 
and illustrated with examples, but the reader interested in the details of the 
mathematics will have to look elsewhere. Two excellent textbooks that do not 
require familiarity with mathematical concepts beyond basic calculus are (28) 
and (3). For treatments of more advanced topics, a good place to start is (25). 
 Nonlinear dynamics enters the biomedical literature in at least three ways. 
First, there are cases in which experimental data on the temporal evolution of 
one or more quantities are collected and analyzed using techniques grounded in 
nonlinear dynamical theory, with minimal assumptions about the underlying 
equations governing the process that produced the data. That is, one seeks to 
discover correlations in the data that might guide the development of a mathe-
matical model rather than guess the model first and compare it to the data. (See 
the chapter by Shalizi [Part II, chapter 1] in this volume for a discussion of time-
series analysis.) Second, there are cases in which symmetry arguments and 
nonlinear dynamical theory can be used to argue that a certain simplified model 
should capture the important features of a given system, so that a phenomenol-
ogical model can be constructed and studied over a broad parameter range. Of-
ten this leads to models that behave qualitatively differently in different regions 
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of parameter space, and one region is found to exhibit behavior quite similar to 
that seen in the real system. In many cases, the model behavior is rather sensi-
tive to parameter variations, so if the model parameters can be measured in the 
real system the model shows realistic behavior at those values, and one can have 
some confidence that the model has captured the essential features of the sys-
tem. Third, there are cases in which model equations are constructed based on 
detailed descriptions of known (bio)chemistry or biophysics. Numerical experi-
ments can then generate information about variables inaccessible to physical 
experiments. 
 In many cases, all three approaches are applied in parallel to the same sys-
tem. Consider, for example, the problem of fibrillation in cardiac tissue. At the 
cellular level, the physics of the propagation of an electrical signal involves 
complicated physicochemical processes. Models involving increasingly realistic 
descriptions of the interior of the cell, its membrane, and the intercellular me-
dium are being developed in attempts to include all the features that may give 
rise to macroscopic properties implicated in fibrillation. (See, for example, arti-
cles in (5).) At the same time, recognizing the general phenomenon of action 
potential propagation as similar to chemical waves in reaction-diffusion systems 
allows one to construct plausible, though idealized, mathematical models in 
which phenomena quite similar to fibrillation can be observed and understood 
(10,11)). These models can then be refined using numerical simulations that 
incorporate more complicated features of the tissue physiology. In parallel with 
these theoretical efforts, experiments on fibrillation or alternans in real cardiac 
tissue yield time series data that must be analyzed on its own (with as little mod-
eling bias as possible) to determine whether the proposed models really do cap-
ture the relevant physics (13). 
 Almost all mathematical modeling of biomedical processes involves a sig-
nificant computational component. This is less a statement about the complexity 
of biomedical systems than a reflection of the mathematical structure of nonlin-
ear systems in general, even simple ones. Indeed, in large measure the rise of 
nonlinear dynamics as a discipline can be attributed to the development of the 
computer as a theoretical tool. Though one can often prove theorems about gen-
eral features of solutions to a set of nonlinear equations, it is rarely possible to 
exhibit those solutions in detail except through numerical computation. More-
over, it is often the case that the numerical simulation has to be done first in or-
der to give some direction to theoretical studies. Though the catalogue of well-
characterized, generic behaviors of deterministic nonlinear systems is large and 
continues to grow, there is no a priori method for classifying the expected be-
havior of a particular nonlinear dynamical system unless it can be directly 
mapped to a previously studied example. 
 Rather than attempting a review of the state of the art in time-series analy-
sis, numerical methods, and theoretical characterization of nonlinear dynamical 
systems, this chapter presents some of the essential concepts using a few exam-
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ples. Section 2 presents the vocabulary needed for the description of dynamical 
systems of any type, linear or nonlinear, large or small, continuous or discrete. 
Section 3 presents the fundamental ideas relevant for understanding the behavior 
of small systems, i.e., systems characterized by a small number of dynamical 
variables. It begins with a discussion of the concept of nonlinearity itself, then 
proceeds to build on it using two canonical examples: the damped, driven oscil-
lator and the logistic map. In section 4 new issues that arise in large systems are 
introduced, again in the context of two characteristic examples: the cardiac sys-
tem and the Boolean model of genetic regulatory networks. It is hoped that these 
discussions will provide a context that will help readers understand the import of 
other chapters in this book. 

2. DYNAMICAL SYSTEMS IN GENERAL

 The term dynamical system refers to any physical or abstract entity whose 
configuration at any given time can be specified by some set of numbers, called 
system variables, and whose configuration at a later time is uniquely deter-
mined by its present and past configurations through a set of rules for the trans-
formation of the system variables. Two general types of transformation rules are 
often encountered. In continuous-time systems the rules are expressed as equa-
tions that specify the time derivatives of the system variables in terms of their 
current (and possible past) values. In such cases, the system variables are real 
numbers that vary continuously in time. The Newtonian equations of motion 
describing the trajectories of planets in the solar system represent a continuous-
time dynamical system. In discrete-time systems the rules are expressed as 
equations giving new values of the system variables as functions of the current 
(and possibly past) values. Though classical physics tells us that all systems are 
continuous-time systems at their most fundamental level, it is often convenient 
to use descriptions that describe the system configurations only at a discrete set 
of times and describe the effects of the continuous evolution as discrete jumps 
from one configuration to another. 
 A set of equations describing a continuous-time dynamical system takes the 
form

( ) ( ( ); , ).x t t t= f x p  [1] 

Here the components of the vector x are the system variables and the vector f
represents a function of all of the system variables at fixed values of the parame-
ters p. The overdot on the left indicates a first time derivative.1 Note that f can 
depend explicitly on time, as would be the case, for example, in a system driven 
by a time-varying external force. In some systems, time delays associated with 
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finite speeds of signal propagation cause f to depend also on values of x at times 
earlier than t.
 In spatially extended systems, each system variable is a continuous func-
tion of spatial position as well as time and the equations of motion take the form 
of partial differential equations: 

2( , , ,...; , )
x

t
t
= f x x x p , [2] 

where  is the spatial gradient, 2 is the Laplacian, and the dots represent higher-
order derivatives of x. The parameters p may also be externally imposed func-
tions of position, as would be the case for a system evolving in an inhomogene-
ous environment. (If the environment itself is affected by the system variables, 
however, then variables representing the environment become system variables 
rather than external parameters.) 
 A set of equations describing a discrete-time dynamical system takes the 
form

x(t + 1) = F(x(t);pt). [3] 

Here the function F directly gives the new x at the next time step, rather than the 
derivative from which a new x can be calculated. The function F is often re-
ferred to as a map that takes the system from one time step to the next. 
 In all cases, the evolution of the system is described as a motion in state 
space, the space of all possible values of the vector x. A trajectory is a directed 
path through state space that shows the values of the system variables at succes-
sive times. The theory of dynamical systems is concerned with classifying the 
types of trajectories that can occur, determining whether they are robust against 
small variations in the system variables, categorizing the ways in which the pos-
sible trajectories change as parameters p are varied, and developing techniques 
both for simulating trajectories numerically and inferring the structure of trajec-
tories from incomplete sets of observations of the system variables. The most 
basic structures arising in the classification of state space trajectories—fixed 
points, limit cycles, transients, basins of attraction, and stability—will be ex-
plained below as they arise in the context of some simple examples. 

3. LINEAR SYSTEMS AND SOME BASIC VOCABULARY

 A linear system is one for which any two solutions of the equations of mo-
tion can be combined through simple addition to generate a third solution, given 
appropriate definitions of the zeros of the variables. The system of equations can 
be extremely complicated, representing large numbers of variables with all sorts 
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of logical structures associated with the connections between them, including 
complicated networks of causal relationships among variables, time delays be-
tween cause and effect, arbitrarily complex spatial inhomogeneities, or even 
externally imposed noise. The way to recognize a linear dynamical system is 
that its equations of motion will involve only polynomial functions of degree 
one in the system variables; there will be no products of different system vari-
ables or nontrivial functions of any individual variable. (Examples of nontrivial 
functions include squares or square roots, threshold functions that specify dis-
continuous switching of parameters as the system variables change, or quantities 
that have simple geometric interpretations but turn out to be complicated func-
tions of the fundamental variables.) Gradients of any order may appear, how-
ever, as well as coefficients that are nontrivial functions of spatial position and 
time.2

 For all types of linear systems, the constraint that the sum of any two solu-
tions also must be a solution has profound consequences. Simply put, the full 
range of behavior of a linear system is understood as soon as its behavior in an 
infinitesimal region of its state space is understood. In the absence of an external 
driving force, there is one special solution to any linear system where the vari-
ables are time-independent—everything just sits still. This is called the fixed 
point. A trivial example is the equilibrium point of a weight hanging from an 
ideal spring in a perfectly uniform gravitational field. Here the system variables 
are the position and velocity of the weight, which can both be defined to be zero 
at the fixed point. Another example is the surface of a liquid that may have rip-
ples governed by surface tension (capillary waves) described by a linear theory. 
The system variables here are a field representing the height of the liquid at all 
points in space and the time derivative of that field. Again, the system variables 
can be defined to be zero at the fixed point corresponding to a quiescent, flat 
surface. 
 When variables are defined so as to be zero at the fixed point, linearity im-
plies that every solution can be multiplied by an arbitrary factor to yield another 
solution. Thus solutions with arbitrarily large amplitudes can be multiplied by an 
arbitrarily small factor to yield solutions infinitesimally close to the fixed point, 
indicating that the nature of solutions very near the fixed point determines all of 
the possible solutions. The situation is further simplified by the fact that solu-
tions in the vicinity of the fixed point come in only three types—stable, unsta-
ble, and marginal. 
 In a linear stable system, all solutions asymptotically approach the fixed 
point as time progresses. The typical case is that beginning from any initial point 
in state space, the variables decay toward the fixed point by first rapidly ap-
proaching a particular line in state space and then relaxing exponentially along 
that line toward the origin.3 In an unstable system, all solutions that do not start 
exactly on the fixed point diverge from it exponentially at long times. The mar-
ginal case, in which the variables neither decay to zero nor diverge, occurs pri-
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marily in "Hamiltonian" systems, in which conservation of energy prohibits 
convergence or divergence of nearby phase space trajectories. Such dissipa-
tionless systems are of great interest in quantum mechanics and statistical me-
chanics, but systems of interest in biomedicine always involve strongly 
dissipative processes, which include, for example, all processes involving fric-
tional forces. Marginal stability then occurs only as a very special case where 
parameters have been carefully tuned, though there have been suggestions that 
marginal stability can reappear spontaneously in certain self-organizing nonlin-
ear systems (2). 
 Now we are often interested in dissipative systems that are subjected to ex-
ternal driving of some sort, whether it be a steady input of energy or a driving 
with more complicated temporal structure. In such systems, the notion of a fixed 
point must be generalized to include steady or regularly repeating motions. For 
example, if the ceiling from which a weighted, damped spring is hanging were 
constantly oscillating up and down, the weight would not sit at a fixed point but 
could exhibit regular oscillations with a period that matches the oscillation of the 
ceiling. Such trajectories are called limit cycles, and, like fixed points, they may 
be stable or unstable. 
 Stable fixed points and limit cycles are called attractors, as trajectories in 
state space eventually flow toward them and then stay very close to them at long 
times. If we begin observing a system when it is far from its attractor and watch 
for a long time, we will be able to detect its motion toward the attractor for a 
while, but at some point it will be so close to the attractor that we can no longer 
resolve the difference. The portion of the trajectory over which we can observe 
progress toward the attractor is called a transient. The set of points in state 
space that lie on transients associated with a particular attractor is called the ba-
sin of attraction of the attractor. In a stable linear system, all points in state 
space lie in the same basin of attraction. In other words, for any initial configu-
ration of the system variables, the ultimate fate of the system is the same fixed 
point or limit cycle. 

4. NONLINEAR EFFECTS IN SIMPLE SYSTEMS

 Linear systems are often studied in great detail. They can be solved exactly 
and hence make for good textbook problems; and linear equations can be used 
as good approximations to nonlinear ones in situations where the trajectories 
stay very close to a stable fixed point or limit cycle. They cannot capture, how-
ever, many of the most important qualitative features of real systems. 
 In a nonlinear system, the equations of motion include at least one term 
that contains the square or higher power, a product of system variables (or more 
complicated functions or them), or some sort of threshold function, so that the 
addition of two solutions does not yield a valid new solution, no matter how the 
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system variables are defined. All physical systems describable in terms of classi-
cal equations of motion are nonlinear. (The quantum mechanical theory of at-
oms and molecules is a linear theory: the connection between it and the 
comparatively macroscopic processes at the cellular level and larger is beyond 
the scope of the present discussion.) In all real systems, deviations of large 
enough amplitude require nonlinear terms in the relevant model. There is no 
such thing as a truly linear spring or a waves on a fluid obeying a perfectly lin-
ear equation of motion. This is why the study of nonlinear dynamics has such 
broad relevance. 
 The consequences of nonlinearity are profound. Most importantly, nonlin-
ear systems may contain multiple attractors, each with its own basin of attrac-
tion. Thus the fate of a nonlinear dynamical system may depend on its initial 
state, and a whole new set of phenomena arises associated with the way in 
which basins of attraction shift as parameters are varied. 
 Nonlinearity can also give rise to an entirely new type of attractor. Limit 
cycles in nonlinear systems may be quite complicated, circling around in a 
bounded region of state space many times before finally closing on themselves. 
It is even possible (and quite common) for a trajectory to be confined to a region 
of state space where there are no stable limit cycles or fixed points. The system 
then appears to follow an irregular trajectory that is said to lie on a strange at-
tractor. The trajectory comes arbitrarily close to closing on itself, but never 
quite does, and two identical systems that come arbitrarily close to each other in 
state space diverge rapidly thereafter. A strange attractor is the state space struc-
ture associated with the phenomenon known as chaos.
 Finally, in spatially extended systems nonlinearities can give rise to pattern 
formation, the spontaneous creation of attractors with nontrivial spatial struc-
ture in a system with no externally imposed inhomogeneities. (See (33,8,20) for 
textbook treatments of pattern formation and spatiotemporal structures in large 
systems. For more technical treatments from a physics perspective, see (17,6,4)). 
Examples include the formation of stripes or spots in chemical reaction-
diffusion systems and excitable media, which find applications in such processes 
as butterfly wing coloration and cardiac electrodynamics. 
 The essential features of nonlinear systems can be illustrated with the sim-
plest of examples, the driven, damped oscillator. Figure 1 shows a picture of the 
system. We assume the spring is nonlinear: it gets stiffer under compression 
and softer under extension. With an appropriate definition of the zero of x,
the position of the mass, the equation of motion can be written as 

2( ) ( ) ,mx x k h x k h x= + +  where m, , k, and k' are constants and h is 
the deviation of the ceiling from its average height. Defining z = x , the equation 
of motion can be written as two coupled equations in a two-variable state space: 

2( ) ( )v v k h x k h x= +  and x  = v. We will consider cases in which the 
ceiling oscillates according to h =  sin( t).
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 Figure 1 also shows the behavior of the mass when k' = 0, which makes the 
system linear. Two time series are shown for a particular choice of the drive 
frequency , and one sees that the long term behavior in the two cases is identi-
cal. The difference between the two curves in the early stages corresponds to 
transients that depend on the details of the initial configuration. The behavior 
that is reached in the long term is called a limit cycle attractor. 
 When k' = 0, one can see immediately from the equations that the strength 
of the drive, , is not an important parameter in determining the qualitative 
structure of the motion. The solution for a given  can simply be rescaled by 
multiplication so as to correspond to a different value of .
 When k' is nonzero, so that the system is nonlinear, one often finds behavior 
similar to that shown in Figure 1, i.e., convergence of all transients (in the do-
main of initial conditions of interest) to the same solution. In the nonlinear case, 
however, it is possible to see quite different behavior. Figure 2 shows one sim-
ple nonlinear effect: one can have two different long term solutions for a single 
value of the system parameters. The differences produced by different initial 
conditions in this case are not limited to transient effects. This phenomenon of 
bistability is a generic feature of nonlinear dynamics, and its presence in all 
sorts of biomedical systems indicates that nonlinearities play a fundamental role 
in their function. 
 The presence of bistability in a system raises the question of which initial 
conditions will lead to which orbit, or which points in state space lie in which 
basin of attraction. Even for systems as simple as the damped, driven oscillator,  

Figure 1. A simple nonlinear dynamical system. Left: A mass is attached to the ceiling by a 
spring. The force exerted on the mass by gravity and the spring together is k(h – x) + k'(h – x)2,
where h is the displacement of the ceiling from its nominal height and x is the displacement of 
the mass from its resting position. The solid and dotted images represent the spring and mass at 
different times during a cycle in which the ceiling is oscillating. Right: Two time series for the 
linear case k' = 0. 
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the boundaries in state space of the basins of attraction can be quite complex, 
making it extremely difficult to predict which orbit the system will eventually 
reach from a specified initial configuration. (See chapter 5 of (24) for details.) In 
studying more complicated systems, one often finds multiple attractors with 
basins of attraction that can vary widely in size. 
 A feature generically associated with bistability is hysteresis, the depend-
ence of the observed solution on the direction in which a parameter is varied. 
For example, Figure 3 shows curves indicating the amplitude of oscillation of 
the mass in our simple model as the drive frequency  is slowly ramped up and 
then down. For small  and large  there is only one attractor. In the intermedi-
ate range, however, there are two (plus an unstable periodic orbit that is not 
seen). During the upsweep, the system stays in the basin of one of the attractors 
until that attractor is destroyed, at which point it is attracted to the stable orbit of 
significantly different amplitude. During the downsweep, the same process hap-
pens in reverse, except that the jump occurs at a lower value of .
 The jump to a different solution in a hysteretic system is an example of a 
bifurcation. More generally, the theory of bifurcations describes the transitions 
that occur between structurally different solutions as a system parameter is var-
ied. Such transitions may correspond to the creation or destruction of fixed 
points or simply to changes in the stability properties of existing fixed points. In 
the oscillator example, one may observe a bifurcation upon variation of any of 
the parameters k, k', , , or . The precise values of the parameters at which a 
bifurcation occurs are called a critical point in parameter space. The mathe-
matical theory of how solutions can be created or destroyed as parameters are 
varied is well developed and full of beautiful structures (12,24,25,28). 

Figure 2. Two time series for the same system as in Figure 1, but with parameters set such that 
two different long time solutions exist. Which solution is realized depends upon the choice of 
initial conditions. 
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 As mentioned above, nonlinear dynamical systems sometimes exhibit 
chaos, motion that never settles into a fixed point or limit cycle. The system 
stays confined to a finite region of state space, but never returns precisely to one 
of the points it has visited before. In fact, almost all dynamical systems are cha-
otic for some range of parameter values and our simple driven oscillator is no 
exception. An example of a chaotic orbit in this system is shown in Figure 4. 
 Much attention has been devoted to the characterization of strange attrac-
tors. Three aspects of the theory are of particular interest for practical purposes. 
The first is the determination of the dimension of the attractor. The attractor 
itself is a geometric object, a set of points in state space, that has a dimension 
which can be non-integral, sometimes called a fractal dimension. Most impor-
tantly, the dimension is finite and lower than the dimension of the full state 
space. Its origin in a set of deterministic equations for a relatively small number 
of variables makes it fundamentally different from the erratic trajectories associ-
ated with random, or stochastic, processes. This raises the possibility that an 
experimentally observed time series suggesting erratic, unpredictable behavior 
actually arises from a deterministic, though nonlinear, set of equations. A beauti-

Figure 3. The limit cycle amplitudes for different values of the driving frequency in a nonlin-
ear oscillator. The solid circles correspond to oscillations observed as the driving frequency is 
slowly ramped up from 0.7. The open circles correspond to oscillations observed as the driving 
frequency is slowly ramped down from 0.9. The dotted lines are guides to the eye. The drive 
frequency is measured in units of the natural frequency of the linear oscillator. The time series 
shown in Figure 2 correspond to the two limit cycles that coexist at a driving frequency of 0.8 
for  = 0.18, k = 1, k' = 0.5, and  = 0.3. 
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ful theorem shows that the important topological features of strange attractors 
can be reconstructed from a time series measurement of a single variable (30). 
One can construct the state space structure of the attractor using time-delayed 
values of that variable rather than synchronous measurements of all of the sys-
tem variables. The reconstruction is said to be embedded in a space of dimen-
sion equal to the number of time delays used and the theorem says that as long 
as the embedding dimension is large enough, the topological features of the tra-
jectory will be accurately reconstructed. (See (24) for a discussion of embed-
ding.) This has led to the development of a number of computational tools for 
analyzing time series data to determine whether a system can be modeled using 
a small number dynamical variables or not, though prohibitive difficulties are 
almost always encountered if more than about 10 variables are required. (As-
pects of this sort of time-series analysis are discussed in the preceding chapter 
by Shalizi.) 
 The second item of interest is the characterization of the strength of the 
chaos (its degree of unpredictability) via the Lyapunov exponents. Suppose a 
system is following a trajectory in state space that is a long time solution to the 
equations of motion. We imagine an almost exact copy of the system at time t = 
0. The copy has exactly the same parameter values as the original—it is the 
same system—but the variable values at t = 0 differ by a tiny amount from the 
original. In a chaotic system, the difference between the variable values in the 
copy and the original will grow (on average) with time. Ignoring short-time 
scale fluctuations, the difference between a given variable, say x, in the two sys-
tems will grow exponentially: x = x0 exp( t). The quantity , with dimensions 
of 1/time, is called the Lyapunov exponent.4

 A large  indicates rapid divergence of nearby trajectories, which implies 
that prediction of future values of the variables requires extremely precise 
knowledge of the present values. The consequence of exponential divergence is 
that accurate prediction becomes prohibitively difficult over times larger than a 
few times –1. This is only a quantitative issue: chaos does not imply some mys-
terious new source of randomness of the type, say, that is found in measure-
ments on quantum systems. Nevertheless, the mathematics of exponential 
growth makes a qualitative difference in practice for would-be predictors of the 
motion. The increase in precision of measurement required to make accurate 
predictions is so rapid within the desired time interval covered that useful long-
time prediction is impossible. 
 The third item of interest is the nature of the transition to chaos as a parame-
ter is varied, i.e., the type of bifurcation that leads to the emergence of a strange 
attractor. Perhaps the most celebrated result in chaos theory is the proof by Fei-
genbaum that all discrete maps in a broad class go through a quantitatively iden-
tical transition, dubbed the period-doubling route to chaos (9). In a period-
doubling bifurcation, a periodic orbit undergoes a change in which only every 
other cycle is identical. One then still has a periodic orbit, but its period is twice 



NONLINEAR DYNAMICAL SYSTEMS 127 

as long as the original. The deviations from the original simple orbit can grow 
larger as the bifurcation parameter is ramped further, eventually leading to a 
second period-doubling bifurcation, so that the new orbit has a period that is 
four times longer than the original. In fact, an entire period-doubling cascade 
can occur within a finite range of the bifurcation parameter, leading finally to a 
chaotic attractor. Feigenbaum showed that the sequence of bifurcations has a 
structure that is the same for a large class of discrete maps. The details of the 
particular map under study become irrelevant as we approach the end of the pe-
riod-doubling cascade. 
 To see a sequence of period-doubling transitions leading to chaos, one need 
look no farther than our simple nonlinear oscillator. Figure 4 shows a set of so-
lutions, with k = 1, k' = 0.5,  = 0.5, and  = 0.8, for four different values of the 
drive amplitude . The time series on the top row show that bifurcations occur 
as the drive amplitude is varied. At some critical point between the first and sec-
ond panels (  = 0.7 and  = 0.76) the solution undergoes a structural change. 
It begins with a limit cycle with some period (the exact value is unimportant). 
It then changes to a limit cycle that has a period approximately twice as long 
as the original. In terms of the original, every other cycle looks different. In a 
periodically forced system such as this one, the second limit cycle is often called 
a "2:1 state," referring to the fact that there are two periods of the driver 
for every one period of the limit cycle. By the time we get to the third panel, the 
2:1 state has itself undergone a period-doubling bifurcation, leading to a 4:1 
state. In between the third and fourth panels, an infinite sequence of period dou-
blings has occurred, leading, finally, to a strange attractor and its trademark er-
ratic time series. 
 The bottom row of Figure 4 shows a view of the same motion that clarifies 
the nature of the bifurcations a bit. Each of these plots is a projection of the tra-
jectory corresponding to the time series above it. In the present case, the state 
space is three dimensional, the three dimensions corresponding to the position 
and velocity of the mass and the position of the ceiling. The figures show the 
projection of a path through the 3D space onto a 2D plane. Here the differences 
between the four solutions are easier to see at a glance.5

 A standard method for analyzing such a situation is through the construction 
of a discrete return map from its current position in state space to its position 
one drive period later. This is the theoretical equivalent of taking a movie of the 
motion with a strobe light that flashes in synchrony with the ceiling oscillations. 
In that movie, the ceiling will appear to sit still, while the weight will jump from 
point to point according to the map. If the weight is on a simple limit cycle as 
described above, it will appear fixed in the movie. In this way, we see that a 
periodic orbit of a continuous-time system corresponds to a fixed point of a dis-
crete-time system.6 The motion of the system in the strobed movie is said to oc-
cur on a Poincaré section of the state space. For practical and analytical 
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reasons, one often works directly with a discrete map that takes one point on the 
Poincaré section into the next, rather than the underlying differential equations. 
 Since the system is deterministic, the map that takes one point to the next is 
unique. In the oscillator example above, the Poincaré section may be taken to be 
the half plane corresponding to the points where the phase of the drive has some 
chosen value. The dashed line drawn on the lower set of plots in Figure 4 sche-
matically represents the projection of this plane onto the x – x  plane. As time 
progresses, the system keeps looping around the state space in a clockwise di-
rection, passing through the Poincaré section once every time around. Each time 
the section is crossed, the position and velocity of the oscillator are observed. In 
the present case (and many others) it is sufficient to keep track of only one vari-
able, say the position at each piercing of the Poincaré section. In this way we 
obtain a discrete sequence of x values, xn. A return map f defined by xn+1 = f(xn; )
can then be constructed, where we write  explicitly to indicate that the map 
depends on the bifurcation parameter. 
 For the simple limit cycle on the left, the system returns to the same point 
on every cycle. For this value of , the fixed point x* satisfying x* = f(x*) is 
stable. For the second case shown in the figure, xn will alternate between two 
values. In this case it is the map f2 (two successive applications of f) that has a 

Figure 4. The period doubling route to chaos in the oscillator with k = 1, k' = 0.5,  = 0.5, and 
 = 0.8 for  = 0.700, 0.760, 0.794, and 0.810. Top: time series of the position (x vs. t). Bot-

tom: phase space plots ( x  vs. x). 
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fixed point. Though it cannot be seen from these figures, there may still be a 
fixed point of f in this system, but it has become unstable at this value of . For 
the chaotic orbit on the right, the sequence xn will contain an infinite number of 
different points (assuming we can wait long enough to collect them). Moreover, 
there are infinitely many values of m for which fm has a fixed point. These fixed 
points cannot be literally on the attractor—if the system were ever to hit one of 
these points exactly, it would stay on the associated periodic orbit—but they are 
infinitesimally close to it. These periodic orbits are said to be embedded in the 
strange attractor, and their presence has been exploited both for control purposes 
and for the derivation of mathematical properties of the strange attractors. (See 
(24) for details.) 
 A useful way to exhibit the types of bifurcations that occur in a given sys-
tem is to form a bifurcation diagram from the return map. Sets of values of xn

are collected for many different values of the bifurcation parameter and plotted 
on a single figure, as shown in Figure 5. Each vertical slice of the figure shows 
all of the xn's observed for the corresponding value of . The sequence of period 
doubling bifurcations is visible, and is a common structure in systems with only 
a few variables. Two other features common to experiments are visible in the 
figure. First, at the critical point for the first period doubling bifurcation (near 
= 0.76), the data are slightly smeared out. This is because near the transition the 
1:1 limit cycle is just barely stable, which in turn implies that the transient re-
laxation to the limit cycle is very long. The plot was made by integrating the 
equations of motion up through about 50 cycles and recording data from the last 
40 cycles. In the present case, the smearing could easily be reduced by waiting 

Figure 5. The bifurcation diagram for the oscillator with k = 1, k' = 0.5,  = 0.5, and  = 0.8, 
in the range  = (0.7, 0.82). The dashed vertical lines indicate the values of  used in Figure 4. 
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longer before recording the data; the plot is presented as it is to illustrate the 
general point that slow relaxation near the critical point makes it more difficult 
to get clean data there. Second, the chaotic region above  0.81 appears rather 
sparsely filled. Again, this is partly because the runs from which data were gath-
ered only covered 40 cycles of the drive. For longer runs, the data for a given 
would form rather dense bands with some visible gaps. Experimental data simi-
lar to Figure 5, however, would constitute clear evidence of chaotic behavior. 
 The presence of a period-doubling route to chaos in a wide variety of sys-
tems, together with the recognition that simple bifurcations can be classified into 
generic types, is very encouraging. It means that many of the features of nonlin-
ear dynamical systems are universal, that is, they are independent of the quanti-
tative details of a model. There are now several other routes to chaos that have 
been characterized, including quasiperiodic attractors that finally give way to 
chaos, and intermittent behavior in which long periods of nearly regular behav-
ior are interrupted by chaotic bursts (17,23). This type of universality allows 
educated guesses about how to construct models that exhibit the features ob-
served in experiments. 
 A basic vocabulary of bifurcations and transitions to chaos is now well de-
veloped, and one's first inclination upon observing chaos in an experiment 
should be to classify its onset as a particular known type. The known classifica-
tion scheme is not exhaustive, however, and there continue to be cases in which 
theoretical understanding requires exploring the mathematics of new types of 
transitions. This is particularly true in systems with very many variables or sys-
tems described by partial differential equations that lead to complex patterns. 

5. TWO TYPES OF COMPLEXITY: SPATIAL STRUCTURE 
AND NETWORK STRUCTURE

 Thus far the discussion has been limited to systems with only a few degrees 
of freedom. The effects of nonlinearity become much more difficult to charac-
terize or predict when many degrees of freedom interact. The complexity of the 
solutions can become overwhelming, in fact, and many fundamental mathemati-
cal questions about such systems remain open. Nevertheless, the language and 
techniques of nonlinear dynamics are helpful in formulating fruitful questions 
and reporting results. 
 There are two different ways in which a system can involve a large number 
of degrees of freedom, both of which are commonly encountered in biomedi-
cine. First, a system can be spatially extended, consisting of a few variables that 
take on different values at different spatial points. Though such systems may be 
described by just a few PDEs, the solutions can involve spatial structures of ex-
ceedingly complex form. A steadily driven chemical reaction, for example, can 
display ever-changing patterns of activity as spiral waves are continually formed 



NONLINEAR DYNAMICAL SYSTEMS 131 

and destroyed by propagating wavefronts. As one might expect, there is a whole 
zoo of observed patterns and bifurcations in such systems, obtained both 
from physical experiments and numerical simulations on systems as diverse 
as vertically vibrated layers of sand, layers of fluid heated from below, chemi-
cal reaction-diffusion systems, and optical systems involving broad laser 
beams in feedback loops containing nonlinear elements. Studies of such sys-
tems appear to be relevant for explaining pattern formation on butterfly wings, 
cardiac alternans and fibrillation, and the behavior of neuronal tissue, to name 
just a few examples. 
 Not all spatially extended systems show dynamics qualitatively different 
from simple systems of a few variables. Typically, there is a length scale associ-
ated with the spatial patterns one sees in a snapshot of the system. This could be, 
for example, the average width of stripes observed in a stationary or moving 
pattern or the size of a square in a checkerboard pattern. If the system is not too 
large compared to this characteristic length, the dynamics generally takes the 
forms discussed in section 3. 
 To analyze spatiotemporal dynamics, one often tries to define new variables 
that make the problem as simple as possible. These variables take the form of 
spatially varying functions of the natural field variables, and these function are 
called modes of the system. Choosing a useful set of modes can be difficult, 
though in some cases symmetry considerations make the task easier. For exam-
ple, when the equations of motion are unchanged by uniform spatial shifts, it is 
often useful to use a Fourier decomposition, in which the modes is are simple 
sine waves of different wavelength. In other cases it may be natural to define 
modes associated with spatial structures whose amplitudes grow or shrink par-
ticularly rapidly or capture salient features of the observed patterns. 
 The partial differential equations of motion are then transformed into ordi-
nary differential equations governing the amplitudes of the different modes. In 
the case of systems that are not too large compared to their characteristic length 
scale, one usually finds that all but a few of the mode amplitudes decay rapidly 
to zero. The long time dynamics of the system is then well represented by cou-
pled ordinary differential equations for a few variables and the methods of sec-
tion 3 can be applied even though the corresponding spatiotemporal behavior 
may look rather complicated. 
 If the system is large compared to the natural length scale of the spatial 
pattern, the situation becomes substantially more complex. Figure 6 shows a 
snapshot a the convection pattern in a fluid heated from below. PDEs used to 
model this system reproduce the observed behavior very well, and the phenome-
non is now known as "spiral defect chaos" (7,19). The spiral structures in the 
pattern move around in erratic ways, and theoretical understanding of the motion 
is far from complete. It can be extremely difficult, for example, to answer one of 
the most fundamental questions about observed erratic behavior: Does it corre-
spond to a strange attractor or just to an extremely long transient? 
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 The theory of spatiotemporal pattern formation and chaos in large systems 
spans several loosely connected approaches. One is to study the dynamics of 
isolated typical structures. For example, one can study the speed with which a 
single pulse moves and spreads through an otherwise homogeneous medium. 
Another is to look carefully at critical points where universal bifurcation struc-
tures can be identified. An example of this is the onset of stripe structures in a 
homogeneous medium, such as the regions of sinking and upwelling in a fluid 
heated from below, or the development of chemical patterns in reaction-
diffusion systems. Still another is to analyze the short-time Lyapunov expo-
nents and associated modes of instability. These exponents do not quite have the 
same meaning as the true Lyapunov exponents, but are similar in spirit. The true 
exponents are defined as global properties of the full limit cycle or strange at-
tractor. The short time exponents describe the local stability properties of a tra-
jectory over a finite time interval and the modes associated with positive short-
time exponents can reveal the locations in a pattern where instabilities will make 
prediction difficult over near term. 
 Still another theoretical approach to complex spatiotemporal behavior is to 
identify local structures that control the evolution of the pattern and try to de-
scribe their collective behavior in statistical terms. Often, the objects of interest 
are "defects" in an otherwise regular pattern. In spiral defect chaos, for example, 
it is known that there is another attractor consisting of uniform stripes, so it is 
tempting to think of the core of a spiral can be thought of as a defect in a stripe 
pattern. For topological reasons, the defect (a left-handed spiral, say) cannot be 

Figure 6. Spiral defect chaos: an example of spatiotemporal chaos in a system that is large 
compared to the characteristic length scale of the pattern (the width of the stripes). Image cour-
tesy of G. Ahlers. 



NONLINEAR DYNAMICAL SYSTEMS 133 

removed except by drifting off the boundary of the system or annihilating with 
another defect of opposite topological sign (a right-handed, spiral). The dynam-
ics of the system may be described as a changing pattern of defect locations. 
Since the behavior of dissipative nonlinear dynamical systems with many de-
grees of freedom resembles in several ways the behavior of systems treated by 
statistical mechanics, the language of statistical mechanics sometimes creeps 
into discussions of deterministic nonlinear dynamical systems. In particular, 
bifurcations are sometimes referred to as phase transitions.
 The statistical approach is very tempting to physicists. The tools of statisti-
cal mechanics have been spectacularly successful in analyzing phase transitions 
in equilibrium systems, and they become more and more accurate as system size 
increases. They are based on the idea that the details of how a system moves in 
its very high-dimensional state space are unimportant for making statistical pre-
dictions about the states it is likely to be found in. Unfortunately, the fundamen-
tal assumptions of statistical mechanics are strongly violated in the driven, 
dissipative systems of biomedical interest. At present, there is increasing evi-
dence that statistical mechanics can account for the behavior of a number of 
deterministic systems far from equilibrium. Examples include coupled discrete 
maps that undergo bifurcation that are quantitatively similar to equilibrium 
phase transitions (18), and sheared granular materials like sand in which effec-
tive temperatures can be defined for describing the wanderings of individual 
grains in space and time (16). These applications of statistical mechanics are as 
yet poorly understood, however, and in the absence of a fundamental theory of 
nonequilibrium pattern formation, theoretical insight comes largely from nu-
merical simulation of model equations and analysis of the generic types of be-
havior on a case by case basis. 
 Construction of an appropriate model for a spatially extended dissipative 
system involves a healthy dose of intuition as well as a few constructive princi-
ples. One generally begins with the selection of the simplest PDE that incorpo-
rates the symmetries and general features of the physical system. This may be a 
known set of equations that is selected either because its solutions seem to 
match the observed behavior qualitatively or because the underlying physics of 
the system is expected to be in the same universality class. One then simulates 
the system numerically and attempts to find a regime in parameter space where 
the spatiotemporal dynamics is roughly reminiscent of the real system. Analysis 
of the model can then lead to hypotheses about the effects of varying parameters 
in the real system. To obtain more accurate predictions, one then adds terms to 
the model that alter the detailed behavior without changing the big picture. 
Given the complexity of types of bifurcations that can occur in large systems, 
however, one often discovers new and unexpected attractors, or one finds that 
detailed models just don't work and aspects of the physics that were thought to 
be irrelevant actually must be included in order to obtain reasonable representa-
tions of the true dynamical attractors. A good example of progress of this sort is 
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the modeling of cardiac electrodynamics, which is being approached from sev-
eral directions simultaneously. The construction of PDE models based on de-
tailed understanding of the physiology of cardiac tissue (26), the construction 
and simulation of PDE models reproducing realistic patterns of spatiotemporal 
activity (10,34), and the construction of ODE models or discrete maps reproduc-
ing bifurcations observed in small pieces of cardiac tissue (31), are all being 
brought to bear in a grand attempt to explain the onset and characteristics of 
arrhythmias from simple period doubling to fibrillation. 
 The second way in which complexity can enter the world of nonlinear dy-
namics is through the sheer abundance of distinct variables and the logical, or 
causal, relations among them. Even without taking into account the spatial dis-
tribution of concentrations of molecules, for example, the immune system or the 
metabolic network in a cell can exhibit surprising behavior due to nonlinear in-
teractions among the concentrations of distinct types of molecules. The nature of 
these connections, and in particular the topology of the network representing 
them, has become a central theme in current research. As yet, rather little is un-
derstood about the dynamical processes that occur within such large networks 
containing many feedback loops. Our purpose here is just to illustrate the way in 
which nonlinear dynamics becomes the natural language for discussing the be-
havior of complex systems of this sort. 
 Consider the problem of modeling the regulatory network that governs gene 
expression in a cell. At its most basic level, the cell can be thought of as a dy-
namical system of interacting biomolecules produced through the mechanisms 
of gene expression. In this picture, the future chemistry of a cell is determined 
by which genes are expressed at any given moment. The products of transcrip-
tion and translation of genes interact in extraordinarily complicated ways and act 
back on the processes of transcription and translation so as to influence which 
genes are expressed at a later time. To model this system the nonlinear dynami-
cist might begin by defining the system variables to be the levels of expression 
of each gene. Thus the life history of a cell becomes a trajectory through a state 
space of dimension equal to the number of genes in the network. 
 Modeling of the detailed interactions among all of the proteins and nucleic 
acids in the cell would make for a horrifically complicated mathematical system, 
from which it would be very difficult to glean any useful insights. Instead, one 
can hope (and perhaps expect) that many features of the state space trajectories 
are universal, i.e., that they do not depend on the details of the interactions. One 
is then led to devise models that retain the general logical structure of genetic 
regulatory networks but are defined by interactions simple enough to be effi-
ciently simulated and studied analytically. One approach, pioneered in the con-
text of genetic regulatory networks by Kauffman (14,15) is to assume that gene 
expression level is a Boolean variable and that the logical relations among dif-
ferent genes' activities are essentially random. As it turns out, the behavior of 
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such networks is surprisingly complex and suggestive, and is a subject of active 
research. 
 Boolean functions describing the switching of system variables between 
binary values can be thought of as an approximation of a map corresponding to a 
very complicated set of differential equations for the underlying physical proc-
esses. These functions, which must produce a binary output given some set of 
binary inputs, are strongly nonlinear. Since the system variables can only have 
two distinct values, the notion of a state corresponding to the sum of two other 
distinct states is not even well defined. Even in this extreme situation, however, 
the concepts of nonlinear dynamics provide a useful framework for discussing 
network behavior. Here we present a bare-bones description of this framework 
as an illustration of how the concepts discussed above enter the discussion. 
 A Boolean network is a collection of N logic gates, each having some fixed 
number of inputs, Ki, and one binary output, i, where i = 1, ... N indexes the 
gates. The inputs to a gate are a subset of size Ki of the outputs from all of the 
gates. Each gate is also characterized by a truth table Ti that determines i as a 
function of the inputs. On each (discrete) time step, all of the gates apply their 
truth tables to their inputs and update their outputs accordingly. Each Ti is as-
sumed to be selected randomly from a weighted distribution of all the possible 
truth tables with Ki inputs. To complete the definition of the model, one must 
specify the Ki's and the procedure for choosing which i's act as inputs to a given 
gate. The best studied cases are networks in which all Ki are the same and the 
choice of which gates are inputs to any given gate is completely random. The 
result is a "random Boolean network" (RBN), sometimes referred to as a 
"Kauffman net." 
 The system variables in an RBN are simply the values of the outputs of the 
gates. The parameters of a particular model network are the choices of which 
outputs serve as inputs to each gate and which Boolean function is assigned to 
each gate. Instead of specifying all of these parameters explicitly, however, we 
specify a random procedure for choosing them. The number of inputs to each 
gate and the probabilities assigned to each of the different truth tables are taken 
as the parameters of the model. Note that when we discuss the behavior of the 
model at a certain set of parameter values, we are now talking about the average 
or typical behavior of a whole class of individual RBNs—those constructed ac-
cording to a specified probabilistic procedure—rather than the detailed behavior 
of one specific dynamical system. (For more on probabilistic procedures for 
constructing the wiring diagrams of biological networks, see this volume, Part 
II, chapter 4, by Wuchty, Ravasz, and Barabási.) 
 In an RBN, the trajectory associated with the differential equations becomes 
a sequence of vertices in a state space that is a discrete set of points. If there are 
N gates in the network, each point in state space is an N-dimensional vector. 
Now because the number of distinct states is finite, the total number of possible 
states being 2N, the sequence must eventually arrive at a point that has been vis-
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ited before. From then on, it must cycle on the same loop forever. This means 
that, strictly speaking, all attractors on any Boolean network are periodic limit 
cycles. When N is very large, however, 2N is astronomically huge and these cy-
cles can become extremely long. 
 A surprising aspect of RBNs is the existence of two qualitatively different 
behaviors for different parameter regimes. A parameter q1 can be defined that 
corresponds to the probability that changing the value of one randomly selected 
input to a randomly selected gate will result in a change in the output of that gate 
(27). A qualitative change in the network behavior is observed as q1 is varied, 
which can be accomplished by changing K or changing the weights of the dif-
ferent truth tables. For small values of q1, typical networks have only a few at-
tractors; almost all of the gates wind up stuck on one value or the other and the 
duration of the attractor cycles are short. For larger values of q1, a number of 
gates of order N remain active and the cycles are extremely long. The attractors 
in the two regimes also have markedly different stability properties. In the case 
of small q1, small externally imposed perturbations, like changing the output 
value of a single gate for one time step, have little effect. The system quickly 
returns to the original attractor. For large q1, on the other hand, small perturba-
tions often place the system in the basin of a different attractor. The regime in 
which one observes short, stable cycles is called "ordered," and the region with 
exponentially long, attractors that are sensitive to small perturbations is called 
"chaotic." The latter term is meant to emphasize the erratic nature of the attrac-
tors over many times steps, but is not a rigorous description of the attractors 
over the tremendously long times associated with their cycle durations. 
 RBNs at the critical value of q1 exhibit a unique balance of attractor stability 
and flexibility (15). The discovery of these special and totally unanticipated 
properties of critical RBNs is an indication of the power of the nonlinear dynam-
ics conceptual framework. Even though these specific RBN models are not 
faithful representations of real biological processes, they reveal nonlinear dy-
namical structures that are likely to arise also in models that incorporate more 
realistic details, and therefore suggest new ways of understanding of the inte-
grated behavior of the genome. 

6. DISCUSSION AND CONCLUSIONS

 This chapter is intended only to establish some of the vocabulary of nonlin-
ear dynamics and give some indication of the rich behaviors that fall within its 
domain. Many important phenomena have been neglected entirely to this point. 
Three stand out as requiring some comment, however brief: the effects of sto-
chastic processes; the role of boundary conditions; and the phenomena of fre-
quency locking and synchronization. 



NONLINEAR DYNAMICAL SYSTEMS 137 

 Dynamical systems are, by definition, deterministic. They are therefore ca-
pable of exhibiting exquisitely detailed mathematical structures, and one might 
well ask whether these structures survive in the presence of stochastic influ-
ences, or noise. Conversely, dynamical systems with rather mundane behavior 
could respond in unexpected ways in the presence of noise. The theory of noisy 
dynamical systems, which in many cases is studied under the heading of non-
equilibrium statistical mechanics, is a rich topic in its own right and is likely to 
be highly relevant for understanding some biomedical processes. It is also true, 
however, that the effects of noise can often be safely neglected, either because 
the details washed out by the noise are on such a fine scale as to be uninterest-
ing, or because the feedback elements in the system allow it to operate reliably 
even when noise is a strong influence. 
 In spatially extended dynamical systems, boundary conditions can play a 
crucial role in determining the nature of the solutions to equations describing a 
bulk material. The same PDE can exhibit very different solutions when the 
boundary conditions are changed, and the realistic modeling of a system may 
depend just as much on getting the boundary conditions right as it does on mod-
eling the bulk process. This often means having to understand the physics of a 
material or interface that was originally thought to be external to the system. 
Many analytical and numerical studies of PDEs are performed on domains that 
are artificially modeled as having no boundaries, like a torus. This is often quite 
useful, but care must be taken in applying intuition from these studies to the 
interpretation of experiments. 

Phase locking is a phenomenon that occurs when two autonomous systems 
that oscillate at different natural frequencies are weakly coupled. While for ex-
tremely weak coupling there exist quasiperiodic trajectories of the coupled sys-
tem that never exactly repeat but do not have the positive Lyapunov exponents 
associated with chaos, slightly stronger coupling tends to cause the two original 
systems to lock into a periodic trajectory in which the ratio of the periods of 
oscillation of the two original systems is a rational number. The most famous 
case of this is the phase locking of the moon's rotation about its axis to its orbit 
around the earth, which is why we on earth always see the same side of the 
moon. When elements are added to a system to induce phase locking, or when a 
large number of systems become phase locked in a 1:1 pattern, the phenomenon 
is sometimes called synchronization. In studying natural systems where syn-
chronization is observed, it may be helpful to keep in mind the fact that it could 
be a straightforward consequence of nonlinear dynamics principles (29). 
 Finally, in an age in which the control and manipulation of biological sys-
tems is attracting so much interest and speculation, it is worth noting that there 
is a vast and growing literature on the control of dynamical systems. In this con-
text, control means applying signals, hopefully of low power, in order to get a 
system to follow a desired trajectory in state space. (Two useful textbooks for 
basic elements of control theory are (21,22).) This may mean steering the system 
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from one attractor to another, keeping the system on a trajectory that is unstable 
in the absence of control, or combinations of the two. One example of a bio-
medical problem that naturally involves control theory, but also pushes its cur-
rent limits, is the prevention of cardiac arrhythmias in humans (see Part III, 
chapter 3.3, by Glass.) Here one has a spatially extended system large enough to 
support complex spatiotemporal activity, though the desired behavior is a sim-
ple, regular heartbeat. There is some reason to hope that nonlinear dynamics 
models will provide useful descriptions of cardiac electrodynamics and new 
ideas for suppressing instabilities associated with certain types of arrhythmias. 
Recent work has focused on the onset of alternans (period doubling) in paced 
cardiac tissue (31) and the manipulation or destruction of spiral waves in excit-
able media models (1). 
 The world of nonlinear dynamical systems is full of complex structures and 
surprising behavior. There is now a well-developed language for characterizing 
all sorts of attractors and bifurcations as parameters are varied. The classifica-
tion schemes will (probably) never be complete, however, and studies of sys-
tems as complex as living tissues and biological networks (metabolic, genetic, 
immunological, neuronal, ecological) are highly likely to uncover new mathe-
matical structures. Systems with strongly stochastic elements or many interact-
ing variables will require further connections to be made between nonlinear 
dynamics proper and statistical mechanics. As indicated by many of the chapters 
in this volume, all of these concepts can and should be brought to bear in the 
study of biomedical systems. 

6. NOTES

 1. If the equations of motion contain a second derivative of x1, say, the 
above form is recovered by defining x2 = 1x and writing 2x  wherever the second 
derivative of x1 appeared in the equations. 
 2. The coefficients are the external parameters designated by p above. 
 3. It is possible, however, for there to be an initial increase in some vari-
ables before the ultimate relaxation toward the origin occurs. This can happen 
when the eigenvectors associated with significantly different modes are non-
normal (not perpendicular to each other in state space). See (32) for a discus-
sion of this effect and presentation of several examples. 
 4. Strictly speaking, this is a bit of a misnomer, as an exponent should not 
be a dimensionful quantity. The physically relevant quantity is the Lyapunov 
exponent  multiplied by some characteristic time in the system. 
 5. Note that at points where the trajectory appears to cross itself it must be 
really separated in the third dimension since the future behavior is unique once 
an initial point in state space is given. 
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 6. The situation is simple when driving is explicitly exhibited and is strictly 
periodic. For other systems, the strobe may have to be triggered in a slightly 
more subtle way. It has to flash when a system variable passes through a particu-
lar value, rather than at precisely equal time intervals, but the basic idea is the 
same. 
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A framework for the development of quantitative theories that capture the body size and 
body temperature dependence of many cellular and physiological rates and times is pre-
sented. These theories rely on basic properties of biological systems, such as the invari-
ance of terminal units, and on fundamental constraints taken from physics and chemistry, 
such as energy minimization of flow through resource-distribution networks and statistics 
of biochemical reaction kinetics. The primary postulate of this framework is that meta-
bolic rate—the rate at which organisms take in resources from the environment, distribute 
these resources throughout their bodies, and process these resources by means of bio-
chemical reactions—is perhaps the most fundamental rate in all of biology and is a major 
determinant, through both direct and indirect effects, of most cellular and physiological 
rates. The pervasive effects of metabolic rate are due to the facts that cellular rates work 
in concert to produce the rates manifested at the whole-organism level, and that the 
power created by metabolism must be allocated to individual maintenance, ontogenetic 
growth, and reproduction. Here we outline the derivations of the body size and body tem-
perature dependence of metabolic rate. Using the primacy of metabolic rate, we then de-
scribe the ongoing development of theories that connect the theory of biological scaling 
to several biomedical processes, including ontogenetic growth, nucleotide substitution 
rates, sleep, and cancer growth. Empirical data are presented that confirm the mass and 
temperature dependence of metabolic rate as well as predictions for lifespan, ontogenetic 
growth trajectories, and sleep cycle times. Insights gleaned from these theories could po-
tentially lead to important biomedical applications, such as methods for calculating 
proper drug dosing or for frustrating processes related to tumor angiogenesis. 
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1. INTRODUCTION

An Anacreontick

Busy, curious, thirsty fly, 
Gently drink, and drink as I; 
Freely welcome to my cup, 
Could'st thou sip, and sip it up; 
Make the most of Life you may, 
Life is short and wears away. 

Just alike, both mine and thine, 
Hasten quick to their decline; 
Thine's a Summer, mine's no more, 
Though repeated to threescore; 
Threescore Summers when they're gone, 
Will appear as short as one. 

                                     —William Oldys

 When Oldys wrote this verse in the eighteenth century, poetically express-
ing the similarity of life histories of different organisms and their corresponding 
rates of life processes, he surely did not appreciate that the difference in perspec-
tive between a fly and a human is not merely psychological, but has, in fact, a 
physiological basis. For example, it is now known that the total number of life-
time heartbeats is approximately the same for all mammals, even though larger 
mammals generally live longer than smaller ones. Indeed, lifespan varies in a 
systematic way with the body size and body temperature of an organism (1), and 
it is believed that this is a consequence of the rate at which organisms live and 
process energy. Almost all physiological variables and all biological rates and 
times, including heart and respiratory rates (2,3), gestation periods (2,4), devel-
opmental times (5), sleep times (6,7), and even cancer growth rates (8–11), scale 
in a systematic and interrelated way with body size and temperature. In addition, 
many structural properties, including the radius of the aorta (12), the density of 
mitochondria (13), and genome length scale in a similar fashion (14,15). All of 
these phenomena scale with mass as a power law with exponents that are in-
variably simple multiples of one quarter. In the past few years we and our col-
leagues have attempted to discover the mathematical form of these scaling 
relationships, and perhaps most importantly, to develop mechanistic, dynamical 
theories for their origins, based on an underlying set of general principles 
(1,12,16). Through the development of these theories and the gathering of em-
pirical data, we have discovered new scaling relationships for the rates and times 
of many cellular (13), physiological (5), and ecological processes (17–20). 
 Our starting point is the assumption that at every organizational level there 
exist average idealized organisms, or biological systems, whose properties are 
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calculable. These idealizations provide a baseline for quantitatively analyzing, 
understanding, and assessing real biological systems, which are viewed as per-
turbations or variations from the idealized norms. This idea is motivated by the 
existence of the many scaling laws that reveal the remarkable similarity among 
organisms of vastly different sizes, temperatures, and structures despite the ex-
traordinary complexity and diversity of life. Living organisms span a mass range 
of over 21 orders of magnitude from the smallest mycoplasma (10–13 g) to the 
largest mammals and plants (108 g). Overall, the life process covers almost 30 
orders of magnitude from gene structure and the terminal oxidase molecules of 
the respiratory complex up to ecosystems. This vast range exceeds that of the 
earth's mass relative to the galaxy's, which is only 18 orders of magnitude, and is 
comparable to an electron relative to a cat. By focusing on metabolic rate, which 
we assume places fundamental constraints on all organisms, we gain a foothold 
for studying this immense diversity. For our idealized organisms, fundamental 
properties of resource-distribution networks are the paramount evolutionary 
traits, and the aforementioned perturbations and variations from some average 
idealized norm in real biological systems are presumed to be due to local envi-
ronmental niches or external conditions that select for many other, often unre-
lated traits. Comparing organisms over large ranges in body size and 
temperature effectively averages over environments and diminishes the impor-
tance of evolutionary innovation in response to specific environmental condi-
tions. Consequently, a coarse-grained quantitative, predictive description 
becomes conceptually feasible, so that a generalized theory can apply over many 
orders of magnitude. 
 Allometric scaling relates biological parameters to body mass, M. The best-
known of these is for basal metabolic rate, which was first shown by Kleiber 
(21) and Brody (22) to scale as M3/4 for mammals and birds. (For a recent and 
extensive compilation and analyses of metabolic rate data for mammals, see 
Savage et al. (3).) This observation was extended by Hemmingsen (23) to ecto-
therms and unicellular organisms and later by other researchers to many other 
taxa, including plants (12,24,25). More recently, it was extended to the respira-
tory complex within mitochondria down to the terminal oxidase molecules (the 
universal respiratory machinery responsible for the production of ATP, the basic 
currency of aerobic metabolism), thereby covering an astonishing 27 orders of 
magnitude (Figure 1) (13). A synthesis of the enormous amount of data encoded 
in allometric scaling was summarized in the early 1980s in four books that con-
vincingly showed the predominance of quarter-power scaling across all scales 
and almost all forms of life (2,26–28). 
 After body size, the biggest determinant of biological rates and times is 
body temperature (29,30). Basal metabolic rate for hibernating mammals, birds 
in torpor, amphibians, reptiles, plants, and unicellular organisms have all been 
shown to scale as a Boltzmann factor, e-E/kT, where E is the activation energy for 
biochemical reactions, k is Boltzmann's constant, and T is absolute temperature 
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(Figure 2) (1). Typically, E has a value in the range of 0.6–0.7 eV, reflecting a 
common biochemistry underlying most of life (1,18). Ontogenetic growth rates, 
heart rates, and even rates of conflict between beetles also scale with a similar 
Boltzmann factor (18). Lifespan (1), time to first reproduction (5), and the in-
trinsic rate of increase for a population (17,18) all scale as an inverse Boltzmann 
factor.
 What is remarkable is that body size (as expressed in quarter-power al-
lometric scaling) and temperature (as expressed by the Boltzmann factor) ex-
plain the dominant variation among biological rates: for example, correcting 
metabolic rate for mass and temperature reduces the variation from fifteen or-
ders of magnitude variation to approximately one (1). Therefore, these two vari-
ables, along with just two numbers, E and 1/4, provide a surprisingly robust 
baseline for biological phenomena. 
 An intriguing consequence of these laws is the emergence of approximately 
invariant quantities, something physicists recognize as signatures of fundamen-
tal underlying constraints. For example, lifespan increases as M1/4eE/kT (Figure 3), 

Figure 1. A logarithmic plot of metabolic rate as a function of mass. The entire range is 
shown, covering 27 orders of magnitude, from a cytochrome oxidase molecule and respiratory 
complex through a mitochondrion and single cell in vitro (red dots) up to whole mammals 
(blue dots). The solid red and blue lines through the corresponding dots represent M3/4 fits. 
The dashed line is the predicted linear extrapolation from the mass for the smallest mammals 
to an isolated mammalian cell. This figure is reproduced with permission from West et al. 
(2002) (13). 
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whereas heart rate decreases as M–1/4e–E/kT, so the number of heartbeats per life-
time is approximately invariant, independent of size and temperature (lifetime 
heartbeats ~1.5 x 109 for mammals). Hearts are not fundamental but the molecu-
lar machinery of aerobic metabolism is, and it also has an analogous invariant, 
namely, the number of lifetime turnovers of the respiratory complex (~1016) (13). 
 Until recently most theoretical investigations focused on the metabolic rate 
of a specific taxonomic class. The broader challenge is to understand the over-
whelming ubiquity and universality of quarter-power scaling with mass and the 
exponential variation with temperature, and to connect the existence of these 
scaling relationships to unifying principles that determine how life is structured 
and the constraints under which it has evolved. In the second section of this 

Figure 2. Effects of temperature (1000/ K) on mass-corrected resting metabolic rate, ln(BM–3/4

(W/g3/4)), for unicells (A), plants (B), multicellular invertebrates (C), fish (D), amphibians (E), 
reptiles (F), and birds and mammals (G). Birds (black symbols) and mammals (open symbols) 
are shown at normal body temperature (triangles) and during hibernation or torpor (squares). 
This figure is reproduced with permission from Gillooly et al. (2000) (1).
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chapter, we provide a general theory for the origin of these scaling relationships 
based on previously published work (1,12). In the third section we focus on the 
development of subsequent theories that apply biological scaling to biomedical 
problems. In the final section we summarize the findings presented in this chap-
ter and speculate about future work in these areas. 

2. MODEL DESCRIPTION: THEORY FOR THE
ORIGIN OF SCALING RELATIONSHIPS

 Metabolic rate sets the pace of life. By modeling the dynamics of the car-
diovascular system based on some general assumptions, which are independent 
of the detailed dynamics and design, the body size dependence for metabolic 
rate, B M3/4, can be derived. The temperature dependence is given by a Boltz-
mann factor, B e–E/kT, and is a direct consequence of the kinetics of the underly-
ing biochemical reactions responsible for the production of ATP. As mentioned 
above, these two variables alone explain a surprising amount of the variation in 
metabolic rate and set a baseline for analyzing biological organisms. It is likely 
that the residual variation points to interesting biological differences between 
organisms and gives clues as to what these differences are. 

Figure 3. Effects of temperature, T–1 (1000/ K), on mass-corrected lifespan, ln(LM–1/4

(days/g1/4)). Data are for fish and aquatic invertebrates held at different constant temperatures in 
the laboratory. This figure is reproduced with permission from Gillooly et al. (2000) (1). 
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2.1. Body Size Dependence

So, naturalists observe, a flea has smaller fleas that on him prey; and 
these have smaller still to bite 'em, And so proceed ad infinitum. 
Thus, every poet in his kind is bit by him that comes behind. 

—Jonathan Swift 

 We posit that the effect of body size on all physiological variables is deter-
mined by the scaling properties of hierarchical resource-distribution networks, 
such as the cardiovascular and respiratory systems, which deliver essential nu-
trients and metabolites to cells. There are three main assumptions, all presumed 
to be derivative from the processes of evolution and natural selection, that define 
the theory and are postulated to characterize the resource-distribution networks 
(12,16): (i) they are space filling in order to service all cells through the supply 
of nutrients and the removal of wastes, (ii) the energy to deliver resources is 
minimized, and (iii) their terminal units (e.g., capillaries) are invariant. We now 
review how these three assumptions are used to derive the scaling of metabolic 
rate with body size. 
 In order to describe the network we need to determine how the radii, rk, and 
lengths, lk, of the tubes change throughout the network; k denotes the level of the 
branching, beginning with the aorta at k = 0 and terminating at the capillaries 
where k = N. The number of branches per node (the branching ratio), n, is as-
sumed to be constant throughout the network. To characterize the branching we 
introduce scale factors via the ratios k = rk+1/rk and k = lk+1/lk. Since capillaries 
are invariant units, these scale factors completely determine the network except 
for the number of levels, which is a function of body size. 
 The first assumption (i), that networks are space-filling (31), ensures that all 
tissues are supplied by capillaries. The organism is composed of many groups of 
cells, referred to here as "service volumes," vN, which are supplied by a single 
capillary. The total volume to be filled, or serviced, is given by V = NNvN, where 
NN is the number of capillaries. For a network with many levels, N, complete 
space-filling implies that this same volume, V, is filled at all scales by an analo-
gous volume, vk, defined by branches at each level k. Since rk << lk, vk lk

3, so 
space-filling constrains only branch lengths, lk. Thus, V Nkvk Nklk

3, and since 
V is independent of k, we have n–1/3. We assume this relation is valid 
throughout the network, although it becomes less realistic for small values of k.
 A more explicit statement of assumption (ii) is that the continuous feedback 
implicit in evolutionary adaptation has lead to resource-distribution networks 
that, on average, minimize the energy required to support flow through the sys-
tem. There are two independent contributions to energy loss: energy dissipated 
by viscous forces, which is only important in smaller vessels, and energy re-
flected at branch points, which is entirely eliminated by impedance matching. In 
large vessels (e.g., arteries) pulse waves suffer little attenuation or dissipation, 
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and as a result, the branching is area preserving, which leads to a constant blood 
velocity. In small vessels (capillaries, arterioles) the pulse is strongly damped 
because Poiseuille flow dominates and significant energy is dissipated. This 
leads to area-increasing branching, so blood flow slows down, almost ceasing in 
the capillaries. 
 A detailed treatment of pulsatile flow is complicated. Here, we present a 
condensed version that contains the features pertinent to the scaling problem. In 
contrast to non-pulsatile, Poiseuille flow, blood vessels cannot be considered 
rigid for pulsatile flow because vessels expand and contract as the pulse wave 
generated by the contraction of the heart propagates along them. The classic 
Poiseuille resistance of the rigid tube, relating the fluid volume flow rate to the 
driving pressure gradient, is thereby generalized to a complex impedance, signi-
fying attenuated wave propagation (32–34). 
 The equation of motion governing fluid flow is the Navier-Stokes equation 
(35). Neglecting nonlinear terms responsible for turbulence, this is: 

2 .
t
=

v
v p  [1] 

Here, the vector v is the local fluid velocity at some time t, p is the local pres-
sure, and  is the fluid density. If the fluid is incompressible, then local conser-
vation of fluid requires v = 0. When combined with Eq. [1], this gives the 
subsidiary condition 

2p = 0. [2]

The analogous equation governing the elastic motion of the tube is the Navier 
equation. Neglecting nonlinear terms, this is given by: 

2
2

2w E
t
= p , [3] 

where the vector  is the local displacement of the tube wall, w is its density, 
and E is its modulus of elasticity. These three coupled equations, [1], [2], and 
[3], must be solved subject to boundary conditions that require the continuity of 
velocity and force at the tube wall interfaces. 
 In the approximation where the vessel wall thickness, h, is small compared 
to the static equilibrium value of the vessel radius, r, i.e., h << r, the problem 
can be solved analytically, as first shown by Womersley (32), to give 
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where  is the angular frequency of the wave,  ( / )1/2r is a dimensionless 
parameter known as the Womersley number, and c0  (Eh/2 r)1/2 is the classic 
Korteweg-Moens velocity (33,34). The wave velocity, c, and therefore, Z, are 
both complex functions of , so the wave is attenuated and dispersed as it 
propagates. The character of the wave depends critically on whether | | is less 
than or greater than 1. This can be seen explicitly in Eq. [4], where the behavior 
of the Bessel functions changes from a power-series expansion for small | | to 
an expansion with oscillatory behavior when | | is large. In humans,  has a 
value of around 15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005 
in the capillaries. When  is large (>1), Eq. [4] gives c ~ c0, which is a purely 
real quantity, so the wave suffers neither attenuation nor dispersion, demonstrat-
ing that viscosity plays almost no role in these large vessels. In this region (large 
vessels), Eq. [4] also gives Z ~ c0/ r2, and the minimization of energy loss is 
attained through impedance matching, which eliminates the reflection of pulse 
waves at junctions, leading to area-preserving for the vessels, rk

2 = n r2

k+1, so 
that  = n–1/2.
 For small vessels where | | < 1, the role of viscosity becomes increasingly 
important until it eventually dominates the flow. Eq. [4] gives c ~ (1/4)i1/2 c0

0, in quantitative agreement with observation (33,34). Because c now has a sig-
nificant imaginary part, the traveling wave is heavily damped, leaving an almost 
steady oscillatory flow whose impedance is, from Eq. [4], given by the classic 
Poiseuille formula, Zk = 8 lk/ rk

4. Unlike energy loss due to possible reflections 
at branch points, energy loss due to viscous dissipative forces cannot be entirely 
eliminated. However, it can be minimized using the classic method of Lagrange 
multipliers to enforce the appropriate constraints (12,36,37). To sustain a given 
metabolic rate in an organism of fixed mass with a given volume of blood, Vb,
the cardiac output must be minimized subject to a space-filling geometry. This 
leads to  = n–1/3. Thus, for small vessels area-preserving branching is replaced 
by area-increasing branching, and blood slows down, allowing efficient diffu-
sion of oxygen from the capillaries to the cells. Branching, therefore, changes 
continuously through the network, so that  is not independent of k but changes 
continuously from n–1/2 at the aorta to n–1/3 at the capillaries. Consequently, the 
network is not strictly self-similar, but within the two different regions (pulsatile 
and Poiseuille) self-similarity is a reasonable approximation that is well sup-
ported by empirical data (33,34,38–41). 
 To derive allometric relations we need to connect the scaling of vessel size 
within an organism to its body mass, M. A natural vehicle for this is the total 
volume of blood in the network, Vb, which can be shown to depend linearly on 
M if cardiac output is minimized (12,37). Vb is given by 
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where we have divided the sum into regions according to the different values of 
; < is for the area-preserving branching that minimizes cardiac output for pul-

satile flow in large vessels, and > is for the area-increasing branching that 
minimizes the energy loss for Poiseuille flow in small vessels. Further, VN is the 
volume of a single capillary, and k  is the number of levels from the transition 
level between the two regions to the capillaries, which is the same for all mam-
mals, i.e., it does not scale with organism size (12). Substituting the scaling rela-
tionships for , <, and > into Eq. [5], we find that the first term in the square 
brackets scales as nN/3 and that the second term is independent of N. Thus, for N
>> 1 the first term dominates, and the leading-order behavior for the blood 
scales as n4N/3VN. By assumption (iii), capillaries are invariant units, so VN is in-
dependent of M, which implies Vb n4N/3. Also by assumption (iii), the metabolic 
rate per capillary, BN, is invariant, which implies B = nNBN nN Vb

3/4. Since en-
ergy minimization requires Vb M, this implies B M3/4. This matches the well-
known empirical result. 
 Many other relations follow from this theory, including the determination of 
the scaling of the radii and lengths of all vessels and the blood flow and pulse 
rate in each of them. Furthermore, it shows that the 3/4 exponent is only an ap-
proximation, and that deviations can be expected for small mammals where the 
number of vessels that can support a pulse is small compared to that of a large 
mammal (13). Such deviations are indeed suggested by the data (3,42). 
 Metabolic energy is conserved as it flows through cells and mitochondria, 
which may possess hierarchical networks of cellular transport and chemical re-
actions respectively. Surprisingly little is known about intracellular transport 
networks, and an important challenge, both theoretical and experimental, is the 
construction of realistic models. The continuity of flow of metabolic energy 
through this series of sequential networks, a "hierarchy of hierarchies," imposes 
boundary conditions between each level that lead to constraints on densities of 
mitochondria and respiratory complexes (both considered invariant terminal 
units at their appropriate level) (13). This explains why there are typically a few 
hundred mitochondria per cell in vivo, but several thousand in vitro, and why 
there are several thousand respiratory complexes per mitochondrion (and not ten 
or ten million). 

2.2. Body Temperature Dependence

 Rates of chemical reactions, R, depend crucially upon temperature (29,30), 
as first demonstrated by Arrhenius (43) with his famous equation: 

2

lnd R E

dT kT
= . [6] 
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Arrhenius divided molecules in a chemical system into two types: normal and 
activated. Activated molecules have an energy equal to E, the activation energy, 
and participate in chemical reactions, while normal molecules are dormant. He 
then postulated that the normal and activated molecules are in thermodynamic 
equilibrium (43,44). Although the essence of Arrhenius' argument is correct, it is 
now well established that Eq. [6] is actually probabilistic, derivable via statisti-
cal mechanical arguments. Modern kinetic theory holds that reactions can take 
place only if molecules collide with an energy greater than or equal to some 
minimum, E. Treating molecules as billiard balls, the kinetic energy of a colli-
sion increases linearly with the masses of the molecules and as the square of the 
velocity of the molecules relative to one another. Using Maxwell-Boltzmann 
theory, a velocity distribution function for the molecules in a system can be de-
rived, and the probability of a collision occurring with an energy greater than or 
equal to E can be determined (45–47). The leading-order solution for the prob-
ability is proportional to the Boltzmann factor, e–E/kT, which can be thought of as 
proportional to the fraction of molecules with energy, E, at a given temperature, 
T. Hence, the increase in the average energy per collision, and therefore, the 
increase in chemical reaction rates as a function of T, is proportional to the 
Boltzmann factor, which is precisely the solution to the Arrhenius equation, Eq. 
[6]: R e–E/kT. It is important to note that temperature also increases the fre-
quency of collisions. However, the effect of this on reaction rates is a pre-factor 
that scales slowly as a power of T, and, therefore, is subdominant to the expo-
nential behavior of the Boltzmann factor. 
 Biochemical reactions necessary for metabolism within organisms are simi-
lar to reactions in a chemistry laboratory, except enzymes catalyze many meta-
bolic reactions and the medium for the reactions is the mitochondrial membrane 
immersed in water. For every species of organism, there is a minimum tempera-
ture below which metabolic rate ceases, an optimal temperature at which meta-
bolic rate is maximum, and a very narrow temperature range above the optimum 
where metabolic rate rapidly decreases. We are primarily interested in the "bio-
logically relevant" temperature range defined to be between the minimum and 
the optimum temperatures, where effects such as the freezing of water at low 
temperatures or the denaturing of proteins at high temperatures are negligible 
(1,17,18). If temperature is in a "biologically relevant" regime and the effects of 
temperature on enzyme functions are sub-exponential, the temperature depend-
ence of metabolic reaction rates is the same as that of non-biological reactions, 
so that metabolic rate scales with a Boltzmann factor, B e–E/kT, where E now 
represents an activation energy for metabolic reactions (1,46). When combined 
with body size scaling, this implies that the characteristic power per gram, and 
thus, typical biological rates (1,5) scale as 

RBIO M–1/4E–E/kT, [7]
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whereas typical times (5) scale as 

tBIO M1/4eE/kT. [8] 

 This exponential dependence on temperature is closely tied to Q10 factors, 
which are frequently used in biology. A Q10 factor is defined as the percentage 
change in a biological rate or time when there is a 10 C change in temperature. 
Since the temperature in degrees Celsius is given by Tc = T – 273, it follows that 
to leading order, e–E/kT e Tc, where  = E/k(273)2. A value of E  0.6 eV is typi-
cal for metabolic reactions, so  0.1 C–1. Thus, a typical value for Q10, which 
is the ratio of rates, is Q10 e  2.72. Since Q10 factors are only approximations 
to the exact formula, they are probably best used as a guideline, and Boltzmann 
factors should be used for precise tests or calculations. 
 The activation energy, E, can be interpreted in a couple of ways, depending 
on whether the core reactions for metabolism occur in series or in parallel. If the 
reactions occur in series, the rate of supply of reactants to a reaction is set by the 
preceding reaction in the chain, and thus, the overall rate of the chain of reac-
tions is set by its slowest, rate-limiting step. In this case, E is simply the activa-
tion energy of this rate-limiting reaction. However, if there are N core reactions 
that occur in parallel and are supplied with molecules from different pools, the 
overall rate of metabolism is given by the average rate, which to leading order is 
proportional to 

/

0

1
i

N
E kT

i

e
N =

. [9] 

In the special case where the activation energies for all of the core reactions are 
near some average value, E  (Ei = E  or (Ei – E )/kT << 1 for all i), the overall 
reaction rate for metabolism is approximately /E kTe . Similarly, if there is a 
subset of reactions that have activation energies near some average value, E ,
and this average is significantly smaller than activation energies for all other 
reactions, the rate will be given by /E kTe . Real biochemical networks consist of 
a combination of reactions in series and reactions in parallel. Since many em-
pirical results agree with the temperature dependence in Eqs. [7] and [8] (see the 
§1), it is likely that one of the scenarios outlined above, or some combination 
thereof, is correct for biological systems. 
 For a wide range of rates and times across a broad assortment of taxa, 
measured values of E are typically in the range of 0.6–0.7 eV, reflecting some 
shared biochemistry (1,5,17,18). Indeed, these values for E bracket the average 
value for biochemical reactions (48,49) and are very close to the activation en-
ergy for the oxidation of NaDH, which is common to most of life and may be a 
rate-limiting step! 
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3. BIOMEDICAL APPLICATIONS

 Many medical studies are performed on animals other than humans, espe-
cially on mice and rats. Understanding how to interpret data from animal studies 
and how to compare them with similar conditions in humans requires the use of 
scaling relationships. In this section we briefly describe several areas in which 
progress has been made in applying the theory of biological scaling to biomedi-
cal problems. 

3.1. Ontogenetic Growth and Developmental Times

 The theory of biological scaling naturally leads to a general growth equation 
applicable to all animals (50,51), 

c
c c c

dN
B N B E

dt
= + . [10] 

Here, Nc is the total number of cells in the organism, Bc is the metabolic rate 
given to maintenance per cell, and Ec is the energy needed to create a fully 
grown, new cell. Metabolic energy is transported through the network to cells 
where it is used either for maintenance (the first term on the right side of Eq. 
[10]), including replacement of cells, or for growth of new cells (the second 
term on the right side of Eq. [10]). Substituting Nc = m/mc into Eq. [10], where m
is the ontogenetic mass at time t after birth and mc is the average cell mass, gives 
an equation for the rate of growth of an organism: 

3/ 40 c c

c c

B m Bdm
m m

dt E E
= , [11] 

where B0 is a taxon-dependent normalization constant for the scaling of meta-
bolic rate. The parameters of the resulting growth equation are determined solely 
by fundamental cellular properties, such as their metabolic rate and the energy 
required to create them. The model gives a natural explanation for why animals 
stop growing: the number of cells supplied (Nc m) scales faster than the num-
ber of supply units (since B NN m3/4) and leads to formulae for the asymptotic 
mass of the organism: M = (B0mc/Bc)

4. Eq. [11] can be solved analytically to de-
termine m(t), leading to a classic sigmoidal curve. From the ensuing equations, a 
universal scaling curve for growth is derived that is well fit by data from many 
different organisms (Figure 4). Ontogenetic development is therefore a universal 
phenomenon determined by basic cellular properties. Furthermore, this theory 
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for ontogenetic growth leads to scaling laws for other growth characteristics, 
such as doubling times and the relative energy devoted to maintenance. 

3.2. Nucleotide Substitution Rates, Cellular Energetics, and Genome Size

 One of the most interesting consequences of these ideas is that nucleotide 
substitution rates in DNA and rates of molecular evolution (52,53) can be char-
acterized by combining the theory of biological scaling with Kimura's classic 
neutral theory of molecular evolution (54). It is assumed that point mutations, 
and therefore substitutions, occur at a rate proportional to metabolic rate. This is 
because most mutations are due to processes such as free radical production or 

Figure 4. Universal growth curve. A plot of the dimensionless mass ratio, r = 1 – R  (m/M)1/4,
versus the dimensionless time variable, = (at/4M1/4) – ln[1 – (m0/M)1/4], where a = B0mc/Ec and 
m0 is the mass at birth. Data are for a wide variety of species with determinate and indetermi-
nate growth. When plotted in this way, our model predicts that growth curves for all organisms 
should fall on the same universal parameterless curve 1 – e–  (shown as a solid line). The model 
identifies r as the proportion of total lifetime metabolic power used for maintenance and other 
activities. This figure is reproduced with permission from West et al. (2001) (50). 
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replication error during cell division, which are consequences of metabolism. 
The predictions of this theory are supported by molecular divergence data from 
mitochondrial and nuclear genomes (55). By accounting for the effects of body 
size and temperature on metabolic rate, a single molecular clock explains het-
erogeneity in rates of nucleotide substitution across genes, taxa, and thermal 
environments. This clock, however, "ticks" at a constant substitution rate per 
mass-specific metabolic rate rather than per unit time. For taxonomic groups 
with DNA repair rates and genome lengths that are roughly constant, this pre-
dicts that the number of substitutions per lifetime is invariant because lifetime 
scales inversely with metabolic rate (Figure 2). 
 In collaboration with our colleagues, we are currently analyzing other cellu-
lar level properties, including scaling laws for cell size, coding and non-coding 
genome lengths, and RNA abundances. Unicellular eukaryotes vary in mass and 
volume by several orders of magnitude ( 10–10 to 10–6 g), and their metabolic 
rates scale as cell mass to the 3/4-power (Figure 1). This raises interesting ques-
tions about how external exchange surfaces and internal structures and rate 
processes within cells scale (13). Moreover, recent data for multicellular organ-
isms suggest that the mass of certain cell types scale with body size whereas 
other types remain roughly constant. The scaling of cell size is therefore not just 
a question of the size of an organism or of endothermy versus ectothermy, but is 
also related to questions of functionality. Recent progress on the scaling of cell 
size and genome length suggests that these problems may well be interrelated. 
 By understanding how much variation in genome length is due just to 
changes in the size and temperature of the organism and identifying the residuals 
of these more dominant patterns, it may be possible to provide a better definition 
of biological or genomic complexity and possibly help resolve the C-value para-
dox (56–60), i.e., why is genome length seemingly uncorrelated with organismal 
complexity. A few groups have begun to study connections between the theory 
of biological scaling and genome length (14,15). Furthermore, it is well known 
that in eukaryotes total genome length scales linearly with cellular mass. Our 
colleagues and we believe that we have begun to understand this relationship, 
and we have discovered similar relationships for coding genome length. Further 
progress on the scaling of genome length may lead to very simple methods for 
estimating the gene number of an organism based on the cellular mass, and this 
could potentially facilitate gene searches. 

3.3. Drug Dosing: Scaling from Rats to Humans

 Tests to determine the appropriate level of drug dosage are often done on 
mice or rats and then extrapolated to humans (61,62). Guiot et al. (9) have dis-
cussed the use of the growth model described in §3.1, as applied to tumor 
growth, for determining levels of therapeutic tumor dosages. In mammals the 
extrapolation of drug dosage for the treatment of a given condition is, for sim-
plicity, sometimes calculated assuming a linear dependence with body mass. 
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However, the global ability to process drugs should scale as the metabolic rate, 
M3/4, and residence times should scale as the inverse of mass-specific metabolic 
rate, M1/4. These 3/4 extrapolations can provide guidelines for drug dosing and 
are more appropriate than linear extrapolations. However, factors particular to 
the biochemistry of a given species are also important and must be used in tan-
dem with allometric estimates. 
 To illustrate the problems associated with extrapolations of drug dosing, we 
consider the elephant, Tusko. West et al. (63) wanted to determine whether LSD 
had the same effect on elephants as a naturally occurring state in male elephants 
known as "on musth," which has associated biochemical changes (63). They 
cited studies that gave appropriate drug dosing of LSD for cats, rhesus ma-
caques, and humans. Although appropriate drug dosing varies considerably 
among these species, their estimate for appropriate drug dosing of an elephant 
was a nearly linear extrapolation of the appropriate dosing for cats. Since an 
elephant weighs approximately 1000 times as much as a cat, this means Tusko 
received approximately 1000 times more LSD than a cat. In contrast, if drug 
dosing is scaled according to metabolic rate, the LSD dosing for an elephant is 
approximately 180 times that of a cat. While this calculation does not account 
for other, possibly important, factors, it naively suggests that Tusko was given 
five times more LSD than was appropriate. Tusko died about two hours after 
receiving the injection. 

3.4. Spread of Infectious Diseases

 Epidemiological equations are very similar to those for population growth, 
and it is likely that our theory for population growth and mortality rates (17) 
could be extended to study the spread of infectious diseases. Certainly, new fac-
tors particular to specific diseases must be considered. For instance, water abun-
dance and biting rates of mosquitoes play an important role in the transmission 
rates of malaria (64). Our work on populations demonstrates that the biologi-
cally mediated processing of energy and materials is a direct consequence of the 
metabolic rates of the constituent organisms, and therefore, that describing 
higher-level phenomena in terms of individual-level interactions is fruitful. A 
similar theory could aid studies of the spread of infectious diseases, especially if 
combined with previous theoretical models that have already proved useful in 
intervention strategies (65,66). 

3.5. Cancer Growth

 Recently, Deisboeck and his collaborators have published exciting work on 
the application of the above growth model (§3.1) to tumor growth (8–10). Tak-
ing the ontogenetic growth model described above as a point of departure, they 
analyzed growth curves of tumors, both in vivo and in vitro, for rats and hu-
mans. Their results closely matched the form of the ontogenetic growth equa-
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tion, but the parameters were determined by fitting the data and not from first 
principles. Although the basic ideas behind our growth model should apply to 
tumors, the theory does not include the presence of necrotic tissue. As such, the 
derived parameters might be misleading. 
 Concurrently, Alex Herman and we have been developing a theory for tu-
mor growth that includes necrosis, with the initial goal of predicting the effects 
of tumor size and host size on the tumor's metabolic rate. Using the network 
theory for the cardiovascular system, we intend to make predictions that apply to 
both avascular and vascular tumors. For the latter, we are combining the mecha-
nism of angiogenesis with the network theory (§2.1) to describe, or possibly to 
predict, the structure and dynamics of the tumor vascular system. Predictions 
about which properties of cancer vasculature allow cancer cells to grow quickly 
and at the expense of the rest of the body will be made. Preliminary results sug-
gest that a substantial amount of tumor data can be parsimoniously explained 
and that disparate empirical findings for tumors can be interrelated in a novel 
way. We have a manuscript in preparation in which we provide a theory for the 
allometry of asymptotic tumor sizes and doubling times and derive tumor 
growth trajectories in a mechanistic fashion (11). 

3.6. Sleep

 Sleep is one of the most noticeable and widespread phenomena in multicel-
lular animals, occurring in mammals, birds, amphibians, reptiles, and insects 
(67). Recent neurobiological studies have uncovered a great deal of information 
about the mechanisms involved in sleep, but a convincing demonstration of the 
function of sleep is considered one of the most important, unsolved problems in 
science. Some of the most-studied and best-known hypotheses for the function 
of sleep are related to metabolic rate. These include rest for the body or brain 
(6,68), cortical reorganization associated with memory and learning (69–73), 
and cellular repair in the body or brain (74–79). However, there is a remarkable 
absence of quantitative theories to elucidate or distinguish between these metab-
olically based theories for sleep. 
 We have developed a quantitative theory for mammalian sleep that relates 
fundamental parameters of sleep to metabolic rate and thus, to body size. This 
theory is based on the hypothesis that processes related to metabolism or meta-
bolic damage, most notably cortical reorganization and cellular repair, occur 
during sleep. For example, sleep cycle time—the time between the endings of 
periods of REM sleep, i.e., the amount of REM sleep plus non-REM sleep in a 
single cycle—increases with body size in a systematic way (see Figure 5). Using 
this theory we are also able to derive previously unknown relationships between 
sleep time, awake time, and body size, and these relationships are supported by 
available data for mammals (7). These findings suggest that a metabolic theory 
for sleep is well founded and is possibly the dominant explanation for why ani-
mals sleep the amounts that they do. 
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3.7. Lifespan

 The lifespan, L, of animals scales as L = L0M
1/4eE/kT, reflecting the fact that 

larger, colder animals generally live longer than smaller, warmer ones (1,2). The 
scaling exponent is the same for all species, but among different taxa of mam-
mals L0 varies by more than a factor of two. Furthermore, birds live a factor of 
ten longer than mammals of similar mass. There is evidence that these variations 
may be due to differences in the rates of radical production by mitochondria and 
rates of DNA repair of different species (80–82). Consequently, combining theo-
ries of aging and empirical findings (83–87) with the theory of biological scaling 
may give new insights into the process of aging. 

4. DISCUSSION AND CONCLUSIONS

 The paradigm and principles developed here suggest novel ways of using 
quantitative analytic thinking to attack many fundamental problems in the bio-
medical sciences. This work has enormous potential at all scales and in a variety 
of different contexts, ranging from the highly practical (such as pharmacology, 
cancer growth, and aging as well as immunology; see this volume, Part III, 

Figure 5. Plot of the logarithm of sleep cycle time, the period between REM and non-REM 
sleep, in minutes versus the logarithm of body size in Kg, ln(Mass(Kg)). The slope computed 
using OLS regression is 0.19 (p < 0.0001, n = 32, 95% CI: 0.14, 0.23). Note that the confi-
dence intervals exclude the naive expectation of 1/4. This is because the scaling of sleep cycle 
time should scale as brain mass to the 1/4, and since brain mass scales as body mass to the 3/4 
(93), the predicted exponent is actually 3/16 = 0.1875, which is in close agreement with the 
measured exponent. This figure will appear in Savage and West GB (to be published) (7).  
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chapter 4.3, by Perelson, Bragg, and Wiegel) to the conceptual (such as formu-
lating quantitative physical theories that capture the properties of intracellular 
network structures, illuminate the function of sleep, and are complementary to 
the algorithmic principles of the genetic code). 
 The success of the theory of biological scaling should be viewed as a mere 
beginning. By its very nature, the model should be thought of as a zeroth-order 
description of "average idealized organisms" that embody the essential features 
of biological systems. In the future, more detailed analyses should be performed 
that use the theory of biological scaling as a point of departure. Indeed, a major 
conceptual challenge presented by our research is, "Why does it work so well?" 
Is there some fixed point, or deep basin of attraction that operates within the 
general dynamical structure and ensures that, in spite of enormous complexity, 
the general features of biological systems are robust against significant perturba-
tions (88)? 
 In conclusion, our theory offers a comprehensive, quantitative, integrated 
explanation for the scaling of many biological rates and times with body size 
and temperature. It explains why body size and temperature have such a power-
ful influence on biological structure and function at all levels of organization. As 
discussed in §3, the theory of biological scaling is already being applied in excit-
ing ways to several biomedical systems, and we are hopeful that it will lead to 
important contributions to the biomedical field. 

Methods:

 Data for sleep cycle times are from (89), and methods are detailed therein. 
Data for body mass are not given in (89), so most values for body mass come 
from (90), which is an earlier compilation that (89) draws from heavily. When 
masses given in (90) did not correspond to sleep measurements listed in (89), the 
values given in (91) were taken, and when the mass could not be found there, we 
used the average of the range of values given in (92). Some of the original 
sources given in (89) were consulted to determine which species were used. In a 
few cases, the logarithmic averages of body masses were calculated for groups 
of species (e.g., four species of Microtus and five species of Peromyscus). This 
was done in order to be consistent with the original sleep data in (89). 
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THE ARCHITECTURE OF BIOLOGICAL 
NETWORKS

Stefan Wuchty, Erszébet Ravasz, and Albert-László Barabási 

Department of Physics, University of Notre Dame, Notre Dame, Indiana

An ambitious goal of contemporary biological research is the elucidation of the structure 
and functions of networks that constitute cells and organisms. In biological systems, net-
works appear in many different disguises, ranging from protein interactions to metabolic 
networks. The emergence of these networks is driven by self-organizing processes that 
are governed by simple but generic laws. While unraveling the complex and interwoven 
systems of different interacting units, it has become clear that the topology of networks of 
different biological origin share the same characteristics on the large scale. In this chap-
ter, we survey the most prominent characteristics of biological networks, focusing on the 
emergence of the scale-free architecture and the hierarchical arrangement of modules. 

1. INTRODUCTION

 Understanding complex systems often requires a bottom–up approach, 
breaking the system into small and elementary constituents and mapping out the 
interactions between these components. In many cases, the myriad components 
and interactions are best characterized as networks. For example, the society is a 
network of people connected by various links, including friendships (36), col-
laborationships (29,59), sexual contacts (33), or scientific coauthorships (437,8). 
Electronic communication relies on two very different networks: the physical 
network wiring the routers together (Internet) (1,14) and the web of homepages 
linked by URLs (World Wide Web) (2,9,32). Airline, cell-phone, power-grid, or 
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business networks represent further examples of complex networks of techno-
logical, scientific or economic interest. 
 In biological systems networks emerge in many disguises, from food webs 
in ecology to various biochemical nets in molecular biology. In particular, the 
wide range of interactions between genes, proteins, and metabolites in a cell are 
best represented by various complex networks. During the last decade, genomics 
has produced an incredible quantity of molecular interaction data, contributing 
to maps of specific cellular networks. The emerging fields of transcriptomics 
and proteomics have the potential to join the already extensive data sources pro-
vided by the genome-wide analysis of gene expression at the mRNA and protein 
levels (10,11,40). Indeed, extensive protein–protein interaction maps have been 
generated for a variety of organisms including viruses (16,34), prokaryotes, like 
H. pylori (45), and eukaryotes, like S. cerevisiae (17,22–24,49,52) and C. ele-
gans (58). Beyond the current focus on uncovering the structure of the genomes, 
proteomes, and interactomes of various organisms, some of the most extensive 
data sets are the metabolic maps (28,39), catalyzing an increasing number of 
studies, focusing on the architecture of the metabolism (15,26,57). 
 Networks offer us a new way to categorize systems of very different origin 
under a single framework. This approach has uncovered unexpected similarities 
between the organization of various complex systems, indicating that the net-
works describing them are governed by generic organization principles and 
mechanisms. Understanding the driving forces that invest different networks 
with similar topological features enables systems biology to combine the nu-
merous details about molecular interactions into a single framework, offering 
means to address the structure of the cell as a whole. 

2. BASIC NETWORK FEATURES

 A node's degree (or connectivity), giving the number of links k the node 
has, is the most elementary network measure. For example, in Figure 1 node i
has exactly three links (ki = 3). The overall graph, however, is characterized by 
the average degree, <k>, which has the value <k> = 2.6 for this example. Yet, 
the average degree does not capture the potential degree variations present in the 
network. This is better characterized by the degree distribution, P(k), which 
gives the number of nodes with exactly k links (see Table 1). 
 Planing a trip from Anchorage, Alaska, to Alice Springs in the outbacks of 
Australia requires finding the shortest paths through a particular airline's trans-
portation network. As in most networks, there are multiple paths between any 
two nodes i and j; a useful distance measure is the length of the shortest path, lij

(see Figure 1). In a network of N nodes, the mean path length is defined as 
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2
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N
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N N =
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offering a measure of the network's navigability. A network that can be 
"crossed" by a relatively small number of steps is often referred to as displaying 
the "small world" property, first illustrated on social networks, indicating that 
two randomly chosen individuals can be connected by only six intermediate 
acquaintances (36). 
 Nodes in many real systems exhibit a tendency to cluster, which can be 
quantified using the clustering coefficient (60), a measure of the degree to which 

Table 1

                   Parameter                                                                              Definition 

 Total number of nodes N

 Degree of node i ki

 Shortest path length lij

 Mean path length 
1

2

( 1)

N

ijk i i
l l

N N =
=

 Clustering coefficent 
2

( 1)
i

i

i i

n
C

k k
=

 Mean clustering coefficient 
1

1 N

ii
C C

N =
=

Figure 1. Characterizing a simple network: in the figure, both nodes, i and j, have three links (k
= 3). The shortest path between these nodes, indicated in blue, has length lij = 3.
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the neighbors of a particular node are connected to each other (Figure 2). For 
example, in a friendship network C reflects the degree to which friends of a par-
ticular person are friends with each other as well. Formally, the clustering coef-
ficient of node i is defined as 

2

( 1)
i

i
i i

n
C

k k
= , [2] 

where ni denotes the number of links connecting the ki neighbors of node i to 
each other. Accordingly, we can define the average clustering coefficient as 

1

1 N

i
i

C C
N =

= . [3] 

An additional important measure of the network's structure is the function C(k), 
defined as the average clustering coefficient of all nodes with k links. If C(k) is 
independent of k, the network is either homogeneous or it is dominated by nu-
merous small tightly linked clusters. In contrast, if C(k) follows C(k) ~ k–1, the 
network has a hierarchical architecture, meaning that sparsely connected nodes 
are part of highly clustered areas (12,27,46,47). In such hierarchical networks 
communication between the different highly clustered neighborhoods is main-
tained by a few hubs. 
 As we will see below, the degree distribution P(k) and the k dependence of 
C(k) can have generic features, allowing us to classify various networks. Pa-
rameters such as the average degree <k>, average path length <l>, and average 
clustering coefficient <C> characterize the unique properties of the particular 
network under consideration, and therefore are less generic. 

Figure 2. The clustering coefficient C offers a measure of the degree of interconnectivity 
in the neighborhood of a node. For example, the red node whose neighbors are all con-
nected to each other has C = 1 (left), whereas the red node with no links between its 
neighbors has C = 0 (right). 
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3. NETWORKS MODELS

 The main role of network models is to explain the emergence and behavior 
of some of the most important network characteristics. As they play a crucial 
role in shaping our understanding of complex networks, we need to pay atten-
tion to some of the more important models. 

3.1. Random Networks

 While graph theory initially focused on regular graphs, since the 1950s 
large networks with no apparent design principles, described as random graphs 
(8), were proposed as the simplest and most straightforward realization of a 
complex network. According to the Erdös-Rényi (ER) model of random graphs 
(13), we start with N nodes and connect each pair of nodes with probability p,
creating a graph with approximately [pN(N – 1)]/2 randomly distributed links 
(first column in Figure 3). The ER graph has an exponential degree distribution 
and exhibits the small-world property. Indeed, in the ER network most nodes 
have approximately the same number of links, k  <k> (first column in Figure 
4), and the mean path length is proportional to the network size, <l> ~ log N.
 The growing interest in complex systems prompted many scientists to ask a 
simple question: are real networks behind diverse complex systems, like the cell, 
fundamentally random? 

3.2. Scale-free Networks

 A highly nontrivial development in our understanding of complex networks 
was the discovery that for most large networks, including the metabolic and pro-
tein interaction networks (24,26), the degree distribution follows a power-law: 

P(k) ~ k– . [4] 

These networks are called scale-free, as a power law does not support the exis-
tence of a characteristic scale. Two mechanisms, absent from the classical ran-
dom network model, are responsible for the emergence of this power-law degree 
distribution (5,6). First, most networks grow through the addition of new nodes, 
which link to nodes already present in the system. Second, in most real networks 
there is a higher probability to link to a node with a large number of connections, 
a property called preferential attachment. The scale-free model introduced by 
Barabási and Albert (the BA model; second columns in Figures 3 and 4) incor-
porates these features (5). Starting from a small graph, at each time step a 
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node with m links is added to the network, connecting to a previously present 
node i with probability 

i
i

j
j

k

k
= , [5] 

Figure 3. (a) The random network model is constructed by laying down N nodes and connecting 
each pair of nodes with probability p. The figure shows a particular realization of such a network 
for N = 10 and p = 0.2. (b) The scale-free model assumes that the network constantly grows by 
the addition of new nodes. The figure depicts the network at time t (nodes connected by green 
links) and after addition of a new node at time t + 1 (red links). With the introduction of new 
nodes, already highly connected ones are more favored to be connected to the new one than less 
connected ones. This procedure is called preferential attachment. (c) The iterative construction 
of a hierarchical network starts from a fully connected cluster of four nodes (blue), which is 
replicated three times. Subsequently, the peripheral nodes of each replica (green) are connected 
to the central node of the original module. Repeating replication and the connection step with the 
16-node module (red) leads to a 64-node network that provides scale-free topology and is built 
by nested modules. (d) The random network is rather homogeneous, i.e., most nodes have about 
the same number of links. (e) In contrast, a scale-free network is extremely inhomogeneous: 
while the majority of nodes have one or two links, a few nodes have a large number of links, 
preserving system integrity. To show this, five nodes with the highest number of links are col-
ored red and their first neighbors green. While in the random network only 27% of the nodes are 
reached by the five most-connected nodes, in the scale-free network more than 60% are, demon-
strating the key role hubs play in a scale-free network. Note that both networks contain the same 
number of nodes and links. (f) A hierarchical network still preserves a scale-free organization 
and displays the inherent modularity of nodes. The node's affiliation with a certain module is 
indicated by different colors. However, the underlying network structure clearly indicates 
blurred boundaries of its modules. 
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where ki is the degree of node i. The network generated by this growth process 
will be scale-free with degree exponent  = 3. In a scale-free network the prob-
ability that a node is highly connected (k >> <k>) is statistically more significant 
than in a random graph. Thus, the network's properties are often determined by a 
relatively small number of highly connected nodes or hubs. An important conse-
quence of the hubs is that scale-free networks exhibit high tolerance to random 
perturbations but are sensitive to targeted attack upon the highly connected 
nodes (3). Accordingly, failure of randomly selected nodes cannot destroy the 
network's integrity. However, systematic removal of the hubs will rapidly frag-
ment the network. This feature is of particular importance for biological sys-
tems, since it reflects a biochemical network's resilience against random 
mutations. Therefore, highly connected nodes in biochemical networks might be 
potential candidates for drug targets. 
 The presence of hubs in a scale-free network has a fundamental impact on 
virus spreading as well. Classical epidemiological models predict that infectious 
diseases with transmission probability under an epidemic threshold will inevita-

Figure 4. (a) For the random graph, the degree distribution, P(k), which gives the probability 
that a randomly selected node has exactly k edges, follows a Poisson distribution that is strongly 
peaked at the average degree <k> and decays exponentially for large k. (b,c) The P(k) values of 
a scale-free and a hierarchical network do not have a peak and decay as a power-law, P(k) ~ k .
(d,e) For both a random and scale-free network, the C(k) function, which denotes the mean 
clustering coefficient for nodes with exactly k links, is independent of k. (f) In contrast, C(k) of a 
hierarchical network depends on k, decaying as C(k) ~ k–1. Insets correspond to the number of 
underlying networks. 
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bly die out. However, in scale-free networks the epidemic threshold is reduced 
to zero (43). Thus, as some social and sexual networks are known to exhibit a 
scale-free topology (33), even extremely weakly infectious viruses can spread 
and prevail, making random immunization ineffective. 

3.3. Hierarchical Networks

 Many real networks are expected to be fundamentally modular, meaning 
that the network can be seamlessly partitioned into a collection of modules. 
Each module is expected to perform an identifiable task, separable from the 
function of other modules (19,31,50,61). Therefore, we must reconcile the scale-
free property with the network's potential modularity. Numerical simulations 
indicate that neither the random nor the scale-free network model are modular. 
 In order to account for the coexistence of modularity, local clustering, and 
scale-free topology in real systems, we have to assume that clusters combine in 
an iterative manner, generating a hierarchical network (7,46). Such networks 
emerge from an iterative duplication and integration of clustered nodes, a proc-
ess that in principle can be repeated indefinitely. Our starting point is a small 
cluster of four densely linked nodes. Next we generate three replicas of this hy-
pothetical module and connect the three external nodes of the replicated clusters 
to the central node of the old cluster, obtaining a large 16-node module. Subse-
quently, we again generate three replicas of this 16-node module and connect 
the 16 peripheral nodes to the central node of the old module, obtaining a new 
module of 64 nodes (third column of Figure 3). 
 The hierarchical network model seamlessly integrates a scale-free topology
with an inherent modular structure by generating a network that has a power-law 
degree distribution with degree exponent  = 1 + ln 4/ln 3 = 2.26. Yet the most 
important signature of this hierarchical modularity is the fact that the clustering 
coefficient, C(k), scales as k–1 (third column of Figure 4). Note that for a network 
generated by the ER and BA models C(k) is independent of k.
 Modularity does not, however, imply clear-cut subnetworks that are linked 
in well-defined ways. In fact, the boundaries of modules are often considerably 
blurred, triggered by highly connected nodes that interconnect modules. 

4. BIOLOGICAL NETWORKS

4.1. Metabolic Networks

 The structure of metabolic networks was addressed by two independent 
studies by Fell and Wagner and Jeong et al. Fell and Wagner assembled a list of 
stoichiometric equations that represent the central routes of the energy metabo-
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lism and small-molecule building block synthesis in E. coli (15,57). A substrate 
graph was defined by the nodes representing all metabolites, two substrates be-
ing considered linked if they occurred in the same reaction. They found the sub-
strate graph to be scale-free, with glutamate, coenzyme A, 2-oxoglutarate,
pyruvate, and glutamine having the highest degree, which were viewed as an 
evolutionary core of the E. coli.
 At the same time, Jeong et al. analyzed the metabolic networks of 43 organ-
isms representing all three domains of life (26), finding that the power-law de-
gree distribution for both incoming and outgoing edges holds for organisms of 
all kingdoms. Furthermore, the average separation between nodes has the same 
value for all organisms under consideration, regardless of the number of sub-
strates found in the given species. Interestingly, the ranking of the most con-
nected substrates is largely identical for all organisms. A recent study comparing 
the system-level properties of metabolic networks in various organisms indicates 
that the structural features of these networks are more conserved than the com-
ponents themselves (44,61). 

4.2. Protein Interaction Networks

 Protein interactions offer another opportunity to study cellular networks, 
considering proteins as nodes and physical interactions (binding) as links. It has 
been shown that interaction networks of S. cerevisiae and H. pylori proteins 
exhibit distinct scale-free behavior (24,56; see also this volume, Part III, chapter 
1.3, by Wagner). Although protein interaction data are derived from different 
sources and retrieved by different methods, the emergence of the scale-free 
property appears to be a robust feature. As previously discussed, scale-free net-
works are vulnerable to targeted attack on their highly connected nodes. There-
fore, mutations of highly interacting proteins are expected to be lethal for the 
cell. This prediction is supported by explicit measurements (25). Figure 5 repre-
sents the yeast protein interaction network, illustrating the basic feature that 
hubs keep many sparsely connected nodes together. 

4.3. Protein Domain Networks

 The domain architecture of proteins was studied by considering protein do-
mains as nodes and their co-occurrence in proteins as links (4,62,63), document-
ing again the emergence of a scale-free architecture. Although the methods and 
sources of domain information were different, the scale-free features of the net-
works were found to be robust. Domains that appear in cellular functions crucial 
for the maintenance of multicellular organisms, such as signal transduction and 
cell–cell contacts, were found to be the most connected. Thus, domains like 
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kinases, immunoglobulins, and zinc-fingers played an important role. Interest-
ingly, the increasing complexity of an organism's domain architecture was found 
to decrease the slope of the degree distribution, and highly connected domains 
constantly accumulated links due to the organismic complexity. Similarly, inter-
actions of domain families generated from sequence and structural data (41,63) 
revealed that highly connected domains on sequence level appear to be the most 
frequently interacting as well. 

4.4. Hierarchies in Biological Networks

 The clustering coefficient of metabolic networks varies with the inverse 
degree, C(k) ~ k–1, indicating the presence of a hierarchical modularity. In order 
to discern the discrete modules, we can define a topological overlap, which 

Figure 5. Map of the protein–protein interaction network of S. cerevisiae (24). The color code 
of nodes refers to the phenotypic effect the deletion of the respective protein has on the organ-
ism (red: lethal; green: viable; orange: slowed growth; yellow: unknown). 
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scales from 0 to 1, reflecting the degree to which two metabolites i and j interact 
with the same substrates. Substrates that are part of larger metabolic modules 
appear to have a high topological overlap with their neighbors. The application 
of average-linkage clustering to the obtained overlap matrix has been used to 
uncover the topological modules present in the metabolism (Figure 6). The clus-
tering identified a hierarchy of nested topological modules of increasing size and 
decreasing interconnectedness. The hierarchical tree offers a breakdown of the 
metabolism into several large modules that are further partitioned into smaller 
but more integrated submodules, reflecting a certain degree of inherent self-
similarity. Some of these modules have been found to be in excellent agreement 
with the known functional classification of metabolites. Other approaches to 
discern modules in metabolic networks focused on the appearance of edges in 
mutual shortest paths within the network (18,21). The most frequent edges were 
identified and removed in an iterative manner, uncovering again the underlying 
functional modules. 
 Finally, modularity is not an exclusive property of the metabolism. Indeed, 
the protein interaction network of S. cerevisiae (66), based on four independent 

Figure 6. Hierarchies of topological modules in E. coli metabolism. The branches of the 
tree obtained by average-linkage clustering of the topological overlap of metabolites (47) 
are color-coded to reflect the predominant biochemical classification of their substrates. 
The biochemical classes represent carbohydrate metabolism (blue); nucleotide and nucleic 
acids metabolism (red); protein, peptide, and amino acid metabolism (green); lipid metabo-
lism (cyan); aromatic compound metabolism (dark pink); monocarbon metabolism (yel-
low), and coenzym metabolism (light orange) (39). 
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databases (22,35,52,65), and the conformational spaces of RNA (64), also re-
flect a modular architecture. 

4.5. Mechanisms of Proteome Evolution

 The origin of scale-free behavior in biological networks continues to offer 
some unresolved questions. Recently, however, it has been shown that a simple 
model based on gene duplication can lead to the experimentally observed scale-
free topology of protein–protein interaction networks (42,51,53,56). In the 
model, at each time step a gene is randomly chosen and duplicated. The copied 
gene retains all interactions of the original gene. To mimic the potential loss or 
gain of interactions due to random mutations, interactions of the duplicated 
genes are deleted or newly added with probabilities  and , respectively (Figure 
7). The emerging network can be shown analytically to have a power-law degree 
distribution, a high clustering coefficient, and a visual structure similar to the 
protein–protein interaction network shown in Figure 5. 

5. CONCLUSIONS

 A power-law degree distribution, the quantitative signature of a scale-free 
network, has emerged as one of the few universal laws characterizing cellular 
networks. Of even greater immediate importance is the intriguing possibility of 
using the insights provided by scale-free models as a framework to facilitate 

Figure 7. Mechanism of gene duplication and divergence model. At each time step a gene 
is randomly duplicated, retaining all of its links (blue nodes and edges). Subsequently, 
interactions of the duplicated gene are deleted or newly added with probabilities  and ,
respectively (green edge). 
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analysis of biological networks at a higher level of abstraction. Such approaches 
could reveal salient features of biological phenomena missed by non-network-
based approaches. 
 The appearance of hierarchical modularity in biological networks supports 
the assumption that evolution acts on many levels. The accumulation of local 
changes, affecting the small highly integrated modules, slowly impacts the lar-
ger, less integrated modules as well. Thus, evolution might act in a self-similar 
fashion, copying and reusing existing modules to further increase the organism's 
complexity. Especially in the face of eukaryotic evolution, this network-based 
framework might be suitable to describe the explosion of complexity in the de-
velopment of the single-celled S. cerevisiae toward the multicellular H. sapiens.
 It is widely accepted that different cellular functions—such as information 
storage, processing, and execution—are carried out by the genome, transcrip-
tome, proteome, and metabolome. Although the functional distinction between 
these organizational levels is not always clear cut since, e.g., the proteome is 
crucial for short-term information storage, all cellular functions can be described 
by networks of various heterogeneous components. One way to visualize the 
complex relationships between these components is to organize them into a sim-
ple complexity pyramid (38) in which various molecular components—genes, 
RNAs, proteins and metabolites—organize themselves into recurrent patterns 
such as metabolic pathways and genetic regulatory motifs. In turn, motifs and 
pathways are seamlessly integrated to form functional modules that are respon-
sible for distinct cellular functions (19). These modules are nested in a hierar-
chical fashion and define the cell's large-scale organization (Figure 8). 
 Our present knowledge about the architecture of biological networks em-
phasizes two major aspects: (1) discrete cellular functions are mediated with the 
aid of distinct albeit often-blurred modules; (2) network integrity is assured by a 
handful of highly connected nodes, making networks robust against random 
failures but exceedingly vulnerable to targeted attack. These features explain the 
observation that many mutations have little or no phenotypic effect (55), which 
appears to be consistent with the presence of genes that either cannot propagate 
their failure or whose function can be replaced by other components of the net-
work. The presence of genes that integrate multiple signals and can trigger 
widespread changes upon their failure proves the crucial role of highly con-
nected genes. 
 For example, the tumor suppressor gene p53 has been identified as such a 
highly connected and thus crucial node, which, once mutated, severely jeopard-
izes genome stability and integration of signals related to control of the cell-
cycle and apoptosis (30,54). Emphasizing its crucial role, disfunctional p53 pro-
teins are involved in more than half of all human cancer phenotypes. From a 
biomedical point of view, highly connected proteins in general and proteins that 
maintain the integrity of modules can be perceived as disease factors and thus 
potential drug targets. With the increasing ability to identify and collect protein– 
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protein interactions, the determination of modules and highly connected proteins 
will become a major issue in the fast and effective identification of potential 
drug targets. 
 The recent progress in biological networks has successively uncovered the 
skeleton and organization of networks, offering important insights about the 
assembly and functionality of components and subnetworks. In the future we 
will need to go several steps further, addressing the dynamic aspects of various 
cellular networks (see also this volume, Part III, chapter 2.1, by Huang, Sultan, 
and Ingber). The analysis of fluxes and fluctuations along the links in metabolic 

Figure 8. From the particular to the universal. The bottom (level 1) of the pyramid shows 
schematic representations of the cell's functional organization: genome, transcriptome, pro-
teome, and metabolome. Insights into the cell's organization can be obtained if we consider 
the components to be linked by functional relationships, such as regulatory motifs and meta-
bolic pathways (level 2). In turn, they are the building blocks of operational modules (level 3), 
which are nested and considerably blurred, generating a scale-free hierarchical architecture 
(level 4). Although the individual components are unique, the topological properties of bio-
logical networks share astounding similarities. This suggests that universal organizing princi-
ples apply to all kinds of complex networks (38). 
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and regulatory pathways will play an especially major role, significantly influ-
encing potential biotechnological applications. 
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ROBUSTNESS IN BIOLOGICAL SYSTEMS: 
A PROVISIONAL TAXONOMY 

David C. Krakauer 
Santa Fe Institute, Hyde Park Road, Santa Fe, New Mexico 

Biology is a domain of tension: on the one hand, biology is concerned with transforma-
tion and the generation of diversity; on the other, biology is concerned with the persis-
tence of improbable structural regularities. The historical sciences in biology, principally 
evolution, have focused on change. The mechanistic sciences in biology, principally 
medicine, have focused on stability. Robustness, as a research program, aims to uncover 
those evolved mechanisms promoting the persistence of regularities. Here I organize 
mechanisms of robustness into a phenomenological taxonomy, grouping biological 
mechanisms into principles of robust organization. These include: Redundancy, Purging, 
Feedback, Modularity, Spatial Compartmentalization, Distributed Processing, and the Ex-
tended Phenotype. I present case studies in which mechanisms representative of each 
principle are described. These case studies serve to illustrate the ubiquity of specialized 
robustness mechanisms in all complex biosystems. 

1. A FUNDAMENTAL BIOLOGICAL DICHOTOMY:
ROBUSTNESS AND EVOLVABILITY

 Biologists have been motivated by two fundamental sets of questions. One 
set is associated with the generation and maintenance of genotypic, phenotypic, 
and functional diversity. The second set is associated with genotypic, phenotypic, 
and functional invariance. Evolutionary theory, following Darwin (9,10), 

Address correspondence to: David C. Krakauer, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, 
NM 87501 (krakauer@santafe.edu). 



184 D. C. KRAKAUER 

has been concerned largely with transformation—from one species into another 
with coincident suites of modified adaptive complexes. Mechanistic biology—to 
include physiology and cell biology—has focused on the mechanisms underly-
ing robustness of genotype and phenotype. Thus not only are robustness and 
evolvability obverse trends in biological system mechanics, they are also repre-
sented by two largely independent research traditions: the historical sciences 
relying on comparative data and theory, and the ahistorical sciences relying on 
laboratory data and description. 
 This caricature of our predicament suggests that two quite distinct problems 
need to be overcome in order to develop unified theories of biosystems. One is 
to establish the utility of evolutionary thinking in mechanistic science, and the 
other is to impress the importance of robustness upon evolutionary theory. Such 
a project would go some way towards reintroducing the phenotype into evolu-
tionary theory. 
 Much has been written on the subject of transformation. Population genetics 
is concerned with the study of changing gene frequencies through time (26). 
Quantitative genetics is concerned with the change in the mean and variance of 
phenotypes across generations (14). In neither case has it been possible to ex-
plicitly incorporate detailed mechanistic components of the phenotye into these 
models. A recent movement in this direction involves work on the genotype-to-
phenotype map and the representation problem (62). The genotype–phenotype 
map describes the process of development required to decode a genome into a 
viable phenotype. The representation problem is concerned with the way in 
which the variational properties of the genome are dependent upon the precise 
manner in which phenotypes are encoded in genotypes. To put it another way, 
are all phenotypes equally accessible from a given genotype configuration, and 
if not, does this depend upon the way in which phenotypes are represented in 
genetic data structures? Assuming a fixed representation, are there some pheno-
types that are unlikely to ever be realized even in the face of overwhelming se-
lective advantage? If this is so, then these impediments to isotropic adaptive 
transformation are likely to be associated with just those mechanisms ensuring 
unity of type, stability of genomes across generations, and homeostatic stability 
of the phenotype. 
 One path through the labyrinth of biological robustness is to keep hold of 
two of Ariadne's threads: one connected to limits to evolvability and associated 
mechanisms limiting variation, and the other to mechanistic inquiries into ho-
meostasis and the regulation of cellular and individual phenotype (17). Robust-
ness thus relates to two critical properties of complex biosystems: the long-term 
limits to evolutionary change and the short-term persistence of system function. 
Put differently, robustness mechanisms are one of the bridges connecting the 
dynamics of ontogeny with the dynamics of phylogeny by limiting phenotypic 
variation and also providing some means of exploring alternative genotypes 
without compromising the phenotype. 
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2. GENOTYPIC VERSUS ENVIRONMENTAL VERSUS
FUNCTIONAL ROBUSTNESS

 When speaking of robustness it is worth bearing in mind the plethora of 
definitions the word attracts. For an extensive list see [www.discusss.santa. 
edu/robustness]. These are to some degree domain-specific. In ecology, stability 
or robustness is a measure of the preservation of species diversity upon species 
removal (38), or the permanence of a configuration when perturbing some vari-
able of ecological interest. In medicine, robustness is associated with healing 
and compensation, neither of which imply a return to the original phenotype but 
rather a restoration of wild-type function (56). In linguistics, robustness relates 
to competence and comprehensibility despite incomplete information and ambi-
guity (27). Thus structural transformation is acceptable subject to information 
remaining decodable. In paleontology, robustness relates to the continuity of 
lineages across geological eras (13) and the persistence of lineages during mass 
extinction events. In metabolism, robustness relates to limited phenotypic varia-
tion across large changes in kinetic parameters (21,63). In cell biology, robust-
ness can describe how cell fate decisions remain constant when transcription 
regulation is stochastic (25), or how conserved RNA secondary structures can 
remain resistant to point mutations (15). 
 In each of these cases robustness relates to either (1) non-detectable or mi-
nor modification in phenotype following a large perturbation to the genotype, 
(2) non-detectable or minor modification in phenotype following a large pertur-
bation to the phenotype from the environment, or (3) non-detectable or minor 
modification in function following a large perturbation to the genotype or phe-
notype with or without a correlated change in the phenotype. The important dis-
tinction between genotypic and environmental robustness is that in the first case 
perturbations are inherited, whereas in the second case they are not. Functional 
robustness can be achieved through phenotypic invariance or phenotypic plastic-
ity. In one case the phenotype resists perturbations, and in the second case the 
phenotype tracks perturbations. Genotypic and environmental robustness can be 
measured through the environmental (Ve) or mutational variance (Vm) of a trait, 
whereas functional robustness can be measured as the variance in geometric 
mean fitness. It is often the case that a single mechanism leads to all three forms 
of robustness, in which case we observe congruence (4) between the genotype 
and phenotype. 

3. PRINCIPLES AND PARAMETERS OF ROBUST ORGANIZATION

 In (31,32), Krakauer and Plotkin describe three principles that have arisen 
in an effort to understand the evolutionary response to mutations: the principle 
of canalization, the principle of neutrality, and the principle of redundancy. We 
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contrast these with the parameters of robustness—those mechanisms by which 
these principles are realized. The principles and parameters metaphor is derived 
from linguistics (7), where the principles are defined as the invariant properties 
of universal grammar and the parameters the local rules and practices of lan-
guage. Here we extend these principles to include feedback, modularity, spatial 
compartmentalization, distributed processing, and the extended phenotype. An-
other way of thinking about the principles is as higher grades in a theoretical 
taxonomy of robustness. All mechanisms employing some form of redundancy 
are classed together, as are those employing modularity and so on. As we work 
down the classificatory tree of robustness, we eventually hit the unique me-
chanical instantiation that gives rise to robustness. Our classification is more 
Linnean than Darwinian, as we have no external principle with which to organ-
ize mechanism. 
 We give a brief introduction to each of these principles below, and subse-
quently go on to discuss in more detail a few models developed to address spe-
cific robustness mechanisms in biology. 

3.1. Redundancy

 A common means of identifying the function of a gene is to perform a 
knockout experiment, removing or silencing a gene early in development. By 
assaying the resultant phenotype, the putative function of the absent gene can be 
inferred. In many such experiments there is no scoreable phenotype: the knock-
out leaves the phenotype in the wild-type condition. Biologists refer to a gene x
on a background y as functionally redundant (57). This is taken to mean that the 
target gene is one of at least two or more genes contributing to the phenotype 
epistatically (27). Removal of a redundant gene x leads to compensation by re-
maining members of a redundant set y. Let f(g) be the fitness of gene or genome 
g; then redundancy implies that f(x,y) = f(y). When y has a cardinality of one 
and y = x, then functional redundancy reduces to the special case of a redundant 
copy of x. Redundancy as a principle is more general, and describes any case in 
which the mechanism of robustness is only operative upon perturbation. Hence 
redundancy is a variational property, not contributing to fitness directly, but in-
directly operating at the population level. Individuals with a redundancy prop-
erty are not fitter than those without, but those without will on occasion suffer 
the consequences. 
 True redundancy might be rarer than "artefactual" redundancy, or experi-
mental neutrality, in which the effect of perturbation remains below an experi-
mental detection limit (47). Assuming that we are able to detect small changes, 
the degree of redundancy describes the degree of correlation among genes con-
tributing to a single function. Models of redundancy in biology tend to focus on 
the evolutionary preservation of redundant components, and hence employ 
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population genetics approaches. More recently differential equation-based mod-
els for the dynamics of regulatory systems following structural perturbation have 
also been explored (61). 

3.2. Feedback Control

 Elementary feedback control systems have three components: a plant (the 
system under control), a sensor (measuring the output of the plant) and a con-
troller (generating the plants input) (12). A measure of performance is often the 
degree to which the output of a plant approximates some function of the input to 
the controller. In biology a plant could be RNA or protein concentration, protein 
kinase activation, immune effector cell abundance, or species abundance. Inputs 
in each of these cases would be transcription factors, protease concentrations, 
chemical agonists bound to receptors, antigen concentrations, and death rates. 
The controllers are more often than not aggregates of several mechanisms. 
Feedback is a mechanism of robustness as it enables plants to operate efficiently 
over a range of exogenous input values. The question remains as to whether the 
controller is robust to variations in the plant—does it provide robust stability?
For example, in biology, can a single feedback controller regulate the concentra-
tions of several different proteins? 
 The theoretical literature in linear feedback control is very well developed 
in engineering. Biology has borrowed extensively from this literature. Nonlinear 
feedback control is another issue, and there are few canonical models (1). 

3.3. Modularity

 Repeated representations of functionally distinct character complexes capa-
ble of recombination or shuffling is an example of modularity. Modularity aims 
to capture structures that balance autonomy and integration. Within a complex 
there is strong integration, whereas populations of complexes are only weakly 
coupled (55). This has also been called near decomposability (54). In genetics, 
modularity involves a minimum of pleiotropy, in which sets of genes contribut-
ing to one complex or trait (for example, organ system) make little contribution 
to other complexes or traits (16,49,50). These modular genetic systems are 
found in different genomic contexts performing a similar function. Of course, 
modularity can be defined at levels of organization above that of the gene (64)—
e.g., the extent to which organs operate independently during homeostasis. The 
dissociability of modules provides one means of damage limitation through en-
capsulation. 
 There are no collectively agreed upon models for analyzing modularity in 
biosystems. To date quantitative genetics models have been used to explore the 
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limits to the evolution of modularity, and neural network models have been used 
to explore how modularity can lead to more efficient task management (6). For a 
comprehensive review of the recent literature in the area of modularity see (53). 

3.4. Purging—Antiredundancy

 Whereas redundancy buffers the effect of perturbation, purging acts in the 
opposite fashion—amplifying the effects of perturbation—so as to ensure the 
purity of a population (29,31). A gene x on a genetic background y + z is func-
tionally antiredundant when the target gene is one of at least two or more genes 
(x + y) contributing to the phenotype epistatically, and, when removal of gene x
leads to a greater perturbation in the presence of y than in the absence of y: f(x,y
+ z) f(z) >> f(y + z).
 Purging is only effective when individual replication rates are sufficiently 
large to tolerate the effects of removal of defective components. Thus apop-
tosis—programmed cell death—is a common strategy for eliminating cells upon 
damage to their genomes or upon infection, provided these cell types are capable 
of regeneration. Nerve cells and germ cells produce factors that strongly inhibit 
apoptosis (37), as removal in these cases has deleterious consequences. In case 
of severe infection it can make sense to purge nerve cells (28). 
 Recent models dealing with purging-type phenomena have involved sto-
chastic models assuming finite populations. The key insight from the study of 
antiredundancy is the ability of particulate, hierarchical systems to exploit cellu-
lar turnover to eliminate and replace deleterious components from populations. 

3.5. Spatial Compartmentalization

 Compartmental systems are those comprised of a finite number of macro-
scopic subsystems called compartments, each of which is well mixed. Com-
partments interact through the exchange of material (22). The spatial 
compartmentalization of reactions leads to robustness by minimizing covariance 
among reaction components participating in functionally unrelated processes. 
Thus spatial de-correlation through compartmentalization substitutes for tempo-
ral correlation in biological functions. Robustness is achieved in at least two 
ways: (1) minimizing interference—chemical, epistatic, or physiological, and 
(2) minimizing mutual dependencies and thereby attenuating the propagation of 
error through a system. The study of spatial compartmentalization is particularly 
rich in theoretical ecology and epidemiology (34), where it has been used to 
explore the maintenance of antigenic diversity, restrictions on pathogen viru-
lence, and seasonal forcing, and more recently in molecular biology, where pro-
teins have been found to be compartmentalized (48). 
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 From a modeling perspective, compartmentalization is often approached 
from the perspective of metapopulation dynamics or coupled oscillators, in 
which space is assumed to be discrete (implicit space) and non-local (19). An 
alternative approach is based on continuous space (explicit space) with local 
interactions and employs partial differential equations to study diffusion and 
advection of components (42). A third approach assumes discrete space with 
local interactions employing coupled map lattices and cellular automata. A 
fourth approach analyzes the statistical connectivity properties of undirected 
graphs and their response to node or edge elimination (2). 

3.6. Distributed Processing

 Distributed processing describes those cases in which an integrated set of 
functions are carried out by multiple, semiautonomous units (20,40). The most 
obvious example is that of nerve cells comprising the nervous system. Distrib-
uted processing, or connectionism, might be assumed to be a combination of 
modularity and spatial compartmentalization, but differs in that a single function 
is emergent from the collective activities of units, and correlated activity is 
thereby a desired outcome. 
 The robustness properties of connectionist models are the ability to (1) iden-
tify incomplete patterns, (2) generalize from a subset of learned patterns, and (3) 
degrade gracefully upon removal of individual nodes. 
 Connectionist models range from a simple application of linear algebra, 
dynamical systems, and Hamiltonian representations of steady states, through to 
the use of statistical mechanics models of frustrated systems such as spin 
glasses. 

3.7. Extended Phenotypes

 The extended phenotype concept was introduced by Dawkins (11) as a 
means of emancipating the gene from the discrete vehicle (often taken to be the 
individual organism). Thus while the gene's most proximal effect is to encode 
proteins, more distally, and as a byproduct, these participate in cells, tissues, 
organs, individuals, behaviors, mental states, and on through to cultures. There 
is no implication of determinism or strong causality in this statement. The ex-
tended phenotype notion merely recognizes that the boundary of physical em-
bodiment need not represent the boundary of genic action. 
 In nonhuman biosystems the importance of the extended phenotype to ro-
bustness is not contested: from animal artifacts (ant nests, termite mounds, bird 
nests, and spider webs) and from animal behavior (policing, reconciliation, and 
dominance). In human society the issue is more controversial and the evidence 
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correspondingly weaker. However, it remains a fascinating question to pose: to 
what extent do human institutions represent instances of mechanisms for bio-
logical robustness? In the non-reductive (gene-independent) example of medical 
care and hospitals the case is obvious. There are indications, though, that behav-
ioral rules, such as reciprocity and sharing, are to some extent causally related to 
the actions of our genes (8). 
 Modeling in this area tends to be either game theoretical (39) or some vari-
ant of population genetics to allow for both vertical and horizontal transmission. 
This is a nascent field for theory. 

4. CASE STUDIES OF ROBUST PRINCIPLES

 In the remainder of this chapter I have chosen case studies to illustrate the 
application of theory in the study of biological robustness. I have done so be-
cause as of yet there is no unified theory of biological robustness, only collec-
tions of illustrative models. These models vary in the degree to which they deal 
with robustness explicitly, and yet all them bear on the question in some funda-
mental way. 

4.1. Redundancy in Genetic Networks

 Wagner (60) has studied dynamical models for evolution of transcription 
regulation circuits. Gene duplication is thought of as a mutational event neces-
sary to establish the genetic diversity for subsequent diversity in spatiotemporal 
patterning during development. Wagner poses this question: what is the average 
proportion of genes likely to be involved in a duplication event, such that the 
initial effect on the phenotype of duplication is minimized? In other words, what 
fraction of genes is capable of performing redundantly? This question can be 
inverted by asking how many genes from a portion of genome made up from 
duplicate sets can be deleted and made to preserve the same phenotype. In the 
first case the perturbation involves adding genes, and in the second eliminating 
genes. Wagner models the gene expression dynamics in much the same way 
connectionist modelers describe neural networks. The activity of gene i is de-
noted by Si. The magnitude of transcriptional activation between gene i and gene 
j is given by weight matrix entry wij. The dynamics of gene expression in dis-
crete time are 

( ) ( ) [ ( )]
N

i ij j i
i

S t w S t h t+ = = . [1] 
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The function [.] is the sign function. The output of interest is the steady-state 
levels of gene expression in the network S as a function of the initial conditions 
of gene expression (0)S  and network connectivity. Whereas duplication (dupli-
cation function ) of one or more genes (k) creates a network in a higher dimen-
sional state space, deletion (deletion function ) creates a network in a lower 
dimensional state space: 

: {–1,1}N  {–1,1}N+k, [2] 

and hence 

 (S1, ..., Sk, Sk+1, ..., SN)  (S1, S1, ..., Sk, Sk, Sk+1, ..., SN) [3] 

and for deletions 

: {–1,1}N+k  {–1,1}N, [4] 

and hence 

 (S1, S1, ..., Sk, Sk, Sk+1, ..., SN)  (S1, ..., Sk, Sk+1, ..., SN). [5] 

Wagner compares the wild-type equilibrium states ( S ) and the state following 
duplication ( : S ) using the Hamming distance between ( S ) and ( : S ) as the 
robustness metric. It is observed that small duplications and large duplications 
have the least impact on phenotypic change. And hence small and large dele-
tions are likely to have the least impact on phenotype. Intermediate sized dupli-
cations (around 40% of genes) have the greatest impact on phenotype. In a 
region of the genome made up from sets of duplicate genes, perturbations in-
volving deletions of just under half of the genome are expected to have the 
greatest effect on the phenotype, whereas genotypes are expected to be robust 
against perturbations involving a few or almost all genes. 
 Redundancy in this model does not refer to the duplicate genes, but the 
phenotypic invariance relating to epistasis in the transcriptional network. The 
explanation for this result is fairly obvious. Duplicating all the genes leaves the 
network effectively unchanged. Small numbers of duplications proportionately 
influence a small number of connected pairs. Intermediate sized duplications are 
likely to be most disruptive. 

4.2. Modularity in Genetic Regulatory Networks

 In Drosophila the anterior–posterior body axis is segmented. Segmentation 
is initiated by maternal factors at the embryo stage. Those factors initiating seg-
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mentation are expressed transiently, and it is left to a segment polarity network 
to maintain the definition of segment boundaries. Segment polarity networks 
abound in insect orders, whereas the patterns of stable segmentation are vari-
able. Von Dassow et al. (58,59) suggest that the segment polarity network is a 
robust evolutionary module, recruited by different insect species, and provided 
with different inputs to produce diverse patterns of segmentation. In order for 
this to be the case, parametric variation in reaction coefficients should leave the 
patterning ability of the network intact. 
 In order to model the network, Von Dassow simulated large systems of 
coupled first-order differential equations. For example, the rate of transcription 
of mRNA Mi from gene Ei, assuming a concentration of binding transcription 
factor xi, a maximum rate of transcription Tmax, and a rate of decay dmi, is given 
by

max

c
i

i ic c

x
m T dm

k x
=

+
, [6] 

where the parameter k determines the value at which the transcription factor Xi

has half maximum effect on the rate of translation of the gene Ei. The subse-
quent translation of Mi into a protein Pi with a maximum rate of translations rmax

and a rate of decay dppi is of the form 

max
i

i P i
i

m
p r d p

m k
=

+
. [7] 

These proteins are then free to bind to other proteins forming complexes with 
novel transcription activity (e.g., a pi might bind to a pj to induce xk, etc). 
 Equations of this form assume saturation of enzymes and substrates. As a 
consequence, over large variations in parameter values steady-state concentra-
tions of protein products and complexes remain unchanged. Saturation is the 
assumption behind the derivation of the familiar Michelis-Menten rate law: the 
concentration of substrate is in large excess over the concentration of enzyme 
(66). In the limiting case of very high values of the constant c, coupled differen-
tial equations can be effectively replaced by Boolean networks. In this case, only 
the topology of the network and the initial conditions, not the kinetic constants, 
have an influence on steady states. Thus stable variation of segmentation in in-
sect orders might be achieved through variation in initial conditions with disre-
gard for variation in kinetic parameters. Species diversity would derive from 
feeding different initial conditions through the same network without regard for 
species-specific variation in rate constants. If saturation is not justified this ro-
bust modularity disappears. The empirical validity of saturation in developmen-
tal networks remains to be established. 
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4.3. Feedback Control in Immune Regulation and Signal Transduction

4.3.1. Segel and Bar-Or's Adaptive Control Model for Immune Effector Action

 The immune system is configured so as to maximize damage to pathogens 
and minimize damage to self. These, however, are not orthogonal goals, and 
hence the regulation of infection by the immune system requires feedback con-
trol in order to prevent an overenthusiastic immune response from destroying 
healthy tissues. 
 Segel and Bar-Or (51,52) approach the problem as follows (see also this 
volume, Part III, chapter 4, by Segel). Assume a population of immune effector 
cells E, a population of pathogens P and a noxious chemical N. E are able to kill 
P, as is N. However, N can also damage the host and thereby compromise pro-
duction of E. It is assumed that the immune system seeks to minimize damage to 
the host by maximizing the efficiency of the immune response. Damage to the 
host  is calculated as the time averaged abundance of P and N, where damage 
from P occurs at a rate hpP and damage from N at a rate hNN. Thus 

0

1
[ ( ) ( )]

T

p Nh P t h N t dt
T

= + . [8] 

Assuming the dynamical system: 

,NN Se g N=  [9] 

,P rP aEPN=  [10] 

max[ (1 / ) ].p EE E P E E g=  [11] 

where the crucial parameter, s, the secretion coefficient of noxious chemicals, in 
response to immune activation, is assumed to be under constitutive control by 
the host. The function (s) has a unique minimum for any given value of the 
pathogen proliferation coefficient r, moreover d( (s))/dr > 0. 
 The problem for feedback control is to determine the optimal value of s for 
a variety of pathogens with different proliferation rates. Segel and Bar-Or sug-
gest one way, which requires that the host employ two performance measures: a 
kill indicator chemical, K, produced in response to immune activity NPE, and a 
harm indicator chemical produced in response to instantaneous damage—hpP + 
hNN. Include these two chemicals in the dynamical system: 

K = ck(aEPN) – gkK, [12] 
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H  = ch(hpP + hNN) – ghH. [13] 

Now harm from the pathogen (Hp) is not the same as harm inflicted indirectly 
through the immune response (HI). Estimate Hp = H/(1 + kpN) and assuming that 
H = HI + Hp, then an adaptive s coefficient might change according to the 
Michaelean rate law: 

2
1

3 1 41
p

p

s KH
s s

s H s KH
= +

+ +
. [14] 

An immune response making use of multiple sources of feedback information 
can operate effectively over a far greater range of parameter values and variable 
values than one without. This form of robustness through feedback control is 
typical of biological systems. 
 One caveat to be observed at this point regards the arbitrary nature of the 
functional response curves assumed in this model and in others like it. In other 
words, constant non-saturating rates of immune effector proliferation and patho-
gen replication. To what extent is feedback destabilized by increasing nonlin-
earities in response functions? The purpose of these models is often concerned 
with "proof of principle," establishing the plausibility of intuitive notions of con-
trol, rather than empirical fitting of experimental data. 

4.3.2.  Barkai and Leibler's Chemotaxis Network 

 Feedback is no less important in regulating reactions within a cell as among 
populations of cells. As with variation in pathogen parameters in populations, 
there can as easily be variation in inputs to a cell. This means that fine-tuning 
parameters in advance (through evolution) to maximize a function for fixed pa-
rameters is likely to be far from robust. 
 Chemotaxis in bacteria describes the purposeful motion of bacteria swim-
ming towards increasing concentrations of nutritive chemicals. Bacteria swim in 
alternating bouts of smooth runs, during which they move along a single vector, 
and tumbling, during which they randomly reorient to a new vector. An ob-
served property of bacterial chemotaxis is adaptation, whereby the steady-state 
tumbling frequency in a homogeneous chemical environment is independent of 
the concentration of chemical. This is a means of ensuring constant responsive-
ness (3). Barkai and Leibler (5) ask whether feedback circuits in the putative 
chemotactic network are responsible for this adaptive property. 
 A nutritive chemical, or ligand L, binds to an enzymatic receptor E. The 
receptor transitions between a modified and unmodified state at a rate propor-
tional to the concentration of L, denoted l. L represents the input to a cellular 
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signal transduction system, and the concentration of active enzyme (A) interfac-
ing with the propulsive flagellum is the system output. An adaptive system has 
the characteristic that the steady-state concentration of ( )A a  is independent of l.
 The key to the robust adaptive property is to make the modification and un-
modification transformation of E dependent only on the concentration of A. Yi 
et al. (65) point out that this adaptive property of the network is a consequence 
of integral feedback control. In mathematical terms: 

,x a=  [15] 

1 ( ) .a a a k l x a= =  [16] 

Here the time integral of the system error (x), the difference between the actual 
output (a1) and the desired equilibrium output ( )a , is fed back into the system. 
The parameter k is the gain of the system. In this way one obtains robust asymp-
totic tracking of variations in input l.

4.4. Antiredundancy through Apoptosis in Neoplastic Lineages

 Tumorigenesis marks the onset of unregulated cell proliferation. In most 
long-lived mammals, progress towards tumorigenesis involves the cumulative 
loss of important regulatory genes monitoring the genetic state of defective cells. 
An important class of regulatory genes are the tumor suppressor genes (35,36), 
which respond to mutations by inducing programmed cell death (apoptosis) or 
repairing damaged DNA. Apoptosis represents a strategy of antiredundancy or 
purging, in which defective cells are removed and subsequently replaced by the 
descendants of healthy cells in the surrounding tissue. Purging as a mechanism 
of robustness thus depends crucially on population sizes large enough to allow 
for the replacement of eliminated cells. 
 Plotkin and Nowak (46) have modeled the waiting time for dividing cells 
undergoing mutation and mutation-induced apoptosis to reach a tumorigenic 
state. Assume that L genes in the genome of dividing cells regulate healthy cell 
cycle function. For each cell, count the number of mutations in L and call it k.
When the value of k = n, the cell is tumorigenic. During each cell division a cell 
with k mutations can divide and remain in the same state with a probability qk or 
mutate with a probability pk = 1 – qk. Any cell with k  1 mutations is under the 
surveillance of tumor suppressor genes and can be induced into apoptosis with a 
probability k. Apoptosis will fail with a probability k = 1 – k.
 These probabilities can be used to construct a Markovian model of cancer 
progression, with three important assumptions: (1) there are no population dy-
namics—cell populations are of a large fixed size with no fixation of mutant 
lineages, (2) there are symmetric mutations such that only the total number of 
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mutations k and not the position of these mutations in a string of length L is sig-
nificant, (3) the cell with n mutations is an absorbing state. With these assump-
tions one can write down an (n + 1) x (n + 1) transition matrix: 

 This is a flexible formulation, as it allows for either genomic instability, in 
which 0 > 1 > ... > n–1, which describes how the incidence of mutations re-
duces the efficacy of the apoptotic response, or when 0 < 1 < ... < n–1, which 
reflects an increasing probability of cells with more mutations undergoing effec-
tive surveillance. I will only discuss the case in which q = q1 = q2 = ... = qn–1 and 

 = 1 = 2 = ... = n–1.
 The effects of apoptotic purging can be demonstrated by comparing the 
waiting time for k = n of a non-apoptotic cell, assuming thereby that i = 0 for 
all i, and the alternative case with apoptosis as described above in which i > 0 
for all i.
 The waiting without apoptosis for one cell in a tissue of N cells to obtain n
mutations is given by 

0

1
( , )

log(1/ )( 1)!
N

N
T n a da

q n
= , [17] 

where (.,.) is the incomplete Gamma function. The waiting time for a single 
cell with apoptosis to obtain n mutations is given by 

0

( ) 1
( )(1 /( ))

o
n

p p
T

p q p p q

+
=

+ +
. [18] 

In the case without apoptosis, the waiting time depends inversely on the loga-
rithm of replication fidelity q. With apoptosis the waiting time grows exponen-
tially with n. Thus purging of damaged cells prolongs the waiting time to 
tumorigenesis, and thereby increases the latency of cancer. 

4.5. Spatial Compartmentalization of Predators and Prey:  
Infectious Disease

 Theoretical immunology is in large part based on reinterpretation of the 
immune system as an interaction between predators and prey. Whereas in ecol-
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ogy these might be carnivores and herbivores, in immunology these might be 
cytotoxic T cells and virus-infected cells. Immune effector cells proliferate in 
response to antigen presented by infected cells, in which the rate of proliferation 
is likely to be proportional to the number of infected cells presenting antigen. 
The destruction of infected cells brings about a concomitant reduction in effec-
tor cell proliferation. We therefore expect oscillatory dynamics. In ecology one 
of the principal measures of population stability is the variance in species abun-
dance. Large-amplitude oscillations are thought to make populations vulnerable, 
whereas low-amplitude oscillations are a sign of robustness (38). In ecology 
species extinction is at stake, in immunology a loss of effector cells and a loss of 
regulatory control are at stake. 
 Jansen and de Roos (23) studied the following two-compartment model. 
Consider two populations of predators, P1 and P2, and prey populations, N1 and 
N2. Predators are able to migrate from one compartment to another with prob-
ability m/2: 

1 1 1 1n rn n p= , [19] 

1 1 1 1 2 1( )
2
m

p n p p p p= + , [20] 

2 2 2n rn n p= , [21] 

1 2 2 2 1 2( )
2
m

p n p p p p= + . [22] 

The rate of predator proliferation is given by rpi and the death rate pi. From an 
immunological perspective we might think of two strains of infecting virus and 
their corresponding T cell receptors. 
 Assuming equal densities of predators (p1 = p2) and prey (n1 = n2), the model 
reduces to the non-spatial Lotka-Volterra model in which densities oscillate 
permanently at an amplitude determined by the initial conditions. However, if 
small differences in density are allowed between compartments, these tran-
siently increase with a correlated reduction in the amplitude of oscillations in the 
average densities. This is because in the compartmental model large-amplitude 
oscillations are diffusively unstable (statistical stabilization), whereas in the sin-
gle-population model oscillations of any amplitude can be maintained. Thus, 
establishing compartments in which pathogens will be attacked (such as lymph 
nodes), rather than fostering the likeness of a single population, should allow 
organisms to limit variation in pathogen densities. 
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4.6. Distributed Processing in the Nervous System

 The connectionist modeling paradigm has become the dominant theoretical 
framework for thinking about information processing by the nervous system 
(20,41). While the mapping from neural network to neural systems is highly 
approximate, the objective in connectionist models is to explore the properties 
and limits of a "gedankenexperiment" in which information is distributed over a 
population of homogeneous, computationally trivial units. Out of this research 
have arisen the following robustness observations: (1) pattern recognition of 
corrupted inputs, (2) categorization or generalization of noisy inputs, and (3) 
graceful degradation in response to graded perturbations in network input or 
network structure. There is some sense that network models are intrinsically 
fault-tolerant as a result of the distributed nature of the information representa-
tion. The aforementioned principles of redundancy and modularity are likely to 
participate in connectionist robustness but do not exactly capture the distributed 
nature of the information in a neural network model. 
 The canonical representation of a feedforward neural network is 

i ij j i
j

S f w S= , [23] 

where Si is the output of unit i, wij are the weights from unit j to unit i, and i is 
the activation threshold of unit i. The function f(.) is most often of the form of a 
nonlinear squashing function or a step-function. The robustness of a network can 
be assessed as the deviation of the actual output vector (S) from an desired out-
put vector (O). A common metric is the RMS error: 

21
( )

N

i i
i

S O
N

= . [24] 

Perturbations in Sj or wij can then be assessed quantitatively. An alternative error 
function for binary or "bipolar" units is to use the Hamming distance between S
and O.

4.6.1.  Joanisse and Seidenberg on Verb Morphology

 There has been some debate on whether brain-injured patients have a 
greater difficulty in constructing the irregular past tense of familiar verbs or the 
regular past tense of nonsense (nonce) words. The impairment has been used to 
discriminate between damage to rule-following (regular) versus damage to asso-
ciative memories (irregular). The construction of the past tense has become a 
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paradigmatic linguistic system for studying the difference between look-up ta-
bles for exceptions and rules for common verbs (64). Joanisse and Seidenberg 
(24) constructed a simple neural network model in which output units represent 
a sequence of phonological features—ordered lists of vowels (V) and conso-
nants (C). Thus, each word can be aligned with a basic template: CCVVCCC–
VC. Tasted might read "C0V0CC0VC," in which "0" denotes wildcards or 
empty slots not filled by a given verb. 
 Each verb is represented by a unique hidden unit in the network. In addi-
tion, the network contains semantic units to render verb meanings. Input units 
encode basic phonology as with the output units. Thus, inputs connect to hidden 
units that connect to output units. Semantic units also connect to hidden units 
recurrently. One of the tasks of the network is to take a phonological input and a 
tense marker and generate an identical output (autoassociative mapping), while 
another required a semantic input to be mapped onto an appropriate phonologi-
cal unit. 
 Perturbations to the network involved severing a proportion of connections 
or by adding Gaussian noise to semantic units or phonological units. "Lesions" 
to 5% or less of the connections had almost no effect on performance (as meas-
ured by proportion of correct outputs given a target vector—the Hamming met-
ric). Perturbations of over 5% and higher led to a roughly linear reduction in 
system performance. Perturbations to the phonological units tended to produce 
"irregularization" errors, whereas damage to the semantic units tended to pro-
duce regularization of irregular verbs. 
 Thus, this network was able to preserve its basic function over a small range 
of perturbations, above which it degraded gracefully. This linear reduction in 
system performance is a result of the distributed nature of the computation. 
Moreover, the way in which the model lost robustness reflected, in some way, 
the pattern of language deficit observed in Alzheimer's or Parkinsonian patients. 

4.7. The Extended Phenotype of Human Culture

 The derivation of human culture from genetic processes remains a contro-
versial and often poorly posed enterprise. However, it is possible to ask whether 
there are universal tendencies among human populations to institutionalize rules 
that minimize the impact of perturbations. In other words, are there rules, norms, 
and procedures that serve to make human populations more robust? The mathe-
matical study of the stability of human culture to social perturbations is in the 
domain of game theory. 
 One area in which the human species has been stated to be unique is in the 
possession of arbitrary symbols combined with a combinatorial grammar. An 
essential early step in the evolution of language has been the evolution of pho-
nological rules, in which phonemes are combined into words. Why should this 
transition take place? Why use compositional signals rather than expanding the 
number of phonemes? Nowak and Krakauer (27) as well as Nowak, Krakauer, 
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and Dress (43) present a simple formalism of this problem and demonstrate that 
one important selection pressure in favor of compositional signals is a need to 
become robust against errors in signal perception (18). As a result of space limi-
tations, I shall only demonstrate the nature of the signalling problem, and omit 
the full solution. 
 Assume that a language L employs n signals to communicate about n ob-
jects. When two individuals communicate, they obtain a payoff: 

1

n

i
i

F a
=

= . [25] 

If all objects have the same value, then the total payoff is simply F = kn. In real-
ity, communication is error prone. Denote the probability of mistaking a signal i
for a signal j uij. The error matrix U is a row stochastic error matrix. The diago-
nal values uii give the probability of correct communication. Hence, 
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n

i ii
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F a u
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= . [26] 

The error matrix can be defined in terms of similarity between any two signals i

and j: sij. Similarity is a value between 0 and 1, and hence uij = 
1

/
n

kij iks s
=

.

This enables us to write the payoff in terms of signal similarity: 
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Signals are embedded in some metric space X and dij denotes the distance be-
tween i and j. Assume that similarity is a monotonically decreasing function of 
distance, sij = f(dij). One choice of function is sij = exp(– dij), where the parame-
ter  is a measure of the resolution of perception. 
 For a given number of objects we wish to find the optimum configuration of 
sounds x1, ..., xn in a sound continuum that maximize the payoff function: 
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It can be proved that the maximum value of F, as n tends to infinity, converges 
to 
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Fmax = 1 + /2. [29] 

For any given value of perceptual accuracy , the payoff converges to a maxi-
mum as a result of perceptual error. Increasing the number of signals increases 
the number of objects that can be communicated about, but at the cost of in-
creased ambiguity. We have called this the linguistic error limit. It is our hy-
pothesis that phonology, word formation, and simple grammar evolved through 
a need for greater robustness in response to inevitable errors of communication. 
The key to understanding how this works is to think in terms of composite 
words, in which a word Wij consists of phonemes i and j. The similarity between 
words Wij and Wkl is given by siksjl. The payoff to a language that contains n2

words to describe n2 objects is 
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and for words of length L
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Hence, the total payoff can now grow exponentially with the length of words. 
Words, according to this formulation, are a cultural robustness mechanism. 

5. AWAITING A SYNTHESIS OF ROBUSTNESS IN
BIOLOGICAL SYSTEMS

 I have presented a superficial overview of various research projects aimed 
at understanding robustness in biological systems. I have tried to organize this 
work into a number of principles of robustness—a theoretical taxonomy—so 
that common patterns and mechanisms might become apparent to the reader. It 
is unfortunate that there does not exist a single theory of biological robustness 
that might be applied to these several different problems. The historical, and to 
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some extent contingent, nature of biological organization is in large part respon-
sible for this theoretical deficit. 
 There are, however, glimpses of intersection among principles—redun-
dancy, modularity, spatial compartmentalization, and distributed processing 
share the use of a multiplicity of self-contained units discretely connected, to 
ensure a degree of autonomy of processing. The feedback control, the develop-
mental module, and the connectionist model all exploit saturation effects to 
damp the consequences of nonlinearity. Almost all the models assume some 
form of sparse connectivity, whether it be among neurons, classes of mutation, 
modules, signaling molecules, or immune effectors. From this perspective it can 
be observed that robustness is a property of a large class of complex systems, 
and that a general theory might be expressed in some abstract terms that tran-
scend system particulars. With a strong general theory of robustness we might 
start exporting insights from evolved systems to engineered systems, where ro-
bustness is frequently minimal. 
 In a work in progress, we (33) have been developing a general theory of 
robustness for energetic and informational flows over biological networks. This 
work stresses the mechanisms by which networks, once perturbed, reconfigure 
to alternative, redundant input sources so as to continue operating. This work 
has also highlighted the fact that a satisfactory definition of robustness requires 
some means of excluding inert or linear aggregates (systems of noninteracting 
components) as robust. In other words, robustness theories need to include some 
measure of contributions from both network flows (the system is in some sense 
functional) and from invariance upon elimination of a subset of flows (the func-
tion can be retained upon perturbation). Robustness is a variational property of 
evolved/engineered systems, and if we do not assume this dual measure ap-
proach (flows and invariance), rocks and dead organisms strike us as rather too 
robust upon perturbation! 
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1.1

NOISE IN GENE REGULATORY 
NETWORKS

Juan M. Pedraza and Alexander van Oudenaarden 
Department of Physics, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 

Gene expression is based on biochemical processes that are inherently stochastic. The re-
sulting fluctuations in mRNA and protein levels can sometimes be exploited but gener-
ally need to be controlled for reliable function of regulatory networks. From models of 
these biochemical processes it is possible to obtain analytical expressions for the stochas-
tic properties of the resulting distributions of expression levels. We present a review of 
the two main analytical techniques for modeling stochastic gene expression. 

