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Preface

This book is based on notes for a master’s course given at Queen Mary, University

of London, in the 1998/9 session. Such courses in London are quite short, and the

course consisted essentially of the material in the first three chapters, together with

a two-hour lecture on connections with group theory. Chapter 5 is a considerably

expanded version of this.

For the course, the main sources were the books by Hopcroft and Ullman ([20]),

by Cohen ([4]), and by Epstein et al. ([7]). Some use was also made of a later book

by Hopcroft and Ullman ([21]). The ulterior motive in the first three chapters is

to give a rigorous proof that various notions of recursively enumerable language

are equivalent. Three such notions are considered. These are: generated by a type

0 grammar, recognised by a Turing machine (deterministic or not) and defined by

means of a Gödel numbering, having defined “recursively enumerable” for sets of

natural numbers. It is hoped that this has been achieved without too many argu-

ments using complicated notation. This is a problem with the entire subject, and it

is important to understand the idea of the proof, which is often quite simple. Two

particular places that are heavy going are the proof at the end of Chapter 1 that a

language recognised by a Turing machine is type 0, and the proof in Chapter 2 that

a Turing machine computable function is partial recursive.

Chapter 1 begins by discussing grammars and the Chomsky hierarchy, then the

notion of machine recognition. It is shown that the class of regular languages co-

incides with the class recognised by a finite state automaton, whether or not we

restrict to deterministic machines, and whether or not blank squares are allowed

on the tape. There is also a discussion of Turing machines and the languages they

recognise, including the result mentioned above, that a language recognised by a

Turing machine is type 0. There are also further characterisations of regular lan-

guages, including Kleene’s theorem that they are precisely the rational languages.

The chapter ends with a brief discussion of machine recognition of context-sensitive

languages, which was not included in the course.

Chapter 2 is about computable functions, and begins with a standard discussion

of primitive recursive, recursive and partial recursive functions, and of primitive re-

cursive and recursive predicates. Then various precise notions of computability are

v



vi Preface

considered. These are: computation by register programs, by abacus machines and

by Turing machines. In all cases, it is shown that the computable functions are pre-

cisely the partial recursive functions. The account follows [4], except that modular

machines are not used. This entails giving a direct proof that Turing machine com-

putable implies partial recursive. As mentioned above, this is heavy going, although

briefer than if the theory of modular machines had been developed. To ease matters,

the proof of a technical lemma has been placed in an appendix.

Chapter 3 begins with an account of recursively enumerable sets of natural num-

bers. Recursively enumerable languages are defined by means of Gödel numberings,

and we then proceed to the proof of the main result, previously mentioned, charac-

terising recursively enumerable languages. The comments on complexity at the end

of the chapter were not included in the course, and are intended for use in Chapter 5.

Chapter 4 is about context-free languages and is material not included in the

course. It is considerably heavier going than the previous three chapters. Much of

the material follows the books of Hopcroft and Ullman, including their more recent

one with Motwani ([22]). Some of the results are needed in Chapter 5. However,

the ulterior motive for this chapter is to clarify the relationship between LR(k) lan-

guages and deterministic (context-free) languages. Neither [20] nor [21] seems to

give a complete account of this.

Chapter 5 is on connections with group theory, which is a subject of great inter-

est to the author, and a primary motivation for studying formal language theory. It

begins with the author’s philosophical musings on the idea of a group presentation,

which are quite elementary. There is a brief discussion of free groups, free products

and HNN-extensions. Most of the rest of the chapter is devoted to the word problem

for groups. We prove Anisimov’s theorem that a group has regular word problem if,

and only if, it is finite. The highlight is a reasonably self-contained account of the

result of Muller and Schupp. This says that a group has context-free word problem

if and only if it is free by finite. It makes use of Dunwoody’s result that a finitely

presented group is accessible. To give a proof of this would have been too great

a digression. A discussion of groups with word problem in other language classes

is also given. The chapter ends with a brief discussion of (synchronous) automatic

groups, including a proof of the characterisation by means of the fellow traveller

property.

Expanding the lectures has given Chapter 5 a theme, which is the interplay be-

tween group theory, geometry (specifically, the Cayley graph) and formal language

theory. It seems likely that there is a lot more to be said on this subject.

The proofs of several results have been placed in Appendix A, usually to improve

the flow of the main text. In some cases, these were given as handouts to the class.

Appendices B and C were also handouts, although Appendix B has been expanded

to include a brief discussion of universal Turing machines. Appendix D contains

solutions to selected exercises. A complete solutions manual, password protected,

is available to instructors via the Springer website. To apply for a password, visit the

book webpage at www.springer.com or email textbooks@springer.com. The number

of exercises is fairly small, and they vary in difficulty; some of them can be used as
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templates for similar exercises (only the exercises in Chapters 1 and 2 were actually

used in the course).

The impetus for the development of formal language theory comes from com-

puter science, and as already noted, it can be at times quite complicated. Despite

this, it is an elegant part of pure mathematics. The book is written by a mathemati-

cian and intended for mathematicians. Nevertheless, it is hoped it may be of some

interest to computer scientists.

The book can be viewed only as an introduction to the subject (the audience

consisted of graduate students in mathematics). For further reading on formal lan-

guages, see, for example, [33] and [34].

The prerequisite for understanding the book is some exposure to abstract math-

ematics, including an understanding of some basic ideas, such as mapping, Carte-

sian product and equivalence relation (note that “mapping” and “function” mean

the same thing throughout the book). At various points the reader is assumed to

be familiar with the combinatorial idea of a graph. This includes both directed and

undirected graphs and the idea of a tree. Generally, vertices of a graph are denoted

by circles or dots, but in the case of parsing trees (Chapter 4) they are indicated only

by their labels. Of course, in Chapter 5, some knowledge of basic group theory is

assumed. Also, the reader needs to know at least the definition of a semigroup and

a monoid. No advanced mathematical knowledge is needed.

Concerning notation, words in a formal language are elements of a Cartesian

product An, where n is an integer, and in this context are usually written without

commas and parentheses. In other cases where Cartesian products are involved, for

example the transitions of a machine or the definition of grammars and machines,

commas and parentheses are used. The exception is in writing the transitions of a

Turing machine, in order to conform with what appears to be the usual practice. Our

definitions of grammars and machines are quite formal. This seems the best way

to proceed, although it has gone out of fashion when defining basic mathematical

objects (such as a group). As usual, R denotes the set of real numbers, Q the set of

rational numbers, Z the set of integers and N the set of natural numbers, which in

this book means {0,1,2, . . .}.
The author thanks Sarah Rees, Claas Röver and Richard Thomas for their helpful

conversations and email messages. In particular, several of the arguments in Chapter

5 were suggested by Richard Thomas. He also warmly thanks Daniel Cohen for his

very useful and perceptive comments on the manuscript.

A list of errata will be available on the book webpage at www.springer.com.

Queen Mary, University of London Ian Chiswell

School of Mathematical Sciences

June 2008
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Chapter 1

Grammars and Machine Recognition

By a language we have in mind a written language. Such a language, whether natural

or a programming language, has an alphabet, and words are formed by writing

strings of letters in the alphabet. (In the case of some natural languages, the alphabet

for this purpose may not be what is normally described as the alphabet.) However,

to develop a mathematical theory, we need precise definitions of these ideas. An

alphabet consists of a number of letters, which are written in a certain way. However,

the letters are not physical entities, but abstract concepts. If one writes “a” twice,

the two copies will not look identical, but one hopes they are sufficiently close to be

recognised as representing the abstract concept of the first letter of the alphabet.

To the pure mathematician, this presents no problem. An alphabet is just a set.

The words are then just finite sequences of elements of the alphabet. Allowing such

a wide-ranging definition will turn out to be very convenient. The alphabet can even

be infinite, although in this book it is usually finite. (The exceptions are in the de-

finition of abacus machines in Chap. 2, and the discussion of free products and

HNN-extensions in Chap. 5.)

Thus, let A be a set and let Am be the set of all finite sequences a1 . . .am with

ai ∈ A for 1 ≤ i ≤ m. Elements of A are called letters or symbols, and elements of

Am are called words or strings over A of length m.

Note: m is a natural number; A0 = {ε}, where ε is the empty word having no letters,

and A1 can be identified with A. The set Am (m ≥ 2) can be identified with the

Cartesian product A×A× . . .×A︸ ︷︷ ︸
m copies

, but its elements are written without the usual

commas and parentheses.

Definition. Put A+ =
⋃

m≥1
Am, A∗ =

⋃
m≥0

Am = A+∪{ε}.

If α = a1 . . .am, β = b1 . . .bn ∈ A∗, define αβ to be a1 . . .amb1 . . .bn (an element

of Am+n). This gives a binary operation on A∗ (and on A+) called concatenation. It

is associative: α(βγ) = (αβ )γ and αε = εα = α . Thus A+ is a semigroup (the free

semigroup on A) and A∗ is a monoid (the free monoid on A). Denote the length of a

word α by |α|. As usual, we can define αn, where n ∈N, by: α0 = ε , αn+1 = αnα .

I. Chiswell, A Course in Formal Languages, Automata and Groups, 1
DOI 10.1007/978-1-84800-940-0 1,
c© Springer-Verlag London Limited 2009



2 1 Grammars and Machine Recognition

If α is a word over an alphabet A, a subword of α is a word γ ∈ A∗ such that

α = βγδ for some β , δ ∈ A∗. If α = βγ , then β is called a prefix of α and γ is

called a suffix of α .

Definition. A language with alphabet A is a subset of A∗.

We shall consider languages defined in a particular way, using what is called a

rewriting system. This is essentially a set of rules, each of which allows some string

u, whenever it occurs in a word, to be replaced by another string v. Such a rule is

specified by the ordered pair (u,v), leading to the following formal definitions.

Definition. A rewriting system on A is a subset of A∗×A∗.

If R is a rewriting system and (α,β ) ∈ R, then for any u, v ∈ A∗, we say that uαv

rewrites to uβv. Elements of R are written as α −→ β rather than (α,β ).

Definition. For u, v∈ A∗, u
.
−→v means there is a finite sequence u = u1, . . . ,un = v

of elements of A∗ such that ui rewrites to ui+1 for 1≤ i≤ n−1. Such a sequence is

called an R-derivation of v from u. (Write u
.
−→

R
v if necessary.)

Definition. A grammar is a quadruple (VN ,VT ,P,S) where

(1) VN , VT are disjoint finite sets (the set of non-terminal and terminal symbols

respectively).

(2) S ∈VN (the start symbol).

(3) P is a finite rewriting system on VN ∪VT .

(Elements of P are called productions in this context.)

Definition. The language LG generated by G is

LG =
{

w ∈V ∗T | S
.
−→w

}

(a language with alphabet VT ).

Definition. A production is context-free if it has the form A−→α , where A ∈ VN

and α ∈ (VN ∪VT )+. It is context-sensitive if it has the form βAγ−→βαγ , where

A ∈VN , α , β , γ ∈ (VN ∪VT )∗, α �= ε .

The reason for the names is that in using a context-free production A−→α in a

derivation, A can be replaced in a word by the word α regardless of the context

(the strings of letters that appear to the left and right of A in the word). With a

context-sensitive production βAγ−→βαγ , whether or not it can be used to replace

A by γ depends on the context (β must occur to the left, and γ to the right of A in the

word). Note, however, that β = γ = ε is allowed in the definition of context-sensitive

production, so context-free productions are context-sensitive.

The Chomsky hierarchy. This is a sequence of four classes of grammars (and cor-

responding classes of languages), each contained in the next.

A grammar G as defined above is said to be of type 0. It is of type 1 if all

productions have the form α −→ β with |α| ≤ |β |.
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Note. It can be shown that, if G is of type 1, then LG = LG′ for some context-

sensitive grammar G′, that is, a grammar in which all productions are context-

sensitive, in the sense above. See Lemma A.2 in Appendix A.

A grammar G is of type 2 (or context-free) if all productions are context-free. It is

of type 3 (or regular) if all productions have the form A−→aB or A−→a, where A,

B ∈VN and a ∈VT .

A language L is of type n if L = LG for some grammar G of type n (0≤ n≤ 3). We

also use regular, context-free and context-sensitive to describe languages of types 3,

2 and 1, respectively.

The idea of a context-free grammar was introduced by Chomsky as a possible

way of describing natural languages. Although they have not proved successful in

this, context-free languages have turned out to be important in describing program-

ming languages. The first such descriptions were for FORTRAN by Backus [1], and

ALGOL by Naur [28]. Indeed, context-free grammars are sometimes called Backus-

Naur form grammars. For an example of a modern language (HTML) described by

a context-free language, see [22, §5.3.3].

Context-free languages are important in the design of compilers, in particular the

design of parsers. For a discussion of the uses of context-free languages, we refer to

[22, §5.3].

Examples. It is left to the reader to prove that LG is as claimed. This is easy in

Examples (1)-(4); Example (5) is discussed in [20, Example 2.2].

(1) Let G = ({S} ,{0} ,P,S) where P consists of

S−→0, S−→0S.

Then LG = {0n | n≥ 1}= {0}+ (a type 3 language).

(2) Let G = ({S,A} ,{0,1} ,P,S) where P consists of

S−→0S, S−→A, A−→1A, A−→1.

Then LG = {0m1n | m≥ 0, n≥ 1} (also type 3).

(3) Let G = ({S} ,{0,1} ,P,S) where P consists of

S−→0S1, S−→01.

Then LG = {0n1n | n≥ 1} (a type 2 language).

(4) Let G = ({S,A} ,{a,b,c} ,P,S) where P contains

S−→Sc, S−→A, A−→aAb, A−→ab.

Then LG =
{

anbnci | n≥ 1, i≥ 0
}

(also type 2).

(5) Let G = ({S,B,C} ,{a,b,c} ,P,S) where P is
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S −→ aSBC

S −→ aBC

CB −→ BC

aB −→ ab

bB −→ bb

bC −→ bc

cC −→ cc

Then LG = {anbncn | n≥ 1} (type 1).

The Empty Word. If L is a type n language (1≤ n≤ 3), it is easy to see that ε �∈ L.

However, it is useful to view L∪{ε} as also a language of type n. To do this, we

make the following convention:

S−→ε is allowed as a production for type n grammars (1≤ n≤ 3), provided S does

not occur on the right-hand side of any production.

To see that this works, we need to prove the following lemma.

Lemma 1.1. If L is a type n language (1≤ n≤ 3), then L = LG1
for some grammar

G1 of type n, whose start symbol S1 does not occur on the right-hand side of any

production of G1.

Proof. Let L = LG, where G = (VN ,VT ,P,S) is a type n grammar. Let S1 be a letter

not in VN ∪VT and put G1 = (VN ∪{S1} ,VT ,P1,S1), where

P1 = P∪{S1−→α | S−→α is in P} .

Then G1 is of type n and S1 does not occur on the right-hand side of any production

of G1.

Suppose S
.
−→

P
w, so there is a P-derivation S = u1, . . . ,un = w, so S−→u2 is in P,

hence S1−→u2 is in P1; also, P⊆ P1, so S1,u2, . . . ,un = w is a P1-derivation. Hence

S1
.
−→

P1

w.

Conversely, suppose S1
.
−→

P1

w and let S1 = u1,u2, . . . ,un = w be a P1-derivation.

Then S1−→u2 is in P1, so S−→u2 is in P, and S1 does not occur in u2, . . . ,un since

it does not occur in the right-hand side of a production in P1. Hence S,u2, . . . ,un is

a P-derivation, so S
.
−→

P
w. Thus L = LG1

. ⊓⊔

We can now show that our convention works.

Corollary 1.2. If L is of type n (1≤ n≤ 3), then L∪{ε} and L\{ε} are of type n.

Proof. By Lemma 1.1, L = LG where G is some grammar of type n whose start

symbol S does not occur on the right-hand side of any production of G. Adding

S−→ε to the set of productions gives a grammar of type n generating L∪{ε}, since

the only derivation using S−→ε is S,ε . If ε ∈ LG, the set P of productions must

contain S−→ε . Removing this from P gives a type n grammar generating L\{ε}.

⊓⊔
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Machine Recognition. We consider imaginary machines which have (at least) a

read head which can read a tape. The tape is divided into squares on which are writ-

ten letters from an alphabet, and the head can scan a single square. Depending on the

letter scanned and other things, the machine can move to an adjacent square and in

some cases, alter the letter scanned. When started with a string on the tape, the ma-

chine either accepts or rejects the string in some manner. The language recognised

by the machine is the set of strings which it accepts.

Associated to each type in the Chomsky hierarchy is a class of machines, such

that a language is recognised by a machine in the class if and only if it is defined by

a grammar of the appropriate type. The classes of machines involved are listed in

the following table.

Language type Recognised by a

0 Turing machine

1 linear bounded automaton

2 non-deterministic pushdown stack automaton

3 finite state automaton

In this chapter we shall only look at the machines involved with type 0 and type

3 grammars, beginning with type 3.

Finite State Automata

Definition. A finite state automaton (which will always be abbreviated to FSA) is

a quintuple M = (Q,F,A,τ,q0), where

(1) Q is a finite set (the set of states).

(2) F is a subset of Q (the set of final states).

(3) A is a finite set (the alphabet).

(4) τ ⊆ Q×A×Q (the set of transitions).

(5) q0 ∈ Q (the initial state).

�������
�

�
�

�
��

�
��

�
�

��

. . . a1 a2 . . . an . . .

M

←−

Figure 1.1
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The idea is that M has a read head scanning a tape divided into squares, each of

which has a symbol from A printed on it. There is no restriction on the length of

the tape. Further, M scans one square at a time, and is in one of a finite number of

states (represented by the elements of Q). If M is in state q, reading a on the tape,

and (q,a,q′) ∈ τ , then M can change to state q′ and move the tape one square to the

left (equivalently, move the head one square to the right).

Definition. A computation of M is a sequence q0,a1,q1,a2,q2, . . . ,an,qn (with n≥
0) where (qi−1,ai,qi) ∈ τ for 1≤ i≤ n.

The label on the computation is a1 . . .an. The computation is successful if qn ∈ F .

(The idea is that M successively reads a1, . . . ,an on the tape, passing through the

states q0,q1, . . . ,qn as it does so.)

A string a1 . . .an is accepted by M if there is a successful computation with label

a1 . . .an.

Definition. The language recognised by M is

L(M) = {w ∈ A∗ | w is accepted by M} .

Transition Diagram. The transition diagram of a FSA is a directed graph, with ver-

tex set Q, the set of states, and an edge for each transition. The edge corresponding

to (q,a,q′) ∈ τ runs from q to q′, and has label a. Also, some vertices are labelled;

the initial state q0 is labelled with “−” and every final state is labelled with “+”. It

is drawn by enlarging the circles representing the vertices and writing their labels

inside the circles.

Note that there is a one-to-one correspondence

computations of M ←→ paths in the graph starting at q0

(If q0,e1,q1, . . . ,en,qn is a path, replace each edge ei by its label to get the corre-

sponding computation.)

A FSA can be specified by its transition diagram. A finite directed graph with

edge labels from a set A is the transition diagram of a FSA provided: if q, q′ are

vertices and a ∈ A, no more than one edge from q to q′ has label a, exactly one

vertex is labelled “−” and some (possibly no) vertices are labelled “+”.

Note. The label on the computation q0 is ε , so ε ∈ L(M) if and only if q0 ∈ F . In

this case, ± is drawn in the circle representing q0.

Examples. In these examples, it is left to the reader to show that the language recog-

nised is as claimed.

(1) Let the alphabet A have a single letter, say A = {a}, and let the transition dia-

gram be

−�������	
��
a

+�������	
��
a

Figure 1.2
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If M is the corresponding FSA, L(M) =
{

a2n+1 | n = 0,1,2, . . .
}

.

(2) Let A = {a,b}, with M the FSA defined by the transition diagram

−
������ ��
a

��b

+
������

�� b

�� a

+
������ ��

b
��

a


������

��
a

�� b

Figure 1.3

Then L(M) = {abn | n ∈ N}∪{ban | n ∈ N} .

(3) Let A be any finite set, with the transition diagram having no edges and one

vertex, which is a final state:

±��������

then L(M) = {ε} .

(4) Again let A be any finite set, and suppose a1, . . . ,an ∈ A, with transition diagram

−�������� ��
a1 �������� ��

a2 �������� . . . �������� ��
an

+��������

Then L(M) = {a1 . . .an} . Note that (3) can be viewed as the case n = 0 of (4).

It is possible to have two transitions (q,a,q′) and (q,a,q′′) with q′ �= q′′ (more than

one edge leaving q with the same label). Then if the FSA is in state q reading a, it

can enter either state q′ or state q′′ (or possibly other states). This is not a problem

with our definition of a computation, although if we imagine a machine actually

running a computation, it would need some means of deciding which state to move

to.

Also, given state q and a in the alphabet A, there may be no transition of the form

(q,a,q′), so if the FSA is in state q reading a, it grinds to a halt.

Definition. A FSA is deterministic if for all q∈Q, a∈A, there is exactly one q′ ∈Q

such that (q,a,q′) ∈ τ .

If M is deterministic, we denote the unique such q′ by δ (q,a), thereby defining a

function δ : Q×A→ Q, called the transition function of M.
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We extend δ to a mapping Q×A∗→ Q recursively by

δ (q,ε) = q

δ (q,wa) = δ (δ (q,w),a) for w ∈ A∗, a ∈ A.

The idea is that if M is in state q and successively reads the letters of w on the

tape, it will be in state δ (q,w). Thus if q0,a1,q1,a2, . . . ,an,qn is a computation,

then qn = δ (q0,a1 . . .an) (this is easily proved by induction on n). Consequently,

L(M) = {w ∈ A∗ | δ (q0,w) ∈ F} .
In defining δ (q,ε) = q, we are making the convention that, if the tape is blank,

M does not change state. However, we can take a different point of view, that blank

squares are allowed even if the tape is not blank, and M can change state when a

blank square is read.

Definition. A generalised FSA M is one in which triples of the form (q,ε,q′) are

allowed as transitions (so τ ⊆Q×(A∪{ε})×Q and ε is allowed as a label on edges

of the transition diagram). The language L(M) is defined as before. (Note, however,

that if ai = ε , a1 . . .an = a1 . . .ai−1ai+1 . . .an.)

We show that, whatever notion of FSA is used, the class of languages recognised is

the same.

Proposition 1.3. Let L be a language with alphabet A. The following are equivalent:

(1) L is recognised by a deterministic FSA.

(2) L is recognised by a FSA.

(3) L is recognised by a generalised FSA.

Proof. Clearly (1)⇒ (2)⇒ (3), and we show (3)⇒ (1). Suppose L is recognised

by a generalised FSA M = (Q,F,A,τ,q0). If X ⊆ Q, let X be the set of all possible

endpoints of paths in the transition diagram for M starting at a vertex of X and such

that the label on all edges of the path is ε . Note that X ⊆ X and X = X .

Define a deterministic FSA M′ = (Q′,F ′,A,τ ′,q′0) as follows.

Put Q′ = the set of all subsets X of Q such that X = X

δ (X ,a) = {all endpoints of edges labelled a which start at a vertex of X}

(so τ ′ = {(X ,a,δ (X ,a)) | X ∈ Q′, a ∈ A}),
q′0 = {q0} and F ′ = {X ∈ Q′ | q ∈ X for some q ∈ F} .

It is left as an exercise to show that L(M′) = L(M) = L. ⊓⊔

Definition. If (1)-(3) in Prop. 1.3 are satisfied, we say that L is recognised by a

FSA.

We can now establish the relationship between FSA’s and regular languages men-

tioned previously.
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Theorem 1.4. For a language L, the following are equivalent:

(1) L is a type 3 (regular) language.

(2) L is recognised by a FSA.

Proof. (1)⇒ (2). Let L = LG where G = (VN ,VT ,P,S) is a type 3 grammar. Define

a FSA M = (VN ∪{X} ,F,VT ,τ,S) (where X is a new letter not in VN ∪VT ) by

F =

{
{S,X} if S−→ε is in P

{X} otherwise

and τ = {(B,a,C) | B−→aC is in P}∪{(B,a,X) | B−→a is in P (and a �= ε)}.

We show LG = L(M). Suppose u = a1 . . .an ∈ LG (n ≥ 1), so there is a P-

derivation

S,a1A1,a1a2A2, . . . ,a1 . . .an−1An−1,a1 . . .an

Then (S,a1,A1),(A1,a2,A2), . . . ,(An−2,an−1,An−1),(An−1,an,X) are in τ , so

S,a1,A1,a2,A2, . . .An−1,an,X

is a successful computation of M, hence u ∈ L(M). If ε ∈ LG then S ∈ F , so ε ∈
L(M). Thus LG ⊆ L(M).

To show the reverse inclusion, suppose u = a1 . . .an ∈ L(M) (n ≥ 1), so there is

a computation

S,a1,A1,a2,A2, . . .An−1,an,X

of M (if S−→ε ∈ P, S does not appear on the right-hand side of any production, so

it can’t end with An−1,an,S). Then P contains

S−→a1A1, . . . ,An−2−→an−1An−1,An−1−→an

(because X does not occur in any production). Hence S
.
−→a1 . . .an = u. If ε ∈ L(M)

then S ∈ F , so S−→ε ∈ P, hence ε ∈ LG. Thus LG = L(M).

(2)⇒ (1). Suppose L = L(M) where M = (Q,F,A,τ,q0) is a deterministic FSA.

We can assume Q∩A = /0. Put G = (Q,A,P,q0), where

P = {B−→aC | (B,a,C) ∈ τ}∪{B−→a | (B,a,C) ∈ τ and C ∈ F} .

Then for u ∈ A∗, u �= ε , S
.
−→u if and only if u ∈ L(M), by a similar argument, left

to the reader. If q0 ∈ F , then ε ∈ L(M) and L(M) = LG∪{ε}, otherwise L(M) = LG.

By Cor. 1.2, L(M) is regular. ⊓⊔

Remark 1.1. The alert reader will have noticed a lack of symmetry in the definition

of a regular grammar, which can now be resolved. We can define a left regular

grammar to be one in which all productions are of the form A−→Ba or A−→a,

where A, B ∈ VN and a ∈ VT . Now if w = a1 . . .an is a word in some alphabet, we

define its reversal wR to be an . . .a1. If L is a language, we define LR =
{

wR | w ∈ L
}

.

If G is a regular grammar generating L, and all productions A−→aB are replaced by
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A−→Ba, we obtain a left regular grammar generating LR. Similarly, if a left regular

grammar generates a language L, we obtain a regular grammar generating LR.

We claim that a language L is regular if and only if LR is. Since (LR)R = L, it

follows that a language is regular if and only if it is generated by a left regular

grammar. Again since (LR)R = L, it suffices to show that, if L is regular, then so

is LR. To see this, take a FSA recognising L, and modify its transition diagram as

follows. Reverse the direction of all edges and make the initial state the only final

state. Add a new initial state, and add an edge from it to each of the original final

states, with label ε . This is the transition diagram of a generalised FSA recognising

LR. (See also Remark 4.4.)

One can also ask what happens if productions of the form A−→aB and A−→Ba

are both allowed. This leads to a class known as linear languages (see Exercises 4–6

in Chapter 4).

Rational Operations on Languages. Let L, L1, L2 be languages with alphabet A.

The following are also languages with alphabet A.

(1) L∗; strictly, this is a language with alphabet L, but a finite sequence u1 . . .um,

ui ∈ L, can be viewed as the concatenation of the words u1, . . . ,um, so an element

of A∗. (Algebraically, L∗ is the submonoid of A∗ generated by L.)

(2) L1L2 = {uv | u ∈ L1, v ∈ L2}.
(3) L1∪L2, L1∩L2 and Lc = A∗ \L.

The language L1L2 is called the product of L1 and L2, and the operation which

associates L∗ to L is called Kleene star.

Lemma 1.5. Let L, L1 and L2 be languages.

(1) If L is finite, it is regular.

(2) If L is regular then L∗ is regular.

(3) If L1 and L2 are regular then L1∪L2 is regular.

(4) If L1 and L2 are regular then L1L2 is regular.

(5) If L is regular then Lc is regular.

(6) If L1 and L2 are regular then L1∩L2 is regular.

Proof. (1) From earlier examples, a language with just one word is recognised by a

FSA, so is regular by Theorem 1.4. Thus (1) follows from (3).

(2) If L is regular, L = L(M) for some FSA M by Theorem 1.4. Let M′ be the (gen-

eralised) FSA obtained from M by making the following changes to the transition

diagram.

(i) Adding a new vertex, which is to be the only final state of M′, and adding edges

from each old final state of M to the new vertex, all with label ε .

(ii) Adding another new vertex, which is to be the initial state of M′, and adding an

edge with label ε from the new vertex to the old initial state of M.

(iii) Adding an edge from the new final state to the new initial state of M′, and an

edge in the opposite direction from the initial state to the final state, both with

label ε .
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This is illustrated by:
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ε

−������ ! ��
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...
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...
+������ !
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state of M

↑old final
states of M
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ε

Figure 1.4

It is easy to see that L∗ = L(M′), so L∗ is recognised by a FSA, hence is regular

by Theorem 1.4.

(3) By Theorem 1.4, Li = L(Mi) for i = 1, 2, where Mi is a FSA, and we can assume

that M1 and M2 have no states in common. We construct a new FSA, whose tran-

sition diagram is the union of the transition diagrams for M1 and M2, modified as

follows. There is one extra vertex as initial state and two extra edges from this new

vertex to the initial states of M1 and M2, having label ε . The final states are those of

M1 and M2.

������ ! M1

⊕
...
⊕

−
������
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Figure 1.5

Clearly the new FSA recognises L1∪L2.

(4) Let Li = L(Mi) as in the previous part. We obtain a FSA recognising L1L2 by

connecting the transition diagrams “in series”, as illustrated in the diagram below.

⊖ M1

"#$%&'()

...
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"#$%&'() M2

⊕
...
⊕

����������
ε
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old final states of M1
↑ ↑old initial state of M2

Figure 1.6
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Thus, we take the union of the transition diagrams of M1 and M2, with new edges

from the final states of M1 to the initial state of M2, all with label ε . The new initial

state is that of M1, and the final states are those of M2.

(5) If L is regular, we can write L = L(M), where M = (Q,F,A,τ,q0) is de-

terministic, using Prop. 1.3 and Theorem 1.4. Then Lc = L(M′), where M′ =
(Q,Q \F,A,τ,q0). (For w ∈ A∗, there is exactly one path in the transition diagram

of M, starting at q0 and with label w.)

(6) This follows from (3) and (5) by the de Morgan law: L1∩L2 = (Lc
1∪Lc

2)
c. ⊓⊔

The rational operations on languages are union, product and Kleene star. Let L

be a collection of languages with alphabet A. Call L rationally closed if, for all

languages L, L1 and L2 with alphabet A,

(1) if L is finite, then L ∈L ;

(2) if L ∈L then L∗ ∈L ;

(3) if L1, L2 ∈L , then L1∪L2 ∈L ;

(4) if L1, L2 ∈L , then L1L2 ∈L .

There is a smallest rationally closed collection, namely the intersection of all such

collections L , which will be denoted by R. A language L is called rational if L∈R.

Theorem 1.6. (Kleene) A language is rational if and only if it is regular.

Proof. By Lemma 1.5, the class of regular languages on an alphabet A is rationally

closed, and so contains R. That is, a rational language is regular.

Conversely, suppose L is regular, so L = L(M) for some FSA M = (Q,F,A,τ,q0),
by Theorem 1.4.

If q,e1,q1, . . .qn−1,en,q
′ is a path in the transition diagram of M, the intermediate

states of the path are defined to be q1, . . . ,qn−1. For q,q′ ∈ Q, X ⊆ Q, let

L(q,q′,X) = the set of all labels on paths from q to q′ for which all

intermediate states of the path belong to X .

We prove by induction on the number of elements of X that L(q,q′,X) ∈R.

If X = /0, let e1, . . . ,er be the edges starting at q, ending at q′, with labels a1, . . . ,ar

respectively. Then L(q,q′,X) =

{
{a1, . . . ,ar} if q �= q′

{ε,a1, . . . ,ar} if q = q′

is finite, so belongs to R.

If X �= /0, choose x ∈ X , and define

L1 = L(q,q′,X \{x}), L2 = L(q,x,X \{x})
L3 = L(x,x,X \{x}) L4 = L(x,q′,X \{x}).

By induction, Li ∈R for 1≤ i≤ 4. Since R is rationally closed, L(q,q′,X) = L1∪
(L2L∗3L4) ∈R, completing the induction. Finally, L(M) =

⋃
q∈F

L(q0,q,Q) ∈R. ⊓⊔
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Thus, although complement and intersection are not used in defining the set of

rational languages, it turns out that the set of rational languages is closed under these

operations, by Lemma 1.5 and Theorem 1.6.

Next, we shall prove some results on regular languages which are useful in de-

ciding if specific languages are regular, beginning with a characterisation by certain

equivalence relations.

Definition. The index of an equivalence relation is the number of sets in the corre-

sponding partition.

Definition. An equivalence relation on A∗ (A being any set) is right invariant if, for

all x, y ∈ A∗, xRy implies that for all z ∈ A∗, xzRyz.

If L is a language with alphabet A, we can define a binary relation RL on A∗ by: xRLy

if and only if χL(xz) = χL(yz) for all z ∈ A∗, where χL is the characteristic function

of L, that is, χL(w) =

{
1 if w ∈ L

0 if w ∈ A∗ \L

Then RL is a right-invariant equivalence relation.

Theorem 1.7. (Myhill-Nerode) For a language with alphabet A, the following are

equivalent.

(1) L is recognised by a FSA.

(2) L is the union of some of the equivalence classes of a right-invariant equiva-

lence relation of finite index on A∗.

(3) RL is of finite index.

Proof. (1)⇒ (2) Suppose L is recognised by M = (Q,F,A,τ,q0), a deterministic

FSA. Let the transition function be δ . Define xRy to mean δ (q0,x) = δ (q0,y), for

x, y ∈ A∗. This is an equivalence relation of finite index on A∗ (the index is at most

the number of states of M, since δ (q0,x) ∈ Q). By induction on |z| (where z is as in

the definition of right-invariant), R is right-invariant. Finally, L is the union of those

equivalence classes containing an element x such that δ (q0,x) ∈ F .

(2) ⇒ (3) Let L be the union of some of the equivalence classes of R, a right-

invariant equivalence relation of finite index on A∗. Then xRy implies xRLy. For if

xRy, then xzRyz for all z∈ A∗, hence xz ∈ L if and only if yz ∈ L, i.e. xRLy. Hence RL

has finite index (each R-equivalence class is contained in an RL-equivalence class).

(3)⇒ (1) Assume RL is of finite index. Let Q be the finite set of equivalence classes

of RL, and denote the equivalence class of x by [x]. Put δ ([x],a) = [xa] for a ∈ A

(this is well-defined), q0 = [ε] and F = {[x] | x ∈ L} to define a deterministic FSA

M which recognises L (because δ (q0,y) = [y] for y ∈ A∗, by induction on |y|). ⊓⊔

Example. In Example (3), p.3, we saw that L = {0n1n | n > 0} is type 2, but it is not

type 3 (regular). Otherwise RL has finite index, so 0mRL0n for some m, n > 0 with

m �= n. But then 0m1nRL0n1n, a contradiction since 0m1n �∈ L and 0n1n ∈ L.

The next result can also be used to show L is not regular, and is another useful

criterion. If v is a subword of a word w ∈ L, where L is a language, then we say that

v can be “pumped” if replacing v in w by vi, for any i ∈ N, results in a word in L.
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Lemma 1.8. (The Pumping Lemma) Let L be a regular language. There is an in-

teger p > 0 such that any word x ∈ L with |x| ≥ p is of the form x = uvw, where

|v|> 0, |uv| ≤ p and uviw ∈ L for all i≥ 0.

Proof. Let p be the number of states in a FSA recognising L, and let the FSA have

initial state q0. An accepted word x = a1 . . .an is the label on a path in the transition

diagram, starting at q0 and ending at a final state, say q0,e1,q1, . . . ,en,qn. There are

n+1 occurrences of states in this sequence, so if n≥ p, there must be integers r < s

such that qr = qs. Choose s as small as possible subject to this. Now put u = a1 . . .ar,

v = ar+1 . . .as, w = as+1 . . .an, so |v| > 0. The vertices q0, . . . ,qs−1 are distinct, by

minimality of s, hence |uv| = s ≤ p. Also, qr,er+1,qr+1, . . . ,es,qs is a closed path,

so can be repeated i≥ 0 times in the original path, to give a path from q0 to qn with

label uviw. (When i = 0, the path is q0,e1, . . . ,qr,es+1,qs+1, . . . ,qn.) ⊓⊔

There is also a pumping lemma for type 2 (context-free) languages, which is

stated here to illustrate its use. Its proof is deferred until later (after Theorem 4.10).

Lemma 1.9. Let L be a context-free language. Then there is an integer p > 0, de-

pending only on L, such that, if z∈ L and |z| ≥ p, then z can be written as z = uvwxy,

where |vwx| ≤ p, v and x are not both ε and for every i≥ 0, uviwxiy ∈ L.

Example. From an earlier example, {anbncn | n > 0} is type 1, but it is not of type 2

(context-free). For otherwise, Lemma 1.9 applies to z = anbncn for sufficiently large

n, but no choices of v, x give uviwxiy ∈ L for all i≥ 0.

Thus there are strict inclusions of classes of languages:

{regular languages}� {context-free languages}� {context-sensitive languages} .

Eventually (see the note preceding Theorem 3.12), we shall show there is a type 0

language which is not type 1, so the inclusions in the Chomsky hierarchy of lan-

guages are all strict.

Although the class of regular languages is the most restricted class we have con-

sidered, regular languages are nevertheless important in computer science. We refer

to [21, §2.8] and [22, §3.3] for a discussion of their uses, including lexical analy-

sers and searching for strings. This involves another way of describing rational lan-

guages, by means of “rational expressions”.

The ideas of rational expression, rational language and recognition by a FSA

can be generalised, and there are notions of rational and recognisable subset of a

monoid, leading to the idea of star height of a monoid. For a discussion of this, see

[14] and [31]. The idea of an automaton over a subset A of a monoid is obtained

by taking the labels on the transition diagram to be elements of A, so the automaton

recognises a subset of the monoid generated by A. There is a generalisation of The-

orem 1.6. If A is a set of generators for a monoid N, then a subset of N is rational if

and only if it is recognised by an automaton over A. See [9, Theorem 2.6]. Also, the

pushdown stack automata considered in Chap. 4 can be viewed as automata over a

suitable monoid. See [9, §7].
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We now turn to the class of machines which recognise type 0 languages.

Turing Machines. A Turing machine has a similar description to a FSA, but is

allowed to do more. It can move the tape in both directions, print a new symbol on

the scanned square, and extra symbols are allowed on the tape which are not part of

the alphabet of the language recognised, which is called the input alphabet. Here is

the formal definition.

Definition. A Turing machine is a sextuple T = (Q,F,A, I,τ,q0), where

(1) Q is a finite set (the set of states);

(2) F is a subset of Q (the set of final states);

(3) A is a finite set (the tape alphabet) with a distinguished element B (the blank

symbol);

(4) I is a subset of A\{B} (the input alphabet);

(5) τ ⊆ Q× A×Q× A×{L,R} (the set of transitions), where {L,R} is a two-

element set;

(6) q0 ∈ Q (the initial state).

Often, “Turing machine” will be abbreviated to “TM”.

Thus the idea is that T has a read/write head scanning a tape divided into squares,

each of which has a letter from A printed on it, and is in a certain state (element of

Q). Elements of τ will be written without parentheses or commas. If qaq′a′L ∈ τ ,

this means that, if T is in state q , reading a, it can change to state q′, overwrite the

scanned square with a′ and move the head one square to the left (equivalently, move

the tape one square to the right). If L is replaced by R, the head moves one square to

the right.

No restriction is placed on the length of the tape, and it is convenient to view it

as infinite in both directions, with all but finitely many squares blank (i.e. having B

written on them).
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T

←→

Figure 1.7

We now formalise this idea by giving a precise definition of a computation. Some

preliminary definitions are required.
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Definition. A tape description for a TM T as above is a triple (a,α,β ) where α :

N→ A and β ;N→ A are functions with α(n) = B and β (n) = B for all but finitely

many n ∈ N.

The idea is that a is on the square being scanned and the successive letters on the

tape to the right of the scanned square are α(0),α(1), . . . Similarly, β records the

letters to the left of the scanned square:
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a α(0) α(1) . . .β (0)β (1). . .

Figure 1.8

This is a good definition for theoretical purposes, but in practice it is useful to

have a different way of giving a tape description. Suppose α(i) = B for i > r and

β (i) = B for i > l. Then (a,α,β ) is determined by the word

β (l)β (l−1) . . .β (0)aα(0) . . .α(r)

with a underlined. Conversely, any word in A+ with a letter underlined represents a

tape description.

Definition. A configuration of T is a quadruple (q,a,α,β ) where q ∈ Q and

(a,α,β ) is a tape description.

Again, a configuration will sometimes be written as (q,w), where q ∈Q and w is

a word in A+ with a letter underlined.

We now describe the moves allowed by the transitions.

Definition. A configuration c′ is obtained from a configuration c by a single move

if one of the following holds:

(1) c = (q,a,α,β ), qaq′a′L ∈ τ and c′ = (q′,β (0),α ′,β ′), where α ′(0) = a′,

α ′(n) = α(n−1) for n > 0 and β ′(n) = β (n+1) for n≥ 0.

(2) c = (q,a,α,β ), qaq′a′R ∈ τ and c′ = (q′,α(0),α ′,β ′), where α ′(n) = α(n+1)
for n≥ 0, β ′(0) = a′ and β ′(n) = β (n−1) for n > 0.

It is now easy to define a computation.

Definition. A computation of T , starting at c and ending at c′, is a finite sequence

c = c1, . . . ,cn = c′ of configurations, where n≥ 1 and ci+1 is obtained from ci by a

single move, for 1≤ i < n.

We say that the computation halts if c′ is a terminal configuration, that is, of the

form (q,a,α,β ), where no element of τ begins with qa.
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Definition. c−→
T

c′ means there is a computation of T , starting at c and ending at

c′.

We can now define the language recognised by the TM. For w = a1 . . .an ∈ A∗, let

cw = (q0,a1 . . .an) (= (q0,B) if w = ε).

Definition. The TM T accepts w if cw−→
T

c′ for some configuration c′ = (q,a,α,β )

such that q ∈ F .

The language recognised by T is

L(T ) = {w ∈ I∗ | w is accepted by T}

(a language with alphabet I∗ rather than A∗).

Deterministic Turing Machines. The requirements for a deterministic TM are less

stringent than for a FSA. It is useful, even in a deterministic TM, to have the possi-

bility of terminal configurations.

Definition. A TM T is deterministic if, for every pair (q,a)∈Q×A, there is at most

one element of τ which begins with qa.

For each configuration c of a deterministic TM, there is at most one configuration

c′ obtained from c by a single move. Put δ (c) = c′, to obtain a partial function

δ : C→C, where C is the set of configurations.

Note. A partial function f : X →Y , where X and Y are sets, is a function f : Z→Y ,

where Z is a subset of X . In this context, if f : X → Y is defined on all of X (i.e.

Z = X), f is called a total function.

Further, if qaq′a′d ∈ τ , we can write q′ = NT (q,a), a′ = RT (q,a) and d = DT (q,a),
to obtain partial functions NT : Q×A→Q, RT : Q×A→A and DT : Q×A→{L,R}.

(The subscript “T ” will be needed in the next chapter when these functions are

discussed simultaneously for a collection of TM’s.) The next lemma is an immediate

consequence of our definitions.

Lemma 1.10. Let T be deterministic, c = (q,a,α,β ) a configuration with δ (c) de-

fined. Then

(1) If DT (q,a) = L, then δ (c) = (NT (q,a),β (0),α ′,β ′), where α ′(0) = RT (q,a),
α ′(n) = α(n−1) for n > 0 and β ′(n) = β (n+1) for n≥ 0.

(2) If DT (q,a) = R, then δ (c) = (NT (q,a),α(0),α ′,β ′), where α ′(n) = α(n + 1)
for n≥ 0, β ′(0) = RT (q,a) and β ′(n) = β (n−1) for n > 0.

⊓⊔

We can extend the definition of δ . Define δ̄ : C×N→C by: δ̄ (c,0) = c, δ̄ (c,n+
1) = δ (δ̄ (c,n)). Note that c−→

T
c′ if and only if c′ = δ̄ (c,n) for some n≥ 0.

Given c, either δ̄ (c,n) is defined for all n ≥ 0, or only for 0 ≤ n ≤ r, where

r ≥ 0, meaning that the computation c, δ̄ (c,1), . . . , δ̄ (c,r) halts. If c = (q0,a,α,β )



18 1 Grammars and Machine Recognition

and this computation halts for some r, we say that T halts when started on the tape

description (a,α,β ).
As mentioned earlier, the class of languages recognised by a TM coincides with

the class of type 0 languages. We shall prove only half of this now, deferring the

converse until we give another characterisation of type 0 languages, in Chap. 3. (We

shall also prove in Chap. 3 that a language recognised by a TM is actually recognised

by a deterministic TM.) First, a remark is needed.

Remark 1.2. If L = L(T ) for some TM T , let T ′ be T with all transitions starting

with qa, where q ∈ F (the set of final states) removed. Then L = L(T ′).

(For clearly L(T ′) ⊆ L(T ). If c = c1, . . . ,cn is a computation of T , where cn begins

with a final state, taking n as small as possible subject to this gives a computation of

T ′ starting at c. Hence L(T )⊆ L(T ′).)

Theorem 1.11. If a language L is recognised by a TM, it is of type 0.

Proof. Let L be recognised by T = (Q,F,A, I,τ,q0). By Remark 1.2, we can assume

that, if q ∈ F , no element of τ begins with qa.

Let G be the grammar (VN ,VT ,P,S), where VT = I

VN = ((I∪{ε})×A)∪Q∪{S,E1,E2,E3}

(S,E1, E2, E3 being extra letters) and P consists of the following. (The reader is

advised not to try to take in this list now, but to refer to it when needed in the

commentary below.)

(1) S−→E1E2.

