
http://www.cambridge.org/9780521882590

This page intentionally left blank

Analyzing Linguistic Data
A Practical Introduction to Statistics Using R

Statistical analysis is a useful skill for linguists and psycholinguists, allowing
them to understand the quantitative structure of their data. This textbook pro-
vides a straightforward introduction to the statistical analysis of language data.
Designed for linguists with a non-mathematical background, it clearly introduces
the basic principles and methods of statistical analysis, using R, the leading com-
putational statistics programming environment. The reader is guided step-by-step
through a range of real data sets, allowing them to analyze phonetic data, construct
phylogenetic trees, quantify register variation in corpus linguistics, and analyze
experimental data using state-of-the-art models. The visualization of data plays
a key role, both in the early stages of data exploration and later on when the
reader is encouraged to criticize initial models fitted to the data. Containing over
40 exercises with model answers, this book will be welcomed by all linguists
wishing to learn more about working with and presenting quantitative data.

The program R is available at http://cran.at.r-project.org/. The data sets and ancil-
lary functions discussed in this book have been brought together in the language
R package, which is available at the same URL.

r. h. baayen is Professor of Quantitative Linguistics at the University of Al-
berta, Edmonton. He is author of Word Frequency Distributions (2001), co-editor
of Morphological Structure in Language Processing (2003), and has published
widely in linguistics and psycholinguistics journals.

Analyzing Linguistic Data
A Practical Introduction to Statistics
Using R

R. H. BAAYEN

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-88259-0

ISBN-13 978-0-521-70918-7

ISBN-13 978-0-511-38630-5

© R. H. Baayen 2008

2008

Information on this title: www.cambridge.org/9780521882590

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)

hardback

http://www.cambridge.org/9780521882590
http://www.cambridge.org

To Jorn, Corine, Thera, and Tineke

Contents

Preface x

1 An introduction to R 1
1.1 R as a calculator 2
1.2 Getting data into and out of R 4
1.3 Accessing information in data frames 6
1.4 Operations on data frames 10

1.4.1 Sorting a data frame by one or more columns 10
1.4.2 Changing information in a data frame 12
1.4.3 Extracting contingency tables from data frames 13
1.4.4 Calculations on data frames 15

1.5 Session management 18

2 Graphical data exploration 20
2.1 Random variables 20
2.2 Visualizing single random variables 21
2.3 Visualizing two or more variables 32
2.4 Trellis graphics 37

3 Probability distributions 44
3.1 Distributions 44
3.2 Discrete distributions 44
3.3 Continuous distributions 57

3.3.1 The normal distribution 58
3.3.2 The t , F, and χ2 distributions 63

4 Basic statistical methods 68
4.1 Tests for single vectors 71

4.1.1 Distribution tests 71
4.1.2 Tests for the mean 75

4.2 Tests for two independent vectors 77
4.2.1 Are the distributions the same? 78
4.2.2 Are the means the same? 79
4.2.3 Are the variances the same? 81

4.3 Paired vectors 82
4.3.1 Are the means or medians the same? 82
4.3.2 Functional relations: linear regression 84

vii

viii contents

4.3.3 What does the joint density look like? 97
4.4 A numerical vector and a factor: analysis of variance 101

4.4.1 Two numerical vectors and a factor: analysis
of covariance 108

4.5 Two vectors with counts 111
4.6 A note on statistical significance 114

5 Clustering and classification 118
5.1 Clustering 118

5.1.1 Tables with measurements: principal components analysis 118
5.1.2 Tables with measurements: factor analysis 126
5.1.3 Tables with counts: correspondence analysis 128
5.1.4 Tables with distances: multidimensional scaling 136
5.1.5 Tables with distances: hierarchical cluster analysis 138

5.2 Classification 148
5.2.1 Classification trees 148
5.2.2 Discriminant analysis 154
5.2.3 Support vector machines 160

6 Regression modeling 165
6.1 Introduction 165
6.2 Ordinary least squares regression 169

6.2.1 Nonlinearities 174
6.2.2 Collinearity 181
6.2.3 Model criticism 188
6.2.4 Validation 193

6.3 Generalized linear models 195
6.3.1 Logistic regression 195
6.3.2 Ordinal logistic regression 208

6.4 Regression with breakpoints 214
6.5 Models for lexical richness 222
6.6 General considerations 236

7 Mixed models 241
7.1 Modeling data with fixed and random effects 242
7.2 A comparison with traditional analyses 259

7.2.1 Mixed-effects models and quasi-F 260
7.2.2 Mixed-effects models and Latin Square designs 266
7.2.3 Regression with subjects and items 269

7.3 Shrinkage in mixed-effects models 275
7.4 Generalized linear mixed models 278
7.5 Case studies 284

7.5.1 Primed lexical decision latencies for Dutch neologisms 284
7.5.2 Self-paced reading latencies for Dutch neologisms 287
7.5.3 Visual lexical decision latencies of Dutch

eight-year-olds 289
7.5.4 Mixed-effects models in corpus linguistics 295

Contents ix

Appendix A Solutions to the exercises 303

Appendix B Overview of R functions 335

References 342
Index 347

Index of data sets 347
Index of R 347
Index of topics 349
Index of authors 352

Preface

This book provides an introduction to the statistical analysis of quantitative data
for researchers studying aspects of language and language processing. The statis-
tical analysis of quantitative data is often seen as an onerous task that we would
rather leave to others. Statistical packages tend to be used as a kind of oracle, from
which you elicit a verdict as to whether you have one or more significant effects
in your data. In order to elicit a response from the oracle, you have to click your
way through cascades of menus. After a magic button press, voluminous output
tends to be produced that hides the p-values, the ultimate goal of the statistical
pilgrimage, among lots of other numbers that are completely meaningless to the
user, as befits a true oracle.

The approach to data analysis to which this book provides a guide is fundamen-
tally different in several ways. First of all, we will make use of a radically different
tool for doing statistics, the interactive programming environment known asR.R is
an open source implementation of the (object-oriented) S language for statistical
analysis originally developed at Bell Laboratories. It is the platform par excellence
for research and development in computational statistics. It can be downloaded
from the Comprehensive R Archive Network (cran) at http://cran.r-
project.org or one of the many mirror sites. Learning to work with R is in many
ways similar to learning a new language. Once you have mastered its grammar,
and once you have acquired some basic vocabulary, you will also have begun to
acquire a new way of thinking about data analysis that is essential for understand-
ing the structure in your data. The design of R is especially elegant in that it has a
consistent uniform syntax for specifying statistical models, no matter which type
of model is being fitted.

What is essential about working with R, and this brings us to the second dif-
ference in our approach, is that we will depend heavily on visualization. R has
outstanding graphical facilities, which generally provide far more insight into
the data than long lists of statistics that depend on often questionable simplify-
ing assumptions. That is, this book provides an introduction to exploratory data
analysis. Moreover, we will work incrementally and interactively. The process
of understanding the structure in your data is almost always an iterative process
involving graphical inspection, model building, more graphical inspection, up-
dating and adjusting the model, etc. The flexibility of R is crucial for making this
iterative process of coming to grips with your data both easy and in fact quite
enjoyable.

x

Preface xi

A third, at first sight heretical aspect of this book is that I have avoided all formal
mathematics. The focus of this introduction is on explaining the key concepts and
on providing guidelines for the proper use of statistical techniques. A useful
metaphor is learning to drive a car. In order to drive a car, you need to know the
position and function of tools such as the steering wheel and the brake pedal.
You also need to know that you should not drive with the handbrake on. And you
need to know the traffic rules. Without these three kinds of knowledge, driving a
car is extremely dangerous. What you do not need to know is how to construct
a combustion engine, or how to drill for oil and refine it so that you can use it
to fuel that combustion engine. The aim of this book is to provide you with a
driving licence for exploratory data analysis. There is one caveat here. To stretch
the metaphor to its limit: with R, you are receiving driving lessons in an all-
powerful car, a combination of a racing car, a lorry, a family car, and a limousine.
Consequently, you have to be a responsible driver, which means that you will find
that you will need many additional driving lessons beyond those offered in this
book. Moreover, it never hurts to consult professional drivers—statisticians with
a solid background in mathematical statistics who know the ins and outs of the
tools and techniques, and their advantages and disadvantages. Other introductions
that you may want to consider are Dalgaard (2002), Verzani (2005), and Crawley
(2002). The present book is written for readers with little or no programming
experience. Readers interested in the R language itself should consult Becker
et al. (1988) and Venables and Ripley (2002).

The approach I have taken in this course is to work with real data sets rather
than with small artificial examples. Real data are often messy, and it is important
to know how to proceed when the data display all kinds of problems that standard
introductory textbooks hardly ever mention. Unless stated otherwise, data sets
discussed in this book are available in the languageR package, which is available
at the cran archives. You are encouraged to work through the examples with the
actual data, to get a feeling for what the data look like and how to work with R’s
functions. To save typing, you can copy and paste the R code of the examples
in this book into the R console (see the file examples.txt in languageR’s
scripts directory). The languageR package also makes available a series of
functions. These convenience functions, some of which are still being developed,
bear the extension .fnc to distinguish them from the well-tested functions of R
and its standard packages.