1. INTRODUCTION

 Noise is often perceived as being undesirable and unpredictable; however, 
living systems are inherently noisy, and are optimized to function in the pres-
ence of fluctuations. Biochemical and genetic pathways are sensitive to noise: 
some organisms can exploit fluctuations to introduce diversity into a population, 
as occurs with the lysis-lysogeny bifurcation in phage  (1,2) or phase variation 
in bacteria (3). In contrast, stability against fluctuations is essential for a gene 
regulatory cascade controlling cell differentiation in a developing embryo 
(4). Robustness to noise can be part of the function of a given network architec-
ture, since structures like feedback loops can be used to reduce noise (5) (see 
also preceding chapter 5, Part II, by Krakauer). Stochastic fluctuations in gene 
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expression lead to non-genetic individuality: even in the case when two indi-
viduals are genetically identical, protein concentrations between the two indi-
viduals can vary significantly because of the stochastic nature of protein 
synthesis. Pioneering experiments by Ko et al. (6) demonstrated that gene ex-
pression levels can vary significantly from cell to cell in an isogenic population. 
It is thought that the main source of the noise in gene expression arises from 
statistical fluctuations in the concentrations of mRNAs, transcriptional and 
translational machinery, and regulatory proteins (see also related chapters 1.2 
(by Hofacker and Stadler) and 1.3 (by Wagner), Part III, this volume). In a sin-
gle cell these concentrations can fluctuate widely since many of the molecules 
are present at low numbers. For example the lactose repressor protein in Es-
cherichia coli is present at only 30 copies on average. Several stochastic models 
(7–13) have been proposed that recently have been tested experimentally (14–
17) (see (18) for an excellent review). The goal of this chapter is to review two 
powerful analytical modeling techniques that can be used to determine the noise 
characteristics of genetic networks: (i) the master equation approach and (ii) the 
Langevin approach. These approaches will be applied to calculate the statistical 
properties of noisy genetic circuits. A more general treatment of master equa-
tions and the Langevin technique can be found in van Kampen (19). 

2. THE MASTER EQUATION APPROACH

 The master equation corresponds to the statement that the probability of 
being in a given state changes depending on the probabilities of transition to and 
from any other state in the system. It provides the full probability distribution 
when it can be directly solved. Unfortunately, this is not often the case, so we 
must settle for some of the moments of the distribution. These are easily ob-
tained from the generating function, so we will work with the master equation in 
a form in which it depends on the generating function rather than the distribu-
tion. 
 The genetic network is defined by N state variables n1 ... nN and M rate con-
stants k1 ... kM. The variables denote the number of copies of a certain chemical 
species such as mRNAs or proteins. Before applying the master equation ap-
proach to determine the noise properties of a genetic network we will start by 
obtaining the master equation in the generating function form for some elemen-
tary chemical equations. 

2.1. Synthesis from a Template

 In numerous genetic reactions, such as transcription and translation, 
mRNAs and proteins are synthesized from a template (DNA and mRNA, respec-
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tively). After synthesis the number of templates is not changed. The correspond-
ing reaction is therefore: 

kA A B+ . [1] 

Molecule A produces molecule B at rate k (in units of (concentration × time)-1).
The master equation describes how the probability to be in state [n1, n2] (n1 A
molecules, n2 B molecules) at time t changes in time. For the reaction above: 

1 2 1 1 2 1 1 2( , , ) ( , , ) ( , 1, )p n n t kn p n n t kn p n n t= + . [2] 

The first term reflects a transition from state [n1, n2] to state [n1, n2 + 1] and 
therefore leads to a decrease in p(n1n2, t). The second term denotes the transition 
[n1, n2 – 1]  [n1, n2] and leads to increased p(n1, n2, t). The master equation 
above is linear and can be solved for the moments by constructing the moment-
generating function. In general for N system variables the moment-generating 
function is given by: 

1 2

1 2

1 2 1 2 1 2

, ,...,

( , ,..., , ) ... ( , ,..., , )= N

N

nn n
N N N

n n n

F z z z t z z z p n n n t , [3] 

where the sum runs over all possible states for each ni (in this case, from 0 to ). 
This function has the following useful properties: 

2 2

21

1 1 1

1, , ( 1) ,= = = =i i i i j
i i i j

F F FF n n n n n
z z z z

, [4] 

where |1 means that the function is evaluated at zj = 1 for all j. These expressions 
justify the name "moment generating": we can obtain the moments of the prob-
ability distribution by evaluating the partial derivatives of the function. 
 Multiplying the master equation above by 1 2

1 2

n nz z  on both sides gives 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2 1 1 2 1 2 1 1 2

, , ,

( , , ) ( , , ) ( , 1, )= +n n n n n n

n n n n n n

z z p n n t k z z n p n n t k z z n p n n t . [5] 

This equation can be simplified significantly by realizing that 

( )1 1

1 1

1

1 1 1 2 1 1 1 1 2

1 1

( , , ) ( , , )= =n n

n n

F Fn z p n n t z n z p n n t
z z

( )1 2 1 2

1 2 1 2

1

1 1 2 1 2 1 1 1 2 1 2

0, 0 0, 1

( , 1, ) ( , 1, )
= = = =

=n n n n

n n n n

n z z p n n t z n z z p n n t  [6] 
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( )1 2

1 2

1 ' 1

1 1 1 2 1 2 1 2

0, ' 0 1

( , ' , )
+

= =

= =n n

n n

Fz n z z p n n t z z
z

,

where the change in the lower limit of the sum for n2 is allowed since p(n1, –1, t)
= 0. This leads to 

1 2 1 2

1

( , , ) ( 1)=
FF z z t kz z
z

. [7] 

In the special case of synthesis from a fixed number of templates (n1 = n), the 
equation for the moment-generating function reduces to 

2 2
( , ) ( 1)=F z t kn z F . [8] 

This equation can be explicitly solved, but in itself it does not represent the full 
process. We therefore will obtain the expressions for the other terms before 
combining them to model a real situation. 

2.2. Degradation

 Now consider the degradation reaction 

0B . [9] 

This reaction can represent two different processes: degradation, where mole-
cule B is converted into a species that is not part of the subset of interest, and 
dilution, where it is physically separated from the volume of interest. In the lat-
ter context  is the degradation rate and ln(2)/  the half-life of the molecule. 
The master equation for this reaction is 

1 1 1 1 1
( , ) ( , ) ( 1) ( 1, )= + + +p n t n p n t n p n t . [10] 

Using the same strategy as above the time evolution of the moment-generation 
function yields: 

1 1

1

( , ) ( 1)=
FF z t z
z

. [11] 
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2.3. Forward Reaction, Conservation of Total Number of Molecules

 Now consider the reaction 

kA B , [12] 

where n0 + n1 = n = const. Since the total number n is conserved, the system is 
defined by only one variable. We will use n2 as the single variable to define this 
system. For the reaction above: 

2 2 2 2 2
( , ) ( ) ( , ) ( 1) ( 1, )= + +p n t k n n p n t k n n p n t . [13] 

This leads1 to: 

2 2 2 2 2

2 2

( , ) ( 1)= + + + +
F FF z t knF kz k n z F kz z F
z z

2 2 2

1

( 1) ( 1)=
Fkn z F kz z
z

. [14] 

Based on these elementary reactions, larger chemical networks can be built up. 
The results above are summarized in Table 1. 

Table 1

            Reaction type                                                  F =

I kA A B+ 1 2
1

( 1)
F

kz z
z

II 0B 1
1

( 1)
F

z
z

III kA B
2 2 2

2

( 1) ( 1)
F

kn z F kz z
z

 (n1 + n2= n = const., in terms of n2)

IV
1

1

k

k

A B 1 2 1 1 1 2
1 2

( ) ( )
F F

k z z k z z
z z
+
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2.4. Noise Properties of a Constitutively Expressed Gene

 Based on the results for these elementary reactions the equation for the 
moment-generating functions of more complex networks can be easily deduced. 
First let us consider a constitutive expressed gene in a single copy in the chro-
mosome of a bacterium. In this case the state of this system at any time is de-
fined by the number of mRNA molecules r and number of proteins p for that 
gene. mRNA molecules are synthesized off the template DNA strand at a rate kR

and are translated at a rate kP. The mRNA and protein degradation are described 
by the destruction rates R and P, respectively (Figure 1). 
 Based on the results in Table 1, the moment-generating function can be 
deduced directly: 

1 2 1 1 2 1 2

1 1 2

( , , ) ( 1) ( 1) ( 1) ( 1)= +R P R P
F F FF z z t k z F k z z z z
z z z

. [15] 

The first two terms are the transcription and translation reactions (Table 1, type 
I) and the last two terms model degradation of mRNA and proteins, respectively 
(Table 1, type II). Below the equation will be solved for the moments in the 
steady state ( 0)=F . In this case: 

1 1 2 1 2

1 1 2

(1 ) ( 1) ( 1) ( 1)=R P R P

F F F
k z F k z z z z

z z z
. [16] 

The mean mRNA level r  and protein level p  are found by taking the de-
rivative with respect to z1 and z2, respectively: 

[ ]
2

1 1 2 1 2

1 1

(1 ) ( 1) ( 1)=R R P R
F Fk z k F k z z z
z z

[ ]
2

2 2

1 2 1

( 1) ( 1)+ P R P
F Fk z z
z z z

. [17] 

Evaluating both expressions at z1 = z2 = 1 gives 

= R

R

kr ,

= R P

R P

k kp . [18] 

These results are consistent with the equivalent deterministic system: 
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= R Rr k r ,

= P Pp k r p . [19] 

The fluctuations in mRNA and proteins level are found by differentiating the 
above equations again with respect to z1 and z2 and evaluating at z1 = z2 = 1: 

22 =r r r ,

1 /
=
+ R P

p
rp r p , [20] 

22 /
1

1 /
= +

+
P R

P R

kp p p .

Further moments can be obtained sequentially in this manner. Note that for a 
random variable with Poissonian distribution all moments are equal, so the vari-
ance over the mean equals one, as is the case for the mRNA in this model. The 
protein number fluctuates with a higher than Poissonian noise, the correction 
determined primarily by the term /P Rk  (the "burst size") that corresponds to 
the average number of proteins produced per mRNA (9). 
 In simple cases like this, the moments can also be obtained as a function of 
time. For a single gene, the noise out of equilibrium can be 40% larger than its 

Figure 1. Basic model for constitutive expression of a single gene. Only four individual reac-
tions are considered: creation of mRNA from a DNA template, creation of proteins from indi-
vidual mRNA molecules, and the degradation/dilution of both species. 
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steady-state value in the limit of short mRNA lifetimes (9). A more detailed 
modeling of this process could include more intermediate processes, such as the 
random steps that a ribosome takes along an mRNA, but most turn out to have 
little effect when compared in simulations. However, when a repressor or activa-
tor is present, its binding and unbinding might have to be included in the model, 
for this can be a major source of noise. It is in this context that the terms shown 
in Table 1, type III, are needed. Furthermore, the repressor concentration itself 
might be fluctuating, in which case we have to consider the entire system of 
genes. 

2.5. Linearized Matrix Formulation

 The method above can also be used for interacting systems of genes, but 
solving it is not straightforward unless the connections are linear. Alternatively, 
if the system is at a stable point in steady state, the interaction can be linearized 
around the steady state value. A practical way of writing this out is in matrix 
form (9). The transition probabilities for species xi are given by fi(x1, x2, ..., xn) for 
creation and i for destruction, and A and  are the matrices defined by 

1 2
, ...

= i

ij

j x x

f
A

x
and ij = i ij. Letting x be the vector of chemical species, the lin-

earized macroscopic equations are then given by ( )=x A x .

 Note that in many cases the macroscopic equations include constant crea-
tion terms. If the system is linear it might be necessary to include an additional 
variable that is non-fluctuating and allows the inclusion of the constant terms in 
compact matrix form. As an illustration of this, the matrices for the single gene 
case are 

0 0 0

0 0

0 0

= R

P

A k
k

,

0 0 0

0 0

0 0

= R

P

, [21] 

where the state vector is where xT = (d, r, p) is the gene copy number. This con-
stant state coordinate needs not to represent an actual chemical; for a system 
where many species have a constant creation rate, these rates can all be placed in 
the first column of A (setting d = 1 and 1j = j1 = 0). An example of this is the 
matrix for the case of two interacting genes, linearized around steady state, with 
fixed gene copy numbers d1 and d2, respectively, and where the first gene (r1, p1)
represses the second (r2, p2) with transfer function f(p1): 
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1

1 1

1

2 2 2

1

2

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 0

=

R

P

R

p

P

d k

k
A

f
d k d

p

k

,
1

1

2

2

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

=

R

P

R

P

, [22] 

where ( )
1

2 1 1

1

=R

p

f
k f p p

p
.

 Written in terms of these matrices, the master equation in generating func-
tion form would be 

( )1= i ii ij j
i ji j

F FF z A z
z z

. [23] 

At steady state, 0F = , and taking the derivative with respect to zl we obtain 

( )
2 2

0 1
i ii ij j il ll lj j

i j ji l j l l l j

F F F F F
z A z A A z

z z z z z z z
= . [24] 

Setting all zi = 1, we have for each i

( ) ( ) 11
1 1

0 0ii ij j
ji j

F F
A z A F A x

z z
= = = , [25] 

corresponding to the macroscopic result. Similarly, differentiating again and 
evaluating at zi = 1, 

2 2 2 2

1 1 1 11 1

0
ii ij j il ll lj j li

j ji l j l l l i j i i

F F F F F F
A z A A z A

z z z z z z z z z z
= + ,

( )( ) ( )( )1 1 1 1

TT TA F A F A F A F= + , [26] 

where
ij ij

i
z

= . These linear equations can be solved for the means, variances, 

and correlations. 
 This approach is very general and the resulting matrix equations can be 
solved directly. However, even for the case of just two interacting genes this 
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requires a 5 x 5 matrix system as shown, so it gets cumbersome for larger sys-
tems even though most entries are zero. Using symbolic matrix manipulation 
software it is straightforward to obtain the desired expressions, so for known 
parameters this is a good method for obtaining values without further approxi-
mations. 

3. THE LANGEVIN APPROACH

 An alternate approach that allows for a more straightforward interpretation 
and scales easily to different levels of detail is to use a Langevin equation. The 
Langevin approach consists essentially of adding a noise term to the determinis-
tic equations. This noise term can represent the effect of the intrinsic fluctua-
tions (20) or the external inputs of the system (21). 
 For x, the concentration of some chemical species, 

( ) ( ) ( ) ( )x f x x f x q x t= = + , [27] 

where the random variable ( )t  is determined by its statistical properties. For-
mally, this can be any random process, but in practice we assume white-noise 
statistics, which will give approximate values for the first two moments. The 
conditions for white noise are 

( ) 0, ( ) ( ) ( ),t t t= + = , [28] 

where  denotes an ensemble average. Since we are interested in the steady 

state fluctuations, we will assume the coefficient of the noise term to be con-
stant,3 i.e., evaluated at 

ss
x .

 For the case of our basic model of the single gene, we have two macro-
scopic equations representing mRNA and protein creation, respectively: 

R R R R r rr k r r k r q= = + ,

P P P P p pp k r p p k r p q= = + , [29] 

where the coefficients of the noise terms are to be determined. Clearly, <r> = 
kR/ R and <p> = kP<r>/ P from the condition of zero mean for the noise term. 
 The difference with the steady state r r r=  follows the equation 

R r rr r q+ = . [30] 

Fourier transforming, we obtain 
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ˆ
ˆ( ) r r

R

q
r

i
=

+
, [31] 

so after multiplying by the complex conjugate and taking the average, 

2
2

2 2
ˆ( ) r

R

q
r =

+
, [32] 

The steady-state fluctuations are given by the inverse Fourier transform with t = 
0:4

2 2 2
2

2 2 2

1

2 2 1 2
r r r

R R R

q q qdx
r d

x
= = =

+ +
. [33] 

But since the production of mRNA is in this model a single-step independent 
random process, it has a Poisson distribution, so the variance equals the mean, 
which implies 

2
2 2

2
r R

r R
RR

q k
q k= = . [34] 

For the number of proteins, we have 

P p pp p r q+ = + ,

ˆˆ( )
ˆ( ) p p

P

r w q
p

i

+
=

+
, [35] 

but in this case we also need to notice that * *ˆ ˆˆ ˆ( ) ( ) 0
p p

r w r w= = , since these 

are two independent random processes with zero mean. So in this case, 

( )( )

2 2 22
2

2 2 2 22 2 2 2

ˆ( )
ˆ( )

p pr

P PR P

r q qq
p

+
= = +

+ ++ +
. [36] 

We use 2 2r Rq k=  and 2 2 R
p p

R

k
q k=  (since this represents the internal noise and 

for a fixed number of mRNAs the production of proteins is also a Poissonian 
process). Performing the inverse transform,5
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( )( ) ( )

22 2
2

2 22 2 2 2 2 2

1 1 1

2

pr P R P R

P R P RPR P R P

qq k k k k
p d= + = +

++ +
. [37] 

For comparison with the previous result, note that <p> = kPkR/ P R, so this can be 
rewritten as 

2 /
1

1 /
P R

P R

k
p p= +

+
. [38] 

This is identical to the result obtained by the master equation. This method can 
be readily generalized for many interacting genes when the system is fluctuating 
around a steady state. As an example, we will analyze the case where one gene 
represses a second gene. 
 Let y0, y1 be the protein numbers of each gene, and let f(y0) be the rate of 
creation of the second protein as a function of the first. This means that the 
equations describing this system are 

0 0 0 0y k y= ,

( )1 0 1 1y f y y= . [39] 

Note that the equations include the entire process of producing a protein, so 
mRNA levels are no longer explicitly calculated. Including the Langevin noise 
term and looking at the fluctuations from steady state, 

0 0 0 0 0y y q= + ,

1 0 0 1 1 1 1 0 0 1 1 1 1( ) ( )y f y f y y q c y y q= + + , [40] 

where
0

0
0 y

df
c

dy
= , and each noise term has the same conditions as before. This 

linearization is valid at each stable point, but not for transitions between differ-
ent stable points or for limit cycles. For very small numbers n of chemicals this 
also breaks down, because since these processes are mostly Poissonian, the fluc-

tuations are of order n , so a Taylor expansion might not be valid. Fourier 
transforming and taking the square and the average as before, we get 

2
2 0

0 2 2
0

ˆ ( )
q

y =
+

,
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( )( )

22 2
2 2 2

0 0 12 0 0 1
1 2 2 2 22 2 2 2

1 11 0

ˆ ( )
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c y q c q q
y

+
= = +

+ ++ +
. [41] 

The correlation between the genes can also be calculated from 

( )( )

2
2
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ˆ ( )ˆˆ ( )
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+
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+ + + +
, [42] 

where the term *
1 0

ˆ ŷ  vanishes because the fluctuations in the first gene are 
independent from the internal fluctuations in the second gene. In many cases, the 
decay time will be determined primarily by the dilution time, so it will be the 
same for all genes. This assumption simplifies the expressions that are obtained 
upon transforming back: 

2 2
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0 2 2
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q q
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+
, [43] 
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where the irrational part of the integral vanishes because of parity. From our 
previous results we know that for a single gene, 

( ) ( )
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2 20
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/
1 1 2 1
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y y y b q y b= = + + +

+
, [46] 

where bi is the burst size for gene i. For basic Hill-type repression, 
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where k1 + B1 is the maximum creation rate, Y1/2 is the half induction point, h is 
the Hill coefficient, and B1 is the basal transcription level. Assuming that the 
internal noise for the second gene alone has the same form, 

( )2
1 1 12 1q y b + , [48] 

the variance and correlation can be explicitly written as 

( ) ( )
2 2 2

0 12
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1/ 2 1 0

2 1 1
2

h
y yh

y b y b
Y k y

= + + + ,

( )
2 0

1 0 1 0
1/ 2 1

1
2

h
y h

y y y b
Y k

= + . [49] 

Note that we need the parameters of the macroscopic equations plus an "inter-
nal" parameter for each gene, bi = kPi/ Ri, which depends on the parameters of the 
macroscopic equations for each gene. 

4. DISCUSSION AND CONCLUSIONS

 We thus have a versatile toolbox of modeling approaches at our disposal, 
each suitable for different situations and with different levels of approximation 
and scalability. A direct, full master equation approach provides every detail of 
the distribution in the few cases where it can be analytically solved. The proper-
ties of the noise as encoded by the variance and correlations can be obtained 
explicitly in a wide range of cases from the equations obtained from the generat-
ing-function version of the master equation, in some cases as a function of time. 
If we are only interested in the steady-state noise, the linearized matrix formula-
tion of these equations provides a compact way of treating more complex sys-
tems. For a few variables this can be done easily, but increasing the size of the 
system can lead to cumbersome algebra. This matrix approach can be easily 
solved using numerical methods or matrix manipulation software, but then some 
of the insight might be lost. The Langevin approach provides an alternate, 
straightforward way of obtaining the noise characteristics that easily incorporate 
the effects of larger systems and other sources of noise. 
 An additional tool that we have not covered but is worth keeping in mind is 
the possibility of performing detailed Monte Carlo simulations of the system. 
Methods of varying degrees of approximation and efficiency have been devel-
oped recently (24,25), based on Gillespie's stochastic simulation algorithm (26). 
This algorithm is essentially exact, but depending on the complexity of the sys-
tem and the computing power available, a suitable level of detail can be chosen 
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by using one of the preceding algorithms and following only processes that oc-
cur on the time scale of interest. The ability to determine the stochastic proper-
ties of gene expression will allow a more quantitative determination of the range 
of possible cellular responses to a stimulus or treatment, which will be increas-
ingly important as treatments become more targeted and personalized. This 
should be especially useful in gene therapy, where the variability of the gene 
product could be controlled. It can also provide insight into the possible causes 
of disease, as in tumor formation from variations in phenotype due to haploin-
sufficiency (27). On the other hand, the ability to determine the stochastic prop-
erties of a circuit will permit increasingly complex metabolic engineering, 
allowing for higher-order traits like robustness or stability to be included in the 
design rather than painstakingly evolved (28). 

5. NOTES

 1. In this case, the sums only go up to n, instead of . However, the extra 
terms that appear when applying the change of variables cancel with each other. 
 2. This can be summarized in a very practical way (13) in terms of the loga-
rithmic gains to obtain an equation that reflects the resulting components of the 
noise. 
 3. For the case where q(x) is not constant, the stochastic differential equa-
tion will be understood to follow the Stratonovich interpretation (19,22). This 
allows a general Fokker-Planck equation to be written in this form, but will not 
be necessary in the cases of interest. 
 4. From the Wiener-Khinchin theorem; see (23). 

 5. 
( )

( )

( )2 12 2
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2 2
n n

nd

n
=

+
, where ( ) ( )( )1 1n n n= ,

( )1 1= , and ( )1/ 2 = .
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In recent years it has become evident that functional RNAs in living organisms are not 
just curious remnants from a primordial RNA world but a ubiquitous phenomenon com-
plementing protein enzyme based activity. Functional RNAs, just like proteins, depend in 
many cases upon their well-defined and evolutionarily conserved three-dimensional 
structure. In contrast to protein folds, however, RNA molecules have a biophysically im-
portant coarse-grained representation: their secondary structure. At this level of resolu-
tion at least, RNA structures can be efficiently predicted given only the sequence 
information. As a consequence, computational studies of RNA routinely incorporate 
structural information explicitly. RNA secondary structure prediction has proven useful 
in diverse fields, ranging from theoretical models of sequence evolution and biopolymer 
folding, to genome analysis, and even the design of biotechnologically or pharmaceuti-
cally useful molecules. Properties such as the existence of neutral networks or shape 
space covering are emergent properties determined by the complex, highly nonlinear rela-
tionship between RNA sequences and their structures.

1. INTRODUCTION

 It is not hard to argue that RNomics, i.e., an understanding of functional 
RNAs (both ncRNA genes and functional motifs in protein-coding RNAs) and 
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their interactions at a genomic level, is of utmost practical and theoretical impor-
tance in modern life sciences. A comprehensive understanding of the biology of 
a cell obviously requires the knowledge of the identity of all encoded RNAs, the 
molecules with which they interact, and the molecular structures of these com-
plexes (18). 
 Structural genomics, the systematic determination of all macromolecular 
structures represented in a genome, until very recently has been focused almost 
exclusively on proteins. Although it is commonplace to speak of "genes and 
their encoded protein products," thousands of human genes produce transcripts 
that exert their function without ever producing proteins. The list of functional 
non-coding RNAs (ncRNAs) includes key players in the biochemistry of the 
cell. Many of them have characteristic secondary structures that are highly con-
served in evolution. Databases (referenced below) collect the most important 
classes: 

o tRNA. Transfer RNAs are the adapters that translate the triplet nucleic 
acid code of RNA into the amino acid sequence of proteins (128). 

o rRNA. Ribosomal RNAs are central to the translational machinery. Re-
cent results strongly indicate that peptide bond formation is catalyzed by 
rRNA (46,89,103,132,150). 

o snoRNA. Small nucleolar RNAs are required for rRNA processing and 
base modification in the eukaryotic nucleolus (102,116). 

o snRNA. Small nuclear RNAs are critical components of spliceosomes, the 
large ribonucleoprotein complexes that splice introns out of pre-mRNAs 
in the nucleus (161). 

o tmRNA. The bacterial tmRNA (also known as 10Sa RNA or SsrA) was 
named for its dual tRNA-like and mRNA-like nature. tmRNA engages in a 
translation process, adding in trans a C-terminal peptide tag to the unfin-
ished protein at a stalled ribosome. The tmRNA-directed tag targets the 
unfinished protein for proteolysis (146,160). 

o RNase P. Ribonuclease P is responsible for the 5'-maturation of tRNA 
precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria (and 
some Archaea) the RNA subunit alone is catalytically active in vitro, i.e., 
it is a ribozyme (8). RNase MRP, which shares structural similarities with 
RNase P RNA, cleaves at a specific site in the precursor-rRNA transcript 
to initiate processing of the 5S rRNA. 

o telRNA. Telomerase RNA. Telomeres are the specialized DNA protein 
structures at the ends of eukaryotic chromosomes. Telomerase is a ribonu-
cleoprotein reverse transcriptase that synthesizes telomeric DNA (6). 

o SRPRNA. The signal recognition particle is a universally conserved ribo-
nucleoprotein. It is involved in the co-translational targeting of proteins to 
membranes (37). 
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o miRNA. Micro-RNAs (75,77,80) regulate gene expression by regulating 
mRNA expression by a mechanism closely linked to RNA interference by 
small double-stranded RNAs (see, e.g. (7,94)). They are cleaved from 
their precursors, the small temporal RNAs (stRNAs), by the enzyme 
Dicer.

 In addition, there is a diverse list of ncRNAs with sometimes enigmatic 
function. We give just a few examples (see also the Rfam database (41)): the 
17-kb Xist RNA of humans and the smaller roX RNAs of Drosophila play a key 
role in dosage compensation and X chromosome inactivation (2,31). Several 
large ncRNAs are expressed from imprinted regions. Many of these are cis-
antisense RNAs that overlap coding genes on the other genomic strand (see e.g. 
(22)). An RNA (meiRNA) regulates the onset of meiosis in fission yeast (100). 
Human vaults are intracellular ribonucleoprotein particles believed to be in-
volved in multi-drug resistance. The complex contains several small untrans-
lated RNA molecules (152). No precise function was known by the summer of 
2003 for the human H19 transcript, the hrs  transcript induced by heat shock in 
Drosophila, or the E. coli 6S RNA, see e.g. (23). 
 Even though the sequence of the human DNA is known by now, the con-
tents of about half of it remains unknown. The diversity of sequences, sizes, 
structures, and functions of the known ncRNAs strongly suggests that we have 
seen only a small fraction of the functional RNAs. Most of the ncRNAs are 
small, do not have translated ORFs, and are not polyadenylated. Unlike protein 
coding genes, ncRNA gene sequences do not seem to exhibit a strong common 
statistical signal, hence a reliable general purpose computational genefinder for 
non-coding RNA genes has been elusive. It is quite likely therefore that a large 
class of genes has gone relatively undetected so far because they do not make 
proteins (20). 
 Another level of RNA function is presented by functional motifs within 
protein-coding RNAs. A few of the best-understood examples of structurally 
conserved RNA motifs in viral RNAs include: 

o An IRES (internal ribosomal entry site) region is used instead of a CAP to 
initialize translation by Picornaviridae, some Flaviviridae including Hepa-
titis C virus, and a small number of mRNAs, see, e.g. (62,105,115). 

o The TAR hairpin structure in HIV and related Retroviruses is the target for 
viral transactivation. 

o The RRE structure of Retroviruses serves as a binding site for the Rev 
protein and is essential for viral replication. The RRE is a characteristic 
five-fingered structural motif, see, e.g. (16). 

o The CRE hairpin (148) in Picornaviridae is vital for replication. 
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 Genes in eukaryotes are often interrupted by intervening sequences, introns,
that must be removed during gene expression. Similarly, rRNAs are produced 
from a pre-rRNA that contains so-called internal and external transcribed spac-
ers. These contain regions with characteristic secondary structures (17). RNA 
splicing is the process by which these parts are precisely removed from the pre-
mRNA and the flanking, functional exons are joined together (40). Regulated 
mechanisms of alternative splicing allow multiple different proteins to be trans-
lated from a single RNA transcript. Mutations can affect splicing of certain in-
trons, leading to abnormal conditions. For example, a form of thalassemia, a 
blood disorder, is due to a mutation causing splicing failure of an intron in a 
globin transcript, which then becomes untranslatable; see, e.g. (130). The splic-
ing of most nuclear genes is performed by the spliceosome; however, in many 
cases the splicing reaction is self-contained, that is, the intron—with the help of 
associated proteins—splices itself out of the precursor RNA; see e.g. (93) for a 
review. 
 A textbook example of a functional RNA secondary structure is the Rho-
independent termination in E. coli. The newly synthesized mRNA forms a hair-
pin in the 3'NTR that interacts with the RNA polymerase, causing a change in 
conformation and the subsequent dissociation of the Enzyme–DNA–RNA com-
plex. For a computational analysis of the Rho-independent transcription termina-
tors we refer to (162). 
 Only part of the mature mRNA is translated into a protein. At the beginning 
of the mRNA, just behind the cap, is a non-coding sequence, the so-called leader 
sequence (10–200 nt), which may be followed by another non-coding sequence 
of up to 600 nt. An increasing number of functional features in the untranslated 
regions of eukaryotic mRNA have been reported in recent years (67,105). 
 An extreme example are the Early Noduline genes. Enod40, which is ex-
pressed in the nodule primordium developing in the root cortex of leguminous 
plants after infection by symbiotic bacteria (127), codes for an RNA of about 
700 nt that gives rise to two short peptides, 13 and 27 amino acids, respectively. 
The RNA structure itself exhibits significant conservation of secondary structure 
motifs (55), and might take part in localization of mRNA translation (101), as in 
the case of the bicoid gene bcd of Drosophila (87). 

2. RNA SECONDARY STRUCTURES AND THEIR PREDICTION

 As with all biomolecules, the function of RNAs is intimately connected to 
their structure. It does not come as a surprise, therefore, that most of the classes 
of functional RNAs listed in the introduction have, like the well-known clover-
leaf structure of tRNAs, distinctive structural characteristics. While successful 
predictions of RNA tertiary structure remain exceptional feats, RNA secondary 
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structures can be predicted with reasonable accuracy, and have proven to be a 
biologically useful description. 
 A secondary structure of a given RNA sequence is the list of (Watson-Crick 
and wobble) base pairs satisfying two constraints: (1) each nucleotide takes part 
in at most one base pair, and (2) base pairs do not cross, i.e., there are no knots 
or pseudo-knots. While pseudo-knots are important in many natural RNAs 
(145), they can be considered part of the tertiary structure for our purposes. Sec-
ondary structure can be represented in various equivalent ways (see Figure 1). 
 The restriction to knot-free structures is necessary for efficient computation 
by means of dynamic programming algorithms (55,56,95,98,119,140,149,153–
155). The memory and CPU requirements of these algorithms scale with se-
quence length n as (n2) and (n3), respectively, making structure prediction 
feasible even for large RNAs of about 10000 nucleotides, such as the genomes 
of RNA viruses (57,64,148). There are two implementations of various variants 
of these dynamic programming algorithms: the mfold package by Michal Zu-
ker, and the Vienna RNA Package by the present authors and their collabo-
rators. The latter is freely available from http://www.tbi.univie.ac.at/. 
 These thermodynamic folding algorithms are based on an energy model that 
considers additive contributions from stacked base pairs and various types of 
loops; see e.g. (92,137). Two widely used methods for determining nucleic acid 

Figure 1. RNA secondary structure of a 5S ribosomal RNA. Secondary structure graph (left), 
mountain representations (middle), dot plot (right), and bracket notation (bottom). In the 
"mountain representation" each base pair (i,j) is represented by a bar from i to j. In the upper 
right half of the dot plot, every possible base pair (i,j) is represented by a square in row i and 
column j, with area proportional to its probability in thermodynamic equilibrium pij; the lower 
half of the plot only shows those pairs that are part of the optimal structure. In the bracket 
notation a secondary structure is encoded by a string of dots and brackets, where dots represent 
unpaired bases and matching brackets represent base pairs. In all representations base pairs of 
the three arms of the structure are color coded for easier comparison. 
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thermodynamics are absorbance melting curves and microcalorimetry; see (118) 
for a review. 
 Recently, algorithms have been described that are able to deal with certain 
classes of pseudo-knotted structures, however, at considerable computational 
cost (1,36,86,114). Alternatively, heuristics such as genetic algorithms can be 
used (81). A common problem of all these approaches is the still very limited 
information about the energetics of pseudo-knots (44,66). 

3. NEUTRAL NETWORKS IN THE SEQUENCE SPACE

 A more detailed analysis of functional classes of RNAs shows that their 
structures are very well conserved while at the same time there may be little 
similarity at the sequence level, indicating that the structure has actual impor-
tance for the function of the molecule. In order to understand the evolution of 
functional RNAs one therefore has to understand the relation between sequence 
(genotype) and structure (phenotype). Although qualitatively there is ample evi-
dence for neutrality in natural evolution as well as in experiments under con-
trolled conditions in the lab, very little is known about regularities in general 
genotype–phenotype relations. In the RNA case, however, the phenotype can be 
approximated by the minimum free energy structure of RNA; see e.g. (121) for a 
recent review. This results in a complex, highly nonlinear genotype–phenotype 
map, which, however, is still computable. This simplifying assumption is met 
indeed by RNA evolution experiments in vitro (5) as well as by the design of 
RNA molecules through artificial selection (147). 
 There is ample evidence for redundancy in genotype–phenotype maps f in 
the sense that many genotypes cannot be distinguished by an evolutionarily 
relevant coarse-grained notion of phenotypes, which, in turn, gives rise to fitness 
values that cannot be faithfully separated through selection. Regarding the fold-
ing algorithms as a map f that assigns a structure s = f(x) to each sequence x, we 
can phrase our question more precisely: we need to know how the set of se-
quences f–1(s) that folds into a given structure s is embedded in the sequence 
space (where the genotypes are interpreted as nodes and all Hamming distance-
one neighbors are connected by an edge). The subgraphs of the sequence space 
that are defined by the sets f–1(s) are called neutral networks (122). 
 The most important global characterization of neutral networks is its aver-
age fraction of neutral neighbor , usually called the (degree of) neutrality. 
Neglecting the influence of the distribution of neutral sequences over the se-
quence space, the degree of neutrality will increase with size of the pre-image. 
Generic properties of neutral networks (108) are readily derived by means of a 
random graph model. Theory predicts a phase transition-like change in the ap-
pearance of neutral networks with increasing degree of neutrality at a critical 
value: 
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1

cr 1 1= , [1] 

where  is the size of the genetic alphabet. For example,  = 4 for the canonical 
genetic alphabet {A,U,G,C}. If cr< then the network consists of many 
isolated parts with one dominating giant component. On the other hand, the net-
work is generically connected if cr> . The critical value cr  is the connec-
tivity threshold. This property of neutral networks reminds one of percolation 
phenomena known from different areas of physics, although the high symmetry 
of the sequence space, with all points being equivalent, introduces a difference 
in the two concepts. 
 A series of computational studies (27–30,42,43,63,122) has in the last dec-
ade drawn a rather detailed picture of the genotype–phenotype map of RNA (see 
also Figure 2). 

 (i) More sequences than structures. For sequence spaces of chain lengths 
n  10 there are orders of magnitude more sequences than structures, and hence 
the map is many-to-one. 
 (ii) Few common and many rare structures. Relatively few common 
structures are opposed by a relatively large number of rare structures, some of 
which are formed by a single sequence only ("relatively" points at the fact that 
the numbers of both common and rare structures increase exponentially with n,
but the exponent for the common structures is smaller than that for the rare 
ones). 
 (iii) Shape space covering. The distribution of neutral genotypes, which 
are sequences that fold into the same structure, is approximately random 
in the sequence space. As a result it is possible to define a spherical ball with 
diameter dcov being much smaller than the diameter n of the sequence space, 
which contains on average for every common structure at least one sequence 
that folds into it. 
 (iv) Existence and connectivity of neutral networks. Neutral networks, 
being pre-images of phenotypes or structures in the sequence space, of common 
structures are connected unless specific and readily recognizable special features 
of RNA structures require specific non-random distribution in the {A,U,G,C}
sequence space, (AUGC). (For structures formed from sequences over a {G,C}
alphabet the connectivity threshold is higher, whereas at the same time the mean 
number of neutral neighbors is smaller). 

 Shape space covering, item (iii) above, is a consequence of the high suscep-
tibility of RNA secondary structures to randomly placed point mutations. Com-
puter simulations (28,122) have shown that a small number of point mutations is 
very likely to cause large changes in the secondary structures: mutations in 10% 
of the sequence positions already lead almost surely to unrelated structures if the 
mutated positions are chosen randomly. The genotype–phenotype map of RNA  
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thus exhibits a remarkable combination of robustness and fragility, typical for 
many complex systems (see also Part II, chapter 5, by Krakauer, this volume). 
Neutral networks and shape space covering are emergent properties in this set-
ting. 
 The set of nodes of the neutral network f–1(s) is embedded in a compatible 
set C(s) that includes all sequences that can form the structure s as suboptimal or
minimum free energy conformation f–1(S) C(s). Sequences at the intersection 
C(s') C(s'') of the compatible sets of two neutral networks in the same se-
quence space are of actual interest because these sequences can simultaneously 
carry properties of the different RNA folds. For example, they can exhibit cata-
lytic activities of two different ribozymes at the same time (120). The intersec-
tion theorem (108) states that for all pairs of structures s' and s'' the intersection 
C(s') C(s'') is always non-empty. In other words, for each arbitrarily chosen 
pair of structures there will be at least one sequence that can form both. If s' and 
s'' are both common structures, bistable molecules that have equal preference for 
both structures are easy to design (25,53). A particularly interesting experimen-
tal case is described in (120). 
 At least features (i), (ii), and (iv) of the neutral networks of RNA seem to 
hold for the more complicated protein spaces as well (3,4) (see, e.g. (71) for 
experimental data). 

Figure 2. Neutral Networks and Shape Space Covering. (a) Neutral networks in an exhaustive 
survey of the GC sequence space with length n = 30 (43) are fragmented (light grey) if the 
fractions u and p of neutral mutations in the unpaired and paired parts of the sequence are 
below a threshold value. Above the threshold the neutral networks consist of one to four con-
nected components. The fragmentation of the single connected component into a small number 
of (barely) separated subsets can be explained by the details of an energy-based folding model; 
see (124). (b) The shape space covering radius dcov scales linearly with the chain length n with a 
slope  1/4. Data are taken from (43). 
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 The impact of these features on evolutionary dynamics is discussed in detail 
in (63,123): a population explores the sequence space in a diffusion-like manner 
along the neutral network of a viable structure. Along the fringes of the popula-
tion, novel structures are produced by mutation at a constant rate (65). Fast dif-
fusion together with perpetual innovation makes these landscapes ideal for 
evolutionary adaptation (30) and sets the stage for the evolutionary biotechnol-
ogy of RNA (123). 

4. CONSERVED RNA STRUCTURES

 As we have seen, even a small number of randomly placed point mutations 
very likely leads to a complete disruption of the RNA structure. Secondary 
structure elements that are consistently present in a group of sequences with less 
than, say, 95% average pairwise identity are therefore almost certainly the result 
of stabilizing selection, not a consequence of the high degree of sequence con-
servation. If selection acts to preserve structure, then this structure must have 
some function. It is of considerable practical interest therefore to efficiently 
compute the consensus structure of a collection of such RNA molecules. 
 A promising approach to this goal is the combination of the "phylogenetic" 
information that is contained in the sequence co-variations and the information 
on the (local) thermodynamic stability of the molecules. Such methods for pre-
dicting RNA conserved and consensus secondary structure fall into two broad 
groups: those starting from a multiple sequence alignment and algorithms that 
attempt to solve the alignment problem and the folding problem simultaneously. 
The main disadvantage of the latter class of methods (38,39,117,133) is their 
high computational cost, which makes them unsuitable for long sequences such 
as 16S or 23S RNAs. Most of the alignment based methods start from thermo-
dynamics-based folding and use the analysis of sequence covariations or mutual 
information for post-processing; see, e.g. (55,70,79,84,85). The converse ap-
proach is taken in (50), where ambiguities in the phylogenetic analysis are re-
solved based on thermodynamic considerations. 
 It is important to clearly distinguish the consensus structure of a set of RNA 
sequences from the collection of structural features that are conserved among 
these sequences. Whenever there are reasons to assume that the structure of the 
whole molecule is conserved, one may attempt to compute a consensus struc-
ture. On the other hand, consensus structures are unsuitable when a significant 
part of the molecule has no conserved structures. RNA virus genomes, for in-
stance, contain only local structural patterns (such as the IRES in Picorna vi-
ruses or the TAR hairpin in HIV). Such features can be identified with a related 
approach that is implemented in the alidot algorithm (59,60). This program 
ranks base pairs using both the thermodynamic information contained in the 
base pairing probability matrix and the information on compensatory, consistent, 
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and inconsistent mutations contained in the multiple sequence alignment. The 
approach is different from other efforts because it does not assume that the se-
quences have a single common structure. In this sense alidot combines struc-
ture prediction and motif search (15). An implementation of this algorithm is 
available from http://www.tbi.univie.ac.at/. This approach to surveying func-
tional structures goes beyond search software such as RNAmot (34) in that it 
does not require any a priori knowledge of the functional structure motifs and it 
goes beyond searches for regions that are especially thermodynamically stable 
or well-defined (68) in that it returns a specific prediction for a structure if and 
only if there is sufficient evidence for structural conservation. 
 Of course, it is not possible to determine the function of a conserved struc-
ture or structural element without additional experimental input. Nevertheless, 
knowledge about their location can be used to guide, for instance, deletion stud-
ies (90). Knowledge of both protein coding regions and functional RNA struc-
tures in the viral genome is needed, e.g., to rationally design attenuated mutants 
for vaccine development. 
 Structure predictions of a set of sequences are conveniently summarized in 
the form of Hogeweg-style mountain plots (61) (see Figure 3). 
 The computation of consensus and conserved RNA structures has been used 
to compile an Atlas of potentially functional RNA motifs in RNA virus ge-
nomes. Detailed data are available at present for Picornaviridae (148), Hepatitis 
B virus (73,129), and Flaviviridae (136). 

5. DISCUSSION

 Structural genomics, the systematic determination of all macromolecular 
structures represented in a genome is at present focused almost exclusively on 
proteins. Over the past two decades it has become clear, however, that a variety 
of RNA molecules have important, and sometimes essential, biological func-
tions beyond their roles as rRNAs, tRNAs, or mRNAs. Given a handful of re-
lated RNA sequences, reliable methods now exist to predict conserved 
functional RNA structures within these RNAs. Because of their small size and 
fast evolution, the genomes of RNA viruses supply fertile ground for such ap-
proaches, and databases of functional viral RNA structures are being built. 
These functional RNA motifs in the viral genome are just as essential as the 
encoded proteins, and thus just as promising targets for development of drugs 
and vaccines (90,151). 
 The importance of regulatory functions mediated by RNA has only now 
found more attention through recent studies on the phenomenon of RNA inter-
ference (11,45,49). A recent study (138) showed, furthermore, that non-coding 
RNA motives may act as potent "danger motifs" that trigger an adaptive immune  
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system via innate immune receptors. RNA structure thus receives increased at-
tention in molecular medicine. 
 A comprehensive understanding of the biology of a cell will ultimately re-
quire the knowledge of all encoded RNAs, the molecules with which they inter-
act, and the molecular structures of these complexes (18). Various approaches to 
surveying genomic sequences for putative RNA genes have been devised in the 
last few years. 
 Structure-based searches use the known secondary structure of the major 
classes of functional RNAs. Programs such as RNAmot (34), tRNAscan (83), 
HyPa (163), RNAMotif (88), bruce (76), and many others exploit this ave-
nue. An interesting variant that makes use of evolutionary computation is de-
scribed by (165). Nevertheless, all these approaches are restricted to searching 
for new members of the few well-established families. The web-based resource 
RNAGENiE uses a neural network that has been trained on a wide variety of 
functional RNAs (166). It is capable of detecting a wider variety of functional 
RNAs. 

Figure 3. Predicted functional RNA structures in the genome of Hepatitis B virus. The func-
tion of the , ', and  elements of the HPRE region have been determined experimentally. The 
prediction suggests several new conserved structures with unknown function. In the "mountain 
representation" each base pair (i,j) is represented by a bar from i to j. The thickness of the bar 
indicates its probability or the reliability of the prediction. A color scheme can be used to indi-
cate sequence covariations. Hue encodes the number of compensatory and consistent muta-
tions, while reduced saturation indicates that a small number of sequences is inconsistent with 
the structure. 
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 Some non-coding RNAs can be found by searching for likely transcripts 
that do not contain an open reading frame. A survey of the E. coli genome for 
DNA regions that contain a 70 promotor within a short distance of a Rho-
independent terminator, for instance, resulted in 144 novel possible ncRNAs 
(164). This approach is limited, however, to functional RNAs that are tran-
scribed in the "usual" manner. 
 Comparative approaches such as the QRNA program (113) can detect novel 
structural RNA genes in a pair of aligned homologous sequences by deciding 
whether the substitution pattern fits better with (a) synonymous substitutions, 
which are expected in protein-coding regions, (b) the compensatory mutations 
consistent with some base-paired secondary structure, or (c) uncorrelated muta-
tions. 
 Another approach tries to determine functional RNAs by means of structure 
prediction. The basic assumption is that functional and hence conserved struc-
tures will be thermodynamically more stable (64,78). While such procedures are 
capable of detecting some particularly stable features, a recent study (110) con-
cludes that "although a distinct, stable secondary structure is undoubtedly impor-
tant in most non-coding RNAs, the stability of most noncoding RNA secondary 
structures is not sufficiently different from the predicted stability of a random 
sequence to be useful as a general genefinding approach." Nevertheless, in some 
special cases such as hyperthermophilic organisms, GC-content (and hence 
thermodynamic stability) proved sufficient (74). 
 Since most classes of functional RNAs are relatively well conserved while 
their sequences show little similarities, both comparative procedures and search 
in single sequences have to rely on structural information. While the prediction 
of RNA tertiary structures faces much the same problems as protein structure 
prediction, efficient algorithms exist for handling RNA secondary structure. As 
we have seen, these methods provide powerful tools for computational studies of 
RNA structure. 
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This introductory survey to protein networks and their biomedical applications has three 
parts. First, I introduce some of the most promising and widely used experimental ap-
proaches to study protein expression on a genome-wide scale. Second, I introduce ex-
perimental approaches to identify physical protein interactions on a genome-wide scale. 
Finally, I present some examples of how such network information might be profitably 
used in medical applications. 

1. INTRODUCTION

 Genome-wide approaches to study the living are poised to revolutionize 
medicine in at least three areas: diagnosis, toxicology, and drug development. 
The example of drug development illustrates vividly the important role that pro-
teins will play in this revolution. Not only are the functional products of most 
genes proteins, the targets for the vast majority of known pharmaceuticals are 
also proteins. To develop new drugs thus is to identify agents that can either 
block or mimic the action of key proteins in an organism's or a cell's life cycle, 
be it a pathogen, a cancerous cell, a cell necessary for an immune response or a 
cell important in some aspect of regeneration. However, efficiency is only one 
aspect of a good pharmaceutical, specificity being equally necessary. Ideally, a 
drug should interact with its intended target (protein), and only with this target. 
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The less specifically a drug acts, the more wide-ranging will its side effects be. 
Most assays aiming at characterizing the specificity of a drug rely either on or-
ganismal-level observations or on the activity of individual macromolecules. 
Few assays are available to explore the entire spectrum of molecular interactions 
a candidate pharmaceutical might engage in. Genomics, and specifically the 
analysis of protein networks, holds the promise to change that. 
 The word "network" evokes the image of objects (organisms, cells, proteins, 
genes, etc.) that interact with each other, usually in some complex fashion. 
However, browsing through the experimental literature in functional genomics, 
one quickly realizes that researchers in the field seem to have adopted a much 
broader sense of the word. Many studies in this area bear the word "network" in 
the title, but the studies do not identify interacting objects, be they genes or pro-
teins. Instead, many of these studies provide circumstantial evidence—mostly 
through gene expression—for gene products that might be part of a network. 
That is, they identify genes that are expressed—either as mRNA or as protein—
at similar levels during a particular part of an organism's life cycle, in a particu-
lar environmental condition, in a mutant strain, during development, or in a dis-
eased organ. Co-occurrence of gene products under such conditions is then taken 
as an indication that the gene products may be part of a network that is "active" 
under the particular condition studied. I will use the notion of a protein network 
here in both the stronger sense above and in this weaker sense. The development 
of techniques to identify networks in the weak sense is more advanced, as are 
their medical applications. 
 This introductory survey of protein networks and their biomedical applica-
tions has three parts. First, I introduce some of the most promising approaches to 
study protein expression on a very large scale, that is, to identify protein net-
works in the weak sense. Second, I introduce experimental approaches to iden-
tify direct protein interactions on a genome-wide scale, that is, to identify 
protein networks in the strong sense. Finally, I present some examples of how 
network information can be profitably used in medical applications. At this point 
in time, most pertinent and publicly available experiments aim to provide a 
proof of principles rather than fully mature clinical applications. The literature I 
cite is by no means exhaustive, but intended to provide guidance for further 
reading.

2. LARGE-SCALE APPROACHES TO IDENTIFY 
PROTEIN EXPRESSION

 The approach with the longest track record of identifying expressed proteins 
on a genome-wide large scale is two-dimensional protein electrophoresis. A 
second approach, mass-spectroscopic analysis of complex protein mixtures, 
holds great promise for the future. Both approaches identify individual proteins 
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using mass spectroscopy, whose pertinent features I will briefly review, espe-
cially because these features are also important in experimental techniques to 
identify protein interactions. For more thorough surveys see (1,24). 
 The principle of mass spectroscopy is that ions of different mass and charge 
travel at different velocity and with different trajectories through an electromag-
netic field. Mass spectroscopy serves to identify the chemical composition of an 
unknown sample containing protein or other molecules. A mass spectrometer 
consists of three parts: an ionization source, an analyzer, and a detector. The 
ionization source is responsible for ionizing the sample, and the analyzer sepa-
rates the ions in an electromagnetic field according to their mass-to-charge (m/z) 
ratio. (Ions of the same m/z ratio cannot be distinguished.) The detector collects 
the ions and records a spectrum displaying the abundance of ions of a particular 
m/z ratio. There are multiple approaches to implementing ionization, analysis, 
and detection, as well as to combining them into a spectrometer. I will mention 
two approaches that are particular prominent in analyzing proteins. 
 MALDI-TOF mass spectrometers combine Matrix-Assisted Laser Desorp-
tion Ionization (MALDI) with a time-of-flight (TOF) analyzer. MALDI is a 
"soft" ionization method that does not cause fragmentation of molecules in the 
sample. In MALDI, a sample is mixed with a matrix compound such as sinap-
inic acid. The mixture of sample and matrix is then exposed to laser light, which 
the matrix compound converts into excitation energy that ionizes the sample, 
such that it can enter the analyzer. The time of flight analyzer first accelerates 
ions in a well-defined electric field and then measures their velocity, which is 
characteristic for ions of given m/z. In the typical MALDI-TOF application of 
identifying a protein in an organism with a fully sequenced genome, one would 
first digest the protein enzymatically into short peptides, and then obtain a mass 
spectrum of the resulting mixture of peptide fragments, a so-called peptide map 
or mass map. The amino-acid sequence of a short peptide can often be uniquely 
determined from its mass. Together with the masses of other peptides from the 
same protein, and with the known location of genomic DNA sequences that 
have the nucleotide sequence necessary to encode the peptide(s), one can deter-
mine not only the complete amino-acid sequence of the protein, but also the 
location of its coding gene. 
 A second commonly used type of mass spectrometry is tandem mass spec-
trometry (MS-MS). MS-MS uses two analyzers. One method of combining these 
two analyzers, daughter ion scanning, is of particular importance for determin-
ing the sequence of peptides in complex protein mixtures. In this approach, ions 
pass through a first analyzer, upon which the user (or a computer) selects ions of 
a particular molecular weight of interest. These ions are then fragmented by 
bombardment with a gas in a process called collision-induced dissociation. (Col-
lision-induced dissociation can be used to determine the amino-acid sequence of 
previously selected peptides, where one takes advantage of the fact that peptides 
fragment preferentially at their peptide bonds.) The second analyzer then gener-
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ates a spectrum of the fragments that pass through the detector. Tandem mass 
spectroscopy allows dentification of individual compounds such as proteins in 
complex mixtures. 
 After this digression into some methodological background, I now return to 
the first of two methods to analyze large-scale protein expression, two-
dimension protein gel electrophoresis (for in-depth reviews, see (6,25)). In this 
technique, soluble proteins in a cell are isolated and separated electrophoreti-
cally in two dimensions (hence the name). In the first dimension, proteins are 
separated according to their mass. Then the separated proteins are fractionated 
along a second dimension according to their charge or, more precisely, their 
isolectric point, in a technique called isolectric focusing. After staining proteins 
using agents such as silver or Coomassie blue, one is left with a complex pattern 
of thousands of spots, each representing one (or more) proteins that are ex-
pressed in the analyzed cells (see Figure 1 for an example). Individual proteins 
can then be manually excised from the gel and enzymatically digested into 
smaller peptides. (The most commonly used approach here is digestion with the 
enzyme trypsin, which cleaves proteins C-terminally of every arginine or ly-
sine). Cleavage products can then be identified through MALDI-TOF mass 
spectrometry, either from large protein databases or from the completely se-
quenced genome, if available. 
 This approach suffers from limitations that can partially be overcome by 
automatization. They include the necessity to extract individual protein spots 
manually for analysis, and the limited reproducibility of the electrophoretic 
separation, especially across different laboratories. Another limitation, less eas-
ily overcome, is the approach's limited dynamic range. It can only detect pro-
teins of moderate to high abundance and resolve "only" on the order of 1,000 
proteins per gel. (Compare this with the complexity of the human protein com-
plement of several hundred thousand proteins, if one includes the hundreds of 
alternatively spliced variants of many of the 30,000 human genes.) A second 
limitation, shared with many other approaches, is that the technique is not ame-
nable to analyze insoluble membrane proteins, which may account for a large 
fraction all proteins in a cell. 
 A second prominent approach to study protein expression on a large scale 
circumvents two-dimensional gel electrophoresis. It identifies soluble proteins 
directly from complex protein mixtures extracted from living cells and typically 
involves three steps (25). The first of them is protein extraction from a cell and 
chemical or enzymatic digestion of these proteins into peptides. In a second step, 
the chemical complexity of the resulting mixture is reduced, for example, 
through separation by capillary electrophoresis. The resulting peptide fractions 
can then directly enter the third step: the analysis of identified peptides through 
tandem (MS-MS) mass spectrometry. Such direct mass spectrometry of complex 
protein mixtures can potentially identify thousands of proteins and, once auto-
mated, is a rapid analysis tool. Identification rates of 104 peptide sequences per  
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hour have been achieved. However, as in the case of two-dimensional gel elec-
trophoresis, insoluble proteins and proteins of very low abundance are still a 
problem. (Unfortunately, many key regulators of cellular processes fall in the 
latter category.) 
 In typical applications of either 2D electrophoresis or direct mass-
spectrometry, the primary goal is not identification of a large number of proteins 
expressed in one cell or tissue, but a comparison of protein expression. For ex-
ample, one may be interested in how particular environmental conditions, such 
as excessive heat or drought, affect protein expression, in order to identify pro-
tein networks that might contribute to heat or drought tolerance. To do so, one 
needs to compare protein expression between an experimentally manipulated 
environmental condition and a control (unmanipulated) condition. Another ap-
plication is the identification of gene functions through the effects that mutations 
in a gene of interest have on the expression of other genes. Such mutant studies 
are pursued to obtain information about potential genetic and physical interac-
tions of the gene's products. Comparative analysis of protein expression also has 
many uses in biomedicine, especially in disease diagnosis. Diseased tissue can 

Figure 1. Image of a 2D protein electrophoresis of a whole cell lysate of colorectal cancer 
cells. Obtained from the SWISS-2DPAGE database (17) at http://us.expasy.org/ch2d/cours2d/ 
gels24.html. Reprinted with permission from the Swiss Institute of Bioinformatics, Geneva, 
Switzerland. 
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often be distinguished from healthy tissue on the basis of molecular markers, 
even in the absence of obvious histopathological abnormalities. The most com-
prehensive of such markers is the entire spectrum of expressed proteins. 
 In 2D protein electrophoresis, two principal approaches are pursued to 
compare expression states between different experimental conditions. The first 
is to carry out two electrophoretic protein separations, one for each of the de-
sired conditions. The resulting spot patterns then need to be matched across gels, 
a formidable task given the limited reproducibility of individual gels (26). In a 
second approach, proteins are chemically labeled before separation to distin-
guish proteins that are expressed under different experimental conditions (27). 
(The very same approach is also used in direct mass-spectrometric identification 
of proteins in complex mixtures.) One commonly used labeling technique is that 
of in vivo labeling, where one population of cells is grown in a standard me-
dium, and the other population in a medium enriched in a stable isotope such as 
heavy nitrogen (15N). The two cell populations are mixed before protein extrac-
tion. Such differential labeling results in slightly different masses of the same 
gene product in two cell samples, which can be used to quantify to what extent 
its expression has changed. One of the disadvantages of this technique is that 
tissue samples, e.g., as obtained through biopsies, cannot be differentially la-
beled. In situations like these, the technique of post-extraction labeling is useful, 
as exemplified by isotope-coded affinity tagging (ITAG). Here, proteins ex-
tracted from two cell types are chemically modified through the addition of par-
ticular chemical moieties such as alkyl groups to specific amino acids such as 
cysteine. The modifying agent has a different isotope composition for the two 
samples. After pooling the modified proteins, they can again be analyzed jointly, 
because their shifted masses distinguish them (1,27). 
 The data resulting from these approaches is complex and represents relative 
abundances of the thousands of proteins in a cell. Fortunately, the problem of 
analyzing data of similar complexity has arisen earlier in large-scale measure-
ments of mRNA gene expression through microarrays. Thus, a plethora of com-
putational tools are available to analyze such data (3,5,8,29). 
 I will briefly comment on the identification of protein networks through the 
analysis of large-scale mRNA expression data. Most large-scale analysis of 
mRNA gene expression has goals similar to that of quantifying protein expres-
sion, namely, to provide hints about interacting gene products that form part of a 
network controlling a biological process. The key difference is that mRNA is 
only an intermediate in the process of gene expression. From this shortcoming 
arise a number of disadvantages to reconstructing protein networks from mRNA 
expression (15). For example, the expression of many proteins is translationally 
(and not transcriptionally) regulated. For such proteins, mRNA gene expression 
is a poor indicator of protein abundance. Second, and similarly, differential pro-
tein degradation is an important factor in determining protein concentration. It 
cannot be captured by mRNA gene expression analysis. Finally, the activity of 
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gene products is often regulated through post-translational modifications such as 
glycosylation and phosphorylation. mRNA expression, by definition, cannot 
resolve such differences. In contrast, protein expression studies can identify 
some of them. For example, different glycosylation states of the same protein 
manifest themselves in 2D electrophoresis as a closely spaced series of spots. 
Similarly, protein phosphorylation has specific effects on the mass/charge signa-
ture of proteins that can be detected with electrophoretic and mass spectroscopic 
approaches. However, post-translational modifications do pose enormous chal-
lenges to protein expression analysis, especially in light of the fact that hundreds 
of chemical modifications are possible. In particular, often only a small fraction 
of the same protein molecules are modified per cell, necessitating enormously 
sensitive approaches to detect them. In addition, while a single peptide sequence 
(obtained through tandem mass spectrometry) can be sufficient to identify a pro-
tein uniquely, this holds no longer for the identification of post-translational 
modifications (1). 

3. IDENTIFYING PROTEIN INTERACTIONS

 Protein networks in the strong sense are identified through approaches that 
detect interactions of proteins with each other. I will briefly discuss three ap-
proaches to detect such protein interactions on a large scale, the yeast two-
hybrid assay, a second technique to identify protein complexes, and protein ar-
rays or protein "chips" (reviewed in (23)). 

3.1. The Yeast Two-Hybrid Assay 

 As originally proposed (10), the yeast two-hybrid assay is a technique to 
identify interactions between two specific proteins A and B (not necessarily 
from yeast). It takes advantage of the fact that many eukaryotic transcriptional 
activators consist of two functionally different and separable parts: a DNA bind-
ing domain responsible for binding of the transcription factor to DNA, and a 
transcriptional activation domain responsible for interacting with RNA poly-
merase. Even when separated (e.g., attached to different polypeptides), these 
domains can still exert their roles of DNA binding and transcriptional initiation. 
 To detect interactions between protein A and protein B, the two-hybrid as-
say first uses recombinant DNA techniques to generate two hybrid proteins. One 
of them is a hybrid where protein A is fused to the transcriptional activation 
domain of a yeast transcription factor, such as the gene product of GAL4. This 
hybrid protein is also called the bait protein. The second hybrid protein is a pro-
tein where the transcriptional activation domain of the transcription factor is 
fused to protein B. This hybrid protein is also called the prey (see also Figure 2). 
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 The assay is carried out in yeast cells that harbor an engineered yeast gene, 
called a reporter gene, whose upstream region contains a short DNA sequence to 
which the DNA binding domain of the transcription factor can bind. (Reporter 
genes are genes whose expression can be easily monitored.) If the two hybrid 
proteins are expressed together in the same cell, the reporter genes will be ex-
pressed if and only if proteins A and B physically interact, and thus build a 
bridge between the transcriptional activation and the DNA binding domain of 
the transcription factor (Figure 2). 
 The two-hybrid approach has been applied to detect not only interactions 
among two proteins but also on a much larger scale to detect interactions of 
most proteins in a genome (4,11,12,18,19,28,30). This is a formidable task, con-
sidering that even for a small genome like that of the yeast Saccharomyces cere-
visiae, with some 6,000 genes, 18 million pairwise interactions need to be 
screened. One approach in carrying out such massive screens takes advantage of 
the fact that yeast cells reproduce facultatively sexually. They come in two hap-
loid mating types called a and , which can fuse to form a diploid cell. 
 To screen for all pairwise protein interactions in a genome, one can generate 
two libraries of molecules, including a bait library containing fusions of all the 
genes encoding proteins of interest with the coding region for the DNA binding 
domain of a yeast transcription factor. After yeast cells of mating type a are 
transformed with this library, each transformed cell will express a fusion protein 

Figure 2. Schematic overview of the yeast two-hybrid assay. See text for details. DBD = 
DNA binding domain; TAD = transcriptional activation domain. 
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corresponding to one member of the library. Exactly analogously, a prey library 
is generated by fusing the genes for the proteins of interest to the coding region 
for the transcriptional activation domain of the yeast transcription factor. Yeast 
cells of the opposite mating type are transformed to give a population of cells, 
each of which expresses one of the prey fusion proteins. 
 All yeast cells used in this genome-scale assay bear a special kind of re-
porter gene that allows them to survive on a selective medium. For example, 
they may be defective in the gene HIS3 necessary to synthesize the amino acid 
histidine, but they contain a reporter gene where the HIS3 gene is fused to a 
regulatory DNA region containing the DNA sequence necessary for binding of 
the transcription factor used in the assay. Yeast cells in which this reporter gene 
is expressed can grow and divide on a medium lacking histidine. 
 In the final step of the assay, the previously transformed yeast cells of op-
posite mating type are allowed to mate and fuse. The resulting diploid cells are 
exposed to a medium lacking histidine. Only cells where prey and bait protein 
interact physically will express HIS3 and will thus survive and form colonies on 
this medium. The proteins whose interaction allowed them to survive can be 
identified through DNA sequencing of their encoding genes. 
 The first genome-wide protein interaction screens to which the two-hybrid 
assay was applied were carried out in the yeast proteome itself. They yielded 
maps of protein interactions involving some 1000 proteins (18,30). Variations of 
the approach have been applied successfully to analyze protein interactions in 
other microbes, such as the bacterium Helicobacter pylori (28), and protein in-
teractions between viral and cellular proteins (4, 11). 
  The yeast two-hybrid approach has several commonly recognized short-
comings. One of them is the use of fusion proteins, which can lead to bait or 
prey misfolding. Another problem is that the assay forces coexpression of pro-
teins in the same compartment of a cell or an organism, although the proteins 
may not co-localize in vivo. These shortcomings lead to potentially high false 
positive and false negative error rates, i.e., to detection of spurious interactions, 
and to a failure to detect actual interactions. These error rates may well exceed 
50% (7,31). 

3.2. Large-Scale Identification of Protein Complexes 

 Another class of techniques, which I will illustrate with one prototypical 
example, is designed to identify the proteins that are part of a multiprotein com-
plex (13,16). The departure point of a typical experiment (Figure 3) is some pro-
tein A of interest, which is attached to a solid support via a chemical tag that 
forms part of the protein. A frequently used tag is glutathione S-transferase 
(GST), an enzyme that binds the tripeptide glutathione with high affinity. To 
attach this tag to a protein A, a fusion gene containing the coding region of GST  
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and that of protein A is generated. The fusion protein expressed from this gene 
can be bound onto a solid support of glutathione-coated agarose beads that form 
part of an affinity chromatography column. An important feature of this binding 
is its reversibility, that is, the protein A–GST fusion (and anything else attached 
to it) can be eluted from the solid support using an excess of glutathione. 
 When the chromatography column is exposed to a protein extract from a 
cell, all proteins capable of binding (directly or indirectly) to protein A will be 
retained on the column. After eluting protein A and its attached proteins, the 
components of the protein complex are separated through gel electrophoresis. 
Individual proteins in the complex can then be identified through mass spec-

Figure 3. A prototypical strategy to isolate protein complexes. Letters A–E indicate proteins. 
The bait protein A is reversibly bound through a chemical tag to a solid substrate that forms 
part of an affinity chromatography column. Upon exposure to a protein extract from a cell, 
proteins that bind to A, either directly or indirectly, are retained on the column. This complex 
of proteins can be released from the column, and analyzed further. See text for details. 
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trometry. Many variations of this approach exist, most notably among them one 
that uses co-immunoprecipitation to isolate a complex of interest. Here, the tag 
is a peptide epitope that can be recognized by an antibody, a feature that can be 
used to render a protein complex insoluble. 
 To identify numerous protein complexes, it is necessary to repeat an ex-
periment of this kind with many different bait proteins. The largest-scale ap-
proaches so far have identified more than 500 protein complexes in the yeast 
Saccharomyces cerevisiae (13,16). 

3.3. Protein Arrays (Protein "Chips")

 A protein array consists of hundreds or thousands of well-defined locations 
on a small surface, each of which contains many copies of one protein. Protein 
arrays are useful not only to study protein–protein interactions, but also a variety 
of other aspects of protein function. There are again several approaches (re-
viewed in (35)), of which I will present only one representative example, along 
with one application (34). 
 In one approach to creating a protein array, a collection of many different 
genes that encode proteins of interest is established. Each gene in the collection 
is fused to the coding region of GST (see above) and to a stretch of DNA encod-
ing many histidine residues (PolyHis). Upon expression of these chimeric genes, 
the fusion proteins can be attached to a glass slide via their PolyHis tail, each 
protein in a separate and well-defined spot. (The glass slide constitutes the pro-
tein chip.) 
 Zhu and collaborators (34) used such protein arrays to ask which proteins in 
the yeast Saccharomyces cerevisiae interact with calmodulin. Calmodulin is an 
important protein in many organisms and mediates the action of calcium ions on 
cells. It is, for example, involved in the secretion of proteins and in the motility 
of vesicles inside cells. To identify which yeast proteins interact with 
calmodulin thus means to identify which proteins contribute to regulating the 
effects of Ca2+ on yeast cells. The employed assay uses biotinylated calmodulin, 
that is, calmodulin to which biotin has been attached. Biotin is a compound that 
is very tightly and specifically bound by the protein streptavidin, its sole purpose 
in this assay. Another important ingredient of the assay is streptavidin that is 
chemically modified by attaching a green fluorescent dye, Cy3, to it. In the as-
say, the array is exposed to a solution of biotinylated calmodulin and Cy3-
labeled streptavidin. All proteins that interact with calmodulin will have bioti-
nylated calmodulin and Cy3-labeled streptavidin bound to them. The corre-
sponding spots on the array will appear green when exposed to light of the 
appropriate wavelength. 
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3.4. The Complexity of Protein Interaction Networks

 It comes as no surprise that the above techniques to identify protein interac-
tions and protein complexes, especially those techniques that can already be 
applied on a genome-wide scale, reveal protein interaction networks of great 
complexity. Figure 4 shows an example of such a network in the yeast Sac-
charomyces cerevisiae, as defined by yeast two-hybrid data (18,30) and manu-
ally curated protein interaction data (22). This network comprises 1893 proteins 
and 2364 pairwise interactions. Similar networks in higher organisms are even 
larger in size. For example, a recently published protein interaction map of the 
fruit fly Drosophila melanogaster involves 7048 proteins and 20,405 interac-
tions (14). (These numbers do not represent accurate estimates of the number of 
protein interactions in vivo, because of some shortcomings of the technique to 
identify protein interactions cited above.) 

Figure 4. A graph-based representation of the protein interaction network of the yeast Sac-
charomyces cerevisiae. Nodes in the graph correspond to proteins. Black lines connect protein 
pairs for which at least one of three sources of empirical data (18,22,30) indicates that the 
proteins physically interact. 
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 Since the first such protein interaction maps became available, their struc-
tural and functional characterization have received great attention. Such net-
works reveal some simple structural features that they share with other 
biological networks (20,32). In particular, it has been noted that the number d of 
interactions per protein often resembles a power law, P(d) ~ d– , where  is a 
constant characteristic of the network. In addition, such networks show a high 
degree of clustering of interactions within small groups of nodes. Such cluster-
ing is often measured through a clustering coefficient C (33). To define the clus-
tering coefficient C(v) of a node (protein) v in a graph, consider all kv nodes 
adjacent to a node v, and count the number m of edges (protein interactions) that 
exist among these kv nodes (not including edges connecting them to v). The 
maximally possible m is kv(kv –1 )/2, in which case all m nodes are connected to 
each other. Let C(v): = m/(kv(kv – 1)/2). C(v) measures the "cliquishness" of the 
neighborhood of v, i.e., what fraction of the nodes adjacent to v are also adjacent 
to each other. In extension, the clustering coefficient C of the graph is defined as 
the average of C(v) over all v. It can be orders of magnitude larger in biological 
networks than in random networks of similar size and connectivity distribution. 
Despite some intriguing propositions (2), the functional and biological signifi-
cance of such functional features is still unclear. In addition, because of their 
size and complexity, these networks may harbor biologically important struc-
tural features that remain completely unexplored. 

4. MEDICAL APPLICATIONS

 A hopefully temporary shortcoming of all presently available approaches to 
identify protein interactions on a genome-wide scale is their high rate of detect-
ing spurious interactions and missing actually occurring interactions (7). Never-
theless, a number of commercial ventures (e.g., the German company Cellzome 
[www.cellzome.com] or the French company Hybrigenics [www.hybrigenics. 
com]) are already dedicating themselves to providing information on pairwise 
protein interactions and protein complexes (protein networks in the strong sense) 
to the pharmaceutical industry, for the purpose of drug discovery. Such com-
mercial interest is a strong indicator of the promise protein network information 
holds for the future of drug discovery. However, the vast majority of studies 
published to date used network information in the weak sense, as defined above, 
in proof-of-principle biomedical applications. I will now provide a few exam-
ples of such applications. 

4.1. Mechanisms of Drug Action

 Analysis of protein expression can be useful in comparing the effects of 
newly identified antibiotics to those of existing antibiotics. This serves the pur-
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pose of obtaining information about the antibiotic's mechanism of action, poten-
tial toxicity, and possible mechanisms of bacterial resistance. An application is 
described by Evers and Gray (9), who identified the novel antimicrobial com-
pound Ro-64-1874. The effects of this compound on protein expression in the 
bacterium Haemophilus influenzae was compared to the effects of a series of 
well-characterized other antibiotics that affect cellular processes such as tran-
scription, translation, or tRNA synthesis. It was found that Ro-64-1874 causes a 
protein expression profile (obtained through 2D electrophoresis) very distinct 
from most characterized antibiotics but similar to that of the antibiotic 
trimethoprim, which is an inhibitor of the enzyme dihydrofolate reductase 
(DHFR). This assay thus suggests that Ro-64-1874 may also inhibit DHFR ac-
tivity. 

4.2. Drug Target Validation

 The ideal inhibitory drug is highly specific, i.e., it inhibits a single protein 
or other gene product so completely as if the encoding gene itself was absent. 
Marton and collaborators (21) developed a test for drug specificity that is based 
on this observation. For their proof-of-principle experiments, they chose the 
drug target calcineurin in the budding yeast Saccharomyces cerevisiae. Cal-
cineurin is a protein phosphatase implicated in T-cell activation, apoptosis, and 
cardiac hypertrophy in higher organisms. In yeast, it is involved in the regulation 
of the cell cycle and in osmotic homeostasis. Marton and collaborators tested 
two drugs—FK506 and Cyclosporin A—both immunosupressants that can in-
hibit calcineurin activity in higher organisms and in yeast. How specific is the 
action of these drugs? They asked this question by comparing gene expression 
profiles between yeast mutants from which the calcineurin gene had been de-
leted, and strains where calcineurin had been pharmacologically inactivated by 
application of either drug. If the drugs act with high specificity, one would ex-
pect that both the genetic and pharmacological inactivation yield very similar 
effects on gene expression. This is what the authors observed. In contrast, dele-
tions in genes unrelated to the calcineurin pathway yielded effects on gene ex-
pression uncorrelated with those of pharmacological inhibition. This approach is 
also suited to identify the exact nature of a drug's off-target effects, by studying 
how gene expression changes in pharmacologically versus genetically manipu-
lated organisms (21). 

4.3. Toxicology

 Cyclosporin A is an immunosuppressant with a number of side effects, most 
importantly among them nephrotoxicity. What causes this side effect? Evers and 
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Gray (9) synthesized results from a series of studies that identify a likely cause 
using a protein expression analysis approach. Two-dimensional protein electro-
phoresis in rats showed that application of cyclosporin A inhibits the expression 
of the protein calbindin-D in rat kidneys. This response is associated with in-
creased calcium excretion and calcium accumulation in the kidney. Calbindin 28 
has been implicated in calcium transport and calcium buffering, thus making it a 
prime candidate for mediating this side effect. 

4.4. Diagnosis

 One among a growing number of proof-of-principle studies for diagnostic 
applications is that by Gordon and collaborators (cited in (21)), which describes 
the use of gene expression analysis to distinguish two types of lung tumors: ma-
lignant pleural mesothelioma (MPM) and adenocarcinoma (ADCA). Accurate 
differential diagnosis is critical in case of these two tumors, as treatment strate-
gies differ greatly for them. However, diagnosis is difficult using conventional 
methods. Using large-scale gene expression analysis, the authors identified eight 
genes that changed their expression level most drastically in a "training" set of 
16 ADCA and 16 MPM tissue samples. Using these biomarker genes as diag-
nostic indicators, the authors were able to diagnose 99% of presented tumor 
samples as being either ADCA or MPM (21). 
 The above examples are hand selected from a growing literature in this area. 
They illustrate the great potential of protein network-based approaches for 
medical applications. With continued improvements in experimental techniques 
to characterize such networks, they will without doubt play an important role in 
the future of biomedicine. 
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Whole-cell modeling is an emerging field of science that takes a systems view of the cell. 
The grand challenge is to understand, model, and simulate cellular complexity, and by 
extension, an organism. In this chapter we have tried to outline the raw material for mod-
eling a cell, the advantages and limitations of various modeling strategies, the currently 
available tools, the biomedical applications, and the prospects for future growth in this 
field. 

1. INTRODUCTION

 The classical method of studying biology has been dominated by a ubiqui-
tous reductionist approach, that is, dividing a problem into well-defined compo-
nents and studying each one in isolation. Though this strategy has largely 
succeeded in enhancing our knowledge of life, it has also resulted in creation of 
rules that come with exceptions! This is primarily because knowledge emerged 
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from investigation of the modular description of components. "Rules" emerged 
from intra-modular knowledge and "exceptions" from unidentified inter-modular 
interactions, an unchartered biological territory—until recently. Biology has 
undergone a remarkable transition: from single investigator-driven to multi-
investigator-driven research. Nowadays it is fashionable to talk of a special bio-
logical metamorphosis called "Systems Biology." Systems biology is an emer-
gent phenomenon that arose from a need to combine biology with mathematics, 
physics, chemistry, and computer science. 
 Analysis of the cell in its entirety assumes importance in view of the fuzzy 
boundaries that exist among pathways. Crosstalk among cellular pathways exists 
among functionally specialized components, e.g., DNA polymerase, which both 
acts as a catalyst for synthesizing new strands and communicates with the cell 
repair machinery. The DNA polymerase "interface" is indicative of the fact that 
a given cellular component may be connected both upstream and downstream 
into a mesh of transactions. These transactions bring about dynamic interaction 
among otherwise "static" genes and proteins. The whole cell network is exten-
sive, demonstrates nonlinearity, and is difficult to describe in terms of concen-
trations alone. The origin of nonlinearity lies in the feedback loops, rate 
constants, and the inherent randomness and noise in gene expression, in addition 
to coupled vector and scalar processes. Considering cellular events as entirely 
modular processes is therefore an intrinsically error-prone assumption. Systems 
biology deals with these issues and offers an in-silico view of the genetic and 
metabolic pathways, thus providing a clear mechanistic basis as well as a practi-
cal view of a biological process, especially the emergent phenomena. 
 Ever since in-silico modeling paved the way for creation of the first hypo-
thetical virtual cell (34), researchers have been aggressively pushing the case for 
creating more complicated virtual systems. The challenge is not only to simulate 
a reaction, but to simulate it accurately in the presence of diverse physiological 
conditions and feedback loops. Figure 1 shows a schematic representation of 
quantitative modeling of cellular processes. In the following sections we review 
some of the background work, modeling, and simulation tools—especially E-
Cell—and the progress we expect to see in this field. 

2. BIOMEDICAL BACKGROUND

 The idea of systems biology is not new. In 1948 Norbert Wiener took a sys-
tems approach in search of general biological laws and posited the principles of 
cybernetics (38). Though his attempt was new and farsighted, his timing was not 
right due to the nonavailability of biological data. Throughout the 1960s and 
1970s researchers from the fields of mathematics and engineering 
enthusiastically pursued the idea of transferring knowledge from physics to  
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biology (1,2,22), but they realized the limitations of the classical systems ap-
proach. The underlying assumption was that physical laws were as applicable to 
biological systems as to engineering systems. The dynamic and nonlinear nature 
of living systems was not well understood, and researchers were comfortable in 
viewing organisms as deterministic systems. Furthermore, the ease with which 
measurements could be taken from physical systems was in stark contradiction 
to biological systems, which posed major data-gathering challenges, leading to 
problems in building precise analytical models. As a result, initial modeling ef-
forts were successful only to the extent of simulating cellular events, not in ex-
plaining fundamental principles. Following this, attempts were made to 
construct toy models of biological systems under an assumption of steady-state 
conditions. The most prominent of these were biochemical systems theory and 
metabolic control theory. Another aspect that received more and more attention 
was the appearance of patterns at different levels of biological complexity (24). 
 The last two decades have witnessed remarkable advancements in the field 
of molecular and cellular biology. This has led to a better understanding of bio-
logical complexity, from molecules to organisms. The traditional and immensely 
successful reductionist approach has resulted in the creation of huge databases. 
However, to understand biology at its default (i.e., systems) level, data needs to 
be woven into a system that not only portrays the known interactions but also 

Figure 1. Animating cellular processes in silico.
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helps uncover new relationships. Early attempts at building biological models 
focused primarily on metabolic pathways because of the availability of a rich 
inventory of qualitative and quantitative data. With the emergence of new in-
formation, researchers moved from a data-modeling to a process-modeling ap-
proach (36) using kinetic equations and rate laws. Some of the earliest papers in 
biochemical pathway modeling were published during the 1960s and 1970s 
(8,14,25–27). It was quite challenging to solve algebraic equations manually, 
thus restricting the "model bandwidth" to only a few equations. During the 
1980s and 1990s, the availability of massive computational power tilted the bal-
ance in favor of more powerful modeling strategies (9,10). However, despite the 
impressive strides in biological computer modeling, a few constraints restricted 
its full-scale growth. Some of the constraints were (a) a lack of high throughput 
and high-quality data, (b) understanding of complexity, and (c) difficulty in ex-
perimentally validating computer models. In 1997 a major milestone in biologi-
cal modeling was reached when a virtual Mycoplasma genitalium with 127 
genes was created (34), thereby signaling the arrival of an era of credible in-
silico modeling. Over the last few years, using sound theoretical and experimen-
tal data, biochemical and gene expression models have been published, pushing 
the field of in-silico modeling to new levels. Excellent reviews have appeared on 
this subject recently (3,12,16,17,23,35,39). 

3. MODELING AND SIMULATION

 Biochemical systems come with a variety of features: forward reactions, 
reverse reactions, feedback loops, redundancy, stability, and modularity. The 
challenge is to quantitatively represent each of these features and integrate them 
into the model. A number of parallels between biological systems and engineer-
ing systems have prompted researchers to adopt reverse-engineering approaches, 
using well-established concepts from physics. Some of the traits that biological 
and engineering systems share include: rapid communication and response, ac-
curate error detection and correction, fuzzy control, amplification, adaptation, 
and robustness. However, biological systems are open (i.e., interact with the 
environment, thereby providing an unlimited supply of building blocks for nu-
cleic acids and proteins), nonlinear (a well-defined input does not always lead to 
the predicted output) (see this volume, Part II, chapter 2, by Socolar), and ex-
hibit an emergent property (system behavior cannot be explained by individual 
components). 

3.1. Why Do We Need Modeling?

 1. Every aspect of biological phenomena cannot be easily captured by ex-
periments alone. To answer complex "what if" questions, one needs novel tools 
and strategies to supplement the wet bench approach. 
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 2. Modeling helps identify essential components, i.e., the major players of a 
given system, and to filter out redundant (i.e., nonessential) elements, which 
may represent evolutionary "debris." 
 3. Modeling facilitates rejection of false hypotheses and enables a more 
precise understanding of the non-intuitive behavior of a system. 
 4. A good model can accurately predict the future state of the system in the 
presence/absence of a perturbation. 
 5. We can easily knock-in or knock-out components from the system and 
study their upstream/downstream effects. A model is an inexpensive alternative 
to wet lab tests. 

3.2. Limitations of Modeling

 1. Modeling may result in duplication of experimental results. 
 2. The incompleteness of knowledge may result in limited predictive power. 
 3. Models are often constructed to answer very specific questions, without 
considering the big picture. Though somewhat unavoidable, the model must 
grow with time. 
 4. Even a good model may sometimes yield incorrect predictions. For ex-
ample, the model of T7 phage hinted at a connection between genomic rear-
rangement and its growth rate, a prediction that proved incorrect (7). 

3.3. Mathematical Basis

 Translating biochemistry into mathematics is what eventually drives com-
puter simulation, but this is not always a straightforward process unless the data 
are clean. Modeling with differential equations enables extrapolation to future 
states. Generally, analytical models are built with ordinary differential equations 
and/or stochastic equations, the accuracy of which depends on the assumed pa-
rameters, rate laws, and concentrations (see Table 1). In order to find missing 
parameters, various mathematical approaches are used: for example, simulated 
annealing, genetic algorithms. 

Advantages: Precision, does not permit vague/fuzzy statements, combines 
explanation with predictions, connects various levels of biological organization 

Limitations: nonlinearity (exhibited by biological systems) is very hard to 
solve analytically. 

3.4. Traits of a Good Model

 An ideal model is experimentally validated, analyzable, and open for ma-
nipulation and optimization. The quality of a model is directly proportional to 
the quality of the data. Good data are taken under uniform experimental condi-
tions, are based on time-series measurements, and are obtained by standard ex-
perimental protocols. The rule of the thumb includes (a) keep it as simple as 
possible and as complex as necessary, (b) strive for realistic goals, (c) do not  
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aim at deepest level of understanding at the very beginning, (d) ignore noncon-
tributory factors while studying a given phenomena, and (e) incorporate reliable 
data and assumptions. 

3.5. Validity

 No model can completely fulfill all the items on a researchers' wish list. The 
question of validity is not absolute. Validity depends on the purpose of model 
analysis. A good data fit alone is not a reliable criterion for model validity. What 
is important must be differentiated from what can be ignored. The standard 
process is to check if the simulation results match experimental observations, 
and reject, modify, or develop new hypotheses. Computer simulations may yield 
a number of possible answers to a problem, which must be confirmed through 
active experimental backup. The model validates or rejects only those hypothe-
ses that lie within its scope—depending on whether it is qualitative or quantita-
tive. A validated model is stable under a range of physiological conditions in 
addition to the defined in-silico conditions. The potential impacting factors that 
are usually ignored are: the cell cycle phase, circadian rhythm, cell age, tem-
perature, pH, cell morphology, ion concentration gradient, and a nonuniform 
mix of nutrients, proteins, and ions in the cytoplasm of the cell. 

3.6. Problems in Building Good Models

 1. Biology is currently undergoing a phase transition from low-volume out-
put (single investigator-driven) to high-throughput (multi-investigator-driven) 
research. Currently, we do not have enough accurate quantitative data to develop 
reliable theoretical models that could accurately explain and predict system be-

Table 1. Formalisms commonly used in modeling cellular processes 

                Cell process                                           Modeling formalism 

Gene expression Boolean, rule-based, stochastic 

Signaling pathway Boolean, rule-based, stochastic 

Metabolic pathway Ordinary differential equations, S-systems 

Membrane transport, Reaction diffusion, deterministic 
cytoplasmic streaming partial differential equations, spatial 
 stochastic equations 
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havior. In comparison, models in physics and chemistry are robust and reliable 
because the physical laws are very well known and hold under a wide range of 
conditions. By its nature, mathematical modeling requires prior knowledge of all 
the factors and conditions that affect a reaction or, by extension, a system. For 
small, well-isolated systems some/most of the information can be obtained in 
vitro, but it is extremely hard to imagine all possible factors that impact a given 
phenomenon. Added to this is the computational constraint, especially if 
the model is based on stochastic methods. Due to a lack of adequate data, there 
will always be a problem of unknown components contributing to non-intuitive 
results. 
 2. The cell is more like a gel than a soupy bag of enzymes and substrates. 
Thus the in-vitro rate constants obtained from aqueous solutions do not perfectly 
match the description of real intracellular environments. Furthermore, gradients, 
compartments, and inhomogeneous mixtures of substances arise in the cyto-
plasm. Models commonly assume well-mixed environments to avoid mathe-
matical and computational complexities. 
 3. The rate constants are mostly assumed and/or extrapolated from experi-
mental results. Even when data are available, there is always an inherent varia-
tion regarding the organism and the experimental protocols. 
 4. A mechanistic model is purely data driven and incorporates a large num-
ber of parameters, the values of which are not always possible to obtain with 
accuracy. To overcome this limitation, parameter-finding algorithms are used 
that try to find a parameter value closest to its in-vivo counterpart. However, if 
the search space is large the accuracy of such predictions can be limited. 
 5. In many cases the reaction kinetics is completely unknown. 
 6. Temporal inactivation or degradation of enzymes is not generally consid-
ered in kinetic models. 
 7. Metabolic channeling is the movement of substrates between several ac-
tive sites in a multi-enzyme complex (37) within a co-localized environment. 
Since it is a special case of metabolism where anatomical separation of a path-
way is important, the global/local impact of such molecular crowding is pres-
ently unclear. 
 8. The time scales of intracellular transactions vary from 10–6 seconds (dif-
fusion) to many hours (gene regulation). Thus, it is difficult to choose an ideal 
time step for concurrent simulation of gene expression, diffusion, metabolism, 
and signal transduction. 
 9. Complex systems show a collective behavior of individual components, 
more commonly known as emergent phenomenon, i.e., the whole is greater than 
the sum of its parts. The real behavior of a cell cannot be guessed merely by 
looking at individual components. At the moment it is unclear at what step we 
should stop adding complexity to the system beyond which it becomes redun-
dant. 
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3.7. Modeling Cellular Pathways

3.7.1. Gene Regulatory Network

 Gene regulation is the central theme of the dynamic genome. The cell regu-
latory system not only determines the Boolean (on/off) state of a gene but also 
how much and how long it expresses. This is achieved by means of (a) anatomi-
cal placement of the components reflecting a typical topology of the gene net-
work, and (b) an active interaction among DNA, RNA, protein, and ions. Thus, 
the first task in building a gene network model is to focus on its qualitative topo-
logical features before moving to quantitative descriptions. In view of the large 
amounts of coexpression data gathered from microarray experiments, it now 
seems feasible to "reverse engineer" genetic networks. Based on high-
throughput data, the relationships among interacting elements can be traced, 
leading to construction of a virtual regulatory gene network. The accuracy of 
this network depends on the accuracy of the data in terms of concentrations, rate 
constants, expression levels, and copy numbers. The development of techniques 
like cDNA microarray and oligo-based chips permits study of spatiotemporal 
gene expression in a cell (4,19). Of the various methods of modeling gene regu-
lation, the stochastic approach proposed by McAdams and Arkin (20) seems to 
be most accurate, as recently observed from experimental data (6), since it cap-
tures noise in gene expression (see this volume, Part III, chapter 1.1, by Pedraza 
and Oudenaarden). The biological basis of gene expression modeling (12,20,21), 
its mathematical basis (5), and the grand challenges awaiting the modeling 
community (32) have been excellently reviewed in the past. 

3.7.2. Metabolic Pathways

 The fundamental feature of metabolic pathways is the presence of an inter-
mediate between two enzyme-catalyzed reactions. Intermediates coexist as lin-
ear chains (one incoming reaction and one outgoing reaction), branched chains 
(one incoming reaction, >1 outgoing reactions), loops (metabolites common to 
one incoming and at least two outgoing reactions), or cycles (a series of linear 
and branched reactions that roll over to the starting point). A step is the funda-
mental unit of a pathway and describes a single reaction event. A sequentially 
joined array of steps with one entry and many exit points forms a pathway. A 
collection of pathways having many entry and exit points forms a network. 
What follows are a few prominent concepts in biochemical pathway analysis. 
 1. A stoichiometric network describes a series of spatially homogenous 
transformations governed by standard laws to remove or produce substances in 
fixed proportion. A stoichiometric matrix indicates the number of molecules 
consumed or produced in each reaction. The stoichiometric network has a well-
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defined topology and has strong mathematical foundations in graph theory and 
convex set theory. In stoichiometric network analysis (SNA), the enzyme kinet-
ics, rate constants, activators, or inhibitors are not important. The only input in 
the matrix is the number of substances participating in a given reaction and the 
number of reactions in the system. Advantages: SNA does not depend on the 
nature of the reaction, that is, can be deterministic or stochastic, discrete or con-
tinuous, has direct applications in metabolic flux analysis, allows ease in genera-
tion of a matrix, and the balance equations for substance concentrations can be 
written precisely. Limitations: cannot represent the evolutionary growth of a 
network or its regulatory properties, leading to limited predictive power. Energy 
metabolites must be balanced and bidirectional steps are sometimes hard to re-
solve. Furthermore, distinguishing parallel pathways from the stoichiometric 
matrix is very challenging. 
 2. Metabolic flux analysis (MFA) is one of the most important tools in 
metabolic engineering. MFA makes use of experimental data to study flux dis-
tribution in a system. A complete dynamic description of metabolic pathways 
requires detailed kinetic and regulatory information, which is rarely available 
from experimental data. An alternative approach is to abstract the dynamic na-
ture of the pathways as a (more easily manageable) steady-state system, i.e., 
instead of guessing kinetic parameters. Systemic properties are determined 
mathematically under a quasi-steady state assumption. A very useful concept in 
MFA is the presence of elementary modes. Elementary modes are the simplest 
flux distribution reaction steps that cannot be further decomposed (28,29). They 
represent idealized situations and do not incorporate regulatory feedback loops. 
The number of elementary modes may indicate the number of alternative routes 
available to accomplish a certain biochemical task. Whether some or all are ac-
tually used by the cells can only be determined under stringent experimental 
conditions. In addition, with an increase in the number of reaction steps, the 
number of elementary modes also increases, leading to a combinatorial explo-
sion. This problem can be partly overcome by identifying and grouping isoen-
zymes. Despite this limitation, elementary flux analysis provides a strong 
mathematical tool to satisfy both stoichiometry and thermodynamic require-
ments. MFA concepts were recently used to predict gene knockout phenotypes 
in E. coli (40). MPA (metabolic pathway analysis), an offshoot of MFA, investi-
gates entire flux distributions, whereas MFA focuses on unitary flux distribu-
tions. 
 3. Metabolic control analysis (MCA) is a theoretical approach used to ana-
lyze the relative control of fluxes and intermediate concentrations of metabo-
lites. In contrast to the traditional single rate-limiting step concept, the current 
belief centers around distributed control of enzymes driving the reactions. MCA 
has a strong theoretical basis and is easy to understand. However, it is quite 
challenging to implement and test MCA concepts experimentally. The possibil-
ity of modifying flux using MCA principles through specific biochemical path-



274 P. DHAR and M. TOMITA 

ways has immense pharmaceutical applications. For example, in a human patho-
genic condition caused by a special metabolic pathway of a pathogenic organ-
ism, the enzyme with the highest control coefficient would be a natural choice 
for inhibition. 
 4. Some useful definitions: Control coefficient describes the dependency of 
flux or metabolite concentration on the property of the enzyme that mediates the 
reaction. Elasticity coefficient or elasticity is a measure of the catalytic property 
of an enzyme (in terms of reaction rate) in response to varying concentrations of 
the metabolites participating or influencing the reaction. Pathway flux is the rate 
at which input substances are processed into their subsequent forms. Me-
tabolomics is a quantitative estimation of all known and unknown metabolites in 
a system under specific physiological conditions. Metabolite target analysis
describes the correlation between a genetic mutation and its corresponding en-
zyme. Metabolic profiling accounts for the role of known metabolites in selected 
biochemical pathways. Metabolic fingerprinting is the classification of metabo-
lites based on their origin and biological weight. 
 To build a metabolic model, the concentration of substances, the rate con-
stant and reaction mechanism, as well as the strength of such impacting factors 
as pH, temperature, co-factors, and ions are considered. The steady overall state 
in the model can be considered as a composite of smaller steady-state conditions 
(quasi-steady state) embedded in a larger dynamic system that is open and well 
connected to the environment. Application of the steady-state principle helps 
uncover unstable states that result in oscillations. For maintenance of the steady 
state, the product inhibition loop may be employed in a wide variety of physio-
logical conditions. 
 Biochemical reactions can be described in two ways, depending on the con-
centration of participating substances. At lower concentrations they are repre-
sented as stochastic events that occur when particles collide at certain 
probabilities. A heuristic solution to randomness is provided by mathematically 
sound approaches that trace the evolution of an event over a period of time. At 
higher concentrations biochemical reactions are represented as deterministic 
events best described by ordinary differential equations. If the spatial element 
needs to be used during modeling, partial differential equations are employed. 

3.8. Software Tools

 A mathematically accurate and computationally robust tool is required to 
translate life into numbers. Systems Biology Markup Language is a modeling 
and simulation language driven by a group of researchers from Caltech (http:// 
www.sbml.org). The aim is to enable a diverse set of tools to talk to each other 
by building cross-platform compatible models. Some of the tools include: 
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 1. A-Cell (http://www.fujixerox.co.jp/crc/cng/A-Cell/) is a tool for model-
ing biochemical reactions that provides backward compatibility with previously 
constructed models. 
 2. BioUML (http://www.biouml.org) is a Java framework for systems biol-
ogy ranging from databases with experimental data, tools for formalized de-
scription of biological systems structure, and functioning, as well as tools for 
visualization and simulation. 
 3. CellDesigner (http://www.systems-biology.org) is a biochemical net-
work modeling tool with a graphical user interface. It is designed to be SBW 
(Systems Biology Workbench) compliant and to support the SBML (Systems 
Biology Markup Language) format. 
 4. Cellware (http://www.cellware.org) is the first grid-enabled quantitative 
tool for modeling and simulating cellular processes. It is capable of multi-
algorithmic simulation from a few reactions to the whole-cell level. 
 5. Dbsolve (http://websites.ntl.com/~igor.goryanin/) is an integrated devel-
opment environment based on ordinary differential equations. It is especially 
useful for calculation of steady-state, fitting, and optimization procedures. 
 6. The Discrete Metabolic Simulation System (DMSS) (http://www.bio. 
cam.ac.uk/~mw263/ftp/doc/ISMB99.ps) models reactions based on competing 
metabolite concentrations or metabolite affinities to enzymes, including metabo-
lite and enzyme concentrations. 
 7. Gepasi (http://www.gepasi.org/) is also based on ordinary differential 
equations and simulates the steady-state and time-course behavior of reactions 
based on stoichiometry and reaction kinetics values. 
 8. Jarnac (http://www.cds.caltech.edu/~hsauro/Jarnac.htm) is a cell model-
ing language employed to describe metabolic, signal transduction, and gene 
networks. Jarnac interacts with the user through the Jdesigner frontend. 
 9. Netbuilder (http://strc.herts.ac.uk/bio/maria/NetBuilder/) is an interac-
tive graphical tool for representing and simulating genetic regulatory networks 
in multicellular organisms, using electronic engineering principles for pathway 
layout. 
 10. SigPath (http://icb.med.cornell.edu/crt/SigPath/index.xml) is an infor-
mation system designed to support quantitative studies on the signaling path-
ways and networks of the cell. It helps manage information on protein–protein 
interactions, protein–small molecule interactions, elementary chemical reac-
tions, and enzymatic reactions. 
 11. StochSim (http://info.anat.cam.ac.uk/groups/comp-cell/StochSim.html) 
is a program that provides a stochastic simulator in which individual bio-
molecules or molecular complexes are represented as individual software ob-
jects. 
 12. Trelis (http://sourceforge.net/projects/trelis) is a graphical Monte Carlo 
simulation tool for modeling the time evolution of chemical reaction systems 
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involving small numbers of reactant molecules such as occur in subcellular bio-
logical processes like genetic regulatory networks 
 13. Virtual Cell (http://www.nrcam.uchc.edu/) integrates biochemical and 
electrophysiological data with microscopic images and has a web-based inter-
face.
 14. VLX Biological Modeler (http://teranode.com/products/vlxbiological. 
php) allows scientists to create and annotate visual models of complex biologi-
cal systems, perform simulations for exploring and predicting dynamic system 
behaviors, analyze experimental data with models for hypothesis testing, and 
effectively communicate their findings. 
 15. E Cell (http://www.e-cell.org) is a modeling and simulation environ-
ment from Keio University, Japan. The primary objective of the E-Cell group is 
to create a dynamic quantitative model of metabolic and gene regulatory net-
works in lower and higher model organisms. However, the model building itself 
involves a fair number of assumptions and rate constants. For example, to model 
a random bi–bi reaction may incorporate 10 parameters for a single reaction, 
without taking into consideration activation/inhibition by other molecules. Its 
basic features are listed below. 
 E Cell (short for Electronic Cell) is a generic object-oriented environment 
for modeling and simulating molecular processes of user-definable models, 
equipped with graphical interfaces that allow observation and interaction. The E 
Cell approach enables modeling of gene expression, signaling, and metabolism. 
The first publicly released version of the E Cell simulation system was intro-
duced in 2001 under open source. E Cell is currently in its third version. Ver-
sions 1.0 and 3.0 are Linux-based, while version 2 is Windows-based (31). 
 E Cell 3.0 has been developed with an aim to providing a generic tool that 
runs in a high-performance software environment. It has a geometry information 
interface and a capability to integrate different simulation algorithms, including 
approaches based on a variable-process model, differential equations, diffusion 
reactions, and particle dynamics. One of the main features of E Cell is its ability 
to integrate subsystems at different time scales. The modeling architecture is 
tailored to individual modeling needs and allows users to add components to the 
system. In addition, it is an integrated modeling environment and can simulate 
both deterministic and stochastic models. Version 3 has been customized for 
biologists with little or no programming knowledge. 
 The first application of E Cell was the creation of a virtual cell with 127 
genes in silico (34). The Mycoplasma genomic raw material was used to con-
struct a virtual cell with "minimum cellular metabolism." This hypothetical cell 
consumed glucose from the culture medium, generated ATP, and exported lac-
tate. Transcription and translation steps were modeled to biosynthesize proteins 
within the cell. The cell also consumed glycerol and fatty acid, producing phos-
phatidyl glycerol for membrane structure. The cell was "self-supporting," but 
incapable of proliferation. Mycoplasma genitalium was chosen for this virtual 
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experiment because of its small genome size (580 kb). The information on the 
kinetic properties of genes and proteins was mostly obtained from the KEGG 
and BioCyc (previously called EcoCyc) databases. 

4. FUTURE WORK AND ITS RELEVANCE TO BIOMEDICINE

 In-silico biological modeling has finally arrived and is here to stay. At one 
end of the spectrum, scientists add components and pathways to the system to 
enhance its properties, while at the other end cell parts and pathways are re-
moved to rid the system of undesirable components. An optimum way to test the 
result of such combinations is to perform computer simulations. The computer 
simulations are reasonably accurate, low-cost, fast, and scalable. Of all the mod-
eling approaches, analytical modeling is the most powerful approach, as it 
makes it possible to understand the exact regulatory topology of a biochemical 
pathway. The best estimate about kinetic parameters can be made either directly 
using standard experimental protocols or by inference from the literature (41). 
 Living systems represent a continuous and nonlinear interaction of sub-
stances that are not only large numerically but divergent in variety. Due to the 
inherently dynamic nature of a biological system, the traditional modular ap-
proach does not hold good in all situations. What is needed is a systems-based 
approach that not only models the current state accurately but also predicts all 
possible future states in the presence of varying environmental conditions and 
perturbations. The systems approach offers a possibility of addressing such 
questions as follows: Given a certain gene mutation, what would be its down-
stream impact on the immediate and/or related regulatory and metabolic path-
ways? How many parameters (and in what combinations) can be tweaked to 
produce a continuously dividing malignant cell? Given a good quantitative 
model of a parasitic metabolic pathway, which are the most important and 
highly connected nodes that can be perturbed to produce large-scale effects? 
Assuming that a drug binds specific proteins or genes, how many pathways will 
be affected, and in what sequence, both upstream and downstream? Thus, it is 
even possible to determine the "virtual side effects" of a drug by conducting 
such computer-based experiments. However, to make such virtual experiments 
more accurate, noise-free high-throughput data coupled with a reliable in-vivo 
validation system is required. The future will see the significant growth of inte-
grative models that not only consider different cellular processes in parallel (me-
tabolism, gene expression, and signal transduction) but also combine diverse 
modeling strategies (deterministic and stochastic) (30,33). 
 One of the problems with porting in-vitro data to computer models is the 
gross dissimilarity between in-vitro and in-vivo systems. While the former are 
buffer based, the latter represent gel-based environments. Thus, we need better 
assay systems that provide conditions similar to in-vivo situations. In the future, 
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simulations must also allow transitions between various granularities of models. 
The modeling environment should allow scaling up of a rough coarse-grained 
model (based on qualitative data) to a fine-grained model (based on quantitative 
data) without having to discard the previous one. 
 One would also need better data-mining tools and techniques and smarter 
algorithms to find a proper genomic syntax that can be fed into the model with a 
fair degree of accuracy. As a result of intensive research in metabolomics, it is 
hoped that metabolite analysis will provide a clue to novel gene functions. We 
still do not completely understand how cells maintain robustness and stability in 
environments fluctuating in terms of ion concentrations, nutrients, pH, and tem-
perature. Modelers now assume an ideal situation that does not consider all these 
issues, but as more knowledge accrues models will need to be further con-
strained. 
 An important question that merits answer is: Do networks exhibit symbiosis 
and epistasis? If yes, what are the features that promote such crosstalk? Is this 
interaction physiology- or environment-driven? What is the role of redundancy 
in the evolution of networks? Given that stochasticity in gene expression is de-
termined by extrinsic and intrinsic factors, how does noise evolve over a period 
of time? Does noise have any role in pushing gene expression toward more heu-
ristic solutions? Often we curve-fit the data without considering mechanistic 
models that might provide real control parameters for the system. But to reach 
that state we need a thoroughly validated model that has failed many times over. 
In the future we will see more and more forward-looking modeling approaches, 
i.e., fitting the biological system to the model, as opposed to reverse engineering 
approaches (fitting the model to the biological system). Other areas that merit 
attention are: development of a modeling markup language (15); using a com-
mon theoretical framework for representing biological knowledge; obtaining 
validated and time-series high-throughput data; and developing tools capable of 
integrating large and complex networks. Despite all this, we still do not know if 
mathematics is the right tool for representing biological systems? If not, what is 
the best way to model the dynamic cell? Is there a "law of biological complex-
ity" that has roots in physics or chemistry? 
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Children's Hospital and Harvard Medical School, 
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The genomic revolution has led to the systematic characterization of all the genes of the 
genome and the proteins they encode. But we still do not fully understand how many cell 
behaviors are controlled, because many important biological properties of cells emerge at 
the whole-system level from the collective action of thousands of molecular components, 
which is orchestrated through specific regulatory interactions. In this chapter we present 
two distinct approaches based on the concept of molecular networks to understand two 
fundamental system properties of living cells: their ability to maintain their shape and 
mechanical stability, and their ability to express stable, discrete cell phenotypes and 
switch between them. We first describe how structural networks built using the principles 
of tensegrity architecture and computational models that incorporate these features can 
predict many of the complex mechanical behaviors that are exhibited by living mammal-
ian cells. We then discuss how genome-wide biochemical signaling networks produce 
"attractor" states that may represent the stable cell phenotypes, such as growth, differen-
tiation, and apoptosis, and which explain how cells can make discrete cell fate decisions 
in the presence of multiple conflicting signals. These network-based concepts help to 
bridge the apparent gap between emergent system features characteristic of living cells 
and the underlying molecular processes. 
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1. INTRODUCTION: MOLECULAR BIOLOGY AND
COMPLEX SYSTEM SCIENCES

 A major goal of the study of complex systems is to formally describe and 
understand how a large number of different parts interact and "self-organize" 
into a whole system that exhibits properties that cannot be understood by study-
ing the components in isolation (2). This goal transcends various levels of de-
scription and is of particular importance in biomedical research because higher 
organisms extend over multiple levels of organization. They are hierarchical 
systems that integrate their smallest constituent parts—individual molecules 
including DNA, proteins, and lipids—across multiple levels of organization, to 
organelles, cells, tissues, organs, and the organism (Figure 1). Thus, in order to 
understand the whole living system at the "macro" level in terms of molecular 
parts of the "micro" level, it is necessary to traverse multiple levels of descrip-
tion and size scales through many iterations of integration. 
 The advent of recombinant DNA technology, almost four decades ago, and 
the concomitant progress in protein biochemistry have led to great advances in 
our understanding of the lowest level of organization, the genes and molecular 
parts that comprise living systems. Analysis of how these components interact 
has led to elucidation of the fundamental principles of living cells, such as the 
genetic code, the transcription of genes into mRNA, and the translation of 
mRNA into proteins. Since then the unfathomable complexity of other molecu-
lar processes of living systems, such as the cell's growth cycle and regulation of 
its behavior by external signals, has attracted most attention in biology. Most 
molecular biologists now almost entirely focus their efforts on the identification 
of new genes and proteins and the characterization of their role in these proc-
esses. 
 However, it has recently become clear that, rather than studying individual 
proteins and pathways separately, an integrative approach is necessary. This is 
reflected in the burgeoning area of "Systems Biology," which seeks not only to 
systematically characterize and categorize all the molecular parts of living or-
ganisms using massively parallel analytic techniques, but also to understand the 
functional interactions between the molecules using computational approaches. 
However, despite these efforts, most researchers use the new high-throughput 
technologies of genomics simply to accelerate, and expand to the genome-scale, 
the discovery of new molecular pathways. In contrast, the importance of vertical 
integration across different levels of organization is still largely neglected. 
 Moreover, in molecular as well as systems biology, it is still often assumed 
that the ability to describe mechanistic details through experimentation or the 
use of mathematical models is equivalent to "understanding" the behavior of a 
complex system. For instance, a cell is typically thought to enter cell division 
because a growth factor binds to a cell surface receptor, activates a biochemical 
cascade (e.g., ras–raf–MEK-Erk), and triggers expression of the protein  
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cyclin D; this then would lead to the phosphorylation and inactivation of the 
cell-cycle inhibitor protein Rb, which, in turn, would result in the induction of 
proteins involved in DNA replication (56). Although we are used to present this 
type of Rube Goldberg machine-like mechanism of a molecular process in a 
living cell as if it were explanatory, the reality is that such mechanistic represen-
tations are essentially descriptive. All we do is describe a chain of events at a 
lower (molecular) level than the one used to make our initial observation (cell or 

Figure 1. Hierarchical levels of organization in complex living organisms. At each level of 
the hierarchy, new entities and level-specific rules that govern their behavior emerge from the 
interactions of the entities of the lower level. Thus, there is no "scale-invariance" as in fractals. 
Here we focus on the "emergence" at the cellular and tissue levels of the characteristic me-
chanical properties (left) and features of cell fate behavior (right). 
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tissue level). Even formal and quantitative approaches like system dynamics-
based modeling of particular molecular pathways are descriptive because they 
use an established set of rules (e.g., formal reaction kinetics and diffusion) to 
describe and predict in detail the time evolution of a particular instance of a 
class of system whose generic behavior is known given the set of equations and 
conditions (see this volume, Part II, chapter 2, by Socolar). While useful to pre-
dict the behavior of a particular system in a "bottom–up" approach once its 
component parts are sufficiently characterized, none of these approaches directly 
address the challenge of integration by transcending various levels organization 
and elucidating the basic rules involved. 
 In view of the rapid rise of molecular biology and genomics, some biolo-
gists did voice caution about the limitations of this descriptive and reductionist 
stance (12,33,37,45,49,55,62,53), essentially calling attention to Aristotle's in-
sight that the "whole is different from the sum of its parts." However, it is only 
now, at the threshold of post-genomic and systems biology, that life scientists 
are beginning to realize that an accurate description of all the parts that comprise 
a living cell is not equal to understanding how it functions (29). Sometimes cap-
turing the impression of the whole picture with a glance can give deeper insights 
and yield information not obtained by reproducing it pixel by pixel. Although 
biologists have yet to adopt the approach of "coarse-graining" to gain insight 
into fundamental, system-wide properties, this method is often used by physi-
cists (25,71). Only by adjusting our focus plane to various levels of organiza-
tion, and "zooming" in and out on the magnification, can we reveal the 
fundamental principles that govern what makes the whole (the organism) differ-
ent from the sum of its parts (the molecules). 
 To do so, biologists must free themselves from their "divide and conquer" 
mentality and their adherence to molecular description, be it qualitative or quan-
titative, one at a time or in massively parallel fashion, as the only mode of ex-
planation. Instead, they must join physicists in their willingness to embrace 
abstraction and generalization. Conceptual and formal tools are also needed that 
go beyond descriptive mathematical modeling of particular molecular pathways. 
In fact, at the same time that the molecular biologist now faces this new chal-
lenge, the science of "complex systems" appears to have matured into a disci-
pline in its own right. Even if a rigorous scientific underpinning remains to be 
established (if it is possible at all), it has encouraged scientists from various 
fields, such as physics, biology, engineering, business, and the social sciences, 
to join forces and to a take more formal and general approach to understand 
principles of complex systems rather than simply creating models that only re-
enact them in silico with all the details. 
 A specific formalism that is particularly useful here is based on the idea that 
a complex system can be treated as a network of interacting parts in a most gen-
eral sense. A network can be a physical or mechanical structure, as well as an 
abstract representation of how information flows between interacting elements 
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within a system. Thus, in this chapter, we focus on the principles of organization 
that govern how cells control both their physical structure and biochemical func-
tion as a result of interactions within underlying networks of interacting of pro-
teins and genes. In the process, we will describe how simple, rule-governed 
behaviors, such as cell shape stability and cell fates, represent "emergent proper-
ties" of the underlying molecular networks. Finally, we raise the possibility that 
the interface between these two networks, one structural and the other informa-
tional, is at the core of the evolution and functioning of complex living systems, 
such as cells and whole organisms, that operate at size scales much higher than 
that of molecular reactions and flows. 

2. COMPLEXITY IN LIVING SYSTEMS

 How does the information encoded within DNA and biochemical reactions 
map into the observable properties of living cells that comprise all organisms? 
This old riddle of the genome–phenome relationship can be split into two more 
specific questions: (1) How do interactions between biochemical components 
lead to the production of a physical object with distinct structural and mechani-
cal properties characteristic of a living cell? and (2) How do interactions among 
genes and proteins lead to the development of a coherently functioning machin-
ery for information processing that governs how living cells will behave and 
adapt to their surroundings (see Figure 1)? Thus, we need to address the ques-
tion of how higher-level behaviors emerge, in the context of both the hardware 
(structure) and the software (information-processing programs) of the cell. 
 In contrast to simpler, widely discussed emergent phenomena, such as pat-
tern formation in physicochemical systems or patterns of animal flocks, the 
emergence of new properties in biology has two particular characteristics which 
are absent in most non-living complex systems: 
 (i) Hierarchy of multiple levels of emergence. New properties emerge at 
multiple hierarchical levels that cover many size scales in living organisms. 
Genes and amino-acid sequences determine protein structure, i.e., their three-
dimensional (3D) shape and mechanical properties. Proteins and other macro-
molecules (e.g., lipids, sugars, nucleic acids) self-assemble to create functional 
multimolecular complexes and intracellular organelles, such as the ribosomes, 
mitochondria, the nucleus, the cytoskeleton, and the plasma membrane, as well 
as the extracellular matrix (ECM). These organelles together form the cells. 
Cells interlink with each other and with the extracellular matrix to form tissues. 
Multiple tissues combine to form organs that, in turn, are linked together to form 
the organism. 
 As the elements at each level (molecules, organelles, cells, tissues, organs) 
interact, they give rise to "emergent properties" that are characteristic of the next 
higher level. For example, individual proteins may exhibit a low level of cata-
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lytic activity and move free in solution. However, when multiple proteins with 
different enzymatic activities assemble together, they can form a higher-order 
enzyme complex that exhibits stable 3D form as well as novel functions based 
on coupled metabolic processing activities. For example, the pyruvate dehydro-
genase enzyme complex has a mass approaching 10 million Daltons in mam-
mals and it exhibits a highly organized, pentagonal dodecahedral shape (69). 
Similarly, individual cells of the pancreas can secrete digestive enzymes in a 
polarized manner (i.e., from the apical pole of the cell); however, disease (pan-
creatitis) results if these cells dissociate from each other and their orienting ex-
tracellular matrix scaffold, and lose their higher-order tissue architecture. Thus, 
each level has its specific rules of interaction that involve structural as well as 
dynamic constraints since the nature of the parts and interactions of each level 
are different. Therefore, unlike fractals, we have discrete layers of patterns gov-
erned by distinct, level-specific rules, and there is no general "scale-invariance," 
although some principles apply to various scales, as we will see. 
 (ii) Heterogeneity of interacting elements. The entities in systems with 
emergent (e.g., individual molecules with characteristic 3D structure and func-
tion, multimolecular complexes with novel enzyme activities, organelles with 
specialized metabolic functions, living cells that move and grow) do not form a 
uniform population, as is the case for the molecules in self-organizing patterns 
of chemicals or of individuals in schools of fish. Instead, these entities are 
unique individuals, or belong to classes of entities with similar properties that 
can be clearly distinguished from each other. For instance, cells that arise from 
molecular self-assembly and give rise to tissues can be classified into hundreds 
of qualitatively different classes or types (e.g., liver, muscle, nerve, skin). 
 The complexity of each biological network leads to individuality of the 
emergent entities (e.g., a cell type), even if their component parts are identical 
(e.g., the genes). This variety of individual entities, which serve as building 
blocks, enables combinatorial diversity at the next level of integration (e.g., tis-
sues). This introduces new types of interaction rules at each size scale, thus add-
ing a unique layer of complexity characteristic of living organisms. As 
mentioned earlier, it is the heterogeneity and size of the population of the mo-
lecular parts that has necessitated both the massively parallel analytical methods 
and the detailed modeling approaches of systems biology. However, systems 
biology does not currently embrace the concepts of hierarchy and heterogeneity 
in complex systems. 

3. MODEL: NETWORKS AS THE GENERAL 
CONCEPTUAL FRAMEWORK

 Given that the cells are the most basic building unit of life, which itself is a 
complex system, we will first focus our discussion on how cell shape and func-
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tion emerge from interactions among thousands of interacting molecules and 
genes. Our goal is to uncover principles that govern how many heterogeneous, 
interacting molecular components can self-assemble and self-organize to pro-
duce higher-level features characteristic of whole living cells. However, as we 
will show, the same design principle may also govern how emergence occurs at 
higher levels of organization (e.g., tissues, organs, organism), even though the 
higher-level networks are composed of different players with distinct rules of 
interaction. 
 In chemistry, aggregate variables may be used to represent an average prop-
erty of a homogenous population of parts. Unfortunately, because of the hierar-
chy of emergence and the heterogeneity of the parts in a whole organism, this 
approach is not well suited to describe living systems. In fact, this is the major 
limitation in most past studies that attempt to explain cell structure and mechan-
ics using conventional engineering approaches (e.g., continuum mechanics), as 
well as cell function using laws of mass action for molecular interactions. 
 In contrast, networks provide a simple general formalism for abstraction in 
order to study how the collective action of interacting parts gives rise to emer-
gent properties, and thus, a means to handle hierarchical complexity. Because 
the essential ingredients that make the whole different from the sum of its parts 
are the interactions between the heterogeneous components, a biological system 
can be formalized as a large network that consists of the component elements 
(the molecules) and their links (their interactions), which need not be identical. 
The major point here is that network models can be applied to both structural
systems (i.e., physical scaffolds that lend mechanical stability to the network) 
and information-processing systems (i.e., the abstract diagrams that represent 
how elements of the network influence each other's activities and the behavior of 
the whole). Applied to mammalian cells, the structural network is the "cy-
toskeleton" that determines how the building blocks (proteins) are physically 
attached to each other to give the cell its physical shape and mechanical stabil-
ity. The information-processing network is the regulatory network that deter-
mines how the state of interacting elements (genes and proteins) influence each 
other, and thereby process the information that is encoded in the genome or re-
ceived from the external milieu to generate a distinct cell behavior. 
 The common basic property of both networks in living cells, one structural 
and the other informational, is that the collective action of their constituent mo-
lecular elements gives rise to a system with emergent properties. However, there 
is a fundamental formal difference. Structural network models describe a con-
crete object while information networks are an abstraction. Nevertheless, while 
one may think of the structural network as a physical scaffold in which every 
individual building block (including all members of the same class of elements) 
has to be depicted in the model, like in an architect's blueprint, the model of the 
cell that we discuss below also offers some abstraction. Specifically, models that 
contain a few elements (with their prototypic mechanical properties) mimic 
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characteristic global properties of whole living cells that contain millions of 
such elements. On the other hand, information-processing networks, i.e., signal 
transduction and gene regulatory networks, are full abstractions in that every 
individual interacting element that occurs only once in the model actually repre-
sents hundreds to billions of copies of that particular type of molecular species. 
Another difference between the structural and information networks is that the 
former takes into account position and physicality, whereas interactions in the 
latter can be represented mathematically as a graph because, in a first approxi-
mation, space does not play a role (see also this volume, Part II, chapter 4, by 
Wuchty, Ravasz, and Barabási). 
 At first glance, one might think that the structural cytoskeletal network 
maintains the cell's shape, whereas the biochemical information-processing net-
work determines the behavioral state of the cell. However, as will be discussed 
below, evolution has led to assembly of cells in which structure and informa-
tion-processing functions are tightly coupled—a fundamental property of living 
systems at all size scales. Another central property of biological systems, such as 
a cell, is that they need to be stable, yet flexible. Cells are continuously chal-
lenged by chemical and physical stimuli: not only do cells have to resist random 
perturbations and maintain their structure and behavioral program, they also 
have to be flexible enough to respond appropriately to specific external signals 
that require distinct changes in both cell mechanical and biochemical behaviors, 
such as during cell migration and differentiation. Interestingly, death of both 
cells and whole organisms is characterized by a rapid increase in rigidity (rigor 
mortis), with a complete loss of the flexibility that dominates the living state. 
Thus, this unification of robustness with flexibility, both in terms of cell struc-
ture and behavior, is a hallmark of complex living systems. 

4. RESULTS

4.1. Structural Networks in Cells

4.1.1.  From Molecular Biochemistry to Cellular Mechanochemistry: 
The Cytoskeleton

 Cells are comprised of thousands of molecules that are arranged and con-
nected in specific ways so as to produce distinct structures and biochemical 
functions; they are not membranes filled with viscous colloidal solution. In par-
ticular, mammalian cells contain an internal molecular framework or "cytoskele-
ton" that provides shape stability to the cell, and orients much of the cell's 
metabolic and signal-transducing machinery (35,36). The cytoskeleton is an 
interconnected 3D network or lattice comprised of three major classes of fila-
mentous protein polymers—microfilaments, microtubules, and intermediate 
filaments. A subset of the microfilaments that contain myosin as well as actin 
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are contractile; these filaments actively generate mechanical tension through a 
filament–filament sliding mechanism similar to that used in muscle (35,39). 
Thus, the entire cytoskeleton and cell exists in a state of isometric tension. In 
essence, by organizing this multimolecular network, the cell translates a struc-
tureless chemistry into a physical entity with well-defined mechanical proper-
ties. For example, this tensed intracellular scaffold is largely responsible for the 
viscoelastic properties of the cell. It also generates the tractional forces that 
drive cell movement as well as changes in cell shape. 

4.1.2. Cellular Tensegrity

 Past work on cell shape and mechanics ignored the cytoskeleton and as-
sumed that the cell is essentially an elastic membrane surrounding a viscous or 
viscoelastic cytosol (16,17,22). In contrast, over the past twenty years, we and 
others have been able to show that the cytoskeleton is the major determinant of 
cell shape and mechanics, and that cells may use a particular form of architec-
ture known as "tensegrity" to organize and stabilize this molecular network (re-
viewed in (39)). 
 Tensegrity was defined by Buckminster Fuller as a building principle in 
which structural shape of a network of structural members is guaranteed by con-
tinuous tensional behaviors of the system and not by local compressional mem-
ber behaviors (21). The purest representation of the tensegrity principle is found 
in the creations of the sculptor, Kenneth Snelson, which are composed of a con-
tinuous network of high-tension cables and a discontinuous (isolated) set of 
compression struts (Figure 2). However, the tensegrity principle also applies to 

Figure 2. Tensegrity model. A prestressed tensegrity structure composed of 6 compression-resistant 
struts (white struts) interconnected by 24 tension cables (black lines) on its periphery; this model also 
contains radial cables connecting the ends of the struts to the cell center (red lines). The theoretical 
tensegrity model of the cell is based on this architecture. In the cell model, the black lines correspond 
to viscoelastic actin cables, the red lines to viscoelastic intermediate filaments (of different time 
constants), and the white struts to rigid microtubules.
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all geodesic structures (37,39). Tensegrity networks have the property that they 
are self-stabilizing in the sense that they yield equilibrium configurations with 
all cables in tension only due to the internal interactions between its compo-
nents, i.e., without the need for external forces. Specifically, the tension mem-
bers pull against the resisting compression members and thereby create an 
internal tensile stress or "prestress" (isometric tension) that stabilizes the entire 
system (the same prestress may be generated by the compression members push-
ing out against a surrounding resistance network). Moreover, both multimodular 
and hierarchical tensegrity networks can be created that are governed by the 
same rules and that exhibit integrated system-wide behaviors when exposed to 
external stress (39). 
 In the cellular tensegrity model, the whole cell is a prestressed tensegrity 
structure; however, geodesic structures are also found in the cell at smaller size 
scales (37,39). In the model, tensional forces are borne by cytoskeletal micro-
filaments and intermediate filaments, and these forces are balanced by intercon-
nected structural elements that resist compression. These latter elements include 
microtubule struts within the cytoskeleton and cell surface adhesions to the sur-
rounding extracellular matrix. However, biological systems are dynamic and 
highly complex in that individual filaments can have dual functions and hence 
bear either tension or compression in different structural contexts or at different 
size scales. The tensional prestress that stabilizes the whole cell is generated 
actively by the actomyosin apparatus within contractile microfilaments. Addi-
tional passive contributions to this prestress come from cell distension through 
adhesions to the ECM and other cells, osmotic forces acting on the cell mem-
brane, and forces exerted by filament polymerization. Intermediate filaments 
that interconnect at many points along microtubules, microfilaments, and the 
nuclear surface provide mechanical stiffness to the cell based on their material 
properties and on their ability to act as suspensory cables that interconnect and 
tensionally stiffen the entire cytoskeleton and nuclear lattice. In addition, the 
internal cytoskeleton interconnects at the cell periphery with a highly elastic, 
cortical cytoskeletal network directly beneath the plasma membrane. The entire 
integrated cytoskeleton is then permeated by a viscous cytosol and enclosed by a 
differentially permeable surface membrane. 
 Unlike the isotropic viscous cytoplasm that dominated past models of cell 
mechanics, the tensegrity-stabilized cytoskeletal network optimizes structural 
efficiency (strength/mass ratio) by relying on internal tension, rather than on 
continuous compression when exposed to an external force. Tensegrity systems 
also can easily change shape with minimal energy consumption, for example, as 
compared to classical truss structures that require an excessive amount of energy 
even for minor shape modification. Most importantly, as with all complex net-
works composed of multiple interacting components, the macroscopic properties 
of tensegrity networks (e.g., their mechanical stability, ability to grow and rear-
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range, structural efficiency, viscoelastic behavior) are emergent properties that 
arise from the particular architecture used to stabilize the 3D network. 

4.1.3. Computational Tensegrity Models Predict Complex Cell Behaviors

 If the complex mechanical behaviors of cells, including their global me-
chanical stability, flexibility, ability to remodel, and optimal strength/mass ratio, 
represent emergent properties of cell structural networks, then we should be able 
to get insight into how this takes place by studying and modeling cytoskeletal 
mechanics (60). Existing paradigms assume that the static and dynamic me-
chanical behaviors of living cells respectively originate from two distinct com-
partments—the elastic cortical membrane and the viscous cytoplasm. Recent 
work, however, has revealed that cell dynamic behavior reflects a generic sys-
tem property of the cell at some higher level of molecular interaction as it is 
characterized by a wide spectrum of time constants (18). Dimitrije Stamenovic, 
working with our group (58), and with others (72,73,65,66), have shown that a 
theoretical formulation of the cellular tensegrity model based on first mechanis-
tic principles can predict various static mechanical properties of living mammal-
ian cells. More recently, we found that the tensegrity model also can explain 
dynamic cell mechanical behaviors, as described below. 
 The theoretical tensegrity model of the cell is a deterministic physics-based 
model which assumes that contractile microfilaments and intermediate filaments 
carry a stabilizing tensile prestress in the cytoskeleton that is balanced by inter-
nal microtubule struts and extracellular adhesions. The cytoskeleton and sub-
strate together were assumed to form a self-equilibrated, stable mechanical 
system; the prestress carried by the cables is balanced by the compression of the 
struts. The simplified tensegrity network used in the computational model is 
composed of 24 tensed, linearly viscoelastic (Kelvin-Voigt), "microfilament" 
cables and 6 rigid "microtubule" struts; 12 additional tensed Kelvin-Voigt "in-
termediate filament" cables extend from the surface of the structure to the cell 
center and the basal ends of 3 struts are fixed to mimic cell substrate adhesion 
(Figure 2). Importantly, work on variously shaped models has revealed that even 
the simplest prestressed tensegrity network embodies the key mechanical prop-
erties of all prestressed tensegrities (this is the degree of abstraction mentioned 
above). In this computational model, the material properties of the tensile fila-
ments can be varied independently. The equilibrium solution around which the 
linear mathematical model was derived for frequency response calculations is a 
prestressable configuration (63). The prestress is a measure of the tension in the 
cables. The input was a vertical, sinusoidally varying force applied at the center 
of a strut; the output was its corresponding vertical displacement (Figure 2). 
 Analysis of the variations of the dynamic elastic modulus G' and dynamic 
frictional modulus G'' with the level of prestress for various frequencies in this 
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computational tensegrity model revealed that these dependencies increased ap-
proximately linearly over a wide range of prestress (64). These results nicely 
mimic experimental observations that demonstrated the same behavior in living 
cells (59) (Figure 3) and confirm similar results obtained with a slightly different 
tensegrity structure (5). Deviations from the experimental results were only ob-
served at very low prestress, where the cables are almost slack. Adherent living 
cells actively generate tension within their contractile microfilaments and, thus, 
their cytoskeleton is always prestressed. Importantly, analysis of the frequency 
dependencies of G' and G'' of the tensegrity structure also revealed a wide distri-
bution of time constants that closely mimicked behavior previously observed in 
living cells (18) (Figure 3). Similar results were obtained for other types of load-
ing and for tensegrity structures of higher complexity (64). However, better re-

Figure 3. Emergent mechanical properties of the tensegrity model: simulation versus 
experimental data. A. Cellular elastic (G') and frictional (G'') moduli predicted by a computa-
tional tensegrity model (solid lines) versus data obtained from experiments with living cells 
(circles) (64). Data in A and B that show the dependencies of moduli on prestress are re-plotted 
from Stamenovic et al. (59); data in C and D that show frequency dependencies are re-plotted 
from Fabry et al. (18). The frequency ( ) is given in Hz, whereas prestress and elastic and 
frictional moduli are in Pa. 
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sults were obtained with heterogeneous models in which different filaments ex-
hibited different levels of stiffness. 
 Thus, a key feature of the cellular tensegrity network—the level of cy-
toskeletal prestress—is critical for control of both static and dynamic mechani-
cal behavior in whole cells. As predicted by the model, the global system 
architecture and inhomogeneity of time constants between individual elements 
also significantly contributes to the emergent properties of the system: the whole 
network behaves differently than an individual Kelvin-Voigt cable. This finding 
that both elastic and frictional behaviors of living cells naturally fall out from 
the tensegrity model indicates that the viscous properties of mammalian cells are 
not due to fluid behavior of the cytosol. Rather, these complex mechanical prop-
erties of cells emerge from collective mechanical interactions among the distinct 
molecular filaments that comprise the cytoskeletal network. These results em-
phasize the importance of the tensionally prestressed cytoskeleton for cell me-
chanical behavior and add further support for the universality of the cellular 
tensegrity model (37,39). 

4.1.4. Biological Implications of Tensegrity Beyond the Cytoskeleton

 In a more encompassing biological interpretation, a mechanical design prin-
ciple that uses networks composed of discrete elements rather than a single me-
chanical continuum allows molecules (e.g., the proteins that form the filaments) 
to bridge the gap between microscopic structureless biochemistry and macro-
scopic mechanics and pattern in just one step of self-assembly. However, as 
mentioned in the introduction, living systems harbor a hierarchy of many levels 
of emergence over many size scales. Of interest thus is that the principle of ten-
segrity is scalable, and in fact operates at various size scales, from molecule to 
organism (9,37,39). For example, tensegrity may govern how individual mole-
cules, such as proteins, and multimolecular structures (e.g., lipid micelles) gain 
their mechanical stability and 3D form (19,37,39,75). Geodesic forms also are 
dominant in molecular systems including viruses, the simplest example of a "liv-
ing" system; interestingly, tensegrity was used to explain the geodesic structure 
of viral capsids (7). 
 At a larger size scale in living tissues, cells are attached to anchoring scaf-
folds that are also 3D structural networks composed of fibrillar extracellular 
matrix molecules. Because cells apply cytoskeletally generated tractional forces 
on their adhesions, these extracellular matrix networks are also prestressed and 
hence stabilized through tensegrity. Local increases in tissue tension are sensed 
by individual adjacent cells that respond by switching into a proliferative state, 
thereby increasing cell mass to match increases in applied macroscopic forces. 
In this manner, tension-dependent changes in cell growth allow higher-order 
tissue and organ structures, such as glandular buds and brain gyri, to be sculpted 
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by organ-level mechanical forces during morphogenesis. Finally, provision of 
stability and flexibility within a biological network through a tensegrity force-
balance is most obvious at the highest level of organization in the hierarchy of 
life. The musculoskeletal system that allows humans to walk and hold our bod-
ies in various positions gains its stability through a balance between continuous 
tension (muscles, tendons, ligaments) and local compression (bones) that gener-
ates a tensile prestress (tone). 
 Thus, tensegrity appears to represent a fundamental design principle that is 
used to stabilize biological networks at all size scales in the hierarchy of life, as 
well as throughout evolution (37). The flexibility and stability provided by use 
of tensegrity also may have contributed significantly to the process of hierarchi-
cal self-assembly and environmental selection that first led to the origin of cellu-
lar life (38), as well as to the development of multicellular organisms comprised 
of interconnected networks of cells, tissues and organs (39). 
 Importantly, the complex mechanical behaviors of a tensegrity system rep-
resent emergent properties of the whole network, and not properties of the indi-
vidual structural members. For these reasons, tensegrity may provide a means to 
incorporate "physicality" and spatial constraints into models of complex network 
systems that commonly are only thought of in terms of information flow. Inter-
estingly, most biochemical reactions proceed in a "solid-state" in living cells, 
i.e., many of the enzymes, substrates, and reactants are physically immobilized 
on insoluble cytoskeletal scaffolds (6,36,50). Thus, mechanical properties of 
structural networks, and hence tensegrity principles, may also directly impact 
information flow in biological systems, as will be discussed below. 

4.2. Information Networks

 On the hardware side, the mechanical properties of the cells are the obvious 
properties that emerge from interactions between structural proteins. In contrast, 
on the software side, the emergence of some simple, fundamental, higher-level 
features from interactions among regulatory genes and proteins is not immedi-
ately apparent. Here we show that, despite the complexity of molecular path-
ways within a cell, global cell behaviors associated with a change of phenotype 
exhibit simple rule-governed properties that emerge from interactions in the 
regulatory network of the cell. 

4.2.1. Cell Fates as Emergent Properties

 The global behavior of a cell within a tissue in a multicellular organism can 
be reduced to a few behavioral modes or phenotypes, the so-called "cell fates": 
the proliferative state, the migratory state, differentiation, senescence or the state 
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of commitment to cell death (apoptosis), etc. (30). During proliferation, cells are 
in a biochemical state in which they can replicate DNA and divide to increase 
tissue cell mass. During differentiation, cells undergo a phenotypic change from 
an immature precursor cell to a distinct cell type, such as a red blood cell, liver 
cell or nerve cell, that carries out tissue-specific tasks. In apoptosis, cells re-
spond to particular signals by switching on a suicide program and undergo cell 
death. Each cell fate is characterized by a distinct profile of activation of the 
30,000 or so genes in the human genome. 
 Cell fates are stable, typically mutually exclusive cellular states (27,30,67). 
The conditional selection of these cell fates within the population of cells in a 
tissue gives rise to the next level of emergence: the tissue and organs that consist 
of distinct spatial patterns of cells that exhibit different fates, including various 
specialized cell types. The tissue is a cellular society that requires social behav-
ior of its members in order to maintain its global structural and functional stabil-
ity. Thus, the balance between division, differentiation, and death of individual 
cells needs to be tightly regulated within different tissue microenvironments so 
that the whole tissue optimally responds to all environmental signals. 
 Cell fate switching is governed by a molecular network of genes, proteins, 
and other cellular components that give rise to the emergent property we recog-
nize as cell fate. For simplicity, let us here focus on the gene regulatory network, 
and ask the more general question: How can the mutual regulation of ~30,000 
genes in the genome give rise to stable, mutually exclusive cellular states (fates), 
each characterized by a distinct gene activation profile? For example, why does 
a differentiated liver cell not drift away to become a nerve cell if the difference 
is just in the pattern of gene activation? As described above, another important 
property for development is that cells unite stability (maintenance of identity in 
response to perturbations) with flexibility (ability to change identity in response 
to critical stimuli); in fact, it is this property that allows development to take 
place in the first place. This and other qualities are fundamental, emergent prop-
erties that, as we will see, arise as a consequence of how information is proc-
essed by the underlying gene regulatory network and the architecture of that 
network. 

4.2.2. Network Dynamics Leads to Stable States: Attractors in Gene  
 Regulatory Networks

 Let us examine how gene regulatory interactions can collectively give rise 
to a global network behavior that satisfies the requirements for development of a 
specialized cell phenotype, and eventually, a whole living organism. Without 
distinct regulatory interactions between the genes, any combination of gene ac-
tivities across the genome would be possible. This would result in an unstruc-
tured continuum of gene activation profiles, but no directed developmental 
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processes, no robust expression profiles, and hence no differentiated cell types. 
In reality, genes interact with each other through the regulatory proteins they 
encode. Each gene (or its encoded protein) has a very specific set of interaction 
partners based on its molecular structure, and each interaction has a distinct 
mode (e.g., stimulatory, inhibitory). Thus, the genome contains a hard-wired 
interaction network. Interactions between genes therefore introduce constraints 
in the whole network, such that many gene activation profiles become unstable 
and are never realized. It is this collapse of the vast space of theoretically possi-
ble configurations of gene activity combinations that leads to distinct dynamics 
and the robustness of a limited number of cell phenotypes (43). 
 In technical terms, constraint of the dynamics by these molecular interac-
tions means that the high-dimensional state space of gene activation is highly 
structured. One can define a state space as the N-dimensional space in which 
every point represents a different network state defined by a distinct gene activa-
tion profile, where N is the number of genes. Now assume that gene A uncondi-
tionally inhibits the expression of gene B; then all network states in which both 
A and B are active will be unstable, thus forcing the network to "move" in state 
space until it hits a stable state. The network may also cycle between a few 
states. Thus, taking all the interactions into account, it can be shown that the 
network can change its activity profile in only a few directions (following stable 
trajectories) until it reaches a stable state, the so-called "attractor state," which 
can be a fixed-point or cycling attractor (42,43). The existence of unstable re-
gions and of multiple stable attractors impose a substructure to the state space, 
which might be imagined as an "attractor landscape," as shown in Figure 4. 
Accordingly, the state of the network (and hence of the cell) can be viewed as a 
marble on that landscape: it is forced to roll along valleys (trajectories) into the 
pits (attractors) (Figure 4). This attractor landscape therefore captures the con-
strained, global dynamics of cell fate switching (i.e., phenotypic control). In 
fact, Waddington, Delbrück, Monod, Jacob, Kauffman, and others have all pro-
posed (in various forms) that the distinct, phenotypic differentiation states that 
we observe in living systems correspond to attractors in the state space defined 
by the molecular activities of the underlying network (15,42,48,68). Thus, at-
tractors in the state space map into stable phenotypic states (differentiation to 
distinct cell types, cell proliferation, programmed cell death, etc.), and the trajec-
tories represent directed developmental processes. 
 In the landscape of a real gene regulatory network, the attractors would 
represent cell states that are stable to many random perturbations. At the same 
time, the network would allow the cell to switch to other attractors given the 
appropriate sets of conditions, such as the presence of external regulatory signals 
that promote a particular cell fate (30). This highly structured landscape with 
latent, "preexisting" possibilities creates the stage on which the developmental 
program is played out. Interestingly, Waddington similarly proposed an 
"epigenetic landscape," with a marble whose position represents developmental 
s t a t e  r o l l i n g  
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down valleys (Figure 5) based on his observation that cells "switch between 
distinct, well recognizable types" during development, and that intermediates are 
rare and unstable (67,68). This picture captures the basic rules governing cell 
fate dynamics, and we can now argue that, although proposed as an intuitive 
representation, Waddington's epigenetic landscape is in principle the state space 
of the molecular network that controls cell fates. Thus, the attractor landscape 
represents the emergent properties of the interaction network. 

Figure 4. Cell fates as attractors. The structure of the N-dimensional state space (N = number 
of interacting genes in the network, e.g., N = 10,000) is schematically shown as a three-
dimensional topographic "attractor landscape" that is conceptually equivalent to Waddington's 
"epigenetic landscape" (Figure 5). Each point in the landscape represents a cell state S, defined 
by the profile of the activation state x (measured as mRNA level) of all the N genes: S = [x1(t), 
x2(t), ... xN(t)]. The pits in the landscape are the attractor states that represent the stable cell 
fates, in this case the precursor cell and the differentiated neutrophil. Transition into the differ-
entiated state can be triggered by two pharmacologically distinct differentiation-inducing 
agents that perturb the state of the precursor cell in different ways such that the cells takes two 
different trajectories, A and B, respectively, to reach the neutrophil state. Monitoring the 
change of S(t) along these two high-dimensional trajectories, SA(t) and SB(t), respectively, as the 
change of gene expression profile using DNA microarrays would allow calculation of the inter-
trajectory distance D. The inset on top illustrates a case for the time course of D for a set of 
2600 genes in a differentiation process. In this case, the course of D shows initial, rapid diver-
gence of the trajectory, followed by terminal convergence in more than 50% of the state di-
mensions as the cell reaches the differentiated state, indicating the approach to a high-
dimensional attractor state. Reprinted with permission from Huang (76). 
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 Much as the architecture of the cytoskeletal network affects the emerging 
macroscopic mechanical properties of cells and tissues, the architecture of the 
gene regulatory network (the wiring diagram of the gene–gene interaction) de-
termines the specific "topography" of the attractor landscape, and hence cell 
behavior. However, not all network architectures give rise to a "reasonable" state 
space structure. For instance, using simulations of random continuous or discrete 
network models, it has been demonstrated that a fully connected network (in 
which every gene affects every other) would be unstable, that is, devoid of 
fixed-point attractor states. In contrast, sparsely connected networks are more 
likely to produce a dynamics with stable states (26,43). Apparently, the network 
architecture has been shaped through evolution by continuous growth (increase 
in gene number) and rewiring such that it gives rise to "biologically reasonable" 
dynamics with multiple stationary, stable attractor states. These attractors are 
just stable enough to resist random perturbations, but at the same time they al-
low the existence of multiple cell fates and switching between them in response 
to distinct perturbations during embryonic development. 

Figure 5. Waddington's idea of "epigenetic landscape." Although the model first proposed 
by Waddington in 1940 to explain a cell's decision between distinct, "discrete" developmental 
fates was merely an intuitive metaphor, it may be regarded as the structure of the state space 
representing the dynamics of gene regulatory networks, the "attractor landscape" in Figure 4. 
(Reprinted with permission from Waddington (1956) (67). 
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 The recent availability of information about large protein and gene net-
works (containing thousands of components) in baker's yeast (S. cerevisiae)
made possible by new large-scale, high-throughput biochemical methods has 
stimulated investigations into the natural architecture of biological regulatory 
networks (see also this volume, Part II, chapter 4, by Wuchty, Ravasz, and 
Barabási). These studies revealed that the almost genome-wide protein-
interaction network and gene regulatory network are indeed sparsely connected 
in these cells. Moreover, several interesting features of the network architecture, 
such as a near power-law distribution of connectivity (number of interaction 
partners per molecule), a propensity to modularity, and use of hierarchical struc-
ture, were found to be present (41,46,70). Interestingly, a power-law architecture 
appears to have beneficial consequences for system-wide dynamics (1,20). Spe-
cifically, the regime in the space of possible network architectures for "biologi-
cally reasonable" networks (i.e., those that exhibit ordered behavior with small 
attractors) is larger because the networks tolerate higher connectivity without 
becoming chaotic. 

4.2.3. Biological Implications of Attractor States

 As in the case of structural networks and the tensegrity model that allows 
prediction of some macroscopic mechanical properties of the cell based on 
emergent features of the model, the generic global behavior of the cell is pre-
dicted by the model of an attractor landscape. In fact, the existence of distinct 
stable cell fates (proliferation, apoptosis, quiescence, etc.) and of different dif-
ferentiated cell types (liver, skin, neuron, etc.) that are robust to many perturba-
tions, yet can switch between distinct states under restricted conditions, is itself 
a strong indication that they are attractors of an underlying molecular network. 
Similarly, robust developmental trajectories, corresponding to long valleys lead-
ing to lowest points in the landscape, can be explained as emergent properties of 
the genome-wide network of genetic interactions. However, the dynamic net-
works approach and the attractor landscape idea may also provide new insight 
into other cell biological phenomena that have previously resisted straightfor-
ward explanation by the conventional paradigm, which emphasizes the role of 
individual signal-transduction pathways. 

Cell fate regulation in tissue homeostasis. As predicted by the dynamic 
network model, cell fates represent discrete, mutually exclusive, stable states 
that require specific signals to transition to each other, when such a transition is 
possible. For instance, differentiation and proliferation are well known to be 
mutually exclusive and robust (27,67); in many cell systems just quitting the 
proliferation state by overexpressing the cell cycle inhibitor protein p21 forces 
the cell to automatically enter the differentiation program (14,52,61). That cell 
fates are robust and can be realized just by "placing" cells in the corresponding 
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"basin of attraction," from which they will reach the attractor state, is best reca-
pitulated by the observation that many nonspecific pharmacological stimuli that 
activate multiple proteins across several signaling pathways often trigger ex-
pression of the same set of cellular phenotypes. For instance, differentiation of 
many cell types can be turned on by a large variety of nonspecific agents, in-
cluding DMSO or ethanol (3,44,47,57,74). Specifically, the differentiation of a 
promyelocyte cell line into mature neutrophils (the major white blood cells in-
volved in innate immune response) can be elicited not only by DMSO, but also 
by treatment with retinoic acid, hypoxanthin, actinomycine D, flavone, etc. (13). 
In these cases, it appears that simultaneous perturbation of multiple targets in 
different pathways results in channeling of the biochemical effects into common 
end-programs, and hence the same "default" cell fate. 
 Perhaps the most striking cellular manifestation of the idea that cell fates 
represent attractor states comes from experiments in which cell shape was varied 
as an independent control parameter using microfabricated geometric islands of 
extracellular matrix proteins to which mammalian cells normally adhere (10,32). 
The traditional mechanistic, pathway-centered explanation of cell fate switching 
assumes that a specific, "instructive signal," i.e., a messenger molecule that in-
teracts with its cognate cell surface receptor, tells the cell which particular genes 
to activate in order to establish a new cell phenotype. However, when these in-
structive signals (e.g., soluble growth factors and insoluble extracellular matrix 
molecules) were held constant, cell shape distortion alone was able to switch 
endothelial cells between proliferation, apoptosis, and differentiation (31). Thus, 
variation in one continuous control parameter (cell shape) that is devoid of the 
molecular specificity normally assumed to carry "instructive" information led to 
switching between multiple, mutually exclusive cell fates, and produced effects 
reminiscent of a biological "phase transition." Essentially, cell distortion trig-
gered the cell to "select" between different preexisting attractor states. 