(2) E2−→(a,a)E2 for all a ∈ I.

(3) E2−→E3.

(4) E3−→(ε,B)E3, E1−→(ε,B)E1 (B is the blank symbol of T ).

(5) E3−→ε, E1−→q0.

(6) q(a,C)−→(a,D)p, for all qCpDR ∈ τ and a ∈ I∪{ε}.

(7) (a,C)q−→ p(a,D), for all qCpDL ∈ τ and a ∈ I∪{ε}.
(8) (a,C)q−→qaq, q(a,C)−→qaq and q−→ε , for all a∈ I∪{ε}, C∈A and q∈F .

We show that L = LG. Let a1 . . .an ∈ I∗; using productions (1), (2) and (3), we obtain

S
.
−→E1(a1,a1) . . .(an,an)E3

Suppose a1 . . .an is accepted by T . In a computation starting at c0 = (q0,a1 . . .an)
and ending with a state in F , T uses only finitely many squares, say l, to the left of

the initially scanned square. It also uses finitely many squares, say m, to the right of

the square containing an, giving a block of l +m+n squares. Now using (4) and (5),

S
.
−→(ε,B)lq0(a1,a1) . . .(an,an)(ε,B)m

A configuration c in the computation can be described as c = (q,x1 . . .xi . . .xm+n+l),
where x1, . . .xm+n+l are the letters currently on the initial block of squares. Associ-

ated to c is the word
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c̃ = (b1,x1) . . .(bi−1,xi−1)q(bi,xi) . . .(bm+n+l ,xm+n+l)

where b1 = . . . = bl = ε , bl+1 = a1, . . .bl+n = an, bl+n+1 = . . . = bl+n+m = ε . It

follows by induction on the number of moves in the computation to get from c0 to c

that, using (6) and (7),

c̃0 = (ε,B)lq0(a1,a1) . . .(an,an)(ε,B)m .
−→ c̃

hence S
.
−→ c̃. If c is the last configuration in the computation, then q ∈ F , and by

use of (8) we find c̃
.
−→a1 . . .an, hence S

.
−→a1 . . .an. Thus L(T )⊆ LG.

For the reverse inclusion, suppose S
.
−→a1 . . .an. A corresponding derivation

must start by deriving (ε,B)lq0(b1,b1) . . .(bk,bk)(ε,B)m for some k, l, m, bi, then

continue using (6) and (7) (after possibly changing the places where the produc-

tions E3−→(ε,B)E3 and E3−→ε are used). Each use of (6) and (7) corresponds

to a move of T , so we obtain a computation of T starting at (q0,b1 . . .bk). Eventu-

ally the word derived must contain some q ∈ F , in order to use (8), so T accepts

b1 . . .bk. The rest of the derivation can use only (8), resulting eventually in b1 . . .bk.

Thus b1 . . .bk = a1 . . .an is accepted by T . Therefore L(T ) = LG. ⊓⊔

For a direct proof of the converse of Theorem 1.11, see [20, Theorem 7.3]. Before

ending, we briefly describe the machines recognising context-sensitive languages.

These will not be studied in detail. For a proof that these recognise exactly the

context sensitive languages, see [20, §8.2].

A linear bounded automaton is a TM T = (Q,F,A, I,τ,q0) such that only the

part of the tape on which the input word is written may be used. More precisely

(1) The input alphabet I includes two special letters € and $ (the left and right end

markers of the tape);

(2) there are no transitions of the form q€q′aL or q$q′aR (the read head cannot

move beyond the end markers);

(3) the only transitions beginning q€ (resp. q$) have the form q€q′€R (resp.

q$q′$L) (T cannot overprint € or $).

A word w ∈ (I \{€,$})∗ is accepted by T if (q0,€w$)−→
T

(q,c) for some configu-

ration c and q ∈ F . We define L(T ) to be the set of words accepted by w. It can be

shown that a language L is context-sensitive if and only if it is L(T ) for some linear

bounded automaton T . See [20], Theorems 8.1 and 8.2, or [21], Theorems 9.7 and

9.8. A language is called deterministic context-sensitive if it is L(T ) for some linear

bounded automaton T which is deterministic as a TM. It is still unknown whether

or not a context-sensitive language is deterministic context-sensitive.

Exercises on Chapter 1

1. Let G be the grammar ({S,A},{a,b},P,S), where P consists of:
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S −→ ab

S −→ aASb

A −→ bSb

AS −→ b

Is ababbabb ∈ LG?

2. Let G be the grammar ({S},{a,b,c},P,S), where P consists of S → aaS and

S→ bc. Describe explicitly, with brief justification, the language LG.

3. Draw the transition diagram for a FSA which recognises the language

{(ab)n | n = 0,1,2, . . .}.

4. Do the same for the language {vaw | v,w ∈ {a,b}∗ }.

5. Let L = {1m01n01m+n | m,n ∈ N}, a language with alphabet {0,1}.

(i) Is L context-free (type 2)?

(ii) Is L regular (type 3)?

6. Show that the language {aibncn | n≥ 1, i≥ 0} is context-free. Give an example

of a pair of context-free languages L1 and L2 (on the same alphabet) such that

L1∩L2 is not context-free.



Chapter 2

Recursive Functions

In this chapter, we consider the notion of a computable function f : Nn → N. Such

a function is computable if there is a finite set of instructions for a procedure which,

if followed on input (x1, . . . ,xn), terminates with output f (x1, . . . ,xn) (for example,

a computer program). No restriction is made on the time or space required in the

device used to implement the procedure. (This, of course, is unrealistic, but it is

easier to develop a theory without such restrictions.)

More generally, we consider partial functions f : Nn → N. Recall that this

means f is a function X → N where X is a subset of Nn. Such a function is com-

putable if such a set of instructions exists, but the procedure terminates with output

f (x1, . . . ,xn) if this is defined, and otherwise does not terminate. (Also recall that, in

this context, a function f : Nn → N, defined on all of Nn, is called a total function.)

This idea of computability cannot be subjected to a mathematical analysis be-

cause various terms, such as “procedure” have not been precisely defined. Neverthe-

less, it is possible to make some progress even with such a vague notion. As an ex-

ample, take the following statement. Suppose g, h : N→N are two computable func-

tions; then their composition g ◦ h is computable (recall that (g ◦ h)(n) = g(h(n))).
To “prove” this, take a procedure which computes h, give it input n, then pass the

output to a procedure which computes g. The output is g(h(n)), so this is a procedure

to compute g◦h.

To obtain a mathematical theory, the way to proceed is to develop this idea. Write

down a collection of functions which one expects to be computable (under any rea-

sonable definition). Then give ways of constructing new functions which, applied to

computable functions, should lead to new computable functions (such as composi-

tion, as described above). Then take all functions obtained from the initial functions

by repeated use of these operations. This is what we shall do, leading to a class of

functions called partial recursive functions.

We have to hope that we have written down enough initial functions and ways

of constructing new functions that all possible computable functions are recursive.

This is, of course, impossible to prove. Nevertheless, the assertion that this is true

has a name.

I. Chiswell, A Course in Formal Languages, Automata and Groups, 21
DOI 10.1007/978-1-84800-940-0 2,
c© Springer-Verlag London Limited 2009
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Church’s Thesis. The partial computable functions as described above are precisely

the partial recursive functions.

This is sometimes called the Church-Turing thesis. In practice, it is used like the

word “clearly” in other branches of mathematics. Thus “ f is partial recursive by

Church’s thesis” means “ f is obviously computable and I don’t want to write out

the lengthy details needed to prove it’s recursive”. We shall not use it in this way.

As evidence for Church’s thesis, we shall consider several precise notions of

computability and show that, in all cases, the partial computable functions are pre-

cisely the partial recursive functions. We shall consider computability by register

programs. These resemble programs in a very simple assembly language. The ma-

chine which executes these programs has “registers”, each of which can store any

natural number, which can be changed when the program runs. This unrealistic as-

sumption is compounded by making no limit on the number of registers a program

may use, so the machine is given infinitely many registers. This reflects the state-

ment made above in introducing computable functions: no restriction is made on the

time or space required. Thus the machine implementing the program is expected to

continue indefinitely without running out of power or breaking down.

We also consider computability by abacus machines, which can be viewed as

versions of register programs written in a higher-level language, where only well-

structured programs are possible. Finally, we discuss computability by Turing ma-

chines, a new use for them after their use in language recognition in Chap. 1.

Before defining the class of partial recursive functions, it is useful to define a

smaller class, the class of primitive recursive functions, which are all total. Many

standard functions on the natural numbers are primitive recursive. The definition in-

volves just two ways of constructing new functions; a generalisation of composition

discussed above, and “primitive recursion”. We shall define these for arbitrary par-

tial functions, so that no modification is needed when defining the partial recursive

functions. Also, it is convenient to introduce the idea of a primitively recursively

closed class, so that our results apply to other classes, such as the class of recursive

functions defined later on.

Definition. Let g : Nr → N, h1, . . . ,hr : Nn → N be partial functions. The function

f = g◦ (h1, . . . ,hr) obtained from g,h1, . . . ,hr by composition is the partial function

f : Nn → N defined by

f (x1, . . . ,xn) = g(h1(x1, . . . ,xn), . . . ,hr(x1, . . . ,xn))

where the left-hand side of the equation is defined if and only if the right-hand side

is.

If g,h1, . . . ,hr are computable functions, one can see that f is computable by a sim-

ple generalisation of the discussion above.

Definition. Let g : Nn → N, h : Nn+2 → N be partial functions. The function f :

Nn+1 → N obtained from g and h by primitive recursion is defined by:



2 Recursive Functions 23

f (x1, . . . ,xn,0) = g(x1, . . . ,xn)

f (x1, . . . ,xn,y+1) = h(x1, . . . ,xn,y, f (x1, . . . ,xn,y)).

For a formal proof that these equations do define a unique partial function f , we

refer to [4, §3.7]. For given (x1, . . . ,xn), f (x1, . . . ,xn,y) is defined either for no y, for

all y, or for 0≤ y≤ r for some r. Note that n = 0 is allowed, when g is viewed as a

fixed natural number.

If g and h are computable, then so is f . Given x = (x1, . . . ,xn), we first use a

procedure to compute g(x). If it terminates, the value obtained is f (x,0). We can

then use this value and a procedure to compute h to find f (x,1). If this terminates,

we can then use the computed value of f (x,1) and the procedure to compute h to

compute f (x,2), and so on.

We also define the initial functions to be the functions in the following list:

(zero function) z : N→ N defined by z(x) = 0 for all x ∈ N
(successor function) σ : N→ N defined by σ(x) = x+1

the projection functions πin : Nn → N defined by πin(x1, . . . ,xn) = xi (for n ≥ 1

and 1≤ i≤ n).

The initial functions are all computable; it is left to the reader to justify this. We now

define

P = { f | for some n > 0, f is a partial function Nn → N}

and T = { f ∈ P | f is total}

In this chapter, a class of functions means a subset of P and a class of total functions

means a subset of T.

Definition. A class of total functions C is primitively recursively closed if

(1) C contains all the initial functions;

(2) C is closed under composition (i.e. if f is obtained from g,h1, . . . ,hr by compo-

sition, and g,h1, . . . ,hr are all in C, then f ∈ C);

(3) C is closed under primitive recursion (i.e. if f is obtained from g and h by

primitive recursion, and g, h ∈ C, then f ∈ C).

There is a smallest primitively recursively closed class (the intersection of all

primitively recursively closed total classes), called the class of primitive recursive

functions.

Note. It is left to the reader to show that a function f is primitive recursive if and

only if there is a sequence f0, . . . , fk = f of functions, where each fi is either an

initial function, or is obtained by composition from some of the f j, for j < i, or is

obtained by primitive recursion from two of the f j with j < i. Such a sequence is

called a primitive recursive definition of f .
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Examples of Primitive Recursive Functions.

(1) (addition) The function s : N2 →N defined by s(x,y) = x+y is primitive recur-

sive. For

s(x,0) = g(x) where g = π11 (the identity mapping on N)

s(x,y+1) = s(x,y)+1 = h(x,y,s(x,y)), where h = σ ◦π33

so π11, π33, σ , σ ◦π33, s is a primitive recursive definition.

(2) (multiplication) m : N2 → N defined by m(x,y) = xy is primitive recursive. For

m(x,0) = 0 = z(x)

m(x,y+1) = m(x,y)+ x = s(π33(x,y,m(x,y)),π13(x,y,m(x,y)))

= h(x,y,m(x,y)), where h = s◦ (π33,π13).

From this, it is easy to write down a primitive recursive definition. (In this and

subsequent examples, this will be left to the reader.)

(3) (exponential function) exp(x,y) = xy is primitive recursive. For

exp(x,0) = 1

exp(x,y+1) = m(x,exp(x,y)).

(4) (factorial) Fac(x) = x! is primitive recursive since Fac(0) = 1, Fac(x + 1) =
m(x+1,Fac(x)).

(5) Any constant function Nn → N is primitive recursive. For n = 1, the constant

function 0 is z, the constant function 1 is σ ◦ z, the constant function 2 is σ ◦
(σ ◦ z), etc. For general n, the constant function c is c′ ◦π1n, where c′ : N→ N
is the constant function with value c.

(6) (predecessor) We define Pred(x) to be x− 1 if x > 0 and Pred(0) to be 0. This

is primitive recursive since Pred(0) = 0, Pred(x+1) = x.
(7) (proper subtraction) x

.
−y = max{x− y,0} is primitive recursive: x

.
−0 = x,

x
.
−(y+1) = Pred(x

.
−y).

(8) (modulus) |x− y|= (x
.
−y)+(y

.
−x) is primitive recursive.

(9) (sign) sg(x) =

{
0 if x = 0

1 if x > 0
is primitive recursive, because sg(0) = 0 and

sg(x+1) = 1.

Remark 2.1. If f : Nn → N is in C (a primitively recursively closed class) and g :

Nm→N is defined by g(x1, . . . ,xm) = f (y1, . . . ,yn), where each yi is either a constant

or x j for some fixed j, then g ∈ C. (For g = f ◦ (h1, . . . ,hn), where hi is either a

constant function or some π jm.)

Lemma 2.1. Let C be a primitively recursively closed class, and let g : Nn+1 → N
be in C. Then the following functions are in C.

(1) f1 : Nn+1 → N, where f1(x1, . . . ,xn,y) =
y

∑
t=0

g(x1, . . . ,xn, t).
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(2) f2 : Nn+1 → N, where f2(x1, . . . ,xn,y) =
y

∏
t=0

g(x1, . . . ,xn, t).

Proof. Both f1 and f2 are obtained by primitive recursion from functions in C, since

(1) f1(x,0) = g(x,0), f1(x,y+1) = f1(x,y)+g(x,y+1).
(2) f2(x,0) = g(x,0), f2(x,y+1) = f1(x,y).g(x,y+1).

⊓⊔

Predicates. A predicate P(x1, . . . ,xn) of n variables is a statement concerning these

variables which is either true or false. In our case, the variables stand for elements of

N. Such a predicate is determined by the set {x ∈ Nn | P(x) is true} (and in formal

approaches to set theory, would be identified with this set).

Recall that, if A⊆ Nn, the characteristic function of A is the function

χA : Nn →{0,1} defined by χA(x) =

{
1 if x ∈ A

0 if x �∈ A.

If P is a predicate, χP is defined to be χA, where A = {x ∈ Nn | P(x) is true}.

Definition. Let C be a primitively recursively closed class. A subset A of Nn is said

to be in C if χA ∈ C. A predicate P of n variables is in C if {x ∈ Nn | P(x) is true} is

in C.

This is a somewhat awkward notation since “in” does not mean “is a member of”.

If C is the class of primitive recursive functions, we shall say A (or P) is primitive

recursive, rather than A (or P) is in C. Similar terminology will be used with the

class of recursive functions defined later.

In the next lemma, the notation of propositional logic is used, and is assumed

to be familiar. (Recall that ∧ means “and”, ∨ means “or” and ¬ means “not”. Thus

P∨Q is true, where P and Q are predicates, when either P is true, or Q is true, or

both.)

Lemma 2.2. Let C be a primitively recursively closed class. If A, B ⊆ Nn and A, B

are in C, then A∪B, A∩B and Nn \A are in C. Consequently, if P, Q are predicates

of n variables in C, then P∨Q, P∧Q and ¬P are in C.

Proof.

χA∪B(x) = χA(x).χB(x)

χA∪B(x) = sg(χA(x)+ χB(x))

χ
N

n\A
(x) = 1

.
−χA(x)

⊓⊔

We next note that some familiar predicates of two variables are primitive recur-

sive, for example x = y (meaning the predicate P(x,y) defined by P(x,y) is true if

and only if x = y).

Lemma 2.3. The predicates x = y, x �= y, x ≤ y, x < y, x ≥ y, x > y are primitive

recursive.
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Proof. Referring to the examples of primitive recursive functions given above, note

that

χ �=(x,y) = sg(|x− y|), χ<(x,y) = sg(x
.
−y)

and then use Lemma 2.2. In a slightly strange-looking notation, = is ¬(�=), ≤ is

< ∨ =, ≥ is ¬(<), etc. ⊓⊔

Bounded Quantifiers. These are quantifiers of the form ∃y ≤ z and ∀y ≤ z, where

y, z are variables representing elements of N.

Lemma 2.4. Let C be a primitively recursively closed class. If P is a predicate of

n + 1 variables in C, then the predicates Q, R of n + 1 variables defined below are

in C.

(1) Q(x1, . . . ,xn,z) is true ⇔ ∃y≤ z(P(x1, . . . ,xn,y) is true);
(2) R(x1, . . . ,xn,z) is true ⇔ ∀y≤ z(P(x1, . . . ,xn,y) is true).

Proof. (1) χQ(x,z) = sg

(
z

∑
y=0

χP(x,y)

)
;

(2) χR(x,z) =
z

∏
y=0

χP(x,y). Now use Lemma 2.1.

⊓⊔

Bounded Minimisation. Let P be a predicate of n+1 variables. Define f : Nn+1 →
N by

f (x,z) =

{
the least y≤ z such that P(x,y) is true if such a y exists

z+1 otherwise.

(Here x ∈ Nn.) The notation for this is f (x,z) = µy≤ zP(x,y).

Lemma 2.5. If C is a primitively recursively closed class and P is in C, then f (as

just defined) is in C.

Proof. This follows from Lemma 2.1, since

f (x,z) =
z

∑
t=0

t

∏
y=0

sg(1
.
−χP(x,y)).

⊓⊔

Note. If g : Nn+1 →N is is C, then defining P(x,z) to be true if and only if g(x,z) =
0, P is in C (χP(x,z) = 1

.
−sg(g(x,z))). Thus, if f (x,z) = µy ≤ z(g(x,y) = 0), then

f is in C. On the other hand, every predicate P can be expressed in this way, with

g(x,z) = 1
.
−χP(x,z).

Definition by Cases. Let f1, . . . , fk : Nn→N be in C(a primitively recursively closed

class) and let P1, . . . ,Pk be predicates in C, of n variables. Suppose that for all x∈Nn,

exactly one of P1(x), . . . ,Pk(x) is true. Define f : Nn → N by
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f (x) = fi(x) if Pi(x) is true, for x ∈ Nn.

Lemma 2.6. If f is so defined, then f is in C.

Proof. Just note that f (x) = f1(x)χP1
(x)+ · · ·+ fk(x)χPk

(x). ⊓⊔

Again, Pi can be given by: Pi(x) is true if and only if gi(x) = 0, where gi is in C.

More Examples.

(1) The predicate of two variables, “x divides y” (written x|y) is primitive recursive.

For x|y⇔∃t ≤ y(x.t = y). If P(x,y, t) is the predicate x.t = y, then P is primitive

recursive, as χP(x,y, t) = χ=(x.t,y).
(2) The predicate of one variable, “x is prime”, is primitive recursive, for

x is prime⇔ (¬∃y≤ x(1 < y ∧ y < x ∧ y|x)) ∧ (1 < x).

(3) The function p(n) = the nth prime is primitive recursive. Since p has to be

defined on N, we let p(0) = 2, p(1) = 3, etc., so in fact p(n) is the nth odd

prime for n > 0. To prove p is primitive recursive, note that

p(n+1) = least p such that (p(n) < p and p is prime)

and this value of p is less than or equal to p(n)!+1, since none of p(0), . . . , p(n)
divide p(n)!+1, but some prime does divide p(n)!+1. Thus, if

f (x,y) = µ p≤ y(x < p ∧ (p is prime))

then f is primitive recursive, and so is h(x) = f (x,x! + 1). Since p(0) = 2,

p(n + 1) = h(p(n)), p is primitive recursive. In future, we prefer to write pn

rather than p(n) for this function.

(4) Let v(n,m) be the highest power of pn dividing m. This does not make sense

when m = 0, but we define v by

v(n,m) = µy≤ m(¬(py+1
n |m))

so v is primitive recursive. This gives v(n,0) = 1, which will not cause problems.

If p = pn, we define logp : N→ N by logp(m) = v(n,m), a primitive recursive

function. Thus logp is essentially the p-adic valuation (except that logp(0) = 1),

rather than the logarithm function encountered in analysis.

(5) Define quo(x,y) =
⌊

y
x

⌋
to be the quotient when y is divided by x. Then quo is

primitive recursive. For quo(x,0) = 0, and

quo(x,y+1) =

{
quo(x,y)+1 if y+1 = x(quo(x,y)+1)

quo(x,y) otherwise.

Thus, if we define
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h(x,y,z) =

⎧
⎪⎨
⎪⎩

z+1 if y+1 = x(z+1), i.e. |(y+1)− x(z+1)|= 0︸ ︷︷ ︸
P(x,y,z)

z otherwise, i.e. if ¬P(x,y,z) is true

then h is primitive recursive by Lemma 2.6 (with P1 = P, P2 = ¬P). Since

quo(x,0) = 0 and quo(x,y + 1) = h(x,y,quo(x,y)), it follows that quo is prim-

itive recursive. Note that if x = 0,
⌊

y
x

⌋
is undefined, but this definition gives

quo(0,y) = 0 for all y ∈ N.

(6) The remainder when y is divided by x

rem(x,y) = y − x.quo(x,y) = y
.
− x.quo(x,y)

is primitive recursive. Note that rem(x,y) = y if x = 0, otherwise 0≤ rem(x,y) <
x ; also, rem(1,y) = 0.

Iteration. Let X be a set, f : X → X a partial function. The iterate of f is the

partial function F : X×N→ X defined by F(x,0) = x, F(x,n+1) = f (F(x,n)) (so

F(x,n) = f n(x) in the usual sense if f is total).

We have a notion of a function f : Nn →N being in a class C. We can extend this

to functions f : Nn → Nk, by saying that f is in C if the coordinate functions πik ◦ f

are in C for 1≤ i≤ k.

Definition. A class C of functions is closed under iteration if, whenever f : Nn →
Nn is in C, then its iterate F : Nn+1 → Nn is in C.

One can show that if C is primitively recursively closed, then C is closed under iter-

ation (see Exercise 6 at the end of this chapter, or just refer to [4, p. 40]). However,

we are interested in a kind of converse.

Lemma 2.7. Let C be a class of functions which contains the initial functions and is

closed under composition and iteration. Then C is closed under primitive recursion.

Proof. Let f : Nn+1 → N be obtained from g, h by primitive recursion, where g, h

are in C. For x ∈ Nn, let ϕ(x,y,z) = (x,y+1,h(x,y,z)) and let Φ be the iterate of ϕ .

Then Φ(x,0,g(x),y) = (x,y, f (x,y)) (by induction on y). It is easy to see ϕ is in C,

so Φ is in C. Since g is in C and C is closed under composition, it follows easily that

f is in C. ⊓⊔

We now come to the more general classes of recursive and partial recursive func-

tions. Their definition involves just one more way of constructing new functions,

minimisation. Let f : Nn+1 →N be a partial function. We can define a new function

g : Nn → N by saying g(x) is the least y such that f (x,y) = 0. However, since f is

partial, this needs some clarification, and the definition is as follows.

Definition. The function obtained from f by minimisation is the partial function

g : Nn → N defined by
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g(x) =

{
r if f (x,r) = 0 and for 0≤ s≤ r, f (x,s) is defined and not 0

undefined otherwise.

We write g(x) = µy( f (x,y) = 0). By contrast with the bounded minimisation con-

sidered earlier, g may be partial even if f is total.

Definition. The function g is obtained from f by regular minimisation if, addition-

ally, f is total and for all x ∈ Nn, there exists y such that f (x,y) = 0. (The function

g is then total.)

If f is computable in the informal sense described at the beginning of this sec-

tion, then g(x) = µy( f (x,y) = 0) is computable. To compute g(x), take a proce-

dure to compute f and use it to successively compute f (x,0), f (x,1), f (x,2), . . .
until a value r is reached with f (x,r) = 0, then output r. This procedure will con-

tinue indefinitely if either a value s is reached with f (x,s) undefined (and none of

f (x,0), . . . f (x,s−1) is zero), or if there is no value of r such that f (x,r) = 0. These

are precisely the circumstances under which g(x) is undefined.

A plausible way of defining g is to change the first clause as follows: g(x) = r if

f (x,r) = 0 and for 0≤ s≤ r, f (x,s) is either undefined or is defined and not equal to

0. However, the procedure just given will no longer work. If this clause applies and

there is some s < r with f (x,s) undefined, the procedure will continue indefinitely

without outputting r. In fact, there are examples where, using this definition, one

can argue that g is not computable (see the end of §2.4, p.32 in [4]). This is why we

have not used this as the definition.

We are now ready to define the idea of recursive function.

Definition. The class of recursive functions is the smallest class C of total functions

which is primitively recursively closed and closed under regular minimisation. (That

is, if f is in C and g is obtained from f by regular minimisation, then g is in C.)

Note that there is such a smallest class, namely the intersection of all such classes

C. As indicated earlier, a subset A of Nn is called recursive if χA is recursive, and a

predicate P of n variables is recursive if {x ∈ Nn | P(x) is true} is recursive.

Thus the lemmas above concerning predicates in a primitively recursively class

apply to recursive predicates.

The idea of a recursive subset of Nn is the formal version of a decidable set. This

is a set A for which there is a finite set of instructions for a procedure which, given

x ∈Nn, decides in finitely many steps whether or not x ∈ A. Even with such a vague

idea, it should be clear that A is decidable if and only if χA is computable.

Definition. The class of partial recursive functions is the smallest class of partial

functions which contains the initial functions and is closed under composition, prim-

itive recursion and minimisation (in what should be an obvious sense).

The class of partial recursive functions which are total is primitively recursively

closed and closed under regular minimisation, so contains the class of recursive
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functions. That is, a recursive function is partial recursive and total. The converse

is true, but it is not obvious and will be proved later. Also, a primitive recursive

function is recursive. We note some examples to show we have really extended

the class of primitive recursive functions, and not all partial recursive functions are

recursive.

Examples.

(1) Let f (x) = µy(x(y+1) = 0) =

{
0 if x = 0

undefined otherwise
.

Clearly f is partial recursive but not total, so not recursive.

(2) For examples of recursive functions which are not primitive recursive, see [4,

§3.6]. A particularly interesting example is the function A : N2 →N now gener-

ally known as Ackermann’s function. It is a simplified version of Ackermann’s

original function, and is defined by

A(0,y) = y+1

A(x+1,0) = A(x,1)

A(x+1,y+1) = A(x,A(x+1,y))

This is not a variant of primitive recursion, and A is not primitive recursive. But

A is recursive, and it should be clear that A is computable, in the intuitive sense

given at the beginning of the chapter. For proofs, see [5, §3.6.2].

Register Programs. Consider a machine having a number of registers, which are

storage devices, each of which can store a non-negative integer. The machine can be

given instructions to perform certain simple operations on registers. After finitely

many steps, only finitely many registers are used, the others being clear (i.e. have

0 stored in them). However, there is no limit on the number that can be used. It

is convenient to view the machine as having infinitely many registers, numbered

1,2,3, . . ., where only finitely many have a non-zero entry.

x1 x2 x3 · · · xn 0 0 · · ·

1 2 3 n

Figure 2.1

The register contents are described by an infinite sequence x = (x1,x2,x3, . . .) of

natural numbers, indexed by the positive integers, with xk = 0 for all but finitely

many values of k. Let Σ be the set of all such sequences.

Instructions are given to the machine by means of a program. We shall give a for-

mal definition of a program, then indicate the intended meaning of the instructions.

Definition. A register program P is a finite sequence α1, . . . ,αr where each αi has

the form i.β , and βi is an instruction, that is, one of
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ak, sk,STOP, Jk(l,m)

where k ≥ 1 and 1 ≤ l,m ≤ r. We also require that αr is terminal, i.e. of the form

r.STOP.

We call i the label on αi, and αi is called a line of the program. The intended meaning

of the instructions is as follows:

ak: add 1 to the contents of register k;

sk: subtract one from the contents of register k, if this is not zero;

Jk(l,m): if register k is clear (i.e. contains 0), jump to instruction labelled l,

otherwise to the instruction labelled m.

The instructions are executed in order unless a jump or STOP instruction is en-

countered. The STOP instruction means exactly what it says-when it is encountered

no further instructions are carried out. Following the usual practice, the lines of a

register program are written in a vertical list.

Example. Consider the program O(k):

1. Jk(4,2)
2. sk

3. Jk(4,2)
4. STOP

Starting at Line 1, if register k is clear we go to Instruction 4 and stop, otherwise

go to Instruction 2 and subtract 1 from register k. Then we go to Instruction 3. If

register k is now clear, we go to 4, otherwise back to 2. Thus, while register k is not

clear, Instructions 2 and 3 are repeatedly executed until it is. That is, O(k) clears the

contents of register k.

Given n, it is easy to construct a register program using more than n registers.

Thus the machine which runs all register programs must have infinitely many reg-

isters. An alternative approach is to give each register program its own machine,

with finitely many registers, sufficient to run the program. This would no longer be

possible if we considered more complicated programs with instructions of the form

“if r is the contents of register k, do something related to register r”.

We now give formal definitions of the effect that any register program P has on

the registers of our machine.

Definition. A configuration of P is a pair (i,x), where i is a label and x ∈ Σ . It is

terminal if the line labelled i is terminal, i.e. is i.STOP.

(The interpretation is that x represents the contents of the registers and the instruc-

tion of line i is about to be executed.) Given a non-terminal configuration (i,x),
carrying out Instruction i will result in a new configuration, which is described in

the following definition.

Definition. If (i,x) is a non-terminal configuration, the configuration ( j,y) yielded

by (i,x) is defined by:
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(1) if line i has instruction ak, then j = i+1, yp =

{
xp if p �= k

xp +1 if p = k

(2) if line i has instruction sk, then j = i+1, yp =

{
xp if p �= k

xp
.
−1 if p = k

(3) if line i has instruction Jk(l,m), then y = x, j =

{
l if xk = 0

m otherwise

Definition. The computation of P starting from x ∈ Σ is the finite or infinite se-

quence

(i1,x1),(i2,x2), . . .

where i1 = 1, x1 = x and (iq+1,xq+1) is the configuration yielded by (iq,xq), unless

(iq,xq) is the last term in the sequence, in which case it must be terminal.

This defines a partial function ϕP : Σ → Σ :

xϕP =

⎧
⎪⎨
⎪⎩

y if the computation of P starting from x is a finite sequence

whose last term is (i,y) for some i

undefined otherwise

(It is convenient to write ϕP on the right, as will be seen later.) For example, if

P = O(k),
xϕP = (x1, . . . ,xk−1,0,xk+1, . . .)

Using ϕP, P determines a partial function Nn → N, for every n≥ 1.

Definition. The partial function f : Nn → N is computed by the register program P

if

f (x1, . . . ,xn) =

{
y if (x1, . . . ,xn,0,0, . . .)ϕP = (y, . . .)

undefined if (x1, . . . ,xn,0,0, . . .)ϕP is undefined

(In the first case, f is given the value in register 1, and the values in the other registers

are irrelevant.)

Abacus Machines. These are not really machines, but are words meant to represent

certain (well-structured) register programs. The alphabet is {ak,sk,(,)k | k ≥ 1},

which is infinite, including an infinite collection of indexed right parentheses, )1, )2,
etc. To each abacus machine is associated a natural number (its depth) and there is

a notion of simple abacus machine. The definition is by induction on depth.

(1) ak, sk (k ≥ 1) are the only simple abacus machines of depth 0.

(2) The abacus machines of depth n are the words M1 . . .Mr, where each Mi is a

simple abacus machine of depth at most n, and some Mi has depth exactly n.

(3) The simple abacus machines of depth n+1 are the words (M)k, where M is an

abacus machine of depth n and k ≥ 1.

An abacus machine is a set of instructions for operating on the registers, as follows.
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ak: add 1 to contents of register k; sk: subtract 1 from register k unless it contains

0.

M1 . . .Mr: execute M1, . . . ,Mr in succession.

(M)k while xk �= 0 do M, where xk is the contents of register k. (That is, check if

xk �= 0 and if so, execute M. Do this repeatedly until xk = 0.)

Note that the set of instructions corresponding to M may not terminate, for example

ak(ak)k just keeps incrementing register k by 1. Here are some examples which carry

out useful tasks.

Examples.

(1) Cleark = (sk)k (clears the contents of register k).

(2) Descopyp,q = Clearq (spaq)p (copies contents of register p to register q and

clears register p. This is short for “destructive copy” since the contents of reg-

ister p are destroyed).

(3) Copyp,q,r = Clearq (spaqar)p (srap)r (if register r is clear, copies register p to

register q, leaving registers other than q unchanged).

Next we prove some results on the structure of an abacus machine.

Lemma 2.8. (1) An abacus machine has the same number of left and right paren-

theses (all the letters )k, k ≥ 1 are regarded as right parentheses here).

(2) A proper non-empty prefix of a simple abacus machine has more left than

right parentheses (the proper non-empty prefixes of a word u1 . . .um are u1 . . .ul

where 1≤ l < m).

Proof. We use induction on depth, when (1) becomes obvious. Clearly (2) holds

for simple abacus machines of depth 0 (they have no proper non-empty prefixes).

Suppose (2) holds for simple abacus machines of depth at most n, and let M be

a simple abacus machine of depth n + 1. Then M = (M1 . . .Mr)k, where each Mi

is a simple abacus machine of depth at most n. The proper non-empty prefixes of

M are (M1 . . .Mi−1M′
i , where M′

i is a prefix of Mi (possibly ε or Mi). By (1) and

the induction hypothesis, M1, . . . ,Mi−1,M
′
i all have at least as many left as right

parentheses, hence so does M1 . . .Mi−1M′
i . Therefore (M1 . . .Mi−1M′

i has more left

than right parentheses. ⊓⊔

Lemma 2.9. (1) If a string S is an abacus machine, then there is exactly one value

of r and one sequence of simple abacus machines M1, . . . ,Mr such that S =
M1 . . .Mr.

(2) If S is a simple abacus machine, there is a unique k such that S is either ak, sk

or (M)k, where M is an abacus machine uniquely determined by S.

Proof. (1) We can write S = M1 . . .Mr for some simple abacus machines M1, . . . ,Mr.

By Lemma 2.8, M1 is the shortest prefix of S (other than ε) having the same number

of left and right parentheses. If M1 �= S, we can write S = M1S′ and similarly M2

is the smallest prefix of S′ having the same number of left and right parentheses.

Continuing, this determines M1, . . . ,Mr (and r) uniquely.
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(2) This is obvious since )k is the last letter of (M)k, and (M)k = (M′)k implies

M = M′ (deleting the first and last letters on each side). ⊓⊔

An abacus machine M defines a partial function ϕM : Σ → Σ , as follows.

(1) xϕak
= y, where yi =

{
xi if i �= k

xi +1 if i = k

(2) xϕsk
= y, where yi =

{
xi if i �= k

xi
.
−1 if i = k

(3) If M = M1 . . .Mr (Mi simple) then xϕM = xϕM1
. . .ϕMr .

(4) If M = (M′)k, then xϕM = xϕ t
M′ , where t ∈ N is chosen as small as possible

such that (xϕ t
M′)k (the kth entry of xϕ t

M′ ) is zero (xϕM is undefined if no such t

exists).

This defines ϕM by induction on the depth of M, using Lemma 2.9. (Having defined

ϕM for M of depth at most n, (4) then defines ϕM for simple abacus machines of

depth n+1, then (3) defines it for all abacus machines of depth n+1.) Incidentally,

(3) is the reason ϕM is written on the right, so that the order of the Mi does not have

to be reversed, and we write ϕP (where P is a register program) on the right for

consistency. As with register programs, an abacus machine determines a function

f : Nn → N for each n > 0.

Definition. A partial function f : Nn →N is computed by the abacus machine M if:

f (x1, . . . ,xn) is defined if and only if (x1, . . . ,xn,0,0, . . .)ϕM is in which case

(x1, . . . ,xn,0,0, . . .)ϕM = ( f (x1, . . . ,xn), ...).

As with the definition of computable by a register program, the entries other than

the first in ( f (x1, . . . ,xn), ...) are irrelevant, but we show that they can all be taken to

be 0. For this, the idea of registers used by an abacus machine is needed.

Definition. The registers used by an abacus machine M are those whose numbers

appear as subscripts in the machine. Thus

(1) ak, sk use only register k

(2) M1 . . .Mr uses those registers used by Mi for at least one value of i

(3) (M)k uses register k and the registers used by M.

Since only finitely many subscripts appear in an abacus machine, an abacus machine

uses only finitely many registers.

Remark. If xϕM = y and register i is not used by M, then xi = yi. (This is easily

proved by induction on depth.)

Lemma 2.10. If f : Nn → N is computed by an abacus machine, it is computed by

an abacus machine M such that:

f (x1, . . . ,xn) is defined if and only if (x1, . . . ,xn,0,0, . . .)ϕM is, in which case

(x1, . . . ,xn,0,0, . . .)ϕM = ( f (x1, . . . ,xn),0,0, ...).
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Proof. Let f be computed by M′. Choose m greater than or equal to the number

of any register used by M′, and with m ≥ n. Then M = M′Clear2 . . .Clearm is the

required machine. ⊓⊔

The goal now is to show that register program computable, abacus machine com-

putable and partial recursive are equivalent notions. The first step is the following,

which implies that abacus machine computable functions are register program com-

putable. The proof spells out the assertion that abacus machines are meant to repre-

sent certain register programs.

Lemma 2.11. If M is an abacus machine, there is a register program P such that

ϕP = ϕM and the only STOP instruction of P is in the last line.

Proof. (1) If M = ak, take P to be

{
1.ak

2.STOP
and if M = sk, take P to be

{
1.sk

2.STOP
.

(2) Suppose M = M1 . . .Mr, where there exist register programs Pi such that ϕPi
=

ϕMi
(1 ≤ i ≤ r) and Pi has only one STOP instruction. We show that there is a

register program P with only one STOP instruction and ϕP = ϕM . For notational

convenience, we treat only the case r = 2, leaving the modifications in the general

case to the reader.

Let P1 have labels 1, . . . ,n and P2 have labels 1, . . . , p. Re-label the lines of P2 as

n+1, . . . ,n+ p and replace any jump instructions Jk(l,m) by Jk(n+ l,n+m), to get

a sequence of lines P′2. Replace line n of P1 by n.J1(n + 1,n + 1) (an unconditional

jump to the line labelled n + 1) to obtain P′1. Let P be the concatenation P′1P′2; then

P is a register program with only one STOP instruction, and ϕP = ϕM .

(3) Suppose ϕP′ = ϕM′ , where P′ has r lines and one STOP instruction, and k≥ 1. We

construct a register program P with one stop instruction and ϕP = ϕ(M′)k
. Increase

all labels of P′ by 1 and replace any jump instructions Jq(l,m) by Jq(l + 1,m + 1).
Add a new first line, 1.Jk(r + 2,2), then remove the last line (r + 1.STOP) and add

two new lines:

{
r +1.Jk(r +2,2)
r +2.STOP

. This gives the required program P.

The lemma now follows by induction on the depth of the abacus machine M. ⊓⊔

For example, if M = Cleark, the program P with ϕP = ϕM given by the proof

is O(k). We next show that partial recursive functions are abacus computable. Two

technical lemmas about abacus computability are needed.

Remark. If x, y∈ Σ and xi = yi for all i such that the abacus machine M uses register

i, then xϕM = yϕM . This is easily proved by induction on the depth of M.

Lemma 2.12. Let f1, . . . , fr : Nn → N be abacus computable and let p ≥ 0 be an

integer. Then there is an abacus machine N such that, for all x ∈ Σ ,

xϕN = (x1, . . . ,xn,xn+1, . . . ,xn+p, f1(x), . . . , fr(x), . . .)

where fi(x) means fi(x1, . . . ,xn).

Proof. Let the abacus machine Mi compute fi (1 ≤ i ≤ r). Choose an integer

m greater than the number of any register used by any of the Mi. Put M′
i =
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Clearn+1 . . .ClearmMi. By the remark, for any x ∈ Σ , xϕM′
i
= ( fi(x1, . . . ,xn), . . .).

Let M′′
i be the machine obtained from M′

i by increasing every subscript of M′
i by q,

where q = p+ r +n. Let

Ki = Copy1,q+1,q+n+1 . . .Copyn,q+n,q+n+1M′′
i

Then for any x ∈ Σ ,

xϕKi
= (x1, . . . ,xn+ p+ r︸ ︷︷ ︸

q

, fi(x1, . . . ,xn), . . .)

Now put Ni = Ki Descopyq+1,n+p+i. Then N = N1 . . .Nr is the required machine. ⊓⊔

Corollary 2.13. Under the hyptheses of Lemma 2.12, there is an abacus machine M

such that, for all x ∈ Σ ,

xϕM = ( f1(x1, . . . ,xn), . . . , fr(x1, . . . ,xn),xn+1, . . . ,xn+p, . . .).

Proof. Let N be as in Lemma 2.12 and put q = p+ r +n. Then

M = N Descopyn+1,q+1 . . .Descopyn+p,q+pDescopyn+p+1,1 . . .Descopyn+p+r+p,r+p

is the required machine. ⊓⊔

Theorem 2.14. Partial recursive functions are abacus computable.

Proof. We show that the set of abacus computable functions contains the initial

functions and is closed under composition, primitive recursion and minimisation.

By definition, the class of partial recursive functions is then a subset, proving the

theorem.

Now Clear1 computes the zero function, a1 the successor function, Descopyk,1

(k �= 1) computes πkn and a1s1 computes π1n, so the initial functions are abacus

computable.

Suppose f1, . . . , fr : Nn → N and g : Nr → N are abacus computable. By Cor.

2.13, there is an abacus machine M such that

(x1, . . . ,xn+1, . . .)ϕM = ( f1(x1, . . . ,xn), . . . , fr(x1, . . . ,xn),xn+1, . . .).

Let g be computed by the abacus machine M′, and choose m greater than the number

of any register used by M. Then

MClearr+1 . . .ClearmM′

computes g ◦ ( f1, . . . , fr). Thus the set of abacus computable functions is closed

under composition.
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Let f : Nn →Nn be such that its coordinate functions fi = πin ◦ f are abacus com-

putable for 1≤ i≤ n. We show that the iterate of f is abacus computable (meaning

its coordinate functions are abacus computable). By Cor. 2.13, there is an abacus

machine M such that

(x1, . . . ,xn+1, . . .)ϕM = ( f1(x1, . . . ,xn), . . . , fn(x1, . . . ,xn),xn+1, . . .).

Let M′ = (Msn+1)n+1. Then

(x1, . . . ,xn+1, . . .)ϕM′ = ( f k
1 (x1, . . . ,xn), . . . , f k

n (x1, . . . ,xn),0, . . .).

provided the right-hand side is defined, where k = xn+1. Using M′ and M′Descopyi,1

(2 ≤ i ≤ n), we see that the iterate of f is abacus computable. By Lemma 2.7, the

class of abacus computable functions is closed under primitive recursion.

Finally, let f : Nn+1 → N be abacus computable. By Lemma 2.12, there is an

abacus machine M such that for all x ∈ Σ ,

(x1, . . . ,xn+1, . . .)ϕM = (x1, . . . ,xn+1, f (x1, . . . ,xn+1), . . .).

Let M′ = Clearn+1M(an+1M)n+2 Descopyn+1,1. Then M′ computes the function h

given by h(x1, . . . ,xn) = µy( f (x1, . . . ,xn,y) = 0). Thus the set of abacus computable

functions is closed under minimisation, completing the proof. ⊓⊔

The next result finishes the proof that abacus computable, register machine com-

putable and partial recursive are equivalent.

Theorem 2.15. If f : Nn → N is a partial function computed by a register program,

then f is partial recursive.

Proof. Let f be computed by the register program P with labels 1, . . . ,r. The map-

ping (i,x) �→ 2i ∏
m≥1

pxm
m is a one-to-one mapping from the set of configurations of P

into N, and 2i ∏
m≥1

pxm
m is called the code of (i,x). (Note that g ∈ N is a code if and

only if 1≤ log2 g≤ r.) Define

In(x1, . . . ,xn) = 2 ∏
1≤m≤n

pxm
m

(the code of (1,(x1, . . . ,xn,0,0, . . .))) and

Out(g) = log3(g)

(the contents of register 1 if g is a code). Also define Next : N→ N by:

Next(g) =

⎧
⎪⎨
⎪⎩

g, if g is not a code, or is the code of a terminal configuration

code of the configuration yielded by (i,x),

where g is the code of (i,x), otherwise
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In the second case, put i = log2(g). Then

if line i of P is i.ak, then Next(g) = 2.g.pk

if line i of P is i.sk, then Next(g) =

{
2.quo(pk,g) if logpk

(g) �= 0

2.g if logpk
(g) = 0

if line i of P is i.Jk(l,m), then Next(g) =

{
2m.quo(2i,g) if logpk

(g) �= 0

2l .quo(2i,g) if logpk
(g) = 0

Let Comp be the iterate of Next. Finally, Let

Term(g) =

{
1 if g is the code of a terminal configuration

0 otherwise

Then In, Out, Next, Comp and Term are primitive recursive (exercise).

Now, putting x = (x1, . . . ,xn),

f (x) = Out(Comp(In(x), t))

for any t such that Comp(In(x), t) is the code of a terminal configuration, that is,

such that Term(Comp(In(x), t)) = 1 (and f (x) is undefined if there is no such t).