An important reason for using R is that it is a carefully designed programming
environment that allows you, in a very flexible way, to write your own code, or
modify existing code, to tailor R to your specific needs. To see why this is useful,
consider a researcher studying similarities in meaning and form for a large number
of words. Suppose that a separate model needs to be fitted for each of 1000 words
to the data of the other 999 words. If you are used to thinking about statistical
questions as paths through cascaded menus, you will discard such an analysis as
impractical almost immediately. When you work in R, you simply write the code
for one word, and then cycle it through on all other words. Researchers are often

xii preface

unnecessarily limited in the questions they explore because they are thinking in
a menu-driven language instead of in an interactive programming language like
R. This is an area where language determines thought.

If you are new to working with a programming language, you will find that
you will have to get used to getting your commands for R exactly right. R offers
command line editing facilities, and you can also page through earlier commands
with the up and down arrows of your keyboard. It is often useful to open a simple
text editor (emacs, gvim, notepad), to prepare your commands in, and to copy and
paste these commands into the R window, especially as more complex commands
tend to be used more than once, and it is often much easier to make copies in
the editor and modify these, than to try to edit multiple-line commands in the
R window itself. Output from R that is worth remembering can be pasted back
into the editor, which in this way comes to retain a detailed history both of your
commands and of the relevant results. You might think that using a graphical user
interface would work more quickly, in which case you may want to consider using
the commercial software S-PLUS, which offers such an interface. However, as
pointed out by Crawley (2002), “If you enjoy wasting time, you can pull down
the menus and click in the dialog boxes to your heart’s content. However, this
takes about 5 to 10 times as long as writing in the command line. Life is short.
Use the command line” (p. 11).

There are several ways in which you can use this book. If you use this book
as an introduction to statistics, it is important to work through the examples, not
only by reading them through, but by trying them out in R. Each chapter also
comes with a set of problems, with worked-out solutions in Appendix A. If you
use this book to learn how to apply in R particular techniques that you are already
familiar with, then the quickest way to proceed is to study the structure of the
relevant data files used to illustrate the technique. Once you have understood how
the data are to be organized, you can load the data into R and try out the example.
And once you have got this working, it should not be difficult to try out the same
technique on your own data.

This book is organized as follows: Chapter 1 is an introduction to the basics
of R. It explains how to load data into R, and how to work with data from the
command line. Chapter 2 introduces a number of important visualization tech-
niques. Chapter 3 discusses probability distributions, and Chapter 4 provides a
guide to standard statistical tests for single random variables as well as for two
random variables. Chapter 5 discusses methods for clustering and classification.
Chapter 6 discusses regression modeling strategies, and Chapter 7 introduces
mixed-effects models, the models required for analyzing data sets with nested or
crossed repeated measures.

I am indebted to Carmel O’Shannessy for allowing me to use her data on
Warlpiri, to Kors Perdijk for sharing his work on the reading skills of young
children, to Joan Bresnan for her data on the dative alternation in English, to Maria
Spassova for her data on Spanish authorial hands, to Karen Keune for her materials
on social and geographical variation in the Netherlands and Flanders, to Laura de

Preface xiii

Vaan for her experiments on Dutch derivational neologisms, to Mirjam Ernestus
for her phonological data on final devoicing, to Wieke Tabak for her data on
etymological age, to Jen Hay for the rating data sets, and to Michael Dunn for his
data on the phylogenetic classification of Papuan and Oceanic languages. I am also
grateful to Adrian Stenton for his careful copy-editing of the manuscript. Many
students and colleagues have helped me with their comments and suggestions for
improvement. I would like to mention by name Joan Bresnan, Mirjam Ernestus,
Jen Hay, Reinhold Kliegl, Victor Kuperman, Petar Milin, Ingo Plag, Hedderik van
Rijn, Stuart Robinson, Eva Smolka, and Fiona Tweedie. I am especially indebted
to Douglas Bates for his detailed comments on Chapter 7, his advice for improving
the languageR package, his help with the code for temporary ancillary functions
for mixed-effects modeling, and the insights offered on mixed-effects modeling.
In fact, I would like to thank Doug here for all the work he has put into developing
the lme4 package, which I believe is the most exciting tool discussed in this book
for analyzing linguistic experimental data. Last but not least, I am grateful to
Tineke for her friendship and support.

In this book, small capitals denote key concepts and technical terms. Typewriter
font is used for R code and R objects. Linguistic examples are typeset with italics,
as are statistical symbols.

1 An introduction to R

In order to learn to work with R, you have to learn to speak its language, the S

language, developed originally at Bell Laboratories (Becker et al., 1988). The

grammar of this programming language is beautiful and easy to learn. It is im-

portant to master its basics, as this grammar is designed to guide you towards the

appropriate way of thinking about your data and how you might want to carry out

your analysis.

When you begin to use R on an Apple Macintosh or a Windows PC, you will

start R either through a menu guiding you to applications, or by clicking on R’s

icon. As a result, a graphical user interface is started up, with as its central part a

window with a prompt (>), the place where you type your commands. On unix

or linux systems, the same window is obtained by opening a terminal and typing

R at its prompt.

The sequence of commands in a given R session and the objects created are

stored in files named .Rhistory and .RData when you quit R and respond

positively to the question of whether you want to save your workspace. If you do

so, then your results will be available to you the next time you start up R. If you

are using a graphical user interface, this .RData file will be located by default in

the folder where R has been installed. In unix and linux, the .RData file will

be created in the same directory as where R was started up.

You will often want to useR for different projects, located in different directories

on your computer. On unix and linux systems, simply open a terminal in the

desired directory, and start R. When using a graphical user interface, you have

to use the File drop-down menu. In order to change to another directory, select

Change dir. You will also have to load the .RData and .Rhistory using the

options Load Workspace and Load History.

Once R is up and running, you need to install a series of packages, including

the package that comes with this book, languageR. This is accomplished with

the following instruction, to be typed at the R prompt:

install.packages(c("rpart", "chron", "Hmisc", "Design",
"Matrix", "lme4", "coda", "e1071", "zipfR", "ape",
"languageR"), repos = "http://cran.r-project.org")

Packages are installed in a folder named library, which itself is located in

R’s home directory. On my system, R’s home is /home/harald/R-2.4.0, so

packages are found in /home/harald/R-2.4.0/library, and the code of the

1

2 an introduction to r

main examples in this book is located in /home/harald/R-2.4.0/library/

languageR/scripts.

I recommend that you create a file named .Rprofile in your home directory.

This file should contain the line,

library(languageR)

telling R that upon startup it should attach languageR. All data sets and functions

defined in languageR, and some of the packages that we will need, will be

automatically available. Alternatively, you can type library(languageR) at

the R prompt yourself after you have started R. All examples in this book assume

that the languageR package has been attached.

The way to learn a language is to start speaking it. The way to learn R, and the

S language that it is built on, is to start using it. Reading through the examples in

this chapter is not enough to become a confident user of R. For this, you need to

actually try out the examples by typing them at the R prompt. You have to be very

precise in your commands, which requires a discipline that you will master only

if you learn from experience, from your mistakes and typos. Don’t be put off if R

complains about your initial attempts to use it, just carefully compare what you

typed, letter by letter and bracket by bracket, with the code in the examples.

If you type a command that extends over separate lines, the standard prompt >

will change into the special continuation prompt +. If you think your command

is completed, but still have a continuation prompt, there is something wrong with

your syntax. To cancel the command, use either the escape key, or hit control-c.

Appendix B provides an overview of operators and functions, grouped by topic,

that you may find useful as a complement to the example-by-example approach

followed in the main text of this book.

1.1 R as a calculator

Once you have an R window, you can use R simply as a calculator. To

add 1 and 2, type,

> 1 + 2

and hit the return (enter) key, and R will display:

[1] 3

The [1] preceding the answer indicates that 3 is the first element of the answer. In

this example, it is also the only element. Other examples of arithmetic operations

are:

> 2 * 3 # multiplication
[1] 6
> 6 / 3 # division
[1] 2
> 2 ˆ 3 # power

1.1 R as a calculator 3

[1] 8
> 9 ˆ 0.5 # square root
[1] 3

The hash mark # indicates that the text to its right is a comment that should be

ignored by R. Operators can be stacked, in which case it may be necessary to

make explicit by means of parentheses the order in which the operations have to

be carried out:

> 9 ˆ 0.5 ˆ 3
[1] 1.316074
> (9 ˆ 0.5) ˆ 3
[1] 27
> 9 ˆ (0.5 ˆ 3)
[1] 1.316074

Note that the evaluation of exponentiation proceeds from right to left, rather than

from left to right. Use parentheses whenever you are not absolutely sure about

the order in which R evaluates stacked operators.

The results of calculations can be saved and referenced by variables. For

instance, we can store the result of adding 1 and 2 in a variable named x. There

are three ways in which we can assign the result of our addition to x. We can use

the equals sign as assignment operator,

> x = 1 + 2
> x
[1] 3

or we can use a left arrow (composed of < and -) or a right arrow (composed of

- and >, as follows:

> x <- 1 + 2
> 1 + 2 -> x

The right arrow is especially useful in cases where you have typed a long expres-

sion and only then decide that you would like to save its output rather than have

it displayed on your screen. Instead of having to go back to the beginning of the

line, you can continue typing and use the right arrow as assignment operator. We

can modify the value of x, for instance, by increasing its value by one:

> x = x + 1

Here we take x, add one, and assign the result (4) back to x. Without this explicit

assignment, the value of x remains unchanged:

> x = 3
> x + 1 # result is displayed, not assigned to x
[1] 4
> x # so x is unchanged
[1] 3

We can work with variables in the same way that we work with numbers:

> 4 ˆ 3
[1] 64
> x = 4

4 an introduction to r

> y = 3
> x ˆ y
[1] 64

The more common mathematical operations are carried out with operators such

as +, -, and *. For a range of standard operations, as well as for more complex

mathematical calculations, a wide range of functions is available. Functions are

commands that take some input, do something with that input, and return the

result to the user. Above, we calculated the square root of 9 with the help of the
∧ operator. Another way of obtaining the same result is by means of the sqrt()

function:

> sqrt(9)
[1] 3

The argument of the square root function, 9, is enclosed between parentheses.