Integration of structural and information networks. Importantly, because 
cell shape is governed by changes in cytoskeletal shape and mechanics, pheno-
typic control by cell distortion is a clear example of how structural networks can 
impact information-processing networks in living cells. From a mechanistic 
point of view one can then ask, how can a "nonspecific" parameter, such as cell 
shape, elicit the detailed molecular changes associated with cell growth, differ-
entiation, and apoptosis? If cell fates are attractors, then a large variety of mo-
lecular signals will push the cells into the few available behavioral modes that 
the cell can adopt: again, regulation corresponds to selection among a limited 
number of preexisting fates, rather than instruction of how to behave. 
 Changes in cell shape imposed by the microfabricated constraints lead to 
massive rearrangements of the cytoskeleton that maintains shape stability in 
response to external influences according to the tensegrity rules that govern 
these structural networks. Visualization of the actin cytoskeleton in cells grown 
on micropatterns, for example, revealed that the actin bundles of the cell reorient 



TENSEGRITY, DYNAMIC NETWORKS, COMPLEX SYSTEMS BIOLOGY 303

depending on the shape of the microfabricated adhesive island and map out ten-
sion field lines within the cell (8,51). 
 But how does cell mechanics affect cell fate? Cell anchoring to extracellular 
matrix substrates, such as these islands, is mediated by cell surface integrin re-
ceptor molecules that cluster within small anchoring sites known as "focal adhe-
sions." Actin filaments insert at these focal sites of attachment between integrins 
and the extracellular matrix, and apply traction forces to these adhesions much 
like the tension in a tent membrane is transmitted through ropes to the pegs that 
anchor it into the ground. These cellular anchoring structures at the cell mem-
brane are also the nucleation sites for the formation of large, multimolecular 
complexes of proteins that are involved in signal transduction, and hence medi-
ate cellular information processing (23). Such complexes at adhesion sites facili-
tate the interactions between signaling proteins. For instance, the activation of 
many of the signal-transduction molecules, such as the aforementioned ras–raf–
MEK–Erk mitogenic pathway, depends on the configuration of the actin-
cytoskeleton (28), whereas assembly of signaling protein complexes at the focal 
site depends on the tension in the actin bundles (11). Thus, focal adhesions also 
represent sites of mechanotransduction (24,34): they sense the mechanical ten-
sion of the cell that is modulated in response to the geometry of the environment 
(51).
 As described above, the 3D shape of molecules dictates their mechanical 
and biochemical behavior—another example of emergence from the level of 
their component parts (e.g., from amino acids to catalytic enzymes). Impor-
tantly, altering molecular shape through chemical modification or mechanical 
distortion alters biochemistry by changing thermodynamic and kinetic parame-
ters (37,40). The biochemical information-processing network of the cell is 
therefore governed by physical interactions that depend on the 3D shape and 
mechanical properties of the individual molecules and hence on the state of the 
cytoskeletal network that they comprise. Thus, structural networks and informa-
tion networks integrate as a result of mechanochemistry. Specifically, mammal-
ian cells contain structures that link cytoskeleton with signaling pathways, 
thereby allowing mechanical forces to feed back to regulate cellular information 
processing. 
 The biochemical details as to the precise molecules that transduce the me-
chanical forces into biochemical signaling are still not fully understood, al-
though strong experimental evidence now supports the implication of several 
specific signal-transducing proteins (23). However, given the fact that research-
ers commonly strive to uncover all of the "instructive pathways" by which cell 
fates are regulated, it appears that, instead of being carried along linear molecu-
lar pathways, information is processed in a distributed manner over the network 
of interacting regulatory molecules. Many of these molecules physically associ-
ate with the load-bearing elements of the structural cytoskeletal network that 
stabilizes cell shape. If the activities of associated regulatory molecules were to 
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change in response to mechanical distortion, this integrated structural and in-
formation-processing network would be perfectly designed to sense the diffuse 
signals that emanate from a concerted rearrangement of the cytoskeleton in re-
sponse to mechanical stress or physical changes in cell shape. In fact, both 
molecules that physically associate with the cytoskeleton in the focal adhesion 
site and at other locations throughout the cell have been shown to change their 
activity in response to applied mechanical stress or cell distortion (23). 
 Because the wiring of the signaling networks produce attractors that corre-
spond to only a limited number of distinct cell fates, the cell may naturally and 
reliably sense a broad spectrum of signals and simultaneously orchestrate multi-
ple molecular responses to produce coherent behavioral programs. In other 
words, the existence of attractors representing distinct cell behaviors facilitates 
the evolution of a form of regulation that connects signals devoid of molecular 
specificity like mechanical forces to the internal regulatory machinery that gov-
erns specific cell fates. 

4.2.4. Experimental Evidence for Attractors in Gene Regulatory Networks

 The characteristic dynamics of cell fate control, the mutual exclusivity of 
different phenotypes, and their robustness in living cells all suggest that distinct 
cell fates represent attractors that emerge in the dynamic network of gene regu-
latory interactions. But can we directly view the structure of the attractor land-
scape network at the molecular level without knowledge of the precise wiring 
diagram of the underlying genome-wide regulatory? To map out this state space, 
it would be necessary to simultaneously measure the activation state of the ge-
nome-wide set of molecular activities that are responsible for cell fate switching. 
The arrival of technologies for the massively parallel monitoring of genes now 
opens this possibility to follow trajectories of cell states in a high-dimensional 
state space of the regulatory network. Gene expression profiling using DNA 
microarrays allows the parallel measurement of the level of >10,000 mRNAs in 
cells and tissues; this represents a surrogate measure for genome-wide gene ac-
tivation profiles, and hence for cell states. 
 One way to uncover the existence of a high-dimensional attractor in real 
cells, where unlike in computer simulations we cannot systematically sample the 
states in state space, is to approach it from different directions of the state space 
and demonstrate the convergence of the high-dimensional trajectories (Figure 4). 
For instance, expression profiling to probe such trajectories in state space could 
be used to monitor cells that are induced by two different (biochemically dis-
tinct) stimuli to undergo the very same cell fate switch, e.g., from a proliferative 
state to a differentiated state. As noted above, such scenarios are common, and 
as such already suggest that the differentiated state is a stable attractor. If the 
two trajectories in gene expression space first diverge but then converge with 
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respect to a large portion, if not all, of the "gene dimensions" of the state space, 
this would be strongly suggestive of an entry into an attractor state. Initial stud-
ies for in vitro neutrophil differentiation suggest that this is in fact the case (Fig-
ure 4). 
 Such network perturbation experiments would, when performed systemati-
cally and in many cell types, allow us to obtain a first glance at the structure of 
the "attractor landscape" of the genome without knowledge of all the details of 
the "wiring diagram" of the genomic regulatory network. Unfortunately, the 
manipulation of the activation state of individual genes in living cells is still 
cumbersome compared to the situation in computer-simulated networks, such 
that systematic network perturbations that may reveal more detailed information 
about the structure of the attractor are still limited. Nevertheless, such experi-
ments are a first small step toward the molecular characterization of Wadding-
ton's "epigenetic landscape" (Figure 5) and an essential intermediate step toward 
our understanding of how the genome maps into the phenome. 

4.2.5. Hierarchical Considerations: Signaling Networks Beyond the Cell

 Similar to the structural networks discussed above, information networks 
will extend beyond the limits of intracellular regulation. Cells in various states 
(attractors) signal to each other via physical cell–cell contacts, soluble cytokines, 
and insoluble matrix scaffolds, thus forming an extracellular communication 
network. The dynamics of such "cellular networks" can also be viewed in a 
framework of state space concepts, with stable behavioral modes that involve 
many cell types and their secreted products representing a coherent, robust 
physiological program of the tissue, such as inflammation, immune response, 
regeneration, development, and toxicity. These distinct "tissue fates" also exhibit 
properties of state space trajectories and attractors. For instance, immune system 
decisions between mutually exclusive, robust responses are common place, as in 
the Th1/Th2 dichotomy in the T-cell immune response (54; see also Part III, 
chapter 4.1, by Segel, this volume). Moreover, it now appears that cancer is not 
just a cell-autonomous disease in which mutant cells evolve to proliferate in an 
unconstrained fashion (see this volume, Part III, chapters 6.1, by Pienta, and 6.2, 
by Solé, Gonzales Garcia, and Costa), but also involves a dysregulation at the 
tissue level in which non-mutant cells of the tumor bed (stroma) and its blood 
vessels play a central role—thus, the cancerous tumor itself may be an unfortu-
nately stable "tissue fate" (see also this volume, Part III, chapter 6.3, by Mansury 
and Deisboeck). 
 Biomedical research is only at the beginning of appreciating these higher-
level interactions as formal networks, because most of leading edge "systems 
biology" research is still carried out on single-cell model organisms focusing on 
individual molecular pathways. But experiments in the near future that system-
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atically elucidate these cell–cell interaction networks will enable the next step in 
understanding biological regulation: marching up to a higher level of organiza-
tion in the vertical hierarchy of integration that characterizes complex living 
organisms. 

5. CONCLUSION

 Tensegrity is a principle that ensures structural stability within networks 
comprised of multiple structural components, and hence governs their self-
assembly. Tensegrity is used at all size scales in the hierarchy of life, and it may 
have played an important role in the mechanism by which hierarchical self-
assembly of inorganic components and small organic molecules led to formation 
of living cells (38). Use of the tensegrity principle by cells also provides an en-
ergy-efficient way to build macroscopic hierarchical structures using tiers of 
interconnected molecular networks (9). 
 On the other hand, the emergence of attractor landscapes within sparsely 
connected information-processing biochemical networks provides a mechanism 
for establishment of a limited number of stable network states that may have 
enabled evolution to harness a wide variety of environmental signals, including 
mechanical perturbation, for the regulation of cell fates. Thus, from the perspec-
tive of organismal biology, linking tensegrity-based structural networks and 
physical constraints to cell fate regulation is a central requirement for the evolu-
tion of organisms of increasing size that cannot rely solely on chemical interac-
tions with their environment for control of their behavior. Living cells and 
tissues must deal with macroscopic physical phenomena such as mechanical 
forces, including tension, compression, shear, surface tension, and osmotic 
stresses. These physical signals can regulate specific modes of cell behavior 
controlled by molecular networks because of the link between structural net-
works and biochemical reactions (mechanochemistry on the cytoskeleton), and 
because of the existence of information-processing networks that produce an 
attractor landscape with stable states. 
 In both complex cellular structural networks and information networks, 
simple properties emerge through the collective action of the parts that includes 
mechanical and biochemical interactions. Hence the study of network properties 
helps to bridge the gap between microscopic biochemistry and macroscopic 
structure and behavior. Thus, elucidation of how simple, rule-governed behav-
iors (e.g., mechanical properties of cells and their behavioral control) emerge at 
higher levels of organization may eventually lead to a fuller understanding of the 
inner working of the living organism across many size scales. A key challenge 
for a conceptual understanding of the fundamental principles of complex living 
systems will be to learn when the myriad details can be abstracted away, and 
when they matter. Although our work represents only a first step toward an un-
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derstanding of universal principles rather than specific details, hopefully, it 
opens up a new avenue of investigation in cell and molecular biology. 
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2.2

SPATIOTEMPORAL DYNAMICS OF 
EUKARYOTIC GRADIENT SENSING 

K.K. Subramanian and Atul Narang 
Department of Chemical Engineering,  
University of Florida, Gainesville 

The crawling movement of eukaryotic cells in response to a chemical gradient is a com-
plex process involving the orchestration of several subcellular activities. Although a 
complete description of the mechanisms underlying cell movement remains elusive, the 
very first step of gradient sensing, enabling the cell to perceive the imposed gradient, is 
becoming more transparent. The increased understanding of this step has been driven by 
the discovery that within 5–10 seconds of applying a weak chemoattractant gradient, 
membrane phosphoinositides, such as PIP3, localize at the front end of the cell, where 
they activate a process of intense actin polymerization and trigger the extension of a pro-
trusion. This train of events implies that the key to gradient sensing is a mechanistic un-
derstanding of the phosphoinositide localization. Since the phosphoinositide distribution 
is highly localized compared to the shallow chemoattractant gradient, it has been sug-
gested that the cell merely amplifies the chemoattractant gradient. However, this cannot 
be true since the phosphoinositide localization can display a bewildering array of spatial 
distributions that bear no resemblance to the external chemoattractant profile. For in-
stance, a single phosphoinositide localization is produced in the face of multiple 
chemoattractant sources. More surprisingly, the localization forms at a random location 
even if the chemoattractant concentration is uniform. Here we show that all these seem-
ingly complex dynamics are consistent with the so-called activator-inhibitor class of 
models. To this end, we formulate and simulate an activator-inhibitor model of gradient 
sensing based on the phosphoinositide signaling pathways. Specifically, membrane-
resident phosphoinositides play the role of activator, and cytosolic inositol phosphates act 
as inhibitor. The remarkable agreement between the simulated and observed dynamics of 
phosphoinositide localization supports our conjecture that gradient sensing is a manifesta-
tion of an activator-inhibitor mechanism. However, the molecular identity of the activator 
and inhibitor remains unresolved. We discuss several competing hypotheses in the litera-
ture regarding the identity of these molecules. 

Address correspondence to: Atul Narang, Department of Chemical Engineering, University of Flor-
ida, Room 237 CHE, Gainesville, FL 32608 (ksubrama@che.ufl.edu). 
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1. INTRODUCTION

 Cell migration plays a crucial role in our birth, survival, and death. We are 
conceived as amorphous fertilized eggs. It is cell migration, among other proc-
esses, that sculpts a richly structured embryo from a fertilized egg. While we 
live, cell migration heals our wounds (1) and protects us from surrounding 
pathogens (2). But when we age, cell migration can accelerate death. In some 
instances, cancer metastasis is caused by directed migration of tumor cells from 
the primary to the preferred sites of metastasis (3). Evidently, a better under-
standing of the mechanism of cell migration will have profound biomedical con-
sequences. 
 Most eukaryotic cells move by crawling on a surface. The crawling move-
ment occurs in response to an external stimulus, which is frequently a chemical 
concentration gradient. The resultant motion propels the cells forward along the 
direction of highest increase in concentration. The chemical that induces the 
movement is called a chemoattractant and the movement itself is called chemo-
taxis. Eukaryotic chemotaxis is cyclic, and each cycle consists of four phases 
(Figure 1): (1) extension of a protrusion, (2) adhesion of the protrusion to the 
surface, (3) contraction of the cell body, and (4) retraction of the tail. Each phase 
of the cycle is a complex process involving the coordinated action of a large 
constellation of molecules (4). In this work, we confine our attention to gradient 
sensing, the mechanism that enables the cell to read the external gradient and 
extend a protrusion precisely at the leading edge, the region exposed to the 
highest chemoattractant concentration. 

 The extension of the protrusion involves localized actin polymerization at 
the leading edge. Soon after the cells are exposed to a chemoattractant gradient, 
the leading edge develops fingerlike actin-based structures called filopodia. The 
space between the filopods then fills up with an actin mesh to form a wide, 
sheetlike lamellipod. The localized polymerization of actin at the leading edge 
implies that the gradient sensing machinery amplifies the external signal. In-
deed, the chemoattractant gradients imposed in the extracellular space are often 
quite small (1–2% concentration change over the length of the cell) (5), but actin 
polymers synthesized in response to the gradient are found exclusively at the 
leading edge (6). The key problem in the study of gradient sensing is elucidation 

Figure 1. The four phases of a chemotactic cycle. 
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of the mechanism that mediates the formation of a highly polarized distribution 
of actin polymers in response to a relatively mild chemoattractant gradient. 
 The chemoattractant gradient is transmitted to the actin polymerization ma-
chinery by a signal transduction pathway that starts with receptors on the cell 
surface and terminates in proteins that catalyze actin polymerization. It is there-
fore conceivable that actin polymers inherit their polarized distribution from 
some molecule that is upstream of the polymers in the pathway. Recent experi-
ments have shown that certain membrane-resident phosphoinositides—namely, 
phosphatidylinositol 3,4,5-phosphate (PIP3)

1 and phosphatidylinositol 4,5-
phosphate (PIP2)—are among the earliest polarized components of the pathway. 
Moreover, these phosphoinositides activate the enzymes that catalyze actin po-
lymerization, thus generating the force that pushes the membrane forward. In 
other words, the morphological polarity corresponding to the extension of a pro-
trusion is driven by the chemical polarity corresponding to the phosphoinositide 
localization. Thus, the key question in the study of gradient sensing becomes: 
What is the mechanism of phosphoinositide localization? 
 Our attempts to address this question exemplify the modeling methodology 
enunciated in this volume (see Part II, chapter 2, by Socolar). We observed that 
the seemingly complex patterns of phosphoinositide localization were strongly 
reminiscent of the spatiotemporal dynamics associated with the activator-
inhibitor class of models. Encouraged by this analogy, we screened the phospho-
inositide signaling pathways for activators and inhibitors, and selected the pair 
that seemed most consistent with the prevailing experimental literature. We then 
formulated and simulated an activator-inhibitor model in which membrane-
resident phosphoinositides and cytosolic inositol phosphates played the roles of 
activator and inhibitor, respectively. As we show in §2, the simulations are in 
remarkable agreement with all the spatiotemporal dynamics observed in the lit-
erature. These findings strongly suggest that the dynamics of the gradient sens-
ing mechanism are consistent with the activator-inhibitor class of models. 
However, there are several hypotheses in the literature regarding the molecular 
identity of the activator and the inhibitor. These open questions, which can only 
be resolved by experiments, are discussed in §3. 
 We begin by giving a brief description of the phosphoinositide signaling 
pathways and the spatiotemporal dynamics of the phosphoinositide localization. 

1.1. Signaling Pathways

 The signaling steps that follow receptor activation are the subjects of ongo-
ing research. The model systems studied most intensively are Dictyostelium dis-
coideum and neutrophils. In these systems, receptor-ligand binding activates 
heterotrimeric G-proteins, which stimulate PI3K, the enzyme that catalyzes 
the synthesis of PIP3 (Figure 2a). In neutrophils, it has been shown that PIP3
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activates the Rac-GEF, P-Rex1, which in turn activates the small GTPase, Rac 
(7). There is strong evidence that Rac activates PI5K (8). It has also been pro-
posed that Rac activates PI3K (9). Both of these steps create a positive feedback 
loop in which synthesis of phosphoinositides stimulates the synthesis of even 
more phosphoinositides. There is yet another positive feedback loop because 
activation of PI5K increases the rate of synthesis of PIP2 and its downstream 
product, phosphatidic acid (PA), which is a potent activator of PI5K (10). Con-
sequently, upon receptor activation, the synthesis rates of PIP2 and PIP3 can rap-
idly accelerate to high levels. Such high synthesis rates can be sustained for no 
more than a second because the concentration of phosphatidylinositol (PI) in the 
plasma membrane is quite small (11). Depletion of PI in the plasma membrane 
is prevented by the cytosolic PI transport protein (PITP), which transfers readily 
available PI from the endoplasmic reticulum to the plasma membrane (12). The 
PIP2 formed by successive phosphorylation of PI is hydrolyzed by phospholi-
pase C (PLC) to diacylglycerol (DG) and cytosolic inositol 1,4,5-triphosphate 
(IP3). Diacylglycerol is converted to PA and transferred to the endoplasmic re-
ticulum for regeneration of PI. The inositol produced by rapid dephosphoryla-
tion of IP3 via multiple pathways (13), also participates in PI regeneration. 
 Recent experiments have established a causal link between localized phos-
phoinositide formation and lamellipod extension. Specifically, it has been shown 
that 

Figure 2. (a) The phosphoinositide cycle. The abbreviations used are: PI = phosphatidylinosi-
tol; PIP = phosphatidylinositol 4-phosphate; PIP2 = phosphatidylinositol 4,5-phosphate; PIP3 = 
phosphatidylinositol 3,4,5-phosphate; DG = diacylglycerol; IP3 = inositol 1,4,5-triphosphate; 
PI3K = phosphatidylinositol 3-kinase; PI5K = phosphatidylinositol 4-phosphate 5-kinase; PITP 
= phosphatidylinositol transport protein. (b) The principle of fluorescent imaging experiments. 
(c) Polarization of PIP3 in response to a steady chemoattractant gradient (14). The curve with a 
shallow gradient represents the chemoattractant distribution within a hexagonal field of view. 
The curve with a sharp gradient shows the resulting distribution of the marker for PIP3 within 
the cell shown in the lower figure. 
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 1.  PIP2, in conjunction with GTP-bound Cdc42, is a strong activa-
tor of N-WASP, which in turn activates Arp2/3 (15). 
 2. Activated Arp2/3 mediates actin polymerization by nucleating 
the sides of preexisting actin filaments. This promotes the formation of 
the branched filament network found in lamellipods (16). 
 3. Actin polymerization by Arp2/3 can drive lamellipod protrusion 
(17).
 4. Ruffles form at the very same time and locations as PIP2 local-
ization (18). 

 Taken together, these facts suggest that the localization of phosphoinositi-
des at the leading edge plays a crucial role in lamellipod extension. 

1.2. Dynamics

 The principle of the experiments used to study the spatiotemporal dynamics 
in response to various chemoattractant gradients is illustrated in Figure 2b. Mo-
tile cells are transfected with chimeric proteins made by fusing a fluorescent 
protein either to the molecule of interest, or to a "marker" molecule that binds 
specifically to the molecule of interest and thus "reports" on it. The marker 
molecules commonly used for reporting on PIP2 and PIP3 are the pleckstrin ho-
mology (PH) domains derived from various proteins (19). The transfected cells 
are then exposed to various chemoattractant concentration profiles and the 
movement of the fluorescent chimeric proteins is visualized using confocal mi-
croscopy. The chemoattractant profiles imposed include steady or time-varying 
gradients, obtained by appropriate manipulation of the chemoattractant flow rate 
through a micropipette, and steady uniform profiles, obtained by immersing the 
cell in chemoattractant. Each chemoattractant profile reveals particular aspects 
of the dynamics associated with gradient sensing. 

Steady and time-varying chemoattractant gradients show the existence 
of amplification and help identify the first amplified component. In response to 
such chemoattractant profiles, it has been observed that 

When G-proteins are absent (20) or inactive (14), there is no po-
larization. Evidently, the chemoattractant profile is transmitted to 
the cell through the receptors and G-proteins. 

The receptors remain uniformly distributed in both neutrophils (21) 
and Dictyostelium (22). Furthermore, receptor occupancy (23) and 
G-protein activity (24,25) are not significantly polarized. It follows 
that receptors and G-proteins are required for transmitting the ex-
tracellular signal, but they are not the source of the amplification. 
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Membrane-resident phosphoinositides, PIP3 (14,26–28) and PIP2

(29,18), are strongly polarized. In neutrophils, the gradient of the 
marker for PIP3 is six times the chemoattractant gradient (14) (Fig-
ure 2c). 

 At first sight, the strong polarization of phosphoinositides seems explicable 
in terms of a simple amplification model. It suffices to postulate that phospho-
inositide synthesis responds to receptor activation in a highly cooperative man-
ner (Hill-type kinetics). In this case, the phosphoinositide distribution will be 
similar in shape, but steeper in slope, when compared to the chemoattractant 
concentration profile. The following observation precludes this simple model. If 
a cell that is already polarized in a certain direction is exposed to a modest
chemoattractant gradient along a different direction, a new phosphoinositide 
localization and pseudopod does not develop at the point with the highest 
chemoattractant concentration. Instead, the existing phosphoinositide localiza-
tion and pseudopod turn and reorient themselves along the new gradient 
(14,25,30). It is as if the preexisting phosphoinositide localization and leading 
edge is more sensitive to chemotactic signals than all other regions of the cell. 
This phenomenon, called polarized sensitivity, suggests that during the course of 
phosphoinositide localization at the leading edge a diffusible substance is 
formed that rapidly migrates away from the leading edge and somehow inhibits 
the generation of a new localization in other regions of the cell. Interestingly, if 
the new chemoattractant gradient is relatively large and localized, the existing 
localization dissolves and a new one grows at the maximum of the new gradient 
(31,32,27). 

Steady uniform chemoattractant concentrations reveal two properties of 
motile cells, namely, spontaneous polarization and adaptation.
 When cells are exposed to such chemoattractant concentration profiles, 
phosphoinositides accumulate uniformly along the entire plasma membrane 
within 5–10 seconds. However, this uniform pattern does not persist for long. 
Within a few minutes, the phosphoinositide distribution polarizes at a random 
location. This phenomenon is called spontaneous polarization (33,34) to empha-
size the fact that the cells polarize even though the chemoattractant concentra-
tion is macroscopically uniform. The random location of the polarization 
suggests that this phenomenon is stochastic in nature. 
 In Dictyostelium, the phosphoinositides return to their pre-stimulus uniform 
distribution within 100–200 seconds (27), but the cells polarize eventually. It is 
significant that phosphoinositides return to the pre-stimulus level even though 
the chemoattractant concentration is several orders of magnitude higher than the 
pre-stimulus level. This remarkable phenomenon is a manifestation of adapta-
tion (35). It follows that in Dictyostelium, the time scale of activation is 5–10 
seconds, whereas the time scale of adaptation is 100–200 seconds. In neutro-
phils, the cells polarize spontaneously before there is any perceptible reduction 
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in phosphoinositide levels at the plasma membrane (33). This suggests that in 
neutrophils the time scale of adaptation is so slow that the cells polarize sponta-
neously before there is significant adaptation. 
 In short, the phosphoinositide distributions display four distinct types of 
spatiotemporal dynamics in response to various chemoattractant gradients: 1) 
amplification and threshold, 2) polarized sensitivity, 3) spontaneous polariza-
tion, and 4) adaptation. Several mathematical models have been developed to 
capture one or more of these dynamics. Iglesias and coworkers have formulated 
a series of models that focus on adaptation and amplification (36). Although 
these models display perfect adaptation, they capture neither polarized sensitiv-
ity nor spontaneous polarization, and amplification is quite weak compared to 
experiments. The model in (37) is concerned primarily with amplification. The 
remaining models are formally similar insofar as they contain a short-range ac-
tivator that is synthesized autocatalytically, and a long-range inhibitor that in-
hibits the synthesis of the activator (38–41). These models differ only with 
respect to the postulated mechanisms of activation and inhibition. In the next 
section, we present our model and show that it captures the dynamics of amplifi-
cation, threshold, polarized sensitivity and spontaneous polarization. Although 
the other two activator-inhibitor models developed by Meinhardt and Postma et 
al. have not been studied in detail, the fact that they are formally similar to our 
model suggests that they possess similar dynamic properties. The discussion of 
adaptation is deferred to §3. 

2. MODEL AND SIMULATION

2.1. Model

 The model is an abstraction of the phosphoinositide cycle (Figure 2a). It 
contains three variables corresponding to three "lumped" pools (Figure 3a)—
namely, membrane phosphoinositides (P), cytosolic and its phosphates (I), and 
phosphoinositides in the endoplasmic reticulum (Ps). The concentrations of these 
variables are denoted by p, i, and ps, respectively. It is assumed that 
 1. The cell is two-dimensional and disk-shaped. Thus, p and ps are based on 
the length of the plasma membrane and i is based on the area of the cytosol. 
 2. Radial gradients of the cytosolic inositol phosphate pool are negligibly 
small. This is reasonable because inositol phosphates diffuse rapidly.2 It follows 
from assumptions 1 and 2 that the angle,   is the only spatial variable. 
 3. In the absence of receptor activation, there is basal synthesis and degra-
dation of P and I. The basal synthesis rates of P and I, denoted cp and ci, follow 
zero-order kinetics. The basal degradation rates, denoted rp,d and ri,d, obey first-
order kinetics with rate constants kp and ki, respectively, i.e., 

rp,d kpp,    ri,d kii
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 4. The receptors instantly inherit the chemoattractant profile imposed on the 
cells, and the receptor-mediated rate of formation of membrane phosphoinositi-
des per unit length of membrane is given by 

rp,f kfr(t, )p2ps.

Here, kf denotes the rate constant and r(t, ) denotes the concentration of active 
receptors. The dependence on p2 represents the autocatalytic and cooperative 
kinetics with respect to membrane phosphoinositides. This is an idealization of 
the positive feedback loops shown in Figure 3a. Thus, the membrane phospho-
inositides will play the role of local activator in the model. 
 5. The inositol phosphate pool (I) stimulates transfer of phosphoinositides 
from the plasma membrane to the endoplasmic reticulum. Thus, the rate of re-
moval of membrane phosphoinositides per unit length of the membrane is 

rp,r krpi,

where kr denotes the rate constant. The rationale for this assumption is as fol-
lows. Inositol participates in the regeneration of PI in the endoplasmic reticulum 
(Figure 3a). An increase in inositol concentration will, therefore, drive the trans-
port of PA from the plasma membrane to the endoplasmic reticulum and its sub-
sequent conversion to PI. Thus, the inositol phosphates act as a global inhibitor.
 To simulate the experiments, it is assumed that before the cell is sub-
jected to a chemoattractant perturbation (t < 0), it is at a homogeneous steady 

Figure 3. (a) The model scheme is an abstraction of the PI cycle shown in Figure 2. (b) Initial 
dynamics of the membrane phosphoinositides at any point of the cell membrane. The initial 
concentrations of active receptors, , and inositol phosphates, –, are treated as control parame-
ters. When  is small or – is large, there is a threshold (defined as the distance between the 
lower and intermediate steady states). As  increases or – decreases, the threshold becomes 
progressively smaller. At sufficiently large values of  or sufficiently small values of –, the 
threshold disappears completely. 
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state, (p–,ps

–,i–), corresponding to a uniform chemoattractant concentration; 
hence, r = r– = constant. At time t = 0, the cell is perturbed by exposing it to a 
chemoattractant profile that is instantly mirrored by the active receptor profile, 
r(t, ). The dynamics of P, Ps, and I are then governed by the equations 
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Here, Dp, sp
D , Di denote the lateral diffusivities of P, Ps, and I, respectively, and 

R denotes the cell radius. The factor s, denoting membrane length per unit cell 
area, is required since synthesis and removal rates of P are based on the length 
of the plasma membrane. Since the cell is circular, all concentrations and fluxes 
must be equal at  = 0 and  = 2 . Thus, we impose the periodic boundary con-
ditions 
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where x p, ps, i. The initial conditions for the reduced equations are 

p(0, ) = p–, ps(0, ) = pt – p–, i(0, ) = i–,   0 <  < 2 . [5] 

Here, the initial condition for ps reflects the assumption that the total amount of 
phosphoinositide in the membrane and the endoplasmic reticulum is conserved, 
so that the average phosphoinositide concentration, denoted pt, is constant (39). 
 It is convenient to define the dimensionless variables 

( )
, , , ,

2 3.1416 1/×
s

s
t t t r t

pp i t
p p sp k sp

,

and dimensionless parameters 

22 //
s

s

pf t t p t p
f p p p

t r t r t r t r t

D Ck r p c p kr
r k sp k sp k sp k sp

,
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( ) 2/ /i t i i s
i i i s

r t r t r t t t t t

c sp k D C pr p i
k sp k sp k sp r p p sp

,

where C denotes the circumference of the cell and rt denotes the total number of 
receptors. Thus, we arrive at the dimensionless equations 

2
2

2
= + +f s p p p , [6] 

( )
2

2

2
= + +

s

s s
f s p p p , [7] 

2
2

2
= + +f s i i i , [8] 

with initial conditions 

( ) ( ) ( )0, , 0, 1 , 0, , 0 1= = = <s  [9] 

and periodic boundary conditions 

( ) ( )
( ) ( )0, 2 ,

0, 1, , , 0= = >
x x

x x . [10] 

where x , s, .

2.2. Simulations

 Equations [6]–[10], along with various choices of ( , ) described below, 
were simulated using the NAG subroutine D03PHF (43). In this subroutine, the 
spatial coordinate is discretized by finite differences, the PDEs are reduced to 
ODEs by the method of lines, and the resulting system of ODEs is integrated by 
using a backward differentiation formula. The parameter values used in the 
simulations are shown in Table 1. The rationale for the choice of parameter val-
ues can be found in (39). To facilitate comparison of the simulations with ex-
perimentally observed dynamics, it is useful to note that krspt ~ 1 1/sec (39). 
Hence, each unit of dimensionless time, , corresponds roughly to 1 sec. 
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2.2.1.  Amplification and Threshold 

 In the following simulation, the cell is assumed to be at a uniform steady 
state ( –, s

–, t–) corresponding to the uniform active receptor profile  = –. At 
time t  0, the cell is exposed to a steady chemoattractant gradient and the active 
receptor distribution instantly inherits the chemoattractant concentration profile 
(Figure 4a). Despite the mild gradient of , a pronounced phosphoinositide peak 
ultimately develops at the leading edge,  = 1/2 (Figure 4b). Compared to the 
polarized distribution of membrane phosphoinositides, the concentration profile 
of inositol phosphates is virtually flat (Figure 4c). 
 In terms of the model, formation of the phosphoinositide peak can be ex-
plained as follows. Because of their autocatalytic and cooperative kinetics, 
membrane phosphoinositides (P) are strongly amplified beyond a certain thresh-
old. To see this, observe that immediately after receptor activation, s s

– = 1 – 
, t t–, and diffusion is negligibly small compared to the reaction. Hence, the 

initial dynamics of the membrane phosphoinositides at any point of the plasma 
membrane is approximated by the equation 

( )2
1= +f p p . [11] 

 Figure 3b shows that if  is small at a point, the membrane phosphoinositi-
des display bistable dynamics at that point, i.e., there are two stable steady states 
separated by an unstable steady state, which acts as a threshold because  moves 

Table 1. Parameter values used in the simulations (from (39) and (42)) 

i = 0.01 dimensionless rate of basal synthesis of inositol phosphates 

p = 0.01 dimensionless rate of basal synthesis of phosphoinositides 

i = 1 dimensionless angular diffusivity of inositol phosphates 

p = 0.001 dimensionless angular diffusivity of phosphoinositides in plasma 
membrane 

sp
 = 0.001 dimensionless angular diffusivity of phosphoinositides in endoplasmic 

reticulum 

f = 2.4 dimensionless rate constant for receptor mediated phosphoinositide  
formation 

p = 0.1 dimensionless rate constant for basal degradation of phosphoinositides 

i = 0.1 dimensionless rate constant for basal degradation of inositol phosphates 
– = 6.7 x 10–3 dimensionless rate constant for receptor-ligand dissociation 

rt = 50,000 total number of receptors 
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to the upper steady state only if it crosses the unstable steady state. If  is large 
at a point, the threshold disappears at that point, and every , no matter how 
small, tends to move toward the upper steady state. Now, at time t < 0,  = –

everywhere and there is a threshold at every point. Upon activation of receptors 
at t = 0,  becomes significantly large in a neighborhood of the leading edge. In 
this region, the threshold vanishes and the concentration of P starts growing. 
Although P diffuses slowly, it does have a tendency to spread throughout the 
cell membrane. This tendency is contained by the formation of cytosolic inositol 
phosphates (I), which rapidly diffuse away from the leading edge, and acquire a 
relatively flat profile. The rapid diffusion of I has a twofold effect. In the 
neighborhood of the leading edge, the inhibitory effect of I is diminished, so that 
localized growth of the phosphoinositide peak increases. Outside this neighbor-
hood, the higher concentration of I promotes transfer of membrane phospho-
inositides from the plasma membrane to the endoplasmic reticulum. The net 
effect of this transfer is to deplete the plasma membrane of its phosphoinositi-
des, thus preventing the peak from spreading beyond the leading edge. Hence, 
within the leading edge, the steady-state concentration of P is higher than the 
initial basal level. Outside the leading edge, it is lower than the initial basal 
level. 

2.2.2.  Polarized Sensitivity 

 The model has also been used to explore the phenomenon of polarized sen-
sitivity. To this end, the model cell is exposed to a chemoattractant gradient and 
allowed to form a steady-state phosphoinositide peak consistent with this gradi-
ent. After the steady state has been reached, the polarized cell is subjected to a 
new chemoattractant gradient that is different from the previous gradient. The 

Figure 4. Amplification of a small chemoattractant gradient: (a) distribution of active recep-
tors at t  0, (b) development of a pronounced membrane phosphoinositide peak at the lead-
ing edge of the cell at  = 1/2, (c) growth of the uniformly distributed inositol phosphate pool. 
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simulations show that if the new chemoattractant gradient declines gradually 
from its maximum in such a way that the receptors in the neighborhood of the 
preexisting phosphoinositide peak sense the influence of the new gradient, the 
preexisting peak moves like a traveling wave to the point at which the new che-
mogradient gradient has a maximum (Figure 5b). On the other hand, if the new 
chemoattractant gradient is highly localized some distance away from the preex-
isting phosphoinositide peak such that the receptors in the neighborhood of the 
preexisting peak do not sense the influence of the new chemoattractant gradient, 
there is no wave motion. The preexisting peak retracts, and a new peak grows at 
the maximum of the new gradient (Figure 5c). These results are consistent with 
the phosphoinositide dynamics observed in experiments. 
 To explain the wavelike motion of the peak (Figure 5b), it is useful to ob-
serve that the steady-state membrane phosphoinositide peak formed in response 
to the first gradient is "inert" everywhere except in the two thin "transition lay-
ers" surrounding the peak within which there is a sharp change in the gradient of 
membrane phosphoinositides. By "inert," we mean that outside these transition 
layers nothing is happening at steady state—there is neither diffusion nor syn-
thesis of membrane phosphoinositides. The transition layers, on the other hand, 
are sites of intense activity even at steady state. In the upper half of a transition 
layer, there is rapid synthesis of membrane phosphoinositides, which then dif-
fuse into the lower half of the transition layer, from where they are promptly 
removed. The steady state is maintained by this precarious balance between syn-
thesis of membrane phosphoinositides in the upper half of the transition layers 
and their removal in the lower half of the transition layers. If the balance is dis-
turbed by imposing a shallow chemoattractant gradient that increases the rate of 

Figure 5. Response of a preexisting phosphoinositide peak to a new chemoattractant gradient 
(polarized sensitivity): (a) the active receptor concentration; (b) when the new gradient is 
shallow, the phosphoinositide peak moves as a traveling wave towards the new steady state; (c)
when the new gradient is sharp, the original phosphoinositide peak collapses and a new peak is 
created at the maximum of the new gradient. 
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phosphoinositide synthesis relative to its rate of diffusion, the transition layer 
moves in a wavelike fashion at a velocity that is proportional to the net rate of 
phosphoinositide accumulation within the transition layer. 
 The response to sharp chemoattractant gradients (Figure 5c) can be ex-
plained as follows. After the steady state has developed, the concentration of the 
inhibitor, I, is high throughout the cell. This tends to increase the threshold at all 
points of the plasma membrane. When the gradient is switched, the active recep-
tor concentration decreases at the previous "front" and increases at the current 
"front." It follows from the earlier discussion regarding thresholds (see Figure 
3b) that at the current "front" the tendency of the threshold to increase due to 
elevated inhibitor concentrations is mitigated by the higher active receptor con-
centration. However, at the "previous" front the tendency of the threshold to 
increase due to elevated inhibitor concentrations is further exacerbated by the 
lower active receptor concentration. The thresholds at the "previous" front be-
come so large that, despite the large concentrations of membrane phosphoinosi-
tides, they fall short of the threshold, and the preexisting peak collapses. 

2.2.3.  Spontaneous Polarization 

 The random location of the polarity in spontaneous polarization suggests 
that some variable that is upstream of the phosphoinositides in the signal trans-
duction pathway undergoes stochastic fluctuations. The most upstream source of 
the stochastic fluctuations is receptor-ligand binding (44). Following (5), we 
construct a stochastic model of receptor-ligand binding. 
 To this end, we partition a cell containing rt receptors into n equal sections. 
We assume that this cell is exposed to some uniform chemoattractant concentra-
tion l. If ligand binds instantaneously to the receptors, the mean number of ac-
tive receptors in each section, denoted rm, is (rt/n)l/(k–/k++l), where k+ and k– are 
the rate constants for receptor-ligand association and dissociation, respectively. 
The number of active receptors in each section, denoted, ri, is given by the sto-
chastic differential equation 

( )( ) ( )/ , 1,2...
+ += + + + =i m i t m m idr k l k r r dt k l r n r k r dW i n . [12] 

where the first term on the right denotes the deterministic part of receptor ligand 
binding, which has the effect bringing ri back to its mean value, rm. The second 
term on the right denotes the stochastic part of the binding process. Here, dWi

denotes the Wiener process, which is a Gaussian random number generator with 
zero mean and standard deviation (dt)1/2. It should be noted that the standard de-
viation of the random process, ri, is proportional to (rt)

1/2, but the relative 
spread, defined as the ratio, ri/rm, is inversely proportional to (rt)

1/2. Thus, the 
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smaller the number of total receptors in a cell, the more pronounced the stochas-
tic effects. If we define the dimensionless variables 

( )
, , , ,

1/ / / /
= = =i m r t

i m i i
r t t t t

r r k spt W
k sp r n r n r n

and the dimensionless parameters, 

,
/ +

= =
r t

l k
k k k sp

,

and equation [12] becomes 

( )( ) ( )( )1 1 , 1,2...= + + + =i m i m m id d d i n . [13] 

 To simulate the experiments showing spontaneous polarization, it is as-
sumed that at  = 0 the cell is exposed to a small and uniform chemoattractant 
concentration,  = –. At  0, the cell is immersed in a uniform concentration 
of chemoattractant + > –. Euler integration of equation [13] yields a noisy ac-
tive receptor distribution, a typical snapshot of which is shown in Figure 6a. The 
response to stochastic receptor-ligand binding is then simulated by choosing this 
noisy active receptor distribution as the function ( , ) in model equations [6]–
[8]. The simulation shows that the sudden increase from – to + causes an initial 
uniform increase in membrane phosphoinositides, but this is followed by the 
formation of a phosphoinositide peak at a random location (Figure 6b). 

Figure 6. Spontaneous polarization in response to a uniform but noisy chemoattractant profile: 
(a) a snapshot of the noisy active receptor distribution generated by the Tranquillo-
Lauffenburger model, and (b) development of a phosphoinositide peak in response to this 
noisy signal. 



326 K. K. SUBRAMANIAN and A. NARANG 

 Recently, we have shown that the phosphoinositide peak forms even though 
the environment is macroscopically uniform because there is a certain range of 
chemoattractant concentrations within which the homogeneous steady state of 
the model is Turing unstable, i.e., unstable with respect to all nonhomogeneous 
perturbations (40). Hence, any kind of noise drives the cell away from the ho-
mogeneous steady state and results in the formation of a phosphoinositide peak. 
This property is characteristic of activator-inhibitor models (45). 

2.2.4.  Variation of the Phosphoinositide Peak With Respect to Kinetic 
 Parameters and External Signal 

 Figure 7 shows the variation of the steady-state phosphoinositide peak with 
respect to three different distributions of the function f . We assume that these 
distributions are achieved by fixing the active receptor distribution, , and vary-
ing the parameter, f, i.e., cells with progressively higher levels of PI3K or PI5K 
are subjected to the same chemoattractant gradient. The simulations show that 
the development of the phosphoinositide peak occurs only within a certain range 
of f. Even within this range of existence 
 1. The chemoattractant gradient required to provoke peak formation de-
creases with f, and becomes zero for sufficiently large f.
 2. The width of the peak increases with f (Figure 7). 
 When f > 5, the peak disappears completely. At such large values of f, no 
initial perturbation can provoke the formation of a stable phosphoinositide peak. 
Similarly, decreasing f narrows the peak until at a sufficiently small value ( f < 
2.2) peak formation cannot be induced. 
 These results have the following physical interpretation. The parameter f is 
the ratio of the characteristic velocities of phosphoinositide synthesis and re-
moval. If f is small, phosphoinositide synthesis is rapidly opposed by inhibitory 

Figure 7. Variation of the steady-state phosphoinositide peaks with respect to different distri-
butions of f : (a) distributions of f , (b) corresponding phosphoinositide peaks. 



SPATIOTEMPORAL DYNAMICS OF EUKARYOTIC GRADIENT SENSING 327 

action of inositol phosphates, resulting in high thresholds and narrow peaks. 
When f < 2.2, even the maximum possible increment of  cannot abolish the 
threshold at the leading edge, thus making it impossible to provoke a peak. Con-
versely, if f is large, the inositol phosphate pool responds slowly, so that the 
peak is wider and the threshold lower. At very large values of f, the threshold is 
zero and membrane phosphoinositide synthesis is much faster than its removal. 
Hence, the minutest chemoattractant gradient results in propagation of phospho-
inositides throughout the membrane before inositol phosphates can exert the 
inhibitory effect required for formation of the polarized steady state. Thus, the 
phosphoinositides ultimately increase to a near uniform steady state. 
 Now, we could just as well assume that the three different distributions of 

f  shown in Figure 7 were obtained by keeping the parameter f fixed, and 
varying the active receptor distribution . In this case, the simulations would 
imply that the geometry of the phosphoinositide peak varies with the shape of 
the external chemoattractant. 

3. FUTURE WORK

 We have shown above that the model captures all the dynamics except ad-
aptation. To be sure, we modeled adaptation in our earlier work by assuming 
slow desensitization and resensitization of the receptors (39). In response to uni-
form increases of the chemoattractant concentration, the model displayed perfect 
adaptation over several orders of magnitude of the chemoattractant concentra-
tions. However, the mechanism proposed in the model was inconsistent with 
experiments, since adaptation occurs at some level below the receptors (46) and 
G-proteins (24). This deficiency was resolved in more recent work, wherein we 
have taken due account of the fact that adaptation acts below the receptors (40). 
Simulations of this modified model are in good agreement with experiments. 
 Although our local-activator-global-inhibitor model captures the spatiotem-
poral dynamics observed in experiments, the identity of the local activator and 
global inhibitor are subjects of considerable debate. Specifically, 

 1. Experimental data concerning the polarization of PIP2 is not definitive. 
It is difficult to discern spatial variations of the PIP2 distribution because its 
concentration in the plasma is relatively high. It has been argued that the ap-
pearance of PIP2 polarization observed in earlier work (18) does not reflect a 
localized increase in the concentration of PIP2—it is a consequence of the high 
surface area created at the leading edge by the formation of membrane folds 
(47). On the other hand, it has been shown that PI5K, the enzyme that synthe-
sizes PIP2, localizes to the ruffles immediately after chemoattractant stimulation 
(29,48). 
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 2. The role of PIP3 remains elusive. It has been shown, for instance, that 
PI3K, the enzyme that catalyzes the synthesis of PIP3, is sufficient, but not nec-
essary for polarization. Delivery of exogenous PIP3 to neutrophils provokes po-
larity development (9). However, in Dictyostelium cells lacking both PI3K1 
and PI3K2 show only partial defects in chemotaxis (49). 
 3. The influence on polarization of molecules that are downstream of PIP3

is controversial. In Dictyostelium, phosphoinositides are polarized even if actin 
polymerization is inhibited by latrunculin (27). This implies that phosphoinosi-
tides are polarized exclusively by reactions upstream of actin polymerization. 
In neutrophils, on the other hand, the polarization is almost completely abol-
ished when actin polymerization is inhibited by latrunculin or promoted by jas-
plakinolide (33). 
 4. Several potential global inhibitors have been hypothesized, but the evi-
dence supporting their inhibitory role is either lacking or inconclusive. The en-
zyme PTEN, which catalyzes dephosphorylation of PIP3 to PIP2, migrates in a 
manner that strongly suggests that it may be a global inhibitor. While PIP3 lo-
calizes to the "front" of the cell, PTEN translocates to the "back" of the cell 
(50,51). However, the mechanism of this translocation is unknown. We have 
proposed that the cytosolic pool of inositol phosphates plays the role of global 
inhibitor (39). This hypothesis is supported by experiments which show that 
blocking the synthesis of inositol phosphates stimulates chemotaxis (53). How-
ever, the inhibitory mechanism appears to be different from the one hypothe-
sized by us. Indeed, Luo et al. (52) have shown that in Dictyostelium the 
inositol phosphate InsP7 competitively inhibits the binding of various PH-
domain-containing effector enzymes to PIP3, thus retarding their recruitment to 
the membrane. Finally, it has also been suggested that cGMP fulfills the role of 
inhibitor (37), but this hypotheses has not been rigorously tested. 

 The resolution of these outstanding issues will play a crucial role in foster-
ing further model development. Indeed, all the existing gradient sensing models 
are "lumped" because our ignorance regarding the identity of the activator and 
the inhibitor argues against the development of more detailed models. As noted 
in this volume (see Part III, chapter 1.4, by Dhar and Tomita), a model is only as 
good as the data it purports to explain. At present, we have reliable data on the 
spatiotemporal dynamics of the phosphoinositide localization. By establishing 
that these nontrivial dynamics are consistent with the activator-inhibitor model, 
we hope that we have sharpened the focus of the experimental search for the 
variables. To the extent that the activator-inhibitor model is a valid representa-
tion of the gradient sensing mechanism, the experimentalist can now focus atten-
tion on variables possessing the dynamic properties of the activator and 
inhibitor. Further refinement of the model must await the identification of these 
variables. 
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 The theory of pattern formation was originally inspired by a desire to ex-
plain tissue differentiation (54). The theory showed that in a reaction-diffusion 
system chemical inhomogeneities could arise spontaneously, and that these in-
homogeneities could confer distinct attributes to different parts of a tissue. Yet, 
the link between this theory and experiments remains tenuous because of the 
difficulties encountered in identifying the variables of the theory, namely, the 
activators and the inhibitors. In recent years, it has become evident that there are 
chemical inhomogeneities even within a single cell. The chemical and morpho-
logical polarization observed in the eukaryotic gradient sensing mechanism is a 
paradigm of such subcellular pattern formation. Given our deep understanding 
of cellular and molecular biology, it would not be surprising if pattern formation 
theory faces its first rigorous experimental tests at the level of cells rather than 
tissues. 
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5. NOTES

 1. Abbreviations used: PI = phosphatidylinositol; PIP = phosphatidylinosi-
tol 4-phosphate; PIP2 = phosphatidylinositol 4,5-phosphate; PIP3 = phosphatidy-
linositol 3,4,5-phosphate; DG = diacylglycerol; IP3 = inositol 1,4,5-triphosphate; 
PI3K = phosphatidylinositol 3-kinase; PI5K = phosphatidylinositol 4-phosphate 
5-kinase; PITP = phosphatidylinositol transport protein. 
 2. To be sure, this implies that the angular gradients are also negligibly 
small, and this will be borne out by the simulations below. We retain the angular 
variation only because it simplifies the numerical simulations. Neglecting the 
angular variation yields an inconvenient "mixed" system of equations containing 
an ODE describing the evolution of the inositol phosphates along with the other 
PDEs. At any rate, we suffer no loss of generality by retaining the angular varia-
tion. 
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2.3

PATTERNING BY EGF RECEPTOR: MODELS 
FROM DROSOPHILA DEVELOPMENT 

Lea A. Goentoro and Stanislav Y. Shvartsman 
Lewis-Sigler Institute for Integrative Genomics, 
Princeton University, Princeton, New Jersey 

The epidermal growth factor receptor (EGFR) belongs to a large class of receptor tyro-
sine kinases. Abnormal EGFR signaling is associated with severe developmental defects 
and many types of cancers. Many individual molecules mediating the EGFR-induced re-
sponses became drug targets in oncology and other areas of medicine. However, neither 
the contribution of EGFR to tissue morphogenesis in development nor the exact role of 
deregulated EGFR signaling in diseases is understood at this time. The key challenge is 
to integrate the existing molecular and cellular information into a systems-level descrip-
tion of the EGFR network in tissues. Systems-level descriptions are impossible without 
quantitative models. Even the simplest models of EGFR signaling in tissues must simul-
taneously account for ligand transport, binding, signal transduction, and gene expression. 
Given this complexity, such tissue-level models are difficult to test; therefore, they re-
quire appropriate experimental paradigms for their validation. We suggest that model or-
ganisms of developmental genetics, such as the fruit fly Drosophila melanogaster, can be 
used as experimental systems for the development and validation of computational de-
scriptions of EGFR signaling in tissues. 

1. INTRODUCTION

 The epidermal growth factor receptor (EGFR) is an evolutionarily con-
served regulator of epithelial tissues. The first identified receptor tyrosine kinase 

Stanislav Y. Shvartsman, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Carl 
Icahn Laboratory, Washington Road, Princeton, NJ 08544; (609) 258-7071; stas@princeton.edu. 



334 L. A. GOENTORO and S. Y. SHVARTSMAN 

and a founding member of the ErbB receptor family, EGFR has been implicated 
in countless physiological and pathological contexts (1,2). Most commonly, 
EGFR is activated by extracellular ligands. Ligand binding induces dimerization 
of the receptor and activates the kinase in its cytoplasmic domain. By recruiting 
and phosphorylating the cytoplasmic targets, the activated receptor couples to 
signal transduction pathways and controls cellular responses (see also the pre-
ceding chapter 2.2, by Subramanian and Narang). While experiments in cell 
culture keep providing invaluable insights into the structure and function of the 
EGFR network, more complex experimental systems are required to study 
EGFR signaling in tissues. Co-culture models and cultured tissues can be used 
to probe EGFR signaling in multicellular systems (3,4). Finally, analysis of the 
organism-level effects of EGFR signaling requires studies in vivo. 
 EGFR activation in vivo is mediated by autocrine and paracrine signals. 
Secreted ligands usually bind to receptors on the ligand-producing cells or their 
neighbors. Receptor activation depends on the rates of ligand release, receptors 
levels, and tissue architecture. Typically, ligand/receptor levels and activation of 
downstream pathways are assessed using in situ hybridization or immunohisto-
chemistry. Since these techniques are nontrivial to quantitate, even the "sim-
plest" parameters of autocrine and paracrine networks, such as ligand 
concentrations, cannot be measured directly. In contrast, in the studies con-
ducted in vitro, one can both control the exogenous ligand concentration and 
measure receptor levels using a number of quantitative assays. 
 In theory, modeling and computations can bridge the apparent gap between 
the in-vitro and in-vivo studies of EGFR biology (5). Again in theory, the bio-
chemical parameters measured in vitro can provide inputs to the tissue-level 
models. These models can estimate the parameters that are either impossible or 
difficult to measure directly. For example, the information about receptor dy-
namics generated in cell culture can be combined with the microscopically de-
rived information about the tissue architecture in order to compute the spatial 
distribution of autocrine and paracrine signals (6). In this way, cellular and bio-
chemical studies can drive the development of mechanistic models of cell com-
munication in tissues. 
 The experimental validation of tissue-level models requires a flexible ex-
perimental system. With its advanced experimental genetics, the fruit fly Droso-
phila melanogaster serves as an excellent testing ground for validation of 
models of EGFR signaling in tissues (7). Further, the high evolutionary conser-
vation makes the Drosophila EGFR network an excellent model for the more 
complex mammalian EGFR systems (8). In this chapter we first describe two 
examples of EGFR-mediated patterning in fruit fly development. These exam-
ples serve to illustrate how EGFR signaling is exquisitely tuned to produce the 
appropriate patterns of gene expression during development. Next we describe 
some of our initial work in the mechanistic modeling of these systems. Our em-
phasis is on the spatial range of autocrine and paracrine signals and the dynam-
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ics of feedback loops in the EGFR network. And finally, we conclude by de-
scribing some of the current challenges involved in modeling EGFR at the tissue 
level. 

2. TWO EXAMPLES OF EGFR SIGNALING IN 
FRUIT FLY DEVELOPMENT

 EGFR is recurrently used in fruit fly development (see Shilo (7) for a recent 
review). The pleiotropic nature of EGFR signaling was realized when mutations 
affecting different stages of development were mapped to the same location, the 
Egfr gene.1 Within several years, the Drosophila EGFR ligands, all secreted 
molecules, were identified: Gurken, Spitz, and Keren, all three being homolo-
gous to the human Transforming Growth Factor alpha (TGF ); and Vein, a 
homologue of the human Neuregulin. Several inhibitors have also been identi-
fied. Most relevant to our discussion here is Argos, a secreted inhibitor acting 
through sequestering the activating ligands (9). At this time, no mammalian 
counterpart of Argos has been identified. 
 The presence of multiple ligands and inhibitors of EGFR signaling does not 
necessarily imply redundancy in the system. Gurken, Spitz, and Keren are pro-
duced as transmembrane precursors and activated through a proteolytic cleav-
age. In contrast, Vein and Argos are expressed in their active secreted forms. 
Furthermore, Spitz, Vein, and Argos, when acting in a feedback fashion, require 
a different threshold of signaling activity for their induction. The different 
modes of induction reflect the different modules of regulations used to limit the 
availability of the molecules. The different regulations are translated into differ-
ent characteristics of the molecules (e.g., time delay upon induction, steep ver-
sus gradual response to induction) that may govern the choice of using a specific 
ligand/inhibitor at a given place and time. And finally, the molecules have dif-
ferent transport and kinetic properties (e.g., diffusion coefficient, binding rate 
constants) that would influence the way they regulate EGFR activity. 
 In the following two sections, we review two well-studied examples of 
EGFR-mediated tissue patterning during the egg and embryonic development in 
the fruit fly Drosophila melanogaster. During embryogenesis, an initial gradient 
of EGFR activity created by a locally secreted activator is fine-tuned by a se-
creted inhibitor (10,13,14). Spitz acts as the activator that induces the expression 
of Argos in a feedback fashion. During egg development, the initial domain of 
EGFR activity is first expanded by a secreted activator and later refined by a 
secreted inhibitor (11). In this case, Gurken acts as the initial activator that in-
duces the expression of Spitz and subsequently Argos. Thus, Gurken, Spitz, and 
Argos define a spatially distributed network controlling the EGFR activation. 
These two examples illustrate the patterning versatility of the autocrine and 
paracrine EGFR networks. 
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2.1. EGFR Signaling in Embryogenesis: Ventral Ectodermal Patterning

 A fly embryo halfway through embryogenesis is shown in Figure 1A. Three 
layers of cells are present at this stage (Figure 1B): the ectoderm, which will 
form the larval epidermis; the neuroblast, which will give rise to the nervous 
system; and the mesoderm, which will develop into muscle and connective tis-
sues. The midline cells, which divide the ectoderm along the dorsoventral axis, 
are distinct from their neighboring ectodermal cells. These midline cells will 
later delaminate from the ectoderm and give rise to specific neurons and midline 
glial cells. EGFR induces two different fates in the ventral ectoderm: the ven-
tral-most and ventrolateral fates (12). The two fates are identifiable by the ex-
pression of different marker genes (Figure 1C). 
 The following mechanism, summarized in Figure 2, was proposed by Go-
lembo et al. (10,13,14) to explain the EGFR-mediated patterning of ventral ec-
toderm. The patterning process starts when the single-minded gene, expressed 
exclusively in the midline cells, induces the expression of rhomboid (15). 
Rhomboid is a protease that cleaves the Spitz transmembrane precursor into the 
active secreted form (16). As a result, the midline acts as a local source of se-
creted Spitz, establishing a gradient of EGFR activation in the neighboring ecto-
dermal cells. 

Figure 1. (A) A mid-stage fly embryo (D = dorsal, V = ventral, A = anterior, P = posterior). 
(B) Cross-section of the embryo at the indicated plane in (Figure 1A). (C) The ventral ecto-
dermal cells are patterned by Egfr into two subgroups. The ventral-most cells (striped) express 
all the genes listed, whereas the ventrolateral cells (dotted) express the fasciclinIII gene only 
(12). 



PATTERNING BY EGF RECEPTOR 337 

 Subsequently, the cells nearest to the midline, hence the ones exposed to the 
highest level of Spitz, start secreting Argos. This establishes a negative feedback 
that is thought to refine the gradient of Spitz-induced EGFR activity and regu-
late the relative number of cells adopting each of the ventral fates. As a result of 
the interplay between Spitz and Argos, five rows of cells flanking the midline 
are patterned. The two rows nearest to the midline receive a high level of EGFR 
activation and adopt the ventral-most fate. The next three rows of cells receive a 
moderate level of EGFR activation and adopt the ventrolateral fates. In sum-
mary, the initial gradient of EGFR activity induced by a localized secretion of an 
activator (Spitz) is refined by a secreted inhibitor (Argos), creating two distinct 
fates. 

Figure 2. Ventral ectodermal patterning. In the graphs, the y-axis is the Egfr activity and the x-
axis the distance away from the midline. All cells are initially uniform. Patterning is initiated 
by secretion of Spitz from the midline cells. This creates a graded activation of EGFR and 
induction of the low-threshold ventrolateral fate (dotted) in nearby ectodermal cells. In time, 
the signaling activity increases such that the cells nearest to the midline (striped) reach the high 
threshold of the ventral-most fate and start secreting Argos. Inhibition by Argos modifies the 
gradient of activity, restricting the domain of each ventral fate. This pattern persists for at least
3 more hours. (Note: The timeline is approximated from various published data.) 
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2.2. EGFR Signaling in Oogenesis: Eggshell Patterning

 A fly egg is composed of three types of cells (Figure 3A): the oocyte, which 
later develops into the embryo; the nurse cells, which supply nutrients to the 
oocyte; and the follicle cells, which form an epithelium enveloping the oocyte. 
The EGFR-mediated patterning of the follicle cells is highly regulated in space 
and time (17,18). The net result of this patterning process is division of the ini-
tially equivalent follicle cells into distinct populations. Each population of folli-
cle cells gives rise to a specialized structure of the eggshell. EGFR signaling 
first divides the follicle cells into dorsal and ventral cells. Afterward, EGFR 
signaling further subdivides the dorsal cells into several subpopulations that give 
rise to different dorsal structures (Figure 3B) (18). Here we focus on the respira-
tory appendages extending from the dorsal-anterior side of the egg, whose posi-
tioning along the dorsoventral axis requires EGFR signaling (Figure 3C) (20). 
 Gurken is localized around the oocyte nucleus throughout egg development 
(21). The relevant patterning process starts during mid-oogenesis, at the time 
when the oocyte nucleus has just migrated from its previous posterior position 
to a random point along the oocyte anterior circumference (22,23). Gurken 

Figure 3. (A) A mid-stage egg chamber. At this stage, the nucleus has just migrated from the 
posterior to the future dorsal position (A = anterior, P = posterior, D = dorsal, V = ventral). (B)
A scanning electron micrograph of the dorsal-anterior section of a mature egg chamber (19). 
(Reproduced from (19) with permission "Development," Company of Biologists.) Specialized 
regions can be identified: the micropyle (M), the entry point of the sperm; the operculum (O), a 
distinct region between the dorsal appendages (DA) that serves as the larval exit door; and the 
collar region (C), which delineates the operculum. The broken line indicates the midline (i.e., 
the dorsal-most aspect of the egg). (C) A dark micrograph of a mature fly egg chamber with the 
dorsal appendages extending out from the dorsal-anterior side. 
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released locally from the oocyte induces a gradient of EGFR signaling in the 
overlying follicle cells. The follicle cells closest to the oocyte nucleus, hence 
receiving a high level of EGFR signaling, adopt the dorsal fate; the cells far 
from the nucleus receive a low level of EGFR signaling and express the ventral 
marker genes. 
 A dorsal-anterior domain in the follicular epithelium is defined by the over-
lap between the gradient of the Gurken-mediated high EGFR activity and a 
transverse gradient of activity of the TGF  pathway (Figure 4A) (24). Over 
time, the EGFR signaling further divides the dorsal-anterior domain into three 
distinct groups of cells: the dorsal midline cells, which will contribute to the 
production of operculum; the dorsolateral cells, which will specify the position 
of the dorsal appendages; and the dorsal appendage anlagen, which will the se-
crete the appendage materials (Figure 4B). 
 The mechanism by which EGFR signaling mediates the subsequent refine-
ments in the dorsal cells is not well understood. The currently accepted mecha-
nism (Figure 5), proposed by Wasserman and Freeman (11), is by no means the 
complete story. Expression of rhomboid is induced through a crosstalk between 
the EGFR and TGF  signaling in the dorsal-anterior domain (Figure 4A) (24). 
Rhomboid cleaves the Spitz transmembrane precursors, leading to localized 
secretion of Spitz. The released Spitz acts as a positive feedback that amplifies 
the initial EGFR activity induced by Gurken. 

Figure 4. In all figures, the broken circle indicates the position of the oocyte nucleus. (A) The 
overlap between the dorsal-ventral gradient of Gurken-mediated EGFR signaling and the ante-
rior-posterior gradient of TGF  signaling defines the dorsal-anterior region. (B) The dorsal-
anterior is patterned further by EGFR signaling into three different fates: the operculum-
producing dorsal midline cells (black), the dorsolateral cells that position the future dorsal 
appendages (dotted), and the appendage progenitors (striped). The arrows indicate the orienta-
tion in all figures (A = anterior, P = posterior, D = dorsal, V = ventral). 
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 Above a certain high threshold of EGFR activity, Argos is induced. Argos 
negative feedback is thought to split the initial single domain of high EGFR ac-
tivity and at the same time restrict further expansion of signaling activation into 
the lateral side. Consequently, the domain of high EGFR activity is gradually 

Figure 5. Eggshell patterning. In the graphs, the y-axis is the EGFR activity and the x-axis the 
distance away from the midline. All cells are initially uniform. Patterning is initiated by secre-
tion of Gurken from the oocyte. This creates a graded activation of EGFR in the cells nearest 
to the oocyte nucleus. Although omitted from the subsequent figures, Gurken secretion is 
constant for at least 12 hours. The AP gradient of the TGF  ligand is not formed until ~6 
hours later; following that, the cells start secreting Spitz. The following mechanism is pro-
posed by Wasserman and Freeman (11). Due to amplification by Spitz, the cells nearest the 
midline reach the high threshold and start secreting Argos. Inhibition by Argos splits the do-
main of EGFR activity into two and restricts expansion to the lateral side. As a consequence of 
its own inhibitory action, the domain of Argos expression also splits into two stripes, coincid-
ing with the high-EGFR activity domains. These Argos-expressing cells become the dorso-
lateral cells; the cells in which the high Egfr activity is extinguished by Argos become the 
dorsal midline cells; the more lateral cells in which the moderate Egfr activity is turned off by 
Argos become the appendage progenitor cells. This pattern persists, throughout the morphoge-
netic movements during the appendage formation, until the end of oogenesis (~6 more hours). 
(Note: The timeline is approximated from various published data.) 
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reduced into two L-shaped stripes positioned symmetrically around the midline 
(Figure 4B). The cells in which the EGFR activity is initially very high and then 
abruptly extinguished by Argos adopt the dorsal midline fate; the cells in which 
the EGFR activity is maintained high adopt the dorsolateral fate; the cells in 
which the EGFR activity is moderate and then quenched by Argos become the 
dorsal appendage anlagen. In short, the initial gradient of EGFR activity induced 
by a localized input (Gurken) is first amplified by a positive feedback (Spitz) 
and afterward refined by a negative feedback (Argos), thereby creating three 
distinct fates. 
 In both patterning systems, EGFR signaling mediates the patterning of gene 
expression in the epithelial cells. Just as analyzing the similarities between the 
two systems enables us to derive common regulatory principles in EGFR signal-
ing, examining the differences between the two systems may reveal further 
mechanistic insights. In the ovary, Argos inhibits EGFR signaling in the Argos-
producing cells and their neighbors (11). In the embryo, on the other hand, the 
Argos-producing cells appear to be refractory to its inhibitory action (10,14). 
Understanding this observed difference may lead to a better grasp of the way 
Argos functions. Another difference between the two systems is the absence of 
positive feedback in the ventral ectoderm.2 The ventral ectodermal patterning 
has been shown to be highly robust. Halving or doubling the level of input from 
the midline does not alter the pattern (10). In contrast, varying the level of input 
from the oocyte generates diverse eggshell morphology phenotypes (20). In par-
ticular, defects in the positive feedback lead to eggshells with fused dorsal ap-
pendages (11). Hence, it appears that the positive feedback is necessary to 
transform a pattern mediated by a simple inductive signal (Gurken) into a more 
complex spatial pattern. 
 Long-range inhibition by secreted Argos plays a central role in both mecha-
nisms. Most likely, these mechanisms will have to be revised to account for the 
recent discovery of the fact that Argos directly interacts with the EGFR ligand 
Spitz (9), and not with the receptor itself. 

3. MODELING AND COMPUTATIONAL ANALYSIS 
OF AUTOCRINE AND PARACRINE NETWORKS

 Here we describe our initial steps toward building mechanistic models of 
autocrine and paracrine EGFR signaling in epithelial layers. In each case we 
briefly describe the model and illustrate the representative questions that the 
model can help to address. The details of the derivations and computational 
analysis can be found elsewhere (25–30). All the parameters used from this sec-
tion onward are listed in Table 1. 
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3.1. Models of Ligand Transport and Binding

 The mechanisms of EGFR-mediated patterning in Drosophila development 
depend on the spatial ranges of EGFR ligands. Spitz was identified as a short-
ranged ligand acting over 3–4 cell diameters (31–33), while Gurken was pro-
posed to act as a long-range morphogen that can act over more than 10 cell di-
ameters (34–36). The spatial ranges of Gurken and Spitz were derived from 
observing their effects on the expression of EGFR-target genes. At this time, the 
mechanisms governing the differences in the apparent ranges of the ligand are 
not well understood. Since both molecules are secreted, their spatial range can 
be tuned by the rates of extracellular transport and ligand-receptor interaction. 
Given a large and rapidly growing amount of information about each of these 
processes in the EGFR system, it is reasonable to ask if the experimentally de-
rived estimates of ligand range can be interpreted in terms of the elementary 
processes, such as binding and receptor-mediated endocytosis. The ability to 
predict and manipulate the spatial ranges of secreted growth factors can be used 
to develop computational models of patterning networks and design new ex-
periments for evaluating proposed mechanisms. In the following, we use a sim-
plified geometry of cell–cell communication to illustrate a mechanistic model of 
ligand transport (Figure 6A). 
 In the model, the ligand diffuses between the receptor-covered and reflect-
ing surfaces. This geometry approximates the one in egg development where 
EGFR ligands diffuse in the thin gap between the oocyte and the follicular epi-
thelium. The motion of the secreted ligand is modeled by free diffusion with an 

Table 1. Parameters in the model (25–30,39,40)* 

Param.                                Description                                               Value 

    D Ligand diffusion coefficient 10–10–10–6 cm2/s (37,38) 

   Rtot Number of receptors per cell 103–105 rec/cell 

   kon Receptor-ligand forward binding rate constant 1.667 x 109 cm3/mole-s 

   koff Complex dissociation rate constant 0.02 s–1

   ke Complex endocytosis rate constant 0.02 s–1

   Rcell Receptor cell surface density (cell area ~25 m2) 40–4000 rec/ m2

   h Height of the extracellular medium 0.5 m

   CT Threshold complex concentration for Rho  
induction 

 Time scale for Rho degradation ~20 min (49) 

   I|i–m|,|j–n| Cell–cell coupling coefficient 

*Unless indicated otherwise, the references for the parameters can be found in these papers  
and the references therein.
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effective diffusion coefficient D. The diffusion coefficient can vary between the 
low values of growth factor diffusion in extracellular matrices (10–10 cm2/s) (37) 
and the typical values for protein diffusion in an aqueous solution (10–6 cm2/s) 
(38). We assume that the number of receptors per cell, Rtot, is constant. As illus-
trated in Figure 6B, ligand-receptor interactions are characterized by kinetic rate 
constants kon and koff; the endocytosis of receptor-bound ligands is modeled as a 
first-order process with rate constant ke; we assume that internalized ligand is not 
recycled. The last assumption is based on the observation that, for the mammal-
ian TGF , recycling is negligible (39). In the absence of measurements in the 
Drosophila EGFR system, the rate constants are approximated by their counter-
parts measured in mammalian systems (39,40). In the following, we show how 
this model can be used to quantify the distance traveled by a secreted ligand. 
 Analysis of the distance traveled by a ligand between the subsequent bind-
ing events requires solving the problem of ligand transport in the gap above the 

Figure 6. (A) A simplified model of ligand transport, binding, and trafficking. Ligand diffuses 
in the gap between the reflective and receptor-covered surfaces. Receptor density is uniform 
across the surface of the epithelial layer. (B) Ligand-receptor interactions (see Table 1 for 
definition of parameters). (C) Probability density function for the lateral distances traveled by 
secreted ligands in the time between the binding events. g(r)dr is equal to the probability that a 
ligand will be bound between r and r + dr (see Eq. [2]). All computations are performed on a 
hexagonal cell with an area of 25 m2. (D) Fraction of the ligands that are recaptured by the 
ligand-releasing cell plotted as a function of the cell surface receptor number (Rtot), ligand-
receptor affinity (kon), and extracellular ligand diffusivity (D). The curves, from top to bottom, 
correspond to D = 10–9 cm2/s, D = 10–8 cm2/s, and D = 10–7 cm2/s. 
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receptor-covered plane. The statistical properties of the time and distance to the 
first binding event depend on the forward binding rate constant, kon, the cell sur-
face density of receptors, Rcell, the ligand diffusion coefficient in the extracellular 
matrix, D, and the height of the extracellular medium, h. For the relevant ranges 
of these parameters, the distribution of time to capture is given by an exponen-
tially distributed random variable: The probability that a ligand is bound for the 
first time after time t (Pfirst) is given by 

on cell
first ( ) exp=

k RP t t
h

. [1] 

This expression leads to the probability density function for the lateral distance 
traveled until the first binding event (Figure 6C): The probability that a ligand is 
bound in the ring between radii r and r + dr is given by 

on cell on cell
0( ) =

k R k Rg r dr K r rdr
Dh Dh

, [2] 

where K0 is the modified Bessel function (41). We see that for reasonable ranges 
of receptor densities and binding rate constants, a majority of the secreted 
ligands is bound for the first time after traveling a very short distance. As an 
immediate consequence, the ligand-producing cell can recapture a significant 
fraction of the secreted ligands (Figure 6D). 
 Once secreted, a ligand undergoes several cycles of binding, dissociation, 
and extracellular diffusion before it is removed from the extracellular medium 
by receptor-mediated endocytosis (Figure 6B). The rate constants for dissocia-
tion and endocytosis of ligand-receptor complexes, koff and ke, determine the 
number of binding events until the first endocytosis event. In the simplest 
model, the number of binding events is a geometrically distributed random vari-
able with the mean equal to 1 + (koff/ke) (25). Based on the measurements for the 
human EGFR-TGF  interactions (koff  ke  0.1 min–1) (40), the ligand will be 
internalized after ~2 binding events. Thus, this simple model predicts that inhibi-
tion of receptor-mediated endocytosis can extend the range of secreted ligands. 
This prediction can be tested in mutants with defects in the genes mediating re-
ceptor-mediated endocytosis (42,43). (In other systems, where ligand is effi-
ciently recycled to the cell surface, the opposite can be true. In fact, endocytosis 
might actually be the main mechanism for the spatial propagation of secreted 
signals (44).) 
 According to this simple model, the relative rates between binding interac-
tions, endocytosis, and diffusion influence the spatial range of secreted ligands. 
This might explain the apparent differences in the spatial ranges of Gurken and 
Spitz. An experimental test of this explanation requires measurement of the 
relevant rate constants of Gurken and Spitz. 
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3.2. Positive Feedback by Rhomboid and Spitz

 The Rhomboid/Spitz module amplifies the oocyte-derived Gurken signal in 
eggshell patterning (11,45,46). In the emerging picture, EGFR-activated 
Ras/MAPK pathway relieves the transcriptional repression of rhomboid (47,48). 
Rhomboid then stimulates the secretion of Spitz that binds to EGFR on the 
ligand-producing cells and their neighbors (Figure 7A). This information about 
signaling in a single cell can be combined with the transport model from the 

Figure 7. (A) A tentative structure of a positive feedback loop in the Rhomboid/Spitz system. Ligand 
binding stimulates ligand release. Receptor activation leads to activation of the canonical Ras/MAPK 
signal transduction pathway. The MAPK activity leads to degradation of CF2, a transcription factor 
that inhibits transcription of the ligand-releasing protease, rhomboid (rho). In the absence of CF2 inhi-
bition, rhomboid is synthesized. The mature Rhomboid (Rho) protein cleaves the transmembrane Spitz 
(mSpitz) in the Golgi into its secreted form (PM = plasma membrane). (B) The steady-state ligand 
field due to a single ligand-releasing cell. Parameters: h = 0.5 m, ke = 0.1 min–1, koff = 0.1 min–1, Rcell = 
1 x 104 receptors/cell surface, D = 1 x 10–7 cm2/s, kon = 0.1 Nm–1min–1, maximal rate of ligand release Qs

= 100 molecules/cell-min, cell area = 25 m2. (C) A small cluster of cells with constitutively active 
Rhomboid expression can generate an expanding wave of Rhomboid induction. The critical value of 
ligand release necessary to generate the wave is plotted as a function of the number of cells within the 
cluster (N). The generation function for Rhomboid was approximated by a Heaviside function, such 
that Rhomboid expression can be only in two states, "on" and "off." See Pribyl et al. (25) for the de-
tailed definition of model parameters and its computational analysis. 
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previous section to analyze the operation of the Rhomboid/Spitz feedback in a 
multicellular system such as an epithelial layer. The resulting description is use-
ful in analyzing the effects of exogenous signals presented to the epithelial layer. 
For example, in the case of oogenesis, it is important to characterize the domain 
affected by Gurken and Gurken-induced EGFR ligands (4,11,45). 
 To understand the operation of the Rhomboid/Spitz circuit we started to 
develop models of autocrine signaling in epithelial layers (25). In addition to 
ligand transport, binding, and internalization, these models account for Rhom-
boid induction and Rhomboid-mediated Spitz release. Rhomboid induction was 
modeled as a threshold-like function, , of the total number of ligand-receptor 
complexes on the cell surface. The balance for the level of Rhomboid in the cell 
(i,j), Pi,j, takes the following form: 

( ), , tot
,= +

i j i j
i j T

dP P
C C

dt
, [3] 

where tot
,i jC  is the total number of occupied EGF receptors in the cell (i,j) and CT

is the threshold-value for Rhomboid induction. The time-scale for Rhomboid 
degradation,  ~ 20 minutes, can be estimated from the experiments in the em-
bryo (49). 
 Receptor occupancy on any given cell within the epithelial layer depends on 
the pattern of ligand release, and hence the pattern of Rhomboid expression in 
the entire layer. Our analysis suggests that ligand binding and transport rapidly 
adjust to the much slower dynamics of Rhomboid expression. In other words, 
the equations for ligand binding and transport reach the steady state dictated by 
the pattern of Rhomboid across the epithelial layer. In the ligand-limited regime, 
receptor occupancy for a given cell is computed from the linear superposition of 
ligand fields due to individual cells (Figure 7B). As a result, the dynamics of 
cells coupled by secreted signals can be described entirely in terms of the intra-
cellular variables: 

, ,
,,

,

= +
i j i j

m n Ti m j n
m n

dP P
I P C

dt
, [4] 

where I|i-m|,|j-n| is the cell–cell coupling coefficient that quantifies the strength and 
the spatial range of autocrine and paracrine signals. Importantly, these coeffi-
cients were derived as a function of the biophysical parameters of the problem, 
such as the diffusion and binding rates, as well as the rates and levels of ligand 
release by single cells within the layer. We found that the coupling coefficients 
decay rapidly as a function of cell–cell distance. This suggests that only a small 
number of cell–cell interactions must be taken into account in calculating recep-
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tor occupancy on any given cell, a fact that is very useful in solving the problem 
numerically.
 This biophysical framework can be used to predict the possible effects of 
localized perturbations of epithelial layers. For example, Peri et al. (35) constitu-
tively activated Rhomboid in a small group of cells within the follicular epithe-
lium. The effect of this perturbation was localized to its neighborhood: the 
EGFR-target genes were affected a few cell diameters from the cluster with the 
constitutively active ligand release. What is the outcome of such perturbations in 
general? Under what conditions will they remain localized or, alternatively, gen-
erate a propagating wave where secreted Spitz will be inducing Rhomboid ex-
pression and further Spitz release from the neighboring cells? This question can 
be easily addressed with the described model. For example, Figure 7C shows 
how the transition between the stationary and propagating patterns is affected by 
the size of the perturbation and the rate of ligand release. Clearly, a high rate of 
ligand release and a large size of perturbation promote generation of traveling 
waves. Because of its potential for "runaway" behavior, a positive feedback is 
tightly regulated. Genetic studies in the ovary indicate that the domain of the 
positive feedback is restricted in space, presumably to prevent propagation of 
traveling waves (24). 

3.3. Pattern Formation by Interacting Feedback Loops

 Dorsal appendage morphogenesis provides a genetically tractable system 
for studying the mechanisms by which simple inductive cues are converted into 
more elaborate spatial patterns. The components of the mechanism proposed by 
Wasserman and Freeman are well established. But, is the proposed mechanism 
actually correct? Specifically, does it account for the phenotypes that are in-
duced by various genetic manipulations of the DER network and can it make 
testable predictions? These questions led us to develop our initial phenomenol-
ogical model of EGFR-mediated patterning in Drosophila oogenesis (26,30). 
The model accounts for the interactions between the spatially nonuniform input 
by Gurken and the feedback loops by Spitz and Argos (Figure 8A). We formu-
lated the model in one spatial dimension and assumed that the characteristic size 
of the pattern greatly exceeds the size of a single cell. This led to a system of 
nonlinear reaction-diffusion equations that was analyzed by time integration and 
numerical bifurcation analysis. 
 Our main goal was to test whether the mechanism could account for the 
various eggshell morphology phenotypes. We were particularly interested in the 
phenotypes generated by manipulations of the dose and the spatial distribution 
of the oocyte-derived signal (see Nilson and Schupbach (20) for a comprehen-
sive review). It is known that a systematic decrease in the level of Gurken signal 
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can generate eggshells with one or zero dorsal appendages. At the same time, an 
increase in the dose leads to eggs with increased inter-appendage distance or one 
broad dorsal appendage. These observations provide important constraints on 
the modeling. 
 Analysis of the phenomenological model shows that the peak-splitting 
mechanism can be realized in one spatial dimension (Figure 8B). This means 
that a single-peaked input in the model, mimicking the oocyte-derived Gurken, 
can generate a stable pattern with two large-amplitude peaks in the spatial distri-
bution of Rhomboid. The two-peaked pattern emerges as a result of the instabil-
ity of the one-peaked solution that is realized at lower inputs. At a critical input 
level, this single-peaked solution splits, giving rise to the blueprint for formation 
of two dorsal appendages. Thus, patterning leading to formation of dorsal ap-
pendages can be viewed as a transition between the two kinds of solutions in the 
model (i.e., one- and two-peaked). 
 The variations in the level and the spatial distribution of Gurken input can 
induce transitions between different classes of patterns that are characterized by 
the different number of large-amplitude peaks in the spatial distribution of 
Rhomboid. We correlate these patterns with the dorsal appendage phenotypes in 
mutants with either lower Gurken doses or with defects in EGFR signal trans-
duction (Figure 8B) (20). Predicted transitions between the zero-, one-, and two-
peaked patterns in the model correspond to the experimentally observed transi-

Figure 8. (A) Input and feedback loops in the model of pattern formation by peak splitting. (B)
Summary of the results of computational analysis of the one-dimensional model of pattern 
formation by Drosophila EGFR autocrine feedback loops. The regions of existence of different 
stationary patterns as a function of the width (x0) and the amplitude (g0) of the input (Gurken) 
signal. Patterns with different numbers of peaks are associated with the eggshells with different 
numbers of dorsal appendages (shown by insets). See Shvartsman et al. (30) for a detailed 
definition of model parameters and its computational analysis. 
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tions between eggshells with zero, one, and two dorsal appendages. Finally, sta-
ble patterns with three or four peaks emerge in the model when the two-peaked 
pattern is destabilized by the same mechanisms that generate the two-peaked 
pattern itself. Since the number of peaks in the pattern corresponds to the num-
ber of dorsal appendages, this finding provides the mechanistic basis for ex-
plaining complex morphologies in mutants of Drosophila melanogaster (50,51). 
In addition, this versatility in patterning may account for more complex eggshell 
morphologies in related fly species (52,53). 
 This phenomenological model did not explicitly account for the details of 
EGFR interaction with its ligands. Our main goal was to examine the pattern 
formation capability of the localized input (i.e., Gurken) modulated by a net-
work of spatially distributed feedback loops (i.e., Argos and Spitz). As with any 
phenomenological modeling, our model tested the sufficiency of the proposed 
mechanism, but did not prove it at the genetic or biochemical level. A mechanis-
tic approach to modeling of EGFR-mediated signaling in oogenesis is now pos-
sible, based on the biochemical analysis of EGFR/Argos/Spitz interactions (9). 

4. CONCLUSIONS AND OUTLOOK

 At this time, only a few dozen out of ~30,000 EGFR-related PubMed en-
tries are dedicated to modeling and computational analysis of EGFR signaling. 
Most of the existing models are formulated at the molecular and cellular levels 
(5). However, to understand how this system operates in vivo we need modeling 
at the level of tissues. Even the simplest models of EGFR signaling in multicel-
lular systems must simultaneously account for ligand release, transport, binding, 
intracellular signaling, and gene expression. Given this complexity, the inte-
grated models are nontrivial to test experimentally. We believe that a combined 
modeling-experimental approach is possible in Drosophila, where a number of 
genetic tools are available for implementing the model-directed manipulations in 
vivo. 
 We have described two systems from Drosophila development where mod-
eling seems both feasible and necessary. In both cases, a large amount of data 
was summarized in the form of a complex patterning mechanism. The feasibility 
of these mechanisms depends on the quantitative parameters, such as the spatial 
ranges of secreted signals and the strengths of the feedback loops. Modeling can 
be used to elucidate the quantitative constraints on the proposed patterning 
mechanisms and to dissect the relative contributions of multiple cellular proc-
esses. We are just beginning to develop and test mechanistic models of EGFR 
signaling in tissues. Currently, we rely on the large amount of biochemical and 
cellular experiments in mammalian systems. In the future, direct biophysical 
characterization of the Drosophila EGFR network will be required in order to 
develop truly mechanistic models of EGFR signaling in fruit fly development. 
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 We hope that, in addition to being applicable to the mechanisms in Droso-
phila development, our models will be useful for the quantitative description of 
EGFR signaling in higher organisms. Indeed, the molecular components and the 
feedback loops in EGFR signaling are conserved across species. For example, 
the positive feedback, similar to the one in the Rhomboid/Spitz system, was 
identified in radiation responses of human autocrine carcinoma cells (54). There, 
a pulse of ionizing radiation induces a primary wave of EGFR activation that 
was then amplified by the positive feedback, which is based on the MAPK-
mediated TGF  release and recapture by the cell. Central to this feedback is 
activation of the ligand-releasing protease (TACE) that serves as the rate-
limiting component that controls ligand availability and, hence, receptor activa-
tion. 
 The negative feedback loop by Argos does not have a direct counterpart in 
mammalian EGFR systems. The closest mode of regulation, discovered by Mai-
hle and colleagues (55), relies on a secreted form of EGFR. Secreted receptors 
compete with the ones on the cell surface for the extracellular ligands, and in 
this way control the level of cellular EGFR activation. This mode of regulation 
has been described for both the ErbB1 and ErbB3 receptors, indicating that it is 
a general mechanism in the ErbB receptor family. Several lines of evidence 
from the same study support the physiological significance of this negative 
mode of control. For example, the levels of secreted receptors can be used as 
diagnostic markers in ovarian epithelial cancer (56). In the future, it will be im-
portant to investigate whether this mode of regulation also contributes in the 
developmental context. 
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6. NOTES

 1. In accordance to the convention, the names of genes are italicized (i.e., 
gene) while the names of proteins are written with the first letters capitalized 
(i.e., Protein). 
 2. Vein has been shown to form a positive feedback loop during the pattern-
ing of ventral ectoderm (10). However, its contribution is redundant and only 
important when the level of Spitz is reduced. 
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DEVELOPMENTAL BIOLOGY: 
BRANCHING MORPHOGENESIS 
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Branching morphogenesis is a ubiquitous system in the developmental biology of macro-
scopic organisms. Many of the details are known, yet a unified understanding remains out 
of reach. Many of the relevant facts about branching morphogenesis become clearer if we 
include a mechanical interpretation of the interactions between tissues. 

1. INTRODUCTION

 Lewis Wolpert (63) has often said that "gastrulation is the most important 
event in your life," but it is not the most frequent phenomenon in the develop-
ment of an organism. Gastrulation occurs just once, but branching morphogene-
sis happens early and often. The formation of branched tubular structures–
glands–occurs throughout an organism, in many different tissues, and is essen-
tial to the existence of virtually all organisms which need to transport fluids 
more than about a millimeter. 
 If you are macroscopic, you need ducts. How do they form? 
 Branching morphogenesis is widespread in animal development, generating 
the form of such diverse organs as the lung, pancreas, mammary gland, salivary 
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gland, and kidney. Although nearly every technique of cellular and developmen-
tal biology has been applied to it (see reviews (3,11)), and a vast amount has 
been learned, there is still some uncertainty as to the mechanism of branching. 
 When I pose the question "What makes an airplane fly?" most people an-
swer with some variation on the theme of lift, i.e., the net force generated by the 
balance of flows of air around the object. Rarely does anyone answer that it is 
the pilot manipulating the vast number of controls in the cockpit who makes the 
airplane fly—though that is an equally correct answer. 
 When I pose the question "What makes a developing organ branch?" most 
biologists answer with a discussion of the switches, not of the forces. Yet just as 
we could not understand the airplane without understanding the physical forces 
that it generates, and its physical interaction with its environment, we cannot 
understand branching morphogenesis without understanding the physical forces 
that its tissues generate, and the organ's physical interactions with its environ-
ment. 
 The next logical step in morphogenesis research is study of the biophysical 
and biomechanical aspects, which are what create and modify form (53). This 
chapter compares the biomechanical aspects of the currently competing theories 
of branching morphogenesis, and suggests new experiments and new interpreta-
tions of old experiments. 
 It is assumed, though not proven, that the mechanism of morphogenesis is 
the same in all the branched organ systems, but that it is differences in gene ex-
pression and protein/polysaccharide/proteoglycan production that cause the 
morphological differences. Although the developmental biology of all of these 
organs has been widely studied, because of the assumed unity of mechanism, 
one organ, the rodent submandibular (salivary) gland, has been studied in the 
greatest detail. 
 The general features of branching morphogenesis in vivo are as follows. 
Glandular organs are constructed initially as a disorganized mass of mesenchy-
mal tissue surrounding a finger of epithelium, which has a simple unbranched 
shape. Then the finger flattens slightly, and is split into two or more lobules by 
the formation of one or more clefts. These new lobules grow as the extracellular 
matrix (ECM) around the clefts gets denser and mesenchymal cells condense 
around the clefts and the stalks of the lobules (Figure 1). When the young lob-
ules have grown sufficiently larger, there is another branching, in the same fash-
ion, followed by extension and condensation, cleft-grow-cleft-grow, until a 
highly branched structure has formed. 
 The morphological differences between mature glands are substantial, but 
differences can be seen at the stage of clefting. For example, the lung branches 
only dichotomously, with rounded clefts, whereas the submandibular gland 
forms multiple very sharp clefts in each branching lobule. The lung also forms 
its dichotomous clefts in nearly orthogonal directions in successive branching 
generations. A mature gland is highly structured (62), and can be thought of as 
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having fractal scaling (5). There are many interesting models that have been 
written of the formation of an entire branched tree (27,38). When modeling the 
formation of an entire branched structure, the major concern is elucidating the 
mechanism while correctly reproducing the fractal scaling (compare with Part II, 
chapter 3, by Savage and West, this volume). 
 For this chapter, let us focus on the single step of clefting and growth of one 
lobule, under the assumption that repetition with eventual halting leads to a 
branched structure. Our major concern is elucidating the mechanism while cor-
rectly reproducing the length and time scales and geometry observed in the real 
system. The fractal scaling does not matter at the scale of a single clefting. 
However, the focus can be made even tighter than that. To create a whole 
branched tree, growth is of course essential for the volume contribution alone. 
But while branching requires cell growth, clefting does not (42,54). Therefore in 
the model presented in this chapter, in the interests of simplicity and robustness, 
we omit growth and focus solely on clefting. 
 Individual glandular rudiments grow and branch normally in vitro, making 
mechanical, chemical, and radiative manipulation relatively easy. It has been 
known for decades that glandular epithelia separated from their mesenchymes 
form normal organs when recombined with mesenchyme of the same organ type 
and age, but branch abnormally or not at all when recombined with mesenchyme 
from other organs (1,16,17,31–33,55). Whether the directive role of the mesen-
chyme is mechanical, chemical, or both has been the subject of a great deal of 
investigation. Most dramatically, lung and salivary epithelia have been cultured 
without any mesenchyme at all, embedded in gels with appropriate growth fac-
tors, and the epithelia form branched tubules without mechanical or chemical 
support from mesenchyme (46,48). 

Figure 1. Sketch of the general sequence of events in a single branching event. As cleft deep-
ens, mesenchyme in and near it becomes denser in cells and ECM materials. New branches 
grow, flatten, and also branch. Reprinted with permission from Lubkin and Li (2002) (37). 
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2. PREVIOUS WORK

 There are two major theories of branching morphogenesis, each supposing 
that the force is from a different tissue. 
 1. The epithelial theory (7,21,56) hypothesizes a morphogenetic force at the 
basal end of the epithelium (Figure 2a), where it is supposed that microfilaments 
contract in the cleft region, in response to an external signal. The external signal 
is believed to be linked to the observed high rate of turnover of the basal lamina 
(6) in the proto-lobules. Other similar epithelial phenomena may be governed by 
the epithelial ECM (30). 
 2. The mesenchymal theory (26,41,43,44) hypothesizes a morphogenetic 
force in the contractile behavior of fibroblasts in the mesenchyme (47), condens-
ing the mesenchyme near the epithelium (Figure 2b). The stresses created by the 
cellular traction forces are believed to align collagen fibrils into thick cords, 
which when pulled taut by further traction, push deeply into an epithelial lobule, 
creating a cleft. 
 The strongest evidence in favor of the epithelial theory is that epithelia need 
no mechanical link to mesenchyme in order to form tubules (18,20,46,48,59, 

Figure 2. (a) Epithelial theory; (b) mesenchymal theory. 
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64,65). The strongest evidence in favor of the mesenchymal theory is that a wide 
variety of cell types, including fibroblasts, generate traction forces on ECM, 
resulting in deformation and sometimes in pattern formation (22,23,47,57, 
60,61). Also, collagenases inhibit clefting, while collagenase inhibitors enhance 
clefting (44). Both theories are plausible, yet it would seem that if complete re-
moval of the mesenchyme does not prevent clefting, then the mesenchyme can-
not be causing the clefting. I believe that, as in most biological systems, the 
reality here is more complicated and subtle than our preconceived notions. Can a 
model help us understand the subtleties better? 
 We developed a mathematical model of the mechanical forces and deforma-
tions of the tissues involved in morphogenesis (37). We can use it to answer 
some questions. 

3. MODEL

3.1. Hypothesis

 It is clear that epithelia can generate morphogenetic forces in the absence of 
a mechanical input from mesenchyme. These forces can generate clefts even if 
the mesenchyme is not around the epithelium. But can the same forces generate 
clefts if the epithelium is embedded in mesenchyme? We hypothesize that the 
branching morphogenesis observed in the mesenchyme-free experiments is not 
mechanically equivalent to the branching morphogenesis observed in mechani-
cally intact rudiments or in vivo. In this chapter we show numerical experiments 
to illustrate the forces and deformations in the two experimental situations—
with and without mesenchyme. 
 To understand the relationship between forces and deformations in a 
morphogenetic system, we must formulate a model of the mechanics of the tis-
sues and their interactions. But what is the constitutive law for an embryonic 
tissue? If I pull on my skin and let go, it bounces back. A material like skin that 
responds to short-term forces with reversible deformations is exhibiting short-
term elasticity. If I wear braces on my teeth for two years, then remove them, the 
teeth do not bounce back. A material like the jawbone, which responds to long-
term forces with irreversible deformations, behaves in the long term as a viscous 
fluid. 
 Most biomaterials are actually somewhere between an elastic solid and a 
viscous fluid. A material with short-term elasticity and long-term viscosity is in 
the Maxwell class of viscoelastic fluids. Embryonic tissues will bounce back 
from a brief deformation, but the changes associated with development are per-
manent. If we are only interested in permanent deformations of branching rudi-
ments, we may ignore the short-term elastic component and focus on long-term 
behavior. We therefore model the embryonic epithelium and mesenchyme as 



362 S. R. LUBKIN 

Stokes fluids. There is substantial precedent for considering the morphogenetic 
behavior of embryonic tissues in terms of a fluid ((38,49,50) deal with a small 
subset of these, while (12,15,25) consider single cells behaving as fluids). There 
is excellent experimental calibration of the fluid model of embryonic mechanics 
from Malcolm Steinberg and his colleagues (13,14). 
 Our desire is to keep all aspects of the model "as simple as possible, but not 
moreso" (A. Einstein). For example, the epithelium may or may not initially be 
hollow. In the salivary gland, a lumen is created as the epithelium matures, but 
is not present when the branches are created. For simplicity, we ignore lumens. 
We model a branching rudiment as a uniform epithelium inside either a uniform 
mesenchyme or a uniform acellular fluid (of the consistency of water or a colla-
gen gel). It has been shown that growth-suppressed salivary gland rudiments can 
still branch once, though they do not grow enough to generate subsequent 
branches (42). Again, in the interest of simplicity, we focus on the single step of 
the creation of one cleft in a branching rudiment, so we choose to model the 
tissue as not growing. 
 Finally, also in the interest of simplicity, we do not try to explicitly model 
the force that causes the deformation. Instead, we simply apply a localized sur-
face force at several points on the epithelial surface, and/or modify the local 
surface tension. Since our goal is just to understand the relationship between 
force and deformation in branching morphogenesis, this artificial force will 
serve our purposes fine. 
 The geometry of our model is simple. We have an epithelium-shaped region 
of fluid surrounded by a second fluid representing either mesenchyme or culture 
medium. The Stokes equations apply in each fluid: 

2= up , [1] 

=u 0 , [2] 

where p is the pressure, u is the velocity vector, and  is the viscosity, which we 
shall assume to be constant within each fluid. 
 On the interface between the fluids, there is a surface tension , which can 
in principle vary in space, and which will be the only agent driving shape 
changes in this model. We can write the boundary condition between the fluids 
in terms of the jumps ["] of two quantities across the interface: 

[ 2 ) ]( =u n np , [3] 

[ ( )] =u n , [4] 
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where n and  are the normal and tangent vectors at each point on the interface, 
and  is the local mean curvature of the interface (e.g., (34, ch. 5). Equation [3] 
is known as the Laplace-Young condition, and eq. [4] represents Marangoni 
stresses. 
 The clefting force is modeled as a point force applied at selected points 
along the interface. Since surface tension can be considered to produce a net 
force in the normal direction, we represent the inward-directed point forces as 
localized reductions of the surface tension: 

0 ( )= i
i

f s , [5] 

where 0 is the uniform surface tension everywhere on the epithelial surface, f is 
the magnitude of the local point force density, and  is the delta function localiz-
ing the force at points si. In the interest of simplicity, we keep the point forces 
pointing in the same directions as initially, regardless of the motion of the inter-
face.

 Because the forces of one rudiment on another in vivo or in vitro can gener-
ally be neglected if the rudiments are not very close, the outside fluid is modeled 
as rectangular, with periodic boundary conditions. 

3.2. Nondimensionalization

 If we write the internal and external viscosities as – and +, respectively, 
and characteristic length and time scales as L and T, the characteristic surface 
tension as 0, and the characteristic pressure as –/T, we can define three nondi-
mensional parameters: 

+

, [6] 

0T
L

, [7] 

0

f
L

. [8] 

We call  the viscosity ratio,  the nondimensional surface tension, and  the 
nondimensional clefting force. These three nondimensional parameters are all 
that governs the behavior of the model. There are thus only a small number of 
numerical experiments needed to explore all the model behavior. 
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3.3. Parameter Estimates

 All of the parameters in the model can be estimated from published data in 
the literature. For example, salivary lobules are of the order of 100 m in diame-
ter, and branching occurs approximately every 8 hours (7). These provide esti-
mates of the length L and time T scales for nondimensionalization. Contractility 
is readily estimated or measured in cell-populated collagen gels, and can give us 
an estimate for the clefting force f. The quality of these estimates is variable, 
since most applicable experiments have not been performed with this model in 
mind. In one prominent counterexample, contractility of various dissociated 
mesenchymal cells, including those of lung and submandibular gland, was 
measured on artificial collagen gels (47), specifically to test the mesenchymal 
theory of branching morphogenesis. One important factor in estimating the cleft-
ing force is that the younger the tissue, the stronger the contractility (52). Since 
we are concerned in this chapter with embryonic tissues, we rely on the higher 
published estimates of contractility. 
 The size of a branching rudiment and time scale of branching morphogene-
sis are well established, as is the viscosity of water (Table 1). We assume that if 
the outer "fluid" is mesenchyme, then its viscosity is within an order of magni-
tude of the viscosity of the epithelium inside. If the outer fluid is a collagen gel 
rather than a tissue, its viscosity may have a very wide range, depending on the 
exact composition, including pH and most importantly water content. Unfortu-
nately, no one has reported direct measurements of the viscosity of the embed-
ding clots in the mechanically mesenchyme-free culture systems. In some cases, 
even the composition of the embedding medium is not specified well enough for 
us to estimate its viscosity. Hence depending on the particular mesenchyme-free 
experiment we are modeling, the appropriate external viscosity, +, could range 
from that of water to that of mesenchyme (or even more viscous). However, in 
general, we assume that the viscosity of the collagen gel in the mesenchyme-free 
experiments is much smaller than the viscosity of mesenchyme. 
 Foty and colleagues (14) and Forgacs et al. (13) measured the viscosity and 
surface tension of several types of embryonic tissues, and found each tissue to 
be mechanically very similar, within an order of magnitude of the others. As far 
as we know, there are no measurements reported of the tissue viscosity or sur-
face tension of the specific components of any embryonic branching tissue, but 
we will assume that their values lie within the narrow range of the five tissue 
types measured by Foty et al. 
 The basal lamina of a clefting epithelium affects the epithelio-mesenchymal 
interactions (2) and more rapidly turns over on the lobules than in the clefts (6). 
This implies that there may be a reduction in the surface tension of the epithe-
lium in the lobules, caused by faster dissipation of stresses in the lobular lamina 
than in already-formed clefts. However the magnitude of any surface tension 
from the basal lamina has not been measured, so we choose to ignore the basal 
lamina mechanically. 
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 The clefting force is difficult to estimate. We can take estimates for single 
cells in very different contexts (e.g., Rappaport's (51) cleaving oocytes or fibro-
blasts on collagen gel (28), and estimate that an epithelial region about to cleft 
could generate 10–100 times the force of a single oocyte or fibroblast. This 
gives an estimate for f of 10-7 to 10-5 N. 
 Hence the possible range of  is from 10–9 to 101, of  from 10–1 to 103, and 
of  from 10–1 to 102.

3.4. Methods

 The fluid equations were solved by a finite-difference method (35) specifi-
cally designed to simulate two fluids of different viscosities separated by an 
interface. Because our major interest is in examining the effects of the viscosity 
of the outside fluid (mesenchyme or growth medium), the equations were solved 
in two space dimensions. 
 We performed the following numerical experiments: 

 1. To test the effect of the viscosity ratio  on the time course of deforma-
tions, we deformed identical 3-lobed "rudiments" at the centers of the far ends 
of their lobes, with the same normal force, until each lobe was nearly cleft in 
two. One rudiment was embedded in a material (gel or mesenchyme) of viscos-

Table 1. Expected Ranges of Parameter Values 

         Parameter               Symbol        Units         Range                      Reference(s) 

Time scale T s 104–105 Bernfield et al. 1984 (7) 

Rudiment size L m 10–4 Bernfield et al. 1984 (7) 

Epithelial viscosity – poise 104–106 Foty et al. 1994 (14), 
    Forgacs et al. 1998 (13), 
    Phillips et al. 1977, 1978 (49,50) 

Mesenchymal + poise 104–106 Forgacs et al. 1998 (13), 
   viscosity    Phillips et al. 1977, 1978 (49,50) 

Viscosity of em- + poise 100–106 Nogawa & Takahashi 1991 (48), 
   bedding gel    Barocas et al. 1995 (4) 

Viscosity of water + poise 10–3 — 

Epithelial surface 0 N/m 10–3–10–2 Foty et al. 1994 (14), 
   tension    Forgacs et al. 1998 (13) 

Clefting force f N 10–7–10–6 Rappaport 1977 (51), 
    Kolodney & Wysolmerski 1992 (28)
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ity equal to the epithelial viscosity; the other was embedded in a material (gel 
or liquid medium) of negligible viscosity; a third was embedded in a material 
more viscous than the epithelium. 
 2. To test the roles of clefting force and surface tension, initially 3-lobed 
"rudiments," embedded in mesenchyme or ECM of the same viscosity as the 
epithelium, were clefted with three identical inward-directed forces, for differ-
ent values of  and .

3.5. Results

 If no external force is applied to our branched rudiment, the preexisting 
clefts disappear. The time scale of this relaxation depends strongly on the sur-
face tension and the viscosity ratio (35). High surface tension leads to faster cleft 
loss, and high viscosity ratio leads to slower cleft loss. 
 In all simulations, the pressure distribution was extremely uniform, except 
for a strong dipole near each point force (Figure 3). 
 In all our clefting experiments, our applied point forces were able to deform 
the 3-lobed rudiment into a 6-lobed rudiment, if the force was applied for long 

Figure 3. Pressure and flow in a typical simulation (equal viscosities). Velocity arrows are 
localized at the tail of each arrow. Note that pressure gradients are extremely localized. 
Reprinted with permission from Lubkin and Li (2002) (37). 
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enough (Figures 4–6). The nondimensional surface tension  significantly af-
fected the evolving shape. If  was very large, the preexisting clefts retreated 
before the new cleft was fully formed, regardless of the relative clefting force .
For fixed surface tension , the shape depended only subtly on the viscosity ratio 
and force parameters  and .
 The most significant differences between simulations were in the time 
scales. When the nondimensional clefting force  was small, it took significantly 
longer for clefts to form than at larger  values. In particular, decreasing the 
clefting force by a factor of 3 increases the clefting time by a factor of about 100 
(Figure 4). 
 Our most significant finding was that when the viscosity ratio  was high, it 
took significantly longer for clefts to form than at lower  values. In particular, 
increasing the viscosity of the mesenchyme/gel by a factor of 10 typically tripled 
the time to form a cleft of a characteristic depth (Figure 4). This relates directly 
to the question of what is going on in the mesenchyme-free experiments. Is the 
branching that occurs in a salivary epithelium the same when its mesenchyme is 
removed and replaced by a material which is much less viscous? We performed 
numerical experiments where for a fixed surface tension , force , viscosity 
ratio  and experiment length tfinal, a cleft formed; the same rudiment under iden-
tical conditions but whose mesenchyme/ECM was 10 times as viscous (  multi-
plied by 10) failed to form a visible cleft in the same time period (Figure 5). 

Figure 4. Effect of , relative force strength, on clefting of epithelial rudiment embedded in 
mesenchyme or gel of the same viscosity. Arrows indicate the directions of imposed forces, 
and also the direction of time sequence. Nondimensional surface tension  = 0.005, viscosity 
ratio  = 1. (a)  = 160, t/T = 0 to 0.05; (b)  = 50, t/T = 0 to 5. A tripling of the relative cleft-
ing force  divides the nondimensional clefting time by a factor of approximately 100. The 
weaker force leaves wider clefts (cf. Figure 6). Reprinted with permission from Lubkin and Li 
(2002) (37). 
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 Viscosity ratio  had a significant effect not just on the time course of 
branching but, surprisingly, also on the width of the clefts that formed. Larger 
(more viscous mesenchyme) led to narrower clefts (Figure 6). 

4. DISCUSSION AND CONCLUSIONS

 Because of the way the model [6]–[8] is scaled, the dynamics depend 
only on the three nondimensional ratios: / ,+

0 / ,T L  and 

0/f L . Therefore, we can compare predicted deformations among differ-
ent tissue types simply by noticing which ratios are preserved. For example, 
epithelial rudiments of different tissue viscosities but equal surface tensions and 
equal sizes, grown in a mesenchyme-free medium, should take different times to 
form the same size cleft from the same size force; the time should be propor-
tional to the tissue viscosity –. If they take the same time, it must be that the 
force or surface tension are also different. At an even simpler level, mesen-
chyme-free rudiments grown in gels identical in all respects except for the 
amount of collagen (hence viscosity and/or stiffness) should form clefts at dif-

Figure 5. Effect of viscosity ratio  on evolution of the clefting epithelium. Nondimensional 
surface tension  = 0.01, nondimensional clefting force  = 2.5. Forces are in the same fixed 
directions. Upper: viscosity ratio  = 1; lower: viscosity ratio  = 10. Epithelium embedded in 
a material more viscous than itself takes longer to form the same depth cleft than if it were 
embedded in a material of the same viscosity. Reprinted witih permission from Lubkin and Li 
(2002) (37). 
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ferent rates, and with slightly different morphology. No one has done that ex-
periment. 
 Our simple model is able to make many of these predictions, and they are 
qualitatively robust. However, because the model is so simple, quantitative pre-
dictions are probably at best approximations. For instance, we assumed that each 
tissue was viscous, not viscoelastic, and had a spatially and temporally uniform 
viscosity, contrary to what is already known. In particular, we know that preex-
isting clefts have abundant collagen in them naturally making the clefts more 
resistant to deformation, and mesenchyme condenses around the branches, 
which should also make the lobe region stiffer and/or more viscous than the sur-
rounding mesenchyme. We ignored the mechanical role of the basal lamina, for 
want of adequate information about its thickness, mechanics, and spatial and 
temporal features. The basal lamina is likely to be most important mechanically 
as a barrier to expansion (growth), rather than as a regulator of clefting. Since 
we focused in this study on clefting only, separate from growth, we expect that 
the omission of a term for the basal lamina is reasonable. 
 The most serious limitation of our model is restricting ourselves to two di-
mensions due to computational constraints. A two-dimensional model requires 
us to artificially model the clefting force as a point force, and it probably affects 
the quantitative observations by at least a factor of two. Other recent mechanical 
models of morphogenesis have either been confined to two dimensions (9,58) 
or, if in three dimensions, have been on computational domains much smaller 
than ours (8), or axisymmetric (25,36), or using a mechanical model that was 
easier to solve accurately (10). Methods to accurately solve multi-fluid flow 
problems in 3D are still being developed. 

Figure 6. Magnification of a deepening cleft over time. Surface tension  = 0.01, nondimen-
sional clefting force  = 1.25. Same initial conditions, same epithelial viscosity, same clefting 
force, same final depth of cleft. (a) Relatively firm mesenchyme. Viscosity ratio  = 100, 
nondimensional time t/T = 0 to 200. (b) Relatively soft mesenchyme or ECM. Viscosity ratio 
= 1, nondimensional time t/T = 0 to 15. The epithelium embedded in a lower-viscosity material 
has taken less time to form its cleft, and the cleft is narrower than the epithelium embedded in a 
more viscous material. Reprinted with permission from Lubkin and Li (2002) (37). 
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 In our tests of the effect of the viscosity ratio, we found that a given epithe-
lially generated force could cause very different amounts of deformation in a 
given time period, depending on how viscous was the material in which it was 
embedded. The major developmental conclusion we can draw from our results is 
this: any experiment in which the mesenchyme of a clefting rudiment is replaced 
by a gel of a different viscosity is not mechanically equivalent to an experiment 
with epithelium embedded in intact mesenchyme. Most crucially, the time 
course of a thin-ECM clefting will be substantially faster than a viscous-ECM 
clefting. By analogy, a hand can very easily move in water, but very slowly if 
embedded in clay, and hardly at all in plaster. In particular, we cannot conclude 
from mesenchyme-free experiments (40,46,48) that the clefting force of branch-
ing morphogenesis comes solely from the epithelium unless the gel is of the 
same viscosity as the tissue it replaces and the time course of clefting is the 
same in mesenchyme-free rudiments and intact rudiments. In short, until me-
chanical measurements are made of the tissues and gels involved, we cannot 
conclude from mesenchyme-free experiments that branching morphogenesis is 
driven solely by forces of epithelial origin. 
 The model described in this chapter has been very useful in answering a few 
questions, but others cannot be answered with these modeling tools. For exam-
ple, clefts are known to be filled with collagen fibers (19,43,44), and the mesen-
chyme close to a branched epithelium is denser than that far away, yet the 
epithelial and mesenchymal theories could both explain these phenomena. As 
we showed in the case of tumor encapsulation, a dense layer of tissue can be 
formed equally well by contractility from outside or by suction from inside (36). 
The right model can clarify the implications of a hypothesis while suggesting 
refinements to a theory and also suggesting more rigorous experimental frame-
works.
 There is ample work still to be done to understand the mechanical aspects of 
branching morphogenesis. The model described in this chapter is extremely 
simple, and focused on understanding a single aspect of branching—the me-
chanical implications of being surrounded by mesenchyme or surrounded by a 
collagen gel. The conclusion is clear: pushing against a soft material is easier 
than pushing against a firm material. Mesenchyme provides more resistance 
than a typical collagen gel. To move the mesenchyme requires its cooperation. 
 What the model presented in this chapter does not address is whether or not 
the mesenchyme can generate enough force to create a cleft. It also assumes that 
the viscosities of the epithelium and mesenchyme are constant. An alternative 
hypothesis of the mechanical aspects of branching morphogenesis would assume 
that the mesenchyme is remaining passive, but is not resisting deformation 
nearly as much as we suppose, because the epithelium is in a sense melting it 
away with collagenases as it expands. These collagenases would have to be lo-
calized in the proliferating tips, because it has been shown (24) that collagenases 
added to the culture medium inhibit branching by preventing cleft formation. 



DEVELOPMENTAL BIOLOGY: BRANCHING MORPHOGENESIS 371 

 Different branched organs (lung, salivary gland, mammary gland, kidney, 
etc.) have very different morphologies. It is possible that the different shapes are 
due primarily to mechanical differences in the tissues involved during branching 
morphogenesis (39). For example, we found that the viscosity of the surround-
ing mesenchyme affected the cleft shape, with relatively soft mesenchyme lead-
ing to sharper clefts than firmer mesenchyme. It is possible that the wide clefts 
of the embryonic lung form because lung mesenchyme is firmer relative to lung 
epithelium than salivary mesenchyme is to salivary epithelium. But we do not 
know, because no one has measured the viscosities of these specific tissues. 
 The recombination experiments of Lawson (31–33), Spooner and Wessells 
(55), Grobstein (16), Ball (1), and Kratochwil (29) indicate that combinations of 
epithelium and mesenchyme from different organs generally lead to morphology 
characteristic of the mesenchyme's organ of origin, but that in some cases, 
branching does not occur. While differences in growth factors may offer part of 
the explanation, it may be that the rest of the explanation lies in simple me-
chanical differences between the mesenchymes. How strong are the epithelia? 
How viscous are the mesenchymes? 
 Measurements of the tissue viscosities and surface tensions of the epithelia 
and mesenchymes involved could provide a simple and fascinating key to inter-
preting the large number of facts we have accumulated about branching 
morphogenesis. If we really want to understand developmental mechanisms, we 
will take mechanical measurements. 
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This chapter reviews the current state of integrative modeling of the heart, focusing on 
three topics. First, we review integration of experimental data into the most commonly 
used class of ventricular myocyte models—common pool models. We critically assess 
both the successes and failures of these models. Second, we review the formulation of a 
new class of myocyte models known as local-control models. While these models are 
more computationally intensive than are common pool models, they are able to capture 
critically important aspects of single channel behaviors that have a profound impact on 
myocyte function, and which cannot be described using common pool models. Finally, 
we review how cellular models may be integrated with imaging data on heart geometry 
and micro-anatomic structure to formulate computational models of cardiac ventricular 
electrical conduction.

1. INTRODUCTION

 There is growing recognition that the identification of genetic and molecu-
lar building blocks from which biological systems are composed, while being 
critically important, is not by itself sufficient for understanding the functional 
properties of these systems. Rather, it is clear that the emergent, integrative be-
haviors of biological systems result from complex interactions between system 
components, and that development/analysis of computational models based di-
rectly on experimental data provides a powerful tool for understanding relation-
ships between gene/protein expression and biological function at the level of cell 
and tissue in both health and disease. 
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 Cardiac electrophysiology is a field with an extensive history of integrative 
modeling that has been coupled closely with both the design and interpretation 
of experiments. The first models of the cardiac action potential (AP) were de-
veloped shortly after the Hodgkin-Huxley model of the squid AP (1,2), and were 
formulated in order to explain the experimental observation that, unlike the neu-
ronal AP, cardiac APs exhibit a long-duration plateau phase. It was not long 
after the formulation of these early myocyte models that initial models of elec-
trical conduction in cardiac tissue were formulated and applied to yield clini-
cally useful insights into mechanisms of arrhythmia (3). This close interplay 
between experiment and integrative modeling continues today, with new model 
components and applications being developed in close coordination with the 
emergence of new subcellular, cellular, and whole-heart data describing cardiac 
function in health and disease. 
 This chapter will review the current state of integrative modeling of the 
heart, focusing on three topics. First, we will review the integration of experi-
mental data into the most commonly used class of ventricular myocyte mod-
els—common pool models. These models take the form of coupled systems of 
ordinary differential-algebraic equations. We will examine both the successes 
and failures of these common pool models. Second, we will review the formula-
tion of a new class of myocyte models known as local-control models. These 
models take the form of coupled systems of stochastic differential equations, 
whose properties are evolved in time using a combination of Monte Carlo simu-
lation and numerical integration. While these models are more computationally 
intensive than common pool models, they are able to capture critically important 
aspects of single channel behaviors that have a profound impact on myocyte 
function, and which cannot be described using common pool models. Finally, 
we will review how cellular models may be integrated with imaging data on 
heart geometry and micro-anatomic structure to formulate computational models 
of cardiac ventricular electrical conduction. 

2. CELLULAR MODELS

2.1. The Cardiac Action Potential

 In order to understand the properties of modern computational models of 
the cardiac myocyte, it is necessary to review the ionic mechanisms giving rise 
to the cardiac AP. In this and all other sections of this chapter, we will focus 
exclusively on the description and models of the properties of cardiac ventricu-
lar myocytes, as the properties of these cells figure so importantly in the genesis 
of heart disease. 
 Figure 1A shows a schematic illustration of the large mammalian cardiac 
AP. The currents mediating the AP upstroke (Phase 0) are the fast inward so-
dium (Na+) current (INa, for review see (4)), and to a lesser extent the L-Type  



MODELING CARDIAC FUNCTION 377

Ca2+ current (ICa,L, for review see (5)). The Phase 1 notch, which is apparent in 
ventricular myocytes isolated from epi- and mid-myocardial regions, but largely 
absent in those isolated from the endocardium, is produced by activation of the 
voltage-dependent transient outward potassium (K+) current (Ito,1). In the canine, 
a transient voltage-independent Ca2+-modulated Cl– current contributes to the 
Phase 1 notch (Ito,2), however, this current is not known to be expressed in the 
human. The Phase 2 plateau is a time during which membrane conductance is 

Figure 1. (A) Schematic illustration of the large mammalian cardiac ventricular myocyte 
action potential (membrane potential in mV as a function of time) illustrating depolarizing 
and repolarizing current (left) and alias gene names (right) encoding each of these currents. 
(Reprinted with permission from Tomaselli and Marban (1999) (75).) (B) Schematic illustra-
tion of the structure of common pool ventricular myocyte models. 
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very low, with potential being determined by a delicate balance between small 
inward and outward currents. The major inward plateau current is ICa,L, and major 
outward plateau currents are generated by the rapid and slow-activating delayed 
outward rectifier K+ currents IKr and IKs, respectively, and the plateau K+ current 
IKp. Finally, repolarization Phase 3 is produced by the hyperpolarizing activated 
inward rectifier K+ current IK1.
 Three major ion transporters and exchangers play a critically important role 
in shaping properties of the cardiac AP, Ca2+ transient, and in long-term regula-
tion of intracellular ion concentrations. These are the sarcolemmal Na+–K+

pump, the sarcolemmal Na+–Ca2+ exchanger, and the SR Ca2+–ATPase. The sar-
colemmal Na+–K+ pump, present in virtually all mammalian cell membranes, 
extrudes 3 Na+ ions while importing 2 K+ ions on each cycle. This pump func-
tions to keep intracellular Na+ low, thereby maintaining the external versus in-
ternal gradient of Na+, by extruding Na+ that enters during each AP. Cycling of 
this pump requires hydrolysis of 1 ATP molecule, and generates a net outward 
movement of 1 positive charge, thus contributing to outward membrane current 
and influencing resting membrane potential. 
 The sarcolemmal Na+–Ca2+ exchanger imports three Na+ ions for every Ca2+

ion extruded, yielding a net charge movement. It is driven by both transmem-
brane voltage and intra- and extracellular Na+ and Ca2+ ion concentrations. It 
functions in forward mode during diastole, in which case it extrudes Ca2+ and 
imports Na+, thus generating a net inward current. It is the principal means by 
which Ca2+ is extruded from the myocyte following each AP, particularly during 
the diastolic interval. Due to the voltage- and Ca2+-sensitivity of the exchanger, 
experimental evidence indicates that it can function in reverse mode during the 
plateau phase of the AP, in which case it extrudes Na+ and imports Ca2+, thus 
generating a net outward current. 
 A second major cytoplasmic Ca2+ extrusion mechanism is the SR Ca2+–
ATPase. This ATPase pumps Ca2+ from the cytosol into the NSR. The SR Ca2+–
ATPase has both forward and reverse components (7), with the reverse compo-
nent serving to prevent overloading of the SR with Ca2+ at rest. An additional 
Ca2+ extrusion mechanism is the sarcolemmal Ca2+–ATPase. This Ca2+ pump 
hydrolyzes ATP to transport Ca2+ out of the cell. However, it contributes a sar-
colemmal current that is small relative to that of the Na+–Ca2+ exchanger, with 
estimates indicating perhaps that as little as 3% of Ca2+ extrusion from the myo-
cyte is mediated by this pump. 

2.2. The Structure of Myocyte Models

 Development of myocyte models began in the early 1960s with publication 
of Purkinje fiber AP models. Subsequent elaboration of these models led to de-
velopment of the first biophysically based cell model describing interactions 
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between voltage-gated membrane currents, membrane pumps, and exchangers 
that regulate Ca2+, Na+ and K+ levels, and additional intracellular Ca2+ cycling 
processes in the cardiac myocyte—the DiFrancesco-Noble model of the Pur-
kinje fiber (8). This important model established the conceptual framework from 
which all subsequent models of the myocyte have been derived (ventricular 
myocytes (9–12); SA node cells (13–16), and atrial myocytes (17,18)). These 
models have proven reproductive and predictive properties and have been ap-
plied to advance our understanding of myocyte function in both health and dis-
ease. 
 Each of the integrative models of the myocyte cited above are of a type 
known as "common pool" models (19), the structure of which is shown in Figure 
1B. In such models, Ca2+ flux through both L-type Ca2+ channels (LCCs) and 
ryanodine-sensitive Ca2+ release channels (RyRs) in the JSR membrane is di-
rected into a single common Ca2+ compartment referred to as the subspace. The 
subspace represents the total volume of the ~5,000 diadic spaces present in the 
ventricular myocyte. Stern demonstrated that common pool models are structur-
ally unstable, exhibiting all-or-none Ca2+ release except (possibly) over some 
narrow range of model parameters (20). This instability occurs because Ca2+

release from JSR produces a large, rapid increase of Ca2+ concentration in the 
subspace. This in turn results in a very strong positive feedback effect in which 
increased binding of Ca2+ to RyR induces further RyR channel opening and re-
lease of Ca2+. Despite this inability to reproduce experimentally measured prop-
erties of graded JSR Ca2+ release, common pool models have been very 
successful in reproducing and predicting a range of myocyte behaviors. This 
includes properties of interval–force relationships that depend heavily on proper 
dynamic modeling of intracellular Ca2+ uptake and release mechanisms (21). In 
the following sections we describe the components from which common pool 
models are formed. 

2.3. Model Components: Ion Channels and Currents

 For many years Hodgkin-Huxley models have been the standard for de-
scribing membrane current kinetics (22). However, data obtained using new 
experimental approaches, in particular those for producing recombinant chan-
nels by coexpression of genes encoding pore-forming and accessory channel 
subunits in host cells, have shown these models to have significant limitations. 
First, while these models can be expanded to an equivalent Markov chain repre-
sentation having multiple closed and inactivated states (24), many single chan-
nel behaviors such as mean open time, first latency, and a broad range of other 
kinetic behaviors cannot be described using these equivalent Markov models 
(6,25). Second, where it has been studied in detail, as is the case for cardiac Na 
channels, Hodgkin-Huxley models are insufficient for reproducing behaviors 
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that may be critically state-dependent, such as how ionic channels interact with 
drugs and toxins (26,27). Accordingly, much recent effort in modeling of car-
diac ionic currents has focused on development of biophysically detailed 
Markov chain models of channel gating. We will therefore illustrate the generic 
concepts involved in modeling of ion channel function and membrane currents 
by reviewing our recent efforts to model the cardiac sodium (Na+) channel (28). 
This model is able to reproduce and predict a wide range of single channel and 
whole-cell current properties (28), and the ways in which this model is formu-
lated and constrained is illustrative of modern approaches to ion channel and 
current modeling. 
 The structure of the model is shown in Figure 2A. The channel can oc-
cupy any of 13 states. The top row of states corresponds to zero to four voltage 
sensors being activated (C0 through C4) plus an additional conformational 
change required for opening (C4  O1 and C4  O2). The bottom row of states 
corresponds to channel inactivation. Affinity of the inactivation particle binding 
site is hypothesized to increase by a scaling factor (a) as the channel activates 
and to decrease by the same factor as the channel deactivates. Closed–closed 
and closed–open (horizontal) transitions are voltage dependent and closed–
inactivated (vertical0 transitions are voltage independent. Transition rates are of 
a form given by Eyring rate theory (24), and include explicit temperature de-
pendence: 

exp
H S z FVkT

h RT R RT
= + + , [1] 

where k is the Boltzmann constant, T is the absolute temperature, h is the Planck 
constant, R is the gas constant, F is Faraday's constant, H  is the change in 
enthalpy, S  is the change in entropy, z  is the effective valence (i.e., the charge 
moved times the fractional distance the charge is moved through the membrane), 
and V is the membrane potential in volts. 
 The probability of occupying any particular channel state is described by a 
set of ordinary differential equations, written in matrix notation as 

(t)
(t),

t
=

P
WP  [2] 

where P(t) is a vector state occupancy probabilities, and W is the state transition 
matrix. W is in general a function of voltage and time. For the voltage-clamp 
conditions generally used to constrain ion current models, W is piecewise time-
independent, thus Eq. [2] has the analytic solution 

P(t) = exp(Wt)P(0). [3] 
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Current through an ensemble of Na channels is calculated as 

INa = NGNaPopen(t)(V(t) – ENa(t)), [4] 

Figure 2. (A) Markov chain model of the human cardiac Na channel. States C
0-4

 are closed states, states O
1,2

are open, conducting states, and states C
1-4I

 and I are inactivated states. (B) Normalized peak Na current 
(ordinate) as a function of membrane potential (mV, abscissa). Open and filled symbols are experimental 
and model data at 17 C, respectively. (C) Time to peak Na current (msec, ordinate) as a function of mem-
brane potential (mV, abscissa). Experimental and model data are compared at 13, 17, and 21 C. Data at 13 
and 21 C are model fits, and data at 17 C constitute a model prediction. (D) Comparison of the time con-
stant of Na current inactivation (ms, ordinate) as a function of clamp potential (mV, abscissa) predicted by 
the model versus those measured experimentally at 13, 17, and 21 C. (E) Model predictions (solid, dashed, 
and dotted lines) at 13, 17, and 21 C, respectively, of single-channel open time (msec, ordinate) as a func-
tion of membrane potential (mV, abscissa). Filled symbols are experimental data. 
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where INa(t) is the Na current, N is the number of Na channels, GNa is single-
channel conductance, Popen(t) is the probability of occupying the open states (O1

+ O2), V(t) is membrane potential, and ENa(t) is the reversal potential for Na 
given by the Nernst equation. 
 The number of coupled differential equations, and hence the number of pa-
rameters that need to be constrained for the model, may be reduced through ap-
plication of two fundamental principles. First, the state occupancy probabilities 
for a Markov chain model must sum to one. Second, there are several loops in 
the model that must satisfy the principle of microscopic reversibility. Micro-
scopic reversibility is derived from the law of conservation of energy and states 
that the product of rate constants when traversing a loop clockwise must be 
equal to the product when traversing the same loop counterclockwise (24). For 
the closed–closed-inactivated loops, satisfying microscopic reversibility requires 
that the transitions among the closed-inactivated states be scaled by a, the same 
factor used to scale the transitions between rows. Microscopic reversibility is 
preserved around the closed–open-inactivated loop by isolating the H, S, and 
z terms in the product and satisfying each term separately using the following 
equations: 

8 lnon cf cn ofH H H H H RT a H H H= + + + + , [5] 

on cf cn ofS S S S S S S S= + + + , [6] 

on ofz z z z z z= + + + . [7] 

Similarly, microscopic reversibility is preserved around the closed-open-open 
loop using the following equations for H , S , and z :

H H H H H H= + + , [8] 

S S S S S S= + + , [9] 

.z z z z= +  [10] 

These microscopic reversibility constraints thus reduce the dimension of the 
parameter estimation problem, as transition rates  and  are fully constrained. 
 The model of Figure 2A may also be viewed as a Markov chain description 
of single channel behavior. Single-channel gating may be simulated using the 
method of Clay and DeFelice (29). In this method, the length of time a channel 
stays in its current state (i.e., its dwell time, denoted as Tj) is calculated accord-
ing to the formula 
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1

(ln )
x

j jk
k

T r
=

= , [11] 

where r is a random variable drawn from a uniform distribution on the interval 

[0,1] and jk is the transition rate from state j to state k. The sum is over the x

pathways out of state j. The resulting dwell time Tj is an exponentially distrib-

uted random variable with parameter 
1

x

k
jk

=

= . At the end of the dwell time, 

the new state of the channel is determined by assigning random numbers to a 
portion of the interval [0,1] based on the probabilities of changing to neighbor-
ing states. These probabilities are equal to the rate constant for a particular tran-
sition divided by the sum of the rate constants for all possible transitions. Once 
the new state is determined, another random number is used to calculate the 
dwell time in the new state. At an instantaneous voltage step, channels remain in 
their current state, but the dwell times are recalculated. 
 Extensive experimental data were required to fully determine the model 
parameters. The majority of data were taken from human SCN5A-encoded Na 
channels. Experimental data obtained at temperatures of 13  and 21 C were 
used to constrain the model, and the ability of the model to predict data collected 
at 17 C was tested. Constraining data included: (a) ionic currents in response to 
voltage-clamp; (b) gating charge accumulation; (c) steady-state inactivation 
curve; (d) rate of tail current relaxation; (e) time course of recovery from inacti-
vation; and (f) single-channel open times. A cost function defined as the squared 
error between simulated and experimental data (including both whole-cell cur-
rent and single-channel data) was minimized to determine an optimal model 
parameter set. A simulated annealing algorithm (30) was needed to perform this 
minimization, as the cost function exhibited many local minima. The resulting 
model was able to reproduce a broad range of membrane current data (28), and 
Figures 2B–E demonstrates the ability of the model to predict channel/current 
properties at 17 C as well as single-channel data not included in the fitting 
process. A similar methodology has been used to develop quantitative models of 
other myocyte membrane currents, most notably IKr, IKs, ICaL, and Ito1 (12,31–33). 

2.4. Model Components: Intracellular Ion Concentration Changes

 We illustrate the process of modeling time-varying changes of intracellular 
ion concentration with reference to the common pool model architecture shown 
in Figure 1B. In the common pool model formulation, there are four distinct Ca2+

compartments (the cytosol, subspace, NSR, and JSR) and one Na+ and potassium 
(K+) compartment (the cytosol). Note that in present common pool myocyte 
models, the cytosolic concentrations of both Na+,K+ and Ca2+ are assumed to be 
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uniform. The time rate of change of concentration Ci of the ith ionic species in a 
given compartment is given by 

( ) ( )i i

i

dC t I t

dt z FV
= , [12] 

where Ci(t) is the concentration (typically mM) of species i; t is time (typically 
in msec), Ii(t) is net current into the compartment carried by species i (typically 
in pA); zi is the valence of the ith species, F is Faraday's constant; and V is the 
compartment volume (typically in units of pL). One such equation may be de-
fined for the concentration of each ionic species in each model compartment. 
Ion flux between compartments, related to the term Ii(t) in Eq. [12], is produced 
either by: (a) diffusion due to differences in ion species concentration between 
adjacent compartments (as is the case for the flux term Jxfer in Figure 1B repre-
senting Ca2+ diffusion from the subspace to the cytosol); (b) gating of ion chan-
nels in the sarcolemmal or JSR membrane (as is the case for Ca2+ flux Jrel in 
Figure 1B from the JSR into the subspace through RyR channels); or (c) the 
action of membrane transporters and exchangers (for example, Ca2+ flux through 
the SR Ca2+–ATPase, labeled Jup in Figure 1B). The form of the algebraic equa-
tions describing the function of membrane transporters and exchangers, includ-
ing their concentration, voltage, and in some instances ATP dependence, may be 
found in the published equations for a number of myocyte models. In addition, 
buffering of Ca2+ by negatively charged phospholipid head groups in the sar-
colemmal and JSR subspace membrane, by cytosolic myofilaments (troponin) 
and by calsequestrin in the JSR is modeled. Buffering due to mechanisms other 
than myofilaments is described using the rapid buffer approximation of Wagner 
and Keizer (34). 

2.5. Composite Equations for Common Pool Models

 Common pool models of the cardiac myocyte consist of systems of nonlin-
ear ordinary differential-algebraic equations describing the time evolution of 
model state variables. These state variables are: (a) probability of occupancy of 
ion channel states (Eq. [2]) and current flux through open channels (Eq. [4]); (b) 
concentrations of ion species in model compartments (Eq. [12]); and (c) time 
evolution of membrane potential. Currently, all biophysically detailed models of 
the myocyte assume that since these cells are spatially compact they are isopo-
tential, with time-rate-of-change of membrane potential given by 

( )
[ ( )] [ ( ), ( )]ion pump

i i
i i

dv t
I v t I v t c t

dt
= + , [13] 
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where v(t) is membrane potential, Ii

ion[v(t)] is the current carried by the ith mem-
brane current, and Ii

pump[v(t),c(t)] is the current through the ith membrane 
pump/exchanger, which can depend on both membrane potential v(t) and the 
relevant ion concentration c(t). Figure 3 shows examples of simulated normal 
APs (solid line, Figure 3C) and Ca2+ transients (solid line, Figure 3D) compared 
with those measured from isolated canine ventricular myocytes (AP = solid line, 
Figure 3A; Ca2+ transient = solid line, Figure 3B). These data demonstrate that 
common pool models have been quite successful in reconstruction of the AP and 
in reconstructing some aspects (the time-varying waveform) of the Ca2+ tran-
sient. In the following section, we illustrate how such models may be used to 
gain insight into cardiovascular disease mechanisms. 

2.6. Application: Modeling the Molecular Basis of Heart Failure

 Heart failure (HF), the most common cardiovascular disorder, is character-
ized by ventricular dilatation, and decreased myocardial contractility and cardiac 
output. Prevalence in the general population is over 4.5 million, and increases 
with age to levels as high as 10%. New cases number approximately 400,000 
per year. Patient prognosis is poor, with mortality roughly 15% at one year, in-
creasing to 80% at six years subsequent to diagnosis. It is now the leading cause 
of sudden cardiac death (SCD) in the United States. An increased understanding 
of the molecular basis of this disease therefore offers the possibility of improved 
treatments that can reduce the risk of SCD. 
 Experimental studies have now identified two major features of the cellular 
phenotype of heart failure. First, ventricular myocytes isolated from failing hu-
man (35) and canine (36,37) hearts exhibit significant AP prolongation. An ex-
ample of this AP prolongation recorded from normal versus failing canine 
ventricular myocytes is shown in Figure 3A (normal and failing APs shown in 
solid and dashed lines, respectively). Duration of the failing AP (~660 msec) is 
roughly twice that of the normal (~330 msec). AP duration is controlled by the 
balance between inward and outward membrane currents during the plateau 
phase of the AP. Possible explanations for this prolongation are therefore HF-
induced upregulation of inward currents, and/or downregulation of outward cur-
rents. Second, failing ventricular myocytes exhibit altered Ca2+ transients. An 
example of normal and failing Ca2+ transients obtained simultaneously with the 
AP recordings of Figure 3A is shown in Figure 3B. Differences between normal 
(solid line) and failing (dotted line) Ca2+ transients include: (a) reduced ampli-
tude; and (b) reduced rate of decline of the Ca2+ transient subsequent to repolari-
zation of the AP. 
 There is little evidence to support the idea that upregulation of inward cur-
rents is responsible for prolongation of AP duration in HF, as the majority of 
measurements of whole-cell Na+ and Ca2+ current density show no change in the 
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density of these currents (37). However, downregulation of voltage-gated K 
currents is known to occur in HF. Measurements of whole-cell inward rectifier 
current IK1 show that current density at hyperpolarized membrane potentials is 
reduced in HF by ~50% in human (38) and by ~40% in dog (36). Measurements 

Figure 3. Model versus experimental action potentials and Ca2+ transients. Each action potential and Ca2+

transient is in response to a 1 Hz pulse train, with responses measured in the steady state. (A) Experimentally 
measured membrane potential (mV, ordinate) as a function of time (msec, abscissa) in normal (solid) and 
failing (dotted) canine myocytes. (B) Experimentally measured cytosolic Ca2+ concentration (nmol/L, ordi-
nate) as a function of time (msec, abscissa) for normal (solid) and failing (dotted) canine ventricular myo-
cytes. (C) Membrane potential (mV, ordinate) as a function of time (msec, abscissa) simulated using the 
normal canine myocyte model (solid), and with the successive downregulation of I

to1
 (dot-dashed, 66% 

downregulation), I
K1

 (long-dashed, downregulation by 32%), SERCA2 (rightmost short-dashed, downregula-
tion by 62%) and NCX1 (dotted, upregulation by 75%). (D) Cytosolic Ca2+ concentration (nmol/L, ordinate) 
as a function of time (msec, abscissa) simulated using the normal (solid) and heart failure (dotted) model. 
(E) Normalized peak RyR Ca2+ release flux (ordinate) as a function of membrane potential (mV, abscissa) 
measured experimentally (filled circles) and predicted using the common pool model (solid line). Reprinted 
with permission of the Royal Society of London from Winslow et al. (2001) (23). 
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of Ito1 (39) show that in end-stage HF, current density is reduced by up to 70% in 
human and canine tachycardia pacing-induced HF. Human and canine Ca2+-
independent transient outward current, Ito1, is a combination of currents encoded 
by the KCND3 and KCNA4 genes (39,40), and KCND3 expression has been 
shown to be reduced in HF (41). There appears to be no change in expression of 
the HERG or KCNQ1 gene encoding -subunits of the IKr and IKs channels, re-
spectively, in HF. 
 Expression of diverse proteins involved in the processes of EC coupling 
have also been measured in normal and failing myoyctes. These proteins in-
clude: (a) the SR Ca2+–ATPase encoded by the SERCA2 gene; (b) the phos-
pholamban protein encoded by the PLN gene; and (c) the sodium–calcium (Na+–
Ca2+) exchanger protein encoded by the NCX1 gene. Measurements indicate 
there is an approximately 50% reduction of SERCA2 mRNA (37,42,43), ex-
pressed SR Ca2+–ATPase protein level, and direct SR Ca2+–ATPase uptake rate 
(37) during HF. There is a 55% increase in NCX1 mRNA levels, and an ap-
proximate factor of two increase in Na+–Ca2+ exchange activity in human (43–
45) and canine HF (37). There is uncertainty as to whether mRNA and ex-
pressed protein level of phospholamban is decreased (46) or unchanged (47) in 
human HF, and evidence that expressed protein level is decreased by a percent-
age equal to that of the SR Ca2+–ATPase in the failing canine heart (37). 
 It is therefore critically important to understand how these changes in gene 
expression, protein levels, and current densities measured experimentally impact 
on the morphology of the AP and Ca2+ transient. In particular, it is key to know 
which of these changes have the greatest functional effect. To answer this ques-
tion, we developed a computational model of the failing ventricular myocyte 
(28). The above data suggest the following minimal model of altered repolariza-
tion and Ca2+ handling in ventricular cells from the failing canine heart: (a) re-
duced expression of IK1 and Ito1; (b) downregulation of the SR Ca2+–ATPase; and 
(c) upregulation of the electrogenic Na+–Ca2+ exchanger. Since the density, but 
not the kinetic behavior, of each of the four transporters and ion currents com-
prising the minimal model appears altered in HF, we incorporated information 
on this altered gene and protein expression in the canine cell model by varying 
the density of these four membrane transporters (Ito1, IK1, SR Ca2+–ATPase, and 
Na+–Ca2+ exchanger) within experimentally derived limits (37). 
 The model has been used to test the hypothesis that this minimal set of heart 
failure-induced changes can account for prolongation of AP duration, as well as 
decreased peak amplitude and decay rate of the Ca2+ transient observed in failing 
myocytes. Figures 3C and 3D demonstrate the ability of the model to reconstruct 
APs and Ca2+ transients measured in both normal and failing canine mid-
myocardial ventricular myocytes. Figure 3C shows a normal model AP (solid 
line), and model APs corresponding to the additive effects of sequential down-
regulation of Ito1 (by 62%; dot-dashed line), IK1 (by 32%; long–dashed line), and 
SR Ca2+-ATPase (by 62%; rightmost short-dashed bold line), followed by 



388 R. L. WINSLOW 

upregulation of Na+–Ca2+ exchanger (by 75%; dotted line). Changes of trans-
porter amplitude were based on average values derived from experiments using 
mid-myocardial failing canine ventricular myocytes. Model simulations indicate 
that downregulation of Ito1 produces a modest shortening, not lengthening, of AP 
duration. On first consideration, this seems an anomalous effect since Ito1 is an 
outward K current, but is one which agrees with the experimental results of 
Zygmunt et al. (48) in canine myocytes (see their Fig. 2). The mechanism of this 
AP duration shortening has been investigated in detail using computational 
models (33), and results show that reduction of the Phase 1 notch depth through 
downregulation of Ito1 reduces the electrical driving force on inward Ca2+ current 
and hence shortens AP duration. The additional downregulation of IK1 (long-
dashed line) produces modest AP prolongation, consistent with the fact that 
outward current through IK1 is activated primarily at potentials which are hyper-
polarized relative to the plateau potential. The most striking result is shown by 
the short-dashed line in Figure 3C—significant AP prolongation occurs follow-
ing downregulation of SR Ca2+–ATPase. This downregulation results in a near 
doubling of AP duration that is similar to that observed experimentally (Figure 
3A). Finally, the model predicts that upregulation of Na+–Ca2+ exchanger, when 
superimposed on these other changes, contributes to modest APD shortening
due to reverse mode Na+–Ca2+ exchange and generation of a net outward current 
during the plateau phase of the AP. 
 This modeling has provided important insights into the mechanism of AP 
prolongation and altered Ca2+ transients in heart failure. Prior to this work, the 
consensus was that downregulation of the genes encoding the Ito1 and IK1 outward 
K currents was responsible for AP prolongation—a very intuitive and reasonable 
hypothesis. The model indicates that this is not likely to be the case. Rather, the 
main contributor to AP prolongation involves downregulation of the gene en-
coding the SR Ca2+–ATPase. Subsequent model simulations have shown that 
downregulation of this transport process alone has a severe effect on prolonga-
tion of the AP, a prediction confirmed by experiments in which cyclopiazonic 
acid is used to block SR Ca2+–ATPase transport (49). This modeling illustrates 
the value of using quantitative models to interpret the consequences of changes 
in gene and protein expression on cell function. It also points out how prediction 
of a cellular phenotype using knowledge of underlying molecular changes must
be based on interpretations derived from quantitative experimentally based 
models. 

2.7. A New Class of Myocyte Models

 While common pool models are able to reconstruct APs with high fidelity, 
they are unable to reproduce a very fundamental behavior of cardiac myo-
cytes—SR Ca2+ release that is smoothly and continuously graded with influx of 



MODELING CARDIAC FUNCTION 389

trigger Ca2+ through sarcolemmal LCCs. This failure is demonstrated in Figure 
3E. The figure shows normalized peak Ca2+ flux through RyR channels (ordi-
nate) as a function of membrane potential (mV; abscissa). Filled circles are ex-
perimental measurements from the work of Wier et al. (50), showing that release 
flux increases smoothly to a maximum flux at about 0 mV, and then decreases to 
near zero at more depolarized potentials. Release flux increases from –40 to 0 
mV since over this potential range the open probability of LCCs increases very 
steeply reaching a maximum value. Release flux decreases over the potential 
range greater than 0 mV because the electrical driving force on Ca2+ decreases 
monotonically. The solid line shows release flux for the Jafri-Rice-Winslow 
guinea pig ventricular myocyte model. Release is all-or-none, with regenerative 
release initiated at a membrane potential causing opening of a sufficient number 
of LCCs (~–15 mV), and release terminating at the potential for which electrical 
the driving force is reduced to a critical level (~+40 mV). 
 This all-or-none behavior of Ca2+ release in common pool models has very 
important implications for common pool model dynamics. LCCs not only un-
dergo voltage- but also Ca2+-dependent inactivation (51,52). Inactivation de-
pends on local subspace Ca2+ concentration, and occurs as Ca2+ binding to 
calmodulin (52), which is tethered to the LCC, induces the channel to switch 
from a normal mode of gating to a mode in which transitions to open states are 
extremely rare. Recent experimental data have demonstrated that voltage-
dependent inactivation of LCCs is a slow and weak process, whereas Ca2+-
dependent inactivation is relatively fast and strong (52,53) (see Figure 4C). This 
implies in turn that there is a very strong coupling between Ca2+ release from 
JSR into the local subspace, and regulation of inactivation of the LCC. When 
this newly revealed balance between voltage- and Ca2+-dependent inactivation is 
incorporated into common pool models, the models become unstable, exhibiting 
alternating short and long duration APs (31,54) (see Figure 4D). The reason for 
this is intuitively clear—since JSR Ca2+ release is all or none in these models, 
Ca2+-dependent inactivation of LCCs is all-or-none, depending on whether re-
lease has or has not occurred. Since L-type Ca2+ current is a major contributor to 
inward current during the plateau phase of the AP, its biphasic inactivation leads 
to instability of AP duration. This, unfortunately, constitutes a fatal weakness of 
common pool models. 
 The fundamental failure of common pool models described above suggests 
that more biophysically based models of excitation–contraction coupling must 
be developed and investigated. Understanding of the mechanisms by which Ca2+

influx via LCCs triggers Ca2+ release from the JSR has advanced tremendously 
with the development of experimental techniques for simultaneous measurement 
of LCC currents and Ca2+ transients and detection of local Ca2+ transients, and 
this has given rise to the local control hypothesis of EC coupling (19,50,55,56). 
As illustrated schematically in Figure 4A, this hypothesis asserts that opening of 
an individual LCC in the T-tubular membrane triggers Ca2+ release from the 
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small cluster of RyRs located in the closely apposed (~12 nm) JSR membrane. 
Thus, the local control hypothesis asserts that release is all-or-none at the level 
of these individual groupings of LCCs and RyRs (referred to as the functional 
unit). However, LCC:RyR clusters are physically separated at the ends of the 
sarcomeres (57). These clusters therefore function in an approximately inde-
pendent fashion. The local control hypothesis asserts that graded control of SR 

Figure 4. (A) Structure of the LCC-RyR complex, denoted as the functional unit (FU). A single LCC 
in the sarcolemmal membrane is associated with 5 RyR in the closely apposed JSR membrane. ClCh 
denotes a single Ca2+-modulated Cl– channel that is thought to be co-located in the dyadic space. (B)
Structure of the Ca2+ release unit (CaRU). Each CaRU consists of 4 FUs, with Ca2+ diffusion between 
adjacent FUs and into the surrounding cytosolic space. (C) Solid line is an action potential (mem-
brane potential in mV, left ordinate; time in msec, abscissa) predicted by the local-control myocyte 
model. Dotted line is the fraction of channels (right ordinate) not voltage inactivated, and the dashed 
line is the fraction not Ca2+-inactivated during the action potential shown by the solid line. (D) Behav-
ior of the common pool myocyte model when the balance between voltage- and Ca2+-inactivation is 
as shown in panel C. Note the instability of action potentials. (E) Peak Ca2+ flux (ordinate) through 
RyRs (open symbols) and LCCs (filled symbols) as a function of membrane potential (mV, abscissa). 
(F) EC coupling gain (ordinate, ratio of peak RyR to LCC flux) as a function of membrane potential 
(mV, abscissa). 
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Ca2+ release, in which Ca2+ release from JSR is a smooth continuous function of 
Ca2+ influx, is achieved by statistical recruitment of elementary Ca2+ release 
events in these independent diadic spaces. Thus, central to the local-control hy-
pothesis is the assertion that the co-localization of LCCs and RyRs is a structural 
component that is fundamental to the property of graded Ca2+ release and force 
generation at the level of the cell. This concept of channel co-localization con-
tributing in fundamental ways to cell behavior is a general theme of biophysical 
signal processing in excitable cells. 
 We have recently implemented a local-control model of myocyte function 
(54). As a compromise between structural and biophysical detail versus tracta-
bility, a "minimal model" of local control of Ca2+ release, referred to as the Ca2+

release unit (CaRU) model, was developed. Figure 4B shows a schematic of the 
CaRU model. This model is intended to mimic the properties of Ca2+ sparks in 
the T-tubule/SR (T-SR) junction (Ca2+ sparks are elementary SR Ca2+ release 
events arising from opening of a cluster of RyRs (58)). Figure 4B shows a cross-
section of the model T-SR cleft, which is divided into four individual diadic 
subspace compartments arranged on a 2  2 grid. Each subspace (SS) compart-
ment contains a single LCC and 5 RyRs in its JSR and sarcolemmal membranes, 
respectively. All 20 RyRs in the CaRU communicate with a single local JSR 
volume. The 5:1 RyR to LCC stoichiometry is chosen to be consistent with re-
cent estimates indicating that a single LCC typically triggers the opening of 4–6 
RyRs (59). Each subspace is treated as a single compartment in which Ca2+ con-
centration is uniform; however, Ca2+ may diffuse passively to neighboring sub-
spaces within the same CaRU. The division of the CaRU into four subunits 
allows for the possibility that an LCC may trigger Ca2+ release in adjacent sub-
spaces (i.e., RyR recruitment) under conditions where unitary LCC currents are 
large. Since LCC:RyR clusters are physically separated (57), each model CaRU 
is assumed to function independently of other CaRUs. Upon activation of RyRs, 
subspace Ca2+ concentration will become elevated. This Ca2+ will freely diffuse 
to either adjacent subspace compartments (Jiss), or into the cytosol (Jxfer) along its 
concentration gradient. The local JSR compartment is refilled via passive diffu-
sion of Ca2+ from the network SR (NSR) compartment (Jtr).
 The local control simulation algorithm is described in detail in the appendix 
of Greenstein and Winslow (54). Simulation of the dynamics of each CaRU re-
quires both numerical integration of the ordinary differential equations describ-
ing local subspace and JSR Ca2+ balance, as well as Monte Carlo simulation of 
LCC and RyR channel gating in the approximately ~12,500 CaRUs in the cell 
(there are ~50,000 LCCs per ventricular myocyte). The state of each channel is 
described by a set of discrete valued random variables that evolve in time as 
described by Markov processes. Time steps for CaRU simulations are adaptive 
and are chosen to be sufficiently small based on channel transition rates. The 
CaRU simulations occur within the (larger) time step used for the numerical 
integration of the system of ordinary differential equations describing the time-
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evolution of global state variables. As a result of the embedded Monte Carlo 
simulation, all model state variables and ionic currents/fluxes will contain a 
component of stochastic noise. These fluctuations introduce a degree of variabil-
ity to simulation output. 
 Figures 4C–F show macroscopic properties of APs and SR Ca2+ release in 
this hybrid stochastic/ODE model. Figure 4C shows the relative balance be-
tween the fraction of LCCs not voltage-inactivated (dotted line) and not Ca2+-
inactivated (dashed line) during the AP. These fractions were designed to fit the 
experimental data of Linz and Meyer (53). The solid line shows a local-control 
model AP. This AP should be contrasted with those produced by the common 
pool model when the same relationship between LCC voltage- and Ca2+-
dependent inactivation as shown in Figure 4C is used. Clearly, the local-control 
model exhibits stable APs whereas the common pool model does not. Figure 4E 
shows the voltage dependence of peak LCC Ca2+ influx (FLCC(max) = filled circles, 
ordinate) and peak RyR Ca2+ release flux (FRyR(max) = open circles, ordinate) in 
response to voltage-clamp steps to the indicated potentials (mV, abscissa). Ca2+

release flux is a smooth and continuous function of membrane potential, and 
hence triggers Ca2+, as shown by the experimental data in Figure 4D. EC cou-
pling gain may be defined as by Wier et al. (50), as the ratio FRyR(max)/FLCC(max), and 
is plotted as a function of voltage in Figure 4F (triangles). EC coupling gain is 
monotonically decreasing with increasing membrane potential, and agrees with 
corresponding experimental measurements made by Wier (50). The role of inter-
subspace coupling on gain is demonstrated in Figure 4F, by comparison of con-
trol simulations (triangles) to those in the absence of inter-subspace coupling 
(squares). With inter-subspace coupling intact, EC coupling gain is greater at all 
potentials, but the increase in gain is most dramatic at more negative potentials. 
In this negative voltage range, LCC open probability is submaximal, leading to 
sparse LCC openings. However, unitary current magnitude is relatively high, so 
that in the presence of Ca2+ diffusion within the CaRU the rise in local Ca2+ due 
to the triggering action of a single LCC can recruit and activate RyRs in adjacent 
subspace compartments within the same T-SR junction. The net effect of inter-
subspace coupling is therefore to increase the magnitude and slope of the gain 
function preferentially in the negative voltage range. These simulations therefore 
offer an intriguing glimpse of how the co-localization and stochastic gating of 
individual channel complexes can have a profound effect on the overall integra-
tive behavior of the cell. 