Put

F(x, t) = Out(Comp(In(x), t))

G(x, t) = 1
.
−Term(Comp(In(x), t))

Then F and G are primitive recursive, and

f (x) = F(x, t) for any t such that G(x, t) = 0

(undefined if there is no such t).

Hence

f (x) = F(x,µt(G(x, t) = 0)).

and it follows that f is partial recursive, being obtained from F and G by minimisa-

tion and composition. ⊓⊔

Corollary 2.16. For a partial function f : Nn → N, the following are equivalent.

(1) f is partial recursive.

(2) f is abacus computable.

(3) f is computable by a register program.

Proof. (1)⇒ (2) by Theorem 2.14, (2)⇒ (3) by Lemma 2.11, (3)⇒ (1) by The-

orem 2.15. ⊓⊔

We can now resolve a point from earlier in the chapter.

Corollary 2.17. A partial function f : Nn →N is recursive if and only if it is partial

recursive and total.



2 Recursive Functions 39

Proof. It has already been noted that recursive implies partial recursive and total.

If f is partial recursive, then it is computable by a register program (Cor. 2.16),

and from the proof of Theorem 2.15, we can write f (x) = F(x,µt(G(x, t) = 0)) for

some primitive recursive functions F and G. If f is total, the minimisation must be

regular, so f is recursive. ⊓⊔

Computation of functions by Turing Machines. We show that the class of func-

tions computable by a Turing machine coincides with the class of partial recursive

functions. First, we have to specify how a TM computes a function, and this involves

a special kind of TM.

Definition. A numerical TM is a deterministic TM T = (Q,F,A, I,τ,q0) with F =
I = /0, A = {0,1} and B = 0 (blank symbol).

If x = (x1, . . . ,xn)∈Nn, define Tape(x) to be the tape description 01x1 01x2 0 . . .01xn .

If T is a numerical TM, define InT,n : Nn →C (C is the set of configurations of T )

by InT,n(x) = (q0,Tape(x)).

Definition. The partial function ϕT,n : Nn → N is defined by: if T , started on tape

description Tape(x) halts with the tape description 01y = Tape(y) for some y ∈ N
(i.e. the computation starting with InT,n(x), where x ∈ Nn, ends with a terminal

configuration (q,Tape(y))), then ϕT,n(x) = y. Otherwise, ϕT,n(x) is undefined.

The partial function f : Nn → N is called TM computable if f = ϕT,n for some

numerical TM T .

It is convenient to modify T . Add two new states p, h and the transitions

qapaL for all (q,a) ∈ Q×A such that no element of τ starts with qa

pahaR

hapaL

}
for all a ∈ A (i.e. a = 0, 1).

Call the new machine T ′, let Q′ = Q∪{p,h} be its set of states and let C′ be its set

of configurations. Then T ′ remains deterministic and transitions have the form

qaNT ′(q,a)RT ′(q,a)DT ′(q,a)

(see p. 17, just before Lemma 1.10) and NT ′ , RT ′ , DT ′ are defined on Q′×A. Also,

after suitable renaming, we can assume that

Q′ = {0,1, . . . ,r−1} , h = 0, p = 1, L = 0, R = 1.

Then Q′×A is a finite subset of N2, and putting NT ′(x,y) = RT ′(x,y) = DT ′(x,y) = 0

for (x,y) ∈ N2 \ (Q′×A), NT ′ , RT ′ , DT ′ are primitive recursive functions N2 → N.

Let δ : C′ → C′ be the transition function of T ′, and let δ be its iterate (these

are total functions). If T has a computation ending with a terminal configuration

(q,Tape(y)), then T ′, after two more moves, can enter state h without altering the

tape. The only moves are then to alternate between states p and h, alternately moving

the tape right and left. Note that InT,n = InT ′,n and so
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ϕT,n(x) =

{
y, for any t such that δ (InT,n(x), t) = (h,01y) for some y

undefined, if there is no such t

To show ϕT,n is partial recursive, we need to code configurations by natural num-

bers. Define Code : C′→ N by Code(q,a,α,β ) = 2q3a5σ(α)7σ(β ) where

σ(α) = α(0)+α(1)2+α(2)22 + . . .

σ(β ) = β (0)+β (1)2+β (2)22 + . . .

so Code is a 1−1 function.

Lemma 2.18. There is a primitive recursive function Next : N→ N such that

Next(Code(c)) = Code(δ (c))

for all c ∈C′.

Proof. See Appendix A. ⊓⊔

Now let Comp be the iterate of Next, so

Comp(Code(c), t) = Code(δ (c, t))

which follows by an easy induction on t. Also,

Code(h,01y) = 203051+2+22+...+2y−1
70 = 52y−1

hence

ϕT,n(x) = log2(1+ log5(Comp(Code(InT,n(x)), t)))

for any t such that Comp(Code(InT,n(x), t)) = Code(h,01y) for some y (and is un-

defined if there is no such t). Define ψ : Nn+1 → N by

ψ(x, t) = Comp(Code(InT,n(x)), t))

so ψ is primitive recursive, since x �→ Code(InT,n(x)) is primitive recursive (the

proof is left to the reader). Further, the predicate P defined by

P(x, t) is true if and only if ψ(x, t) = Code(h,01y) = 52y−1 for some y

is primitive recursive (again left as an exercise). Put

F(x, t) = log2(1+ log5(ψ(x, t)))

G(x, t) = 1
.
−χP(x, t)

so F and G are primitive recursive. Then ϕT,n(x) = F(x, t) for any t such that

G(x, t) = 0 and is undefined if there is no such t. In particular,

ϕT,n(x) = F(x,µt(G(x, t) = 0))
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is partial recursive. We have proved the following.

Theorem 2.19. A TM computable function is partial recursive.

�

We can take this further, by not only coding computations, but coding the TM’s

themselves. First, we need to order the transitions in a specific way. Given a linearly

ordered set L, we can linearly order L∗. If u = x1 . . .xm, v = y1 . . .yn ∈ L∗, let u < v

if either m < n, or m = n and there exists i such that x1 = y1, . . . ,xi−1 = yi−1 but

xi < yi. This is called the ShortLex ordering on L∗. Restricted to the set of words of

a fixed length, it is called the lexicographic ordering.

Now let T be a numerical TM, and modify it as above to obtain T ′, so the transi-

tions are words of length 5 in N∗, and N is linearly ordered. We can therefore order

the transitions by the lexicographic ordering, then number them to respect this or-

dering, say qiaiq
′
ia
′
iDi (1 ≤ i ≤ k) (so this is the ith transition in the lexicographic

ordering, and k is the number of transitions). Define

gn(T ′) = 2k3q0

k

∏
i=1

p
qi

5i p
ai

5i+1 p
q′i
5i+2 p

a′i
5i+3 p

Di

5i+4

(gn stands for “Gödel numbering”, an idea discussed in the next chapter). Now

define the following primitive recursive functions:

x(g, i) = logp5i
(g), y(g, i) = logp5i+1

(g)

k(g) = log2(g)

j = j(g,a,b) = µ i≤ k(g)(x(g, i) = a∧ y(g, i) = b)

N(g,a,b) =

{
logp5 j+2

(g) if (∃i≤ k)(x(g, i) = a∧ y(g, i) = b)

0 otherwise

Then if g = gn(T ′), N(g,a,b) = NT ′(a,b), where NT ′ is the function used in the

proof of Lemma 2.18, defined just before Lemma 1.10. Similarly, we can define

R(g,a,b) and D(g,a,b) (using 5 j +3, 5 j +4 instead of 5 j +2). Also, we define

Inn(g,x) = (log3(g),Tape(x)), for g ∈ N, x ∈ Nn.

In the proof of Lemma 2.18 (see Appendix A), replace RT ′(a,b), NT ′(a,b), DT ′(a,b)
by R(g,a,b), etc., to get a primitive recursive function NEXT : N2 → N such that,

if g = gn(T ′), NEXT (g,x) = Next(x). Define COMP : N3 → N by

COMP(g,x,0) = x

COMP(g,x, t +1) = NEXT (g,COMP(g,x, t)).

Then COMP is primitive recursive, and if g = gn(T ′), COMP(g,x, t) = Comp(x, t),
where Comp is the function in the proof of Theorem 2.19. This is proved by induc-

tion on t.
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Put Ψ(g,x, t) = COMP(g,Code(Inn(g,x)), t) and let P(g,x, t) be the predicate

Ψ(g,x, t) = 52y−1 for some y.

Let

F(g,x, t) = log2(1+ log5(Ψ(g,x, t)))

G(g,x, t) = 1
.
−χP(g,x, t).

Then F and G are primitive recursive, and if g = gn(T ′), then from the proof of

Theorem 2.19

ϕT,n(x) =

{
F(g,x, t) for any t such that G(g,x, t) = 0

undefined if no such t exists

We have now proved the following.

Theorem 2.20. For each n ≥ 1, there are primitive recursive functions F, G :

Nn+2 → N such that, for any TM computable function f : Nn → N, there exists

g ∈ N such that, for all x ∈ Nn, f (x) = F(g,x, t) for any t such that G(g,x, t) = 0

and f (x) is undefined if no such t exists. In particular,

f (x) = F(g,x,µt(G(g,x, t) = 0)).

�

We shall prove that partial recursive functions are TM computable by showing

that abacus computable implies TM computable. To do this, we need to construct

some numerical TM’s to perform specific tasks. There is quite a long list of them, but

they provide insight into how TM’s operate. A useful operation in their construction

is the product of two TM’s. This can only be defined when the first TM has a halting

state.

Definition. Let T be any TM. A state h is called a halting state if, for any configu-

ration c = (q,a,α,β ), c is terminal if and only if q = h.

Products of TM’s. Let T , T ′ be any TM’s and assume T has a halting state. Rename

the states so the halting state of T is also the initial state of T ′, and T , T ′ have no

other states in common. Also, assume T , T ′ have the same blank symbol. Define

T T ′ to be the TM whose states and transitions are those of T and T ′, and whose

tape alphabet is the union of the tape alphabets of T and T ′. The initial state and

input alphabet are those of T , the final states are those of T ′.

If T1, . . . ,Tr are TM’s and T1, . . . ,Tr−1 all have halting states, we define (recur-

sively) T1 . . .Tr = (T1 . . .Tr−1)Tr.

Some Numerical TM’s

(1) P0: this TM has set of states Q = {q0,q,q′} (where q0 is the initial state) and

four transitions

q0aq0R, qaq′aL (a = 0,1).
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P1: has the same set of states, but transitions q0aq1R, qaq′aL.
(For i = 0 or 1, Pi prints i on the scanned square and halts without moving the

tape.)

(2) R: this has Q = {q0,q} and transitions q0aqaR (a = 0,1).
L: has Q = {q0,q} and transitions q0aqaL (a = 0,1).
(R, respectively L, moves one square right (resp. left) and halts.)

(3) R∗: Q = {q0,q,q′,h}, transitions

q0aqaR (a = 0,1), q1q1R, q0q′0R, q′ahaL (a = 0,1).

(Moves to the first blank square to the right of the scanned square and halts.)

L∗: this is obtained from R∗ by interchanging L and R in the transitions. (Moves

to the first blank square to the left of the scanned square and halts.)

(4) Test: this has Q =
{

q0, p0, p1, p′0, p′1
}

and transitions:

q00p′00R, p′0ap0aL (a = 0,1)

q01p′11R, p′1ap1aL (a = 0,1).

(Test leaves the tape description unaltered, changes to state p0 (respectively p1)

if 0 (resp. 1) is scanned initially, and halts.)

(5) Test{T0,T1}: here T0, T1 are numerical TM’s, with their states renamed so that

they have no states in common, the initial state of Ti is pi (the state of Test for

i = 0, 1, and Ti, Test have only the state pi in common. The states and transitions

are those of T0, T1 and Test, and the initial state is that of Test.

(Started on a given tape description, this TM will follow the computation of T0

or T1, according to whether a 0 or 1 is initially scanned.)

(6) Shi f tle f t = P1R∗LP0R (started on the tape description u001x0v, halts with the

tape description u01x00v, for any u, v ∈ {0,1}∗).
Shi f tright = P1L∗RP0L (started on u01x00v, halts with u001x0v).

(7) Testk = R∗ k−1RTest{L∗ k,L∗ k}. To describe the action of Testk, define, for x ∈
Σ

Tape(x) = 01x1 01x2 01x3 0 . . .

(Testk, started on Tape(x), halts with the same tape description, but in a state

p0 if xk = 0, and in a state p1 if xk �= 0.)

This completes our list, and we can now use these TM’s to show that abacus com-

putable implies TM computable.

Definition. A numerical TM T with a halting state simulates an abacus machine M

if, for all x ∈ Σ , T , when started on the tape description Tape(x), halts if and only if

xϕM is defined, in which case it halts with the tape description Tape(xϕM).

Theorem 2.21. Any abacus machine M can be simulated by a numerical TM with

a halting state.

Proof. The proof is by induction on the depth of M. If M is ak, M is simulated by

Addk = Shi f tle f tk−1P1L∗ k. If M is sk, then M is simulated by
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Subk = R∗ k−1RTest{L∗ k,Tk}

where Tk = P0LShi f trightk−1R.

If M = M1 . . .Mr and Ti simulates Mi, then T1 . . .Tr simulates M1 . . .Mr.

Suppose M = (N)k and T simulates N. Rename the states of T so its initial state

is p1 (a state of Testk), its halting state is q0 (the initial state of Testk), but T and

Testk have no other states in common. Let T ′ be the TM whose states and transitions

are those of T and Testk, with initial state q0. Then T ′ simulates M. This is left to

the reader (the halting state of T ′ is the state p0 of Testk). ⊓⊔

Corollary 2.22. If f : Nn → N is abacus computable, there exists a numerical TM

T with a halting state such that, started on the tape description Tape(x) (where

x ∈ Nn), T halts if and only if f (x) is defined, in which case T halts with the tape

description 01y, where y = f (x).

A function is partial recursive⇔ it is abacus computable⇔it is TM computable.

Proof. By Lemma 2.10, there is an abacus machine M such that f (x) is defined if

and only if (x1, . . . ,xn,0,0, . . .)ϕM is, for x = (x1, . . . ,xn) ∈ Nn, in which case

(x1, . . . ,xn,0,0, . . .)ϕM = ( f (x),0,0, . . .).

By Theorem 2.21, there is a TM T which simulates M, and T is the required TM.

Thus abacus computable implies TM computable, and the corollary follows by Cor.

2.16 and Theorem 2.19. ⊓⊔

Our final result in this chapter makes use of this and Theorem 2.20.

Theorem 2.23 (Kleene Normal Form Theorem). There exist primitive recursive

functions ϕ : N→ N and ψ : N3 → N such that, if f : N→ N is partial recursive,

there exists g ∈ N such that

f (x) = ϕ(µt(ψ(g,x, t) = 0)).

Proof. By Theorem 2.20 and Cor. 2.22, there are primitive recursive functions F ,

G : N3 → N such that if f : N→ N is partial recursive, there exists g ∈ N such that

f (x) = F(g,x, t) for any t such that G(g,x, t) = 0 (and f (x) is undefined if no such

t exists). Given f , choose such a number g.

Now put ϕ = F ◦ J−1
3 and

ψ(s,x,y) = GJ−1
3 (y)+ |K(y)− s|+ |KL(y)− x|

where J3, K and L are as in Exercises (3) and (4) at the end of this chapter. Thus

J−1
3 (y) = (K(y),KL(y),LL(y)), and ϕ , ψ are primitive recursive.

If ψ(g,x,y) = 0 then K(y) = g, KL(y) = x and G(g,x, t) = 0, where t = LL(y),
so f (x) = F(g,x, t) = ϕ(y).
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Conversely, if f (x) is defined, it is equal to F(g,x, t) for some t with G(g,x, t) = 0.

Put y = J3(g,x, t). Then f (x) = ϕ(y) and ψ(g,x,y) = 0.

Thus f (x) is defined if and only if there exists y with ψ(g,x,y) = 0, in which

case f (x) = ϕ(y) for any such y. In particular, f (x) = ϕ(µt(ψ(g,x, t) = 0)). ⊓⊔

There are other ways of precisely defining computable functions, including sev-

eral minor variants of register programs. The proof that computable functions are

partial recursive often follows the method of proof used above for register program

computable and TM computable. (Roughly, code computations by natural numbers,

using primitive recursive functions.) The proof of the converse tends to use simula-

tion (for example, of abacus machines by TM’s).

For further reading on recursive function theory, see [29].

Exercises on Chapter 2

1. Show that the following functions are primitive recursive.

(a) f (x1, . . . ,xn) = max{x1, . . . ,xn}.
(b) f (x1, . . . ,xn) = min{x1, . . . ,xn}.
(c) f (x) = the number of primes less than or equal to x.

2. Show that the binary predicate RP, where RP(x,y) means that x, y are relatively

prime, is primitive recursive. Show that the function ϕ : N → N, defined by

ϕ(x) = the number of positive integers less than or equal to x which are rela-

tively prime to x, is primitive recursive.

3. We can define a bijection J : N2 → N as follows. Write the elements of N2 as

an infinite matrix:

(0,0) (0,1)

�����
���

(0,2)

�����
���

(0,3)

�����
���

(0,4)

�����
���

. . .

(1,0) (1,1)

�����
���

(1,2)

�����
���

(1,3)

�����
���

. . .

(2,0) (2,1)

�����
���

(2,2)

�����
���

. . .

(3,0) (3,1)

�����
���

. . .

(4,0) . . .

...
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then write the entries as an infinite sequence by successively moving along the

diagonals from northeast to southwest, as indicated by the arrows, giving

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),(0,4),(1,3), . . .

Now there are k +1 pairs (m,n) with m+n = k, so the pair (m,n) occurs in the

position 1 + 2 + . . .+ (m + n) + m in the sequence (where the first position is

numbered 0). We therefore define J(m,n) = 1
2 (m+n)(m+n+1)+m.

(a) Give a formal proof that J is bijective, and primitive recursive.

(b) Writing J−1(x) = (K(x),L(x)), show that K, L : N→N are primitive recur-

sive.

4. We can define bijections Jn : Nn → N for all n inductively by J1 = π11, J2 = J

(the function in the previous exercises), J3(x1,x2,x3) = J(x1,J(x2,x3)), and in

general Jn+1(x1, . . . ,xn+1) = J(x1,Jn(x2, . . . ,xn+1)). It follows easily by induc-

tion on n that Jn is primitive recursive for all n.

Show that J−1
3 (r) = (K(r),KL(r),LL(r)), and that for all n, J−1

n is primitive

recursive (meaning its coordinate functions are primitive recursive).

5. If f : Nn → N is a partial function with finite domain, show that f is partial

recursive.

6. If f : Nn →Nn is in C (a primitive recursively closed class), prove that its iterate

F : Nn+1 →Nn is in C. (Hint: this is easy for n = 1; in the general case, consider

the iterate of Jn ◦ f ◦ J−1
n .)

7. If h : N→N is primitive recursive, show that ϕ : N3 →N defined by ϕ(x, t,r) =

ht
.
−r(x) is primitive recursive.

8. Suppose h, k : N→ N and f : N2 → N are primitive recursive, and g : N2 → N
is defined by

g(x,0) = k(x)

g(x, t +1) = f (x,g(h(x), t)).

Prove that g is primitive recursive.

(Hint: without mentioning g, give a definition of a function G(x, t,r) by primi-

tive recursion, such that G(x, t,r) = g(ht−r(x), t) for t ≥ r. Using this definition,

show that for t ≥ r, G(x, t +1,r) = G(h(x), t,r). Then put g(x, t) = G(x, t, t) and

show g is given by the equations above.)

9. Construct a numerical TM T1 which, started on the tape description u01a001c,

halts with the tape description u01a01c0, for any u ∈ {0,1}∗ and natural num-

bers a, c.
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10. Construct a numerical TM T2 which, started on the tape description u01a01b01c,

halts with the tape description u01a+101b−101c+1, provided b > 0, for any u ∈
{0,1}∗ and natural numbers a, b, c.

11. Construct a numerical TM T3 which, started on the tape description u01a01b0,

halts with the tape description u01a+b01b0, for any u∈ {0,1}∗ and natural num-

bers a, b.

12. Construct a numerical TM T4 which, started on the tape description u01a01b0,

halts with the tape description u01a+b0, for any u∈ {0,1}∗ and natural numbers

a, b.

13. Given a positive integer k, construct a numerical TM T5 which, started on the

tape description u01a01b0, halts with the tape description u01a+kb 0, for any

u ∈ {0,1}∗ and natural numbers a, b.

14. Given a positive integer k, construct a numerical TM T6 which, started on the

tape description 01x1 01x2 . . .01xn 0, halts with the tape description

01x1+x2k+x3k2+...+xnkn−1

for any n, x1, . . . ,xn > 0, and which, when started on a blank tape, halts on a

blank tape (i.e. it works when n = 0 as well). (Your machine should have a

halting state.)

(Hint: in 9–14, use machines already constructed and products of TM’s. In some

cases, you may need to identify the initial state of one machine with a state of

another machine.)



Chapter 3

Recursively Enumerable Sets and Languages

We begin by discussing recursively enumerable subsets of N. This formalises the

idea of a listable set. This means a set A which is f (N) for some computable function

f , so the elements of A can be listed as f (0), f (1), f (2), . . . by some procedure with

a finite set of instructions. We also consider the empty set to be listable.

Definition. A subset A of N is recursively enumerable (abbreviated to r.e.) if A =
f (N) for some recursive function f : N→ N, or A = /0.

There are several other equivalent ways of saying a set is r.e. The partial character-

istic function χpA of A is defined by:

χpA =

{
1 if x ∈ A

undefined if x �∈ A.

Lemma 3.1. For A⊆ N, the following are equivalent.

(1) A is recursively enumerable.

(2) A is the domain of some partial recursive function g : N→ N.

(3) the partial characteristic function χpA is partial recursive.

(4) there is a partial recursive function f : N→ N such that A = f (N).
(5) either A = /0, or there is a primitive recursive function f : N → N such that

A = f (N).

Proof. (1) ⇒ (2). If A = /0, A = dom(g), where g is a partial recursive function

with empty domain, for example g(x) = µy(x+ y+1 = 0). If A = f (N), where f is

recursive, let g(x) = µy( f (y) = x). Then A = dom(g).

(2)⇒ (3). Assume (2). Then χpA = 1
.
−z.g, where z is the zero function, so χpA

is partial recursive, as it is obtained from g and primitive recursive functions by

composition.

(3)⇒ (4). Let f = π11 +(1
.
−χpA). (Recall that π11 is the identity function on

N.)
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DOI 10.1007/978-1-84800-940-0 3,
c© Springer-Verlag London Limited 2009



50 3 Recursively Enumerable Sets and Languages

(4)⇒ (5). Assume (4). By Theorem 2.23, there are primitive recursive functions

u : N→ N, v : N2 → N such that f (x) = u(µt(v(x, t) = 0)). (We obtain v from the

function ψ in 2.23 by fixing a suitable value of g.) If A = /0 then (5) is true; otherwise

choose a0 ∈ A and define F : N2 → N by

F(x,n) =

{
u(µt ≤ n(v(x, t) = 0)) if ∃t ≤ n(v(x, t) = 0)

a0 otherwise.

Then F is primitive recursive (this is left as an exercise) and F(N2) = A. Let J :

N2 → N be the primitive recursive bijection in Exercise 3 of Chapter 2. Then by

Exercise 3, F ◦ J−1 = F ◦ (K,L) : N→ N is primitive recursive, with image A.

(5)⇒ (1). This is obvious. ⊓⊔

Recall that a subset A of N is recursive if χA is recursive, and this formalises the

idea of a decidable set. If A is listable, it does not follow (at least, not obviously)

that A is decidable. There is a procedure to list the elements of A, so if n ∈ A, it will

appear eventually in the list. But we have no idea, in general, when it will appear, so

if n �∈ A, this procedure will not tell us that n �∈ A. (In fact, we shall shortly exhibit a

r.e. non-recursive set.) However, if N\A is also listable, then A is decidable. Given

n, just list the elements of A and the elements of N\A and see which list n eventually

appears in. (We are ignoring the extreme cases A = /0, A = N.) Conversely, if A is

decidable, we can list both A and N\A by computing χA. Here is the formal version

of this.

Lemma 3.2. A subset A of N is recursive if and only if both A and N\A are r.e.

Proof. Suppose A is recursive. Then χpA(x) = 1 + µy(χA(x) = 1) and χN\pA(x) =
1 + µy(χA(x) = 0), so these partial characteristic functions are partial recursive,

hence A, N\A are r.e. by Lemma 3.1.

Suppose A, N\A are r.e. If A = N or A = /0, χA is constant, so (primitive) recur-

sive, hence we can assume A = f (N), N\A = g(N) with f , g recursive.

Define

{
h(2x) = f (x)

h(2x+1) = g(x)
. Then h is recursive, since

h(x) =

{
f (quo(2,x)) if quo(2,x) = 0

g(quo(2,x)) if quo(2,x) = 1

and h(N) = f (N)∪g(N) = N.

Define ϕ(x) = µy(h(y) = x). The minimisation is regular, so ϕ is recursive. If h(y) =

x, then

{
x ∈ A if y is even

x ∈ N\A if y is odd

Hence x ∈ A if and only if ϕ(x) is even, so χA(x) = 1
.
− rem(2,ϕ(x)) is recursive.

⊓⊔

Lemma 3.3. (1) If A, B are r.e. then so are A∪B and A∩B.

(2) If F : N→ N is partial recursive and A is r.e., then F(A) and F−1(A) are r.e. If

F is total and A is recursive, then F−1(A) is recursive.
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Proof. (1) Clearly A∪B is r.e. if A or B is empty. Otherwise, take recursive functions

f , g such that A = f (N), B = g(N). Then A∪B = h(N), where h is defined as in the

proof of Lemma 3.2, so h is recursive.

By Lemma 3.1, there are partial recursive functions ϕ , ψ : N → N such that

A = dom(ϕ), B = dom(ψ). Then ϕ + ψ is partial recursive with domain A∩B, so

A∩B is r.e. by Lemma 3.1.

(2) This is clear if A = /0. Otherwise, we can write A = dom(ϕ), where ϕ : N→N is

partial recursive, and A = f (N), where f is recursive. Then F−1(A) = dom(ϕ ◦F),
F(A) = (F ◦ f )(N) are r.e. Hence, if F is total, N \F−1(A) = F−1(N \A) is r.e.

provided N\A is, and (2) follows by Lemma 3.2. ⊓⊔

Lemma 3.4. Let A ⊆ N. Then A is recursive and infinite if and only if there is a

recursive function f : N→ N such that f (N) = A and f is strictly increasing.

Proof. Suppose f (N) = A where f is recursive and strictly increasing. Then by an

easy induction on n, f (n)≥ n for all n∈N, so A is infinite. Further, a∈ A if and only

if ∃n≤ a( f (n) = a). This is a recursive predicate by Lemma 2.4, so χA is recursive.

Conversely, suppose A is recursive and infinite. Define ϕ : N→ N by

ϕ(x) = µy(y > x∧χA(y) = 1)

a partial recursive function since χA is recursive, and total since A is infinite. Hence

ϕ is recursive by Cor. 2.17. Let Φ be the iterate of ϕ , and put f (n) = Φ(a0,n),
where a0 is the least element of A. Then f is recursive since Φ is, and f (N) ⊆ A

since ϕ(N)⊆ A. Also, f is strictly increasing.

It remains to show that if a ∈ A, then a ∈ f (N). Since a0 = f (0), we can assume

a > a0. Since f is strictly increasing, there is n such that f (n) < a ≤ f (n + 1). By

definition of f , f (n + 1) is the least element of A greater than f (n). Hence a =
f (n+1) ∈ f (N). ⊓⊔

Recall from Lemma 2.23 that there exist primitive recursive functions F : N→N,

G : N3→N such that for any partial recursive function f : N→N, there exists k such

that f (x) = F(µt(G(k,x, t) = 0)) for x ∈ N.

Put U(k,x) = F(µt(G(k,x, t) = 0)) and let fk(x) = U(k,x). Then { fk | k ∈ N} is

the set of all partial recursive functions of one variable.

Proposition 3.5. The set of recursive functions of one variable is not r.e., that is

{k | fk is recursive}

is not r.e.

Proof. Suppose it is r.e., so equal to g(N) for some recursive function g : N→ N.

Put h(x) = fg(x)(x)+1 = U(g(x),x)+1. Then h is partial recursive (h = σ ◦U ◦ (g◦
π11,π11)) and total, so recursive by Cor. 2.17. Hence h = fg(m) for some m. But then

h(m) = fg(m)(m) = fg(m)(m)+1, a contradiction. ⊓⊔

Proposition 3.6. The set A = {x ∈ N |U(x,x) is defined} is r.e. but not recursive.
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Proof. First, A = dom(U ◦ (π11,π11)), so A is r.e. If A were recursive, then N \A

would be r.e., so χ = χp(N\A) would be partial recursive, hence χ = fm for some m.

Then m �∈ A⇐⇒ χ(m) is defined⇐⇒ fm(m) is defined⇐⇒U(m,m) is defined⇐⇒
m ∈ A, a contradiction. ⊓⊔

Proposition 3.7. The set B = {(k,x) |U(k,x) is defined} is not recursive.

Proof. If it were, the set A in Prop. 3.6 would be recursive, since χA(x) = χB(x,x).
⊓⊔

Note. Props. 3.6 and 3.7 are related to the “halting problem” for Turing machines.

This is discussed in Appendix B. Also, the arguments in Props. 3.5 and 3.6 are

related to “Cantor’s diagonal argument”, which is discussed in Appendix C.

Gödel Numbering

We want to introduce the ideas of recursive language and recursively enumerable

language, corresponding to informal ideas of decidable and listable language. The

way to proceed is, given an alphabet A, to code A∗ by natural numbers. (This is

similar to what happened in Chapter 2, where computations of register programs

and of TM’s, as well as TM’s themselves, were coded by natural numbers (Theorem

2.15, Theorem 2.19 and Theorem 2.20).) Then we use the notions of recursive and

r.e. already defined for subsets of N.

We shall show that the r.e. languages are precisely the type 0 languages defined in

Chapter 1, and complete the proof that these coincide with the languages recognised

by a TM.

Let X be a countably infinite set, f : X → N a bijection.

Definition. A subset A of X is recursive (resp. r.e) relative to f if f (A) is recursive

(resp. r.e.).

Definition. A Gödel numbering of X is an injective mapping ϕ : X → N such that

ϕ(X) is recursive.

One can similarly define recursive and r.e. subsets relative to a Gödel numbering

ϕ . We have not done so explicitly because we shall see that these ideas are equiva-

lent to recursive and r.e. relative to a suitable bijection f . These notions depend on

the choice of ϕ , but in many cases various natural choices for ϕ lead to the same

collections of recursive and r.e. subsets of X .

Given a Gödel numbering ϕ : X−→N, there is a strictly increasing recursive

function g from N onto ϕ(N), by Lemma 3.4. Then f = g−1 ◦ϕ : X →N is bijective,

so we can consider recursive and r.e. sets of X relative to f .

Lemma 3.8. In these circumstances, let A be a subset of X. Then

A is r.e. relative to f ⇐⇒ ϕ(A) is r.e.

and A is recursive relative to f ⇐⇒ ϕ(A) is recursive

Further, A is recursive if and only if A and X \A are r.e.
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Proof. The set A is r.e. relative to f if and only if g−1(ϕ(A)) is r.e. By Lemma 3.3, if

ϕ(A) is r.e. then g−1(ϕ(A)) is r.e., and if g−1(ϕ(A)) is r.e. then g(g−1(ϕ(A)))is r.e.

Since g maps onto ϕ(A), gg−1(ϕ(A)) = ϕ(A), whence the first part of the lemma.

Now

A is recursive ⇐⇒ g−1(ϕ(A)) is recursive

⇐⇒ g−1(ϕ(A)) and N\g−1(ϕ(A)) are r.e.

⇐⇒ g−1(ϕ(A)) and g−1(ϕ(X)\ϕ(A)) are r.e.

⇐⇒ g−1(ϕ(A)) and g−1(ϕ(X \A)) are r.e.

⇐⇒ A and X \A are r.e.

⇐⇒ ϕ(A) and ϕ(X \A) are r.e. (by the first part).

Also, ϕ(A) is recursive if and only if ϕ(A) and N \ϕ(A) are r.e., so to prove the

lemma we need to show that

ϕ(X \A) is r.e.⇐⇒ N\ϕ(A) is r.e.

Since ϕ(X \A) = ϕ(X) \ϕ(A) = ϕ(X)∩ (N \ϕ(A)) (because ϕ is injective), and

ϕ(X) is recursive, if N\ϕ(A) is r.e. then ϕ(X \A) is r.e. by Lemmas 3.2 and 3.3.

Also, N\ϕ(A) = (N\ϕ(X))∪ (ϕ(X)\ϕ(A)) = (N\ϕ(X))∪ϕ(X \A) and N\
ϕ(X) is r.e. by Lemma 3.2. Hence if ϕ(X \A) is r.e., then N\ϕ(A) is r.e. by Lemma

3.3. ⊓⊔

Let A be a finite set; we consider Gödel numberings of languages with alphabet

A. Fix a bijection {1,2, . . . ,n}→ A, i �→ ai. The following can be shown to be Gödel

numberings of A∗:

(1) ϕ1(ai1 . . .aik) =
k

∑
j=1

i j (n+1) j−1; ϕ ′1(ai1 . . .aik) =
k

∑
j=1

i j n j .

(2) ϕ2(ai1 . . .aik) = 2k
k

∏
j=1

p
i j

j (recall that p j is the j th odd prime for j ≥ 1).

In all three cases, the notions of r.e. and recursive subset of A∗ given by Lemma 3.8

are the same, and independent of the choice of bijection {1,2, . . . ,n}→ A (exercise-

cf Exercise 1 at the end of the chapter). Note that ϕ1(ε) = ϕ ′1(ε) = 0 and ϕ2(ε) = 1.

Further, we can allow A to be empty (n = 0), when A∗ = {ε}. The first assertion of

the exercise is then obvious, and the second irrelevant.

Definition. A subset L of A∗ is r.e. (resp. recursive) if ϕ(L) is r.e. (resp. recursive),

where ϕ can be ϕ1, ϕ ′1 or ϕ2.

Note. If B ⊆ A then ϕ(B∗) is recursive, where ϕ can be ϕ1, ϕ ′1 or ϕ2 (exercise).

Hence ϕ|B∗ is a Gödel numbering of B∗.

Now let G = (VT ,VN ,P,S) be a grammar and put A = VT ∪VN . Fix a numbering

of A, say A = {a1, . . . ,an}, and use the Gödel numbering ϕ = ϕ2 defined above.
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Also number the productions, say P = {α1−→β1, . . . ,αl−→βl}, and let λi = |αi|,
µi = |βi| (the lengths of the words).

Lemma 3.9. For 1≤ i≤ l, there is a primitive recursive function fi : N2 → N such

that, if m = ϕ(x1 . . .xk) and x1 . . .xk = x1 . . .xr−1αixr+λi
. . .xk, then

fi(r,m) = ϕ(x1 . . .xr−1βixr+λi
. . .xk)

and fi(r,m) = m otherwise.

Proof. First define F(r,m,s, t) =

{
p

logpr
(m)

t . . . p
logpr+s−1(m)

t+s−1 if r, s≥ 1

1 otherwise

and show F is primitive recursive (exercise). Then use F to define fi. It is recom-

mended that the reader tries to do this, as the answer below is a rather complicated

expression.

fi(r,m) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2(log2(m)+µi)
.
−λi .F(1,m,r

.
−1,1).F(1,ϕ(βi),µi,r)×

F(r +λi,m,(log2(m)+1)
.
−(r +λi),r + µi),

if 2λi F(r,m,λi,1) = ϕ(αi), 1≤ r ≤ log2(m)+1 and m ∈ ϕ(A∗)

m, otherwise.

It is left to the reader to show fi is primitive recursive; this needs the fact that “m ∈
ϕ(A∗)” is a primitive recursive predicate, which is part of Exercise 1 at the end of

the chapter. ⊓⊔

Proposition 3.10. A type 0 language is r.e.

Proof. Let L = LG, with G a grammar as above. With the notation of Lemma 3.9,

put

f (u,r,m) = fi(r,m) if u≡ i mod l.

Then f is primitive recursive (exercise). Define g : N2 → N by

g(x,0) = ϕ(S) (S = start symbol of G)

g(x, t +1) = f (log2(x), log3(x),g(log5(x), t)).

Then g is primitive recursive (this follows easily from Chap. 2, Exercise 8).

Let X j be the set of all α ∈ A∗ such that S
.
−→α by a derivation of length at most

j. Then ϕ(X j) = {g(x, j) | x ∈ N} (by induction on j). Let X =
⋃
j≥0

X j. Then ϕ(X) =

g(N2) = g◦ J−1(N) (see Chap. 2, Exercise 3), so ϕ(X) is r.e. Also, L = X ∩V ∗T , so

ϕ(L) = ϕ(X)∩ϕ(V ∗T ) is r.e., since ϕ(V ∗T ) is recursive, and so r.e. ⊓⊔

Proposition 3.11. A type 1 (context-sensitive) language is recursive.

Proof. Let L = LG where all productions of G have the form α−→β with |α| ≤ |β |.
(We are assuming for the moment that S→ ε is not a production.) Use the notation
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of Prop. 3.10. For k ≥ 1, let Yj(k) be the set of elements in X j of length at most k.

Then

Yj(k) = Yj−1(k)∪
{

α ∈ A∗ | ∃β ∈ Yj−1(k) such that β rewrites to α and |α| ≤ k
}

.

The number of words of length at most k in A+ is n + n2 + . . .+ nk (recall: n is

the cardinality of A). Abbreviating Yj(k) to Yj, if Y0 � Y1 � . . . � Yj then the number

of elements of Yj is at least j, so j ≤ n + n2 + . . .+ nk. Hence Yj−1 = Yj for some

j ≤ 1+n+n2 + . . .+nk, and then Yj−1 = Yj = Yj+1 = . . . .
Next, we claim that there is a primitive recursive function G : N2 → N such that

α ∈Yj(k) if and only if ϕ(α) = g(x, j) for some x≤G(k, j). (See the proof of Prop.

3.10 for the definition of g.) If j = 0 we can take G(k,0) = 0.

Suppose α ∈ Yj+1(k). If α ∈ Yj(k), ϕ(α) = g(x, j) for some x, and g(x, j) =
f (0,k+2,g(x, j)) (from the definition of f and the fi). By definition of g, this equals

g(203k+25x, j +1).
Otherwise, β rewrites to α for some β ∈Yj(k), so ϕ(β ) = g(x, j) for some x, and

ϕ(α) = f (u,r,g(x, j)) for some u≤ l and r ≤ k +1, which equals g(2u3r5x, j +1).
Thus we can put G(k, j +1) = 2l3k+25G(k, j), defining G by primitive recursion.

Now

α ∈ X ⇔ ∃ j ≤ (1+n+ . . .+n|α|)(α ∈ Yj(|α|))

⇔ ∃ j ≤ (1+n+ . . .+nlog2(ϕ(α)))(∃x≤ G(log2(ϕ(α)), j)(ϕ(α) = g(x, j))

⇔ P(ϕ(α)) where P is a primitive recursive predicate.

Therefore ϕ(X) = {z ∈ N | P(z)}∩ϕ(A∗) is recursive, so ϕ(L) = ϕ(X)∩ϕ(V ∗T ) is

recursive.

Finally, if the production S−→ε is added, the new language is L∪{ε} (see Cor.

1.2), which is also recursive (this follows easily from Lemma 2.2). ⊓⊔

Note. (1) A recursive language need not be context-sensitive. See [20, Theorem

8.3] for an example.

(2) Let S⊂N be r.e. and non-recursive (such sets exist by Prop. 3.6). Let ϕ : A∗→N
be one of the Gödel numberings defined above. There is a strictly increasing recur-

sive function f : N→ ϕ(A∗), by Lemma 3.4. Then f (S) is r.e. and non-recursive by

Lemma 3.3 ( f−1( f (S)) = S). Further, ϕ(ϕ−1( f (S))) = f (S), so ϕ−1( f (S)) is a r.e.,

non-recursive language.

We shall show that a r.e. language is type 0, so there are inclusions of classes of

languages:

{context-sensitive langs}� {recursive langs}� {r.e. langs}= {type 0 langs} .

Theorem 3.12. For a language L, the following are equivalent.

(1) L is of type 0.

(2) L is r.e.
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(3) L is recognised by a deterministic TM.

(4) L is recognised by a TM.

Proof. By Prop. 3.10, (1)⇒ (2), (3)⇒ (4) obviously, and (4)⇒ (1) by Theorem

1.11. It remains to show (2)⇒ (3). Assume L is r.e. We can assume the alphabet

of L is A = {2,3, . . . ,r−1} and use the Gödel numbering ϕ : x1 . . .xk �→ x1 + x2r +
. . .+ xkrk−1 of A∗.

Consider deterministic TM’s with tape alphabet {0,1,2, . . . ,r−1}, input alpha-

bet I = A and set of final states F = /0. The blank symbol B will be 0.

Step 1. The following such TM’s can be constructed (exercise).

R: moves right one square and halts; L: similarly.

R̃: moves right until two consecutive zeros are scanned, then halts.

L̃: similarly.

P1(i): prints i 1’s on the tape to the right of the scanned square, starting with the

scanned square, moves right one square and halts.

P0(i): similarly.

Test {T0,T1, . . . ,Tr−1}: if a is on the initially scanned square, this follows the com-

putation of Ta. Here Ta is any TM of the form described above. (This is a simple

generalisation of Example (5) of a numerical TM preceding Theorem 2.21.)

Now take

T0 = R̃L

T1 = L

Ti = P0(1)R̃P1(i)L̃RR (i≥ 2)

and let T be Test {T0,T1, . . . ,Tr−1}with the halting states of T1,T2, . . .Tr−1 identified

with the initial state of Test {T0,T1, . . . ,Tr−1}.

Then T , started on the tape description x1 . . .xk (2≤ xi ≤ r−1, k≥ 0), halts with

tape description 01x1 0 . . .01xk 0. Further, the halting state of T0 is a halting state for

T .

Step 2. By Exercise 14 in Chap. 2, there is a numerical TM T ′ which, started on

tape description 01x1 0 . . .01xk 0, halts with tape description 01ϕ(x1...xk), and T ′ has a

halting state.

Step 3. There is a partial recursive function f such that ϕ(L) = dom( f ). By Cor.

2.22, there is a numerical TM T ′′ which, started on the tape description 01x, halts if

and only if f (x) is defined (in which case, it halts with the tape description 01 f (x)).

Further, T ′′ has a halting state, say h.

Now T T ′T ′′, started on the tape description x1 . . .xk (2≤ xi ≤ r−1), halts if and

only if x1 . . .xk ∈ L. Modify this TM by letting the set of final states be {h}, to get a

deterministic TM recognising L. ⊓⊔
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Theorem 3.13. For a language with alphabet A, the following are equivalent.

(1) L is recursive;

(2) L is recognised by a deterministic TM which, on input x1 . . .xk (x1, . . . ,xk ∈ A),

always halts.

Proof. Assume L is recursive. Again we can assume A = {2,3, . . . ,r−1}. In the

construction of Theorem 3.12, replace T ′′ by a TM which computes χϕ(L),to obtain

a TM U which, started on tape description x1 . . .xk (where w = x1 . . .xk ∈ A∗) halts,

with tape description

{
01 if w ∈ L

0 (blank tape) if w �∈ L

Let U ′ =URTest (see Example (4) of a numerical TM preceding Theorem 2.21).

Then U ′ halts

{
in a state p1 if w ∈ L

in a state p0 if w �∈ L
.

Modify U ′ by letting the the set of final states be {p1}, to get the desired TM.

Conversely, assume (2). We can assume the TM in (2) halts whenever a final state

is reached (see Remark 1.2). Let Q be the set of states and F the set of final states of

the TM. Modify the TM as follows. Add a new state h. For each pair (q,a), where

q ∈ Q and a is in the tape alphabet, such that q �∈ F and no transition starts with qa,

add a transition qahaR. Then replace F by {h}. The new machine recognises A∗ \L,

hence L and A∗ \L are r.e. by Theorem 3.12.Then L is recursive by Lemma 3.8. ⊓⊔

We use Theorem 3.12 to prove a result needed in Chapter 5. The Kleene star

operation is defined in Chapter 1, before Lemma 1.5.

Lemma 3.14. If L is a r.e. language, then so is L∗.

Proof. By Theorem 3.12, L = LG for some type 0 grammar G = (VN ,VT ,P,S). By

Lemma A.1 in Appendix A, we can assume all productions in P are either of the

form α−→β where α , β ∈V ∗N , or of the form A→ a, where A ∈VN , a ∈VT . Take

two new symbols S′, S′′ not in VN∪VT . Let G′ be the grammar (V ′N ,VT ,P′,S′), where

V ′N = VN ∪{S
′,S′′} and

P′ = P∪
{

S′−→ε, S′−→S, S′−→SS′′
}
∪

{
aS′′−→aS, aS′′−→aSS′′ | a ∈VT

}

It is left to the reader to check that LG′ = L∗, so again by Theorem 3.12, L∗ is r.e. ⊓⊔

Complexity. Turing machines are intended as models of computation. For a dis-

cussion of how a modern computer can be simulated by a deterministic TM (and

vice-versa), see §8.6 in [22]. It is convenient here to use a multi-tape Turing ma-

chine, one of several variants of TM’s discussed, for example, in [20], §§6.5 and

6.6, or in [21], §§7.6 and 7.8. Given a problem with an algorithm to solve it which

can be implemented by a computer program, it is important to know how much time

the program takes to run, in terms of some measure of complexity of its input.