1.2 Getting data into and out of R

Bresnan et al. (2007) studied the dative alternation in English in the

three-million-word Switchboard collection of recorded telephone conversations

and in the Treebank Wall Street Journal collection of news and financial reportage.

In English, the recipient can be realized either as an np (Mary gave John the book)

or as a pp (Mary gave the book to John). Bresnan and colleagues were interested

in predicting the realization of the recipient (as np or pp) from a wide range of

potential explanatory variables, such as the animacy, the length in words, and the

pronominality of the theme and the recipient. A subset of their data collected from

the Treebank is available as the data set verbs. (Bresnan and colleagues studied

many more variables, the full data set is available as dative, and we will study

it in detail in later chapters.) You should have attached the languageR package

at this point, otherwise verbs will not be available to you.

We display the first 10 rows of the verbs data with the help of the function

head(). (Readers familiar with programming languages like C and Python should

note that R numbering begins with 1 rather than with zero.)

> head(verbs, n = 10)
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
1 NP feed animate inanimate 2.6390573
2 NP give animate inanimate 1.0986123
3 NP give animate inanimate 2.5649494
4 NP give animate inanimate 1.6094379
5 NP offer animate inanimate 1.0986123
6 NP give animate inanimate 1.3862944
7 NP pay animate inanimate 1.3862944
8 NP bring animate inanimate 0.0000000
9 NP teach animate inanimate 2.3978953
10 NP give animate inanimate 0.6931472

1.2 Getting data into and out of R 5

When the option n is left unspecified, the first 6 rows will be displayed by default.

Tables such as exemplified by verbs are referred to in R as data frames. Each

line in this data frame represents a clause with a recipient, and specifies whether

this recipient was realized as an np or as a pp. Each line also lists the verb used, the

animacy of the recipient, the animacy of the theme, and the logarithm of the length

of the theme. Note that each elementary observation — here the realization of the

recipient as np or pp in a given clause — has its own line in the input file. This

is referred to as the long data format, where long highlights that no attempt is

made to store the data more economically.

It is good practice to spell out the elements in the columns of a data frame with

sensible names. For instance, the first line with data specifies that the recipient

was realized as an np for the verb to feed, that the recipient was animate, and

that the theme was inanimate. The length of the theme is listed in log units, for

reasons that will become clear in later chapters. The actual length of the theme

is 14, as shown when we undo the logarithmic transformation with its inverse,

the exponential function exp():

> exp(2.6390573)
[1] 14
> log(14)
[1] 2.639057

A data frame such as verbs can be saved outside R as an independent file with

write.table(), enclosing the name of the file (including its path) between

double quotes:

> write.table(verbs, file = "/home/harald/dativeS.txt") # Linux
> write.table(verbs, file = "/users/harald/dativeS.txt") # MacOSX
> write.table(verbs, file = "c:stats/dativeS.txt") # Windows

Users of Windows should note the use of the forward slash for path specification.

Alternatively, on MacOS X or Windows, the function file.choose() may be

used, replacing the file name, in which case a dialog box is provided.

External data in this tabular format can be loaded into R with read.table().

We tell this function that the file we just made has an initial line, its header, that

specifies the column names:

> verbs = read.table("/home/harald/dativeS.txt", header = TRUE)

R handles various other data formats as well, including sas.get() (which con-

verts sas data sets), read.csv() (which handles comma-separated spreadsheet

data), and read.spss() (for reading spss data files).

Data sets and functions in R come with extensive documentation, including

examples. This documentation is accessed by means of the help() function.

Many examples in the documentation can be also executed with the example()

function:

> help(verbs)
> example(verbs)

6 an introduction to r

1.3 Accessing information in data frames

When working with data frames, we often need to select or manipulate

subsets of rows and columns. Rows and columns are selected by means of a

mechanism referred to as subscripting. In its simplest form, subscripting can

be achieved simply by specifying the row and column numbers between square

brackets, separated by a comma. For instance, to extract the length of the theme

for the first line in the data frame verbs, we type:

> verbs[1, 5]
[1] 2.639057

Whatever precedes the comma is interpreted as a restriction on the rows, and

whatever follows the comma is a restriction on the columns. In this example, the

restrictions are so narrow that only one element is selected, the one element that

satisfies the restrictions that it should be on row 1 and in column 5. The other

extreme is no restrictions whatsoever, as when we type the name of the data frame

at the prompt, which is equivalent to typing:

> verbs[,] # this will display all 903 rows of verbs!

When we leave the slot before the comma empty, we impose no restrictions on

the rows:

> verbs[, 5] # show the elements of column 5
[1] 2.6390573 1.0986123 2.5649494 1.6094379 1.0986123
[6] 1.3862944 1.3862944 0.0000000 2.3978953 0.6931472
...

As there are 903 rows in verbs, the request to display the fifth column results in

an ordered sequence of 903 elements. In what follows, we refer to such an ordered

sequence as a vector. Thanks to the numbers in square brackets in the output,

we can easily see that 0.00 is the eighth element of the vector. Column vectors

can also be extracted with the $ operator preceding the name of the relevant

column:

> verbs$LengthOfTheme # same as verbs[, 5]

When we specify a row number but leave the slot after the comma empty, we

impose no restrictions on the columns, and therefore obtain a row vector instead

of a column vector:

> verbs[1,] # show the elements of row 1
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

1 NP feed animate inanimate 2.639057

Note that the elements of this row vector are displayed together with the column

names.

1.3 Accessing information in data frames 7

Row and column vectors can be extracted from a data frame and assigned to

separate variables:

> row1 = verbs[1,]
> col5 = verbs[, 5]
> head(col5, n = 5)
[1] 2.6390573 1.0986123 2.5649494 1.6094379 1.0986123

Individual elements can be accessed from these vectors by the same subscripting

mechanism, but simplified to just one index between the square brackets:

> row1[1]
RealizationOfRec

1 NP
> col5[1]
[1] 2.639057

Because the row vector has names, we can also address its elements by name,

properly enclosed between double quotes:

> row1["RealizationOfRec"]
RealizationOfRec

1 NP

You now know how to extract single elements, rows, and columns from data

frames, and how to access individual elements from vectors. However, we often

need to access more than one row or more than one column simultaneously. R

makes this possible by placing vectors before or after the comma when subscript-

ing the data frame, instead of single elements. (For R, single elements are actually

vectors with only one element.) Therefore, it is useful to know how to create your

own vectors from scratch. The simplest way of creating a vector is to combine el-

ements with the concatenation operator c(). In the following example, we select

some arbitrary row numbers that we save in the variable rs (shorthand for rows):

> rs = c(638, 799, 390, 569, 567)
> rs
[1] 638 799 390 569 567

We can now use this vector of numbers to select precisely those rows from verbs

that have the row numbers specified in rs. We do so by inserting rs before the

comma:

> verbs[rs,]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
390 NP lend animate animate 0.6931472
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

Note that the appropriate rows of verbs appear in exactly the same order as

specified in rs.

The combination operator c() is not the only function for creating vectors. Of

the many other possibilities, the colon operator should be mentioned here. This

8 an introduction to r

operator brings into existence sequences of increasing or decreasing numbers

with a stepsize of one:

> 1 : 5
[1] 1 2 3 4 5
> 5 : 1
[1] 5 4 3 2 1

In order to select from verbs the rows specified by rs and the first three columns,

we specify the row condition before the comma and the column condition after

the comma:

> verbs[rs, 1:3]
RealizationOfRec Verb AnimacyOfRec

638 PP pay animate
799 PP sell animate
390 NP lend animate
569 PP sell animate
567 PP send inanimate

Alternatively, we could have specified a vector of column names instead of column

numbers:

> verbs[rs, c("RealizationOfRec", "Verb", "AnimacyOfRec")]

Note once more that when strings are brought together into a vector, they must

be enclosed between quotes.

Thus far, we have selected rows by explicitly specifying their row numbers.