3. MODELS OF THE CARDIAC VENTRICLES

 Computational models of the cardiac myocyte have contributed greatly to 
our understanding of myocyte function. This is in large part due to a rich inter-
play between experiment and modeling—an interplay in which experiments 
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inform modeling and modeling suggests new experiments. However, modeling 
of cardiac ventricular conduction has to a large extent lacked this interplay. 
While it is now possible to measure electrical activation of the epicardium at 
relatively high spatial resolution, the difficulty of measuring the geometry and 
fiber structure of hearts that have been electrically mapped has limited our abil-
ity to relate ventricular structure to conduction via quantitative models. As de-
scribed in the following sections, we are approaching this problem by: (a) 
mapping ventricular activation using high-density epicardial electrode arrays; 
(b) measuring and modeling ventricular geometry and fiber orientation at high 
spatial resolution using diffusion tensor magnetic resonance imaging (DTMRI); 
(c) constructing computational models of the imaged hearts; and (d) comparing 
simulated conduction properties with those measured experimentally in the same 
heart. This is one approach to "closing the loop" between experiment and model-
ing at the whole-heart level. 

3.1. Mapping of Epicardial Conduction in Canine Hearts

 We have recently performed electrical mapping studies in which epicardial 
conduction in response to various current stimuli has been measured using elec-
trode arrays consisting of a nylon mesh with 256 electrodes and electrode spac-
ing of ~5 mm sewn around its surface. Bipolar epicardial twisted-pair pacing 
electrodes were sewn onto the right atrium (RA) and the right-ventricular (RV) 
free-wall. Four to ten glass beads filled with gadolinium-DTPA (~5 mM) were 
attached to the sock as localization markers, and responses to different pacing 
protocols we recorded. Figure 5A shows an example of measurement of activa-
tion time (color bar, in msec) measured in response to an RV stimulus pulse 
applied at the epicardial locations marked in red. After all electrical recordings 
are obtained, the animal is euthanized with a bolus of potassium chloride, and 
the heart is then scanned with high-resolution T1-weighted imaging in order to 
locate the gadolinium-DTPA filled beads in scanner coordinates. The heart is 
then excised, sock electrode locations are determined using a 3D digitizer (Mi-
croScribe 3DLX), and the heart is formalin-fixed in preparation for DTMRI. 

3.2. Measuring the Fiber Structure of the Cardiac Ventricles Using DTMRI

 DTMRI is based on the principle that proton diffusion in the presence of a 
magnetic field gradient causes signal attenuation, and that measurement of this 
attenuation in several different directions can be used to estimate a diffusion 
tensor at each image voxel (60,61). Several studies have now confirmed that the 
principal eigenvector of the diffusion tensor is locally aligned with the long axis 
of cardiac fibers (62–64). 
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 Use of DTMRI for reconstruction of cardiac fiber orientation provides sev-
eral advantages over traditional histological methods. First, DTMRI yields esti-
mates of the absolute orientation of cardiac fibers, whereas histological methods 
yield estimates of only fiber inclination angle. Second, DTMRI performed using 
formalin-fixed tissue: (a) yields high-resolution images of the cardiac bounda-
ries, thus enabling precise reconstruction of ventricular geometry using image 
segmentation software; and (b) eliminates flow artifacts present in perfused 
heart, enabling longer imaging times, increased signal-to-noise ratio, and im-
proved spatial resolution. Third, DTMRI provides estimates of fiber orientation 
at more than one order of magnitude more points than is possible with histologi-
cal methods. Fourth, reconstruction time is greatly reduced (~60 hours versus 
weeks to months) relative to that for histological methods. 
 DTMRI data acquisition and analysis for ventricular reconstruction has 
been semi-automated. Once image data are acquired, software written in the 
MatLab programming language is used to estimate epicardial and endocardial 
boundaries in each short-axis section of the image volume using either the 
method of region growing or the method of parametric active contours (65). 
Diffusion tensor eigenvalues and eigenvectors are computed from the DTMRI 
data sets at those image voxels corresponding to myocardial points, and fiber 
orientation at each image voxel is computed as the primary eigenvector of the 
diffusion tensor. 

Figure 5: (A) Electrical activation times (indicated by color bar) in response to right RV pac-
ing as recorded using electrode arrays. Data was obtained from a normal canine heart that was 
subsequently reconstructed using DTMRI. Activation times are displayed on the epicardial 
surface of a finite-element model fit to the DTMRI reconstruction data. Fiber orientation on the 
epicardial surface, as fit to the DTMRI data by the FEM model, is shown by the short line 
segments. (B) Activation times predicted using a computational model of the heart mapped 
in A.
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 Representative results from imaging of one normal and one failing canine 
heart are shown in Figure 6. Figures 6A,C are short-axis basal sections taken at 
approximately the same level in normal (6A) and failing (6C) canine hearts. 
These two plots show regional anisotropy according to the indicated color code. 
Figures 6B,D show the angle of the primary eigenvector relative to the plane of 
section (inclination angle), according to the indicated color code, for the same 
sections as in Figures 6A,C. Inspection of these data show: (a) the failing heart 

Figure 6. Fiber anisotropy A(x) estimated from DTMRI data, and calculated as 
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eigenvectors at voxel x, in normal (A) and failing (C) canine heart. Fiber inclination angle 
computed using DTMRI in normal (B) and failing (D) heart. Panels A and B are the same 
normal, and panels C and D the same failing heart. 
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(HF: panels C,D) is dilated relative to the normal heart (N: panels A,B); b) left-
ventricular (LV) wall thinning (average LV wall thickness over 3 hearts is 17.5 

 2.9 mm in N, and 12.9  2.8 mm in HF); (c) no change in RV wall thickness 
(average RV wall thickness is 6.1  1.6 mm in N, and 6.3  2.1 mm in HF); (d) 
increased septal wall thickness HF versus N (average septal wall thickness is 
14.7  1.2 mm N, and 19.7  2.1 mm HF); (e) increased septal anisotropy in HF 
versus N (average septal thickness is 0.71  0.15 N, and 0.82  0.15 HF); and (f) 
changes in the transmural distribution of septal fiber orientation in HF versus N 
(contrast panels B,D, particularly near the junction of the septum and RV). 

3.3. Finite-Element Modeling of Cardiac Ventricular Anatomy

 The structure of the cardiac ventricles can modeled be using the finite-
element modeling (FEM) methods developed by Nielson et al. (66). The geome-
try of the heart to be modeled is described initially using a predefined mesh with 
6 circumferential elements and 4 axial elements. Elements use a cubic Hermite 
interpolation in the transmural coordinate ( ), and bilinear interpolation in the 
longitudinal ( ) and circumferential ( ) coordinates. Voxels in the 3D DTMR 
images identified as being on the epicardial and endocardial surfaces by the 
semi-automated contouring algorithms described above are used to deform this 
initial FEM template. Deformation of the initial mesh is performed to minimize 
an objective function F(n): 
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where n is a vector of mesh nodal values, vd are the surface voxel data, v( d) are 
the projections of the surface voxel data on the mesh, and  and  are user-
defined constants. This objective function consists of two terms. The first de-
scribes the distance between each surface image voxel (vd) and its projection 
onto the mesh v( d). The second, known as the weighted Sobelov norm, limits 
the stretching (first-derivative terms) and bending (second-derivative terms) of 
the surface. The parameters  and  control the degree of deformation of each 
element. The weighted Sobelov norm is particularly useful in cases where there 
is an uneven distribution of surface voxels across the elements. A linear least-
squares algorithm is used to minimize this objective function. 
 After the geometric mesh is fit to DTMRI data, the fiber field is defined for 
the model. Principal eigenvectors lying within the boundaries of the mesh com-
puted above are transformed into the local geometric coordinates of the model 
using the following transformation. 
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VG = [F G H]T [R]VS, [15] 

where R is a rotation matrix that transforms a vector from scanner coordinates 
(VS) into the FEM model coordinates VG and F, G, and H are orthogonal geomet-
ric unit vectors computed from the ventricular geometry as described by Le 
Grice et al. (67). Once the fiber vectors are represented in geometric coordinates, 
DTMRI inclination and imbrication angles (  and ) are fit using a bilinear 
interpolation in the local 1 and 2 coordinates, and a cubic Hermite interpolation 
in the 3 coordinate. A graphical user interface for fitting FEMs to both the ven-
tricular surfaces and fiber field data has been implemented using the MatLab 
programming language. Figure 7 shows FEM fits to the epi- and endocardial 
surfaces of a reconstructed normal canine heart obtained using this software tool. 
FEM fits to the fiber orientation data are shown on these surfaces as short line 
segments. We have also developed relational database and data analysis soft-
ware, named HeartScan, to facilitate analysis of cardiac structural and electrical 
data sets obtained from populations of hearts. HeartScan enables users 

Figure 7. Finite-element model of canine ventricular anatomy showing the epicardial (red), LV 
endocardial (green), and RV endocardial surfaces. Fiber orientation on each surface is shown 
by short line segments. 
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to pose queries (in standard query language, or SQL) on a wide range of cardiac 
data sets by means of a graphical user interface (Figure 8). These data sets in-
clude: (a) DTMRI imaging data; (b) FEMs derived from DTMRI data; (c) elec-
trical mapping data obtained using epicardial electrode arrays; and (d) model 
simulation data. Query results are either: (a) displayed on a 3D graphical repre-
sentation of the heart being analyzed; or (b) piped to data-processing scripts, the 
results of which are then displayed visually. Queries may be posed by direct 
entry of an SQL command into the Query Window (Figure 8B). This query is 
executed, and the set of points satisfying this condition are displayed on a wire 
frame model of the heart being studied (shown in green in Figure 8C). Queries 
operating on a particular region of the heart may also be entered by graphically 
selecting that region (Figure 8D). SQL commands specifying the coordinates of 
the selected voxels are then automatically entered into the Query Window. One 
example of such a predefined operation is shown in Figure 8E, which shows 
computation of transmural inclination angle for the region enclosed by the box 
in Figure 8D. 

3.4. Generation of Computational Models from DTMRI Data

 The bidomain equations describe the flow of electrical current within the 
myocardium, between the intracellular and extracellular domains. This approach 
treats each domain of the myocardial tissue as a continuum, rather than as being 
composed of discrete cells connected by gap junctions and surrounded by the 
extracellular milieu. Thus, quantities such as conductivity and transmembrane 
voltage represent spatial averages. Several excellent reviews have been pub-
lished detailing the assumptions in, structure of, and solution methods for the 
bidomain equations (68–70). The following is a brief review of the origins of 
these equations. 
 The bidomain equations are derived by applying conservation of current 
between the intra- and extracellular domains. The equations consist of parabolic 
Eq. [16] and elliptic Eq. [17], equations that must be satisfied within the myo-
cardium, (a region designated as H): 

( )
1 1

( , ) ( , ) ( , ) ( ) ( , ) ,     in 
ion app e e

m

x t I x t I x t M x x t x H
t C

= , [16] 

Mi(x) v(x,t) = – M(x) e(x,t), x in H, [17] 

and an additional elliptic equation, Eq. [18], that must be satisfied in the bath or 
tissue surrounding the heart (a region designated as B): 
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Mb(x) b(x,t) = 0, x in B, [18] 

where x is spatial position, i(x,t) and e(x,t) are the transmembrane intra- and 
extracellular potentials, respectively; v(x,t) = i(x,t) – e(x,t) is the transmem-
brane voltage; Cm is the membrane capacitance per unit area; Iion(x,t) is the sum 
of the ionic currents per unit area through the membrane (positive outward); 
Iapp(x,t) is an applied cathodal extracellular current per unit area;  is the ratio of 
membrane area to tissue volume; Me(x) and Mi(x) are the extracellular and intra-
cellular conductivity tensors, with M(x) = Me(x) + Mi(x); b(x,t) is the bath poten-
tial; and Mb(x) is the bath conductivity tensor. These parameters may be set, in 
models of the normal heart, using values described by Pollard et al. (68) and 
Henriquez et al. (70). Additionally, boundary conditions on the interface be-
tween the heart and the surrounding tissue, H, and the body surface, B, must 
be specified. The first boundary condition specifies continuity of potential: 

e = b  on H. [19] 

The second specifies continuity of current at the interface: 

Figure 8. "Screenshot" of the windows by which the user interacts with HeartScan. (A) win-
dow for viewing data tables; (B) SQL query window; (C) window for interactive 3D display of 
heart data; (D) pull-down window for user selection of heart regions to query; (E) statistics 
display window. 
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 on  i e b
i e b H

n n n
+ = , [20] 

where the 's are the conductivities normal to the interface, and the / n is the 
normal derivative operator. In order for the problem to be well posed, a third 
boundary condition on  H is required. While the first two follow necessarily for 
all electrical phenomena, there are a number of ways to formulate the third 
boundary condition. Typically, we specify: 

0  on  i
i H

n
= , [21] 

which has the physical interpretation that at the heart/body interface all intracel-
lular current must flow first through the extracellular space before it flows into 
the surrounding tissue. A boundary condition at B for the Laplace equation in 

b is also required. Given that air is a poor conductor, this is simply 

0  on  b
b B

n
= . [22] 

 Finally, an initial condition on the transmembrane voltage must be speci-
fied, v(x,t=0) = V(x). Then from this, initial conditions on e(x,t=0) and b(x,t=0) 
can be found by solving the appropriate elliptic equation. Equations [16]–[22] 
specify the bidomain problem. 
 Under some restrictive assumptions, the bidomain equations can be simpli-
fied dramatically. If the surrounding tissue is taken to be a good insulator, then 

b = 0 in B. Then we have 

e = 0   on H, [23] 

0  on  e H= , [24] 

0  on  ,i H
n
=  [25] 

and the Laplace equation for b need not be considered. Additionally, under the 
assumption of equal anisotropy, namely, that 
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1
( ) ( )i eM x M x= , [26] 

where k is called the anisotropy ratio, Eqs. [16] and [17] uncouple, then requir-
ing only solution of the parabolic equation 

1 1
( , ) ( , ) ( , ) ( ) ( ( ) ( , ))   on  

1
ion app i

m

x t I x t I x t M x x t H
t C

= +
+

. [27] 

Equation [27] is referred to as the monodomain equation. 
 The conductivity tensors at each point within the heart are specified by fiber 
orientation and by specific conductivities in each of the local coordinate direc-
tions. The conductivity tensor in the local coordinate system, Gi(x), is defined as 

1,

2,

3,

( )
i

i

i

xGi = , [28] 

where 1,i is the longitudinal and 2,i and 3,i are the transverse intracellular con-
ductivities, respectively. This local tensor may be expressed in global coordi-
nates to give the conductivity tensor of Eq. [27] using the transformation 

Mi(x) = P(x)G(x)PT(x), [29] 

where P(x) is the coordinate transformation matrix from local to global coordi-
nates. P(x) is in turn determined by the underlying fiber organization of the 
heart, and is obtained using DTMRI as described in §3.2. If only fiber direction 
information is available, then it is appropriate that conductivities transverse to 
the fiber long-axis be assumed equal ( 2,i = 3,I). 
 Figure 5B shows the results of applying these methods to the analysis of 
conduction in a normal canine heart. As described previously, Figure 5A shows 
activation time (color bar, in msec) measured experimentally in response to an 
RV stimulus pulse applied at the epicardial locations marked in red. Following 
electrical mapping, this heart was excised, imaged using DTMRI, and an FEM 
was then fit to the resulting geometry and fiber orientation data sets. Figure 5A 
shows activation time displayed on this FEM. The stimulus wavefront can be 
seen to follow the orientation of the epicardial fibers, which is indicated by the 
dark line segments in Figure 5A. Figure 5B shows results of simulating conduc-
tion using a computational model of the very same heart that was mapped elec-
trically in Figure 5A. Results can be seen to agree qualitatively; however, model 
conduction is more rapid in the region where the RV and LV join. Nonetheless, 
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these results demonstrate the feasibility of combined experimentation and mod-
eling of electrical conduction in specific imaged and reconstructed hearts. 

4. DISCUSSION AND CONCLUSIONS

 This chapter has reviewed modeling research in three broad areas: (1) mod-
els of single ventricular myocytes; (2) methods for the reconstruction and mod-
eling of ventricular geometry and microanatomy; and (3) integrative modeling 
of the cardiac ventricles. We have seen that the level of biophysical detail, and 
hence the accuracy and predictability of current ventricular myocyte models, is 
considerable. Nonetheless, much remains to be done. 
 One emerging area of research is modeling of mitochondrial energy produc-
tion. Approximately 2% of cellular ATP is consumed on each heartbeat. The 
major processes consuming ATP in the myocyte are muscle contraction, activity 
of the SR Ca2+–ATPase, and Na–K pumping. Cellular ATP levels also influence 
ion channel function including the sarcolemmal ATP-modulated K channel (71). 
Recently, we have formulated an integrated thermokinetic model of cardiac mi-
tochondrial energetics comprising the tricarboxylic acid (TCA) cycle, oxidative 
phosphorylation and mitochondrial Ca2+ handling (72). This model describes the 
dynamics of the key regulatory effectors of TCA cycle enzymes and the produc-
tion of NADH and FADH2. These molecules are used by the electron transport 
chain to establish a proton motive force ( H), which then drives the F1F0–
ATPase. Mitochondrial matrix Ca2+ is also a model state variable. Mitochondrial 
Ca2+ concentration is determined by the Ca2+ uniporter and Na+/Ca2+ exchanger 
activities, and regulates activity of the TCA cycle enzymes isocitrate dehydro-
genase (IDH) and -ketoglutarate dehydrogenase (KGDH). The model is de-
scribed by twelve ordinary differential equations that represent m (mito-
chondrial membrane potential) and matrix concentrations of Ca2+, NADH, ADP, 
and TCA cycle intermediates. The model is able to reproduce experimental data 
concerning mitochondrial bioenergetics, Ca2+ dynamics and respiratory control, 
relying only on the fundamental properties of the system. The time-dependent 
behavior of the model, under conditions simulating an increase in workload, 
closely reproduce the experimentally observed mitochondrial NADH dynamics 
in heart trabeculae subjected to changes in pacing frequency. The steady-state 
and time-dependent behavior of the model support the role of mitochondrial 
matrix Ca2+ in matching energy supply with demand in cardiac cells. Further 
development and testing of this model, its integration into models of the myo-
cyte, and the use of these models to investigate myocyte responses to ischemia, 
are required. 
 In real cardiac myocytes, there exist a diversity of mechanisms that act to 
modulate cellular excitability. This includes - and -adrenergic signaling 
pathways acting through G protein-coupled membrane receptors to modulate the 
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properties of LCCs, various K+ channels, and Ca2+ transporters such as the SR 
Ca2+–ATPase. The addition of these modulatory mechanisms to the cell models 
remains an important goal for the future. 
 As we have shown, magnetic resonance imaging now offers a relatively 
rapid way to measure ventricular fiber structure at high spatial resolution. The 
ability to rapidly acquire fiber orientation data throughout the ventricles in large 
populations of normal and diseased hearts will enable quantitative statistical 
comparison of normal and abnormal cardiac structure, and will provide insights 
into the possible structural basis of arrhythmia in heart disease. Unfortunately, a 
detailed understanding of the spatial heterogeneities within the heart, such as 
variation of intercellular coupling, regional expression of ionic currents and Ca2+

handling proteins is still unavailable, although significant progress has certainly 
been made. Understanding and modeling of these spatial heterogeneities remains 
a challenge for the future. 
 Finally, the complexity of biological models, including those of the cardiac 
myocyte, is increasing rapidly. This complexity makes the reliable publication 
and exchange of models difficult. XML-based markup languages such as 
CellML (73) and the Systems Biology Markup Language (SBML) (74) are be-
ing developed to support error-free exchange of models independently of the 
hardware and software architectures on which these models will run. An appli-
cation programming interface for CellML is being developed, and several 
groups are developing software for automated source code generation from 
CellML files. 
 These are indeed exciting times for cardiovascular biology. A national in-
frastructure supporting the acquisition, distribution and analysis of cardiovascu-
lar genomic and proteomic data is now in the formative stage (in particular, the 
Programs for Genomic Applications and Innovative Proteomics Centers sup-
ported by the National Heart, Lung and Blood Institute of the National Institutes 
of Health). The data and models produced from these efforts will without ques-
tion enhance our understanding of myocyte and whole-heart function in both 
health and disease (see the following chapter 3.3 by Glass). Major challenges in 
data collection, representation, storage, dissemination, and modeling remain. If 
these challenges are met, we will have the opportunity to create a truly inte-
grated cardiovascular research community, the whole of which is far greater 
than the sum of its parts. 
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In current medical practice, the diagnosis and treatment of cardiac arrhythmias in people 
is carried out without mathematical analysis of the underlying mechanisms of the under-
lying rhythm. In this article I describe how nonlinear dynamics is being used to formulate 
mathematical models of cardiac arrhythmias, and to demonstrate the ways the mathemat-
ics can be used to predict the changes in rhythms that occur as physiological parameters 
vary. In spatially heterogeneous cardiac tissue culture, a number of different patterns of 
spatiotemporal activity can be found, including propagating plane waves, rotating spiral 
waves, and spiral waves that spontaneously initiate and terminate. These paroxysmal pat-
terns are similar to the paroxysmal rhythms observed during cardiac arrhythmias in peo-
ple. Mathematical analyses of cardiac arrhythmias can be used to determine automatically 
if certain arrhythmias, such as atrial fibrillation, are present in individuals. Attempts are 
also underway to develop new methods to analyze normal and abnormal cardiac activity 
in patients to better assess the risk of fatal arrhythmias before they occur. 

1. INTRODUCTION

 Over the course of our lives, our hearts will beat approximately 2  109

times. Although we have the impression that the rhythm is quite regular, there is 
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a normal fluctuation with the respiratory cycle, called respiratory sinus arrhyth-
mia. In addition, there is a modulation of the periodicity of the normal heartbeat 
in response to changing demands of the body and the operation of a variety of 
feedback and control mechanisms. This normal operation of the heart can be 
disturbed, leading to abnormal cardiac rhythms that are collectively called car-
diac arrhythmias. Cardiac arrhythmias are associated with abnormal initiation of 
a wave of cardiac excitation, abnormal propagation of a wave of cardiac excita-
tion, or some combination of the two. However, despite the apparent simplicity, 
cardiac arrhythmias can manifest themselves in a great many different ways, and 
it is still not always possible to figure out the mechanism of an arrhythmia in 
any given individual. In this essay, I address some of the advances that have 
been made in understanding cardiac arrhythmias theoretically, and indicate sev-
eral directions in which future advances may lead to improved therapies. 
 In order to appreciate the origin of cardiac arrhythmias, it is first necessary 
to have a rudimentary knowledge about the spread of the cardiac impulse in the 
heart (1). The heart is composed of four chambers: the right and left atria, and 
the right and left ventricles (Figure 1). The atria are electrically connected to 
each other, but are insulated from the ventricles everywhere except in a small 
region called the atrioventricular (AV) node. The ventricles are also electrically 
connected to each other. The rhythm of the heart is set by the sinoatrial node 
located in the right atrium, which acts as the pacemaker of the heart. From a 

Figure 1. A schematic diagram of the heart. Adapted with permission from Goldberger 
and Goldberger (1994) (1). 
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mathematical perspective, this pacemaker is an example of a nonlinear oscilla-
tor. Thus, if the rhythm is perturbed, for example by delivering a shock to the 
atria, then in general the timing of subsequent firings of the sinus node may be 
reset (i.e., they occur at different times than they would have if the shock had 
not been delivered), but the frequency and amplitude of the oscillation will re-
main the same. A wave of excitation initiated in the sinus node travels through 
the atria, then through the atrioventricular node, then through specialized Pur-
kinje fibers to the ventricles. The wave of electrical excitation is associated with 
a wave of mechanical contraction so that the cardiac cycle is associated with 
contraction and pumping of the blood through the body. The right and left atria 
are comparatively small chambers and act as collection points for blood. The 
right atrium collects blood from the body and the left atrium collects blood from 
the lungs. The right ventricle pumps blood to the lungs to be oxygenated, 
whereas the left ventricle pumps blood that has returned to the heart from the 
lungs to the rest of the body. The right atrium and right ventricle are separated 
by the tricuspid valve, which prevents backflow of blood during ventricular con-
traction. Similarly, the left atrium and left ventricle are separated by the mitral 
valve. In order to pump the blood, the ventricles are comparatively large and 
muscular. 
 The electrical events associated with cardiac activity can be easily moni-
tored in an electrocardiogram, which is a measurement of the potential differ-
ence between two points on the surface of the body. Since the heart generates 
waves of electrical activation that propagate through the heart during the cardiac 
cycle, the deflections on the electrocardiogram reflect cardiac activity. In the 
normal electrocardiogram, there are several main deflections, labeled the P 
wave, the QRS complex, and the T wave (Figure 2A) (1). The P wave is associ-
ated with electrical activation of the atria, the QRS complex is associated with 
electrical activation of the ventricles, and the T wave is associated with repolari-
zation of the ventricles. The duration of the PR interval reflects the conduction 
time from the atria to the ventricles, typically 120 to 200 ms. The duration of the 
QRS complex reflects the time that it takes for the wave of excitation to activate 
the ventricles. Because of the specialized Purkinje fibers, the wave of activation 
spreads rapidly through the ventricles so that the normal duration of the QRS 
complex is less than 100 ms. The time interval from the beginning of the QRS 
complex to the end of the T wave, called the QT interval, reflects the duration of 
the time the ventricles are in the contraction phase. The duration of the QT in-
terval depends somewhat on the basic heart rate. It is shorter when the heart is 
beating faster. For heartbeats in the normal range the QT interval is typically of 
the order of 300–450 ms. The rate of the heart is often measured by time inter-
vals between two consecutive R waves. Abnormally fast heart rates, faster than 
about 90 beats per minute, are called tachycardia, and abnormally slow heart 
rates, slower than about 50 beats per minute, are called bradycardia. 
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2. TWO ARRHYTHMIAS WITH A SIMPLE 
MATHEMATICAL ANALYSIS

 Even a cursory examination of electrocardiograms from some patients ex-
periencing a cardiac arrhythmia would convince a mathematician or a mathe-
matically oriented physician that there must be an underlying mathematical 
theory. To illustrate this observation, I consider a class of cardiac arrhythmias 
associated with conduction defects through the AV node. In Wenckebach 
rhythms there is a normal sinus rhythm, but not all atrial activations propagate to 
the ventricles, leading to rhythms in which there are more P waves than QRS 
complexes. It is common to classify Wenckebach rhythms by a ratio giving the 
number of P waves to the number of QRS complexes. For example, Figure 2B 
shows a 3:2 Wenckebach rhythm. In the 1920s, van der Pol and van der Mark 
developed a mathematical model of the heart as coupled nonlinear oscillators 
that display striking similarities to the Wenckebach rhythms (2). 
 Subsequently, a number of studies have demonstrated striking mathematical 
characteristics of Wenckebach rhythms (3–7). The basis of these formulations is 

Figure 2. Sample electrocardiograms. In all traces one large box represents 0.2 s. (A) The 
normal electrocardiogram. The P wave, QRS complex, and T wave are labelled. (B) 3:2 
Wenckebach rhythm, an example of second-degree heart block. There are three P waves for 
each R wave in a repeating pattern. (C) Parasystole. The normal beats, labelled N, occur with a 
period of about 790 ms, and the abnormal ectopic beats, labelled E, occur with a regular period 
of 1300 ms. However, when ectopic beats fall too soon after the normal beats, they are 
blocked. Normal beats that occur after an ectopic beat are also blocked. If a normal and ectopic 
beat occur at the same time, the complex has a different geometry, labelled F for fusion. In this 
record, the number of normal beats occurring between ectopic beats is either 4, 2, or 1, satisfy-
ing the rules given in the text. Panels A and B are adapted with permission from Goldberger 
and Goldberger (1994) (1). Panel C is adapted with permission from Courtemanche et al. 
(1989) (16). 
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to assume that the conduction time of the ith beat through the AV node, AVi, is a 
function F of the recovery time since the passage of the last excitation through 
the AV node, which is designated VAi–1. Assuming that there is a periodic atrial 
stimulation, either from the sinus node or by an artificial pacemaker with a pe-
riod AA, we find (5) that 

AVi = F(VAi–1) = F(k AA – AVi–1), [1] 

where k is the smallest integer such that k AA > , being the refractory period 
of the AV node. Typically, the recovery curve F is a monotonically decreasing 
curve. In this case, it is possible to demonstrate mathematically that, if the prop-
erties of the AV node are fixed, as the frequency of atrial activation is increased, 
different types of N:M heart block, where N is the number of sinus beats and M
is the number of ventricular beats in a repeating sequence, can be observed. If 
there is N:M heart block at one stimulation frequency and N':M' heart block at a 
higher frequency, then N+N':M+M' heart block is expected at some intermediate 
stimulation frequency (4–7). This result provides a mathematical classification 
complementary to the cardiological classification, and can be confirmed in clini-
cal settings. Experimental and clinical studies have also demonstrated that these 
basic properties of Wenckebach rhythms can be observed in normal mammalian 
hearts as the atrial activation rate is increased (5–7). However, careful analysis 
of data shows that the above generalizations need to be modified. For example, 
if the atria are stimulated at a rapid rate so that 1:1 conduction is lost, there can 
often be an evolution of rhythms over a course of several minutes so that fewer 
atrial activations are conducted to the ventricles over time (8). In other circum-
stances, as the atria are stimulated at a rapid rate that still is associated with 1:1 
conduction, there can be an alternation or other complex fluctuation of conduc-
tion time through the AV node (9,10). These effects are associated with changes 
in the properties of the AV node during rapid activation. 
 A different type of rhythm that is appealing to mathematicians is called 
parasystole. In the "pure" case, the normal sinus rhythm beats at a constant fre-
quency, and an abnormal (ectopic) pacemaker in the ventricles beats at a second 
slower frequency (11). Figure 2C labels the normal (N) beats and the ectopic (E) 
beats. If the ectopic pacemaker fires at a time outside the refractory period of the 
ventricles, then there is an abnormal ectopic beat, identifiable on the electrocar-
diogram by a distinct morphology from the normal beat, and the following nor-
mal sinus beat is blocked. If the normal and abnormal beats occur at the same 
time, this leads to a fusion (F) beat. This simple mechanism has amazing conse-
quences. These can be appreciated by forming a sequence of integers that counts 
the number of sinus beats between two ectopic beats. In general, for fixed sinus 
and ectopic frequencies and a fixed refractory period, in this sequence there are 
at most three integers, where the sum of the two smaller integers is one less than 
the largest integer. Moreover, given the values of the parameters, it is possible to 
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predict the three integers. Clinical studies demonstrate the applicability of these 
results to patients with an artificial parasystolic pacemaker produced by periodi-
cally stimulating the ventricles with an intracardiac catheter at a fixed rate (12). 
The mathematics for this problem is related to the "gaps and steps" problem in 
number theory (13). 
 Just as with Wenckebach rhythms, careful examination of data in patients 
shows ways in which the simple model of pure parasystole is not followed ex-
actly. In some patients, the parasystolic pacemaker is reset, or modulated by the 
beat originating at the sinus node (14–16). In addition, although the model 
makes predictions of the exact timing of ectopic beats, in some cases there are 
unexpected missed ectopic beats. To account for such observations, the presence 
of stochastic mechanisms that affect the timing of the parasystolic beats has 
been hypothesized (17). 
 Both Wenckebach rhythms and parasystole can be used to illustrate the im-
portant mathematical concept of universal bifurcations (6). Thus, for both these 
rhythms, changes in the parameters in the model (e.g., the frequency of the sinus 
beat, the frequency of the ectopic beat, or the parameters specifying the quantita-
tive properties of the AV node or resetting of the parasystolic focus by the sinus 
beat) will nevertheless lead to the same sequences of rhythms, but the exact val-
ues at which any rhythm appears will be different from person to person. How-
ever, the observation that the sequence of dynamic behaviors will be the same is 
a triumph of mathematics and also provides a fundamental mathematical expla-
nation why the same similar rhythms appear in different people, in whom the 
anatomical and physiological properties of the heart must necessarily differ. 
However, both Wenckebach rhythms and parasystole are diagnosed and treated 
when necessary, by physicians who have no knowledge of the underlying 
mathematics. Further, it is not clear how knowledge of the mathematics could 
lead to improvements in the therapy. Thus, at the current time the mathematical 
analyses are not relevant to the practice of medicine. 

3. REENTRANT ARRHYTHMIAS

 From a medical perspective, the most important class of arrhythmias are 
called reentrant arrhythmias. In these arrhythmias, the period of the oscillation is 
set by the time an excitation takes to travel in a circuitous path, rather than the 
period of oscillation of a pacemaker (18). In some cases the reentrant circuit can 
be found in a single chamber of the heart. For example, in typical atrial flutter, 
there is a wave circulating around the tricuspid valve in the right atrium, and in 
some patients who have had a heart attack there is reentrant circuit entirely con-
tained entirely in the ventricles. In contrast, in Wolf-Parkinson-White syndrome, 
there can be excitation following the normal excitation pathways from the atria 
to the AV node to the ventricles, but then the excitation is conducted retro-
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gradely back to the atria via an abnormal accessory pathway between the ventri-
cles and the atria. In all these reentrant arrhythmias, a part of the circuit is be-
lieved to be a comparatively thin strand of tissue. Cardiologists often conceive 
of the reentrant rhythm as traveling in a one-dimensional ring (18). This has an 
important implication for therapy: "if you cut the ring, you can cure the rhythm." 
By inserting catheters directly into a patient's heart and delivering radio-
frequency radiation to precisely identified loci, the cardiologist destroys heart 
tissue and can often cure these serious arrhythmias. In these cases, the cardiolo-
gist is thinking like a topologist since changing the topology of the heart cures 
the arrhythmia. 
 Although the conceptualization of a wave traveling on a one-dimensional 
ring seems overly simplistic, from perspectives of both mathematics and medi-
cine there are several interesting consequences (19). Experimental systems, 
simulations, and theoretical analyses have demonstrated that waves circulating 
on one-dimensional rings may experience an instability such that the circulation 
is not constant but there can be a complex fluctuating propagation velocity that 
arises as a consequence of the interaction with the wavefront with its own re-
fractory tail (20–23). In addition, if a single stimulus is delivered to the medium 
during the course of the reentrant propagation, the propagating wave will either 
be reset or annihilated (21,24–26). Further, periodic stimulation can lead to the 
entrainment or annihilation of the propagating wave (25–27). Finally, a se-
quence of premature stimuli delivered to the heart during normal sinus rhythm 
can often lead to the initiation of tachycardia. 
 In some clinical settings, analysis of the resetting, entrainment, and initia-
tion of tachycardias offers clinicians important clues about the mechanism, and 
consequently can help the cardiologist choose an appropriate therapy (18,28). 
The ability to induce monomorphic ventricular tachycardia using a sequence of 
up to three premature stimuli is often taken as an indication of a reentrant 
mechanism for the tachycardia. In such cases, resetting and entrainment of the 
induced tachycardia can help the cardiologist localize a site for ablation. For 
example, using intracardiac catheters cardiologists might attempt to identify an 
anatomical locus that has the following characteristics during a monomorphic 
ventricular tachycardia: (i) activation of the site occurs at a fixed time interval 
before the appearance of a deflection on the surface electrocardiogram; (ii) dur-
ing periodic pacing at a rate slightly faster than the tachycardia from that site, 
the time interval from the stimulus to the surface deflection on the electrocar-
diogram is the same as during the spontaneous rhythm; and (iii) during periodic 
pacing, the morphology of the tachycardia on a 12-lead electrocardiogram is 
identical to what is observed during the tachycardia. If these three criteria are 
satisfied, the cardiologist would identify the site as part of the reentry circuit and 
would target it for ablation. Recent advances in mapping of arrhythmias and in 
the ability to identify suitable anatomical sites for ablation based on an under-
standing of the anatomical substrate of arrhythmias have further advanced the 
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therapy of tachycardia, even without a detailed mathematical analysis of these 
arrhythmias (29). Thus, although the precise mathematical analysis of the circu-
lation of reentrant waves on one-dimensional rings is necessarily sophisticated, 
cardiologists have been able to devise a qualitative understanding of the phe-
nomena that enables them to make clinical decisions without carrying out the 
mathematics. 
 Other reentrant arrhythmias are not as well understood and are not as easily 
treated. Many theoretical and experimental studies have documented spiral 
waves circulating stably in two dimensions and scroll waves circulating in three 
dimensions (30,31). Since real hearts are three dimensional, and there is still no 
good technology to image excitation in the depth (as opposed to the surface) of 
the cardiac tissue, the actual geometry of excitation waves in cardiac tissue as-
sociated with some arrhythmias is not as well understood and is now the subject 
of intense study. From an operational point of view, I suggest that any arrhyth-
mia that CANNOT be cured by a small localized lesion in the heart will best be 
described by rotating spiral or scroll waves. Such rhythms include atrial and 
ventricular fibrillation. In these rhythms, there is evidence that there is strong 
fractionation (breakup) of excitation waves giving rise to multiple small spiral 
waves and patterns of shifting blocks (32). Tachycardias can also arise in the 
ventricles in other patients than those who have experienced a heart attack, or 
perhaps occasionally in hearts with completely normal anatomy, and in these 
individuals it is likely that spiral and scroll waves are the underlying geometries 
of the excitation. A particularly dangerous arrhythmia, polymorphic ventricular 
tachycardia (in which there is a continually changing morphology of the electro-
cardiogram complexes), is probably associated with meandering spiral and scroll 
waves (30). 

4. FUTURE PROSPECTS

 To date, there have been significant advances in developing a theoretical 
understanding of the mechanisms underlying complex cardiac arrhythmia and 
this remains an extremely active area for research. Certain trends are clear. The 
advances in computational ability, combined with improved understanding of 
the ionic mechanisms of the action potential, are combining to make feasible 
simulations of extremely complex mathematical models of cardiac propagation 
using physiological and anatomical parameters that are increasingly close to 
those found in real hearts (33,34) (for an excellent review, see this volume, Part 
III, chapter 3.2, by Winslow). Although it is not yet possible to combine realistic 
mathematical models of the electrical activity with realistic mechanical models 
of the heart's pumping, computational advances in modeling the mechanical 
properties of whole hearts have succeeded in generating flow patterns in the 
beating heart similar to what is observed (35). Given current trends and the de-
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veloping expertise, it is likely that at least over the next decade there will be 
increasingly realistic and computationally expensive models of electrical and 
mechanical wave propagation in human heart. Although most studies to date 
have focused on ventricular tachycardia, ventricular fibrillation, and atrial fibril-
lation, realistic models should be able to incorporate anatomical and physiologi-
cal abnormalities that are associated with other arrhythmias, and consequently it 
is likely that mathematical models of other arrhythmias will likewise be gener-
ated.
 In parallel with the development of models of arrhythmias, I anticipate 
work will be carried out on the mathematical analysis and modeling of arrhyth-
mias in people. Although there is a large clinical literature describing various 
arrhythmias, there is still lots of room for theoreticians to dive into this literature 
to develop testable models of arrhythmia. One aspect that such models will nec-
essarily have to deal with is the often paroxysmal starting and stopping of ar-
rhythmia. In some cases, if it were possible to predict the onset of the arrhythmia 
before it occurred, then it might be possible to take corrective steps to avert the 
arrhythmia. I feel certain that if more theoreticians took time to examine the 
records of patients experiencing arrhythmias, they would find the data compel-
ling. To understand the clinical data, it will be necessary to examine experimen-
tal and mathematical models of the heart in which there is a spontaneous 
initiation of arrhythmia, in contrast to most current mathematical models in 
which arrhythmia is induced by delivering a stimulus or series of stimuli to the 
heart.
 Tissue cultures of cardiac cells grown in various geometries often exhibit 
the spontaneous generation of reentrant arrhythmias (36–39). Figure 3 shows an 
example of a burst of activity in tissue culture. Mathematical models that incor-
porate spontaneous activity, excitability, heterogeneity, and a decrease of excit-
ability following rapid activation typically show a range of parameter values in 
which there is spontaneous initiation and termination of reentrant activity (36) 
similar to the paroxysmal rhythms observed clinically. Moreover, in heteroge-
neous excitable media, plane waves may spontaneously break up into spiral 
waves over intermediate ranges of coupling between the cells (40). Therefore, 
this approach gives insight into how complex cardiac rhythms may spontane-
ously arise as a consequence of physiological and anatomical changes that re-
duce excitability and/or increase heterogeneity. I expect that an ability to 
manipulate the geometry combined with the potential to manipulate the ionic 
components of cells using molecular biology techniques, and the use of optical 
methods to record rhythms over extended spatial areas for extended periods of 
time, should make tissue cultures an excellent preparation for future studies of 
complex arrhythmia. 
 The treatment of cardiac patients has undergone a remarkable development 
and evolution over the past two decades. The advances are due to many factors, 
including medications to better control hypertension and blood lipids; a variety 
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of procedures and medications that can reduce the incidence and mitigate the 
consequences of cardiac infarcts; devices such as pacemakers, antitachycardia 
pacers, and defibrillators that help to control the cardiac rhythm; and ablation 
procedures that can help eliminate the anatomical substrate of some types of 
arrhythmia. Although some of this work involves sophisticated technology, this 
technology has largely been developed by engineers working in collaboration 
with cardiologists. To date, the sorts of nonlinear theoretical insights that have 
been discussed above have not provided a significant impetus or contribution to 
the advances. An interesting question is whether nonlinear dynamical analyses 
will be helpful in the development of new medical approaches or the improve-
ment of current approaches. At the moment several new strategies are being 
explored. 
 There are many different algorithms that are being developed to help assess 
the risk of sudden cardiac death. One of these approaches is based on the obser-

Figure 3. A burst of activity recorded using a calcium-sensitive fluorescent dye in a tissue cul-
ture preparation of embryonic chick heart cells. The isochronal maps below the tracing show the 
evolution of the activity at different stages of the burst. Adapted with permission from Bub, 
Glass, and Shrier (1998) (36). 
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vation that alternation of the T wave on the electrocardiogram is correlated with 
a higher risk of sudden cardiac death (41,42). Since the T wave is associated 
with action potential duration, and alternation of action potential duration can be 
associated with a period-doubling bifurcation (43), one possible origin of T-
wave alternans is a period-doubling bifurcation induced by rapid cardiac rates. 
T-wave alternans could also arise from a 2:1 block in some regions of the heart 
and a 1:1 conduction in other regions. Independent of the cause of the alternans, 
the attention to this abnormality provides a new medical approach to the assess-
ment of risk of sudden death. Others have noted that reduced heart rate variabil-
ity is correlated with a higher risk for sudden death (44,45). Since reduced heart 
rate variability would be expected in patients with impaired ventricular function 
and elevated sinus rate associated with higher circulating catecholamines, it 
might not be surprising that reduced heart rate variability is associated with a 
higher risk of sudden death. It seems clear that there is an enormous amount of 
information hidden in the fluctuations of the sinus rate and in the dynamics of 
arrhythmias in patients who have intermittent arrhythmias. For example, ar-
rhythmias with frequent premature ventricular contractions that appear to be the 
same if looked at superficially are in fact quite different when the dynamics are 
dissected in detail, and only rarely has it been possible to find a good theoretical 
understanding of the mechanisms consistent with the observed dynamics over 
long periods. In order to find quantitative agreement between computed ar-
rhythmias based on mathematical models and observed arrhythmias, it may be 
necessary to use stochastic models (17,46). Since the opening and closing of 
single ion channels assume stochastic mechanisms, a physiological basis for 
stochastic macroscopic behavior may exist. Indeed, recent theoretical models of 
cardiac cells have employed stochastic models for ion channels dynamics to 
help interpret experimental data (47) (see also Part III, chapter 3.2, by Winslow). 
 Algorithms for assessment of arrhythmia may be helpful in other ways. Tat-
eno and I have developed a method to assess the presence of atrial fibrillation 
based on the timing of ventricular complexes. The basic idea is to compare the 
histogram of the changes in RR intervals (for a given mean RR rate) with stan-
dard histograms collected from patients experiencing atrial fibrillation (48). This 
type of algorithm might be implemented in a portable device, and so might be 
helpful in assessing the incidence of atrial fibrillation in a patient at risk or as-
sessing the efficacy of drug therapy in a patient who has atrial fibrillation. 
 Work is also underway to develop new methods to stimulate the heart to 
control or terminate arrhythmia (49). Simulations of defibrillation combined 
with experimental studies might be useful in helping to improve the shapes and 
placement of electrodes or the optimal wave form for defibrillation. In addition, 
new methods might be found to regularize or terminate arrhythmias. Current 
medical devices now use pacing protocols to terminate tachycardias, but it is 
possible that theoretical analyses and simulation of arrhythmia might yield im-
proved algorithms (25,26). In addition, alternating reentrant cardiac arrhythmias 
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involving the AV node have been regularized by premature atrial stimulation in 
both animal models (50) and in people (51). The possibility exists that more 
complex arrhythmias such as atrial or ventricular fibrillation might also be con-
trolled by stimulation (52,53). 
 In recent years, there has been an increasingly interdisciplinary research 
environment in which experts in the mathematical aspects of arrhythmias are 
being teamed with experts in physiology and clinical problems. It will be inter-
esting to see if the development of our theoretical understanding of the mecha-
nisms of cardiac arrhythmias will lead to a comparable improvement in medical 
procedures. 
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HOW DISTRIBUTED FEEDBACKS FROM 
MULTIPLE SENSORS CAN IMPROVE SYSTEM 

PERFORMANCE: IMMUNOLOGY AND 
MULTIPLE-ORGAN REGULATION 

Lee A. Segel 
Department of Computer Science and Applied Mathematics,  
Weizmann Institute of Science, Rehovot, Israel 

Complex physiological entities such as the immune system can be regarded as possessing 
multiple goals. Sensors reflect information on goal performance as well as general 
physiological state. As is illustrated here with a simple immunological model, in a dis-
tributed and generalized version of classical feedback this information can be used to im-
prove system goal attainment. In the immune system it is cytokines that transmit the 
sensory information. The concept of distributed feedback to improve multiple-goal per-
formance is shown to be of possible relevance to multiple organ dysfunction syndrome 
and its therapy.

1. INTRODUCTION

 The human immune system is composed of about a trillion cells. There are 
dozens of cell types and hundreds of signalling chemicals. The immune system 
plays a variety of homeostatic roles, such as helping to direct wound healing, but 
its main job is controlling the myriad pathogens that roam the body. Pathogens 
do not passively await immune destruction; they have evolved various evasive 

Address correspondence to: Lee A. Segel, Department of Computer Science and Applied Mathemat-
ics, Weizmann Institute of Science, Ziskind Building #24, 76100 Rehovot, Israel (lee.segel 
@weizmann.ac.il). [See acknowledgments, p. 435.] 



426 L. A. SEGEL 

tactics such as the adoption of changing "disguises" and the secretion of mole-
cules that interfere with immune system communication. The trillion-cell im-
mune "army" has no general; signals from the brain modulate the action of the 
immune system to some extent but do not control its detailed performance. 
 In this essay I shall survey some of my attempts, with colleagues, to apply 
theoretical investigations in order to better understand what controls the immune 
system, with emphasis on ideas that might be of interest to physicians. A unify-
ing concept is the role of information, defined simply as "knowing what's going 
on," in guiding immune system performance and medical interventions. 
 Before beginning the main body of this chapter, let me note that a natural 
analogy of the principal task facing the immune system is the task facing the 
physician in curing disease, or at least blunting its impact. I have argued that a 
better analogy is with a public health system (1). Such a system may well have 
to contend with several diseases at once, selected from a wide spectrum of pos-
sibilities. Triage is a key problem: how to allocate the available resources ap-
propriately to meet a changing panoply of challenges. Feedbacks are essential to 
the proper operation of a public health system. As information flows in concern-
ing the performance of the system, shifts in resource allocation can be made to 
better contend with changing circumstances. 

2. THERAPY AS AN INFORMATION-YIELDING PERTURBATION

 Shochat and colleagues (2) constructed a detailed model (about 25 differen-
tial equations, almost 40 parameters) for multiple hematopoietic stages, starting 
from pluripotent stem cells and ending in the generation of monocytes and po-
lymorphonucleic cells (PMN). The role of granulocyte colony-stimulating factor 
(G-CSF) was taken into account. Values for all but five parameters could be 
found in the literature. The remaining parameters were estimated by requiring 
model predictions to match data on blood counts of monocytes and PMN. Of 
crucial importance were measurements of shifting monocyte and PMN levels by 
frequent blood counts routinely taken in patients during high-dose chemotherapy 
followed by autologous peripheral blood stem cell transplantation and injection 
of G-CSF. (The lymphoid lineage was neglected in the model, since appropriate 
data were not available.) By choosing parameters to minimize the least-squared 
difference between the actual blood counts and the theoretical predictions, Sho-
chat et al. produced estimates of parameters that cannot as yet be measured di-
rectly in humans, notably stem cell density and division rate. The calibrated 
model was used to explore alternative strategies to reduce the post-transplant 
nadir period of deficient immunity. One somewhat surprising suggestion is that 
G-CSF injections before day 5 post-transplant may have little influence in di-
minishing the nadir period. 
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 Shochat and colleagues (2) showed how strong physiological perturbations 
induced by medical therapy can generate data that can yield both quantitative 
and qualitative insights, provided the data are compared with predictions of a 
suitable quantitative model. Another example is the comparison in (3) of viral 
counts with model predictions following administration of a protease inhibitor to 
HIV patients. This and related work established that, although progression to 
AIDS may take many years, viral turnover is nonetheless rapid, mandating mul-
tiple-drug therapy to avoid fast viral evolution to drug resistance. 

3. EMPLOYING INFORMATION ON PROGRESS TOWARD 
MULTIPLE GOALS TO REGULATE THE IMMUNE RESPONSE

3.1. Multiple Goals

 Together with R. Bar-Or, I have argued that it is useful to regard the im-
mune system as simultaneously pursuing a variety of overlapping and conflict-
ing goals (4) (see also this volume, Part II, chapter 5, by Krakauer). Examples of 
such goals are avoiding harm to self, killing dangerous pathogens, and acting 
quickly against such pathogens, but acting economically. In the face of ever-
shifting challenges, the immune system monitors how it is doing with respect to 
these goals by means of various sensors and uses the information thereby ob-
tained to shift its actions in order to improve performance with respect to the 
variety of goals. In view of the information gleaned, performance can be im-
proved by selecting suitable effector classes for expansion and others for con-
traction (Th1 vs. Th2, choice of isotypes). Moreover, within a given effector 
class, sensor-based information can be used to improve performance (when 
should a given class be deployed, when expanded, when contracted). 
 To gain more insight concerning this role of sensors, see (5) for an exami-
nation of how partial information from sensors can improve performance in a 
"team" version of the game Connect Four. A team that can gather and utilize 
information even slightly more effectively tends to win. If one thinks of a team 
as a model complex organism, then the results of many contests will lead to the 
evolution of organisms with gradually improving information capabilities. By 
monitoring what sensors give superior performance, one is led to the possible 
characterization of performance in terms of goals, that is, to obtain the ultimate 
goal of Four in a Row (analogous to survival of the organism) there are a variety 
of intermediate goals, represented, for example, by board configurations that are 
worth striving for. 

3.2. A Model Immune system: Conflicting Roles of a Noxious Chemical

 Here is a sketch of a simple model that illustrates some of the issues. Con-
sider a population of pathogens that in isolation grows exponentially at rate r.
Imagine an effector cell E of the immune system that kills pathogens P at a rate 
kEP (mass action assumption), where k depends on various factors. Suppose in 
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particular that k is an increasing function of the concentration N of a noxious 
chemical [k = k(N)] that is secreted by E at rate s. (Think of E as macrophages, 
which require an intracellular but leaky "poison" such as nitric oxide to dispose 
of ingested pathogens.) The proliferation rate of E is proportional to P (the pres-
ence of pathogens induces an immune response); both E and N are supposed to 
have a finite half-life. We will assume that over evolutionary time immune sys-
tems that are described by our model would evolve to diminish the average harm 
 that the body sustains by the joint presence of pathogens and noxious chemi-

cal. Suppose for simplicity that the rate of doing harm to the body by pathogens 
P and noxious chemical N is simply hPP + hNN, where hP and hN are constants. 
The equations of this model are given in the Appendix. There the simplifying 
assumption is made that k(N) = aN, where a is a constant. 
 Computer simulations of the model demonstrate that there is a rate of secre-
tion s* that minimizes  (4). If its secretion rate s is too large, noxious chemical 
N causes great harm; if s is too small, pathogens P are not controlled. Accord-
ingly, one indeed expects the existence of an optimal secretion rate s*. But s*
depends on the parameters of the model, particularly pathogen growth rate r.
The faster the pathogen grows (the bigger r) the more noxious chemical 
N should be secreted to kill them, in spite of the harm done by N. Consequently, 
in the face of the shifting nature of the pathogen population, no "top–down" 
fixed choice of the secretion rate s can provide effective and economical im-
mune response. Analogous difficulties are faced in selecting immune responses 
of other types. 
 One way to deal with the difficulty is to evolve an immune system that can 
detect telltale signs of a variety of pathogens and hence deal suitably with the 
different types (6,7). In view of the fast mutability of which many pathogens are 
capable, I have suggested that this "reflexive" response must be supplemented 
by an ability to sense how well the response is working and to alter it in view of 
this sensory information. As will now be shown, our simple model of the action 
of a noxious but essential chemical N can be modified to illustrate the issues. 

3.3. Chemicals that Supply Information Concerning Progress  
toward Conflicting Goals

 In our modified model, we shall assume that evolution has selected immune 
systems that can be characterized by just two goals: killing harmful pathogens 
and avoiding harm to self generated by the immune system. These goals are 
partially contradictory; the pathogen-destroying inflammatory process harms the 
host. In particular, intracellular pathogens are fought by destroying the cells 
where the pathogens reside. Suppose that information is available concerning 
immune performance in the form of a kill chemical K (whose presence is associ-
ated with pathogen destruction) and a harm chemical H (whose presence is asso-
ciated with harm to the host). Possible kill indicators K include N-formyl 
peptides, palindromic DNA sequences, CD-1 ligating intracellular fragments 
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(such as mycolic acid) of Gram-negative bacteria, and heat-shock protein (HSP) 
epitopes that are characteristic of bacteria (1,8). Also see (9) for a discussion of 
how bacterial CpG DNA motifs (unmethylated cytosine-guanosine dinucleo-
tides), acting as kill indicators, can guide an appropriate choice between Th1 and 
Th2 helper T cells. An example of a harm chemical is a heparin sulfate fragment 
resulting from the cleavage of the extracellular matrix by heparanase. Another 
possibility is a host-specific epitope of heat shock protein. (1). 
 To monitor progress toward its two goals, the immune system must be able 
to sense the presence of harmful pathogens (which should upregulate the im-
mune response). In addition, sensors must detect harm due to the immune sys-
tem (whose presence should downregulate the immune response). One way to 
accomplish this is to assume that the harm HP due to pathogens is represented by 

HP = H/(1 + kN),   k a constant, [1]

where the complement to HP represents the harm HI done by the immune system, 
via the noxious chemical N:

HI = H – HP. [2] 

Indeed, we see from [1] that when N is large HP is small and HI = H, i.e., almost 
all harm to the host is done by the immune system. By contrast, if N is small, H

HP, and almost all the harm is done by the pathogens. "Killing harmful patho-
gens" can be sensed by monitoring KHP. If KHP is large there is much pathogen 
killing (large K) and pathogens are causing much harm (large HP). Note that new 
information is obtained by combining simpler information. Note also that such 
combinations are well within the capability of the complex intracellular interac-
tions that characterize the internal affects of ligating a receptor on a cell surface. 
 Returning to our simple example, we implement as follows the assumption 
that the immune response, in this case the noxious chemical secretion rate s,
should be elevated by evidence (KHP) of killing harmful pathogens and should 
be downregulated by evidence (HI) that the immune system is causing harm to 
self: 

2
1

3 41
p

I p

s KH
s s

s H s KH
= +

+ +
. [3] 

(In Eq. [3], s1, s2, s3, and s4 are constants.) To complete our model, we must spec-
ify the secretion and decay processes that govern the information chemicals H
and K. To that end, let H be produced at a rate that is proportional to the rate hPP
+ hNN at which harm is done to the host, and let K be produced at a rate propor-
tional to the rate aNPE at which pathogens are killed by effectors (compare Eqs. 
[A4] and [A2]). Suppose further that both H and K have a finite half-life. In the 
Appendix, these assumptions are translated into Eqs. [A5] and [A6] for the con-
centrations of K and H.
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 Computer simulations of Eqs. [A1]–[A6] indeed show, not surprisingly, that 
monitoring information on progress toward multiple goals can improve immune 
performance, in the sense of decreasing average harm . The system "automati-
cally" adjusts itself for efficient combat when faced by pathogens of varying 
virulence. Moreover, even a given pathogen is better handled, compared with 
the control "no information model," by secreting N only when it is needed and 
turning secretion off when the pathogen threat is no longer serious (4). 
 I have described a simple model that shows how the deployment of a given 
immune system arm (effectors working via noxious chemicals) can use sensed 
information to improve performance. This material is summarized in Table 1. 
See (4) for a model that illustrates how sensed information can bias an immune 
system to choose appropriately among a variety of possible effector arms. 

Table 1. Possible immune system "goals" and how they might be achieved 

SENSING GOALS 

                  Goal                                                                     To be sensed 

Identify dangerous pathogen High harm H AND (low noxious N OR 
 high pathogen P)

Identify harm to self High harm H AND (high noxious N OR 
 low pathogen P)

PERFORMANCE GOALS 

                Goal                                                                            Action 

Kill dangerous pathogens Positive feedback to N secretion when 
sensors reveal dangerous pathogen and 

 pathogen killing K

Avoid harm to self Negative feedback to N secretion when
sensors reveal dangerous pathogen and

 pathogen killing K

Note. Actuator effect of sensor information is mediated by cytokines. 
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4. CYTOKINES

 In our model, we postulated "information molecules" H and K that were 
elevated when harm was done to the host or when pathogens were being killed. 
The levels of H and K were assumed to directly modify cellular behavior. In 
fact, matters are more complicated. Information molecules typically bind to cel-
lular receptors, which in turn induce the secretion by the cell of signalling mole-
cules that can be lumped under the term "cytokines." To give one example, there 
is evidence that mycobacterial 65-kD heat shock protein induces T cells to se-
crete tumor necrosis factor (TNF) and, later, interleukin-6 (IL-6) and IL-8 (10). 

4.1. The Observed Actions of Cytokines

 Matters might be simple if there were a one-to-one correspondence between 
the appearance of a cytokine and the triggering of some task or function. But 
that is not the case. Indeed, consider the following points cI–cIV that character-
ize the pleiotropic action of cytokines (1,8). 
 (cI) Upon ligation of receptors, several cytokines are normally produced. 
Here are three examples: (i) ligation of the LPS (lipopolysaccharide) receptor 
induces IL-1, 6, 8, 12 and TNF ; (ii) ligation of the Fc  receptor by IgG induces 
IL-10; and (iii) ligation of scavenger receptors by apoptotic bodies induces 
TGF , PGE-2 and PAF. 
 (cII) A cytokine often effects several actions of a given cell (for example, 
IL-4 influences switches to IgM, IgG, and IgE). 
 (cIII) Sets of cytokines can induce a variety of different actions of different 
cells, for example, ligation of the LPS receptor induces B cells to increase anti-
body production and switch toward the IgG isotype, liver cells to secrete acute 
phase proteins, hypothalamus cells to elevate body temperature, neutrophils to 
become mobilized, and vascular cells to be more permeable. 
 (cIV) A given function is typically affected by several cytokines (the IgG 
switch is affected by IL-2,4,6 and interferon- ).
 The standard view of cytokines, and it is a correct one, is that cytokines 
command. (The switch from IgM to Ig is "commanded" in B cells, at least in 
vitro, by the list of cytokines in cII above.) In the language of control theory, in 
this view cytokines are the front end of the actuator machinery that is activated 
by sensor-receptors. 

4.2. Cytokines as Bearers of Information

 I propose an alternative view: that cytokines transmit information. I believe 
that regarding them as bearers of information is another correct way to charac-
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terize cytokine actions, and one that is sometimes more useful than characteriz-
ing cytokines as inducers of commands. 
 Insight into the reasons for pleiotropic properties cI–cIV of cytokines is 
provided when they are regarded as providers of information. For example, it is 
appropriate that the same cytokine-encoded information induces different re-
sponses in different cells, for different cell types should play different roles in 
different situations. In one situation cell type  should fade away, as it cannot 
help, while cell type  should multiply and migrate to the site of the threat. In 
another situation, the roles of  and  should be interchanged. (An analogy is a 
scenario wherein hearing the chords of a marching band attracts Sunday drivers 
with children to entertain and repels those on the way to catch a plane.) For ex-
ample, ligation of the LPS receptor induces the secretion of a panel of cytokines 
(see cI); these carry the message "Gram-negative bacteria are present." In re-
sponse, a variety of appropriate actions are induced in different cell types (see 
cIII). That a given response can be triggered by a variety of cytokines (cIV) can 
be understood since several different sensed conditions, and hence several dif-
ferent cytokine-coded information packets, could well trigger the same cellular 
action (e.g., switch from IgM to IgG) as part of an appropriate response. 
 With respect to their command function, it is easy to find out what cells 
produce the various cytokines (see, e.g., appendix II in (11). By contrast, in-
creased understanding of the role played by cytokine-borne information requires 
adding to available knowledge on what cytokines are induced by various recep-
tor ligations. 

5. CONTENDING WITH MULTIPLE INDEPENDENT GOALS

 In §3.2 and 3.3 it has been implicitly assumed that the two goals—"kill 
dangerous pathogens" and "avoid harm to self"—are both aspects of a single 
comprehensive goal of avoiding harm to the host, whether by pathogens or by 
the immune system. Yet, this assumption may not be ideal, for different types of 
harm are effected by pathogens and by the immune system itself. 
 Perhaps it is better to regard the two goals (which are a theoretical con-
struct) as independent. Assuming multiple independent goals certainly seems a 
sensible way to characterize the interconnected physiological system that deals 
with respiration, circulation, digestion, metabolism, neurological information 
processing, etc. Indeed, just the metabolic subsystem is faced with the multiple 
task of keeping myriad important chemicals at appropriate levels. A related 
metabolic task is allocating resources between maintenance and growth (12). 
 We have made progress in constructing a biologically plausible method to 
improve performance under the assumption that different performance goals are 
completely independent (N. Rappaport and L. Segel, unpublished). The idea is 
to adapt the "algorithm" used by bacteria that tend to swim toward certain 
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chemicals that attract them and to swim away from other chemicals that repel 
them (chemotaxis). The bacteria proceed in more or less straight lines for a cer-
tain period. This is called a "run." However, there is always a probability that the 
bacteria will suddenly "tumble," which amounts to choosing a new run direction 
at random. If the bacteria sense an increasing concentration of an attractant or a 
decreasing concentration of a repellent, then the tumble probability decreases. 
Thus, the bacteria persist longer in favorable behavior. This engenders a chemo-
tactic drift. 
 The described behavior of chemotactic bacteria has been suggested as the 
basis for a mathematical algorithm for finding a point that maximizes some 
function f of three variables x, y, z. (See (13) for a recent exposition.) A "chemo-
tactic" point (x,y,z) runs and tumbles until it approaches a maximum of f.
 Suppose now that two different desiderata are simultaneously present, to 
maximize a function f and also to maximize a second function g. Now let the 
chemotactic point decrease its tumble probability if f is nondecreasing but g is 
increasing, or if g is nondecreasing and f is increasing. Then one expects that the 
point will approach the "Pareto optimum" set, where no change of (x,y,z) can 
result in an increase of either f or g without decreasing the other. Of course, the 
principles enunciated work for functions of arbitrary numbers of variables. 
 The suggested scheme could in principle improve the performance of a bio-
logical system in the face of multiple independent goals, goals that alter as con-
ditions change. (See (14) for examples of multiple goal systems, both biological 
and nonbiological.) Random shifts in tactics could be tried, in attempts to do 
better with respect to at least one goal and no worse with the others. A tactic that 
accomplishes this persists longer before the inevitable random shift to something 
new.

6. RELEVANCE TO BIOMEDICINE

6.1. Cancer Chemotherapy

 In principle, any advance in understanding immune system physiology 
should eventually have medical relevance. In §2 a model of monocyte and PMN 
hematopoiesis was shown to be of possible relevance to cancer chemotherapy. 
Reciprocally, observations of the reaction to the chemotherapy supplied data 
that were essential to calibrate the model. 

6.2. Cytokine Therapy

 There may be a "long-shot" impact on biomedicine of regarding cytokines 
as bearers of information (§4.2). 
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 The classical "command view" of cytokines suggests that suitable cytokines 
can be administered to patients in order to alter harmful physiological condi-
tions. A problem here comes from the pleiotropic nature of cytokine action. Ele-
vation of a cytokine's concentration may have harmful additional effects, aside 
from the desired response. Moreover, varying backgrounds of other cytokines 
may alter the "standard" consequence of administering a given cytokine. 
 There is an alternative approach to "commanding" an immune response that 
seems to the physician to be appropriate. The physician can try to present infor-
mation to the patient's physiological systems, perhaps by suitably chosen and 
timed cytokine doses, perhaps by other means (see below), so that an appropri-
ate response to that information would yield a desired affect. For example, it 
may be thought appropriate to treat an allergy patient by shifting Th2 dominance 
to Th1 dominance. Attempts can be made to command this shift by administer-
ing cytokines that are known to favor Th1 and/or suppress Th2. Alternatively, 
one might inject killed bacteria that normally evoke a Th1 response, or inject a 
panel of cytokines (with proper doses and timings) that are evoked by binding of 
characteristic epitopes of Th1-inducing pathogens. Countering physiological 
information that lead to harmful physiological phenomena can be regarded as an 
alternative version of physicians' classical approach to illness, trying to reverse 
the harmful symptoms. 

6.3. Combating Multiple Organ Dysfunction

 Is there any evidence that the "chemotactic scheme" of §5, randomness with 
drift, has actually been adopted by some organisms to improve performance 
with respect to multiple goals? Remarkably, there is a hint of such evidence 
from Buchman (this volume, Part III, chapter 7.2) in multiple organ dysfunction 
syndrome (MODS). He writes, "analysis suggested that the coupling between 
heart and lungs was not fixed but rather dynamic.... The inference is that health 
may be associated with a search through the space of possible interactions to 
find the one best suited to current physiologic challenges." It might just be that 
the suggested directed random search for better performance in the face of mul-
tiple goals is a fundamental principle of human physiology. 
 One could even speculate further. Buchman gives as one seeming inade-
quacy of conventional MODS treatment that mortality is increased when cal-
cium is administered to correct the subnormal values of calcium characteristic of 
sepsis. In view of such findings, perhaps it is worth thinking of experimental 
intensive care with a "chemotactic strategy." This would involve continually 
shifting and partially random choices of therapies to adjust abnormal values of 
the variety of physiological variables that are traditionally sensed by intensive 
care monitors. Shifts are less frequent when the present tactic is sensed to be 
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successful in improving at least one of the multiple independent goals of the 
multi-organ physiological system. 
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4.2

MICROSIMULATION OF INDUCIBLE 
REORGANIZATION IN IMMUNITY 

Thomas B. Kepler 
Department of Biostatistics and Bioinformatics and Department of Immunology,  
Duke University, Durham, North Carolina 

The immune system is the key interface between the multicellular host and its unicellular 
microbial commensals and pathogens. The cells of the immune system live a life bal-
anced between unicellular autonomy—both physiological and genetic—and multicellular 
cooperation. Transitions between these two modes of operation are induced when the ap-
propriate combination of events occurs and an immune response is triggered. These 
events may be the detection of tissue damage or of conserved microbial molecular motifs, 
and the detection of "non-self" epitopes. The transition is mediated by soluble and cell-
surface bound signaling molecules, and involves the reorganization of cells from inde-
pendently moving agents to functional aggregates. I have developed a model to study the 
properties of such transitions and to inform our thinking about the role of spatial organi-
zation in the immune response. It is an agent-based model evolving in continuous time 
and space, with its agents, representing cells of both microbe and host, interacting via di-
rect contact and via soluble factors. These soluble factors, including host cytokines as 
well as bacterial chemoattractants and toxins, are represented as continuous fields gov-
erned by reaction diffusion partial differential equations. I illustrate the use of the model 
with an examination of microlocal inflammation. 

1. INTRODUCTION

 Somewhere around a billion years ago, the differentiated multicellular life-
style had its debut. This strategy requires that cells abdicate their ability to pro-
liferate unchecked and pass along to progeny the changes accumulating uniquely 
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in their genomes. This remarkable sacrifice gained these cells the ability to co-
operate in the formation of complex spatial structures, which innovation opened 
new ecological niches and allowed these organisms to develop entirely new 
ways to make a living. The terminally differentiated somatic cells of plants and 
animals are provided stable and rich environments within the organism they 
constitute, and they entrust to their germline brethren the propagation of their 
common genome (1). 
 The ecological niches thus made exploitable were opened by virtue of the 
new functionality made possible by the formation of coherent spatial structures 
among the cooperating cells. These tissues and organs enabled the utilization of 
new food sources as well as the distribution of cellular resources to all constitu-
ents of the organism. This organizational innovation, in turn, created a new 
niche for unicellular life. Single-celled organisms are able to take advantage of 
the rich, climate-controlled environment of the multicellular organism even 
without cooperating in the soma-germline pact. Some of these associations have 
led to alternative versions of such a pact, and benefit both the host and the mi-
crobe, but not all of them have. There is ample opportunity for the non-
cooperating microbe to take advantage of the host internal milieu, and thereby 
become parasitic. 
 Those plants and animals that are unable to protect themselves from such 
parasitism suffer loss of replicative fitness relative to those conspecifics that are. 
The rich diversity and elaboration of various forms of host defense that are 
found throughout the multicellular phyla testify to the force of the host–
pathogen relationship as an agent of selection. Indeed, parasitism is credited, 
according to one major hypothesis, as the primary reason for the advantage of 
sexual reproduction (2). 
 The unicellular lifestyle confers a number of advantages to microbial para-
sites—they have compact genomes and short generation times (and lack of sen-
timentality about death). As a result, they are capable of enormous genetic 
plasticity and rapid adaptation to uncertain and fluctuating environments. These 
advantages are so powerful that multicellular host defense has developed its own 
quasi-unicellular organization. The major components of innate immunity in 
animals are motile cells that circulate throughout the body and monitor their 
environment for various signs of infection and damage to host tissues. When 
such signs are encountered, these host cells carry out the effector functions of 
immunity: killing, disarming, or sequestering the pathogen. 
 The cells of the immune system also retain the advantages of multicellular 
tissue organization, however. Immune cells, known in vertebrates as leuko-
cytes, are induced to abandon their strictly independent lives when signals of 
danger and pathogens are detected, and to reorganize into aggregates, 
coordinating their activities to a much higher degree than would otherwise be 
possible. Such behavior is evident in the inducible formation of such complex 
structures as granulomas in response to, e.g., schistosome ova (3) and myco-
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bacteria (4), and germinal centers, where the remarkable process of affinity 
maturation occurs (5). 
 This reorganization is mediated by a complex array of signaling molecules. 
Long-range communication is accomplished by the secretion and binding of 
cytokines, of which there are over 200 distinct types in humans (6). A subset of 
the cytokines, the chemokines, is responsible for the regulation of cell migration 
and trafficking to bring the appropriate cells to the site of infection or the rele-
vant lymphoid tissues (7,8). Short-range interactions are mediated by mem-
brane-bound receptor-ligand systems that are engaged upon direct contact of 
cells bearing the complementary molecules. 
 I am developing microsimulation models to study this essential characteris-
tic of immune systems. These models represent the cellular components as 
agents: computational objects with stochastic internal dynamics that unfold con-
ditioned directly by the state of their "receptors," which states themselves de-
pend on the concentrations of relevant ligands, both soluble and membrane-
bound. These cellular agents migrate stochastically, responding to gradients of 
chemotactic and haptotactic molecules. These molecules, and other soluble fac-
tors, are treated as continua, modeled by partial differential equations with ap-
propriate cell types as sources and sinks. 
 Both the spatial and temporal degrees of freedom are continuous, and the 
overall dynamics are given by a Markov process. 
 This chapter will just begin to address the larger questions of spatial 
organization and inducible reorganization of the immune response during its 
response to infection. I will consider the earliest stages of the immune response 
and focus attention on the phenomenon of microinflammation, by which I mean 
to indicate the dramatic increase in density of phagocytic cells and their aggre-
gation in response to local infection, as well as the local increase in concen-
tration of proinflammatory cytokines that accompanies and mediates this cellu-
lar reorganization. 
 The primary aims of the chapter are twofold. The first is to describe the 
modeling technique, field-coupled agent modeling (F-CAM), in general—the 
use of an agent-based approach for cellular components, their activities and mo-
tions coordinated through fields of continuous variables, the soluble factors, all 
evolving in continuous space and time. The second is to call attention to the po-
tentially pivotal role of spatial organization in a phenomenon as uncomplicated 
(relatively speaking) as the phagocytic response to a sharply circumscribed bac-
terial infection. The importance of spatial organization is addressed within this 
volume in a strikingly different way in Part III, chapter 4.3 (by Perelson, Bragg, 
and Wiegel). 
 In what follows I will first describe key components of the model in 
mathematical detail, then touch briefly upon an illustration of its use to first ana-
lytically, then via simulation. 
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2. MODEL

2.1. General Forms

 The components of the model that will be described here are the soluble 
factors, including cytokines, chemokines, their soluble receptors, and bacterial 
toxins; and cells, including bacteria and phagocytes. 

2.2. Cells

 The number of cells of any given type is not specified in advance, and will 
generally change through division, death, emigration and immigration. Each cell 
has an internal state with continuum and discrete components represented by the 
pair (s,i) where the k-dimensional vector s is the continuum state and i indexes 
the discrete states. This internal state changes according to a Markov process 
whose rates are functions of the cell's external environment denoted by the vec-
tor E(t). If fi(s,t)dv is the probability of finding the cell within the infinitesimal 
volume element dv centered at the state (s,i) at time t, the evolution of the prob-
ability function is given by the equation 
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which can be described by saying that with the discrete state i fixed, the state s
obeys the deterministic ordinary differential equation 
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so that all of the stochasticity comes from the jumps from one discrete state to 
another (9). 
 All cellular types count among their internal variables their post-mitotic age 
and binary variables indicating vital status and mitotic status. Beyond these, any 
number of categorical or numerical degrees of freedom can be included. 
 In practice, the microsimulation generates sample paths of Eq. [1] using the 
corresponding Ito stochastic differential equation. 

2.3. Cell Motility and Chemotaxis

 The motions of the cells are described by stochastic processes that I have 
developed as straightforward generalizations of the Langevin equations. 
 Let the position of a cell be denoted x and its velocity v. Then the motion of 
this cell is treated using the coupled Ito stochastic differential equations 
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dx = vdt, [2] 

1( )md F dt dW= + +v p v , [3] 

and

† 2
2( )( )d d dt dt= +p I pp W u p , [4] 

where p is a unit-vector indicating the direction of the cell's polarization and u is 
a vector giving amplitude and direction of the bias due to the chemotactic fac-
tors. Eq. [2] simply states the usual relationship between velocity and position. 
Eq. [3] describes the variation in speed from both deterministic and random 
sources, given by the external forces F and the internal motive force p, on the 
one hand, and the fluctuating forces described by the three-dimensional Wiener 
process, dW1. The superscript dagger indicates matrix transpose. Eq. [4] de-
scribes biased diffusion of the polarization vector on the surface of the unit 
sphere. The first term gives the stochastic driving term of this process, with in-
tensity ; dW2 is another three-dimensional Wiener process independent of the 
first. The second term arises "automatically" and can be thought of as preserving 
the length of p. The last term represents bias toward the fixed direction given by 
the vector u whose magnitude gives the strength of the bias. The chemotactic 
constant  gives the rate of adjustment toward the preferred direction. 
 The bias vector is related to the local chemokine concentration through 
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2.4. Soluble Factors

 I assign arbitrarily to each soluble factor an index represented by a roman 
letter, and to each individual cell an index represented by a greek letter, for ease 
of description. Designate by ci(x,t) the local concentration of soluble factor i at 
location x and time t. This concentration evolves according to reaction-diffusion 
equations of the form 
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The first term within square brackets on the right-hand side represents the secre-
tion of factor i by individual cell . The secretion rate of this factor by cell  is 

i , and the position of this cell is x (t). The positions of the cellular sources are 
in turn governed by stochastic differential equations (above). Similarly, the latter 
term in square brackets represents adsorption of factor i onto cell . Both the 
secretion and adsorption rates are time-dependent, since both depend on the state 
of cell , which itself changes in time. The first term within curly brackets 
represents diffusion, with diffusion coefficient Di, where 2 is the Laplacian op-
erator. The sum in the middle of the bracketed term represents removal via com-
plex formation with other soluble factors, where Rij is the effective rate of 
removal of soluble factor i by complex formation with factor j. The last term 
represents degradation of factor i or its removal by mechanisms not explicitly 
treated in the model, such as complex formation with factors treated as existing 
at constant concentration or adsorption onto cells likewise treated as static. 
 For the examples in this chapter these partial differential equations were 
integrated using a semi-implicit forward scheme on a 80  80  80 cubic grid. 

2.5. Specific Forms

 I have used this modeling platform to simulate the induction and resolution 
of microlocal inflammation during bacterial infection. This approach should be 
regarded as analogous to an in vitro experiment, in the sense that the compo-
nents are simplified and highly controlled. The components of this specific study 
are nonmotile bacteria and phagocytes. Each bacterial agent has three discrete 
states and a continuous age, as well as position. Each bacterial agent secretes a 
soluble factor chemotactic to phagocytes. Several such factors are familiar, most 
notably N-formyl-methionyl-leucyl-phenylalanine (fMLP). These bacterial 
agents are subject to Brownian motion but are not polarized and do not move 
under their own power. This characteristic is not common to all bacteria, cer-
tainly, but many bacteria of medical significance, including Bacillus anthracis
are nonmotile. 
 The phagocytic agents have three internal states: quiescent, activated, and 
refractory. The transition rate from quiescent to activated is zero in the absence 
of bacteria and proinflammatory cytokine, and is an increasing but saturating 
function of the local concentration of proinflammatory cytokine. This transition 
rate is finite and constant when in contact with bacteria; the rates from proin-
flammatory cytokine and bacterial contact are additive. While in the activated 
state, the phagocyte secretes proinflammatory cytokine at a constant rate until its 
transition to a refractory state. The refractory state is characterized by a loss of 
responsiveness to proinflammatory cytokine and bacterial contact, as well as 
cessation of PIC secretion. In addition refractory phagocytes shed a soluble re-
ceptor for PIC, which binds it and neutralizes its activity. 
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 The soluble factors are the fMLP-like factor secreted by bacteria and 
chemotactic to phagocytes; the proinflammatory cytokine, modeled on tumor 
necrosis factor, produced by activated phagocytes, and chemotactic to them, and 
bound and sequestered by their soluble receptor, and the soluble receptor itself. 
 The system of interest to us for this chapter consists of two cells types and 
three soluble factors. The cells are bacteria and phagocytes. The bacterial agents 
have just the three obligate states: alive (nonmitotic), mitotic, and dead. The 
age-dependent hazard function for transition from nonmitotic to mitotic is h(a) = 

H(a – TCYC), where a is the age,  is a positive constant and TCYC is the mini-
mum cell-cycle time. The bacterial death rate depends on the presence of phago-
cytes; I neglect natural mortality. In the presence of one or more quiescent 
phagocytes in contact with the bacterium, the death rate is constant and equals 
1/hr. In contact with activated phagocytes, the death rate is 20/hr. Mitotic cells 
are immediately replaced by a pair of age-zero daughter cells at locations adja-
cent to the location of the parent cell. Dead cells are immediately removed from 
the simulation. 
 For the bacterial agents, Eq. [1] becomes 

CYC
1

( , ) ( , ) ( ) ( , ) ( ( ) ( , )
pn

C C C i C
i

f a t f a t H a T f a t H x x f a t
t a =

= ,

CYC( , ) ( , ) ( ) ( , )M M Cf a t f a t H a T f a t
t a

= + ,

1

( , ) ( , ) ( ) ( , )
pn

D D i C
i

f a t f a t H x x f a t
t a =

= + ,

where H is the Heaviside function and  is a positive constant. The hazard func-
tion for death is zero in the absence of phagocytes, and is constant with value 
when there is a phagocyte (indexed from i = 1 to np) is within distance  of the 
bacterium. The position in space of the bacterium is x and those of the phago-
cytes xi.
 The phagocytic agents have three internal states, but are never mitotic. 
These states are quiescent, activated, refractory, and dead. The stochastic transi-
tion from quiescent to activated depends on the presence of either bacteria or the 
proinflammatory cytokine (PIC). In the presence of one or more bacteria, the 
rate of this transition is 0.5/min. In the presence of the optimal concentration of 
PIC the rate is 2/min. As a function of the local concentration of PIC, the rate is 
zero for [PIC] = 0, and increases with [PIC], saturating at large [PIC]. In the 
activated state, phagocytes kill bacteria more rapidly than do quiescent phago-
cytes. Activated phagocytes go on to become refractory, in which state they are 
unresponsive to stimulation. The mean time spent in the activated state is inde-
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pendent of local conditions and equal to six hours. In the refractory state, the 
phagocytes shed a form of the PIC-soluble receptor. The mean time spent in the 
refractory state is also unaffected by the environment, and equal to two hours. 
The estimates for these lifetimes are necessarily rough, and indeed the identifi-
cation of these states as distinct physiological entities is to be taken as a simpli-
fication to be overcome as the model is refined. 
 The simulation volume is a 400-micrometer cube. Both cell types leave this 
cube, and the simulation, when their stochastic path intersects the boundary of 
this cube. To account for immigration of phagocytes as well as their emigration, 
phagocytes are produced temporally as a Poisson process with a uniform spatial 
distribution at the boundary of the cube. 
 To account for the increased extravasation of phagocytes induced by PIC, 
the Poisson intensity of the emigration process is an increasing, saturating func-
tion of total PIC concentration within the cube. 
 The soluble factors are, as mentioned, a proinflammatory cytokine (PIC), a 
soluble receptor for the PIC (sPICR), and a bacterial chemoattractant (BC). In 
summary their properties are: 

1. PIC is (1) secreted by activated phagocytes at a rate of 240 mole-
cules/min. (2) PIC induces activation of quiescent phagocytes. (3) 
PIC is chemoattractive to phagocytes. (4) PIC strongly enhances 
extravasation (immigration) of quiescent phagocytes. 

2. sPICR is produced by refractory phagocytes and binds to PIC in 
solution in a 1–1 stoichiometry, removing both from further activ-
ity. It has no other function. 

3. BC is produced by the bacteria and is a chemoattractant to phago-
cytes; it has no other function. 

3. RESULTS

3.1. Chemotactic Superposition

 For stationary constant sources, the steady-state solution for soluble factors 
described by Eq. [6] is expressible in closed form: 

   
2

( ) exp
4

c r r
D r D
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where r is the distance from the source. Figure 1 shows the net chemotactic sig-
nal from Eq. [5] for the case where the responding cell possesses two independ-
ent sets of chemotactic receptors. That is, the contours in this figure show the 
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sums of the receptor occupancies for the two types. The gradient of this function 
is the direction of chemotactically induced cell polarization. Panel A shows the 
occupancy contours for a single source. Note that the contours flatten markedly 
near the source. Panel B shows the occupancy contours for the original source, 
plus a second source (on the right) of another chemotactic factor (on the left). 
The strength of the left-hand source is just 10% that of the source on the right. 
For this reason, its effective radius is smaller, but its location, nevertheless, ap-
proximates the location of the global maximum, and hence the ultimate destiny 
of cells obeying Eqs. [2]–[4]. This circumstance makes it possible to use host-
derived chemokines (represented by the source on the right) to increase the 
overall radius of capture of phagocytes and other cells of the immune system, 
while partially mitigating the effects of redirecting the chemotactic motion away 
from the pathogen. The experimental results indicate that a second process is 
involved: the host chemokine receptors are downregulated when occupied at 
high density. 

3.2. Microlocal Inflammation

 The innate immune response depicted in these simulations can be decom-
posed into three phases. The first phase is recognition. Phagocytic cells wander 

Figure 1. The ligand-bound fraction for the receptors on the surface of a hypothetical probe 
cell at any location in the simulation volume. The source of chemokine one is at the position of 
the right-hand red disk. In panel B a second chemokine has its source at the position indicated 
by the left-hand red disk; the strength of the second source is one-tenth that of the first. Curves 
are contours of equal net receptor occupancy. The induced polarization of the chemotactic 
probe cell is perpendicular to the contour lines and pointed toward the sources. The computa-
tion is for a three-dimensional system; the graph depicts the plane that contains both sources 
and the probe. 
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randomly in the tissue until encountering the bacteria. During this time the bac-
teria grow unchecked. It is a substantial advantage to the host to detect the bac-

Figure 2. For the simulation run depicted here, the phagocytes produce neither PIC nor sPICR. The 
mean cell-cycle time for bacteria is 72 minutes. (A) The population size as a function of time for a 
single sample path. The total population for phagocytes is shown in blue; total bacterial population is 
shown in yellow. (B–F) Screen shots of the visualization tool showing the three-dimensional snap-
shots of the agents' motions. Yellow agents represent bacteria. Phagocyte agents are blue when quies-
cent, red when activated, and white when refractory. The simulation volume, outlined as a white 
cube, is rotating from the viewer's perspective. 
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teria as early as possible during this growth. The second phase is characterized 
by phagocytic activation, an increase in the density of phagocytes to the site of 
infection, and bacterial killing. The final phase is marked by increased accumu-
lation of anti-inflammatory mediators, decrease of PIC concentration, dissipa-
tion of phagocytes, and return to pre-inflammatory homeostasis. 
 With the parameters and initial conditions in the system described here, the 
phagocytes typically detect the bacteria within an hour and are capable of halt-
ing the infection by killing the bacteria if the mean cycle time is substantially 
longer than that time, even without the additional recruitment and chemotaxis 
provided by PIC. 
 When the bacterial division time becomes comparable to the discovery 
time, the phagocytes cannot adequately keep pace with the bacterial growth, and 
the bacterial populations tend to grow virtually unchecked (Figure 2). Note that 
the phagocyte density does increase in the intermediate stages of the process 
(Figure 2A). The bacterial chemokines, however, because of their effective life-
time, are of such short range that they cannot increase local influx of phago-
cytes. Thus, the observed increase is due entirely to slowing of emigration by 
virtue of phagocyte capture by the BC. Phagocytes wander in, but they do not 
wander back out. 
 The phagocyte advantage is regained upon inclusion of PIC (Figure 3). 
Once activated phagocytes produce PIC, the recruitment of new phagocytes is 
substantially enhanced, and the effective radius of their capture is enlarged. Fur-
thermore, the saturating nature of the chemotactic response to superposed attrac-
tants ensures that the host-derived chemokines does not overwhelm the microbe-
derived factors and act as a decoy chemotactic destiny, as described above. 
 On the other hand, the positive feedback loop set up by PIC causes a sus-
tained local inflammation. The resolution of this inflammation requires breaking 
this loop, a function served by the sPICR. The refractory cells are unresponsive 
to further stimulation by PIC and shed soluble receptor, which binds and neu-
tralizes the PIC. Figure 4 shows that the evolution of the response with fully 
sPICR-competent phagocytes is very similar to that of the sPICR-deficient 
phagocytes in Figure 3 through the first two phases, but differs precisely at the 
end of the activation phase and throughout the final phase—resolution. 

4. DISCUSSION AND CONCLUSION

 The use of agent-continuous hybrid modeling for complex cellular systems 
has really just begun; there is a great deal of work to be done in bringing greater 
detail to the components, fidelity to their interactions, and scope to the phenom-
ena explored. The extraordinary advances in single-scale manipulation, in vivo 
cellular and molecular imaging, and of course, computational speed, memory, 
and software for distributed computing together promise that this effort will  
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result in greatly enhanced confidence in the results of these carefully calibrated 
models, and that they will provide insight and play the role of valuable adjuncts 
to empirical investigation for issues as critical and diverse as vaccine efficacy 
and autoimmune disease. 
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Figure 3. In this simulation run the conditions are as in Figure 1, except that phagocytes pro-
duce PIC and the bacterial mean cell-cycle time is 72 minutes. The phagocytes still do not 
produce sPICR. (A) The blue and yellow lines again depict phagocytes and bacteria, respec-
tively; the magenta line represents the total PIC concentration. (B–G) As in Figure 1. 
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Figure 4. In this simulation run, the conditions are as in Figure 2, but now the phagocytes are 
sPICR- as well as PIC-competent. 
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We provide a brief overview of scaling principles for the immune system. Larger animals 
tend to live longer than smaller animals and thus their immune systems need to do a bet-
ter job of protecting them. We then ask how the features of the immune system scale with 
body mass. A larger animal has more lymphocytes than a smaller one. This implies either 
more lymphocyte clones or more cells per clone, or both. The immune system also has 
anatomical features such as lymph nodes. Thus, as animals get larger, do lymph nodes 
simply get larger or are they more numerous? If appropriate scaling relations can be de-
veloped, they could help us understand the relationship between the human immune sys-
tem and that of other species. A more informed approach to the scaling relationships 
among immune systems of different organisms would be nothing but helpful. 

1. INTRODUCTION

 The immune system is a complex system responsible for protection against 
pathogenic agents. Pathogens can reside in any tissue of the body and the im-
mune system needs to find and respond to them. By necessity the immune sys-
tem is distributed and the cells and molecules that make up the system move or 
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are transported throughout the body. The cells of the adaptive immune system 
are a type of white blood cell called lymphocytes. These cells are transported by 
the blood but can exit the blood stream and crawl through the tissues of the 
body. They return to the blood in the lymph fluid that bathes cells and that is 
collected in a system of ducts called lymphatics, which ultimately connect with 
the blood stream. 
 The best-studied immune systems are those of the mouse and the human. 
The mouse has about 108 lymphocytes, while a human has about 1012. Immune 
systems are found in all vertebrates, and thus organisms as small as a tadpole 
(body mass on the order of 10–1 g) and as large as an elephant (106 g) or a whale 
(108 g) have immune systems. Here we address the question of whether there 
exist any scaling principles that can guide our understanding of the operation of 
the immune system in organisms that differ by nine orders of magnitude in 
mass. Scaling principles are introduced in Part II, chapter 3 (by Savage and 
West) of this volume. 
 For much of its history immunology has been a subfield of microbiology 
and closely linked with medicine. As such, studies of the immune systems of 
diverse species have not attracted much attention or much funding, and there is a 
paucity of data about the immune system of most species. We know of only one 
other group that has theoretically addressed the question of the scaling of the 
immune system (1). Thus, the goal of this chapter is to raise questions, and pro-
vide a brief overview of what is known about scaling laws in the immune sys-
tem. 

1.1. The Protecton Hypothesis

 Langman and Cohn (1) suggested that the immune system has a modular 
structure and is built of basic units called "protectons." Each protecton guaran-
tees an adequate immune response in some volume element of the animal. Thus, 
in the Langman-Cohn view, a big animal simply has more protectons in its im-
mune system than a small animal. Langman and Cohn also estimated, based on 
the concentration of antibody needed to protect an animal, that a protecton con-
tains about 107 B cells in a volume of about 1 ml. In terms of scaling, the protec-
ton idea suggests that the size of the immune system scales as the mass of the 
organism. 
 While modularity is a desirable property of any large complex system, we 
argue against this strict point of view and the simple scaling proportional to 
mass (~M) for a number of reasons: 

(1) Transport of lymphocytes depends on the circulatory system. 
As shown by West, Brown, and Enquist (2), properties of the 
circulatory system do not scale ~M, but rather as ~M3/4.
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(2) The immune system has architectural features, which include a 
single spleen and a single thymus in mammals of differing 
size. Thus, at least some components of the immune system 
are not modular. 

(3) A larger animal lives longer than a smaller one. Hence, its im-
mune system has to do a better job of protecting it. 

2. SCALING LAWS IN IMMUNOLOGY

 It has been observed that the average lifespan (T0) of a mammal seems to 
scale with its body mass (M) according to the scaling law T0 ~ M1/4 (cf. (2,3)). A 
scaling law between a biological variable Y and body mass M is written in the 
form Y ~ Mb, and b is called the scaling exponent. This is shorthand for an ap-
proximate, quantitative relation 

0 0

,
b

Y M
A

Y M
 [1] 

where Y0 is a standard unit with the same dimension as Y, M0 is a standard unit of 
mass, and A is a dimensionless constant. Here we shall take the point of view 
that death is generally not due to failure of the immune system, and thus the 
mammalian immune system should be designed in such a way that it can protect 
an organism during a lifetime T0 ~ M1/4.
 If the immune system of a larger animal must help keep that animal alive 
for longer periods than the immune system of a smaller animal, it must be more 
reliable. A larger animal has more B and T lymphocytes. This implies either 
more lymphocyte clones or more cells per clone, or both. This suggests the fol-
lowing question: what is the optimal way for the system to balance these two 
modes of resource allocation—T and B cell diversity versus clone size? 

2.1. Scaling of B and T Cell Clone Size

 In order to derive the typical size of a lymphocyte clone as a function of M,
we follow the model of West et al. (2), in which the circulatory system is repre-
sented by a branching tree. 
 In the West, Brown, and Enquist (or WBE) model the organism is divided 
into a certain number of small units, each of which is supplied by a single capil-
lary. These units, called service volumes or service units, are regions that a sin-
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gle capillary can supply with oxygen and remove waste products from. The 
number of service units scales ~M3/4 (2,3), which implies that the volume of a 
service unit scales as ~M1/4. If we assume that a service unit is spherical, its ra-
dius (R) will scale ~M1/12.
 Now to connect the WBE model with immunology, we assume that the ser-
vice volumes for the blood circulation are also the service volumes for immune 
surveillance, that is, the capillaries allow lymphocytes to exit the circulatory 
system and explore regions of tissue for foreign molecules and cells, collectively 
called antigens. This implies that if each clone of B cells or T cells contains at 
least ~M3/4 cells it can be represented in each of the ~M3/4 service volumes. 
 One of the essential ideas in the WBE model is that the capillary that sup-
plies a service volume is universal in its properties, such as its diameter. This 
implies that the amount of blood delivered to the service unit, per unit of time, is 
independent of M. From the point of view of immune surveillance, most anti-
gens will enter the service unit in the blood. In other words, the number of anti-
gens that enter into a service unit per unit of time is independent of M.

2.2. The Time to Find an Antigen in a Service Unit

 Consider a single antigen and one specific lymphocyte, of some clone that 
is specific for the antigen, both located in the same service unit. This lympho-
cyte will crawl within the service unit in a more or less random fashion, search-
ing for antigen. How long does it take until it makes first contact with the 
antigen?
 If one describes the random walk of the lymphocyte as spatial diffusion 
with a diffusion coefficient D, then one can show that T, the average time until 
first contact between the lymphocyte and antigen, is given by (4) 

3

3
R

t
D

= , [2] 

where  is the sum of the radii of the lymphocyte and the antigen, and R is the 
radius of the service unit. 
 If the diffusion coefficient D is independent of M, then as R ~ M1/12, T ~ M1/4.
Thus, if there were only one lymphocyte per clone present in the service unit, 
the antigen could go undetected by that lymphocyte for a period of time (~M1/4)
that increases with animal size. Since the search time for each clone should scale 
in the same manner, this result applies to all clones. In order to keep the time 
until detection a fixed value (smaller than the time during which the antigen 
could proliferate significantly) the organism has to put ~M1/4 copies of the lym-
phocyte into this service unit; this would reduce the mean time until first detec-
tion by a factor of ~M1/4 to a value independent of M. We conclude that if D is 
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independent of M the lymphocyte clone size should scale ~M3/4 M1/4 = M, where 
the first factor comes from the number of service units and the second one from 
the number of lymphocytes needed per unit. In (4) we also examine the case in 
which lymphocyte movement and antigen growth both depend on the basic 
metabolic rate of an organism and also conclude that for that case clone size ~M.

2.3. Scaling of the Lymphocyte Repertoire

 Next, we ask how many different clones of lymphocytes should be present 
in an animal of mass M. The number of different clones is called the size of the 
immune repertoire and determines how many different antigens the immune 
system can recognize. 
 We assume that antigens mainly enter the body through our intake of food, 
liquids, and air. The rate at which a mammal consumes food and air is governed 
by its metabolic rate. One can show that the lifetime total metabolic activity of a 
mammal scales as ~M (4), suggesting that a mammal needs to deal with cM an-
tigens during its lifetime, where c is some constant. 
 In order to assess the probability that an immune system with a repertoire of 
size N can recognize an antigen, Perelson and Oster (5) introduced the idea of 
shape-space. In this theory it is assumed each lymphocyte has a receptor that can 
recognize antigens in a volume v0 of shape space, which has total volume V. If 
we let  be the probability of the immune system, i.e., all N different clones, 
failing to recognize an antigen, then 

0 01 exp
N

v v
N

V V
= . [3] 

The probability of a successful immune response to an infection is then 1 – ,
and the probability, Ps, that the organism will successfully repel all cM infec-
tions during its lifespan is given by 

Ps = (1 – )cM  exp(– cM). [4] 

This probability should be very near to unity, so we require cM << 1 or 

v0 1
exp N

V cM
= << . [5] 

This in turn implies 
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( )
v0

 ln ,
V

N cM>>  [6] 

which shows that N, the repertoire size, should scale ~ln(cM). Thus, this theory 
suggests that there should be only a weak dependence of repertoire size on a 
mammal's size. 

2.4. Scaling and the Anatomical Features of the Immune System

 The lymphocytes of the mammalian immune system not only circulate 
throughout the body but also accumulate in the spleen and lymph nodes. These 
tissues act as filters, with the spleen trapping antigens from the blood and lymph 
nodes trapping antigens that enter the tissues. Because antigens are there, lym-
phocytes search for and interact with antigens in the "secondary lymphoid tis-
sues." An interesting question then is how should the size or mass of the spleen 
and lymph nodes scale with body size? Each lymph node "drains" a certain vol-
ume of tissue. Thus, as animals get larger, do lymph nodes simply get larger or 
are they more numerous? An appropriate scaling theory of the immune system 
should be able to answer these questions. Here, as a first step, we look to see 
what data are available and if there is any indication of scaling that is more 
complex than that of scaling simply by mass, i.e., ~M.

Figure 1. Number of lymph nodes per individual as a function of body mass for dog, human, 
horse, and cow (in order of mass). 
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 Stahl (6) found that spleen mass scaled with body mass as ~M1.02 across di-
verse mammal species, or as ~M0.85 when limited to primates only. More re-
cently, Nunn (7) found that spleen mass scaled with body mass as ~M1.17 across 
primates, based on an analysis that included some of the data used in (6), but 
which used mean mass values for species as data points, rather than values for 
individual animals. 
 Estimates for the number of lymph nodes in dogs, humans, horses, and 
cows are available (8), and in Figure 1 are plotted against adult body masses 
typical for these species. While there is some suggestion of an increase in the 
number of lymph nodes with mass, it is difficult to evaluate the slope reliably 
with data for so few species, and where body masses and lymph node counts 
were not available for the same individuals. 
 Concentrations of lymphocytes in the blood have been compared among 
primate species, using data compiled by the International Species Information 
System (9,10). Using a similar database (11), we find that among diverse mam-
mal species, adult blood lymphocyte concentrations scale with adult body mass 
as ~M–0.07 (n = 138, F = 18.53, p < 0.001, r2 = 0.12), and as ~M-0.1 (n = 45, F = 
18.78, p < 0.001, r2 = 0.30) when limited to primates. This implies that if blood 
volume scales with mass as ~M1.02 (12), total number of lymphocytes will scale 
as ~M1.0 M–0.1 ~ M0.9.
 Data are also available for lymphocyte output from the thoracic duct (13), 
which is the major lymphatic vessel through which lymph enters the circulatory 
system (14). Among nine species of mammals, concentration of lymphocytes in 
the lymph decreases with body mass as ~M–0.16 (though this relationship is not 
significant at the p = 0.05 level; n = 9, F = 3.49, p = 0.10, r2 = 0.33), while flow 
from the thoracic duct increases with body mass as ~M0.89 (n = 9, F = 85.10, p < 
0.001, r2 = 0.92). It then follows that total lymphocyte output per unit time 
scales with body mass as ~M0.73 (n = 9, F = 44.40, p < 0.001, r2 = 0.86; Figure 2), 
which is intriguingly similar to the M3/4 scaling laws found in the WBE theory 
(2,3).

3. CONCLUSIONS

 The use of scaling laws in immunology is a field in its infancy. We have 
tried here to show that scaling laws can provide insights into the properties of 
immune systems in animals of different sizes. Although we focused our atten-
tion on the number and size of lymphocyte clones needed to provide protection 
to animals of different mass, there is a great need to also understand the ana-
tomical features of immune systems in different mammals. The lymphatic sys-
tem, with its chains of lymph nodes, is organized to some extent as an inverse 
branching network, with collecting lymphatics joining together to form larger 
vessels. Along the way are lymph nodes that filter the fluid as it returns to the 
circulation. The scaling relations that govern the operation of the circulatory 
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system have been well-studied (see (2)). An analogous theory for the lymphatic 
system still needs to be developed. Hopefully such a theory will address ques-
tions such as how does the size and number of lymph nodes scale with animal 
size? Do big animals have more lymph nodes or bigger lymph nodes than 
smaller mammals? Also, if scaling relations can be developed, they may open a 
window into a better understanding of the relationship between the human im-
mune system and that of other species, which are commonly used as "model 
systems" for studying the effects of drugs and immune system modifiers. A 
more informed approach to such studies would be nothing but helpful. 
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5.1

NEUROBIOLOGY AND COMPLEX 
BIOSYSTEM MODELING 

George N. Reeke Jr. 
Laboratory of Biological Modeling,  
The Rockefeller University, New York 

This chapter gives a brief summary of techniques for modeling neural tissue as a complex 
biosystem at the cellular, synaptic, and network levels. A sampling of the most often 
studied neuronal models with some of their salient characteristics is presented, ranging 
from the abstract rate-coded cell through the integrate-and-fire point neuron to the multi-
compartment neuron with a full range of ionic conductances. An indication is given of 
how the choice of a particular model will be determined by the interplay of prior knowl-
edge about the system in question, the hypotheses being tested, and purely practical com-
putational constraints. While interest centers on the more mature art of modeling 
functional aspects of neuronal systems as anatomically static, but functionally plastic 
adult structures, in a concluding section we look to near-future developments that may in 
principle allow network models to reflect the influence of mechanical, metabolic, and ex-
trasynaptic signaling properties of both neurons and glia as the nervous system develops, 
matures, and perhaps suffers from disease processes. These comments will serve as an in-
troduction to techniques for modeling tumor growth and other abnormal aspects of nerv-
ous system function that are covered in later chapters of this book (Part III, §6). Through 
the use of complex-systems modeling techniques, bringing together information that of-
ten in the past has been studied in isolation within particular subdisciplines of neuro- and 
developmental biology, one can hope to gain new insight into the interplay of genetic 
programs and the multitude of environmental factors that together control neural systems 
development and function. 
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1. NEURONAL SYSTEMS DYNAMICS

 The nervous system is a complex object, and so the modeling of neuronal 
systems dynamics is necessarily a complex subject. Space here permits only the 
most superficial survey of some of the more common techniques. References are 
given to textbooks and original literature where more details can be found. Dif-
ferent approaches are available depending on one's general philosophy about the 
goals of modeling. Some believe, for example, that models should be used only 
to test very explicit hypotheses, while others are happy to use models in a looser 
mode simply to explore the consequences of a particular network architecture or 
synaptic-efficacy modification rule. In evaluating published models, one should 
always ask oneself to what extent the assumptions were chosen to give inevita-
bly the desired results (that is, whether the results were "built into" the model 
from the start) or whether the assumptions were justified for principled reasons 
other than their success at predicting the desired results. To avoid this potential 
pitfall, some authors prefer a so-called "bottom–up" approach, in which model 
features are derived as much as possible from experimental data. Others prefer a 
"top–down" approach, in which a particular theoretical point of view, for exam-
ple, one based on a computational metaphor, is used to guide the choice of as-
sumptions. The former class of models is often referred to as "neurally realistic," 
whereas the latter may be only "neurally inspired." On the other hand, it can be 
argued that simply putting all the known facts into a model may produce a good 
emulation of some brain function, but may do little to indicate which particular 
features of the nervous system make that function possible. In the end, these 
decisions become a matter for expert debate. For our purposes, we would like to 
understand better how the brain operates, of course, because this is one of the 
remaining great questions in modern biology, but more specifically so we can 
relate the basic principles of brain operation to the disruptions that occur in 
pathological conditions, particularly tumor growth, a subject treated in Part III, 
§6 (this volume). This would suggest that a rather detailed "bottom–up" ap-
proach would be most appropriate, keeping in mind always that computational 
limits to our simulations are likely for some time to remain tighter than those 
imposed by biology on the brain. Therefore, we must be careful to distinguish 
these two sources of constraint when interpreting brain models. 

1.1. Single-Neuron Models

 We begin by asking how detailed a model of a single neuron must be in 
order to make it useful for modeling complex neural systems (1). The basic 
charge-balance equation that must be satisfied for any volume enclosed by an 
active membrane is 
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where Cm is the membrane capacitance, Vm is the membrane voltage, dVm/dt is 
the time derivative of Vm, Iext is an externally applied current, Gj(t) is some ionic 
conductance, Ej is the reversal potential of conductance j, and j runs over the 
various species of conductances present in the membrane. Gj may vary as a re-
sult of dependence on voltage or on the concentration of some chemical species, 
such as a neurotransmitter, or may represent a constant leak conductance. In 
principle, any type of neuronal membrane can be modeled with this equation by 
a suitable selection of relevant Gj functions. 
 The most basic function of the neuronal membrane that we must be able to 
simulate is the propagation of an action potential down an axon. Our earliest full 
understanding of how counterflowing sodium and potassium ions generate the 
action potential came from the work of Hodgkin and Huxley (2), who proposed 
a sodium conductance, 3

Na NaG G m h= , a potassium conductance, 4
K KG G n= ,

and a leakage conductance, GL, where NaG , KG , and GL are constant maximum 
conductances, and h, m, and n are variables specified by equations that capture 
the voltage dependencies of the Na+ and K+ conductances in a semiempirical 
fashion. To generate accurate models of ion channel function, it may be neces-
sary, for at least two reasons, to allow for varying intracellular and possibly ex-
tracellular ion concentrations in the model. First, the reversal potential, Ej, in the 
treatment above, depends on the ratio of the two concentrations in accord with 
the Nernst equation: 

Ej = (RT/zjF) ln([Xj]e/[Xj]i), [2] 

where Ej is the reversal potential of the ion Xj (X = Na+, K+, etc.) associated with 
conductance j; R is the gas constant; T is the absolute temperature; z is the 
charge on Xj; F is Faraday's constant; [Xj]e is the extracellular concentration of 
Xj; and [Xj]i is the intracellular concentration of Xj (3, p. 84). While for many 
purposes Ej may be taken as constant, because ion concentrations are homeo-
statically regulated, ions with particularly large variations in concentration, such 
as calcium, may require a more detailed treatment. Second, the opening of some 
channels, notably calcium-dependent potassium channels, is controlled by ion 
concentration, and, obviously, changes in concentration must be modeled if 
these channels are to be included in the model. Unfortunately, ion concentra-
tions are notoriously difficult to model accurately due to interactions of ions 
with proteins or other molecules that may buffer their concentrations, poorly 
known volumes of the spaces to which the ions have diffusional access, and 
active pumping. In a simple treatment, the ion currents needed to support the 
electric currents found for channels passing ion X in Eq. [1] can be calculated 
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and these ion currents used to adjust the intra- and local extracellular concentra-
tions of X at each step of the simulation. 
 The approach given in Eq. [1] can be applied in an even more detailed man-
ner when it is necessary to deal with the fact that a neuron does not necessarily 
have the same membrane potential across its entire surface area. In this situation, 
the cell may be treated as a continuous structure, leading to differential equa-
tions for Vm as a function of position as well as time (e.g. (4,5–8)). Alternatively, 
Eq. [1] can be combined with the passive cable equations developed by Rall (9) 
to form what is known as a "multicompartment" model (10). The basic idea is to 
divide the neuron into subdivisions known as compartments. Each compartment 
has its own Vm and conductance variables, which may be treated as Hodgkin-
Huxley channels or by some other formalism. Neighboring compartments are 
assumed to be connected by cytoplasmic resistances that carry Ohm's law cur-
rents proportional to the voltage differences between those compartments. These 
currents are included as Iext variables in Eq. [1] and the entire system of equa-
tions is solved iteratively by computer. The number of compartments depends 
on the problem to be solved and may range from just two (e.g., dendritic and 
somatic) to many thousands. In the latter case, compartment geometry may be 
derived from micrographs of real neurons (10). A typical application is the study 
of the cerebellar Purkinje cell by De Schutter and Bower (11,12), in which 
channel parameters were adjusted until a reasonable simulacrum of Purkinje cell 
function was obtained. However, even with the large number of parameters used 
in that study, certain aspects of Purkinje cell responses (e.g., the increasing fir-
ing rate seen for a time after a stimulating current is turned off) could not be 
replicated (Figure 1). Thus, the added complexity of multicompartment model-
ing does not guarantee perfect reproduction of complex neuronal responses, and 
for many purposes single-compartment models may be considered "good 
enough." 
 We now consider in more detail methods that can be applied to single-
compartment models or to the individual compartments of multicompartment 
models. While the Hodgkin-Huxley equations have been extremely influential in 
showing the way accurately to simulate neuronal membrane function, it must be 
said that the actual form of the equations for GNa and GK cannot be justified from 
first principles. Furthermore, the equations as they stand are incomplete in that, 
having been derived for the squid giant axon, they do not incorporate the nu-
merous varieties of voltage- and ion-dependent channels found in CNS neurons, 
and they are computationally burdensome, which renders them impractical for 
use in large-scale network simulations. 
 To address the latter limitation, a long line of work has sought simplified 
versions of the Hodgkin-Huxley treatment that might afford a more rapid, if 
somewhat less exact, computation of neuronal responses. An early example is 
the FitzHugh-Nagumo model (13,14), which is analytically tractable and has 
only two variables. The endpoint of this line of work is the "leaky integrate and  
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fire" (I&F) neuron (15,16), which is easy to simulate but omits most details of 
cell dynamics. The simplest version of this model eliminates the action potential 
altogether, replacing it with a simple voltage step on the idea that all action po-
tentials are much alike and already well enough understood. One then has: 

L

dV
C G V I

dt
= + , [3] 

where the variables are as above, omitting the subscript m, and the voltage scale 
is chosen such that V = 0 is the resting potential. GL is a leak conductance that 
allows the voltage to decay to 0 in the absence of input. When the voltage, V,

Figure 1. Comparison of multicompartment and composite modeling results with experimental 
data for a guinea pig cerebellar Purkinje cell stimulated by rectangular current pulses. The 
dashed vertical lines indicate the offset time of the stimulus pulses. (A) Data from a cerebellar 
slice preparation studied by Llinás and Sugimori (78), reproduced with permission. Note the 
"plateau" response of the cell with discharge at an increasing rate under 1.25-nA injected cur-
rent after the stimulus pulse has been turned off (bottom left). (B) Data from DeSchutter and 
Bower (79), reproduced with permission. The spiking response following stimulus offset actu-
ally occurs at lower stimulating currents (stimulating current value for bottom panel not given 
in the original reference). (C) Data from a one-compartment version of the composite model of 
Coop and Reeke (34), reproduced with permission. 
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reaches a threshold, , as a result of integration over the inputs, I, it is reset to a 
value Vreset and integration resumes. These reset events can be passed to other 
cells in a network model as effective input pulses. This approach fits well with 
event-based modeling (see below). 
 An even simpler model, the rate-coded neuron, eschews firing events alto-
gether on the idea that only the average rate of firing over a short time interval 
or over a small assembly of neurons is relevant for the transmission of informa-
tion from one cell to another in the nervous system. This idea represents a gen-
eralization to the CNS of the early findings of Adrian on sensory neurons (17). 
The rate-coded model has been very widely used, particularly in the more ab-
stract "neurally inspired" models, such as those described in the classic Parallel 
Distributed Processing books (18,19). The role of rate coding in real nervous 
systems has become a matter for much current controversy (20–22). Much of the 
discussion is couched in terms of information theory (23; see also Part II, chap-
ter 1 [by Shalizi], this volume), which provides quantitative measures to help 
evaluate the various proposals for neural coding schemes (24,25). While the 
details of these analyses are beyond the scope of the present chapter, it seems 
safe to answer the question posed at the beginning of this section with the pre-
diction that rate-coded models will inevitably be replaced with firing models 
that can incorporate effects of proven significance, such as spike synchroniza-
tion (26,27), after-spike hyperpolarization (28,29), paired-pulse facilitation 
(30,31), spike-timing dependent plasticity (32,33), and several others, particu-
larly in studies that deal with time-dependent aspects of brain function that go 
beyond basic pattern recognition. Coop and Reeke (34) describe a composite 
model in which the action potential and some conductances are computed rap-
idly by reference to look-up tables, while other conductances are calculated in 
full. They provide a model of the Purkinje cell using this methodology that can 
be compared with the full multicompartment model referred to above (Figure 1). 
Taking another tack, interesting new work shows how the simple I&F model can 
be enhanced to incorporate slow dynamic effects (35). 

1.2. Network Models

 To model functional aspects of neuronal circuits, networks of cells commu-
nicating via synaptic connections, not just single cells, are required. The lack of 
detailed knowledge of cell dynamics plus limitations of early computers pre-
cluded attempts to model network dynamics in detail, leading to nearly exclu-
sive use of rate-coded cells in the early models. Perhaps because these models 
were obviously oversimplified from the point of view of the neurophysiologist, 
the early development of network models occurred mostly in computer science 
and artificial intelligence (AI) rather than neurophysiology laboratories, and 
today "neural networks" are in widespread use in communications and data 
processing applications. This story has been often told (18,19,36–40). However, 
in recent years network models have gradually evolved towards a greater degree 
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of biological realism as computers have become more capable and the interests 
of researchers have turned toward biological understanding, rather than just 
simulation, of brain functions (41). 
 A standard for what was to come was established by Traub and Miles with 
their model of the CA3 network of the hippocampus (42), which featured stan-
dardized multicompartment pyramidal and GABAA- and GABAB-type inhibitory 
cells. Properties of several types of active channels (e.g., Ca2+-dependent K+

channels) were combined into composite channels to keep the amount of com-
putation to a practical level. Synaptic connections of four basic types took into 
account axonal delays, a composite activation process, and a first-order relaxa-
tion process. This model was very successful in helping to elucidate the roles of 
the various channel types in complex behaviors such as bursting and network 
synchronization. 
 More recently, and perhaps of more relevance to the main subject matter of 
this book, Tagamets and Horwitz (43) constructed a large-scale model of the 
visual and forebrain circuitry thought to be involved in delayed match-to-sample 
tasks in humans. Their goal was to explicate the neural basis for the rCBF sig-
nals recorded in PET (positron emission tomography) studies of this and related 
tasks. Their hypothesis was that the rCBF signal is simply proportional to the 
sum of the absolute values (whether excitatory or inhibitory) of all the inputs to 
all the neuronal units in a region of interest. Because this hypothesis did not de-
pend on the complex details of neuronal activation as in the Traub and Miles 
study, simplified canonical units representing local assemblies of neurons were 
modeled, representing a total of four areas along the occipitotemporal pathway 
from lateral geniculate nucleus to prefrontal cortex. Good agreement with ex-
perimental rCBF data was obtained, suggesting that synaptic activity indeed 
accounts for at least a major portion of differential neural metabolic demand, 
and thus of blood flow, although some influence of glial activity should not be 
discounted. Arbib et al. (44), working from a similar hypothesis, showed how to 
calculate simulated functional MRI images from network models, using neural 
systems for imitative behavior as their exemplar. See also the study of temporal 
patterns of spontaneous activity in the developing spinal cord in the next chapter 
of this volume (by Tabak and Rinzel). 

1.3. Learning

 An essential element of network models is the incorporation of some 
scheme for adaptive change or "learning." Parallel distributed processing models 
only really took off with the popularization of the "back-propagation" learning 
rule (19,45), a form of gradient-descent optimization based on adjusting the 
strengths of connections between neurons to reduce their contribution to the 
error measured at the output, as determined by the calculus chain rule for differ-
entiation. However, implementation of this rule requires that nonlocal informa-
tion be available at each synapse, and this is widely considered to be unavailable 
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in biological systems, although possible mechanisms for biologically realizable 
back-propagation have been suggested (46,47). Most biological learning models 
have instead been based on the proposal of Hebb (48) that "When an axon of 
cell A ... excite[s] cell B and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place in one or both cells so that 
A's efficiency as one of the cells firing B is increased" (quoted from (3, p. 
1020)). This is often paraphrased as "neurons that fire together wire together," 
leading to a mathematical formulation such as 

ij i i j jc s s= , [4] 

where cij is the change in the strength, c, of the connection between neurons i
and j; x  represents a negative cutoff function ( x  = x if x > 0, otherwise x  = 
0); si and sj are the activity levels (here rate-coded) of cells i and j, respectively; 
and i and j are threshold activity levels for cells i and j, respectively. Although 
Hebb based his proposal on behavioral data, the rule is now usually related to 
the phenomenon of long-term potentiation (LTP), which can be observed in nu-
merous neural tissues and cell types (49–51). However, in fact, the Hebb rule as 
initially stated is unworkable for several reasons. 
 First, the Hebb rule, naively applied, leads to network instability—it pro-
vides for the strengthening, but not the weakening, of connections. (See Part II, 
chapter 2 [by Socolar], of this volume for methods of analyzing stability, hys-
teresis, and oscillations in nonlinear dynamical systems.) The stability problem 
is easily overcome either by normalizing the total strength of all the synapses 
onto a single cell or network region to a fixed sum, or by replacing the negative 
cutoff functions in Eq. [4] with any of a variety of specific rules that allow for 
weakening connections. Such rules are often based on data for long-term depres-
sion (LTD), the apparent counterpart to LTP that weakens synapses under cer-
tain conditions. The details are complex and depend on cell type and the relative 
timing of the pre- and postsynaptic signals, but cases have been reported (see 
references in (52)) in which strong connections that are inactive or only weakly 
active when the postsynaptic cell is activated are weakened, or, alternatively 
(53), connections that are active in the absence of postsynaptic activation are 
weakened. A refinement of these ideas that automatically assures network stabil-
ity is the Bienenstock-Cooper-Munro (BCM) rule (54), which postulates that 

cij is zero when si is zero, negative for small values of si, and positive for val-
ues of si above a variable crossover threshold (akin to i in Eq. [4]). The thresh-
old is adjusted on a slow time scale in such a way that strengthening is favored 
when average activity becomes low, while weakening is favored when average 
activity is high. 
 More importantly, the Hebb rule does not take into account whether the 
perception or action produced by the neural circuit where the activity occurs is 
in fact of use to the organism as a whole. In order for learning to be adaptive, the 
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animal must not simply strengthen all perceptions and responses that occur for 
whatever reason, but must apply the Hebb rule or any other learning rule selec-
tively, perhaps regulated by some sort of "value" signal that would play a role 
similar to that of the error feedback signal in the back-propagation rule, but 
without its per-connection specificity. This requirement has been clearly set 
forth by Edelman (55,56) in his theory of neuronal group selection or "neural 
Darwinism" and given mathematical form and tested in working network mod-
els by Reeke et al. (57) and Friston et al. (58). More recently, these ideas have 
been implemented in synthetic neuronal-network-based control systems for ro-
botic devices performing tasks in a real-world environment (59,60). In its sim-
plest form, value can be implemented by replacing Eq. [4] with a formulation 
such as 

ij i i j jc s s v= , [5] 

where v is the nonspecific value signal, which can be either positive (represent-
ing a positive reward for the behavior) or negative (a penalty). Physiologically, 
the value signal is most likely delivered via widely broadcast modulatory trans-
mitters such as dopamine or acetylcholine, but blood-borne signals (for example, 
hormones involved in homeostasis) can also be imagined to play a role. (Map-
ping of reward systems in the brain via MRI imaging is discussed in detail in 
Part IV, chapter 5 [by Breiter, Gasic, and Makris], this volume). Psychologi-
cally, the value signal can be considered not only as responding to intrinsic 
evaluations of the consequences of behavior, but also as being subject to exter-
nal manipulation via the administration of rewards and punishments. However, 
it should be noted that this simple formulation neglects the basic problem known 
in learning theory as the "credit assignment" problem (61,62), one aspect of 
which is that by the time the value signal arrives the neural activity levels si and 
sj may have deviated significantly from the values they had at the time the be-
havior was produced. For other than trivially short delays in assessing value, 
some sort of "memory trace" of past activity is required at the cellular level in 
order for this learning scheme to work. (Part III, chapter 5.3 [by Kolb and Tim-
mann], this volume, contains a discussion of how the classical conditioning of 
the eyeblink response can be understood in terms of neuronal mechanisms of the 
kind discussed here operating in the cerebellum.) 

1.4. Computational Considerations

 In practice, network models are often implemented with ad hoc computer 
codes, especially when new architectural or dynamical principles are being 
tested. However, where applicable, development is quicker (although execution 
may be slower) with a general-purpose neuron- or neuronal network-simulation 
tool that can be programmed with some sort of problem-description language to 
specify the elements needed for a particular simulation. A number of such pro-
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grams have been described (63–67). These programs generally provide a net-
work definition phase, in which the user specifies the numbers and types of cells 
required and the rules for generating connections between them. These connec-
tions can be entirely prespecified, perhaps by input matrices, or can be generated 
at random according to specified statistical rules. The program builds appropri-
ate data structures in memory according to these specifications. Also provided 
are suitable constructs to define the dynamical properties of the cells in the net-
work. The details of this process vary according to the type of cell being mod-
eled (rate-coded, integrate-and-fire, multicompartment, etc.) and the method of 
treating synaptic inputs. Full-featured general-purpose simulators will also pro-
vide methods for stimulating the network and for recording cell responses and 
relevant statistics such as mean firing rates. 
 Greater operating speed, at the cost of significantly longer development 
time and the need for specialized engineering knowledge, can be obtained by the 
construction of special purpose simulation hardware, otherwise known as "neu-
romorphic" devices (see Part IV, chapter 6 [by Northmore, Moses, and Elias], 
this volume). 
 The detailed method of updating in network models needs to be considered 
carefully. The time step must be small enough to provide reasonable accuracy, 
but as large as possible to minimize computing time. More complex integration 
schemes, such as Runge-Kutta methods, may allow the time step to be increased 
relative to straightforward Euler integration but at the cost of greater computa-
tional complexity (68). More aggressively, the step size can be adapted to cellu-
lar activity, small when rapid changes in membrane potential are occurring, 
large at other times (69). Taken to an extreme, this idea leads to event-driven 
modeling (70), in which the equations for Vm are solved analytically in the ab-
sence of synaptic input. Detailed simulation is then only necessary when input 
disturbs the analytical solution. However, in network models, events of interest 
occur at different times in different cells, making the bookkeeping for such 
models very difficult. 
 An additional consideration is the method of updating cell activity levels as 
seen by other cells. If cell firings are propagated to postsynaptic cells as soon as 
they are computed, then cells earlier in the update cycle will have an artificial 
advantage in competitive networks. On the other hand, if cell firings are propa-
gated simultaneously at the end of each update cycle, then artifactual oscillations 
may be observed in the overall network. These problems can be mitigated by 
randomly changing the update order in each cycle, but then special care must be 
taken to allow simulation runs to be replicated, and replication will be particu-
larly difficult or lead to unacceptable serialization in a parallel computing envi-
ronment. 
 In summary, a great variety of simulation techniques and software packages 
for neuronal and neuronal network simulation is available. When contemplating 
a new modeling project, the prospective modeler should carefully consider the 
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motivation for the model, the degree of realism that is desired, the amount of 
detailed physiological and behavioral information that is available for the system 
under study, whether simulated sensory stimuli can adequately capture the real 
experimental situation, and the extent of the computing resources and program-
ming skills that are available. 

2. FUTURE WORK AND RELEVANCE TO BIOMEDICINE

 Most of the work to date in functional neuronal modeling, as summarized 
above, has totally ignored the geometry of the neural network. This is adequate 
when the timing of axonal conduction can be neglected, when the supply of 
metabolic substrates (glucose, oxygen) to neurons can be taken as always ade-
quate, and when development of the adult, functioning system is not at issue. 
However, questions involving the functional consequences of the embodiment 
of the nervous system in an organism (some would say the necessity of em-
bodiment to the ontogeny of function) are increasingly of interest and will re-
quire the development of a new integrative style of modeling that includes 
relevant aspects of the geometry of the nervous system and geometric con-
straints on network connectivity and complexity, as well as constraints on meta-
bolic resources. To take into account more of the relevant mechanical and 
physicochemical factors in integrated models will require new combinations of 
tools. In particular, to take locally discontinuous obstacles, forces, and signals 
into effect, it will be necessary to go beyond differential equations and work 
with networks of interacting cells. Models of this kind will require, at a mini-
mum, more detailed representations of cell geometry, diffusion equations to 
handle small-molecule signaling, something like cellular automata rules1 to 
model contact signaling, and, especially, finite-element modeling to deal with 
the operation of mechanical forces across tissue volumes. 

2.1. Modeling the Geometry of Nervous System Structures 

2.1.1.  Computer Representation of Neural Tissue 

 Reasonably accurate computer representations of brain tissue structure at 
the cellular level will be essential if growth models are to be integrated with 
functional models. A key problem is that space must be filled, yet growth and 
cell division must be accommodated. Local growth has long-range effects be-
cause existing nearby structures must be pushed aside, and these in turn push 
aside more distant structures, and so on until a hard boundary (the cranium), or 
the edge of the model volume is reached. Space can be filled with hexahedral 
bricks, but these introduce spurious anisotropies (71). In addition, vasculature 
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and neurites may be more faithfully represented by branched cylindrical struc-
tures. This problem has not yet been solved, but two approaches seem attractive 
for detailed exploration. First, one can use cylinders for those structures that are 
cylindrical, impose lumped cohesive forces where the cylinders are in contact to 
represent areas of cell–cell contact (cylinders of course cannot make areal con-
tacts), then treat the unfilled space as a tortuous fluid matrix where signal mole-
cules can diffuse. Second, one can subdivide the space with Voronoi polyhedra2

(71), placing the mesh points such that the bounding planes of the polyhedra 
approximate the surfaces of the cells and capillaries. The former approach has 
the advantage that it may not be necessary to adjust the geometry of the entire 
model every time a local movement or mitosis event occurs, since some of the 
expansion can be accommodated by reduction of the local fluid volume. Also, it 
provides a natural basis for modeling small- and macromolecular diffusion. On 
the other hand, mechanical interactions may not be captured faithfully. If finite-
element modeling (FEM) is being attempted, the relationship between cellular 
structures and model elements must be carefully considered. An obvious initial 
approach is to make the two kinds of boundaries coincide. The Voronoi tessella-
tion approach would appear to be most compatible with the construction of suit-
able FEM meshes and their periodic adjustment to accommodate growth and the 
resultant displacement of nearby tissue (but see below). 

2.1.2.  Geometry from Images

 Ideally, one would like to obtain model geometry from imaging studies on 
real brains, normal or diseased. At present, the only candidates accepted in clini-
cal practice with anywhere near the desired resolution are CT and MRI scan-
ning. As is generally known, CT scanning excels at revealing details of 
structures delineated by their density, light (ventricles) or heavy (bone), while 
MRI makes finer distinctions among soft tissues based on their proton composi-
tion. Both will have their place, but neither at present has sufficient resolution to 
support detailed cell-level modeling. Accordingly, in the near term it will be 
necessary to compromise, using image-derived geometry to delineate tissue 
boundaries, but generic, randomly generated, cell and vascular geometry on the 
finest scale. 
 At a minimum, the tissue types that need to be identified in images include 
bone, ventricles, blood vessels, and neural white and gray matter. While, as sug-
gested above, detailed individual cell geometry and type identification (neuron, 
glia, etc.) cannot be obtained from the images now available, one would like at 
least to obtain some indication of directions of prominent axonal fasciculation, 
because of its relevance to inter-areal connectivity and possibly to new neurite 
growth. Automated image segmentation at the level required here is itself an 
outstanding research problem, although some methods have been published (e.g. 
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(72)). In the near term, modelers will have to be prepared to segment images 
manually, possibly with the aid of interactive software, if for no other reason 
than to validate results obtained with more automated methods. 

2.2. Diffusion of Signal Molecules

 The equations governing diffusion are well known (73, pp. 700–718). In 
practice, distinction must be made between certain small molecules, such as 
nitric oxide (NO), which can diffuse freely through cell membrane barriers (74), 
and larger molecules, which cannot. To deal with the latter, one must in princi-
ple solve the diffusion equations in the highly irregular extracellular volume, 
where diffusion is significantly hindered for all but the smallest molecules. This 
can be handled by generalizing the numerical technique used by Gally et al., 
dividing the tissue into small volume elements and applying mass balance across 
all the boundaries between the extracellular compartments. In the case of poly-
hedral meshing, these would be the irregular polygons delineating the compart-
ment boundaries. Fortunately, assuming the individual compartments are small 
enough for an assumption of spatially constant concentration to apply, only the 
area, not the detailed shape, of each boundary is required. This information can 
be computed as part of the meshing process and stored in tables for use during 
the simulation. 

2.3. Contact Signaling

 Computationally, contact signaling is a relatively minor problem once the 
model geometry has been specified. A list of cell–cell contact areas can be main-
tained and the generation of signal molecules, their movement across each such 
contact, and their effects on target cells updated at each iteration of the simula-
tion. The problem here is in defining what signals are important for the behavior 
under study, where and under what conditions those signals are produced, what 
concentrations are effective in modifying the behavior of target cells, and so on. 
In general, all that can be said is that detailed rules for signaling are likely to be 
among the hypothesis-driven model specifications that will need to be varied in 
order to optimize the faithfulness with which the model mirrors the behavior of 
real tissue. 

2.4. Finite-Element Modeling

 The techniques discussed so far address how to model electrical and chemi-
cal interactions of cells. This leaves mechanical interactions to be dealt with. 
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While simplified models based on displacement of rigid or incompressible tissue 
elements might be considered (75), FEM provides the obvious approach to deal-
ing in a more principled way with the inelastic distortions and possibly compres-
sion that might be expected to occur during normal or cancerous growth in the 
nervous system. An early example of a two-dimensional FEM tumor model is 
shown in Figure 2 (76). FEM can be applied at any desired spatial scale from 
some upper limit where the mesh elements would grossly violate the assumption 
of internal homogeneity right down to the subcellular level. Thus, development 
of software for this application, if properly designed, is an activity that might not 
have to be iterated as each new generation of models at successively smaller 
scales comes online. 
 As with identification of tissue types from images, automated mesh genera-
tion is a significant requirement for FEM, if for no other reason than that mesh-
ing is entirely too tedious to perform manually in a three-dimensional structure 
of any useful size. As is the case with tissue type segmentation, meshing rou-
tines are available, even in the commercial FEM packages, but software will 
need to be developed to couple the results of tissue segmentation into the selec-
tion of mesh nodes and the assignment of material properties to the mesh ele-

Figure 2. (A) Initial MRI scan of a patient with a brain tumor. (B) Two-dimensional finite-
element mesh constructed from the image in (A). Data from Wasserman et al. (76), reproduced 
with permission. 
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ments. Furthermore, it should be noted that FEM programs work best with a 
small number of geometrical element types, making them at first glance incom-
patible with the Voronoi tessellation scheme suggested earlier. This problem can 
be resolved either by giving up the advantages of the Voronoi approach and re-
verting to regular mesh elements, or else by first making the Voronoi tessella-
tion and then dividing each of the Voronoi polyhedra into smaller tetrahedra 
(triangles in a two-dimensional model), an operation that is always guaranteed to 
be possible. However, tetrahedra are intrinsically rigid unless special tricks are 
applied and may not make the best elements for FEM of soft tissue. 
 A further necessity with FEM that needs to be kept in mind is that the calcu-
lations lose accuracy as the initial mesh elements become more and more dis-
torted during the course of the simulation. The software must therefore be 
designed to suspend the calculations at certain intervals and remesh the model 
volume to provide a new starting point with undistorted mesh elements. 
 An attractive feature of FEM is that the mesh elements do not need to be of 
comparable size. Therefore, the level of detail can be varied from place to place 
within a single model. This suggests that the transition from tissue-level to cell-
level modeling might initially be made by surrounding a small volume of de-
tailed cell-level mesh with a larger volume modeled on a cruder mesh scale. The 
surround could provide a spatially nonuniform external pressure resisting 
growth, a source for nutrients and oxygen, and a sink for waste products, while 
the fine-meshed interior would allow one to explore the processes of interest in 
greater detail. Initially, even this fine-meshed volume might not comprise indi-
vidual neurons, but eventually, one would want it to do so in order to permit the 
study of the effects of pressure and distortion on the functioning of a working 
neural network model. If the FEM neurons were modeled as cylindrical mesh 
elements, these could be made to correspond with compartments in a multicom-
partment electrophysiological neural function model (77). One could then study, 
for example, the effects on function of changes in membrane capacitance, ax-
onal resistivity, ionic equilibria, or channel dynamics caused by the pressure 
resulting from normal development or from tumor growth. Similarly, neurite 
bending or shear caused by the growth of a nearby tumor might lead to the chok-
ing off of conductance along a neural pathway with functional implications. 

3. CONCLUSIONS

 The basic physiology of neuronal activation and discharge is reasonably 
well understood, and a vast literature of modeling studies, using approaches 
ranging from very abstract to very realistic, is available. While it is true that not 
all aspects of single neuron function, not to mention network function, can yet 
be routinely simulated, and certainly not with a single set of parameters applica-
ble to even one type of cell in all experimental situations, nonetheless, there is 
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not much doubt that further progress can be expected as time passes and com-
puters continue to become more capable. In a less detailed way, modeling of 
tissue development in general, and that of neural tissue specifically, is a field 
with a long history of informative studies at the bulk material or cellular 
automaton level, with continual progress being reported, though often restricted 
to two dimensions. 
 It has recently become possible to consider constructing models in which 
neuronal network development and behavior-generating function are combined. 
Farther off are models of this kind in which the basic components are individual 
cells. In such models, it will for the first time be possible to study the combined 
influences of normal cellular mitotic controls, diffusion of nutrients, angiogene-
sis, mechanical obstacles to growth, cell–cell signaling by direct contact and by 
diffusion of signaling molecules, as well as various experimental and therapeutic 
interventions. Limitations in the acquisition of detailed geometric information 
from brain images and, at a more practical level, in computer power, will pre-
vent these models in the near future from reaching the size scale of macroscopic 
brain features. Thus, work will have to continue in parallel with models based 
on generic detailed tissue properties but more realistic large-scale boundary 
conditions. The eventual contact of work at the cell and whole-brain or brain-
region spatial scales will lead to a new class of models that should greatly in-
crease our understanding of how molecular and mechanical influences interact 
in normal and cancerous brain development. These models will give us a new 
understanding of the ecological place of the brain in the whole organism, as well 
as making possible new approaches to the rational planning of therapies for 
brain malfunctions. 

4. NOTES

 1. Cellular automata are models in which abstract units ("cells") arranged on 
a lattice may exist in one of a finite set of defined states and which undergo 
changes in state at each time step of the model according to rules that depend 
only on their own states and the states of a defined set of near neighbors at the 
previous time step. 
 2. Polyhedra constructed by erecting planes perpendicular to and bisecting 
lines between centers of interest. Each plane extends in all directions only to the 
nearest line of intersection with another such plane. 
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Neuronal networks are extraordinarily complex systems, structurally and dynamically, 
given the number of elements that compose them, their functional architecture, their plas-
ticity, and their nonlinear mechanisms for signaling over vast ranges of time scales. One 
approach to understanding how neuronal circuits generate activity is to study developing 
networks that are relatively simpler, before any experienced-based specialization has oc-
curred. Here, we present a model for the generation of spontaneous, episodic activity by 
developing spinal cord networks. This model only represents the averaged activity and 
excitability in the network, assumed purely excitatory. In the model, positive feedback 
through excitatory connections generates episodes of activity, which are terminated by a 
slow, activity-dependent depression of network activity (slow negative feedback). This 
idealized model allowed a qualitative understanding of the network dynamics, which 
leads to prediction/comprehension of experimental observations. Although the complex-
ity of the system has been restricted to interactions between fast positive and slow nega-
tive feedback, the emergent feature of the network rhythm was captured, and it applies to 
many developing/excitatory networks. An open question is whether this mechanism 
can help us explain the activity of more complex/mature networks including inhibitory 
connections.
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1. INTRODUCTION

 A key problem in neuroscience is to understand the cellular basis of behav-
ior. Vertebrate neural networks have very diverse architectures, and are com-
posed of large numbers of neurons of different types, connected through various 
classes of synaptic contacts. In order to discover the principles underlying the 
activity of neural networks, it may be helpful to understand their history. There-
fore, a possible strategy is to study developing networks, as they might be sim-
pler to study but nevertheless operate through similar mechanisms as the more 
complex, mature networks. One major advantage of this strategy is that many, if 
not all, developing neural networks generate a similar type of activity that has 
been called "spontaneous activity." Therefore, the conclusions obtained from the 
study of one network may be of general application. 
 In this chapter, we review the characteristics of this spontaneous activity, 
focusing on the networks of the developing spinal cord. We then present an ide-
alized model of this activity and discuss two important applications of this 
model. Finally, we discuss the generality of this model and its possible applica-
tion to more complex networks. 

2. SPONTANEOUS ACTIVITY IN DEVELOPING NETWORKS

 Early in development, neuronal networks of the central nervous system 
generate spontaneous activity. It is called spontaneous because it is not provoked 
by sensory inputs or inputs from other parts of the nervous system, but is gener-
ated within each of these circuits in isolation. Spontaneous activity has been 
well characterized in the developing spinal cord, hippocampus, and retina and 
has also been described in other circuits (25). Although they have widely differ-
ent architectures, the features of the spontaneous activity are very similar in all 
these networks (25). The most characteristic feature of this activity is its epi-
sodic nature: most if not all neurons of the network become active together for 
several seconds to a minute; then the network becomes silent for intervals that 
can last up to several minutes, as illustrated in Figure 1. 
 Because spontaneous activity is so widespread in the developing nervous 
system and with striking similarities between different circuits, understanding its 
mechanisms of generation may provide some general principles of neuronal 
network function. Furthermore, there is evidence that spontaneous activity can 
drive the refinement of neuronal circuits (17,46), as this activity usually involves 
large populations of neurons in a highly correlated fashion (see below) and 
therefore may lead to strengthening/weakening of synaptic connections through 
Hebbian mechanisms (28) (see (46) for a discussion of spike-timing-dependent 
potentiation/depression of synapses related to developing circuits). Finally, the 
temporal pattern of activity may also regulate the electrical properties of indi- 
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vidual neurons (15,22). It is therefore important to understand the mechanisms 
of generation of spontaneous activity in the developing nervous system. In the 
following, we focus on the temporal organization of activity through activity-
dependent synaptic depression in the developing spinal cord, but suggest that the 
same features are common to other neural networks. 
 Spontaneous activity was first observed as spontaneous movements in em-
bryos of diverse animals. Embryonic motility was extensively studied in the 
chicken embryo (16), as it was easy to observe spontaneous movements through 
the egg shell, and later to record electrical activity through a small window in 
the shell. It was shown that these episodic movements were caused by spontane-
ous electrical activity in the neuronal networks of the spinal cord. More recently, 
an isolated in vitro preparation of the embryonic chick spinal cord was devel-
oped (26), allowing one to record the activity and to manipulate the network (by 
lesions or pharmacology) at different stages of development. 

Figure 1. Episodic activity in developing networks. A, Spontaneous activity recorded from the 
isolated spinal cord of a 7.5-day-old chick embryo. The activity is recorded from a ventral root 
and represents the synchronous activation of a population of motoneurons. It is characterized 
by rhythmic episodes lasting up to a minute that are separated by silent intervals lasting up to 
20 minutes. The high-frequency (fast) signal corresponding to motoneuron discharge is not 
visible because of the scale and the low sampling rate (20 Hz). Modified with permission from 
Tabak et al. (36). (B) Spontaneous activity recorded from the isolated retina of a 9-day-old 
mouse (postnatal). This signal is the rate of neuronal discharge averaged over 29 cells. Note the 
difference in the time scale with the recording in A. Data reprinted from J. Demas, S.J. Eglen 
and R.O.L. Wong (unpublished). 
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 We can record this activity from a population of motoneurons (the output 
neurons projecting to the muscles) by suctioning a ventral root (axons from the 
motoneurons) into an electrode. The activity recorded this way is a combination 
of two signals. The slow component, illustrated in Figure 1A, represents the 
depolarization (increase of membrane potential) of the motoneurons, propagat-
ing passively along the axons. Superimposed on this slow signal is a fast signal 
(not visible in the figure) caused by the action potentials generated by the moto-
neurons. The slow signal shown in Figure 1A is a good indicator of the activity 
in the whole network, since motoneuron depolarization is caused by synaptic 
inputs from other neurons in the network. The activity is episodic, with episodes 
lasting up to a minute separated by intervals of up to 20 minutes. Within an epi-
sode, the activity is rhythmic with a cycle frequency of ~0.2–1.0 Hz, markedly 
decreasing toward the end of the episode. Each cycle can be seen as a network 
"spike," representing the depolarization of the whole neuronal population. Al-
though the neurons are activated in synchrony, their action potentials are not 
synchronized. 
 How is this activity generated? Several key experimental findings provide a 
working hypothesis. 
 The first thing to note is that many developing networks can be considered 
as purely excitatory circuits. This is because the inhibitory neurotransmitters 
GABA and glycine have excitatory effects early in development (2,6).1 Indeed, 
blocking the action of excitatory neurotransmitters acetylcholine and glutamate 
does not prevent the spinal cord from generating episodic activity (7). It is there-
fore easy to understand the presence of spontaneous activity in immature cir-
cuits. Any event such as a few neurons randomly firing can be amplified by 
positive feedback through the recurrent excitatory projections, leading to mas-
sive activity in the whole network. This explains the activity, but not its episodic 
pattern. How are the episodes terminated, in the absence of inhibitory connec-
tions? 
 One possibility is that the network "fatigues" during activity, until it is no 
longer capable to sustain activity. In other words, there is an activity-dependent
process that depresses the excitability of the network. To demonstrate the pres-
ence of such activity-dependent depression process, we have stimulated popula-
tions of interneurons through sensory or propriospinal afferents and observed the 
evoked synaptic response on the motoneurons (11). The synaptic potentials re-
corded on the motoneurons are decreased after an episode of activity, and pro-
gressively increase during the interval between episodes. This suggests that 
network excitability is depressed by the episodes of activity and that it recovers 
in the interval between episodes. This depression may be synaptic, that is, activ-
ity decreases synaptic efficacy. An activity-dependent synaptic depression proc-
ess, by reducing the strength of the connections between neurons, would 
effectively decrease the positive feedback. Another possibility is that this de-
pression acts on the neurons to decrease their excitability, making them less 
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likely to fire action potentials. Such activity-dependent cellular adaptation proc-
ess would shift the input/output function of the neurons and make them less re-
sponsive to inputs. 
 Finally, it must be stressed that no particular network structure or cellular 
properties are thought to underlie the pattern of activity. As mentioned above, 
spontaneous episodic activity is observed in developing networks with a great 
variety of structure, and a similar type of activity is observed in dissociated cul-
tures of spinal neurons for which inhibitory transmission has been blocked (35). 
In the chick embryo, lesion studies have shown that ventral networks of the spi-
nal cord can generate the activity despite transversal or horizontal sectioning 
(47), and pharmacological studies have shown that episodic activity is still gen-
erated when individual neurotransmitters are blocked (7). In addition, there is no 
evidence that cellular pacemaker properties underlie the rhythmic activity. It is 
through their (excitatory) network interactions that the rhythm arises, i.e., the 
rhythmic activity is an emergent property of the network and the dynamics of 
the recurrent connections. 
 The main hypothesis is therefore that the spontaneous, episodic activity is 
generated by a purely excitatory network. This activity depresses network excit-
ability and when excitability is too low the activity stops. In the silent period, 
network excitability can recover until a new episode starts. In order to test this 
hypothesis, we have built a very idealized model (schematized in Figure 2A) 
based on all these observations. This differential-equations model can be ana-
lyzed qualitatively using phase-plane and dynamical-systems concepts, so we 
can understand its dynamical behavior. It allowed us to explain some experi-
mental results and made some predictions, some of which are presented below. 

3. MODEL OF SPONTANEOUS ACTIVITY IN 
THE EMBRYONIC CHICK SPINAL CORD

 According to the experimental findings presented above, we model a purely 
excitatory network whose detailed structure (connectivity pattern, heterogeneity 
of cell types) is not known but does not seem to be important. We also assume 
that the membrane properties of the neurons are not important either and all the 
neurons are active or inactive together. We therefore use a "mean-field" repre-
sentation of the activity and depression variables, as used by Wilson and Cowan 
(44). According to this formulation, the activity a(t) of the network is an average 
of the neuronal firing rate over the population of neurons (see Figure 2A,B). 
Individual spikes are not modeled (and assumed not to occur synchronously); 
this firing rate is a temporally coarse-grained representation, that is, averaged 
over a short period of time.2 Thus, a can be related to the (pre)synaptic drive, 
i.e., the amount of synaptic input exciting neurons in the network (29). The 
model consists of three equations (36): 
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( )aa a a n s d a+ = , [1] 

( )dd d d a+ = , [2] 

( )ss s s a+ = , [3] 

or

( )a+ = . [3'] 

Figure 2. Model of the network generating episodic activity. (A) Justification for a mean-field 
formulation. Neurons are connected to each other through random excitatory connections. 
Neurons i, ii, ... are active together but their spikes are not synchronized. Spike rate can thus be 
averaged, giving a smooth curve, the activity (network output) that is injected back into the 
network. (B) Schematic representation of the model network. Network output (a) is fed back to 
the neuron population through recurrent excitatory synapses. The amount of feedback is pro-
portional to the connectivity (n) and can be reduced by fast (d) and/or slow (s) synaptic depres-
sion. Network output can also be modulated by slow variations of the average cellular 
threshold ( ). (C) Sigmoidal input–output function of the network. Note that a (0) > 0, implic-
itly assuming that a few cells in the network are always discharging at low rate, providing a 
background "input" to the network. Modified from Tabak et al. (36). 
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 The first equation describes how activity evolves in a recurrent excitatory 
network. Basically, a tends to a  with a time constant a. The function a  repre-
sents the input–output function of the network. This function depends on the 
input–output functions of the individual neurons, their distribution across the 
population, and the dynamics of the synaptic signals. For simplicity we have 
chosen a sigmoidal function a (i) = 1/(1 + e(i– )/ka), as illustrated in Figure 2C. For 
low inputs to the network, there is very little output (a  0), until a threshold 
( ) is reached; the output then quickly reaches its maximal value (a  1);  can 
be seen as an average firing threshold in the neuronal population. Note that the 
activity a is itself the input to the network—modulated by the effective connec-
tivity factor n s d—because of the recurrent excitatory connections. The pa-
rameter n is the network connectivity, a composite measure of the number of 
connections per neuron and synaptic strength, which determines the maximal 
gain of the positive feedback loop created by excitatory connections. As de-
scribed below, the activity defined by this equation is bistable over a wide range 
of parameters. 
 The second equation describes the evolution of the synaptic variable d,
which represents a fast depression of the effective connectivity— d ( a) is on 
the order of 100 ms, as in cortical networks (5). When d = 0 all synapses are 
totally depressed while synapses have full strength when d = 1; d  is a decreas-
ing function of a, also chosen to be sigmoidal for convenience. The interplay 
between a and d can create oscillations of the activity. Finally, Eq. [3] describes 
the variations of the slow ( s >> a) synaptic variable s. This variable also de-
creases when a is large and increases for low activity, but on a much slower time 
scale. A possible biophysical mechanism for this slow (time scale minutes) syn-
aptic depression involves the loss of chloride ions by the neurons during an epi-
sode, decreasing the excitatory action of gabaergic and glycinergic connections 
(8). Alternatively, the slow depression could be due to a cellular (not synaptic) 
process increasing the cellular threshold  for high levels of activity (Eq. [3']; 
is an increasing function of a). The slow type of depression, whether synaptic or 
cellular, is responsible for the episodic nature of the activity (see below). 
 By reducing the network to a system of three differential equations, we lose 
the complexity of a population of neurons and only study the mean-field (deter-
ministic) interactions between the fast positive feedback and the slower negative 
feedback in generating this activity. The advantage is that we are able to qualita-
tively analyze the dynamics of the system with fast/slow dissection techniques 
(see, e.g. (30)). We present this dissection in the next section, but in brief the 
methodology is as follows. The slow variable s is first considered as a parameter, 
and the dynamic states of the one-variable (a) (or two-variable (a,d), as shown 
by Tabak et al. (36)) fast subsystem are fully described; the steady state (and 
oscillatory, in the case of a two-variable fast subsystem) solutions are obtained 
as a function of s. Then when s is free to follow its autonomous dynamics the 
full system has solutions that evolve on the slow time scale of s, sampling 
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the solution states of the fast subsystem and at critical (bifurcation) points exe-
cuting rapid transitions between states. This analysis involves numerical bifurca-
tion and branch-tracking methods and forward-in-time integrations, which were 
carried out using the XPPAUT package (freely available software written by 
G.B. Ermentrout, http://www.pitt.edu/~phase/). A fourth-order Runge-Kutta 
scheme with a time step of 0.1 was used to numerically integrate the differential 
equations. Parameter values used in the simulations are given in Table 1. 