In terms of a TM, the input is a word on the input tape, and we can take the

length of the word as a measure of complexity. The time taken to run is measured

by the number of moves the machine makes with a given input. (See [21, §12.1]

for further details.) If, for any input word of length n, a TM makes at most f (n)
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moves before halting, T is said to have time complexity f (n). It is assumed in [21]

that the TM always reads its entire input and verifies it has been read by reading

a blank cell, so for input of length n, always makes at least n + 1 moves. Thus,

for an arbitrary function f , time complexity f (n) actually means time complexity

max(n+1,⌈ f (n)⌉).
A language L is said to be in the class NTIME( f (n)) if L = L(T ) for some TM of

time complexity f (n). It is said to be in DTIME(( f (n)) if L = L(T ) for some deter-

ministic TM of time complexity f (n). It can be shown that if L ∈ NTIME( f (n)),
then L = L(T ) for some single tape TM T of time complexity f (n)2, and if

L ∈ DTIME( f (n)), T can be taken to be deterministic. See [21], Theorem 12.5

and its corollary.

We define N P to be the class of languages which are in NTIME( f (n)) for some

polynomial f (n). Also, P is the class of languages in DTIME( f (n)) for some poly-

nomial f (n). It is believed that the class of problems which can be efficiently solved

by a computer are those having an algorithm implemented by a program which runs

in polynomial time. It is argued in [22], §8.6.3, that a deterministic TM simulat-

ing such a computer program is of polynomial time complexity. This explains the

interest in the class P.

Clearly P ⊆ N P, but by contrast with Theorem 3.12, it is unknown whether or

not P = N P; indeed this has become a notorious problem. For examples of some

problems which might lead to languages in N P\P, and the related idea of an NP-

complete language, see [22, Chap. 10].

One can also consider space bounds for computations. In a TM, the space used

is measured by the maximum number of cells scanned on each tape. This leads to

language classes NSPACE( f (n)) and DSPACE( f (n)). For further information, see

[21, §12.1].

Exercises on Chapter 3

1. Consider the functions ϕ1, ϕ ′1 and ϕ2 defined after Lemma 3.8.

(a) Show that ϕ1 and ϕ2 are Gödel numberings, and that ϕ1 and ϕ2 give the

same collections of r.e. and recursive subsets of A∗.

(b) Show that ϕ ′1 is a Gödel numbering, and that ϕ ′1 and ϕ1 give the same

collections of r.e. and recursive subsets of A∗.

(c) Show that the collections of r.e. and recursive subsets given by ϕ1, ϕ ′1 and

ϕ2 do not depend on the choice of bijection {1,2, . . . ,n}→ A.

(d) Show that if B⊆ A, then ϕ(B∗) is recursive, where ϕ is either ϕ1, ϕ ′1 or ϕ2.

(Warning: this is quite tricky.)

2. Construct the TM s used in Step 1 of the proof of Theorem 3.12.

3. Show that, if L and L′ are r.e. languages, then LL′ is r.e.



Chapter 4

Context-free Languages

In this chapter we study context-free languages and the machines recognising them,

the pushdown stack automata. The class of languages recognised by deterministic

pushdown stack automata is called the class of deterministic languages. It is a proper

subclass of the class of context-free languages. The class of deterministic languages

is the class of languages generated by what are called LR(k) grammars (k being a

natural number). However, things are complicated by the fact that a pushdown stack

automaton has two ways of recognising a language. In the case of deterministic

machines, this makes a difference to the class of languages recognised, leading to a

proper subclass of the deterministic languages. It turns out that this class is precisely

the class of languages generated by LR(0) grammars. The idea of LR(k) language is

important in Computer Science in the construction of parsers, although our account

does not reflect this. (See, for example, the parser-generator YACC described in [22,

§5.3.2].)

Subsequently, in dealing with grammars, we shall just say terminal instead of

terminal symbol, and a non-terminal symbol will be called a variable. Also, terminal

string means a word whose letters are all terminals. As a matter of notation, if G is

a grammar with set of productions P, we shall sometimes write α
.
−→

G
β to mean

α
.
−→

P
β , and refer to a P-derivation as a G-derivation. We also write α−→

G
β to

mean α rewrites to β using a production of P.

It is convenient to extend the definition of context-free grammar. A context-

free grammar with ε-productions is a grammar in which all productions are either

context-free or ε-productions, that is, productions of the form A→ ε , where A is a

variable. Hitherto, the only such production allowed is S → ε , where S is the start

symbol. We begin by showing that allowing ε-productions does not change the class

of languages generated.

Lemma 4.1. Let G = (VN ,VT ,P,S) be a context-free grammar with ε-productions.

Then there is a context-free grammar G1 with LG = LG1
. Further, we can assume

the start symbol of G1 does not appear on the right-hand side of any production.

I. Chiswell, A Course in Formal Languages, Automata and Groups, 59
DOI 10.1007/978-1-84800-940-0 4,
c© Springer-Verlag London Limited 2009
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Proof. By Lemma 1.1, we can assume S does not occur on the right-hand side of

any production in P. Let N be the set of variables A in VN such that A
.
−→

G
ε . (The

set N can be found by the following procedure, starting with N empty.

(1) If A→ ε is a production, then put A in N.

(2) If A→ B1 . . .Bk is a production and Bi ∈N for 1≤ i≤ k, then put A in N.

(3) Repeat step (2) until no more variables are put in N.

The proof that this finds all elements of N is left to the reader. An induction on the

number of steps in a derivation from A to ε , for A ∈N, is required.)

We now modify the productions of G as follows.

(1) Remove all ε-productions.

(2) If A−→X1 . . .Xr is in P, where Xi ∈ VT ∪VN and r > 0, replace this by all pro-

ductions of the form A→Y1 . . .Yr, where, if Xi ∈N, Yi is either Xi or ε , otherwise

Yi is Xi. This replaces the production by 2m productions (including the original

production), where m is the number of symbols Xi in N. However, if all Xi ∈N,

A−→ε is omitted.

Call the new set of productions P′ and let G′ = (VN ,VT ,P′,S). We claim that LG′ =
LG \ {ε}. Since G′ is context-free and contains no ε-productions, ε �∈ LG′ . In a G′-

derivation, any use of a production A → Y1 . . .Yr as in (2) can be replaced by use

of the production A−→X1 . . .Xr, followed by several uses of ε-productions of G, to

obtain a G-derivation of the same word. Hence LG′ ⊆ LG \ {ε}. To prove equality,

we show that, for A ∈VN

A
.
−→

G
w and w �= ε implies A

.
−→

G′
w.

The proof is by induction on the number of steps in a G-derivation from A to w. If the

number is 1, then A−→w is a production of G, so of G′ since w �= ε . If the number

of steps is k > 1, the derivation has the form A,X1 . . .Xn, . . . ,w, where A−→X1 . . .Xn

is in P. We can write w = w1 . . .wn, where Xi
.
−→

G
wi by a derivation of length less

than k, so by induction Xi
.
−→

G′
wi, if wi �= ε . Let Z1, . . .Zm be those Xi (in order) for

which wi �= ε . Note that m > 0 since w �= ε . Then Z1 . . .Zm
.
−→

G′
w, and A−→Z1 . . .Zm

is in P′, so A
.
−→

G′
w.

If ε ∈ LG (i.e. S ∈N), we let G1 be G′ with S−→ε added to the productions, and

G1 = G′ otherwise. Then G1 is context-free, S does not appear on the right-hand

side of any production of G1, and LG = LG1
(see the proof of Cor. 1.2). ⊓⊔

For the rest of this chapter, “context-free grammar” will mean a context-free

grammar with ε-productions. A useful idea in dealing with context-free grammars

is that of a parsing tree. A rooted tree is a tree with a distinguished vertex, v0, called

the root. This establishes a level for each vertex v, namely the length (number of

edges in) of the reduced path from v0 to v. Then

(1) v0 is the only vertex of level 0
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(2) every vertex v of level n > 0 is adjacent to exactly one vertex of level n−1, and

v is called a successor of this vertex.

A vertex with no successors is called a leaf. A vertex v is a descendant of a vertex

w if there is a sequence of vertices w = v0,v1, . . . ,vn = v for some n ≥ 0, such that

vi is a successor of vi−1 for 1≤ i≤ n.

We shall consider only finite rooted trees, which can be drawn in the plane with

the root at the top and vertices of the same level physically at the same level. This

gives extra structure to the tree; the successors of a given vertex are linearly ordered

“from left to right”. If v, w are two successors of the same vertex with v to the left

of w, then all descendants of v are said to be to the left of all descendants of w. It is

an exercise to show this induces a linear ordering on the leaves.

Definition. Let G = (VN ,VT ,P,S) be a context-free grammar. Let A∈VN . An A-tree

for G is a finite rooted tree whose vertices are labelled by elements of VN ∪VT ∪{ε},

satisfying the following.

(1) the label on the root is A.

(2) if a vertex is a non-leaf, its label is in VN .

(3) if a non-leaf has label B, and the successors of this vertex have labels X1, . . . ,Xn

in order from left to right, then B−→X1 . . .Xn is in P.

(4) if a leaf v is a successor of w and has label ε , it is the only successor of w.

An A-tree for some variable A is called a parsing tree of G.

A subtree of a parsing tree is a non-leaf of the tree together with all its descen-

dants, the edges joining them, their labels and left-right ordering. If B is the label on

the vertex, then this is a B-tree.

Definition. The yield of a parsing tree is the word obtained by reading the labels on

the leaves from left to right.

Example. Let G = ({S,A,B} ,{a,b,c} ,P,S) where P contains

S−→Bc, B−→aAb, A−→aAb, A−→ab.

Here is an S-tree for G and a subtree which is a B-tree (we just indicate the vertices

by their labels):

S
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B
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��
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� b

a b

B
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�

a A
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��

��
��

��
� b

a b

Figure 4.1
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The yield of the parsing tree is a2b2c and of the subtree a2b2. Notice that the vertex

of the parsing tree labelled a at level 2 is to the left of the vertex labelled a at level

3, according to our definitions, although not physically so.

Definition. A leftmost derivation is one in which, at each step, the production used

replaces the leftmost variable. Similarly for rightmost.

Lemma 4.2. Let α ∈ (VN ∪VT )∗, A ∈VN .

(1) A
.
−→α if and only if there is an A-tree with yield α .

(2) If α ∈V ∗T , and there is an A-tree with yield α , then there is a leftmost derivation

of α from A, and a rightmost derivation of α from A.

Proof. (1) Given a derivation A = α0,α1, . . . ,αn = α , we construct inductively A-

trees R0,R1, . . .Rn such that Ri has yield αi. We take R0 to consist of a single vertex

(which is both the root and a leaf) with label A. Suppose Ri−1 has been defined.

Let B−→β be the production used to get from αi−1 to αi, and let β = X1 . . .Xk,

where Xi ∈ VN ∪VT . Then there is an occurrence of B in αi−1 which is replaced by

β , and this corresponds to a leaf of Ri−1. Add k successors to this leaf, with labels

X1, . . . ,Xk (in left-right order), to obtain Ri.

The Ri satisfy: Ri is obtained from Ri−1 by adding successors to a leaf correspond-

ing to a production B−→β ;

R0 consists of a single vertex with label A.

Conversely, suppose R is an A-tree with yield α . We shall construct a sequence of

A-trees Ri with Rn = R for some n. This sequence will have the additional property

that, if v is a non-leaf of Ri, then Ri contains all the successors of v in R. We take

R0 to be the root v0 of R, with label A. Suppose Ri−1 has been defined. Choose a

leaf of Ri−1 which has successors in R, and add all these with their labels, to obtain

Ri. Suppose no such leaf exists; then we claim Ri−1 = R and we put n = i− 1. For

if v is a vertex of R not in Ri−1, let v0,v1, . . . ,vr = v be the vertices, in order, of the

reduced path from v0 to v in Ri−1. Let j be smallest such that v j is not in Ri−1. Then

j > 0 since v0 is in Ri−1, and v j−1 is in Ri−1. Now v j−1 has v j as a successor in R,

so by assumption is not a leaf of Ri−1. Hence Ri−1 contains all successors of v j−1 in

R, including v j, a contradiction.

Let αi be the yield of Ri. Then it is easily seen by induction on i that A =
α0,α1, . . . ,αi is a derivation, and taking i = n gives a derivation of α .

(2) The procedure just given involves choices of leaves, so in general will give sev-

eral different derivations. To make it unique, always choose the leftmost possible

leaf (in the left-right order of the leaves of Ri−1. If α ∈V ∗T , this will give a leftmost

derivation of α . (All leaves to the left of the one chosen must be leaves of R, and

therefore have labels in VT , so the leaf chosen corresponds to the leftmost variable

in αi−1.) Similarly, if at each stage we choose the rightmost leaf, we get a rightmost

derivation. ⊓⊔

Remark 4.1. In the proof of Lemma 4.2, suppose R, R′ are two different A-trees.

(Here, “different” means “non-isomorphic”, where two parsing trees are isomorphic
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if they are isomorphic as trees, via an isomorphism preserving roots, labels and left-

right orderings. That is, they look exactly the same when drawn.) Let R0,R1, . . . and

R′0,R
′
1, . . . be the sequences of A-trees constructed from them, always choosing the

leftmost leaf. Let α0,α1, . . . and α ′0,α
′
1, . . . be the corresponding derivations. Then

there is a first value of i such that Ri and R′i are different. Then α j = α ′j for j < i, but

αi �= α ′i . These are therefore two distinct derivations. Similarly, taking the sequences

obtained by always choosing the rightmost leaf gives two different derivations.

If A = α0,α1, . . . and A = α ′0,α
′
1, . . . are two leftmost derivations, construct the

sequences of A-trees R0,R1, . . . ,Rn = R and R′0,R
′
1, . . . ,R

′
m = R′ as in the proof of

Lemma 4.2. Then these are the sequences obtained from R and R′ by always choos-

ing the leftmost possible leaf (by an inductive proof). Therefore, if R and R′ are the

same, these sequences of A-trees will be the same (again by an inductive argument-

isomorphisms preserve left-right ordering). Thus if the two derivations are different,

the sequences of A-trees will be different, at the point where the derivations first dif-

fer, so R and R′ will be different.

Similarly, two different rightmost derivations give two different parsing trees.

Definition. A context-free grammar is ambiguous if there exists w ∈ V ∗T and two

different S-trees with yield w.

In view of Remark 4.1, this is equivalent to saying there exists w ∈ V ∗T having two

different leftmost derivations from S, also to saying there exists w ∈V ∗T having two

different rightmost derivations from S.

We now consider ways of modifying context-free grammars so they generate the

same language, but have certain extra properties, culminating in two normal forms.

Definition. Let G = (VN ,VT ,P,S) be a grammar.

(1) A letter X ∈VN ∪VT is called generating if X
.
−→

G
w for some w ∈V ∗T .

(2) A letter X ∈ VN ∪VT is called reachable if S
.
−→

G
αXβ for some α , β ∈ (VN ∪

VT )∗.

Note that every element of VT is generating.

Lemma 4.3. Let G = (VN ,VT ,P,S) be a context-free grammar with LG �= /0. There is

a context-free grammar G′ = (V ′N ,VT ,P′,S), such that every A ∈ V ′N is generating,

with LG = LG′ .

Proof. Let V ′N be the set of all A∈VN which are generating and P′ the set of produc-

tions in P having all their letters in V ′N ∪VT . (The set G of all generating symbols

can be found by the following procedure, starting with G = VT .

(1) If A→ α is a production,and every letter of α is in G , then add A to G ;

(2) Repeat step (1) until no new letters are added to G .

The proof that this works is left to the reader. Then of course, V ′N = G ∩VN .)

Note that S ∈V ′N by the assumption LG �= /0. Clearly LG′ ⊆ LG. Suppose w ∈ LG,

w �∈ LG′ . There is a G-derivation of w from S, which uses a production not in G′, so
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some word in the derivation has the form w1Aw2, where A �∈V ′N . Since w1Aw2
.
−→

G
w,

A
.
−→

G
w′ for some w′ ∈V ∗T , so A is generating, a contradiction. This gives the desired

grammar. ⊓⊔

Lemma 4.4. Let G = (VN ,VT ,P,S) be a context-free grammar. There is a context-

free grammar G′ = (V ′N ,V ′T ,P′,S), such that every A ∈ V ′N ∪V ′T is reachable, with

LG = LG′ .

Proof. Let V ′N be the set of all reachable letters in VN and V ′T the set of all reachable

letters in VT . (We can find the set R of all reachable letters, hence V ′N and V ′T , as

follows.

(1) Start with R = {S}.
(2) If A−→α is a production and A ∈R, add all letters occurring in α to R.

(3) Repeat step (2) until no more letters are added to R.

The proof that this works is left to the reader.)

Now let P′ be the set of productions in P having all their letters in V ′N∪V ′T . Clearly

LG′ ⊆ LG. But in a G-derivation from S, all letters which occur are reachable, so all

productions used are in P′, hence it is a G′-derivation, so LG′ = LG. ⊓⊔

Definition. A letter in a grammar G is called useless, or a useless symbol, if it does

not appear in any derivation of an element of V ∗T from S, otherwise it is called useful.

It is left as an easy exercise to show that a letter is useful if and only if it is both

generating and reachable.

Lemma 4.5. Every non-empty context-free language is generated by a grammar

with no useless symbols.

Proof. Let L = LG where G is context-free. Let G1 be the grammar obtained from

G by Lemma 4.3, with all letters generating, and let G2 be the grammar obtained

from G1 by Lemma 4.4, with all letters reachable, so LG = LG2
. Suppose G2 has

a useless symbol X . Then X is reachable, so S
.
−→
G2

αXβ for some α , β . Since the

productions of G2 are productions of G1, it follows that S
.
−→
G1

αXβ
.
−→
G1

w for some

terminal string w. But then all letters in this derivation are reachable, so this is a

G2-derivation and X is not useless, a contradiction. ⊓⊔

Lemma 4.6. If L is a context-free language, then L = LG for some context-free

grammar G having no productions of the form A−→B, where A and B are vari-

ables.

Proof. Suppose L = LG′ where G′ = (VN ,VT ,P,S) is a context-free grammar. Let U

be the set of all ordered pairs (A,B), where A, B ∈ VN , such that A
.
−→

G
B. (The set

U can be found by the following procedure.

(1) Start with U = {(A,A) | A ∈VN}.
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(2) If (A,B) ∈U and B−→C is a production, where C ∈VN , then add (A,C) to U .

(3) Repeat step (2) until no more pairs are added to U .

The proof that this works is left to the reader.)

Define a new set of productions R as follows: for each (A,B) ∈U , R contains all

productions A−→α , where B−→α is a production in P with α �∈VN . (Note that R

contains all productions in P of the form A−→α with α �∈VN , as (A,A)∈U .) Now

let G = (VN ,VT ,R,S). Clearly if A−→α is in R, then A
.
−→

G
α , so LG′ ⊆ LG.

Suppose w ∈ LG and consider a leftmost derivation

S = α0−→
G

α1−→
G

. . .−→
G

αn = w.

Suppose there is a sequence αi−→
G

αi+1−→
G

. . .−→
G

α j using only productions of

the form A−→B, but α j−→
G

α j+1 by a production in R. (We cannot have j = n

since w ∈ V ∗T .) Then αi, . . . ,α j all have the same length, and since the derivation

is leftmost, the letter replaced at each stage must be in the same position. If the

letter replaced in αi is A and the letter in the same position in α j is B, then A
.
−→

G
B,

and α j−→
G

α j+1 by a production B−→
G

β . But then αi−→
G′

α j+1 by the production

A−→β of G′. Thus we can remove αi+1, . . . ,α j from any such sequence to obtain

a G′-derivation of w from S. Hence LG = LG′ . ⊓⊔

Normal Forms. We show that a context-free language can be defined by a context-

free grammar in normal form, that is, where the productions all have a certain form.

There are two such normal forms, and we can now establish the first of these. It is a

refined version of Lemma A.1, Appendix A, for type 2 grammars.

Theorem 4.7. (Chomsky Normal Form) Any context-free language L with ε �∈ L can

be generated by a grammar in which all productions are of the form A−→BC or

A−→a, where A, B, C are variables and a is a terminal.

Proof. By Lemma 4.1 and the fact that ε �∈ L, we can assume that L = LG for some

context-free grammar G with no ε-productions. The construction of Lemma 4.6

does not introduce any ε-productions, so we can further assume that G has no pro-

ductions of the form A−→B where A, B are variables. Then if the right-hand side

of a production has a single letter, it must be a terminal, so is in the required form.

If a terminal a appears on the right in a production A−→X1 . . .Xn, where n > 1,

add a new variable Ca and a production Ca−→a. Then replace all occurrences of

a on the right of such productions by Ca. Do this for every terminal, and call the

resulting grammar G′. If α−→β is a G-production then clearly α
.
−→

G′
β , hence

LG ⊆ LG′ . We show by induction on the number s of steps in a derivation that if A

is a variable of G and w is a terminal string of G such that A
.
−→

G′
w, then A

.
−→

G
w. It

then follows that LG = LG′ .

If s = 1, then A−→w is a production of both G and G′. If s > 1, the derivation

has the form A,Y1 . . .Yn, . . . ,w, where Yi are variables of G′ and n > 1. Then we can

write w = w1 . . .wn, where Yi
.
−→

G′
wi by a derivation of length less than s (using some
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but not all of the productions used in the original derivation). If Yi = Ca for some a

then the only production in this derivation is Ca−→a, as this is the only one with

Ca on the left-hand side, hence wi = a. If Yi is a variable of G, then by induction

Yi
.
−→

G
wi.

Now the first production used in the G′-derivation is A−→Y1 . . .Yn, arising from

a G-production A−→X1 . . .Xn, where Yi = Xi if Xi is a variable of G, and Yi = Ca if

Xi = a is a terminal, in which case wi = a. It follows that Xi
.
−→

G
wi for all i, hence

X1 . . .Xn
.
−→

G
w1 . . .wn = w

and so A
.
−→

G
w, finishing the inductive proof.

The productions of G′ are of the form A−→a and A−→X1 . . .Xn (n ≥ 2) where

all Xi are variables. For a production of the second form with n ≥ 3, we add new

variables D1, . . . ,Dn−2 and replace this production by the productions

A−→X1D1, D1−→X2D2, . . . ,Dn−3−→Xn−2Dn−2, Dn−2−→Xn−1Xn.

This gives a new grammar G′′ in the required form. The proof that LG′ = LG′′ is left

as an exercise. ⊓⊔

For our second normal form, two lemmas are needed, giving more ways of ma-

nipulating context-free grammars while not changing the language generated. First,

we introduce some notation. An A-production is one of the form A−→α . A list of

A-productions A−→α1, . . . ,A−→αn is abbreviated to A−→α1|α2| . . . |αn.

Lemma 4.8. Let G = (VN ,VT ,P,S) be a context-free grammar. Let A−→αBγ be in

P and let the B-productions in P be B−→β1|β2| . . . |βn. Let G′ = (VN ,VT ,P′,S) be

obtained by deleting the production A−→αBγ from P and adding the productions

A−→αβ1γ|αβ2γ| . . . |αβnγ.

Then LG = LG′ .

Proof. If A→ αβiγ is used in a step of a G′-derivation, then it can be replaced by

two steps using the productions A−→αBγ and B−→βi, to obtain a G-derivation,

hence LG′ ⊆ LG. If A−→αBγ is used in a step of a G-derivation of a terminal

string w, the variable B must be changed at some later step using a production

B−→βi. These two steps can be replaced (at the point where A−→αBγ is used)

by A−→αβiγ , resulting in a G-derivation of w. Hence LG = LG′ . ⊓⊔

Lemma 4.9. Let G = (VN ,VT ,P,S) be a context-free grammar, A ∈VN . Suppose

A−→Aα1|Aα2| . . . |Aαm

are the A-productions whose right-hand side begins with A, and let the other A-

productions in P be A−→β1|β2| . . . |βn. Add a new variable B, and let G′ = (VN ∪
{B} ,VT ,P′,S), where P′ is obtained by replacing all the A-productions by
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A−→β1|β2| . . . |βn|β1B|β2B| . . . |βnB, and B−→α1|α2| . . . |αm|α1B|α2B| . . . |αmB.

Then LG = LG′ .

Proof. If w ∈ LG, there is a leftmost G-derivation of w from S, by Lemma 4.2. If

a derivation A−→Aαi is used, it must be the start of a succession of steps using a

sequence of productions of the form

A−→Aαi1 , A−→Aαi2 , . . . ,A−→Aαir , A−→β j (∗)

resulting in A being replaced by the string β jαir αir−1
. . .αi1 . This can be replaced

by steps using the sequence of productions:

A−→β jB, B−→αir B, B−→αir−1
B, . . . ,B→ αi2 B, B−→αi1 (∗∗)

The result is a G′-derivation of w from S, so LG ⊆ LG′ . Conversely, if w ∈ LG′ , we

can find a rightmost G′-derivation of w from S by Lemma 4.2. If B appears in this

derivation, there is a succession of steps corresponding to a sequence of the form

(∗∗), which can be replaced by the sequence (∗), resulting in a G-derivation of w

from S. Hence LG = LG′ . ⊓⊔

Theorem 4.10. (Greibach Normal Form) Every context-free language L without ε
is generated by a grammar in which all productions are of the form A−→aα , where

A is a variable, a is a terminal and α is a string of variables.

Proof. Let G = (VN ,VT ,P,S) be a grammar in Chomsky normal form generating L.

Number the variables, say VN = {A1, . . . ,An}, and add new variables {B1, . . . ,Bn}
(this does not change the language generated). We begin by modifying the produc-

tions so that if Ai−→A jγ is a production, then i < j. Further, the right-hand side

of a production is either a non-empty string of variables, or begins with a terminal,

followed by a string of variables. If i = 1 we replace the A1-productions with right-

hand sides starting with A1 using Lemma 4.9 (with A = A1, B = B1) to obtain the

desired conditions.

Assume we have achieved the desired conditions for 1 ≤ i ≤ k. For each pro-

duction Ak+1−→A jγ with j ≤ k, apply Lemma 4.8 to this production with α = ε ,

A = Ak+1 and B = A j. This replaces each such production by productions of the

form Ak+1−→A j′γ
′, where j′ > j and γ ′ is a string of variables, or Ak+1−→aγ ′

where a is a terminal and γ ′ is a string of variables. Applying this procedure at most

k times brings the Ak+1-productions to the required form, except for productions of

the form Ak+1−→Ak+1γ . We replace each of these productions by new productions

using Lemma 4.9 (with A = Ak+1, B = Bk+1) to get all Ak+1-productions in the re-

quired form. (If there are no productions of the form Ak+1−→Ak+1γ , the variable

Bk+1 can be omitted.) By induction on k, we obtain the desired conditions.

Looking at the form of the B-productions in Lemma 4.9, the productions which

are not in the form given by the theorem are now of two kinds.

(1) Ai−→A jγ where i < j and γ is a string of variables.

(2) Bi−→A jγ where γ is a string of variables.
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The right-hand sides of the An-productions must already be in the required form

(terminal followed by a string of variables). The right-hand sides of the An−1-

productions of type (1) start with An, and can be modified using Lemma 4.8 (with

A = An−1, B = An, α = ε) to bring them to the required form. We can continue to

use Lemma 4.8 to successively bring the Ai-productions, for i = n− 2, . . . ,1 to the

required form.

Finally all productions of type (2) can now be modified by use of Lemma 4.8 to

bring them to the required form. ⊓⊔

Before proceeding, we shall prove the Pumping Lemma (Lemma 1.9), whose

statement we recall.

Let L be a context-free language. Then there is an integer p > 0, depending only

on L, such that, if z ∈ L and |z| ≥ p, then z can be written as z = uvwxy, where

|vwx| ≤ p, v and x are not both ε and for every i≥ 0, uviwxiy ∈ L.

Proof. Let G be a grammar in Chomsky normal form generating L \{ε}, and let k

be the number of variables of G. If T is a parsing tree with yield a terminal string

w, and the maximum level of a vertex is l, then |w| ≤ 2l−1. This is easily proved by

induction on l. (The right-hand side of a production has length at most 2. If l = 1,

the minimum possible, the root has a single successor with label w ∈VT .)

Put p = 2k. If z ∈ L and |z| ≥ p, then z ∈ LG and there is an S-tree T (S being the

start symbol) with yield z. From the previous paragraph, if l is the maximum level

of a vertex of T , then l ≥ k+1. Let v0 be the root, and let v0,v1, . . . ,vl be the vertices

of a path from v0 to a vertex of level l. Only vl can have a terminal as label, so two

of the k +1 vertices vl−1,vl−2, . . . ,vl−k,vl−k−1 must have the same label, say vr and

vs both have label A, where l− k−1≤ r < s≤ l−1, so l− r−1≤ k.

Then vr is the root of a subtree of T which is an A-tree, say T1, and vs is the root

of a subtree of T1 which is also an A-tree, say T2. Let w be the yield of T2. Removing

T2 from T1 (except for vs) gives an A-tree T ′1 with root vr and yield vAx for some v,

x, and the yield of T1 is vwx. This is illustrated by the following picture.

A

A

S

︸ ︷︷ ︸
u

︸ ︷︷ ︸
v

︸ ︷︷ ︸
y

︸ ︷︷ ︸
x

︸ ︷︷ ︸
w

T

T1

T2

vr

vs

Figure 4.2
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Now vr must have two successors, corresponding to a production A−→BC,

where B, C are variables. For otherwise vr+1 would be a leaf, which is impossi-

ble as r +1≤ s < l. Both successors are in T ′1 , hence |vAx| ≥ 2, so v, x are not both

ε .

Similarly, removing T1 (except for vr) from T gives an S-tree with yield uAy for

some u, y, and the yield of T is uvwxy = z. Now vr has level r, so the maximum

level of a vertex of T1 is l− r. Hence |vwx| ≤ 2l−r−1 ≤ 2k = p.

Finally, it follows from Lemma 4.2 that

S
.
−→

G
uAy, A

.
−→

G
vAx, and A

.
−→

G
w.

It follows easily by induction on i that S
.
−→

G
uviAxiy, hence S

.
−→

G
uviwxiy, for all

i≥ 0. ⊓⊔

In the proof just given, note that we can obtain an S-tree with yield uviwxiy as

follows. Begin with T ′, the tree obtained by removing T1 (except for vr) from T .

Add a copy of T ′1 , identifying its root with vr. Add another copy of T ′1 , identifying

its root with (the copy of) vr in the previous copy of T ′1 . Repeat, adding a total of

i copies of T ′1 . (Note that i = 0 is allowed, when no copies of T ′1 are added and we

finish with T ′.) Finally, add a copy of T2, identifying its root with the vertex vr in

the last copy of T ′1 (or T ′, if i = 0). If i ≥ 1, this replaces the final copy of T ′1 by a

copy of T1, and if i = 1, just results in T . For i = 2, the result is illustrated below.

A

A

S

A
︸ ︷︷ ︸

u
︸ ︷︷ ︸

v
︸ ︷︷ ︸

y
︸ ︷︷ ︸

x

︸ ︷︷ ︸
v

︸ ︷︷ ︸
x

︸ ︷︷ ︸
w

Figure 4.3

We come now to the machines which recognise context-free languages.

Definition. A pushdown stack automaton (abbreviated to PDA) is a septuple

M = (Q,F,A,Γ ,τ,q0,z0)
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where

(1) Q is a finite set (the set of states).

(2) F is a subset of Q (the set of final states).

(3) A is a finite set (the tape alphabet).

(4) Γ is a finite set (the stack alphabet).

(5) τ is a finite subset of Q× (A∪{ε})×Γ ×Q×Γ ∗ (the set of transitions).

(6) q0 ∈ Q (the initial state).

(7) z0 ∈ Z (the start symbol).
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a

M

...

stack

−→

←− tape

Figure 4.4

Essentially, it is a FSA (Q,F,A,τ,q0) with a “stack”.

This is best thought of as a collection of squares or

cells stacked loosely one on top of the other, each with

an element of Γ written on it. The machine can read

the top cell, then delete it and add a finite number of

new cells (possibly none) on top of the stack. Exactly

what it can do depends on the state, the tape symbol being read, and the stack symbol

being read. (The analogy has often been made with the stack of plates sometimes

found in cafeterias. These are on top of a spring which ensures that just the top plate

is visible. It can either be removed for use, or the person washing dishes can add

more plates to the stack.)

Definition. A configuration of M is an element of Q×A∗×Γ ∗.

The configuration (q,w,γ) is meant to represent the situation that M is in state q, w

is the remaining word on the tape at and to the right of the read head, and γ is the

word on the stack, read from top to bottom. This is a difference from FSA’s, where

only the tape symbol being read is needed. We can now formally describe the effect

of the transitions.
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Definition. If (q,a,z,q′,α) ∈ τ , we say that a configuration (q,aw,zβ ) yields the

configuration (q′,w,αβ ) by a single move.

Thus if α = ε , the top cell containing z is erased from the stack, otherwise α is

added to the top of the stack, replacing z. Note that a = ε is allowed. This means the

machine can operate on the stack, without reading or moving the tape (another dif-

ference from a FSA). The following two definitions are just as for Turing machines.

Definition. A computation of M, starting at c and ending at c′, is a finite sequence

of configurations c = c1, . . . ,cn = c′ (where n ≥ 1), such that ci yields ci+1 by a

single move, for 1≤ i≤ n−1.

Definition. If c, c′ are configurations, c−→
M

c′ means there is a computation starting

at c, ending at c′.

We can now describe acceptance of words by M. Unlike previous machines, there

are two ways this can be done.

Definition. The PDA M accepts w ∈ A∗ by final state if there exists γ ∈ Γ ∗ and

q ∈ F such that (q0,w,z0)−→
M

(q,ε,γ).

The language recognised by M by final state, denoted by L(M), is the set of all

elements of A∗ accepted by M by final state.

Thus w ∈ L(M) means that M, started in state q0, with w on the tape and just z0

on the stack, has a computation which eventually reaches a final state after reading

w on the tape.

Definition. The PDA M accepts w ∈ A∗ by empty stack if there exists q ∈ Q such

that (q0,w,z0)−→
M

(q,ε,ε).

The language recognised by M by empty stack, denoted by N(M), is the set of all

elements of A∗ accepted by M by empty stack.

Thus w ∈ N(M) if M, started as before, has a computation which eventually

results in a configuration with empty stack, after w has been read on the tape.

When considering recognition by empty stack, the set of final states is irrelevant,

and is usually taken to be the empty set.

Note. A configuration c = (q,w,α) is called terminal if a computation, on reaching

c, cannot be continued. That is, there is no transition (q,a,z,q′,α) where z is the

first letter of α , and a is either ε or the first letter of w. A configuration (q,w,ε) is

always terminal (if α = ε , no z ∈ Γ can be the first letter of α). Thus if M empties

its stack, it halts.

As with previous machines, there is a notion of deterministic PDA.

Definition. A PDA N is deterministic if

(1) For every q ∈ Q, a ∈ A∪{ε} and z ∈ Γ , there is at most one transition starting

with q,a,z.
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(2) For every q ∈Q and z ∈Γ , if there is a transition starting with q,ε,z, there is no

transition starting with q,a,z, for any a ∈ A.

Condition (1) will seem reasonable in view of the definitions for previous machines.

Condition (2) prevents a choice between a move without reading the tape and one

in which the tape is read.

We now show the equivalence of recognition by final state and recognition by

empty stack. If we confine attention to deterministic PDA’s these are no longer

equivalent.

Theorem 4.11. If L = N(M) for some PDA M, then L = L(M′) for some PDA M′. If

M is deterministic, M′ can be taken to be deterministic.

Proof. Suppose M = (Q,F,A,Γ ,τ,q0,z0). Define M′ = (Q′,F ′,A′,Γ ′,τ ′,q′0,x0),
where

Q′ = Q∪
{

q′0,q
′
}

, A′ = A, Γ ′ = Γ ∪{x0} , F ′ =
{

q′
}

and τ ′ consists of all transitions in τ , together with

(q′0,ε,x0,q0,z0x0)

and (q,ε,x0,q
′,ε) for all q ∈ Q.

Suppose w ∈ N(M), so (q0,w,z0)−→
M

(q,ε,ε) for some q ∈ Q. Hence, using the

same sequence of transitions, (q0,w,z0x0)−→
M

(q,ε,x0). Every transition of M is a

transition of M′, so there is a computation of M′ of the form:

(q′0,w,x0),(q0,w,z0x0), . . . ,(q,ε,x0),(q
′,ε,ε) (∗)

hence w∈ L(M′). It is easy to see that any computation of M′ starting with (q′0,w,x0)
and ending with (q′,ε,γ) for some γ has the form (∗). Hence, if w ∈ L(M′), then

(q0,w,z0x0)−→
M

(q,ε,x0)

and (q0,w,z0)−→
M

(q,ε,ε) by the same transitions, so w ∈ N(M). If M is determin-

istic, then clearly M′ is.

(The purpose of adding q′0 is to put x0 on the bottom of the stack, where it remains

while carrying out a computation of M. When M′ reads x0 on the stack, this means

M would have emptied the stack without x0 at the bottom, so M′ enters the final state

to accept w.) ⊓⊔

Languages of the form N(M) with M deterministic have a certain property which

we now describe. Recall that, if w is a word in some alphabet, and w = uv, then u is

called a prefix of w and v is called a suffix of w.

Definition. A language L is prefix-free if whenever w∈ L, no prefix of w, other than

w, is in L.
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Remark 4.2. If L = N(M) for a deterministic PDA M, then L is prefix-free. For if

w = uv ∈ L, u, v �= ε , u ∈ L, the computation of M accepting w must initially be the

same as that accepting u, since M is deterministic. But then M halts after accepting

u since its stack is empty, so can’t accept w, a contradiction. Note that, if ε ∈ L,

there is a transition starting with q0,ε,z0, so no transition starting with q0,a,z0 with

a ∈ A, by (2) in the definition of deterministic. (As usual, q0 is the initial state and

z0 the start symbol of M.) It follows that L = {ε}, which is prefix-free. Also, if

M has one state q0 and one transition, (q0,ε,z0,q0,ε), then M is deterministic and

N(M) = {ε}.

There are examples of languages of the form L(M), where M is a deterministic PDA,

which are not prefix-free, so are not of the form N(M). (See Example 2 near the end

of the chapter.) However, the prefix-free property is the only additional requirement

needed.

Theorem 4.12. If L = L(M) for some PDA M, then L = N(M′) for some PDA M′. If

M is deterministic and L is prefix-free, M′ can be taken to be deterministic.

Proof. Suppose M = (Q,F,A,Γ ,τ,q0,z0). Define M′ = (Q′,F ′,A′,Γ ′,τ ′,q′0,x0),
where

Q′ = Q∪
{

q′0,q
′
}

, A′ = A, Γ ′ = Γ ∪{x0} , F ′ = /0

and τ ′ consists of all transitions in τ , together with

(q′0,ε,x0,q0,z0x0)

(q,ε,z,q′,ε) for all q ∈ F , z ∈ Γ ′

(q′,ε,z,q′,ε) for all z ∈ Γ ′.

(This time the bottom of stack marker x0 is needed in case M empties its stack before

entering a final state; without it, M′ might then accept a word not in L(M). The extra

transitions are to make M′ empty its stack on entering a final state of M.) The proof

that this works is similar to the proof of Theorem 4.11.

Suppose w ∈ L(M). Then (q0,w,z0)−→
M

(q,ε,γ) for some q ∈ F , γ ∈ Γ ∗, so

(q0,w,z0x0)−→
M

(q,ε,γx0).

Since every transition of M is a transition of M′, we obtain a computation of M′ of

the form:

(q′0,w,x0),(q0,w,z0x0), . . . ,(q,ε,γx0), . . . ,(q
′,ε,ε) (∗)

hence w ∈ N(M′). Conversely, if w ∈ N(M′), a computation starting with (q′0,w,x0)
and ending with (p,ε,ε) for some state p must be of the form (∗) (where q∈ F). For

using transitions of M will always leave x0 on the bottom of the stack, so eventually,

after reading w, M′ must use a new transition to enter state q′, and then it will empty

its stack, remaining in state q′. Thus (q0,w,z0x0)−→
M′

(q,ε,γx0) using transitions of

M, hence (q0,w,z0)−→
M

(q,ε,γ), so w ∈ L(M).
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Suppose M is deterministic and L is prefix-free. Modify M′ by removing all tran-

sitions in τ starting with q, for some q ∈ F , to obtain a deterministic PDA M′′,

whose set of transitions is denoted by τ ′′. Since τ ′′ ⊆ τ ′, any computation of M′′ is

one of M′, so N(M′′) ⊆ N(M′) = L. Suppose w ∈ L(M) = L. Then there is some

computation

(q0,w,z0) = c0, . . . ,cn = (q,ε,α) where q ∈ F .

Let i be the smallest value of j such that c j = (q j,w j,α j) satisfies q j ∈ F . Then

there is a computation of M′′:

(q′0,w,z0),c
′
0, . . . ,c

′
i

where c′j is obtained from c j by replacing α j by α jx0. Further, w = uwi for some u,

and the suffix wi can be removed from w j in c′j to obtain a computation

(q′0,u,z0),c
′′
0 , . . . ,c

′′
i of M′′.

Since qi ∈ F , this computation can be continued, without moving the tape, until M′′

empties its stack. Hence u∈N(M′′)⊆ L. Since L is prefix-free, u = w∈N(M′′). ⊓⊔

Theorem 4.13. If L = N(M) for some PDA M, then L is context-free.

Proof. Let M = (Q,F,A,Γ ,τ,q0,z0). Define a grammar G = (VN ,A,P,S) by putting

VN = {(q,z, p) | q, p ∈ Q, z ∈ Γ }∪{S}

and letting P consist of the productions

(1) S−→(q0,z0,q) for all q ∈ Q

(2) (q,z, p)−→a(q1,y1,q2)(q2,y2,q3) . . .(qm,ym,qm+1), where qm+1 = p, for all

q,q1, . . . ,qm+1 ∈ Q, all a ∈ A∪{ε} and all z,y1, . . . ,ym ∈ Γ such that the quin-

tuple (q,a,z,q1,y1 . . .ym) is a transition. (If m = 0, the right-hand side of the

production is a.)

The idea is that a leftmost derivation of G, using the productions (2), should sim-

ulate a computation of M. Use of a transition of M will lead to use of a corresponding

production in a derivation. There are several possible productions, and some means

is needed to choose the states qi which occur in the variables. This needs an inter-

pretation of the variables: (q,z, p) is meant to indicate that, when in state q with z

as the top stack symbol, there is a computation ending in state p which “pops” z.

This means it has the effect of erasing z from the top of the stack. It does not mean

that the final transition used erases z, which may have been replaced earlier by some

other string. It means that what is on the stack in state p is what was below z on

the stack in state q. (Of course, not all variables will necessarily have this interpre-

tation.) A production (2) is intended to mean that, when M uses the corresponding

transition, one way to pop z is to enter state q1 and pop y1, ending in state q2, then

pop y2 ending in state q3, etc. (Again, not all productions will necessarily have this
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interpretation.) The terminals occurring at each stage of the derivation will indicate

the part of the input that M has read.

We show that this works, by proving that

(q,w,z)−→
M

(p,ε,ε) if and only if (q,z, p)
.
−→

G
w.

Suppose that (q,w,z)−→
M

(p,ε,ε). We show by induction on the number of moves

of a computation of M that (q,z, p)
.
−→

G
w. If the number of moves is 1, then w is in

A∪{ε} and (q,w,z, p,ε) is a transition. Therefore (q,z, p)−→w is a production, so

(q,z, p)
.
−→

G
w.

Suppose the number of moves, s, is greater than 1. The computation has the form

(q,w,z),(q1,v,y1 . . .ym), . . . ,(p,ε,ε)

where w = av and a ∈ A∪{ε}. Let v1 be the prefix of v such that the stack first

becomes as short as m−1 symbols after M has read v1. Let v2 be the subword of v

following v1 such that the stack first becomes as short as m−2 symbols after M has

also read v2, and so on. Thus v = v1 . . .vm. Note that, while v1 . . .vi−1 has been read,

yi . . .ym remains on the bottom of the stack.

Let qi (i≥ 2) be the state of M when the stack first becomes as short as m− i+1

(so qm+1 = p). The top stack symbol is then yi. Thus

(qi,vi,yi . . .ym)−→
M

(qi+1,ε,yi+1 . . .ym)

for 1≤ i≤m, by a computation with fewer than s moves. Using the same transitions

gives a computation showing (qi,vi,yi)−→
M

(qi+1,ε,ε). It follows by induction that

(qi,yi,qi+1)
.
−→

G
vi for 1≤ i≤ m. From the first move in the computation, there is a

production

(q,z, p)−→a(q1,y1,y2)(q2,y2,q3) . . .(qm,ym,qm+1).

Hence, there is a G-derivation:

(q,z, p),a(q1,y1,y2)(q2,y2,q3) . . .(qm,ym,qm+1), . . . ,

av1(q2,y2,q3) . . .(qm,ym,qm+1), . . . ,

av1v2(q3,y3,q4) . . .(qm,ym,qm+1), . . . ,av1v2 . . .vm = w

as required. (Note that, if we take leftmost derivations of vi from (qi,yi,qi+1), the

result is a leftmost derivation of w.)

Conversely, assume (q,z, p)
.
−→

G
w. We show that (q,w,z)−→

M
(p,ε,ε) by induc-

tion on the number of steps in a derivation of w from (q,z, p). If this number is 1,

then (q,z, p)−→w is a production. This can only happen if w ∈ A∪{ε} and there is

a transition (q,w,z, p,ε), hence (q,w,z)−→
M

(p,ε,ε).
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Suppose the number of steps in the derivation is greater than 1. The derivation

has the form

(q,z, p),a(q1,y1,q2)(q2,y2,q3) . . .(qm,ym,qm+1), . . . ,w

where qm+1 = p and (q,a,z,q1,y1 . . .ym) is a transition. We can write w = av1 . . .vm

where, for 1≤ i≤ m, (qi,yi,qi+1)
.
−→

G
vi, and by induction

(qi,vi,yi)−→
M

(qi+1,ε,ε)

for all such i. Thus, for each i, using exactly the same transitions, we find that

(qi,vivi+1 . . .vm,yiyi+1 . . .ym)−→
M

(qi+1,vi+1 . . .vm,yi+1 . . .ym).

Hence there is a computation

(q,w,z),(q1,v1v2 . . .vm,y1y2 . . .ym), . . . ,(q2,v2 . . .vm,y2 . . .ym), . . . ,

(q3,v3 . . .vm,y3 . . .ym), . . . ,(qm+1,ε,ε)

and since qm+1 = p, this completes the induction.