Often, we do not have this information available. For instance, suppose we are

interested in those observations for which the AnimacyOfTheme has the value

animate. We do not know the row numbers of these observations. Fortunately,

we do not need them either, because we can impose a condition on the rows of

the data frame such that only those rows will be selected that meet that condi-

tion. The condition that we want to impose is that the value in the column of

AnimacyOfTheme is animate. Since this is a condition on rows, it precedes the

comma:

> verbs[verbs$AnimacyOfTheme == "animate",]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

58 NP give animate animate 1.0986123
100 NP give animate animate 2.8903718
143 NP give inanimate animate 2.6390573
390 NP lend animate animate 0.6931472
506 NP give animate animate 1.9459101
736 PP trade animate animate 1.6094379

This is equivalent to:

> subset(verbs, AnimacyOfTheme == "animate")

It is important to note that the equality in the condition is expressed with a double

equal sign. This is because the single equal sign is the assignment operator. The

following example illustrates a more complex condition with the logical operator

1.3 Accessing information in data frames 9

and (&) (the logical operator for or is |):
> verbs[verbs$AnimacyOfTheme == "animate" & verbs$LengthOfTheme > 2,]

RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
100 NP give animate animate 2.890372
143 NP give inanimate animate 2.639057

Row and column names of a data frame can be extracted with the functions

rownames() and colnames():

> head(rownames(verbs))
[1] "1" "2" "3" "4" "5" "6"

> colnames(verbs)
[1] "RealizationOfRec" "Verb" "AnimacyOfRec" "AnimacyOfTheme"
[5] "LengthOfTheme"

The vector of column names is a string vector. Perhaps surprisingly, the vector of

row names is also a string vector. To see why this is useful, we assign the subtable

of verbs obtained by subscripting the rows with the rs vector to a separate object

that we name verbs.rs:

> verbs.rs = verbs[rs,]

We can extract the first line not only by row number,

> verbs.rs[1,]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

638 PP pay animate inanimate 0.6931472

but also by row name:

> verbs.rs["638",] # same output

The row name is a string that reminds us of the original row number in the data

frame from which verbs.rs was extracted:

> verbs[638,] # same output again

Let’s finally extract a column that does not consist of numbers, such as the

column specifying the animacy of the recipient:

> verbs.rs$AnimacyOfRec
[1] animate animate animate animate inanimate
Levels: animate inanimate

Two things are noteworthy. First, the words animate and inanimate are not en-

closed between quotes. Second, the last line of the output mentions that there are

two levels: animate and inanimate. Whereas the row and column names

are vectors of strings, non-numerical columns in a data frame are automati-

cally converted by R into factors. In statistics, a factor is a non-numerical

predictor or response. Its values are referred to as its levels. Here, the factor

AnimacyOfRec has as its only possible values animate and inanimate, hence

it has only two levels. Most statistical techniques don’t work with string vec-

tors, but with factors. This is the reason why R automatically converts non-

numerical columns into factors. If you really want to work with a string vector

10 an introduction to r

instead of a factor, you have to do the back-conversion yourself with the function

as.character():

> verbs.rs$AnimacyOfRec = as.character(verbs.rs$AnimacyOfRec)
> verbs.rs$AnimacyOfRec
[1] "animate" "animate" "animate" "animate" "inanimate"

Now the elements of the vector are strings, and as such properly enclosed between

quotes. We can undo this conversion with as.factor():

> verbs.rs$AnimacyOfRec = as.factor(verbs.rs$AnimacyOfRec)

If we repeat these steps, but with a smaller subset of the data in which Anima-

cyOfRec is only realized as animate,

> verbs.rs2 = verbs[c(638, 390),]
> verbs.rs2

RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme
638 PP pay animate inanimate 0.6931472
390 NP lend animate animate 0.6931472

we observe that the original two levels of AnimacyOfRec are remembered:

> verbs.rs2$AnimacyOfRec
[1] animate animate
Levels: animate inanimate

In order to get rid of the uninstantiated factor level, we convert AnimacyOfRec

to a character vector, and then convert it back to a factor:

> as.factor(as.character(verbs.rs2$AnimacyOfRec))
[1] animate animate
Levels: animate

An alternative with the same result is:

> verbs.rs2$AnimacyOfRec[drop=TRUE]

1.4 Operations on data frames

1.4.1 Sorting a data frame by one or more columns

In the previous section, we created the data frameverbs.rs, the rows

of which appeared in the arbitrary order specified by our vector of row numbers

rs. It is often useful to sort the entries in a data frame by the values in one of the

columns, for instance, by the realization of the recipient,

> verbs.rs[order(verbs.rs$RealizationOfRec),]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

390 NP lend animate animate 0.6931472
638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

1.4 Operations on data frames 11

or by verb and then by the length of the theme:

> verbs.rs[order(verbs.rs$Verb, verbs.rs$LengthOfTheme),]
RealizationOfRec Verb AnimacyOfRec AnimacyOfTheme LengthOfTheme

390 NP lend animate animate 0.6931472
638 PP pay animate inanimate 0.6931472
799 PP sell animate inanimate 1.3862944
569 PP sell animate inanimate 1.6094379
567 PP send inanimate inanimate 1.3862944

The crucial work is done by order(). Its first argument is the primary column

of the data frame by which the rows should be sorted (alphabetical or numerical

depending on the column values). The second argument is the column that pro-

vides the sort key for those rows that have ties (identical values) according to the

first column. Additional columns for sorting can be supplied as a third or fourth

argument, and so on.

Note that the order() function occupies the slot in the subscript of the data

frame that specifies the conditions on the rows. What order() actually does is

supply a vector of row numbers, with the row number of the row that is to be listed

first as first element, the row number that is to be listed second as second element,

and so on. For instance, when we sort the rows by Verb, order() returns a vector

of row numbers,

> order(verbs.rs$Verb)
[1] 10 7 8 3 1 9 2 4 6 5

that will move the last row (for cost) to the first row, the seventh row (for give) to

the second row, and so on.

The elements of a vector can be sorted in the same way. When sorting the

vector,

> v = c("pay", "sell", "lend", "sell", "send",
+ "sell", "give", "give", "pay", "cost")

(note that R changes the prompt from > to + when a command is not finished by

the end of the line, so don’t type the + symbol when defining this vector) we

subscript it with order() applied to itself:

> v[order(v)]
[1] "cost" "give" "give" "lend" "pay"
[6] "pay" "sell" "sell" "sell" "send"

However, a more straightforward function for sorting the elements of a vector is

sort():

> sort(v)

It is important to keep in mind that in all of the preceding examples we never

assigned the output of the reordering operations, so v is still unsorted. In order to

obtain sorted versions, simply assign the output to the original data object:

> v = sort(v)

12 an introduction to r

1.4.2 Changing information in a data frame

Information in a data frame can be changed. For instance, we could

manipulate the data in verbs.rs and change the realization of the recipient for

the verb to pay (originally on line 638 in verbs) from pp into np. (In what follows,

I assume that this command is not actually carried out.)

> verbs.rs["638",]$RealizationOfRec = "NP"

If many such changes have to be made, for instance in order to correct coding

errors, then it may be more convenient to do this in a spreadsheet, save the result

as a .csv file, and load the corrected data into R with read.csv().

Changes that are easily carried out inR are changes that affect whole columns or

subparts of the table. For instance, in order to reconstruct the length of the theme

(in words) from the logarithmically transformed values listed in verbs.rs, all

we have to do is apply the exp() function to the appropriate column. All values

in the column will be changed accordingly:

> verbs.rs$LengthOfTheme
[1] 0.6931472 1.3862944 0.6931472 1.6094379 1.3862944
> exp(verbs.rs$LengthOfTheme)
[1] 2 4 2 5 4

We can also add new columns to a data frame. For instance, we might consider

adding a column with the length of the verb (in letters). There is a function,

nchar(), that conveniently reports the number of letters in its input, provided

that its input is a character string or a vector of character strings. We illustrate

nchar() for the longest word (without intervening spaces or hyphens) of English

(Sproat, 1992) and the shortest word of English:

> nchar(c("antidisestablishmentarianism", "a"))
[1] 28 1

When applying nchar() to a column in a data frame, we have to keep in mind

that non-numerical columns typically are not vectors of strings, but factors. So

we must first convert the factor into a character vector with as.character()

before applying nchar(). We add the result to verbs.rs with the $ operator:

> verbs.rs$Length = nchar(as.character(verbs.rs$Verb))

We display only the first four rows of the result, and only the verb and its ortho-

graphic length:

> verbs.rs[1:4, c("Verb", "Length")]
Verb Length

638 pay 3
799 sell 4
390 lend 4
569 sell 4

1.4 Operations on data frames 13

1.4.3 Extracting contingency tables from data frames

How many observations are characterized by animate recipients re-

alized as an np? Questions like this are easily addressed with the help of con-

tingency tables, tables that cross-tabulate counts for combinations of factor

levels. Since the factors RealizationOfRec and AnimacyOfRec each have

two levels, as shown by the function levels(),

> levels(verbs$RealizationOfRec)
[1] "NP" "PP"
> levels(verbs$AnimacyOfRec)
[1] "animate" "inanimate"

a cross-tabulation of RealizationOfRec and AnimacyOfRec with xtabs()

results in a table with four cells:

> xtabs(˜ RealizationOfRec + AnimacyOfRec, data = verbs)
AnimacyOfRec

RealizationOfRec animate inanimate
NP 521 34
PP 301 47

The first argument of xtabs() is a formula. Formulas have the following gen-

eral structure, with the tilde (∼) denoting “depends on” or “is a function of”:

dependent variable ∼ predictor 1 + predictor 2 + . . .

A dependent variable is a variable the value of which we try to predict. The

other variables are often referred to as independent variables. This termi-

nology is somewhat misleading, however, because sets of predictors are often

characterized by all kinds of interdependencies. A more appropriate term is sim-

ply predictor. In the study of Bresnan et al. (2007) that we are considering here,

the dependent variable is the realization of the recipient. All other variables are

predictor variables.

When we construct a contingency table, however, there is no dependent vari-

able. A contingency table allows us to see how counts are distributed over condi-

tions, without making any claim as to whether one variable might be explainable

in terms of other variables. Therefore, the formula for xtabs() has nothing to

the left of the tilde operator. We only have predictors, which we list to the right

of the tilde, separated by plusses.