4. PROPERTIES AND APPLICATIONS OF THE MODEL

4.1. Bistability of the Excitatory Network with Fixed Synaptic Efficacy

 Let us first analyze the properties of the network without depression, that is, 
we study Eq. [1] and freeze the depression variables (s = d = 1). Such a sys-
tem will reach a steady state ( ( 0)a=  for which the activity is defined by a = 
a (n a) (from Eq. [1]). The steady states can be determined graphically as the 
intersections of the straight line and the curve of a (n a) shown in Figure 3A 
for any value of n. When n is too small (n = 0.3 in Figure 3A), there is only one 

Table 1. Values of the parameters used for the models, 
unless mentioned otherwise in the text or figures 

                      Parameter                                                     s-model           -model 

n, connectivity 1 1 

a
, network time constant 1 1

, network threshold (half activation) 0.18 variable 

k
a
, inverse of slope of a  at half activation –0.05 –0.05 

d
, time constant of fast synaptic depression d 2 2 

d
, half activation of d 0.5 0.5

k
d
, inverse of slope of d  at half activation 0.2 0.2 

s
, time constant of slow synapic depression s 500 

s
, half activation of s 0.14 

k
s
, inverse of slope of s  at half activation 0.02 

, time constant of slow cellular adaptation   1000 

, half activation of 0.15 

k , inverse of slope of  at half activation –0.05 
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intersection for a low value of a. Thus, the connectivity is too small to sustain a 
high level of activity. Even if the network is transiently stimulated, activity will 
quickly go back to its low level state. On the other hand, for large values of n (n

Figure 3. (A) Graphical solutions of the equation a = a (n a). Depending on the value of n,
there can be 1 or 3 solutions. (B) Time course of network activity for n = 0.5. The network 
receives external inputs at t = 20 and t = 50 (arbitrary unit normalized to a). The first input (i) 
brings the activity just below the middle state (network threshold, dashed line) so activity 
decreases back to the low state. The second input brings activity just above the network thresh-
old, and then jumps up to the high steady state. (C) Diagram showing the possible steady state 
values of activity for all values of n between 0 and 1. The dashed curve (middle branch) indi-
cates unstable states. The steady states determined in A are represented on the curve by filled 
(stable) or open (unstable) circles. Modified from Tabak et al. (36). 
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= 0.9 in Figure 3A), there is one intersection, but at a high activity level. Con-
nectivity in the network is so high that activity is self-sustained. This is expected 
from an excitatory network: for very low connectivity the network is inactive, 
while for high connectivity the activity is maintained through positive feedback. 
It is also known that for intermediate connectivity the low and high activity 
states can both exist, as described below. 
 For intermediate values of n (n = 0.5 in Figure 3A), we find three intersec-
tions. There are steady states at low, high, and intermediate levels. Note that the 
middle steady state is unstable. This can be easily seen since the slope of a (n
a) is greater than 1 at this point, therefore if a is slightly increased (respectively, 
decreased) its derivative ( )a a n a a=  will become positive (resp., nega-
tive), which will tend to further increase (resp., decrease) a. The slightest 
movement away from this steady state will therefore be amplified. This is illus-
trated in Figure 3B. If the network activity is perturbed from the low state to just 
below the middle state level (dashed line), activity will decrease back to its low 
level (i). On the other hand, if the network is kicked to just above the middle 
state, activity will jump to the high steady level (ii). The middle steady state is 
thus a network threshold, separating the low (inactive) and high (active) states. 
 We can summarize these results by plotting the activity levels (steady 
states) calculated when n is varied continuously. We obtain the important dia-
gram shown in Figure 3C. The resulting "S-shaped" curve has 3 branches: the 
lower branch (solid) corresponds to the low activity states, the middle branch 
(dashed) corresponds to the unstable states, and the upper branch (solid) corre-
sponds to the high activity states. The S-curve defines 2 domains in the (a – n)
plane. For any value of n, if the activity is such that the point (n,a) is on the right 
of the curve, then activity will increase until the system reaches the upper branch 
(high state). Conversely, if (n,a) is to the left of the S-curve, activity will de-
crease until it reaches the low state. 
 We can see that for a range of values of n (approximately between 0.31 and 
0.73) there are two possible stable states. The network is bistable. As we have 
seen for n = 0.5, a perturbation strong enough to cross the middle branch allows 
switching between the two stable states. This bistability is the basis for the oscil-
latory and episodic behavior described below. Imagine the network is in the 
high-activity state and we slowly decrease the connectivity. The state of the sys-
tem, defined by a point in the (a – n) plane, will be on the upper branch and 
slowly move to the left, with a minimal decrease of activity. However, when n
passes a critical value around 0.31 where the upper and middle states coincide 
(the "left knee" of the S-curve), the only remaining state is the low-activity state 
and the network crashes to that state. Now, we slowly increase n, so the state of 
the system tracks the lower branch, going to the right. Similarly, activity is only 
going to increase slightly until the "right knee," where the middle and lower 
states coalesce. Once n is above that point, only the high state remains and the 
network will jump to its high activity state, terminating the cycle. 
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4.2. Episodic and Rhythmic Behavior Due to Activity-Dependent  
Depression of Network Excitability

 The network could switch spontaneously between the high and low states 
according to the above mechanism if we add an activity-dependent mechanism 
to modulate the connectivity. Therefore, we now let the slow variable s vary 
according to Eq. [3] (for now, the fast depression variable is still frozen: d = 1). 
Because s  is a decreasing function of a, the new variable s and therefore effec-
tive connectivity n s will tend to decrease when the network is in the high state 
and increase when the network is in the low state. This may lead to slow oscilla-
tions between the high and low states as explained in the previous paragraph and 
illustrated in Figure 4A. 
 We can explain the oscillatory behavior of the system geometrically as 
shown in Figure 4B. This treatment is similar to the phase plane analysis of sin-
gle neuron excitability pioneered by Fitzhugh (12,30). The variations of the 
variables a and s (synaptic activity and fraction are not affected by slow depres-
sion) define a trajectory in the (a – s) plane, called the phase plane. The solid 
gray S-curve in Figure 4B defines the states of the system for which 0a=  (cf. 
Figure 3C) and is called the a-nullcline. The dashed curve defines the states of 
the system for which 0s=  and is called the s-nullcline (it is simply the curve s
= s (a)). For any value of s, if the activity is below that, curve s will be increas-
ing, while s will be decreasing if a is above the s-nullcline. The steady states of 
the system (comprised of Eqs. [1] and [3]) are the intersections of the two null-
clines. In the case of Figure 4B, there is only one steady state and it is unstable. 
A necessary condition for the steady state to be unstable is that the intersection 
occurs on the middle branch of the a-nullcline. If there was an intersection 
on the upper or lower branch, that intersection would define a stable steady 
state at high or low activity, which would prevent the episodic behavior. This 
immediately imposes a constraint on the parameters of the model if episodes are 
to occur. 
 Imagine the system is in a state (s,a) on the right of the a-nullcline. The 
trajectory will quickly go up as if s was constant because a << s, until it 
reaches the upper branch of the a-nullcline. Then a will remain constant, while s
will decrease, since the system is now above the s-nullcline. The trajectory will 
thus track the upper branch, going left, until it reaches the left knee of the a-
nullcline. Here, a further decrease in s forces the system to leave the a-nullcline, 
and, being on the left of the nullcline, activity decreases so that the trajectory 
quickly goes down to the lower branch of the a-nullcline. During this transition, 
the trajectory crosses the s-nullcline, so s increases. The trajectory will thus 
track the lower branch going right, until it passes the right knee, causing a new 
transition upward to the upper state. 
 So far, the combination of the bistability of the activity (Eq. [1]) and the 
slow, activity-dependent variations of the effective connectivity (Eq. [3]) creates 
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slow, spontaneous oscillations between low and high states that mimic the epi-
sodic activity observed experimentally. Now, if we allow the fast depression 
variable, d, to vary (according to Eq. [2]), the system may oscillate quickly dur-
ing each episode. The system then generates rhythmic episodes as shown in Fig-
ure 5. For a complete analysis of the full system using fast/slow dissection 
technique, see Tabak et al. (36). 

Figure 4. Episodic behavior of the network (Eqs. [1] and [3]). (A) Slow oscillatory variations 
of activity (a, solid curve) and slow depression variable (s, dotted curve) with time. Time is in 
arbitrary units. (B) Phase plane representation of the episodic behavior. The trajectory continu-
ously cycles through the high (Episode) and low (Interval) activity states. The transitions be-
tween the two activity levels are very fast because they are governed by the small time constant 

a, while the evolution at either level is slow since it is governed by a large time constant s.
Gray S-shaped curve = a-nullcline; dashed curve = s-nullcline. 
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 Finally, note that if we had used Eq. [3'] instead of Eq. [3], that is, if we had 
considered a cellular adaptation mechanism instead of a synaptic depression 
mechanism to drive the episodic behavior, we would obtain a similar dynamical 
behavior of the system. At this point, we do not see a qualitative distinction be-
tween these two mechanisms (cellular or synaptic) of episode generation. In the 
next sections, we denote these models the s-model (synaptic depression) and the 

Figure 5. Episodic and rhythmic behavior of the full system (Eqs. [1]–[3]). (A) Time varia-
tions of a and s, showing the episodic behavior with fast oscillations. Note that episodes and 
intervals between episodes are shorter than in Figure 4A. This is mostly because episodes 
terminate at a higher value of s when fast depression is present. (B) Detail of an episode on a 
faster time scale, showing the fast oscillations of a and d.
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-model (cellular adaptation), and we will show particular parameter variations 
from which differences in their behaviors will emerge. 

4.3. Relationship Between Episode Duration and Inter-Episode Interval

 Can we trigger the network before synaptic strength (or firing threshold, if 
we consider the -model) has fully recovered? We can answer this question di-
rectly by looking at Figure 4B. At any time during the inter-episode interval 
(while the system is tracking the lower branch of the S-curve), if we transiently 
"stimulate" the network so that activity increases above the threshold, the phase 
point will move to the high state, initiating an episode. However, the episode 
will start from a lower value of s than a spontaneous episode, therefore the sys-
tem will track a shorter segment of the upper branch before reaching the left 
knee and falling back to the low state (whatever the value of s for which we 
triggered an episode, the critical value of s at which the episode terminates is 
always the same). Therefore, the triggered episode is shorter than a spontaneous 
episode. More precisely, the longer we wait to artificially trigger an episode, the 
longer the episode is, as illustrated in Figure 6A,B. 
 This model prediction is testable experimentally. Indeed, we have shown 
that it is possible to trigger episodes by stimulating sensory nerves afferent to 
the spinal cord, and that the duration of the stimulated episodes increases with 
the interval between the triggered episode and the end of the previous (sponta-
neous) episode, as shown in Figure 6C,D (37). In other words, the longer we let 
the network excitability recover, the longer the triggered episode is. This sug-
gests that in the experimental preparation, as in the model, there is a critical 
value of network excitability for which all triggered episodes terminate. 
 In Figure 6D we have also plotted the durations of spontaneous episodes 
(gray dots) against the recovery interval that just preceded the episodes. Al-
though their range is different, the relationship is the same as for stimulated epi-
sodes, suggesting again that all episodes (spontaneous or triggered) terminate at 
a fixed level of network excitability. To confirm this finding we have also 
looked at the relationship between episode duration and the following interval 
and found no correlation (37). This lack of correlation suggests that there is no 
"memory" of the system's state once an episode is terminated, supporting our 
finding that all episodes terminate at a fixed level of network excitability. 
 Figure 6D shows that spontaneous episodes occur after various intervals. 
Unlike our simple model, episodes therefore can start at various levels of net-
work excitability. Episode initiation is a stochastic event. Although a higher 
level of excitability means a higher probability of triggering an episode, the 
network needs a triggering event in order for an episode to start, and this is 
where randomness is introduced. On the other hand, as our data suggest, all epi-
sodes terminate at the same value of network excitability; episode termination is 
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a deterministic event. This seems to be a property of many developing or hyper-
excitable systems that generate episodic activity, since the same relationships 
(positive correlation between episode duration and preceding—but not follow-
ing—interval) was found in the developing retina (14), developing cortical net-
works (27), hippocampal slices (33), and disinhibited spinal networks (32,35). It 
is therefore tempting to suggest that similar mechanisms operate in the genera-
tion of episodic activity by all these different networks. 

4.4. Recovery of the Activity after Blockade of Excitatory Connections

 One of the most surprising features of the spontaneous activity is its robust-
ness to pharmacological perturbation. When synaptic transmission mediated by 
the excitatory neurotransmitters glutamate and acetylcholine is blocked using 
pharmacological agents, the spontaneous activity stops for a long period of time 

Figure 6. Relationship between episode duration and interval preceding the episode. (A) Time 
course of activity generated by the s-model for different intervals between a spontaneous epi-
sode and a triggered (stim) episode. (B) Plot of episode duration against preceding interval for 
the model; a, b, c correspond to the traces shown in A. (C) Time course of activity generated 
by a spinal cord obtained from a 10-day-old chick embryo. Stimulations (stim) were applied at 
different time intervals after a spontaneous episode. Traces were high-pass filtered at 0.01 Hz. 
(D) Plot of episode duration against preceding interval for evoked (black circles) and sponta-
neous episodes (gray circles); d, e, f correspond to the traces shown in C. Modified from Tabak 
et al. (36). 
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(compared to the inter-episode intervals) but then recovers, as shown in Figure 
7A (1,7). The activity is then thought to depend exclusively on gabaergic and 
glycinergic synapses, which have, early in development, an excitatory role. It 
must be noted that the recovery is not gradual, as the new inter-episode intervals 
are not gradually decreasing to a new level but remain at a fixed level immedi-
ately after the activity has recovered (Figure 7A; note that after recovery the 
intervals are larger than in control conditions). We could imagine an additional 
process through which the lack of activity is detected and compensated by 
slowly increasing network excitability until activity reaches its control level. 
However, this slow homeostatic process may cause a progressive—not abrupt—
decrease of inter-episode intervals, unlike the experimental observation. 
 Surprisingly, the s-model can explain this recovery without introducing any 
additional variable into the model. If we decrease the connectivity parameter (n), 
in order to mimic the blockade of a fraction of the connections, the s-model re-
acts exactly like the chick spinal cord: activity first stops, then recovers with a 
fixed inter-episode interval (Figure 7B; (37)). As for the experimental result, the 
new inter-episode intervals were larger than before the blockade. In addition, 
episode duration was only slightly affected, also in agreement with the experi-
ments. On the other hand, the -model behaved in a different way: activity re-
covered quickly after the reduction in connectivity and the intervals were then 
slightly lower than in "control" (Figure 7B, " -model"). In addition, episode 

Figure 7. Recovery of activity after partial block of excitatory connections. (A) Results from a 
10-day-old chick, showing activity (upper trace) and inter-episode intervals in control and 
after blockade of some glutamatergic connections (100 M APV). (B) Model results before 
("control") and after n was decreased from 1.2 to 0.9 (–25%). The upper trace was obtained 
with the s-model. On the interval plot, results from both the s-model (filled diamonds) and -
model (open triangles) are shown. Modified from Tabak et al. (36). 
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duration was markedly reduced for the recovered activity (not shown). This is an 
important qualitative difference between the s- and -models. This difference in 
how the models react to a decrease in connectivity suggests that the episodic 
nature of the spontaneous activity in the chick cord is due mostly to synaptic 
depression, not cellular adaptation. 
 In order to understand the recovery of activity, we plotted again the activity 
generated by the s-model in Figure 8, together with the slow depression variable 
(s) and the effective connectivity (n s). As described previously, s and therefore 
n s decrease during the episodes and increase during the inter-episode intervals. 
When the connectivity (n) is suddenly decreased by 25% (from 1.2 to 0.9), this 
causes a corresponding decrease of n s, the effective connectivity in the net-
work, i.e., the effective gain of the positive feedback due to excitatory connec-
tions. Activity is therefore blocked until this gain can reach back to its "control" 

Figure 8. Time course of activity, synaptic strength (s), and effective connectivity (n s)
produced by the s-model before ("control") and after ("reduced connectivity") n was de-
creased by 25% (from 1.2 to 0.9). Activity stops after n was decreased, because the effective 
connectivity becomes too small to support network activity. This allows s to increase beyond 
its control level, until n s reaches its control level. Activity then reoccurs, although with 
larger inter-episode intervals. Modified from Tabak et al. (36). 
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value. This can happen because in the absence of activity s keeps increasing 
towards its asymptotic value, 1. As soon as n s reaches its control value, epi-
sodes of activity reoccur. The intervals between episodes are somewhat longer 
than in control, because the exponential increase of s during the intervals is 
slower since s is now closer to its asymptotic value. Therefore, the activity can 
recover after a moderate decrease of connectivity because the system compen-
sates by decreasing the level of depression (increasing s).
 This predicts that the unblocked synapses see their availability or efficacy 
increase relative to their control level. To verify this prediction, we have stimu-
lated a pathway (between adjacent ventral roots) that does not contain glutama-
tergic synapses. Indeed, we have shown that the strength of the response was 
increased after blockade of glutamatergic connections and subsequent recovery 
of the activity (37). The developing spinal circuits are therefore able to ap-
proximately maintain their level of activity following the blockade of some of 
their connections. This is very important since the temporal pattern of activity 
may be important in the development of network and cellular properties (15,34). 
During development, some cells and connections may be lost, while other syn-
apses may see their efficacy increased. Through the very mechanism that regu-
lates its patterned activity (activity-dependent depression), the developing spinal 
cord is able to compensate for these changes and therefore maintain its activity 
level within a certain operating range. 

5. DISCUSSION AND FUTURE WORK

 We have presented an idealized model of spontaneous activity in develop-
ing neural networks. Despite its mean-field approach, the model captures the 
emergent nature of the phenomenon. Although we implicitly assumed that a 
small proportion of cells were active, none have pacemaker capabilities, so the 
ensemble interactions are crucial for generating the episodic rhythm, not just for 
synchronizing cellular oscillators. 
 The model presented in this chapter was developed to understand the 
spontaneous activity in the developing spinal cord. However it is general enough 
to apply to spontaneous activity in other developing circuits. Indeed, other 
modeling and experimental studies have suggested that similar mechanisms can 
explain the spontaneous episodic activity in developing retinal (4,14,24) 
and cortical networks (27). These mechanisms involve fast positive feed-
back through excitatory connections together with a slow activity-dependent 
depression of network excitability. They may therefore be common to many 
developing networks. This gives us a framework to study developing and 
excitatory networks. Can this framework be helpful to the study of mature 
neural networks? 
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 One critical fact is that with maturation, networks acquire functional inhibi-
tory connections, which stops the episodic activity. Mature networks become 
segregated into subserving different functions, with a great variety of patterns of 
activity. Can the concept of recurrent excitatory network still be used to under-
stand mature networks? In the following we review some evidence from ex-
perimental and modeling studies suggesting that the "immature" mechanisms of 
burst generation could be conserved in more mature networks. 
 First, episodic bursts of activity can be generated in "mature" networks that 
are disinhibited by pharmacological block of their inhibitory connections. This 
was shown in in vitro spinal (3,10) and hippocampal (45) networks. Therefore, 
the immature mechanism is still potentially present in mature networks and can 
be unmasked. Furthermore, episodic activity can be generated through the same 
mechanism in some networks with functional inhibitory connections if inhibi-
tion is not too strong or if the networks are rendered more excitable 
(20,21,33,38–41). Thus, bursting activity could be evoked in mature networks 
through neuromodulators that would decrease synaptic inhibition and/or raise 
cellular excitability. 
 Although demonstrating that a mechanism of activity can be uncovered 
does not mean that this mechanism is in fact used during the normal function of 
a network, there are several examples suggesting such possibility. A model of 
the spinal circuit for swimming in the lamprey is based on two excitatory sub-
networks that generate bursts using a cellular adaptation mechanism. These two 
units are connected by mutual inhibitory connections, ensuring that the pattern 
of rhythmic bursts is in alternation between left and right sides (18). Therefore, 
it is possible that the rhythmic locomotor activity is simply a faster version of 
the spontaneous activity, with inhibition in the mature network simply allowing 
the coordination between left and right sides, as well as between flexors and 
extensors in higher vertebrates. Inhibition would also ensure that the locomotor 
network is not always "on," but only activated when necessary. Coupled rhythm-
generating circuits control many functions like locomotion, respiration, and 
chewing (9), and it is therefore important to understand how these circuits gen-
erate oscillatory activity. 
 Another example suggesting that the immature mechanism may play a role 
in mature networks comes from studies in cortex of anesthetized cat. Timofeev 
and colleagues (39) showed that isolating a small slab of cortex led to episodic 
bursts of activity (about 5 bursts per minute), with a mechanism similar to the 
one presented herein. However, when they recorded from a larger network, they 
observed the 1H-z oscillation that is observed during sleep. This led to the sug-
gestion that the cortical sleep (<1 Hz) oscillations and the episodic bursts in 
small slabs could be generated through the same type of mechanism. 
 Finally, an application of this type of activity regarding neural computation 
was presented by Loebel and Tsodyks (23). This processing has for its basis the 
short "population spikes" generated by networks of mostly excitatory neurons 
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with synapses subject to a fast depression (a small fraction of inhibitory cells 
didn't disrupt this activity). These population spikes are generated through a 
similar mechanism as the episodes described here, but on a much faster time 
scale. During a population spike, most neurons fire only once, but they become 
transiently synchronized (41). Such synchrony among neuronal populations 
could play an important role in cortical information processing, and Loebel and 
Tsodyks have suggested some applications of the transient synchronization al-
lowed by population spikes, by considering whether transient input signals elic-
ited a response (i.e., a population spike) or not from the network. Success in 
triggering a population spike depends on the level of depression of the synapses 
in the network at the time of the stimulus. In other words, the response of the 
network to an input depends on the (short-term) history of network activity (23). 
 On the other hand, it is possible that the episodic activity, which is charac-
teristic of developing networks, is an abnormal mode of activity in mature net-
works. For example, the episodic activity in cortical slabs mentioned above is 
due to the much decreased number of synaptic connections once the slab is iso-
lated (39). Also, some forms of epileptic activity resemble the spontaneous epi-
sodic activity of developing systems. Indeed, epileptic events can be caused by 
an impairment of inhibitory synapses, or by an anomalous level of excitation. 
An example of "epileptic activity in vitro" was shown by Staley et al. (33), who 
recorded spontaneous episodic bursts of activity in hippocampal slices that were 
disinhibited or rendered hyperexcitable. They showed that these bursts were 
regulated by synaptic depression, as in the s-model. Alternatively, a model by 
Traub and Dingledine (40) of "epileptic" bursts in hyperexcitable hippocampal 
networks proposed that bursts are terminated by a slow hyperpolarizing current, 
that is, a cellular type of depression. 
 It is critical to know whether these bursts are terminated by a synaptic or 
cellular process, if one wants to choose an appropriate pharmacological treat-
ment. As a thought experiment, suppose that we want to suppress "epileptic 
bursts" in a hyperexcitable hippocampal network. Should we target cellular ex-
citability or synaptic connections? If, for example, the bursts are terminated by 
synaptic depression as in the Staley et al. (33) experiments, our results with the 
s-model suggest that we should use a pharmacological agent that blocks excita-
tory synapses, as this will increase the interval between each burst. Decreasing 
cellular excitability would also increase the interburst interval, but it would in-
crease burst duration as well. Similarly, the effectiveness of a drug potentiating 
inhibitory synapses in order to stop the bursts would depend on the type of de-
pression mechanism that terminates the bursts and on the effects of the inhibi-
tory connections—phasic or tonic. 
 Much recent work has been aimed at understanding the role of inhibition in 
neuronal networks. Although our approach has emphasized excitatory networks 
in vertebrates, it should be pointed out that circuits of inhibitory neurons may 
also produce oscillations (31,42,43). A great deal of future work should be con-
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cerned with adding inhibitory cells in our network models. Because the effects 
of inhibition can depend on many factors (local versus diffuse connectivity, pha-
sic versus tonic, etc.), this will certainly require the use of cell-based ensemble 
models (as by Timofeev et al. (39) and Tsodyks et al. (41)), instead of the mean-
field type of model presented here. 
 It will be particularly important to understand how network organization is 
changed as gabaergic synapses switch from excitatory to inhibitory during de-
velopment, a transition that may be driven by network activity itself (13). This 
transition occurs in parallel to developmental changes in excitatory connectivity 
and cellular properties, changes which may also, in part, be due to spontaneous 
activity. But how does activity modify these network properties? Our under-
standing of the spontaneous activity in developing systems will facilitate the 
study of the role of this activity for network maturation. It will become neces-
sary to identify the long-term mechanisms of activity-dependent plasticity oper-
ating in developing networks. These "learning rules" will then be added to our 
models of spontaneous activity, allowing us to study how activity in a network 
leads to changes in that network, changes which in turn will affect activity (see 
(19) for an example of how synaptic plasticity leads to changes in the patterns of 
activity). This effect of activity on itself, by way of modifying network proper-
ties, is one striking feature of neural network complexity. 

6. ACKNOWLEDGMENTS

 We thank Jay Demas for providing his unpublished data on mouse retinal 
activity. We also thank Cristina Marchetti for her comments on the manuscript. 

7. NOTES

 1. When a neuron discharges an action potential, it releases neurotransmit-
ters from its synaptic terminals onto postsynaptic neurons. Some neurotransmit-
ters will increase the membrane potential of the postsynaptic neurons, which 
makes the postsynaptic neurons more likely to fire action potentials. This is 
what we mean by "excitatory connection." Other transmitters will decrease post-
synaptic membrane potential or increase membrane conductance (shunt) such 
that the postsynaptic neuron is less likely to generate action potentials; this type 
of connection is called "inhibitory." 
 2. We use a "top–down," "rate-coded" approach, as defined in the previous 
chapter 5.1. by Reeke. 
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Although the understanding of complex cerebellar function is still a matter of discussion, 
new imaging techniques have provided evidence that the human cerebellum is critically 
involved in motor learning. For associative plastic motor processes this evidence has 
been obtained by comparison of classically conditioned eyeblink results from cerebellar 
patients with those from corresponding control subjects, the former showing typically re-
duced incidence levels of conditioned responses. Of particular interest was that non-
associative-motor-related processes such as habituation are also affected characteristi-
cally in cerebellar patients. Aside from these motor-related functions, we also review evi-
dence that the cerebellum may be involved as well in non-motor visuomotor associative 
learning. The common denominator for impaired function may be an inadequate error-
detection or error-correction capability, a putative function of the olivo-cerebellar system. 
In the final section of this chapter, we review computational models based on feedback-
error learning. 

1. INTRODUCTION

1.1. Types of Learning

 Changes in the activity of the central nervous system are characteristic and 
desirable in developing systems, as has been pointed out in previous chapter 5.2 
by Tabak and Rinzel (Part III, this volume), which presents a model for spon- 
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taneous activity in the developing spinal cord, also applicable to other develop-
ing systems. Other types of changes following possibly similar rules are seen in 
tumor growth and other negative aspects of nervous systems; a novel model for 
that aspect is presented in previous chapter 5.1 by Reeke. 
 Learning based on plastic changes is a multilevel, multifaceted phenome-
non, and its analysis depends on the complexity of the learning situation. In a 
visuospatial delayed-response task, a monkey must retain the previously given 
information about the position of a raisin in one of two food wells, both then 
covered with identical pieces of cardboard. A screen is then lowered for a "de-
lay" of approximately 10 s and then raised again. To obtain the reward, the 
monkey must choose the position at which the food had been placed prior to the 
delay. The marine polychete worm Nereis pelagica contracts in response to a 
sudden vibration or a shadow. Both behavioral reactions are typical examples of 
learning. The analysis of very simple learning in a very simple nervous system is 
attractive from the point of dissecting and understanding it. The analysis of 
learning in complex systems may be more "interesting" and relevant to learning 
in humans. The examples given differ markedly in their complexity, and their 
analyses thus require completely different experimental approaches. 
 The general meaning of learning is associated with acquisition and retention 
of either facts or behaviors that were not present in the organism beforehand. 
The type of learning is closely related to the corresponding memory. The mem-
ory can be classified (66) into two main categories, one of which, the declarative 
explicit memory, and the other, the non-declarative implicit memory. The ex-
plicit memory refers to recollection of facts and events, and requires the integ-
rity of the medial temporal lobe. The implicit memory is related to the ability to 
perform procedures (procedural memory) and seems to be independent of the 
medial temporal lobe. The corresponding location within the brain is a matter of 
an ongoing debate, although data have been accumulated providing evidence 
that the cerebellum is involved. This chapter focuses on the implicit memory 
and the corresponding procedures for acquisition of motor behavior. 
 Although the category "motor learning" is defined loosely only (8), Ito (31) 
provided helpful interpretations: "motor learning" implies both "adaption" and 
"learning"—processes that are not always clearly distinct from each other, 
whereas "learning" implies more than "adaptation." Both procedures must be 
able to adjust parameters to maintain optimal control performance under chang-
ing circumstances with the adjustment as a progressive process and sequential 
exploration of optimal conditions. During repetitive trials an adaptive system 
will always make the same sequential exploration, whereas in a learning system 
exploration will be improved from trial to trial such that the system will achieve 
the optimal point faster and with more accuracy than in the previous trial (31). 
Adaptation utilizes preceding experience within an ongoing experiment, 
whereas learning is based on experiences acquired in preceding experiments. 
Consequently, learning is based not only upon adaptive mechanisms but also on 
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additional features of maintaining and utilizing results from earlier experiments 
(31). Adams (1) specializes the learning aspect to improvement in the quality of 
motor performance with respect to accuracy, speed, and minimal energy, 
whereas skill is more than the ability to perform and often peaks in individual 
different proficiencies. Mechanisms different from these are "habituation" or 
"sensitization," which represent the change in response amplitudes to repeti-
tively given identical stimuli. The amplitudes may increase (sensitization) or 
decrease (habituation) due to an increasing (sensitization) or decreasing (ha-
bituation) mismatch between stimulation and an updated representation of the 
outside world. 
 Adaptation, habituation, and sensitization may be summarized as non-
associative procedures. Correspondingly, other types of learning involve the 
formation of association among stimuli or among stimuli and actions (e.g. (20)). 
Results of associative processes can be studied experimentally by classical and 
instrumental conditioning. In instrumental conditioning the subject learns rela-
tions among actions and their outcome. This is different from classical condi-
tioning, in which the subject learns relations among stimuli. Two stimuli—the 
conditioning stimulus (CS) and the unconditioned stimulus (US)—are paired 
with each other, so that the CS comes to evoke a conditioned response (CR), 
which is similar to the unconditioned response (UR) elicited by the US. An ef-
fective protocol is delay conditioning, in which the CS is preceding US onset 
and coterminates with the US. Classical conditioning of the eyeblink reflex is 
one of the most studied experimental approaches of simple associative learning 
in mammals (e.g. (11)). In a typical protocol, tone is the CS and corneal air puff 
the unconditioned stimulus. The unconditioned stimulus elicits closure of the 
eyelid in humans as well as extension across the cornea of the nictitating mem-
brane (the internal eyelid) in rabbits. With repetitive presentation of paired CS–
US (tone–air puff), subjects learn to blink in response to the tone prior to onset 
of the air puff or to the tone alone. Animal and human lesion studies could 
show that elemental delay conditioning of eyeblink is dependent on the cerebel-
lum but independent of the cerebral cortex and hippocampus. In more complex 
forms of conditioning other brain regions are engaged. For example, in trace 
conditioning, the CS starts and ends before the US starts, and the subjects must 
hold offline information about the CS before US onset. In addition to the cere-
bellum, trace conditioning is dependent on other brain regions including the 
hippocampus. 
 "Despite continuing work on the structure and function of the cerebellum, 
there is still no consensus as to what it does and how it does it" (67). The cere-
bellar cortex appears as a structure similar to a rectangular lattice of high preci-
sion. Together with its extraordinary double innervation via a low-frequency 
system (climbing fiber system) of high transmission probability and a high-
frequency system characterized by an enormous amount of convergence (mossy 
fiber-granule cell system), scientists have been inspired to numerous and even 
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speculative ideas about its function. From the beginning of the 1960s theoretical 
approaches, hypotheses, and models of the cerebellum have been created. Some 
models were derived from the strategic position of the cerebellum within closed 
or open loops of structures assumed to be involved in active movements (e.g. 
(29,3,59)). Others were based on the unique anatomical microarchitecture of the 
cerebellum (e.g. (12,48,2)) or on the requirement to transform motor planning 
into motor execution coordinates (56). More recent models assume the cerebel-
lum to be an adaptive controller, or, more exactly, that the cerebellum could be 
modeled as an adaptive controller, as pointed out by Barlow (6). In his recently 
published book, he reviews different types of models as well as the experimental 
sources these models were derived from (6). 
 In the subsequent paragraphs and based on experimental approaches, we 
will first review the evidence in human lesion and neuroimaging studies about 
involvement of the human cerebellum in classical conditioning of the eyeblink 
response. In addition, based on the recent discussion of the cerebellum's in-
volvement in non-motor functions, we will review evidence that the cerebellum 
may be involved in visuomotor associative learning as well as in habituation 
processes (69). Different hypotheses and models of cerebellar function in learn-
ing will be discussed in the theoretical part of this chapter. 

1.2. Anatomy of the Cerebellum

 The cerebellum is located behind and below the cerebral hemispheres, over-
lying the brain stem (for a review, see (14,77)). The cerebellum consists of two 
large hemispheres and has, in contrast to most other parts of the brain, a midline 
structure, the vermis. In the anterior-posterior direction, the cerebellum is subdi-
vided into the anterior, posterior, and flocculonodular lobes. The three lobes are 
subdivided into several lobules. Larsell has introduced a numbering system, 
based on comparative studies on phylogenetic similarities (44), which consists 
of Roman numerals in the vermis and the prefix H in the hemispheres. 
 Each half of the cerebellum contains four distinct nuclei. The fastigial nu-
cleus is located most medially, followed by the globose and emboliform nucleus 
and, most laterally, the dentate nucleus. The emboliform and globose nuclei in 
humans most likely resemble the anterior and posterior interposed nuclei in 
animals. 
 On the basis of efferent projections from the cerebellar cortex to the cere-
bellar nuclei, Jansen and Brodal (32), and later Chambers and Sprague (16), 
suggested a subdivision into three longitudinal (sagittal) zones: a medial zone 
(vermis) projecting to the fastigial nucleus, an intermediate (paravermal part of 
the cerebellar hemisphere) zone projecting to the interposed nuclei and a lateral 
(lateral part of the cerebellar hemisphere) zone projecting to the dentate nucleus. 
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 The cerebellar cortex is a uniform structure. It is divided into three distinct 
layers: the molecular layer, the Purkinje cell layer, and the granular layer (Figure 
1). The cerebellar cortex contains five types of neurons: (1) Purkinje, (2) gran-
ule, (3) Golgi, (4) stellate, and (5) basket cell. The molecular layer is the outer-
most layer and contains primarily the ascending part of the axons of the granule 
cells, which bifurcate rectangularly, sending fibers along the direction of the 
folium, and are thus termed parallel fibers. Moreover, there are also dendrites of 
the Purkinje and Golgi cells, climbing fibers, and two types of interneurons 

Figure 1. Anatomy. (A) Three-dimensional drawing of a folium of the cerebellar cortex. Re-
printed with permission from S. Harrison (BNI Quarterly, Journal of St. Jospeph's Hospital, 
Barrow Neurological Institue, Phoenix, AZ, 2(2), 1986). (B) Schematics of the microarchitec-
ture of the cerebellar cortex and nuclei with different elements, including the synaptic connec-
tion with "+" for excitatory and "–" for inhibitory synaptic transmission. 
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(stellate and basket cells). The large pear-shaped cell bodies of Purkinje cells are 
aligned side by side in a single layer, known as the Purkinje cell layer. The ex-
tensive dendritic tree of a Purkinje cell extends into the molecular layer in a sin-
gle plane. The granular layer is the innermost layer and primarily contains 
densely packed, small granule cells as well as a few larger interneurons (Golgi 
cells). 
 The cerebellar cortex receives afferent input from most parts of the periph-
eral and central nervous system. The most important afferent fibers consist of 
mossy fibers and climbing fibers. Climbing fibers originate solely from the infe-
rior olive in the brain stem. Mossy fibers originate from different brain stem 
nuclei and neurons in the spinal cord. The mossy fiber afferents terminate in the 
granular cell layer. Mossy fiber contacts with dendrites of granule and Golgi 
cells are known as cerebellar glomeruli. The mossy fibers alter the activity of the 
Purkinje cell via the parallel fibers. Each Purkinje cell receives inputs from nu-
merous granule cells, and each granule cell collects inputs from several mossy 
fibers. Climbing fibers directly contact the dendrites of the Purkinje cell. Each 
Purkinje cell receives input from a single climbing fiber, and one climbing fiber 
contacts 1 to 10 Purkinje cells. 
 The Purkinje cell is the only output neuron of the cerebellar cortex. Purkinje 
cells have a GABAergic, inhibitory action on the cerebellar nuclear neurons. 
Both mossy and climbing fiber afferents have an excitatory action on the Pur-
kinje cell. The excitatory input is modulated by inhibitory interneurons (stellate 
and basket cells in the molecular layer, and Golgi cells in the granular layer). 

2. EXPERIMENTAL APPROACHES AND BEHAVIORAL DATA

2.1. Tests for Associative Processes

2.1.1.  Eyeblink Conditioning

 There are numerous studies that provide clear evidence for critical involve-
ment of cerebellar structures in classical conditioning of the eyeblink reflex. The 
parts of the cerebellar cortex and cerebellar nuclei involved in eyeblink condi-
tioning have been assessed carefully in animal models. Animal lesion studies, 
most in the rabbit, indicate that the ipsilateral interposed nucleus and Larsell 
lobule H VI are of particular importance for acquiring conditioned responses 
(for a review see (9,71,81)). 
 In addition to electrophysiological studies, functional brain imaging has 
been the most widely used technique to study the involvement of structures in 
behavior of humans. This is discussed in more detail in Part IV, chapter 5, by 
Breiter, Gasic, and Makris (this volume). From several human lesion and func-
tional brain imaging studies there is evidence that the human cerebellum is also 
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involved in classical eyeblink conditioning. Eyeblink conditioning has been 
shown to be impaired in patients with cerebellar lesions (10,17,75,80). In addi-
tion, studies using positron emission tomography (PET) and functional magnetic 
resonance imaging (fMRI) revealed learning-related changes of activity in the 
cerebellum during eyeblink conditioning in healthy human subjects (e.g. 
(63,58)). 
 A recent human lesion study conducted by our group investigated classical 
delay eyeblink conditioning in 27 patients with primarily unilateral lesions, par-
ticularly infarcts of the superior cerebellar artery (SCA) and the posterior infe-
rior cerebellar artery (PICA) (22). The extent of the cortical lesion (i.e., which 
lobules were affected) and possible involvement of the cerebellar nuclei was 
determined by 3D-magnetic resonance (MR) imaging. Figure 2B shows the le-
sions of all SCA patients and Figure 2A of all PICA patients superimposed on 
MR images of the cerebellum of a healthy subject. 
 The cerebellar areas known to be most critical in eyeblink conditioning 
based on animal data (i.e., Larsell lobule H VI and interposed nuclei) are com-
monly supplied by the superior cerebellar artery (4). Therefore, we hypothesized 
that conditioning of the eyeblink reflex was impaired in patients with lesions 

Figure 2. Lesions of PICA (A) and SCA (B) patients superimposed on axial, sagittal, and 
coronal stereotaxically normalized MR images of the cerebellum of a healthy 26-year-old 
female subject. All unilateral lesions are superimposed on the left cerebellum, with right-sided 
lesions flipped to the left. The number of overlapping lesions is illustrated in color. PICA 
group: from violet (n = 1) to red (n = 11). Data of two patients are not included for technical 
reasons. Note the center of overlap (orange, n = 10) in the posterior inferior cerebellum within 
lobules VIIB and VIIIA. Note that some lesions affected the lower and inferior part of the 
dentate nucleus (dark blue, n = 4; light blue, n = 5), with the interposed nucleus being pre-
served. SCA group: from violet (n = 1) to red (n = 12). Data from two patients are not included 
for technical reasons. Note the center of overlap (light green, n = 9; darker greens, n = 8 and 7) 
in the superior cerebellum within hemispheric lobules VI and Crus I. 
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including the territory of the SCA, but preserved in patients with lesions re-
stricted to the territory of the PICA. 
 Comparing acquisition of classically conditioned eyeblink responses (CR-
incidence) between patients and sex- and age-matched controls revealed five 
main findings. First, the ability to acquire classically conditioned eyeblink re-
sponses was reduced in cerebellar patients (Figure 3A,B). Second, in patients 
with unilateral cerebellar lesions conditioning deficits were present ipsilaterally 
(Figure 3B). These two results strengthen findings described in the previous 
human literature in a larger patient sample with more accurate MR-based de-
scription of the cerebellar lesion. The three other results provide evidence that 
some additional findings described in the previous animal literature are transfer-
able to humans. First, deficits of eyeblink conditioning were most prominent in 
patients with lesions of the superior cerebellum including hemispheric lobule VI 
and/or Crus I. Mean total CR-incidences were most clearly reduced on the af-
fected side compared to the unaffected side in cerebellar patients with lesions 
including the territory of the SCA (affected side = 13.0%, SD 6.31; unaffected 
side = 33.9%, SD 17.7; see filled and open bars in Figure 3D). In cerebellar pa-
tients with lesions restricted to the territory of the PICA, the differences in CR-
incidences comparing the affected and unaffected side were less pronounced 
(mean total percentage CR-incidence affected side = 19.0%, SD 14.3; unaffected 
side = 27.6%, SD 25.7; Figure 3C). Finally, eyeblink conditioning deficits were 
not significantly different in patients with pure cortical lesions compared to pa-
tients with additional nuclear impairment nor in patients with unilateral and bi-
lateral lesions. In brief, data indicated that a unilateral cortical lesion within the 
superior cerebellum was sufficient to significantly reduce eyeblink conditioning 
in humans. Similar to findings in animal models, these areas overlap with re-
gions involved in unconditioned eyeblink control in humans. A recent fMRI 
study conducted by our group showed that areas within ipsilateral lobules Crus I 
and VI are most active during evocation of the unconditioned eyeblink in 
healthy human subjects (18). 
 In sum, involvement of the human cerebellum in eyeblink conditioning is a 
robust finding in various human lesion and functional brain imaging studies de-
spite differences in the cerebellar patients' pathology and differences in the ex-
perimental design. Comparable to the results from eyeblink conditioning studies, 
the classically conditioned lower limb withdrawal reflex requires an intact cere-
bellum as well, as has been shown for humans (73) and for animals (40). 

2.1.2.  Visuomotor Associative Learning 

 Involvement of the human cerebellum in associative learning does not seem 
restricted to conditioning of avoidance reactions. Cerebellar patients have been 
shown to be impaired in visual motor associative tasks, which required the link- 
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age of a visual stimulus and motor response (15,76). Involvement of the human 
cerebellum in procedural learning of a visuomotor sequence has been found by 
others (51,23). 
 In a study by our group (19), a visuomotor associative learning task was 
examined in patients with pure cerebellar disease. Patients were matched to con-
trols with respect to age, education, IQ, and visual memory. A simple reaction 
time and visual scanning task were performed to assess motor background vari-
ables. The patients' ability to learn the association of a color and a numeral was 
significantly impaired (Figure 4) regardless of the amount of motor performance 
deficits. A reasonable assumption was that the cerebellum is involved in this 
kind of associative learning. 
 In a subsequent study (74), we were able to show that visuomotor associa-
tive learning deficits were not due to increased attentional demands in cerebellar 
patients. It may be that the execution of the motor component of a task (to push 
a button) took up more attentional resources as compared to controls, which in 
turn reduced the resources for the cognitive components of the task. 

Figure 3. Eyeblink conditioning. Mean percentage CR-incidences  SE for each of 10 blocks 
and across all blocks (total) in a group of sex- and age-matched controls (A) in relation to a 
group of cerebellar patients (B), the latter separated in patients with lesions restricted to the 
PICA territory (C) and patients with lesions including the SCA territory (D). Filled squares and 
columns represent the eye tested first in controls and the ipsilesional eye in patients. Open 
squares and columns represent the eye tested second in controls and the contralesional eye in 
cerebellar patients. (Block = 10 tone–airpuff trials; Total = mean total percentage CR-
incidence). Adapted with permission from Fig. 4 in (22). 
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 Subjects had to learn the association between pairs of color squares. To 
change the motor demands of the task, subjects had to press a target button once 
or three times (one vs. three key presses). If motor execution of the task affected 
the ability to learn the association of color pairs, deficits in associative learning 
should be more pronounced in the more difficult motor condition. 
 Association of the color pairs enabled subjects to predict the correct side of 
a motor response. Cerebellar patients were less able than controls to learn the 
association between pairs of colors and, therefore, less able to reduce reaction 
times based on predictive knowledge of the side of the response. 

Figure 4. Comparison of the cerebellar patients and control groups in the visuomotor associa-
tive learning task. Means and standard deviations of (A) the number of blocks required to reach 
the learning criterion and (B) the number of correct associations between numerals and colors 
produced after the learning task was concluded. The effects of both variables are significant (p
< 0.05). Each small bar represents the value of one subject. Adapted with permission from Fig. 
3 in Drepper et al. (19). 
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 Cerebellar patients, however, were able to reduce decision times as much as 
controls in control conditions that did not require associative learning. There-
fore, deficits in cerebellar patients' ability to reduce decision times in the asso-
ciative learning part were not due to a general inability to further reduce 
decision times based on motor performance deficits. 
 Moreover, motor performance deficits were not related to deficits in asso-
ciative learning. First, there was no significant interaction between motor de-
mands (one vs. three key presses) and the effects of learning. Second, the effects 
of impaired visuomotor learning in the cerebellar group were most prominent 
when reaction times were normalized for motor performance deficits. Finally, 
the findings of our previous study were confirmed: background motor vari-
ables—i.e., simple reaction times, visual scanning times, and clinical ataxia 
scores—did not relate to impaired associative learning. 
 In monkey cerebellar lesions studies, however, Passingham and his group 
found that visuomotor associative learning was not impaired when controlling 
for motor performance deficits (53,54). Likewise, a recent fMRI study in healthy 
human subjects showed that cerebellar activation during learning a visuomotor 
sequence was due to motor performance but not learning itself (66). Our studies 
required the association of two visual stimuli and the linkage of the correct color 
pair and motor response. In Nixon and Passingham's (53,54) and Seidler's (66) 
studies, discrete associations of one visual stimulus and a motor response were 
learned. The role of the cerebellum may be different in stimulus–stimulus–
response and stimulus–response associations. 
 In sum, the findings of the two studies by our group suggest that the cere-
bellum is not only involved in conditional learning of avoidance reactions but 
also in visuomotor associative learning tasks. Further experiments are needed to 
differentiate between the role of the cerebellum in sequencing incoming visual 
stimuli and its role in helping to build an association between them and/or the 
motor response. 

2.2. Tests for Non-Associative Processes

2.2.1.  Habituation during Startle

 Both animal and human lesion data suggest that the cerebellum is involved 
in habituation of unspecific aversive reaction, i.e., the acoustic startle response. 
The acoustic startle response is a protective behavioral reaction consisting of 
muscle contractions of the eyelid, the neck, and the extremities that is elicited by 
sudden loud acoustic stimuli. Lesion studies in the rat have shown an involve-
ment of the cerebellar vermis in long-term habituation of the acoustic startle 
response, but not in short-term habituation (45–47). Similar findings were ob-
served in a human lesion study of our group (49). Patients with midline cerebel-
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lar lesions due to surgery were studied. Subjects received 40 acoustic startle 
stimuli daily for five successive days. Data were analyzed for response decre-
ment within the training session of one day (short-term habituation) and for a 
decrease in the startle response across the five training days (long-term habitua-
tion). Long-term habituation of the blink component of the acoustic startle re-
sponse recorded at the orbicularis oculi muscles was significantly impaired in 
patients with cerebellar lesions compared with control subjects, whereas short-
term habituation was preserved in both groups. Findings of involvement of the 
human cerebellum in habituation of the startle response are further supported by 
PET studies in healthy human subjects (72,57). These findings of impaired star-
tle habituation provide evidence that cerebellum is involved in non-associative 
learning. 

2.3. Tests for Mixed, Associative and Non-Associative Processes

2.3.1.  Associative and Non-Associative Processes in Postural Reflexes 

 The eyeblink or the lower limb withdrawal reflex represents protective 
avoidance reactions. An important driving force for an organism to establish 
conditioned responses (CRs) preceding the unconditioned stimulus (US) is thus 
to increase protection against the harmful US. This is in fact accomplished in 
classically conditioned eyeblink experiments with an air puff as US but is in 
contrast to the methodological-conceptual issues suggested by Gormezano and 
Kehoe (25), who claimed that subjects should not profit from the CR. Postural 
reflexes represent compensatory responses of an organism to unexpected exter-
nal perturbations of the body equilibrium. In contrast to nociceptive reflexes, 
postural reflexes must be classified as protective and non-nociceptive and, thus, 
must be based on a driving force different from avoidance. To analyze these 
reflexes Nashner introduced a method using a dynamic platform that allows re-
producible translatory or rotational perturbations (e.g. (52)). Unexpected move-
ments of a tilting platform (toes-up) evokes a passive deviation of the body with 
characteristic changes in the activation of corresponding leg and/or trunk mus-
cles. Following repetitive perturbations, the reflex patterns may alter minimally 
only, whereas the amplitude of the responses may change. Different plastic 
processes have been discussed to be involved. Functional habituation of postural 
responses induced by "toes-up" rotations has been studied in detail by Hansen et 
al. (26), who reported for the gastrocnemius muscle (GA) an initial reduction 
due to habituation of a startle-like response and a subsequent more gradual de-
cay (26). "Habituation" or "adaptation" of automatic postural responses is a 
functional mechanism that allows subjects to minimize energy expenditure (36). 
Such decays or attenuations of responses are based presumably on non-
associative processes. Classical conditioning of postural reflexes, however, re-
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quires an underlying associative process, and there is some evidence that the 
cerebellum is involved comparably, as in classical conditioning of eyeblink (22) 
and lower limb withdrawal reflexes (42,43). 
 We studied classical conditioning of postural reflexes in a group of young 
and healthy subjects (42) and in a group of 8 cerebellar patients suffering from 
diffuse degeneration disorders who were compared with a group of sex- and 
age-matched controls (43). Subjects were standing on a tilting platform allowing 
rotational movements, representing the US, with the rotation axis through the 
ankle. In paired trials a preceding auditory signal was given as CS. Subjects 
were tested in 70 US-alone trials, in 80 trials with paired stimuli, followed by a 
brief section of 20 US-alone trials. EMG signals were recorded from the main 
muscle groups of the leg (tibial anterior muscle (TA), GA, rectus femoris mus-
cle, and biceps femoris muscle). In a study on a group of young and healthy sub-
jects (42), it turned out that 22% of the subjects established CR in all main 
groups of the leg muscles tested and thus responded to the unexpected perturba-
tions similarly as in experiments on classical conditioning of the eyeblink or 
withdrawal reflex (73). The preponderant proportion of the subjects, however, 
established CR in the GA only but developed a substantial decay of the UR am-
plitude in the TA, which was much larger compared with that observed during 
US alone trials (Figure 5B). Subjects with CR in all muscles (strategy-I sub-
jects) were assumed to apply a different strategy than those with CR in the GA 
only (strategy-II subjects). In cerebellar patients, however, no such strategy was 
observed. Stacks of typical TA responses recorded during US-alone and paired 
trials obtained from a healthy strategy-I subject, from a strategy-II subject and 
from a cerebellar patient are shown in Figure 5. Patients hardly established any 
CR, and if they did show responses within the CS-US window, the responses 
were not time-locked. Consequently, the resulting CR-incidence did not follow a 
characteristic exponential learning curve. 
 The platform was equipped with strain gauges to record vertical forces ex-
erted by the subjects. From these forces the center of vertical pressure (CVP) 
was calculated (43). The CVP represents the final outcome of all muscles in-
volved during a given trial with excursions primarily in the sagittal plane. Figure 
6 shows the deviations of the CVP in the sagittal and frontal planes for the con-
trols and the group of cerebellar patients. Consequently, if a subject established 
a muscle-related CR there was also a deviation in the CVP prior to the US, 
which has to be attributed to a CVP-related CR. This deviation was to the rear 
and was small compared with the deviation to the front due to the perturbation 
representing the UR. In contrast to the generally accepted rules for classical 
conditioning (25), the deviation of this CVP-based CR is in the opposite direc-
tion to the UR and can be interpreted as a preceding, preparatory, and compen-
satory shift of the CVP. As mentioned above, in cerebellar patients no muscle 
activity-based-CR has been observed. Although we recorded from all main mus-
cle groups of the leg, there is the general problem of missing muscles involved 
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in the motor task studied. On the other hand, in cerebellar patients we did not 
find a CVP-based CR, which thus coincided with a lack of the corresponding 
muscle activity. During conditioning controls reduced their deviations in both 
directions, whereas that of the patients remained unchanged. 
 In the initial US-alone trials the decay of UR amplitudes is most likely due 
to a habituation process. The mean UR amplitude at the end of the US-alone 
trials was 79.1  10.9% for the controls and 84.4  5.9% for the patients with 
respect to the mean amplitude (set to 100%) of the first 10 trials at the beginning 
of the session. Although the mean values just missed significance, there was a 
clear tendency to a smaller decay in cerebellar patients. During paired trials the 
UR attenuations were larger in both groups, but the final difference was signifi- 

Figure 5. Postural responses from the tibial anterior muscle elicited by a tilting platform (US) 
obtained from two control subjects exhibiting strategy I and II, and a cerebellar patient without 
presenting one of these strategies. Stack plots with the first (1) trial on the top and the last trial 
at the bottom of each stack plot. Stack plots are constructed from 70 US-alone trials, 80 CS-US 
trials, and 20 US-alone trials. Analysis time is 1400 ms. The conditioning stimulus (CS) and 
unconditioned stimulus (US) are marked by cursors. The movement function with its character-
istic parameters, representing the US, the onset and duration of CS, marked by a shaded bar, 
are below the stack plots. Note that during paired trials the subject using strategy I established 
CR whereas the subject using strategy II did not but exhibited remarkable decay of the UR. 
The cerebellar patient did not profit from the occurrence of the CS. 
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cantly larger in the controls (final level in controls = 14.5  3.4%, patients = 
68.8  16.9%; (43)). Although less pronounced, a similar result has been found 
in a previous study on the classically conditioned lower leg withdrawal reflex 
(41). During paired trials the final mean UR amplitude was 48.9  19.3% for the 
cerebellar patients, 70.0  5.9% for the group of cerebellar patients showing 
extracerebellar symptoms, and 42.8  17.6% for the controls (41). 
 As mentioned above, the plastic process responsible for decay during US-
alone trials is of a non-associative type and is most likely due to habituation. 
During paired trials an additional associative plastic process must be assumed, 

Figure 6. Spatiotemporal components of the trajectories of the center of vertical pressure of 
the cerebellar (left column) and the control group (right column) are shown. (A) x-components 
(right-left), (B) y-components (front-rear), including the standard deviations (shaded areas) of 
the trajectories. The arrow within the CS–US window indicates the conditioned response in the 
control group. Note that the standard deviation is much higher in the cerebellar patients for 
both directions. 
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interacting with or superimposing onto the habituation. Since cerebellar patients 
did not benefit from the occurrence of the CS, and thus hardly established CR 
either in the muscles or in the CVP, and since UR decay was smaller in US-
alone trials and particularly in paired trials, the cerebellum is assumed to be 
critically involved in both associative and non-associative processes. 

3. THEORETICAL APPROACHES

3.1. Hypotheses and Considerations on Cerebellar Functions

 Our ideas on cerebellar function are based on our early experimental find-
ings in well-trained behaving monkeys with characteristic Purkinje cell activity 
during active (pursuit) and passive hand movements (7). The complex spike 
activity representing climbing fiber activity, recorded from a Purkinje cell in the 
intermediate part of the cerebellum, responds most sensitively to the beginning 
of passive hand movements, whereas during active moments the same unit stops 
any increased complex spike activity preceding the movement at onset. This 
canceling of the feedback signal from the periphery seen during passive move-
ments led to an assumption that the inferior olive, the origin of climbing fibers, 
could be one site at which information about "intended" (efference copy) and 
"ongoing" (reafference signal) movements are compared and nullified if both 
signals are equal according to the "Reafferenz" hypothesis (28). If both signals 
are not equal, the olivary cell would inform the cerebellum about an error in the 
performance of the movement (38). This coincided well with a comparator hy-
pothesis of the inferior olive suggested by Miller and Oscarrson (50). The con-
cept of the climbing fiber system as an "event marker" (61) seemed to us to be 
too restrictive since this system is able to transmit precise information about 
parameters up to the third derivative of passive hand movements (39). An error-
detecting system may receive, while an error-correcting system (55) must re-
ceive all this detailed movement-related information. This will not exclude other 
preolivary (peripheral, or more central) structures involved in error detecting. 
Although there are numerous hypotheses on how error or control error signals 
may look, or how they are compiled (31), the common denominator is that the 
inferior olive, and thus the climbing fiber system, is involved in handling errors 
occurring during voluntary or reflexive movements. 
 The concept of interaction between the descending motor commands and 
feedback information ascending from the periphery at the level of the intermedi-
ate part of the cerebellum coincides well with one part of Allen's and Tsuka-
hara's cerebral–cerebellum cooperative hypothesis (3). The intermediate 
cerebellum is assumed to update ongoing movement on the basis of sensory 
feedback information, whereas the lateral cerebellum, receiving information 
from association areas and (almost) none from the periphery, and linked within 
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the loop via specific thalamic nuclei to premotor areas, is thought to participate 
in planning the movement or in establishing a motor program that has to be seen 
as a set of muscle commands, with its sequence planned prior to the beginning 
of the movement without interaction with the periphery. 
 In the context of our current experimental approaches to motor learning, 
there is a commonly accepted concept known as the Brindley-Marr-Albus-Ito 
model. This actually comprises four distinct hypotheses, and we will focus on 
these only. Brindley (13) was the first to suggest that the cerebellum as a site of 
motor learning and a principal agent in the learning of motor skills. Marr (48) 
proposed a detailed theory in which the cerebellum learns motor skill (action) 
and learns to maintain posture and balance (reflexes). Accordingly, the Purkinje 
cell learns to execute elemental movements due to the activity patterns provided 
by parallel fiber synapses contacting the Purkinje cell dendrites at a given time. 
The instruction arises in the cerebral cortex, and is conveyed to inferior olive 
neurons, which in turn activate the corresponding Purkinje cell via the climbing 
fibers, and thus determine the contexts given by the parallel fiber activity pat-
tern. After the Purkinje cell has learned to recognize the corresponding context, 
the context alone is sufficient to activate the Purkinje cell, causing the next ele-
mental movement. The crucial step in learning is assumed to take place at the 
only modifiable parallel fiber/Purkinje cell synapse, due to a facilitation of the 
simultaneous firing of climbing fibers and presynaptic parallel fiber activity, 
similar to a Hebbian synapse (27). In the case of eyeblink conditioning, Thomp-
son and colleagues (70) proposed that CS-information (tone) reaches the cere-
bellar cortex and nuclei via the mossy fibers, and US-information (air puff) via 
the climbing fibers. The cerebellar cortex and the cerebellar nuclei are assumed 
to be possible sites of association and plasticity in this type of learning with the 
interposed nuclei of particular importance. 
 Albus' theory (2) is similar to, but extends, that of Marr (48). As Marr, he 
assumes the mossy fiber–granule cell–parallel fiber system to be a pattern rec-
ognition data processing system; however, as more like the classical Perceptron 
(60), performing a fan-out operation facilitating pattern discrimination and 
learning speed. Moreover, the modifiability of synapses is not restricted but in-
cludes synapses of stellate and basket cells and, in contrast to Marr, with the 
pattern storage accomplished by weakening synaptic weights. The learning 
process is assumed to be associative, as in classical conditioning. The post-
climbing pause (or inactivation pause) in the Purkinje cell is regarded as an un-
conditioned response to the unconditioned stimulus represented by a climbing 
fiber activation. The conditioning stimulus is the current parallel fiber activity at 
the time of climbing fiber activation. After learning, the conditioning stimulus 
alone should be able to evoke an inactivation pause, similar to that evoked pre-
viously by climbing fibers. Such a pause should thus be accomplished by a 
weakened parallel fiber contact rather than by a strengthened one (2). 
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 Ito provided the first experimental support for the Marr-Albus model by 
showing that conjunctive local stimulation of parallel fibers and climbing fibers 
results in a long-lasting depression of parallel fiber–Purkinje cell transmission 
(30). The results were obtained from a field potential analysis providing a corre-
sponding significant depression of the n2 potential lasting for more than 1 hr. 
These experimental data provided the basis for plasticity in the cerebellum. 

3.2. Models and Simulations of Selected Cerebellar Functions

 With a simple non-adaptive functional model, including adjustable vectors 
of weights and nonlinear elements such as thresholds, we were able to simulate 
experimentally recorded activity patterns in cerebellar elements of the cat ob-
served during passive movements (37). 
 The plan of the model is based on three different levels of computation 
(Figure 7A). At the receptor level (Figure 7A1), ideal linear receptors are as-
sumed to encode the stimulus (t) function (passive movement) as well as their 
first- (d /dt) and second-derivative functions (d2 /dt2), either directly (Figure 
7A, left column) or reciprocally (Figure 7A, medial column). Specific rectifiers 
split positive (pos = positive half-wave rectifier) from negative (neg = negative 
half-wave rectifier) velocities or accelerations. At the second, multiplicative 
level (Figure 7A2), two types of patterns are obtained, one of which, termed the 
ON response, generated by the product of low-threshold signals transmitting (t)
and low-threshold signals transmitting (d /dt) and the other, the OFF response, 
generated by the product of high-threshold signals transmitting (t) and high-
threshold inhibiting signals transmitting (d /dt). In view of the positive or nega-
tive velocities, ON  and ON  or OFF  and OFF  patterns can be obtained for 
conceivable synaptic connections (Figure 7A1, third column). Omitting weigh-
ing factors, an ON (t) pattern is obtained by 

ON (t) = pos(d /dt) ∗ (t), [1] 

and an OFF  pattern by 

OFF (t) = neg(d /dt) ∗ (t). [2] 

Assuming a linear, ramp-shaped function for (t), its constant positive velocity 
pos(d /dt) acts as a gate such that only in the presence of the positive velocity 
the ramp shape function is transmitted, resulting in an ON  pattern. Correspond-
ingly, in OFF  patterns the linear, ramp-shaped function (t) is conveyed com-
pletely except during the period when a negative velocity neg(d /dt) is present. 
At the third, additive level (Figure 7A3), the sums of the different ON and OFF
patterns are obtained. Sums of ON  and OFF  patterns are characteristic for 
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patterns obtained during extracellular recordings from cerebellar elements. For 
the computer simulation of the model, acceleration signals were included as well 
as amplitude limiters and dead time elements. The responses of such a model are 

Figure 7. (A) Basic plan of a simple non-adaptive functional feedback model (37). The stimulus function is a 
linear, ramp-shaped passive movement of the paw around the wrist joint. Different types of ideal linear recep-
tors encode at a first (1) level of computation the position (t), the velocity d /dt, and the acceleration d2 /dt2

of the movement, either directly (left column) or reciprocally (middle column). At the second (2) multiplicative 
level of computation the product of low-threshold (LTH) signals transmitting (t) and LTH-signals transmit-
ting d /dt form ON  or ON  patterns, depending on the positive or negative velocity. Analogously, high-
threshold (HTH) signals form corresponding OFF patterns. At the third (3) additive level, different ON  and 
OFF  patterns are summed. Conceivable synaptic connections are shown in the right column. (B) Physiologi-
cal responses (histograms of extracellularly recorded spikes of a cerebellar granule cell in counts per bin, 
middle row) and results from the computer simulation of the model (bottom row) to different stimulus func-
tions (top row). Stimulus function in the first column: linear ramp-shaped function, starting from a low holding 
position of –10 , proceeding with a constant velocity of 40 /s to a high holding position of 10 , with 0  as the 
horizontal plane. Second column: ramp of identical amplitude but of quadratic increase and decrease of the 
position. Sinusoidal movement function of constant amplitude with logarithmically increasing and decreasing 
frequency (third column) and that of damped oscillation at a constant frequency (fourth column). Modified 
with permission from (36). 
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shown in Figure 7B, with different input functions in the top row, histograms of 
extracellularly recorded responses of a single cerebellar granule cell in the mid-
dle row, and simulated responses in the lower row. For an expansion to an n-
dimensional system (representing n input receptors and afferent fibers), specific 
matrix operations are required (37). 
 Most modern models, however, are adaptive and in their simplest version 
so-called linear combiners. They utilize error signals originating from the cur-
rent output signal and the desired response to adjust weight vectors by iteratively 
minimizing the error using a least-mean-square criterion (e.g. (78)). Such an 
adaptive control model of the cerebellum, described as a hierarchical neural 
network model, is that of Kawato et al. (33). The original model was designed 
for control and learning of voluntary movements, and consists of three parts: (1) 
the main descending motor pathway from the motor cortex and the somatosen-
sory feedback pathway to the motor cortex; (2) the spino-cerebellum-magno-
cellular nucleus ruber system as an internal model of the forward dynamics of 
the musculoskeletal system; and (3) the cerebro-cerebellum-parvocellular red 
nucleus system as an internal model of inverse dynamics of the musculoskeletal 
system with synaptic plasticity included in the cerebellar cortex. In this hierar-
chical network the association cortex sends the desired movement pattern to the 
motor cortex. The actual movement pattern is measured by proprioceptors and 
returned to the motor cortex. Feedback control can thus be achieved using the 
error in the movement trajectory. The cerebro-cerebellum and the parvocellular 
part of the nucleus ruber system receive information from wide areas of the cor-
tex, but not from the periphery, and thus monitor the desired trajectory and the 
motor command. For inverse dynamics, the input and output of the (nonlinear) 
system are inverted, resulting in an input being the desired trajectory and an 
output being the motor command. Once the inverse dynamics model is estab-
lished by iterative motor learning, it can compute an appropriate motor com-
mand directly from the desired trajectory. 
 The more recent model of feedback error learning in conjunction with ac-
quisition by the cerebellum of the inverse of a controlled limb (or, generally, 
controlled object) is based on (1) the cerebrocerebellum, (2) the intermediate 
part of the cerebellum including the vermis, and (3) the flocculus (24,34). Their 
feedback-error-learning approach (Figs. 1C and 3 in (34)) is discussed in more 
detail here. The controlled object, e.g., a limb, produces a realized trajectory 
after receiving the motor command (t): 

(t) = c(t) + n(t), [3] 

which results from the sum of the feedback motor command c(t) and the feed-
forward command n(t), the latter generated by an inverse model. The inverse 
model receives the desired trajectory d (e.g., from the association cortex) and 
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monitors the feedback torque c(t) for the error signal. n is calculated from the 
desired trajectory d and the synaptic weights by

n =  (d2

d /dt2, d d /dt, d, ). [4] 

The inverse model is trained during motor control using a feedback motor com-
mand as the error signal. The feedback controller transforms the trajectory error 
into the motor-command error. The shape of the m-dimensional vector function 

 depends on the type of neural network that actually constitutes the feedfor-
ward controller. The vectors , c and n are m-dimensional, the vectors d and 

 are n-dimensional, and  is an l-dimensional vector. The synaptic modifica-
tion rule providing the plasticity of the feedback-error-learning scheme is repre-
sented in a general form as 

d /dt = ( n / ) c. [5] 

Aside from the theoretical considerations, the authors (34) relate their compo-
nents to neural circuits, as proposed in a review by Allen and Tsukahara (3). For 
the limb as the controlled object the association cortex provides the desired tra-
jectory d, which is sent via pontine nuclei to the lateral cerebellum and simul-
taneously to the motor cortex. Via transcortical loops the motor cortex is 
informed about the realized trajectory . From the difference d – , motor 
cortex neurons act as feedback controllers and calculate the negative feedback 
command ufb (corresponding to c(t) in the model), which is sent to motor cortex 
output neurons. A copy of this signal is sent as an error signal to inferior olive 
neurons, evoking complex spikes in cerebellar Purkinje cells. The output of the 
corticonuclear complex is the feedforward motor command uff (corresponding to 

n(t) in the model), which is sent via the dentate nucleus and the thalamus to the 
motor cortex. Summation of uff and ufb is performed in the motor cortex, forming 
the final motor command u descending the corticospinal tract. 
 The corresponding assumption with the climbing fiber response as the error 
signal coincides well with suggestions derived from our experimental observa-
tions (7,38). An inverse model, inverting the inputs and outputs of the controlled 
object, results in an ideal feedforward controller also able to perform transfor-
mation of coordinates. The necessity for such a transformation was suggested by 
Pellionisz and Llinas (56), who provided corresponding algorithms. The model 
assumes that sensorimotor learning and transformation of coordinates occur ini-
tially in the cerebral cortex. The resulting movement is clumsy and produces a 
motor command error that is sent by the climbing fiber activity to the cerebel-
lum, where procedural learning then occurs. Such a model allows adaptive 
modification of the vestibulo-ocular reflex, the adaptive control for posture and 
locomotion and learning control for voluntary movements (34). 
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 As mentioned above, a typical paradigm for analyzing specific aspects of 
motor learning is the method of classical conditioning of the eyeblink or with-
drawal reflexes. For determining the corresponding area within the cerebellum, a 
transient inactivation of the cerebellar nuclei was performed in well-trained 
animals by injection of the GABAA agonist muscimol (e.g., in the rabbit (11) 
and in the cat (40)). The feedback error cerebellar learning model of Kawato 
(35) simulates such a situation as follows: the signal from the cerebral cortex is 
conveyed to a summing point projecting to spinal motor centers and to the cere-
bellum including an inverse model, the output of which represents the feedfor-
ward motor command in motor coordinates. In a "well-trained" situation, the 
resulting trajectory is equal to the desired trajectory such that the output of the 
feedback controller from the spinal motor centers representing the error signal is 
typically zero. After injection with the "cerebellar nuclei blocked," the output of 
the cerebellum is zero and the motor command generated by the cerebral cortex 
is the only signal at the summing point. During recovery of the cerebellum, the 
contribution of the motor cortex progressively attenuates. Although this simula-
tion by Kawato (35) does not include cerebellar pathology, such as ataxia, it 
shows automatic substitution of the cerebral cortex when cerebellar functions 
are disabled. 
 An update of these models is summarized by Wolpert et al. (79). In their 
cerebellar-feedback-error-learning model (an inverse internal model), the trajec-
tory error trains the internal modal such that the actual trajectory (motor output) 
finally will be fairly close to the desired trajectory. Further, the cerebellum also 
generates a forward representation of the motor apparatus, known as a forward 
model. This allows for simplification: the inputs of such a forward model are the 
current state of, e.g., the arm (processed reafference signal) and the efference 
copy of the motor command producing an estimate of the new state of the arm. 
Such a predictor system has to take into account corresponding "transport de-
lays," which may be long with respect to movement duration. For the motor 
learning aspect, a computational model is provided that includes multiple paired
forward and inverse modules. The inverse model generates the motor command 
representing the desired trajectory, whereas a single forward model predicts the 
consequence of a performed action and can thus be used to estimate responsibil-
ity. This, however, can be achieved earlier when a movement has been initiated 
within corresponding sensory contextual cues and the result of the action is 
known (79). 
 A general model of the cerebellum presented by Arbib et al. (5) can simu-
late results from prism adaptation in control subjects and patients during dart-
throwing (68). The model includes a movement pattern generator, the concept of 
modifiable synapses (29), and, again, an assumption that the inferior olive con-
veys the error signal via climbing fibers. The simulation results coincide well 
with experimental results in humans (5). The same group presented a model in 
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adaptive control of saccadic gain, once again with the inferior olive as an error 
detector (64,65). 
 Summarizing, modern adaptive models and their simulation are based on 
different approaches with respect to the different assumed functions of the cere-
bellum. Successful simulations are presented using different kinds of olivary 
error handling as a common denominator and providing results that are in good 
agreement with behavioral data. 

4. RELEVANCE FOR PATIENTS AND THERAPY

 Adaptation and the general aspects of motor learning in complex nervous 
systems, as in humans, are important aspects of currently applied physiotherapy. 
However, since an understanding of the physiology, and particularly of the 
pathophysiological basics, of, say, ataxia, is still very limited, so that adequate 
pathology-related therapy is unfortunately restricted. Results using different 
experimental approaches and concepts derived from theoretical considerations 
support the importance of processing error signals in complex systems. There is 
good evidence that the olivo-cerebellar system is critically involved in both, in 
online corrections, and in longer-lasting learning processes. Understanding these 
complex processes will hopefully help to overcome the current limitations in 
physiotherapy. 
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6.1

MODELING CANCER AS A COMPLEX 
ADAPTIVE SYSTEM: GENETIC 

INSTABILITY AND EVOLUTION 

Kenneth J. Pienta
University of Michigan Comprehensive Cancer Center, Ann Arbor 

Cancer is the second leading cause of death in the United States, claiming over 500,000 
lives annually. While we now understand that cancer is a disease of genetic mutation, it is 
still difficult to describe how cancer arises from normal cells. Describing carcinogenesis 
in terms of a complex adaptive system reacting to the forces of Darwinian evolution gives 
a framework to understand tumorigenesis. This understanding is leading to new para-
digms of cancer therapy, including multidisciplinary approaches to attack the cancer as a 
heterogeneous group of diseases as well as the development of aptamer molecular evolu-
tion techniques to design therapeutics to evolve as the cancer mutates.

1. INTRODUCTION

 Generally, we consider evolution the fundamental strategy of life at the 
level of the organism. It is how we became who we are via interplay of genetic 
variation and phenotypic selection (1). The premise of evolution is that genes, 
and hence gene variants, are selected because they encode functions that in some 
way improve the chance of organism survival (2,3). This premise can be passed 
onto the level of the cancer cell. A tumor can be considered to be an organism or 
species that is able to speed up the evolutionary process by millions of years to 
select properties that help it survive and thrive within the macrocosm of the hu-
man body (4–6). 
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2. CANCER RISK IN THE CONTEXT OF AN 
EVOLUTIONARY PARADIGM

 How then does a cancer cell evolve from a normal cell (see Figure 1). At 
the most basic level, it is the potential result of an accumulation of DNA damage 
that may count toward a survival advantage (2). Mutations to the genome must 
occur in places where they (a) do not lead to the death of the cell, (b) do not oc-
cur in a sequence of DNA that does not change behavior, and (c) occur in a 
place that conveys a growth or survival advantage. Meaningful DNA damage is 
the result of gene–environment interactions on multiple levels. First, cells may 
inherit "susceptibility" for damage from parental alleles. This can be at a very 
recognizable and measurable level—for example, a damaged DNA repair en-
zyme in Li-Fraumeni syndrome (4). Within this genetic background, the cells 
are assaulted by a variety of genome damaging exposures. These include radia-
tion, viruses, microbes, carcinogens, chemicals, hormones, and other agents too 
numerous to list. But these risk factors to the genome are modulated in two im-
portant ways prior to their ability to damage the DNA. 
 First, the factors must pass through a phalanx of both organ- and non-organ-
specific intrinsic risk modulators. Intrinsic risk modulators are inherited traits 
that do not contribute directly to DNA damage but modulate the environment to 

Figure 1. Cancer is a result of gene–environment interactions that lead to genetic mutations in pieces of 
DNA that in turn lead to survival advantage. Every person inherits a different set of genes from their 
parents. Some genes carry with them an inherent risk or susceptibility to cancer. Within this genetic 
background, we are exposed to multiple different carcinogens in the form of diet, infections, chemicals, 
radiation, etc. These exposures are processed by the body to varying extents. The carcinogen can directly 
cause DNA damage, or its risk may be modulated by intrinsic modulators. For example, each person 
processes the chemicals in tobacco smoke differently based on the genetic doses of modifying enzymes. 
In addition, the relative risk of exposures can be altered by extrinsic modulators, such as the antioxidants 
found in chemoprevention agents. Finally, the damaging factor must mutate a relevant part of the DNA. 
Many mutations occur in sequences of DNA that do not provide a survival advantage but occur rather in 
survival-neutral or deleterious genome sequences. 
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which the cells are exposed. Examples include how well metabolizing enzymes 
function to modulate drug and hormone activity (pharmacogenomics) as well as 
how well a hormone such as testosterone binds to the androgen receptor based 
on the number of CAG repeats in the promoter region (7). In addition, before the 
damaging agent can cause mutation, it must evade extrinsic risk modulators. 
Extrinsic risk modulators are best characterized by chemoprevention agents such 
as antioxidants. Dietary factors such as selenium and vitamin E have been dem-
onstrated to remove damaging oxygen radicals from the intracellular environ-
ment by catalyzing their breakdown to water (8,9). If the damaging agent 
escapes all of these potential protective mechanisms, it still must damage the 
DNA in a susceptible place that will allow a survival advantage (2,4). Most mu-
tations to the DNA are either deleterious or neutral—very few are adaptive (1). 
In bacteria, for example, it is estimated that only one in 10,000 mutations pro-
vide an adaptive advantage (1,10). It is probable that this ratio would be greatly 
higher for the much more complex human genome. 
 These gene–environment interactions that contribute to cancer can be un-
derstood in the context of any number of evolutionary paradigms (Table 1). In 
breast cancer, a woman may inherit a mutation in the allele that contains BRCA-
1, a gene important in maintaining normal breast cell function. This starts the 

Table 1. Comparison of cancer cells and members of an animal herd:  
an evolution/natural selection paradigm 

Examples of contributors to 
Examples of contributors successful selection and 

to mutations in evolution in individual 
cancer cells members of a herd 

Susceptibility allele Loss of BRCA1: increases Loss of gene to 
chance of developing make horns 

 breast cancer 

Exposures Diet, carcinogens, radiation, Predators, weather, diet, 
viruses, microbes, viruses, microbes, 

 inflammation, chemicals, water supply 
 hormones 

Intrinsic modulators Drug metabolizing Length of legs, strength 
 pathways of muscles 

Extrinsic modulators Antioxidants, cancer Size of the herd, place in 
screening, i.e., the herd when attacked, 
PAP smears ability of the herd to 

migrate in response to 
changes in environment 
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cell down the cancer pathway. Similarly, an antelope could inherit a rare allele 
and be born an albino, immediately putting it at a disadvantage to the other, 
camouflaged, members of the herd. Cancer cells are subject to a wide variety of 
genotoxic perturbations that could potentially cause mutation and selective pres-
sure. These are mirrored by the same types of insults that a herd of animals must 
survive—for example, changes in weather, ability to withstand infections. These 
risks are modulated by inherent factors: in cells, for example, drug metabolizing 
enzymes; in animals, muscle fiber length (running speed). The risks are also 
modulated by extrinsic agents. Are there chemoprevention agents present for 
cells? For animals such agents include the presence of other protective species, 
the ability to migrate, and the number of adult males present to ward off attack. 

3. CANCER EVOLUTION IN THE CONTEXT OF RECENT
HUMAN EVOLUTION

 Each cancer and the cancer cells that comprise it have a distinct phenotype; 
however, cancers do share a group of common characteristics (4,11,12). A tu-
mor is the result of a collection of cancer cells that are actively acquiring muta-
tions which allow the emergence of a successful clone of cells. This is a highly 
inefficient process, and tumors are filled with clones of cells that will not sur-
vive long term and are undergoing apoptosis (programmed cell death) as a result 
of harmful mutations and hypoxia, as well as other insults including immune 
surveillance. Some cells manage to acquire enough mutations and acquire the 
characteristics of a successful cancer cell. This can be compared, at least on one 
level, to the evolution of human civilization. A key difference between these two 
types of evolution is that we believe human beings evolved societies as a result 
of conscious decisions that increased our chances for species survival. To under-
stand cancer clonal expansion, we have to explain cancer cell growth and sur-
vival in terms of an unconscious process. This is much more likely to be 
modeled by early evolution, when we pulled ourselves out of the sea and be-
came multicellular organisms. However, the exercise of comparing a successful 
cancer cell successfully colonizing a new metastatic site to human civilization 
and colonization is worthwhile (see Table 2). 

3.1. Unlimited Replicative Potential

 Cancer cells are immortal. This does not mean that each cell itself lives for-
ever (just like humans), but that the cell population doubles without limit and 
creates uncontrolled clonal expansion. In non-cancerous cells, a cell can double 
approximately 50 times before it undergoes senescence and dies (13). This has 
been termed the Hayflick number and is the result of an internal cell doubling  
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clock, termed telomeres, built onto the end of each chromosome (14). Telomeres 
are specific strands of DNA that shorten with each cell division. At a critical 
shortened length, the cells undergo apoptosis, or programmed cell death. Cancer 
cells reactivate an enzyme, telomerase, that maintains the length of telomeres 
with each cell division by adding base pairs back onto the telomeres, thereby 
maintaining length integrity. 

3.2. Adaptation, Mutation, and Natural Selection

 A fundamental characteristic of cancer is the generation of tumor cell het-
erogeneity, i.e., cells with multiple mutated phenotypes, through a mechanism of 

Table 2. Comparison of the process by which a cancer cell acquires the traits  
necessary for metastasis and how humans successfully colonize 

Human organism— 
Trait to allow growth    Cancer cell—clonal      civilization expansion 
   and dissemination expansion (unconscious)             (conscious) 

Unlimited replicative Asexual reproduction, Sexual reproduction, desire 
potential activation of telomerase for survival 

Adaptation Genetic instability, natural Evolution, natural selectio 
 selection 

Protection from death Loss of apoptotic pathway Safety in numbers, city 
 activation walls, castles 

No growth inhibition Anchorage independent Ability to move about as
 growth individuals or groups 
  without constraint 

Nutrient supply Stimulate new blood Building of water reservoirs 
vessel growth and aqueducts to bring 

water to the population 

Population expansion Activation of proteases to Expansion/invasion into 
break down surrounding neutral territory 

 tissue 

Evasion of enemies Evasion of the immune Avoiding contact with 
surveillance system, e.g., as hostile forces that want to 
cells circulate prior to prevent colonization, e.g., 
establishing themselves warships trying to prevent 
in a new organ colonial expansion 

Successful colonization Adaptation to the use of Building a new site, 
growth factors in the new learning to eat new foods, 
environment and applying and applying all of the traits 
all of the traits above in a outlined above in a new 

 new environment environment 
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genetic instability (15–20). There are multiple ways that genetic instability can 
be generated (chromosomal instability and microsatellite instability) and ob-
served. For example, tumor cells exhibit karyotypes that are grossly changed in 
quantity and quality from the complement of normal cell chromosomes. 
 Radman and colleagues have suggested that two different models can ex-
plain mutations in evolution (1). In one model, there is a low mutation rate in a 
very large population. In the second model, there is a high mutation rate in a 
limited population with coincident intense recombination, permitting a rare 
adaptive mutation to become separated from frequent deleterious mutations (1). 
The latter type of evolution can be seen in bacterial populations under stress. It 
is likely that the evolution of cancer is a combination of these two models. The 
initial mutations within a cell destined to become cancer happen as a result of a 
low mutation rate within a large population of cells. These mutations occur as a 
result of the interplay between susceptibility alleles and the environment, as 
outlined above. Within the expanding clone, a mutation eventually occurs that 
induces a "mutator phenotype" with coincident high mutation rates and the gen-
eration of tumor cell populations with a heterogeneous set of properties over a 
relatively short period of time. While this mutator phenotype may occur as a 
result of chance, it may also be facilitated by the exposure of the cells to 
stresses, such as hypoxia, as the size of the tumor increases. Indeed, it has been 
demonstrated that hypoxia induces genetic instability in cancer cell populations 
(21,22). The emergence of the mutator phenotype rapidly selects cells with the 
most robust survival advantages. This robust phenotype can be observed clini-
cally. A cancer can be in remission for many years and then present with metas-
tatic disease that quickly kills the patient over a matter of weeks or months (23). 

3.3. Protection from Death

 There are multiple redundant pathways in place to maintain the fidelity of 
cellular systems to prevent mutation and damage. More often than not, deleteri-
ous mutations lead to initiation of programmed cell death. Teleologically, this is 
built into systems to protect the rest of the cell population. There are multiple 
apoptotic pathways within cells in response to different types of cellular damage 
(24,25). Cancer cells have acquired mutations that allow damage to occur and 
accumulate without activating apoptotic pathways. It is almost unbelievable, the 
amount of genetic ruin, mutation, and rearrangement that a cancer cell can ac-
cumulate and still be viable, functional, and robust (26). 

3.4. No Inhibition of Growth

 For an organism or organ such as the liver to function in a coordinated fash-
ion, it must control the individual cells that compose it, just as a society must. 
But for a human population to grow and expand, it must outfit groups to leave 
the population base and find new areas to populate. In cancer cells, this growth 
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inhibition is controlled by anchorage-dependent growth and maintenance. If a 
society sends out an individual to explore who is ill-equipped, that explorer will 
likely perish. If a normal cell becomes disconnected from its neighbors or the 
basement membrane that it resides on, apoptosis is triggered and the cell dies. 
Cancer cells have acquired mutations that allow them to grow independent of 
attachment to a basement membrane or to other cells (27–29). This anchorage 
independence releases the cell from communicating with its neighbors and 
breaks down the fundamental fidelity of the organism system. Several cell at-
tachment proteins have been identified that have been demonstrated to be altered 
in cancer cells. These mutations also allow the cancer cell the freedom to leave 
the primary tumor environment and start down the path of metastasis (30). 

3.5. Ability to Ensure a Nutrient Supply

 A group of cancer cells undergoing clonal expansion can only become ap-
proximately a cubic millimeter in size (20 population doublings, one million 
cells) without a blood supply to oxygenate the cells (31). A critical step in suc-
cessful cancer development is the release of factors such as vascular endothelial 
growth factor (VEGF) from the cancer cells to attract new blood vessel growth 
(neovascularity of angiogenesis) (32,33). This is a good example of how cancer 
cells, even in the presence of tumor cell heterogeneity, must unconsciously co-
operate with each other. No single cell produces enough VEGF to stimulate the 
growth of a new blood supply by itself. Enough individual cells or clones must 
then have the ability to each secrete VEGF into the surrounding environment to 
allow a gradient of growth factor to be established to attract new blood vessels. 

3.6. Population Expansion and Growth beyond Natural Boundaries

 Cancer rarely kills its host because of its growth in one single organ. The 
majority of such cancers can be successfully treated by surgery and/or radiation. 
Even untreated, a solitary cancer can grow in a primary organ for years before 
becoming clinically evident. Cancer kills because it spreads (metastasizes) to 
other organs. This certainly requires the mutations that allow uncontrolled 
growth, anchorage independent growth, apoptosis evasion, and new blood vessel 
growth. But it also requires the acquisition of several other adaptation proper-
ties. Even though the cancer cell does not require its neighbors to grow, to be 
lethal it has to acquire properties that allow it to leave the primary tumor envi-
ronment. For the cancer cell population to grow, it must break down its sur-
rounding tissue environment. This periphery of the tumor is the most 
oxygenated and has the richest nutrient gradients. For the cancer cells to keep 
expanding into this environment, there must be a selective pressure for cells that 
can invade into that environment. It has been demonstrated that cancer cells se-
crete high amounts of proteases that break down the confining extracellular ma-
trix of surrounding tissue (34). This allows continued growth of the clonal 
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populations without starvation. It also allows cells to find their way into the cir-
culation and lymphatic system and spread to other parts of the organism. What is 
not clear is whether these types of mutations are the result of selective pressure 
or the simple result of an intrinsically unstable genetic system (see §3.2, above). 

3.7. Evasion of Enemies during Growth and Expansion

 At every level in its life, the cancer cell, and its daughter clones, must evade 
the immune system. The immune system is a remarkably adaptable system that 
seeks out and destroys foreign and harmful agents within the organism. Cancer 
cells have developed several ways to evade this immune system surveillance 
(35). In fact, in some ways, it appears that cancer cells flourish in lymph nodes, 
the waystations for the white blood cells that the body uses to fight infection and 
foreign bodies. The first question of every cancer evaluation is whether the can-
cer is in nearby lymph nodes? How it survives in this hostile environment is 
unclear. Many cancer cells have lost the proteins (antigens) on their cell surface 
that allow the body to recognize them as foreign. Other cancer cells secrete such 
cytokines as transforming growth factor beta (TGF ), which inhibits the func-
tion of immune system cells (36). 

3.8. Successful Colonization (Successful Metastasis)

 All of the acquired mutations, whether acquired through selective pressure 
via adaptation to continued hostile environmental hurdles or by chance 
accumulation, result in a cancer cell clonal population that successfully 
metastasizes and grows in multiple new organ sites (4,30,37). This clearly 
resembles colonial expansion, and if the cancer was a set of thinking individuals, 
this is what one would expect. A final required trait is the ability to survive and 
flourish in new environments. This requires adapting to use the growth factors 
that the new environment is rich in. For example, prostate cancer cells grow well 
in the bone marrow, partly because transferrin is a potent growth factor for them 
and is present in high amounts in the bone (38). 

4. MODELING CANCER AS A COMPLEX ADAPTIVE
SYSTEM AT THE LEVEL OF THE CELL

 Cancer cells acquire the multiple traits necessary to survive within the 
greater macroenvironment of the host. We can also model the tumor, i.e., the 
collection of cancer cells, as acting in concert to function as a complex adaptive 
system—one that exhibits emergent properties (see Table 3). In this model, the 
individual cancer cells act as individual agents of the complex adaptive system 
(6,39–41). Each cell can act independently, but may also interact to create the 
tumor with the resultant properties. 
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4.1. Cells Are the Agents of the Cancer Complex Adaptive System

 Complex systems are organized as a finite number of states, which can be 
defined by Boolean networks. A Boolean network is an array of elements, which 
has a particular rule associated with it, linked by a finite number of inputs. As 
the number of elements and links increases, the number of initial states of the 
system also increases. By cycling through the network (i.e., applying the ele-
ments rules as influenced by their links), however, one finds that the number of 
states the system occupies is limited to certain specific state-cycles (attractors) 

Table 3. Cancer modeled as a complex adaptive system (CAS); 
these elements allow emergence of the CAS 

            Elements of a complex adaptive             Corresponding elements of a 

                     system (CAS)                        CAS in cancer 

Agents: set of active components that Cells 
interact selectively 

Building blocks: provide a mechanism The genes that cancer cells draw on to 
for generating a wide range of rules, tags, acquire the properties that are necessary for 
and internal models from a small number survival; this often requires the activation 
of parts of genes that are normally turned off in 
 normal tissue 

Aggregation: components group together Cells with similar adaptive mutations 
according to similar abilities survive while others undergo apoptosis 
 and die 

Nonlinearity: a property resulting from One cell cannot produce enough VEGF to 
conditional (nonadditive) interactions stimulate new blood vessel growth to 
between agents supply the tumor with nutrients but many 
 cells together can 

Flow: a property mediated by the IF a cell produces proteases, THEN the 
movement of agents within the CAS; this tissue microenvironment will be broken 
can be represented by a series of IF/THEN down and a cell will be able to escape its 
rules local environment 

Diversity: a property resulting when Genetic instability gives cells adaptive 
agents compete and adapt to fill available advantages that allow for clonal expansion 
"niches" within the system and survival of the fittest 

Tagging: a mechanism that facilitates The tissue matrix of the cancer cells allows 
interactions between and among dynamic remodeling of the system 
components 

Internal Model: a mechanism for Cancer cells turn on genes that allow 
providing agents with anticipatory actions them to use multiple growth factors 

from a variety of different organ 
 microenvironments—key to 
 successful metastasis 
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(see Figure 2) (6,15,42). By taking the square root of the number of elements in 
a network, one can approximate the number of attractors. Therefore, Boolean 
networks obey a power law. Kauffman used these networks to show how the 
size of an organism's genome is related to the number of cell types it generates 
(42). For example, a sponge has approximately 10,000 genes and about 12 cell 
types. Humans have about 30,000 to 40,000 genes and over 250 cell types. A 
Boolean network with 100,000 elements, with each element linked to two oth-
ers, has the potential of 1030,000 states. In fact, only 370 states are realized. Each 
of these states is an attractor; likewise, each cell type in a human body is a state-
cycle attractor of the genome. A state-cycle attractor is defined by certain 
boundary conditions. In the cell, it has been proposed that these boundary condi-
tions are defined by the ribonucleic acid (RNA)–protein complex termed the 
nuclear matrix (15,43). The nuclear matrix, therefore, may define the boundary 
conditions of a cell. Perturbation of a steady-state attractor through mutation 
may upset the genetic stability and cause the cell to enter the carcinogenic cas-
cade (a new state, E). This state E is fundamentally unstable and results in a new 
set of attractors, i.e., cell types. These cell types are manifested as tumor cell 
heterogeneity. Cancer, then, is the result of multiple perturbations (i.e., muta-
tions) to a cell that result in a redefinition, or perhaps even loss, of its boundary 
conditions. For a further discussion of modeling tumors as complex biosystems, 
see chapter 6.3, by Mansury and Deisboeck (Part III, this volume). 
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Figure 2. The alteration of a four-element AND/OR Boolean network by cancer. The Boolean 
network diagrammed consists of four binary elements. Each element receives signals from two 
other elements, and sends signals to two elements. In this network, elements A and C obey the 
Boolean OR function and elements B and D obey the Boolean AND function. An element can 
either be "on" (1) or "off" (0), depending on the rule it obeys and the binary states of the ele-
ments from which it receives signals. For example, element A is active when either element C or
D is active. In contrast, element B is active only when both elements A and C are active. In a 
four-element Boolean network there are 16 possible initial states. Using these values, and apply-
ing Boolean logic to each element, the successor states of each element can be determined. 
These successor states describe the behavior of the system. The 16 initial states, along with the 
successor states for each, are shown on the truth table to the left of the diagram. Although the 
number of initial states is numerous, the system eventually settles into only three state-cycles. 
These three cycles are shaded in the truth table. Perturbation of a steady-state attractor through 
mutation may upset the genetic stability and cause the cell to enter the carcinogenic cascade (a 
new state, E). This state E is fundamentally unstable and results in a new set of attractors, i.e., 
cell types. These cell types are manifested as tumor cell heterogeneity. 
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4.2. Genes Are the Building Blocks that Cell Structure and  
Function Is Based on

 The six feet of DNA molecule that is present within each cell is segmented 
into genes that encode the proteins that interact with each other to form the 
structure and function of the cell (12). In normal cells, this structure and func-
tion is tightly controlled. In cancer, however, mutation leads to abnormal cellu-
lar functions and structural abnormalities. For a further discussion of the 
importance of linking cell structure to function, see chapter 2.1, by Huang, Sul-
tan, and Ingber (Part III, this volume). 

4.3. Cells with Similar Adaptive Mutations Aggregate into  
Clonal Populations

 There is no question that the transformation of a normal cell to a cancer can 
be viewed as an evolutionary process and that the tumor can be viewed as a 
separate species (1–6,11,17,44). With the realization that a single tumor is an 
assembly of heterogeneous cells, it seems more appropriate to view each clonal 
population within the tumor as a different species (23,41,45). The members of 
each clone have a unique karyotype, morphology, and evolutionary fitness 
within the context of the global ecosystem: the human body. In this system, a 
tumor is a local ecosystem in which various species, clones, are in competition. 
As each tumor grows, it is a collection of clones that live and die. Each cubic 
centimeter of tumor (one gram) contains a billion individuals within it. If one 
assumes no death, this is equivalent to 35 generations from one aberrant cell. 
After ten more generations, these billion individuals have increased to a trillion. 
The population of a single tumor, therefore, surpasses the population history of 
mankind on the planet. The clone, or clones, that survive this growth are the 
most fit, and can spread (i.e., metastasize) to other local ecosystems (i.e., other 
organs). Their "success" eventually leads to a global ecological disaster: host 
death. Carcinogenesis is simply the act of speciation and the populating of the 
human global ecosystem. 

4.4. Cancer Cells Acting in Concert Produce Properties  
with Growth Advantages

 A primary tumor is a collection of cells that maintain contact and communi-
cation with cellular heterogeneity. Therefore, although only a single tumor may 
exist, it may be subdivided, on a cellular level, into separate populations (the 
clones). For these cells or clonal populations to survive, they must exert proper-
ties to help each other survive. A good example of this is the stimulation of new 
blood vessel growth (neoangiogenesis), which results in the sprouting of new 
blood vessels to the tumor, with subsequent nutrient flow to a growing tumor 
mass that would otherwise starve. 
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4.5. Cancer Cells Can Be Defined by a Set of IF/THEN 
Rules of Varying Complexity

 A fundamental property of complex adaptive systems is flow—the ability to 
model much of its actions as a set of IF/THEN rules. Previously, we and others 
have demonstrated how the cell-signaling cascades of cells can be modeled as a 
series of biocircuits within the cell that can be perturbed by mutation (6,8,46). A 
classic circuit consists of wires leading to switches and/or circuits that guide 
electricity. For example, the electrical wiring of a house is connected to the 
power company, which feeds into the main junction box of the house, which 
then sends electricity to several main circuits. Each of these circuits in turn split 
to turn on appliances and plugs. These circuits are often termed "nodes." A 
prime example of a biocircuit in a cancer cell is hypoxia-inducible factor 1
(HIF-1 ) (see Figure 3). As a tumor grows, it cannot extend beyond a millimeter 
in size before it outstrips its blood supply and the cells are starved for oxygen. 
Hypoxia serves as a tag to turn on HIF-1 . HIF-1  then turns on more than 40 
different pathways to promote cell survival (47). Cell survival is accomplished 
by turning on pathways that promote cell energy metabolism in anoxic environ-
ments, blood vessel growth to decrease hypoxia, and a series of genes that pro-
mote metastasis—allowing the cell to migrate to areas of normal oxygenation. In 
this manner, HIF-1  functions as a "hypernode" in the biocircuit. If HIF-1  is 
mutated, the pathways to promote survival are never turned on and the cells un-
dergo programmed cell death, or apoptosis. If the HIF-1  is counteracted by 
cytostatic factors, the tumor may exist in a quiescent steady state. If other 
growth factors are present fueling the cancer cells, proliferation is allowed to 
occur and the tumor mass grows. If HIF-1  is turned on, growth factors are pre-
sent and the immune system escape mechanisms are in place, the cancer cells 
can metastasize. IF/THEN rules can also be applied at the level of the cells 
themselves. For example, IF a cell produces proteases, THEN it will break down 
the surrounding tissue matrix environment. These rules can be applied to each of 
the fundamental alterations that are necessary to form a lethal cancer cell (Ta-
ble 2). 

4.6. Genetic Instability Gives Rise to the Diversity of Cancer Cells:  
Tumor Cell Heterogeneity

 The mutations that lead to formation of a tumor facilitate further changes in 
the cancer cells' genetic makeup. The genetic instability inherent in a tumor al-
lows populations of cells to adapt rapidly to new conditions (see chapter 6.2, by 
Solé, Gonzales Garcia, and Costa (Part III, this volume)). This helps explain 
how cancers avoid the immune system, become resistant to certain drugs, and 
how they are able to metastasize. The strategy undertaken by a tumor appears to 
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repeat features of evolutionary history. During the Cambrian period there was a 
great explosion of body types (48). Fossils from this epoch exhibit a far greater 
variation in gross morphology than exists today. Likewise, a tumor, due to its 
genetic pliability, can try innumerable cellular phenotypes, "searching" for the 
one that can thrive in the current environment (host organ) or spread to different 
environments (metastatic target organ), while discarding unfit cells. The fact that 

Figure 3. (A) A hypoxia-inducible factor 1  rule table, and (B) tokenized signal transduction. 
The rules outlined in the table have been translated into a tokenized signaling pathway using 
AND gates. These tables and pathways can be used to represent biocircuits. HIF-1  represents 
a critical node in the cell's response to hypoxia. 
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tumors exhibit high death rates supports this contention (23). Most of the cells in 
a tumor die because they are incapable of forming strategies that allow them to 
survive in their current environment. 

4.7. Complex Adaptive Systems Change How Strongly They 
Interact with Others in a Way that Maximizes the Average 
Fitness of the System 

 Tagging can, and does, occur at multiple levels within any system. At the 
level of the biocircuit within the cell, a tag can represent a phosphorylated or 
ubiquinated protein which signals that it should be recycled. At the level of the 
immune system, tagging can represent an antigen on a cell surface that allows 
white blood cells to recognize it as "self." Metastasis of a tumor can be taken as 
proof that the cells comprising that tumor have altered their interactions and 
connections not only with adjacent tumor cells, but also with the cells that form 
the lining of blood vessels. Metastasis requires active interactions between the 
cancer cells themselves and their environment. For cancer cells to enter the 
bloodstream, their connection with other cancer cells must be weakened. In the 
bloodstream, cancer cells bind to each other as well as platelets to survive the 
ambient turbulence. To escape the bloodstream, the cancer cells must then suc-
cessfully bind to the endothelial cells of the target organ (30,37). All of these 
actions occur by altering the expression of cell–cell adhesion molecules in a 
dynamic fashion. 

4.8. Tumor Cell Heterogeneity Provides Growth Advantages  
that May Appear to Be "Anticipatory"

 The word "anticipatory" carries the connotation that a complex adaptive 
system is conscious of its actions. On the contrary, the strength of modeling 
through a complex adaptive system is that it needs no conscious thought process 
to form complicated, rule-based systems. The culmination of genetic instability 
and tumor cell heterogeneity is the acquisition of mutations requisite for a robust 
and lethal cancer. Cancer can do this because it can recapitulate evolution at a 
rate almost beyond comprehension. 

5. CONCLUSION: APPLYING COMPLEXITY THEORY
TOWARD A CURE FOR CANCER

 The ultimate question is whether understanding cancer in terms of evolution 
and complexity theory can help us cure the disease. "Cancer" is a complicated 
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set of diseases arising in a variety of organs; however, these diseases share the 
similar properties outlined here. Currently, approximately half of all cancers are 
cured by surgical removal, radiation, or chemotherapy. The other half are lethal 
because they have metastasized (and are thus not removable) and because they 
are resistant to known therapies (a result of tumor cell heterogeneity). 
 What implications does the complex adaptive nature of cancer have for fu-
ture research and treatment? It may be possible to turn a molecular process of 
therapeutic evolution against the evolutionary power of the cancer cell by de-
signing a therapeutic approach that mimics and counters tumor evolution at a 
molecular level so that drug diversity can negate tumor cell heterogeneity and 
take away the advantage the cancer cell has to overcome present treatments. At a 
very simple level, the cancer could select its own drugs. This could be accom-
plished by using a randomized library of RNA sequences, termed aptamers, and 
permit the lethal cancer cells to bind to the aptamers with the highest affinity 
and specificity (49–55). These specific aptamers are amplified and then conju-
gated to radionuclides and cytotoxic drugs. 
 This is a novel approach to the treatment of resistant cancers. This tech-
nique essentially floods the cell with billions of random RNA sequences and 
allows the cancer cell to select out specific molecules to bind that it is express-
ing. Aptamers are modified oligonucleotides that are isolated by the systematic 
evolution of ligands by an exponential enrichment (SELEX) process. They are 
globular molecules that can recognize and bind with high affinity to a variety of 
cellular constituents. They are intermediate in size between small peptides and 
single-chain antibody fragments. One of their main advantages for cancer target-
ing and therapy is their small size compared to antibodies, which can result in 
improved cancer tissue permeation and delivery of lethal agents (54,55). Mo-
lecular evolution using random libraries of polymers might be used to select 
high-affinity binding components specific for prostate tumor cells. This pitting 
of molecular evolution against tumor evolution will permit a wide diversity of 
tightly binding synthetic ligands to match the biological diversity of the tumor 
cells. One type of these polymers that can be used includes highly diverse RNA 
molecules synthesized with random sequences and that are relatively inert to 
RNAse hydrolysis. A 15-mer of random nucleotides produces over a billion 
different RNA aptamers. These mixtures of aptamers can be differentially se-
lected for their ability to bind tightly to cancer tissue while not binding to nor-
mal tissue. The specific tumor binding aptamers can then be amplified by 
reverse transcriptase and PCR to enrich the population of tight binding aptamers 
for the tumor cell. This process can be cycled over and over (see Figure 4). Lu-
pold and colleagues have applied this concept to target prostate cancer cells 
(49). They were able to select two specific aptamers to an important prostate 
cancer marker, prostate-specific membrane antigen, from an initial 40-mer li-
brary of approximately 6  1014 random-sequence RNA molecules for their abil-
ity to bind to a recombinant protein representing the extracellular 706 amino 
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acids of PSMA, termed xPSM. Six rounds of in vitro selection were performed, 
enriching for xPSM binding as monitored by aptamer inhibition of xPSM N-
acetyl-alpha-linked acid dipeptidase (NAALADase) enzymatic activity. After 
six rounds of selection, 95% of the remaining total aptamer pool consisted of 
only two sequences. These two aptamers, termed xPSM-A9 and xPSM-A10, 
were cloned and found to be unique, sharing no consensus sequences. The affin-
ity of each aptamer for PSMA was quantitated by its ability to inhibit the enzy-
matic activity of PSMA. Aptamer xPSM-A9 inhibits PSMA noncompetitively 
with an average Ki of 11/9 nM. Distinct modes of inhibition suggest that each 
aptamer identifies a unique extracellular epitope of xPSM. One aptamer was 
truncated from 23.4 to 18.5 kDa and specifically binds LNcaP human prostate 
cancer cells expressing PSMA, but not to PSMA-devoid PC-3 human prostate 
cancer cells. These are the first reported RNA aptamers selected to bind a tumor-
associated membrane antigen and the first application of RNA aptamers to a 
prostate-specific cell markers. These aptamers may be used clinically by modifi-
cation to carry imaging agents and therapeutic agents that are directed to pros-
tate cancer cells. 
 Within a single tumor, cells are heterogeneous. Just as important, tumor 
types are heterogeneous between patients. This approach of selected aptamers is 

Figure 4. Construct of a random aptamer library with 40 random bases providing 6  1014 dif-
ferent aptamers. Different aptamers binding to tumor antigens are then selected and amplified 
through successive rounds of selection to create a highly purified population. 
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applicable to both types of heterogeneity. While is it expected that some aptam-
ers may be common to all types of lethal cancers, it cannot be taken as a given. 
Every tumor may be different. However, these strategies give us the opportunity 
to explore customized therapy for individual patients. Ultimately, one would like 
to create a specific aptamer library for a particular patient. This could be particu-
larly useful in the surgical patient. Cancer tissue would be used to generate a 
patient-specific library. This patient-specific library would then be used sys-
temically to scavenge and destroy micrometastases. If and when the tumor pro-
gresses, samples from the metastatic lesions could be used to generate new 
libraries. In summary, therapeutic evolution should be able to outpace biologic 
evolution. 

6. REFERENCES

  1. Radman M, Matic I, Taddei F. 1999. Evolution of evolvability. Ann NY Acad Sci 870:146–155. 
  2. Greaves M. 2002. Cancer causation: the Darwinian downside of past success? Lancet Oncol

3:244–251. 
  3. Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:23–28. 
  4. Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70. 
  5. Nesse RM, Williams GC. 1998. Evolution and the origins of disease. Sci Am 279:58–65. 
  6. Schwab ED, Pienta KJ. 1996. Cancer as a complex adaptive system. Med Hypotheses 47:235–

241. 
  7. Coffey DS. 2001. Similarities of prostate and breast cancer: evolution, diet, and estrogens. 

Urology 57:31–38. 
  8. Pathak SK, Sharma, RA, Mellon JK. 2003. Chemoprevention of prostate cancer by diet-

derived antioxidant agents and hormonal manipulation [review]. Int J Oncol 22:5–13. 
  9. Farinati F, Cardin R, Della Libera G, Herszenyi L, Marafin C, Molari A, Plebani M, Rugge M, 

Naccarato R. 1994. The role of anti-oxidants in the chemoprevention of gastric cancer. Eur J 
Cancer Prev 3(suppl 2):93–97. 

10. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B. 1997. Role of 
mutators in adaptive evolution. Nature 387:700–702. 

11. Marusic M. 1991. Evolutionary and biological foundations of malignant tumors. Med Hypothe-
ses 34:282–287. 

12. Pienta KJ, Partin AW, Coffey DS. 1989. Cancer as a disease of DNA organization and dy-
namic cell structure. Cancer Res 49:2525–2532. 

13. Neumann AA, Reddel RR. 2002. Telomere maintenance and cancer—look, no telomerase. 
Natl Rev Cancer 2:879–884. 

14. Rubin H. 20:6. 2002. The disparity between human cell senescence in vitro and lifelong repli-
cation in vivo. Nature Biotechnol 20:75–81. 

15. Pienta KJ, Ward WS. 1994. An unstable nuclear matrix may contribute to genetic instability. 
Med Hypotheses 42:45–52. 

16. Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih Ie M, Vogelstein B, Lengauer C. 
2002. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA
99:16226–16231. 

17. Anderson GR, Stoler DL, Brenner BM. 2001. Cancer: the evolved consequence of a destabi-
lized genome. Bioessays 23:1037–1046. 

18. Hoglund M, Gisselsson D, Sall T, Mitelman F. 2002. Coping with complexity: multivariate 
analysis of tumor karyotypes. Cancer Genet Cytogenet 135:103–109. 



MODELING CANCER AS A COMPLEX ADAPTIVE SYSTEM 555

19. Kerbel RS, Cornil I, Korczak, B. 1989. New insights into the evolutionary growth of tumors 
revealed by southern gel analysis of tumors genetically tagged with plasmid or proviral DNA 
insertions. J Cell Sci 94:381–387. 

20. MacPhee DG. 1991. The significance of deletions in spontaneous and induced mutations asso-
ciated with movement of transposable DNA elements: possible implications for evolution and 
cancer. Mutation Res 250:35–47. 

21. Yuan J, Narayanan L, Rockwell S, Glazer PM. 2000. Diminished DNA repair and elevated 
mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60:4372–4376. 

22. Reynolds TY, Rockwell S, Glazer PM. 1996. Genetic instability induced by the tumor micro-
environment. Cancer Res 56:5754–5757. 

23. Coffey DS, Isaacs JT. 1981. Prostate tumor biology and cell kinetics-theory. Urology
17(suppl):40–53. 

24. Hussein MR, Haemel AK, Wood GS. 2003. Apoptosis and melanoma: molecular mechanisms. 
J Pathol 199:275–288. 

25. Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D. 2003. Apoptosis 
regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol
120:18–55. 

26. Hoglund M, Gisselsson D, Hansen GB, Sall T, Mitelman F. 2002. Multivariate analysis of 
chromosomal imbalances in breast cancer delineates cytogenetic pathways and reveals com-
plex relationships among imbalances. Cancer Res 62:2675–2680. 

27. Abraham S, Zhang W, Greenberg N, Zhang M. 2003. Maspin functions as tumor suppressor by 
increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol 169:1157–1161. 

28. Su ZZ, Gopalkrishnan RV, Narayan G, Dent P, Fisher PB. 2002. Progression elevated gene-3, 
PEG-3, induces genomic instability in rodent and human tumor cells. J Cell Physiol 192:34–
44. 

29. Kondoh N, Shuda M, Arai M, Oikawa T, Yamamoto M. 1988. Activation of anchorage-
independent growth of HT1080 human fibroblasts. Mutat Res 199:273–291. 

30. Cooper CR, Chay CH, Gendernalik JD, Lee HL, Bhatia J, Taichman RS, McCauley LK, Keller 
ET, Pienta KJ. 2003. Stromal factors involved in prostate carcinoma metastasis to bone. Can-
cer 97:739–747. 

31. Folkman J. 2002. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–
18. 

32. van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW. 2003. Involvement 
of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in 
vitro. Arterioscler Thromb Vasc Biol 23:211–217. 

33. Chang L, Kaipainen A, Folkman J. 2002. Lymphangiogenesis new mechanisms. Ann NY Acad 
Sci 979:111–119. 

34. Chung AS, Yoon SO, Park SJ, Yun CH. 2003. Roles of matrix metalloproteinases in tumor 
metastasis and angiogenesis. J Biochem Mol Biol 36(1):128–137. 

35. Nambu Y, Beer DG. 2003. Altered surface markers in lung cancer: lack of cell-surface 
Fas/APO-1 expression in pulmonary adenocarcinoma may allow escape from immune surveil-
lance. Methods Mol Med 74:259–266. 

36. Ivanovic VV, Todorovic-Rakovic N, Demajo M, Neskovic-Konstantinovic Z, Subota V, 
Ivanisevic-Milovanovic O, Nikolic-Vukosavljevic D. 2002. Elevated plasma levels of trans-
forming growth factor-beta(1) (TGF-beta(1)) in patients with advanced breast cancer: associa-
tion with disease progression. Eur J Cancer 39:454–461. 

37. Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, Taichman RS. 2001. 
Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis 
Rev 20:333–349. 

38. Rossi MC, Zetter BR. 1992. Selective stimulation of prostatic carcinoma cell proliferation by 
transferrin. Proc Natl Acad Sci USA 89:6197–6201. 



556 K. J. PIENTA 

39. Schwab ED, Pienta KJ. 1997. Modeling signal transduction in normal and cancer cells using 
complex adaptive systems. Med Hypotheses 48:111–123. 

40. Holland J. 1995. Hidden order: how adaptation builds complexity. Addison-Wesley, New 
York. 

41. Chinnaiyan AM, Coffey DS, Forrest S, Goldberg E, Holland J, Kepler T, Maley C, Mitchell M, 
Montie JE, Morowitz M, Nelson WG, Omenn G, Perelson AS, Pienta KJ, Rubin MA, Scardino 
P, Shapiro JA, Wheeler T. 2002. Merging bottom-up and top-down approaches to study pros-
tate cancer biology. Complexity 7:22–30. 

42. Kauffman SA. 1991. Antichaos and adaptation. Sci Am 265:78–84. 
43. Pienta KJ, Murphy BC, Getzenberg RH, Coffey DS. 1993. The tissue matrix and the regulation 

of gene expression in cancer cells. Adv Mol Cell Biol 7:131–156. 
44. Temin HM. 1988. Evolution of cancer genes as a mutation-driven process. Cancer Res

48:1697–1701. 
45. Lewin RS. 1993. Complexity: life at the edge of chaos. Collier Books, New York. 
46. Bao JZ, Davis CC, Schmukler RE. 1993. Impedance spectroscopy of human erythrocytes: 

system calibration and nonlinear modeling. IEEE Trans Biomed Eng 40:364–378. 
47. Semenza GL. 2003. Targeting HIF-1 for cancer therapy. Nature Rev Cancer. 3:721–732. 
48. Kerr RA. 2002. Evolution: a trigger for the Cambrian explosion? Science 298:1547. 
49. Lupold SE, Hicke BJ, Lin Y, Coffey DS. 2002. Identification and characterization of nuclease-

stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific mem-
brane antigen. Cancer Res 62:4029–4033. 

50. Coffey DS. 2002. Understanding the cancer biology universe: enigmas, context and future 
prospects. Cancer Biol Ther 1:564–567. 

51. Faria M, Ulrich H. 2002. The use of synthetic oligonucleotides as protein inhibitors and anti-
code drugs in cancer therapy: accomplishments and limitations. Curr Cancer Drug Targets
2:355–368. 

52. Cerchia L, Hamm J, Libri D, Tavitian B, de Franciscis V. 2002. Nucleic acid aptamers in can-
cer medicine. FEBS Lett 528:12–16. 

53. Lato SM, Ozerova ND, He K, Sergueeva Z, Shaw BR, Burke DH. 2002. Boron-containing 
aptamers to ATP. Nucleic Acids Res 30:1401–1407. 

54. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA 
ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. 

55. Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, Schmidt PG, Warren S. 2001. 
Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem
276:48644–48654. 



557

6.2

SPATIAL DYNAMICS IN CANCER 
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Barcelona, Spain, and The Santa Fe Institute, Santa Fe, New Mexico 

Isabel González García and José Costa 
Department of Pathology, Yale University School of Medicine,  
and Yale Comprehensive Cancer Center, New Haven, Connecticut 

The relevance of spatial constraints to cancer growth and development are explored by 
means of simple models. It is shown that the explicit introduction of space into the pic-
ture allows the observation of new phenomena, such as the coexistence in time of differ-
ent cells populations that would exclude each other without the presence of local 
interactions. The implications for our understanding of cancer and its possible treatments 
are discussed. 

1. INTRODUCTION

 Cancer can be defined as a semiautonomous growth of tissue that spreads to 
eventually compromise the vital functions of the host. Cancer is estimated to be 
responsible for seven million deaths worldwide yearly and is the second leading 
cause of mortality in the United States, where just over half a million new cases 
are registered each year. The epidemiological projections indicate that lifelong 
cumulative risk for an individual is one of every two males and one of every 
three females (1). Sustained improvements in prevention, early diagnosis, 
and therapy have resulted in a constant decrease of the absolute overall cancer 
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mortality by 2% (2) per year, and progress in therapy has achieved cures for a 
significant number of patients. 
 In the last two decades, the success of the reductionist program of research 
has yielded unprecedented advances in our understanding of the basic mecha-
nisms of cancer formation at the molecular and cell biological levels (3). This 
new knowledge enables us to begin to treat the more complex aspects of tumor 
formation at the next level of organizational complexity in mammals: the tissue 
level. Understanding the process of cancer formation and progression at the tis-
sue level is relevant because many of the medical and biological characteristics 
of cancer depend on the organ or site where the tumor arises, in other words, the 
tissue the cancer comes from. 
 The order necessary for normal tissue function results from the stability, 
within homeostatic boundaries, of a complex network of interacting molecules 
that control intra- and intercellular regulatory circuits. The structural and func-
tional integrity of the tissues is ensured by a compartmental organization (4). 
Each compartment of differentiated cells is maintained by a set of stem cells 
that, through asymmetrical division, ensure self-renewal and generate a prolif-
erative population that expands exponentially. For a normal tissue, we can de-
scribe the interactions of cells using concepts and terms not too distant from 
those used in community ecology. The integrity of the tissue is guaranteed by 
the cooperation of its individual units, formed by the clonal cell population de-
rived from a stem cell in charge of maintaining each unit. The entire tissue sys-
tem functions under a continuous and stable turnover only disturbed by 
interaction with the environment and the process of aging. In the absence of 
external disturbances, each cell is programmed to play out a developmental pro-
gram. In each tissue compartment the changes in form and function of the cells 
follow a transformational mode. Each individual of the ensemble follows a pre-
determined trajectory of change, and the proportions of each constitutive ele-
ment of the ensemble remain constant. Mutations occur infrequently in stem 
cells responsible for maintaining the integrity of tissue compartments, and they 
are unlikely to be transmitted to the progeny, because normal cells are capable 
of repairing genetic damage resulting from errors during DNA replication. In 
addition, many mutations will result in deleterious effects and cause premature 
cell death by apoptosis. Thus under normal conditions, given the lack of genetic 
variation, selection is a weak force molding the populations that constitute a 
mature adult tissue. Competition among somatic cells is avoided, but clonal 
patches will increase in size when a neighboring clone fails and disappears. 
 In contrast, both tumor formation and tumor progression (the increase in 
biological malignancy with time) can be envisioned as microevolutionary proc-
esses during which change occurs in a variational mode (see also preceding 
chapter 6.1 by Pienta). Cancer is a genetic disease affecting somatic cells, and 
the emergence of a tumor requires accumulation of several mutations in a single 
cell. Mutations in oncogenes and tumor suppressor genes, including lack of 
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regulation of the epigenetic control of expression, disable key nodes in the net-
works controlling cell growth and differentiation. The rate of mutation can be 
increased by failure to maintain genetic integrity. This failure results in genetic 
instability caused either by deficiencies in the DNA repair machinery or by 
chromosomal instability. Defects in DNA repair can cause inherited susceptibil-
ity for certain cancers in humans, and chromosomal instability, manifested by 
loss of heterozygosity, is commonly observed in human cancerous tissue (5). 
The search for the genes responsible for chromosomal instability is being very 
actively pursued, and their identification will elucidate both how their products 
function and the role they play in tumor formation and progression (6,7). 
 Clonal evolution has been and continues to be regarded as the principal 
mechanism underlying tumor formation and progression (8). Implicit in the 
microevolutionary view of these processes is the notion of competition between 
the variants generated by mutation. Selection, playing on a checkerboard of 
mutations, can be a factor determining the particular genotype realized in a 
tumor cell population. Thus, the ecology of cancer cell populations that 
constitute the tumoral tissue is likely to depart significantly from that observed 
in normal tissues. 

2. POPULATION DYNAMICS

 Under a population-based view, two leading processes exploit mutational 
events: competition among different clones and expansion of those with larger 
growth rates. By applying the standard theory of ecological competition (9,10), 
coexistence is allowed by a limited range of conditions, defined by the strength 
of the interspecific interactions. Given two distinct populations, both will be 
present at low competition rates. Otherwise, one of the populations will win and 
exclude the second one. Thus, unless the parameters that define competition are 
properly tuned to avoid the parameter range of competitive exclusion, the popu-
lation will tend to homogeneity. 
 Recent progress in the area of spatial ecology supports the idea that hetero-
geneity may be much more common than predicted by competition theory. 
Competitors that may exclude each other under defined experimental conditions 
may coexist under a spatially explicit framework (11,12). This is largely a con-
sequence of the constraints imposed by space under limited dispersal. If two 
species that are good competitors involve individuals with short-range move-
ment, the fact that their direct impact on other individuals is limited to their 
nearest neighbors slows down or even cancels the expected effects of exclusion. 
The final result of this spatially extended competition scenario is a patchy distri-
bution of the two species that can be generalized to many different coexisting 
species. This occurs under a wide range of conditions, and it is not the result of a 
specific choice in the model (13,14). The only requirement is that spatial effects 
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must be able to suppress the theoretically predicted global effects of competitive 
replacement. Within the context of tumor growth, the space constraints are par-
ticularly important since cell movement within the tumor tissue is limited and 
cell–cell interactions, including paracrine effects, are short range. 
 We review here some key results and consider the theoretical arguments 
and computer simulations that support the view that the expected population 
structure to be found in a tumor is a heterogeneous spatial distribution of geno-
types and phenotypes. At a time when molecular therapies are being imple-
mented, the understanding of tumor heterogeneity in general theoretical terms 
can contribute to the design and understanding of multi-drug molecular therapies 
and to the prediction of treatment response. 

3. COMPETITION IN TUMOR CELL POPULATIONS

 A rich literature explores the growth of tumors assuming a homogeneous 
structure of the cancer cell population, without detailed reference to competition 
among the different cell types that compose a tumor (e.g., neoplastic cells and 
stromal cells). Under such approximation, the growth in the total number of cells 
N can be represented by a one-dimensional differential equation: 

( )
dN

N
dt
= , [1] 

where the right-hand side would contain a density-dependent behavior (i.e., size-
dependent growth) and such parameter(s) as replication rate . A first approxi-
mation is given by a linear function (N) = N and leads to an exponential in-
crease in the number of tumor cells. Under conditions of limited resources, this 
model has to be modified by a term expressing the effect of a population control 
mechanism. The standard example is provided by a logistic equation: 

( ) 1
dN N

N N
dt K
= = , [2] 

which can be solved, giving the time-dependent solution 

0

0

( ) t

K N

N

K
N t e= , [3] 
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indicating that after a long time the population stabilizes at some equilibrium 
level K, i.e., the carrying capacity. The carrying capacity is here fixed and would 
constitute a predefined limit to tumor growth. During tumor formation, such a 
limit is likely to be imposed by physical or nutritional constraints, but, particu-
larly during the early stages of tumor formation, it may be overcome by the 
adaptive capacity conferred by mutation. Constant mutation, favored by the mu-
tator phenotype, introduces competition among diverse cell populations and 
requires modification of the previous model. The fact that a tumor is composed 
of neoplastic cells and of stromal cells leads to the notion of competition be-
tween these two groups (15). 
 The consideration of a two-species competition model brings to the fore 
how spatial constraints modify the expectations derived from nonspatial models. 
Within the ecological context, two species will compete for given resources. In 
the case of a malignant tumor the competition will take place among different 
populations of cells. Gatenby (15) used the standard Lotka-Volterra system to 
model tumor progression: 

1 1 2
1 1

1

1
dN N N

r N
dt K
= , [4] 

2 2 1
2 2

2

1
dN N N

r N
dt K
= . [5] 

Here r1 and r2 are the intrinsic growth rates of the tumor population and normal 
host stromal population, respectively. The corresponding carrying capacities are 
denoted K1 and K2, and are defined as the maximum allowed population size that 
could occupy the tissue space and be supported by the environment. Here  and 
 are the interspecific competition coefficients. They measure the effects on 

stromal cells caused by the presence of the tumor cells and the effect of the 
stromal cells on the neoplastic cells, respectively. In this type of scenario, alter-
native models proposed by Gatenby incorporate different types of functional 
responses and consider availability of resources as a separate variable (16). 
 Before further exploring the relevance of space considerations within the 
context of tumor growth, we wish to consider one particular instance of the pre-
vious model that is defined by symmetric species competition, where the coeffi-
cients are the same, i.e.,  = . If we consider these to be tumor cell populations 
with similar biological characteristics, the coexistence point is given by 

* *
1 2

(1 )

1

K
N N

+
= = . [6] 
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Coexistence takes place and is stable provided that  < 1. Otherwise, one of two 
exclusion points, 

(N1

*,N2

*) = (K,0), [7] 

(N1

*,N2

*) = (0,K), [8] 

will be reached. Which population wins depends only on the initial conditions: 
the first population that increases in size over the other will take over. This is 
illustrated in Figure 1, which depicts the difference,  = |N1 – N2|, between both 
populations at equilibrium starting from two different initial conditions in which 
each population has a slightly large population than the other. 
 Using different competition rates , we observe a sharp transition at c = 1. 
For low subcritical competition levels, populations coexist and have the same 
size. At high competition rates, exclusion takes place. Once an initial difference 
between the populations is created, exclusion takes place. For this symmetric 
system, the two possible choices define two attractors of the dynamics. The 
situation is qualitatively shown in Figure 2. Here the original state is represented 
by the ball in the middle of the two valleys, representing the two possible attrac-
tors. The ball can roll down in two different directions, breaking the original 
symmetry and choosing one of two possible outcomes. 

Figure 1. Symmetry breaking in a competition model. Here the parameter  measures the 
difference between the two populations (with a carrying capacity normalized to one). This 
parameter is plotted against the competition parameter, measuring the inhibitory effect of one 
population on the other. 
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4. COMPETITION WITH SPATIAL DYNAMICS

 By introducing diffusion in the competing species (clones), simple models 
can be generalized to spatially extended ones. The standard procedure is to add a 
diffusion term to the Lotka-Volterra equation. 
 The new model now takes the form 

21 1 2
1 1 1 1

1

1
dN N N

r N D N
dt K
= + , [9] 

22 2 1
2 2 2 2

2

1
dN N N

r N D N
dt K
= + , [10] 

where Di

2Ni are the diffusion terms for each clone. Each population spreads at a 
rate Di (the diffusion rate), and we have, in three dimensions, 

2 2 2
2

2 2 2

N N N
N

x y z
= + + . [11] 

Gatenby and Gawlinsky (30) used a similar model to study tumor invasion. The 
tumor host interface was treated as two competing cell populations in a low pH 

Figure 2. Symmetry breaking. This is a mechanical analogure of the pattern presented in Fig-
ure 1. The initial state of the system (the initial population sizes of the two competing cell 
populations) is represented by the ball at the top. Any small initial difference will be amplified, 
and eventually the ball will end up in one of the two minima. The initial symmetry is broken 
and one of the possible exclusion points has been chosen. 
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microenvironment. The latter is known to exist in tumors, and the Gatenby-
Gawlinsky model analyzed the effects of tumor-induced acidity in the tissue 
microenvironment. The model not only contributed to an understanding of tu-
mor progression but also generated testable clinical predictions. 
 The spatially extended competition model can be simulated on a given spa-
tial domain using appropriate boundary conditions. A standard procedure begins 
with an initial condition where the two populations start displaying the same 
local population plus a small noise term. In other words, we start with an almost 
homogeneous system very close to the coexistence point. The outcome is illus-
trated in Figure 3. Here two populations start growing and eventually exclude 
each other. The exclusion strongly depends on the initial local conditions; small 
initial advantages are rapidly enhanced and at a local scale competitive exclu-
sion is completed. Together with competition there is diffusion: locally advan-
taged populations might disperse toward adjacent areas vacated by dying cells 
and create patches of homogeneous populations. Since both clones follow iden-
tical rules, the resulting situation is a set of patches that at the global scale 
achieve effective coexistence. 
 One possible limitation of the previous scenario is the initial condition 
where both populations are scattered over the surface. This circumstance could 
fit an experimental setup based on seeding a cell culture with a suspension of 
cells composed of two well-mixed populations but does not seem to apply to in-
vivo adult tissues where small clones occupy a defined space compartment. 
When we simulate tumor growth starting from a spatially nonhomogeneous ini-
tial condition, the resulting "tumor" is highly heterogeneous and the two popula-
tions coexist on a global basis despite local exclusion. 
 These simple models explain how the local character of interactions im-
posed by tissue architecture constrain competitive interactions. Thus, we may be 
confronted by a situation common to other communities that largely evolve 
through competition such as plants. As stated by Tilman (17), 

Plants compete only with individuals living sufficiently nearby but each 
could cast shade on or have roots that overlap with the other. Because of 
poor dispersal ability, low local abundance, or chance events, however, 
many plant species may be absent from such a neighborhood and have 
their abundance be recruitment limited. Like a team that fails to appear 
at a sporting event, a species that is locally absent has forfeited any 
chance of competitive victory at the site. This can allow inferior compe-
tition to win by default. If there is recruitment limitation, the winners of 
local competition are not necessarily the best competitors that exist in 
the region, but the best competitors that happened to colonize a particu-
lar site. This can lead to essentially unlimited diversity. 



SPATIAL DYNAMICS IN CANCER 565  

These concepts have been applied to the study of cancer biology only recently 
(18), and in the next section we explore some of the implications of applying 
metapopulation dynamics models to the study of human cancer. 

5. METAPOPULATION DYNAMICS AND CANCER 
HETEROGENEITY

 The term metapopulation was coined by Richard Levins to describe a popu-
lation consisting of many local populations (19,20). Metapopulation models are 
well adapted to describe systems composed of a set of patches of habitats. Visu-
alizing tumor tissue as an ensemble of populations, differing by the mutations 
present in each group of cells makes the application of metapopulation dynamic 
models to the study of cancerous tissues intuitively appealing. 
 The notion that invasive cancers are composed of diverse populations stems 
from the sometimes striking variation in cell phenotype found in human tumors. 
It is not unusual to observe nodules of unique appearance growing within larger 
nodules of tumor groups of distinct morphology apparently coexisting next to 
each other. Complementing these morphological observations, several groups of 

Figure 3. Spatial distribution of one of the two competing species in a two-species competition 
model with diffusion. Here the vertical axis indicates the relative amount of individuals of this 
species against the two-dimensional space. Starting from a roughly uniform state, where both 
species are equally distributed (except for a small noise), local exclusion takes place in some 
areas. Those regions where the first is abundant match those where the second is depleted, and 
vice versa. 
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investigators conducting molecular analysis of tumor tissue have described a 
significant degree of genetic heterogeneity in tumors of various types (21–23). 
 It is significant that the heterogeneity at the molecular level involves genes 
that play a important role in the pathogenesis of the tumor state and in the main-
tenance of the neoplastic phenotype. Because of this, one may argue that alleles 
at these loci should be under selective pressure, so that one would expect to find 
the allele present in every cell of the tumor. Many studies that have been inter-
preted as demonstrating clonality of cancer genes in tumors do not deal with the 
caveat that they examined large mixed populations in aggregate and that, given 
the sensitivity of the detection technologies used in most cases, the results are 
likely to show a dominant allele, but do not critically exclude the presence of a 
quilted pattern of cell populations harboring allelic diversity in cancer genes. 
Most recent studies demonstrating genetic heterogeneity are predicated on using 
microdissection as a means of procuring relatively small and well-defined cell 
populations. 
 In attempting to generate models that will illuminate the phenomenology of 
tumor cell heterogeneity, it is crucial to simplify by focusing, sometimes arbi-
trarily, on a subset of biological characteristics of the tumor cell. Some key 
properties of cancerous tissues result in the increased mutational rate of tumor 
cells. These include their increased proliferative activity (which can overcome 
elevated rates of cell death) and prolongation of the lifespan of a cell by a vari-
ety of mechanisms that include avoidance of senescence. Other properties of 
tumors, such as the capacity to invade or stimulation of tumor angiogenesis, are 
undoubtedly of crucial importance to tumor pathophysiology and will need to be 
incorporated in more refined versions of metapopulation models of tumor 
growth. Is there an ecologic analogue for the two strategies found in tumor cells, 
e.g., high replicative rate and avoidance of death? The answer is affirmative, 
given the fact that two negatively correlated strategies for space occupation and 
persistence are observed in a community. The first, high colonization, is simply 
a strategy of effectively occupying available space. In tumors this stems from 
the high replication rate of tumor cells compared to normal cells. The second 
involves local extinction. It is known that some plants will be more tolerant to 
existing local conditions than others because they have developed mechanisms 
to tolerate such adverse conditions as shading from their neighbors. Inability to 
trigger apoptosis or independence of the need for survival signals from the envi-
ronment are documented strategies evolved by tumor cells during tumor forma-
tion. In many cases there may be a tradeoff between both strategies: good 
colonizers are less able to persist, whereas poor colonizers are best adapted to 
local conditions, less prone to extinction, and thus better competitors. 
 A simple metapopulation model can be constructed to illustrate the impor-
tance of each ingredient. Let p be the fraction of patches occupied by a given 
species; the Levins model will describe the evolution in time of the metapopula-
tion by 
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dP/dt = CP(1 – P) – mP, [12] 

where c is the colonization rate and m the extinction rate. Both are local rates 
and describe the ability of the given species to occupy neighboring patches and 
to get locally extinct. The model has two equilibrium points: p* = 0 and 

P* = 1 – m/c. [13] 

It can be seen from the last expression that the species will persist provided that 
c > m. In other words, there is a minimum requirement for colonization rates in 
relation to extinction rates. The choice of strategy for a population will in part 
depend on the environmental constraints and the contingencies that may influ-
ence these constraints. 
 In cancer both strategies can be adopted, leading to coexistence of diverse 
cell populations (18). The Levins model enables us to explore what type of 
tradeoffs between competing populations allow them to coexist. Let us consider 
two competitors, which for simplicity we will assume to be ordered in a hierar-
chical way. The superior competitor will be more likely to colonize available 
adjacent patches, and the second competitor will be less likely to die. 
 We can map these two strategies in the cancer context by choosing two 
genes in epithelial cells: one coding for the receptor of tumor growth factor beta 
(TGFBR-2), and the second encoding a pro-apoptotic protein named BAX. 
These two genes will allow us to couple phenotypic traits associated with repli-
cation and senescence with the underlying genetic traits. Loss of function of 
TGFBR-2 makes cells grow faster, while loss of BAX function increases cell 
longevity. In terms of a model approach, this means that more mutations in 
TGFBR-2 will map into increased proliferation rates, whereas mutations in 
BAX will reduce cell mortality. Homozygous mutants will presumably have a 
stronger phenotype, although the biological consequences of haploinsufficiency 
in tumor suppressor genes are only emerging (18,24,25) and have not yet been 
explored in much detail. 
 These constraints can be implemented as follows according to Levins dy-
namics: 

dP1/dt = c1P1(1 – P1) – m1P1. [14] 

From this equation we conclude that the first population senses as available 
habitat all spaces not occupied by S – 1, but perhaps occupied by S – 2. The sec-
ond population is described by: 

dP2/dt = c2P1(1 – P1 – P2) – m2P2 – c1P1P2. [15] 
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Now the space available to the second species is reduced to 1 – P1 – P2, i.e., 
those patches occupied by S – 1 cannot be invaded. This simple model predicts 
that coexistence will occur provided that some critical tradeoffs are satisfied. 
Specifically, it can be shown that coexistence will take place if 

c1 > m1, [16] 

c2 > [c1(c1 – m2 – m1)]/m1. [17] 

Essentially what these inequalities define is a set of requirements that the two 
competitors have to verify in order to not exclude each other. The inferior colo-
nizer, for example, will be able to persist if it is able to exploit local resources 
more efficiently. Since energy resources have to be distributed in different sur-
vival strategies, it is not difficult to understand that such tradeoffs will be ex-
pected to be common. 
 Of course, the previous models can seem too simplistic to say anything 
relevant. But we have learned from years of modeling and data analysis that 
simple models often capture the underlying causes responsible for the observed 
patterns. A step beyond the previous metapopulation models is to consider space 
explicitly (13,20). This was done within the context of cancer heterogeneity for 
the spatial dynamics of the two genes mentioned above (TGFBR-2 and BAX). A 
three-dimensional space was considered in terms of a cubic lattice (18). Each 
lattice point was occupied by a single cell, whose internal state was defined in 
terms of two copied of the two genes. The reproduction and death rates of each 
cell were determined by the state of their two key genes and their mutations. 
Mutations in TGFBR-2 triggered phenotypic responses in terms of increased 
replication, whereas mutations in BAX led to decreased levels of apoptosis. Mu-
tations within this framework are independent random events not coupled with 
environmental factors. 
 Available experimental data provided well-defined frequencies of each mu-
tation for each tumor analyzed. The simulation model, starting from a small 
group of non-mutated cells, could produce a whole spectrum of possible out-
comes through its growth dynamics. In order to determine the most likely com-
bination of growth and death rates compatible with the available information, a 
search algorithm was used in order to find the optimal parameter set compatible 
with experimental data. In this way, we can go beyond the limitations imposed 
by a high-dimensional parameter space and simply leave the algorithm to search 
for candidate solutions. 
 The model revealed a very good parameter combination able to reproduce 
the observed frequencies of mutants and their spatial distribution (18). In Figure 
4 we show an example of the model outcome for the optimal parameter combi-
nation. As expected from the competition models described in the previous sec-
tions, spatial heterogeneity was achieved because of a combination of tradeoffs 
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and the constraints imposed by local interactions. Although the same model 
achieves homogeneity under an absence of spatial constraints, it fails to do so 
when a realistic spatial structure is introduced. The model thus provides an accu-
rate description of the basic rules operating through tumor progression and also 
predicts a number of features (such as the relative mutation levels associated 
with each mutation) that can be eventually tested from experiments. 

6. DISCUSSION

 A study of the geography of genetic diversity present in human tumors with 
a mutator phenotype revealed an unsuspected degree of diversity. Remarkably, 
tumor cells could be found with a wild-type genotype in the midst of the tumoral 
tissue. The ability to reproduce the results using a metapopulation dynamic 
model suggests that the same fundamental principles that explain the lack of 
dominance in complex ecosystems are at play in neoplasia and underlie the 
maintenance of clonal diversity in human tumors. Study of the metapopulation 
models further suggest that, in order to generate the degree of diversity ob-
served, the mutational rate can remain stable throughout the natural history of 

Figure 4. An example of the 3D simulation model using optimal parameters. Here the spatial 
distribution of the two genes under consideration is shown. Green, yellow, and red correspond 
to wild type, one, and two mutations, respectively. BAX displays lower levels of mutation, 
whereas TGFBR-2 presents larger red zones, indicating that homozygous mutations are wide-
spread. 
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the tumor and that no differences in neutrality of interaction or separated time 
scales are necessary for different groups. 
 Although after prolonged evolution tumor systems are likely to tend toward 
homogeneity, diversity is the preferred landscape state in most intermediate or 
advanced tumors. Homogeneity may be achieved theoretically, but only after 
death of the host. Detailed studies of preneoplastic tissues reveal that diversity is 
the rule. When tissues at risk for developing a tumor are studied, diversity 
within cancer gene loci is commonly found. 
 Quantitative studies of the frequencies of alleles for different cancer genes 
indicate that the normal physiology of tissues includes random fluctuation of 
mutated alleles present at very low frequencies. Theoretical work by the group 
of Nowak (26) indicates that the best protection against mutations that favor 
overgrowth of a clone is a tissue homeostasis that is locally regulated by small 
compartments of cells in tissues. The small size of the compartments, which 
protects against the emergence of populations harboring a mutated oncogene or 
tumor suppressor gene, favors the emergence of genetic instability (e.g., chro-
mosomal instability). If confirmed, these results suggest that genetic instability 
is a characteristic of small tumor clones (oncodemes) from the earliest stages of 
the neoplastic process. In fact, many expanded oncodemes may coexist in tissue, 
at very low frequencies, and a clinically significant malignant neoplasm may 
never emerge. Modeling of the preneoplastic states found in tissue is in keeping 
with observations of mutated allele frequencies found in somatic cells (27). 
 The idea that tumors are composed off a heterogeneous ensemble of tumor 
cell populations suggests that the biological behavior of tumors depends on the 
composition of the tumor tissue rather than on a common characteristic of "the 
tumor cell." In very diverse tumors it is most likely that at least one cell type 
will harbor a mutation that renders the cell resistant to therapy. Chemotherapy 
may in many instances introduce a disturbance in the system, and disturbance, 
an external agent of mortality, can modulate the effect of spatial heterogeneity 
on biological diversity (28). The relationship of disturbance to diversity could 
explain why a drug, if applied too often or too rarely, can cause an increase in 
tumor diversity. Another agent of disturbance that is likely to have significant 
effects on the natural evolution of a tumor is ischemia. Loss of perfusion in large 
areas is likely to modify the degree of diversity in their immediate vicinity, and 
such events are not unusual throughout the natural history of tumors. It is of 
interest to consider whether additional ecological principles can illuminate tu-
mor pathophysiology. It seems not too risky to speculate that productivity, the 
flow of energy through a system, is determined in the case of tumors by the flow 
of blood through the tumor tissue. In bacterial systems, productivity is known to 
affect diversity in the same way that disturbance does (29). 
 As more and more therapies are designed to hit specific molecular targets, it 
will be important to know the degree of heterogeneity in tumors that are to be 
treated. Ideally, one would want to monitor the tumor-cell cell composition as 
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the therapy has its effect. Knowing the degree of diversity may help design the 
best multi-modality therapies for a given tumor, taking into account the effects 
of disturbance on diversity. Perhaps one day we will be able to determine what 
therapeutic strategies are going to optimally alter tumor growth. 
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We argue that tumors behave as complex dynamic self-organizing and adaptive biosys-
tems. In this chapter, we present a numerical agent-based model of malignant brain tumor 
cells in which both time and space are discrete yet environmental variables are treated as 
a continuum. Simulations of this multiscale algorithm allow us to investigate the molecu-
lar, microscopic, and multicellular patterns that emerge from various interactions among 
cells and between the cells and their environments. 

1. INTRODUCTION

 Studies of multicellular organisms recently experienced a paradigm shift 
into a framework that views these biological life forms as complex systems. In 
studies of malignant tumors, such a paradigm shift is accompanied by growing 
evidence that these tumors behave as dynamic self-organizing and adaptive bio-
systems (see (1–3) and chapter 6.1 by Pienta (Part III, this volume)). The present 
chapter reviews the applications of insights from complex system research in 
studies of malignant brain tumor cells, such as glioblastoma multiforme (GBM). 
Understanding the emerging behavior of malignant cancer cells with the use of 
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numerical simulations is the current state of the art in modeling of the (brain) 
tumor as a multicellular complex system. New advances in computer micro-
processors as well as programming tools have significantly improved the speed 
with which these simulations can be performed. The "agent-based" approach 
(see also this volume, Part II, chapter 1 by Shalizi), in which the smallest unit of 
observation is the individual cancer cell, offers many advantages not possessed 
by, for example, the continuum model that has been proposed for cancer in the 
preceding chapter 6.2 by Solé, Gonzales Garcia, and Costa. The principal moti-
vations for using an agent-based model to examine the spatio-dynamic behavior 
of a malignant brain tumor can be listed in the following non-exhaustive list. 
 First, to date, conventional clinical imaging techniques can only detect the 
presence of malignant behavior after the tumor has reached a critical size larger 
than a few millimeters in diameters. Hence, long before the disease process can 
be diagnosed on image, the tumor likely has already started to invade the adja-
cent brain parenchyma, thus seriously undermining the options of cytoreductive 
therapy. A computational model can therefore be useful in helping to better un-
derstand these critical early stages of tumor growth. During such initial stages, 
only a relatively small number of tumor cells have emerged in the system; 
hence, a continuum model based on the dynamical behavior of tumor "lumps" 
(each lump representing a large population of tumor cells) will fail to capture the 
early growth process that is highly path dependent on the discrete history of 
each individual cell. 
 Second, an agent-based model is suitable to examine these aggregate (i.e., 
macroscopic) patterns that result from the microscopic (i.e., local) interactions 
among many individual components. This micro–macro perspective is indispen-
sable in a model of cancer cell heterogeneity that is driven by molecular dynam-
ics. On one hand, the bottom–up approach is useful due to the ability of cancer 
cells to proliferate rapidly during tumorigenesis, which leads to intense competi-
tion for dominance among distinct tumor clones (4). On the other hand, the col-
lective behavior of the network of individual cancer cells may result in emerging 
large-scale multicellular patterns, which calls for a system-level outlook. Indeed, 
the assumed rapid nonlinear growth of brain tumors during the initial stage and 
the subsequent invasion into regions of least resistance, most permission, and 
highest attraction would indicate an "emergent" behavior that is the hallmark of 
a complex dynamic self-organizing system (3). 
 Third, such agent-based models can easily handle both space and time si-
multaneously. In a realistic model of malignant tumor systems, space must be 
taken into account explicitly because there are only limited numbers of locations 
exhibiting an abundance of nutrients and low tissue consistency. Thus, there 
should be a fierce spatial competition among tumor cells to reside in such favor-
able locations. On the other hand, time serves as a constraining variable since 
future prognosis of the host patients are critically dictated by the past history of 
events. Small changes during the initial stage of tumorigenesis may induce tu-
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mor cells to experience a genetic switch (5), which in turn can transform a be-
nign growth into an aggressively expanding, malignant tumor. 
 From the methodological standpoint, the advantage of using a numerical 
platform is that it circumvents the need to solve analytically the underlying 
mathematical equations. That is, instead of relying on theorems and closed-form 
solutions, the statistical properties of the system are estimated by spinning the 
model forward a sufficient number of times. Such desirable advantages of an 
agent-based model, however, do not come without a "price" for the user. 
 First, as for any other theoretical approach that is based on a numerical plat-
form, calibration of the model parameters using experimental data is often diffi-
cult due to (i) the lack of the latter in some cases, or (ii) the fact that they have 
been collected over a wide range of different experimental setups, thus rendering 
combinations of the results nontrivial. Without proper prior experiments, how-
ever, robustness of the model prediction must be verified by exhaustive explora-
tion of the relevant parameter space, which is often of high-dimensional order 
and therefore computationally can be very resource intensive. If, in addition, the 
model also contains stochastic elements that can potentially have a significant 
effect on the outcome, then a Monte Carlo simulation must be performed across 
various random seeds to ensure robustness. 
 Second, even if data are available, translating an in-vivo or in-vitro experi-
mental setup into an operational in-silico model can be a formidable exercise. 
The challenge is to confine the number of cellular characteristics and environ-
mental variables into a manageable few, preferably those that are most pertinent 
to the question posed by the researcher. This of course is a critical step and has 
to be carefully balanced against oversimplification. Nonetheless, stripping a 
complex biological organism to its bare essentials is necessary to render any 
model tractable, which in turn allows one to establish cause–effect relationships. 
 On balance, however, it is clear that, as long as the researcher is aware of 
the model limitations, the potential benefits of an agent-based framework far 
outweigh its deficiencies. Typically, a realistic tumor model exhibits the follow-
ing features: 

 An agent-based model treats both space and time explicitly and in a dis-
crete manner. Discretized time allows the assessment of tumor progression 
at various time steps. 

 Explicit inclusion of environmental variables that have proved critical in 
guiding tumor proliferation and invasion—such as nutrient sources, me-
chanical confinements, toxic metabolites, and diffusive biochemical at-
tractants. 