Finally, it follows that (q0,z0, p)
.
−→w if and only if (q0,w,z0)−→

M
(p,ε,ε). Now

using the productions (1), it follows that S
.
−→w if and only if (q0,w,z0)−→

M
(p,ε,ε)

for some p ∈ Q. hence LG = N(M). ⊓⊔

Remark 4.3. With more care, the proof shows that leftmost derivations of G sim-

ulate computations of M in a precise manner. Given a computation (q0,w,z0) =
c1,c2, . . . ,cn = (p,ε,ε), there is a unique associated leftmost derivation (q0,z0, p) =
α1,α2, . . . ,αn = w, and any leftmost derivation starting with (q0,z0, p) arises in this

way. If ci = (qi−1,vi,βi) and βi = zi1 . . .ziki
, where zi j ∈ Z, then

αi = ui(−,zi1,−) . . .(−,ziki
,−)

where w = uivi, and the dashes represent certain elements of Q.

Suppose M is deterministic; it follows that G is unambiguous. Further, in con-

figuration ci, ui has been read from the tape. When ui is first read, the computation

next uses a uniquely determined sequence of transitions (possibly none) of the form

(q,ε,−,−,−) before reading the next symbol on the tape. This sequence will ap-

pear in any computation in which ui is read from the tape at some point. Thus if

(q0,z0, p) = α1,α2, . . . ,αn = w is a leftmost derivation with α j = uiγ for some j (γ
is a string of variables of G), the corresponding computation of M will use all of this

sequence of transitions, and all of the corresponding words (beginning with ui) will

appear in the derivation. Hence, given two leftmost derivations S,(q0,z0, p), . . . ,w
and S,(q0,z0, p), . . . ,w′, if uγ appears in one derivation and uγ ′ appears in the other,

then both words appear in both derivations. (Here u ∈V ∗T , γ , γ ′ ∈V ∗N .)



4 Context-free Languages 77

Theorem 4.14. If L is context-free, then L = N(M) for some PDA M.

Proof. Suppose first that ε �∈ L. Let L = LG where G = (VN ,VT ,P,S,) is a context-

free grammar in Greibach normal form. Let M = ({q} , /0,VT ,VN ,τ,q,S), where τ
consists of all (q,a,A,q,γ) for all productions A−→aγ in P. For α ∈V ∗N and w∈V ∗T ,

we show that

S
.
−→wα if and only if (q,w,S)−→

M
(q,ε,α).

Suppose S
.
−→wα , so there is a leftmost derivation of w from S. We show by

induction on the number of steps in this derivation that (q,w,S)−→
M

(q,ε,α). If the

number of steps is 0, then w = ε , α = S, and (q,ε,S)−→
M

(q,ε,S) by 0 moves. Oth-

erwise, the derivation has the form

S, . . . ,vAβ ,vaγβ

where v ∈ V ∗T , β ∈ V ∗N and A−→aγ is a production. Thus w = va and α = γβ . By

induction, (q,v,S)−→
M

(q,ε,Aβ ), so (q,w,S)−→
M

(q,a,Aβ ). Also, (q,a,A,q,γ) is a

transition. Hence there is a computation

(q,w,S), . . . ,(q,a,Aβ ),(q,ε,γβ )

as required.

Conversely, suppose (q,w,S)−→
M

(q,ε,α). we show by induction on the number

of moves in a corresponding computation that S
.
−→wα . This is obvious if the num-

ber of moves is 0. Otherwise, put w = va; the computation has the form

(q,va,S), . . . ,(q,a,β ′),(q,ε,α).

The final transition used comes from a production of the form A−→aγ , so β ′ = Aβ
for some β , and α = γβ . Using all but the final transition, we obtain a computation

(q,v,S), . . .(q,ε,β ′)

so by induction S
.
−→vβ ′ = vAβ . Also, vAβ

.
−→vaγβ = wα , hence S

.
−→wα .

Taking α = ε gives S
.
−→w if and only if (q,w,S)−→

M
(q,ε,ε), hence L = N(M).

Finally, if ε ∈ L, then L \ {ε} is context-free (by Cor. 1.2), so by what we have

proved, L \ {ε} = N(M) for some PDA M with initial state q and start symbol S.

Add a new state q′ to M, and a new transition (q,ε,S,q′,ε) to obtain a PDA M′ with

L = N(M′). ⊓⊔

We now have two new classes of languages: those which are L(M) for some

deterministic PDA M, and those which are N(M) for some deterministic PDA M.

We shall show that these can be defined by corresponding classes of grammars. We

begin by giving a name to these classes

Definition. A language L is deterministic if L = L(M) for some deterministic PDA

M, and L is strict deterministic if L = N(M) for some deterministic PDA M.
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Before proceeding, we prove two results concerning regular, context-free and deter-

ministic languages.

Lemma 4.15. A regular language is deterministic.

Proof. Let M = (Q,F,A,τ,q0) be a deterministic FSA recognising the regular lan-

guage L. Let M′ be the deterministic PDA (Q,F,A,{z0} ,τ ′,q0,z0), where τ ′ con-

sists of all transitions (q,a,z0,q
′,z0) for (q,a,q′) ∈ τ . It is easily shown that if

w = a1 . . .an ∈ A∗ (n ≥ 0), then there is a computation of M with label w ending

at state q if and only if (q0,w,z0)−→
M′

(q,ε,z0). (The proof is by induction on |w|.)

Since M and M′ have the same set of final states, L = L(M′). ⊓⊔

Recall from Exercise 6, Chapter 1 that the intersection of two context-free lan-

guages is not necessarily context-free. However, we can now prove the following.

Lemma 4.16. Let R be a regular language. If L is a context-free language, then

L∩R is context-free. If L is deterministic, then L∩R is deterministic.

Proof. We can assume L, R have the same alphabet, A (otherwise take the union of

their alphabets as the new alphabet). By Theorem 4.14 and Theorem 4.11, L = L(M)
for some PDA M, say M = (Q,F,A,Γ ,τ,q0,z0). Also, R is recognised by some

deterministic FSA, say M′ = (Q′,F ′,A,τ ′,q′0).
Let δ be the transition function of M′. Define a new PDA M′′ by

M′′ = (Q×Q′,F×F ′,A,Γ ,τ ′′,(q0,q
′
0),z0)

where, for each (q,a,z, p,α) ∈ τ and q′ ∈ Q′, τ ′′ contains the transition

((q,q′),a,z,(p,δ (q′,a)),α).

(Recall that a ∈ A∪ {ε}, and δ (q′,ε) = q′.) It is left to the reader to verify that

L∩R = L(M′′). If M is deterministic, then clearly M′′ is, and the last part of the

lemma follows. ⊓⊔

We now define the classes of grammars which will be used to characterise the

two language classes recognised by deterministic PDA’s. In what follows, we make

some notation conventions. Greek letters denote elements of (VN ∪VT )∗, lower case

letters denote elements of (VT ∪{$})
∗, where $ is a new letter not in VN ∪VT , and

upper case letters denote elements of VN .

Definition. Let k ∈N and let G = (VN ,VT ,P,S) be a context-free grammar. Let $ be

a letter not in VN ∪VT . Then G is called LR(k) if S does not appear on the right-hand

side of any production, and given rightmost P-derivations

S$k, . . . ,αAw1w2,αβw1w2

S$k, . . . ,γBw,αβw1w3

where |w1|= k, then γ = α , A = B, and w = w1w3.
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(In a rightmost derivation of two words from S$k which agree up to k letters beyond

the point of the last replacement, the words at the penultimate step agree up to

k symbols beyond the point of the last replacement. The new letter $ is used as

a “padding symbol”, to make sure there are k letters beyond the point of the last

replacement. Note that, in these derivations, $k always remains at the right-hand

end, as $ does not occur in any production. In particular, w1w2 and w1w3 end in

$k. The term LR(k) stands for something like “parsing from the left of rightmost

derivations with k steps of lookahead”.)

Let G = (VN ,VT ,P,S) be a context-free grammar with r productions, and number

the productions of G from 1 to r. For k≥ 0, w ∈V ∗T {$}
∗ with |w|= k and 1≤ i≤ r,

let Rk(i,w) be the set of words γ for which there is a rightmost derivation

S$k, . . . ,αBww2,αβww2

where B−→β is the ith production and γ = αβw.

Lemma 4.17. Let G = (VN ,VT ,P,S) be a context-free grammar. Then for any k≥ 0,

w ∈V ∗T {$}∗ with |w|= k and 1≤ i≤ r, the set Rk(i,w) is regular.

Proof. Define a grammar G′ = (V ′N ,VN ∪VT ∪{$} ,P′,S′) as follows. The elements

of V ′N are the ordered pairs (A,v), where A ∈VN , v ∈V ∗T {$}
∗ and |v|= k. The start

symbol S′ is (S,$k). The productions in P′ are as follows.

(1) Suppose A−→X1 . . .Xn is in P (here Xi ∈ VN ∪VT ). If 1 ≤ j ≤ n and X j ∈ VN ,

then P′ contains the productions

(A,v)−→X1 . . .X j−1(X j,v
′)

for every v, v′ in V ∗T {$}
∗ of length k such that for some v′′, X j+1 . . .Xnv

.
−→

G
v′v′′.

(2) If B−→β is the ith production, then the production (B,w)−→βw is in P′.

We show that LG′ = Rk(i,w). (This will not finish the proof-G′ has to be modified to

obtain a regular grammar.) In a G′-derivation, all strings occurring are of the form

α(A,v), where α ∈ (VN ∪VT )∗, except possibly the last one; the production in (2)

can be used only once, as the final step in the derivation. Thus, it suffices to show

that, for v ∈V ∗T {$}
∗ of length k,

(S,$k)
.
−→

G′
α(A,v) if and only if, for some v1, there is a rightmost P-derivation

S$k, . . . ,αAvv1.

Assume there is a rightmost P-derivation S$k, . . . ,αAvv1. We show by induction on

the number of steps in the derivation that (S,$k)
.
−→

G′
α(A,v). If the number of steps

is 1, this is easy to see. If the number of steps is greater than 1, then it has the form

S$k, . . . ,γCv′v2,γδv′v2 = αAvv1
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where v′ ∈ V ∗T {$}
∗ has length k and the final production used is C → δ . Suppose

δ �∈ V ∗T . Then δ has the form δ ′Av3, where γδ ′ = α and v3v′v2 = vv1. It follows

that v is a prefix of v3v′, so (C,v′)−→δ ′(A,v) is a production of P′. By induction,

(S,$k)
.
−→

G′
γ(C,v′). Hence (S,$k)

.
−→

G′
γδ ′(A,v) = α(A,v).

Otherwise (δ ∈ V ∗T ), γ has the form αAy, where y ∈ V ∗T . At some point in the

derivation, the letter A was introduced, by a production of the form D−→γ1Aγ2, so

it has the form

S$k, . . . ,γ3Dy1y′,γ3γ1Aγ2y1y′, . . . ,αAvv1

where y1 ∈ V ∗T {$}
∗ and |y1| = k. Thus α = γ3γ1 since the derivation is rightmost,

and inductively (S,$k)
.
−→

G′
γ3(D,y1). It follows that γ2

.
−→

P
y2 for some terminal

string y2 such that y2y1 is a prefix of vv1. Hence (D,y1)−→γ1(A,v) is in P′. Thus

(S,$k)
.
−→

G′
γ3γ1(A,v) = α(A,v) as required.

To prove the converse, it suffices by Lemma 4.2 to show that if (S,$k)
.
−→

G′
α(A,v)

then for some v1, there is a P-derivation S$k, . . . ,αAvv1. The proof is by induction

on the number of steps in a derivation of α(A,v) from (S,$k), and is left to the

reader.

Finally, we have to convert G′ to a regular grammar generating Rk(i,w). All pro-

ductions of G′ are of the form A−→vB or A−→v where v is a string of termi-

nals of G′. Applying the procedure of Lemmas 4.1 and 4.6 gives a grammar of

the same form generating Rk(i,w), where all strings v which occur have length

at least 1, except that S′−→ε may be present. If A → v is a production, where

v = x1 . . .xn (n≥ 2), add new variables B1, . . . ,Bn−1 and replace this production by

the productions

A−→x1B1,B1−→x2B2, . . . ,Bn−2−→xn−1Bn−1,Bn−1−→xn.

The variables B1, . . .Bn−1 can be added one by one. First add B1 and replace A−→v

by A−→x1B1 and B1−→x2 . . .xn, then (if n > 2) add B2 and replace B1−→x2 . . .xn

by B1−→x2B2 and B2−→x3 . . .xn and so on (the final step being to add Bn−1 and

replace Bn−2−→xn−1xn by Bn−2−→xn−1Bn−1 and Bn−1−→xn. It follows that the

new grammar generates Rk(i,w) (see Exercise 3 at the end of the chapter).

If a production has the form A−→vB (v = x1 . . .xn, n ≥ 2) proceed similarly,

but the last production should be Bn−1−→xnB. Again the variables can be added

one by one (changing the production B1−→x2 . . .xn to B1−→x2 . . .xnB, etc) and by

Exercise 3, the new grammar generates Rk(i,w).
Doing this for every such production gives a regular grammar which generates

Rk(i,w). ⊓⊔

Remark 4.4. A grammar is called right linear if all productions are of the form

A−→uB or A−→u, where A, B are variables and u is a string of terminals. The last

part of the preceding proof shows that a right linear grammar generates a regular

language. Similarly, one can define left linear (all productions of the form A−→Bu

or A−→u), and show that a left linear grammar generates the same language as
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some left regular grammar (see Remark 1.1). In view of Remark 1.1, the following

are equivalent, for a language L.

(1) L is regular.

(2) L is generated by a right linear grammar.

(3) L is generated by a left linear grammar.

Remark 4.5. Let k ≥ 0. In the circumstances of Lemma 4.17, suppose G is LR(k)
and γ ∈ Rk(i,w) and γu ∈ Rk( j,v). Then i = j, v = w and u = ε . (Recall the notation

convention: u ∈ (VT ∪{$})
∗.) For there are derivations

S$k, . . . ,αAww2,αβww2 and S$k, . . . ,δBvv2,δζ vv2,

where γ = αβw and γu = δζ v, and A−→β , B−→ζ are respectively the ith and jth

productions of G. By the LR(k) assumption, α = δ , A = B and wuv2 = vv2, hence

w = v as |w|= |v|= k. It follows that u = ε and β = ζ , so i = j.

Now suppose G is LR(k). By Theorem 1.4, there is a FSA Mk(i,w) with alphabet

VN ∪VT ∪ {$}, recognising Rk(i,w), for every possible value of i and w. We can

assume that for (i,w) �= ( j,v), Mk(i,w) and Mk( j,v) have no states in common. Let

Rk =
⋃
i,w

Rk(i,w). From the proof of Lemma 1.5(3), there is a FSA Mk with alphabet

VN ∪VT ∪ {$} recognising Rk. Its transition diagram is constructed by taking the

union of the transition diagrams of Mk(i,w) for each value of i and w, then adding

a new state s as initial state, with extra edges from s labelled ε to the initial state of

Mk(i,w), for each i and w. The final states are those of every Mk(i,w).
Now apply the construction of Prop.1.3 to Mk, to obtain a deterministic FSA Dk

recognising Rk. The states of Dk are subsets of the states of Mk, and a state is a

final state if and only if it contains a final state of Mk. Suppose there is a path in the

transition diagram of Dk from the initial state to a final state Q, with label γ . Assume

Q contains a final state q of Mk(i,w) and a final state q′ of Mk( j,v). It is easily seen

that there are paths in Mk(i,w) and Mk( j,v) starting at their initial states and ending

at q, q′ respectively, both with label γ . Thus γ ∈ Rk(i,w) and γ ∈ Rk( j,v), so by

Remark 4.5, i = j.

Next, modify Dk, to obtain D′k, by letting the final states of D′k be the final states

Q of Dk for which there is a path in the transition diagram of Dk from the initial

state to Q. Then D′k is still deterministic and recognises Rk, and we have associated

to each final state of D′k a unique production of G.

Theorem 4.18. If L = LG for an LR(k) grammar G, then L$k is deterministic (where

$ is a letter not in the alphabet of L).

Proof. Number the productions. Let Rk be the set in the preceding discussion, and

let D be the deterministic FSA D′k recognising Rk, with alphabet VN ∪VT ∪ {$}.

Denote the initial state of D by d. By an edge of D, we mean an edge of its transition

diagram. Let λ (e) denote the label on edge e of D. If u = e1, . . .en is a sequence of

edges of D (not necessarily a path), define the label on u, λ (u), to be λ (e1) . . .λ (en)
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and put t(u) = t(en) (t(ε) = d). To construct a deterministic PDA M recognising

L$k, we take as tape alphabet (VT ∪{$}), and as stack alphabet we take the set of

edges of D together with a start symbol z0. Note that z0 will be used as a bottom

of stack marker. We define t(z0) to be d. There is an initial state q0. The machine

carries out one of the following two steps as often as possible.

(1) In state q0, if the top symbol x of the stack is such that t(x) is a final state of

D, read symbols from the stack, storing them in the states as a word, with the

top symbol on the right. At most k+ l symbols are read, where l is the length of

the longest right-hand side of a production. Suppose, during the computation,

the label on the word read is of the form βw, where |w|= k and the production

associated to t(e) is of the form A−→β . Let the symbol on top of the stack

after reading βw be z. Add new edges f0, f1, . . . , fk on top of the stack ( f0 at the

bottom), where f0 is the edge from t(z) with label A, and for i > 0, fi is the edge

from t( fi−1) with label ai, where w = a1 . . .ak. Then return to state q0 without

further altering the stack or reading the tape. If this never happens, the machine

will halt after reading at most k + l symbols.

To do this, take a new letter q1, and add new states (q1,u), where u is a word

of length at most k + l in the edges of D. Add transitions (q0,ε,x,(q1,ε),x) for

x in the stack alphabet and t(x) a final state of D, and ((q1,u),ε,e,(q1,eu),ε),
for u of length less than k + l, where e is an edge of D and one of the following

fails.

(a) λ (u) is of the form βw where |w|= k.

(b) t(u) is a final state of D.

(c) the production associated to t(u) has the form A−→β .

For every u satisfying (a)–(c) of length at most k + l, add a transition

((q1,u),ε,z,q0, fk . . . f1 f0z)

where z is in the stack alphabet, f0 is the edge of D from t(z) with label A and

for i > 0, fi is the edge from t( fi−1) with label ai, where w = a1 . . .ak.

(2) In state q0, if the top symbol x of the stack is such that t(x) is not a final state

of D, read the first k + 1 symbols of the stack (or as many as possible if there

are fewer than k +1 symbols on the stack), storing them in the states as a word

(with the top symbol on the right). If the word obtained is u, where λ (u) = S$k,

and the top symbol of the stack is z0, move to a final state (only one final state is

needed). Otherwise, restore the stack. If possible, read a symbol from the tape,

say a, and add f to the top of the stack, where f is the edge from t(x) with label

a. Then return to state q0.

To do this, add a new symbol q2 and states (q2,u) where u is a word of length

at most k+1 whose letters are edges of D. Add transitions (q0,ε,z,(q2,ε),z) for

z in the stack alphabet and t(z) not a final state of D, and ((q2,u),ε,e,(q2,eu),ε),
for u of length less than k+1 and e an edge of D. Also, add a state p as the only

final state and transitions ((q2,u),ε,z0, p,z0), whenever λ (u) = S$k.
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Now add new states (q3,u) where u is a word of length at most k + 1 whose

letters are edges of D. Add transitions

((q2,u),ε,z,(q3,u),z)

for z in the stack alphabet, and u of length k + 1, except when λ (u) = S$k and

z = z0. Also add transitions ((q2,u),ε,z0,(q3,u),z0) for u with |u|< k+1. Then

add transitions

((q3,eu),ε,z,(q3,u),ez)

where e is an edge of D, |u| ≤ k and z in the stack alphabet. Finally add tran-

sitions ((q3,ε),a,x,q0, f x), where a is in the tape alphabet, x is in the stack

alphabet and f is the edge from t(x) with label a.

It is left to the reader to check that M is deterministic. Suppose M is started in state

q0 with w on the tape and z0 on the stack. Whenever M is in state q0, the stack

contains z0e1 . . .en, (with z0 at the bottom), where e1, . . . ,en are the edges in a path

starting at d. This follows by induction on the number of moves. Call λ (e1) . . .λ (en)
the label on the stack. If, in state q0, the label γ on the stack is in Rk, then by Remark

4.5, γ ∈ Rk(i,w) for unique i and w. By the discussion preceding the theorem, the

ith production is the production associated to t(x), where x is the top symbol of the

stack. If this ith production is A−→β , then γ has the form αβw. Step 1 is carried

out and the stack label becomes αAw. Otherwise, either M halts during Step 1, or

Step 2 is carried out. Then either M enters the final state, or an edge corresponding

to the tape symbol being read is added to the top of the stack (or if there is no symbol

on the tape, the machine halts in state (q3,ε)).
If w∈ L$k, there is a rightmost derivation of w from S$k. During the computation,

when Step 1 is carried out for the ith time, let the stack label initially be αi (so

αi ∈ Rk) and let ui be the remaining word on the tape. Suppose Step 1 is carried out

r times. Then this derivation is S$k,αrur,αr−1ur−1, . . . ,α1u1, and the productions

used are those used in Step 1, in reverse order. This follows by induction on r, using

Remark 4.5, and is left to the reader. If the first production used is S−→β , then

αrur = β$k, and β$k ∈ Rk. Again by Remark 4.5, αr = β$k and ur = ε . Thus after

the final use of Step 1, the stack label is S$k and all of w has been read. When the

stack label is S$k, Step 2 is carried out and M enters the final state. This is because

S$k �∈ Rk, as S does not occur on the right of any production. Thus M accepts w.

Conversely, if M accepts, then S$k followed by the words αiui as defined above,

in reverse order, give a derivation of w from S$k, hence w ∈ L$k. It follows that M

recognises L$k. ⊓⊔

Theorem 4.19. If L is strict deterministic, then L = LG for some LR(0) grammar G.

Proof. Let M be a deterministic PDA with L = N(M). Construct the grammar ob-

tained from M in Theorem 4.13, then use Lemma 4.3 to remove variables and pro-

ductions so that all variables are generating, obtaining a grammar G. We show that

G is LR(0). It is clear that S does not occur on the right-hand side of any production

of G. Suppose there are rightmost derivations
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S, . . . ,αAw2,αβw2 (4.1)

S, . . . ,γBw,γδw = αβw3 (4.2)

as in the definition of LR(0). We have to show that γ = α , A = B, and w = w3. By

symmetry we can assume that |γδ | ≤ |αβ |, so we can write γδu = αβ and w = uw3

for some u. Let wα , wβ be terminal strings with α
.
−→wα , β

.
−→wβ . By Lemma

4.2, there are rightmost derivations of wα , wβ from α , β respectively, hence the

derivation 4.1 can be extended to a rightmost derivation

S, . . . ,αAw2,αβw2, . . . ,αwβ w2, . . . ,wα wβ w2 (4.3)

and this derivation comes from a parsing tree, which determines a corresponding

leftmost derivation, which has the form

S, . . . ,wα Aζ2,wα βζ2, . . . ,wα wβ ζ2, . . . ,wα wβ w2 (4.4)

where ζ2 is a string with ζ2
.
−→w2. It is easy to see that there are terminal strings

wγ , wδ , such that γ
.
−→wγ , δ

.
−→wδ and wγ wδ u = wα wβ . Again by Lemma 4.2,

derivation 4.2 can be extended to a rightmost derivation of the form:

S, . . . ,γBuw3,γδuw3, . . . ,wγ wδ uw3 (4.5)

and this derivation corresponds to a parsing tree which determines a leftmost deriva-

tion of the form:

S, . . . ,wγ wδ uζ3, . . . ,wγ wδ uw3 (4.6)

where ζ3 is a string with ζ3
.
−→w3. By Remark 4.3, the string wγ wδ uζ3 occurs in

the derivation 4.4 and so ζ3
.
−→w2. The first production in derivation 4.6 has the

form S−→ϕψ , where ϕ
.
−→wγ wδ u and ψ

.
−→ζ3. The rightmost derivation 4.5 has

the form

S,ϕψ, . . . ,ϕw3, . . . ,γBuw3,γδuw3, . . . ,wγ wδ uw3

and so ϕ
.
−→γBu. By Lemma 4.2, there is a rightmost derivation of the form

S,ϕψ,ϕζ3, . . . ,ϕw2, . . . ,γBuw2,γδuw2, . . . ,wγ wδ uw2 (4.7)

Truncating this derivation gives a rightmost derivation

S, . . . ,γBuw2,γδuw2 = αβw2 (4.8)

By Remark 4.3, G is unambiguous, so derivations 4.3 and 4.7 are equal, hence

derivations 4.1 and 4.8 are the same. (The string αβw2 cannot occur twice in deriva-

tion 4.3, otherwise we could obtain a shorter rightmost derivation of wα wβ w2 from

S, contradicting the fact that G is unambiguous.) In particular, αAw2 = γBuw2, so

uw2 = w2, A = B and α = γ , hence u = ε and w = w3. ⊓⊔
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Lemma 4.20. Let G = (VN ,VT ,P,S) be a context-free grammar.

(1) If G is LR(k) for some k then G is unambiguous.

(2) If G is LR(0) then LG is prefix-free.

Proof. (1) Given a rightmost derivation S, . . . ,β ,α (α ∈ (VN ∪VT )∗), let $ be a letter

not in VT . Adding $k to the right of every string in the derivation gives a rightmost

derivation. Taking w2 = w3 in the definition of LR(k) we find that β$k is uniquely de-

termined by α$k, hence β is uniquely determined by α . Also, there is no derivation

S, . . . ,S of length greater than 1, as S does not appear on the right of any production.

Hence a rightmost derivation of α from S is uniquely determined by α , by induction

on its length.

(2) Suppose u, uv ∈ LG and v �= ε . There are rightmost derivations

S, . . . ,αAw,αβw = u

S, . . . ,γBw′,αβwv.

By the LR(0) condition, γBw′ = αAwv. Removing the last words in the derivations

gives rightmost derivations and this argument can be repeated. Continuing, we find

that Sv eventually appears in the second derivation, so S
.
−→Sv. But this is impossi-

ble as v �= ε and S does not appear on the right-hand side of any production. ⊓⊔

Theorem 4.21. For a language L, the following are equivalent.

(1) L = LG for some LR(0) grammar G.

(2) L is deterministic and prefix-free.

(3) L is strict deterministic.

Proof. Assume (1). By Theorem 4.18, L is deterministic and by Lemma 4.20, it is

prefix-free, so (2) holds. It follows from Theorem 4.12 that (2) implies (3), and from

Theorem 4.19 that (3) implies (1). ⊓⊔

To deal with LR(k) languages in general, some digressions are required. First, we

introduce a new operation on languages.

Definition. If L1, L2 are languages, the quotient L1/L2 is defined by

L1/L2 = {u | there exists v ∈ L2 such that uv ∈ L1} .

It is true that, if L is deterministic and R is regular, then L/R is deterministic. This is

not easy and involves the construction of a “predicting machine”. See [20, Theorem

12.4] or [21, Theorem 10.2]. However, we shall only need a special case, which is

much easier.

In the special case that L2 = {a}, where a is a letter, we write L1/a, that is,

L1/a = {u | ua ∈ L1}. Note that, if L1 has alphabet A and a �∈ A, then L1/a is empty.

Lemma 4.22. If L is deterministic and a0 is any letter, then L/a0 is deterministic.



86 4 Context-free Languages

Proof. Let M = (Q,F,A,Γ ,τ,q0,z0) be a deterministic PDA recognising L by final

state. Let B be the set of all pairs (q,z) ∈Q×Γ such that there is a transition in τ of

the form (q,a0,z, p,α), where p ∈ F . Then for w ∈ A∗, w ∈ L/a0 if and only if

(q0,w,z0)−→
M

(q,a0,zγ)

for some (q,z) ∈ B and γ ∈ Γ ∗. Define a new PDA M′ = (Q′,F ′,A,Γ ,τ ′,q0,z0) as

follows. For every q ∈ Q, take two new states q′, q′′ and let Q′ = {q,q′,q′′ | q ∈ Q}.

Then put F ′ = {q′′ | q ∈ Q}. The set τ ′ is obtained from τ as follows. First, replace

every (q,a,z, p,α) ∈ τ by (q,a,z, p′,α). Then add new transitions as follows:

(q′,ε,z,q,z) for (q,z) ∈ Q×Z, (q,z) �∈ B

(q′,ε,z,q′′,z)
(q′′,ε,z,q,z)

}
for (q,z) ∈ B.

Clearly w∈ L(M′) if and only if (q0,w,z0)−→
M′

(q′′,ε,α) for some q∈Q and α ∈Γ ∗,

if and only if (q0,w,z0)−→
M′

(q′,ε,zγ) for some (q,z) ∈ B and γ ∈ Γ ∗. Finally, it is

easily seen that this is true if and only if (q0,w,z0)−→
M

(q,ε,zγ) for some (q,z) ∈ B

and γ ∈ Γ ∗. Thus L(M′) = L/a0, and M′ is obviously deterministic. ⊓⊔

Note that, in the proof, if a0 is not in A, B is empty, so M′ recognises the empty

language, as it never reaches a final state. This accords with the remark above that

L/a0 is empty.

Theorem 4.23. Let $ be a letter not in the alphabet of a language L. If L$ = LG for

some LR(0) grammar G, then L = LG′ for some LR(1) grammar G′.

Proof. Let G = (VN ,VT ,P,S). Using Lemma 4.3, we can assume that all variables of

G are generating. (The construction removes some of the variables and productions,

which still leaves an LR(0) grammar.) Construct a grammar G′ = (V ′N ,V ′T ,P′,S) by

making $ a variable rather than a terminal, and adding the production $−→ε to P.

Thus V ′N = VN ∪{$}, V ′T = VT \ {$} and P′ = P∪{$−→ε}. We shall show G′ is

LR(1) and LG′ = L. Since S does not occur on the right of any production of G, it

does not occur on the right of any production of G′.

Given a G′ derivation of α from S, if there are n uses of $−→ε , then omitting

them gives a G-derivation of a word with at least n occurrences of $. Since every

variable of G is generating, the derivation can be continued to obtain a G-derivation

of a word w in V ∗T , still with at least n occurrences of $, since $ ∈VT . But w ∈ LG =
L$, so n≤ 1.

By Lemma 4.2 and its proof, the G′ derivation of α from S defines an S-tree, and

the tree defines a rightmost derivation of α from S, using the same productions as

the original derivation, but in a possibly different order. (Further, every rightmost

derivation is obtained in this way.) This rightmost derivation therefore uses $−→ε
at most once. Since the derivation is rightmost, if $−→ε is used it must remove

an occurrence of $ at the right-hand end of the word. Otherwise, the procedure of
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the preceding paragraph would give a G-derivation of a word u$v ∈V ∗T with v �= ε ,

which is impossible as LG = L$.

If α ∈ (V ′T )∗, then there must be a use of $−→ε in the derivation. Otherwise, the

derivation is a G-derivation with α ∈ (VT )∗, but α �∈ L$ since $ �∈V ′T , a contradiction.

Thus if the G′-derivation is S = α0,α1, . . . ,αn = α , then for some i, αi = γ$ and

αi+1 = γ . Further, none of α0, . . . ,αi−1 end with $, since the derivation is rightmost.

Omitting the use of $−→ε gives a G-derivation

S,α1, . . . ,αi = αi+1$,αi+2$, . . . ,αn$ = α$.

Consequently, α$ ∈ L$ (as V ′T ⊆ VT ), so α ∈ L, hence LG′ ⊆ L. Also, this G′-

derivation is rightmost. The only place at which a production $−→ε can be inserted

into this derivation to get a rightmost G′-derivation is after αi, giving the original

G′-derivation (αi is the first word in the derivation to end with $). Thus different

rightmost G′-derivations of a word α ∈ (V ′T )∗ give different rightmost G-derivations

of α$. Since G is unambiguous (Lemma 4.20), so is G′.

If w ∈ L, then S
.
−→

G
w$ by some G-derivation. Using the G′-production $−→ε

then gives a G′-derivation of w, so S
.
−→

G′
w, hence w ∈ LG′ . Thus L = LG′ .

If A ∈ VN , A is generating in G, and by use of $−→ε , we see that A
.
−→

G′
w for

some w ∈ (V ′T )∗, so A is generating in G′. Clearly $ is generating in G′ (ε ∈ (V ′T )∗),
so all variables of G′ are generating.

Since $ has become a variable, to show G′ is LR(1), we need to choose a new

letter not in V ′N ∪V ′T = VN ∪VT , which we denote by €. Thus, we have to show that,

given rightmost G′-derivations

S€, . . . ,αAw1w2,αβw1w2

S€, . . . ,γBw,αβw1w3

where |w1|= 1, then γ = α , A = B, and w = w1w3. There are two possible cases.

(a) w1 = €, in which case w2 = w3 = ε .

(b) w2, w3 both end in €, say w2 = w′2€, w3 = w′3€.

In both cases, w ends in €, say w = w′€.

Case (a). Omitting the occurrences of € gives G′-derivations

S, . . . ,αA,αβ

S, . . . ,γBw′,αβ

Since every variable of G′ is generating, there is a G′-derivation from αβ of some

u ∈ (V ′T )∗, and we can take the derivation to be rightmost (by Lemma 4.2). Adding

this derivation to the right of the two derivations of αβ gives two rightmost G′-

derivations of u from S. Since G′ is unambiguous, these two derivations are the same,

hence the two derivations of αβ are the same. Consequently, αA = γBw′. Since B is
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the rightmost variable in γBw′, w′ = ε , B = A and γ = α . Hence w = w′€ = w1w3,

as required.

Case (b). In this case, omitting the occurrences of € gives derivations

S, . . . ,αAw1w′2,αβw1w′2

S, . . . ,γBw′,αβw1w′3.

Since w1 �= ε , the final productions used in these derivations are not $−→ε . There-

fore omitting the single use of this production, if it occurs, from the derivations gives

rightmost G-derivations

S, . . . ,αAw′′2 ,αβw′′2

S, . . . ,γBw′′,αβw′′3 .

where w′′2 is either w1w′2 or w1w′2$, and either w′′ = w′, w′′3 = w1w′3, or w′′ = w′$,

w′′3 = w1w′3$. Since G is LR(0), A = B, γ = α and w′′3 = w′′. It follows that w1w′3 = w′,

hence w1w3 = w, as claimed. ⊓⊔

The next theorem needs a lemma whose proof is quite subtle, and which depends

on another non-trivial lemma. The proofs of these two lemmas (A.3 and A.4) have

been placed in Appendix A.

Theorem 4.24. For a language L, the following are equivalent.

(1) L = LG for some k and LR(k) grammar G.

(2) L is deterministic.

(3) L = LG for some LR(1) grammar G.

Proof. Again let $ be a letter not in the alphabet of L.

Assume (1). By Theorem 4.18, L$k is deterministic. For k > 0, L$k−1 = L$k/$,

and by an easy induction on k, using Lemma 4.22, L is deterministic, so (2) holds.

Assume (2). Then L$ is deterministic. For L = L(M) for some deterministic PDA

M = (Q,F,A,Γ ,τ,q0,z0) and by Lemma A.4, we can assume M has no transitions

starting with (q,ε, . . .), where q ∈ F . Let M′ = (Q∪{ f} ,{ f} ,A∪{$} ,Γ ,τ ′,q0,z0)
where the transitions in τ ′ are those in τ , together with (q,$,z, f ,z) for all q ∈ F and

z ∈ Γ . Then M′ is deterministic and it is easy to see that L$ = L(M′).
Clearly L$ is prefix-free, hence L$ is LG for some LR(0) grammar G by Theorem

4.21. Now (3) follows by Theorem 4.23. Obviously (3) implies (1). ⊓⊔

The deterministic and strict deterministic languages can also be characterised by

what are called deterministic and strict deterministic grammars. See [12], §11.4 and

§11.8, Problem 4. Note however, that a different definition of LR(k) is used in [12].

This gives a different class of languages generated by LR(0) grammars (see [12,

Theorem 13.3.1]). For further discussion, see the problems at the end of [12, §13.2].

We now give some examples to clarify the inclusion relations between the classes

of languages we have studied.
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Examples.

(1) (Example 10.1 in [21].) L =
{

0i1 j2k | i = j or j = k
}

is context-free, being gen-

erated by the grammar with VN = {A,B,C,D,S}, VT = {0,1,2} and productions

S−→AB |CD, A−→0A1 |ε, B−→2B |ε, C−→0C |ε, D−→1D2 |ε.

But L is not deterministic. Otherwise Lc would be deterministic (see the note af-

ter Lemma A.4 in Appendix A), so context-free. The language 0∗1∗2∗ (meaning

{0}∗ {1}∗ {2}∗) is regular by Lemma 1.5, so L1 := Lc ∩ 0∗1∗2∗ is context-free

by Lemma 4.16. But L1 =
{

0i1 j2k | i �= j and j �= k
}

, which is not context-free,

by a generalisation of the Pumping Lemma due to Ogden ([21, Lemma 6.2]).

Other examples of context-free, non-deterministic languages, given in §6.4 of

[22], are

{0n1n | n≥ 1}∪
{

0n12n | n≥ 1
}

and the set of even-length palindromes on the alphabet {0,1}.

(2) The language L =
{

w ∈ {a,b}∗ | w has an equal number of a’s and b’s
}

is de-

terministic. It is left as an exercise to construct a deterministic PDA recognising

L by final state. However, it is not prefix-free, so is not strict deterministic. Also,

L is not regular. For suppose it is. Choose p as in the Pumping Lemma (Lemma

1.8). Let x = apbp, and decompose x as uvw as in this lemma. Since |uv| ≤ p,

uv consists entirely of a’s. Taking i = 0 in the Pumping Lemma, uw ∈ L. But

all b’s in x occur in w, and the number of a’s in uw is less than p, since v �= ε .

Hence uw has more b’s than a’s, so uw �∈ L, a contradiction.

(3) The language {0n1n | n≥ 1} is strict deterministic (this is left as an exercise),

but is not regular (see the example after Theorem 1.7, or use the Pumping

Lemma as in Example 2).

(4) The language {0n | n≥ 1} is regular (see Example 1 near the beginning of

Chapter 1) but is not prefix-free, so is not strict deterministic.

Using these and examples from previous chapters, together with some of the results

which have been proved, there is thus a hierarchy of language classes as illustrated

below, where a class is strictly contained in a class above joined to it by a line.

recursively enumerable

recursive

context sensitive

context-free

deterministic

����
����

��
				

				
	

strict deterministic regular

Figure 4.5
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We remark that the diagram can be considerably elaborated, in particular by some of

the classes mentioned at the end of Chapter 3, for suitable choices of f (n). (These

classes are known as complexity classes). Although there is no inclusion relation

between the bottom two classes, they do intersect. A regular, prefix-free language L

is deterministic, so L is strict deterministic, by Theorem 4.21. A simple example is

L = {w}, where w is a non-empty word. More elaborate examples can be found in

the exercises for §2.2 in [21].

Exercises on Chapter 4

1. Find a grammar in Chomsky Normal Form generating the same language as the

grammar

G = ({A,B,S} ,{a,b} ,P,S)

where P consists of the productions

S−→AA|B

A−→aA|B|BBB

B−→b

2. Find a grammar in Greibach Normal Form generating the same language as the

grammar

G = ({A,B,S} ,{a,b} ,P,S)

where P consists of the productions

S−→SA|a

A−→B|a

B−→Ab

3. Let G = (VN ,VT ,P,S) be a context-free grammar, and suppose P contains a

production A−→uv, where u, v ∈ (VN ∪VT )∗. Let G′ be obtained by adding

a new variable C and replacing A−→uv by the two productions A−→uC and

C−→v. Show that LG = LG′ . If, instead, we replace A−→uv by A → Cv and

C−→u, show that the language generated is not changed.

4. A grammar is said to be linear if all productions are of the form A→ uBv or A→
u, where A, B are variables and u, v are strings of terminals (possibly empty).

(Thus a linear grammar is context-free, and regular grammars are linear.) A

language is linear if it is generated by a linear grammar.
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(a) If L is a linear language, show that L is generated by a grammar with all

productions of the form A−→uB, A−→Bu or A−→u, where A, B are vari-

ables and u is a string of terminals.

(b) If L is linear, show that L\{ε} is generated by a grammar with all produc-

tions of the form A−→aB, A−→Ba or A−→a, where A, B are variables

and a is a terminal. (Hint: see Remark 4.4.)

(c) Give a grammar in the form of part (b) generating {0n1n | n > 0}. (It is

linear but not regular-see the example after Theorem 1.7. It may help to

start with the grammar in Example (3), p.3.)

5. Prove the Pumping Lemma for linear languages. Let L be a linear language.

Then there is an integer p > 0, depending only on L, such that, if z ∈ L and

|z| ≥ p, then z can be written as z = uvwxy, where |uvxy| ≤ p, v and x are

not both ε and for every i ≥ 0, uviwxiy ∈ L. [Hint: consider parsing trees for a

grammar generating L\{ε} in the form of Exercise 4(b). Argue as in the proof

of the Pumping Lemma for context-free languages; p, and the vertices vr, vs

need to be chosen differently.]

6. Show that {0m1m0n1n | m, n > 0} is context-free but not linear.



Chapter 5

Connections with Group Theory

There have been connections between formal language theory and group theory

for a long time. The original connections involved certain decision problems, and

we shall study one of these, the word problem. Given a group G and a finite set

of generators, this asks if there is a procedure with a finite set of instructions to

determine whether or not a word in the generators and their inverses represents 1

in G. The set W of words representing 1 in G is a language, so the question is

whether or not W is decidable. The formal version of the word problem therefore

asks whether or not W is recursive. (The answer is no, in general.) We prove the

result of Anisimov, that W is regular if and only if G is finite. We also prove that W

is context-free if and only if G has a free subgroup of finite index. The proof is not

self-contained as it uses results of Dunwoody on accessible groups, and results of

Gregorac and of Karrass, Pietrowski and Solitar are quoted. The part of the proof we

give is due to Muller and Schupp and is the heart of the proof. We finish with a brief

look at automatic groups; these form an interesting class of groups which has been

well studied recently. We prove the characterisation of automatic groups by means

of the “fellow traveller” property in the Cayley graph, a graph associated with a set

of generators of the group. We begin with some discussion of group presentations

and free groups.

Presentations of Groups

Let X be a set of generators of a group G. If f , g : G−→H are two homomorphisms

which agree on X , then f = g. (The equaliser {a ∈ G | f (a) = h(a)} is a subgroup

of G, and contains X , so equals G). However, given a mapping f : X−→H, there is

no guarantee that f extends to a homomorphism from G to H. As a simple example,

let G be cyclic of order 2 generated by x and let H be cyclic of order 3, generated by

y. Then there is no homomorphism f : G−→H such that f (x) = y, because x2 = 1,

but y2 �= 1. We begin by investigating when an extension to a homomorphism exists.

Since X generates G, every element of G can be expressed as x
e1
1 . . .xen

n , where

xi ∈ X , ei =±1, n≥ 0. There are many different ways of expressing a given element

of G in this form. When we say “different ways”, we are viewing x
e1
1 . . .xen

n as a

string, rather than a product of elements of G. Also, it may happen that x = x−1 for
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some x ∈ X , and to express that the strings x, x−1 represent the same element of G,

we cannot view x−1 as the inverse of x in G.

In view of this, we proceed as follows. Let X be a set, and let X−1 be a set, in

one-to-one correspondence with X via a mapping x �→ x−1, and with X ∩X−1 =
/0. Let X±1 = X ∪X−1. We can extend the mapping to an involution X±1 → X±1

without fixed points, by defining (x−1)−1 = x, for x ∈ X . This involution can then

be extended to (X±1)∗ by defining (y1 . . .yn)
−1 = (y−1

n . . .y−1
1 ) for yi ∈ X±1, and

ε−1 = ε . Now every element of (X±1)∗ represents an element of G in an obvious

way, and different words in (X±1)∗ may represent the same element of G. If u, v

represent the same element of G, then we say the relation u = v holds in G.

We can start with a set X and write down certain relations, then consider a group

G generated by X in which these relations hold. However, such a group G might not

exist, because the relations may imply the relation x = y holds in G, where x, y ∈ X

and x �= y. For example, Let X = {x,y} and let the relations be xyx−1 = yxy−1 and

xy = yx. (There are less obvious examples.)

To cater for this, we instead consider a set X and a mapping (of sets) ϕ : X−→G,

where G is a group. Then (X±1)∗ is a monoid under concatenation, and ϕ extends

to a monoid homomorphism ϕ : (X±1)∗−→G by

ϕ(xe1
1 . . .xen

n ) = ϕ(x1)
e1 . . .ϕ(xn)

en

(xi ∈X , ei =±1), and ϕ(ε) = 1G (the identity element of G). Also, ϕ(u−1) = ϕ(u)−1

for u ∈ (X±1)∗. Note that ϕ is surjective if and only if ϕ(X) generates G.

Let u, v ∈ (X±1)∗. We say that the relation u = v holds in G (via ϕ) if u, v

represent the same element of G, that is, ϕ(u) = ϕ(v). Formally, a relation on X

is an ordered pair of words over the alphabet (X±1)∗, but we always speak of the

relation u = v rather than (u,v). Note that, if v = ε , the relation is written u = 1,

and similarly if u = ε . (We shall show in Lemma 5.3 below that this works; given

a set X and certain relations, there is a group G and mapping ϕ : X−→G such that

ϕ(X) generates G and these relations hold in G via ϕ .) We can give a criterion for

extension of homomorphisms, now complicated by the presence of the mapping ϕ .

Lemma 5.1. Let ϕ : X−→G, α : X−→H be maps of sets, where G, H are groups.

Suppose ϕ(X) generates G. Then there is a homomorphism α̃ : G−→H such that

α̃ϕ = α if and only if, for all relations u = v,

(∗) u=v holds in G (via ϕ) implies u=v holds in H (via α)

X

α

��











ϕ

���
��

��
��

H G
α̃��� � � � � � �

Proof. Statement (∗) is equivalent to: ϕ(u) = ϕ(v) implies α(u) = α(v), for all u,

v ∈ (X±1)∗. Also, ϕ(X) generates G if and only if G = ϕ((X±1)∗).
Thus, if (∗) is satisfied, we can define α̃ by α̃(ϕ(u)) = α(u). It is easily checked

that α̃ is a homomorphism, and clearly α̃ϕ = α .