More than two factors can be cross-tabulated:

> verbs.xtabs =
+ xtabs(˜ AnimacyOfRec + AnimacyOfTheme + RealizationOfRec,
+ data = verbs)
> verbs.xtabs
, , RealizationOfRec = NP

AnimacyOfTheme
AnimacyOfRec animate inanimate

animate 4 517
inanimate 1 33

14 an introduction to r

, , RealizationOfRec = PP

AnimacyOfTheme
AnimacyOfRec animate inanimate

animate 1 300
inanimate 0 47

As three factors enter into this cross-classification, the result is a three-dimensional

contingency table, that is displayed in the form of two 2 by 2 contingency tables.

It is clear from this table that animate themes are extremely rare. It therefore

makes sense to restrict our attention to the clauses with inanimate themes. We

implement this restriction by conditioning on the rows of verbs:

> verbs.xtabs = xtabs(˜ AnimacyOfRec + RealizationOfRec,
+ data = verbs, subset = AnimacyOfTheme != "animate")
> verbs.xtabs #!= denotes not equal to

RealizationOfRec
AnimacyOfRec NP PP

animate 517 300
inanimate 33 47

It seems that recipients are somewhat more likely to be realized as an np when

animate and as a pp when inanimate.

This contingency table can be recast as a table of proportions by dividing each

cell in the table by the sum of all cells, the total number of observations in the data

frame with inanimate themes. We obtain this sum with the help of the function

sum(), which returns the sum of the elements in a vector or table:

> sum(verbs.xtabs)
[1] 897

We verify that this is indeed equal to the number of rows in the data frame with

inanimate themes only, with the help of the nrow() function:

> sum(verbs.xtabs) == nrow(verbs[verbs$AnimacyOfTheme != "animate",])
[1] TRUE

A table of proportions is obtained straightforwardly by dividing the contingency

table by this sum:

> verbs.xtabs/sum(verbs.xtabs)
RealizationOfRec

AnimacyOfRec NP PP
animate 0.57636566 0.33444816
inanimate 0.03678930 0.05239688

For percentages instead of proportions, we simply multiply by 100:

> 100 * verbs.xtabs/sum(verbs.xtabs)
RealizationOfRec

AnimacyOfRec NP PP
animate 57.636566 33.444816
inanimate 3.678930 5.239688

1.4 Operations on data frames 15

It is often useful to recast counts as proportions (relative frequencies) with

respect to row or column totals. Such proportions can be calculated with

prop.table(). When its second argument is 1, prop.table() calculates rel-

ative frequencies with respect to the row totals,

> prop.table(verbs.xtabs, 1) # rows sum to 1
RealizationOfRec

AnimacyOfRec NP PP
animate 0.6328029 0.3671971
inanimate 0.4125000 0.5875000

when its second argument is 2, it produces proportions relative to column totals:

> prop.table(verbs.xtabs,2) # columns sum to 1
RealizationOfRec

AnimacyOfRec NP PP
animate 0.9400000 0.8645533
inanimate 0.0600000 0.1354467

These tables show that the row proportions are somewhat different for animate

versus inanimate recipients, and that column proportions are slightly different

for np versus pp realizations of the recipient. Later we shall see that there is in-

deed reason for surprise: the observed asymmetry between rows and columns is

unlikely to arise under chance conditions. For animate recipients, the np realiza-

tion is more likely than the pp realization. Inanimate recipients have a non-trivial

preference for the pp realization.

1.4.4 Calculations on data frames

Another question that arises with respect to the data in verbs is to

what extent the length of the theme, i.e. the complexity of the theme measured

in terms of the number of words used to express it, covaries with the animacy

of the recipient. Could it be that animate recipients show a preference for more

complex themes, compared to inanimate recipients? To assess this possibility, we

calculate the mean length of the theme for animate and inanimate recipients. We

obtain these means with the help of the function mean(), which takes a numerical

vector as input, and returns the arithmetic mean:

> mean(1:5)
[1] 3

We could use this function to calculate the means for the animate and inanimate

recipients separately,

> mean(verbs[verbs$AnimacyOfRec == "animate",]$LengthOfTheme)
[1] 1.540278
> mean(verbs[verbs$AnimacyOfRec != "animate",]$LengthOfTheme)
[1] 1.071130

but a much more convenient way for obtaining these means simultaneously is to

make use of thetapply() function. This function takes three arguments. The first

16 an introduction to r

argument specifies a numeric vector for which we want to calculate means. The

second argument specifies how this numeric vector should be split into groups,

namely, on the basis of its factor levels. The third argument specifies the function

that is to be applied to these groups. The function that we want to apply to our

data frame is mean(), but other functions (e.g. sum(), sqrt()) could also be

specified:

> tapply(verbs$LengthOfTheme, verbs$AnimacyOfRec, mean)
animate inanimate
1.540278 1.071130

The output of tapply() is a table, here a table with two means labeled by the

levels of the factor for which they were calculated. Later we shall see that the

difference between these two group means is unlikely to be due to chance.

It is also possible to calculate means for subsets of data defined by the levels of

more than one factor, in which case the second argument for tapply() should

be a list of the relevant factors. Like vectors, lists are ordered sequences of

elements, but unlike vectors, the elements of a list can themselves have more

than one element. Thus we can have lists of vectors, lists of data frames, or lists

containing a mixture of numbers, strings, vectors, data frames, and other lists.

Lists are created with the list() function. For tapply(), all we have to do is

specify the factors as arguments to the functionlist(). Here is an example for the

means of the length of the theme cross-classified for the levels of AnimacyOfRec

and AnimacyOfTheme, illustrating an alternative, slightly shorter way of using

tapply() with the help of with():

> with(verbs, tapply(LengthOfTheme,
+ list(AnimacyOfRec, AnimacyOfTheme), mean))

animate inanimate
animate 1.647496 1.539622
inanimate 2.639057 1.051531

A final operation on data frames is best illustrated by means of a data set

(heid) concerning reaction timesRT in visual lexical decision elicited from Dutch

subjects for neologisms ending in the suffix -heid (“-ness”):

> heid[1:5,]
Subject Word RT BaseFrequency

1 pp1 basaalheid 6.69 3.56
2 pp1 markantheid 6.81 5.16
3 pp1 ontroerdheid 6.51 5.55
4 pp1 contentheid 6.58 4.50
5 pp1 riantheid 6.86 4.53

This data frame comprises log reaction times for 26 subjects to 40 words. For

each combination of subject and word, a reaction time (RT) was recorded. For

each word, the frequency of its base word was extracted from the celex lexical

database (Baayen et al., 1995). Given what we know about frequency effects

in lexical processing in general, we expect that neologisms with a higher base

frequency elicit shorter reaction times.

1.4 Operations on data frames 17

Psycholinguistic studies often report two analyses, one for reaction times av-

eraged over subjects, and one for reaction times averaged over words. The ag-

gregate() function carries out these averaging procedures. Its syntax is similar

to that of tapply(). Its first argument is the numerical vector for which we

want averages according to the subsets defined by the list supplied by the second

argument. Here is how we average over words:

> heid2 = aggregate(heid$RT, list(heid$Word), mean)
> heid2[1:5,]

Group.1 x
1 aftandsheid 6.705000
2 antiekheid 6.542353
3 banaalheid 6.587727
4 basaalheid 6.585714
5 bebrildheid 6.673333

As aggregate() does not retain the original names of our data frame, we change

the column names so that the columns of heid2 remain easily interpretable:

> colnames(heid2) = c("Word", "MeanRT")

In the averaging process, we lost the information about the base frequencies of

the words. We add this information in two steps. We begin with creating a data

frame with just the information pertaining to the words and their frequencies:

> items = heid[, c("Word", "BaseFrequency")]

Because each subject responded to each item, this data frame has multiple identical

rows for each word. We remove these redundant rows with unique():

> nrow(items)
[1] 832
> items = unique(items)
> nrow(items)
[1] 40
> items[1:4,]

Word BaseFrequency
1 basaalheid 3.56
2 markantheid 5.16
3 ontroerdheid 5.55
4 contentheid 4.50

The final step is to add the information in items to the information already

available in heid2. We do this with merge(). As arguments to merge(), we

first specify the receiving data frame (heid2), and then the donating data frame

(items). We also specify the columns in the two data frames that provide the

keys for the merging: by.x should point to the key in the receiving data frame and

by.y should point to the key in the donating data frame. In the present example,

the keys for both data frames have the same value, Word:

> heid2 = merge(heid2, items, by.x = "Word", by.y = "Word")
> head(heid2, n = 4)

Word MeanRT BaseFrequency
1 aftandsheid 6.705000 4.20
2 antiekheid 6.542353 6.75
3 banaalheid 6.587727 5.74
4 basaalheid 6.585714 3.56

18 an introduction to r

Make sure you understand why the next sequence of steps leads to the same

results:

> heid3 = aggregate(heid$RT, list(heid$Word, heid$BaseFrequency), mean)
> colnames(heid3) = c("Word", "BaseFrequency", "MeanRT")
> head(heid3[order(heid3$Word),], 4)

We shall see shortly that the MeanRT indeed tends to be shorter as BaseFre-

quency increases.

1.5 Session management

R stores the objects it creates during a session in a file named .RData,

and it keeps track of the commands issued in a file named .Rhistory. These files

are stored on your computer, except when you explicitly request R to delete these

files when quitting. Since the names of these files begin with a period, they are

invisible to file managers in Unix, Linux, and Mac OS X, except when these are

explicitly instructed to show hidden files. In Windows, these files are visible, and

an R session can be restored by double clicking on the icon for the .RData file.