Variable grid lattice: allowing more than one cell to share the same loca-
tion, capturing the spatial and resource competition among the tumor cells 
themselves. Such cellular clustering arguably guides the overall spatio-
temporal behavior of the tumor system (6). 
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 More recently, in an attempt to emulate the in-vivo setup in an even more 
realistic way, sophisticated agent-based models of brain tumors have introduced 
further modifications. Among the novel features of these recent models are: 

Nonlinear feedback effects through two types of interactions, namely: (i) 
local interactions among cancer cells themselves, and (ii) interactions be-
tween cancer cells and their surrounding environment (6–9) represented 
by, for example, an adaptive grid lattice. 

Heterogeneous cell population as represented by the emergence of distinct 
subpopulations, each with different cell clones (10). 

Phenotypic dichotomy between cell proliferation and invasion as sup-
ported by recent experimental findings (11,12). 

To put this in perspective, in the following section, we briefly review previous 
works on tumor modeling. 

2. PREVIOUS WORKS

 Based on the choice of methodology, most of the existing models of brain 
tumors derive their results from either solving analytically a set of mathematical 
equations or from performing Monte Carlo simulations using a numerical plat-
form. The latter follows the longstanding tradition of cellular automaton (CA) 
models, albeit with considerably richer specification of tumor behavior. For an 
excellent review article of cellular automata approaches to the modeling of bio-
logical systems, see (13). In the modeling of complex systems, CA models have 
proved to be a versatile tool. For example, (14) and (15) treat the automata as 
abstract dynamical systems. In addition, (16) presents and (17) reviews CA ap-
plications that are biologically motivated. (18) presents an early work in tumor 
modeling that employs a three-dimensional cellular automaton model to investi-
gate tumor growth. In their model, automaton rules were designed to capture the 
nutritional requirements of tumor growth. Being early in the field, their mini-
malist model did not yet consider the impact of other important environmental 
variables such as mechanical confinements and toxic metabolites. More recent 
efforts include (19), which utilizes a CA model to study growth progression. 
(20) also constructed a CA model to successfully generate a growth profile of 
tumor cells that follows the well-known Gompertz law. They examine the dy-
namics of tumor growth in the presence of immune system surveillance and me-
chanical stress generated from within the tumor, but they do not explicitly 
consider the influence of growth stimulants and inhibitors. (21) employs the CA 
approach to investigate the effects of location-specific autocrine and paracrine 
factors on tumor growth and morphology. Neither (20) and (21) explicitly con-
sider the mechanics of how tumor cells evaluate the attractiveness of location. 
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Rather, a static probability distribution function is exogenously assumed to de-
termine whether events such as migration, proliferation, or cell death can occur. 
Such external rules, imposed in a top–down manner, however, rule out the pos-
sibility for virtual cells to be true autonomous "decision-making" agents. All 
these CA applications typically assume discreteness in time and space. The dis-
crete treatment of time and space is often desirable not only because it models 
biological systems more realistically but, more importantly, because it allows for 
examination of tumor progression over time and across space. The latter is in-
variably the basis of any clinician's prognosis in practice. However, there are 
many variables of interest that are less discrete in nature, such as nutrient 
sources, toxic metabolites, and mechanical confinements. For these types of 
variables, their dynamic evolution in the extracellular matrix can be better de-
scribed using the continuous Navier-Stokes or reaction-diffusion equations. In 
cases where the spatiotemporal evolution of the tumor is closely linked to envi-
ronmental conditions, an approach combining both the discrete (for time and 
space) and continuum (for environmental conditions) elements of a tumor sys-
tem would offer a very sensible and promising alternative. For this reason, more 
contemporary modeling efforts extend the CA framework into agent-based
models that still simulate time and space discretely, yet treat many of the bio-
logical components of interest as continuous variables, thus avoiding the need to 
transform these variables into unrealistic integer states as in a traditional CA 
model. Recent contributions that have made use of discrete-continuum intersec-
tions include (6–9,22,23). 
 Another useful method for classifying existing models is determining 
whether the focus is on the proliferation or migratory behavior of tumor cells, or 
on both growth and invasion. Many previous studies have focused on either the 
proliferative growth of the tumor (24,25) or on the invasive behavior (26,27). 
More recent modeling efforts have attempted to place equal emphasis on both 
cell proliferation and cell motility. The work that has been done in this area of 
research with a dual focus on both growth and invasion includes (6–9,28,29). 

Proliferation-focused studies can be further subdivided into those that em-
ploy deterministic-continuum and those that make use of stochastic-discrete 
models. In the former, the tumor system is viewed as an aggregation of (multi-
cellular) tumor lumps, and the variable of interest is invariably tumor volume, 
which is a continuous variable. As an example of a continuum platform, (24) 
develops a deterministic mathematical framework to generate the growth pattern 
of multicellular tumor spheroids that follows the Gompertz law. On the other 
hand, a stochastic-discrete approach typically employs a cellular-level agent-
based model to enable the explicit examination of chance elements in the behav-
ior of individual cells. For example, using a three-dimensional cellular automa-
ton model, (25) shows that macroscopic tumor behavior can emerge from local 
interactions at the microscopic level. (22) presents an attempt to bridge these 
two approaches by introducing random elements into a continuum model. Note 
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that, although their model allows cell migration through continuous diffusion, at 
the core theirs is proliferation-focused, with a cursory treatment on tumor cell 
invasion. Researches that focus on invasive expansion can also be broken down 
into deterministic-continuum (e.g. (26,27,30)) and stochastic-discrete ap-
proaches (e.g. (23)). In a deterministic-continuum model, multicellular patterns 
typically emerge from the dynamic evolution of population density functions 
satisfying second-order nonlinear differential equations of reaction-diffusion and 
wave propagation. For example, (30) successfully simulates the branching pat-
tern on a tumor surface using a continuum model whereby migrating cells fol-
low the gradients of diffusive substrates. 
 As an attempt to generalize, (28) considers both proliferation and migration 
within a three-dimensional diffusion framework. All these continuum models 
emphasize the interaction of cells with the environment, but usually cannot iden-
tify the individual cell itself. In addition, incorporating stochastic cell behavior 
within a reaction-diffusion framework is a daunting task. Perhaps more impor-
tantly, such models are not suitable for modeling the early stages of tumorigene-
sis when only a small number of tumor cells are present. At that stage, the 
progression of tumor growth depends on the discrete history of each individual 
cell and its local interactions with the environmental variables as well as with 
neighboring tumor cells. (23) therefore develops a hybrid discrete-continuum 
model to account for the importance of tumor cells to be treated as discrete 
units. This study shows that the formation of (experimentally observed) 
"branches" on the surface of a multicellular tumor spheroid may require both 
heterotype and homotype chemoattraction, i.e., toward distinct signals that are 
released by nutrient sources as well as produced by the tumor cells themselves 
(i.e., paracrine). (29) employs a discrete model to replicate the spatiotemporal 
pattern of malignant cell invasion into the surrounding extracellular matrix 
(ECM). However, in their model cancer cells migrate to minimize their collec-
tive energy expenditures, implying that each cell endeavors to minimize the sur-
face energy of the entire tumor domain. Their model therefore does not qualify 
as a true agent-based framework since the latter by definition must be based on 
individual-level "decisions" rather than community-level considerations on the 
part of tumor cells. Nonetheless, their work underscores the critical role of 
minimal energy expenditure for tumor expansion, which also influences our 
work (6–9). 
 For example, in the agent-based model presented in (6), due to a cascading 
information structure, tumor cells gradually "learn" information content about a 
particular location in two stages. In the first stage, signal content is global (based 
on the assumption that cells can upregulate their receptor sensitivity) but incom-
plete, while in the second stage detailed local information is complete. Guiding 
the migratory behavior of tumor cells is the principle of "least resistance, most 
permission,1 and highest attraction," which classifies the attractiveness of the 
microenvironmental conditions. The key finding of this study is the emergence 
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of a phase transition leading to two distinct spatiotemporal patterns depending 
on the dominant search mechanism (related to the cells' energy expenditure re-
quired by the particular environmental conditions). In brief, if global search is 
dominant, the result is an invasive tumor system operating with a few large clus-
ters that expands rapidly but also dies off quickly. By contrast, if local search is 
dominant, the result is many small cell clusters with a longer lifetime but much 
slower spatiotemporal velocity. Building on this work, (7) focuses on search 
precision and implements local search only. The main finding there is that a less 
than perfect search can yield the fastest spatiotemporal expansion, thus indicat-
ing that multicellular tumor systems might be able to exploit the in vivo, pre-
sumably (chemically and mechanically) rather "noisy" microenvironment. In the 
following section we describe the mathematical model in more detail. 

3. MATHEMATICAL MODEL

 In our model, a tumor cell can proliferate, migrate, become quiescence, or 
undergo cell death depending on (a) its own specific location, (b) other tumor 
cells sharing the same location and competing for resources, (c) the onsite levels 
of microenvironmental variables, and (d) the state of neighboring regions. To 
discuss the nature of the relationships among tumor cells and between tumor 
cells and their environment in our model, we first introduce a number of theo-
retical notions. 

3.1. Definitions

3.1.1.  Population Dynamics

 Let j,t represent the (discrete) number of tumor cells residing in location j at 
time t. In our model, both space and time are discrete, i.e., the x-y coordinates of 
j and time t are nonnegative integers. The population of tumor cells in any loca-
tion changes due to (i) proliferation of new offsprings, (ii) net migration (i.e., in-
migration minus out-migration), and (iii) cell death. 

3.1.2.  Clustering

 A cluster is the spatial agglomeration of virtual tumor cells in contiguous 
sites. These virtual clusters represent cell aggregates observed in actual experi-
ments involving malignant brain tumors (3,31). More formally, we define a clus-
ter of tumor cells, C, as a federation of contiguous regions, each of which 
contains at least one viable tumor cell j,t > 1. To this, we add another qualifica-
tion that for a group of regions to be a legitimate cluster C it must be the case 
that their collective population size exceeds a certain minimum size: the union 
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of contiguous, nonempty locations 
,j tj C

represents a cluster if and only if 

,j t

j C

> . For example, in (7,8), we fixed  = 5, which means an agglomera-

tion of more than five adjacent cells (i.e., their locations share a common border) 
qualifies as a cluster. A tumor cell is defined to be on the surface of a cluster if 
(i) its location j belongs to a cluster, i.e., j C, and at the same time (ii) there 
must exist an empty location I in j's neighborhood, formally: i,t = 0 and i j's
neighborhood. 

3.1.3.  Measure of Distance

 Since our model explicitly takes the geography of a brain tumor into con-
sideration, a distance measure is necessary. We chose the L-infinity metric of 
distance for the simple reason that it can be conveniently implemented in a 
computer algorithm. Specifically, given two points A and B in the two-
dimensional grid lattice with coordinates (xA,yA) and (xB,yB), respectively, then the 
distance between these two points is computed as dAB = Max[abs(xB – xA),abs(yB – 
yA)].

3.1.4.  Local Neighborhood

 The set of locations, which are adjacent to a tumor cell's current site, consti-
tute the local neighborhood of that cell. In our previous works, the local 
neighborhood consists only of those locations sharing a common border with the 
tumor cell's current location j, i.e., those locations i that are within one unit of 
distance away: dij  1. Typically, we adopt the notion of a Moore neighborhood, 
which includes locations in the north, south, east, and west of the tumor cell's 
current location, as well as in the NE (northeast), NW (northwest), SE (south-
east), and SW (southwest) directions. 

3.2. Cell Behavior and Environment

 The local environmental variables in our model are captured by nutrient 
supplies, mechanical confinements, and deposits of detrimental toxic metabo-
lites. The generic term "nutrients" can be interpreted as representing glucose, as 
it is the principal source of energy for the brain. Indeed, (32) demonstrated that 
the extent of glioma malignancy is highly correlated with the expression of the 
GLUT3 glucose transporter. However, nutrients here can be also interpreted, for 
example, as epidermal growth factor (EGF), which has been shown to stimulate 
and guide the invasion of glioma tumor cells in vitro (33). The active migration 
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of tumor cells toward these EGF signals is facilitated by the cells' specific epi-
dermal growth factor receptor (EGFR), known to be overexpressed in primary 
human glioblastomas (34). In the case of glucose, tumor cells convert their nu-
trient uptake to lactic acid. Thus, relative to normal tissue, tumor tissues are of-
ten found to experience a several-fold increase in both glucose uptake and lactic 
acid production (35,36). The result of the escalating production of lactate and 
hydrogen ions is a thin layer of an acidic environment that surrounds tumor cell 
colonies. For example, (37) reports decreasing levels of pH, while (38) reports 
decreasing levels of pO2 on the surface of tumor spheroids. Both the lower level 
of pO2 and the reduced pH should render the microenvironment less viable and 
thus less "attractive." Finally, mechanical confinements in our model represent 
the stress or pressures exerted by the surrounding tissues, which hampers the 
ability of tumor cells to grow and invade the parenchyma. Experimentally, a 
number of studies have shown that these mechanical properties of the tissue 
environment indeed influence both the proliferating and migratory behavior of 
tumor cells (39, 40). 

3.2.1.  Proliferation

 Either proliferation or migration of tumor cells is allowed to occur if a 
number of criteria are fulfilled. The algorithm proceeds as follows. First, for 
every viable tumor cell, we determine whether its location j belongs to a "le-
gitimate" tumor cluster (see §3.1.2 above for details). If the tumor cell does not 
reside in a cluster, then it is eligible to either proliferate or migrate, though not 
both. If, on the contrary, the cell is a member of a cluster, then we next check 
whether the tumor cell is located on the surface of a cluster. If the "cluster sur-
face" condition is satisfied, a tumor cell can proliferate if its onsite levels of nu-
trients and toxic metabolites are within certain demarcating thresholds (see 
Figure 1). Let j and j denote site j's level of nutrients and toxic metabolites, 
respectively. Then proliferation may occur if the level of nutrients is higher than 
the upper nutrient threshold, j > U , while at the same time, the level of toxic 
metabolites is below the lower toxicity threshold, j < L.
 Even if the environmental conditions are favorable (i.e., high nutrients and 
low toxicity), there is still a chance that proliferation will fail to occur. We 
model this element of stochasticity by assuming that the probability to prolifer-
ate is proportional to the onsite levels of nutrients: 

Prproliferate,j = j / ( j + kprolif), [1] 

where kprolif represents a parameter that controls the likelihood of cell prolifera-
tion. Higher kprolif implies a lower probability to proliferate because it is inversely 
proportional to the capability of tumor cells to proliferate. Equation [1] states  



582 Y. MANSURY and T. S. DEISBOECK 

that even when nutrients are sufficient and toxic metabolites are low, due to the 
probabilistic nature of proliferation there are some eligible agents that generate 
no daughter cells. Note that at very high levels of nutrients, the probability of 
proliferation approaches unity: Prproliferate,j  1 as j . Conversely, even when 
the environmental conditions are not sufficient (i.e., due to j U or j L), we 
may admit a small probability for the disadvantaged cells to proliferate, hence 
allowing for an element of cellular "adaptation" under a less-than-optimal envi-
ronment. 

3.2.2.  Migration

 Tumor cells are allowed to migrate and thus invade adjacent regions if: (a) 
they are eligible to proliferate but do not due to chance, or (b) they are not eligi-
ble to proliferate because of lesser environmental conditions, yet they reside on 
the tumor surface and their location exhibits one of these three conditions: (i) j

L but L < j < U, or (ii) j U but L < j < U, or (iii) L < j < U and L < 

j < U. Notice that in our model no tumor cell can perform both proliferation 
and migration at the same time; it must be one or the other. This trait dichotomy
has been shown experimentally. Specifically, (11) shows that a tumor cell at a 
given time and location experiences only one of the key activities (either prolif-
eration or migration) at the maximum level, but not both. More recently, the 
same authors supported their conclusion reporting distinct gene-expression pro-
files for both phenotypes (12). 

Figure 1. Dual threshold levels in (a) nutrients and (b) toxic metabolites. 
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3.2.3.  Search Process

 At each time period t = 0, 1, 2, ..., a tumor cell that is eligible to migrate 
then "screens" the surrounding regions in its neighborhood to determine whether 
there is a more attractive location. The biological equivalent for this mechanism 
(and the cell behavior it induces) is cell-surface "receptor–ligand" interaction. 
Each eligible tumor cell then ranks the attractiveness of a neighboring location 
based on the following real-valued function: 

{ 's neighborhood}

( , , , )j j j j j j j p j i
i j

L G p G q q q p G= + + . [2] 

Equation [2] states that the value of location j depends on (i) the function Gj (see 
Eq. [3] below), which represents this location's attractiveness, which is due to its 
cell population, as well as on (ii) the onsite environmental factors. Specifically 
for the latter, the parameters q , q , and qp capture the contributions of nutrient 
supplies j, toxic metabolites j, and mechanical pressures pj, respectively. The 
last term in Eq. [2] captures the "neighborhood effect" due to cells that exert 
influence, and are influenced by other cells located in adjacent locations. As we 
have detailed in §3.1.4, our previous works have utilized the concept of the 
"Moore neighborhood," which includes only those adjacent locations at most 
one unit of distance away. The explicit form of Gj here is specified as a non-
monotonic function of the population density, j, discounted by the distance of 
location j from the evaluating tumor cell: 

Gj = ( j – c j

2)exp(– dj

2/2). [3] 

According to Eq. [3], a tumor cell is attracted to locations that already accom-
modate a number of other tumor cells, implementing the biological concept of a 
"paracrine" attraction. However, there is also a negative "crowding out" effect 
represented by the parameter c, such as if the location j's population of tumor 
cells expands beyond a maximum (i.e., beyond the point where Gj/ j = 0), 
then the attractiveness of that location starts to decline due to, for example, lim-
ited carrying capacity and spatial competition. Because of such a maximum 
threshold cell density, Gj is nonmonotonic: first, it increases, then at the maxi-
mum max / 0j j

j G =
= it starts to decrease as the population of tumor cells grows 

further. Importantly, Eq. [3] also contains a geographical dimension since the 
value of Gj is discounted at an increasing rate proportional to its squared dis-
tance dj

2 from the evaluating tumor cell's current location. The parameter  thus 
captures the metabolic energy required for a single cell to move across regions. 
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We postulate that such energy expenditures are determined by both an intrinsic 
factor and an external effect: 

 = r pj, [4] 

where the intrinsic factor r  corresponds to the inverse capability of tumor cells 
for spatial movement, while the external effect is attributable to mechanical con-
finements pj. Note that higher values of r  imply greater costs of spatial move-
ment in terms of cells' energy expenditures; it is thus an inverse capability term. 

3.2.4.  Cell Death

 As shown in Figure 1, cancer cells that experience dwindling supplies 
of nutrients or escalating levels of toxic metabolites can either turn quiescent, 
a reversible state, or undergo cell apoptosis/death. In our model, cell death is 
a stochastic event such that if either of two conditions occur—(i) nutrient re-
serves fall below the lower threshold j < L, or (ii) levels of toxic metabolites 
rise above the upper threshold j > U, then for tumor cells residing in such loca-
tions, the likelihood of death becomes positive and is proportional to the toxic-
ity levels: 

Prdeath,j = j/(k  + j), [5] 

where k  is the parameter representing the inverse sensitivity of cell death to 
toxicity level. Note that higher values of k  correspond to lower probability of 
death; hence the "inverse" term. Other than quiescence, cell death is a nonre-
versible event. In fact, cell death is particularly imminent for the non-
proliferating and non-migrating quiescent cells trapped inside a cluster due to 
their inability to escape to more favorable locations. Eventually, these dead cells 
start to form an emerging central necrotic region, a hallmark of highly malignant 
brain tumors (25). 

3.2.5.  Nutrient Sources

 The supplies of nutrients in our model can be either replenished (e.g., 
through neighboring blood vessels) or non-replenished (representing scattering 
traces of nutrient in the intercellular space). In every period t, the change in the 
levels of nutrients in every location is due to the current (new) production of 
nutrients, g , diffusion from the surrounding lattice sites, (D ), and nutri-
ent depletion, r :

( )g D r
t
= + . [6] 

where the parameter g  represents the fixed rate of nutrient production, D  is the 
diffusion coefficient of nutrients, and r  controls how fast a tumor cell metabo-
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lizes the on-site nutrient sources. For replenished sources of nutrients we set g
> 0, while for non-replenished sources g  = 0. Nonetheless, this setup allows for 
a feedback between the two distinct types of nutrient sources: the initially non-
replenished intercellular nutrients may get recharged through diffusion from the 
replenished source. 

3.2.6.  Mechanical Confinements

 As a first approximation, in (6), we assumed a static distribution of me-
chanical confinements. It is a "static" distribution in the sense that the levels of 
tissue resistance remain constant over time regardless of cell behavior. Subse-
quently, in (7), we adopted the more realistic notion of an adaptive grid lattice
such that locations that have been traversed by migrating tumor cells experience 
a reduction in mechanical confinements: 

p

p
r

t
= . [7] 

Equation [7] specifies that mechanical confinements "decay" at the rate of rp per 
viable cell regardless of its phenotype, so that for a given constant cell popula-
tion j , mechanical confinements go to zero after , /( )t j p jp r time steps. Over 
the course of a simulation, however, it is rarely the case that the cell population 
remains constant, and thus the time when mechanical confinements disappears 
at a particular lattice site is a stochastic variable. Biologically, the fall in me-
chanical confinements represents the degeneration of extracellular matrix due to 
cell invasion and secretion of proteases, i.e., matrix-degrading enzymes (41). 
According to Eq. [7], the presence of any viable tumor cell (regardless of pheno-
type) reduces tissue consistency. However, we argue that only invasive cells are 
capable of taking advantage of the deformed grid lattice by following the path of 
declining resistance. Assuming an underlying tendency of invasive cells to limit 
their energy expenditure as captured by Eq. [4], this process would in turn en-
courage even more tumor cells to invade the host tissue further following the 
paths that traversed by their peers. 

3.2.7.  Toxic Metabolites

 In our model, the levels of toxic metabolites (which here can represent a 
combination of specific inhibitory soluble factors released by tumor cells, ly-
sosomal content from dying tumor cells or tissue hypoxia) evolve according to 
the following function: 

( )D r
t
= + . [8] 
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In other words, the change in the level of toxicity at time t, t,j, is due to (i) dif-
fusing toxicity from the surrounding regions, (D ), where D  is the diffusion 
coefficient of toxic metabolites, and augmented by (ii) the rate of toxic accumu-
lation, r , multiplied by the population of tumor cells in that location, j. The last 
term thus contains the assumption that a greater population of tumor cells leads 
to faster accumulation of toxic metabolites. In fact, (42) has shown that in 
EMT6-cells detrimental accumulation of toxicity in the form of lactic acid re-
sults in inhibition of onsite proliferation. Yet at the same time, the authors of 
(43) found that higher toxic levels can also stimulate active migration of tumor 
cells, and that, although hypoxia induces growth arrest in ovarian carcinoma 
cells, they still exert proteolytic (Type IV collagenase) activity, which is re-
quired to maintain their invasive properties. Similarly, (44) described recently a 
hypoxia-induced migration of human U-138MG glioblastoma cells using an in-
vivo model. Together, these studies indicate that migration is stimulated when 
onsite accumulation of toxicity acts as repulsion, ultimately forcing tumor cells 
out of their current location. 

4. SPECIFICATIONS OF THE MODEL

 In recent work, we have extended the "core" agent-based modeling platform 
above to examine specific scientific questions. 

4.1. Search Mechanism

 In (6), we propose the concept of global vs. local search. This theoretical 
notion represents the existence of two different cell-surface receptors directing 
the chemotactic movement of virtual tumor cells with two distinctively different 
lower signal detection thresholds (or with two distinct intracellular amplification 
strengths). The first type of receptor, employed during global search, can be 
thought of exhibiting a lower signal detection threshold and as such is more sen-
sitive to diffusive signals emitted from distant locations. On the other hand, the 
second type of receptor (involved during local search) exhibits an elevated level 
of the lower signal detection threshold and thus is arguably employed to capture 
stronger signals coming from the local neighborhood of a cell's current location. 
The potential tradeoff between global and local search is captured by the pa-
rameter r . Smaller values of r  imply lower energy costs of spatial movement, 
(see Eq. [4]), and thus increase the scope of global search by conferring higher 
mobility to tumor cells. In contrast, larger values of r  promote a shift toward a 
more local search in the neighborhood of the cells' original location due to the 
higher costs of spatial movement in terms of energy expenditures. 
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4.2. Search Precision

 In (7), we introduced noise into cellular signal reception, such that the ex-
tent of the noise in the signal is captured by the search precision parameter, de-
noted as , which is positive and between zero and one,  [0,1]. Here, the 
search precision  represents the likelihood with which tumor cells evaluate the 
attractiveness of a location without error. As Eq. [2] specifies, the error-free 
value of a location is jointly influenced by the onsite levels of nutrient, mechani-
cal confinement, and toxicity. Formally, let Tj be the attractiveness of location j
as evaluated by a tumor cell using its signal receptors, and let Lj be the error-free 
evaluation of location j. The extent of search precision is introduced to the 
model such that, due to the noise in the signals, the attractiveness of location j is 
evaluated without error only  proportion of the time: 

Tj = Lj + (1 – ) j, [9] 

where j ~ N( , 2) is an error term that is normally distributed with mean  and 
variance 2. As a concrete example, a 70% search precision implies that Prob [Tj

= Lj] = 0.7, i.e., the attractiveness of location j is evaluated without error in 
seven out of ten trials on average. At one extreme,  = 1 represents the case 
where tumor cells consistently evaluate the permissibility of a location without 
error. At the other extreme,  = 0 represents the case when tumor cells always 
perform a random-walk motion, thus completely ignoring the guidance of the 
gradients of environmental variables. 

4.3. Structure–Function Relationship

 In (8), we investigated the emerging structural patterns of a multicellular 
tumor as represented by the fractal dimensions of the tumor surface. We then 
examine the link between the tumor's fractal dimensions and the cancer system's 
dynamic performance (i.e., functionality) as captured by its average velocity of 
spatial expansion. The tumor's fractal dimension, which characterizes the irregu-
larities of the tumor surface, is determined using the box-counting method (45). 
This method quantitatively measures the extent of surface roughening at the 
tumor–stromal border due to both proliferation and migration of malignant tu-
mor cells. The choice of fractal dimensions as a measure of structural pattern is 
motivated by the idea that the morphology of a tumor surface depends on the 
scale of observation. Let SA(l) be the entire surface area of the tumor that is 
computed by counting the number of boxes, N(l), each of size s, which are 
needed to cover the entire area. Then it is the case that SA(l) = N(l) l2. If the 
dimension of the tumor surface is indeed fractal, then we will find that: 
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( ) ~ fd
N l l , [10] 

where
0

lim[ln ( ) / ln (1/ )]f s
d N l l=  stands for the fractal dimension of the tumor 

surface. 

4.4. Molecular Level Dynamics

 In (9), we augment our 2D agent-based model with the molecular level dy-
namics of alternating gene expression profiles. Specifically, in that study we 
analyze the impact of environmental factors on gene expression changes, which 
in turn have been found to accompany the phenotypic cellular "switch" from 
proliferation to migration. For reasons of tractability, we focus on the behavior 
of two genes, namely Tenascin C and PCNA, which have been chosen on the 
basis of their reportedly active roles during proliferation and migration of 
glioma cells. Tenascin C is an extracellular matrix glycoprotein overexpressed 
in malignant in-vivo gliomas. (46) has shown that tumor cell motility is stimu-
lated when human SF-767 glioma cells are placed on Tenascin C. On the other 
hand, PCNA stands for "proliferating cell nuclear antigen," whose gene expres-
sion markedly rises during neuroepithelial cell proliferation (47). Experimental 
findings have shown that an increase in the gene expression of Tenascin (hereaf-
ter gTenascin) is associated with an increase in both levels of nutrients and tis-
sue hypoxia, or (for our purposes, in more general terms) toxicity. Accordingly, 
in our model, gTenascin is computed as a simple continuous positive function of 
both the normalized levels of nutrients ˆ

j  and toxic metabolites ˆ
j : gTenascin

= ˆ ˆ
T j jb . On the other hand, the literature suggests that an increase in the gene 

expression of PCNA (hereafter gPCNA) is associated with an increase in nutri-
ents and a decrease in toxicity. Accordingly, in our model we compute gPCNA
as a positive function of nutrients yet negatively affected by toxicity, gPCNA
= ˆ ˆ/T j jb . The molecular modules of both gTenascin and gPCNA enable our 
agent-based model to generate a virtual time-series profile of both gene expres-
sions as they relate to the proliferative, migratory and quiescent tumor cell phe-
notype. A particular aim of a time-series analysis (see also Part II, chapter 1, by 
Shalizi, this volume) is to ascertain whether a dynamic series exhibits intertem-
poral long-range autocorrelations. The presence of such autocorrelations indi-
cates the potential use of past historical values to forecast future outcomes. For 
that purpose, we applied detrended fluctuation analysis (DFA), which Peng et 
al. (48) developed as a robust method to detect long-range correlations in vari-
ous DNA sequences. If the statistical properties of a time series exhibits a ran-
dom walk (no autocorrelations across time), then DFA would yield an 
autocorrelation measure  = 0.5. In contrast, DFA would detect a long-range 
autocorrelation by a value of  that significantly deviates from the random walk 
value, i.e.,  0.5. 



MODELING TUMORS AS COMPLEX BIOSYSTEMS 589

5. BASIC MODEL SETUP

 In our previous works, our space of observation is a torroidal square grid 
lattice representing a virtual, two-dimensional slice of brain parenchyma. On 
that grid lattice we introduce fields of environmental variables: nutrients, toxic 
metabolites, and mechanical confinements. As we have discussed briefly above 
in §§3.2.1, 3.2.2, and 3.2.4, we impose dual thresholds in the levels of nutrients 
( L, U) and toxicities ( L, U), which in turn trigger the onset of migration, prolif-
eration, and cell death. To summarize, a tumor cell in location j proliferates if j

> U and j < L, i.e., sufficiently high levels of nutrients (above upper threshold) 
and low levels of toxicity (below lower threshold) lead to a positive probability 
of proliferation, the extent of which in turn is proportional to the levels of nutri-
ents. If these optimal conditions for growth are not satisfied, then a tumor cell 
can migrate whenever it is located on the tumor surface, and one of these three 
conditions hold: (i) j L but L < j < U, or (ii) j U but L < j < U, or (iii) 

L < j < U and L < j < U. Whether the cell actually migrates depends on 
whether there is a more attractive location in its local neighborhood as deter-
mined by the combined impact of nutrients, mechanical resistance, and toxicity. 
Finally, if either the nutrient levels are below the lower limit, j < L, or the 
toxic levels are above the upper threshold, j > U, then cell death is imminent 
with a probability proportional to the levels of toxic metabolites. In the follow-
ing, we detail how the environmental variables are initialized in our numerical 
model. 

5.1. Initial Levels of Environmental Variables

5.1.1.  Nutrients

 The initial distribution of nutrients is modeled as follows. We assume that 
there are three distinct types of nutrient sources that can be distinguished based 
on their geographical distribution. Specifically, there are two replenished pri-
mary sources of nutrients in the initial setup: (i) at the center of the grid, and (ii) 
at the center of the northeast (NE) quadrant. Everywhere else, nutrients are ini-
tially non-replenished. In order to add to the site's growth-permissive environ-
mental conditions, the first primary source is placed next to the "crater" of 
mechanical confinements and bell-shaped distributed with the peak located at 
the tip of the pressure crater. The second source can be found to the NE of the 
grid center and is also bell-shaped distributed with the peak level located at the 
center of the NE quadrant. This second nutrient source exhibits significantly 
higher levels than the first one such that the peak of this second source is five 
times (5 ) the peak of the first one. This arrangement ensures a chemoattractive 
gradient where the two sources can be thought of as representing two distinct- 
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sized blood vessels within the brain parenchyma. In addition to these two pri-
mary sources, there are non-replenished ("interstitial") nutrient substrates that 
are distributed randomly in a uniform manner at a much lower level than the 
first source, such that the minimum nutrient level of the first source is fifty times 
(50 ) larger than the maximum level of the non-replenished site. Figure 2 illus-
trates the initial distribution of nutrients. As the simulation progresses, nutrients 
diffuse from replenished sources to non-replenished ones due to tumor-induced 
alterations in mechanical confinements (see Eq. [7]). 

5.1.2.  Mechanical Confinements

 In several of our previous works (7–9), we assume that the center of the 
square lattice (where the initial seed of tumor cells is placed) corresponds to 
a small "crater" of mechanical confinement. In this stress or pressure crater, me-
chanical confinements are relatively low, reflecting a growth-permissive ana-
tomical condition at the initial site of tumorigenesis, with the lowest 
pressure located at the center of the lattice. In (6) we assume that the peak  

Figure 2. Initial distribution of nutrients in a 50 × 50 square grid lattice. The XY axes repre-
sent the two-dimensional spatial coordinates. The twin mounds correspond to the two replen-
ished nutrient sources: the first peaks at the tip of the mechanical pressure crater (see Figure 3), 
the second at the center of the NE quadrant. The vertical bar on the right shows the color scale 
used to measure the levels of nutrient sources. 
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pressure corresponds to the site of the second nutrient source at the NE quadrant 
(Figure 2). Thus, in effect, the second nutrient source is "defended" by higher 
mechanical confinements, representing a normal blood vessel within a noncan-
cerous parenchymal environment. Our subsequent works assume that, outside of 
the low-pressure crater, mechanical confinements are distributed randomly in a 
uniform manner. Figure 3 illustrates the initial levels of mechanical confine-
ments as assumed in (7) and (8). 

5.1.3.  Toxicity

 The initial levels of toxicity can be assumed to be zero everywhere on the 
lattice (6–8), or we can introduce an initial uniform distribution of hypoxia that 
is already in the system from the beginning (9). Hypoxia (due to limitation of 
oxygen diffusion in tissue) is known to be an important component of tumor 
biology. For example, it has been shown that the growth of multicellular sphe-
roids is adversely affected by diffusion-limited pO2 (49). Our "initial hypoxia" 
setup was inspired by the fact that locations farther away from blood vessels 

Figure 3. Initial levels of mechanical confinements in a 50 × 50 square grid lattice. The 
XY axes correspond to the spatial coordinates of the grid locations. The center of the 
pressure "crater" is placed at coordinates (x = 25, y = 25). The vertical color bar on the 
right shows the grayscale used to measure the intensity of mechanical pressures.
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experience hypoxic conditions due to a lack of oxygen related to its diffusion 
limit of 100–200 m in tissue (50). 

5.2. Structural Measures 

 The structural, macro-level characteristics of the tumor system can be cap-
tured by: (i) the size of the tumor clusters (within the invasive system), (ii) the 
fractal dimension of the tumor surface, and (iii) the average overall tumor di-
ameter. The average size of tumor cell clusters is computed as the total number 
of viable (alive) tumor cells divided by the total number of clusters in the entire 
tumor system. 

5.3. Performance ("Functional") Measures

 We have examined the following quantifiable measures characterizing the 
performance of the tumor system: (i) the time it takes for the first tumor cell to 
invade a nutrient-rich region, and (ii) the lifetime of the tumor system. The first 
performance measure tracks the time that elapsed between t = 0 and the moment 
where the first tumor cell reaches the peak of the second nutrient peak (see Fig-
ure 4). A related measure is the average velocity, <v>, of the tumor system, 
which we compute as init,quad3 (i.e., the distance between the initial location of the 
tumor cells' seed and the peak of the second nutrient source at the center of the 
NE quadrant), divided by the time it takes for the first tumor cell to invade the 
peak of the second nutrient, <v> = init,quad3/tquad3. Because the numerator is constant 
in any given simulation, init,quad3 = , the average velocity is directly yet in-
versely proportional to the time for the first cell to reach quadrant three, <v>
1/tquad3. The lifetime of the tumor system spans between t = 0 and the time where 
the last tumor cell finally dies off due to complete depletion of nutrient sources 
and detrimental accumulation of toxic metabolites. The simulation is thus termi-
nated when there are no longer viable cells in the system (i.e., in biological 
terms, when the entire tumor system has turned necrotic). 

6. RESULTS

 Typically, with a total of 16 parameters, exhaustive exploration of the entire 
parameter space is nearly impossible. It is thus important from the outset to con-
fine the parameters of interest into a manageable few. For that purpose, we have 
kept a number of parameters fixed in all of our previous works. Those constant 
parameters and their specific values are listed in Table 1. 
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 In the following, we discuss the parameters that we have examined in our 
previous work to establish robust numerical results. 

6.1. Search Mechanism

 In (6), we employ a 2D model in which tumor cells are capable of searching 
both globally and locally. We performed simulations for various values of (i) the 
(inverse) intrinsic capability to migrate, r , and (ii) the rate of nutrient depletion,  

Figure 4. Spatiotemporal progression of a virtual malignant brain tumor in a 200 × 200 
square grid lattice. At t = 25, an expansive rim (orange as depicted), consisting of both 
invasive and proliferative cells, starts to emerge on the tumor surface. At t = 60, the prolif-
erative rim has become prominent, while at the tumor core a black necrotic region has 
been established. At t = 335, a "bulging" macrostructure at the NE tip starts to emerge. At t
= 371, this "bulge" becomes a prominent structural feature just prior to the tumor's suc-
cessful invasion of the second nutrient source. 
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r . As discussed in §4.1, the parameter r  captures the extent of local search rela-
tive to global search. In particular, as r , global search is completely elimi-
nated, leaving only local search as the sole probing mechanism. At the other 
extreme, as r  0, global search becomes the dominant cell receptor mechanism
since tumor cells can invade any location with no spatial constraint. Therefore, 
with lower values of r  we expect to see acceleration of the tumor's average ve-
locity since it takes less time for the first tumor cell to reach the second nutrient 
source. Interestingly, we found that the performance of the tumor system exhib-
its a phase transition at a critical value r *. At r  > r *, where local search is the 
dominant probing mechanism, raising r  results in slower average velocity yet 
longer lifetime of the tumor system. In contrast, at lower values r  < r *, where 
global search dominates, incrementing r  by a small amount (and thus introduc-
ing a modicum of local search) actually increases the average velocity (i.e., 
shortens the time it takes for the first tumor cell to invade the peak of the second 
nutrient source) yet decreases the lifetime of the tumor system. The term "phase 
transition" here thus corresponds to the nonlinear behavior of the tumor system: 
starting at low values of r , increasing that value will accelerate the tumor's spa-
tial expansion, yet there is a threshold level r * beyond which the velocity starts 
to decline as r  increases further toward maximum local search. The choice of r
also reflects the potential tradeoff between the velocity of spatial expansion (i.e., 
a clinically relevant measure for the aggression of the tumor system) and the 

Table 1. Fixed parameters in the model along with their corresponding 
denotation and specific values 

                                  Parameter                                                   Equation                     Value

The positive impact of nutrients, q  2 10 

The negative impact of toxicity, q  2 –10 

The negative impact of resistance, qp 2 –10 

The negative effect of overcrowding, c 3 0.1 

Inverse sensitivity of cell death to toxicity level, k  5 10 

The rate of nutrient production, g  6 0.1 

The rate of nutrient depletion, r  6 0.01 

Diffusion coefficient of nutrients, D  6 0.001 

The rate of mechanical resistance reduction, rp 7 0.001 

The rate of toxicity accumulation, r  8 0.02 

Diffusion coefficient of toxic metabolites, D  8 0.001 
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lifetime of the very same tumor, making it more difficult to rank the fitness of 
the tumor system itself. Another parameter that we chose to examine in (6) is the 
rate of nutrient depletion r  (see Eq. [6]), because the metabolic uptake of tumor 
cells is an important parameter of interest from the experimental standpoint. We 
found that self-organizing behavior emerges as we simultaneously vary both r
and the rate of nutrient depletion, r . Specifically, we show that at slower me-
tabolism rates, r  < r *, raising r  (i.e., encouraging more local search) results in 
self-organization of tumor cells into increasingly smaller clusters. The formation 
of smaller cluster sizes, however, disappears as r  is increased even further. That 
is, when nutrients are rapidly depleting due to the high metabolism rates r  > 
r *, tumor cells reorganize into clusters that are insensitive to variations in r .
Perhaps most interestingly, it turns out that this self-organization behavior at a 
high cellular metabolism rate leads to improved performance of the entire tumor 
system by way of both accelerating its average velocity and also longer lifetime. 
Although a faster average velocity is to be expected since tumor cells are 
"forced" to migrate as nutrient levels experience a rapid depletion, from a bio-
logical perspective it is intriguing that such aggressive virtual tumor cells actu-
ally survive longer under these rather adverse microenvironmental conditions. 

6.2. Search Precision

 In (7), we vary the search precision parameter,  [0,1], to study the im-
pact of cellular signal sensitivity on the performance of the tumor system. As 
defined in Eq. [9], higher  represents the proportion of time in which tumor 
cells correctly assess the attractiveness of a location. We found that, unexpect-
edly, the maximum average velocity of the tumor systems always occurs at less
than 100% search precision. At the outset, one would expect that a strictly non-
random search procedure (with  = 1) should optimize the average velocity of 
the tumor system. In fact, we found that, although initially it is true that decreas-
ing randomness results in increasing average velocity, there is a threshold level 
beyond which the velocity starts to decline if randomness is reduced further. 
Such a phase transition corresponding to a 70% search precision (i.e., 30% 
chance of committing an error in signal reception or processing) actually ele-
vates average velocity to its maximum, and hence yields optimal performance of 
the tumor. We also experimented with varying both the extent of search preci-
sion  and kprolif, the parameter controlling the probability to proliferate (see Eq. 
[1]). Recall that higher values of kprolif implies lower proliferation rates as it ren-
ders tumor cells less likely to produce offsprings. As expected, spatial velocity 
increases even more at higher values of kprolif due to the dichotomy assumption 
between proliferation and invasion as supported experimentally (11). What is 
not expected is that increasing kprolif is also accompanied by a shift toward higher 
search precision in order to reach maximum velocity; this is an emergent behav-
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ior that was not hard-coded into the algorithm implementation. Nonetheless, it 
was never the case that maximum velocity occurs under a 100% search preci-
sion. As kprolif , proliferation becomes virtually impossible, and the entire tu-
mor simply dies out before it is able to reach the second nutrient source. 

6.3. Structure–Function Relationship

 From previous in-vitro studies, it has been suggested that malignant gliomas 
form an invasive branching structure on their surface (3), most likely with 
higher fractal dimensions than noncancerous tissues, as has been shown also for 
other cancers (51,52). This complex pattern appears to function as a facilitator of 
rapid tissue infiltration into the surrounding brain parenchyma. The precise 
mechanism underlying this "structure–function" relationship, however, remains 
unclear. In vivo, the difficulty is imposed by the limited spatial resolutions of 
current imaging techniques that prohibit the monitoring of the structure–function 
relationship in brain tumor patients over several time points. The contribution of 
(8) is, using an agent-based model, to show that a numerical analysis can satis-
factorily reveal the hypothetical link between the observed structural patterns of 
malignant brain tumors and their functional properties within a multicellular 
framework. We investigated the relationship between the structure of the tumor 
surface, measured by its fracticality df (see Eq. [10]), and the neoplasm's dy-
namic functional performance, measured by the average expansive velocity. As 
expected, the tumor accelerates its spatial expansion when the "rewards" for 
tumor cells following their peers along traversed pathways increase. "Rewards" 
refer to lesser energy expenditure of the succeeding cells and can be thought of 
as being directly related to, for instance, the secretion of tissue-degrading prote-
ases, and hence represent a "molecular" dimension. Yet, surprisingly, such an 
increase in average velocity is also accompanied by a concomitant increase in 
the tumor's surface fracticality, indicating an emerging structure–function rela-
tionship that is not inherently assumed at the cellular level. Interestingly, using 
our model we found no correlations between tumor diameter and its surface 
fracticality; the former increases in an almost monotonic manner, while the latter 
shows a complex nonlinear behavior marked by intermittent peaks and troughs. 

6.4. Molecular Level Dynamics

 Finally, combining this micro–macro platform explicitly with the molecular
modeling level (9), we perform time series of the gene expression of both 
Tenascin and PCNA. At the macroscopic level, Figure 4 shows the progression 
of the tumor system at various time points t. At t = 180, the directed invasion at 
the NE tip of the tumor rim starts to become prominent. Subsequently, t = 308 
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corresponds to the "breakpoint" in the gene expression profile of Tenascin C and 
PCNA. At t = 335, a "bulging" structure at the NE tip starts to emerge, pointing 
toward the peak of the second nutrient source. Finally, the bulge becomes a 
prominent structural feature of the NE quadrant at t = 371, just before the first 
tumor cell successfully invades the peak of the second nutrient source. At the 
molecular level, we found that this emergence of a structural asymmetry in the 
rim of the growing tumor is accompanied by a positive correlation between tu-
mor diameter and the gene expression of Tenascin C, and at the same time a 
negative one between the former and PCNA expression. To determine the domi-
nant phenotype responsible for this micro–macro link, we next examine the gene 
expression profiles separately for proliferating, migrating, and quiescent cells. 
We found that Tenascin C expression is always higher among the migratory 
phenotype than among their proliferating peers, while the converse is true for 
the expression of PCNA, i.e., it is always upregulated among the proliferative 
cells. Intriguingly, detrended fluctuation analysis (DFA) analyses indicate that 
the time series of gene expression of the combined tumor cells (i.e., including all 
phenotypes), the long-range autocorrelation indicates non-random-walk predict-
ability as represented by  = 1.32 for gTenascin and  = 1.06 for gPCNA. How-
ever, when DFA is applied separately to migrating and to proliferating cells, the 
resulting values of  reveal the time-series properties of random walk behavior 
(i.e., with  = 0.5). 

7. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

 The underlying hypothesis of our work is that malignant tumors behave as 
complex dynamic self-organizing and adaptive biosystems. In this chapter, we 
have presented a numerical agent-based model of malignant brain tumor cells in 
which both time and space are discrete yet environmental variables are treated 
realistically as continuous. Simulations of this model allow us to infer the statis-
tical properties of the model and to establish the cause–effect relationships that 
emerge from various interactions among and between the cells and their envi-
ronments. The key findings of our works can be briefly summarized as follows. 
 In (6), we showed the nonlinear dynamical behavior of a virtual tumor sys-
tem in the form of phase transitions and self-organization. The phase transitions 
indicate that if global search is dominant, then lowering r  (i.e., higher mobility) 
can actually result in slower overall velocity of the tumor system, while self-
organization in the form of smaller clusters can contribute to a longer lifetime of 
the tumor system. Subsequently, in (7), we demonstrated that tumor systems can 
achieve maximum velocity at less than 100% search precision. This finding 
challenges the conventional wisdom that an error-free search procedure would 
maximize the velocity of a tumor system dependent on receptor-based mobility. 
In a follow-up paper examining the structure–function relationship, (8) used 
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numerical analysis to examine the link between the tumor surface structural pat-
tern, measured by its fractal dimensions, and the spatiotemporal expansion ve-
locity. In particular, we found a positive correlation between these two 
measures, i.e., higher fracticality of the tumor's surface corresponds to an accel-
erating spatial expansion. Finally, using a truly multiscale model (9), we found 
that biopsy specimens containing all available tumor phenotypes (proliferating, 
migrating, and quiescent cells) are of more predictive value than separate gene-
expression profiling for each distinct phenotype. Our multiscale model also con-
firmed that it is the invasive phenotype and not the proliferative one that drives 
the tumor system's spatial expansion, as indicated by the strong correlations be-
tween the tumor diameter and the gene expression profiles of migrating tumor 
cells.
 Most importantly, several of these simulation results have already been cor-
roborated by experimental and clinical findings: 

 For example, in (6), we showed that at higher rates of nutrient de-
pletion, tumor cells can not only exhibit maximum spatial expan-
sion velocity under specific circumstances, but actually survive 
longer, hence exhibiting a lower apoptosis rate. Interestingly, this 
result is supported by recent findings from (12), which reported for 
migratory brain tumor cells in vitro not only an increase in expres-
sion of genes implicated in cell motility but also, concomitantly, a 
decrease in the expression of apoptosis-related genes. 

 In (7), we reported that introducing a modicum of randomness in 
signal processing can actually improve the performance of the tu-
mor. At the same time, however, we also found that an increasing 
invasive potential appears to require a higher search precision of 
the cells in order to reach maximum velocity. This emergent prop-
erty indicates a more significant role for cell-surface receptor 
mechanisms in the invading cell population of more aggressive 
neoplasms. This concept has been supported by a recent in situ hy-
bridization (FISH) study investigating EGF-R expression in the in-
filtrative zone of a human glioblastoma specimen (53). 

 In yet another clinical study supporting our findings (54), it has 
been revealed that there is no apparent relationship between tumor 
size and survival of the host patient. Indeed, these authors found 
significant statistical correlations between the tumor's volumetric 
surface and survival time, thus substantiating their claim that a bet-
ter measure of the tumor's invasive capability is its surface condi-
tions rather than its entire size. Their results thus corroborated our 
work in (8), which found no significant correlations between tumor 
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diameter and surface roughness. At the same time, our simulations 
indicated that an increase in the tumor's velocity of spatial expan-
sion, <v>, indeed corresponds to an increase in the surface fracti-
cality df.

 In the future, there are several extensions that can be pursued as follow-up 
projects. As genomics data become increasingly available, our micro–macro 
approach should provide a very helpful starting point for investigating the cru-
cial relationship between the molecular level—e.g., gene expression changes—
and the performance of the tumor system on a macroscopic scale. Our current 
version of the model includes two "key" genes only since the precise role of 
other potentially critical genes involved in the gene–protein regulatory network 
remain largely unknown. If such information becomes available in the future, 
our agent-based model can easily be extended to include more genes and pro-
teins involved in subcellular signaling cascades, as we have recently shown for 
the case of EGF-R (55). In addition, since we currently assume a monoclonal 
population of tumor cells, if a more realistic model is desired one will have to 
consider a heterogeneous multiclonal population of tumor cells. In that context 
of pursuing a more biologically accurate model, currently underway is extension 
of our 2D framework into a 3D version, which will be better suited to simulate 
the progression of an in-vivo tumor, and will also have potential clinical applica-
tions related to intraoperative navigation techniques (see this volume, Part IV, 
chapter 8, by Heilbrun). 
 In summary, multiscale agent-based modeling is a powerful tool for inves-
tigating tumors as complex dynamic biosystems. This innovative approach has a 
high potential to lead to paradigm-shifting insights into tumor biology, which in 
turn is a first step toward improving diagnostic tools and therapeutic strategies 
and thus, ultimately, patient outcome. 
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9. NOTE

 1. "Permission" refers to haptotaxis, i.e., enhanced cell movement along a 
solid substrate, which however, is not explicitly modeled here. 
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THE COMPLEXITY OF DYNAMIC 
HOST NETWORKS 

Steve W. Cole 
David E. Geffen School of Medicine, UCLA AIDS Institute, 
the Norman Cousins Center, and UCLA Molecular  
Biology Institute, University of California, Los Angeles 

Mathematical epidemiology has generally modeled host populations as homogeneous 
networks with static linkage structures. However, real hosts react biologically and behav-
iorally to disease in ways that dynamically alter network connectivity. This chapter sum-
marizes results from agent-based modeling of disease-reactive social networks and their 
impact on the propagation of infections. Results show that simple distributed rules about 
"sickness behavior" can interact with nonhomogeneous social networks to destabilize 
propagation kinetics, augment biological immune responses, and favor the evolution of 
biological structures and cultural norms that function as a network-level social immune 
response. 

1. INTRODUCTION

 Disease is generally analyzed as a biological process, but sickness is also an 
experience. This chapter analyzes the impact of that experience on the course of 
epidemics with an eye toward its evolutionary significance. A large research 
literature has sought to understand the "lifestyle strategies" of parasites (1), but 
the hosts they colonize are often conceptualized as vacuous mobile resource 
patches that incubate pathogens and disseminate them randomly throughout 
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society before prematurely expiring. We all have our problems, but this seems a 
bit severe. In reality, most organisms change their behavior during periods of 
illness (2,3). These responses are often analyzed in terms of their benefits for the 
afflicted, but they also have the potential to create a type of "social immune re-
sponse" that protects healthy individuals by altering patterns of interpersonal 
contact. At the aggregate level, these changes amount to transient distortions in 
the structure of social networks. Disease-reactive networks can be induced by a 
centralized authority (e.g., quarantine), but they can also develop as an emergent 
property of simple behavioral rules operating at the individual level (e.g., avoid 
sick people). In fact, vertebrate biology appears to have evolved molecular sig-
naling pathways to generate disease-reactive behavior without any explicit rea-
soning by a host. Diagnosis and treatment also change the functional connec-
tivity of a disease transmission network, as do variations in host resistance or 
pathogen virulence. In homogeneous social networks, individual disease-
reactive behavior aggregates into fairly simple nonlinear feedback at the popula-
tion level. Vertebrate social structures are actually quite heterogeneous, and dy-
namic linkage can produce highly complex behavior in such heavily structured 
systems. The present studies seek to map those dynamics and understand their 
significance for population survival. The findings that emerge suggest that the 
neural substrates of disease-reactive behavior may have evolved in tandem with 
biological immune responses to "strategically" alter host population structures 
under the ecological press of socially transmitted disease. 

2. MODEL

 The results presented here come from a series of epidemics simulated in 
ActiveHost—an agent-based modeling system for analyzing interactions be-
tween biological and behavioral determinants of health. The general architecture 
is summarized in Figure 1, and described in greater detail in the Appendix. 
 The basic modeled unit is an individual host—an "agent" that interacts with 
other agents in some way that can transmit disease. Each agent maintains a list 
of potential interaction partners and realizes those interactions according to 
a specified and potentially variable probability during each time unit. The ag-
gregated set of "source–target" linkages constitutes the disease transmission 
network. Additional linkage networks may also be provided to transmit disease-
blocking interventions, behavioral responses to illness, or changes in social con-
tact patterns. Each host maintains a submodel specifying pathogenetic processes 
on the cellular and molecular level, and this model can delete the host from 
the live population after a specified period of infection. The pathogenesis model 
can include periods of latent infectiousness (host is not recognizably sick but 
can transmit disease), overt illness (visibly sick and transmits disease), disease 
remission/recovery (infectiousness ceases after a period), immunity (loss of  
infectibility), and reactivation (infectiousness resumes after a period of recov- 
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ery). Hosts also have a natural lifespan, and the system includes a framework for 
modeling evolutionary dynamics via age-dependent reproduction and noisy 
transmission of physiologic and behavioral parameters from parent to child. The 
aggregate collection of hosts is aged for a fixed number of time units, and the 
primary outcomes monitored are the host population size, the pattern of realized 
social linkages, and the frequency of various host states (sick, latently infected, 
overtly infected, dead, immune, etc.). 

3. RESULTS

 The present analyses focus on two ways in which real disease transmission 
networks depart from the assumptions underlying conventional epidemiologic 

Figure 1. General architecture of the ActiveHost modeling system. Each simulated epidemic is 
based on a collection of hosts interacting with one another in ways that transmit disease. Agents 
maintain a list of potential contacts that are realized according to probabilistic rules that constitute the 
structure of the disease transmission network. Network dynamics occur as agents modulate contact 
realization probabilities in response to simple, ecologically realistic rules, such as "interact with 
friends more often than strangers," "avoid people who are sick," or "maintain a constant number of 
social contacts." Transmitted pathogens provoke immune responses, replicate, and die with the host 
after a defined period of infection if they cannot spread to a new host. Each simulated object main-
tains a set of relevant parameters (bulleted list items), and the overarching simulation object compiles 
mortality trajectories, population-wide values of evolving parameters, and other outcomes over an 
arbitrary number of stochastic repetitions. 
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network models; (i) nonhomogeneous connectivity, and (ii) dynamic network 
structure. After defining the consequences of each departure in isolation, our 
primary interest focuses on their synergistic effects on host survival and evolu-
tionary dynamics. 

3.1. Nonhomogeneous Host Networks

 Most dynamic models in epidemiology implicitly assume that disease 
spreads within a homogeneous network of randomly linked hosts (4). This ap-
proach fares reasonably well in some cases (e.g., mosquito-borne malaria), but it 
fails to accurately forecast the spread of illnesses that depend on close physical 
contact, such as HIV or hepatitis, or those involving a major behavioral risk 
component, such as malignant melanoma or lung cancer. The AIDS epidemic in 
particular motivated the consideration of more structured social networks in 
which each agent is connected to only a few others (sparse connectivity) and 
individuals are clustered in their pattern of social contact (blocked networks). 
Much attention has focused on "small-world" networks in which a few individu-
als are linked to many others, and "giant components" can develop to virtually 
ensure a transmission path between any two individuals (5,6). Other systems 
analyzed include (a) "tribe" or "subculture blocks," in which small groups of 
individuals are highly interconnected and only sparsely linked to other groups, 
(b) "continuous bands," in which individuals are linked within smooth adjacency 
neighborhoods, and (c) "defector blocks," in which most links are reciprocal but 
a limited number of infidelities connect one member of a pair to another pair. 
Figure 2 presents examples of these structures along with epidemic simulations 
showing their impact on disease propagation. In Figure 2A-2F each point repre-
sents a contact with the potential to transmit disease from a source agent (hori-
zontal axis) to a target agent (vertical axis). All targets are connected to at least 
one source, and each realizes a randomly selected one of its social links per unit 
time. All other epidemiologic parameters remain constant (hosts 1 and 2 are 
initially infected, probability of infection given exposure = 100%, and individu-
als are infectious for 2 time units). The only thing that differs is the number and 
pattern of the potential contacts available for realization. 
 In structured networks such as those depicted in panels 2B–2F, disease dis-
semination rates differ substantially from those seen under the random homoge-
neous mixing (panel 2A). Disease propagates through alternative contact 
structures at very different rates despite the fact that the total number of links 
realized per unit time is equivalent (1 per host in all cases). Thin gray lines rep-
resent 100 realized mortality trajectories for each system, and heavy black lines 
show the average. Trajectories achieving a flat slope before 100% mortality in-
dicate epidemiologic "burnout" (pathogen extinction), whereas those reaching 
100% indicate host extinction. When each host reallocates one potential contact 
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to a stable dyad (2H) rather than a random partner (2G), population survival 
rates increase substantially. However, such effects are not equivalent to reducing 
the total number of potential contacts (2I) because the network retains the capac-
ity for occasionally generating far leaps in disease distribution. Even a small 
number of highly connected individuals can undermine a population's protection 
from disease, as in 2J's small-world network where possible contact numbers for 
each individual follow a power-law distribution between 1 and 5. In contrast, 
organization of social contacts into highly clustered blocks can profoundly re-
tard disease propagation even when total possible links are fivefold greater than 
those of a randomly connected network (10 vs. 2 in 2K vs. 2G). Smooth adja-
cency networks with the same number of links show an intermediate phenotype 
(2L), with disease decelerated relative to a random homogeneous system (2G) 
but still marching inexorably through the population due to the absence of 
clearly delineated subgroups that can bottle up and extinguish the infection. 
Structured networks provide lots of opportunities to halt an epidemic, but how 
quickly or even whether this happens depends critically on small random varia-
tions in realization of a few links between members of different subpopulations 
(e.g., in Figure 2J,K). Because population-wide disease penetrance depends on a 

Figure 2. Social structure and disease propagation. Connectivity structures are plotted for a homo-
geneous randomly linked population (A) and several structured alternatives, including a reciprocal 
binary system with defectors (B), a sparse random network (C), a small-world network of one-to-
many mappings (D), a block structure with random interconnections among blocks (E), and a con-
tinuous adjacency band (F). Points represent contacts with the potential to transmit disease from a 
source (horizontal axis) to a target (vertical axis), and all targets are connected to at least one source. 
Disease propagates through alternative contact structures at very different rates despite the fact that 
the total number of links realized per unit time is equivalent (1 in G–L). In G–L thin lines represent 
realized mortality trajectories for each system, and heavy lines show the average. Trajectories achiev-
ing a flat slope before 100% mortality have burned out (pathogen extinction), whereas those reaching 
100% indicate host extinction. 
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small number of stochastic events, it is difficult to accurately predict the course 
of an epidemic from its early trajectory. Repeated simulations show wildly dif-
ferent kinetics in panels 2H–2L. Under the homogeneous mixing assumption, 
epidemiologic kinetics seem highly predictable (2G), but more realistic network 
structures reveal much greater variability. Often, it is not even possible to pre-
dict whether the host population or the pathogen will perish first (2H, 2J, 
and 2K). 

3.2. Dynamic Network Structures

 In addition to structural heterogeneity, social contact networks also show 
temporal heterogeneity in realized linkages. Two basic processes drive these 
dynamics. First, the development of biological immunity or death removes indi-
viduals from the system of transmitters following a certain period of infectious-
ness. Second, the social interactions that transmit disease are intrinsically 
dynamic in their own right. We each know hundreds of people, but on any given 
day we interact with only a small number of them. The links we do realize are 
clustered in both time and social space because we typically interact with a 
small and stable social core (e.g., family members and immediate coworkers). 
The vast majority of potential links are realized only rarely. This "small-world" 
temporal structure implies a functional decrease in network connectivity per unit 
time, but it is not equivalent to removing low-frequency links because the net-
work retains a capacity for occasional far leaps in disease distribution. Tempo-
rally sparse social contact is modeled by generating a fixed set of possible 
contacts for each individual and realizing a constant number of contacts per unit 
time according to a specified probability model (Figure 3). 
 Temporal link dynamics can profoundly impact the propagation of disease 
even through highly vulnerable social structures such as the small-world net-
work (all links realized in Figure 3A vs. a random 50% in 3B; note differential 
frequency of host population extinction). Compared to a uniform probability of 
realizing any possible contact (3B), increased probability of realizing more 
proximal links results in considerably enhanced survival despite the fact that the 
total number of realized links remains constant (3C). These examples come from 
epidemics initiated by 3 infected individuals in the midst of a 200-host popula-
tion with a small-world contact distribution ranging from 1 to 5 possible con-
tacts per individual (496 total links), and an infectious duration of 1 time unit. In 
Figure 3B, each link is realized with a probability of 50% per unit time for all 
individuals. In Figure 3C the probability of realizing each link is an average of 
50% that varies between 0 and 1 depending on the squared social distance be-
tween source and target. In addition to slowing the mean disease penetrance 
trajectory, sociospatial link heterogeneity also greatly increases variability in 
outcomes. 
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3.2.1.  Disease-Reactive Dynamics

 The effects of intrinsic temporal variability are amplified by illness-induced 
changes to social interaction. One factor that would seem to play a major role is 
a healthy person's conscious avoidance of the sick, either at the behest of health 
authorities or through their own spontaneous social quarantines. However, the 
potential value of this mechanism is undermined by the fact that many patho-
gens are transmissible for days or even years before any signs of illness emerge 
to provoke social withdrawal (e.g., upper respiratory viral infections, HIV, or the 
"infectious" habit of smoking). Most visible symptoms are generated by the im-
mune response, rather than the pathogen, and thus require at least a day or two 
to develop. Quarantines also demand extreme vigilance on the part of a large 
number of hosts if they are to effectively protect a population, or even a specific 
individual. Given the high degree of clustering in social networks, A can infect 
B quite certainly by transmitting disease to their mutual friends C, D, and E, no 
matter how studiously B avoids A. Thus, B's health depends on the simultaneous 
diligence of C, D, and E, and all require some overt sign of disease to trigger 
withdrawal from A. Figure 4 shows the results of epidemiologic simulations in 
which uninfected hosts probabilistically reduce contact with infected individuals 
once signs of illness appear. In this case, hosts are latently infectious for 2 time 
units before becoming overtly infectious for one more time unit before dying. 
 Relative to a constant-contact network (4A), social systems that dynami-
cally withdraw contact from overtly sick individuals (4B) experience consider-
able advantages in population survival even when the vast majority of indi- 

Figure 3. Temporal sparseness. Dynamic social contact is modeled by generating a fixed set of 
possible contacts for each individual and realizing a constant number per unit time according to a 
specified probability model. Reducing the total number of realized contacts from 100% (A) to 50% 
(B) ensures survival of at least some members of the population, even in highly vulnerable popula-
tions such as this small-world network. However, the sociospatial structure of linkage realization 
probabilities also has an important effect as shown in (C), where the total number of contacts realized 
per unit time is eequivalent to (B), but the probability of realizing each link is inversely proportional 
to the distance between individuals in social space. 
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viduals are killed. However, uninfected individuals must detect and avoid those 
who are infectious with an extremely high rate of success to halt an epidemic. 
Figure 4C shows that under the conditions of panels A and B, uninfected indi-
viduals must detect and evade at least 80% of infected individuals to avoid con-
sistent host population extinction. 
 Surprisingly, the network dynamics that most decisively contain disease do 
not stem from the self-protective behavior of the healthy, but from the involun-
tary behavior of the sick. It has recently been discovered that proinflammatory 
cytokines—the signaling molecules that initiate an immune response—also 
prompt the brain to unleash an integrated package of "sickness behaviors" that 
immobilize us with fatigue, malaise, and myalgia, and substantially crimp our 
social and reproductive motivation (2,3). Sickness behavior has generally been 
analyzed in terms of its advantage for individual recovery, but its most signifi-
cant contribution may lie in protection of the group. Even small reductions in 
contact can substantially impede the spread of infection through a sparse net-
work. Figure 5B shows an example in which infected individuals withdraw 
10% of their social contacts at random, resulting in substantial increases in 
population survival relative to a comparable scenario in which the sick do not 
withdraw (5A). 
 Self-generated quarantines are more efficient than socially imposed ones 
because we generally feel sick sooner than we look it, and this allows a faster 
blockade of transmission links. Figure 4D emphasizes this point by comparing 
the effects of a fixed probabilistic reduction in contact generated by the sick 
individual one time unit following infection with the same probabilistic reduc-
tion generated by healthy individuals once they recognize illness at two time 
units post infection (4B). A sick host's self-generated quarantines are also more 
efficient than social quarantines because the motivation for altered behavior 

Figure 4. Social quarantine. To model avoidance of sick individuals by the healthy, uninfected 
individuals reduce the probability of realizing a contact with sick individuals in (B). However, the 
probability reduction must be substantial to protect a population from extinction (C). Social with-
drawal by infected individuals (D) is even more effective in containing an epidemic because they 
often detect illness before signs are apparent to others (e.g., after 1 time unit of infection, vs. 2 in B).
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emerges from a biologically impacted person who tracks (is) the source of infec-
tion, rather than depending upon the simultaneous conscientiousness of many 
potential targets who face an unrealized threat. Interestingly, sick people are 
more likely to defer contact with strangers or low-frequency partners than they 
are to avoid their core social contacts (especially family). From an evolutionary 
perspective, this would seem to set our closest genetic relatives at a competitive 
disadvantage. However, it also prevents large jumps of disease through social 
space, and thus efficiently protects the population as a whole. Figure 5C illus-
trates the comparative advantage of redeploying social contacts away from so-
cially distant partners during times of illness. The same number of links is 
withdrawn in Figures 5B and 5C. The only difference involves making the prob-
ability of withdrawal depend upon social distance in 5C. Distance-dependent 
contact reduction confers major population survival benefits, even when reduc-
tions are limited to very distant interaction partners (shown parametrically in 
Figure 5D). Such results imply there may be considerable selective pressure for 
biological mechanisms that reduce social contact during sickness. All simula-
tions in Figure 5 were conducted in a small-world network of 1000 agents, each 
realizing a single randomly selected contact per unit time from a set of possible 
contacts that vary from 1 to 10 according to a power law. The pathogen is infec-
tious for 1 time unit before a stricken individual feels ill and another 3 time units 
subsequently, and each of the 300 hosts has a resistance of .5 (1 = 100% prob-
ability of infection given exposure). Disease easily penetrates the nonreactive 
small world of Figure 5A to kill an average 94% of the population within 50 
time units. Even a small (10%) reduction in social contact rates by sickened in-
dividuals can increase survival frequencies by about tenfold (5B), and these pro-

Figure 5. Sickness behavior. When sick individuals withdraw from even a small number of social 
contacts (10% in B), mortality rates decline substantially in highly vulnerable population structures 
such as this small-world network (compare to 0% withdrawal in A). If the same number of voluntary 
withdrawals is selectively deployed toward distant contacts (C), population protection is even greater. 
Considerable population survival benefits accrue even if individuals maintain contact with large 
number of individuals in their vicinity (supporting survival of the afflicted) and defer contact only 
with quite distant interaction partners (D).
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tective effects are amplified when sick individuals selectively withdraw contacts 
from their most socially distant partners (5C). 
 All disease-reactive network dynamics fundamentally stem from individual 
biological immune responses (see Part III, section 4, this volume). Inflammatory 
biology generates the illness signs that prompt the healthy to withdraw from the 
sick, the sickness behaviors that prompt the sick to withdraw from the healthy, 
and the leukocyte responses that modulate host resistance. Even when the im-
mune response fails to save the individual from disease (e.g., Ebola virus), it 
may still effectively protect a population by triggering changes in social contact. 
An ironic corollary is that the diseases most disastrous for an individual may be 
the least dangerous to society as a whole because their spectacular visibility in-
duces the most pronounced changes in network structure. A more sobering cor-
ollary suggests that pathogens that acquire the capacity to undermine behavioral 
responses to illness might enjoy a powerful selective advantage. Sickness behav-
ior and the reception of cytokine signals by the brain appear to constitute one 
example in which evolution has encoded a critical emergent property of the en-
tire social network in the molecular biology of the individual. 

3.2.2.  Host Resistance Dynamics

 In addition to changing social behavior, individual physiologic processes 
also influence host resistance to disease. One example of this involves the ef-
fects of physical or psychological stress, which can impair leukocyte function 
and render individuals more vulnerable to infectious diseases (7,8). Reduced 
resistance is tantamount to increasing the number of exposures that can transmit 
full-blown disease, and thus functionally increases the connectivity of a disease-
transmission network in the vicinity of a stressed individual. Dynamic host resis-
tance can be modeled by varying the probability of infection given an exposure, 
as shown in Figure 6. In addition to intra-individual dynamics, between-host 
heterogeneity in resistance can also have significant implications. Figure 6B 
shows that assigning all individuals a constant resistance of .5 (50% probability 
of infection given exposure) produces rapidly bifurcating disease trajectories, 
with either hosts or pathogens quickly going extinct. In Figure 6C individual 
resistance varies randomly between 0 and 100%, with the same mean level 
(50%) as in 6B. This damps the explosive kinetics of 6B, producing fewer popu-
lation extinctions despite the fact that the mean trajectory remains constant. Un-
der these conditions, the addition of illness-reactive link dynamics can be 
especially decisive. If uninfected individuals evade one visibly sick contact per 
unit time, disease penetrance is substantially retarded (Figure 6D). However, 
reducing contact with sick individuals can also have unintended negative effects 
if host resistance depends in part on the number of social contacts realized. So-
cial relationships are major sources of individual sustenance, and host resistance  
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diminishes in people with little social contact (9,10). Any attempt to decrease 
disease exposure by reducing social interaction may thus be offset by increased 
vulnerability to infection. In Figure 6E, healthy individuals withdraw from those 
who are visibly sick just as in 6D, but they suffer a fractional reduction in dis-
ease resistance as a result. This dynamic creates the opportunity for explosive 
acceleration of an epidemic, particularly in clustered populations where much of 
one's social network may fall ill simultaneously. Total contact levels can be 
maintained by redeploying links to new partners, but this increases the real con-
nectivity of the network and is counterproductive when the redeploying agents 
are asymptomatically infected. The reemergence of explosive epidemic dynam-
ics in Figure 6E underscores how seemingly subtle aspects of social behavior 
can have highly amplified impacts on epidemic behavior in the context of dy-
namic host networks. 

3.2.3.  Transmission of Resistance in Multilevel Networks

 In addition to altering social contact with those already ill, host networks 
also respond to disease by developing preventive interventions (e.g., safe sex, 
antibiotics, and vaccines). However, the networks distributing such interventions 
are often structured differently from those distributing disease. For example, the 
socioeconomic network that controls access to antiretroviral medications is quite 
incongruent with the network that currently transmits HIV. Such misalignments 
can be analyzed by superimposing a second "intervention network" upon a 

Figure 6. Dynamic host resistance. Variation in individual disease resistance is modeled by varying 
the probability of infection given exposure. Compared to a population with no resistance (A), a con-
stant resistance of .5 (B) (50% probability of infection given exposure) substantially reduces disease 
propagation. Populations with interindividual variation in resistance enjoy even greater protection 
(C), despite an equivalent population-wide average. In C, resistance is randomly realized on the 
uniform interval 0–1, for a mean .5. Under these conditions, illness-reactive link dynamics can be 
highly decisive as in (D), where uninfected individuals can also evade one visibly sick contact per 
unit time. However, when host resistance depends in part on the number of social contacts realized 
(E), protective effects of reducing exposure can be offset by increased individual vulnerability to 
infection via remaining contacts (who may be infectious but not visibly sick). 
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population of hosts already connected by a dynamic exposure network. More 
realistic variants might include a host-specific proclivity to utilize the interven-
tion, which may depend upon a third "media" network distributing perceived 
vulnerability. Multilevel networks provide a platform for analyzing a variety of 
sociocultural dynamics that may impact physical health, including socially se-
lective stressors, differential access to medical care, culturally motivated avoid-
ance of diagnosis or treatment (e.g., failure to be tested for HIV due to stigma), 
social transmission of health risk behaviors (e.g., smoking), and the globaliza-
tion of personal behavior (e.g., homogenization of health beliefs, social values, 
lifestyle, and behavior, as described by Garrett (12)). Multilevel networks also 
provide a context for analyzing interactions between host behavior and the biol-
ogy of developing disease, such as gene x diet interactions in atherosclerosis or 
the evolution of pathogens and immune responses within behaviorally structured 
niches. Evolving variants of ActiveHost, for example, mimic observed data in 
developing more powerful immune systems for sexually promiscuous individu-
als (11). In the context of disease-reactive social behavior, evolutionary analyses 
also show a strong selective pressure for the development of social norms that 
isolate individuals during times of illness. These norms need to be transmissible 
from parent to child for population-level selection, but they need not be geneti-
cally encoded. In fact, dissemination of such norms via superimposed interven-
tion networks enjoys considerable advantage over genetic transmission due to 
the enhanced speed of norm dispersal. 

3.3. Synergistic Complexity

 Disease-reactive social behavior creates a temporal sparseness to social 
networks that combines with structural sparseness to create transient social fire-
walls at the interface between infected and uninfected subgroups. This has the 
net effect of discretizing continuous disease dynamics. A pathogen that kills all 
members of a subpopulation before they can convey infection to the superpopu-
lation does not suffer a quantitative reduction in penetrance; it becomes extinct. 
Sparse dynamics can cut the other way, of course, with a few random links car-
rying the potential to connect an isolated outbreak to a system-wide giant com-
ponent (the "patient zero" problem (12), as illustrated in Figures 2I–2K). These 
quantal dynamics constitute the primary reason that linear algebraic models per-
form poorly in predicting the course of emerging epidemics. Linear statistical 
models forecast the future range of an epidemic based on its past variation, but 
reactive host networks show increasingly jumpy dynamics as the size of an epi-
demic grows. Figure 7 illustrates the complex kinetics that emerge when highly 
structured networks are combined with disease-reactive linkage. Figure 7A 
shows results from a highly infectious epidemic spreading through a population 
of 300 agents organized into interconnected blocks of 3 (families), with one 
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agent in each block maintaining a potential connection to one member of an 
adjacent block. Figure 7B shows the effects of adding a single additional ran-
dom contact possibility for every 30th individual (10% of the population), which 
substantially accelerates disease penetrance and causes a profound collapse in 
predictability (Figure 7B). When distance-dependent disease-reactive link dy-
namics are superimposed in Figure 7C, mean penetrance returns to basal levels 
but the dynamic regime remains highly unstable. Three attractors emerge includ-
ing (a) explosive depletion of the majority of hosts, (b) a slow steady burn 
through the population, and (c) rapid extinction of the pathogen with predomi-

Figure 7. Complex epidemiologic trajectories in dynamic structured networks. The combined effects of highly 
structured populations and illness-reactive link dynamics is modeled in 100 families of 3 agents, with one mem-
ber of each family also capable to transmitting disease to an adjacent family (A). Family systems are highly 
sensitive to the introduction of a small number of random linkages as in (B), where addition of a single addi-
tional random contact for every 30th individual results in substantial acceleration in mean disease penetrance 
(heavy line) and the collapse of predictability. When distance-dependent disease-reactive network dynamics are 
superimposed (C), mean penetrance rates return to basal levels but the dynamic regime remains highly unstable 
and produces 3 attractor trajectories including explosive growth, a slow steady population burn, and rapid patho-
gen extinction. Note that the mean trajectory does not coincide with any of the regimes actually observed. (D)
"Knife-edge" dynamics emerge in the same system when sick individuals withdraw at random from 50% of their 
potential contacts (instead of selectively avoiding those most distant as in C). Host/pathogen equilibrium is 
virtually impossible to attain under these circumstances and one population or the other rapidly becomes extinct. 
Which one occurs is difficult to predict on the basis of the epidemic's early behavior (E). Linear statistical analy-
ses fail to accurately forecast epidemic trajectories due to highly unsmooth derivatives (dashed lines represent a 
95% prediction interval based on ARIMA 1,1,0 time-series analysis of the first 30 observations). However, these 
"catastrophic" dynamics are neither chaotic nor random, as shown by a strong autoregressive component in the 
phase plot of the number of infected hosts at time t vs. t – 1 (F). Note the absence of classically chaotic (smooth-
curved) or random stochastic (scattered) dynamics. 
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nant host survival. Note that the mean trajectory that is typically modeled does 
not correspond to any of the regimes actually observed. Figure 7D shows "knife-
edge" dynamics emerging in the same system when sick individuals randomly 
withdraw from 50% of their potential contacts (instead of selectively avoiding 
those most socially distant, as in 7C). Host/pathogen equilibrium is virtually 
impossible to attain under these circumstances, and one population or the other 
rapidly becomes extinct. However, given the dynamic instability of the system, 
it is difficult to forecast which population will go extinct first on the basis of the 
epidemic's early behavior. As a result, Figure 7E shows how conventional linear 
statistical analyses fail to accurately forecast observed disease trajectories due to 
their highly unsmooth derivatives (dashed lines represent a 95% prediction in-
terval based on ARIMA 1,1,0 time-series analysis of the first 30 mortality preva-
lence observations). Figure 7F gives a phase space for the epidemic (number of 
infected hosts at time t vs. t – 1), which shows kinetics that are neither classi-
cally chaotic (smooth-curved) or randomly stochastic (scattered), but migrate 
noisily around the autoregressive major diagonal. In all of the models in Figure 
7, contacts are realized at an average rate of 1 per unit time with a probability 
inversely proportional to the square of the social distance (summing to 100% per 
unit time), and infected agents can transmit disease for 1 time unit before the 
appearance of illness and 3 units thereafter. Potential network reactions to dis-
ease (7C–7F) include sick individuals withdrawing contact with partners more 
than 2 units of social space distant (i.e., outside their own block of 3) and 
healthy individuals avoiding overtly sick individuals with a success rate of 50%. 
Hosts begin with a resistance of .2 (probability of infection, given exposure), 
which drops to .05 for those with no social contact in the previous time epoch. 
From a public-health perspective, Figure 7E is the key result, showing that ini-
tially smooth disease trajectories provide a poor basis for predicting the subse-
quent spread of disease in the face of realistic network structures and link 
dynamics. Sparsity-driven discretization drives this unpredictability by generat-
ing frequent opportunities for the bifurcation of disease trajectories, as observed 
in Figures 2H, 2J, 3C, 4D, 5B, 6B, and 6E. Even epidemics that have thoroughly 
"burnt into" a population can suddenly sinter out or explode because they are 
maintained in a perpetual state of knife-edge criticality by reactive network 
dynamics (e.g., Figure 7D). 

3.4. Evolutionary Consequences

 In the context of such highly leveraged systems, weak interventions can 
have powerful effects (13). The strength of an intervention is often analyzed in 
terms of its individual impact, but the key to protecting a network lies in an in-
tervention's breadth and consistency. Perfect protection of an individual has little 
epidemiologic impact if disease can reach the same destination through another 
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path (recall the stringent efficiency requirements for a successful quarantine in 
Figure 4A). On the other hand, even weak individual protection can generate 
strong herd immunity if it is widely distributed (4,14). The preeminent value of 
consistency suggests that there should be strong selective pressure to develop 
heritable genetic structures that reduce social contact during infection, even if 
the individual impact is small. The evolving ActiveHost model of Figure 8 
shows just this phenomenon in a model monitoring the emergence of disease-
reactive behavioral dynamics via neural reception of cytokine signals. In this 
model, a population of 100 individuals, each randomly linked to 5 others, is at-
tacked by a fatal infection that is transmissible for 2 time units prior to the ap-
pearance of illness signs and 18 time units subsequently. The host population 
begins with a inflammatory response of 0 (all exposures result in infection), and 
parents pass on to their progeny their own resistance level modified by a small 
noise factor. Inflammation is linearly related to resistance (50% of exposures are 
resisted when inflammatory response = .5) and inflammation is costly in the 

Figure 8. Evolution of disease-reactive social behavior. In this evolutionary model, hosts reproduce 
and pass a noisy copy of two individual characteristics to their offspring: (i) an inflammatory re-
sponse governing the probability of infection following exposure, and (ii) a sickness behavior pa-
rameter that drives probabilistic social withdrawal by the sick after infection. Inflammation is linearly 
related to resistance (50% of exposures are resisted when inflammatory response = .5), and it is costly 
in the sense that individual lifespan is shortened by its square (.5 inflammation induces a 25% reduc-
tion in average lifespan). The light line shows strong selective pressure for increased inflammatory 
responses that begins to decelerate at ~40% resistance as its cost mounts. The sickness behavior 
parameter (dark line) shows slow initial growth that begins to accelerate as inflammatory responses 
become more pronounced (the log of the mean sickness gain parameter is plotted for comparison with 
the linear inflammatory parameter). Once inflammatory responses begin to reach their cost-induced 
limits, considerable selective advantage begins to accrue to those who reduce social behavior during 
inflammatory reactions. 
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sense that individual lifespan is shortened by the square of its intensity (.5 in-
flammation results in a 25% reduction in average lifespan) (15). Sickness behav-
ior is modeled as a multiplicative link between the magnitude of the inflamma-
tory response and the fractional reduction in social contacts realized during 
inflammation (sickness behavior sensitivity parameter = 1.0 initially for all indi-
viduals, with the parental sensitivity value passed on to progeny with 5% noise, 
as described above for the inflammatory response). Each individual produces 2 
progeny at random times between 13 and 40 years of age and, in the absence of 
infection, dies of natural causes at a normally distributed age with a mean of 40 
and standard deviation of 10. The population mean value of the inflammatory 
response parameter and the sickness behavior sensitivity parameter are averaged 
over 20 simulations of 250 time units (~10 generations). The gray line in Figure 
8 reveals a strong selective pressure for increased inflammatory response that 
begins to decelerate at ~40% resistance as the costs of septic shock, autoimmu-
nity, and infertility begin to offset protection from infectious disease. In contrast, 
the sickness behavior sensitivity parameter (black line) shows slow initial 
growth that subsequently accelerates as inflammatory responses become pro-
nounced (the log of the mean sickness gain parameter is plotted for comparison 
with the linear inflammatory parameter). During the early evolution of the im-
mune system (0–100 time units), there is little selective pressure to link social 
behavior with the more directly effective inflammatory responses. The sickness 
behavior sensitivity parameter multiples the effects of biological inflammation, 
so it fails to evolve much while the basic inflammatory response is weak. How-
ever, once inflammatory responses begin to reach their cost-induced limits (15), 
benefits begin to accrue to those who reduce social contact in response to in-
flammation. Interestingly, in models that suppress the emergence of sickness 
behavior, the biological immune response evolves more rapidly and reaches a 
higher asymptotic equilibrium. This suggests that behavioral immune response 
contributes significantly to total host protection. Such results also imply that we 
may have been spared higher rates of inflammatory disease by the emergence of 
CNS-mediated sickness behavior. This is certainly consistent with the observa-
tion that vertebrate physiology dedicates substantial molecular resources to 
communication between the disease-sensing immune system and the behavior-
controlling nervous system (2,16,17). Similar selective pressures may also have 
shaped mammalian brains to prefer small clustered social systems rather than 
large herds. Neither structural sparsity or disease-reactive linkage slows an epi-
demic much in isolation, but their combination can be decisive. In the model of 
Figure 7, for example, the joint effects of a clustered social structure and dis-
ease-reactive connectivity are equivalent to a 60-fold increase in the strength of 
biological immunity. The sick are unlikely to take much consolation from the 
fact that their immune systems synthesize most of their suffering to protect oth-
ers, but they may find some comfort in considering the more malevolent blood 
they have been spared. 
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4. DISCUSSION AND CONCLUSIONS

 The combined effect of structured social networks and disease-reactive con-
tact dynamics is to force smoothly growing epidemics into unstable kinetic re-
gimes where they can be easily extinguished. Sociospatial sparseness interacts 
with temporal sparseness to generate decisive qualitative boundaries from the 
mass action of individually quantitative behaviors. The emergent social immune 
response need not involve any central coordination, but can easily arise from the 
widespread distribution of comparatively simple rules regarding the behavior of 
sick individuals. The computational simplicity of these rules and their aggre-
gated survival consequences provide considerable pressure for the evolution of 
molecular crosstalk between the nervous and immune systems. Indeed, the pre-
sent analyses suggest that sickness behavior has coevolved in concert with the 
biological immune response to provide a synergistic set of defenses against in-
fectious pathogens. The results of these analyses also suggest that our biological 
immune system might have become considerably more menacing had it not de-
veloped a sociobehavioral ally. 
 The present studies examine "sickness behavior" in the context of agent-
based models, but illness-reactive behavior can also be analyzed in more tradi-
tional algebraic simulations by varying the contact rates that mix susceptible and 
infected individuals (4). Such variations can damp epidemics that would other-
wise oscillate, shift the basal prevalence of disease, or kick stable epidemics into 
truly chaotic behavior, all depending upon the exact specification of the feed-
back function (nonlinear? time-lagged?) and whether or not it affects other pa-
rameters aside from the mixing rate (e.g., whether falling contact rates also 
reduce host resistance). However, agent-based analyses have several advantages 
over algebraic models in forecasting epidemic trajectories, particularly in terms 
of realistic confidence bounds. First, complex real-world social structures are 
more easily encoded in the explicit interaction matrices shown in Figure 2 than 
they are in analytically tractable continuous functions that modulate population-
wide mixing rates. This is especially helpful in assessing the impact of small 
behavior changes generated in reaction to locally available information. Agent-
based models also provide an opportunity to analyze network-mediated distribu-
tion of recursive operators that reshape individual behavior, host–pathogen dy-
namics, or linkage matrices depending on the realized course of an epidemic 
(e.g., dispersing and reconstituting groups). A third advantage is the natural dis-
creteness of agent-based models in regions of spatiotemporal sparseness. As 
noted above, this is key to understanding the epidemic-extinguishing behavior of 
dynamic host networks, and natural discretization reduces the likelihood that 
minor, seemingly ignorable boundary conditions will propagate into large pre-
diction errors. Figure 7D shows a prototypic example—an epidemic simultane-
ously subject to all of the influences considered above, including a complex 
clustered social structure with a small number of intergroup contacts, behavioral 
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reactions to disease by both sick and uninfected individuals, and heterogeneous 
basal host resistance that varies as a function of social contact. The observed 
disease trajectories show knife-edge dynamics, with epidemics burning slowly 
through a population for a variable period of time before either collapsing or 
exploding. These "time-bomb" kinetics are critical to recognize, but they would 
not be apparent from the "expected-value" disease trajectories generated by tra-
ditional algebraic models (e.g., the falsely consoling prediction limits of Figure 
7E). The qualitative significance of variability is also apparent in the contrast 
between Figure 7A and 7C. Mean trajectories are comparable, so conventional 
epidemiologic models would suggest little difference. However, host popula-
tions consistently survive in panel A whereas large segments of society are often 
annihilated in C. The significance of that difference transcends public health to 
reach the level of evolutionary extinction. 
 Throughout their evolutionary histories, vertebrates and their parasites have 
each shaped the other's development (1,14,17,18). The present studies suggest 
that a similar reciprocal dynamic may have occurred in the evolution of the im-
mune and nervous systems. As biochemical crosstalk between these two systems 
becomes increasingly appreciated, one teleologic perspective has emerged to 
suggest the immune system inhibits social behavior to maximize its own claim 
on physiologic resources (3,8). The present analyses support an alternative view 
in which biologically induced sickness behavior generates an emergent social 
immune response that operates in synergy with leukocytes to defend its genome 
at a species-wide level. From this perspective, the jaggedly unpredictable dis-
ease trajectories seen in many of these studies testify to the close fight between 
socially defended hosts and their socially predatory pathogens. Both the immune 
system and the nervous system have evolved under the weight of this pressure, 
and the present results suggest that they are more likely to collaborate than com-
pete in response. 

5. ACKNOWLEDGMENTS

 This work was supported by the National Institutes of Allergy and Infec-
tious Disease (AI49135, AI52737), the James L. Pendelton Charitable Trust, and 
a visiting scholarship from the Santa Fe Institute for Complex Systems. 

6. APPENDIX

 This appendix provides more detail on the implementation of ActiveHost as 
summarized in Figure 1. This agent-based modeling system is composed of four 
basic objects: (a) a SimulationSystem that creates multiple instances of a given 
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epidemic and summarizes the results, (b) an Epidemic object representing the 
realized course of a single epidemic, (c) a Host object that interacts with other 
Hosts as part of a disease transmission network, and (d) a Pathogen object that 
can be transmitted among Hosts and interacts with the Host to modify its health 
status. The basic properties and operations of each object are summarized be-
low: 

Object: SimulationSystem

Properties
 Number of simulations (user input integer) 

Operations
Run Simulation
 For each simulation cycle, create and initialize an Epidemic

object (described below) 
 Collect results on host health status as Epidemic iterates over 

time (described below) 

Plot Results for each simulation (from the Epidemic's Summarize 
Course operation below) and compute summary statistics across 
the ensemble of simulations 
 Mean fraction of Host population uninfected, infected, visibly 

sick, and dead at each timepoint 
 Mean fraction of Host population alive at end of simulation 
 Mean time to Host population extinction 
 Mean time to Pathogen population extinction 
 Peak prevalence of infection over time 
 Median time of peak infection prevalence 

Object: Epidemic

Properties
 Duration of simulation (user input integer time units) 
 Initial number of Hosts infected (user input integer) 
 Realized Host population trajectory (Hosts alive at each time 

unit—product of the Run Epidemic operation below) 
 Realized Host health status trajectory (number and percentage un-

infected, latently infected, visibly infected, and dead at each time 
point—product of the Run Epidemic operation below) 

 Final Host population status (population survives or perishes 
within duration of simulation—product of the Run Epidemic opera-
tion below) 
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Operations
Initialize Epidemic
 Create the designated number of Host objects 
 Allocate potential linkages to each Host according to a user-

specified rule 
 Random (each Host is targeted by N randomly selected 

source agents, where N is a user-specified integer) 
 Reciprocal (all contact links are bidirectional) 
 Small-world (Hosts are randomly assigned varying num-

bers of links according to a power law as described (5,6), 
such that small numbers of Hosts are highly connected 
and most hosts are sparsely connected. User specifies the 
distribution in terms of the total number of links in the 
contact network.) 

 Block (user-specified groups of N Hosts all share recipro-
cal linkage) 

 Block +1 (as above, with one member of each block also 
reciprocally linked to the next adjacent block) 

 Band (each Host is linked to a user-specified N socially 
adjacent Hosts) 

 Superimposed combinations of the options above 
 Allocate infections to a user-specified number of Hosts 
 Allocate all other user-specified Host characteristics (each de-

tailed in Host below) 
 Natural lifespan 
 Reproduction age 
 Contact realization rules 

Host resistance to infection 
Host resistance dynamics rule 

Run Epidemic
 For the number of time units specified by duration of simula-

tion, execute the Age 1 Time Unit operation for each Host (de-
scribed below) 

 Update the realized host population and health status trajecto-
ries after each time 

Summarize Course
 Provide the final trajectory of realized Host population size, 

realized Host health status frequencies, and final Host popula-
tion status 
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Object: Host

Properties
 Social position (integer ranging from 1 to initialized Host popula-

tion size) 
 Current age (increases by 1 with each call of the Age 1 Time Unit

operation below) 
 Health status (currently uninfected, latently infectious, subjectively 

sick and infectious, visibly sick and infectious, recovered, or dead) 
 Host resistance to infection (probability of remaining uninfected 

following contact with an infected source Host; parameter values 
range from 0% to 100% and may be modified by the dynamic host 
resistance rule below) 

 Dynamic host resistance rule 
Host resistance remains constant at its initialized value, or 

 Drops by a user-specified factor when no contacts are realized 
at time t – 1 

 Potential contact list 
 Sources of contact (list of Hosts that can transmit disease to 

this Host)
 Targets of contact (list of Hosts that can be infected by this 

Host)
 Contact realization rules (combinations of the following): 

 Constant per unit time (realize user-specified N contacts per 
unit time) 

 Social quarantine (user-specified probability that an unin-
fected Host will avoid contact with a visibly infected source 
Host)
 Withdraw contact from all "visibly infectious" source 

Hosts, or 
 Withdraw contact according to a constant user-supplied 

probability (e.g., avoid contact with a visibly infectious 
Host with 80% success) 

 Sickness behavior (user-specified option for infected Hosts to 
withdraw from social contact once they become subjectively 
sick) 
 Withdraw all contacts with other Hosts
 Withdraw contact according to a constant user-supplied 

probability (e.g., avoid contact with probability .80) 
 Withdraw contact with a probability proportional to this 

Host's social distance from the target (contact avoidance 
probability is a linear or quadratic function of |source so-
cial position – target social position|) 
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 Maintain constant contact 
 If social quarantine rules prevent contact with an infected 

source Host, this user-specified option forces the target 
Host to seek another source Host for interaction. 

 Reproductive ages (user-specified number of parturitions at integer 
Host ages randomly selected from a uniform distribution with 
user-specified minimum and maximum. Call the Reproduce opera-
tion below when current age = one of the reproductive ages) 

 Inflammatory response 
Factor modifying initialized host resistance parameter such that 
realized resistance = CDF1

Normal[Inverse CDF2

Normal(initialized resis-
tance) + Inverse CDF2

Normal(inflammatory factor)], with inflamma-
tory factor being a Host-specific constant that is either initialized 
at a user-specified constant or transmitted with noise from the 
parent as described below in Reproduce

 Costly in that natural lifespan decreases the square root of the 
inflammatory response parameter, such that realized natural 
lifespan = initialized natural lifespan  (1/inflammatory re-
sponse factor squared) 

 Sickness behavior sensitivity parameter 
 Factor modifying the initialized sickness behavior sensitivity 

parameter such that the realized probability of avoiding social 
contact when sick = initialized contact probability rule result ∗
sickness behavior sensitivity parameter ∗ inflammatory factor, 
with sickness behavior sensitivity being a Host-specific con-
stant that is transmitted with noise from the parental Host as 
described below in Reproduce

 Natural lifespan (health status becomes dead when age >= this 
value; initialized for each Host as a random integer from a normal 
distribution with user-specified mean and standard deviation, and 
potentially modified by the inflammatory response parameter 
above)

Operations
Age 1 Time Unit
 If health status of this Host is not dead, then 

 Increase current age by 1 
 Update Host resistance based on number of contacts real-

ized at time t – 1 
 Survey this Host's resident Pathogen objects' Progress 

Disease operator to update Host's current health status 
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 Realize contacts at time t according to the current contact 
realization rule (including effects of Social quarantine and 
Sickness behavior) 

 Scan realized contacts for infectious status, and for each, 
become infected with its Pathogen object with probabil-
ity = (1-host resistance) 

 Reproduce if current age  {reproduction ages} 

Reproduce
 Clone the current Host and initialize is properties: 

 Current age = 0 
 Health status = uninfected 
 Initialize lifespan, reproduction ages, potential contact 

list, contact realization rules, inflammatory response, host 
resistance, and dynamic host resistance rules as for parent 

 If the user elects noisy reproduction, initialize: 
 Progeny inflammatory response = CDF1

Normal[Inverse 
CDF2

Normal(parental inflammatory response value) + a 
random deviate from a normal distribution with mean 
= 0 and standard deviation = user-specified noise fac-
tor] 

 Progeny sickness behavior sensitivity = CDFNormal [In-
verse CDFNormal (parental sickness behavior sensitivity 
value) + a random deviate from a normal distribution 
with mean = 0 and standard deviation = user-
specified noise factor] 

 Add progeny to the Host population 

Object: Pathogen

Properties 
 Infectious potential (user-specified probability of achieving infec-

tion given exposure, 0–100%) 
 Pathogenic status (replicating or latent, based on duration of time 

since initial infection) 
 Growth rate (user-specified multiplicative growth factor per unit 

time) 
 Duration of latent infectiousness (user-specified integer number of 

time units in which Pathogen is infectious without causing visible 
sickness) 

 Duration of visible sickness (user-specified integer number of time 
units in which Pathogen is infectious and causes visible sickness) 
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 Fatal vs. recoverable infection (user-specified option: does infected 
Host die after infectious period?) 

 Duration of latency (user-specified option: Can an infected Host
cease being infectious after initial infectious period but resume be-
ing infectious at some later time point? If so, "reactivation from la-
tency" is realized as a random integer from a uniform probability 
distribution with a user-supplied minimum and maximum value) 

 Operations
Replicate
 Expand the Pathogen population in this Host by a factor = 

user-assigned growth rate / current host resistance 
Progress Disease
 With each execution of the Host's Age 1 Time Unit operation, 

update the Pathogenic status by comparing duration of time 
since infection with initialized values of (a) duration of latent 
infectiousness, (b) duration of visible sickness, (c) duration of 
latency, and (d) fatal vs. recoverable infection. 

7. NOTES

 1."CDFNormal" denotes the Normal (mean = 0, SD = 1) cumulative distribu-
tion function mapping a real value from –  to +  into the probability range 0–1. 
 2."Inverse CDFNormal" denotes inversion of the CDFNormal function to map a 
probability between 0 and 1 into a Standard Normal Deviate (mean = 0, SD = 1) 
value ranging from –  to +
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7.2

PHYSIOLOGIC FAILURE: MULTIPLE ORGAN 
DYSFUNCTION SYNDROME 

Timothy G. Buchman 

Edison Professor of Surgery, Washington University School of Medicine, 
St. Louis, Missouri 

Functional integrity of complex organisms (including man) requires physiological adap-
tation to ordinary and extraordinary stress. When stress exceeds adaptive capacity, one or 
more physiologic systems "fails"; without intervention, the organism dies. Clinical medi-
cine offers system-specific supports that have proven necessary but often insufficient to 
promote recovery of function despite anatomic integrity and relief from the inciting 
stress. Either the underlying relationships of the physiological adaptive systems have 
been substantially altered or the depth of the basin of attraction described as multiple or-
gan dysfunction is sufficiently deep to make escape improbable using current organ sup-
port strategies. Experimental alternative organ system support strategies that emulate 
healthy biological variability have accelerated recovery of dysfunctional organ systems. 

1. INTRODUCTION

 Humans, like other life forms, can be viewed as thermodynamically open 
systems that continuously consume energy to maintain stability in the internal 
milieu in the face of ongoing environmental stress. In contrast to simple unicel-
lular life forms such as bacteria, higher life forms must maintain stability not 
only in individual cells but also for the organism as a whole. To this end, a col-
lection of physiologic systems evolved to process foodstuffs; to acquire oxygen 
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and dispose of gaseous waste; to eliminate excess fluid and soluble toxins; and 
to perform other tasks. These systems—labeled respiratory, circulatory, diges-
tive, neurological, and so on—share several features. 

 Physiological systems are spatially distributed. Food has to get from 
mouth to anus. Urine is made in the kidneys but has to exit the urethra. 
Blood may be pumped by the heart but has to reach the great toe. 

 Physiologic systems are generally space-filling and structurally fractal. 
Each cell has demand for nutrients; each cell excretes waste. Information 
has to travel from the brain throughout the body. While not every physiol-
ogic system is self-similar at all levels of granularity, there is typically a 
nested architecture that facilitates function: microvillus to villus to intesti-
nal mucosa; alveolus to alveolar unit to bronchial segment; capillary to ar-
teriole to artery. 

 Physiologic systems are functionally integrated. After eating, blood is re-
distributed to the gut and splanchnic circulation. When alveoli become 
atelectatic, blood is shunted away from these hypoxic regions. Ingestion 
and delivery of excess fluid to the circulation is quickly followed by aug-
mented production of urine. 

 Physiologic systems have characteristically variable time signatures that 
lose their variability in aging and disease (1). Instantaneous cardiac and 
respiratory rates vary from one event (heart beat or breath) to the next. 
Many hormones exhibit not only diurnal variation, but also a superim-
posed pattern or irregular pulses. The product of physiologic systems—
such as gait, which combines neural, musculoskeletal, cardiac, and respi-
ratory systems into a semivoluntary activity (one usually does not think 
about putting one foot in front of the next)—display characteristically 
variable time signatures.

 The first three features of physiologic systems have medical consequences. 
Both aging and illness can compromise one or more physiologic systems. Man-
agement of such compromise was, until about fifty years ago, directed exclu-
sively toward minimizing the performance demand placed on the system. For 
example, in advancing pulmonary insufficiency, patients were progressively 
confined to home, to chair, and finally to bed. Each organ system had a critical 
level of compromise, and once the compromise exceeded the critical level, the 
patient simply died. 
 Two major advances in the last half-century have changed the clinical tra-
jectory. The first major advance was the development of mechanical supports 
for failing mechanical systems. Ventilators (respirators), ventricular assist de-
vices, and renal replacement therapies (dialysis machines) have come into wide-
spread clinical use. These supports have evolved to the point where individual 
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system failures can be managed by outpatient use of these devices: many pa-
tients thus gain years of useful life. The second advance was the development of 
organ transplantation. Beginning with blood components (transfusion is a type 
of transplantation) and progressing to kidney, heart, lung, pancreas, and intes-
tine, component replacement is increasingly frequent and relatively safe. Both 
advances—mechanical support and tissue transplantation—compromise immune 
system function, but this compromise is usually a good trade for survival. 
 It is hardly surprising that organ dysfunction and failures accumulate. Like 
an aging automobile with worn bearings, cracked hoses, and leaky engine 
valves, many humans eventually acquire an illness to which they cannot suc-
cessfully respond even with medical care—a bleed into the brain, a metastatic 
cancer, or a high-speed motor vehicle crash. They die with multiple organs fail-
ing to perform their appropriate function. The subject of this chapter, however, 
is a syndrome of widespread, progressive, and disproportionate multiple organ 
dysfunction (MODS) that rapidly accumulates following a minor or modest in-
sult (2,3). Despite timely and appropriate reversal of the inciting insult—
whether a pneumonia, intraabdominal abscess, pancreatitis, or simply the stress 
of an anesthetic and elective surgery—many patients develop the syndrome. 
Mortality is proportional to the number and depth of system dysfunction (4), 
and the mortality of MODS after, for example, repair of ruptured abdominal 
aortic aneurysm, is little changed despite three decades of medical progress 
(2,5). Unfortunately, MODS remains the leading cause of death in most inten-
sive care units. 

2. PREVIOUS WORK

2.1. MODS: The Phenotype

 Autopsy findings in patients who succumb to MODS are surprisingly bland. 
Tissue architecture is preserved, cells do not appear abnormal, and there is no 
widespread thrombosis. At least anatomically, the body appears to be largely 
intact. (The exception is lymphatic tissues, which are often exhausted through 
accelerated programmed cell death [apoptosis] (6).) Nor does organ function 
appear to be irretrievably lost: among MODS survivors, many—especially 
younger survivors—experience return of multiple organ performance to levels 
approaching that which they enjoyed prior to the syndrome (7). These two ob-
servations—anatomic integrity and the potential for near-complete recovery—
led to replacement of the old descriptor ("multiple organ failure") with the cur-
rent and more apt label of "multiple organ dysfunction syndrome." Using the 
jargon of information technology, the focus shifted from the hardware to the 
software (8). 
 Bearing in mind that MODS is only three decades old (multiple organ sup-
ports had to be developed and used in enough patients before it could be ob-
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served that the patients were dying despite the treatments), its phenotype has 
changed somewhat as physicians have tried to preempt its occurrence and pro-
gression. In its original—and perhaps purest—form, organ dysfunctions would 
accumulate in a more or less predictable sequence (2,3). The lungs would fail 
first, and the patient would require intubation and mechanical ventilation. A few 
days later, evidence of gut and liver failure would appear—patients would fail to 
absorb nutrients and fail to manufacture critical proteins such as clotting factors. 
Artificial nutrition and transfusion medicine were therefore administered. A few 
days after that, kidney failure would become apparent and the patient would 
require dialysis. Not only was the dysfunction sequential, but this particular se-
quence precisely mirrored the sequence in which organs matured in fetal life—
kidneys first, then the liver/gut, and last, the lungs. For this reason, multiple or-
gan failure began to be recast as organ systems "falling off line," each function-
ally separating from the whole. For this reason, physicians initiate organ-specific 
support earlier and earlier—at the first sign of dysfunction. This strategy of early 
intervention has muddied the failure sequence, unfortunately with little effect on 
outcome: four-organ failure is still quite lethal. 

2.2. Physiologic Stability

 How do organisms maintain function in the face of external stress? There 
appear to be two general ways (9). One relies on purpose-specific mechanisms 
that have arisen and been refined in the course of evolution. At the resolution of 
the individual cell, the "stress response"—originally called the "heat shock re-
sponse" because it was observed in polytene chromosomes of Drosophila cells 
exposed to high temperatures—activates specific transcription factors, modu-
lates RNA splicing, and applies selection filters to translation. The phenotype of 
this stress response is marked alteration in protein synthesis while the cell be-
comes (temporarily) refractory to additional external stimuli. At the resolution 
of the intact organism, circulating blood sugar levels are maintained by the se-
cretion of insulin and of glucagon, which sequester and mobilize (respectively) 
carbohydrates. Such engineered mechanisms have been identified at all levels of 
granularity, and their product was termed "homeostasis" by Walter B. Cannon 
early in the twentieth century. A central dogma of medical care as articulated by 
Cannon instructs the physician to render "external aid" when homeostatic 
mechanisms are overwhelmed by disease. This has been translated by the medi-
cal community into the "fix-the-number" imperative: if the bicarbonate level is 
low, give bicarbonate; if the urine output is low, administer a diuretic; if the 
bleeding patient has a sinking blood pressure, make the blood pressure normal. 
Unfortunately, such interventions are commonly ineffective and even harmful 
(10,11). For example, sepsis—a common predecessor of MODS—is often ac-
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companied by hypocalcemia. In controlled experimental conditions, administer-
ing calcium to normalize the laboratory value increases mortality (12). 
 The other fount of stability is network structure. At the same time that Can-
non described homeostasis, Lawrence J. Henderson—a colleague of Cannon's at 
Harvard—studied the physiology of blood with an emphasis on its capacity to 
buffer changes in pH brought about by addition of fixed acids or carbon dioxide 
(13). Henderson recognized and provided a mathematical foundation for this 
buffer system, which even today is known eponymously as the Henderson-
Hasselbach equation. He observed that the mere presence of a system of inter-
acting components conferred stability. Chauvet has provided a framework for 
the study of formal biological systems and has reached two important conclu-
sions. First, such stability is not unique to blood or other buffers but rather is an 
expected consequence of interactions among biological elements. Second, nest-
ing such systems—this may be thought of as organelles into cells, cells into tis-
sues, tissues into organs, and so on—confers further stability onto formal 
biological systems (14). 
 Biological stability must not be confused with invariance—survival of or-
ganisms from bacteria to man requires adaptive capacity. Purpose-specific ho-
meostatic mechanisms typically include engineering features such as negative 
feedback that provide such adaptive responses. Self-aggregating networks are 
another matter: once a fitness maximum (or energy minimum) is reached, simu-
lations of such networks often assume a trivial and biologically useless trajec-
tory in state space, such as occupying a single point or endlessly traversing a 
few points. How might the characteristic variability and long-range correlations 
of biological signals (for example, heart rate variability; see this volume, Part 
III, chapters 3.3 (by Glass) and 7.3 (by Lipsitz) for additional information) 
arise? 

3. MODEL

3.1. Coupling and Uncoupling

 Several years ago, we suggested that the networks of organ systems that 
collectively constitute macrophysiology are not only coupled, but also that the 
couplings are intrinsically unstable (15). Subsequently, Schaefer and colleagues 
presented data in support of this conjecture: analysis of the interaction between 
cardiac and respiratory cycles in healthy athletes at rest suggested that the cou-
pling between heart and lungs was not fixed but rather dynamic (16). These ath-
letes' organs would couple (for example, 5 heartbeats for 2 respirations), then 
uncouple, then recouple at the same or a different ratio (for example, 6 heart-
beats for every 2 respiratory cycles). The inference is that health may be associ-
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ated with a search through the space of possible interactions to find the one best 
suited to current physiologic challenges. 
 Experimental manipulation of the connections suggests that physiologic 
optima do indeed exist. Hayano and colleagues experimentally interrogated the 
relationship among cardiac cycles, respiratory cycles, and the vagally mediated 
respiratory sinus arrhythmia that reflects central respiratory drive and the lung 
inflation reflex in dogs (17). These investigators electrically paced the dia-
phragm, applied electrical stimuli to the vagus nerve to simulate normal, absent, 
or inverse respiratory sinus arrhythmia, and measured the matching of lung ven-
tilation with perfusion, which is critical to healthy physiology. The data showed 
that normal respiratory sinus arrhythmia (i.e., physiologic coupling of respira-
tory and cardiac cycles) minimized wasted ventilation (dead space) and perfu-
sion (shunt fraction), whereas the inverse arrhythmia was physiologically much 
less efficient. These investigators suggest that respiratory sinus arrhythmia is an 
intrinsic resting function of the cardiopulmonary system that provides a continu-
ous fitness maximum for the coupled heart–lung system (18). 

3.2. MODS: Uncoupled Oscillators?

 MODS is not a disease but rather a syndrome, a common pathway that is all 
too often final. Yet some patients do recover. Two features of recovery are in-
variant. First, the time to recover is significantly longer than the time to become 
ill. Second, measured physiologic parameters do not retrace their paths, imply-
ing hysteresis in the clinical trajectory. These features led to speculation that 
MODS did not follow a specific event, but rather reflected a more general phe-
nomenon of network failure at multiple levels of granularity. What kind of net-
works might fail at the level of organ physiology? We observed that most organs 
had characteristic varying time signals, and further speculated that network fail-
ure might represent failure of the uncoupling/recoupling process of these bio-
logical oscillators (19). Several lines of evidence support such a conjecture. 

4. RESULTS

 First, it is possible to directly estimate coupling among select physiologic 
systems from common continuous clinical measurements such as heart rate and 
blood pressure. Goldstein's studies of critically ill children as diverse as those 
with sepsis (20) and with severe head injury (21) suggest loss of heart rate/blood 
pressure coupling as patients deteriorate, and recovery of transfer function as the 
patients themselves recover. Second, Pincus' conjecture—that loss of variability 
implies greater system isolation (uncoupling) between systems that contain sto-
chastic components—allows for additional inferences based on heart rate infor-
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mation alone (22). Godin and colleagues demonstrated precisely such loss of 
variability in humans experimentally exposed to bacterial endotoxin, a common 
predecessor of MODS (23). Seiver and Szaflarski (24) reported a startling loss 
of physiologic variability with the appearance of monotonous sinusoidal varia-
tion in cardiac output among critically ill humans. Winchell and Hoyt have 
shown that loss of heart rate variability in critically ill patients is a predictor of 
death (25). 

5. IMPLICATIONS FOR TREATMENT

 If MODS is the clinical expression of network recoupling failure, then ther-
apy might logically be directed toward facilitating that recoupling. Paradoxi-
cally, severe illness prompts physicians to suppress biologic variation in many 
organ systems. For example, ventilators are set to fire at fixed intervals, cate-
cholamines are infused at fixed rates, fixed composition nutrition is adminis-
tered without interruption, venovenous hemofiltration is conducted at a fixed 
rate around the clock, and so on. Such rigidity invites perceptions of therapeutic 
success: "the patient in bed 21 is now stable as a rock." Perhaps the more impor-
tant question is whether such therapeutic rigidity promotes or suppresses clinical 
recovery. 
 Although no trials have been performed on patients with MODS, reports 
have begun to appear in which normal physiologic variability has been syntheti-
cally applied to the function of mechanical ventilators. Gas exchange and respi-
ratory mechanics are improved by biologically variable ventilation not only 
in models of lung injury but also in healthy lungs (26,27). More to the 
point, a group of patients at risk for MODS—those undergoing surgical repair of 
abdominal aortic aneurysm—also enjoyed better lung function when the ventila-
tion algorithm included simulated biological variation (28). Part of the im-
provement may reflect enhancement of the respiratory sinus arrhythmia (30). 
 During cardiac surgery, the perfusion of the body is supported by the 
"heart–lung" machine. This perfusion, called cardiopulmonary bypass, can be 
continuous, pulsatile at fixed sinusoidal frequency, or aperiodically pulsatile. 
Mutch and colleagues have demonstrated improved brain blood flow character-
istics with the aperiodic (biologically variable) algorithm versus the conven-
tional clinical techniques of constant or periodic flow (29). Suboptimal brain 
blood flow is clinically associated with cognitive impairment, a manifestation of 
central nervous system "organ failure." 
 While none of these data directly address MODS, they raise the disquieting 
possibility that conventional therapeutic rigidity that applies fixed or strictly 
periodic inputs to the network of dysfunctional biological systems may actually 
hinder recovery. The need for trials comparing monotonous versus biologically 
variable algorithms applied to existing therapies is evident. 



638 T. G. BUCHMAN 

6. SUMMARY AND PERSPECTIVE

 The list of diseases that are associated with breakdown of network interac-
tions and appearance of highly periodic dynamics continues to grow: epilepsy, 
fetal distress, sudden cardiac death, Parkinson's disease, and obstructive sleep 
apnea are among recent additions. Herein, we have suggested that breakdown of 
network interactions may actually cause disease, and when this breakdown is 
widespread the clinical manifestation is multiple organ dysfunction syndrome. If 
this hypothesis is correct, then network dysfunction might be expected at multi-
ple levels of granularity, from organ systems to intracellular signal molecules. 
Restoration of network integrity may be a reasonable therapeutic goal, and a 
more permissive approach to clinical support (including algorithms that simulate 
biological variability) might facilitate restoration of network complexity, which 
now appears essential to health. 
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7.3

AGING AS A PROCESS OF 
COMPLEXITY LOSS 
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Healthy physiologic function requires the integration of complex networks of control sys-
tems and feedback loops that operate on multiple scales in space and time. When meas-
ured continuously, the output of physiologic systems is highly complex, resulting in 
dynamic behavior that can be described using techniques derived from fractal analysis. 
These fractal-like physiologic processes enable an organism to adapt to the exigencies of 
everyday life. During normal human aging the degeneration of various tissues and or-
gans, and the interruption of communication pathways between them, results in a loss of 
complexity of physiologic systems and, consequently, a reduced capacity to adapt to 
stress. Therefore, relatively minor perturbations such as new medications, a viral illness, 
or emotional trauma may result in serious disability and death. Fortunately, a number of 
novel interventions may be able to restore healthy dynamics in elderly individuals and 
enhance their ability to adapt to a variety of external stimuli. 

1. INTRODUCTION

 Classical research in the field of aging has been largely reductionistic, de-
fining the process of aging as a linear decline in many organs and physiol-
ogic systems until functional disability results (Figure 1) (1). However, aging 
is a nonlinear, multidimensional process that is associated not only with 
changes in individual systems but, probably more importantly, alterations in the 
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connections and interactions between system components. The complex mecha-
nisms by which these components interact to enable an organism to perform a 
variety of functions necessary for survival is the subject of physiology. 
 Healthy physiologic processes require the integration of complex networks 
of control systems and feedback loops that operate on multiple scales in space 
and time (2). For example, physiologic systems exist at molecular, subcellular, 
cellular, organ, and systemic levels of organization. Continuous interplay be-
tween the electrical, chemical, and mechanical components of these systems 
ensures that information is constantly exchanged, even as the organism rests. 
These dynamic processes give rise to a highly adaptive, resilient organism that is 
prepared to respond to internal and external perturbations. 
 Recognition of the dynamic nature of regulatory processes challenges the 
concept of homeostasis, which is taught by physiologists as a function of all 
healthy cells, tissues, and organs to maintain static or steady-state conditions in 
their internal environment (3). However, with the introduction of techniques that 
can acquire continuous data from physiologic processes such as heart rate, blood 
pressure, nerve activity, or hormonal secretion, it has become apparent that these 
systems are in constant flux, even under so-called steady-state conditions. Dr. 
Eugene Yates introduced the term homeodynamics to convey the fact that the 
high level of bodily control required to survive depends on a dynamic interplay 
of multiple regulatory mechanisms rather than constancy in the internal envi-
ronment (4). 

Figure 1. Age-related decrements in physiologic performance from Shock et al., the Baltimore 
Longitudinal Study on Aging (1). Classical research in aging examined the mean values of 
various physiologic functions in different age groups or over time, thus failing to recognize the 
complex dynamics of these processes. 
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 Although it is often difficult to separate the effects of aging from those of 
disease and such lifestyle changes as reduced physical activity, healthy aging in 
the absence of such confounding factors appears to have a profound impact on 
physiologic processes. Because of the progressive age-related degeneration of 
various tissues and organs, and the interruption of communication pathways 
between them, complex physiologic networks break down, become discon-
nected, and lose some of their capacity to adapt to stress. 
 There is considerable redundancy in many of the biologic and physiologic 
systems in higher organisms; for example, humans have far more muscle mass, 
neuronal circuitry, renal nephrons, and hormonal stores than they need to sur-
vive. This creates a physiologic reserve that allows most individuals to compen-
sate effectively for age-related changes. Because the network structure of 
physiologic systems also enables alternate pathways to be used to achieve the 
same functions, physiologic changes that result from aging alone usually do not 
have much impact on everyday life. However, these changes may become mani-
fest at times of increased demand, when the body is subjected to high levels of 
physiologic stress. For this reason, elderly individuals are particularly vulnerable 
to adverse events such as falls, confusion, and incontinence when exposed to 
environmental, pharmacologic, or emotional stresses. 

2. MEASURES OF COMPLEXITY LOSS

 With the development of monitoring devices that can measure the output of 
regulatory processes on a moment-to-moment basis, it has become apparent that 
the dynamics of many systems lose complexity with advancing age (5). The 
continuous heart rate time series of a healthy young subject and healthy elderly 
subject shown in Figure 2 provides a good example. The average heart rate over 
the 8-minute period of recording is 64.7 beats per minute in the young subject 
and 64.5 in the older subject—nearly identical. Furthermore, the standard devia-
tion of the heart rate is also nearly identical: 3.9 in the young subject and 3.8 in 
the elderly subject. However, it is apparent that the dynamics of the heart rate 
time series are strikingly different. Until recently, scientists have lacked the 
tools to describe these dynamics. However, new advances in the fields of 
nonlinear dynamics, chaos theory, and complex systems (see Part II, chapters 1 
(by Shalizi) and 2 (by Socolar) this volume) have provided new ways to quan-
tify the aging process and understand its mechanisms. One particularly useful 
concept that can be used to quantify the complexity of various anatomic struc-
tures or physiologic processes is the concept of fractals. 
 The definition of a fractal, first described by Mandelbrot (6), is a geometric 
object with "self-similarly" over multiple measurement scales. For example, 
many anatomic structures demonstrate self-similarity in their structures and have 
fractal properties. The branches upon branches upon branches of bronchi in the 
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respiratory tree (7) or smaller and smaller vessels in the circulatory system (8) 
look similar whether they are measured in microns, millimeters, centimeters, or 
meters. In fact, the smaller the measuring device, the larger the length of a frac-
tal object. This property is known as "power-law scaling" because a smaller 
measuring device leads to an exponential (i.e., "the power") increase in the 
length of a fractal object. The output of dynamic physiologic processes such as 
heart rate, measured over time rather than space, also have fractal properties (9). 
Their oscillations appear self-similar when observed over seconds, minutes, 
hours, or days. Furthermore, they demonstrate power-law scaling in the sense 
that with a smaller frequency of oscillation of these signals their amplitude in-
creases exponentially. 

Figure 2. Continuous heart rate time series over 8 minutes for a healthy young subject (top 
graph) and a healthy elderly subject (bottom graph). Note the similar average heart rate and 
standard deviation of heart rate, but different dynamics as quantified by Approximate Entropy. 
Reprinted with permission from (5). 
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 The heart-rate time series demonstrates complex irregularity that has been 
described as a fractal process because it looks similar whether it is plotted over 
days, hours, or minutes. In fact, the heart rate time series has "1/f" or power-law 
scaling, in that the amplitude of oscillations (A) is proportional to the inverse of 
oscillation frequency, according to the formula A  1/f . The exponent  can be 
derived from the slope of the log–log transformation of the Fourier power spec-
trum. A fractal process (most complex) has a slope of 1 (i.e., amplitude is in-
versely proportional to frequency over a wide range of frequencies, indicating 
the presence of long-range correlations (self-similarity) in the data). A loss of 
complexity occurs as the slope approaches 0 (white noise; i.e., there is no rela-
tion between amplitude and frequency) or 2 (Brownian noise; i.e., the relation 
between amplitude and frequency occurs only over a short range, then rapids 
falls off, indicating a loss of long-range correlations). 
 Unfortunately, computation of the power spectrum using Fourier analysis 
requires stationary data, which most physiologic signals are not. Another par-
ticularly useful technique that minimizes the effect of nonstationarities in the 
data is "detrended fluctuation analysis" (DFA), which has been well validated in 
a number of dynamic systems (10). The DFA algorithm is a two-point correla-
tion method that computes the slope of the line relating the amplitude of fluctua-
tions to the scale of measurement, after detrending the data. The root-mean-
square fluctuation of the integrated and detrended data are measured in observa-
tion windows of different size and then plotted against the size of the window on 
a log–log scale. The slope of the regression line that relates log-fluctuation to 
log-window size quantifies the complexity of the data (1 = fractal, 0.5 = random, 
1.5 = random-walk). 
 Other indicators of complexity loss in physiologic systems include an in-
crease in periodicity (e.g., the tremor of Parkinson's disease), increased random-
ness (e.g., atrial fibrillation of the heart), and loss of long-range correlations 
(e.g., stride-length changes during gait). 
  It is important to recognize that complexity and variability are not the same. 
For example, a high-amplitude sine wave signal is quite variable, but not at all 
complex. Alternatively, an irregular low-amplitude signal such as the heart rate 
of a healthy young subject shown in Figure 2, can be quite complex but much 
less variable. Similarly, irregularity and complexity are not the same. Traditional 
entropy-based algorithms such as Approximate Entropy (11), used to quantify 
the regularity of a time series, indicate greater irregularity (which has been in-
terpreted as greater complexity) for certain uncorrelated random signals associ-
ated with pathologic processes. However, as highlighted by the recent work 
of Costa et al. (12), these algorithms fail to account for the multiple time 
scales over which healthy physiologic processes operate. By calculating the en-
tropy of heart-rate dynamics over multiple time scales (multiscale entropy 
analysis), these investigators were able to distinguish healthy from pathological 
(e.g., atrial fibrillation and congestive heart failure) dynamics, and showed  
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consistently higher multiscale entropy values for dynamic processes with long-
range (1/f-type) correlations, compared to those with uncorrelated random noise. 
Therefore, this measure appears useful for quantifying the complexity of a time 
series and distinguishing it from irregularity due to uncorrelated noise. 

3. EXAMPLES OF COMPLEXITY LOSS WITH AGING

 There are numerous examples of the progressive loss of complexity in the 
fractal architecture of anatomic structures and the dynamics of physiologic proc-
esses with advancing age. As shown in Table 1, structures such as neurons, bone 
trabeculae, kidney glomeruli, and elastic fibers or dermal papillae beneath the 
skin all lose structural complexity with aging (5). The loss of connectivity in 
bone trabeculae, characteristic of osteoporosis, is shown in Figure 3. Not only 
anatomic structures, but physiologic processes also lose complexity with aging. 
These include heart rate (13), blood pressure (13), and respiratory dynamics 
(14), center of pressure trajectories when measured on a balance platform (Fig-
ure 4), and gait dynamics (15) (Table 2). Moreover, complexity loss has been 
shown to be associated with a variety of diseases and adverse outcomes (Tables 
3 and 4). On the basis of these observations, we have hypothesized that the age-
related loss of complexity in physiologic systems results in an impaired ability 
to adapt to stress and the ultimate development of disease and disability (2). 
 In response to a given stress or perturbation, physiologic systems mount 
a specific adaptive response that restores the organism to a new dynamic equi-
librium. Therefore, the dynamics observed during resting and stimulated condi-
tions are often quite different. For example, when glucose is ingested, insulin is 

Figure 3. Loss of complexity in bone. Note the loss of connectivity and fractal-like architec-
ture in bone with age-related osteoporosis. 



AGING AS A PROCESS OF COMPLEXITY LOSS 647

secreted in pulsatile fashion in order to promote glucose metabolism. When an 
individual stands up, blood pools in the lower extremities, and blood pressure 
suddenly falls. In response, the sympathetic nervous system secretes norepi-
nephrine to restore the blood pressure to its resting state. Thus, the complex dy-
namics observed during resting conditions differ from the more focused singular 
response that occurs during stress. The dynamics of this adaptive response have 
been referred to as "reactive tuning" (2). In the field of nonequilibrium statistical 
mechanics, the relationship between the correlation properties of the fluctuations 
of a system and its relaxation to equilibrium is described by the fluctuation-
dissipation theorem (16). If the complex interactions of physiologic systems 
during rest enable an organism to mount a focused adaptive response during a 
perturbation, the loss of complexity in resting dynamics may indicate an im-
paired ability to adapt to stress and a predisposition to functional decline. 

Table 1. Decreased complexity of anatomic structures with aging 

   Structure                                  Measure                                         Age effect 

Neurons Dendritic arbor Loss of branches and 
  neural connections 

Bone Trabecular meshwork Trabecular loss and 
  disconnection 

Kidney Glomerular capillary tuft Degeneration and loss 
  of capillaries 

Subepidermis Elastic fibers and Loss and collapse of 
 dermal papillae subepidermal structure 

Table 2. Decreased complexity of physiologic systems with aging 

           System                                     Measure                                          Age effect 

Heart rate dynamics 1/f slope, DFA, & approx. Decreased fractal scaling, 
entropy of interbeat intervals more regular dynamics 

Blood pressure dynamics 1/f slope, DFA, & approx. Decreased fractal scaling, 
entropy of BP fluctuations more regular dynamics 

Respiratory dynamics DFA of interbreath intervals Loss of long-range 
  correlations in 
  elderly males 

Postural control 1/f slope of center-of- Decreased fractal scaling 
 pressure trajectories 

Gait dynamics 1/f slope, DFA Decreased fractal scaling 
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4. MECHANISMS OF PHYSIOLOGIC COMPLEXITY

 A variety of mechanisms probably underlie the complexity of physiologic 
systems, including neuronal networks in the nervous system, biochemical path-
ways in metabolic control systems, signaling pathways within and between cells, 
genetic switches, and transcription control elements. Two experiments highlight 
the importance of the autonomic nervous system in generating the complexity of 
heart rate dynamics. As shown in Figure 5, when autonomic nervous system 
influences on the heart are eliminated through the administration of the mus-
carinic receptor blocker atropine and the beta-receptor blocker propranolol, the 
complex dynamics observed under control conditions are lost. 
 In another study, baby pigs were shown to develop increasing heart rate 
complexity as they matured from 8 to 33 days after birth (17) (Figure 6). During 
this period of time, the heart becomes innervated by sympathetic nerves from 
the right stellate ganglion. When the right stellate ganglion is denervated at 
birth, heart rate complexity does not develop. Thus, during healthy development, 
complexity appears to emerge in physiologic systems such as heart rate, and 
with senescence system complexity is lost. 

Figure 4. Center of pressure displacements (top graphs) and their corresponding log-
transformed power spectra (bottom graphs) for a 30-year-old healthy woman (left) and a 
69-year-old woman with previous falls (right), obtained while the subjects stood on a force-
plate for 30 seconds. The slope of the regression line through the power spectra represents 
the scaling exponent , which is greater in the elderly faller than in the young subject, 
indicating a loss of complexity. Reprinted with permission from (2). 
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5. LOSS OF COMPLEXITY AS A PATHWAY TO FRAILTY
IN OLD AGE

 These considerations have led to the theory that loss of complexity is the 
physiologic basis of frailty in old age (2). This is illustrated in Figure 7. During 
youth, a multitude of physiologic systems interact to produce a highly complex 
output signal (such as heart rate), which is associated with a high level of physi-
cal function. With progressive aging, many of the physiologic inputs and their 

Table 3. Decreased complexity in disease

                     Disease (ref)                                                                             Measure 

Alzheimer's disease (25) EEG correlation dimension is reduced 

Emphysema (26) Reduced 1/f slope of size distribution 
of terminal airspace clusters 

Vent. fibrillation (27) Reduced HR fractal scaling (1/f slope*) 
and long-range correlations (DFA**) 

Atrial fibrillation (28) Increased RR regularity (ApEn+) and 
decreased long-range correlations (DFA) 

CHF (10) and CAD (29) Reduced HR fractal scaling (1/f) and 
long-range correlations (DFA) 

Aging and Huntington's Loss of stride interval long-range 
   disease (15) correlations (DFA) 

Breast cancer (30) Fractal dimension of mammographic mass 

*1/f = the slope of the log-transformed power spectrum (see text). **DFA = detrended fluctuation analysis, a 
technique that quantifies the fractal-like correlation properties of time-series data (see text). +ApEn = Ap-
proximate entropy, a measure of regularity in time series data (11). ApEn quantifies the (logarithmic) likeli-
hood that a series of data points that are a certain distance apart for a given number of observations remain 
within the same distance on the next incremental comparisons. Reprinted with permission from (2).

Table 4. Long-term consequences of complexity loss 

        Study                                                                 Complex                    Complex               Adverse 
    authors/ref.                         Subjects                        system                     measure                outcome 

Ho et al. 52 CHF pts.+ 52 RR interval DFA Mortality 
Circ 1997 (31) matched controls (2  ECG)  = 1.9 yr 

Huikuri et al. 347 random Heart rate 1/f slope Mortality 
Circ 1998 (32) elders >65 yr (24  ECG)  = 10 yr 

Makikallio et al. Case-control, RR interval DFA Ventricular 
AJC 1999 (27) post-MI +/– VF (24  ECG) 1/f slope fibrillation 

Huikuri et al. 446 MI pts w/ RR interval DFA Mortality 
Circ 2000 (29) decreased LV fxn (24  ECG)  = 1.9 yr 

Makikallio et al. 499 CHF pts. RR interval DFA Mortality 
AJC 2001 (33) w/ EF< 35% (24  ECG)  = 1.8 yr 

Colantonio et al. 87 elderly stroke Psycho- Social net- Fx'l loss, 
J Geron 1993 (34) survivors social fxn. work index NH adm. 

Fratiglioni et al. Popn. of 1203 Psycho- Social Dementia 
Lancet 2000 (35) elders >75 yrs. social fxn. network 

Reprinted with permission from (2). 
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connectivity are lost, resulting in a less complex output signal. This loss of com-
plexity is associated with a decline in functional ability. Finally, late in life, 
physiologic inputs are diminished to the extent that the output becomes periodic 
or random, and the individual crosses a frailty threshold. At this point the ability 
to adapt to stress is lost and relatively minor perturbations such as new medica-
tions, a viral illness, or emotional trauma may result in serious disability and 
death.

6. INTERVENTIONS TO RESTORE COMPLEXITY IN 
PHYSIOLOGIC SYSTEMS

 Fortunately, a number of novel interventions may be able to restore healthy 
dynamics in elderly individuals and enhance their ability to adapt to a variety of 
external stimuli. Some single interventions that have multiple system effects 
have already shown to improve functional ability in older individuals. These 
include exercise (18), which can improve physical and mental function, and 
medications such as beta-blockers, which reverse many of the physiologic con-
sequences of congestive heart failure. Other multifactorial interventions that 
address the multiple systems that are impaired in individuals with syndromes 
such as falls (19) or delirium (20) have also proven useful in clinical trials. Re-
cently, Dr. Collins and colleagues demonstrated that low levels of mechanical or 
electrical noise can be used to enhance somatosensation and thus improve pos-
tural control in healthy elderly subjects and patients with diabetic neuropathy or 
stroke (21). New dynamic drug delivery systems provide more physiologic drug  

Figure 5. The effect of autonomic blockade with atropine and propranolol on RR interval 
dynamics in a healthy human subject. 
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administration and thereby enhance physiologic effects. For example, insulin 
given in oscillatory fashion has a greater effect on glucose metabolism than 
when given continuously (22). Similarly, when parathyroid hormone is give 
intermittently rather than continuously, it increases bone mass in osteoporotic 
patients (23). Finally, external dynamic control techniques such as pacing pro-
cedures to terminate cardiac arrhythmias have proven useful in cardiac pa-
tients (24). 

Figure 6. Interbeat interval (RR interval) time series over 200 seconds in 5 piglets as they 
mature from 8 to 33 days of life. Note the increasing amplitude (standard deviation) and irregu-
larity (approximate entropy, ApEn) of the interbeat intervals with advancing postnatal age. 
Reprinted with permission from (17). 
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7. CONCLUSION

 In conclusion, aging results in a number of changes in anatomic structures 
and physiologic control processes that result in a reduction in system complexity 
and a loss of ability to adapt to common stresses in the external and internal en-
vironment. This loss of complexity may be the physiologic basis of frailty. New 
interventions aimed at restoring complex dynamics may be able to enhance 
physiologic adaptation and prevent the onset of disease and disability. 
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Flow phenomena are of great importance in the study of biological systems: both natural 
organisms and biomedical devices. Although scientists and engineers have an excellent 
understanding of transport processes at large length scales, the study of transport proc-
esses at cellular length scales and smaller is just beginning. Considering the importance 
of biological activities at and below the cellular level (see also this volume, Part III, chap-
ter 2.1, by Huang, Sultan, and Ingber), it is critical to understand the microfluidic envi-
ronment in which these processes occur and how we can manipulate them. Recent strides 
in micrometer- and nanometer-scale diagnostic techniques have allowed exploration of 
flow phenomena at length scales comparable to single cells, and even smaller. One of the 
most useful means of manipulating fluids and suspended species such as cells, DNA, and 
viruses is with electric fields. Electrokinetic phenomena are important at micron length 
scales, and can be used to manipulate fluid and particle motion in microfluidic devices. 
This chapter will briefly review the various methods of electrokinetic fluid and particle 
manipulation, then review the recently developed microfluidic diagnostic processes 
available for assessing flow behavior at micron length scales, and finally discuss in detail 
advances in electrothermal and dielectrophoretic fluid and particle manipulation. 
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1. INTRODUCTION

 Flow phenomena are of great importance in the study of biological systems, 
both natural organisms as well as biomedical devices. Most major life processes 
occur in an aqueous environment. Scientists and engineers already have an ex-
cellent understanding of fluid mechanics at length scales of millimeters and lar-
ger. Considering the importance of cellular activities, such as protein production 
and DNA reproduction, it becomes critical to understand the micrometer- and 
nanometer-scaled fluidic (i.e., microfluidic) environment in which these proc-
esses occur and how we can manipulate that environment. Without such under-
standing, we have only an incomplete picture of how the fluid transport 
processes occur in biological and biomedical systems and cannot assess how 
behavior changes at a cellular level will affect the behavior of the organism as a 
whole. A full understanding of the complex systems science comprising biologi-
cal systems is not possible without understanding the transport processes at the 
smallest of length scales. Recent strides in micrometer- and nanometer-scale 
diagnostic techniques have allowed exploration of flow phenomena at length 
scales comparable to single cells, and even smaller. New fabrication tools have 
enabled therapeutic and analytical biomedical devices to be constructed that 
interact with biological components on their intrinsic length scale. One of the 
most useful means of manipulating fluids and suspended species such as cells, 
DNA, viruses, etc., is with electric fields. Electrokinetic phenomena are impor-
tant at micron length scales, and can be used to manipulate fluid and particle 
motion in microfluidic devices. Electrokinetics can be broadly classified into 
DC and AC electrokinetics, as shown in Table 1. DC electrokinetic phenomena 
include electrophoresis and electroosmosis. Electrophoresis has been widely 
used in capillary gel electrophoresis for fractionation of DNA, and capillary 
zone electrophoresis for separation of chemical species (21). Nanogen Inc. (San 
Diego, CA) uses DC electrophoresis from individually addressable electrodes to 
control the motion of DNA molecules—first concentrating and separating target 
particles from the sample, then combining with target oligonucleotides at a spe-
cific location in an array of spot electrodes (4). 
 Electroosmotic flow is generated when microchannels with glass walls 
filled with aqueous solutions naturally produce electric double layers (15). In the 
presence of an external electric field, the electrical charge in the double layers 
exhibits a Coulomb force, causing the ions to migrate parallel to the channel 
wall. The movement of the ions induces fluid motion in the channel, creating 
electroosmotic flow. Electroosmosis is widely used for sample injection and 
transport in microchannels in commercial systems manufactured by such com-
panies as Aclara and Caliper (1,2). 
 AC electrokinetics, in contrast, has received limited attention in the micro-
fluidics community. AC electrokinetics refers to induced particle and/or fluid 
motion resulting from externally applied AC electric fields. One primary advan-
tage of AC electrokinetics is that the zero mean alternating fields significantly 
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reduce electrolysis. Further, the characteristic voltages necessary to accomplish 
useful work are typically of the order of tens of volts—much smaller than what 
is required for DC electrokinetics. AC electrokinetics can be classified into three 
broad areas: dielectrophoresis (DEP), electrothermal forces, and AC electroos-
mosis (17). 

2. DC ELECTROKINETICS

2.1. Electroosmosis

 Electroosmosis is a good place to begin discussing electrokinetic effects 
because the geometries involved can be idealized to considering a liquid in con-
tact with a planar wall. When a polar liquid, such as water, and a solid surface 
are brought into contact, the surface acquires an electric charge. The surface 
charge attracts oppositely charged ionic species in the liquid that are strongly 
drawn toward the surface, forming a very thin tightly bound layer of ions, called 
the Stern layer, in which the ions in the liquid are paired one for one with the 
charges on the surface. Thermal energy prevents the ions from completely neu-
tralizing the surface charge. The surface charge not neutralized by the Stern 
layer then influences the charge distribution deeper in the fluid, creating a 
thicker layer of excess charges of the same sign as those in the Stern layer, 
called the diffuse or Gouy-Chapman layer. Together these two layers are called 
the electric double layer, or EDL. Because of the proximity of charges, the Stern 
layer is fixed in place while the diffuse layer can be moved. In particular, the 
diffuse layer has a net charge and can be moved with an electric field. Conse-
quently, the boundary between the Stern layer and the diffuse layer is called the 
shear surface because of the relative motion across it. The potential at the wall is 
called the wall potential w, and the potential at the shear plane is called the zeta 
potential . This situation is shown in Figure 1 and is typical of the charge dis-
tributions observed in many microfluidic devices. Both glass- (10) and polymer-
based (18) microfluidic devices tend to have negatively charged or deprotonated  

Table 1. Classification of AC and DC electrokinetic phenomena 

                  Type of force                           AC electrokinetics                        DC electrokinetics 

Body force on fluid Electrothermal 

Surface force on fluid AC electroosmosis Electroosmosis 

Force on suspended Dielectrophoresis Electrophoresis 
     particles 
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surface chemistries, which means that the EDL is positively charged. The gov-
erning equation for the electric potential  is found to be the Poisson-Boltzmann 
equation: 

2

2

2
sinh

Fzcd zF

dy KT
= , [1] 

where c  is the concentration of ions far from the surface, z is the charge number 
(valence) of each ion,  = r 0 is the dielectric constant of the liquid,  is the 
electric potential, T is the absolute temperature, K is Boltzmann's constant, and 
F is Faraday's constant. This equation is clearly nonlinear and difficult to solve. 
However, the relative thickness of the EDL is usually small enough in micron-
sized systems that the hyperbolic sine term can be replaced by the first term in 
its Taylor series—just its argument. This approximation is called the Debye-
Hückel limit of thin EDLs and it greatly simplifies Eq. [1] to 

2
2

2 2 2 2
     where     

2D
D

d KT

dy z F c
= = , [2] 

where D is called the Debye length of the electrolyte. The solution to this ordi-
nary differential equation is quite straightforward and found to be 

expw
D

y
= . [3] 

Figure 1. Sketch of the electric double layer showing (a) the Stern layer and the diffuse layer 
and (b) the resulting potential. 
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Hence, the Debye length represents the 1/e decay distance for the potential as 
well as the electric field at low potentials. 
 This potential can be added into the governing equation of fluid mechanics, 
namely the Navier-Stokes equation, to calculate the flow produced by the elec-
troosmotic effect. Consider the geometry shown in Figure 2 where electroosmo-
tic flow is established in a long chamber of constant cross-section. Combining 
the appropriate form of the Navier-Stokes equation with the potential distribu-
tion in Eq. [3], we get 

el
eof

E
u = , [4] 

where the component of the flow due to electroosmosis is denoted ueof, the dy-
namic viscosity of the liquid is , and  is the zeta potential, or the potential at 
the location of the shear plane just outside the Stern layer. This equation is 
known as the Helmholtz-Smoluchowski equation and is accurate when the Debye 
layer is thin relative to the channel dimension. Because of the typical low Rey-
nolds number behavior of electrokinetic flows, the velocity field can be directly 
added to that obtained by imposing a pressure gradient on the flow to find the 
combined result of the two forces. Obtaining solutions for the flow when the 
Debye length is large generally requires resorting to numerical solutions because 
the Debye-Hückel approximation is not valid when the Debye layer is an appre-
ciable fraction of the channel size. 
 For the purpose of comparing the effectiveness of several different elec-
troosmotic channel/solution combinations, the electroosmotic mobility, eo is 
defined as 

eof
eo

el

u

E
= . [5] 

Figure 2. Schematic representation of electroosmosis (left) and electrophoresis (right) 
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Electroosmotic mobility is a useful empirical quantity that aids in predicting 
flow velocities expected for different imposed electrical fields. In the absence of 
appreciable Joule heating, the proportionality is very good. 

2.2. Electrophoresis

 This phenomenon is closely related to the electroosmosis phenomenon dis-
cussed above and relies on interaction of the EDL with an electric field to ma-
nipulate particles. The analysis of particles moving in fluids necessarily includes 
some drag model to account for the effect of the fluid drag on the particle. Be-
cause the electrophoretically manipulated particles tend to be small and slow 
moving, inertia is not important to the particle's motion and a very simple Stokes 
drag model is used to approximate the fluid drag on the particle. Further, the 
particle is assumed to be nonconducting, which is reasonable because even ma-
terials that would normally be conducting tend to become polarized by the ap-
plied field and behave as nonconductors. 
 There are two cases of importance in electrophoresis, when the Debye 
length is small compared to the radius of the particle and when it is large. The 
electrophoretic motion of molecules oftentimes meets the limit of Debye length 
large compared to the effective size of the molecule simply because molecules 
can be very small. In addition, with the emergence of gold and titania nanoparti-
cles, and fullerenes, this limit becomes a very important one for nanotechnology. 
The expression for the electrophoretic velocity uep becomes 

el el
ep

0

2
6 3

sq E E
u

r
= = , [6] 

where the first form of the equation is well suited to molecules in which the total 
charge q = qs of the molecule may be known (valence number) rather than some 
distributed surface charge. The second form of the equation is more appropriate 
for very small particles for which the zeta potential  might be known. This form 
of the equation is called the Hückel equation. 
 The limit of small Debye length compared to particle radius is an appropri-
ate limit to consider for particles in excess of 100 nm. Examples of these types 
of particles include polystyrene latex spheres used to "tag" biomolecules as well 
as single-cell organisms, which tend to have diameters measured in microns. 
When the Debye length is small compared to particle radius, the EDL dynamics 
are approximately reduced to the flat-plate scenario discussed in the case of 
electroosmosis. Hence, the equation of motion becomes 

el
ep

E
u = , [7] 
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which is simply the Helmholtz-Smoluchowski equation from the electroosmosis 
phenomenon. One interesting thing to note about Eqs. [6] and [7] is that, even 
though they are developed for opposite limiting cases, they differ only by the 
constant factor 2/3. When the Debye length is neither large nor small relative to 
the particle radius, the dynamics of the particle motion are significantly more 
difficult to calculate. However, even in these cases Eq. [7] is still a reasonable 
estimate of particle velocity. 
 As with the case of electroosmosis, the effectiveness of electrophoresis is 
quantified using an electrophoretic mobility parameter defined as 

ep
ep

el

u

E
= , [8] 

where ep can be thought of as motion produced per unit field. 

2.3. Applications

 Because of the net negative charge associated with DNA molecules, elec-
trophoresis can be used to manipulate DNA molecules. A classic example is 
capillary gel electrophoresis, where an electrical field is used to pull tagged 
DNA molecules through a gel matrix. The gel effectively filters the DNA mole-
cules according to size, since the shorter DNA segments can travel through the 
gel much quicker than the longer segments. 
 Nanogen's biochip (8) is an example of using electrophoresis-enhanced hy-
bridization of DNA in a microfluidic chip (see Figure 3). The electrodes have a 
positive potential, thereby inducing the DNA molecules toward specific hybridi-
zation sites. The microfluidic chip shown in Figure 3 (8), contains 100 microlo-
cation test sites, which are approximately 80 m in size. 

3. AC ELECTROKINETICS

 AC electrokinetics has received limited attention in the microfluidics 
community compared to its DC counterpart. AC electrokinetics refers to induced 
particle and/or fluid motion resulting from externally applied AC electric fields. 
A primary advantage of AC electrokinetics is that the alternating fields sign-
ificantly reduce electrolysis at the electrodes. In addition, the characteristic 
voltages are typically on the order of tens of volts, which are typically much 
smaller than those used in DC electrokinetics. AC electrokinetics can be 
classified into three broad areas: dielectrophoresis (DEP), electrothermal forces, 
and AC electroosmosis (17). 
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3.1. Dielectrophoresis (DEP)

 Dielectrophoresis, or DEP, is a force on particles in a nonuniform electric 
field arising from differences in dielectric properties between the particles and 
the suspending fluid. The time-averaged force on a homogeneous sphere of ra-
dius rp can be approximated as 

3 2
DEP rms2 Re( )m pF r K E= . [9] 

Here Re(K) is called the dielectrophoretic mobility and is the real part of K, the 
Clausius-Mosotti factor, 

2
p m

p m

K =
+

. [10] 

The Clausius-Mosotti factor depends on the complex permittivity of particle and 
medium. Complex permittivity is 

* /j= , [11] 

Figure 3. Active microelectronic DNA chip device and DNA transport. (a) Basic structure of 
an active microelectronic array that contains 100 microlocation test sites. (b) Basic scheme for 
electrophoretic transport of charged molecules (DNA, RNA) on the active microelectronic 
array test sites. Reprinted with permission from Gurtner et al. (8). 
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where 1j = ,  is the electrical permittivity,  is the electrical conductivity, 
and  is the angular field frequency. In this way, the DEP force depends not 
only on the dielectric properties of the particle and medium, but also on the fre-
quency of the applied field. For a sphere, the real part of K is bounded as –0.5 < 
Re(K) < 1.0. Positive DEP occurs for Re(K) > 0, where the force is toward the 
high electric field and the particles collect at electrode edges. The converse of 
this is negative DEP, which occurs when Re(K) < 0, where the force is in the 
direction of decreasing field strength, and particles are repelled from electrode 
edges. Since the dielectrophoretic force scales with the cube of particle size, it is 
effective for manipulating particles of the order of one micron or larger. DEP 
has been used to separate blood cells and to capture DNA molecules (13,22). 
 DEP has limited effectiveness for manipulating proteins that are on the or-
der of 10–100 nm (3). However, for these small particles DEP force may be both 
augmented and dominated by the particle's electrical double layer, particularly 
for low-conductivity solutions (5). 
 DEP has been used to manipulate macromolecules and cells in microchan-
nels. For example, Miles et al. (13) used DEP to capture DNA molecules in a 
microchannel flow. Gascoyne and Vykoukal (5) present a review of DEP with 
emphasis on manipulation of bioparticles. An example of a cancer cell separa-
tion device is shown in Figure 4. Here, interdigitated DEP electrodes are fabri-
cated on the surface of a microchannel. Cells are transported through the 
channel using pressure-driven flow. Negative DEP forces levitate the cells in the 
microchannel at varying heights, depending on the electrical properties of the 
cell. Since the velocity profile in the microchannel is parabolic, cells that are 
levitated in the center of the channel advect downstream faster than cells near  

Figure 4. Schematic of field flow fractionation. DEP electrodes on the bottom microchannel 
surface create a nonuniform electric field. The cells are levitated from negative DEP force. The 
cells levitated in the center of the channel are advected faster than cells near the channel walls. 
This provides a mechanism for separating cells based upon their electrical properties. Re-
printed with permission from Gascoyne and Vykoukal (5). 
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the microchannel surface. Therefore, cancerous and noncancerous cells can be 
separated and identified based on their electrical properties. This separation 
technique is known as flow field fractionation (FFF). A schematic of this separa-
tion technique is shown in Figure 4 (taken from (5)). 
 The combination of DEP with electrothermal flow and AC electroosmosis 
is discussed in detail by Green et al. (7), who demonstrated how, in the absence 

Figure 5. Size-selective movement of submicron beads based on the balance of electrothermal force 
and DEP. Reprinted with permission from Green and Morgan (7). 