Conversely, if α̃ exists, and ϕ(u) = ϕ(v), then α̃(ϕ(u)) = α̃(ϕ(v)). But since α̃
is a homomorphism and α̃ϕ = α , α̃ϕ = α , hence α(u) = α(v). ⊓⊔
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If R is a set of relations, we say that R holds in G (via ϕ) if every element of

R holds in G via ϕ . We have already used the idea that certain relations can imply

others, and this can be formalised as follows.

Definition. A relation u = v is a consequence of R if, for all groups H and maps

α : X−→H,

if R holds in H via α then u = v holds in H via α .

To see that the formal definition of “consequence” captures the idea of relations in a

group implying another relation, consider an example: xy = yx is a consequence of{
x2 = 1,y2 = 1,(xy)2 = 1

}
. For a mapping α : {x,y} → H corresponds to a choice

of two elements a = α(x) and b = α(y), so the assertion is that, if a and b are any

elements of a group H satisfying a2 = b2 = (ab)2 = 1, then ab = ba, which is easy

to see. (In practice, one usually suppresses the mapping α and just observes that if

x, y are group elements satisfying x2 = 1, y2 = 1, (xy)2 = 1 then xy = yx.)

Definition. A group presentation consists of a set X and a set R of relations on X ,

denoted by 〈X | R〉.
Let ϕ : X−→G be a mapping, where G is a group. The presentation 〈X | R〉 is

called a presentation of G (via ϕ) if ϕ(X) generates G, and a relation holds in G via

ϕ if and only if it is a consequence of R. In these circumstances, R is called a set of

defining relations for G.

Concerning notation, if R = {u1 = v1, . . . ,un = vn}, the presentation is written

〈X |u1 = v1, . . . ,un = vn〉.

If R = {ui = vi | i ∈ I} is an indexed set, we write 〈X | ui = vi (i ∈ I)〉. Similar

conventions apply to X .

We write G = 〈X | R〉ϕ to mean G has presentation 〈X | R〉 via ϕ . Clearly, u = v

holds in G if and only if uv−1 = 1 holds in G. It follows that if R′ is obtained by

replacing some or all of the relations u = v in R by uv−1 = 1, then G = 〈X | R′〉ϕ .

Thus we can assume, if necessary, that all elements of R have the form u = 1.

As a simple example, let X = {x} and let ϕ map x to a generator of a cyclic group

of order n, where n is a positive integer. If u ∈ (X±1)∗, then by deleting pairs xx−1

or x−1x, we obtain a word v = xk, where k ∈ Z, such that u = 1 is a consequence of

v = 1 and vice-versa. Then v = 1 holds via ϕ if and only if n divides k, in which case

v = 1 is a consequence of xn = 1. Hence the relations which hold via ϕ are precisely

the consequences of xn = 1. Therefore, 〈x | xn = 1〉 is a presentation of the cyclic

group of order n.

Lemma 5.2. Let G = 〈X | R〉ϕ and let α : X−→H be a mapping, where H is a

group. Then the following are equivalent:

(1) R holds in H via α .

(2) there is a unique homomorphism α̃ : G−→H such that α̃ϕ = α;
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Proof. Assume (1). If u = v holds in G, it is a consequence of R, so holds in H, and

α̃ as in (2) exists by Lemma 5.1. Uniqueness follows because ϕ(X) generates G.

Assume (2). Then R holds in G via ϕ and α̃ϕ = α (all the maps are monoid

homomorphisms preserving inverses). Hence R holds in H (via α). ⊓⊔

The observation in the proof, that if (2) holds then α̃ϕ = α , should be borne in

mind. If, in Lemma 5.2, H = 〈X | R〉α , then (1) is satisfied, and the mapping α̃ given

by (2) is an isomorphism. For if ϕ(u) ∈ Ker(α), α̃(ϕ(u)) = 1 = α(u). Hence the

relation u = 1 holds in H, so is a consequence of R, so holds in G, that is, ϕ(u) = 1.

Thus α̃ is injective. It is surjective as α(X) generates H. Thus if two groups have

the same presentation, via possibly different maps, they are isomorphic.

On the other hand, if G = 〈X | R〉ϕ and f : G−→H is an isomorphism, then

H = 〈X | R〉 f ϕ . (It is easy to see that a relation holds in H via f ϕ if and only if it

holds in G via ϕ .)

Lemma 5.3. If 〈X | R〉 is a group presentation, then there exist a group G and a

mapping ϕ : X−→G such that G = 〈X | R〉ϕ .

Proof. For u, v ∈ (X±1)∗, define u≡R v to mean u
.
−→

P
v, where P is the set contain-

ing the following productions.

(1) r−→s, r−1−→s−1, s−→r and s−1−→r−1, for all relations r = s in R.

(2) yy−1−→ε and ε−→yy−1, for all y ∈ X±1.

It is easily checked that ≡R is an equivalence relation on (X±1)∗. Let [u] (or [u]R if

necessary) denote the equivalence class of u∈ (X±1)∗. If u1, . . . ,uk is a P-derivation,

so is u1w, . . . ,ukw, for any w ∈ (X±1)∗, so u ≡R v implies uw ≡ vw, and similarly

u ≡R v implies wu ≡ wv. Hence, if u ≡R u′ and v ≡R v′, then uv ≡R uv′ ≡R u′v′, so

uv ≡R u′v′. We can therefore define a binary operation on (X±1)∗/ ≡R by [u][v] =
[uv]. This makes (X±1)∗/ ≡R into a group, which we denote by G. The identity

element is [ε], and [u]−1 is [u−1].
Define ϕ : X−→G by ϕ(x) = [x]. To show G = 〈X | R〉ϕ , we have to show that,

for any words u, v, ϕ(u) = ϕ(v) if and only if u = v is a consequence of R.

Suppose ϕ(u) = ϕ(v) and α : X−→H is a map, where H is a group and R holds

in H via α . It is easily seen that ϕ(u) = [u] for all u ∈ (X±1)∗, so u≡R v. Therefore

there is a P-derivation u = u1, . . . ,uk = v, and it follows by induction on k that

α(u) = α(v) = α(ui) for 1 ≤ i ≤ k, hence u = v is a consequence of R. One has to

check several (easy) cases, for example uk−1 = w1rw2, uk = w1sw2, where one of

r = s, r−1 = s−1, s = r, s−1 = r−1 is in R. Then α(r) = α(s), hence α(uk−1) = α(uk).
The remaining cases are left to the reader.

Conversely, suppose u = v is a consequence of R. If r = s is a relation in R, then

r ≡R s via a derivation with one step, using the production r−→s. Hence ϕ(r) =
ϕ(s), so R holds in G via ϕ . By assumption, ϕ(u) = ϕ(v). ⊓⊔

Example. 〈x,y|x2 = 1,y3 = 1,xyx−1 = y−1〉 is a presentation of S3, the symmetric

group of degree 3, via α , where α(x) = (1,2), α(y) = (1,2,3). For if G has this

presentation, via ϕ , say, then by Lemma 5.2, there is a homomorphism α̃ : G−→S3

with α̃(ϕ(x)) = (1,2), α̃(ϕ(y)) = (1,2,3), and it suffices to show that α̃ is an iso-

morphism. It is onto, as (1,2) and (1,2,3) generate S3, so it suffices to show |G| ≤ 6.
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Let H be the subgroup of G generated by y (suppressing ϕ), so |H| ≤ 3. The set

{H,Hx} is invariant under right translation by x and y (Hxy = Hy−1x = Hx), so by

all elements of G. Since the action of G on the right cosets of H by right translation

is transitive, this set is the set of all right cosets of H in G, so (G : H) ≤ 2. Hence

|G| ≤ 6, as required.

The example illustrates the point that the mapping ϕ , although strictly necessary

for the theory, is very often omitted in practice, to keep the notation simple.

Given any group G and mapping ϕ : X−→G such that ϕ(X) generates G, let R

be the set of all relations holding in G via ϕ . Then G = 〈X | R〉ϕ , so any group has a

presentation. One possibility is to take X = G and ϕ to be the inclusion map. In this

case we can find a smaller set of relations, as follows. Let G be a group, and take a set

X in 1-1 correspondence with G, via a mapping g �→ xg, for g ∈ G. (This is to avoid

confusion between concatenation of words and product in G.) Let ϕ : X−→G be the

inverse mapping xg �→ g, and let R be the set of relations
{

xgxh = xgh | g, h ∈ G
}

.

We claim that G = 〈X | R〉ϕ . Clearly ϕ(X) = G and R holds in G via ϕ . Suppose

u = v holds in G, and α : X−→H is a mapping such that R holds in H via α .

To finish the proof, we have to show that α(u) = α(v). Now, since R holds in H,

α(x1)α(x1) = α(x1x1)) = α(x1) (as x1x1 = x1 is in R). Hence α(x1) = 1H . Similarly,

as xgxg−1 = x1 is in R, α(x−1
g ) = α(xg−1). For similar reasons, α(xg)α(xh) = α(xgh).

We can also replace α by ϕ in these formulas.

Write u = x±1
g1

. . .x±1
gn

; by induction on n, we obtain α(u) = α(xg1
±1...gn

±1). Sim-

ilarly,

ϕ(u) = ϕ(xg1
±1...gn

±1) = g1
±1 . . .gn

±1.

Thus α(u) = α(xϕ(u)), and similarly α(v) = α(xϕ(v)). Since ϕ(u) = ϕ(v) by as-

sumption, α(u) = α(v). This presentation of G is called the standard presentation

of G (or multiplication table presentation of G) and is denoted by 〈G | rel G〉.
An important special case in Lemma 5.3 is when R is empty. The corresponding

group (X±1)∗/≡ /0 in the proof is called the free group on X , denoted by F(X).

Definition. An element of (X±1)∗ is reduced if it has no subword yy−1, where y ∈
X±1.

Lemma 5.4. (Normal Form Theorem) Every element of F(X) is [u] /0 for a unique

reduced word u. In particular, X embeds in F(X) via x �→ [x] /0.

Proof. In this case, P in the proof of Lemma 5.3 only contains the productions (2).

Using the productions yy−1−→ε , it is easy to see that every element of F(X) is [u]
for some reduced word u.

Suppose [u] = [v], where u, v are reduced, so there is a P-derivation u =
u1, . . . ,uk = v. To prove u = v, it suffices to show that, if k ≥ 2, this G-derivation

can be shortened. For then by repeated use of this fact, we can obtain a derivation

with k = 1, so u = v. Note that k �= 2 as u, v are reduced.

Suppose k > 2, and let ui be a word of maximal length in the derivation. Then

1 < i < k since u, v are reduced. Further, ui is obtained from ui−1 by inserting yy−1

for some y ∈ X±1, and ui+1 is obtained from ui by deleting zz−1 for some z ∈ X±1.
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If the subwords yy−1 and zz−1 of ui coincide or overlap by a single letter, then

ui−1 = ui+1, and ui, ui+1 can be omitted from the derivation.

Otherwise, we can replace ui by u′i, where u′i is obtained from ui by deleting zz−1,

and ui+1 is obtained from u′i by inserting yy−1. This reduces
k

∑
i=1
|ui|, so after finitely

many such replacements we shall be able to shorten the derivation. ⊓⊔

In view of this, we identify x with [x] /0, for x ∈ X . The next result is the “universal

mapping property” of a free group.

Lemma 5.5. If α : X → H is a map, where X is a set and H is any group, there is a

unique extension to a homomorphism α̃ : F(X)→ H, given by [u] /0 �→ α(u).

Proof. This is immediate from Lemma 5.2 (remember that, in Lemma 5.2(2), α̃ϕ =
α). ⊓⊔

Suppose R is a set of relations on X which are all of the form r = 1. We can just

write r instead of r = 1 for the elements of R, so R is viewed as a subset of (X±1)∗,
and we say that a relation is a consequence of R, rather than of {r = 1 | r ∈ R}. The

elements of R are then called relators. We shall also (inaccurately) not distinguish

u and [u] /0, so R is viewed as a subset of F(X). Thus in Lemma 5.5, we now write

α̃(u) = α(u). With this in mind, we can state the next lemma. First, recall that if

S is a subset of a group G, the normal subgroup of G generated by S (or normal

closure of S in G) is the intersection of all normal subgroups of G containing S, so

the smallest normal subgroup containing S. It is the subgroup 〈SG〉 generated by SG,

the set of all conjugates of elements of S in G.

Lemma 5.6. In the previous lemma, let R be a subset of (X±1)∗. Then

u = v is a consequence of R if and only if uv−1 ∈ 〈RF(X)〉.

Proof. Let N = 〈RF(X)〉. Assume u = v is a consequence of R. Let α : X−→F(X)/N

be the mapping x �→ xN, and α̃ the homomorphism in Lemma 5.5. Then α(r) =
α̃(r) = rN = 1 for all r ∈ R, as R⊆ N. Thus the relations r = 1 hold in F(X)/N via

α , for r ∈R. Hence u = v holds in F(X)/N, so uv−1 = 1 does, that is, 1 = α(uv−1) =
uv−1N, so uv−1 ∈ N.

Conversely, assume uv−1 ∈ N. Let α : X−→G be a mapping such that R holds

in G via α . Let α̃ : F(X)−→G be the homomorphism given by Lemma 5.5. Then

α̃(r) = α(r) = 1 for r ∈ R, that is, R⊆Ker(α̃), so N ⊆Ker(α̃). Hence α̃(uv−1) = 1,

so α̃(u) = α̃(v), that is, α(u) = α(v). Hence u = v is a consequence of R. ⊓⊔

Corollary 5.7. In Lemma 5.5, let R be a subset of (X±1)∗. The following are equiv-

alent.

(1) H = 〈X | R〉α ;

(2) R generates Ker(α̃) as a normal subgroup of F(X) and α(X) generates H.

If (1) and (2) hold, then u = 1 holds in H via α if and only if we can write
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u =F(X)

k

∏
i=1

uir
ei
i u−1

i (∗∗)

for some k ∈ N, ui ∈ F(X), ri ∈ R and ei =±1, where =F(X) means ≡ /0.

Proof. Let N = 〈RF(X)〉. Assume (1). Clearly R⊆ Ker(α̃), so N ⊆ Ker(α̃). For the

reverse inclusion, suppose u∈Ker(α̃). Then α(u) = α̃(u) = 1, so u = 1 is a relation

holding in H, hence is a consequence of R. By Lemma 5.6, u∈N. Thus N = Ker(α̃)
and (2) follows.

Assume (2), so N = Ker(α̃). Then a relation u = v holds in H via α if and only if

α(u) = α(v), if and only if α(uv−1) = α̃(uv−1) = 1, i.e. uv−1 ∈ N. By Lemma 5.6,

this happens if and only if u = v is a consequence of R, hence (1) holds. In particular,

if u = 1 holds in H via α then u ∈ N, and the last part of the lemma follows. ⊓⊔

Consequently, if H = 〈X | R〉α , H is isomorphic to F(X)/N, where N = 〈RF(X)〉.
This is often used as an alternative way to define a group with presentation 〈X | R〉.

Note that, when X = /0, F(X) is the trivial group, and when X has one element,

F(X) is infinite cyclic, by Lemma 5.4. If X has more than one element, F(X) is

non-abelian. Any group isomorphic to F(X) for some X is called a free group. See

the exercises at the end of the chapter for more information. For further theory of

free groups, see [25, Chapter I]. One important fact that we shall not prove is the

Nielsen-Schreier Theorem, that a subgroup of a free group is a free group. Proofs

can be found in [5] and [25].

Free Products with Amalgamation. Suppose {Gi | i ∈ I} is a family of groups with

a common subgroup A, such that Gi∩G j = A for i �= j. The family is then called an

amalgam of groups. If G is a group containing
⋃

i∈I Gi and each Gi is a subgroup of

G, we say that G embeds the amalgam. We shall show that such a group G always

exists.

Instead of an amalgam, consider a family {Gi | i ∈ I} and a family of monomor-

phisms αi : A−→Gi, for some fixed group A. Does there exist a group G and

monomorphisms fi : Gi−→G such that { fi(Gi) | i ∈ I} is an amalgam with fiαi

independent of i and fi(Gi)∩ f j(G j) = fiαi(A) for i �= j? The answer is yes. (This

implies the result of the previous paragraph, taking the αi to be inclusion maps.)

In fact we shall show that a suitable group G is the “free product of the Gi with A

amalgamated”, defined by the following universal mapping property.

Definition. Let {Gi | i ∈ I} be a family of groups and αi : A→Gi a monomorphism,

for all i ∈ I. A group G is the free product of the Gi with A amalgamated (via the αi)

if there exist homomorphisms fi : Gi−→G such that fiαi = f jα j for all i, j ∈ I, and

if hi : Gi−→H are homomorphisms with hiαi = h jα j for all i, j ∈ I, then there is a

unique homomorphism h : G−→H such that h fi = hi for all i ∈ I.
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This is illustrated by a commutative diagram:

Gi

hi

��








fi ���
��

��
��

A

αi

��








α j ���
��

��
��

G
h 		������ H

G j

h j



��������������������

f j

��








Figure 5.1

We refer to h as an extension of the maps hi.

To establish our claims, we shall show that G exists, that the fi are monomor-

phisms and { fi(Gi) | i ∈ I} is an amalgam as above, which G embeds. The unique-

ness of G up to isomorphism follows on general category-theoretic grounds (it is a

special kind of colimit). Explicitly, let f ′i : Gi−→G′ be homomorphisms such that

f ′i αi = f ′jα j for all i, j ∈ I, and if hi : Gi−→H are homomorphisms with hiαi = h jα j

for all i, j ∈ I, then there is a unique homomorphism h′ : G′−→H such that h′ f ′i = hi

for all i ∈ I.

In the definition of G, take hi = f ′i , to obtain a homomorphism f : G−→G′ such

that f fi = f ′i for all i. Interchanging the roles of G and G′, we obtain f ′ : G′−→G

such that f ′ f ′i = fi for all i. Take H = G, hi = fi in the definition; both f ′ f and

idG : G−→G are extensions of the maps fi : Gi−→G. Since the extension is unique,

f ′ f = idG. Interchanging the roles of G and G′, f f ′ = idG′ , so f and f ′ are inverse

isomorphisms.

A similar argument shows that G is generated by
⋃

i∈I fi(Gi). For let G0 be the

subgroup of G generated by this set. Take hi = fi, viewed as a mapping to G0, in

the definition of G. There is an extension to a homomorphism f : G−→G0. Let

ι : G0−→G be the inclusion map. Then ι f and idG : G−→G are both extensions of

the maps fi : Gi−→G. Since the extension is unique, ι f = idG, so ι is onto, hence

G = G0.

To see existence, let 〈Xi | Ri〉 be a presentation of Gi (via some mapping which

will be suppressed), with Xi ∩X j = /0 for i �= j. Let Y be a set of generators for A

and, for each y ∈ Y , i ∈ I, let ai,y be a word in (X±1
i )∗ representing αi(y). Let

S =
{

ai,ya−1
j,y | y ∈ Y, i, j ∈ I, i �= j

}
.

Let G be the group with presentation 〈
⋃

i∈I Xi |
⋃

i∈I Ri ∪ S〉. Then G is the desired

free product with amalgamation. There is an obvious mapping Xi−→G, which by

Lemma 5.2 induces a homomorphism fi : Gi−→G. The existence and uniqueness

of the mapping h in the definition follows by another application of Lemma 5.2.

As an example, let G1 be an infinite cyclic group generated by x and G2 an infinite

cyclic group generated by y. Let A be infinite cyclic, generated by a, and define α1,

α2 by α1(a) = x2, α2(a) = y3. The presentation of the corresponding free product

with amalgamation is 〈x,y | x2 = y3〉, after some obvious modification. This group

has various geometrical interpretations; see §1.5.2, Chap. I in [35].
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If G is the free product of {Gi | i ∈ I} with A amalgamated, we write G =∗
i∈I

(Gi :

A) (suppressing the αi). If the family consists of two groups, say {G1,G2}, we write

G = G1 ∗A G2.

To see G has the desired properties, we have to investigate its structure. First, it is

convenient to replace the maps αi by an amalgam. Take the disjoint union A ∐
∐
i∈I

Gi

and identify a and αi(a), for all a∈A and i∈ I. Call the quotient set B; for notational

convenience, we shall (inaccurately) identify A and each Gi with their isomorphic

images in B, so that B =
⋃

i∈I Gi is an amalgam with Gi ∩G j = A for i �= j. We

consider non-empty words over B, that is, elements of B+. We shall use commas

and parentheses when writing such words, to avoid confusion with the product in

the groups Gi. The maps fi induce a mapping f : B−→G, where f (g) = fi(g) for

g ∈Gi, and there is an extension to a semigroup homomorphism f : B+−→G given

by f (g1, . . . ,gn) = f (g1) . . . f (gn) . We call f (w) the element of G represented by w.

Since
⋃

i∈I fi(Gi) generates G and the fi are homomorphisms, every element of G is

represented by a word in B+.

Definition. Let w = (g1, . . . ,gn) be a word with g j ∈ Gi j
1≤ j ≤ n, n≥ 1. Then w

is reduced if

(1) i j �= i j+1 for 1≤ j ≤ n−1

(2) g j �∈ A for 1≤ j ≤ n, unless n = 1.

If (1) fails, we can replace w by (g1, . . . ,g jg j+1, . . . ,gn), representing the same ele-

ment of G. Similarly, if (2) fails, we can replace w by a shorter word. Hence every

element of G is represented by a reduced word (take a word of shortest length rep-

resenting it).

We need to refine the idea of reduced word. In B, for each i ∈ I choose a set Ti

of representatives for the cosets {Ax | x ∈ Gi}, with 1 ∈ Ti. Let g ∈G be represented

by the reduced word (g1, . . . ,gn) with g j ∈ Gi j
. We can write:

gn = anrn (an ∈ A, rn ∈ Tin)

gn−1an = an−1rn−1 (an−1 ∈ A, rn−1 ∈ Tin−1
)

...
...

g1a2 = a1r1 (a1 ∈ A, r1 ∈ Ti1).

Thus g1 = a1r1a−1
2 , g2 = a2r2a−1

3 , . . . ,gn = anrn and (a1,r1,r2, . . . ,rn) is a word

representing g.

Definition. A normal word is a word (a,r1, . . . ,rn) where a∈A, n≥ 0, r j ∈Ri j
\{1}

(1≤ i≤ n), where i j ∈ I and i j �= i j+1 for 1≤ j ≤ n−1.

From the discussion above, any element of G is represented by a normal word. If

a ∈ A, it is represented by the normal word (a), and words of this form are the only

normal words which are reduced. Of course, if (a,r1, . . . ,rn) is a normal word with

n≥ 1, then (r1, . . . ,rn) is reduced.



102 5 Connections with Group Theory

Theorem 5.8. (Normal Form Theorem) Any element of G is represented by a unique

normal word.

Proof. We have to show uniqueness. Let W be the set of normal words. We shall

define an action of G on W , equivalently, a homomorphism h : G−→S(W ), the

symmetric group on W . By the defining property of G, it suffices to define, for i ∈ I,

a homomorphism hi : Gi−→S(W ) such that hiαi = h jα j for all i, j ∈ I. We continue

to work in B, so we need homomorphisms hi which agree on A.

For i ∈ I, let Wi = {(1,r1, . . . ,rn) ∈W | r1 �∈ Ti}. We define a mapping θi : Gi×
Wi−→W as follows. If g ∈ Gi, write g = ar, where r ∈ Ti, a ∈ A. Then

θi(g,(1,r1, . . . ,rn)) =

{
(a,r,r1, . . . ,rn) if r �= 1 (i.e. g �∈ A)

(a,r1, . . . ,rn) if r = 1

It is easily seen that θi is bijective. Now Gi acts on Gi×Wi by left translation on the

first coordinate, giving a homomorphism ηi : Gi−→S(Gi×Wi), where ηi(g)(x,w) =
(gx,w). Set hi(g) = θiηi(g)θ−1

i . Since ηi is a homomorphism, so is hi. If a ∈ A, it is

an easy exercise to see that

hi(a)(a′,r1, . . . ,rn) = (aa′,r1, . . . ,rn)

and the right-hand side is independent of i. Thus the hi define a homomorphism

h : G−→S(W ).
Let g ∈ G be represented by the normal word w = (a,r1, . . . ,rn). Then it is easy

to see that h(g)(1) = w, so w is uniquely determined by g. ⊓⊔

The proof is taken from Serre’s tree notes [35], and is based on an argument of

van der Waerden [40].

Corollary 5.9. (1) The homomorphisms fi are injective.

(2) No reduced word of length greater than 1 represents the identity element of G.

(3) fi(Gi)∩ f j(G j) = fiαi(A) for i �= j.

Proof. (1) If fi(g) = 1, write g = ar with a ∈ A, r ∈ Ti. Then the normal word (a,r)
(or (a), if r = 1) represents 1, hence by Theorem 5.8, a = r = 1, so g = 1.

(2) If a reduced word has length n > 1, the procedure above gives a normal word

of length n+1 representing the same element of G, which cannot be 1 by Theorem

5.8, as the normal word representing 1 is (1).

(3) If i �= j, clearly fiαi(A) ⊆ fi(Gi)∩ f j(G j). Suppose g ∈ fi(Gi)∩ f j(G j) and

g �∈ fiαi(A). Then g is represented by reduced words (a,r) and (a′,r′), where r ∈
Ti \ {1} and r′ ∈ Tj \ {1}. By Theorem 5.8, r = r′, which is impossible as Ti, Tj

intersect only in 1. ⊓⊔

Conversely, (1) and (2) of the corollary imply the Normal Form Theorem. See

[5, §1.4]. In view of Cor. 5.9(1), the fi can be suppressed, to simplify the notation.

An important special case is when A is the trivial group. In this case, G is called

the free product of the family {Gi | i ∈ I}, written G =∗i∈I
Gi (or G = G1 ∗G2 in

the case of two groups). A reduced word is a word (g1, . . . ,gn) such that g j ∈ Gi j
,
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g j �= 1 unless n = 1, and i j �= i j+1 for 1 ≤ j ≤ n− 1. The Normal Form Theorem

simplifies to: every element of G is represented by a unique reduced word. Also, the

Gi embed in G. The universal mapping property simplifies to: given any collection

of homomorphisms hi : Gi−→H, there is a unique extension to a homomorphism

h : G−→H. Further, the presentation above used to show existence of free prod-

ucts with amalgamation simplifies. Let 〈Xi | Ri〉 be a presentation of Gi (via some

mapping which will be suppressed), with Xi∩X j = /0 for i �= j. Then∗i∈I
Gi has pre-

sentation 〈
⋃

i∈I Xi |
⋃

i∈I Ri〉. (This is obtained from the presentation above by taking

the empty presentation of the trivial group, with no generators and no relations.)

As an example, 〈x,y | x2 = 1, y2 = 1〉 is a presentation of the free product of

two cyclic groups of order 2, and is called the infinite dihedral group. (It can be

shown that its only proper, non-trivial quotients are the dihedral groups.) The free

product of a cyclic group of order 2 and a cyclic group of order 3 has presentation

〈x,y | x2 = 1, y3 = 1〉. This group is called the modular group, and is isomorphic to

PSL2(Z); see [26, Theorem 3.1].

HNN-extensions. Suppose B, C are subgroups of a group A and γ : B−→C is an

isomorphism. In general, γ is not induced by an automorphism of A. However ([15]),

it is always possible to embed A in a group G such that γ is induced by an inner

automorphism of G. That is, there is an element t ∈G such that tbt−1 = γ(b) for all

b ∈ B.

To prove this, we consider the group G with presentation (via some mapping

which is suppressed) 〈{t}∪X | R1∪R2〉, where

X =
{

xg | g ∈ A
}

, t �∈ X

R1 =
{

xgxhx−1
gh | g,h ∈ A

}

R2 =
{

txbt−1x−1
γ(b) | b ∈ B

}
.

By Lemma 5.2 applied to the standard presentation of A, there is a homomorphism

f : A→ G given by a �→ xa, and we have to show that f is injective.

Definition. The group G is called an HNN-extension with base A, associated pair

of subgroups B, C and stable letter t.

This presentation is often abbreviated to 〈t,A | rel(A), tBt−1 = γ(A)〉. Sometimes γ
is suppressed and we write 〈t,A | rel(A), tBt−1 = C〉, or even more extremely, just

〈t,A | tBt−1 = C〉.
More generally, Let 〈Y | S〉 be a presentation of A, let

{
b j | j ∈ J

}
be a set of

words in (Y±1)∗ representing a set of generators for B, and let c j be a word repre-

senting γ(b j) (more accurately, γ(the generator represented by b j)). Then

〈t ∪Y | S∪
{

tb jt
−1 = c j | j ∈ J

}
〉

is also a presentation of G. This is left as an exercise, using Lemma 5.2.

As an example, 〈x,y | xy2x−1 = y3〉 is an HNN-extension, with base an infinite

cyclic group A generated by y, stable letter x and associated pair the subgroups of
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A generated by y2, y3 respectively. (The isomorphism γ is given by γ(y2n) = y3n for

n ∈ Z.) This is a famous example of a non-Hopfian group, the Baumslag-Solitar

group; see Theorem 4.9, Chap. IV in [25].

Returning to the general situation, since G is generated by f (A)∪{t}, every ele-

ment of G is represented in an obvious way by a word (g0, t
e1 ,g1, t

e2 ,g2, . . . ,t
en ,gn),

where n≥ 0, ei =±1 and gi ∈ A for 0≤ i≤ n.

Definition. Such a word is reduced if it has no subword of the form t,b, t−1 with

b ∈ B or t−1,c, t with c ∈C.

Any element of G is represented by a reduced word (take a word of minimal length

representing it).

Choose a set RB of representatives for the cosets {Bg | g ∈ A} and a set RC of

representatives for the cosets {Cg | g ∈ A}, with 1 ∈ TB, TC.

Definition. A normal word is a reduced word (g0, t
e1 ,r1, t

e2 ,r2, . . . ,t
en ,rn), where

g0 ∈ A, ri ∈ RB if ei = 1 and ri ∈ RC if ei =−1.

Suppose (g0, t
e1 ,g1, t

e2 ,g2, . . . ,t
en ,gn) is a reduced word with n≥ 1. If en = 1, write

gn = br with b ∈ B, r ∈ RB. Then (g0, t
e1 ,g1, t

e2 ,g2, . . . ,g
′
n−1, t

en ,r), where g′n−1 =
gn−1γ(b), represents the same element of G. If en = −1, write gn = cr with c ∈
C and r ∈ RC. Then (g0, t

e1 ,g1, t
e2 ,g2, . . . ,g

′
n−1, t

en ,r), where g′n−1 = gn−1γ−1(c),
represents the same element of G. Repetition of this procedure leads to a normal

word representing the same element of G.

Theorem 5.10. (Normal Form Theorem) Any element of G is represented by a

unique normal word.

Proof. This can again be proved using the van der Waerden method; we refer to [25,

Chap. IV, Theorem 2.1] for the details. ⊓⊔

Corollary 5.11. (1) The homomorphism f : A−→G is injective.

(2) (Britton’s Lemma) no reduced word (g0, t
e1 ,g1, t

e2 ,g2, . . . ,t
en ,gn) with n > 0

represents the identity element of G.

Proof. This follows easily from the Normal Form Theorem and details are left to

the reader. ⊓⊔

As with free products with amalgamation, the Normal Form Theorem follows

from the corollary. See [5, §1.5]. We also note that it is unnecessary to directly

prove both Normal Form Theorems, for free products with amalgamation and for

HNN-extensions, as one implies the other. See [5, Chap. 1, Exercises 23 and 24]. In

view of Cor. 5.11(1), the mapping f can be suppressed.

More generally, given A and a family γi : Bi−→Ci (i∈ I) of isomorphisms, where

Bi, Ci are subgroups of A, we can form the HNN-extension with presentation (in

abbreviated form):

〈ti (i ∈ I), G | rel(G), tiBit
−1
i = γi(Bi) (i ∈ I)〉.
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There are generalisations of the Normal Form Theorem and its corollary, but we

shall not need these. For further properties of free products with amalgamation and

HNN-extensions, and their uses, we refer to [5] and [25]. However, there is one

result we shall need later. The proof is from [23]; for a different viewpoint, see [3]

(just before Theorem 3.1).

Lemma 5.12. (1) If G = B ∗A C and G, A are finitely generated, then B and C are

finitely generated.

(2) if G = 〈t,A | tBt−1 = C〉 is an HNN-extension, and G, B are finitely generated,

then A is finitely generated.

Proof. (1) Assume G, A are finitely generated. It suffices by symmetry to show B is

finitely generated. Suppose not. Since G is countable, so is B, so there are subgroups

A � B1 � B2 � . . . of B with B =
⋃∞

i=1 Bi. Let Gi be the subgroup of G generated by

Bi∪C. (Note that Gi is isomorphic to Bi ∗A C. For the inclusion mapping Bi → B and

identity mapping C−→C have an extension to a homomorphism h : Bi ∗A C−→B∗A

C. The image is Gi, and h is injective by Cor. 5.9.) Then G =
⋃∞

i=1 Gi and G1 � G2 �
. . . as Gi∩B = Bi by Cor. 5.9. This is a contradiction since G is finitely generated.

(2) Assume G and B are finitely generated (so C is, being isomorphic to B). Let

D be the subgroup of G generated by B∪C, so D is finitely generated. Suppose A

is not finitely generated. Then there are subgroups D � A1 � A2 � . . . of A with

A =
⋃∞

i=1 Ai. Let Gi be the subgroup of G generated by Ai ∪ {t}. (By Cor. 5.11,

Gi is isomorphic to an HNN-extension 〈t,Ai | tBt−1 = C〉.) Then G =
⋃∞

i=1 Gi and

G1 � G2 � . . . as Gi∩A = Ai by Cor. 5.11. This is a contradiction since G is finitely

generated. ⊓⊔

The Word Problem

Groups arising in geometry and topology are frequently given by presentations, and

so it is desirable to be able to deduce information on a group from a presentation.

One question is: given words u and v, do they represent the same element of the

group, that is, does the relation u = v hold? This holds if and only if uv−1 = 1 does,

so it suffices to know whether or not a relation w = 1 holds. Informally, the word

problem, formulated by Dehn, is to find a procedure with a finite set of instruc-

tions to decide, given w ∈ X±1, whether or not w represents 1 in G. He found such

a procedure which works for a certain class of presentations, including the usual

presentations of surface groups, now known as Dehn’s algorithm.

This can easily be made precise. Let G be a group, X a set and ϕ : X−→G a

mapping such that ϕ(X) generates G. Put

Wϕ(G) =
{

w ∈ (X±1)∗ | ϕ(w) = 1G

}
.

(In Lemma 5.5, this is the set of words representing elements of Ker( f ), so by Cor.

5.7, if G = 〈X | R〉ϕ , it is determined by R.)

Definition. Assume X is finite. The word problem for G (relative to ϕ) is solvable

if Wϕ(G) is a recursive language (the alphabet being X±1).



106 5 Connections with Group Theory

Example. The word problem for F(X) = 〈X | /0〉i, where X is a finite set and i :

X−→F(X) is the inclusion map, is solvable. In fact, Wi(F(X)) is deterministic. For

define a PDA M = (Q,F,A,Γ ,τ,q0,z0) recognising Wi(F(X)) by: Q = {q0,q1,q2},

F = {q0}, A = X±1, Γ = A∪{z0} and τ consists of the transitions

(q0,ε,z0,q1,z0)

(q1,y,z,q2,yz) (y, z ∈ A, y �= z−1)

(q1,y,y
−1,q2,ε) (y ∈ A)

(q2,ε,z,q1,z) (z ∈ A)

(q2,ε,z0,q0,z0)

Thus M stores the reduced form of the word read from the tape in its stack, with

z0 at the bottom. When z0 is read at the top of the stack, the reduced form is ε and

M enters the final state q0. The extra state q2 is needed to make M deterministic.

Note that M accepts ε , since there is a computation with just a single configuration,

(q0,ε,z0).

We shall show that solvability of the word problem depends only on G, not on

the choice of ϕ .

Definition. Let L be a class of languages, with possibly different finite alphabets.

Then L is closed under inverse homomorphism if, given a monoid homomorphism

ϕ : A∗→ B∗ (where A, B are finite sets) and a language L ∈L with alphabet B, then

ϕ−1(L) ∈L .

Lemma 5.13. Let L be a class of languages closed under inverse homomorphism.

Let ϕ : X → G, ψ : Y → G be maps, where G is a group, X and Y are finite, and

ϕ(X), ψ(Y ) generate G. Then Wϕ(G) ∈L if and only if Wψ(G) ∈L .

Proof. It suffices by symmetry to show that if Wψ(G) ∈L , then Wϕ(G) ∈L . Let

A = X±1, B = Y±1. Extend ϕ , ψ to A∗, B∗ respectively (ϕ(x−1) = ϕ(x)−1 for x ∈ X ,

and ϕ(a1 . . .an) = ϕ(a1) . . .ϕ(an) for ai ∈ A, etc.). Note that ϕ , ψ are surjective

monoid homomorphisms.

We claim there is a monoid homomorphism f making the dia-

gram commutative. For x ∈ X , choose w ∈ B∗ such that ψ(w) =
ϕ(x), then put f (x) = w, f (x−1) = w−1. Then extend to A∗ by

defining f (a1 . . .an) = f (a1) . . . f (an), for ai ∈ A.

A∗

f

���
�
�

ϕ

���
��

��
��

�

B∗
ψ

		 G

Now Wϕ(G) = f−1(Wψ(G)), so Wψ(G) ∈L implies Wϕ(G) ∈L . ⊓⊔

Thus if L is closed under inverse homomorphism, it makes sense to say a group

G has word problem in L . The following classes are closed under inverse homo-

morphism (references are to [21]).
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(1) regular Theorem 3.5

(2) deterministic Theorem 10.4

(3) context-free Theorem 6.3

(4) context-sensitive Exercise 9.10 and solution

(5) recursive §11.1

(6) recursively enumerable §11.1.

Thus we can speak of a group G having regular or context-free word problem,

etc. Another useful fact is the following lemma.

Lemma 5.14. Let L be a class of languages such that:

(1) L is closed under inverse homomorphism;

(2) If L ∈L and R is a regular language, then L∩R ∈L .

If G is a finitely generated group with word problem in L , and H is a finitely gen-

erated subgroup of G, then H has word problem in L .

Proof. Let ϕ : X−→G be a mapping such that X is finite and ϕ(X) generates G, and

let ψ : Y −→H be such that Y is finite and ψ(Y ) generates H. We assume X ∩Y = /0.

Define θ : X ∪Y −→G by θ |X = ϕ , θ |Y = ψ , so θ(X ∪Y ) generates G. By Lemma

5.13, Wθ (G)∈L , and Wψ(H) =Wθ (G)∩(Y±1)∗. By Lemma 1.5, (Y±1)∗ is regular,

so by assumption (2), Wψ(H) ∈L . ⊓⊔

All the language classes listed after Lemma 5.13 satisfy the hypotheses of

Lemma 5.14. With the exception of deterministic and context-free, these classes are

closed under intersection and contain the class of regular languages. (See Lemma

2.2, Lemma 3.3, Lemma 1.5 and [20, Theorem 9.6].) For deterministic and context-

free languages, see Lemma 4.16.

We shall need a generalisation of the idea of a class closed under inverse homo-

morphism. This involves the notion of generalised sequential machine, abbreviated

to gsm. This is an elaboration of a FSA which produces output. In fact, producing

output is their only function, and they are not intended for language recognition.

Definition. A generalised sequential machine is a sextuple S = (Q,F,A,B,τ,q0),
where Q, A and B are finite sets (the set of states, the input alphabet and the output

alphabet respectively), F ⊆Q (the set of final states), q0 ∈Q (the initial state) and τ
is a finite subset of Q×A×B∗×Q (the set of transitions).

A computation of S is a sequence q0,(a1,u1),q1,(a2,u2), . . . ,(an,un),qn, where n≥
0, qi ∈ Q (0≤ i≤ n), ui ∈ B∗ (1≤ i≤ n) and (qi−1,ai,ui,qi) ∈ τ for 1≤ i≤ n. The

computation is successful if qn ∈ F . The input of the computation is a1 . . .an ∈ A∗

and the output is u1 . . .un ∈ B∗.

As with a FSA, we can form the transition diagram of S. This is a directed graph

with vertex set Q and an edge from q to q′ for each transition (q,a,u,q′), with label

(a,u)1. Then paths in the transition diagram starting at q0 are in 1-1 correspondence

with computations of S. Both the input and output can be read off from the labels on

the edges of the path. For w ∈ A∗, we define

1 The label is often denoted by a|u in the literature.
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fS(w) = {u ∈ B∗ | there is a successful computation with input w, output u}

and for u ∈ B∗,

f−1
S (u) = {w ∈ A∗ | there is a successful computation with input w, output u} .

Thus fS is a mapping from A∗ to the set of subsets of B∗. Note that f−1
S is not

necessarily the inverse of fS, in the usual sense.

If L is a language with alphabet A, we define fS(L) =
⋃

w∈L fS(w), and if L′ is a

language with alphabet B, put f−1
S (L′) =

⋃
u∈L′ f−1

S (u). We call fS a gsm mapping

and f−1
S an inverse gsm mapping.

The gsm S is called deterministic if, for q ∈ Q and a ∈ A, there is at most one

transition starting with q,a. Then fS(w) is either empty or contains a single element,

so fS may be viewed as a partial function from A∗ to B∗, and f−1
S is then the inverse

of fS.

Definition. A class L of languages is closed under inverse gsm mappings if when-

ever L∈L has alphabet B and S is a gsm with output alphabet B, then f−1
S (L)∈L .

We can also define what is meant by a class closed under inverse deterministic gsm

mappings (restrict S in the definition to be deterministic). The class of deterministic

languages is closed under inverse deterministic gsm mappings. This will be used

later, so a proof is given at the end of Appendix A. The other classes listed after

Lemma 5.13 are closed under inverse gsm mappings. See [21, Theorem 11.2].

Suppose f : A∗−→B∗ is a monoid homomorphism. Construct a gsm

S = ({q0} ,{q0} ,A,B,τ,q0)

where τ consists of the transitions (q0,a, f (a),q0) for a∈ A. Then S is deterministic,

fS is total and fS = f . It follows that, if L is closed under inverse deterministic gsm

mappings, it is closed under inverse homomorphism, so Lemma 5.13 applies to L .

The argument of the next lemma is part of the proof of Lemma 5 in [17].

Lemma 5.15. Let L be a class of languages closed under inverse deterministic

gsm mappings. Let G be a finitely generated group, and let H be a subgroup of finite

index. If H has word problem in L , then so does G.

Proof. Let T be a transversal for {Hg | g ∈ G} and let ϕ : X → H be a mapping

with X finite such that ϕ(X) generates H. We can assume 1 ∈ T and X ∩ T = /0.

Let Y = X ∪T and define ψ : Y → G by: ψ|X = ϕ , ψ(t) = t for t ∈ T . Then ψ(Y )
generates G. There is a gsm S = (T,{1} ,A,B,τ,1), where A = Y±1, B = X±1 and τ
is defined as follows.

For each y ∈ A and t ∈ T , choose ht,y ∈ B∗ such that ty = ht,yt
′ holds in G, where

t ′ ∈ T . Then τ contains the transition (t,y,ht,y, t
′). Clearly S is deterministic. If a

computation has input w, output u and ends in state t, then w = ut holds in G via ψ .

It follows that Wψ(G) = f−1
S (Wϕ(H)). ⊓⊔
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Definition. A group is finitely presented if it has a presentation 〈X |R〉 with X , R

finite. It is recursively presented if it has a presentation 〈X |R〉 with X finite and R

recursively enumerable.

Lemma 5.16. Suppose G = 〈X |R〉ϕ with X finite, R recursively enumerable. Then

(1) Wϕ(G) is recursively enumerable

(2) G has a presentation G = 〈Y |S〉ψ with Y finite, S recursive.

Proof. (1) If X = {x1, . . . ,xn}, number the elements of X±1 as

{x1, . . . ,xn,x
−1
1 , . . . ,x−1

n }= {y1, . . . ,y2n}

and let θ be the Gödel numbering ϕ2 : (X±1)∗−→N defined after Lemma 3.8. We

leave as exercises the following facts.

(i) There is a primitive recursive function pr : N2−→N such that pr(θ(u),θ(v)) =
θ(uv).

(ii) There is a primitive recursive function inv : N−→N such that inv(θ(u)) =
θ(u−1).

(iii) R±1 is r.e.

Now let C =
{

uru−1 | u ∈ (X±1)∗, r ∈ R±1
}

. Then C is r.e. For there are recursive

functions g : N−→N with g(N) = θ((X±1)∗) and h : N−→N with h(N) = θ(R±1).
Define f : N2−→N by f (x,y) = pr(pr(g(x),h(y)), inv(g(x))), then let f̄ = f ◦ J−1,

where J is the function in Chapter 2, Exercise 3. Then f̄ is recursive and f̄ (N) =
θ(C).

It follows from Lemma 3.14 that C∗ is r.e. Let f ∗ be a recursive function with

θ(C∗) = f ∗(N). Now if w is a word, then w ∈Wϕ(G) if and only if w represents the

same element of F(X) as some element u∈C∗, by Cor. 5.7. Equivalently, w−1u∈W ,

where W = Wi(F(X)), for some u ∈C∗. Also, W is recursive (indeed deterministic),

so the characteristic function χ of θ(W ) is recursive. Thus

w ∈Wϕ(G)⇐⇒ χ(θ(w−1u)) = 1

for some u ∈C∗. If we define k : N2−→N by

k(m,n) =

{
m if m ∈ θ((X±1)∗)∧χ(pr(inv(m), f ∗(n))) = 1

1 otherwise

then k is recursive, hence so is k̄ = k ◦ J−1, and k̄(N) = θ(Wϕ(G)). (Note that 1 =
θ(ε).)