The data and history files can be moved around, copied, or deleted if so required.

The history file is a text file that can be viewed with any editor or text processor.

The contents of the .RData file, however, can only be viewed and manipulated

within R.

When working in R, the current contents of the workspace can be viewed with

the objects() function, which lists the objects that you have made:

> objects()
[1] "heid" "heid2" "heid3" "verbs" "verbs.rs"

Objects that are no longer necessary can be removed with rm():

> rm(verbs.rs)
> objects()
[1] "heid" "heid2" "heid3" "verbs"

It is recommended that you allocate a different workspace to each project you

are working on. This avoids your workspace becoming cluttered with objects that

have nothing to do with your current project. It also helps to avoid your workspace

becoming unmanageably large.

The proper way to exit from R from the console is to make use of the q()

function, which then inquires whether the workspace should be saved.

> q()
Save workspace image? [y/n/c]:
y

Answering with no implies that whatever objects you created in R in your current

session will not be available the next time you start up R in the same directory.

1.5 Session management 19

Note that we have to specify the opening and closing parentheses of the func-

tion, even when it is not supplied with an argument. If you type a function name

at the prompt without the parentheses, R interprets this as a request to print the

function’s code on the screen:

> q
function (save = "default", status = 0, runLast = TRUE)
.Internal(quit(save, status, runLast))
<environment: namespace:base>

If you see unexpected code like this, you can be sure that you forgot your paren-

theses.

Workbook section

Exercises

The data set spanishMeta contains metadata about fifteen texts sampled from three Spanish

authors. Each line in this file provides information on a single text. Later in this book we will

consider whether these authors can be distinguished on the basis of the quantitative characteristics

of their personal styles (gauged by the relative frequencies of function words and tag trigrams).

1. Display this data frame in the R terminal. Extract the column names from the data frame.

Also extract the number of rows.

2. Calculate how many different texts are available in meta for each author. Also calculate the

mean publication date of the texts sampled for each author.

3. Sort the rows in meta by year of birth (YearOfBirth) and the number of words sampled

from the texts (Nwords).

4. Extract the vector of publication dates from meta. Sort this vector. Consult the help page for

sort() and sort the vector in reverse numerical order. Also sort the row names of meta.

5. Extract from meta all rows with texts that were published before 1980.

6. Calculate the mean publication date for all texts. The arithmetic mean is defined as the sum of

the observations in a vector divided by the number of elements in the vector. The length of a

vector is provided by the function length(). Recalculate the mean year of publication by

means of the functions sum() and length().

7. We create a new data frame with fictitious information on each author’s favorite composer

with the function data.frame():

> composer = data.frame(Author = c("Cela","Mendoza","VargasLLosa"),

+ Favorite = c("Stravinsky", "Bach", "Villa-Lobos"))

> composer

Author Favorite

1 Cela Stravinsky

2 Mendoza Bach

3 VargasLLosa Villa-Lobos

Add the information in this new data frame to meta with merge().

2 Graphical data exploration

2.1 Random variables

Chapter 1 introduced the data frame as the data structure for storing

vectors of numbers as well as factors. Numerical vectors and factors represent in

R what statisticians call random variables. A random variable is the outcome

of an experiment. Here are some examples of experiments and their associated

random variables:

tossing a coin Tossing a coin will result in either “head” or “tail.” Hence, the

toss of a coin is a random variable with two outcomes.

throwing a dice In this case, we are dealing with a random variable with six

possible outcomes, 1, 2, . . . , 6.

counting words We can count the frequencies with which words occur in a given

corpus or text. Word frequency is a random variable with, as possible values,

1, 2, 3, . . . , N , with N the size of the corpus.

familiarity rating Participants are asked to indicate on a seven-point scale how

frequently they think words are used. The ratings elicited for a given word will

vary from participant to participant, and constitute a random variable.

lexical decision Participants are asked to indicate, by means of button presses,

whether a word presented visually or auditorily is an existing word of the lan-

guage. There are two outcomes, and hence two random variables, for this type of

experiment: the accuracy of a response (with levels “correct” and “incorrect”)

and the latency of the response (in milliseconds).

A random variable is random in the sense that the outcome of a given experiment is

not known beforehand, and varies from measurement to measurement. A variable

that always assumes exactly the same value is not a random variable but a constant.

For instance, if an experiment consists of counting, with the same computer

program, the number of words in the Brown corpus (Kučera and Francis, 1967),

then you will always obtain exactly the same outcome. The size of the Brown

corpus is a constant, and not a random variable.

Each random variable is associated with a probability distribution that

describes the likelihood of the different values that a random variable may as-

sume. For a fair coin, the two outcomes (head and tail) are equally probable; for

word frequencies, a minority of words has very high probabilities (for instance,

20

2.2 Visualizing single random variables 21

the function words) while large numbers of words have very low probabilities.

Knowledge of the probability distribution of a random variable is often crucial

for statistical analysis, as we shall see in Chapter 3.

The present chapter addresses visualization. While numerical tables are hard

to make sense of, data visualization often allows the main patterns to emerge

remarkably well. In what follows, I therefore first discuss tools for visualizing

properties of single random variables (in vectors and uni-dimensional tables). I

then proceed with an overview of tools for graphing groups of random variables. In

addition to introducing further statistical concepts, this chapter serves the purpose,

as we go through the examples, of discussing the most commonly used options

that R provides for plotting and visualization. Later chapters in this book depend

heavily on these visualization techniques.

2.2 Visualizing single random variables

Bar plots and histograms are useful for obtaining visual summaries

of the distributions of single random variables. We illustrate this by means of a

data set (ratings) with several kinds of ratings collected for a set of 81 words

for plants and animals:

> colnames(ratings)
[1] "Word" "Frequency" "FamilySize"
[4] "SynsetCount" "Length" "Class"
[7] "FreqSingular" "FreqPlural" "DerivEntropy"
[10] "Complex" "rInfl" "meanWeightRating"
[13] "meanSizeRating" "meanFamiliarity"

For each word, we have three ratings (averaged over subjects), one for the weight

of the word’s referent, one for its size, and one for the word’s subjective familiarity.

Class is a factor specifying whether the word’s referent is an animal or a plant.

Furthermore, we have variables specifying various linguistic properties, such

as a word’s frequency, its length in letters, the number of synsets (synonym

sets) in which it is listed in WordNet (Miller, 1990), its morphological family

size (the number of complex words in which the word occurs as a constituent),

and its derivational entropy (an information theoretic variant of the family size

measure). Figure 2.1 presents a bar plot and a number of histograms for these

numeric variables. The upper left panel is a bar plot of the counts of word lengths,

produced with the help of the function barplot():

> barplot(xtabs(˜ ratings$Length), xlab = "word length", col = "grey")

The option xlab (x-label) sets the label for the X axis, and with the option colwe

set the color for the bars to grey. We see that word lengths range from 3 to 10, and

that the distribution is somewhat asymmetric, with a mode (the value observed

most often) at 5. The mean is 5.9, and the median is 6. The median is obtained by

ordering the observations from small to large, and then taking the central value (or

22 graphical data exploration

3 4 5 6 7 8 9 10

word length

0
5

1
0

1
5

4 6 8 10

0
.0

0
0
.1

0
0
.2

0

word length

1 2 3 4 5 6 7 8

0
.0

0
0
.1

0
0
.2

0
0
.3

0

log word frequency

0.5 1.0 1.5 2.0 2.5

0
.0

0
.4

0
.8

1
.2

log synset count

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

log family size

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.4

0
.8

1
.2

derivational entropy

Figure 2.1. A bar plot and histograms for selected variables describing the lexical properties of 81 words
denoting plants and animals.

the average of the two central values when the number of observations is even).

Mean, median, and range are obtained with the functions mean(), median(),

and range():

> mean(ratings$Length)
[1] 5.91358
> median(ratings$Length)
[1] 6
> range(ratings$Length)
[1] 3 10

We can also extract the minimum and the maximum values separately with min()

and max():

2.2 Visualizing single random variables 23

> min(ratings$Length)
[1] 3
> max(ratings$Length)
[1] 10

The upper right panel of Figure 2.1 shows the histogram corresponding to

the bar plot in the upper left panel. One difference between the bar plot and the

histogram is that the bar plot is a natural choice for measures for discrete variables

(such as word length) or factors (which have discrete levels). Another difference

is that the histogram is scaled on the vertical axis in such a way that the total

area of the bars is equal to 1. This allows us to see that the words of length 5

and 6 jointly already account for more than 40% of the data. This histogram was

obtained with the truehist() function in the MASS package.

Packages are collections of functions, often written to facilitate a particular

kind of statistical analysis. There are hundreds of packages, and every year more

packages become available. When we start up R, the most important and cen-

tral packages are loaded automatically. These packages make available the basic

classical statistical tests and graphical tools. It does not make sense to load all

available packages, as this would slow the performance of R considerably by

having to allocate resources to a great many functions that a given user is not

interested in at all. Packages that are installed but not loaded automatically can be

made available by means of the library() function. Packages that are not yet

installed can be added to your system with install.packages(), or through

your graphical user interface.