Figure 6. (A) Images representing the microscale separation of B. globigii spores and heat-killed E.
coli bacteria on the 5  5 array. The electrodes in the array were addressed with an AC voltage at 50 
kHz and 5 V (p-p). The spores and bacteria were suspended in a 280-mM mannitol solution having a 
conductivity of 20 S/cm. (B) Expanded view showing that the spores were collected on the elec-
trodes and the bacteria were repelled from the electrodes. Reprinted with permission from Huang et 
al. (9). 
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of pressure-driven flow, different-sized particles can be separated based on the 
balance of DEP force and fluid drag force from an electrothermally generated 
flow. Figure 5 depicts how particles can be separated by varying sizes under the 
influence of DEP and electrothermal flow. By varying the frequency (up to 500 
kHz) and the voltage (up to 10 V peak-to-peak), the stable position of the larger 
beads can be moved from the electrode edges to position A, or to position B. 
 DEP has also been demonstrated by Huang (9), (Nanogen Inc., San Diego) 
to concentrate a dilute sample of E. coli cells by 20-fold and to separate E. coli
cells from B. globigii cells. A picture of the microfabricated electrode structure 
and captured bacteria is shown in Figure 6. 

3.2. Electrothermally Driven Flow

 Electrothermal body forces are created by nonuniform Joule heating of the 
medium. The Joule heating is a source term in the temperature equation, and 
creates spatial variations in conductivity and permittivity, which in turn create 
Coulomb and dielectric body forces in the presence of an externally applied 
electric field. The resulting fluid motion can be determined by solving the Na-
vier-Stokes equation with the electrothermal body force. Electrothermally driven 
flow can be simulated by solving for the quasistatic electric field in a specific 
geometry. The nonuniform electric field gives rise to nonuniform temperature 
fields through Joule heating. Ignoring unsteady effects and convection, and bal-
ancing thermal diffusion with Joule heating yields 

k 2T + E2 = 0, [12]

where T is temperature and E2 is the magnitude squared of the electric field, 
given by E V= , where k and  are the thermal and electrical conductivity. 
 Gradients in temperature produce gradients in permittivity and conductivity 
in the fluid. For water (1/ )( / T) = +2% and (1/ )( / T) = –0.4% per degree 
Kelvin. These variations in electric properties produce gradients in charge den-
sity and perturb the electric field. Assuming the perturbed electric field is much 
smaller than the applied electric field, and that advection of electric charge is 
small compared to conduction, the time-averaged electrothermal force per unit 
volume for a non-dispersive fluid can be written as (17) 
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+
, [13] 

where  = /  is the charge relaxation time of the fluid medium and the incre-
mental temperature-dependent changes are 
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,      T T
T T

= = . [14] 

The first term on the right-hand side of Eq. [13] is the Coulombic force, and is 
dominant at low frequencies. The second term is the dielectric force, and is 
dominant at high frequencies. The crossover frequency scales inversely with the 
charge relaxation time of the fluid, and typically occurs at around several MHz. 
 The electrothermal force shown in Eq. [13] is a body force on the fluid. The 
motion of the fluid can be determined by solving the Stokes equation for zero 
Reynolds number fluid flow, such that 

2
ET0 P u F= + + , [15] 

where u is the fluid velocity, P is the pressure in the fluid, and  is the dynamic 
viscosity of the fluid. 

3.3. AC Electroosmosis

 AC electroosmosis arises when the tangential component of the electric 
field interacts with a double layer along a surface. It becomes less important 
with increasing electric field frequency. For example, in an aqueous saline solu-
tion with an electrical conductivity of  = 2  10–3 S/m, it is predicted that AC 
electroosmosis will not be important above 100 kHz (16). 

3.4. Numerical Simulations of Electrothermal Flow

 AC electrokinetics can be used to manipulate fluid motion and to enhance 
the sensitivity of certain biosensors (20). The finite-element package CFD-ACE+

(CFD Research, Huntsville, AL) was used to simulate electrothermally induced 
flow and subsequent enhanced binding in the cavity. First, the quasistatic poten-
tial field for two long electrodes along the cavity wall is calculated (Figure 7a). 
The Joule heating of the fluid from this electric field produces local changes in 
temperature. Figure 7b shows the temperature field resulting from Joule heating. 
From this temperature field, the electrothermal force, ETF , can be estimated 
from Eqs. [13] and [14]. The fluid motion can be calculated using the Stokes 
equation, Eq. [15]. Figure 7c shows the resulting velocity field. The velocity of 
the ETF is on the order of 500 m/s and characterized by a pair of counter-
rotating vortices. This fluid motion will effectively stir the analyte, moving it 
toward the immobilized antibodies. 
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 The convective scalar equation can be used to calculate the effect of electro-
thermally induced fluid motion on the analyte concentration in the cavity and the 
analyte binding on a cavity wall: 

2C
u C D C

t
+ = , [16] 

where C is the concentration of antigen in the outer flow, u  is the fluid velocity, 
D is the diffusivity of the antigen, and t is the time. Following the model given 
by Myszka et al. (14), the rate of association is kaC(RT – B), where ka is the asso-
ciation constant, C is the concentration of antigen at the surface, and RT – B is 
the available antibody concentration. The rate of dissociation is kdB, where kd is 
the dissociation constant and B is the concentration of bound antigen. The time 

Figure 7. Simulation of ETF in a 2000  40 m cavity: (a) Quasistatic electric potential field, 
calculated from two electrodes with potentials of +/– 7 Vrms (1O-V peak-to-peak). (b) Tempera-
ture field resulting from a balance of Joule heating and thermal diffusion. The fluid has an 
increase in temperature between the electrodes; electrodes conduct heat to the environment. (c)
Velocity vectors from 2D simulation of electrothermally generated fluid motion. 
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rate of change of antigen bound to the immobilized antibodies is equal to the 
rate of association minus the rate of dissociation: 

( )a T d

B
k C R B k B= . [17] 

The rate of antigen binding to immobilized antigen, B/ t, must be balanced by 
the diffusive flux of antigen at the binding surface, y = 0, such that 

0y

B C
D

t y
=

= . [18] 

Equations [16]–[18] are solved with an initial antigen concentration C0 = 1 nM 
and an immobilized antibody concentration RT = 1.7 nM cm (i.e., one molecule 
per 100 nm2). The binding rates for three conditions, 0-, 7-, and 14-V root-mean-
square voltage, are shown in Figure 8. The 0-V case corresponds to the passive 
case, which is the result of pure diffusion. This is the standard mode of most 
immobilized assays, such as ELISA. The 7- and 14-V curves correspond to the 
result of electrothermally driven flow enhancing transport of antigen to the im-
mobilized antibodies. The curves in Figure 8 show that a factor of up to 8 
(800%) improvement in sensitivity (or response) is obtained by using AC elec-
trokinetics. 

Figure 8. Numerical simulation of dimensionless binding curves for non-enhanced (0 V) and 
enhanced (7 V, 14 V) transport. The differences in the two curves show an increase in binding 
rate, which yields a factor of 4 higher binding for 7 V and a factor of 8 higher binding after 30 
seconds for 14-V applied root-mean square potential. The binding improvement for the 14-V 
case decreases to around sixfold after 100 seconds: the binding is no longer completely trans-
port-limited. 
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4. EXPERIMENTAL MEASUREMENTS OF ELECTROKINETICS

 Two examples of using electrokinetics to manipulate small particles will be 
presented here. Since both examples employ the PIV technique to quantify the 
response of small particles to the electrically induced forces, a brief introduction 
to the technique will also be given. The first example, electrokinetic flow, illus-
trates the electrothermal effect and the second illustrates the dielectrophoretic 
effect.

4.1. Microparticle Image Velocimetry ( PIV)

PIV is a technique that has been developed recently to measure the veloc-
ity of small scale flows in a spatially resolved manner (19). Figure 9 shows the 
typical layout of a PIV system. The flow is illuminated by either a broad-
wavelength continuous light source, such as a mercury vapor lamp, or a pulsed 
laser, such as a frequency-doubled Nd:YAG. Normally, PIV is used to measure 
the velocity of small-scale flows by measuring the motion of small tracer parti-
cles either naturally present in the flow or artificially added to the flow. In the 
following examples, however, the motion of the fluid is not the primary subject 
of study, but rather the motion of the suspended particles in response to an elec-
trically applied force. Regardless of whether the fluid motion or particle motion 

Figure 9. Diagram of typical PIV system. 
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is being studied, the technique is the same. The small particles are observed with 
a microscope. The particles are typically coated with a fluorescing dye to enable 
epifluorescent imaging. Images are captured with a precise time delay from one 
image to the next. Consecutive pairs of images are divided into many small in-
terrogation regions. The corresponding interrogation regions from each of the 
two original images are cross-correlated to determine the most likely relative 
displacement of particles in the interrogation regions in the form of a cross-
correlation peak. Repeating this procedure thousands of times produces the spa-
tially resolved measurements of fluid or particle motion seen in the following 
sections. 

4.2. Electrothermal Effect

 Micro-PIV experiments using polystyrene spheres in an optically accessible 
flow cell with wedge-shaped electrodes have been conducted. The trajectories of 
1- m diameter polystyrene particles suspended in sugar solution were measured 
in a device consisting of two brass electrodes sandwiched between two glass 
wafers. An AC potential of 10 Vrms at 10 kHz was applied to the electrodes. The 
particle-velocity field is measured quantitatively using PIV following Meinhart 
et al. (11), and is shown in Figure 10a. 
 The experimental results compare well to numerical solutions of electro-
thermally driven flow: fluid motion is simulated by solving the Stokes equation, 
subject to an electrothermal force (Eq. [13]). The velocity of suspended 1- m
particles relative to the fluid medium can be estimated by balancing the two 
dominant particle forces: Stokes drag force and DEP force. The numerically 
simulated particle velocity field is shown in Figure 10b. For these parameters, 
according to model results, the DEP was negligible in comparison with motion 
generated through electrothermal flow. The results are described in detail by 
Meinhart et al. (12). The agreement between simulations and experiments may 
indicate that electrothermal forces are important in the microfluidic devices 
tested. However, in these numerical simulations, the effect of AC electroosmosis 
is not modeled. 

4.3. Dielectrophoretic Effect

 The second set of experiments were designed to isolate the effects of dielec-
trophoresis from electrothermal motion. A channel measuring 350 m wide by 
12 m deep is shown in Figure 11. The bright regions in the image are platinum 
electrodes, while the dark regions are areas without platinum or electrode gaps. 
The entire imaged region is covered by a thin layer of silicon dioxide, which 
insulates the electrodes from the fluid medium to suppress the Joule heating that 
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typically causes electrothermal effects. The electrodes are arranged in interdigi-
tated pairs so that in Figure 11 the first and third electrodes are always at the 
same potential as each other. The second and fourth electrodes are also at the 
same potential as each other but can be at potential different from the first and 
third electrodes. An alternating electric potential is applied to the interdigitated 
electrodes to create an electromagnetic field with steep spatial gradients. Particle 
motion through the resulting electric field gradients causes polarization of the 
microspheres, resulting in a DEP body force that repels particle motion into in-
creasing field gradients. 
 Six sets of experiments were performed, each using a different voltage. All 
experiments used the same flow rate of 0.42 l/hr (equivalent to a Reynolds 
number of 3.3  10–4) and the same AC frequency of 580 kHz. The voltages 
were chosen between 0 and 4 V. Charge-neutral fluorescent polystyrene parti-
cles measuring 0.69 m in diameter (Duke Scientific) were suspended in the 
flow. Sets of images 800 images each were acquired using a Photometrics 
CoolSNAP HQ interline monochrome CCD camera from Roper Scientific. This 
camera is capable of 65% quantum efficiency around the 610-nm wavelength, 
which is the emission wavelength of the red fluorescing microspheres. Images 
were captured at a speed of 20 frames per second. The microscope used in these 
experiments was an epifluorescent Nikon E600 with a Nikon "CFI W FLUOR 
60X" water-immersion objective lens having a numerical aperture of 1.00. Epif-
luorescent imaging was used because the silicon base of the device is highly 
reflective, resulting in strong background noise. The broad-spectrum mercury 
vapor light source is bandpass filtered to admit wavelengths of approximately 

Figure 10. AC electrokinetically driven particle motion: (a) experimentally measured 
particle velocity field using micro-PIV, and (b) numerically simulated particle velocity 
arising from electrothermal fluid motion and viscous drag. This suggests that for this re-
gime ETF is dominant compared to DEP. 
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540 nm. This wavelength excites the red dye on the latex microspheres, which 
emits light at approximately 610 nm. The epifluorescent filter cube then band-
pass filters the light directed to the camera to admit wavelengths of approxi-
mately 610 nm. Thus, the 540-nm light reflected by background features that do 
not fluoresce is removed. 
 A particle velocity increase can be seen from 0.5 to 2.0 volts, and a velocity 
decrease is seen from 2.0 to 4.0 V. In the 2.5-V case, low-velocity regions be-
tween electrodes are first noticeable. In the 3.5- and 4.0-V cases, large numbers 
of trapped particles result in near-zero velocities. Figure 12 shows the experi-
mental results with a plot of the particle velocity as a function of position within 
the device for each of the six voltage cases measured. The three lowest voltages 
share a trend of decreasing particle velocity in the downstream direction. The 
simplest explanation for this behavior is that, with each electrode a particle en-
counters, it lags the fluid velocity a little more. The cumulative effect of encoun-
tering a series of electrodes is a gradual slowing of the particles. 
 Another interesting result apparent from Figure 12 is that the average parti-
cle velocity initially increases as the voltage increases from 0.5 to 2.0 V. This 
phenomenon is explained by particles being pushed away from the channel bot-
tom (where the electrodes are located) into the faster areas of fluid flow near the 
center of the channel. For the higher-voltage measurements, the effect of parti-
cles being hindered by field gradients is compounded by particles being pushed 

Figure 11. Dielectrophoretic device. (Courtesy of Bashir and Li, Purdue University). 
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beyond the high-speed portion of the flow profile and toward the low-speed up-
per wall of the device. It can be qualitatively confirmed that particles are pushed 
to the upper wall of the channel by observing the particle shapes from the 
higher-voltage cases. Many different particle shapes are evident in Figure 13a, 
in which the voltage is 0.5 V. These many shapes represent how the particle 
images change with distance from the focal plane, which is focused on the elec-
trodes. Particles in focus appear as small round dots while particles out of focus 
(near the upper device wall) appear less bright and have rings around them from 
the diffraction pattern. Figure 13b shows particle images for a 4-V voltage. Two 
phenomena are obvious here: first, the particles tend to cluster at electrode 
edges, and, second, almost all particle images are out of focus, indicating that 
nearly all particles are found near the top wall of the device, remote from the 
electrodes. 

5. CONCLUSIONS

 The results from §§4.2 and 4.3 show that the motion of suspended parti-
cles—or any discrete elements in the fluid such as cells, proteins, and DNA—in 

Figure 12. Average axial velocity results from PIV results for all voltage cases. Note that flow 
is from right to left in this figure, opposite that in Figure 11. 
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response to applied electric fields can be quite complicated. It is becoming in-
creasingly popular to manipulate such suspended particles with electrical fields. 
To fully understanding complexity science applied to biomedicine, one must 
understand how particles behave at micrometer and nanometer length scales. 
Experiments and modeling are often needed to determine not only the dominant 
phenomenon (DEP vs. ETF) but also how the particles are distributed within the 
flow. Particle distribution is of great importance in biological systems. Some-
times they need to be trapped near a wall for analysis and sometimes they need 
to be kept away from walls to reduce fouling of a device. 
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GENE SELECTION STRATEGIES IN 
MICROARRAY EXPRESSION 

DATA: APPLICATIONS TO 
CASE-CONTROL STUDIES 

Gustavo A. Stolovitzky 
IBM Computational Biology Center, Yorktown Heights, New York 

Over the last decade we have witnessed the rise of the gene expression array assay as a 
new experimental paradigm to study the cellular state at the whole genome scale. This 
technology has allowed considerable progress in the identification of markers associated 
with human disease mechanisms, and in the molecular characterization of diseases such 
as cancer, by careful characterization of genes involved directly or indirectly in the dis-
ease. A typical gene expression experiment provides scientists with an enormous amount 
of data. Analysis of these data, and interpretation of the ensuing results, have attracted the 
attention of many researchers, who have developed new ways of interrogating the expres-
sion data. In this chapter we will review some of these recent efforts, emphasizing the 
need to make use of batteries of methods rather than one method in particular, as well as 
the need to properly validate results with independent data sets. The application of DNA 
array technology for use in disease diagnostics will be exemplified in the case of chronic 
lymphocytic leukemia.

1. INTRODUCTION

 DNA microarrays constitute one of the most powerful high-throughput 
technologies in molecular biology today. It has emerged in recent years as a 
powerful tool that provides a glimpse into the complexities of cellular behavior 
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through the window of transcriptional activity (see also this volume, Part III, 
chapter 2.1, by Huang, Sultan, and Ingber). As is the case with other nascent 
high-throughput technologies (such as protein arrays, single nucleotide poly-
morphism profiling) the completion of a DNA microarray experiment requires a 
concerted effort between the data producers and the data analysts. In this sense, 
both the wet lab protocols as well as the methods used in the analysis of the en-
suing data are two faces of the same coin that enable this emerging technology
reach its full potential. 
 Gene expression array experiments present us with vast amounts of data 
containing substantial biological information. In order to obtain the most from 
these data, a considerable variety of approaches for statistical and algorithmic 
analyses have been developed. Each one of these analyses, if sufficiently differ-
ent, can provide important biological clues. In this sense, gene expression data 
have become a paradise for statisticians. Evidence of this is the exponential 
growth in the number of publications on gene expression analysis during the last 
few years (1). Many useful resources for gene expression data, links, and litera-
ture have flourished on the internet (see, e.g. (2–6) and the links therein) to sup-
port the growing needs of the field. 
 There are many types of questions that can be explored with microarray 
experiments. Some of the common themes in DNA array data analysis—
including gene selection, clustering of similarly expressing genes, class predic-
tion, and pathway inference—have recently been reviewed in (1,7). In this chap-
ter we concentrate on supervised statistically based methods to identify genes 
that show differences between two classes of tissues, a problem known as gene 
or feature selection. Among these methods, we shall discuss univariate and mul-
tivariate techniques for gene selection. In the former, genes are selected on the 
basis of their individual merits to separate between two or more classes of tis-
sues (typically cases and controls). In the latter we deal with the differential be-
havior of groups of genes in distinct tissue types. Both types of analysis yield 
important information and the possibility of rich interpretations. For example, a 
gene that is identified by univariate methods as strongly transcribed in cancer 
patients compared to control subjects could be a good candidate for an onco-
gene, or the result of chromosomal instabilities that resulted in more copies of 
that gene. A multivariate methodology, instead, can reveal subtler changes of 
ensembles of genes that work in coordination, such as may be the case in a 
pathway that is deregulated in the transformed cells. Multivariate analyses are 
better aligned with a complex-systems perspective of the data, in that we explore 
interactions between genes rather than genes in isolation. After all, it is the co-
ordinated activity of interacting genes that gives the cellular environment its 
complex behaviors. 
 Once we have selected genes that express differentially in cases and con-
trols, there remains the need to establish the validity of the results. Two methods 
are typically used to provide some degree of validation for the selected genes. In 
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one method, which can be called validation by classification, the selected genes 
are validated if they perform adequately in the prediction of the class of tissue 
that a set of unknown samples belongs to. Typically, these unknown samples are 
part of the original data set, but are left out in the gene selection phase for later 
validation purposes. In a second approach, which could be called validation by 
statistical significance, genes are chosen if they behave sufficiently different 
from what would be expected if there were no distinction between cases and 
controls (the null hypothesis). We proposed an alternative validation method in 
(1), a sort of hybrid between the previous two methods, in which the selected 
genes are validated if they show consistency in their behavior in a different data 
set (different laboratories and may be different technology, but the same types of 
tissues). 
 The typical outcome of a gene selection process is a list of genes that show 
differential expression in cases and controls. If the data are analyzed using more 
than one method, it is likely that the resulting gene lists will be different, albeit 
overlapping. We will discuss how to deal with lists of genes coming from 
different algorithms, and the advantages or disadvantages of creating the union 
list or the intersection list of these genes. It is clear, however, that the explosion 
in the number of methods to analyze expression data should be complemented 
with a convergent effort in which different algorithms are used and their results 
combined.
 The lists of genes generated by the algorithms discussed in this chapter will 
have to be organized, possibly with the help of literature search techniques (8) or 
by systematically relating the selected genes with existing biological informa-
tion (9,10), in order to bring the results of the microarray technology to mean-
ingful applications. Among these applications we can mention the identification 
of potential drug targets (11), the discovery of disease specific genes (12), toxi-
cogenomics (13), disease prognosis (14), and the molecular taxonomy of dis-
eases (15,16). It has been suggested, indeed, that microarrays will be routine 
practice in clinical diagnostics within the next decade or so. Making this happen 
will surely necessitate a larger number of samples in clinical trials and proof of 
the robustness of the technology (16). Towards the end of this chapter we will 
present an example in clinical diagnostics which shows that the technology is 
indeed reaching a state of maturity, both in terms of the algorithms used for gene 
selection and in terms of the DNA array technology. 

2. PREVIOUS WORK: GENE SELECTION METHODS
IN MICROARRAY DATA

 To organize the presentation, we will separate the discussion of gene selec-
tion algorithms into univariate and multivariate methods. In either case, the 
genes selected as informative need to be validated in one way or another. Two 
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methods have been used in the literature to provide some degree of validation 
for the selected genes. In one method, which could be called validation by clas-
sification, the selected genes are validated if they perform adequately in the pre-
diction of the type of tissue (case or control) for samples excluded from the 
training set but whose class is known. In a second approach, which could be 
called validation by statistical significance, genes are chosen if they behave suf-
ficiently different from what would be expected if there were no class distinction 
between the case and control samples (the null hypothesis). We will discuss 
other possibilities for validation later on. Before describing the recent literature 
on gene selection, however, a few nomenclature conventions are necessary. 

2.1. Nomenclature

 Throughout this section it will be assumed that we are dealing with an assay 
in which M samples were hybridized to their respective M arrays, each contain-
ing N gene probes. Of the M samples, M1 cases are of class 1 (C1) and M2 cases 
are of class 2 (C2), where by class 1 and 2 we mean cancer and control, or cancer 
of type 1 and cancer of type 2, etc. The values of the expression measured for 
the ith gene in the kth sample of class c will be denoted by Xik

(c). In many algo-
rithms data are preprocessed by different normalizations and transformations. In 
these cases we shall still denote by Xik

(c) the resulting gene expression values 
after the preprocessing steps. (For a review of normalization considerations see 
(17).) The sample mean and standard deviation of gene i in class c will be re-
spectively denoted i(c) and i(c).

2.2. Selecting Genes One at a Time: Univariate Methods

2.2.1.  t-Score-Based Statistics

 One of the most common univariate analyses uses the t-statistic (or t-score), 
which for gene i can be written as: 

2 2
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This statistic measures the difference between the sample means in cases 
and controls in units of the standard deviation of this difference. If the two sam-
ples are normally distributed, or if M1 and M2 are large, the theoretical distribu-
tion of the t-score is known. In the former case ti would be distri-
buted according to the t-distribution, and in the latter case the distribution of ti
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asymptotically approaches normality. In both cases, the t-test can be used to 
test the null hypothesis that the two samples have the same mean, i.e., the gene 
is not differentially expressed. In typical gene expression experiments, however, 
we should not assume that the data are normally distributed, especially if the 
sample sizes M1 and M2 are small. In these cases we can still use the t-score, but 
we need to resample its distribution (18–20). Analyses based on t-scores can 
also be validated by classification. To do this, the gene selection has to be com-
plemented with classification schemes such as k-nearest neighbors, decision 
trees, support vector machines, and naive Bayes (21). In these cases, the classifi-
cation methods take as input the genes whose t-scores rank highest, but the in-
formative nature of the genes is assessed according to whether we can classify 
unseen samples correctly. 
 Other t-type statistics have been proposed. One of the most widely used is 
the signal-to-noise ratio (SNR) score, used first in an early seminal paper in gene 
expression array research (22). Its definition, 

(1) (2)

(1) (2)

SNR i i
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i i
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is appealing because of its simplicity and its intuitive interpretation: it measures 
the degree of overlap of the ith gene distribution in class 1 and class 2. 

2.2.2.  More Methods of Univariate Gene Selection

 Aside from t-score-based methods, there have been many other univariate 
methods of gene selection reported in the recent literature. In (23), for example, 
information-theoretic ideas were used to design a gene selection method in 
which a gene is selected if there exists a gene expression value out of the M val-
ues which partitions the patients in such a way that the entropy of the propor-
tions of cases and controls determined at each side of the partition is minimized. 
A maximum likelihood ratio approach was taken in (24) to rank genes in the 
order of most discriminating to least discriminating between two classes. Many 
other methods of gene selection have been proposed. These include the "ideal 
discriminator method" (which can be mapped to t-type statistics) (19), the "Wil-
coxon rank sum test" (19), 2 statistics (23), a correlation-based feature selection 
(23), the Bayesian variable selection approach (25), and the Use-Fold approach, 
where genes are selected whose fold changes are greater than the corresponding 
assay noise (26), among others. 
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2.3. Selecting Genes Many at a Time: Multivariate  
Gene Selection

2.3.1. The Use of Singular Value Decomposition in Gene 
 Expression Data Analysis

 Aside from the univariate methods discussed in the previous section, there 
have been a number of gene selection methods that explicitly use the high-
dimensional nature of the gene expression space. Among these, one of the earli-
est methods tried in the gene expression arena was singular value decomposition 
(SVD), probably because of its extensive use in other applications to cluster, 
visualize, and classify high-dimensional data. The early application of SVD to 
gene expression research (27–29) used the yeast cell cycle data (3). The applica-
tion of SVD for gene selection in case-control studies has been considered 
(30,31) but has not yet been explored in depth. The importance of normalization, 
and the use of alternative normalizations to highlight differential behavior be-
tween groups of genes in different classes in cancer-control gene expression 
data, was considered in (32). As more work addresses the applicability of SVD 
and related dimensional-reduction analyses to the exploration of gene expression 
data (33,34), we shall see more systematic methods of gene selection using this 
multivariate technique (35). At the heart of the SVD methods for gene expres-
sion analysis is the notion of simultaneously clustering groups of genes and pa-
tients. This aim can also be achieved using alternative methods, as proposed in 
(36–39). 

2.3.2.  Other Methods of Multivariate Gene Selection

 The recent literature also contains other interesting work on multivariate 
gene selection. These methods choose genes on the basis of their collective syn-
ergy to separate classes, and it can happen that many genes selected on the basis 
of multivariate analysis would have been deemed nonsignificant in terms of 
their individual differential expression. In (40) gene clusters were constructed 
iteratively according to the ability of the average cluster expression to discrimi-
nate between cancer and control in such a way that average cluster expression is 
uniformly low for one class and high for the other. The genes selected in clusters 
are subsequently validated by classification. Evolutionary algorithms have also 
been proposed (41) for gene selection where, as in (40), the selected genes were 
chosen as a collective and not on the basis of their individual ability to discrimi-
nate between classes. 
 The two previous approaches are examples of heuristics designed to over-
come the difficulty of choosing all the potential 2N groups of genes (with N of 
the order of 10,000) and evaluate each group's predictive ability. However, one 
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could explore all the pairs and triads and perhaps tetrads of genes, and decide 
their predictive power. This is the approach taken in (42), where the predictive 
ability of all the sets with less than 4 genes is tested, and those sets that perform 
the best (and above an error threshold) in a validation-by-classification task are 
selected as genes of interest for further biological study. 
 Another multivariate algorithm that has been used in different applications 
in the recent literature ((43–45); see also (39)) is Genes@Work, a gene expres-
sion pattern discovery approach. Genes@Work searches for patterns that differ-
entiate one particular phenotype from another phenotype chosen as a reference 
or control. Each pattern consists of a group of genes observed to act consistently 
over a subset of the samples in the phenotype set (formed by either the cases or 
the controls). All subsets of genes and all subsets of experiments that satisfy 
some given pattern parameters are searched. These patterns can be found in a 
computationally efficient and exhaustive manner by algorithms that avoid 
searching the complete combinatorial space of possible patterns (46). Each pat-
tern can be assigned a p-value, and the selected genes are the union of all the 
genes that participate in at least one statistically significant pattern. Thus, 
Genes@Work is an approach validated by statistical significance. 
 All of the methods presented in this section are interesting in that they inter-
rogate the data from different perspectives. In this sense, a method can rescue as 
positives those genes that may have been left off as false negatives by other 
methods. We will explore the value of combining different gene selection meth-
ods in the following section. 

3. COMBINING SELECTION METHODS PRODUCES A 
RICHER SET OF DIFFERENTIALLY EXPRESSED GENES

 In this section we describe the application of a combination of gene selec-
tion methods to identify interesting genes in lymphoma data. In particular, we 
seek genes that differentiate between two types of lymphomas: diffuse large B-
cell lymphoma (DLBCL, the most common lymphoid neoplasm) and follicular 
lymphomas (FL). FL is frequently characterized by a transformation to DLBCL, 
and therefore a comparative study of the gene expression profiles of these two 
lymphomas has been considered in the recent literature (47,48). In this section 
we compare the gene expression profile of these two cancers to exemplify the 
use of a combination of gene selection techniques. 
 Gene expression data for FL and DLBCL have been analyzed by Whitehead 
Institute (WI) researchers in (49), where the 50 largest and positive scoring 
genes (genes more expressed in DLBCL than in FL) and the 50 largest and 
negative scoring genes (genes less expressed in DLBCL than in FL) were se-
lected using the signal-to-noise ratio method (SNR) described in §2.2.1. Each of 
these 100 genes appear to have a statistical significance better than 1% when its 
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SNR was assessed against the distribution of the SNRs of a similarly ranked 
gene in 500 class-label permutation experiments (see (49) and supplementary 
materials). We will use these 100 genes in combination with genes arising from 
alternative gene selection methods. 
 We analyzed the same lymphoma data set considered in (49) (hereafter 
called the WI data), with t-statistics as defined in §2.2.1, to obtain the 100 best-
scoring genes according to t-score. The false discovery rate (a measure of sig-
nificance that avoids the flood of false positives arising from multiple compari-
sons that we incur in microarray experiments (50)) corresponding to these 100 
genes was estimated to be 5  10–6. This estimate is based on an assumption that 
the t-scores are normally distributed under the null hypothesis that all genes are 
similarly distributed in DLBCL and FL. This was checked by random permuta-
tion of the DLBCL and FL labels in the data. Indeed, the pooled probability den-
sity of the t-scores of all the genes after randomization of the labels has an 
average of 0.03, a standard deviation of 1.03, and a kurtosis of 3.2, indicating 
reasonable resemblance to a Gaussian distribution. The 100 genes found using 
this t-statistics have an overlap of 42 genes with the 100 best genes found in (49) 
based on the SNR. 
 Both the SNR ratio and the t-score methods choose genes on the basis of a 
univariate criterion. There may be genes whose statistical significance according 
to the SNR or t-score method is small but whose significance would be larger if 
a multivariate approach were used. To explore this possibility we applied our 
multivariate gene expression pattern discovery algorithm, Genes@Work, to 
generate groups of markers that express differentially in DLBCL and FL. We 
applied Genes@Work to the WI data.1 The union of genes that participated in at 
least one pattern with the parameters described in (46) resulted in 100 genes. 
 Figure 1 summarizes the information of the genes discovered specifically 
by each method. There are a total of 210 genes, of which only 17 were reported 
by the three methods. Genes@Work chose 52 genes that neither the SNR ratio 
nor the t-score method chose. The SNR method chose 34 genes that neither 
Genes@Work nor the t-score methods found. Similarly, the t-score method 
found 51 genes that neither of the other methods found. The fact that the 100 
most significant genes reported by each of the methods considered found genes 
that the other methods did not is the result of the specific questions with which 
each method interrogates the data. In Genes@Work, a gene must correlate with 
other genes through a pattern to be reported. On the other hand, when selected 
by SNR, each gene is considered in isolation and the overlap of its distribution 
in DLBCL and FL must be small. Finally, the sample averages in DLBCL and 
FL must differ beyond the standard error to qualify as a gene selected by the t-
statistics method. 
 The question may arise as to whether the combination of methods we advo-
cated above is really necessary. Indeed, if by slightly relaxing the threshold of 
significance of any method we could engulf most of the genes discovered by a 
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different method, then the argument that the two methods interrogate the data 
differently would be questionable. We mentioned earlier that using the t-test 
with a false discovery rate (FDR) of 5  10–6 we discovered 100 genes. Out of 
these 100 genes, 24 were also discovered by Genes@Work (Figure 1). How 
much should we relax the FDR in the t-score to engulf 90% of the genes discov-
ered by Genes@Work? The answer to this question is very telling. To get 90% 
of the genes discovered by Genes@Work using the t-score method, the total 
number of genes discovered by the t-statistics should grow to be 1,839, corre-
sponding to an FDR of 0.5. This FDR value is too permissive: at this false dis-
covery rate we expect that half of the 1,839 are false positives! Similar results 
can be reached by exploring the other comparisons. We conclude that each of 
these methods interrogate the data in its own specific way. Obviously, only 
when the methods used are sufficiently different from each other does the com-
bination of algorithms contribute novelty above the application of just one of the 
methods. 

3.1. The Intersection or the Union?

 It may be argued that the "best" genes differentiating between the 
two classes under study are the 17 genes within the intersection of all 
the methods. Even though this argument makes intuitive sense, it is not neces-
sarily true. Indeed, in each of the methods used above genes were selected under 
a relatively strict p-value, which controls the specificity but not the sensitivity of 
the method. In other words, when we are very stringent in preventing false genes 

Figure 1. Venn diagrams of the set of genes identified in the analysis of diffuse large B-cell 
lymphoma and follicular lymphoma by each of three methods: the signal-to-noise ratio (SNR), 
Genes@Work (G@W), and the t-score. The numbers indicate the number of genes in each of 
the sets. 
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from being selected, it is very likely that we will fail in terms of not allowing 
relevant genes to join our list of differentially expressing genes. A small p-value 
allows us to have a low false positive rate, but will probably make us incur a 
high false negative rate. By interrogating the data with several methods that ad-
dress distinct aspects of the data, each method can rescue as true positives the 
genes left out by the other methods as false negatives. At the same time, we can 
keep a low rate of false positives by using low p-values for each of the partici-
pating methods. The ultimate proof of the soundness of the genes selected is, 
in any case, a biological validation of the selected genes. We address that issue 
next. 

3.2. Validation of Gene Selection by Consistency with Independent Data

 It was discussed earlier on that the typical validation strategies used in gene 
selection schemes are validation-by-classification and the validation by statisti-
cal significance (§2). An interesting alternative is what we have called the vali-
dation-by-consistency method (1), in which the selected genes are validated if 
they show consistency in their behavior in a different data set (different labora-
tories and maybe different technology, but the same types of tissues). 
 In (49), for example, 30 of the 100 markers were verified as informative by 
using the gene voting scheme introduced in (22), which is a validation-by-
classification approach. All the 100 markers also passed a test of statistical sig-
nificance, and were thus validated by statistical significance. In our case we 
could state that the statistical significance of the patterns found by Genes@Work 
was stringent given that the p-value of the least significant pattern was 10–10.
However, statistical significance need not mean biological relevance. Further-
more, when we combine several methods to discover differentially expressing 
genes, the gene composite resulting from the use of the different methods lacks 
an error estimate, even if there was a clear validation approach used in each of 
the chosen methods. Thus, it is desirable to have a means by which to validate 
the composite, a task for which validation by consistency can be extremely use-
ful and telling. 
 We shall exemplify the validation-by-consistency approach in the set of 
genes found by merging the three methods described in the previous section. 
The heat map, or Eisen plot (51), of the 210 genes discovered by applying a 
combination of the t-score, the SNR, and the Genes@Work methods on the 
DLBCL/FL data generated at the Whitehead Institute can be viewed to the left 
of the yellow line in Figure 2. Two groups of genes can be easily visualized: the 
ones that overexpress in DLBCL compared to FL (mostly red in DLBCL and 
mostly blue in FL), and the ones that underexpress in DLBCL compared with 
FL (mostly blue in DLBCL and mostly red in FL). A stringent validation for 
these genes would be to check that the same neat separation is achieved in a 
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gene expression data set produced from patients with the same diseases, but us-
ing different chips, different technicians, different patients, and different labs. 
These differences are likely to break the systematic errors that can arise if ex-
periments are performed in the same lab, and the validation is therefore more 
telling about the underlying biology. 
 On the right side of the yellow line in Figure 2 we can observe how the 
genes selected using the WI data separate an independent data set, obtained in R. 
Dalla-Favera's lab at Columbia University (the CU data). This independent data 
set contains 14 DLBCL samples and 7 FL samples, and was previously used in 
(52). We can see that the CU data reproduce the gene expression profile found 
in the WI data. It is important to notice that the WI data were collected using the 

Figure 2. Heat map of the genes differentially expressed in diffuse large B-cell lymphoma data 
(DLBCL) and follicular lymphoma data (FL). Each row corresponds to a different gene, 
whereas each column is a different patient. For each gene, blue indicates downregulation and 
red upregulation. For gene selection we used a combination of the SNR, t-score, and 
Genes@Work methods. The data used for gene selection were produced at the Whitehead 
Institute (WI) (49) and are drawn to the left of the yellow line. The genes upregulated an down-
regulated in DLBCL vs. FL in the WI data show a consistent behavior in an independent data 
set produced at Columbia University (CU) (52), as seen in the heat map to the right of the 
yellow line. 
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Affymetrix GeneChip® HUGeneFL array, which predates the Hu95Av2 Affy-
metrix GeneChip® array used for the collection of the CU data. The last one is 
not just an anecdotic comment. The fact that different GeneChip® arrays were 
used in the comparison (different in gene probes, location of probes in the chip, 
number of probes, etc.) and yet a highly similar behavior was obtained in the CU 
data using the genes selected from the WI data is indicative that the composite 
of genes selected using different methods is biologically relevant in that it con-
tains reproducible information about the DLBCL and FL phenotypes. The se-
lected genes are not a statistical artifact.
 The qualitative validation of the genes selected in the WI data and tested in 
the CU data revealed by Figure 2 needs to be complemented by a quantitative 
assessment of the likelihood that this similarity occurs by chance. We can esti-
mate the statistical significance of the comparison by counting the number of 
consistent genes across the two data sets. We say that a gene is consistent if the 
sign of the difference of the average expression in DLBCL and FL is the same in 
both data sets. A p-value for the number of consistent genes can be estimated as 
the probability that the same or a larger number of genes found to be consistent 
in the two data sets will be found consistent if the genes are chosen at random. 
This p-value can be calculated from a binomial distribution with a probability 
parameter equal to 0.5 (i.e., the null hypothesis assumes that in the CU data set 
each gene had equal probability of overexpressing or underexpressing in 
DLBCL vs. FL). The p-value of the consistency for these selected features 
across these two data sets can be computed independently for the genes upregu-
lated in DLBCL vs. FL, those downregulated, and the full set of genes. The re-
sults are shown in Table 1, where we can see that the resulting p-values are 
extremely small. Notice that this validation is neither a validation by statistical 
significance within the same data set nor a validation by classification. It is 
something in between those two validation schemes, in which a test data set is 
assessed for consistency with a training data set. From Table 1 we conclude that 
the gene expression profile identified by the three methods is highly reproduci-
ble in an independent data set. Indeed, out of the 210 selected genes, 184 (88%) 
showed a consistent behavior in the CU data set. This high percentage of coinci-
dence is extremely unlikely to be found purely by chance, and confirms the in-
formative nature of the genes selected by our gene selection methods. 

4. GENE EXPRESSION ARRAYS CAN BE USED FOR 
DIAGNOSTICS: A CASE STUDY

 The practice of both combining gene selection methods on the one hand, 
and of validating the selected genes across laboratories on the other, will likely 
be used frequently in the future. This is bound to be the case because of the 
existence of more available data sets on the same types of tissues in the public 
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domain, and because of the meaningful nature of the exercise. Testing in an in-
dependent data set the genes selected in our data is basically a way to do diag-
nostics. In other words, if we trust our methods of data mining, and the gene 
expression array technology, then the genes found to express differentially in a 
data set can be used as markers for diagnosis. If the chosen genes are truly in-
formative about the disease under study, one should in principle be able to de-
cide whether an array with a sample from a previously unseen subject corre-
sponds to an individual affected by the disease or to a healthy individual. In this 
section we will present proof that this can be successfully done. 
 In (45), we used univariate and multivariate methods to discover genes that 
differentiate between chronic lymphocytic leukemia (CLL) patients and normal 
B cells. CLL is the most common leukemia in the United States and is a signifi-
cant cause of morbidity and mortality in the older adult population. The underly-
ing cause of CLL, however, remains unknown. In this regard, gene expression 
profiling has been used successfully by a variety of investigators to discover 
genetic differences between tumor cells and normal counterpart cells (45,52,53). 
This information is proving to be very useful in understanding tumor cell biol-
ogy. In (45), Affymetrix Hu95A GeneChips were used to profile the gene ex-
pression from 38 CLL patients and from 10 healthy age-matched individuals to 
identify key genetic differences between CLL and normal B cells. The univari-
ate methods selected 37 gene probes, whereas the multivariate method yielded 
54 gene probes. Only 10 of the 81 total probes were identified in com- 

Table 1. Consistency of the expression levels for the genes selected 
from the Whitehead Institute (WI) data in the Columbia University 

data (CU) corresponding to Figure 2 

                                                                  No. of genes           No. of genes 
                                   No. of genes           consistent in           inconsistent 
     Profile                     in WI data              in CU data             in CU data               p-value 

DLBCL up/ 129 115 (89%) 14 (11%) 1  10–20

  FL down 

FL up/ 81 69 (85%) 12 (15%) 6  10–11

  DLBCL down 

Overall 210 184 (88%) 26 (12%) 5  10–30

  profile 

Three groups of genes are considered: those that are upregulated in diffuse large B-cell 
lymphoma (DLBCL) over follicular lymphoma (FL), those with the opposite behavior, 
and the union of the previous two sets. 88% of the genes selected from the WI data show 
a consistent behavior in the CU data. The likelihood that this occurs by chance is ex-
tremely low, as shown in the p-value column. 
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mon by the two methods. This indicates that each of these methods interrogates 
the data in specific and different ways, as was discussed at length in a different 
example from the previous section. 
 The results of the analyses referred to above are shown in the colored ma-
trix to the left of the yellow line in Figure 3, where we show an Eisen plot with 
the 81 probes (72 unique genes) and their differential expression in the 
CLL/control data collected in the Mayo Clinic (45) (the Mayo data). In Figure 3 
the genes and the patients are ordered according to a hierarchical clustering or-
ganization. The differential behavior of these genes in the CLL cases and normal 

Figure 3. Identification of genes differentially expressed in CLL and normal B cells. Each row 
corresponds to a different gene, whereas each column is a different patient. The data to the left 
of the yellow line represent the supervised cluster analysis of 38 control CLL samples and 10 
CLL samples using a combination of gene selection methods in data collected at the Mayo 
Clinic (Mayo data) (45,46). Rows correspond to genes and color changes within a row indicate 
expression levels relative to the average of the sample population (blue and red are low- and 
high-expression levels, respectively). The data to the right of the yellow line represent 10 con-
trols and 21 CLL patients studied in a Columbia University (CU data) (45,52,53). The genes 
identified in the Mayo data that discriminate between normal B and CLL cells also discrimi-
nate normal B from CLL cells in the CU data. 
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controls is conspicuous. However, the fact that these markers clearly separate 
CLL patients from normal subjects in the Mayo data is expected given that these 
genes were specifically selected to separate cases from controls in this data set.
A much more stringent verification of whether these markers express differen-
tially in CLL versus control would be to establish an equivalent differential ex-
pression in a completely independent data set. The study of Klein et al. (52) 
(performed in R. Dalla-Favera's laboratory at Columbia University) provides 
such an independent data set, the Columbia University (CU) data. The colored 
matrix to the right of the yellow line in Figure 3 clearly shows that the 81 probes 
found to differentially express in the analyses of the Mayo data have the same 
qualitative behavior in the CU data. The fact that the majority of the genes that 
underexpress in CLL versus control (as well as the genes that overexpress in 
CLL versus control) in the Mayo data also do so in the CU data is a definitive 
indication of the informative nature of these genes in the context of CLL. This is 
not only a biological validation that the genes that arose from the gene selection 
algorithms are truly differentially expressed in CLL with respect to control, but 
also serves to validate the reproducibility of the DNA array technology. As 
stressed in the previous section, this kind of validation, which we called valida-
tion by consistency, is likely to become much more widespread as more gene 
expression data produced in different laboratories pertaining to the same 
case/control studies become available. 
 The previous discussion naturally leads to the question of whether the gene 
expression values of these 81 probes can be used to create a diagnostic method 
to determine whether or not a subject is affected by CLL. The idea in this case is 
to create a decision rule based on the gene expression values of these 81 probes. 
The flourishing field of machine learning (54,55) provides a number of tech-
niques to determine decision rules. Many of these learning techniques have been 
applied to gene expression research. Among them we can mention nearest-
neighbor classifiers (e.g. (14)), neural networks (e.g. (56)), and support vector 
machines (e.g. (57)). The latter has proved to be a very powerful method for 
separating two classes. In addition, it has an intuitive geometrical interpretation. 
 We shall use a support vector machine classifier to show that the disease 
state of the subjects in the Columbia data can be perfectly predicted using the 
Mayo data. Let us briefly explain how support vector machines operate. Figure 
4a exemplifies a two-dimensional space, and in it we have two classes of points: 
the cases (solid circles) and controls (open circles). In its simplest conception, a 
support vector machine will attempt to compute a line that perfectly separates 
the cases from the controls, and whose distance to the closest point (or points) in 
each class is maximal (the optimal hyperplane). If this hyperplane exists the 
problem is said to be linearly separable, but this need not be the case in general. 
Some additional constraints are necessary if the problem is not linearly separa-
ble (58), but we shall not discuss them in this chapter. Once the optimal hyper-
plane has been found in the training set (in our case, the Mayo data), then we 



694 G. A. STOLOVITZKY 

have a decision rule, which simply states that new points that fall in the region 
where the cases (respectively, controls) fell in the training set will be deemed to 
belong to the class of cases (respectively, controls). This is illustrated in Figure 
4b, where an independent validation data set is plotted. If we use the optimal 
hyperplane as the decision boundary, we can count that two cases fall on the 
control side, whereas one control falls on the case side. In the example of Figure 
4b, we have a false positive (FP) count of one (one control deemed to be a case) 
and a false negative (FN) count of two (two cases deemed to be controls). Simi-
larly, the number of true positives (TP) is 10 (i.e., ten cases deemed to be cases), 
and the number of number of true negatives (TN) is 12 (controls deemed to be 
controls). 
 We created a decision rule using the Mayo data (similar to Figure 4a, but in 
81 dimensions), and then applied it to the CU data as a validation set (as sche-
matized in Figure 4b). When trained on the Mayo data, the support vector ma-
chine will attempt to find an 80-dimensional hyperplane that divides the 81-
dimensional space into two sides, leaving all the case points on one side of the 
plane and all the control points on the other side. The genes selected for the 
Mayo data allowed us to find an optimal hyperplane that perfectly separates the 
Mayo data, i.e., the Mayo data are linearly separable. When we apply the deci-
sion boundary learned from the Mayo data to the Columbia data, we find that all 
the Columbia subjects are perfectly classified, that is, all the CLL patients seg-
regate to the same side of the plane as the CLL patients in the Mayo Clinic. In 
like manner, all the control subjects fall on the other side of the plane. (This 
classification task was performed within the environment of the Genes@Work 
software.) This perfect classification indicates that the group of genes selected 
by our gene selection algorithms contains enough information to determine the 
status of health of a previously unseen patient. 

Figure 4. Schematic of the way support vector machines operate. (a) A set of points belonging 
to two classes (cases or controls) are used to create a decision boundary (the optimal separating 
hyperplane, diagonal line) that optimally separates between the two classes. (b) A validation 
set of previously unseen examples is classified on the basis of the decision boundary calculated 
using the training set. The points that fall below the optimal hyperplane are deemed to be con-
trols, and those that fall above are deemed to be cases. 
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 The fact that the disease state from the Columbia subjects could be pre-
dicted without error should not be taken lightly. This is a case in which the train-
ing data was taken in an institution, and the validation data was taken from 
another setting. This makes the set of patients have different ethnic and geo-
graphical backgrounds, the gene expression chips correspond to different 
batches, the protocols followed for the gene expression assay differ, and the 
technicians doing the work have different styles. The fact that we could do per-
fect diagnosis on the Columbia subjects in spite of these differences constitutes 
proof of the principle that this set of genes can be used as markers in a gene ex-
pression-based diagnostics procedure. 

5. DISCUSSION AND CONCLUSIONS

 Transcription data comprise only the tip of the iceberg of the highly com-
plex cellular systems that translate chemistry into life. Even so, gene expression 
data have a very intricate structure that requires sophisticated tools for its study. 
Experimental noise in gene expression data makes it necessary to measure a 
large number of samples to increase the statistical power of the analyses to 
"fish" for the signal in a sea of noise. Furthermore, the signal itself contains 
variability inherent to a biological system. Thus, the potential information that 
could be extracted from gene expression experiments is hidden in the data in 
more than one way. Different algorithms that probe different facets of the data 
are needed to discover the hidden patterns and can have their place in the gene 
expression analysis tool kit, especially if each of these methods is tailored to 
look for a particular statistical order or structure in the data. The complex gene–
gene interactions that give rise to interesting cellular behavior are probably best 
captured with multivariate techniques, in which the unit of analysis is groups of 
genes rather than genes in isolation. 
 Validation of the genes selected by our algorithms can be accomplished 
using different strategies such as validation by statistical significance and valida-
tion by classification. But other methods exist that have not been sufficiently 
explored. In §3.2 we have shown that the ability of the genes determined in one 
data set to differentiate between class and control in an independent data set 
(generated in different laboratories and using different technologies) constitutes 
a rather stringent validation. 
 We advocated a multipronged approach to gene expression data analysis, 
consisting of combining different gene selection methods. There is a risk associ-
ated with this choice, as a tradeoff exists between specificity and sensitivity. By 
combining different statistical filters, we certainly accomplish higher sensitivity, 
yet in doing so we typically sacrifice specificity due to the acceptance of some 
outcomes that otherwise would have been excluded. This is a classic dilemma in 
statistics that can only be resolved in terms of the application context. For in-
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stance, if we are seeking a set of diagnostic markers we should probably look for 
a small yet robust set of genes that strongly differentiates between case and con-
trol. This is the basis for DNA array-based diagnostics, of which we gave a suc-
cessful example in the previous section. In this context, if we keep adding 
markers, the performance of the classification will eventually deteriorate. How-
ever, if we are interested in discovering biological processes that behave differ-
entially between case and control populations, we should probably be rather 
encompassing in our differentiating features. 
 The lists of genes generated by gene selection methods will have to be or-
ganized with the help of literature search techniques, ontologies, or other 
sources of biological information. These lists will likely trigger hypothesis-
driven research, which will give rise to a more mechanistic understanding of 
basic biological processes and of the ways in which these cellular processes are 
affected in disease. 
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7. NOTE
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A key problem in medical science and genomics is that of the efficient storage, process-
ing, and retrieval of genetic information and material. This chapter presents an architec-
ture for a Biomolecular Database system that would provide a unique capability in 
genomics. It completely bypasses the usual transformation from biological material (ge-
nomic DNA and transcribed RNA) to digital media, as done in conventional bioinformat-
ics. Instead, biotechnology techniques provide the needed capability of a Biomolecular 
Database system without ever transferring the biological information into digital media. 
The inputs to the system are DNA obtained from tissues: either genomic DNA, or re-
verse-transcript cDNA. The input DNA is then tagged with artificially synthesized DNA 
strands. These "information tags" encode essential information (e.g., identification of the 
DNA donor, as well as the date of the sample, gender, and date of birth) about the indi-
vidual or cell type that the DNA was obtained from. The resulting Biomolecular Database 
is capable of containing a vast store of genomic DNA obtained from many individuals 
(multiple army divisions, etc.). For example, the DNA of a million individuals requires 
about 6 pedabits (6  1015 bits), but due to the compactness of DNA a volume the size 
of a  conventional test tube with a few milliliters of solution could contain that entire 
Biomolecular Database. Known procedures for amplification and reproduction of the 
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resulting Biomolecular Database are discussed. The Biomolecular Database system has 
the capability of retrieval of subsets of stored genetic material, which are specified by as-
sociative queries on the tags and/or the attached genomic DNA strands, as well as logical 
selection queries on the tags of the database. We describe how these queries can be exe-
cuted by applying recombinant DNA operations on the Biomolecular Database, which 
have the effect of selection of subsets of the database as specified by the queries. In par-
ticular, we describe how to execute these queries on this Biomolecular Database by the 
use of biomolecular computing (also known as DNA computing) techniques, including 
execution of parallel associative search queries on DNA databases, and the execution of 
logical operations using recombinant DNA operations. We also utilize recent biotechnol-
ogy developments (recombinant DNA technology, DNA hybridization arrays, DNA tag-
ging methods, etc.), which are quickly being enhanced in scale (e.g., output via DNA 
hybridization array technology). The chapter also discusses applications of such a Bio-
molecular Database system to various medical sciences and genomic processing capabili-
ties, including: (a) rapid identification of subpopulations possessing a specific known 
genotype, (b) large-scale gene expression profiling using DNA databases, and (c) stream-
lining identification of susceptibility genes (high-throughput screening of candidate genes 
to optimize genetic association analysis for complex diseases). Such a Biomolecular Da-
tabase system may provide a revolutionary change in the way that these genomic prob-
lems are solved. 

1. INTRODUCTION

1.1. Motivation: The Need for a Compact Database System for  
Storing, Processing, and Retrieving Genetic Information/Material

 Recent advances in biotechnology (recombinant DNA techniques such as 
rapid DNA sequencing, cDNA hybridization arrays [see also this volume, Part 
IV, chapter 1, by Meinhart and Wereley], cell sorters, etc.) have resulted in 
many benefits in health fields. However, these advances in biotechnology have 
also brought risks and considerable further challenges. The risks include the use 
of biotechnology for weaponry, for example, diseases (or environmental 
stresses) engineered to attack and disable military personnel. The challenges
include the difficulties associated with the acquisition, storage, processing, and 
retrieval of individual genetic information. In particular, it is apparent that the 
sequencing of the human genome is not sufficient for many medical therapies, 
and one may instead require information about the specific DNA of the diseased 
individual, as well as information concerning the expression of genes in various 
tissue and cell types. In the scenario of biological warfare, such individual-
specific information can be essential for therapies or risk mitigation (e.g., identi-
fication of individuals likely to be susceptible to a particular biological attack). 
To do this, there must be a capability to store this biological information, and 
also a capability to execute queries that identify individuals who contain certain 
selected subsequences in their DNA (or transcribed RNA). Hence, what is 
needed is essentially a database system capable of storing and retrieving bio-
logical material and information. 
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 This biological information is quite data-intensive; the DNA of a single 
human contains about 6 gigabits of information, and the number of genes that 
potentially may be expressed may total approximately 30,000 (up to 15,000 
genes may be expressed in each particular cell type, and there are thousands of 
cell types). The DNA of a single individual contains about 3  109 bases, which 
(with 4 bases) is 6  109 bits. The DNA of a million individuals (e.g., a large 
military force) therefore requires 6 pedabits (a pedabit is 1015 bits). The expres-
sion information for a few dozen cell types in each of a million individuals may 
also require multiple pedabits. Although the acquisition of such a vast DNA 
databank may be feasible via standard biotechnology, the rapid transfer of the 
DNA of such a large number of individuals into digital media seems infeasible, 
due to the tedious and time-consuming nature of DNA sequencing. Even if this 
large amount of information could be transferred into digital media, it certainly 
would not be compact: current storage technologies require considerable volume 
(at least a few dozen cubic meters) to store a pedabit. Furthermore, even simple 
database operations on such a large amount of data require vast computational 
processing power (if executed in a few minutes). 

1.2. Overview of the Biomolecular Database System

 This chapter presents the architecture of a Biomolecular Database system 
for the efficient storage, processing, and retrieval of genetic information and 
material. It completely bypasses the usual transformation from biological mate-
rial (genomic DNA and transcribed RNA) to digital media, as done in conven-
tional bioinformatics. Instead, biotechnology techniques provide the needed 
capability of a Biomolecular Database system, without ever transferring the bio-
logical information into a digital media. It may provide a potentially unique and 
revolutionary capability in genomics. 

1.2.1.  DNA: An Ultra-Compact Storage Media

 The storage media of this database system is comprised by the strands of 
DNA, which are (in comparison to RNA) relatively stable and non-reactive: they 
can be stored for a number of years without significant degradation. In particu-
lar, the genetic information can be stored in the form of DNA strands containing
fragments of genomic DNA as well as appended strands of synthesized DNA 
("information tags") encoding information relevant to the genomic DNA. This 
Biomolecular Database is capable of containing a vast store of genomic DNA 
obtained from many individuals (e.g., multiple divisions of an army). We can 
provide the store with a redundancy (i.e., a number of copies of each DNA in the 
database) that ranges from a few hundred or thousand downwards to perhaps 10, 
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as the stringency of the methods increase. As mentioned above, the DNA of a 
million individuals contains 6 pedabits, but due to the compactness of DNA a 
volume the size of a conventional test tube can contain the entire Biomolecular 
Database. A pedabit of information can be stored (with tenfold redundancy) in 
less than a few milligrams of dehydrated DNA, or when hydrated may be stored 
within a test tube containing a few milliliters of solution. 

1.2.2.  Construction of the Biomolecular Database System

 The inputs to the system are DNA obtained from tissues: either ge-
nomic DNA, or reverse-transcript cDNA obtained from mRNA expressed from
the DNA of a particular cell type. The Biomolecular Database is constructed as 
follows: 

a.  The input DNA strands are first fragmented, e.g., they may be par-
tially digested into moderate-length sequences by the use of re-
striction enzymes. We describe a variety of methods for frag-
mentation protocols, and compare them by their distribution of 
strand lengths, and the predictability of the end sequences of the 
fragmented DNA. 

b. The DNA are then tagged with artificially synthesized DNA 
strands. These "information tags" encode essential information 
(e.g., identification of DNA donor, as well as the date of the sam-
ple, gender, date of birth) about the individual or cell type that the 
DNA was obtained from. These "information tags" are represented 
by a sequence of distinct DNA words, each encoding variables 
over a small domain. We describe and test tagging protocols based 
on primer extension and utilizing the predictability of the end se-
quences of the fragmented DNA. 

1.2.3.  Processing Queries in the Biomolecular Database System

 The chapter then discusses how to execute queries on the resulting Bio-
molecular Database. The system makes use of biomolecular computing (also 
known as DNA computing) methods to execute these queries, including the exe-
cution of parallel associative search queries on DNA databases, and the execu-
tion of logical operations using recombinant DNA operations. We also describe 
the use of conventional biotechnology (recombinant DNA technology, DNA 
hybridization arrays, DNA tagging methods, etc.), for example, output is via 
DNA hybridization array technology. 
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 These queries include retrieval of subsets of the stored genetic material, 
which are specified by associative queries on the tags and/or the attached 
genomic DNA strands, as well as logical selection queries on the tags of the 
database. These queries are executed by applying recombinant DNA operations 
on this Biomolecular Database, which have the effect of selection of subsets of 
the database as specified by the queries. We describe two distinct methods for 
processing logical queries: a surface-based primer-extension method, as well as 
a solution-based PCR method. Query processing is executed with vast 
molecular-level parallelism by a sequence of biochemical reactions requiring a 
length of time that remains nearly invariant with respect to the size of the 
database up to extremely large numbers (e.g., up to 1015). This is because the key 
limitation is the time for DNA hybridization, which is done in parallel on all the 
DNA. Output of the queries would be accomplished via DNA hybridization 
array technology. 

1.2.4.  Computer Simulations and Software

 We describe computer simulations and software that can be used for the 
analysis and optimization of the experimental protocols. In particular, we de-
scribe the use of computer simulations for the design of hybridization targets for 
readout of information tags and SAGE tags by microarray analysis. We also 
discuss the scalability of these methods to do logical query processing within 
Biomolecular Databases of various sizes. 

1.2.5.  Applications

 The chapter also discusses applications of a Biomolecular Database system 
to provide various genomic processing capabilities, including: (a) rapid identifi-
cation of subpopulations possessing a specific known genotype, (b) large-scale 
gene expression profiling using Biomolecular Databases, and (c) streamlining 
identification of susceptibility genes: high-throughput screening of candidate 
genes to optimize genetic association analysis for complex diseases (see, e.g., 
this volume, Part III, section 6, on cancer). Such a Biomolecular Database sys-
tem provides a revolutionary change in the way that these genomic problems can 
be solved, with the following advantages: (i) avoidance of sequencing for con-
version from genomic DNA to digital media, (ii) extreme compactness and port-
ability of storage media, (iii) use of vast molecular parallelism to execute 
operations, and (iv) scalability of the technology, requiring a volume that scales 
linearly with the size of the database, and a query time that is nearly invariant of 
that size. These unique advantages may potentially provide a number of oppor-
tunities for a variety of applications beyond medicine, since they also impact 
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defense and intelligence in the biological domain. Applications discussed in-
clude reasonable scenarios in (a) medical applications (e.g., in oncology, rapid 
screening, among a selected set of individuals, for expressed genes characteristic 
of specific cancers; see also preceding chapter 2 by Stolovitzky), (b) biological 
warfare (e.g., for biological threat analysis, rapid screening of a large selected 
set of personnel for possible susceptibility to natural or artificial diseases or en-
vironmental stresses, via their expressed genes), and (c) intelligence (e.g., identi-
fication of an individual, out of a large selected subpopulation, from small 
portions of highly fragmented DNA). 

1.3. Organization of the Chapter

 In this section we have provided a brief medical science motivation for a 
Biomolecular Database system, and a brief overview of the system. In §2 we 
briefly discuss relevant conventional biotechnologies and briefly overview the 
biomolecular computing (also known as DNA computing) field. In §3 we de-
scribe in detail our Biomolecular Database system. In that section we make use 
of various relevant biomolecular computing methods, including the use of word 
designs for synthetic DNA tags, execution of parallel associative search queries 
on DNA databases, and the execution of logical operations using recombinant 
DNA operations. In §4 we discuss a number of genomic processing applications 
of Biomolecular Database systems. In §5 we conclude with a review of potential 
advantages of Biomolecular Database systems. 

2. REVIEW OF BIOTECHNOLOGIES FOR GENOMICS AND THE 
BIOMOLECULAR COMPUTING FIELD

2.1. Conventional Biotechnologies for Genomics

 There have been considerable commercial biotechnological developments 
in the last few decades, and many further increases in scale can reasonably be 
expected over the next five years. For example, the DNA hybridization array 
technology developed by Affymetrix Inc. (the capability is currently up to 
400,000 output spots, and within 5 years a projected 1,000,000 outputs) can be 
adapted for output of queries to conventional optical/electronic media. Other 
biotechnology firms (e.g., Genzyme Molecular Oncology Inc.) have developed 
competing biotechnologies. 

2.1.1.  Genomics

 In the research field known as genomics, there are a number of main areas 
of focus, each with somewhat different goals. These include: 
 1. DNA sequencing. Sequencing is the determination of the specific base 
pair sequence making up the DNA. This tells us all the possible genes that a 
given organism may express—its genetic makeup. In conventional bioinformat-
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ics, it is generally assumed that the genes discussed have been previously se-
quenced and placed in a computer database. 
 2. Gene expression analysis. Expression analysis attempts to determine 
which genes are being expressed in a given tissue or cell type at a specific mo-
ment in time. The objective, to identify all the genes that are being expressed, is 
challenging because of the great complexity of the mixture of mRNA being ana-
lyzed—each cell may express as many as tens of thousands of genes. SAGE 
Tagging and cDNA hybridization arrays, as discussed below, are techniques for 
determining comprehensive gene expression data for a given cell type or tissue. 
The technique of differential expression analysis compares the level of gene 
expression between two different samples. Variations in the level of expression 
of individual genes or groups of genes can provide valuable clues to the underly-
ing mechanism of the disease process. There are a number of methods currently 
used to obtain comprehensive gene expression data. 
 a. cDNA hybridization arrays. A cDNA hybridization array is composed of 
distinct DNA strands arrayed at spatially distinct locations. A cDNA hybridiza-
tion array operates by hybridizing the array with fluorescent-tagged probes made 
from mRNA, which anneal to its DNA strands. This generates a fluorescent im-
age-defining expression, which provides a very rapid optical readout of ex-
pressed genes. However, cDNA hybridization arrays are generally manufactured 
for use with a given set of expressed genes, for example, those of a given 
cell type. The design and manufacture of cDNA hybridization arrays for a 
given expression library of a size over 10,000 can be quite costly and lengthy. 
Affymetrix has recently developed an oligonucleotide array, known as a Univer-
salChip, that is not specialized to any gene library; it consists of 2000 unique 
probe sequences that exhibit low cross-hybridization and broad sampling of se-
quence space It can be used with fluorescent-tagged probes made from DNA 
rather than mRNA. This technology can be used for output in a Biomolecular 
Database system. 
 b. Serial analysis of gene expression (SAGE) is a technique for profiling the 
genes present in a population of mRNA. By the use of various restriction en-
zymes, SAGE generates, for each mRNA, a 10-base tag that usually uniquely 
identifies a given gene. In the usual SAGE protocol, the resulting SAGE tags are 
blunt-end ligated together and the results are sequenced. The sequencing is 
faster than sequencing the entire set of expressed genes because the tags are 
much shorter than the actual mRNA they represent. Once sequencing is com-
plete, the tag sequences can be looked up in a public database to find the corre-
sponding gene. Using the sequence data and the current UniGene clusters, a 
computer processing stage determines the genes that have been expressed. 
SAGE can be used on any set of expressed genes and it is not specialized to a 
particular set. This technology can be adapted for use for additional information 
tags appended to the DNA in a Biomolecular Database. Genzyme Molecular 
Oncology Inc. is the developer of this SAGE technology. 
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 c. Differential expression analysis is a technique for finding the difference 
in gene expression, for example, between two distinct gene types. Lynx Thera-
peutics Inc. has developed a randomized tagging technique for differential ex-
pression analysis. The randomized tagging techniques of Lynx Therapeutics 
may be adapted to determine the difference between two Biomolecular Database 
subsets. 

2.2. Relevant Biomolecular Computing Techniques: Biomolecular  
Computing

 In the field known as Biomolecular Computing (and also known as DNA 
Computing), computations are executed on data encoded in DNA strands, and 
computational operations are executed by use of recombinant DNA operations. 
Surveys of the entire field of DNA-based computation are given in (50,52). 
 The first experimental demonstration of Biomolecular Computing was of-
fered by Adleman (1), who solved a small instance of a combinatorial search 
problem known as the Hamiltonian path problem. Considerable effort in the 
field of Biomolecular Computing methods has been made to solve Boolean sat-
isfiability problems (SAT) problems, that is, the problem of finding Boolean 
variable assignments that satisfy a Boolean formula. Frutos and colleagues (24), 
Faulhammer et al. (23), and Liu et al. (37) applied surface-chemistry methods 
and Pirrung et al. (47) improved their fidelity. Adleman's group (11) recently 
solved an SAT problem with 20 Boolean variables using gel-separation meth-
ods. While the 20 Boolean variables size problem is impressive, Reif (52,53) has 
pointed out that the use of Biomolecular Computing to solve very large SAT 
problems is limited to at most approximately 80 variables, so is not greatly scal-
able in terms of number of variables. 
 The use of Biomolecular Computing to store and access large databases, in 
contrast, appears to be a much more scalable application. Baum (7) first dis-
cussed the use of DNA for information storage and associative search; Lipton 
(36) and Bancroft and coworkers (6) also discussed this application. Reif and 
LaBean (54) developed and Reif et al. (55) experimentally tested the synthesis 
of very large DNA-encoded databases with the capability of storing vast 
amounts of information in very compact volumes. Reif et al. (55) tested the use 
of DNA hybridization to do fast associative searches within these DNA data-
bases. Reif (50) also developed theoretical DNA methods for executing more 
sophisticated database operations on DNA data, such as database join operations 
and various massively parallel operations on the DNA data. Gehani and Reif 
(27) investigated methods for executing DNA-based computation using micro-
fluidics technologies. In addition, Gehani et al. (28) describe a number of meth-
ods for DNA-based cryptography and countermeasures for DNA-based 
steganography systems as well as discuss various modified DNA steganography 
systems that appear to have improved security. Kashiwamura and colleagues 
(34) describe the use of nested PCR to do hierarchical memory operations. 
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Suyama et al. (60) and Sakakibara and Suyama (59) have developed biomolecu-
lar computing methods for gene expression analysis. Garzon and colleagues (25) 
recently analyzed the efficiency and reliability of associative search in DNA 
databases, and Chen and colleagues (13) discussed DNA databases with natural 
DNA based on the prior work of Reif et al. (55) and the present work. 

3. A BIOMOLECULAR DATABASE SYSTEM

3.1. Overview

 The inputs to the system are natural DNA obtained from tissues: either ge-
nomic DNA or reverse-transcript cDNA obtained from mRNA expressed from 
the DNA of a particular cell type. A short piece of synthetic DNA is added to 
each natural DNA strand. This piece of synthetic DNA, called an information 
tag, is used to code information about the original piece of DNA. This informa-
tion can include the age or gender of the person from whom the DNA came, or 
the clinical symptoms of individuals suffering from a disease. In a typical appli-
cation, the Biomolecular Database consists of a mixture of DNA strands from 
many different people (or other organisms). This Biomolecular Database system 
is capable of storage, processing, and retrieval of genetic information and mate-
rial. Individual molecules of DNA in the Biomolecular Database can be selected 
and removed from the mixture on the basis of the information encoded in their 
information tag. This chapter describes several innovative biological applica-
tions for Biomolecular Databases; in particular, we discuss the application of our 
Biomolecular Database system to a number of genomic information processing 
applications. 

3.2. Biological Inputs

 The inputs to the system are DNA obtained from tissues. This input DNA is 
typically either (i) genomic DNA, or (ii) reverse-transcript cDNA obtained from 
mRNA expressed from the DNA of a particular cell type. (To ensure stability 
and non-reactivity, we suggest that the database be composed of DNA rather 
than RNA.) 

3.3. Preprocessing the DNA

 Biochemical operations can be used to partially digest the DNA by restric-
tion enzymes (ensuring the resulting DNA strands are of modest size), and then 
label the resulting genomic DNA fragments with synthetic DNA information 
tags. 
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3.3.1.  Fragmentation of the input DNA 

 The creation of a Biomolecular Database must involve some degree of 
fragmentation of genomic DNA. While this may at first seem a very simple step, 
it is in fact critical to later processing that this fragmentation step be done in a 
highly controllable way. We describe several methods to produce DNA strands 
of the desired length. The methods are required to produce a predictable distri-
bution of lengths, and to ensure that at least one of the resulting ends has a de-
fined sequence. 
 a. Mechanical shearing. This is a method that produces a certain size distri-
bution; however, it is not so useful in our context since the resulting ends have 
undefined sequences. 
 b. Reagent-less methods to create breaks. Pirrung, Zhao, and Harris (48) 
developed a nucleoside analogue whose backbone can be cleaved by long-
wavelength UV light, and specific photocleavable T analogues could be used 
(analogous to the dUTP method). However, again it is not so useful in our con-
text since the resulting ends have undefined sequences. 
 c. Controlled digestion of high-MW DNA by DNAse I. This is another 
method that can be used to produce DNA of a specific size range. It relies on 
careful monitoring of reaction progress and does not produce specific sequences 
at the ends of the fragments to enable ligation or PCR processes. 
 d. Digestion of DNA with restriction endonucleases. This offers the advan-
tage that known sticky ends are generated. 
 e. "Rare Cutting" endonucleases. These can be used to produce DNA frag-
ments of larger size. The recognition sequence of such enzymes is as large as 8 
bp, meaning that, on average, DNA is cut to 1/(0.258) or 65 kb. In many situa-
tions fragments larger than 65 kb may be desired; for example, complicated loci 
with many introns might comprise as much as 100 kb, and that is just for one 
gene.
 f. PCR methods for fragmentation. One attractive alternative is to use PCR. 
Random-primed PCR has been used to amplify the whole genome of a single 
sperm (4,35,67). The challenge in using this strategy is to create long amplicons. 
In principle, amplicon size in random-primed PCR is a function only of the av-
erage distance between two inward-facing hybridized primers, which is then a 
function only of the primer concentration and temperature. Modest flexibility 
exists in the hybridization temperature in PCR, so a fruitful strategy to make 
long amplicons is to lower the primer concentration. In order to efficiently am-
plify with a low primer concentration, the primers should have a high melting 
temperature (Tm). Increasing length and G/C content increase primer Tm. Ran-
dom-primed PCR can therefore be examined with novel conditions and primer 
designs to maximize the amplicon length. Lengthening the random primers by 
oligonucleotide synthesis is straightforward. Making the primers G/C-rich is 
challenging, as G/C-rich templates are known to be more difficult to amplify 
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owing to increased secondary structure. Substitution of nonstandard bases such 
as deazaG for G alleviates this difficulty. 
 g. UV-sensitive nucleoside analogues in cell growth for fragmentation. An-
other approach is to grow immortalized lymphoblast cell lines in the presence of 
UV-sensitive nucleoside analogues Pirrung et al. (48). These analogues can be 
incorporated into the DNA of the cells, which could subsequently be cleaved by 
exposure to UV light. The concentration of the analogues determines the fre-
quency of their incorporation, and the size of the resulting fragments. 

3.4. Creation of the Tagged Biomolecular Database

 These DNA tags are composed of a concatenation of short subsequences, 
which encode scalar data values. For example, the information tags may contain 
the individual's unique ID and the cell type (in the case of reverse-transcript 
cDNA obtained from the RNA expressed by a particular cell type) of the ge-
nomic DNA and may also encode other useful information (e.g., sex and birth-
date of the individual). The tagging can be done using known methods, for 
example, a primer-extension reaction, using the fact that one of the ends of the 
genomic cDNA can be predicted by the use of the appropriate initial fragmenta-
tion process, and further designing the tags with ends complementary to these 
sticky ends resulting from the fragmentation process. The resultant database 
elements have tags on each 5'- and 3'-end. This can be done so that each Bio-
molecular Database strand bears a universal amplification (primer) sequence at 
the extreme 5'- and 3'-ends. 

3.5. DNA Word Design for the Information Tags

 A key problem is the design of a lexicon of short DNA sequences (DNA 
words) for the information tags in our Biomolecular Database. (Our DNA "in-
formation tag" sequences are in general a subset of such a lexicon). Careful 
word design is crucial for optimizing error control in the queries executed within 
the Biomolecular Database. Good word design can be used to minimize un-
wanted secondary structure and to minimize mismatching by maximizing bind-
ing specificity. There are conflicting requirements on word design: as strand 
length decreases (which is desirable), the difference between distinct informa-
tion words decreases (not desirable). Prior work in DNA word design includes a 
four-base mismatch word design used for surface-based DNA computing (29), 
and Frutos et al. (24) showed that surface morphology may be an important fac-
tor for discrimination of mismatched DNA sequences. A three-base design was 
used by Cukras and coworkers (17). Evolutionary search methods for word de-
signs are described by Deaton et al. (18). Other DNA word designs are de-
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scribed by Baum (8), Deaton and colleagues (19), Mir (39), and Garzon et al. 
(25). Laboratory experiments of word designs are described by Kaplan et al. 
(33), and ligation experiments are described by Jonoska and Karl (32). Wood 
(66) considers the use of error-correcting codes for word design and to decrease 
mismatch errors. One can utilize and improve on these methods for DNA word 
design, including evolutionary search methods and error-correcting codes. Har-
temink and colleagues (30) describe an automated constraint-based procedure 
for nucleotide sequence selection in word design. In designing the DNA tags 
used in the database, one needs to determine how many residues should be used 
for each data block of the tag sequence (the tag sequence on the database strands 
binds to the probe sequence on the query strand), and then decide how many 
words are required at each block position (determined by the number of values 
available to the variable). 
 The range of possible sentences entailed by a word-block construction 
scheme is shown in Figure 1. For each block position in the sequence one word 
is chosen from the word set and synthesized on the growing DNA strand. Sepa-
rate reaction vessels are used for each word in the block, so that all word choices 
are utilized but only one is present on any particular strand. For example, the 
arrows indicate the trace that results in the sentence: word1A–word2D–
word3A–word4B. A particular bead is drawn through a particular path in the set 
of possible word choices, but all possible paths are populated with beads, so all 
possible DNA sentences are synthesized. Each bead contains multiple copies of 
a single DNA sequence that can be synthesized by the well known mix-and-split 
synthesis scheme. Figure 2 shows the scaling of library diversity with increasing 
sentence length (block count) and increasing number of available words within 
each block. Diversity is calculated by raising the word count to the exponential 
power given by block count (i.e., diversity = [word count]block count). As a simple 
example, to achieve a total diversity greater than one million with sentences 
containing 6 blocks, for example, one would require a set of 10 word choices per 
block. Also, to achieve a total diversity of 1214 with sentences containing 14 
blocks, for example, also requires a set of 12 word choices per block. In design-
ing a DNA-encoded database one must consider several important factors in-
cluding the following. (i) The overall length of the oligonucleotide sequences 
used for matching is critical because sequence length directly affects the fidelity 
and melting temperature of DNA annealing. (ii) The Hamming distance (the 
number of changes required to morph one sequence into another) is another 
critical consideration. One would like to maximize the Hamming distance be-
tween all possible pairs of encodings in the database in order to minimize near-
neighbor false-positive matching. One strategy for maintaining sequence dis-
tance is to assign block structures to the sequences with sets of allowed words 
(subsequences) defined for each block. (iii) Another important consideration is 
the choice of the words themselves and the grouping of words into sets within 
the blocks. Sentence length, desired library diversity, and word-pair distance  
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constraints all affect the choices of words in the lexicon. Word design can be 
maximized by careful design of words, the lexicon, and database elements, as 
well as experimental tuning of annealing conditions (e.g., temperature-ramp 
rate, pH, and buffer and salt concentrations). A useful tool in this task is the 
computer simulations of DNA hybridization, known as BIND, developed by 
Hartemink et al. (30). 

3.6. Additional Tagging Methods for the DNA Strands

 Various sophisticated tagging techniques have been developed by the bio-
technology industry for expression analysis and differential expression analysis.. 

Figure 1. Range of possible sentences entailed by a word-block construction scheme. 

Figure 2. Scaling of library diversity with increasing sentence length (block count) and in-
creasing number of available words within each block. 
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These include the SAGE tagging of Genzyme Molecular Oncology Inc. and the 
randomized tagging techniques of Lynx Therapeutics Inc. 
 a. Serial analysis of gene expression (SAGE) is a technique developed by 
Genzyme Molecular Oncology Inc., for profiling the genes present in a popula-
tion of mRNA. By the use of various restriction enzymes, SAGE generates, for 
each mRNA, a 10-base tag that usually uniquely identifies a given gene. In the 
standard SAGE protocol, the resulting SAGE tags are blunt-end ligated and the 
results are sequenced. Such sequencing is faster than sequencing the entire ex-
pressed genes because the tags are much shorter than the actual mRNA they 
represent. Once sequencing is complete, one may look up the tag sequences in a 
public database to find the corresponding gene. Using the sequence data and the 
current UniGene clusters, a computer processing stage determines the genes that 
have been expressed. SAGE can be used on any set of expressed genes; it is not 
specialized to any particular set. This technology can be adapted for use as addi-
tional information tags appended to the DNA in our database. 
 b. Differential expression analysis is a technique developed by Lynx Thera-
peutics Inc. for finding the difference in gene expression, for example, between 
two distinct cell types. The randomized tagging techniques of Lynx Therapeu-
tics Inc. can be adapted to determine the difference between two DNA database 
subsets. 
 c. Hybrid methods. One can modify these methods and extend them to ap-
ply to the tagged DNA strands of our database. This requires considerable 
changes in the protocols, due to unwanted hybridization that may occur as a 
result of combination of synthetic tags with genomic DNA in our database 
strands. However, these modified methods can provide further powerful capa-
bilities, for example, the capability for fingerprinting (creating short DNA tags 
that are nearly unique IDs for longer DNA strands of the database), identifica-
tion of expressed genes of selected DNA strands, and also the capability for dif-
ferential expression analysis of distinct selected subsets of the Biomolecular 
Database.

3.7. Amplification and Reproduction of Biomolecular Databases

 Once a Biomolecular Database is created, it is important to be able to accu-
rately replicate it, as it may be consumed during the course of interrogation. 
Prudence suggests maintaining each database in an archive, and querying only 
daughter databases prepared from the archival forms. Since each database mem-
ber is designed to bear a universal amplification (primer) sequence at the ex-
treme 5'- and 3'-ends, database replication can be performed using PCR. 
Because the length of the DNA strands in the database might be quite substan-
tial, including both biological DNA information and many flanking tag se-
quences, the ability to produce full-length amplicons with long templates is 
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crucial to maintaining the fidelity of the databases. "Long accurate" PCR tech-
niques (62,63), using novel thermostable proofreading polymerase enzymes 
such as Pfu, are currently capable of amplifying loci of up to ~40 kb. While 
powerful, the database design should not be limited to this length by the method 
of database replication, and it may be easier to enable PCR to produce ampli-
cons of somewhat longer length. One simply needs to enhance by a moderate 
multiple the (amplicon) length that can be reliably amplified. 
 Optimized choice of amplicons may be achieved by exploiting two princi-
ples: experimental design (9,10,21) and combinatorial chemistry (44,45). Con-
tinuous variables that affect PCR reactions include the temperature of the 
initiation (hot start), annealing, extension, and dissociation steps, and the con-
centration of buffer components, additives, nucleotides, primers, and template. 
These variables compose a multidimensional space. A pervasive challenge in 
science and technology is identifying specific values for each parameter affect-
ing multivariable processes that result in globally optimum performance and 
avoid local maxima. Commercial software enables the design of experiments 
that much more reliably and quickly lead to the global optimum. Noncontinuous 
variables that affect PCR reactions include the identity of the template, primers, 
and polymerase. An optimum combination of these molecules can be found only 
by systematic screening for each. For tractable numbers of combinations, all can 
be examined explicitly. When the diversity space expands beyond that domain, 
"indexing" techniques are available that permit optimum performers to be identi-
fied even when in a mixture with lower performers (46). A selection of variable-
length primers can be examined, including those incorporating modified bases 
(deazapurines, 2'-OMe RNA) that suppress primer consumption by dimerization. 
A selection of commercial polymerase enzyme systems can be examined, in-
cluding MasterAmp™ Taq, ThermalAce,™ Advantage-Tth,™ AdvanTaq™, and 
KlenTaq™/Pfu. A selection of templates should be examined, including whole 
viral genomes, bacterial artificial chromosomes (BACs), yeast artificial chromo-
somes (YACs), and the smallest yeast chromosome (225 kb). Analysis of the 
products of these reactions is challenging due to shearing of large DNA mole-
cules by conventional sieving matrices. Pulsed-field gel electrophoresis (12,41) 
can therefore be used with amplicons of this size. 

3.8. Associative Search in Biomolecular Databases

3.8.1.  DNA-Based Associative Search

 Eric Baum (7) first proposed the idea of using DNA annealing to do parallel 
associative search in large databases encoded as DNA strands. The idea is very 
appealing since it represents a natural way to execute a computational task in 
massively parallel fashion. Moreover, the required volume scales only linearly 
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with the database size. However, there were further technical issues to be re-
solved. For example, the query may not be an exact match with any data in the 
database, but DNA annealing affinity methods work best for exact matches. Reif 
and LaBean (54) described improved biotechnology methods to do associative 
search in DNA databases. These methods adapted some information processing 
techniques (error-correction and VQ coding) to optimize input and output (I/O) 
to and from conventional media, and to refine the associative search from partial 
to exact matches. 
 Reif and colleagues (55) developed and then experimentally tested a 
method for executing associative searches in DNA databases of encoded images, 
and this method was tested using an artificially synthesized DNA database. Prior 
to that project, the idea of using DNA annealing to do parallel associative search 
in synthetic DNA databases had never been experimentally implemented. They 
detailed a study involving the design, construction, and testing of large data-
bases for storage and retrieval of information within the nucleotide base se-
quences of artificial DNA molecules. The databases consisted of a large 
collection of single-stranded DNA molecules that was immobilized on polymer 
beads. Each database strand carried a particular DNA sequence, consisting of a 
number of sequence words drawn from a predetermined lexicon. They made a 
number of experimental databases of artificially synthesized DNA sequences 
designed for encoding digital data, scaled in increasing sizes. Each DNA strand 
of the database is single stranded, and encodes a number that provides the index 
to the database element. They used an extensive computer search for the design 
of the DNA word libraries, to ensure a significant Hamming distance between 
distinct words and allow for annealing discrimination. They constructed their 
largest synthetic databases in two phases. In the first phase they constructed an 
initial DNA database by combinatorial, mix-and-split methods on plastic mi-
crobeads. This constituted by far the largest artificially constructed synthetic 
databases of this sort. The next phase was the development of a construction 
method for much larger synthetic databases by combining pairs of the synthetic 
database strands so as to square the size of the database to approximately 1015

distinct data elements (each represented redundantly by over 10 identical strands 
of DNA). Even with this greater than tenfold redundancy, the DNA database 
using this construction method is extremely compact, and requires only 10 mil-
ligrams of DNA. 

3.8.2.  Associative Search via PCR

 PCR methods can be used for associative search queries in Biomolecular 
Databases (in particular, on the words of the tagged portions of the Biomolecu-
lar Database strands), using known and modified PCR techniques previously 
developed by Reif and coworkers (55). They describe experiments for executing 
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associative search queries within the above described synthetic DNA databases. 
Associative search queries were executed by hybridization of a database DNA 
strand with a complementary query strand. Discrimination in annealing experi-
ments was enhanced by the library design, which guaranteed a minimum Ham-
ming distance between distinct sequences. In their initial annealing experiments 
for processing associative search queries, they employed fluorescently labeled 
query strands and then performed separation of fluorescent versus nonfluores-
cent beads by Fluorescence-Activated Cell Sorting (FACS). They also experi-
mentally tested variants of conventional PCR techniques for executing 
associative search queries, and, in addition, developed a PCR technique for as-
sociative search in the pairwise constructed DNA database. 

3.8.3.  Analysis of Associative Search

 Similar error analysis and experimental testing methods can be employed in 
our proposed generalizations of this prior work (55) to tagged genomic DNA. It 
would be informative to measure rates of various search errors including: false 
positives from near-neighbor mismatches, partial matches, and nonspecific bind-
ing, as well as false negatives from limit-of-detection problems. It is desirable to 
directly measure the limits of detection, and to measure the ability to retrieve 
rare sequences within databases of high strand diversity. 

3.9. Logical Query Processing in Biomolecular Databases

 Biochemical operations can be used to execute query operations on this 
Biomolecular Database, so as to retrieve subsets of the Biomolecular Database. 
Each of the information strands of the database encodes a sequence of data val-
ues v1, v2, ..., vk, where the ith value vi ranges over a small finite domain Di (e.g., 
Di typically would range over 10 or less possible values, each encoded by a dis-
tinct fixed-length DNA sequence). Retrieval can be specified by logical queries 
on the tags of the database as well as associative queries on the attached ge-
nomic DNA strands. The associative searches can be executed by recombinant 
DNA operations, for example, variants of PCR combined with surface-
chemistry methods and/or solution-based methods. The logical queries include 
the following: (i) SELECTION—selects DNA strands of a given ID or cell type; 
and (ii) Logical SELECTION—executes logical queries that select those ge-
nomic DNA strands whose information strands satisfy a specified logical query 
formula, whose logical conjunctives include AND as well as OR. These logical 
conjunctives are applied to selective predicates of the form "Tag(i) = v", where 
Tag(i) is the ith portion of the information tag of a DNA strand of the database, 
and v is a fixed value over the domain Di. (The Boolean NOT of a selective 
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predicate of the form "Tag(i) = v" is not applied directly (since PCR and similar 
methods do not allow this) by instead applying the OR of selective predicates of 
the form "Tag(i) = u" for all possible u in Di that are not equal to v). These selec-
tion operations can be executed by the use of recombinant DNA operations, ap-
plying and improving on logical processing methods developed in the field of 
DNA computing. Furthermore, one can provide the additional operation of se-
lective amplification of the DNA populations. If these amplification operations 
are also executed, the logical selection and amplification operations result in a 
test tube whose selected DNA is vastly amplified. After the amplification proc-
ess is completed, the output strands should vastly predominate all other strands 
of the Biomolecular Database. Other database operations that can be imple-
mented by biochemical operations include database unions and limited joins 
(50).

3.9.1.  Scalability of Our Query Processing

 These operations can be executed in a scalable way. The required volume 
never grows significantly; the volume is a fixed linear function of the number of 
elements of the database. (The constant multiple here is the degree of redun-
dancy with which DNA strands are used to store database elements; we expect 
that one can allow between a few hundred and possibly as few as 10 DNA 
strands to encode a given database element.) The number of required DNA hy-
bridization steps grows only linearly with the size of the query formula. So the 
time for executing a query grows just linearly with the length of the query for-
mula, which in practice is of very modest size (as compared to the size of the 
database, which can be enormous)—say 20 or so variables. Hence the key time 
limitation is the time for DNA hybridization. But DNA hybridization time is 
nearly invariant of the size of the database even if the hybridization is execution 
on an enormous amount of DNA (up to extremely large database sizes, say 1015).
However, there are considerable technical challenges in the design of the proto-
cols—for example, biological data strands may be originally dsDNA while 
search protocols would function best with ssDNA (hence the protocols need to 
either form ssDNA or be modified appropriately). A key additional technical 
challenge in scaling the technology is the scale and number of resulting molecu-
lar biology reactions, requiring many tedious laboratory steps, particularly in the 
case of extremely large database sizes. This can be addressed by subsequent 
automation. We discuss two distinct methods for logical query processing: the 
first uses primer-extension techniques on solid support, previously developed 
(47) to solve SAT problems, and the other uses solution-based PCR amplifica-
tion techniques. The second has greater potential for scalability due to the fact 
that it is solution based (so the chemistry operates in 3D, rather than being con-
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strained to a surface). In both cases, one can apply DNA hybridization array 
technology for output of query results. 

3.9.2.  Executing Queries into the Biomolecular Database via  
 Primer-Extension Techniques on Solid Support

 A number of DNA computing researchers have developed microarray 
methods for DNA-based computing, exploiting the high fidelity of the primer-
extension reaction to detect complementarity between primer libraries of all 
solutions to SAT problems and logical queries as templates (see, e.g., the work 
of Faulhammer et al. (23) and Liu et al. (37), and also that of Pirrung et al. (47), 
which improved fidelity). Primer extension is a two-step process, involving first 
annealing of a template molecule to the primer, the efficiency of which is di-
rectly related to sequence complementarity throughout the primer/template 
complex (see Figure 3). Second, a polymerase enzyme binds to the primer/tem-
plate complex and adds a nucleotide or nucleotides complementary to the base 

t h e  b a s e 
 X, the first unpaired base at the 5'-end of the template, only when there is a per-
fect match in the last portion of base pairs of the primer/template complex. It is 
important to emphasize that while primer extension was in this case performed 
on a DNA microarray, the elementary step of a polymerase chain reaction (PCR) 
is also a primer-extension process and thus is subject to the same stringent se-
quence requirements. The variables (primers) in the SAT computation of (47) 
were composed of two portions, which can be considered the message (the last 
few bases "m" at the 3'-end of the oligonucleotide) and the address (a sequence 
of bases "a" at the 5'-end). With the base-4 encoding of DNA, a message se-
quence is capable of encoding 10 Boolean variables. For the experiment of (47) 
all addresses were the same, as only one SAT problem was being addressed. 
However, this need not be the case. Using similar designs, it is possible to de-
sign up to approximately 20 blocks of distinct address sequences, which con-

Figure 3. A primer and template used in the primer-extension method for logical queries. 
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catenated form the tag. Each of these blocks of distinct address sequences 
should exhibit no cross-hybridization under stringent conditions (a Hamming 
distance of at least 5), thereby enabling independent encoding and primer exten-
sion and therefore interrogation of up to 20 distinct attributes, each with up to 10 
scalar values. 
 Use of the primer-extension method for logical queries into the Biomolecu-
lar Database is most efficient if performed in solution rather than on a microar-
ray. This creates a challenge in terms of product detection and identification. 
The following method enables both to be accomplished. An example is pre-
sented for the fate of one molecule, though it is appreciated that all molecules in 
the library are subjected to the same process in parallel. The database member is 
a DNA molecule that has been created by the methods described earlier, with a 
biological DNA sequence flanked by one or more created tag sequences, which 
are to be the templates in a primer-extension reaction. The "bottom" strand is 
interrogated in this example. Primers with the following structure (shown in 
expanded form below the database element in Figure 4) are created to interro-
gate each tag. Complements to the address sequence in the tag/template are the 
same in each primer. Also common to each primer is a "barbed tail" in the form 
of a 5'-psoralen group. The irradiation of psoralens with long-wavelength UV is 
widely used to cross-crosslink duplex DNA (31,43,64). The message sequence 

must be unique to each variable value, meaning that up to 10 primers are pre-
pared per variable. The primer is also designed to address a unique X base in the 
tag/template to be interrogated. The primer-extension reaction is performed us-
ing a dideoxynucleotide terminator complementary to X and bearing a fluores-
cent dye with a unique and readily imaged emission spectrum. The dye color is 
specific to the variable, with the same dye/terminator being used for all interro-
gations of that variable. Multiple tags can be interrogated simultaneously be-
cause their dyes are different. The challenge at this stage is to read out the tags 
(based on the color(s) of the incorporated fluorescent dye(s)) in the context of 
the biological DNA. While the primer is still bound to the template, the psoralen 

Figure 4. Obtaining a bottom strand in single-strand form, hybridized to a cDNA microarray, 
via photochemical cross-linkage of psoralen. 
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is photochemically cross-linked to the bottom strand of the library member, pre-
serving the color of the dye. The bottom strand can then be obtained in single-
strand form, which is hybridized to a cDNA microarray (see Figure 4). The 
color(s) of the array element complementary to the biological DNA identify the 
outcome of the queries of the tag sequences connected with it. 
 This concept could be applied in a similar fashion to a sequential (nested) 
PCR process by omitting the terminators and psoralen and providing one primer 
for the top strand and one for the bottom strand in each PCR. The eventual pro-
duction of a full-length amplicon is dependent on the complementarity of each
of the primers (logical AND) with its cognate tag sequence. This approach lends 
well to the use of DNA hybridization array technology for output of query re-
sults, providing distinct special locations for distinct outputs. 
 Another approach for executing Boolean queries on a Biomolecular Data-
base is to use the gel separation-based method for SAT from Braich et al. (11), 
who succeeded in solving a 20-variable Boolean satisfiability problem. Al-
though the queries would be executed on the tag portions of the DNA strands of 
the database, it is not clear how the efficiency of these separation methods 
would be affected by the genomic portion of the DNA strands in the databases. 

3.9.3. Executing Queries in the Biomolecular Database via PCR 
Amplification Techniques

 Another approach for Logical Query Processing is to use a variant of PCR 
amplification. The goal of this query processing is to selectively amplify only 
those DNA sequences (the output strands) whose information tags satisfy a 
given logical query. After the amplification process is completed, the output 
strands would vastly predominate all other strands of the Biomolecular Data-
base. 

3.9.4.  Initialization Before Logical Query Processing

 First, operations are executed that generate, from each DNA strand in the 
database, a new strand containing a concatenation of multiple copies of the Wat-
son-Crick complement of the original strand. This can be done by a known se-
quence of routine recombinant DNA operations known as rolling circle 
replication (38). This begins by a circularization of each strand on the database, 
and then a primer-extension reaction on the circularized strand that repeatedly 
replicates the complement of the DNA strand to form a repeated sequence, fol-
lowed by denature and separation of the result. The length of the resulting DNA 
strands is predictable (via the time duration and various parameters, including 
temperature) only to a degree, but it is predictable enough to allow us to con-
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struct strands that we expect to have at least a given repeat length (as required by 
the below protocol). Recall that we have assumed that each database DNA 
strand is also redundantly represented by a number (ranging from up to a few 
thousand down to as few as 10) of identical DNA strands. This redundancy aids 
us here, since this initialization procedure results in a Biomolecular Database, 
where most of the redundant strands are lengthened by at least the given multi-
plying factor. 
 Figure 5 illustrates a scheme for processing genomic DNA into this data-
base format which might include the following steps: (i) Cleave dsDNA into 
manageable pieces. (ii) Append prefixes to both ends of both strands. Heat dena-
ture dsDNA. Anneal to circularizing oligo. (iii) Ligate ssDNA circles. (iv) DNA 
polymerase reaction with circular templates to produce linear ssDNA containing 
multiple concatenated database entries. Note that the process of converting the 
DNA into database format may have unintended effects on the representation of 
entries in the database due to uneven amplification. Artificial bias may take the 
form of variations in the number of copies present on the average strand (distri-
bution of strand lengths) or differences in the number of strands present for a 
given database entry. These protocols need to be optimized to take into account 
these possible affects. 

 Multiple copies of the database entry are required on a single ssDNA strand, 
so that when Boolean variables recorded in the prefixes (A and B in Figure 5) 
are queried by primer binding and PCR, information recorded farther out toward 
the ends of the strand is not lost by failure to be copied (PCR only amplifies 
sequence physically between primer binding sites). The goal is to keep at least a 
few copies of the prefix information internally within the database strands so 
that information is not lost to subsequent rounds of query. 

3.9.5.  Logical Query Processing Using Repeated PCR Operations

 We assume that the logical query is presented as the logical AND of a list of 
K logical clauses (each clause needs to be satisfied), where each clause consists 

Figure 5. Scheme for processing genomic DNA into database format. 
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of the logical OR of a list of literals (the literals can be Boolean variables or 
their negation), one of which needs to be satisfied. Each clause C in the formula 
is processed in turn, selectively amplifying only those DNA strands whose Boo-
lean variables satisfy at least one literal of that given clause. To do so, one adds 
PCR primers encoding the literals of that clause C and their Watson-Crick com-
plements. Then a series of primer-extension reactions are executed that replicate 
only those DNA strands (or their Watson-Crick complements) that have subse-
quences that encode one of the literals of clause C. This process, applied as a 
series of PCR cycles, thus amplifies only those DNA strands whose Boolean 
variables satisfy at least one literal of that given clause, so that they vastly pre-
dominate all other strands of the Biomolecular Database. (A technical note: on 
each cycle, the amplified strands undergo loss of the material prefixing the 
primer's location, but the initial step of concatenating to each DNA strand in the 
database multiple copies of the strand ensure that is not a problem.) After the 
process is completed for each of the clauses in turn, the output strands that sat-
isfy all the clauses would vastly predominate all other strands of the Biomolecu-
lar Database. This method for processing a logical query in the database is 
exquisitely sensitive: to get a result, one requires that the initial database have no 
more than 10 identical strands of DNA that satisfy the query. Again, DNA hy-
bridization array technology can be used for output of query results, providing 
distinct special locations for distinct outputs. 

3.9.6.  Scalability

 As discussed above, our query processing is executed with vast molecular-
level parallelism by a sequence of biochemical reactions requiring a time that 
remains nearly invariant of the size of the database up to extremely large data-
base sizes (e.g, up to 1015). This is because the key limitation is the time for 
DNA hybridization, which is done in parallel for all the DNA. 

3.10.  Management of Errors

 The logical and associative searches used to select specific molecules and 
sets of molecules from Biomolecular Databases are not 100% specific or effec-
tive. There may be several different kinds of errors: false negatives (appropriate 
DNA strands are present but not selected, either because of a lack of sensitivity 
or depletion of the relevant sequences from the database), false positives (inap-
propriate DNA strands are selected along with desired strands), errors based on 
degradation of the Biomolecular Database contents, and errors resulting from 
poorly designed queries, based on incomplete understanding of complex bio-
logical parameters. These kinds of errors can affect the results of the applica-
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tions described here. For example, false negative errors can prevent finding ex-
isting individuals with the desired genetic variant. This is less serious than a 
false positive result, which could lead to sending a nonresistant individual into a 
contaminated area, under the false belief that he is genetically protected from a 
biological agent. A similar type of error could arise from database degradation 
(as, for example, from repeated error-prone duplication of the database). This 
type of error can be easily eliminated by follow-up confirmatory screening of 
that single individual's DNA. In general, it would be best to use the Biomolecu-
lar Database for very powerful and rapid selections based on genetic informa-
tion, but then to confirm all results on individual DNA samples. This would 
require maintenance of individual stocks of DNA for each individual. This is a 
relatively large task, but well within current technology. An LIMS (laboratory 
information maintenance software) system and robotic liquid handling capacity 
are musts for this type of storage. There could also be errors of magnitude. 
These errors result from preferential amplification of one DNA strand over an-
other. This kind of error is particularly troublesome, for it would skew allele 
frequencies. It may be necessary for us to monitor the frequency and extent of 
such errors and develop Boolean search strategies that minimize them. The final 
type of error, based on an incomplete understanding of the human genome, can 
only be rectified by continued research in other fields. This type of error could 
result from incomplete knowledge of the way in which genetic variants are dis-
tributed among different racial and ethnic groups. For example, the well-
described ccr5 variant that prevents HIV infection has been detected to date only 
among white males. If one were to select for nonexistent African American fe-
males expressing this variant, one might well obtain a small number of false 
positives. This type of error could also arise from mistaken assumptions. A 
given genetic variant might protect Hispanic females from infection by a given 
biologic agent, but oriental males carrying the same variant might be fully sus-
ceptible to infection because of another independent genetic variant. 

3.11.  Computer Simulations

 Reif et al. (52,53) have made computer simulations of their methods for 
DNA-based associative search. They constructed computer software (viewable 
on the web) that provide a simulation of the entire experimental process, includ-
ing conversion of this attribute database into a DNA database using DNA chips, 
the PCR method for associative search in the DNA database (using a software 
simulation of the kinetics of DNA hybridization), and, finally, conversion of the 
result of this query (using extensions of techniques described in (55)) into con-
ventional media by use of a DNA expression array. Our computer simulation 
software to the above-described query processing provides a basis for future 
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software to simulate and optimize experimental protocols for query processing 
in Biomolecular Database systems. 

4. APPLYING OUR BIOMOLECULAR DATABASE SYSTEM 
TO EXECUTE GENOMIC PROCESSING

 There is tremendous potential to apply Biomolecular Databases to the solu-
tion of a number of biological problems. The huge amount of data provided by 
the sequencing of the human genome has outstripped many conventional meth-
ods for DNA analysis. 

4.1. Genomic Processing Applications

 We now discuss applications of such a Biomolecular Database system to 
provide key genomic processing capabilities. Three basic kinds of applications 
are discussed, which demonstrate different ways in which the massive parallel-
ism of Biomolecular Databases can be used: (1) Rapid identification of indi-
viduals either susceptible to or resistant to chemical or biological agents. We 
describe the selection of a group of DNA molecules based on a common prop-
erty, and then use the information tags to identify the individuals selected. (2) 
Large-scale gene expression profiling using Biomolecular Databases. Expressed 
genes from multiple tissues are represented in a Biomolecular Database, from 
which they can be selected individually or in groups for subsequent expression 
analysis. (3) High-throughput screening of candidate genes to optimize genetic 
association analysis for complex diseases such as heart disease or Parkinson's 
disease. Pools of individuals are selected through use of the information tags 
appended to each DNA molecule in the database. The pools so selected are then 
subjected to genetic analysis. We describe in detail these three applications that 
concern genomic information processing, and constitute important genomic 
processing applications of Biomolecular Database systems for medical science. 

4.1.1. Rapid Identification of All Individuals Possessing a Specific  
Known Genotype

 A single known genotype can confer properties making the individual either 
susceptible to or resistant to a particular chemical or biological agent found in 
the environment. It is certainly possible with existing biotechnology (e.g., hy-
bridization experiments) to screen individuals for a given genotype. This is done 
one individual at a time, and is thus a relatively slow process. In addition, the 
cost of traditional genotyping of an individual ranges from $300 to over $1,000. 



726 J. H. REIF, M. HAUSER, M. PIRRUNG, and T. LaBEAN 

(At least one genotype databank has executed genotyping of approximately 
1,000 individuals at considerable expense and time; however, for experimental 
purposes, that databank provides examples of previously executed individual 
genotyping at a cost of $0.50–1.00 per sample.) Clearly, an effort to screen a 
large number of individuals (say a million) would be slow and very expensive. 
In contrast, the methodology described herein is a selection for individuals with 
a certain genotype rather than a screen. It is correspondingly faster and less ex-
pensive. There is currently no available methodology for selection of specific 
genotypes. Many drugs that are quite effective in treating disease are very toxic 
to a small portion of the population. Currently, such drugs are removed from the 
market to avoid these rare but fatal adverse reactions. Such an approach is very 
costly from the standpoint of untreated disease. The removal of drugs from the 
marketplace because of rare fatal reactions is very costly in terms of untreated 
individuals, as well as the money spent on bringing those drugs to the market in 
the first place. Improved methods for identification of individuals at risk for 
adverse reactions would eliminate this cost. The capability of screening large 
numbers of individuals for a given genotype could also avoid a tremendous po-
tential loss of life in the event of battlefield release of biological weapons or 
chemical agents. 
 As another example of a clinical application, one could construct a Bio-
molecular Database made from the blood samples of people suffering from Alz-
heimer's disease and their families, with the goal of finding genes that may 
increase people's risk of contracting the condition. The information tags could be 
used to select specific groups of molecules from this database. These molecules, 
which come from people with similar clinical symptoms, can then be used to test 
a large number of possible Alzheimer's disease genes. Genes that yield promis-
ing results could then be tested on the large number of individual samples from 
which the Biomolecular Database was made. The advantage of this approach is 
that it allows very efficient use of the limited DNA samples, and it is a good 
way to look at lots of different combinations of clinical features. 

4.1.2.  Large-Scale Gene Expression Profiling Using Biomolecular Databases

 One may wish to determine the entire set of genes expressed by a particular 
cell type for a population of individuals who suffer debilitating effects due to a 
(perhaps unknown) chemical or biological agent. This may allow us to deter-
mine if there is a single or small number of genotypes that characterize suscepti-
bility to that agent, over that population. Gene expression profiling is a labor-
intensive and slow process. The conventional methods used are as follows: (a) 
cDNA Hybridization Arrays, which are 2D arrays of DNA spotted onto a solid 
support in an addressable way such that the spatial location of a spot identifies to 
the sequence of the DNA bound there. The input cDNA is labeled with a fluo-
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rescent dye with a unique and readily imaged emission spectrum. After anneal-
ing on this array, the fluorescent cDNA provide a visual readout of the expres-
sion. (b) SAGE libraries, prepared by extraction from cDNA of very short tag 
sequences that characterize the expressed gene, followed by concatenation of a 
number of these tag sequences together for sequencing. Then computer software 
(using prior information on the relation between these tags and the original ex-
pressed cDNA) is used to determine which genes are being expressed. Gene 
expression profiling can require the development of new cDNA hybridization 
arrays, or the construction and sequencing of SAGE libraries. The methods for 
parallel analysis of large numbers of samples described here would streamline 
this process. In addition, the readout of SAGE data by microarray hybridization 
would result in significant savings of time and money as compared to the stan-
dard method of sequencing SAGE libraries. It would enhance our understanding 
of both complex disease processes and acute responses to biologic agents. 
 As another example of a clinical application, one could construct a Bio-
molecular Database made from a large group of healthy people, with the goal of 
finding people who are naturally resistant to certain germs, or who respond in 
certain ways to prescription drugs. One could study the selection of DNA 
strands from this mixture that have a specific sequence change in a specific gene 
that is known to change a person's resistance to germs or their response to drugs. 
Once these strands are isolated, the information tags would be examined to iden-
tify the people who have that change in their genes. This would be an extremely 
useful way to identify people who could have a bad reaction to a drug com-
monly used to treat disease. It could also be very useful in discovering people 
who are resistant to naturally occurring diseases or those caused by agents re-
leased during germ warfare. 

4.1.3.  Streamlining Identification of Susceptibility Genes 

 In terms of high-throughput screening of candidate genes to optimize ge-
netic association analysis for complex diseases, consider the problem of ge-
nomic characterization of those individuals who first were infected by a 
biological agent, and then died. The death may often have been due to complica-
tions involving additional "complex" diseases, such as heart disease. Hence, 
mortality resulting from a chemical or biological agent attack may often have 
been due to complications involving a preexisting disease such as heart disease. 
Mortality can thus often only be predicted by considering both the individual's 
susceptibility to that agent, as well as that to various preexisting "complex" dis-
eases. For many "complex" diseases, susceptibility often depends on a number 
of single-nucleotide polymorphisms (SNPs) in the human genome. Research 
into the genetic causes of complex disease is currently very expensive, and pro-
gress is slow, and complex diseases are quite common, affecting large propor-
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tions of the population. Delays in understanding the genetic basis of these dis-
eases slow the development of improved treatments at a significant financial and 
human cost. In the last 2 to 3 years, there have been several large-scale efforts to 
identify single-nucleotide polymorphisms in the human genome. The SNP con-
sortium, a non-profit foundation composed of the Wellcome Trust and eleven 
pharmaceutical and technological companies, has agreed to deposit all SNPs 
they discover to public databases such as dbSNP, the SNP database maintained 
by the National Center for Biotechnology Information (NCBI). The number of 
entries in this database has increased from several thousand to over two million 
within the last 3 years. This sudden increase in the number of polymorphic 
markers has completely overwhelmed current methods for SNP genotyping and 
high-throughput screening. It has also become apparent that the incidence of 
single-nucleotide polymorphisms varies widely from one region of the genome 
to another, and large numbers of SNPs must be screened to analyze each candi-
date gene. Even with unlimited funds and the capacity for genotyping, serious 
challenges to the family-based association screening would remain, because the 
individual screening of a large number of SNPs would quickly exhaust the 
amount of DNA that can be easily obtained from a single individual. This prob-
lem is compounded by the sample cost of preparing pools of DNA from multiple 
individuals by simple mixing: once samples are mixed they cannot be separated 
again, and leftover, pooled DNA is wasted. Indexing of a Biomolecular Data-
base can be of significant assistance in this regard. Large numbers of different 
groups of individuals can be selected from the Biomolecular Database by logical 
queries on the information tags. These pools can be used for allelic frequency 
determinations, and any remaining DNA can be added back to the remaining 
database. 
 As another example of a clinical application, one could use Biomolecular 
Databases to help discover what genes are turned on in a specific tissue of the 
body. Genes that are needed in the brain may not be expressed in the muscles, 
and genes needed in the muscles may not be needed in the liver. For this reason, 
measuring what genes are turned on in a specific tissue can help us understand 
what the possible functions of those genes might be. Biomolecular Databases 
would provide increased efficiency for these approaches. 

4.2. Further Applications

 The applications described above could be of critical value to the United 
States in the event of a terrorist release of a biological or chemical agent, as 
in the following brief scenario. A biological agent is released by a terrorist 
group in an American city or another populated area. The city is evacuated, 
but it becomes necessary to traverse a potentially contaminated area, or to re-
visit a known contaminated area. Clearly, any personnel sent into this area, 
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even with protective gear, are at risk for infection. A Biomolecular Database 
query would be initiated to identify personnel who possess a known genetic 
variation that prevents or mitigates infection. The personnel actually sent 
into the contaminated area could then be selected from the list of genetically 
resistant individuals. 
 As an alternative anti-terrorist application, suppose a large population (e.g., 
that of a city) has been exposed to a given biological or chemical agent. It then 
becomes apparent that a subgroup of individuals require significantly more ag-
gressive medical therapy to survive, but for logistical reasons such aggressive 
therapy cannot be provided to ALL exposed individuals. Stored DNA from re-
sistant and susceptible individuals can be used to determine the status of specific 
groups of genetic markers as described in application C (markers are chosen 
based on biological and medical inferences). In this way, a series of markers 
diagnostic for increased susceptibility can be identified. This type of analysis is 
called class discovery, and has been applied to the treatment of breast cancer and 
leukemia, among other disorders. However, the use of Biomolecular Databases 
can greatly streamline this work. Once diagnostic markers have been identified, 
the techniques worked out in application 4.1.3 can identify individuals in need 
of more aggressive care. 

5. DISCUSSION AND CONCLUSIONS

 We have described Biomolecular Databases constructed from DNA for 
rapid genetic analysis of large populations of individuals and complex diseases 
involving multiple genetic loci. They may improve on conventional methods in 
size of database and speed of search with the Biomolecular Databases system. 

5.1. Comparison with Biomolecular Computing Methods for  
SAT Problems

 As described above, these selection operations can be executed by the use 
of recombinant DNA operations, using logical processing methods developed in 
the field of DNA computing. The methods used in DNA computing to solve 
combinatorial search problems such as the Boolean satisfiability (SAT) problem 
have the disadvantage that they require a volume that scales exponentially with 
the size of the problem (i.e., the number of Boolean variables). This is because 
the search space of possible Boolean variable assignments scales exponentially. 
In contrast, logical queries are executed only on the information tags of the ex-
isting database, so the volume only scales linearly with the number of strands of 
the Biomolecular Database. 
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5.2. The Key Advantages of Biomolecular Databases

 The key advantages of Biomolecular Databases appear to be: 
 a. Bypassing of conventional impasses: In particular, the avoidance of se-
quencing for conversion from DNA (genomic DNA and transcribed RNA) to 
digital media. 
 b. Ultra-compact storage media: The extreme compactness and portability 
of the storage media—a pedabit of information can be stored (with tenfold re-
dundancy) in less than a few milligrams of dehydrated DNA, or when hydrated 
may be stored in a few milliliters of solution. A Biomolecular Database is capa-
ble of containing the DNA of a million individuals (6 pedabits of information) in 
a volume the size of a conventional test tube. 
 c. Massive molecular parallelism: Although one query may require a num-
ber of minutes, it is operated on vast numbers of data items (DNA strands), im-
plying a processing power of vast molecular parallelism with at least a few 
hundred teraflops. The operations can operate in parallel on an entire population 
of DNA. 
 d. Scalability: The technology requires volume that scales linearly with the 
size of the database, and a query time that remains nearly constant up to ex-
tremely large database sizes. 
 e. Limitations: The Biomolecular Database technology is limited to applica-
tions of a biological nature (where the data are DNA or easily convertible to 
DNA), and the operations are limited to logical queries in the Biomolecular Da-
tabase, associative searches, and some essential database operations. It is not 
intended that the technology compete in any direct way with conventional high-
performance computers. Instead, the objective is to bypass conventional bioin-
formatics methodology by processing biological material (genomic DNA and 
transcribed RNA) in "wet" media, rather than digital media. 

5.3. Scalability of Biomolecular Databases Systems

 The key parameters of Biomolecular Database are: (a) N = the number of 
distinct elements of the Biomolecular Database, (b) v = the number of variables 
(each ranging over 10 possible values) used in queries, and (c) k = the number of 
individuals in application studies. 
 For our practical genomic applications of Biomolecular Databases to be 
fully realized in practice: (i) the database size N should grow to extremely large 
values (with a long-term goal of approximately 1015), but (ii) for these applica-
tions the number of variables v needs only to grow to moderately small constant 
values (with a long-term goal of approximately v = 14), since for the genomic 
applications considered only a limited number of values need to be recorded in 
the information tag per database element. The relative difficulty of obtaining 
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human genomic material limits the number of individuals k in possible studies to 
approximately 1000, which is the size of the largest genomic database we are 
aware of for which one can legally obtain samples of genomic DNA. However, 
this figure of k = 1000 is by no means a limit on the capability of Biomolecular 
Database technology. In particular, these genomic databases are quickly grow-
ing in size, and it may be projected to grow by a number of multiples in a few 
years. Furthermore, military sources of human genomic DNA may be obtain-
able, providing alternate routes to obtain the samples of genomic DNA required 
in large-scale studies. 
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Replacement of a lost or failed organ is a long-standing problem in medicine. Research in 
the field of tissue engineering is progressing rapidly towards the replacement of numer-
ous organs. Each organ is a complex system, and analysis of an organ requires under-
standing of phenomena over a range of length scale. This chapter provides an overview 
of the multiscale analysis currently used and under development in the field of tissue en-
gineering. 

1. INTRODUCTION

 The loss or failure of a functioning organ can sometimes only be treated by 
replacement of the entire organ. As long as humans have practiced medicine, we 
have used all available technologies to improve our methods of organ replace-
ment. Ancient cultures whose most advanced materials were wood and leather 
used these to fabricate leg prostheses. Developments in fine metalworking led to 
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metal prostheses, beginning around 200 BCE in Rome with an iron hand fabri-
cated for General Marcus Sergius (19). In the 1500s, the developing field of 
clockmaking introduced springs and gears to prosthesis makers, and in the 1550s 
surgeon/barber Ambroise Paré incorporated these innovations into jointed leg, 
arm, and hand prostheses (61). Figure 1 is an illustration of the prosthetic hand 
that Paré built. 
 The advent of anesthesia in the 1840s and antiseptic techniques in the 1860s 
allowed surgeons to consider repair and replacement of internal organs, and sur-
geons began to attempt organ transplants into humans from other humans, ca-
davers, or animals. In the last century, new materials led to the creation of many 
synthetic organ replacements: artificial knees, hips, and heart valves (Figure 2) 
are now commonplace. Advances in mechatronics have given us much-publi-

Figure 1. Iron hand design by Ambroise Paré, c. 1550 (83). 

Figure 2. Mechanical heart valve manufactured by Edwards Lifesciences (84). 



TISSUE ENGINEERING 739

cized whole-heart prostheses, from the Jarvik-7 in 1982 to the AbioCor in 2001 
(47), and the less-publicized but much more common ventricular assist devices 
and hepatic assist devices (53). 
 While many methods of organ replacement have been developed and are 
used successfully every day, most of these techniques are imperfect, as they 
cannot permanently restore full organ function. Four major methods for organ 
replacement have been conceived: taking tissue from a donor (transplantation), 
moving tissue from one location on a patient to another (autografting), fabricat-
ing a synthetic organ (prosthesis), or growing living replacement tissue (synthe-
sis). Transplantation of major organs has been spectacularly successful, but 
requires a donor who is a close genetic match to the patient. More than 65,000 
people are on transplant waiting lists in the Unites States alone, and many will 
die before a suitable organ becomes available (76). Autografting is useful in 
replacing damaged skin (11) and nerves (58) but has limited application else-
where. External (Figure 3) and dental prostheses have been widely successful, 
and implanted prostheses generally can only provide temporary function. 
 An implanted prosthesis, such as a hip replacement, may function for fifteen 
years or more before damaging the implant site or becoming sufficiently dam-
aged to lead to failure, as is often seen in hip prostheses (80). Additionally, im-
plantation of synthetic materials may cause clotting, calcification, or infection 
(74), and synthetic materials are unable to grow with a growing patient. An im-
plant constructed from living tissue will not have these problems and, once im-
planted, can grow to operate seamlessly with the rest of the body. 
 As technological advances have always led to development of new organ-
replacement techniques, modern technologies in cell biology and genetic ma-
nipulation allow now for the development of living tissue implants. This field, 
known as "tissue engineering," has already shown promising successes in a vari-
ety of physiological systems. The most widely researched and most successful 
engineered tissue thus far has probably been the effort to grow replacement skin 
for burn victims. A number of groups have produced "skin-equivalents" in the 
lab (3), and other researchers have had success regenerating skin at the site of 
the injury in human patients (79). The tissue engineering of heart valves has also 
been widely researched (30,70,73), with successful aortic valve replacement in 
sheep reported (70) (Figure 4). Promising progress has been reported in regen-
eration of nerves (26), and in fabrication of tissue-engineered bladders (16), 
stomach (54), trachea (42), cartilage (43), and other tissues. These tissues are all 
relatively simple, and researchers are now developing more complex tissue-
engineered organs like the liver and kidney (47). 
 To construct a tissue-engineered organ, the researcher must understand the 
components of the organ and how they interact. All organs, regardless of com-
plexity or location in the body, consist of four components: cells, scaffolds, sig-
nals, and nutrients. The cells are the familiar living building block of a tissue. 
They provide any active behavior or functionality of a tissue, such as the con-
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traction of a muscle, the filtration of a kidney, or the metabolic behavior of a 
liver. Cells exist connected by a scaffold of solid and fluid. The solid is mostly 
extracellular matrix (ECM) and the fluid is mainly blood (of course, blood con-
tains cells that have their own functions), while other solids and fluids exist in 
smaller quantities. In some tissues the volume and mass of the scaffold greatly 
exceeds that of the cells; in structural tissues such as blood vessels, heart valves, 
and bone, the scaffold provides the main functionality and the cells mostly serve 
to maintain the scaffold. Signals are molecules that communicate with the cells, 
and that the cells use to communicate with each other. Some signals are soluble 
and are transported between cells by fluid, and other signals are insoluble 
and may be attached to the surface of a cell or the scaffold. Nutrients are mole-
cules needed to sustain the cell or are produced by the cell. The circulatory sys-
tem exists to transport nutrients, especially oxygen, to and from all of the cells in 
the body. 

Figure 3. Example of a modern prosthetic leg from Otto Bock Healthcare (85). 
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 For a tissue-engineered organ to perform, the cells in the organ must be 
interacting correctly with the other components. The tissue engineer must first 
understand these interactions, and then design the organ so that the interactions 
can correctly and optimally take place. The interactions can take place at a wide 
range of length scales: nutrients and signals affect cells at a submicron level, 
cells interact with each other and with the surrounding scaffold at the micron 
level, and cells can react to mechanical stimuli that occur at the millimeter-to-
centimeter range (compare with Part III, chapter 2.1, by Huang, Sultan, and Ing-
ber, this volume). Designing and fabricating an organ requires a knowledge of 
the diffusive and convective transport that puts the cells in their desired loca-
tions and circulates the signals and nutrients; transport can take place from the 
micron to centimeter length scales. The final interaction of concern is that be-
tween the implant and the rest of the body, which may have effects at the centi-
meter or even meter scale. 
 Creation of a functional tissue-engineered organ requires an understanding 
of numerous behavior at length scales from submicron up to a meter. This chap-
ter reviews some of the experimental and theoretical techniques being used over 
the range of scales. 

2. TISSUE-ENGINEERING INVESTIGATIONS AT VARIOUS
LENGTH SCALES

 This chapter surveys the field of tissue engineering, giving examples of 
relevant physical behaviors. The theoretical and experimental tools used to in-

Figure 4. Tissue-engineered valve conduit explanted after 5 weeks in vitro (70). 
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vestigate these behaviors are discussed, starting with the smallest scales and 
proceeding to the larger scales. 

2.1. Molecular (Submicron) Scale

2.1.1.  Cell Signaling

 Cells have receptors on their surfaces that interact with various extracellular 
molecular signals (see also Part III, chapters 2.2 (by Subramanian and Narang) 
and 2.3 (by Goentoro and Shvartsman), this volume). These signals can be flow-
ing in fluid outside the cell (soluble signals) or can be attached to extracellular 
matrix or a substrate (insoluble signals). Some of these molecules have been 
isolated and identified and are now widely available for researchers to use in 
controlling their cell cultures. 
 A class of signals that is particularly useful to the tissue engineer is the fam-
ily of molecules known as growth factors. This family of factors includes plate-
let-derived growth factor (PDGF), epidermal growth factor (EGF), vascular 
endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and many 
others. As the name implies, growth factors affect the growth behavior of cells. 
The presence of a growth factor may initiate cell proliferation and cell organiza-
tion into structures, and any growth factor will affect different cells in different 
ways. The effect of growth factors on a cell type is examined in vitro by cultur-
ing the cell in a dish or on a scaffold and monitoring the cell behavior under 
varying amounts of growth factor. Block et al. grew liver cells (hepatocytes) on 
a collagen gel matrix, and showed that adding hepatocyte growth factor (HGF) 
causes the cells to organize in tubules akin to the bile ducts found in the liver (9) 

Figure 5. Hepatocytes form bile duct-like tubules when appropriate growth factors are 
applied (9). 
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(see Figure 5). To investigate the effect of VEGF-B, Silvestre et al. implanted 
collagen matrices into live rats and injected the growth factor into some of the 
matrices (71). The injections promoted the formation of new blood vessels, 
known as angiogenesis, in the matrices. 
 One of the molecular interactions that is most important to implants is the 
immune response (see also this volume, Part III, section 4). The immune re-
sponse is what rejects foreign transplants into the body, and the trigger for this 
response is a set of cell-surface molecules that the body recognizes as being for-
eign. While in theory engineered tissues should have the native set of surface 
molecules and not be subject to an immune response, experiments have shown 
that even autograft tissues can produce unexpected immune reactions (28). 
 Another large class of molecules is cell adhesion molecules (CAMs). These 
are responsible for cells binding to each other, to extracellular matrix, and to any 
other surface. There has been a large amount of research into CAMs, so that we 
now know which CAMs are present on the surface of each cell and what ex-
tracellular components each CAM binds (62), information vital to producing 
tissues that are strongly bound together. 
 Many other families of molecules involved in cell signaling are known to 
exist, and there are likely signaling molecules that have not yet been discovered. 
Recent research shows that cell signaling acts in cascades, where signals intro-
duced at different times and in different combinations have widely varying ef-
fects on a cell's development. While our understanding of cell signaling is 
rapidly improving, it will be many years before all cell signaling pathways are 
known.

2.1.2.  Submicron Solid Mechanics

 A theoretical model for the solid deformation of a biological tissue is based 
on the microstructure of that tissue. Until recently, researchers could only exam-
ine the bulk behavior of tissues. In the past decade such methods as optical 
tweezers and scanning-force microscopy have been developed that allow inves-
tigation of tissue behavior at the molecular level (12). New understanding of 
molecular behavior allows for improved models of bulk behavior. 
 Investigations of molecular behavior are now common. Evans and Ritchie 
used atomic force microscopy (AFM) to investigate the strength of molecular 
adhesion bonds (Figure 6), and also developed computational models to predict 
this behavior (18) (Figure 7). 
 Molecular experiments are useful in increasing our understanding of mo-
lecular interactions, but perhaps more important, molecular models can now be 
scaled up to predict bulk mechanical behavior of tissues. Kwan and Woo created 
a constitutive model for aligned collagenous tissue by taking a simple stress–
strain model for a single collagen fiber and calculating the effect of many of  
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these fibers linked together to obtain a constitutive model of the bulk material 
(45) (Figure 8). 
 Many models use statistical models, Gaussian or Langevin, to represent the 
mechanics of a single molecule, and then consider the behavior of a unit cell 
made of a small group of molecules to determine the bulk behavior (Figure 9). 
Bischoff et al. used a Langevin model of a single fiber and an eight-chain unit 

Figure 6. Diagram of atomic force microscopy used to measure molecular bonds (12). 

Figure 7. Experimental (circles and triangles) and theoretical (curves) force versus dis-
tance data for molecular adhesion measurements (18). 

Figure 8. Stress–strain curves for a single collagen fiber (left) and for a 
network of collagen fibers (right) (45). 
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cell model to create a continuum model that accurately predicts behavior of skin 
(7) (Figure 10). 

2.2. Micron Scale

2.2.1.  Cell–Cell Interactions: Co-Culture

 In nature, cells very rarely live exclusively with cells of their own type. 
Cells of different types interact with each other, and the right cell types must be 
combined to form a functioning tissue. Even as the mechanisms by which cells 

Figure 9. Diagram of single fiber (left) and a unit cell consisting of multiple fibers 
(right) (7). 

Figure 10. Experimental (box and circle) and theoretical (solid and dotted curve) 
results for stretching of rabbit skin, showing excellent agreement between model and 
experiment (7). 
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types interact with each other remain largely unknown, researchers can still ex-
amine the effects of these interactions. 
 The cell that provides most of the liver's metabolic function is the hepato-
cyte, but hepatocytes grown on their own lose function after a few weeks. Hari-
moto et al. developed techniques for growing hepatocytes layered with 
endothelial cells, and this improved hepatocyte function compared to hepato-
cytes alone (27) (Figure 11). 
 Bhatia et al. performed similar experiments in microdevices and showed 
that epithelial cells also enhance hepatocyte function and survival (6) (Figure 
12), and also showed that the effect of hepatocyte–endothelial cell co-culture 
varies depending on how many of each cell type are included and how much 
contact area there is between the two cell types (5). 
 Other experiments have had similar results with different cell types, both 
inside and outside of the body (8), telling us that the fabrication of functional 
living tissue will require control of numerous cell types. 

Figure 11. Harimoto's scheme for multilayer co-culture (27). 

Figure 12. Bhatia's scheme for co-culture, with geometrically distinct areas on the 
same layer (5).
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2.2.2.  Cell–Scaffold Interactions

 Much of the body is made up of extracellular matrix (ECM), which is a 
network of fibrous proteins produced by fibroblasts and smooth muscle cells. 
The ECM is not inert, as it has a significant effect on the cells growing on it. In 
tissue engineering, researchers need to understand how the ECM affects the 
cells, and also how growing the cells on a different material, such as a biode-
gradable polymer or a culture dish, will be different. 
 To examine the effects of ECM on cell behavior, different components of 
the ECM can be isolated and cell growth experiments can be run while adding 
the different components. Mooney et al. did this with hepatocytes and found that 
these cells do not normally proliferate in a dish, but will if such ECM compo-
nents as laminin, fibronectin, and collagen are added (60). Similar work was 
done by Gerlach et al. showing that hepatocyte function improved when grown 
on collagen (22). Extracellular matrix can have effects other than aiding cell 
proliferation: cells can also migrate over the ECM. Fibroblasts grown on three-
dimensional collagen matrices are observed to sprout dendrites and pull them-
selves along the fibers of the ECM (24) (Figure 13). 

 In addition to understanding a cell's response to contact with ECM, it is 
important for tissue engineering purposes to examine cellular responses to other 
materials, since there are many synthetic materials that can help in constructing 
an organ. This sort of experiment is performed by growing the cells in contact 
with the material in question, and the results can be interpreted visually or 
chemically. The behavior of the cells varies widely depending on what material 
and preparation methods are used (29). 

Figure 13. Fiboblasts extend dendrites along fibers of extracellular matrix (23). 
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2.3. Millimeter-Centimeter Scale

 A living tissue is subject to continual stresses applied by the tissues around 
it and the fluids flowing throughout. These stresses have profound effects on the 
cells in the tissue. To control the behavior of these cells, a tissue engineer must 
often apply these forces in the lab, which requires both a knowledge of what 
stresses and strains a cell will respond to and how to apply them. 

2.3.1.  Effects of Solid Deformation on Cells 

 Cells living on an extracellular matrix are stressed and strained as the ma-
trix is deformed. Often these deformations influence the behavior of the cell that 
a tissue engineer is trying to control, a process known as mechanotransduction. 
This is most evident in the fabrication of structural tissues such as cartilage, 
heart valves, and blood vessels. 
 Structural tissues are composed almost entirely of extracellular matrix com-
ponents: heart valves and blood vessels are usually over 80% type I collagen in 
combination with a few other ECM components and a small percentage of cells. 
The cells, smooth muscle cells and fibroblasts, produce the ECM. For a tissue to 
have the correct mechanical properties, the ECM must be produced in adequate 
quantities and aligned in a certain direction. It is the forces applied by the ECM 
on the cells that control the cellular production of ECM. 
 Applying deformation to tissues and observing the results can elucidate the 
mechanotransduction process. McKnight and Frangos grew human vascular 
smooth muscle cells on a collagen matrix and applied cyclic uniaxial stretch at 
various strain rates (57). The smooth muscle cells produce aligned collagen only 
when subjected to strains and strain rates similar to those they would be sub-
jected to physiologically. Chapman et al. performed similar work and found that 
physiological cyclic stretching inhibits cell growth (13). These works together 
suggest that applying physiologically appropriate stretching to a smooth muscle 
cell will keep the cell in a steady state where it can be used to produce ECM 
without the cell proliferating. 
 Articular cartilage, which bears the loads in all synovial joints, is also pro-
duced by cells, in this case chondrocytes. Physiologically, cartilage is rarely 
subjected to tension but is often compressed. Efforts in tissue engineering of 
cartilage have focused logically on the response of chondrocytes to compres-
sion. Sah et al. have shown that, while static compression inhibits protein pro-
duction of chondrocytes in an explanted cartilage sample, dynamic compression 
promotes production of proteins in general and dynamic compression at various 
rates promotes production of specific proteins (68). 

2.3.2.  Modeling of Solid Deformation

 Understanding the deformation of tissues requires constitutive models to 
describe the tissue's solid mechanics. Continuum models may be derived from a 



TISSUE ENGINEERING 749

molecular basis or strain-energy functions, and can be verified by comparing 
measurements taken from experiments subjecting tissues to well-defined stresses 
and strains. 
 Biological tissues are, in general, highly nonlinear and anisotropic. Many 
models exist that can cover a wide range of materials, for example, a model for 
any rubber-like or soft biological tissue (33). In other cases, a general constitu-
tive model is modified and fit to a specific tissue. There are models specifically 
for mitral valve tissue (56) (Figure 14), aortic heart valves (51), skin (7), myo-

cardium (34), cartilage, tendons, blood vessel walls, and others. A common con-
stitutive equation used for the representation of biological tissues is 

t = –pI + 2W1B + (W / )F N N FT, [1] 

where t is the Cauchy stress, p is the Lagrange multiplier, B is the right Cauchy-
Green deformation tensor, F is the deformation gradient tensor, W1 and W  are 
the derivatives of W with respect to  and the first invariant, respectively, and W
is a strain-energy function that can be chosen depending on the tissue in ques-
tion. 
 Constitutive models are matched to biological data by performing stress–
strain experiments on excised tissue. Data may be taken for uniaxial tension 
(15), biaxial tension (35,52), compression, or any other arrangement the experi-

Figure 14. Experimental and theoretical curves for stretching mitral valve tissue in a 
variety of situations, showing a good match between experiment and model (56). 
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menter may choose. Biological tissues also often show time-dependent effects 
such as viscoelasticity (50). Predictions of in-vivo mechanical behavior can only 
be made using a model that has been verified in vitro. 

2.3.3.  Effects of Fluid Mechanotransduction on Cells

 Just as stresses transmitted by the ECM can affect cell behavior, so can 
stresses transmitted by fluids flowing through an organ. Almost all physiological 
surfaces that face flow are coated with a layer of endothelial cells, so these are 
the only cells regularly affected by fluid mechanotransduction. The effect of 
flow on endothelial cells is a well-studied topic. Investigators have reported on 
hundreds of effects of flow mechanotransduction on endothelial cells (17,23,55) 
(Figure 15), so that we know the shears and pressures that give rise to different 
gene expressions, changes in intracellular makeup, physical deformation of the 
cell, electrical behavior of cells (4), and others. Importantly for tissue engineer-
ing, fluid mechanotransduction guides the formation of blood vessels and vascu-
lature, and figures prominently in many vascular illnesses (23). 

2.3.4.  Modeling of Blood Flow

 The modeling of blood flow through a single vessel can be complicated; 
while blood flow in almost all vessels is laminar, the highly non-Newtonian be-
havior of blood and distensibility of the vessel walls must be accounted for. 
 Blood's non-Newtonian behavior can be described by Casson's equation, 
which gives an apparent viscosity: 

2

2
1

/

k
k

U d
= + , [2] 

Figure 15. Response of vessels to decreased flow: (A) at the start of experiment, the two 
vessels are the same size; flow reduced in the left vessel; (B,C) two weeks later; note the 
reduction in size of the left vessel in response to flow reduction (46). 
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where  is the apparent viscosity, U is the average velocity of the flow, d is the 
diameter of the vessel, and k1 and k2 are empirical coefficients that depend on the 
percentage of blood volume that is occupied by red blood cells, known as the 
hematocrit (69). This description of the apparent viscosity can be used in lami-
nar flow correlations to predict blood flow behavior. 
 A single-vessel model for flow can be incorporated into a model for entire 
vasculature networks. In the context of design of microvascular networks for 
vascularized tissue engineering of vital organs, we (36) have developed a com-
putational algorithm for simulation of blood flow in the microvascular networks. 
This algorithm takes into account the non-Newtonian blood rheology and its 
particulate nature, both of which are important in modeling the microcirculation. 
Pressure drop in each vessel is related to blood viscosity, which itself varies with 
vessel cross-sectional surface area and hematocrit (volume fraction of red blood 
cells). 
 In many cases, the distensibility of the vessel wall will also affect blood 
flow through a vessel. As with non-Newtonian behavior, wall deformation be-
havior can be predicted for a single vessel (20), and the single-vessel model can 
be incorporated into a network model. We have used such a model to model 
flows in distensible vasculature networks (77). 
 There are other widely varying models for flow through biological net-
works. Some models examine features general to all vasculature, such as the 
hypothesis that wall shear is constant throughout any biological vasculature sys-
tem (39). Others develop models for specific tissues (31). The lungs are of par-
ticular interest, as the structure of the lungs and the flow through them is very 
different from other organs (20,44). 
 Modeling of network behavior requires understanding the structure of the 
networks. For decades researchers have injected polymers into an organ to ob-
tain a cast of the vasculature, and taken measurements from these casts 
(33,40,59,86) (Figure 16). 
 Recent developments in imaging have allowed researchers to develop 
automated techniques for imaging of physiological flow networks (1) (Figure 
17). These measurements of the vessel geometries and network connectivity can 
be tabulated in forms convenient for use in modeling of flows through the net-
works (Figure 18). 

2.3.5.  Modeling of Molecular Transport in Tissue

 The transport of molecules through tissue occurs in three ways. Molecules 
are carried by the bulk flow of tissue in convective transport, the obvious exam-
ple being blood carrying nutrients throughout the body (compare also with Part 
II, chapter 3, by Savage and West, this volume). Molecules are also transported 
by diffusion, such as nutrients diffusing from the blood, through blood vessel 
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walls, into cells. Transport of molecules may also be affected by electrostatic 
interactions between the molecules and the extracellular matrix. To fully under-
stand the transport of molecules in any system, the effects and interplay of these 
three factors in transport must be understood. 
 Analysis of molecular transport in physiological systems must include the 
effect of interactions between the molecules and cells. A simple case of nutrient 
transport by diffusion in the presence of cells can be modeled by considering 
each cell to be a point sink, and including a term for these point sink in the dif-
fusion equation. In one dimension, the concentration of nutrient L(x) is de-
scribed by: 

Figure 16. Corrosion cast of hamster eye vascular network (bar = 50 m) (86). 

Figure 17. Three-dimensional regeneration of glomerulus capillary structure (1). 
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2

2
M

L L kL
D

t x K L
=

+
, [3] 

where the first two terms constitute the standard diffusions equation and the 
third term represents the point sinks:  is cell density, x is the distance from the 
point sink, and KM is the saturation constant and k the maximal uptake rate con-
stant of a single cell (23). 

 The distribution of signaling molecules is more difficult; where nutrients 
may be simply absorbed by the cell, growth factors and other regulatory mole-
cules have more complicated interactions with the cell. In such cases the mole-
cule–cell interaction can still be included in the diffusion equation, but a model 
must be provided for the molecular binding (25). Many models are available for 
describing molecular signaling interactions in terms of the number of binding 
sites available on a cell and the rate at which those sites will interact with an 
external molecule (48). 

Figure 18. Capillary length and diameter data from glomerulus regeneration (1). 
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 The effects of diffusion, convection, and electrostatic interactions can be 
combined by summing the fluxes due to each effect. For example, the one-
dimensional flux N of a molecular solute through a tissue is given by 

c z
N D cE WcU

x z
= + + , [4] 

where  is the porosity of the tissue, c is the concentration of the solute at posi-
tion x, z is the valence of the solute (if the solute is charged), U is the average 
fluid velocity relative to the tissue, and E is the electric field within the matrix. 
D is the diffusivity of the solute,  is the electrical mobility of the solute, and W
is the hindrance factor for convection (25). 
 Oxygen is the most basic of nutrients, and investigations into oxygen trans-
port are common. The response of cells to oxygen gradients can be finely meas-
ured (2), and numerical models can be used to design devices where oxygen 
transport to all cells is controlled (66). 

2.4. Centimeter-Meter Scale

 Biological phenomena typically encompass a range of time and length 
scales whose intrinsically complex interactions are critical to system function 
(37). For example, in the study of arterial disease, one needs to understand how 
the entire cardiovascular system responds to a variety of external factors that 
impact local flow characteristics. The fluid dynamic and solid stresses experi-
enced by the vascular wall tissues lead to a cascade of critical biological events, 
which may contribute to disease progression. At the cellular level, these stresses 
produce deformations of the cytoskeletal network, the cell membrane, and the 
nuclear envelope, which lead, in turn, to conformational changes in individual 
proteins that elicit the biological response. Along with understanding what goes 
on within an organ, it is necessary to know how the organ interacts with the rest 
of the body. 

2.5. Multiscaled Systems

 To fabricate a functioning device, it is necessary to combine systems of 
different scales. This has been achieved in some experiments, most notably 
bioartificial liver systems. In such a system, hepatocytes are cultured on a scaf-
fold and under continuous flow. The overall device provides liver function, and 
can be used to assist patients with liver disorders (Figure 19). 
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 The success of these devices is possible only when the nutrient transport, 
cell attachment to scaffold, co-culture, and cell response to flow are controlled 
(64,65,67,75). 

3. CONTINUING EFFORTS IN TISSUE ENGINEERING

 Many groups continue to show success with engineering of simpler tissues 
such as skin, blood vessel walls, cartilage, and heart valves. These tissues are 
thin enough that they do not require vascularization, since diffusion can carry 
any necessary nutrients throughout the thickness of the tissue. Larger organs, 
though, are much thicker and require a vascular network to keep the cells alive 
and carry any products of the organ's activity. These systems are truly complex, 
and encompass the entire range of phenomena discussed here. 
 Two main approaches have been conceived for the fabrication of vascular-
ized tissues. The first approach is to construct the entire vasculature. This is 
made possible by advances in micromachining (38) and the use of photolitho-
graphy to create high-resolution patterns on a silicon wafer (21). Recently, 
methods have been developed for transferring the pattern from silicon to softer 
materials, such as polymers suitable for tissue engineering (78). Borenstein et al. 
have demonstrated the ability to construct complete blood vessel networks using 
these "soft lithography" techniques. 
 These vascular devices are fabricated by first creating the vascular pattern 
in a silicon wafer (Figure 20). Then polymer devices are replica-molded from 
the silicon master. The polymer devices are stacked to create three-dimensional 

Figure 19. Schematic of liver assist device, animal experiment (67). 
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tissue and seeded with cells. Such a design can be implanted, so that when the 
polymer degrades the remaining cells form a completely natural tissue. Such 
devices have demonstrated organ function (49). 
 The design of a microfabricated network comes from numerical tools de-
veloped for the task (36,77). The flow of blood through a microfluidic device is 
simulated analogously to the calculation of currents in a resistor network. Each 
blood vessel has a fluidic resistance dependent on the vessel geometry and vis-
cosity of the fluid, and the pressure drop from one end of the vessel to the other 
is related to the flow rate through the vessel by 

P = QR, [5] 

where P is the pressure drop, Q is the flow rate, and R is the fluid resistance. 
The flow rates and pressures throughout the network are interdependent, so the 
equations for all the vessels are solved simultaneously as a matrix equation. 
Thus, if the geometry of a network is known, the flow behavior can be calcu-
lated. The geometry can be modified iteratively to create a network with the 
desired flow properties, or the system can be solved in reverse to determine the 
geometry from the flow conditions. If physiological flow conditions are speci-
fied, the resulting design will be a microfluidic network with physiological flow 
characteristics (see also this volume, Part IV, chapter 1, by Meinhart and 
Wereley). 
 The other approach is to create an experimental setting where the organ can 
self-assemble. In this approach, cell growth is controlled in a matrix material so 
that the cells form vasculature and organ features instead of designing and mold-
ing the features. Currently, there is much research aimed at understanding, con-
trolling, and mimicking the natural process of vasculature formation, known as 
angiogenesis. 

Figure 20. Silicon mold for a microfabricated capillary bed (left) and biodegradable 
vascular network (right) (10). 
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 Numerous investigators have shown that angiogenesis is controlled by sig-
naling proteins. For example, VEGF is known to promote recruitment of endo-
thelial cells, while PDGF promotes vessel stabilization and maturity (81). 
Experiments show that including these and other growth factors in implanted 
matrices does promote vascularization of the matrix (82). As with micro-
machined approaches, progress continues towards the final goal of creating en-
gineered vascularized tissue. 

4. CONCLUSION

 The field of tissue engineering has developed rapidly in the past decade. 
The generation of completely functional, implantable tissue-engineered organs 
in the near future will be an enormous achievement in science and medicine, but 
will require understanding and mastery of numerous processes affecting the cell 
over multiple length scales. 

5. REFERENCES

  1. Antiga L, Ene-Iordache B, Remuzzi G, Remuzzi A. 2001. Automatic generation of glomular 
capillary topological organization. Microvasc Res 62:346–354. 

  2. Allen JW, Bhatia AN. 2003. Formation of steady-state oxygen gradients in vitro. Biotechnol 
Bioeng 82:253–262. 

  3. Auger FA, Lopez Valle CA, Guignard R, Tremblay N, Noël B, Goulet F, Germain L. 1995. 
Skin equivalent produced with human collagen. In Vitro Cell Dev Bio-Animal 31:432–439. 

  4. Barakat AI, Leaver EV, Pappone PA, Davies PF. 1999. A flow-activated chloride-selective 
membrane current in vascular endothelial cells. Circ Res 85:820–828. 

  5. Bhatia SN, Balis UJ, Yarmush ML, Toner M. 1998. Microfabrication of hepatocyte/fibroblast 
co-cultures: role of homotypic cell interactions. Biotechnol Prog 14:378–387. 

  6. Bhatia SN, Balis UJ, Yarmush ML, Toner M. 1999. Effect of cell–cell interactions in preserva-
tion of cellular phenotype. FASEB J 13:1883–1900. 

  7. Bischoff JE, Arruda EM, Grosh K. 2000. Finite-element modeling of human skin using an 
isotropic nonlinear elastic constitutive model. J Biomechan 33:645–652. 

  8. Bjerknes M, Cheng H, Ottaway CA. 1986. Dynamics of lymphocyte–endothelial interactions 
in vivo. Science 231:402–405. 

  9 Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, 
Michalopoulos GK. 1996. Population expansion, clonal growth, and specific differentiation 
patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGFalpha in a 
chemically defined (HGM) medium. J Cell Biol 132(6):1133–1149. 

10. Borenstein JT, Terai H, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP. 
2002. Microfabrication technology for vascularized tissue engineering. Biomed Microdevices
4(3):167–175. 

11. Burke JF, Yannas IV, Bondoc CC, Quinby WC. 1974. Primary burn excision and immediate 
grafting: a method of shortening illness. J Trauma 14:114–123. 

12. Bustamante C, Macosko JC, Wuite GJL. 2000. Grabbing the cat by the tail: manipulating 
molecules one by one. Nature 1:130–136. 



758 M. R. KAAZEMPUR-MOFRAD et al. 

13. Chapman GB, Durante W, Hellums D, Schafer AI. 2000. Physiological cyclic stretch causes 
cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol
278:H748–H754. 

14. Clark CB, McKnight NL, Frangos JA 2002. Strain and strain rate activation of G proteins in 
human endothelial cells. Biochem Biophys Res Com 299:258–262. 

15. Clark RE. 1973. Stress-strain characteristics of fresh and frozen human aortic and mitral leaf-
lets and chordae tendineae. J Thor Cardiovasc Surg 2(66):202–208. 

16. Cross WR, Thomas DFM, Southgate J. 2003. Tissue engineering and stem cell research in 
urology. JBU Intl 92:165–171. 

17. Davies PF. 1995. Flow-mediated endothelial mechanotransduction. Physiolog Rev 75(3):519–
560. 

18. Evans E, Ritchie K. 1997. Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–
1544. 

19. Friedmann LW. 1978. The psychological rehabilitation of the amputee. Charles C. Thomas, 
Springfield, IL 

20. Fung YC. 1986. On pulmonary circulation [keynote lecture]. J Biomech 19(6):465. 
21. Gabriel KJ. 1998. Microelectrical systems (MEMS) tutorial. In Proc. IEEE Test Conference.
22 Gerlach JC, Schnoy N, Encke J, Smith MD, Muller C, Neuhaus P. 1995. Improved hepatocyte 

in vitro maintenance in a culture model with woven multicompartment capillary systems: elec-
tron microscopy studies. Hepatol 22:546–552. 

23. Gimbrone MA. 1999. Endothelial dysfunction, hemodynamic forces, and atherosclerosis. 
Thromb Haemostasis 82(2):722–726. 

24. Grinnel F, Ho C, Tamariz E, Lee DJ, Skuta G. 2003. Dendritic fibroblasts in three-dimensional 
collagen matrices. Mol Biol Cell 14:384–395. 

25. Grodzinsky AJ, Kamm RD, Lauffenburger DA. 2000. Quantitative aspects of tissue engineer-
ing: basic issues in kinetics, transport, and mechanics. In Principles of tissue engineering, pp. 
193–207. Ed. RP Lanza, R Langer, J Vacanti. Academic Press, New York. 

26. Hadlock T, Sundback C, Koka R, Hunter D, Cheney M, Vacanti J. 1999. A novel, biodegrad-
able polymer conduit delivers neurotrophins and promotes nerve regeneration. Laryngoscope
109(9):1412–1416. 

27. Harimoto M, Yamato M, Okano T. 2003. Cell sheet engineering: intelligent polymer patterned 
surfaces for tissue engineered liver. Macromol Symp 195:231–235. 

28. Harlan DM, Karp CL, Matzinger P, Munn DH, Ransohoff RM, Metzger DW. 2002. Immu-
nological concerns with bioengineering approaches. Ann NY Acad Sci 961:323–330. 

29. Hasirci V, Berthiaume F, Bondre SP, Gresser JD, Trantolo DJ, Toner M, Wise DL. 2001. 
Expression of liver-specific functions by rat hepatocytes seeded in treated PLGA biodegrad-
able foams. Tissue Eng 7(4):385–394. 

30. Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J, Sodian R, Visjager J, Kolb 
S, Grunenfelder J, Zund G, Turina M. 2002. Tissue engineering of functional trileaflet heart 
valves from human marrow stromal cells. Circulation 106[suppl 1]:I143–I150. 