(2) The proof is known as “Craig’s trick”. Take a letter y �∈ X±1 and as alphabet

take A = X±1∪{y} (we can assume R �= /0). Number elements of A so that y has the

highest number, say z (so z = 2|X |+ 1). Take as Gödel numbering θ : A∗→ N the

numbering ϕ2 defined after Lemma 3.8. Then there is a recursive function f : N→N
such that f (N) = θ(R). Let wi = θ−1( f (i)), so R = {wi | i ∈ N}. Put Y = X ∪{y}
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and S = {y}∪
{

wiy
i | i ∈ N

}
. We claim that S is recursive and G = 〈Y |S〉ψ , where

ψ|X = ϕ , ψ(y) = 1.

To see S is recursive, we first note that U =
{

wyi | w ∈ (X±1)∗, i ∈ N
}

is recur-

sive. Explicitly, n ∈ θ(U)⇔∃l ≤ log2(n)
(
P(l,n)∧Q(l,n)

)
∧n ∈ θ(A∗), where

P(l,n) ⇔ ∀i≤ l(i > 0⇒ logpi
(n) < z) and

Q(l,n) ⇔ ∀i≤ log2(n)(i > l ⇒ logpi
(n) = z).

Further, if n = θ(wyi), where wyi ∈U , then putting c(n) = µ i≤ log2(n)(logpi
(n) =

z)
.
−1 and h(n) = log2(n)

.
−c(n), it follows that i = h(n). Also, θ(w) = g(n), where

g(n) = 2c(n)
c(n)

∏
j=1

p
logpi

(n)

i . Thus

n ∈ θ(S)⇔ n ∈ θ(U)∧ f (h(n)) = g(n).

Since h and g are primitive recursive, this shows S is recursive. The proof that

G = 〈Y |S〉ψ is left to the reader. (Let H = 〈Y |S〉ψ . Use Lemma 5.2 to define ho-

momorphisms G−→H and H−→G; then use Lemma 5.2 again to show these are

inverse isomorphisms.) ⊓⊔

We now mention, without proof, the two major results concerning solvability of

the word problem.

Boone-Novikov Theorem. There is a finitely presented group with unsolvable word

problem.

Higman Embedding Theorem. A finitely generated group is recursively presented

if and only if it can be embedded in a finitely presented group.

For proofs, see [5, Chap. 9], [25, Chap. 4] or [32, Chap. 12]. Although these

give different proofs of the Boone-Novikov Theorem, in all cases the proof of the

Higman Embedding Theorem depends on a construction used in the Boone-Novikov

Theorem. On the other hand, it is easy to deduce the Boone-Novikov Theorem from

Higman’s Embedding Theorem, as we now show.

First, it is not difficult to exhibit a recursively presented group with unsolvable

word problem. Let S be a r.e., non-recursive subset of N (see Prop. 3.6). Let F be a

free group with basis {a,b}; then
{

aiba−i | i ∈ N
}

is a basis for a free subgroup of

F (see the exercises at the end of the chapter). Hence
{

aiba−i | i ∈ S
}

is a basis for

the subgroup G of F it generates, and aiba−i ∈ G if and only if i ∈ S (for example,

using the criterion in Exercise 3(c)).

Let G have presentation

〈a,b,c,d | aiba−i = cidc−i (i ∈ S)〉

via ϕ , say. It follows that G is the free product of two free groups of rank 2, amal-

gamating two free subgroups of countably infinite rank (see Exercise 4 for the de-

finition of rank). Then aiba−icid−1c−i ∈Wϕ(G) if and only if i ∈ S, by Cor. 5.9.

Let θ : ({a,b,c,d}±1)∗−→N be the Gödel numbering ϕ2 defined after Lemma 3.8.



5 Connections with Group Theory 111

It is left to the reader to show there is a recursive function f : N−→N such that

f (i) = θ(aiba−icid−1c−i) for all i. Then f (S) is r.e. by Lemma 3.3, hence G is re-

cursively presented. Also, i ∈ S if and only if f (i) ∈ θ(Wϕ(G)), hence Wϕ(G) is not

recursive, otherwise S would be recursive.

Now to deduce the Boone-Novikov Theorem from the Higman Embedding The-

orem, let G be a recursively presented group with unsolvable word problem. By

Higman’s Theorem, G embeds in a finitely presented group. This group has unsolv-

able word problem by Lemma 5.14.

The word problem is solvable if Wϕ(G) is recursive. One can also ask what hap-

pens if Wϕ(G) belongs to one of the other classes in the hierarchy at the end of

Chapter 4. This has a nice answer in the case of regular and context-free languages.

Theorem 5.17 (Anisimov). A finitely generated group has regular word problem if

and only if it is finite.

Proof. Assume G is finite. Then the standard presentation of G

〈xg | xgxh = xgh (g, h ∈ G)〉ϕ

where ϕ(xg) = g, is finite.

Construct a FSA M = (Q,F,A,τ,q0) by putting

Q =
{

xg | g ∈ G
}

, A =
{

x±1
g | g ∈ G

}
, q0 = x1, F = {q0}

and letting τ consist of the transitions

(xg,xh,xgh) (g, h ∈ G)

(xg,x
−1
h ,xgh−1) (g, h ∈ G).

Then M recognises Wϕ(G).

Conversely, assume G is infinite, and ϕ : X → G is a mapping such that ϕ(X)
generates G, where X is finite. Given a natural number n, there is an element g ∈ G

such that ϕ(u) �= g for any word u with |u| ≤ n. (There are only finitely many words

in X±1 of length at most n.) Let w ∈ X±1 be of minimal length such that ϕ(w) = g.

Then |w| > n and for all subwords u �= ε of w, ϕ(u) �= 1 (otherwise w could be

shortened by deleting a subword, without changing ϕ(w)).
Let M be a deterministic FSA with tape alphabet X±1. Let n be the number of

states of M, and choose a word w with |w|> n and such that, for all subwords u �= ε
of w, ϕ(u) �= 1. Starting M with w on the tape, there are prefixes w1 and w1w2 of

w, with w2 �= ε , such that M, after reading w1 and w1w2, is in the same state. Then

either M accepts both w1w−1
1 and w1w2w−1

1 , or it rejects them both. (It will be in the

same state after reading both.) Since ϕ(w1w−1
1 ) = 1, but ϕ(w1w2w−1

1 ) �= 1 (because

ϕ(w2) �= 1 by choice of w), M cannot recognise Wϕ(G). ⊓⊔

The corresponding result for context-free languages is that a group has context-

free word problem if and only if it has a free subgroup of finite index. We begin

by showing this under an additional assumption, following Muller and Schupp [27].
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This depends on a characterisation of context-free groups in terms of what are called

Cayley graphs, so we begin by describing these.

Cayley Graphs. Again let ϕ : X → G be a mapping such that ϕ(X) generates the

group G. Put A = X±1. We form a directed graph as follows. The set of vertices is

G and the set of edges is G×X . The edge e = (g,x) starts at g and ends at gϕ(x),
and is given label x. For every such edge we add an opposite edge e, from gϕ(x) to

g, with label x−1. We also define ¯̄e to be e, giving an involution without fixed points

on the set of edges. The resulting graph is the Cayley graph of G with respect to ϕ ,

denoted by Γ (G,ϕ). The labelling of edges extends to a labelling of paths, where

labels are in A∗. If p is a path, viewed as a sequence of edges e1, . . . ,en, the opposite

path p̄ is the path ēn, . . . , ē1, and the length of p is n. If w is the label on p, the label

on p̄ is w−1. If g is a vertex and y ∈ X±1, there is a unique edge starting at g with

label y, and a unique edge ending at g with label y. Consequently, given w ∈ A∗, and

g ∈G, there is a unique path starting at g with label w, and it ends at gϕ(w). Hence,

if w is the label on a path, then ϕ(w) = 1 if and only if the path is closed. (Note

that, at each vertex v, there is a trivial path, of length 0, from v to v. See [5, §5.1] for

further discussion. We give trivial paths label ε .) Since ϕ(X) generates G, it follows

that Γ (G,ϕ) is connected (i.e. there is a path joining any two vertices).

Suppose a, b ∈ G, and we take paths in Γ (G,ϕ) from 1 to a, from a to b, and

from b to 1, with labels u, v, w, respectively. Also, take a second path from a to b

with label z, giving the situation illustrated in the left-hand picture below.
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Figure 5.2

(The paths have been drawn in the plane for clarity-in the Cayley graph, they can

have more intersections than illustrated, and need not be simple closed curves.)

There are closed paths p1 at 1 with label uvw and p2 with label uzw, and a closed

path p3 at b with label z−1v. We obtain a closed path p′3 at 1 by traversing the path

from b to 1 in the opposite direction, then p3, then the path from b to 1, so p′3 has

label w−1z−1vw. Note that uvw =F(X) (uzw)w−1(z−1v)w. This can be visualised by

“unstitching” the paths p2 and p′3, so they meet at a single point, as in the right-

hand diagram. The left-hand side uvw is the label reading anticlockwise around the

boundary of the left-hand figure (i.e. p1), and the right-hand side is the label reading

anticlockwise around the boundary of the right-hand figure. We can continue to

unstitch the two closed paths p2 and p3 in a similar manner, choosing paths joining



5 Connections with Group Theory 113

two vertices they pass through to play the rôle of the path from a to b with label z in

the first unstitching. This can be iterated, and always gives a product of conjugates

of relators which hold in G (the labels on p2, p3 etc), equal in F(X) to uvw. In

some circumstances, by suitable choice of paths to unstitch, this can lead to a finite

presentation of G. Examples are given in Lemma 5.24 and Theorem 5.29.

The group G acts on the vertices by left translation, and similarly on edges by

h(g,x) = (hg,x), h(g,x) = (hg,x), so G acts on Γ (G,ϕ) as graph automorphisms,

transitively on the vertices, and preserving opposite edges: gē = ge for g ∈ G and

edges e.

For g, h ∈ G, define

d(g,h) = the length of a shortest path from g to h.

Then d : G×G→ N is a metric, called the path metric on Γ (G,ϕ). Since G acts as

graph automorphisms, d is G-invariant, that is, d(ag,ah) = d(g,h) for a ∈ G.

There is one final observation about Cayley graphs. As with presentations, the

mapping ϕ is often suppressed in practice, and Γ (G,ϕ) is written Γ (G,X).

Now to characterise context-free groups by means of Cayley graphs, some dis-

cussion of plane polygons, and their triangulations, is needed. By a plane polygon

P we mean a finite succession of arcs in the plane, joined together at their endpoints

(the vertices), which form a simple closed curve, together with the interior of the

curve. The interior is not required to be convex. The arcs are called boundary edges

of P.

A triangulation of a plane polygon P is a decomposition of P into triangles, so

that if two different triangles meet, they meet in an edge or a vertex. The edges of

the triangles may be arcs rather than straight line segments. The original edges and

vertices in the boundary of P must be edges and vertices of the triangles. A diagonal

triangulation of P is a triangulation of P which has no vertices except the original

vertices on the boundary of P. However, we allow “1-gons” (loops, i.e. simple closed

curves with a point nominated as the vertex) and “bigons” (two arcs with the same

endpoints) as polygons, and view these as triangulated.

We call a triangle in a diagonal triangulation of P critical if it has two edges

which are boundary edges of P. Also, ∂P denotes the sequence of boundary edges

of P reading anticlockwise around P. It is defined only up to cyclic permutation, as

a starting vertex has not been specified.

Lemma 5.18. Let T be a diagonal triangulation of a plane polygon P with at least

two triangles. Then there are at least two critical triangles.

Proof. The proof is by induction on the number of triangles. If there are two trian-

gles, or all triangles having an edge on P are critical, the result is clear. Otherwise,

choose a triangle T with exactly one edge e in the boundary of P. Starting at the

vertex of T not incident with e, we can write ∂P = w1ew2 and ∂T = e2ee1. The tri-

angulation of P induces diagonal triangulations of the polygon P1 bounded by w1ee1

and the polygon P2 bounded by w2e2e, both having at least two triangles.
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This is illustrated by the pictures below, using curved lines to represent w1 and

w2.
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Thus the triangulations of P1 and P2 have at least two critical triangles by induc-

tion, so have at least one critical triangle other than T . Hence the triangulation of P

has at least two critical triangles. ⊓⊔

Lemma 5.19. Let P be a plane polygon with at least three boundary edges, having a

diagonal triangulation. If the boundary edges of P are divided into three consecutive

arcs, each with at least one edge, then some triangle has vertices on all three arcs.

Proof. Let P be a polygon with a diagonal triangulation, and colour the vertices of

P with three colours: red, white and blue. View red and white, white and blue, and

blue and red as consecutive pairs of colours. We claim that, if consecutive vertices

(reading round the boundary) have the same or consecutive colours and all three

colours are used, then there is a triangle having vertices of all three colours. The

proof is by induction on the number of triangles, and the result clearly holds when

this is 1. Otherwise, there is a critical triangle T , say, by Lemma 5.18. If T has

vertices of all three colours then T is the desired triangle. Otherwise, let P′ be the
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polygon obtained by removing the two edges of T in the boundary of P. It is easily

seen that P′ has vertices of all three colours and consecutive vertices have the same

or consecutive colours and the result follows by induction.

To prove the lemma, suppose ∂P = αβγ , where α etc. are the sequences of edges

of the three consecutive arcs, reading anticlockwise around P. Colour all vertices of

α except the last red, all vertices of β except the last white and all vertices of γ
except the last blue. Then a triangle with vertices of different colours is the desired

triangle. ⊓⊔

The characterisation of context-free groups in terms of Cayley graphs uses the

following idea. Let ϕ : X−→G be a mapping such that ϕ(X) generates G. Let α be

a non-trivial closed path in Γ (G,ϕ), with label w = y1 . . .yn, so ϕ(w) = 1. Let P be

a plane polygon with n boundary edges. Write w anticlockwise around the boundary

of P (with each edge labelled by a letter of w).

Definition. Let K be a positive real number. A K-triangulation of α is a diagonal

triangulation of such a polygon P with a label in (X±1)∗ assigned to each new edge

such that

(1) reading around the boundary of each triangle gives a word u with ϕ(u) = 1

(2) if u is the label on an edge of the triangulation then |u| ≤ K.

Before stating the characterisation of context-free groups, a lemma is needed. We

call a context-free grammar reduced if it has no useless symbols (see the definition

before Lemma 4.5).

Lemma 5.20. Let ϕ : X−→G be a mapping such that ϕ(X) generates G and X is

finite. Let E be a reduced context-free grammar with Wϕ(G) = LE . If A is a variable

of E and A
.
−→u, A

.
−→v, where u, v are terminal strings, then ϕ(u) = ϕ(v).

Proof. Since E is reduced, there exist α , β such that S
.
−→αAβ , and terminal

strings w1, w2 such that α
.
−→w1 and β

.
−→w2, hence S

.
−→w1uw2 and S

.
−→w1vw2,

so w1uw2, w1vw2 ∈ Wϕ(G). Thus ϕ(w1uw2) = ϕ(w1vw2) = 1, and since ϕ is a

monoid homomorphism, ϕ(u) = ϕ(v). ⊓⊔

Theorem 5.21. Let ϕ : X−→G be a mapping such that ϕ(X) generates G and with

X finite. Then G has context-free word problem if and only if there is a constant K

such that every non-trivial closed path in Γ (G,ϕ) can be K-triangulated.

Proof. Suppose G is context-free, so by Cor. 1.2, Wϕ(G)\{1} is context-free. (Dur-

ing this proof 1 will denote the empty string ε .) By Theorem 4.7 there is a grammar

E in Chomsky normal form such that LE = Wϕ(G) \ {1}. We have to find a con-

stant K with the property claimed in the theorem. If LE = /0, then X = /0 (otherwise

xx−1 ∈ LE for any x ∈ X). Thus Γ (G,ϕ) has a single vertex and no edges, so has no

non-trivial paths. We can therefore assume LE �= /0. Using the procedure of Lemma

4.5 gives a grammar still in Chomsky normal form, so we can assume E is reduced.

If A is a variable of E, it is generating (as noted before Lemma 4.5), so we can

choose a string of terminals uA such that A
.
−→uA. (To minimise the value of K, we
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take uA of shortest possible length. Note that uA �= 1 as E is in Chomsky normal

form, so application of a production to a word does not decrease its length.) Let α
be a non-trivial closed path in Γ (G,ϕ), so its label w = y1 . . .yn ∈Wϕ(G), and write

w round the boundary of an n-gon P in the plane. If n ≤ 2 then by convention P is

triangulated, and if n = 3, P is a triangle. In these cases, the labels on edges have

length 1.

Assume that n ≥ 4. Take a derivation of w from S (the start symbol). It must

have the form S,AB, . . . ,w1w2 = w, where A
.
−→w1 and B

.
−→w2. This divides the

boundary of P into two arcs with labels w1 and w2. Suppose w1 and w2 both have

length at least two. Construct an edge with label uB from the vertex at which the arc

with label w1 ends to the vertex at which it begins, with label uB.

w1 w2uB
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Figure 5.4

By Lemma 5.20, ϕ(uB) = ϕ(w2), and since ϕ(w1w2) = ϕ(w) = 1, ϕ(uB) =
ϕ(w−1

1 ). We now have two polygons, with boundary labels w1uB and w2u−1
B , with

fewer sides. These labels represent 1 in G, so are labels on closed paths in Γ (G,ϕ).
If one of w1, w2 has length 1, say w1 = a where a is a terminal, then S

.
−→aw2

where |w2| ≥ 3. The derivation of w from S, assuming it is leftmost, will then have

the form S,AB,aB,aCD, . . . ,aw3w4, where w2 = w3w4 and C
.
−→w3, D

.
−→w4, and

at least one of w3, w4 has length at least 2, say w4. This divides the boundary of

P into an edge with label a and two arcs with labels w3 and w4. Draw an edge

with label uD from the vertex at which the arc with label w4 begins to the vertex

at which it ends. Once again this gives two polygons with fewer sides and with

boundary labels aw3uD and w4u−1
D . Since ϕ(uD) = ϕ(w4) by Lemma 5.20 and

ϕ(aw3w4) = ϕ(w) = 1, these are labels on closed paths in Γ (G,ϕ). (It is left to

the reader to draw a picture for this case, and to deal with the cases not considered.)

Iteration of this procedure on the smaller polygons, treating labels of the form uA

just like terminals, eventually gives a diagonal triangulation of P with all labels on

new edges of the form uA, where A is a variable of E. Let K = maxA∈VN
|uA|, where

VN is the set of variables of E, Then K ≥ 1, so we have constructed a K-triangulation

of α , hence every non-trivial closed path can be K-triangulated.

Conversely, suppose there exists K such that every non-trivial closed path in

Γ (G,ϕ) can be K-triangulated. We construct a context-free grammar E with LE =
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Wϕ(G) \ {1}. The set of terminals is X±1. For u ∈ (X±1)∗ with |u| ≤ K, there is a

corresponding variable Au. For each relation u = vw which holds in G via ϕ , with

|u|, |v|, |w| ≤K, there is a production Au−→AvAw. (Note that u, v, w may be 1 here).

If Av is a variable and v = y is a relation holding in G, where y ∈ X±1, there is also

a production Av → y. We take A1 as the start symbol.

Given a word α in a derivation from A1, replace every variable Au occurring in

α by u, to obtain a terminal string α ′. By induction on the length of the derivation,

α ′ = 1 is a relation holding in G. Thus if A1
.
−→w, where w is a terminal string,

then w = 1 is a relation holding in G, since w′ = w. We have to prove the converse.

First, we consider a diagonal triangulation of a polygon P, with a label in (X±1)∗

assigned to each edge, such that:

(1) reading around the boundary of each triangle gives a word u with ϕ(u) = 1

(2) if u is the label on any edge (including the boundary edges in P) then |u| ≤ K.

(This need not be a K-triangulation as labels on boundary edges can have length

greater than 1.) Let y1, . . . ,yn be the labels on the edges of P reading anticlockwise

round the boundary, starting at some vertex p, and let w = y1 . . .yn. We show, by

induction on the number of triangles, that A1
.
−→ ŵ, where ŵ = Ay1

. . .Ayn .

If P is a 1-gon with label y1, then 1 = y1 is a relation, so A1−→Ay1
is a produc-

tion. If P is a bigon, A1−→Ay1
Ay2

is also a production. If P is a triangle, there is a

derivation A1,Ay1
Ay−1

1
,Ay1

Ay2
Ay3

.

Thus we can assume the number of triangles is at least two. By Lemma 5.18,

there are two critical triangles. We can choose one whose two boundary edges do

not meet at p, so w = w1uvw2 where u, v are the labels on these boundary edges.

The boundary of the triangle is labelled uvz−1 for some z, so z = uv is a relation

holding in G. This is illustrated in the following picture.
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Figure 5.5

Removing the two edges on the boundary of the triangle gives a polygon with

one less triangle and boundary label w1zw2. By induction, A1
.
−→ ŵ1Azŵ2, and

Az−→AuAv is a production, so A1
.
−→ ŵ1AuAvŵ2 = ŵ, completing the induction.

Now suppose w = y1 . . .yn, with yi ∈ X±1, n ≥ 1 and ϕ(w) = 1. There is a

closed path α (starting at any chosen vertex) in Γ (G,ϕ) with label w. There is a
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K-triangulation of α with polygon P, say. Applying what has been proved to P,

it follows that A1
.
−→Ay1

. . .Ayn . Using the productions Ay−→y, we conclude that

A1
.
−→y1 . . .yn = w. Thus LE =Wϕ(G)\{1}, and E is context-free, indeed in Chom-

sky normal form. By Cor. 1.2, Wϕ(G) is context-free. ⊓⊔

Remark 5.1. Given a polygon P satisfying (1) and (2) in the second part of the

proof, let e be an edge, given an orientation so it starts at a vertex a and ends at a

vertex b. Let α be a sequence of boundary edges joining b to a, such that eα is a

simple closed curve. Then reading around eα gives a word w with ϕ(w) = 1. This

can be proved by induction on the number of triangles of P, removing a critical

triangle when the number of triangles is at least two. Details are left to the reader.

The next step is to show that an infinite context-free group has more than one end.

For this purpose we do not need to define an end of a group, but only to give a

suitable definition of the number of ends. A graph is called locally finite if there are

only finitely many edges incident with every vertex. If Γ is a connected locally finite

graph and F is a finite subgraph, let Γ \F be the graph obtained by removing all

edges of F from Γ . Then Γ \F has only finitely many components, so only finitely

many infinite components. (The components of a graph are the maximal connected

subgraphs, and the graph is the disjoint union of its components; two vertices are in

the same component if and only if there is a path from one to the other.) We define

the number of ends of Γ to be

e(Γ ) = sup
F

(the number of infinite components of F).

Thus e(Γ ) is either an integer or ∞. If F1 ⊆ F2 ⊆ F3 . . . is a sequence of finite sub-

graphs of Γ such that
⋃∞

i=1 Fi = Γ , and cn is the number of infinite components of

Γ \Fn, it is easy to see that e(Γ ) = lim
n→∞

cn.

If ϕ : X−→G is a map, where X is finite and ϕ(X) generates G, we define the

number of ends e(G) of G to be e(Γ (G,ϕ)). It is true, though not obvious, that this

is independent of the choice of ϕ . It is also true but not obvious that e(G) is either

0, 1, 2 or ∞. (See [3, Section 2].) However, it is clear that e(G) = 0 if and only if G

is finite.

Theorem 5.22. If G is an infinite group with context-free word problem, then e(G) >
1.

Proof. Let ϕ : X−→G be a mapping such that ϕ(X) generates G and with X finite,

and let Γ = Γ (G,ϕ). For n ≥ 1, let Vn be the set of all vertices v of Γ such that

d(1,v) < n, where d is the path metric. Let Fn be the subgraph of Γ with vertex set

Vn whose edges are all edges of Γ whose endpoints are in Vn. Since Γ is locally

finite, Fn is finite.

Given a natural number n, as in Anisimov’s Theorem there exists g ∈G such that

if w = y1 . . .ym is a shortest word such that ϕ(w) = g, then m = |w|> n. Then y1 . . .yn

is a shortest word representing ϕ(y1 . . .yn), otherwise we could find a shorter word

than w representing g. Thus the path starting at 1 with label y1 . . .yn is a shortest
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path in Γ from 1 to ϕ(y1 . . .yn). Take n = 2i, where i ≥ 1 and let pi = ϕ(y1 . . .yi),
qi = ϕ(yi+1 . . .y2i). Then d(1, pi) = i = d(pi, piqi) and d(1, piqi) = 2i. Translating

by p−1
i , d(p−1

i ,1) = i = d(1,qi) and d(p−1
i ,qi) = 2i. We put ui = p−1

i , vi = qi.

By Theorem 5.21, there is a constant K such that every closed path in Γ can be

K-triangulated. Choose N > 3K/2. We claim that, if ui, vi are as above, then ui and vi

are in different components of Γ \FN , for i≥ 1. This implies Γ \FN has at least two

infinite components for all such N, because it has only finitely many components. It

then follows that e(Γ ) > 1, as required.

Suppose ui and vi are in the same component of Γ \FN . Let α be a path in Γ of

minimal length from 1 to ui, let γ be a path in Γ of minimal length from vi to 1, and

let β be a path in Γ \FN from ui to vi. Then δ = αβγ is a closed path in Γ . There

is a K-triangulation of δ with polygon P. Reading around the boundary of P from

a suitable point, the sequence of vertices encountered corresponds to the sequence

of vertices of Γ passed through by δ . Thus every boundary vertex of P corresponds

to a vertex of Γ . Also, ∂P is divided into three consecutive arcs, corresponding to

α , β and γ . By Lemma 5.19, there is a triangle T having vertices on all three arcs,

which define corresponding vertices of Γ , say a on α , b on β and c on γ .

Further, the label on an edge of T defines a path in Γ joining the two corre-

sponding vertices of Γ , with length at most K. This follows easily from Remark

5.1. Thus the distance between any two of a, b, c is at most K. It follows that

d(1,a) ≥ N−K, otherwise d(1,b)≤ d(1,a)+ d(a,b) < (N−K)+ K = N, contra-

dicting b∈Γ \FN . Also, i = d(1,ui) = d(1,a)+d(a,ui), hence d(a,ui)≤ i−N +K.

Similarly, d(c,vi)≤ i−N +K. But then

d(ui,vi)≤ d(ui,a)+d(a,c)+d(c,vi)≤ 2(i−N +K)+K = 2i+(3K−2N) < 2i

as N > 3K/2. This contradicts d(ui,vi) = 2i. ⊓⊔

The extra hypothesis needed by Muller and Schupp to prove a context-free group

has a free subgroup of finite index is accessibility.

Definition. Let G be a finitely generated group. An accessible series for G is a

series of subgroups

G = G0 ≥ G1 ≥ . . .Gn

where each Gi is of the form Gi+1 ∗K H or an HNN-extension 〈t,Gi+1 |tHt−1 = K〉,
where in each case K is finite. The length of the series is n.

Definition. A finitely generated group is accessible if there is an upper bound for

the lengths of accessible series of G, and the least upper bound for these lengths is

called the accessibility length of G.

Theorem 5.23. If G has context-free word problem and is accessible, then G has a

free subgroup of finite index.

Proof. The proof is by induction on the accessibility length s of G. If s = 0, then G

has no decomposition as a non-trivial free product with amalgamation or an HNN-

extension with finite amalgamated or associated subgroups. But Stallings Structure
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Theorem ([3, Theorem 3.1]) says that any group with more than one end does have

such a decomposition. By Theorem 5.22, G must be finite. If s > 0, we can write

G = Gi+1 ∗K H or an HNN-extension 〈t,Gi+1 |tHt−1 = K〉 with K finite, and Gi+1,

and in the first case H, have accessibility length at most s− 1. By Lemma 5.12,

Gi+1 and, in the first case, H are finitely generated, and by Lemma 5.14, they are

context-free. By induction they have free subgroups of finite index. It follows from

[10] in the free product case, and from [24] in the HNN case, that G also has a free

subgroup of finite index. ⊓⊔

Before stating the final characterisation of context-free groups, the following ob-

servation is needed.

Lemma 5.24. If a finitely generated group G has context-free word problem, it is

finitely presented.

Proof. Let X be a finite set and ϕ : X−→G be a mapping such that ϕ(X) generates

G. Then Wϕ(G) is context-free, and there is an associated positive integer p given

by the Pumping Lemma (Lemma 1.9). Suppose z ∈Wϕ(G) and |z| ≥ p. Then by

Lemma 1.9, we can write z = uvwxy, where |vwx| ≤ p, vx �= ε and for all i ≥ 0,

uviwxiy ∈Wϕ(G). In particular, z′ = uwy ∈Wϕ(G), and |z′|< |z|. Let w′ = w−1vwx,

so

|w′|= |w−1|+ |vwx|= |w|+ |vwx| ≤ 2|vwx| ≤ 2p.

Also, z′y−1w′y represents the same element of F(X) as z, and ϕ(z′y−1w′y) = ϕ(z) =
1, hence w′ ∈Wϕ(G). If |z′| ≥ p, we can repeat this procedure with z′ in place of z.

This leads to a product m = ∏r
i=1 y−1

i riyi, where ri ∈Wϕ(G) and |ri| ≤ 2p, such that

m and z represent the same element of F(X). By Lemma 5.6, z = 1 is a consequence

of the finite set R =
{

r ∈Wϕ(G) | |r| ≤ 2p
}

, so 〈X |R〉 is a finite presentation of

G via ϕ . Note that the words w′ and z′ can be obtained from the Cayley graph

by the “unstitching” process described above, using the diagram where the arrows

• •��x

•

��





y 





���
��

�

u ��
��

•

�� w

		
v

•

�� w

Figure 5.6

represent paths with the indicated labels. ⊓⊔

Theorem 5.25. Let G be a finitely generated group. The following are equivalent.

(1) G has context-free word problem.

(2) G has a free subgroup of finite index.

(3) G has deterministic word problem.

Proof. Dunwoody [6] has shown that a finitely presented group is accessible, and it

follows by Theorem 5.23 and Lemma 5.24 that (1) implies (2). We have seen that a
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finitely generated free group has deterministic word problem. It follows by Lemma

5.15 and Theorem A.5 that (2) implies (3). Obviously (3) implies (1). ⊓⊔

There are other language classes we have not discussed, for which groups with

word problem in the class have been studied. A one-counter automaton is a PDA

M = (Q,F,A,{z,z0} ,τ,q0,z0)

where if (q,a,z0,q
′,α) ∈ τ then α ∈ {z}∗ z0, and if (q,a,z,q′,α) ∈ τ then α ∈ {z}∗.

Starting in a configuration (q0,w,z0), the contents of the stack at any point (reading

downwards) is znz0, for some n ∈ N. This is determined by n, so the stack is, in

effect, a counter, which explains the name. The automaton is deterministic if it is

deterministic as a PDA. A language L is one-counter if L = L(M) for some one

counter automaton M, and deterministic one-counter language is similarly defined.

It has been shown in [13] that the following are equivalent, for a finitely generated

group G.

(1) G has one-counter word problem.

(2) G has deterministic one-counter word problem.

(3) G has a cyclic subgroup of finite index (i.e. G is either finite or has an infinite

cyclic subgroup of finite index).

(Note that Lemma 5.13 applies to the class of one-counter languages.)

A real-time language is a language in the class DTIME(n) (see the end of Chap.

3). As noted at the end of Chap. 1, the context-sensitive languages are those recog-

nised by a linear bounded automaton, and these coincide with the languages in

NSPACE(n) (see Theorem 12.2 and the remark following it in [21]). By Theorem

12.10 in [21], DTIME(n) ⊆ DSPACE(n) ⊆ NSPACE(n), so a real-time language

is context-sensitive. A deterministic FSA may be viewed as a deterministic TM of

time complexity n with one tape, so a regular language is a real-time language.

There has been some progress in studying groups whose word problem is a real-

time language. It is proved in [16] that finitely generated nilpotent groups, word

hyperbolic groups and geometrically finite groups have real-time word problem. In

[18], the number of tapes needed by a TM of time complexity n to recognise the

word problem of certain groups is investigated.

Another class, introduced by Aho, is the class of indexed languages, which are

defined by “indexed grammars” and are recognised by “one-way nested stack au-

tomata”. Further details are contained in §14.3 and the bibliographic notes at the

end of Chap. 14 in [21]. (Indexed grammars are also defined in [2].) This class lies

between the context-free and context-sensitive language classes. Nevertheless, it is

an open problem whether or not the class of groups with indexed word problem

coincides with the class of groups having context-free word problem, that is, the

finitely generated groups with a free subgroup of finite index.

A simple grammar is one in Greibach normal form (see Theorem 4.10), such that

for every variable A and terminal a, there is at most one string α such that A−→aα
is a production. A language is simple if it can be generated by a simple grammar.
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Given a simple grammar, the corresponding PDA in the proof of Theorem 4.14 is

deterministic, so a simple language is strict deterministic, hence prefix-free (Remark

4.2). We also allow a grammar with the single production S−→ε as a simple gram-

mar, generating the language {ε}, which is also strict deterministic (Remark 4.2).

Let ϕ : X−→G be a mapping such that ϕ(X) generates the group G, and X is

finite. Now Wϕ(G) is prefix-free only in the extreme case X = /0, when G is trivial.

For otherwise, Wϕ(G) will contain a word xx−1, where x ∈ X , and its prefix ε . In-

stead, consider the reduced word problem, which is the set Rϕ(G) whose members

are those non-empty words w ∈Wϕ(G) such that no prefix of w, other than ε and w,

is in Wϕ(G). Also, let Iϕ(G) (the irreducible word problem) be the set of non-empty

words in Wϕ(G) which have no subword, other than ε and w, in Wϕ(G), a subset of

Rϕ(G).

Haring-Smith [11] has shown that Rϕ(G) is simple for some ϕ if and only if G

is plain, that is, a free product of a finitely generated free group and finitely many

finite groups. There is again a characterisation involving the Cayley graph; Rϕ(G)
is simple if and only if Γ (G,ϕ) has the property that there are only finitely many

circuits passing through any vertex. This is equivalent to saying that Iϕ(G) is finite.

Haring-Smith conjectured that Rϕ(G) is strict deterministic for some ϕ if and only

if G has a plain subgroup of finite index. This was proved in [30], in fact Rϕ(G) is

strict deterministic for some ϕ if and only if G has context-free word problem. (Note

that, by [10], a plain group has a free subgroup of finite index, so we see directly that

having a plain subgroup of finite index is equivalent to having a finitely generated

free subgroup of finite index.)

Another variant of Wϕ(G) is its complement, (X±1)∗ \Wϕ(G), which is called

the co-word problem. Groups with context-free co-word problem are considered in

[17], and groups with indexed co-word problem have been studied by D. Holt and

C. Röver [19].

Automatic Groups

Let X be a set of monoid generators for a group G. That is, there is a mapping

ϕ : X → G such that the extension ϕ : (X±1)∗→ G maps X∗ onto G. Assume X is

finite.

Definition. Let L be a language with alphabet X . Then (X ,L) is called a rational

structure for G if L is regular and ϕ(L) = G.

Choose a letter $ �∈ X (the “padding symbol”). Define X ′ = X ∪{$} and

X(2,$) =
(
X ′×X ′

)
\{($,$)} .

Now define µ : X∗×X∗→ X(2,$)∗ by: if u = x1 . . .xm, v = y1 . . .yn ∈ X∗, then

µ(u,v) =

⎧
⎪⎨
⎪⎩

(x1,y1) . . .(xn,yn)(xn+1,$) . . .(xm,$) if m > n

(x1,y1) . . .(xm,ym) if m = n

(x1,y1) . . .(xm,ym)($,yn+1) . . .($,yn) if m < n
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Let (X ,L) be a rational structure for G. For w ∈ X∗, define

Lw = {µ(w1,w2) | w1, w2 ∈ L and ϕ(w1) = ϕ(w2w)} .

Definition. The rational structure (X ,L) is an automatic structure for G if Lε and

Lx (for all x ∈ X) are regular languages. A group is automatic if it has an automatic

structure.

Examples of automatic groups are word hyperbolic groups (in particular, finite

groups and finitely generated free groups), finitely generated abelian groups, braid

groups and many 3-manifold groups. (See [7], Theorem 3.4.5, Theorem 4.3.1, Chap-

ter 9 and Chapter 12.) Also, many small cancellation groups are automatic (see [8]).

Our intention is to give a characterisation of automatic groups in terms of the

Cayley graph. First, given the automatic structure (X ,L) on G (via ϕ : X → G), we

shall construct finite state automata Mx, for x ∈ X ∪{ε}, which under certain cir-

cumstances will recognise Lx. To do this, we let B be a finite subset of G containing

1.

The language L{$}∗ is regular by Lemma 1.5, so is recognised by a deterministic

FSA, say M (with tape alphabet X ∪{$}). Let δ be the transition function of M. The

FSA Mx has set of states Q×Q×B, where Q is the set of states of M. The tape

alphabet is X(2,$), and the initial state is (q0,q0,1), where q0 is the initial state of

M. We modify Mx by identifying all states of the form (q1,q2,g), where either q1 or

q2 is a dead state of M, to a single state f . (A state q of a FSA is called dead if it is

not a final state and there is no path in the transition diagram from q to a final state.

For an example, see Example (2) of a transition diagram in Chapter 1.) Now given a

state p = (q1,q2,g) and a = (y1,y2) ∈ X(2,$), there is a transition (p,a, p′), where

p′ =

{
(δ (q1,y1),δ (q2,y2),h) if h ∈ B

f otherwise

where h = ϕ(y2)
−1gϕ(y1) and ϕ($) is defined to be 1G. y1 = $, y−1

1 is replaced by

1, and if y2 = $, y2 is replaced by 1. The final states of Mx are those of the form

(q1,q2,ϕ(x)), where q1, q2 are final states of M. The FSA Mx is called a standard

automaton based on M and B. The reason for this strange definition of Mx will

become apparent when it is used.

Before giving our characterisation of automatic structures, a definition is needed.

Again we assume (X ,L) is an automatic structure on G (via ϕ : X → G), and let d

be the path metric in the Cayley graph Γ (G,ϕ). Let w = a1 . . .an ∈ X∗; for t ∈ N,

put

w(t) =

{
a1 . . .at if t ≤ n

a1 . . .an if t > n

Definition. Let K be a positive real number. Two words u, v ∈ X∗ are called K-

fellow travellers if, for all t ∈ N,

d(ϕ(u(t)),ϕ(v(t)))≤ K.
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Informally, the paths with labels u(t), v(t) starting at 1G are uniformly close in the

metric d.

Theorem 5.26. A rational structure for a group G (via ϕ : X → G) is an automatic

structure for G if and only if there exists K > 0 such that, for all u, v ∈ L and

x ∈ X ∪{ε}, if ϕ(u) = ϕ(vx) then u and v are K-fellow travellers.

Proof. Assume (X ,L) is an automatic structure for G. Let Mx be a FSA recognising

Lx, for x ∈ X ∪{ε}. Let N be the maximum number of states in any of the automata

Mx. If u, v ∈ L and ϕ(u) = ϕ(vx) then Mx accepts µ(u,v). Let t ∈ N. After reading

the prefix µ(u(t),v(t)) of µ(u,v), suppose Mx is in state q. Then there is a path

(in the transition diagram of Mx) from q to a final state of Mx, with label µ(w,z),
where u = u(t)w, v = v(t)z. Take a shortest path from q to this final state, with

label µ(w′,z′) say. This path never visits the same vertex twice (otherwise we could

shorten it) so has length |µ(w′,z′)| ≤ N− 1. Then Mx accepts µ(u(t)w′,v(t)z′), so

ϕ(u(t)w′) = ϕ(v(t)z′x). Hence, there are paths in the Cayley diagram as illustrated:

�

�

�

�

�

label u(t)

label w′

label x

label z′

label v(t)

1

u(t) u(t)w′

v(t)

v(t)z′

p

Figure 5.7

(where u(t)= ϕ(u(t)), etc). Thus d(u(t),v(t))≤ length of the path p = |w′|+ |z′|+1

and |w′|, |z′| ≤ |µ(w′,z′)| ≤ N − 1, so d(u(t),v(t)) ≤ 2N − 1. We can take K =
2N−1.

Conversely, assume K exists as in the theorem. Let B = {g ∈ G | d(1,g)≤ K}
and let Mx (x ∈ X ∪{ε}) be the standard automaton corresponding to B and a deter-

ministic FSA M recognising L{$}∗ constructed above. We claim that Mx recognises

Lx, hence (X ,L) is an automatic structure for G.

Let x∈X∪{ε} and suppose (w1,w2)∈X∗×X∗, where w1, w2 ∈ L and w1 = w2x.

Then

d(1,w2(t)
−1 w1(t)) = d(w2(t),w1(t))≤ K

for all t ∈N. If w1(t +1) = w1(t)y1 and w2(t +1) = w2(t)y2, and g = w2(t)
−1 w1(t),

h = w2(t +1) −1 w1(t +1), then h = ϕ(y2)
−1gϕ(y1), and g, h∈ B. This is illustrated

by a picture representing part of the Cayley graph.
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•

w2(t)
•

w2(t +1)

��

label y2

•
w1(t +1)

 label h

•
w1(t)

��
label y1

��label g

Figure 5.8

(Note that w1(t) may be equal to w1(t +1), when the edge with label y1 is absent

and ϕ(y1) means 1. Similarly the bottom edge may be missing.) It follows from the

construction of Mx that Mx accepts µ(w1,w2). Conversely, suppose there is a com-

putation of Mx with label µ(w1,w2) ending at a state (q1,q2,g). An easy induction

on the length of the computation shows that g = ϕ(w2)
−1ϕ(w1), and there are com-

putations of M with labels w1$k, w2$l for some k, l ≥ 0, ending respectively at q1,

q2. Therefore if (q1,q2,g) is a final state, w1$k, w2$l ∈ L{$}∗, so w1, w2 ∈ L, and

g = ϕ(x), hence ϕ(w1) = ϕ(w2x), so µ(w1,w2) ∈ Lx. This completes the proof. ⊓⊔

More can be gleaned from the first paragraph of the proof. Suppose |u|> |v|+N.

Take t = |v|. The path from q to a final state visits some vertex twice, so can be

shortened. Then ϕ(u(t)w′) = ϕ(vx) = ϕ(u), u(t)w′ ∈ L and |u(t)w′|< |u|. Similarly

if |v| > |u|+ N, there is a shorter element of L representing the same element of G

as v. This leads to the following lemma.

Lemma 5.27. Let (X ,L) be an automatic structure for a group G via ϕ . There is a

positive integer N such that if w ∈ L and g is a vertex of Γ (G,ϕ) at distance at most

1 from ϕ(w), then g = ϕ(u) for some u ∈ L of length at most |w|+N.

Proof. Let w′ be a representative of g in L. Either w = w′x or w′ = wx for some

x ∈ X ∪{ε}. Take N as in the proof of Theorem 5.26. By the observations preceding

the lemma, if |w′| > |w|+ N, it can be replaced by a shorter word, and the lemma

follows. ⊓⊔

Suppose G = 〈X | R〉ϕ . Recall that, if ϕ(w) = 1, then w =F(X)

k

∏
i=1

uir
±1
i u−1

i for

some ui ∈ F(X), ri ∈ R, k ∈ N (see Cor. 5.7). We put

a(w) = the least possible value of k.

Definition. The isoperimetric function f of the presentation is the mapping f : N→
N given by

f (n) = max{a(w) | |w| ≤ n, ϕ(w) = 1} .
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Lemma 5.28. Let 〈X | R〉 be a finite presentation of a group G, via ϕ . The following

are equivalent.

(1) The isoperimetric function is bounded above by a recursive function N→ N.

(2) G has solvable word problem.

(3) The isoperimetric function is recursive.

Proof. We shall not prove this, but refer to [7, Theorem 2.2.5]. This depends on

the previous result [7, Theorem 2.2.4], which gives a bound on the lengths of the

ui, when a word w ∈Wϕ(G) is written as in Equation (∗∗) in Cor. 5.7. The proof

of this is geometric, and it would be too great a digression to prove it. It uses van

Kampen diagrams, which are discussed in Chapter V of [25]. (They are based on

the idea, used several times in this chapter, of representing part of the Cayley graph

by a diagram in the plane.) Also, to convert the argument of [7, Theorem 2.2.5] into

a precise form, showing that (1) and (3) are equivalent to the statement that Wϕ(G)
is recursive, is a tedious, and possibly futile, exercise. ⊓⊔

Theorem 5.29. Suppose G is automatic. Then

(1) G has a finite presentation whose isoperimetric function is bounded above by a

quadratic function

(2) G has solvable word problem.

Proof. Let (X ,L) be an automatic structure for G via ϕ , and let K be as in Theorem

5.26. Let w ∈ (X±1)∗, say w = y1 . . .yn, put gi = ϕ(y1 . . .yi) (0≤ i≤ n) and let wi be

an element of L, of shortest possible length, such that ϕ(wi) = gi. There is a path pi

in Γ (G,ϕ) from 1 to gi with label wi, and an edge ei from gi to gi+1 with label yi+1,

for 0≤ i≤ n−1. The situation is illustrated in the planar diagram on the next page.

The top curve represents pi and the bottom curve pi+1. The straight lines represent

paths of length at most K. These exist because by Theorem 5.26, wi and wi+1 are

K-fellow travellers. Again denoting ϕ(wi(t)) by wi(t), etc., the closed path starting

at wi(t) and passing through wi+1(t), wi+1(ti+1) and wi(t +1) has length at most

2K + 2. (Note that, for sufficiently large t, wi(t) and wi(t +1) may coincide; this

happens when |wi+1|> |wi|. Similarly wi+1(t) and wi+1(t +1) may coincide.) Thus

the closed path piei p̄i+1 has been decomposed into max{|wi|, |wi+1|} closed paths

of length at most 2K +2. Let hi be the label on piei p̄i+1.

Unstitching the picture as previously described, hi is equal in F(X) to a product

of max{|wi|, |wi+1|} conjugates of the form uru−1, where ϕ(r) = 1 and |r| ≤ 2K +2.