The MASS package contains a wide range of functions discussed in Venables

and Ripley (2003). We make the functions in this package available with:

> library(MASS)

All the functions in the MASS package will remain available to the end of your R

session, unless the package is explicitly removed with detach():

> detach(package:MASS)

When you exit from R, all of the packages that you loaded are detached auto-

matically. When you return to the same workspace, you will have to reload the

packages that you used previously in order to have access again to the functions

that they contain.

With the MASS package loaded, we can produce the histogram in the upper

right panel of Figure 2.1 with truehist():

> truehist(ratings$Length, xlab="word length", col="grey")

The remaining panels of Figure 2.1 were made in the same way:

> truehist(ratings$Frequency,
+ xlab = "log word frequency", col = "grey")
> truehist(ratings$SynsetCount,
+ xlab = "log synset count", col = "grey")
> truehist(ratings$FamilySize,

24 graphical data exploration

+ xlab = "log family size", col = "grey")
> truehist(ratings$DerivEntropy,
+ xlab = "derivational entropy", col = "grey")

Note that the bottom panels show highly asymmetric, skewed distributions: most

of the words in this data set have no morphological family members at all.

The bar plot and histograms in Figure 2.1 were brought together in one display.

Such multipanel plots require changing the defaults for plotting. Normally, R will

reserve the full graphics window for a single graph. However, we can divide the

graphics plot window into a matrix of smaller plots by changing this default using

a function that actually handles a wide range of graphical parameters, par(). The

graphical parameter that we need to set here is mfrow, which should be a two-

element vector specifying the number of rows and the number of columns for the

matrix of plots:

> par(mfrow = c(3, 2)) # plots arranged in 3 rows and 2 columns

From this point onwards, any plot will be added to a grid of three rows and two

columns, starting with the upper left panel, and filling a given row before starting

on the next. After having filled all panels, we reset mfrow to its default value, so

that the next plot will fill the full plot region instead of starting a new series of

six small panels:

> par(mfrow = c(1, 1))

There are many other graphical parameters that can be set with par(), parameters

for controlling color, font size, tick marks, margins, text in the margins, and so

on. As we proceed through this book, many of these options will be introduced.

A complete overview is available in the on-line help; type ?par or help(par)

to see them all.

There are several ways in which plots can be saved as independent graphics

files external to R. If you are using the graphical user interface for Mac OS X

or Windows, you can right-click on the graphics window, and choose copy as

or save as. R supports several graphics formats, including png, pdf, jpeg, and

PostScript. Each format corresponds to a function that can be called from the

command line: png(), pdf(), jpeg(), and postscript(). The command

line functions offer many ways of fine-tuning how a figure is saved. For instance,

a jpeg file with a width of 400 pixels and a height of 420 pixels is produced as

follows:

> jpeg("barplot.jpeg", width = 400, height = 420)
> truehist(ratings$Frequency, xlab = "log word frequency")
> dev.off()

The jpeg() command opens the jpeg file. We then execute truehist(), the

output of which is no longer shown on the standard graphics device, but redirected

to the jpeg file. Finally, we close the jpeg file with dev.off(). The dev.off()

command is crucial: if you forget to close your file, you will run into all sorts

of trouble when you try to view the file outside R, or if you try to make a new

2.2 Visualizing single random variables 25

figure in the graphics window of R. It is only after closing the file that further

plot commands will be shown to you on your computer screen. Encapsulated

PostScript files are produced in a similar way:

> postscript("barplot.ps", horizontal = FALSE, height = 6, width = 6,
+ family = "Helvetica", paper = "special", onefile = FALSE)
> truehist(items$Frequency, xlab = "log word frequency")
> dev.off()

The first argument of postscript() is the name of the PostScript file. Whether

the plot should be in portrait or landscape mode is controlled by the horizon-

tal argument. If horizontal = TRUE, the plot will be produced in landscape

mode, otherwise in portrait mode. The parameters height and width control

the height and width of the plot in inches. In this example, we have set both height

and width to six inches. The font to be used is specified by family, and with

paper="special" the output will be an encapsulated PostScript file that can

be easily incorporated in, for instance, a LATEX document. The final argument,

onefile, is set to FALSE in order to indicate there is only a single plot in the file.

(If you are going to add more than one plot to the file, set onefile to TRUE.)

The shape of a histogram depends, sometimes to a surprising extent, on the

width of the bars and on the position of the left side of the first bar. The function

truehist() that we used above has defaults that are chosen to minimize the

risk of obtaining a rather arbitrarily shaped histogram (see also (Haerdle, 1991;

Venables and Ripley, 2003)). Nevertheless, histograms for variables that represent

real numbers remain somewhat unsatisfactory. The histogram suggests discrete

jumps as you move from bar to bar, while the real distribution of probabilities

that we try to approximate with the histogram is smooth.

We can avoid this problem with the function density(), which produces

a “smoothed histogram.” We illustrate the advantages of density estimation

by means of the reaction times elicited in a visual lexical decision experiment

using the same words as in the ratings data set. The reaction times for 79 of

the 81 words used in the ratings data set are available as the data set lexdec.

Details about the variables in this data set can be obtained with ?lexdec. The

left panel of Figure 2.2 shows the histogram as given by truehist() applied to

the (logarithmically transformed) reaction times:

> truehist(lexdec$RT, col = "lightgrey", xlab = "log RT")

The distribution of the logged reaction times is somewhat skewed, with an ex-

tended right tail of long latencies.

The right panel of Figure 2.2 shows the histogram, together with the density

curve, using the function density(). Below, we discuss in detail how exactly

we made this plot. Here, we note that the histogram and the density curve have

roughly the same shape, but that the density curve smoothes the discrete jumps

26 graphical data exploration

6.0 6.5 7.0 7.5

0
.0

0
.5

1
.0

1
.5

2
.0

log RT log RT

6.0 6.5 7.0 7.5

0
.0

0
.5

1
.0

1
.5

2
.0

Figure 2.2. Histograms and density function for the response latencies of 21

subjects to 79 nouns referring to animals and plants.

of the histogram. As reaction time is a continuous variable, the density curve is

both more appropriate and more accurate.

Plotting the right panel is not difficult, but it requires some special care and

illustrates some more details of how plotting works in R. The problem that arises

when superimposing one graph on another graph, as in Figure 2.2, is that we have

to make sure that the ranges for the two axes are set appropriately. Otherwise R

will set the ranges to accommodate the first graph, in which case the second graph

may not fit properly. We begin with the standard function for making a histogram,

hist(), which, unlike truehist(), can be instructed to produce a histogram

object. As we don’t want a plot at this point, we tell hist() to forget about

producing a histogram in the graphics window by specifying plot = FALSE:

> h = hist(lexdec$RT, freq = FALSE, plot = FALSE)

(The option freq = FALSE ensures that the histogram has a total area of one.) A

histogram object has many components, of which we need two: the locations of the

edges of the bars, and the heights of the bars. These are available as components

of our histogram object h, and accessible as h$breaks and h$density. As our

next step, we make a density object,

> d = density(lexdec$RT)

which provides the x and y coordinates for the graph as d$x and d$y. We now

have all the information we need for determining the smallest and largest values

that should be displayed on the X and Y axes. We calculate these values with

range(), which extracts the largest and smallest values from all its input vectors:

> xlimit = range(h$breaks, d$x)
> ylimit = range(0, h$density, d$y)

2.2 Visualizing single random variables 27

For the vertical axis, we include 0 when calculating the range in order to make

sure that the origin will be included as the lowest value.

We can now proceed to plot the histogram, informing hist() about the limits

for the axes through the options xlim and ylim:

> hist(lexdec$RT, freq=FALSE, xlim=xlimit, ylim=ylimit, main="",
+ xlab="log RT", ylab="", col="lightgrey", border="darkgrey",
+ breaks = seq(5.8, 7.6, by = 0.1))

With the option colwe set the color of the bars to light grey, and with borderwe

set the color of the borders of the bars to dark grey. We also prevent hist() from

adding a title to the graph with main = "". The breaks option is necessary

for getting hist() to produce the same output as truehist() does for us by

default. Finally, we add the curve for the density with the function lines(). The

function lines() takes a vector of x coordinates and a vector of y coordinates,

and connects the points specified by these coordinates with a line in the order

specified by the input vectors:

> lines(dx, dy)

In this case, the command lines(dx, dy) is unnecessarily complex, as a

density object such as d tells plotting functions like lines()where they can find

the x and y coordinates. Therefore, all we actually have to specify is:

> lines(d)

You can plot a histogram or density object simply with the general plotting func-

tion plot(),

> plot(h)
> plot(d)

without having to specify the x and y values yourself. However, if you need

those values, you can extract them from the objects, as we have seen when we

calculated xlimit and ylimit. In other words, R provides sensible plotting

defaults without giving up user control over the fine details.

There are several other ways in which you can visualize the distribution of

a random variable. Figure 2.3 shows plots based on the values of the reaction

times sorted from small to large. The upper left panel plots the index (or rank)

of the reaction times on the horizontal axis, and the reaction times themselves

on the vertical axis. This way of plotting the data reveals the range of values,

as well as the presence of outliers. Outliers are data points with values that are

surprisingly large or small given all data points considered jointly. There are

a few outliers representing very short reaction times, and many more outliers

representing very long reaction times. This difference between the head and the

tail of the distribution corresponds to the asymmetry in the density curve shown

in the right panel of Figure 2.2.