31. Hoffman JIE. 1995. Heterogeneity of myocardial blood flow. Basic Res Cardiol 90:103–111. 
32. Horgan CO, Saccomandi G. 2002. Constitutive modeling of rubber-like and biological materi-

als with limiting chain extensibility. Math Mech Solids 7:353–371. 
33. Huang W, Yen RT, McLaurine M, Bledsoe G. 1996. Morphometry of the human pulmonary 

vasculature. J Appl Physiol 81(5):2123–2133. 
34. Humphrey JD, Strumpf RK, Yin FCP. 1990. Determination of a constitutive relation for pas-

sive myocardium, I: a new functional form. J Biomech Eng 112:333–339. 
35. Humphrey JD, Yin FCP. 1988. Biaxial mechanical behavior of excised epicardium. J Biomech 

Eng 110:349–351. 
36. Kaazempur-Mofrad MR, Vacanti JP, Kamm RD. 2001. Computational modeling of blood flow 

and rheology in fractal microvascular networks. In Computational fluid and solid mechanics,
Vol. 2, pp. 864–867. Ed. KJ Bathe. Elsevier Science, Oxford. 



TISSUE ENGINEERING 759

37. Kaazempur-Mofrad MR, Younis HF, Vacanti JP, Kamm RD. 2003. Biological simulations at 
all scales: from cardiovascular hemodynamics to protein molecular mechanics. In Computa-
tional fluid and solid mechanics, Vol. 2, pp. 8–12. Elsevier Science, Oxford. 

38. Kaihara S, Borenstein JB, Koka R, Lalan S, Ochoa ER, Ravens M, Pien H, Cunningham B, 
Vacanti JP. 2000. Silicon micromachining to tissue engineer branched vascular channels for 
liver fabrication. Tissue Eng 6(2):105–117. 

39. Kassab GS, Fung YC. 1995. The pattern of coronary arteriolar bifurcations and the uniform 
shear hypothesis. Ann Biomed Eng 23:13–20. 

40. Kassab GS, Fung YC. 1994. Topology and dimensions of pig coronary capillary network. Am J 
Physiol 267:H319–H325. 

41. Kirkpatrick CJ, Unger RE, Krump-Konvalinkova V, Peters K, Schmidt H, Kamp G. 2003. 
Experimental approaches to study vascularization in tissue engineering and biomaterial appli-
cations. J Mater Sci Mater Med 14:677–681. 

42. Kojima K. 2003. A composite tissue-engineered trachea using sheep nasal chondrocyte and 
epithelial cells. FASEB J 17:823–828. 

43. Klein TJ, Schumacher BL, Schmidt TA, Li KW, Voegtline MS, Masuda K, Thonar EJ, Sah 
RL. 2003. Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. 
Osteoarthritis Cartilage 11(8):595–602. 

44. Krenz GS, Dawson CA. 2002. Vessel distensibility and flow distribution in vascular trees. J
Math Biol 44:360–374. 

45. Kwan MK, Woo SLY. 1989. A structural model to describe the nonlinear stress-strain behavior 
for parallel-fibered collagenous tissues. J Biomech Eng 111:361–363. 

46. Langille BL, O'Donnell F. 1986. Reductions in arterial diameter produced by chronic decreases 
in blood flow are endothelium-dependent. Science 231(4736):405–407. 

47. Lavine M, Roberts L, Smith O. 2002. If I only had a... Science 295(8):995. 
48. Lauffenburger DA, Linderman JJ. 1993. Receptors: Models for binding, trafficking, and sig-

naling. Oxford UP, New York. 
49. Lee H, Cusick RA, Browne F, Ho Kim T, Ma PX, Utsunomiya H, Langer R, Vacanti JP. 2002. 

Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of 
hepatocytes in tissue-engineered polymer devices. Transplantation 73(10):1589–1593. 

50. Leeson-Dietrich J, Boughner D, Vesely I. 1995. Porcine pulmonary and aortic valves: a com-
parison of their tensile viscoelastic properties at physiological strain rates. J Heart Valve Dis
4:88–94. 

51. Li J, Lyo XY, Kuang ZB. 2002. A nonlinear anisotropic model for porcine aortic heart valves. 
J Biomech 34:1279–1289. 

52. Lo D, Vesely I. 1995. Biaxial strain analysis of the porcine aortic valve. Ann Thorac Surg
60:S374–S378. 

53. Marshall E. 2002. A space age vision advances in the clinic. Science 295(8):1000–1001. 
54. Maemura T, Shin M, Sato M, Mochizuki H, Vacanti JP. 2003. A tissue-engineered stomach as 

a replacement of the native stomach. Transplantation 76(1):61–65. 
55. Malek AM, Izumo S. 1996. Mechanism of endothelial cell shape change and cytoskeletal re-

modeling in response to fluid shear stress. J Cell Sci 109(pt 4):713–726. 
56. May-Newman K, Yin FCP. 1998. A constitutive law for mitral valve tissue. J Biomech Eng

120(1):38–47. 
57. Mcknight NL, Frangos JA. 2003. Strain rate mechanotransduction in aligned human vascular 

smooth muscle cells. Ann Biomed Eng 31:239–249. 
58. Millesi H, Meissl G, Berger G. 1972. The interfascicular nerve grafting of the median and 

ulnar nerves. J Bone Joint Surg 54A:727–750. 
59. Minnich B, Lametschwandtner A. 2000. Lengths measurements in microvascular corrosion 

castings: two-dimensionsal versus three-dimensional morphometry. Scanning 22:173–177. 



760 M. R. KAAZEMPUR-MOFRAD et al. 

60. Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D. 1992. Switching from differ-
entiation to growth in hepatocytes—control by extracellular matrix. J Cell Physiol 151(3):497–
505. 

61. Ott K. 2002. The sum of its parts: an introduction to modern histories of prosthetics. In Artifi-
cial parts, practical lives: modern histories of prosthetics, pp. 1–23. Ed. K Ott, D Serlin, S 
Mihm. New York UP, New York. 

62. Petruzelli L, Takami M, Humes D. 1999. Structure and function of cell adhesion molecules. 
Am J Med 106:467–476. 

63. Pierce SM, Skalak TC. 2003. Microvascular remodeling: a complex continuum spanning an-
giogenesis to arteiogenesis. Microcirculation 10:99–111. 

64. Powers MJ, Janigian DM, Wack KE, Baker CS, Beer Stolz D, Griffith LG. 2002. Functional 
behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tis-
sue Eng 8:499–513. 

65. Rivera DJ, Gores GJ, Misra SP, Hardin JA, Nyberg SL. 1999. Apoptosis by gel-entrapped 
hepatocytes in a bioartificial liver. Transplantation Proc 31:671–673. 

66. Roy P, Baskaran H, Tilles AW, Yarmush ML, Toner M. 2001. Analysis of oxygen transport to 
hepatocytes in a flat-plate microchannel bioreactor. Ann Biomed Eng 29:947–955. 

67. Rozga J, Williams F, Ro MS, Neuzil DF, Giorgio TD, Backfisch G, Moscioni AD, Hakim R, 
Demetriou AA. 1993. Development of a bioartificial liver: properties and function of a hollow-
fiber module inoculated with liver cells. Hepatology 17:258–265. 

68. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD. 1989. Biosynthetic response 
of cartilage explants to dynamic compression. J Orthop Res 7:619–636. 

69. Schmid-Schonbein GW. 1988. A theory of blood flow in skeletal muscle. J Biomech Eng
110:20–26. 

70. Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, 
Mayer Jr JE. 1996. Tissue engineered heart valves: autologous valve leaflet replacement study 
in a lamb model. Circulation 94(Suppl II):164–168. 

71. Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, Duriez M, 
Schwartz B, Branellec D, Levy BI. 2003. Vascular endothelial growth factor-B promotes in 
vivo angiogenesis. Circ Res 93(2):114–123. 

72. Skalak TC. 2002. In vivo and in silico approaches for analysis and design of multisignal, mul-
ticomponent assembly processes in vascular systems. Ann NY Acad Sci 961:243–245. 

73. Sodian R, Hoerstrup SP, Sperling JS, Daebritz SH, Martin DP, Schoen FJ, Vacanti JP, Mayer 
Jr JE. 2000. Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70:140–
144. 

74. Stock UA, Vacanti JP, Mayer Jr JE, Wahlers T. 2002. Tissue engineering of heart valves—
current aspects. Thorac Cardiov Surg 50:184–193. 

75. Tilles AW, Baskaran H, Roy P, Yarmush ML, Toner M. 2001. Effects of oxygenation and flow 
on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreac-
tor. Biotechnol Bioeng 73:379–389. 

76. Vacanti JP, Vacanti CA. 2000. The History and scope of tissue engineering. In Principles of 
tissue engineering, pp. 3–7. Eds. RP Lanza, R Langer, J Vacanti. Academics Press, New York. 

77. Weinberg EJ, Kaazempur-Mofrad MR, Borenstein JT. 2003. Numerical model of flow in dis-
tensible microfluidic network. In Computational fluid and solid mechanics, Vol. 2, pp. 1569–
1572. Ed. KJ Bathe. Elsevier Science, Oxford. 

78. Whitesides GM, Strook AD. 2001. Flexible methods for microfluidics. Phys Today 54(6):42–
48. 

79. Yannas IV. 2000. In vivo synthesis of tissues and organs. In Principles of tissue engineering,
167–178. Eds. RP Lanza, R Langer, J Vacanti. Academics Press, New York. 

80. Yannas IV. 2001. Tissue and organ regeneration in adults. Springer Verlag, New York. 



TISSUE ENGINEERING 761

81. Cassel OCS, Morrison WA, Bratt AM, Neufang B, Greene PL, Jackisch R, Hertting G, Will 
BE. 2001. The influence of extracellular matrix on the generation of vascularized, engineered, 
transplantable tissue. Ann NY Acad Sci 944:429–442. 

82. Richardson TP, Peters MC, Ennett AB, Mooney DJ. 2001. Polymeric system for dual growth 
factor delivery. Nature 19:1029–34. 

83. Vitali M. 1978. Amputation and prosthesis. Cassel & Co., London. 
84. Edwards Lifesciences. 2004. www.edwards.com. 
85. Otto Bock Healthcare. 2004. www.ottobockus.com. 
86. Ninomiya H, Inomata T. 2005. Microvasculature of the hamster eye: scanning electron micros-

copy of vascular corrosion casts. Veterinary Ophthalmol 8(1):7. 



763

5

IMAGING THE NEURAL SYSTEMS FOR 
MOTIVATED BEHAVIOR AND 

THEIR DYSFUNCTION IN 
NEUROPSYCHIATRIC ILLNESS 

Hans C. Breiter and Gregory P. Gasic 
Departments of Radiology and Psychiatry, Massachusetts  
General Hospital and Harvard Medical School, Boston 

Nikos Makris 
Athinoula Martinos Center for Biomedical Imaging, Massachusetts  
General Hospital, Massachusetts Institute of Technology,  
and Harvard Medical School, Boston 

Tomographic imaging of the human brain has enabled neuroscientists to begin dissection 
of the complex distributed neural groups that make up the human brain. Of the available 
tomographic technologies, functional magnetic resonance imaging (fMRI) has emerged 
as an important tool for the systems neuroscience of cognitive and emotional functions. 
fMRI has also been an important technology in developing evidence for a generalized 
circuitry that processes reward/aversion information. Composed of an extended 
set of subcortical gray matter regions and the surrounding paralimbic girdle, this re-
ward/aversion circuitry forms the core of an informational backbone for motiva-
tion (iBM) underlying behavior. Differential components of this iBM appear to be 
structurally or functionally affected in many neuropsychiatric illnesses. Should some of 
these structural and functional alterations in the iBM and connected systems be shown 
to be quantitative measures that are inherited versus state-dependent, they would likely 
group psychiatric illnesses on a more etiological basis than the diagnostic categories 
based on statistical clusters of behaviors and symptoms that are used in current psychiat-
ric diagnosis. This chapter will explore how integrative systems biology approaches can 
bridge the distributed neural circuits responsible for the processing of reward/aversion 
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function and the networks of genes responsible for the development and maintenance of 
these neural circuits. A major challenge for future research will be to determine whether 
there is strong or weak scale invariance at the multiple spatiotemporal scales of brain or-
ganization. A combined genetics, genomics, and integrative neuroscience approach has 
the potential to redefine our conceptualization of neuropsychiatric illnesses with the im-
plementation of objective quantitative measures that can then be translated into probabil-
istic diagnoses for these complex diseases of the human brain. 

1. INTRODUCTION

 The broad questions posed by astrophysics and by motivation neuroscience 
are conceptually similar but converse in their focus, one peering out at the uni-
verse and the other gazing into the brain. The former asks, "what is the nature of 
what we perceive?" and "how is something created from nothing?" The latter 
asks, "how do we perceive, control interpretation of perception, and exercise 
free will?" The principal question of motivation neuroscience asks, "why is there 
directed action?" 
 Motivation is the engine that allows organisms to make choices, direct their 
behavior, or plan their actions across time. Motivated behavior can be defined 
by goal-directed behavior that optimizes the fitness of an organism or social 
group. It depends on input from evaluative processes regarding internal homeo-
static and socially acquired needs, potential goal-objects in the environment 
meeting these needs, remembered consequences of previous behavior toward 
goal-objects, and perceived needs in other cooperative or competitive organ-
isms. The combined neural systems that produce this directed action constitute 
the neural basis of what we call motivation (263). These neural systems are 
composed of multiple subsystems that have evolved to allow an organism to 
assign a value to objects in the environment so that the organism works for "re-
wards" and avoids "sanctions" or aversive outcomes. Central to these neural 
systems are a set of subcortical gray matter regions [nucleus accumbens (NAc), 
caudate, putamen, hippocampus, amygdala, sublenticular extended amygdala of 
the basal forebrain (SLEA), hypothalamus, and thalamus] (117) and components 
of the paralimbic girdle [including the orbitofrontal cortex (GOb), insula, cingu-
late cortex, parahippocampus, and temporal pole] (174). Other networks across 
the prefrontal cortex also appear to be engaged in the evaluative and decision 
making components of motivated behavior. A number of these regions are 
modulated by dopaminergic neurons in the substantia nigra, the retrotuberal 
field, and the ventral tegmental area (henceforth jointly referred to as the ventral 
tegmentum: VT) (228). Less is understood regarding the roles of non-dopa-
minergic neuromodulators (noradrenergic, serotonergic, cholinergic, steroid 
hormones, and neuropeptides) that appear to alter the balance between excita-
tory and inhibitory synaptic neurotransmission during motivated behavior. In 
1954, Olds and Milner (192) were the first to implicate a subset of these regions 
in reward-mediated behavior. In subsequent decades, pioneering studies by oth-
ers contributed to our further understanding of these systems (89,98,148,265). 
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Over the last ten years, neuroimaging has allowed the study of these neural 
processes in humans and has started to dissect the contribution of individual 
brain regions to the processing of motivationally significant information. Recent 
structural and functional neuroimaging has implicated a number of these brain 
regions in psychiatric disease. 
 Since Aquinas, Spinoza, and Bentham, a central question has been how 
rewarding stimuli are experienced relative to aversive or painful events, and how 
the experience of reward is translated across categories of stimuli that reinforce 
behavior (9,22,240). Today, human neuroimaging studies (at the limits of their 
current resolution) have provided evidence for a generalized circuitry processing 
rewarding and aversive stimuli. Motivationally salient features of infused drugs 
of abuse, fruit juice consumption, perceived beautiful faces or music, monetary 
gains and losses, somatosensory pain, and cues of aversive events activate a 
common set of distributed neural circuits that process rewards and sanctions 
(3,19,24,27,35,37,38,88,137,189,200). Within some of these neural groups, 
separate local circuits have been shown during electrophysiological studies of 
mammals to selectively activate in response to distinct categories of rewarding 
input (51,52). A number of human neuroimaging studies have started dissecting 
the subcomponent processes of the functions processing reward/aversion infor-
mation (33,38). The results of human studies together with those in phylogeneti-
cally lower species (132,147,215) point to the existence of an informational 
backbone (iBM) focused on processing reward/aversion information. 
 Circuits within this iBM have been reported to be functionally or structur-
ally altered in a number of neuropsychiatric illnesses (36,63,103,126,161,181, 
223,225,257). This body of research suggests that these illnesses can be charac-
terized by distinct circuit-based alterations. If a subset of these circuit-based 
alterations were shown to be heritable, they might serve as endophenotypes for 
future genetic linkage studies. To be endophenotypes, or heritable/familial quan-
titative traits, these circuit-based alterations would need to correlate with indi-
viduals' risk of developing a disease but not be a sign of disease progression 
(4,106). Along with state-sensitive alterations, circuitry-based quantitative traits 
may serve as better diagnostic markers (121,186,241) than those currently used 
for psychiatric diagnosis based on statistical associations of behavioral signs and 
symptoms. A detailed characterization of neural circuits in affected individuals, 
their family members, and family-based matched controls (thereby producing a 
"systems biology map") may enable us to characterize the genetic and epigenetic 
factors that combine to produce these circuit-based alterations. Supporting these 
possibilities, recent studies involving presentation of motivationally salient 
stimuli allude to a potential correspondence between events at the molecular and 
brain circuitry levels (11,19,242). Correspondence of measures across scales of 
brain function suggests that similar principles of organization may be operative 
with extended molecular networks and with distributed neural groups (21; see 
Part II, chapters 4 (by Wuchty, Ravasz, and Barabási) and 5 (by Krakauer), and 
Part III, chapter 5.1 (by Reeke), this volume). 
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 To develop these interlinked concepts, this chapter will be organized in five 
sections. The first section will describe one of the widely used approaches in 
brain mapping, namely, functional magnetic resonance imaging (fMRI), which 
has provided important insights into the neural systems in humans involved with 
emotion and the processing of reward/aversion information. This type of neuro-
imaging, in conjunction with developments in the experimental psychology of 
motivation described in the second section, has produced the data and ap-
proaches described in the third, fourth, and fifth sections. The second section 
will serve as a bridge between the first and third sections and describe a general 
model of motivation and the embedded systems for processing reward/aversion 
information (i.e., via an iBM) as well as those that give rise to emotion. The 
third section will describe converging evidence from human fMRI and other 
neuroimaging studies, as well as physiological studies in animals, for a common 
circuitry processing reward/aversion information and its component subproc-
esses. The fourth section will synthesize a body of human neuroimaging evi-
dence that argues for a dysfunction in components of this reward/aversion 
circuitry in neuropsychiatric illnesses. The final section will describe how a 
dense mapping of the neural systems responsible for reward/aversion function 
combined with genetic and genotypic data should enable us to hone in on the 
networks of genes responsible for the development and maintenance of these 
neural circuits, in health and in neuropsychiatric illness. Through the use of ob-
jective quantitative measures, integrative neuroscience approaches have the po-
tential to redefine our conceptualization of neuropsychiatric illness (32). 

2. IN VIVO MEASUREMENT OF HUMAN BRAIN ACTIVITY USING fMRI

 The majority of the data gathered over the past 15 years characterizing the 
neural substrates of human motivational function has been collected via tomo-
graphic and non-tomographic brain imaging techniques. Tomographic tech-
niques that localize signal changes in three-dimensional space include: positron 
emission tomography (PET), single photon emission computed tomography 
(SPECT), magnetic resonance imaging (MRI), and optical imaging techniques. 
Non-tomographic techniques include electroencephalography (EEG) and mag-
netoencephalography (MEG). Each of these techniques has unique benefits 
that warrant its use for specific neuroscience questions (please see (251) for 
technical discussion of such considerations). Functional MRI (fMRI) has been 
the most widely used technique to study motivation in humans. In contrast to 
studies of normative reward circuitry function, dysfunction of these systems that 
contribute to neuropsychiatric illnesses has not yet been commonly studied with 
fMRI. Given the ease with which fMRI acquisitions can be combined with 
other forms of MRI: (1) high-resolution structural scanning for morphometric 
quantitative anatomy measures (see Figure 1a), (2) arterial spin-labeling scans 
for absolute resting perfusion, (3) diffusion tensor imaging for white matter trac-
tography (see Figure 1b), or (4) spectroscopy for chemical signatures related to 
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neural integrity, fMRI is likely to become a technique more commonly used for 
researching neuropsychiatric illness, and potentially clinical diagnoses. What 

Figure 1. (a) Morphometric segmentation of T1-weighted MRI data in coronal sections using the 
morphometric methodology of the Center for Morphometrc Analysis (54,91). a–d are four representa-
tive coronal sections of the human brain in the rostral-caudal dimension showing limbic and paralim-
bic structures. The colored sphere shows the color coding scheme applied for the visualization of the 
tensors: red stands for the medial-lateral orientation, green indicates the anterior-posterior orientation, 
and blue shows the superior-inferior orientation. Abbreviations: FOC = Frontal Orbital Cortex, FMC = 
Frontal Medial Cortex, CGa = Cingulate Gyrus (anterior), CGp = Cingulate Gyrus (posterior), NAc = 
Nucleus Accumbens, TP = Temporal Pole, INS = Insula, BF/SLEA = Basal Forebrain/Sublenticular 
Extended Amygdala, Hip = Hippocampus, PH = Parahippocampal Gyrus, VT = Ventral Tegmental 
Area, Tha = Thalamus, Hyp = Hypothalamus, BS = Brain Stem, Amy = Amygdala. (b) Diffusion 
tensor magnetic resonance (DT-MR) image of limbic fiber pathways. (b) shows the primary eigenvec-
tor map (PEM) of a coronal slice at the level of the anterior commissure; the T2-EPI image of this slice 
is shown in (a). Dotted rectangles highlight regions that include major limbic pathways such as the 
fornix, cingulum bundle, medial forebrain bundle and ventral amygdalofugal projection (in the basal 
forebrain or BF). Abbreviations: CB = cingulum bundle, UF = uncinate fasciculus, ac = anterior com-
missure, CC = corpus callosum, lv = lateral ventricle. For further details on DT-MRI, please see Ma-
kris et al. (157,159). 
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follows is a brief overview of the development of fMRI and some of the re-
search into what it actually samples of brain activity. 
 There are now a number of different fMRI techniques that can be used for 
making movies of focal changes in brain physiology related to one or a set of 
targeted mental functions. These techniques can be roughly categorized by the 
use of exogenous (injected) contrast agent versus methodologies based upon 
intrinsic contrast (natural contrast agent in the blood, or the effects of flow on 
MRI signal). Functional MRI with contrast agents was first demonstrated by 
Belliveau et al. (20), using echo-planar imaging in combination with the para-
magnetic contrast agent gadolinium, bound to a chelating agent, DTPA. This 
general methodology works because the presence of Gd-DTPA within the par-
enchymal vasculature increases the decay rate of the MR signal (1/T2) in a re-
gionally specific fashion. This, in turn, changes the image contrast, and serial 
measurement of image intensity can be converted to regional cerebral blood 
volume. If injections of Gd-DTPA are made during different experimental con-
ditions—for instance, the rest condition of no movement and the targeted condi-
tion of finger apposition—contrasting images acquired during each experimental 
condition can lead to a measure of cerebral blood volume change associated 
with the experimental perturbation to the system. The cerebral blood volume 
change can be evaluated statistically, and overlaid on a structural MRI to illus-
trate the anatomical localization. When using novel contrast agents with long 
blood half-lives, as can be employed in animal models, this technique becomes 
particularly powerful. Repeated injections are no longer required, and changes in 
blood volume can be assessed dynamically throughout the entire experiment. 
Moreover, the dose of injected agent can be dialed to the optimum value in order 
to produce the strongest of all possible fMRI signals. However, the gadolinium 
compounds used in humans have very short blood half-lives, and no suitable 
agents are approved at this time. 
 For human studies, the most widely utilized technique is based upon 
changes in an intrinsic contrast agent, deoxygenated hemoglobin. Its develop-
ment followed from the classic work of Pauling and Coryell (197,198) on the 
diamagnetic versus paramagnetic state of oxyhemoglobin and deoxyhemoglo-
bin, respectively. Subsequent work by Thulborn and colleagues (249) evaluated 
the in-vitro effect of oxygenation on the MRI signal. Independent groups led by 
Ogawa and Turner extended these observations to note similar changes alter T2-
weighted signals in vivo in mammals. Parallel work by Detre and colleagues 
(77) demonstrated how to use T1-weighted signals to quantify perfusion. With 
important modifications, Kwong and colleagues (143) applied these develop-
ments to image oxygenation and flow changes associated with neural activity. 
The work of Kwong and colleagues was first presented to other scientists at the 
10th Annual Meeting of the Society of Magnetic Resonance (August 1991) and 
were rapidly replicated and extended (10,143,190). 
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 Like the method based upon injected contrast agents, intrinsic contrast is 
sensitive to T2*-weighted signal changes and critically depends on the observa-
tions of Pauling and Coryell (197,198) that the magnetic properties of hemoglo-
bin change from the oxy-state, which is diamagnetic, to the deoxy-state, which 
is paramagnetic. Because of this issue, the intrinsic contrast technique has been 
called blood oxygen-level-dependent contrast imaging or BOLD (190). Blood 
oxygen-level-dependent contrast results from a set of effects initiated by 
changes in local cellular activity. These effects include alterations in cerebral 
blood flow (CBF) and cerebral blood volume (CBV) that in general produce 
increased oxygen delivery beyond oxygen utilization, so that there is a relative 
decrease in local deoxyhemoglobin concentration. A relative decrease in deoxy-
hemoglobin concentration results in an increase in the relaxation time T2*, or 
apparent T2, leading to an increase in MR signal in brain regions with increased 
neural activity. 
 The mechanistic details behind this general model of intrinsic contrast fMRI 
continue to be a topic of active research, specifically around (a) the neural corre-
lates of BOLD and other perfusion-weighted signals, (b) the coupling of neural 
activity with vascular responses, and (c) factors influencing the concentration of 
deoxyhemoglobin. What follows is a synopsis of research on the first and last of 
these topics, given their relevance to interpretation of fMRI studies of normative 
motivation, and altered motivational function in the form of neuropsychiatric 
illness. 
 In a number of circumstances, BOLD signal changes have been observed to 
be proportional to changes in neuronal spike rates (213). But other work involv-
ing stimulation of parallel fibers with neutralizing effects on measured spike 
rates has shown circumstances where spike rate and CBF diverge (166). Data 
have been further presented that local field potentials (LFPs) correlate better 
with CBF/BOLD effects than spike rate (156), suggesting that changes in BOLD 
signal reflect incoming synaptic activity and local synaptic processing. This re-
lationship between LFPs and CBF/BOLD will vary with local neural architec-
ture in that this relationship has been observed to be linear during climbing fiber 
stimulation, and nonlinear with parallel fiber stimulation (166). 
 When neural activity is altered, corresponding effects are observed in CBF, 
CBV, and oxygen consumption. The weight accorded to these effects and their 
impact on deoxyhemoglobin concentration has been the topic of intense investi-
gation. Early in the development of fMRI, capillary perfusion studies in the rat 
brain demonstrated that essentially all cerebral capillaries are perfused in the 
basal state, and that increases in perfusion are accomplished primarily by in-
creases in blood velocity within capillaries, as opposed to the capillary recruit-
ment that is such a large factor in muscle (255). This observation was important 
in that it defines clear limits for the coupling ratios of blood flow to volume and 
to oxygen utilization. Activation-induced changes in oxygen utilization 
(CMRO2) are thought to be coupled to changes in blood flow by a diffusion 
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limitation on oxygen, so that relative changes in CBF always exceed those in 
CMRO2, leading to a positive change in blood oxygen (45). Subsequent re-
search illustrated the complexity of the relationship between oxyhemoglobin and 
deoxyhemoglobin concentrations (153), and how this relationship was differen-
tially impacted by oxygen consumption, CBF, and CBV over time after a con-
trolled experimental stimulus (71,72,122,160). Recent work has begun to 
emphasize the importance of understanding how brain pathology and medica-
tions can alter the relative weightings of oxygen consumption and CBV effects 
on BOLD signal, so that they become a dominant factor (187). For example, 
altered neurovascular coupling has been observed with carotid occlusion (216), 
transient global ischemia (224), subarachnoid hemorrhage (80), and theophylline 
or scopolamine treatment (78,253). To date, altered neurovascular coupling in 
the basal state (as opposed to functionally induced changes in CBF or CBV) has 
not been demonstrated to be a consistent effect of Axis I neuropsychiatric ill-
nesses, although medications, drugs of abuse, and changes in ventilation or heart 
rate will alter global parenchymal perfusion and make focal BOLD measures 
more difficult (105). It thus remains a defensible hypothesis among psychiatric 
neuroimagers using fMRI that illnesses such as major depressive disorder, gen-
eralized anxiety disorder, obsessive compulsive disorder, addiction, and schizo-
phrenia have neurovascular coupling mechanisms that are similar to those in 
healthy controls. It also remains a defensible hypothesis that studies using re-
warding stimuli, aversive stimuli, or stimuli with strong emotional content will 
not alter neurovascular coupling. 

3. THEORETICAL MODEL OF MOTIVATION FUNCTION

 To guide their behavior, humans integrate unconscious and conscious men-
tal processes to produce judgments, select choices, and make decisions. These 
processes involve a systematic evaluation of: internal physiological, mental, and 
socially acquired needs; potential goal-objects in the environment meeting these 
needs; memories of outcomes from previous behaviors directed toward goal-
objects; and the perceived needs of other cooperative or competitive organisms. 
To explain the intensity and direction of behavior, the integration of these 
evaluative processes has traditionally been referred to as a drive or motivational 
state (33). With evolutionary pressures toward the selection of fitness, motiva-
tional states seek to maximize personal fitness over time through choices of 
goal-objects and activities. 
 Motivational states necessitate planning over time, along with planning in 
parallel for alternative behaviors and choices. Drives that control behavior do 
not all have a well-defined temporal relationship to environmental events (i.e., 
curiosity) (33,142). Yet all drives select outcomes that produce variable arousal 
and satiation/relief. Motivational states allow an organism to intentionally moni-
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tor its needs over time (as opposed to doing so in a stimulus response fashion), 
and to select environmental opportunities that fulfill these needs. A number of 
motivational states can be present concurrently (e.g., while running across a 
parking lot to catch a train you become hot, tired, and short-of-breath). Homeo-
static and biological control of thermoregulation, oxygen saturation of hemoglo-
bin, osmolality, or glucose level can be balanced against inter-organism and 
social objectives related to defense, shelter, procreation, hierarchical ordering, 
and curiosity. The collective neuronal and physiological processes that mediate 
drives based on such needs, and linked intentional activity that meets these 
needs via behavioral processes inclusive of decision-making, speech, and imagi-
nation, can be collectively referred to as motivation. 
 Current models of motivational function developed as a challenge to the 
model of behaviorism. The behaviorist model postulated that goal-objects in the 
environment have organizing effects on behavior through "stimulus-response" 
relationships. In this construct, "rewards" were goal-objects or stimuli that pro-
duced repeated approach behaviors or response repetitions. A rewarding stimu-
lus could act via a memory or via salient sensory properties (i.e., a food odor) to 
be an incentive for approach behavior. In contrast, a rewarding stimulus that 
increased the probability that preceding behavioral responses would be repeated 
(i.e., drug self-administration) would reinforce previous behavior. This behav-
ioral perspective had difficulties with concepts such as target detection by the 
brain (41). Likewise, its stimulus–response framework did not allow for sym-
bolic manipulation as described by Chomskian linguistics (95), or inferential 
processes (178). These deficiencies instigated conceptual revolts in the form of 
cognitive neuroscience (113,139,165,176), neuro-computation (123,58,169,56), 
judgment and decision making (172,238), emotion neuroscience (69,146,196), 
behavioral ecology and neuroeconomics (102,140), and a more "pragmatist" 
perspective framed by nonlinear dynamics (95,96), and the effects of nonlinear 
processes on system information (109,110,267). 
 Synthesizing these viewpoints, a general schema for motivation functions is 
illustrated in Figure 2a. This schema for a Motivation Information Theoretic 
(MIT) model is generally consistent with recent neuro-computational evidence 
(75,96,243). In the MIT model, at least three fundamental operations can be 
ascribed to motivated behavior (33), which have precursors in models of animal 
cognitive physiology function and communication theory (234) (Figure 2b,c). 
These operations include a number of processes. One grouping of processes (A) 
includes evaluation of homeostatic and social needs, and selection of objectives 
to meet these needs. A second grouping of processes (B) includes sensory per-
ception of potential goal-objects that may meet these objectives, assessment of 
potential reward/aversion outcomes related to these goal-objects, and compari-
son of these assessments against memory of prior outcomes. A third grouping 
(C) involves assessment, planning, and execution of action to obtain or avoid 
these outcomes (33,119,120,167,168,206,237,238). As these operations rely on 
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intricate feedback loops in their production of a behavioral trajectory, they are 
not necessarily sequential but orthogonal to time. The third operation, in hu-
mans, clusters a number of possible actions: (1) modulation of attention-based 
filtering of perceptual input, (2) organization of motor output to obtain goal-
objects, (3) control of cognitive, logical, and internal imagery systems (and their 
symbolic output in the form of language) to increase the range of goal-objects 
that can be obtained, problems that can be solved, or events that can be experi-
enced (139,177,238). 

Figure 2. (a) The MIT (Motivation Information Theoretic) Model synthesizes the processes of (B) with those 
of (C) with input entry via an informational backbone for motivation (iBM). This information backbone 
assesses if potential goal-objects will fulfill organism objectives for fitness, and interfaces with the behavioral 
operation to obtain such goal-objects. Given the interdependence of these sets of brain processes on each 
other, they function as if they were all orthogonal to time. See text for further details. (b) A cognitive physiol-
ogy model organized around three general operations for mediating directed action. One operation (A) is 
composed of processes that evaluate organism needs across multiple dimensions, and potential energy costs 
for fulfilling these needs by plans devised in (C). A second operation (B) includes processes for sensory 
perception, memory of previous outcomes and their contexts, and assessment of how rewarding or aversive 
potential goal-objects or events might be. (c) Information (H), as defined by Shannon and Weaver (234), is 
received and decoded during communication by processes that allow incoming information to be linked to the 
set of communicable messages. Messages, in turn, are encoded and transmitted in the form of behavior. Self-
organizing organisms always generate entropy as an outcome, which acts as a force behind the development 
of complexity in coding/decoding systems such as the brain, and their evolution toward greater complexity 
(204). See text for definitions of abbreviations. 
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 The outputs of this system, intentional behaviors, are a form of communica-
tion (234). These outputs also represent a means for modulating sensory inputs 
to the brain, as distinct from top–down adaptation of input once it is in modality-
specific processing streams (97). The reference to communication theory (234) 
is given because it helped foster the revolt against behaviorism. This theory pre-
sented a schema for understanding communication in its most general sense, 
namely, how one mind or machine affects another. In it, Claude Shannon and 
colleagues focused on the technical constraints on communication, and did not 
address the "semantic problem" or the "effectiveness problem" of communica-
tion. Ideas from communication theory were integrated with neural systems bi-
ology only recently in domains such as: sensory representation and memory 
(56,58,123,203), reward prediction (229), serial response learning and novelty 
assessment (23), conditional probability computation (33), and nonlinear dy-
namics underpinning decision making (95,96). Recently, attempts have been 
made to address the "semantic problem" posed by inter-organism communica-
tion, and what constitutes meaning for a biological system. Two viable hypothe-
ses have been advanced, which could be considered as two sides of the same 
coin. One hypothesis connects meaning in biological systems to the intersection 
of intentional behaviors between organisms (95). The alternative hypothesis 
places meaning within the context of organism optimization of fitness over time 
and tissue metabolic needs (33). For the latter hypothesis, communication be-
tween organisms utilizes message sets defined by genomic and epigenomic con-
trol of the bioenergetics of metabolism (32). 
 A number of the general operations and processes of the MIT model (Figure 
2a) have been the target of experimental dissection. For instance, when an ani-
mal seeks and finds an object with motivational salience, a set of hypothetical 
informational subprocesses appear to be active (Figure 3) (15,33,66,76,96,114, 
116,237,138,268). A partial listing of these subprocesses includes the following: 
(1) reception of input from the environment or internal milieu across multiple 
channels, (2) representation of this input by transient neuronal activity, (3) 
evaluation of input representations for sensory modality-specific characteristics 
such as color and motion, (4) combination of these representations across mo-
dality at theoretical convergence zones as potential percepts, (5) encoding 
of representations into memory and contrast with other stimulus memories, and 
(6) evaluation of representations for features (rate, delay, intensity, amount, 
category) that are important for the organization of behavior. Feature evalua-
tion encompasses: (a) categorical identification of putative "rewards" or aversive 
stimuli, (b) extraction of rate and delay information from the object of worth, 
and (c) valuation of goal-object intensity (i.e., strength) and amount in the con-
text of potential hedonic deficit states. The second of these feature evaluation 
subprocesses allows computation of a rate function to model temporal behav-
ior (99), and of a probability function for possible outcomes (131,254) (Figure 
3). The mechanism by which the output of these valuation and probability (i.e., 
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expectation) subprocesses is combined continues to be a domain of active in-
quiry (238). 
 For the MIT model in Figures 2 and 3, a "reward" is defined as the positive 
value that an animal attributes to a goal-object, an internal physical state, a be-
havioral act, or a cue associated with any of these. Rewards with a direct tempo-
ral connection to homeostatic regulation have a variable valuation dependent on 
the physiological state of the organism and the organism's previous experience 
with it (3,46). Although they are often referred to as "deficit states" connected to 
the physiological needs of the organism (e.g., glucose level, oxygen saturation, 
thermoregulation), they can be challenging to define in the case of social re-
wards (e.g., social or personal aspirations). The relationship of social rewards to 

Figure 3. The informational backbone for processing reward-aversion input (iBM). Reflecting one interpreta-
tion of research from evolutionary ecology (102,237) and behavioral finance (131,238,254), the informational 
backbone is dissected into its theorized processes for sensory perception, memory, and reward/aversion as-
sessment. Solid lines connect subprocesses as steps in the processing of information, whereas dashed lines 
represent subprocesses theorized to produce feedback leading to nonlinear system function (95,96). Postulated 
early subprocesses (blue box and brain cartoon) include: (1) information reception over discrete channels and 
representation (light blue points in cartoon of brain), (2) convergence of processed informational measures 
such as color, contrast and detected motion for vision (over ventral and dorsal processing streams as yellow 
arrows moving to dark blue points), and (3) convergence of represented information for construction of a 
percept from distinct receptive channels (15,66,76,114,268). Subsequent subprocesses are postulated to in-
clude the extraction of informational features (yellow box) with motivational relevance, including rate, delay, 
category, amount, and intensity information to be integrated during computation of probability functions and 
valuation functions (pink boxes), along with input regarding proximity and extraction risk (i.e., "cost" assess-
ments) needed for general cost–benefit analyses (33,238). Features that are integrated in such computations 
are grouped with dotted lines. Determination of rewarding and aversive outcomes is theorized to evolve 
memory processes, particularly for evaluation of counterfactual comparisons (pink boxes) (170,171). See text 
for further details. Figure adapted with permission from Breiter and Gasic (32).
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deficit states is not always apparent (3,46,48). But, social rewards may provide 
insurance over time for satiating some motivational states, or avoiding aversive 
outcomes (1,146) (Figure 4). Aversive events, in contrast, can be defined as 
deficit states whose reduction could be considered rewarding (19). Along with 
potential deficit states, rewarding and aversive outcomes also depend on valua-
tions and probability assessments of alternative payoffs that do not occur (i.e., 
counterfactual comparisons involving memory). As an example of a counterfac-
tual comparison (171), imagine that you and a friend saunter down a street. Both 
of you simultaneously find money on opposite sides of the walkway, but she 
finds a twenty dollar bill and you find a one dollar bill, resulting in you feeling 
you were not very fortunate (Figure 3). 

 Objectives for optimizing fitness (Figures 2 and 3) focus on satiating both 
short-term homeostatic needs and projected long-term needs through the insur-
ance provided by social interaction and planning (1). They represent multiple 
motivational states, whose differing temporal demands produce complex dy-
namics between competing behavioral incentives. Darwin first recognized this 
idea (67), and hypothesized that motivational states form the basis for emotion. 

Figure 4. The schematic of the Motivation Information Theoretic model is shown with compartment 
lines represented by dashed black lines in bold. Compartments and connections in solid blue represent 
processes and their interactions for which substantial neuroscience data has accumulated. Compart-
ments and interactions in light green are based on behavioral research and beginning neuroscience data 
(1,46,99). Substantially less is known for them than for processes in solid blue. Purple dashes repre-
sent processes and interactions based on a body of neuroscience data, which is still far from the level 
of knowledge currently available for the processes in solid blue. Stars are placed by the informational 
backbone for motivation (iBM), and the operation for selection of objectives that optimize fitness over 
time, to communicate a synthetic view that their processes comprise those that constitute the experi-
ence of emotion (65,67,129,146). See text for details. Figure adapted with permission from Breiter and 
Gasic (32). 
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Extrapolating from observation of facial expression, he theorized that the ex-
pression of emotion communicates internal motivational states between organ-
isms. Experimental evidence supporting such a thesis of internal sources for 
emotion was produced by Cannon (50) and others (49,73,144,147). An alterna-
tive theory on emotion from James and Lange (129,145) posited that sensory 
inputs regarding bodily function were central to emotional experience. The 
James-Lange thesis has also been supported by experimental data (65). These 
perspectives on emotional function are both represented by processes within the 
general schema for motivation in Figure 4. By this view, emotion represents an 
interaction between processes for (1) evaluation of potential deficit states, (2) 
prediction of future needs, (3) processing of sensory input about the condition of 
the body and others' bodies, (4) assessment of the presence of potential goal-
objects or aversive events that might alter particular deficit states, and (5) re-
trieval and updating of memories regarding (a) the outcome of prior deficit 
states, (b) social interactions plus conversations, and (c) contexts with particular 
goal-objects or aversive events. A view of this sort potentially allows for the 
intrapsychic complexity of human psychology (177). It conceptualizes emotion 
within the schema of motivation, potentially permitting linkage to processes that 
have been a strong focus of cognitive neuroscience research, and synthesizing 
the original perspectives of Darwin and James. 
 In Figure 4, processes shown in solid blue are supported by behavioral and 
neuroscience data. Processes determining input and output to the organism ap-
pear to be readily observed via experimentation. In contrast, the processes 
shown in light green are supported by emerging behavioral data, although much 
remains to be known about their systems biology. Relatively recently, the proc-
esses indicated with purple dashes (also see subprocesses at the bottom of Figure 
3) have been associated with neural activity in a distributed set of deep brain 
regions, suggesting that they are part of an informational backbone for motiva-
tion processing rewarding and aversive events. 

4. NEUROIMAGING OF THE GENERAL REWARD/AVERSION
SYSTEM UNDERLYING MOTIVATED BEHAVIOR

 Animal studies implicate the many projection fields of the VT dopamine 
neurons—such as the nucleus accumbens (NAc), hypothalamus, amygdala, 
sublenticular extended amygdala (SLEA) of the basal forebrain, and multiple 
fields in the paralimbic girdle (117,154,174,263) (Figure 5)—as components of 
the neural system that selects rewarding goal-objects and avoids their obverse. 
Over the last 8 years, functional neuroimaging studies of humans have identified 
homologous systems to be processing reward/aversion information, and have 
begun to dissect their contributions to motivated behavior. 
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 Some of the first neuroimaging studies to identify neural activity in a subset 
of these brain regions during the processing of rewarding stimuli used monetary 
or drug rewards (23,37,250). In the double-blind cocaine vs. saline infusion 

Figure 5. Diagrammatic representation of topologic relationships of brain stem and parcellated forebrain 
structures (158). Limbic and paralimbic structures (in yellow) and some of their main connections are shown 
in a schematic fashion. The diagram is flanked on the left and right by coronal projection planes (PP1, PP2). 
The paracallosal coronal slabs I–IV are distinguished by verticals in the interval, displayed on the midsagittal 
plane (PP3) of the hemisphere. The numbers aligned along the top of this plane correspond to the y-axis 
(anterior-posterior) coordinates of the Talairach stereotactic system (246) for the standard brain used to de-
velop this system. PP1 corresponds to a composite coronal plane (temporal lobe is forced to be more anteri-
orly located) projected at the Talairach coordinate, indicated by the vertical black arrow in paracallosal slab II. 
PP2 corresponds to the immediately posterior callosal coronal plane at Talairach coordinate –40. The projec-
tion of these slabs within the temporal lobe is indicated by step PP4. Whereas the amygdalo-hippocampal 
junction will have the approximate lateral projection of PP4, the hippocampus and fornix will actually curve 
medially and approximate the plane of PP3. Its representation in PP4 is a schematic emphasis of the anterior-
posterior projection of the structure. The decussation of anterior (ac) and posterior (pc) commissures is indi-
cated by brown squares at PP3/II and IV respectively. Ventricular system (LV) (black) is projected topologi-
cally within the 3-dimensional representation. Cortex: neocortex (gray), limbic cortex (yellow). nuclei: 
thalamus (th), caudate (cau), putamen-pallidum (Ln), amygdala (amy) (pink). White matter: radiata (beige); 
corpus callosum (cc) (red); internal capsule (IC). Cortical paralimbic structures: parahippocampal gyrus (PH); 
temporal pole (TP); frontoorbital cortex (FOC); frontomedial cortex (FMC). Gray limbic structures: limbic 
brain stem (LB); hypothalamus (Hyp); hippocampus (Hip); amygdala (Amy); septal area (sept); preoptic area 
(proa); nucleus accumbens septi (NAc); sublenticular extended amygdala and basal forebrain (SLEA/BF); 
insula (INS); habenula (Hb). Abbreviations: White matter: superior sagittal stratum (Ss), inferior sagittal 
stratum (Si), temporal sagittal stratum (St). Limbic fascicles shown in this figure: uncinate fasciculus (UF); 
cingulum bundle (CB); dorsal hippocampal commissure (dhc), fornix (fo), fimbria (fi); medial forebrain 
bundle (MFB); amygdalofugal projection (AFP). 
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study (37), multiple projection fields of the VT dopamine neurons were specifi-
cally targeted and visualized (Figure 6). As the study involved chronic cocaine-
dependent subjects, the results correlating subjective reports of euphoria and 
craving (i.e., a mono-focused motivational state) to activation in reward circuitry, 
could not be separated from neuro-adaptations to subject drug abuse. A number 
of follow-up studies in healthy controls confirmed the initial findings with 
cocaine, using monetary reward, social reward in the form of beautiful faces, 
and thermal aversive stimuli. Together, this series of studies provided strong 
evidence for a generalized circuitry that processes stimuli with motivational 
salience (3,19,31,37,38). Modeling a game of chance, the monetary reward 
study incorporated principles from Kahneman and Tversky's prospect 

Figure 6. Nonparametric statistical maps in pseudocolor (with p-value coding bar), showing functional mag-
netic resonance imaging "activation," are juxtaposed on structural images (figure adapted with permission 
from Breiter et al. (37)). Activation represents brain signal related to blood flow and volume changes that are 
linked to changes in neural local field potentials. Images on the left show significant signal change in the 
nucleus accumbens/subcallosal cortex (NAc/SCC) and sublenticular extended amygdala (SLEA) to infusion 
of cocaine and not saline. These images are brain slices in the same orientation as the human face, and are 12 
mm (NAc/SCC) and 0 mm (SLEA) anterior to a brain landmark, the anterior commissure. Signal time courses 
from the NAc/SCC and SLEA are graphed in the middle of the figure as percent signal change during the 
cocaine pre- and post-infusion intervals (infusion onset shown with a blue line). These signals were correlated 
with the average behavioral ratings for rush (euphoria and physiological experience of initial cocaine effects) 
and craving (motivational drive to obtain more cocaine) shown in a graph at the bottom of the figure. The 
statistical correlations of the behavioral ratings with the brain signal responses to cocaine are shown as statis-
tical maps on the right of the figure. 
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theory as well as Mellor's decision affect theory (131,170,171,254). Its results 
temporally segregated expectancy effects from outcomes in a number of reward 
regions (Figure 7a), and observed rank ordering of signal responses in a set of 
brain reward regions that reflected the differential expectancy conditions. Rank 
ordering of fMRI signal responses to differential monetary outcomes was also 
observed. Strong effects of expectancy on subsequent outcomes, or counterfac-
tual comparisons (170,171), were measured for an outcome shared across expec-
tancy conditions. The observation of effects from counterfactual comparisons is 
a fundamental experimental control supporting the reliability of the expectancy 
measures. At the high spatial resolution of this 3T fMRI study, some reward 
regions were activated solely by expectancy or outcome effects. Intriguingly, a 
few regions were involved with multiple functions and processed differential 
expectancies, outcomes, and counterfactual comparisons. Later studies using 

Figure 7a. An experimental design that applies the principles of prospect theory and decision affect theory 
(figure adapted with permission from (32,38)) utilizing three spinners in a game of chance. Organized as a 
series of single trials, the trial sequence started with presentation of one of these spinners, and continued with 
an arrow rotating on it. After six seconds, this rotating arrow would abruptly stop and the sector upon which it 
had landed would flash for 5.5 seconds, showing that the subject had won or lost that amount of money. With 
three spinners, each with three outcomes, this experiment asked which reward/aversion regions in the brain 
would process differential expectancy and/or outcome effects. With one outcome ($0) shared across spinners, 
it could explicitly also evaluate counterfactual comparison effects (171,170). The graphs at top display differ-
ential expectancy effects (left), differential outcome effects (middle), and counterfactual comparisons (right) 
from a region of signal change in the sublenticular extended amygdala (SLEA). The x-axis displays time in 
seconds, while the y-axis displays normalized the fMRI signal. 
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monetary reward have significantly extended these observations of differential 
expectancy responses in some reward regions (137) and differential outcome 
effects (88). Other important studies with categorical rewards have shown seg-
regation of expectancy and outcome effects, without counterfactual comparison 
effects (24,189). There appears to be a concordance of findings between differ-
ent research groups, and overlap across studies within the same research group 
(e.g., such as similar expectancy findings in the NAc) for a monetary stimulus 
(38) and, retrospectively, for a cocaine infusion (33) (Figure 7b). This argues 
that different categories of reward are evaluated by a distributed set of reward 
regions, which can be functionally dissected. 
 Complementing the monetary reward studies, the study of social stimuli in 
the form of beautiful versus average faces addressed the issue of valuation and 
relative preference (see Figure 3). Incorporating a keypress paradigm, this study 
objectively quantified the reinforcement value of each stimulus by measuring 
the effort that experimental subjects expended to increase or decrease their 
viewing time of each face relative to a default viewing time (Figure 8a). For this 
procedure quantifying relative preferences, these face stimuli could be consid-
ered to be items in an economic bag of goods. The output of this keypress pro-
cedure was a representation of the utility function for each individual toward this 
set of items (Figure 8b). The results of this study argued that judgements of rela-
tive preference or utility were related to activity in a subset of reward regions. 

Figure 7b.  Overlap in NAc for expectancy responses. Expectancy of a cocaine infusion is shown in the upper 
panel from a study of double-blind, randomized, cocaine vs. saline infusions in cocaine dependent subjects 
(37,33). Expectancy of a monetary gain is shown in the lower panel from a study involving a game of chance 
in healthy controls (38). Note the close anatomic proximity for NAc signal changes during positive expec-
tancy in the context of uncertainty for both experiments. Results are shown in the radiological orientation as 
pseudocolor statistical maps juxtaposed on coronal group structural images in gray tone. 
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As a quantitative measure of relative preference, non-rewarding stimuli pro-
duced different regional signal profiles to rewarding stimuli (3), an observation 
that was further supported by a study using thermal pain (19) (Figure 9). This 
study of judgments of relative preference or utility along with the monetary 
study based on prospect theory (38) are early examples of the developing field 

Figure 8a. Beauty Project. Behavioral and fMRI results regarding the viewing of beautiful vs. average faces 
adapted with permission from Aharon et al. (3). A sample of the four picture types used in these tasks (from 
left to right) is shown at top: beautiful female (BF), average female (AF), beautiful male (BM), and average 
male (AM). In the graph just below these sample face pictures, rating responses are shown for eight hetero-
sexual males who rated picture attractiveness on a 1–7 scale for a randomized sequence of these pictures. The 
responses grouped themselves with tight standard deviations in the four categories illustrated at top. This 
process was interpreted as a "liking" response, whereas the keypress procedure (whose results are shown as 
the second graph down from the top) was interpreted as a "wanting" response (25). For the keypress proce-
dure, a separate cohort of 15 heterosexual males performed a task where picture viewing time was a function 
of the number of their keypresses. Within each gender, the faces were always presented in a new random 
order, with beautiful and average faces intermixed (3). On the lowest graph, percent BOLD signal from the 
NAc for a third cohort of heterosexual males is shown for each face category relative to a fixation point 
baseline. Significant by a random effects analysis, the fMRI results in the NAc were driven by the response to 
the beautiful female and the beautiful male faces, and more closely approximated the "wanting" response 
rather than the "liking" response. On the right, a pseudocolor statistical map of signal collected during the 
beautiful female condition vs. the beautiful male condition (with p-value coding bar) is juxtaposed on a cor-
onal group structural image in gray tone. 
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of neuroeconomics (102). Overall, this set of studies in healthy controls ob-
served that "classic" reward circuitry (including the NAc, SLEA, amygdala, VT, 
and GOb) processes a continuum between rewarding and aversive stimuli, with 
salient similarities and differences in regional activation (Figure 10a). 
 The segregation of neural systems that process aversive stimuli from those 
that process rewarding stimuli might be an artificial distinction (132). Com-
prised of subcortical gray structures, the "classic reward system" is activated by 
aversive stimuli such as thermal pain, expectancies of bad outcomes, and social 
stimuli that are not wanted (3,19,38). Comprised of paralimbic cortical and tha-
lamic structures, "classic pain circuitry" (18,19,57,62,71,72,201,207,208,221, 
247) is also activated by rewarding stimuli (18,19,57,62,71,72,201,207,208, 
221,247) (Figure 10b). This commonality of activation patterns produced in 
healthy humans by stimuli with positive and negative outcomes (Figure 10b) 
argues that an extended set of subcortical gray matter and paralimbic cortical 
regions processes both rewarding and aversive information, and could be con-
sidered a generalized system (31). 
 A metaanalysis or general survey of neuroimaging studies presenting 
rewarding stimuli to humans suggests that an extended set of reward/aversion 
regions responds across multiple categories of rewarding stimuli (3,12,23,24, 
27,28,33,38,44,83,87,88,133,137,155,188,189,239,250,257,270,272–274,277,279,
280) (Figure 11). This observation is complemented by animal data indicating 

Figure 8b. Theoretical considerations regarding utility or relative preference. The output of this keypress 
procedure was a representation of the utility function for each individual toward this set of items. The objec-
tive was to determine their relative preferences for these items compared to the default position of not expend-
ing any effort to change a set viewing time. The keypress procedure quantified both the valence and the 
amount of the value that each item or face picture had relative to the default position of 8 seconds of viewing 
time. 
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that subsets of neurons may respond to one type of rewarding stimulus but not 
another (51,52). As some of these neuroimaging studies (Figure 11) only 
focused on select brain regions, such as the GOb, anterior cingulate cortex, or 
amygdala, or did not have the spatial resolution to observe a subset of 
subcortical regions, the relative prevalence of documented brain activity in some 
brain regions is overweighted. Although the majority of these studies involved a 
motor component for the experimental task, the bulk of activations reported did 
not involve regions associated with some aspect of motor control (i.e., dorsal 
caudate, putamen, globus pallidus, posterior cingulate gyrus, and thalamus). 
Furthermore, activation patterns in subcortical gray matter and paralimbic cortex 
were similar between experiments using the passive presentation of social/ 
aesthetic stimuli, appetitive stimuli, and drug stimuli, and those using tasks that 
included motor performance. The experimental results summarized in Figure 11 

Figure 9. Pain study of reward circuitry in healthy control subjects. In this figure, adapted with permission 
from Becerra et al. (19), representative coronal slices containing "classic" reward circuitry [GOb, SLEA, 
ventral striatum (VS), ventral tegmentum/periacqueductal gray area (VT/PAG)] are segregated into early and 
late phases of BOLD signal change following the 46 C stimulus (left and middle columns). As in Figures 6, 
7b, and 8a, the statistical maps are overlaid in pseudocolor on gray scale average structural maps. The right 
column of statistical maps shows the overlap (red) of early (yellow) and late (blue) phase activation. Time 
courses of % signal change vs. time are shown in the column at far right for each structure. To aid anatomic 
localization, the anterior-posterior coordinate in mm from the anterior commissure for each slice is shown in 
the far left column. For this figure, activated pixels are thresholded at p < 5  10–4.
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indicate that "classic" reward circuitry (i.e., NAc, SLEA, amygdala, VT, GOb) 
is not uniquely involved with reward functions, given a proportionate number of 
activations are also reported in the rest of the paralimbic girdle. 
 Some minor caveats need to be considered when evaluating the literature 
around a generalized circuitry for the assessment of reward/aversion informa-
tion. One caveat is that none of these reward studies controlled for relative 
valuations across stimulus categories, or controlled for the presence of a deficit 
state, with the exception of a study using chocolate stimuli and a study that 

Figure 10. (a) Consolidated data from studies at one lab show common and divergent patterns of activation 
(3,19,33,37,38) regarding the analysis of expectancy, or of outcome. Two separate cocaine infusion studies 
are listed, as are positive and negative valuation results for the beautiful faces experiment and the thermal 
pain experiment. Red up-arrows symbolize positive signal changes while blue down-arrows stand for nega-
tive signal change. Numeric notation that is raised indicates more than one focus of signal change in that 
region, whereas brackets indicate the signal change was statistically subthreshold for that study. The right 
GOb, right NAc, right SLEA, and potentially the left VT, are observed during the outcome conditions for 
most of the experiments, while bilateral NAc and left GOb are observed in both studies with expectancy 
conditions. Table adapted with permission from Breiter and Gasic (32). (b) The gray tone structural images 
in the sagittal orientation (left), and in the coronal orientation (right; +6 mm anterior of the anterior com-
missure), juxtapose published human neuroimaging results in "classic" pain regions from rewarding and 
from painful stimuli (19). Other regions illustrated include the thalamus (Thal = left image between ac and 
pc), the cingulate cortex, and the anterior insula (INS = right image). The cingulate cortex is segmented 
into four units following the standardized methods of the MGH Center for Morphometric Analysis 
(158,175), and includes aCG1 and aCG2. Note the approximation of reported activation from stimuli of 
opposite valance. Figure adapted with permission from Breiter and Gasic (32). 
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evaluated relative preferences with multiple categories of beautiful and average 
faces. At issue is the question of how to gauge the relative reward value of stim-
uli. Another issue is that all of the drugs infused into healthy controls have 
known global effects along with purported regional effects, making the associa-
tion of regional activation to subjective reports of euphoria less certain. Lastly, 
most studies compiled in Figure 11 involved monetary reward, which is theo-
rized to substitute for most other categories of reward (47,172). Despite the sali-
ency of expectancy effects, most of these reports did not control for expectancy, 
and thus the results reflect a combination of expectancy and outcome effects 
(Figures 3 and 7). With these considerations in mind, there appears to be strong 
convergence between animal and human studies on the neural basis for re-
ward/aversion (3,19,38,132). 

Figure 11. The bottom row of images indicates the anatomy of subcortical gray matter regions and paralimbic 
cortex. The top row of images consolidates reports of significant signal change for a number of distinct cate-
gories of rewarding stimuli in these regions. The colored symbols on the brain slices in the top row consoli-
date activation surveyed from 26 studies of reward function in healthy controls. These include four studies 
focused on appetitive reward with fruit juice, chocolate, or pleasant tastes. Ten studies utilized monetary 
reward (five with a guessing paradigm determining compensation, four with a performance task determining 
compensation, and one with a prospect theory based game of chance). Five studies focused on some aspect of 
social reward (two with beautiful faces, one with passive viewing of a loved face, and two with music stim-
uli). Five studies involved amphetamine or procaine reward, and two studies focused on a probabilistic para-
digm. The gray tone structural images in the bottom row are coronal slices taken (left to right) +18, +6, –6, 
and –21 mm relative to the anterior commissure. In this diagram, subcortical gray matter implicated in the 
processing of reward and aversion input include the NAc (nucleus accumbens), Put (putamen), Cau (caudate), 
SCC (subcallosal cortex), Amyg (amygdala), SLEA (sublenticular extended amygdala), Hypo (hypothala-
mus), GP (globus pallidus), Thal (thalamus), Hipp (hippocampus), VT (ventral tegmentum). Components of 
the paralimbic girdle include: sgaCG (subgenual anterior cingulate gyrus), GOb (orbitofrontal cortex), aCG 
(anterior cingulate gyrus), pCG (posterior cingulate gyrus), INS (insula), pHip (parahippocampus), and TP 
(temporal pole). Abbreviations for anatomy follow the schema adapted from the Massachusetts General 
Hospital Center for Morphometric Analysis (37,38,158,175). Figure adapted with permission from Breiter and 
Gasic (32). 
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 The subcortical gray matter and paralimbic cortices that assess re-
ward/aversion information as part of a theoretical iBM (Figures 2 and 3) also 
appear to be integrated into other processes for: (1) selection of objectives for 
fitness and (2) behavior. Perceptual inputs from multiple channels are processed 
through successive stages in unimodal association regions of the frontal, tempo-
ral and parietal cortices. This processing achieves more complex discrimination 
of features relevant for organizing behavior (Figure 3). Channel-specific infor-
mation is conveyed to multimodal areas for intermodal integration in the neocor-
tical heteromodal association areas. In turn, information relayed to paralimbic 
and limbic structures such as the cingulate gyrus, the insula, the orbitofrontal, 
frontomedial, parahippocampal and temporopolar cortices, as well as the amyg-
dala, sublenticular extended amygdala, and hippocampus, is used for feature 
extraction and encoding. Feature extraction and integration for probability de-
termination further involves the orbitofrontal cortex, amygdala, and cingulate 
gyrus, with the ventral tegmentum and nucleus accumbens septi. Contingent 
probability assessments require extensive working memory and attentional re-
sources, and thus will be integrated with activity in limbic brain stem structures, 
and heteromodal frontal, parietal, and limbic cortices in a modality- and domain-
specific way. These probability assessments are necessary for making predic-
tions about future homeostatic needs or potential deficit states, and, accordingly, 
will be involved in selecting objectives for fitness over time (Figures 2–4). They 
can also be important for prediction of effects of social interactions on homeo-
static needs, and for focusing the majority of behavioral output on social func-
tions. Valuation and probability computations around possible goal-objects and 
events, their combination as outcomes, and subsequent counterfactual compari-
sons are further integrated with information regarding the costs of changing 
body position in space, potential risks to action and inaction, and discounted 
benefits of other consummatory opportunities. Subcortical gray matter and para-
limbic cortices function in concert with multiple corticothalamic circuits for 
determination of physical plans and actual behavior. For instance, the cingulate 
gyrus has extensive involvement with the alteration of attention for motivational 
state. Other paralimbic cortices and ventral striatal regions interact with the sup-
plementary motor and premotor frontal areas in preparation for executive behav-
ior and directed action appropriate to environmental and internal factors 
(173,180,184,195). 
 The circuits that process reward/aversion information as an iBM, and inter-
act with other brain regions to produce behavior and to determine objectives 
optimizing fitness, are fundamental for normal emotion function, as well as its 
malfunction. The systems biology of reward/aversion assessment, in line with 
the systems biology of other subprocesses such as attention or memory, repre-
sents an interface across which the genome, epigenome, and environment inter-
act. The interaction of the genome, epigenome, and environment across this 
interface (see Figure 14) determines the set of all possible behaviors. This inter-
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face can be densely sampled with neuroimaging procedures to characterize a 
particular behavioral function in a set of individuals (Figure 10a), resulting in a 
quantitative representation of the neural processes necessary for that behavioral 
function (e.g., the utility function relating to a set of economic goods). If multi-
ple samplings are obtained in each individual, covering defined subprocesses, 
these functional (and structural) measures will define a complex set of physio-
logical and/or mechanistic interrelationships. These interrelationships can be 
grouped into functionally related clusters, or systems biology maps, as is done 
with cardiovascular function to produce vascular, heart, renal, endocrine, and 
morphometric clusters. The physiological and/or mechanistic relationships 
within such clusters, or systems biology maps, can be defined as quantitative 
phenotypes. These quantitative phenotypes can be subdivided into sets of pheno-
types with different contingent probabilities for susceptibility to illness/mal-
function, or resistance to illness/malfunction. 

5. IMPLICATIONS OF REWARD/AVERSION NEUROIMAGING 
FOR PSYCHIATRIC ILLNESS

 Traditionally, major psychiatric disorders have been categorized by clusters 
of patient-based reports of symptoms and behaviors observed in patients. This 
phenomenological description of categorical outward signs produced the 
nosology of illness based on exophenotypes that is the American Psychiatric 
Associations Diagnostic Statistical Manual (DSM) (5). Neuroscientists have 
recently begun to suggest approaches to replace current symptom-based charac-
terizations of illness, or exophenotypes, using a nosology based on genes, mole-
cules, neuronal organelles, and specific neural systems (60,61). Such a nosology 
would potentially develop a unitary basis for psychiatric and neurological ill-
nesses. A nosology based on descriptions of brain structure and function would 
also have to consider the impact of time, as many of these neuropsychiatric dis-
eases appear to have a neurodevelopmental and/or neurodegenerative compo-
nent (34,150,245). In this section, we will examine the current evidence for a 
neural systems approach, focusing on alterations in reward/aversion function, 
that might objectively categorize the major (i.e., Axis I disorders per DSM) neu-
ropsychiatric illnesses. 
 Over the past decade, studies of neuropsychiatric illness with positron emis-
sion tomography, single photon emission computed tomography, magneto-
encephalography, magnetic resonance spectroscopy, morphometric MRI, and 
fMRI have begun to suggest that neuropsychiatric illnesses might be distin-
guished by alterations in circuitry structure and function (42,68). So far, no re-
search has focused on classifying the major categories of psychiatric illness on 
the basis of their patterns of circuitry function or structural differences using a 
unitary set of experimental paradigms or structural imaging protocols. Meta- 
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analysis of the neuropsychiatric imaging literature, with a focus on brain sys-
tems that collectively process reward/aversion information (Figure 12), suggests 
that such an approach could segregate major categories such as the anxiety dis-
orders, major depressive disorder, addiction, the behavioral disorders, and 
schizophrenia. The metaanalysis in Figure 12 compiled studies comparing pa-
tients to unaffected controls for each of the major categories of neuropsychiatric 
illnesses on the basis of (a) patterns of resting brain metabolism, blood flow, or 

Figure 12. The same structural scans shown in Figure 11 are displayed here, grouped two-by-two, 
and numbered to correspond with the anterior-to-posterior orientation. Groupings (1)–(5) are placed 
around a central sagittal slice indicating the general location of each coronal slice relative to a yel-
low rectangle around brain regions hypothesized to mediate reward/aversion functions. These 
groupings represent partial consolidations of reports in the neuroimaging literature comparing pa-
tient groups to healthy controls. Neuroimaging measures include (a) structural differences, (b) blood 
flow, receptor binding, or resting metabolism, (c) blood flow or metabolic responses to normative 
stimuli (i.e., pictures of masked emotional faces presented to subjects with post-traumatic stress 
disorder), or (d) magnetic resonance spectroscopy measures. As in Figure 11, regions with func-
tional differences (b,c above) between subjects and healthy controls are noted with an "O" symbol. 
Regions with differences in regional morphology, volume, or spectroscopy signal from healthy 
baselines (a,d above) are noted with a diamond. Regions with an asterisk indicate that a set of stud-
ies found differences between patients and healthy controls for a large region, but a more recent 
study with improved spatial resolution noted an effect for the same experimental paradigm (i.e., 
drug infusions) localized to a specific subregion (i.e., the NAc vs. the basal ganglia). This consolida-
tion of psychiatric neuroimaging findings suggests that neuropsychiatric illness may in the future be 
objectively diagnosed by use of circuitry-based measures. Figure adapted with permission from 
Breiter and Gasic (32). 
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receptor binding; (b) functional differences in responses to normative stimuli 
(i.e., pictures of emotional faces that are rapidly masked in an effort to present 
them subconsciously); (c) volumes of brain structure,; or (d) quantifiable chemi-
cal signatures of neuronal integrity. In Figure 12, anxiety disorders (1), major 
depressive disorder (2), and addiction (3) are displayed along a potential contin-
uum along the left side of the figure. Behavioral disorders (4) and schizophrenia 
(5) are segregated on the right side of the figure. The studies compiled for anxi-
ety disorder (1) focused on post-traumatic stress disorder, social phobia, and 
simple phobia; this compilation included symptom provocation studies that were 
compared across illness category but not to a healthy control group (211,212, 
225,226). The studies compiled for major depression (2) were focused on (a) 
recurrent depression with strong familial loading (i.e., familial pure depressive 
disorder), (b) primary depression with and without obsessive-compulsive disor-
der and without manifested familial connections, and (c) primary and secondary 
depression in older subjects studied postmortem (30,39,40,81–84,90,141,161, 
181,193,209,210,219,223). These studies are compiled together in Figure 12, 
and segregated for 1–3 in Figure 13. Multiple stimulant addictions were grouped 
for addiction (3) (55,94,100,104,107,151,256–259). The studies compiled for 
behavioral disorders (4) were grouped following more recent suggestions that 
place obsessive-compulsive disorder (OCD) on a continuum with tics 
(Tourette's), attention-deficit hyperactivity disorder, and other behavioral prob-
lems such as conduct disorder, oppositional behavior, and learning disabilities 
(130). For this particular metaanalysis, the focus was on studies of OCD 
(13,14,36,92,108,185,199,222,223,244). Lastly, the studies compiled for schizo-
phrenia (5) used subjects who were not actively psychotic, and included studies 
with relevance to negative symptomatology such as amotivation, avolition, and 
anhedonia (8,63,103,115,162,163). 
 In sum, the studies compiled for anxiety disorder, major depressive disor-
der, addiction, behavioral disorders, and schizophrenia reveal differences be-
tween patient and control groups primarily in the subcortical gray matter and 
paralimbic cortices illustrated in Figure 11. These brain regions mediate sub-
processes such as reward/aversion assessment, which are fundamental to emo-
tional function and the generation of motivated behavior (1,7,23,33,38,73, 
147,174,215,227,238,263,266). Dysfunction of these brain regions has been 
previously hypothesized to be responsible for a variety of psychiatric symptoms 
such as olfactory or gustatory hallucinations, autonomic discharges, episodic 
amnesias, depersonalizations, avolition (or lack of motivation), abulia (or lack of 
will), anaffectiveness (or affective flattening), asociality, as well as delusion, 
hallucinations, thought disorder, and bizarre or disorganized behavior (276,277). 
 A circuitry-based nosology for neuropsychiatric illnesses would facilitate 
the identification of endophenotypes for these disorders (4,81,101,149,161), 
particularly as morphometric MRI studies allude to the heritability of structural 
alterations (179,248). Disorders such as depression have been hypothesized to 
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have circuitry-based phenotypes, on the basis of evidence that subtyping of de-
pressed patients appears to be important for reducing variability in the patterns 
of regional activity observed with functional imaging (81,83). At least three pu-
tative phenotypes are observed when findings are grouped from structural and 
functional imaging studies of depression with large cohort sizes or replicated 
findings (Figure 13). Alluding to the existence of circuit-based phenotypes, 
which may be heritable markers or endophenotypes, a number of neuroimaging 
studies comparing individuals with neuropsychiatric disorders to unaffected 
controls have documented qualitative differences (presence or absence of a re-
gional signal), and quantitative differences (numeric alterations in the mean or 
median signal) (36,43,82,93,115,162,163). The presence of circuitry-based 

Figure 13. The groupings of structural images in gray tone are the same as in Figure 12, and display 
changes in the structure, function, or morphology of subcortical gray matter and paralimbic cortices for 
three putative categories of depression. "Putative endophenotype variation a" grouped studies focused 
on recurrent depression with strong familiality. "Putative endophenotype variation b" grouped studies of 
primary depression with and without obsessive-compulsive features and without manifested familial 
connections. "Putative endophenotype variation c" grouped studies of primary and secondary depres-
sion in older subjects who were studied postmortem (see text for references). Regions with differences 
in resting brain metabolism from healthy baselines are noted with an "O" symbol. Regions with differ-
ences in regional morphology or volume from healthy baselines are noted with a diamond. These stud-
ies are suggestive of the potential for circuitry-based endophenotypes for major depressive disorder, and 
point to a strong focus on the generalized reward/aversion system for circuitry-based alterations charac-
terizing major depressive disorder. Such circuitry-based subtypes could facilitate treatment planning in 
the future. Figure adapted with permission from Breiter and Gasic (32). 
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endophenotypes would have implications for the nested genetic, molecular, sub-
cellular, and cellular mechanisms that produce them (53,86,112,125,161). 
 To develop a unitary nosology for neuropsychiatric illness based on func-
tional and structural circuitry measures, it is likely that more than one or 
two motivation subprocesses will need to be studied. Strong evidence exists 
that disorders such as schizophrenia involve abnormalities in multiple cortical 
regions and functional domains separate from the circuitry implicated in the 
subprocess of reward/aversion assessment (220,235). The classification of neu-
ropsychiatric illnesses using abnormalities in the circuitry for reward/aversion 
assessment may be one dimension of a multidimensional schema for circuitry-
based (or systems-based) characterization of neuropsychiatric illnesses. Per Fig-
ure 4, other dimensions might include processes involved with sensory percep-
tion (29), or processes for attention and memory (79,231,261). At the systems 
biology interface between genome, epigenome, and environment (Figure 14), a 
substantial combination of brain subprocesses involved with motivated behavior 
may be dysfunctional in concert with that of reward/aversion assessment to pro-
duce neuropsychiatric signs and symptoms. 

6. LINKING THE DISTRIBUTED NEURAL GROUPS
PROCESSING REWARD/AVERSION INFORMATION
TO THE GENE NETWORKS THAT ESTABLISH AND 
MODULATE THEIR FUNCTION

 An organism arises from a complex set of interactions between its genome-
epigenome and its environment. Disease states can be conceptualized as an or-
ganism's failure to adapt effectively to its environment. A new nosology for psy-
chiatric illness could consider these adaptation failures at multiple spatio-
temporal scales of brain function beginning with common circuitry alterations, 
which represent adaptation failures on an immediate timescale (Figures 12 and 
13). Alterations in genome-epigenome, molecular machinery, and cellular func-
tion, which represent adaptation failures on a broader timescale, would also be 
relevant in this classification system. Although deleterious to the individual, 
these changes, which appear at the genetic, molecular, and organelle levels, can 
be viewed as the byproduct of the "capacitors" and "gain-controls" responsible 
for species-wide adaptations to a changing environment over time (17,135, 
205,217,252,260). Although circuitry and molecular genetic functions are inter-
related, systems-level descriptors (e.g., the reward/aversion systems described 
above) and molecular genetic-level descriptors will both be essential compo-
nents for the characterization of all neuropsychiatric illnesses. 
 A view of how future characterization of psychiatric diseases might incor-
porate molecular-genetic descriptors can be obtained from characterizations of 
other less prevalent neuropsychiatric diseases with neurodegenerative (2) or 
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neurodevelopmental etiologies (34,150,245). For instance, prion diseases and 
many of the neurodegenerative diseases with patterns of mixed Mendelian 
and/or non-Mendelian inheritance (i.e., Alzheimer's disease, Parkinson's disease, 
frontotemporal dementias, Huntington's disease) have a strong component of 
their etiology from two processes. One process involves the dysfunction and/or 
cell death of a subset of brain neurons/glia that express an aberrant gene product, 
whereas a second process involves the non cell-autonomous consequences (e.g., 
altered homeostasis) of this cellular vulnerability. These diseases result from an 
inability to maintain mutant proteins: (a) in a properly folded and/or functional 
state, (b) in their proper subcellular organelles, or (c) at appropriate steady-state 
levels to prevent their gain-of-function role (59,64,85,111,118,124,183,191, 

Figure 14. The top diagram emphasizes the tripartite division of influences that shape an organ-
ism, namely the genome, epigenome, and environment. The set of all possible behaviors for an 
organism (i.e., communication) is determined by these three influences, although the specific 
sequence of output is not. The internal environment produced by the genome/epigenome (bottom) 
produces the putative spatiotemporal scales of brain function. In this case, activity at the level of 
distributed groups of cells, local networks or groups of cells, and individual neurons modulate the 
function of the genome/epigenome, and activity at the level of the genome/epigenome signifi-
cantly modulates the function of each of the spatiotemporal scales of function that embed it. The 
linked spatiotemporal scales of brain function are again distinct from observed behavior in the 
outside world (i.e., exophenotype) and will have a stronger connection, as endophenotypes ob-
servable with neuroimaging and other measurement systems of brain function, with the ge-
nome/epigenome. The scale of distributed groups of cells produces behavior, and accordingly 
serves as an interface between the environment and genome/epigenome. 
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232,262). Ultimately, the energy state of the cell and/or mitochondrial function 
may become impaired and normal transport processes may likewise be affected. 
 In model organisms, protection against degenerative disease can be con-
ferred by over-expression of some members of a family of heat-shock proteins 
that keep proteins in a folded state, and are upregulated during cellular stress 
conditions (152,194,236). Aging causes these cellular defense proteins to de-
cline, possibly heralding the onset of neurodegenerative disease whose preva-
lence increases with age (152,194,236; see also this volume, Part III, chapter 
7.3, by Lipsitz). Molecular systems that keep proteins in a folded state serve as 
"capacitors" for cellular evolution (135,205,217,252). 
 Heritable alterations in gene expression that do not rely on coding or regula-
tory polymorphisms in DNA sequences (e.g., methylation of DNA bases) but on 
(a) parental origin of the DNA (epigenetic modifications such as imprinting), (b) 
allele specific gene expression not dependent on obvious imprinting, and (c) 
variations in gene copy numbers (127,128,136,230) may also contribute to hu-
man variation and neuropsychiatric disease. For example, Down's syndrome, 
Turner's syndrome, and Praeder-Willi and Angelman syndromes are neuropsy-
chiatric diseases that can be caused by alterations in gene dosage and/or imprint-
ing rather than by mutations in the DNA itself (17,182,218,245). Such 
observations have led to a "rheostat" model for gene expression (17), which acts 
as a gain-control to allow rapid and reversible attenuation of gene expression 
(over generations and during development). Together, these mechanisms regu-
lating gene expression may contribute to the spectrum nature of psychiatric dis-
eases (e.g., Autism-Asperger's syndrome). 
 The molecules that serve as the putative gain-control and capacitors for 
producing adaptive phenotypic variation function in a substantial and stepwise 
fashion rather than an incremental and progressive one. Variations in both sys-
tems may be present in neuropsychiatric diseases such as Rett syndrome 
(6,232,262,269). The molecular genetic basis of such neuropsychiatric diseases 
may be the outcome of evolutionary events that strike a delicate balance be-
tween minimizing deleterious mutations while allowing phenotypic variations 
that are adaptive to a species in a changing environment (17,135,205,217, 
233,252,260). 
 These genetic variations, which may be adaptive or maladaptive in a chang-
ing environment, have the potential to influence brain function at a number of 
spatiotemporal scales (Figure 15). The parsimonious description of scales of 
brain function and their embedding remains a topic of active discussion (see 
56,95). There is also an open question of whether the dynamic principles gov-
erning information processing at one level of organization are applicable to 
other levels of organization (i.e., neural scale invariance) (242). For at least one 
brain region, the NAc, a qualitative similarity is noted between reports of tran-
scription factor cAMP response element-binding protein (CREB) phosphoryla-
tion in response to aversive and rewarding stimuli (11,278), and the signal 
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representing distributed group function observed with fMRI to similar aversive 
and rewarding stimuli (19,37,38). Reverse-engineering how activity is linked 
across levels of brain organization will have implications for reductive under-
standing of health and disease. Circuitry-based endophenotypes that have larger 
effect sizes, and are more reliable than behavioral phenotypes, should enable 
researchers to constrain future genetic association and linkage studies for neuro-
psychiatric illnesses (Figure 16). Such an integrative neuroscience approach 
("top–down"; systems to genes) was utilized to find an EEG-based endopheno-
type in individuals susceptible to alcohol dependence, forging an association 
with a locus that contains a subunit of the GABAA receptor (202,214,264). 
 The linkage of systems level measures to molecular genetic level descrip-
tors assumes that the probability of illness manifestation will be related to (a) the 
probability associated with having a specific allele(s) at a particular locus (loci), 
(b) the probability of having a particular endophenotype, and (c) the probability 

Figure 15. Systems biology and nested scales of function. Brain processes can be analogized to a set 
of nested scales of function as an approximation. The genome/epigenome is nested in cells (neural and 
glial). These cells are nested in neural groups as local circuits. These neural groups are nested in sets 
of interconnected groups distributed across the brain, and modulated by monoaminergic and hormonal 
systems. The scale of distributed neural groups can be sampled using tomographic imaging modalities 
such as fMRI and PET. Multicellular recording techniques can be used to sample local circuits or 
neural groups, comprised of excitatory and inhibitory synapses, axonal and dendro-dendritic circuits. 
The individual cell, with its intracellular signaling and surface receptors, can be characterized by 
measures of local field potential and sequences of action potentials. Across these scales of organiza-
tion, reductionistic explanation of experimental observation has to occur both from "top–down" and 
"bottom–up" to be self-sufficient. Given the nesting of scales, dense sampling of one scale of brain 
function will reflect processes at the other scales (see Figure 10). Figure adapted with permission from 
Breiter and Gasic (32). 
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of having a particular set of epigenetic elements (e.g., this might be expressed as 
P (illness) P (allele, locus) P (Endophenotype N, t) P (Epigenome, t)). 
Epigenetic elements appear to be species-specific (260), and may explain sig-
nificant differences in phenotypes between species that otherwise have 99% 
sequence similarity (271). Until specific genetic variations are identified, phy-
logenetically lower animal species may only serve as course models for the 
complex neuropsychiatric diseases. 
 Epigenetic contributions may partly explain the difficulties underlying ge-
netic linkage and association studies for these illnesses. Coarse clinical pheno-
types and dichotomous behavioral distinctions rather than quantitative markers 
(endophenotypes) to cluster subjects is another confounding aspect for these 
studies. Activity in a variable number of distinct, distributed neural groups may 
yield multiple endophenotypes for an illness, yet produce indistinguishable 
symptom/sign clusters. The spatiotemporal scale of distributed cell groups is 

Figure 16. This schematic illustrates a possible "top–down" approach for identifying genes associ-
ated with a susceptibility or resistance to major depressive disorder. Overlapping sampling of cir-
cuitry processing reward/aversion input (cartoon in top left) from families with depression, could be 
used to produce a systems biology map (cartoon top right). Disease susceptibility would be defined 
by continuous quantitative traits measured from systems biology (as with MRI), and could be used 
to perform a total genome scan and a multipoint linkage analysis using a variance component ap-
proach (for quantitative and potential qualitative traits). Gene identification could then be achieved 
via analysis of microsatellite repeats and SNP markers. Figure adapted with permission from Breiter 
and Gasic (36). 
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responsible for generating behavior, but it is heavily dependent on ge-
netic/epigenetic function. Weinberger and colleagues have demonstrated with 
fMRI that genetic variations in COMT and 5HT transporter are correlated with 
fMRI signal changes in human amygdala and prefrontal cortex, respectively 
(86,112). These types of studies represent a "bottom–up" approach to comple-
ment findings from the "top–down" approach (Figure 17). In some diseases, 
such as Huntington's, a single major disease locus may be enough to produce the 
endophenotypes and exophenotypes that characterize the illness. In contrast, 
oligogenetic and polygenic diseases (16), such as Parkinson's disease and most 

Figure 17. (a) Attempts at a "top–down" approach to integrative neuroscience have frequently started from the 
delineation of behaviorally defined exophenotypes, which are theoretically related to circuitry-based phenotypes 
(endophenotypes). Illness category can stand in for any number of American Psychiatric Associations Diagnos-
tic Statistical Manual Axis I neuropsychiatric disorders, such as subtypes of major depressive disorder, or co-
caine abuse and dependence. Altered function in a distributed set of neural groups (referred to in the figure as 
"circuits") is symbolized by an asterisk after the circuit number. This altered function may include diminished or 
increased circuitry activity, or substitution of an alternative circuitry to fulfill a functional deficit. There may be 
a number of altered functions or metric traits, determined by altered circuitry performance, which determine a 
particular neuropsychiatric disorder. This is highly likely given the use of multiple signs and symptoms currently 
used to define neuropsychiatric exophenotypes using the American Psychiatric Associations Diagnostic Statisti-
cal Manual (5). Given the embedding of scales of brain function, "top–down" approaches starting from continu-
ous quantitative measures of systems biology, would, with the appropriate subject sample size, have the 
potential to identify all polymorphic traits and temporal adaptations for a behavioral variant. (b) "Bottom–up" 
approaches evaluate one genetic polymorphism at a time to determine how it leads to an altered profile of cir-
cuitry function. 
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neuropsychiatric illnesses, appear to involve more than one genetic locus. In 
such cases, future genome-wide association studies using circuit-based endo-
phenotypes will have to demonstrate that variations at multiple loci (when quan-
titative trait loci become quantitative trait nucleotides), which produce 
alterations in gene dosage or allele specific expression, are both necessary and 
sufficient to produce the alterations in the functional subprocesses and their me-
diating neurocircuitry. 
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The essential functions of neurons can be emulated electronically on silicon chips. We 
describe such a neuron analogue, or neuromorph, that is compact and low power, with 
sufficient flexibility that it could perform as a general-purpose unit in networks for con-
trolling robots or for use as implantable neural prostheses. We illustrate some possible 
applications by a dynamical network that recognizes spatiotemporal patterns and by a 
network that uses a biologically inspired learning rule to develop sensory-guided behav-
ior in a moving robot. Finally, design requirements for neuromorphic systems are dis-
cussed. 

1. INTRODUCTION: ARTIFICIAL NERVOUS SYSTEMS

 In the quest for alternative forms of computing, especially computing that 
generates useful behavior in the real world, one naturally looks to biology for 
inspiration. While brains are economical in size and energy consumption, they 
depend for their computing power and speed on very large numbers of process- 
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ing elements richly interconnected. At the present state of technological devel-
opment, the best way of emulating brains, and the behavior they generate is by 
constructing "neuromorphs" (14), mimics of neurons fabricated in silicon with 
VLSIs (very large scale integrated circuits), and interconnecting them with a 
richness which approaches that of the central nervous system. Using current 
technology, neuromorphic systems could be the brains of smart structures—
small devices that sense the real world and behave adaptively in it, or implanted 
in humans to repair or extend their capabilities. 
 Part of the impetus for building artificial nervous systems is to gather in-
sights into how real nervous systems work (see Part III, section 5, this volume). 
We argue that neuromorphic systems could foster understanding in ways that are 
not easily achieved, if at all, by conventional digital computer simulations. A 
common view is that in trying to understand intelligent systems a concern for 
the details of implementation (i.e., the hardware) is unnecessary. We do not sub-
scribe to this view, but think that the nature of the neural machinery is closely 
bound up with the solutions that have evolved to perform perceptual, cognitive, 
and motor tasks. The kinds of computing operations these most naturally support 
are therefore very different from those supported by a von Neumann architec-
ture. Neuromorphs, such as ours, patterned after biological neurons, depend 
upon spike processing of information, giving them powerful signal processing 
capabilities, indeed more powerful than the typical sigmoidal units used in arti-
ficial neural networks (10). Rather than review the field of neuromorphic engi-
neering generally, we refer the reader to some recent review articles and 
collected papers (2,11,21), and instead focus on our neuromorphic system and 
the approaches taken in our laboratories to some promising applications. 
 At least initially, neuromorphic systems are likely to be used where com-
pactness and low power consumption are at a premium, for example, as the 
brains of autonomous vehicles and for neural prosthetics that interface between 
the nervous system and artificial effectors or a patient's own musculature. There-
fore, in thinking about what kinds of networks to investigate, an underlying con-
sideration is that small systems must make good use of their resources. Dynamic 
networks are of interest because modest numbers of interconnected neuro-
morphs should be able to store and process large amounts of information in the 
transition of states they undergo. In the control of autonomous vehicles, a fast, 
compact system is required that can efficiently utilize information about the en-
vironment. We are therefore exploring ways in which neuromorphic networks 
can learn to behave adaptively through sensorimotor experience. 

2. THE NEURON AND THE NEUROMORPH

 The design of our artificial dendritic tree (ADT) neuromorph is based on 
what one might call the classical neuron as conceptualized in the mid 1950s (3). 
The input structures of this neuron are the branched processes forming the den-
dritic tree, and to a lesser extent the cell body or soma from which the dendrites 
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extend. The neuron receives input in the form of impulses or spikes at numerous 
synaptic sites over these surfaces. The output structure is a spike-firing fiber or 
axon that may extend for considerable distances in the nervous system. 
 An input spike activating a synapse generates a brief postsynaptic potential 
within the dendrite by opening ion channels in the cell membrane. The potential 
may be of either polarity depending on which ion channels are involved. If it is 
positive-going, the effect is excitatory because it will tend to increase the spike-
firing frequency of the axon; if negative it is inhibitory, tending to reducing 
spike firing. The dendritic branches are considered to be passive cables over 
which the postsynaptic potentials mingle and diffuse. Their function, then, is to 
collect many synaptic inputs, delaying, attenuating and summing the synaptic 
potentials generated. The net potential change that accrues at the junction of 
soma and axon determines the rate of firing of spikes emitted as output along the 
axon.
 We now know that dendrites, which vary greatly in form across cell types, 
vary also in function, and are not usually passive, boost the transmission of po-
tentials along them with voltage-sensitive ion channels. Nevertheless, theoretical 
analyses show that even passive dendrites are able to perform useful spatiotem-
poral filtering, allowing discrimination of different input spike patterns (19). 
Experiments with our ADT neuromorphs, which are analogues of the classical 
neuron, showed that they could be connected so as to respond selectively to pat-
terns of input spikes, for example, to specific frequencies of an input spike train 
or to specific temporal orderings of spikes (17). In designing the neuromorph, 
we saw the role of the dendritic tree as very important to the computing power 
of the device, as we now know it to be in neurons (15). While the function of 
dendrites in the latter is complex, depending as it does on a multiplicity of mo-
lecular and ionic mechanisms, the simple passive dendrites that have been mod-
eled form a starting point for exploiting the ingenuity of neuronal architecture. 
Fortunately, dendrites in a variety of spatial configurations can be readily fabri-
cated in a VLSI. Neuromorphic modeling is, after all, very much the art of the 
possible. 
 The dendrites' filtering properties are strongly influenced by their dynam-
ics—the resistances and capacitances that determine the time course of the post-
synaptic potentials. Being able to control dynamics enables one to lengthen or 
shorten branches of the artificial dendrite (5), providing a way to vary the func-
tional properties of different pools of units. Another parameter of great impor-
tance to control is a unit's excitability or spike-firing threshold. It is desirable to 
be able to modulate the spike-firing threshold with the spiking activity of other 
units (6). A capability for learning by altering the efficacy of synaptic inputs is 
important, but at this stage of hardware development it is probably best done 
off-chip, where different learning rules can be tested. In sum, our aim is to pro-
duce a neuron analog with sufficient flexibility that it could perform as a gen-
eral-purpose unit, adaptable to many uses in a central neuromorphic system. 
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3. HARDWARE SYSTEM

 In our ADT neuromorphs fabricated by VLSI, the dendritic branches are 
modeled electrically by arrays of capacitors and resistors (Figure 1B) (4,5). The 
dendrites are composed of multiple compartments, each with a capacitor, Cm,
representing a membrane capacitance, and two programmable resistors, Rm and 
Ra, representing a membrane resistance and an axial or cytoplasmic resistance. 
In most of our neuromorph chips (Figure 2), each dendritic branch has sixteen 
compartments, with 3–8 branches connected together to form a tree like that 
shown in Figure 1A. Every compartment has an excitatory and an inhibitory 
synapse formed by MOS (metal oxide semiconductor) field-effect transistors 
that enable brief currents into or out of the compartment. Applying an impulse to 
the transistor gate turns on a synapse. The resultant "transmembrane" current 
depends upon the potential difference across the transistor, and upon the synap-
tic weight, which can be controlled (a) by the conductance of the transistor in 

Figure 1. (A) Schematic of ADT neuromorph. Synapses are located at the cross points on the 
3-branch dendritic tree and at the soma. Activating soma synapses sets the spike-firing thresh-
old for the integrate-and-fire spike generator, whose integration time constant is determined by 
the programmable resistor, R, and fixed capacitor, C, which is discharged whenever a spike is 
generated. (B) A two-compartment section of dendrite. Each compartment contains a mem-
brane capacitance (Cm), a membrane resistance (Rm) that connects to Vrest, and axial resistances 
(Ra) that connect to adjacent compartments. The excitatory (Ge) and inhibitory (Gi) synaptic 
conductances, which turn on momentarily when a synapse is activated, pull the compartment 
capacitor voltage towards Vexcitatory and Vinhibitory, respectively. The label GND corresponds to the 
common voltage node to which all other nodes are referenced. 
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the activated or on state, and (b) by the duration of the impulse supplied to the 
transistor's gate. Activation of excitatory and inhibitory synapses at different 
sites set up potentials that diffuse over the dendritic tree. The potential at the 
point where the branches converge (Figure 1A) affects the rate of output spike 
firing. The dynamics, which determine the dendritic delays, are set by the pro-
grammable membrane and axial resistances (Rm) and (Ra), and by the fixed-value 
compartmental capacitance (5). Whether the neuromorph fires or not and its rate 
of firing depend upon whether and how much the branch-point potential exceeds 
a firing threshold implemented by a comparator in the "soma" (Figure 1A). For 
this threshold potential to be influenced by the activity of other neuromorphs in 
a network, it is set by the ratio of spike frequency applied to two special syn-
apses, the "upper" and "lower" in Figure 1A (6). 
 To build a network, one must provide a means for sending the output spikes 
of any neuromorph to the synapses of any other. In addition, the spikes must 
arrive at their destinations in a time that is short compared to network dynamics. 
To this end, we developed a multiplexing scheme that we call "Virtual Wires" 
(4). As with Mahowald's (12) method of connecting neuron outputs to synapses, 
addresses are multiplexed in time over a few dedicated wires rather than through 
a much larger number of direct connections. In our scheme, a spike generated by 
a neuromorph activates destination synapses with delays that are programmable 
for each connection. The number of connections each neuromorph may have is 

Figure 2. Domain board. Dimensions: 14.5 cm2. The top half of the board is occupied by 
8 chips (0.5- m CMOS (complementary metal oxide semiconductor)), each containing 
16 neuromorphs, each of which containing 4 dendritic branches. Most of the 2.2  2.2 
mm chip area is filled by dendrites. The lower half of the board contains the spike-
routing system, connection memories, and connectors for a host computer. 
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limited only by the overall bandwidth (i.e., the multiplexing rate) of the system. 
Connections to synapses can be programmed to have one of 30 different 
weights, 15 inhibitory and 15 excitatory (24). During activation of a synapse, its 
conductance changes from an essentially nonconducting state to one of the 30 
conductance values for a duration of 50 ns. Weights for each synapse are stored 
off-chip in a connection list along with the synapse address, thereby allowing 
multiple connections with independent weights to the same compartment. 
 The present system shown in Figure 2 holds 128 neuromorphs. However, 
with higher-density neuromorph chips it is capable of simultaneously intercon-
necting and running over 1000 neuromorphs. The entire network connectivity 
can be changed in a fraction of a second, allowing rapid evaluation of a large 
number of different architectures. For this purpose, the spiking activity from a 
selected set of neuromorphs can be sampled at any time. 

4. NEUROMORPHS IN A WINNERLESS COMPETITION NETWORK

 The coordinated firing of neurons in a network is likely to be a key feature 
of neural computation. Interconnected neurons with steady input behave as cou-
pled oscillators, and such systems can display a range of coordinated behaviors. 
The phenomenon of synchronous firing of groups of neurons (8) is probably the 
best known example of this. Other, more complex patterns of spikes can result 
from the interaction between neurons—the behavior depends on the details of 
the coupling. Such networks are strong candidates for computational mecha-
nisms that biological systems may actually use for representation and recogni-
tion of patterns (16). One that has attractive features for application to small 
networks of neuromorphs is the winnerless competition network of Rabinovich 
et al. (23). In the absence of a stimulus, these networks are quiescent or display 
unpatterned activity, but when stimulated they generate cyclic patterns of spik-
ing activity that are distinct and characteristic of the stimulus. These networks 
achieve spatiotemporal coding by executing heteroclinic orbits around saddles in 
a space that changes when the pattern of stimuli changes. The behavior, which 
captures some features observed of olfactory processing in the locust antennal 
lobe, was generated in a simulation with nine model neurons (FitzHugh-
Nagumo) with strong asymmetric inhibitory interconnections. 
 We have produced similar behavior in a network of neuromorphs intercon-
nected and stimulated similarly to the model neurons in the simulation of Rabi-
novich et al. The excitability of each neuromorph in the network is controlled by 
(a) supplying a 100-Hz spike train to the "lower" threshold synapse (Figure 1A) 
and (b) feeding back the neuromorph's output spikes to the "upper" threshold 
synapse. The ratio of "upper" to "lower" spikes determines the spike-firing 
threshold; the negative feedback limits the firing rate, giving the desired back-
ground behavior (see (6)). The temporal pattern of spiking of the neuromorphic 
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network is shown in the series of raster plots in Figure 3. The top plot illustrates 
quiescent behavior in the absence of any coupling or stimulus—the units are 
firing fairly steadily and independently of each other. When the neuromorphs 
are interconnected and driven with spike patterns corresponding to the inputs 
used by Rabinovich et al. (23), a cyclic pattern of firing results, shown in the 
middle plot of Figure 3. The neuromorphs fire in a pattern that repeats with a 
period just under 200 milliseconds. It is easily recognized by eye, and presuma-
bly could be easily recognized by a downstream neural network. Changing the 
stimuli by doubling or halving their spike frequencies compresses or expands 
the pattern, but does not change it qualitatively. Changing the stimuli by shifting 
the connections by one or two neuromorphs changes the pattern, as shown in the 
bottom plot of the Figure 3. The network producing this pattern of spikes is in-
terconnected as before, but the stimuli are displaced cyclically by one unit. The 
effect is dramatic. There is a weak appearance of periodic firing by several of 
the neuromorphs, but two or three seem to be firing at a roughly steady rate, 
and two are not firing at all. The network strongly selects between the two stim-
uli, and thus serves to identify the inputs, especially for the conditions of the 
middle plot. 

Figure 3. Spike rasters of nine neuromorphs in a winnerless competition network. Top: Spik-
ing in the absence of stimulus and interconnections. Middle: Neuromorphs connected via 
asymmetric inhibitory synapses and driven by a fixed pattern of stimuli. Periodic behavior is 
evident. Bottom: Same network, but with the stimuli rotated by one neuromorph. Note a dif-
ferent, weaker cyclic behavior. 
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 The number of patterns that can be discriminated in this way is related to 
the number of combinations of neurons that can be formed by the network, and 
is far larger than the number of fixed points in a static network of the same size 
(23). For computations with small networks—and with neuromorphs we are 
limited to networks that are small compared to biological networks—a dynami-
cal network of this type is capable of much greater capacity as a memory or for 
pattern recognition. We may expect that networks exploiting this kind of dy-
namical behavior will play a significant role as applications are realized. 

5. SENSORIMOTOR DEVELOPMENT IN A 
NEUROMORPHIC NETWORK

 In this section we present an experimental system of simulated neuro-
morphs that develops sensorimotor capabilities. It was studied to find ways of 
using neuromorphs for controlling the behavior of an autonomous vehicle, but 
the same principles could be applied in a neuromorphic prosthetic where arbi-
trary patterns of spikes need to be interpreted and used to control artificial effec-
tors or the patient's own muscles. 
 We have been investigating ways in which development could be per-
formed in neuromorphic circuits using principles that are neurobiologically 
plausible. In animal nervous systems, the patterns of neural activity that emerge 
during development, influenced both endogenously and exogenously, play a 
vital role in establishing normal processing. While there is no compelling reason 
to make the development of a neuromorphic "brain" or prosthetic neurobiologi-
cally plausible, using mechanisms evolved over eons would appear to be a good 
strategy. 
 If one can point to a single principle underlying both the development of 
neural connections and the subsequent adjustment of connections during learn-
ing, it would be the rule ascribed to the psychologist, D.O. Hebb. In essence, the 
rule requires the strengthening of the connection between a sending, or pre-
synaptic neuron and a receiving, or postsynaptic neuron if the two fire together 
close together in time. Otherwise, weakening of the connection may result, de-
pending on which of several formulations of the rule are applied. Recent neuro-
biological work has shown that the relative timing of pre- and postsynaptic 
spiking is indeed responsible for potentiation and depression of synaptic efficacy 
or weight (13,25). 
 To illustrate the neuromorphic approach, we present results on a simulation 
of a network of spiking neurons that approximate the behavior of our silicon 
neuromorphs. Previous theoretical work showed that the application of Hebb 
rules can lead to the development of adaptive connections and realistic sensory 
receptive fields (9). Although the intent here is to develop a controller for an 
autonomous vehicle, the results demonstrate for a system of spiking neurons 
how inputs from sources with very different characteristics can combine auto-
matically to generate order and useful functionality—in this case directional 
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selectivity. In those sensory systems that have topographic arrangements (i.e., 
visual, somatosensory, auditory), neurons are found that respond selectively to 
one direction of motion, whether it be in space or in some other dimension like 
sound frequency. Such selectivity is important for higher neural processing of all 
kinds, for example, our ability to use vision to guide ourselves through our envi-
ronment, or to recognize speech sounds. 

6. SIMULATED NETWORK

 The simulated vehicle is equipped with two kinds of exteroceptors—
whiskers and photoreceptors—and proprioceptors that signal the vehicle's own 
motion. Figure 4 shows the arrangement of sensors and the network of spiking 
neurons whose activity can be used to guide movements of the vehicle as it 
roams around an environment with obstacles. 
 The six whiskers and the 10–20 photoreceptors are fixed to the vehicle and 
arrayed to sense the frontal 120  in the horizontal plane. Each whisker, when it 

Figure 4. Schematic of sensory system. Both whisker and photoreceptor arrays sample the 
frontal 120  of space. The spiking whisker units project topographically to both Hebb layers. 
The photoreceptors drive the transient and sustained spiking layers that are connected to the 
Hebb layers via modifiable, initially random connections. Each Hebb layer is excited by pro-
prioceptive spikes signaling left or right eye/head turns. 
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contacts an obstacle, generates a spike train at a frequency inversely propor-
tional to the distance of intersection along the whisker length. The photorecep-
tors, which respond proportionately to light intensity integrated over a receptive 
field with Gaussian profile, drive two kinds of spiking units, the sustained and 
transient units, analogous to the main types of ganglion cells in the vertebrate 
retina. The receptive fields of these spiking units are about 10  wide. 
 The whisker and the photoreceptor spike signals connect to two layers of 
simulated neuromorphs, Hebb Layer Left and Hebb Layer Right, which, by a 
Hebbian learning rule, are to acquire directionally selective properties to stimuli 
moving left or right respectively. These layers are composed of 8 units, each of 
which is based on the spike–response (S–R) model of Gerstner and Kistler (8). 
This model provides an approximation to the functional properties of a silicon 
neuromorph limited to one operative synaptic site. A spike input (from unit i) to 
one of these S–R units (unit j) generates a postsynaptic potential that is positive-
going (excitatory) or negative-going (inhibitory), the amplitude and sign de-
pending on a numeric weight (wij) between –1.0 and +1.0. The rise and fall times 
of the postsynaptic potentials are fixed, unlike those in the ADT neuromorph, in 
which they depend on the site of synaptic activation along the dendrite. Postsy-
naptic potentials are summed and fed to an integrate-and-fire spike generator, 
the firing threshold of which is controlled by a bias input. Refractoriness after 
spike firing is implemented by immediately raising the spike-firing threshold 
and allowing it to decay to the bias threshold over a fixed time course. 
 The connections from the whisker array to both Hebb layers are preset and 
not modifiable. The whiskers are mapped topographically across the Hebb lay-
ers so that stimulation of the leftmost whisker, for example, activates units at the 
leftmost end of the Hebb layers (see Figure 6A). Hebb layer units that are not 
related topographically to a whisker are inhibited by that whisker. The other 
preset and unmodifiable connections are the proprioceptive afferents to the Hebb 
layers. The left-turn proprioceptors fire when the vehicle rotates leftward and 
tends to excite all the units in Hebb Layer Left. Similarly the right-turn proprio-
ceptors excite Hebb Layer Right. The transient and sustained units of the "ret-
ina" are projected in a fully connected pattern with initially zero weights onto 
both Hebb layers. The latter connections are modifiable according to a Hebb 
rule akin to the mechanism that strengthens and weakens synapses in mammal-
ian cortex (13) and amphibian tectum (25). Synaptic weight modification de-
pends upon the relative timing of pre- and postsynaptic spikes: if the presynaptic 
spike occurs in a time window before the postsynaptic unit fires, the weight of 
the presynaptic synapse is increased; if it occurs after the postsynaptic spike, it is 
decreased; otherwise, no change occurs (Figure 5). The effect is that the syn-
apses from any visual units that fire consistently just before the firing of a Hebb 
layer unit will have their connections strengthened or made more excitatory. If 
the visual units fire just after, their connections are weakened and eventually 
may become inhibitory. Visual unit firing that is unrelated to the activity of the 
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Hebb layer units results in no net change of weight if the positive and negative 
phases of the window function (Figure 5) integrate to zero. 
 Weights onto unit i that have fired recently are updated by an amount wij

according to 

wij = (W(sij) – wij), [1] 

where  is the learning rate, sij is the time interval between the firing of unit i and 
j, and W(s) is the function shown in Figure 5. Subtraction of the existing weight 
wij, ensures that weights are soft bounded, i.e., they do not grow without limits 
(cf. the CPCA learning rule (18)). The repeated application of this rule leads to 
stable weights but an excess of excitatory drive to the Hebb layer units. To 
maintain an equitable balance between excitation and inhibition, weight nor-
malization is applied to make all the weights onto each unit sum to 1. 
 In the first phase of development, the vehicle traverses the field populated 
by obstacles of various sizes, advancing continuously in space by an equal dis-
tance every simulation time step. For the present demonstration, the vehicle's 
steering is disabled, so that it moves in a straight line, brushing against randomly 
placed obstacles with its whiskers while its "retina" generates visual impulses 
that have no effect on the Hebb layers. At this stage, we need only consider the 
sustained units and their connections. The connections from the whiskers, which 
are topographically mapped onto the Hebb layers (Figure 6A), are sufficiently 
strong to fire the Hebb layer units reliably. The application of the learning rule 
results in strengthening of the connections from those visual units that were ac-
tive shortly before the Hebb layer units spiked. Weights from the visual units are 
continuously updated so that the sustained visual units come to map topographi-
cally over both Hebb layers. This is shown in the weight matrices of Figure 6B 
by the diagonal of excitatory weights. The effect of weight normalization is to 

Figure 5. Hebbian window function. Synaptic weight is increased in proportion to W(s). When 
a presynaptic spike precedes a postsynaptic spike by less than about 2 ms, W(s) is positive; 
when a presynaptic spike follows a postsynaptic spike by up to about 4 ms, W(s) is negative; it 
is otherwise vanishingly small (see (8)). 
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form an inhibitory surround. If the spiking activity of the Hebb layers is now 
connected to the vehicle's steering, the vehicle avoids obstacles visually, without 
contact with the whiskers. 
 Negotiating a complex environment requires that information other than just 
luminance is brought to bear; judging distances, reacting to impending collisions 
and guiding locomotion require the use of visual motion cues. The network of 
Figure 4 and the application of Hebbian mechanisms during sensorimotor ex-
perience results in the development of motion selective units. For this, we added 
transient visual units that fire to changes in luminance. Because the extraction of 
velocity information depends on correlations between stimulus positions at dif-
ferent times, the spikes from the transient units are connected to the Hebb layers 
via different time delays. For the sake of illustration, the transient unit array is 
connected to the Hebb layers via four weight matrices, one each for delays of 0, 
0.5, 1.0, and 1.5 ms (Figure 7A,B). In a neuromorphic network, these delays 
could be implemented by the facility for programmable axonal delays in the 
Virtual Wires system, or by dendritic delays that depend on the site of synaptic 
activation along a dendrite. Under appropriate conditions, the application of the 
Hebb rule in the presence of a moving stimulus image could selectively 
strengthen inputs that come from the four positions in space occupied by the 
image at times t, t – 0.5, t – 1.0, and t – 1.5 ms. For Hebb layer units to come to 
respond to the motion, they must be firing at time t. Therefore, they require an 
"instructive" input generated during image movement to bias them on so that 
they fire. In this example, the image motion is self-produced, as by eye or head 

Figure 6. Weight matrices connecting (A) whiskers and (B) visual sustained units to the left 
and right Hebb Layers. Excitatory weights are shown in white, inhibitory in black. Height of 
bars represent weight values. Inputs in the whiskers and visual space (–60 to +60 ) are repre-
sented along rows; the different Hebb layer units along columns. 
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movements while looking at stimulus objects in space. The sources of the in-
structive inputs are proprioceptors that signal the vehicle's own turning move-
ments. The instructive inputs could also be derived from motor command 
signals. In the network of Figure 4, proprioceptors for leftward or rightward 
movement fire a burst of spikes to all the units of their corresponding Hebb 
layer. Thus, the convergence of transient and proprioceptive information onto 
Hebb layer units should result in their acquiring selectivity to one direction of 
motion, but without regard to position in the visual field. Extracting depth from 
parallax, however, likely requires that the spatial arrangement of different veloc-
ity vectors be preserved. As we have seen, the topography was established in 
mapping of the sustained units over the Hebb layers, so if the sustained inputs 
also bias the Hebb units to fire, along with the proprioceptive inputs, direction-
ally selective maps with topography should be formed. 

Figure 7. (A,B) Weights of the transient units onto the Hebb Layers with delays of 0, 0.5, 1.0, 
and 1.5 ms. White indicates excitatory weights; black inhibitory. Inputs in visual space (–60 to 
60 ) are represented along rows; the different Hebb layer units along columns. (C,D) Responses 
as a function of time. Spikes of sustained and transient visual units, and the two Hebb Layers in 
response to a stimulus rotating from right to left (C) and from left to right (D) through the entire 
visual field. Waves in the lower half show the unit's internal potentials. 
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 Figure 7 shows examples of how weights from the transient units to the 
Hebb layer units developed. The four weight matrices at increasing delays show 
progressive shifts in their receptive fields, thereby generating a skewed spatio-
temporal receptive field required for directional selectivity (1). To test direc-
tional selectivity, a single visible object was rotated at a constant rate through 
the visual field. Figure 7C,D (lower half) shows that Hebb Layer Left responded 
with spikes to leftward motion but not to rightward motion, and vice versa for 
Hebb Layer Right. Note also that the units have restricted receptive fields organ-
ized topographically, a first step towards analyzing motion flow fields. We can 
now envision some further steps that would be required to use this information 
for behavioral guidance: the development of selectivities for different velocities 
and different patterns of motion as exhibited by neurons in the visual areas of 
the cerebral cortex. 

7. NEUROMORPHS IN NEURAL PROSTHETICS

 Neuromorphic systems of the type we are developing may have a special 
advantage for neural prosthetics in that neuromorphs naturally deal with spike 
signals: they accept spike inputs and they generate spike outputs. A very small 
neuromorphic network implanted in a paralyzed patient could interpret spike 
signals from an array of electrodes embedded in the motor cortex (20). The net-
work would extract the relevant information contained in the frequency and tim-
ing of the cortical spikes and would generate output spike trains patterned so as 
to activate neurons, fiber tracts, or muscles, restoring lost function to the patient. 
Neuromorphic prosthetics will certainly require the ability to adapt and learn 
because the input spikes are largely arbitrary in nature—they are whatever the 
implanted electrodes can pick up from the CNS—and they must be associated 
with patterns of spike outputs for controlling behavior (22). While our neuro-
morphic development system (domain board) can implement arbitrary learning 
schemes, it currently requires the assistance of an external computer. 

8. CONCLUSIONS

 The challenge to building neuromorphic systems is deciding what features 
to incorporate into the neuromorphic units and how to connect them to perform 
usefully. A process of design from biophysical principles is an estimable ap-
proach but difficult (7). Faced with the great variety of potential mechanisms 
that neurobiological research is revealing and the complex, nonlinear interac-
tions between them, we prefer to seek neuromorphic systems that are relatively 
simple to make and able to self-organize and adapt dynamically. The results 
presented here show that valuable capabilities can emerge in networks through 
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interaction with the environment, in effect, on-the-job training. To be sure, quite 
a bit of structure has to be imposed for this development to happen. How to 
come up with the appropriate structures is an interesting problem. One strategy 
is to borrow from what is known of structure in brains; an alternative is to 
evolve structure through evolutionary methods. Another problem is how to regu-
late excitabilities so that development can occur in an adaptive fashion. As we 
have seen, for anything sensible to be learned by Hebbian mechanisms, units 
must be biased so that they are driven to fire when learning is appropriate and 
inhibited when it is not. Brains seem to employ diffuse neuronal projections and 
humoral controls for this purpose and these could well be emulated in neuro-
morphic systems. Among the technical problems that need to be solved for neu-
romorphic systems to gain independence in small-scale applications is how to 
store and modify connections locally or "on chip" so that learning can occur 
without the intervention of external, digital computers. Notwithstanding these 
problems and unknowns, the hardware system described achieves, to greater or 
lesser extents, the following desirable features of a neuromorphic system: 

 Parallelism of processing elements for fast processing of large 
amounts of information 

 Distributed processing whereby many units simultaneously rep-
resent a sensory stimulus or execute a movement 

 Robustness in the face of variation and faults in individual 
components, tolerance to damage and noise, and performance 
degrading gradually, not catastrophically 

 Real-time processing with wide time-scale dynamics that can 
be matched to events in the real world, and to the dynamics of 
limbs and other body systems 

 Flexible, rapidly reprogrammable architecture and connections; 
capable of ontogenetic and evolutionary adaptation 

 Learning based on short-, medium-, and long-term changes in 
synaptic efficacy, unit excitability, and persistent patterns of 
activity 

 Efficient, noise-immune signaling by impulses with rich tem-
poral coding possibilities 

 Powerful analog computation distributed throughout a dendritic 
tree and soma 

 Compact size and low power consumption, essential for mobil-
ity and portability 



826 D. P. M. NORTHMORE, J. MOSES, and J. G. ELIAS 

9. REFERENCES

  1. Adelson EH, Bergen JR. 1985. Spatiotemporal energy models for the perception of motion. J
Opt So Am [A] 2:284–299. 

  2. Douglas R, Rasche C. 2002. Silicon neurons. In The handbook of brain theory and neural 
networks, pp. 128–145. Ed. M Arbib. MIT Press, Cambridge. 

  3. Eccles JC. 1957. The physiology of nerve cells. Johns Hopkins UP, Baltimore. 
  4. Elias JG. 1993. Artificial dendritic trees. Neural Comput 5:648–664. 
  5. Elias JG, Northmore DPM. 1995. Switched-capacitor neuromorphs with wide-range variable 

dynamics. IEEE Trans Neural Netw 6:1542–1548. 
  6. Elias JG, Northmore DPM, Westerman W. 1997. An analog memory circuit for spiking silicon 

neurons. Neural Comput 9:419–440. 
  7. Elias C, Anderson CH. 2002. Neural engineering. MIT Press, Cambridge. 
  8. Gerstner W, Kistler W. 2002. Spiking neuron models. Cambridge UP, Cambridge. 
  9. Linsker R. 1990. Perceptual neural organization: some approaches based on network models 

and information theory. Annu Rev Neurosci 13:257–281. 
10. Maass W. 1997. Fast sigmoidal networks via spiking neurons. Neural Comput 9:279–304. 
11. Maass W, Bishop CM. 1999. Pulsed neural networks. MIT Press, Cambridge. 
12. Mahowald MA. 1992. Evolving analog VLSI neurons. In Single neuron computation, pp. 413–

435. Ed T McKenna, J Davis, SF Zornetzer. Academic Press, San Diego. 
13. Markram H, Lubke M, Frotscher B, Sakmann B. 1997. Regulation of synaptic efficacy by 

coincidence of postsynaptic Aps and EPSPs. Science 275:213–215. 
14. Mead C. 1989. Analog VLSI and neural systems. Addison-Wesley, Reading, MA. 
15. Mel BW. 1994. Information processing in dendritic trees. Neural Comput 6:1031–1085. 
16. Natschläger T, Maass W, Markram H. 2002. The "liquid computer": a novel strategy for real-

time computing on time series. TELEMATIK 8:39–43. 
17. Northmore DPM, Elias JG. 1996. Spike train processing by a silicon neuromorph: the role of 

sublinear summation in dendrites. Neural Comput 8:1245–1265. 
18. O'Reilly RC, Munakata Y. 2000. Computational explorations in cognitive neuroscience. MIT 

Press, Cambridge. 
19. Rall W. 1964. Theoretical significance of dendritic trees for neuronal input–output relations. In 

Neural theory and modeling, pp. 73–79. Ed. RF Reiss. Stanford UP, Stanford. 
20. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. 2002. Instant neural 

control of a movement signal. Nature 416:141–142. 
21. Smith LS, Hamilton A. 1998. Neuromorphic systems: engineering silicon from neurobiology.

World Scientific, Singapore. 
22. Taylor DM, Tillery SIH, Schwartz AB. 2002. Direct cortical control of 3D neuroprosthetic 

devices. Science 296:1829–1832. 
23. Rabinovich M, Volkovskii A, Lecanda P, Huerta R, Abarbanel HD, Laurent G. 2001. Dynami-

cal encoding by networks of competing neuron groups: winnerless competition. Phys Rev Lett
87:068102–068104 

24. Westerman WC, Northmore DPM, Elias JG. 1997. Neuromorphic synapses for artificial den-
drites. Analog Integrated Circ Signal Proc 13:167–184. 

25. Zhang LI, Tao HW, Holt CE, Harris WA, Poo, M. 1998. A critical window for cooperation and 
competition among developing retinotectal synapses. Nature 395:37–44. 



827

7

A BIOLOGICALLY INSPIRED APPROACH 
TOWARD AUTONOMOUS 

REAL-WORLD ROBOTS 
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We present an approach inspired by biological principles to design the control system for an eight-
legged walking robot. The approach is based on two biological control primitives: central pattern 
generators and coupled reflexes. By using these mechanisms we can achieve omnidirectional walk-
ing and smooth gait transitions in a high-degree-of-freedom (14) walking machine. Additionally, the 
approach allows us to freely mix rhythmic activity with posture changes of the robot without reduc-
ing forward speed. This approach has proved to be extremely successful on rough terrain and has 
been evaluated in real-world tests over a variety of different substrates, 

1. INTRODUCTION

 The focus of our approach was to develop an eight-legged robot (see Figure 
1), which should be capable of robust locomotion on extremely difficult terrains 
(rock, sand, inclinations, and combinations thereof). 
 The approach features a hierarchical control architecture that combines bio-
logically inspired principles of locomotion control, such as central pattern gen-
erators and reflex mechanisms with a quasi-parallel behavior-based approach 
(for biological background on the acquisition of motor behavior, see Part III, 
chapter 5.3, by Kolb and Timmann, this volume). The system also scales upward 
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to include higher-level principles of robot control such as planning and schedul-
ing algorithms. This combination of biologically robust low-level control with 
high-level planning algorithms provides an interesting basis for many biomedi-
cal applications, from "Neuromorphic Systems" (see preceding chapter 6, by 
Northmore, Moses, and Elias) to "Intraoperative Navigation" (see following 
chapter 8, by Heilbrun). 

2. MECHATRONICS

 The most challenging parts of a walking system are the legs (Figure 2). The 
leg design presented here provides 3 degrees of freedom, which is the minimum 
needed for a robust, outdoor walking robot, i.e., it provides the possibility for 
omnidirectional walking even in narrow, difficult environments. The legs con-
sist of a thoracic joint for protraction and retraction, a basilar joint for elevation 
and depression, and a distal joint for extension and flexion of the leg (Figure 2). 
The joints are actuated by standard 6-W/24-V DC motors with a high gear 
transmission ratio for sufficient lifting capacity. 
 Outdoor capability was an important constraint in the development process. 
Therefore, a good tradeoff between lightweight design—to achieve maximum 
lift capacity—and shielding against environmental influences (like dust and wa-
ter) had to be found. We achieved a weight of 950 grams and a weight:lift ca-
pacity ratio of 1:8. This proved to be sufficient for the system to walk up steep 
inclinations and/or walk over obstacles higher than the robot itself. It also 
proved to be important to integrate compliant elements in the mechanical design 
in order to make the robot sufficiently robust to withstand the mechanical stress 
of an outdoor terrain. 

Figure 1. The eight-legged robot "Scorpion."
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2.1. The Sensors

 The robot is equipped with the following sensors that sense the internal 
state, the so-called proprioceptive sensors: 

 Motor encoders for each motor to measure the relative joint angle 

 Hall-effect motor current sensors for each motor

 The analogue load/pressure sensor in each foot tip 

 Power-management sensors, providing current battery voltage and cur-
rent power drain

 Three-dimensional inclinometers (pitch, roll, and yaw) 

 The following sensors to obtain information from the environment, so-
called exteroceptive sensors, are integrated: 

Figure 2. The mechanical design of the Scorpion legs. This front view of the robot shows 
the left and right side legs with the body in the center. Each leg consists of three joints: (i) 
thoracic joint, (ii) basilar joint, and (iii) distal joint (right). The distal segment contains a 
spring-damped compliant element with a built-in potentiometer to measure contact and load 
on individual legs. The most energy-absorbing part in our design is a spring element inte-
grated in the distal segment of the leg. The distal spring element is also used to measure the 
ground contact force by means of an integrated linear potentiometer. From this the robot 
can compute the load on each leg. This enables us to make use of the principle of "Early 
Retraction Acceleration" (described in (2,13)). 
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 An ultrasound distance sensor for obstacle avoidance 

 A compass sensor for heading control 

 Contact/pressure sensors at foot tips

 It is important to note that the legs themselves can be used as exteroceptive 
sensors. One can use the current sensors of the joint motors as a tactile sensor 
during movement, e.g., whether a leg presses against an object can be sensed by 
an increasing current in the corresponding joint motor. This issue is currently 
under further investigation. In an ongoing project, we are analyzing the robot's 
capabilities to use its front legs in order to determine shape information of ob-
stacles, which it previously detected with ultrasound sensors. 
 In order to allow an operator to communicate with the robot or to take data 
samples during a test run, the robot is equipped with a wireless 28K-baud 
bidirectional communication link and a PAL CCD camera with a 5-GHz video/ 
audio link for video transmission. It is thus possible to use the robot as a 
semiautonomous system. The operator can control it via high-level commands 
like "walk forward," "left," "right," "go up," "go down," "move sideways," and 
"turn." To supervise the system, all relevant sensor data are sent back from the 
robot to the operator. 

2.2. The Processing Hardware

 A network of Infineon C167 and C164 microcontroller derivates are used, 
containing one master controller (the C167), which functionally contains the 
higher behavioral level, the communication to the operator, and executes proc-
essing of data from the exteroceptive sensors. The master controller is connected 
via a CAN–bus network with leg controllers (the C164). The leg controller exe-
cutes local controller functions (via the central pattern generator (CPG)) and 
local reflex control functions, processes the proprioceptive sensor data, and con-
trols the DC motors. In a new version of the hardware we will use an Motorola 
MPC555 master controller for higher-level control and an FPGA for local con-
trol of the legs. 

3. AMBULATION CONTROL

 Our architecture (14) is based on two approaches to robust and flexible real-
world locomotion in biological systems. These are the central pattern generator 
(CPG) model and the coupled reflex approach (1,6,7). 
 A CPG is able to produce a rhythmic motor pattern even in the complete 
absence of sensory feedback. The general model of a CPG has been identified in 
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nearly every species, even though the specific instantiations vary among species 
to reflect individual kinematical characteristics in the animals. 
 The idea seems to be very promising as a concept to stabilize locomotion in 
kinematically complex robotic systems (see Figure 3), as it resembles the divide-
and-conquer strategies reflected in nearly all solutions to complex control prob-
lems (4). 
 Another model for support of robust locomotion is provided by evolution in 
the animal kingdom. This is the concept of reflex-based control (7). A reflex can 
be viewed as a closed loop control system with fixed input/output characteris-
tics. In some animals, like the locust, this concept is said to actually perform 
all locomotion control, and no further levels of control, like a CPG, are in-
volved (6). 
 Whether or not complex motion control can be achieved via only reflex 
systems is subject to further discussion; however, the concept of a set of fixed, 
wired reactions to sensory stimuli is of high interest to roboticists who aim to 
gain stability in a system's locomotion. 
 The design of the control architecture described here was thus driven by 
these two concepts. The CPG approach appeared to be interesting in generating 
rhythmic walking patterns, which can be implemented in a computationally effi-
cient manner, while the reflex-driven approach seemed to provide a simple way 
to stabilize these walking patterns by providing: (a) a set of fixed situation-
reaction rules to external disturbances, and (b) a way to bias leg coordination 
among multiple independent legs (6). 

Figure 3. The scorpion robot during autonomous exploration into a sand bed. The 
beach-like sand bed was 3 m wide and 9 m long. The robot's feet penetrated the sand 
by 3–5 cm. A reflex mechanism helped overcome obstacles. 
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 Figure 4 outlines the general idea. On the global level (light gray area), we 
have implemented locomotion behaviors (LBs): typically forward, backward, 
and lateral locomotion. These global behaviors are connected to all local leg 
controllers and activate (with continuous strength) the local (single-leg) motion 
behaviors. At the same time, they implement the inter-leg phase relation by set-
ting/resetting the local clocks. The local level (dark gray area) implements 
rhythmic motion behaviors (RMBs) and postural motion behaviors (PMBs). 
These behaviors simultaneously influence the amplitude and frequency (see 
Figures 4 and 5) parameters of three oscillating networks: OST, OSB, and OSD.
The oscillators are connected to a common clock, which is used for local and 
global (in relation to other legs) synchronization. The oscillator output is a 
rhythmic, alternating flexor and extensor stimulation signal (see callout box, 
Figure 4), which is implemented as sine waves. This activation signal represents 
the desired behavioral pattern, which is translated into pulse-width-modulated 
(PWM) signals via the motor end path. In line with the output of the motor end 
path is a set of perturbation-specific reflexes, which are implemented as "watch-
dogs." These reflexes override the signals on the motor end path with precom-
piled activation signals if the sensor information from the physical joints meets a 
set of defined criteria. For example, if the current of a thoracic joint is above a 
certain threshold during the swing phase, a reflex is triggered to move the leg 
higher (for more details, see §4.1). 

4. RESULTS

 This approach was implemented using inter-leg coordination data as ob-
served in real scorpions (3) and successfully tested on our "SCORPION" robot 

Figure 4. The overall architecture for low-level actuation. 
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study (see Figure 5). The data for the performance of one leg is shown in Fig-
ures 5A–C. The solid line is the real angle of the leg, measured with motor en-
coders. The angle for the distal and basilar joints increases during elevation, 
while the angle for the thoracic joint increases during protraction. The frequency 
was set to 1.3 Hz (19 time units on the x-axis). The data were taken every 1/25 s, 
and the curves are directly computed from the raw data. The mean starting posi-
tion is at 37  for the thoracic joint, 121  for the basilar joint, and 30  for the 

Figure 5 (left side): Traces A–C show the movements of the thoracic (A), basilar (B), and 
distal (C) joints during transition from forward walking (pure FORWARD activation), to 
diagonal walking (equal activation of FORWARD and LATERAL), to lateral walking (pure 
LATERAL activation) and back. See Figure 4 for the activation pathways. (right side): A 
reflex initiated in a leg during a course through a rock bed. The current in the thoracic joint 
(trace C) increased as a result of the obstacle blocking the way. At the same time the angu-
lar displacement error (trace A) in the thoracic joint increased, indicating an exception in 
the regular swing cycle. As a result of these factors the basilar joint controller (trace B) 
initiated the reflex that elevated the leg further, thereby overcoming the obstacle. 
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distal joint. At first, only a local FORWARD behavior is stimulated (until t = 
1375); then the LATERAL behavior is activated simultaneously. Because of the 
equal strength of activation, the system now tries to walk forward as well as 
laterally, which results in diagonal walking. 
 Approximately at time t = 1460, activation of the FORWARD behavior is 
set to 0, which leaves only the LATERAL behavior to influence the oscillator 
networks (see Figures 4 and 5A–C). Thus, the system walks laterally, which can 
be observed from the data as the amplitude of the thoracic joint at 0 while the 
basilar and especially distal joint perform large-amplitude oscillations. Subse-
quently, this process is reversed. 

4.1. Local Reflexes

 The approach described here for generation of rhythmic motion deals very 
well with plain surfaces without obstacles. However, in the case of uneven 
ground poor results are to be expected. Our approach to deal with uneven terrain 
was to implement a set of reflexes in parallel with the motor end path (see Fig-
ure 5, right side), which override, for a short and predefined period of time, the 
rhythmic activity of the oscillators. For example (see Figure 5, right side), if the 
current values of the thoracic joint increase steeply and a significant angular 
displacement error is detected at the same time, it is assumed that the "planed" 
trajectory is blocked. This triggers a reflex, which moves the leg backward and 
upward (via joint activity in the thoracic and basilar joints) and then forward at 
maximum speed. This reflex is illustrated in Figure 5 (right side; start point at t
= 46, stop at t = 58). The reaction time of the reflexes can be as fast as 1/100 s, 
because they are directly in line with the motor control signals. The three pic-
tures also illustrate how fast the motor controller returns to the pattern given by 
the oscillator, after the reflex is no longer active. It is important to notice that the 
action of the reflex does in fact sit right on top of the ongoing rhythmic activity. 
As can be seen in Figure 5 (right-hand traces) the oscillatory activity is always 
present in the background (light gray lines); as soon as the reflex is terminated, 
the locomotion returns to the oscillation. 

5. DISCUSSION AND OUTLOOOK

 Recently, the psychological point of view that grants the body a more sig-
nificant role in cognition has also gained attention in spatial cognition theory. 
Proponents of this approach would claim that instead of a "mind that works on 
abstract problems" we have to deal with and understand "a body that needs a 
mind to make it function" (16). 
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 These ideas differ quite radically from the traditional approach that de-
scribes a cognitive process as an abstract information-processing task where the 
real physical connections to the outside world are of only subcritical importance, 
sometimes discarded as mere "informational encapsulated plug-ins" (17). Thus, 
most theories in cognitive psychology have tried to describe the process of hu-
man thinking in terms of propositional knowledge. At the same time, artificial 
intelligence research has been dominated by methods of abstract symbolic proc-
essing, even if researchers often used robotic systems to implement them (18). 
 Ignoring sensorimotor influences on cognitive ability is in sharp contrast to 
research by William James (19) and others (see (20) for a review) that describe 
theories of cognition based on motor acts, or a theory of cognitive function 
emerging from seminal research on sensor-motor abilities by Jean Piaget (see 
(16)) and the theory of affordances by Gibson (21). In the 1980s the linguist 
Lakoff and the philosopher Johnson (22) put forward the idea of abstract con-
cepts based on metaphors for bodily, physical concepts; around the same time, 
Brooks made a major impact on artificial intelligence research by his concepts 
of behavior-based robotics and interaction with the environment without internal 
representation instead of the sense–reason–act cycle. This approach has gained 
wide attention ever since, and there appears to be a growing sense of commit-
ment to the idea that cognitive ability in a system (natural or artificial) has to be 
studied in the context of its relation to a "kinematically competent" physical 
body.
 In the future of this project, we will focus our attention on experimenting 
with the robot to tackle two main questions. First, can "cognitive workload" be 
offloaded to the environment by tacking into account combined, sensorimotor 
representations of a robot with a kinematically complex body that have a high 
disposition to manipulate and interact with the world? Second, can cognitive 
mechanisms (perception/memory etc.) be better understood (or modeled in tech-
nical systems) if they are studied in the light of their ultimate contribution to 
appropriate, or goal-achieving behavior of a kinematically complex body (robot) 
that acts in a complex, dynamic environment. 
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VIRTUAL REALITY, INTRAOPERATIVE 
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TELEPRESENCE SURGERY 
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A part of the expertise of the operating surgeon is the practiced development of motor 
skills. These skills are attained by practice in multiple environments, including the animal 
laboratory and the operating room. The surgeon starts as a surgical assistant and gradu-
ally is granted increased responsibilities in performing the critical portions of operative 
procedures. Building on many years of experience using types of radiographic images of 
the brain and spine for intraoperative navigation, neurosurgeons, working with bioengi-
neers and computer scientists, have developed methods of image-guided computer-
assisted and computer-directed operative procedures using anatomic and pathologic 
structures identified in volumetric three dimension reformatted brain and spine images 
co-registered to the physical operative workspace using a variety of three-dimensional 
digitizers. With the computation power available today, such image sets can be used to 
create a virtual environment within which a surgeon could realistically both practice 
skills and attain new skills. This can now be accomplished with partial immersion. It is 
realistic to contemplate in the near future a total immersion environment realistically 
simulating all of the sensations and forces associated with an actual operative field. We 
have termed this development a "surgical holodeck." This chapter reviews the develop-
ment and application of these methods, which are the foundation of a simulation envi-
ronment close to the real operative suite.
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1. INTRODUCTION

 The goal of medical surgery has not changed since the time of Hippocrates. 
That is, every surgeon seeks to relieve a patient's diagnosed complaint without 
causing harm. In this endeavor, both daring and caution are required—first to 
plan, and then to execute the most precise surgical procedure that will result in 
removing the underlying pathology or interrupting its pathways. Once planned, 
the success of each operation depends upon a range of external sensory inputs as 
interpreted through stored experiential memories to produce finely honed hand 
motor skills and extended periods of focused attention. In this context, the pre-
dominant senses involve vision and touch, but sound and smell are also signifi-
cant. The equanimity to perform these acts of delicate balance comes from 
rigorous training and continued practice, awareness of scientific advances, not 
only in medicine but also in other disciplines, and the testing and incorporation 
of appropriate new technologies for the particular surgical procedures. In recent 
years surgeons have worked closely with bioengineers and computer scientists 
to design virtual-reality environments that simulate the actual surgical work-
space in order to create and test realistic training and practice platforms. 
 How far are we from the development of an actual "surgical holodeck?" 

2. BIOMEDICAL BACKGROUND

2.1. Perspective

 This review is biased to neurosurgery because the foundations for creating a 
"surgical holodeck" are based initially on advances in brain imaging coupled 
with hundred-year-old techniques of stereotactic brain surgery, i.e., localization 
of the physical three-dimensional position of structures making up the brain. In 
the past few decades, the scientific and practical advances of neurosurgical 
stereotaxy have resulted in an enormous wealth and breadth of structural and 
functional data about the brain. With each incremental advance, these image 
databases have promoted increasingly more sophisticated techniques of surgical 
navigation, leading to "fail-safe" surgical simulation environments similar to 
those created for training and assessing the competence of airline pilots. Using 
computer-generated and stored databases, today's neurosurgeon routinely navi-
gates within a Cartesian coordinate system that targets structures in the human 
brain to both define and alter function. 

2.2. Historical Context

 In most parts of the body, routine surgical operations were traditionally per-
formed through openings that allowed direct visualization of the abnormality to 
be removed or altered. Obviously, however, the cranial vault is not conducive to 
wide, exploratory openings. Therefore, from the outset, neurosurgeons necessar-
ily relied on physical and neurological examination as correlated with a range of 
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imaging modalities to localize nervous system abnormalities. The first methods 
for targeted navigation to plan efficient approaches in the brain were conceived 
over one hundred years ago, starting with Horsley and Clark (13). From that 
conception, neurosurgeons began to use landmarks identified on plain x-rays of 
the skull and spine to guide them to brain and spinal cord regions. In 1918, 
Dandy introduced the pneumoencephalogram, the first advance to allow identi-
fication of non-bony structures, by measuring the shift that resulted from intro-
ducing air into the cavities of the brain (10). In 1926, Moniz invented cerebral 
angiography, i.e., x-ray visualization of injected radiopaque contrast material 
into the carotid arteries supplying blood to the brain (20). The next major imag-
ing advance occurred in the 1960s, when neurosurgeons began to use contrast 
encephalograms and myelograms, which also involved the injection of ra-
diopaque contrast material. Unlike angiography, these studies involved direct 
injections into brain and spine cavities in order to demonstrate a measurable 
displacement and distortion of specific brain and spinal cord structures. 
 During this entire period, neurologists and surgeons developed extensive 
maps of the three-dimensional relationships of focal brain structures and their 
functions and connections. By the 1940s the measurement and localization of 
the in-vivo and in-vitro electrical and chemical states of the brain and spinal 
cord became essential tools for this type of mapping. Through such brain explo-
rations, numerous stereotactic tools evolved to increase the precision, accuracy, 
and safety of brain explorations. Starting in the late 1940s, neurosurgeons 
Spiegel and Wycis first used these tools to destroy focal areas in the human 
brain to alter function (26). Thereafter, the field of stereotactic brain surgery, 
using two-dimensional radiographic air contrast images that identified the skull 
and the brain ventricular system landmarks to map and locate three-dimensional 
points in the physical human brain, quickly advanced. These remarkable techni-
cal achievements rapidly led to effective ablative lesions to relieve the debilitat-
ing symptoms of many chronic brain disorders, particularly Parkinson's disease. 

2.3. The Modern Era

 Beginning in the 1970s and through the 1990s, the invention of com-
puterized axial tomographic (CAT) scanning, positron emission tomography 
(PET), magnetic resonance imaging (MRI), and functional MRI (fMR) (see also 
this volume, Part IV, chapter 5, by Breiter, Gasic, and Makris), provided direct 
imaging and functional information about the brain and spinal cord. Conse-
quently, an enormous structural and functional database about the nervous sys-
tem, founded upon neurosurgeons' embrace and support of advanced computer 
programming and graphics, emerged. How this imaging database was translated 
and co-registered into multiple three-dimensional coordinate systems that could 
be co-registered to real physical space is one of the remarkable neurosurgical 
technical advances of the past 40 years. 
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 Thus, soon after the introduction of CT scanning, existing stereotactic sys-
tems (e.g., Leksell, Reichert-Mundinger, and Todd-Wells) were modified so that 
CT images could be used for co-registration (19). However, these older, pre-CT 
systems were constrained by their initial design purpose, i.e., to access deep 
midline brain structures, and the first modifications did not take advantage of the 
potential for navigation throughout the cranial vault as imaged by CT. 
 In the late 1970s, the Brown-Roberts-Wells stereotactic system was in-
vented based on a whole new concept for both co-registering image and physical 
space and accessing that space, particularly the surface and periphery of the 
brain (6,7). During this period, Kelly demonstrated that these stereotactic sys-
tems could be combined with computer graphic techniques to define and target 
not only single points, but also multiple points representing the three-
dimensional volume and position of lesions within the brain. That is, stereotactic 
techniques could be used for volumetric craniotomies to navigate to specific 
lesions within the brain for biopsy and ablation (16,17). These advances led to 
more precise and smaller cranial skull openings to approach lesions, which de-
creased the morbidity of many brain operations. 
 At the same time, operating microscopes, which provide exquisite lighting 
and magnification, as well as endoscopic visual techniques using both monocu-
lar and binocular video images directed either to both eyes or formatted stereo-
scopically on a computer console, became routine tools to enhance the surgeon's 
operating precision. Additionally, the development of approaches through and 
below the skull and in all quadrants around the spine to lesions in the brain and 
the spinal cord decreased potential operative damage (11). 
 In the mid to late 1980s, several neurosurgeons—including Roberts, Wata-
nabe, and Bucholz—introduced the concept of frameless stereotactic localiza-
tion by mating three-dimensional digitizers designed to be used in the industrial 
workplace with advanced computer graphics (8,12,22,25,27). These devices 
were introduced into neurosurgical practice in the early 1990s, tested, and com-
mercialized, and have become an accepted standard of care for surgical ap-
proaches to most intracranial lesions and many spinal lesions. 
 Neurosurgeons practicing at the end of the twentieth century could rely on 
highly defined CT, MRI, functional MRI, and PET images of actual brain le-
sions and structures to plan a surgical procedure, and they had established opera-
tive magnification and unique frameless approaches from all quadrants of the 
cranial vault and spine to manage ablation and resection of those lesions while 
protecting surrounding normal structures. 

2.4. Robots

 The next frontier involved mating these technologies with robots (see pre-
ceding chapter 7 by Kirchner and Spenneberg). During the mid-1980s, several 
neurosurgical investigators, including Kwoh, Young, Drake, Benebid, and 
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Kelly, began exploring how robots could be adapted to accomplish both com-
puter-assisted and computer-directed image-guided operations (5,14,15,18). 

2.4.1.  Surgical Navigation with an Operating Microscope

 Among the early developments was a method of attaching a surgical 
operating microscope to a robot so that the microscope could be used as both a 
navigation tool and a vision enhancing tool. By the early 1990s, prototype 
systems were developed in which the operating microscope head was connected 
to six-degree-of-freedom robots. Both floor-based and ceiling-mounted robotic 
systems were developed that were able to use microscope focal points as 
pointers for navigation. However, because both systems required significant 
support for day-to-day function and were sometimes cumbersome to maneuver, 
they were installed and used only in a few centers in the United States and 
Europe (Figures 1 and 2). Nevertheless, the lessons learned from these robotic  

Figure 1. Upper images showing ceiling and floor stand-mounted robotic microscope used 
for image-guided navigation, with the lower image of a neurosurgeon and his assistant in 
the operating suite planning and resecting the tumor seen in Figure 2. 
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microscope manipulators led to better mating of optical digitizer systems with 
standard microscopes. Thus, neurosurgeons could use the microscope focal 
point as a navigation device and have continuous co-registration of their surgical 
view through the microscope with planning CT and MR imaging studies. These 
freehand operating microscope navigation systems have proved very useful (28). 

2.4.2.  Radiosurgery

 The standard linear accelerator delivers beams with two degrees of freedom. 
The beam points to a focal point and can be rotated through approximately 270 
degrees to a central point. The linear accelerator table also rotates. These two 
rotations are robotic in that they are servo-motor controlled. For focused radia-
tion treatment, the target volume in the body must be positioned in the central 
point. 

Figure 2. An interactive image-guided neurosurgical tumor resection demonstrating the 
steps of the cranial procedure of (i) identification of the location of the subcortical tumor 
(lower left) using depiction of its location on the images on the graphics display (upper 
left); (ii) electrocortical stimulation to identify the cortical areas of face and tongue motor 
function and their proximity to the tumor location (upper right); and (iii) view of the tumor 
bed post-guided microsurgical resection (lower right).
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 The Accuray (Sunnyvale, CA) CyberKnife, invented at Stanford University, 
mates a lightweight linear accelerator with a six-degree-of-freedom movement 
industrial robot (1,9). This increased range allows radiation beams to be posi-
tioned in an infinite number of positions around a target. Using inverse planning 
algorithms, the surgeon can now generate a non-isocentric collection of beam 
paths that provides a focused dose of radiation which is highly conformal to the 
three-dimensional shape of a target volume, yet has rapid fall-off, so that sur-
rounding tissue is protected from radiation damage. Additionally, the Cyber-
Knife system uses stereotactic radiographic image tracking to monitor target 
volume motion and has the capability of adjusting the beam trajectories in a few 
seconds if the patient moves during treatment. This system is used routinely for 
radiosurgical treatment of lesions of the cranium and spinal column. It has re-
cently been coupled with optical digitizers to track chest-wall and abdominal-
wall movement so that moving target volumes in organs such as the lung and 
pancreas can also be treated with radiosurgery (Figures 3 and 4). 

2.4.3.  Robotic Micromanipulators

 While neurosurgeons focused on efficient systems for use within the unique 
parameters of the brain, other medical specialists were developing robotic 
micromanipulators. These manipulators not only enhance the surgeon's manual 
dexterity, but also allow indirect visualization through endoscopic ports, thereby 
permitting operations through smaller openings than were previously possible. 
This development soon led to designs for manual robotic manipulation of stan-
dard surgical tools coupled with remote vision, allowing certain surgeries to be 
performed remotely. Communication between the site where the surgeon is ma-
nipulating the remote tools and the actual surgical site can be accomplished ei-
ther by direct wiring or long-distance broadband radio waves. 
 Systems are now commercially available that use telepresence hand ma-
nipulators to permit remote manipulation for inserting instruments through en-
doscopic channels. Such systems are manufactured by Intuitive Surgical 
(Mountain View, CA) and Computer Motion (Goleta, CA) and are starting to be 
used by cardiac surgeons (3,4). These systems have a unique method for ma-
nipulating a forceps, with simulated wrist movements that are moved deep into 
the operative field, thus permitting dissection and more complex surgical ma-
neuvers such as suturing to be performed through small access ports and at 
depth. This capability has been applied to coronary artery bypass. Similar minia-
turized systems are being developed for neurosurgical procedures. 

3. THE FUTURE

3.1. Teleremote Surgery

 With appropriate wired and wireless computer communication, robotic sys-
tems similar to the telepresence systems have been developed so that a surgeon 
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could be positioned remotely, for example, from a battlefield operating room or 
possibly a space station, and perform critical portions of an operation (2,23). 
U.S. Army laboratories have demonstrated the feasibility of such remote sys-
tems in large animal experiments in which a trained paramedic would make a 
surgical opening into an abdomen to expose the organ requiring surgical correc-
tion. After manual positioning of monocular or binocular stereoscopic video 
cameras by the paramedic, the surgeon would use similar micromanipulators to 
operate remotely with standard surgical tools. At the present time, if the dis-
tances are quite long and the surgical objects have some motion, the response 
time can be too slow for remote adjustment of the position of the surgical tools 
being manipulated. However, motion tracking and position prediction may allow 
compensation for signal delay. 

3.2. Advanced Volume Rendering

 Computer graphic techniques depicting a simulated surgical field are now 
available and are used routinely by neurosurgeons for surgical planning. At this 

Figure 3. Depiction of the CyberKnife miniature linear accelerator mounted on the robotic 
manipulator with the two orthogonal amorphous silicon x-ray cameras used for image guid-
ance (right) along with the computer display of the treatment plan for a cavernous sinus men-
ingioma showing the radiation isodose curves in the axial, coronal, and sagittal views, and 
three-dimensional depiction of the selected beam trajectories that define the robot's sequential 
vectors and positions in physical space. 
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time, several developers are working to adapt this technology to perspective 
volume rendering of three-dimensional image sets. The goal is to use these 
modes of rendering virtual reality, with both partial and total immersion, for 
actual surgical navigation as well as simulation (for modeling and simulation of 
brain tumors, see, e.g., this volume, Part III, chapter 6.3, by Mansury and Deis-
boeck). A current problem in using these systems during actual surgery is the 
inability to comfortably track the movement of a surgeon's head and eyes and to 
adjust the simulated image position. Presently available heads-up helmets and 
eyeglass designs are uncomfortable after a prolonged period of usage. However, 
using large high-resolution projection or flat video screens may eliminate the 
necessity for cumbersome head tracking, as these large screens can encompass 
both the central and peripheral visual fields and provide the surgeon with a com-
fortable mode of virtual reality through partial immersion (24). 

3.3. Haptics

 Another area that is a work in progress involves methods for simulating the 
surgeon's sense of touch. Surgeons depend on tactile feedback from the body 
tissues they are manipulating during a surgical procedure. All tissues have vary-
ing degrees of rigidity, elasticity, tensile strength, and deformability (see also 
this volume, Part IV, chapter 4, by Kaazempur-Mofrad, Weinberg, Borenstein, 
and Vacanti). A surgeon's innate and conscious sense of these tissue conditions 
through touch with a gloved finger or indirectly through surgical instruments is a 
key factor in the precision by which different tissues are separated to create cor-

Figure 4. Pretreatment and 6-month-posttreatment coronal MR images of a patient treated 
with staged CyberKnife radiosurgery. 
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ridors to a lesion in order to remove it from normal tissue. The multiple methods 
for tissue dissection utilize a variety of sharp and blunt as well as cold and 
heated tools. 
 Force-feedback algorithms have been incorporated into a few surgical train-
ing and computerized simulation systems related to blood vessel anastomoses 
(21). However, systems that simulate tissue conditions which require tactile ex-
perience and feedback so that a trainee could determine whether it were better to 
separate tissue planes sharply with a scissors or knife or bluntly with non-sharp 
or rounded instruments have not been developed as of yet. Additionally, it is not 
presently realistic to simulate the adverse effects of improper dissection tech-
niques, such as blood vessel disruption, resultant bleeding, bleeding control, and 
tissue disruption, 

4. DISCUSSION AND CONCLUSIONS

 The field of image-guided surgery today depends on the three-dimensional 
co-registration of a variety of high-resolution structural and functional image 
sets with the actual physical surgical workspace. Advances in several areas of 
medical computer graphics and image processing mated to a variety of three-
dimensional digitizers including robotic manipulators have provided surgeons 
with sophisticated tools for precision navigation during operative procedures. 
Many of these state-of-the-art systems are used routinely in today's operating 
suites. 
 Most image-guidance systems are based on the co-registration or fusion of 
preoperative visual images. A surgeon's view can be enhanced by the improved 
lighting and magnification provided by an operating microscope. In operations 
executed deep within the body, indirect visual input and substitution can be ac-
complished with video cameras attached to both endoscopes and microscopes. 
Such indirect video views of the operative field, if they have high enough reso-
lution, can be enlarged and projected to a flat video screen and provide a partial 
immersive virtual-reality environment. These advances alone provide significant 
benefits to surgeons in the actual precise and safe performance of many standard 
operative procedures. With lightweight head-tracking devices, video projection, 
and perspective volume rendering and navigation, this partial immersive envi-
ronment can be made even more realistic. 
 These systems are important for training neophyte surgeons in both opera-
tive planning and execution. Similarly, they can assist trained surgeons in prac-
ticing and maintaining their skills. However, until more sophisticated haptic 
systems are available to substitute for the surgeon's sense of touch, these devices 
cannot substitute for actual tissue manipulation either in the surgical training 
laboratory with animals or in the operating suite as surgical assistants during 
operations on human beings. Nevertheless, with modern advancements in bio-
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engineering and computer science, soon, fail-safe, virtually realistic environ-
ments will be able to provide the full range of sensory and experiential input for 
the surgeon to learn, practice, and develop the fine motor skills to perform sur-
gical procedures with expected competency and excellence. This environment 
will approach that of a "surgical holodeck." 
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