Now if ϕ(w) = 1, ϕ(wn) = gn = 1, so we can take wn = w0, and then w itself is

conjugate in F(X) to h0 . . .hn−1, so is equal in F(X) to a product of conjugates of

elements of the finite set R =
{

r ∈ (X±1)∗ | ϕ(r) = 1 and |r| ≤ 2K +2
}

. Thus w is

a consequence of R, so G = 〈X | R〉ϕ .
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Figure 5.9

Let n0 = |w0|. Inductively, using Lemma 5.27, we can find a positive integer N

and ui ∈ L such that ϕ(ui) = ϕ(wi) and |ui| ≤ n0 + iN for 0≤ i≤ n. Since the wi were

chosen of minimal length, |wi| ≤ n0 +nN for all i. Hence, hi is a product of at most

n0 + nN conjugates of elements of R, and so w is a product of at most n(n0 + nN)
conjugates of elements of R. This proves (1). Now (2) follows from Lemma 5.28

and (1). ⊓⊔

In fact, it is known that a finitely generated subgroup of an automatic group has

deterministic context-sensitive word problem ([36]). For further reading on the ba-

sics of automatic groups, see [7] and [37]. There is a useful generalisation to the

notion of a group having an asynchronous A -combing ([2]). Here A is a “full

abstract family of languages”, which is a class of languages closed under certain

operations, most of which we have encountered. A group has an asynchronous reg-

ular combing if and only it is asynchronously automatic ([7, Chap. 7]). The idea of

asynchronously automatic group generalises that of automatic group.

Exercises on Chapter 5

In the first three questions, suppress the mapping ϕ in the definition of “presentation

via ϕ”, as in the example on p. 96.

1. Show that the following are presentations of the trivial group.

(a) 〈x,y | x2 = y3,xyx = yxy〉.
(b) 〈x,y | xyx−1 = y2,yxy−1 = x2〉.
(c) 〈x,y,z | xyx−1 = y2,yzy−1 = z2,zxz−1 = x2〉.



128 5 Connections with Group Theory

2. Show that

〈x1, . . . ,xn−1 | x
2
i = 1 (i≤ n−1),(xixi+1)

3 = 1 (i≤ n−2),(xix j)
2 = 1 ( j < i−1)〉

is a presentation of the symmetric group Sn. (Hint: consider H, the subgroup

generated by x1, . . . ,xn−2, and the set of cosets

{H,Hxn−1,Hxn−1xn−2, . . . ,Hxn−1xn−2 . . .x2x1}

and use the method in the example of a presentation of S3 given in the text. An

induction on n is needed.)

3. Show that 〈x1, . . . ,xn−2 | R〉, where R is the set of relations

{
x3

1 = x2
i = 1 (2≤ i≤ n−2),(xixi+1)

3 = 1 (i≤ n−3),(xix j)
2 = 1 ( j < i−1)

}

is a presentation of the alternating group An for n ≥ 3. (Hint: this is similar to

the previous exercise: consider H, the subgroup generated by x1, . . . ,xn−3, and

the set of cosets

{H,Hxn−2,Hxn−2xn−3, . . . ,Hxn−2xn−3 . . .x2x1} ,Hxn−2xn−3 . . .x2x2
1.)

4. Let X be a subset of a group G. Prove that the following are equivalent.

(a) The extension of the inclusion mapping X−→G to a group homomorphism

F(X)−→G given by Lemma 5.5 is an isomorphism.

(b) Given any mapping α : X−→H, where H is a group, there is a unique

extension of α to a homomorphism G−→H.

(c) X generates G, and no non-empty reduced word in (X±1)∗ represents the

identity element of G.

(When these conditions are satisfied, G is said to be free with basis X .)

5. Suppose F1 is free with basis X1 and F2 is free with basis X2. Show that F1 is

isomorphic to F2 if and only if |X1| = |X2|, where |Xi| is the cardinality of Xi.

(Hint: if F2
i is the subgroup generated by

{
u2 | u ∈ Fi

}
, then F2

i is a normal

subgroup of Fi and the quotient is a vector space over the field of two elements,

with basis the image of Xi. If you are unfamiliar with infinite cardinals and

infinite dimensional vector spaces, assume Xi is finite, so |Xi| is the number of

elements in Xi, for i = 1, 2.) Thus, if F is free with basis X , we define the rank

of F to be |X |.
6. If F is a finitely generated free group, show that F has a finite basis.

7. Let F be free with basis {x,y}. Show that the set Y =
{

xiyx−i | i ∈ N
}

is a ba-

sis for the subgroup of F it generates. (Hint: take a reduced word in (Y±1),
say u1 . . .un, where u j = xi j ye j x−i j (i j ∈ N, e j = ±1), which represents an el-

ement g of F . Show that the reduced word in {x,y}±1 representing g has the

form xi1 ye1 v1ye2 v2 . . .vn−1yen x−in , where each vi is a power of x or x−1 (possi-

bly empty), by induction on n. Now use Exercise 4.) Thus a free group of rank

2 contains a free group of countably infinite rank.
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8. Show that a group is a free group if and only if it is isomorphic to a free product

of infinite cyclic groups.

9. Using a suitable set of generators, describe the Cayley graph of the following

groups, and hence determine the number of ends of the group.

(a) The free group of rank 2.

(b) The free abelian group of rank 2.

(c) The symmetric group of degree 3.

(“Suitable” means a basis, in the appropriate sense, in (a) and (b), and in (c),

a 3-cycle and a transposition. A good way to describe the graphs is to draw

enough of them to indicate the general structure of the graph. Detailed proofs

for the number of ends are not required.)



Appendix A

Results and Proofs Omitted in the Text

We begin with the assertion at the beginning of Chapter 1, that a type 1 language

can be generated by a grammar whose productions are context-sensitive.

Note that, at this point in Chapter 1, S−→ε is not allowed as a production in a

type 1 grammar. However Lemma A.2 below is true if modified to allow it, adding

“except possibly S−→ε”. This is because the arguments in Lemma 1.1 and Cor. 1.2

apply.

Lemma A.1. If G = (VN ,VT ,P,S) is a grammar of type 0 or 1, then LG = LG′ for

some grammar G′ of the same type, such that all productions of G′ are either of

the form α−→β , where α , β are strings of non-terminal symbols, or of the form

A→ a, where A is a non-terminal symbol and a is a terminal symbol.

Proof. For every a ∈VT , take a new letter Xa. Let G′ = (V ′N ,VT ,P′,S), where V ′N =
VN ∪{Xa | a ∈VT} and P′ consists of:

Xa−→a for a ∈VT

and α ′−→β ′ for α−→β in P, where α ′ and β ′ are obtained from α , β by
replacing every occurrence of a letter a ∈VT by Xa.

Then G′ is of the same type as G, and is the required grammar. For if γ ∈ LG,

modify a G-derivation of γ from S, by replacing every production α−→β used by

α ′−→β ′, to obtain a G′-derivation of γ ′. Then by use of the productions Xa−→a,

we obtain a G′-derivation of γ . Hence LG ⊆ LG′ .

Conversely, given a G′-derivation of γ ∈ LG′ , when a production Xa−→a is used,

the resulting occurrence of a is never changed. Move this production to the end of

the derivation, replacing the occurrence of a by Xa until the production Xa−→a is

used. Repeating this procedure, we obtain a G′-derivation of γ in which all uses of

productions α ′−→β ′ occur first. This produces a word in the new letters Xa which is

then converted to γ , so this word must be γ ′. Now replace every use of a production

α ′−→β ′ by the production α−→β and delete all uses of productions Xa−→a at

the end. This gives a G-derivation of γ from S. Hence LG = LG′ . ⊓⊔

131
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Lemma A.2. Let G be a type 1 grammar. Then LG = LG′ for some grammar G′ in

which all productions are context-sensitive.

Proof. We can assume the productions of G are as in Lemma A.1. Given a produc-

tion a1 . . .an−→b1 . . .bm (m ≥ n, ai, bi non-terminal letters) which is not context-

sensitive (so n > 1), modify G as follows. Add new non-terminal letters A1, . . .An

and B1, . . .Bm (distinct, even if the ai, bi aren’t), then replace this production by the

productions:

a1 . . .an−→a1 . . .an−1An (1)

a1 . . .an−1An−→a1 . . .an−2An−1An (2)

...
...

a1A2 . . .An−→A1 . . .An (n)

A1 . . .An−→A1 . . .An−1Bn . . .Bm (n+1)

A1 . . .An−1Bn . . .Bm−→A1 . . .An−2Bn−1Bn . . .Bm (n+2)

...
...

A1B2 . . .Bm−→B1B2 . . .Bm (2n)

B1B2 . . .Bm−→b1B2 . . .Bm (2n+1)

b1B2 . . .Bm−→b1b2B3 . . .Bm (2n+2)

...
...

b1 . . .bm−1Bm−→b1 . . .bm (2n+m)

(The reader should check that these are context-sensitive.)

Call the new grammar G1. Any use of the old production can be replaced by using

these 2n+m productions in succession, hence LG ⊆ LG1
. Suppose α ∈ LG1

and there

is a G1-derivation of α from S (the start symbol) using the new productions. The first

time such a production is used, it must be (1), since up to that point none of the new

non-terminal letters have appeared. This introduces An, and this occurrence of An

must eventually be changed by use of a production (α is a string of terminal letters).

This can only be done by use of (2).

The reason is that the letter to the left of An is either from the original alphabet,

or the right-hand letter of the right-hand side of a new production, which can only

be An or Bm. Similarly, the letter to the right of An (if any) is either from the original

alphabet, or A1 or B1. But no word on the left-hand side of the new productions

contains any of the words AnAn, BmAn, AnA1 or AnB1. Thus (2) is the only production

that can be used, so part of the derivation has the form:

. . . ,u1a1 . . .anv1,u1a1 . . .Anv1, . . . ,u
′
1a1 . . .Anv′1,u

′
1a1 . . .An−1Anv′1, . . .

which can be replaced by

. . . ,u1a1 . . .anv1, . . . ,u
′
1a1 . . .anv′1,u

′
1a1 . . .Anv′1,u

′
1a1 . . .An−1Anv′1, . . . .
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(The use of (1) is moved until just before the use of (2).) Similarly, the next time

An−1An is changed by a production, it must be by use of (3), and we can change

the derivation so (1), (2) and (3) are used in succession. Eventually we obtain a

G1-derivation in which (1) through (2n+m) are used in succession, to change an

occurrence of the string a1 . . .an to b1 . . .bm. These can be replaced by a single use

of the original production.

Continuing, we eventually remove all use of the new productions, giving a G-

derivation of α (the fact that the original productions are now used does not affect

the argument). Hence LG1
= LG. Finally, repetition of the procedure replacing G by

G1 will remove all productions which are not context-sensitive, giving the required

grammar G′. ⊓⊔

The next result to be proved is Lemma 2.18. It is necessary to read the relevant

part of Chapter 2 to understand the statement and proof.

Lemma 2.18. There is a primitive recursive function Next : N→ N such that

Next(Code(c)) = Code(δ (c))

for all c ∈C′.

Proof. Let c = (q,a,α,β ), so Code(c) = 2q3a5σ(α)7σ(β ). Put x = Code(c), and use

Lemma 1.10. To simplify notation, we omit subscripts and write R, N, D instead of

RT ′ , NT ′ , DT ′ .

(1) If D(q,a) = 0, Code(δ (c)) = 2N(q,a)3β (0)5σ(α ′)7σ(β ′) and

N(q,a) = N(log2(x), log3(x))

β (0) = rem(2, log7(x))

σ(α ′) = R(q,a)+2α(0)+22α(1)+ . . . = R(log2(x), log3(x))+2log5(x)

σ(β ′) = β (1)+2β (2)+ . . . = quo(2,σ(β )) = quo(2, log7(x))

(2) If D(q,a) = 1, Code(δ (c)) = 2N(q,a)3α(0)5σ(α ′)7σ(β ′) and similarly

N(q,a) = N(log2(x), log3(x))

α(0) = rem(2, log5(x))

σ(α ′) = quo(2, log5(x))

σ(β ′) = R(log2(x), log3(x))+2log7(x)

Hence, we define Next(x) = 2F1(x)3F2(x)5F3(x)7F4(x) (for any x ∈ N) where, putting

E(x) = D(log2(x), log3(x)):

F1(x) = N(log2(x), log3(x))

F2(x) = (1
.
−E(x))rem(2, log7(x))+E(x)rem(2, log5(x))

F3(x) = (1
.
−E(x))

(
R(log2(x), log3(x))+2log5(x)

)
+E(x)quo(2, log5(x))

F4(x) = (1
.
−E(x)))quo(2, log7(x))+E(x)

(
R(log2(x), log3(x))+2log7(x)

)

Since F1, . . . ,F4 are primitive recursive, so is Next. ⊓⊔
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Now we prove two lemmas on deterministic pushdown automata which are

needed at the end of Chapter 4, where these and related ideas are defined. We shall

need another definition concerning them.

Definition. A deterministic PDA M = (Q,F,A,Γ ,τ,q0,z0) is said to always scan

its entire input if, for all w ∈ A∗, (q0,w,z0)−→
M

(q,ε,γ) for some q ∈ Q and γ ∈ Γ ∗.

Also, we shall describe a transition of a PDA starting (q,ε, . . .) as an ε-transition.

The ways in which M can fail to always scan its entire input are firstly, that it

halts without reading the entire word on the tape. This can happen if M empties its

stack, or if there is no transition beginning (q,a,z) or (q,ε,z), where M is in state q,

a is the next letter on the tape and z is on top of the stack. Secondly, it can happen

that M continues indefinitely to use ε-transitions without reading another letter from

the tape. This observation is the basis for the construction in the next lemma. This

makes use of a state d (the “dead state”) to continue to read from the tape when any

of the situations above is encountered. There is also an extra final state f to accept

any words that M accepts in the second situation, when it continues indefinitely to

use ε-transitions. Such a word will be a proper prefix of the word on the tape. (The

proper prefixes of a word w are the prefixes of w other than w itself.)

Lemma A.3. If L is a deterministic language, then L = L(M′) for some deterministic

PDA M′ which always scans its entire input.

Proof. There is a deterministic PDA M = (Q,F,A,Γ ,τ,q0,z0) such that L = L(M).
There is a new PDA M′ = ((Q∪

{
q′0,d, f

}
,F ∪{ f} ,A,Γ ∪{x0} ,τ ′,q′0,x0), where

τ ′ is defined as follows.

(1) (q′0,ε,x0,q0,z0x0) ∈ τ ′.
(2) For all q∈Q, a∈A and z∈Γ , if no transition in τ starts with (q,a,z) or (q,ε,z),

then (q,a,z,d,z) ∈ τ ′.
(3) For all q ∈ Q, a ∈ A, (q,a,x0,d,x0) ∈ τ ′.
(4) For all a ∈ A, z ∈ Γ ∪{x0}, (d,a,z,d,z) ∈ τ ′.
(5) If there is an infinite sequence of configurations of M:

(q,ε,z),(q1,ε,γ1),(q2,ε,γ2), . . .

where z ∈ Γ and each configuration (qi,ε,γi) is obtained from its predecessor

by an ε-transition in τ , then

{
(q,ε,z,d,z) ∈ τ ′ if no qi ∈ F

(q,ε,z, f ,z) ∈ τ ′ if some qi ∈ F

(6) For all z ∈ Γ ∪{x0}, ( f ,ε,z,d,z) ∈ τ ′.
(7) For all q ∈ Q, a ∈ A∪ {ε} and z ∈ Γ , if no transition of τ ′ starting (q,a,z)

has been defined by (2) or (5), and there is a transition (q,a,z,q′,γ) ∈ τ , then

(q,a,z,q′,γ) ∈ τ ′.
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It is easy to see that M′ is deterministic. Note that M′, in its initial state, always

begins a computation by putting x0 on the bottom of the stack (using (1)), and this

is never erased.

Suppose M′ does not always scan its entire input. Then for some w ∈ A∗,

(q′0,w,z0)−→
M′

(q,au,z1 . . .zkx0)

where a ∈ A and au is a suffix of w, zi ∈ Γ , k ≥ 0, and a is never read. That is, the

computation can only be continued by use of ε-transitions. In fact, the computation

of M′ can be continued using an ε-transition. For if M has no transition beginning

(q,ε,z1), then either by (2) or (7) M′ has a transition starting (q,a,z1), so a can be

read from the tape, a contradiction. Thus M has a transition beginning (q,ε,z1), so

either by (5) or (7), M′ has a transition starting (q,ε,z1), as claimed. Repeating this

argument, the computation of M can be continued indefinitely using ε-transitions,

giving a sequence

(q,au,z1 . . .zkx0), (q1,au,γ1z2 . . .zkx0), (q2,au,γ2z2 . . .zkx0), . . .

Note that q and all qi are in Q, because no ε transition begins with d, and in state f ,

the next configuration will be in state d, using (6). Consequently, the ε-transitions

used are all transitions of M. Now eventually z1 must be erased from the stack, that

is, some γi = ε . Otherwise (5) applies to the sequence

(q,ε,z1), (q1,ε,γ1), (q2,ε,γ2), . . .

(obtained by using the same transitions used in the sequence above). The first tran-

sition used is then given by (5), so q1 is either d or f , a contradiction.

Similarly, z2, . . . ,zk are eventually erased, leading to a configuration (qi,au,x0).
Then for the next move, only a transition in (3) can be used, so qi+1 = d, a contra-

diction. Thus M′ always scans its entire input.

Finally, we need to show L(M) = L(M′). Suppose M accepts w ∈ A∗. There is

thus a computation of M beginning with (q0,w,z0) which scans all of w and ends

in a final state. While a non-empty suffix of w remains on the tape, the transitions

used are transitions of M′, by (7). This gives a computation of M′, using these tran-

sitions together with an initial use of the transition in (1), starting in configuration

(q′0,w,x0). If, M is in a final state just after reading all of w, then M′ will be in the

same state just after reading w, so M′ accepts w.

Otherwise, M then uses a sequence of ε-moves until a final state is reached.

Either these are transitions of M′, so again M′ accepts w, or (5) applies and M′, just

after reading w, enters state f , so accepts w. Thus L(M)⊆ L(M′).
Suppose M does not accept w, and consider a computation of M starting with

(q0,w,z0). If M halts, then (whether or not all of w has been read), we obtain, us-

ing (2) and (3), a corresponding computation of M′, starting with (q′0,w,x0), which

enters state d. Since M′ is deterministic, it does not accept w. (In state d, only tran-

sitions in (4) can be used, and d is not a final state.)
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Otherwise, the computation of M can be continued indefinitely, giving a sequence

as in (5), where, if all of w has been read, no qi ∈ F . Up to the point where M stops

reading from the tape, there is a corresponding computation of M′. Then by (5),

either M′ enters state d, or enters state f having read a proper prefix of w. In the

latter case, M′ then enters state d using an ε-transition from (6). In any case, M′

does not accept w. Hence L(M) = L(M′). ⊓⊔

We shall need the lemma just proved for the next result, which is used in Chapter

4.

Lemma A.4. If L is a deterministic language, then L = L(M′) for some deterministic

PDA M′ which has no ε-transitions beginning with a final state.

Proof. There is a deterministic PDA M = (Q,F,A,Γ ,τ,q0,z0) such that L = L(M).
By Lemma A.3, we can assume M always scans its entire input. Define a new PDA

M′ = (Q′,F ′,A,Γ ,τ ′,q′0,z0) as follows:

Q′ = Q×{1,2,3}

F ′ = {(q,3) | q ∈ Q}

q′0 =

{
(q0,1) if q0 ∈ F

(q0,2) if q0 �∈ F

and τ ′ is defined as follows.

(1) If (q,ε,z, p,γ) ∈ τ , then τ ′ contains

((q,k),ε,z,(p, l),γ) for k = 1, 2

where l = 1 if k = 1 or p ∈ F , otherwise l = 2.

(2) If (q,a,z, p,γ) ∈ τ , where a ∈ A, then τ ′ contains

((q,k),a,z,(p, l),γ) for k = 2, 3

where l = 1 if p ∈ F , l = 2 if p �∈ F , and τ ′ also contains

((q,1),ε,z,(q,3),γ).

Obviously M′ is deterministic and has no ε-transitions beginning with a final state.

Given a computation of M starting with (q0,w,z0), we claim that there is a corre-

sponding computation of M′ starting with (q′0,w,z0), such that if the computation of

M ends in state q, then the computation of M′ ends in state (q,k), where k = 1 or

2. Further, in the computations of M and M′, exactly the same word has been read

from the tape.

The computation of M′ is constructed by induction on the length of the computa-

tion of M. Suppose the next step of this computation uses the transition (q,ε,z, p,γ).
Then the computation of M′ is continued by using the corresponding transition in

(1). If the next step in the computation of M uses (q,a,z, p,γ), there are two cases. If

M′ is in a state (q,2), then the computation of M′ is continued by using the transition
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((q,2),a,z,(p, l),γ) in (2). If M′ is in state (q,1), the computation is continued by

using ((q,1),ε,z,(q,3),γ), followed by ((q,3),a,z,(p, l),γ).
The computation of M′ so constructed will be in a state (q,1) if M has entered

a final state since last reading a letter from the tape, and in a state (q,2) otherwise.

Note that M′ enters a final state when k = 1 and M reads a letter from the tape.

Suppose w ∈ A∗ and take a letter a ∈ A (we can assume A �= /0, just by adding a

letter to the alphabet of M). Consider the computation of M starting with (q0,wa,z0).
Since M is deterministic and always scans its entire input, if M accepts w then it must

enter a final state after reading the last letter of w and before reading the final a. Then

in the corresponding computation of M′, M′ will enter a final state (q,3) just before

reading a, so accepts w. If M does not accept w, then in between reading the last

letter of w and reading a, M′ remains in states of the form (q,2), so does not enter a

final state, hence (being deterministic) does not accept w. Thus L(M) = L(M′). ⊓⊔

Note. With minor modification, the argument of the previous lemma can be used

to show the complement of a deterministic language is also deterministic. See [20,

Theorem 12.1] or [21, Theorem 10.1].

Finally we prove a result on gsm mappings needed in Chapter 5, where the termi-

nology is explained. The proof comes from [20, Theorem 12.3].

Theorem A.5. The class of deterministic languages is closed under inverse deter-

ministic gsm mappings.

Proof. Let S = (QS,FS,A,B,τS, p0) be a deterministic gsm and let L be a determin-

istic language with alphabet B, so L = L(M) for some deterministic PDA M. If there

is a letter in the alphabet of M not in B, we can omit it and any transitions in which

it appears. If there is a letter of B, not in the alphabet of M, we can add it to the

alphabet. Thus we can assume M has alphabet B, say

M = (QM,FM,B,Z,τM,q0,z0).

By Lemma A.4, we can assume M has no ε-transitions beginning with a final state.

Let r be the maximum length of a word w ∈ B∗ such that some edge in the transition

diagram of S has label (a,w), for some a ∈ A. We construct a PDA M′ recognising

f−1
S (L) as follows: M′ = (Q′,F ′,A,Z,τ ′,q′0,z0), where:

Q′ = {(q, p,w) | q ∈ QM, p ∈ QS, w ∈ B∗ and |w| ≤ r}

F ′ = {(q, p,ε) | q ∈ FM, p ∈ FS}

q′0 = (q0, p0,ε)

The transitions in τ ′ are those specified in (1)–(3) below.

(1) If τM contains no transition beginning q,ε,z (where q ∈ QM , z ∈ Z), but

(p,a,w, p1) ∈ τS, then τ ′ contains ((q, p,ε),a,z,(q, p1,w),z).
(2) If (q,ε,z,q1,α)∈ τM , then τ ′ contains ((q, p,w),ε,z,(q1, p,w),α), for all p and

w with (q, p,w) ∈ Q′.
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(3) If (q,b,z,q1,α) ∈ τM , where b ∈ B, then τ ′ contains

((q, p,bw),ε,z,(q1, p,w),α)

for all p and w with (q, p,bw) ∈ Q′.

It is easily seen that M′ is deterministic. Suppose M′ accepts u = a1 . . .an. Then

the transitions of type (1) which it uses correspond to transitions of S having the

form (pi,ai,wi, pi+1) (because transitions of types (2) and (3) do not change the

second coordinate of the state of M′). These transitions give a computation of S

with input a1 . . .an and output w1 . . .wn. The transitions of types (2) and (3) M′ uses

correspond to transitions of M and give a computation of M in which w1 . . .wn is

read from its tape, ending, say, in a state q. These transitions do not change the first

coordinate of the state of M′. (The third coordinate of the states of M′ represents a

buffer to receive output from S, using transitions (1); after a letter is read from the

buffer, using transitions (3), it is erased.) At the end of the computation M′ is in state

(pn+1,q,ε). Hence pn+1 ∈ FS, so the computation of S is successful, and a1 . . .an ∈
f−1
S (w1 . . .wn). Similarly, q ∈ FM , so M accepts w1 . . .wn, that is, w1 . . .wn ∈ L. It

follows that L(M′)⊆ f−1
S (L).

Conversely, if a1 . . .an ∈ f−1
S (L), there is a successful computation of S, with

input a1 . . .an and output w = w1 . . .wn ∈ L, where (ai,wi) are the labels on the

edges of the corresponding path in the transition diagram. There is a computation

of M accepting w. It is left to the reader to construct a computation of M′, accepting

a1 . . .an, from those of S and M. The condition on M, that no ε-transition begins with

a final state, is needed because of the possibility that wk = . . .wn = ε for some k. It

ensures that, if this happens, M′ reads ak . . .an from its tape. Thus a1 . . .an ∈ L(M′),
as required. ⊓⊔



Appendix B

The Halting Problem and
Universal Turing Machines

Let X be the set of numerical Turing machines, where states are renamed so that the

set of states of each machine is {2, . . . ,r− 1} for some r, and where L = 0, R = 1.

We can define a mapping gn : X →N as we did after Theorem 2.19 (but without first

modifying the machines). Then gn is a Gödel numbering, that is, it is 1− 1 and its

image is recursive (exercise). There is therefore a strictly increasing recursive bijec-

tion f : N→ gn(X). Putting Tm = gn−1 f (m), we obtain an enumeration T0,T1, . . . of

numerical TM’s which is effective, in that given m, f (m) = gn(Tm) is computable,

and from gn(Tm) one can recover the states, transitions etc. of Tm.

The general halting problem is to give a procedure to decide whether Tm, on input

x (i.e. started on tape description 01x) halts or not. We shall show this is unsolvable;

formally, this means that B = {(m,x) | Tm halts on input x} is not recursive. As in

Prop. 3.7, it suffices to show that A = {m | Tm halts on input m} is not recursive.

Suppose A is recursive. Then N\A is r.e., so χp(N\A) is recursive, hence is com-

puted by a numerical TM T which halts on input m if and only if χp(N\A)(m) is

defined, i.e. m �∈ A, by Cor. 2.22. By renaming, we can assume the set of states of T

is {2, . . . ,r−1} for some r and L = 0, R = 1. Then T = Tp for some p.

Then by definition of A, Tp halts on input p if and only if p ∈ A, but Tp halts on

input p if and only if p �∈ A, a contradiction. Hence A is not recursive.

Of course this is related to Prop. 3.7, but is not easy to derive directly from

Prop. 3.7 because of the modifications made to the Turing machines and the use of

Kleene’s Normal Form Theorem.

To make further progress, we shall assume the mapping g : N → N defined by

g(m) = gn(T ′m) is recursive (to prove this is a rather complicated exercise). Here, T ′n
is the modified TM defined before Lemma 2.18. Taking n = 1 in Theorem 2.20, the

proof shows that ϕTm,1(x) = H(m,x), where H(m,x) = F(g(m),x,µt(G(g(m),x, t) =
0)), where F , G are the functions in Theorem 2.20. Now H is partial recursive, so is

computed by a numerical TM, say U , by Cor. 2.22. Then U , started on Tape(m,x)
(i.e. 01m01x), gives exactly the same output as Tm on input x. (They either halt with
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tape description 01y, where y = ϕTm,1(x) if this is defined, otherwise they do not

halt.) For this reason, U is called a universal Turing machine. It is not clear how to

construct U from what was done in Chapter 2, but there is a considerable amount of

literature on universal Turing machines and their construction, and their relevance

to the development of the (stored program) computer. The existence of a universal

machine goes back to Turing’s original papers ([38], [39].

For a discussion of the halting problem for Turing machines designed to recog-

nise languages, see [20, §7.3].
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Cantor’s Diagonal Argument

We assume familiarity with the idea of a countable set. Recall that a set is countable

if it can be put into one-to-one correspondence with a subset of N. Equivalently, a

set C is countable if either C = /0 or there is a surjective mapping f : N→C. In the

next theorem, 2N means the set of all subsets of N.

Theorem C.1. There is no surjective mapping N→ 2N, consequently 2N is uncount-

able.

Proof. Suppose f : N→ 2N is surjective; put Y = {x∈N | x �∈ f (x)}. Then Y = f (z)
for some z∈N, and z∈Y ⇐⇒ z∈ f (z)⇐⇒ z �∈Y , by definition of Y , a contradiction.

(The argument works for any set X in place of N). ⊓⊔

To interpret this in terms of characteristic functions, we can write

Y = {x ∈ N | χ f (x)(x) = 0}.

Then χY (x) = 1 if and only if χ f (x)(x) = 0, that is, χY (x) = 1
.
−χ f (x)(x).

Now put F(m,n) = χ f (m)(n), for m, n ∈ N. Then for all x ∈ N,

F(z,x) = 1
.
−F(x,x)

where Y = f (z), and putting x = z gives a contradiction. The proof is similar to some

arguments used in the course (see Props. 3.5 and 3.6) and to the proof of the Gödel

Incompleteness Theorem in logic. Writing the values of F as an infinite matrix:

F(0,0)
��--

-
F(0,1) F(0,2) F(0,3) F(0,4) . . .

F(1,0) F(1,1)
��--

-
F(1,2) F(1,3) . . .

F(2,0) F(2,1) F(2,2) . . .

F(3,0) F(3,1) . . .

F(4,0)
...

. . .
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row m represents the values of χ f (m), so if f is surjective, each subset of N is rep-

resented by a row; however, χY (x) = 1
.
−F(x,x), so χY is obtained by changing the

values of F on the main diagonal, indicated by the arrows. Then Y is not repre-

sented by any row, a contradiction, since a row representing it differs from the first

row in the first entry, the second row in the second entry, etc. This explains the name

“diagonal argument”.

It follows easily that R is uncountable. Let B be the set of all real numbers a

whose decimal expansion has the form a = 0.a0a1 . . ., where every ai is either 0 or

1. (In the case of a terminating decimal expansion, add an infinite string of zeros, so

a1,a2 . . . is always an infinite sequence, which is uniquely determined by a). Every

such number a = 0.a0a1 . . . defines an element of 2N, say Xa, by χ
Xa

(i) = ai. The

mapping a �→ Xa is a bijection from B to 2N, hence B is uncountable, and so is R, as

a subset of a countable set is countable.

The Russell-Zermelo Paradox

The first proof can be easily adapted to show Cantor’s version of set theory is

inconsistent; in this set theory, given any predicate P, there is a set {x | P(x)}, such

that any object x belongs to the set if and only if P(x) is true. Now let y = {x | x �∈ x}.
It is easy to see that y ∈ y if and only if y �∈ y, a contradiction.

Exercises on Appendix C

1. By explicit use of the diagonal argument, without using 2N, show that the subset

B of R is uncountable.

2. Recall from Chapter 2 that Ackermann’s function is the function A : N2 → N
defined by

A(0,y) = y+1

A(x+1,0) = A(x,1)

A(x+1,y+1) = A(x,A(x+1,y))

It can be shown that, for any primitive recursive function f : Nn−→N, there

exists k with f (x1, . . . ,xn) ≤ A(k,max{x1, . . . ,xn}), for all x1, . . . ,xn. Use this

and the diagonal argument to prove that A is not primitive recursive.
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Solutions to Selected Exercises

Chapter 1

1. Yes, a derivation is S,aASb,abSbSb,abSbabb,ababbabb.

3. A transition diagram for a FSA recognising {(ab)n | n = 0,1,2, . . .} is

��
�� � �

b

a

a
± +��

��

��

5. (ii) No. Otherwise RL would be of finite index by Theorem 1.7, which implies

1m01n0 RL 1m01p0 for some n �= p, where m,n, p≥ 0. Then

1m01n01m+n RL 1m01p01m+n

a contradiction since 1m01n01m+n ∈ L, but 1m01p01m+n �∈ L.

Chapter 2

1. (a) Let fn(x1, . . . ,xn) = max{x1, . . . ,xn}, x = (x1, . . . ,xn). Then

fn(x) = max{ fn−1(x1, . . . ,xn−1),xn}= f2( fn−1(x1, . . . ,xn−1),xn)

= f2( fn−1(π1n(x), . . . ,πn−1,n(x)),πnn(x))

and it suffices by induction on n to show f2 is primitive recursive. But f2

has a definition by cases:
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f2(x,y) =

{
π12(x,y) if x≥ y

π22(x,y) if x < y
, hence f2 is primitive recursive.

4. Clearly J−1
1 = J1 is primitive recursive, and J−1

2 is primitive recursive by Exer-

cise 3 (b). For n ≥ 2, if y = Jn+1(x1, . . . ,xn+1), then y = J(x1,Jn(x2, . . . ,xn+1)),
so x1 = K(y) and Jn(x2, . . . ,xn+1) = L(y), hence (x2, . . . ,xn+1) = (J−1

n ◦L)(y).
Thus J−1

n+1 = (K,K1 ◦L, . . . ,Kn ◦L), where K1, . . . ,Kn are the coordinate func-

tions of J−1
n . It follows by induction on n that J−1

n is primitive recursive for all

n. Putting n = 2 gives J−1
3 = (K,K ◦L,L◦L).

5. Suppose a1, . . . ,ak are distinct elements of Nn, and f (ai) = bi (where bi ∈ N)

for 1≤ i≤ k, and f (x) is undefined for x �∈ {a1, . . . ,ak}.

Let g(x) =

{
bi if x = ai, i.e |x−ai|= 0, for some i with 1≤ i≤ k

0 otherwise

Then g is primitive recursive, being obtained from constant functions using a

definition by cases. Now let

h(x) = µy(|x−a1| . . . |x−ak|= 0)

a partial recursive function. Then h(ai) = 0 for 1≤ i≤ k and h(x) is undefined

for x �∈ {a1, . . . ,ak}. Therefore f (x) = g(x)+h(x) is partial recursive.

7. Let H be the iterate of h, so H is primitive recursive by (the easy case of)

Question 6. Then ϕ(x, t,r) = H(x, t
.
−r), which is obtained from H and known

primitive recursive functions by composition.

9. T1 = P1R∗LP0. The effect on the tape description is

u01a001c−→
P1

u01a011c−→
R∗

u01a01c+10−→
L

u01a01c1−→
P0

u1a01c0.

13. Clearly T5 = T k−1
3 T4 will work.

Chapter 3

1. We assume A = {a1, . . . ,an} where n > 0 (the case n = 0 is easy, as noted in

the text). The variables x, y, z are used below to define certain functions, and

range over all elements of N. It is a supplementary exercise to verify in detail

the claims below that certain functions and predicates are primitive recursive.

(a) Let q be an integer greater than 1. If r ∈ N, r can be written as

r = s1 + s2q+ . . .+ skqk−1
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where 0≤ s j < q for 1≤ j ≤ k (by using the division algorithm and induc-

tion on r). Putting s j = 0 for j > k, the s j are uniquely determined. To see

this, define Q : N3 → N by primitive recursion:

Q(x,y,0) = x

Q(x,y,z+1) = quo(y,Q((x,y,z)).

and put F(x,y,z) = rem(y,Q(x,y,z
.
−1)), so F is a primitive recursive func-

tion. Then the reader can check that s j = F(r,q, j) for j ≥ 1. It follows that

ϕ1 is one-to-one.

Now choosing k as small as possible, k is the least integer m such that such

that r < qm, and k ≤ r (by induction on r). Define a primitive recursive

function M : N2 →N by M(x,y) = µ z≤ x(x < yz), so k = M(r,q). Now put

f (x,z)= F(x,n+1,z), m(x) = M(x,n+1). Thus r = ∑
m(r)
j=1 f (r, j)(n+1) j−1.

From the definition of ϕ1

r ∈ ϕ1(A
∗)⇔ f (r, j) > 0 for 1≤ j ≤ m(r)

and the right-hand side is a primitive recursive predicate. Hence ϕ1 is a

Gödel numbering.

Also, ϕ2 is one-to-one by unique factorisation into primes and

r ∈ ϕ2(A
∗)⇔

(0 < logp j
(r)≤ n for 1≤ j ≤ log2(r))∧

(
r = 2log2(r)

log2(r)

∏
j=1

p
logp j

(r)

j

)
.

The right-hand side is a primitive recursive predicate, hence ϕ2 is a Gödel

numbering.

Define g : N→ N by g(r) = 2m(r) ∏
m(r)
j=1 p

f (r, j)
j . Then g ◦ϕ1 = ϕ2 and g is

primitive recursive. If X ⊆ A∗ and ϕ1(X) is r.e. then ϕ2(X) = g(ϕ1(X)) is

r.e. by Lemma 3.3(2).

Now define g′ : N → N by g′(r) = ∑
log2(r)
j=1 logp j

(r)(n + 1) j−1. Then g′ is

primitive recursive and g′ ◦ϕ2 = ϕ1, so similarly ϕ2(X) r.e. implies ϕ1(X)
is r.e. Thus ϕ1(X) is r.e. if and only if ϕ2(X) is r.e. Applying this to A∗ \X

and using Lemma 3.8, ϕ1(X) is recursive if and only if ϕ2(X) is recursive.

(b) As a hint, suppose r = s1n+ . . .+ sknk where 1≤ s j ≤ n. Then

r = n((s1−1)+(s2−1)n+ . . .+(sk−1)nk−1)+(n+ . . .+nk).

(d) It is enough to show that ϕ2(B
∗) is recursive, in view of (a) and (b), and

in view of (c), we can choose the bijection {1, . . . ,n} → A such that B =
{a1,a2, . . . ,as}, where 0≤ s≤ n. Then
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r ∈ ϕ2(B
∗)⇔ (r ∈ ϕ2(A

∗))∧ (logp j
(r)≤ s for 1≤ j ≤ log2(r))

⇔ (r ∈ ϕ2(A
∗))∧ (∀ j ≤ log2(r)(( j = 0)∨ (logp j

(r)≤ s))

and the right-hand side is a primitive recursive predicate.

2. The construction of some of the TM’s is as follows (in all cases, q0 is the initial

state).

R: has set of states Q = {q0,q} and transitions q0aqaR (0≤ a≤ r−1).
L: defined similarly, replacing R by L in the transitions.

R̃: Q = {q0,q,q′,h}, transitions

q0aq0aR (a �= 0), q00q0R, qaq0aR (a �= 0), q0q′0R, q′ahaL

where 0≤ a≤ r−1.

Chapter 4

1. First, we use Lemma 4.6 to convert the set of productions to

S−→AA|b

A−→aA|BBB|b

B−→b

(The set U in the proof of Lemma 4.6 is {(S,S),(A,A),(B,B),(S,B),(A,B)}.)
Now, using the procedure in the first part of the proof of Theorem 4.7, we add a

new variable C and convert the set of productions to

S−→AA|b

A−→CA|BBB|b

B−→b

C−→a

Then, using the second part of the proof, we add a new variable D and convert

the productions to

S−→AA|b

A−→CA|BD|b

B−→b

C−→a

D−→BB

giving the required grammar in Chomsky normal form.
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4. (a) Hint: make use of Exercise 3

(c) If you have done parts (a) and (b), you can apply the procedure this gives

to the grammar in Example (3), p.3. One possible grammar in the required

form, generating {0n1n | n > 0}, obtained by this method is

G = ({A,B,S} ,{0,1} ,P,S)

where P consists of the productions

S−→0A|0B

A−→S1

B−→1

An alternative is to replace P by the set of productions consisting of

S−→0A

A−→B1|1

B−→0A

6. A context-free grammar generating L = {0m1m0n1n | m, n > 0} is

G = ({A,S} ,{0,1} ,P,S)

where P consists of the productions

S−→AB

A−→0A1|01

B−→0B1|01

To show L is not deterministic, use the Pumping Lemma in the previous exer-

cise.

Chapter 5

1. (a) From xyx = yxy, we obtain the consequence x2yx2 = xyxyx, hence using the

other relation, y7 = xyxyx = yxy2x, so y6 = xy2x. Since y6 = x4, we conclude

that x4 = xy2x, hence x2 = y2, so y3 = y2 which implies y = 1. Now from

xyx = yxy it follows that x2 = x, so x = 1.

2. The proof, as indicated in the hint, is by induction on n. Let Gn be the group

with the given presentation. It is true for n = 2 since G2 is cyclic of order 2,

as is S2. (Indeed, it is true for n = 1 as the empty presentation presents the

trivial group.) Assume n > 2 and Gn−1
∼= Sn−1. By Lemma 5.2, there is a ho-

momorphism Gn → Sn sending xi to the transposition (i, i+1) for 1≤ i≤ n−1,
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which is surjective as these transpositions generate Sn (an easy exercise). Hence

it suffices to show |Gn| ≤ n!.
By Lemma 5.2, there is a surjective homomorphism Gn−1 → H sending xi to

xi for 1 ≤ i ≤ n−2, hence |H| ≤ (n−1)!. It is therefore enough to show (Gn :

H)≤ n. This will follow if we can show that any coset of H is in the set

T = {H,Hxn−1,Hxn−1xn−2, . . . ,Hxn−1xn−2 . . .x2x1}

and to do this it suffices to show that if Hy ∈ T , then Hyx±1
i ∈ T for 1 ≤ i ≤

n− 1. Since xi = x−1
i , we need to show that Hxn−1 . . .xix j ∈ T for 1 ≤ i ≤ n,

1≤ j ≤ n−1. ( Here Hxn−1 . . .xi is to be interpreted as H when i = n.)

To do this, first note that xix j = x jxi if |i− j|> 1 and x j−1x jx j−1 = x jx j−1x j for

1 < j ≤ n−1.

If i = j, then Hxn−1 . . .xix j = Hxn−1 . . .xi+1 ∈ T . If i < j, then

Hxn−1 . . .xix j = Hxn−1 . . .x jx j−1x jx j−2 . . .xi

= H(xn−1 . . .x j+1)x j−1(x jx j−1x j−2 . . .xi)

= Hx j−1(xn−1 . . .xi)

= Hxn−1 . . .xi ∈ T

since j−1≤ n−2, so x j−1 ∈ H.

Finally, if j < i, there are two cases. If j = i−1, then

Hxn−1 . . .xix j = Hxn−1 . . .xixi−1 ∈ T.

If j < i− 1, then Hxn−1 . . .xix j = Hx jxn−1 . . .xi = Hxn−1 . . .xi ∈ T since j ≤
n−2, so x j ∈ H.

4. Let f : F(X)→G be the extension of the inclusion mapping X →G to a homo-

morphism.

Assume (a) and α : X → H is a mapping, where G is a group. Then α has

a unique extension to a homomorphism α̃ : F(X) → H by Lemma 5.5. Then

α f−1 is the unique extension of α to a homomorphism G→ H, hence (a) im-

plies (b).

Assume (b). Let α : X → F(X) be the inclusion map, β : G→ F(X) the exten-

sion of α to a homomorphism. Then if g ∈ G is represented by the non-empty

reduced word u, β (g) = u �= 1 by Lemma 5.4, so g �= 1. Hence (b) implies (c).

Finally the condition on reduced words in (c) implies that f : F(X)→ G has

trivial kernel, and if X generates G then f is onto. Hence (c) implies (a).

6. Let X be a basis for F and let Y be a finite set of generators for F . For y ∈Y , let

uy be a word in (X±1)∗ representing y. Let X1 be the finite subset of X consisting

of all elements x ∈ X which occur in uy (either as x or as x−1) for some y ∈ Y .

Then Y is a subset of the subgroup of F generated by X1 hence F is generated

by X1. By Question 4, no non-empty reduced word in (X±1)∗ represents the

identity element of F , so no non-empty reduced word in (X±1
1 )∗ represents the
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identity element. Again by Question 4, X1 is a finite basis for F . (It follows

easily that X = X1.)

8. Suppose F is free with basis X . Let Fx be the subgroup of F generated by x. Then

Fx is infinite cyclic by Lemma 5.4, and the inclusion maps Fx → F , for x ∈ X ,

extend uniquely to a homomorphism∗x∈X
Fx → F . This is an isomorphism by

Lemma 5.4 and the normal form theorem for free products. (Alternatively, the

inclusion mapping X →∗x∈X
Fx extends uniquely to a homomorphism F →

∗x∈X
Fx; show that this is the inverse map.)

For the converse, show that if F is a free product of infinite cyclic groups, then

choosing a generator for each of the infinite cyclic groups gives a basis for F .

9. (b) We can take the free abelian group to be Z×Z with basis {x,y}, where

x = (1,0) and y = (0,1). The Cayley diagram is partly drawn below.
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(0,−1)

(0,0)

(0,1)

(−1,−1)

(−1,0)

(−1,1)

(1,0)

(1,−1)

(1,1)

(1,2)

The intersections of the lines represent the vertices (the set of vertices is the

set of points in the plane R2 with integer coordinates). The horizontal ar-

rows have label x and the vertical ones have label y. (Usually one would use
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additive notation for this group, but in multiplicative notation, for example,

(1,2) = xy2 = y2x.)

Removing the edges of a finite subgraph always leaves a single infinite

component, so the free abelian group of rank 2 has one end.

Appendix C

1. Suppose B is countable. Then there is a surjective mapping f : N→ B. Writing

bn+1 for f (n), we can write B in a list B = {b1,b2, . . .}. By definition, we can

write

b1 = 0.a11a12a13 . . .

b2 = 0.a21a22a23 . . .

...
...

bi = 0.ai1 ai2 ai3 . . .

...
...

where ai j is either 0 or 1, for all integers i, j ≥ 1. Define ai = 1−aii for i ≥ 1,

then put b = 0.a1a2a3 . . ., an element of B since ai is either 0 or 1 for all i. There-

fore b = bi for some i, which is impossible as the decimal expansions of b and

bi differ in the ith position (ai �= aii), a contradiction. Hence B is uncountable.
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