28 graphical data exploration

0 500 1000 1500

6
.0

6
.5

7
.0

7
.5

Index

lo
g

 R
T

6
.0

6
.5

7
.0

7
.5

Quartiles

lo
g

 R
T

0% 25% 50% 75% 100%

6
.0

6
.5

7
.0

7
.5

Deciles

lo
g
 R

T

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0

0
%

Figure 2.3. Ordered values, quartiles, and deciles for logarithmically transformed reaction
times in a visual lexical decision experiment.

The upper left panel of Figure 2.3 was produced simply with:

> plot(sort(lexdec$RT), ylab = "log RT")

When plot() is supplied with only one vector of data, it assumes that this vector

represents Y -values and generates a vector of X -values numbered from 1 to the

number of elements in the input vector. As we provided a sorted vector of numbers,

the automatically generated X -values represent the ranks of these numbers.

The upper right panel of Figure 2.3 shows the quartiles of the distribution of

reaction times, and the lower panel the deciles. The quartiles are the data points

you get by dividing the sorted data into four equal parts. The 50% quartile is also

known as the median. The deciles are the data points dividing the sorted data into

10 equal parts. The function quantile() calculates the quantiles for its input

vector; by default it produces the quartiles. By supplying a second vector with

the required percentage points, the default can be changed.

Let’s have a closer look at the code that produced the quantile plots in Figure 2.3,

as this illustrates some further ways in which you can control what R plots. These

quantile plots require special attention with respect to the labels on the horizontal

axis. We do not wantR to label the five points for the quartiles on the horizontal axis

with five tick marks (the small vertical and horizontal lines marking the labeled

values on the axes) and the numbers 1 through 5. What we want is sensibly labeled

2.2 Visualizing single random variables 29

quartiles. We therefore instruct plot() to forget about tick marks and numbers

labeling the horizontal axis, using the option xaxt = "n":

> plot(quantile(lexdec$RT), xaxt = "n",
+ xlab = "Quartiles", ylab = "log RT")

The next step is to add the appropriate labels. We do this with the function

mtext(), which adds text to a given margin of a plot. A plot margin is the

white space between the edge of the graphics window and the plot itself. The

margins are labeled 1 (bottom), 2 (left), 3 (top), and 4 (right). In other words, the

first margin is the space between the X axis and the lower edge of the plotting

region. We instruct mtext() to place the text vector c("0%", "25%", "50%",

"75%", "100%") in the first margin (with the option side = 1), one line out

(downwards) into the margin (with the optionline = 1), with a font size reduced

to 70% of the default font size (with the option cex = 0.7):

> mtext(c("0%", "25%", "50%", "75%", "100%"),
+ side = 1, at = 1:5, line = 1, cex = 0.7)

The option at = 1:5 tells mtext() where to place the five ele-

ments of the text vector. Recall that we plotted the quartiles with

plot(quantile(lexdec$RT)), i.e. without explicitly telling R about the X
and Y coordinates. As there is only one vector of numbers, these numbers are

taken to be Y coordinates. The X coordinates are the indexes of the input vector,

the numbers 1, 2, . . . , n, with n the length of the input vector (the total number of

elements in the vector). As we have five elements in our input vector, we know that

the X coordinates that plot() generated for us are the numbers 1 through 5. To

get our labels at the appropriate location, we supply these positions to mtext()

through the option at.

In the code that produced the lower panel of Figure 2.3,

> plot(quantile(lexdec$RT, seq(0, 1, 0.1)),
+ xaxt = "n", xlab = "Deciles", ylab = "log RT")
> mtext(paste(seq(0, 100, 10), rep("%", 11), sep = ""),
+ side = 1, at = 1:11, line = 1, cex = 0.7, las = 2)

the first argument to plot() is again the output of the quantile function. By

default, quantile() outputs quartiles, but here we are interested in deciles. The

second argument to quantile() specifies these deciles, created with the help of

the function seq():

> seq(0, 1, 0.1)
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The first argument of seq() specifies with which number a sequence should

begin, its second argument specifies the number with which this sequence

should end, and the third argument specifies the increment, here 0.1. This vec-

tor has eleven elements, hence the output of quantile() has eleven elements

as well:

30 graphical data exploration

> quantile(lexdec$RT, seq(0, 1, 0.1))
0% 10% 20% 30% 40% 50% 60%

5.828946 6.122493 6.188264 6.248816 6.297109 6.345636 6.395262
70% 80% 90% 100%

6.459904 6.553933 6.721907 7.587311

As we are not interested in the X coordinates generated automatically by plot(),

we suppress tick marks and labels for the tick marks by specifying xaxt = "n".

We now add our own tick marks. We could create a vector of strings by hand, but

by combining seq() with another function, paste(), we save ourselves some

typing. paste() takes two or more strings as input and glues them together so

that they become one single string. The user has control over what character

should separate the input strings. By default, the original arguments are separated

by a space,

> paste("a", "b", "c")
[1] "a b c"

but we can remove the space by setting the separating character to the empty

string:

> paste("a", "b", "c", sep = "")

When paste() is supplied with vectors of strings, it will glue the elements of

these vectors together pairwise:

> paste(seq(0, 100, 10), rep("%", 11), sep = "")
[1] "0%" "10%" "20%" "30%" "40%" "50%"
[7] "60%" "70%" "80%" "90%" "100%"

This vector provides sensible labels for the horizontal axis of our plot. Above, we

fed it to mtext(). We also instructed mtext() to place the strings perpendicular

to the horizontal axis with las=2, as there are too many labels to fit together

when placed horizontally along the axis.

Figure 2.4 plots the estimated density, the ordered values, and a new sum-

mary plot, a box and whiskers plot or boxplot, for the reaction times, with the

untransformed RTs in milliseconds on the upper row of panels, and log RT on

the lower row of panels. The rightmost panels show box and whiskers plots, pro-

duced with the function boxplot(), which provide useful graphical summaries

of distributions:

> boxplot(exp(lexdec$RT)) # upper panel
> boxplot(lexdec$RT) # lower panel

(For the upper panel, we use the exponential function exp() to undo the log-

arithmic transformation of the reaction times in the data frame lexdec.) The

box in a box and whiskers plot shows the interquartile range, the range from

the first to the third quartile. The whiskers in a boxplot extend to maximally 1.5

times the interquartile range. Points falling outside the whiskers are plotted in-

dividually; they are potential outliers. The horizontal line in the box represents

the median. The large number of individual points extending above the upper

whiskers in these boxplots highlight that we are dealing with a quite skewed,

non-symmetrical distribution.

2.2 Visualizing single random variables 31

500 1500

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

N = 1659 Bandwidth = 25.39

D
e
n
si

ty

RT in msec

0 500 1000

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

Index

so
rt

(e
xp

(l
ex

d
e
c$

R
T

))

RT in msec

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

RT in msec

6.0 6.5 7.0 7.5

0
.0

0
.5

1
.0

1
.5

2
.0

N = 1659 Bandwidth = 0.04382

D
e
n
si

ty

log RT

0 500 1000

6
.0

6
.5

7
.0

7
.5

Index

so
rt

(l
ex

d
e
c$

R
T

)

log RT

6
.0

6
.5

7
.0

7
.5

log RT

Figure 2.4. Density, ordered values, and boxplots for reaction times and log reaction times in a visual lexical
decision experiment.

A comparison of the upper and lower panels in Figure 2.4 shows that the

skewing is reduced, although not eliminated, by the logarithmic transformation.

This is clearly visible in the boxplot in the lower right panel. There are still many

marked outliers, but their number is smaller and the box has moved somewhat

more towards the center of the graph.

The reason that many of the variables that we study in this book are logarith-

mically transformed is to eliminate or at least substantially reduce the skewing in

their distribution. This reduction is necessary for most of the statistical techniques

discussed in this book to work appropriately. Without the logarithmic transfor-

mation, just a few extreme outliers might dominate the outcome, partially or even

completely obscuring the main trends characterizing the majority of data points.

The logarithmic transformation is not the only transformation that you might

consider. An alternative that sometimes works well is the inverse transformation,

1/RT. In order to facilitate interpretation, it is useful to use as transformation

−1000/RT. We multiply by 1000 to avoid very small values for the dependent

32 graphical data exploration

NP PP

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

anim
inanim

NP PP

animate
inanimate

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Figure 2.5. Bar plots for the counts of clauses cross-classified by the realization
of the recipient as np or pp and the animacy of the recipient.

variable, and we multiply by −1 to ensure that larger values of the original variable

correspond to larger values of the transformed variable.

2.3 Visualizing two or more variables

In Chapter 1, we created a contingency table for the counts of clauses

cross-classified by the animacy of the recipient and the realization of the recipient

(np versus pp), using the data analyzed by Bresnan et al. (2007). We recreate this

contingency table,

> verbs.xtabs = xtabs(˜ AnimacyOfRec + RealizationOfRec,
+ data = verbs[verbs$AnimacyOfTheme != "animate",])
> verbs.xtabs

RealizationOfRec
AnimacyOfRec NP PP

animate 517 300
inanimate 33 47

and visualize it by means of a bar plot. We use the same barplot() function

as above. However, as our input is not a vector but a table, we have to decide

what kind of bar plot we want. Figure 2.5 illustrates the two options. The left

panel shows two bars, each composed of subbars proportional to the two counts

in the columns of verbs.xtabs. The right panel shows two pairs of bars, the

first pair representing the counts for animacy within np realizations, the second

pair representing the same counts within the realizations of the recipient as a pp:

> par(mfrow = c(1, 2))
> barplot(verbs.xtabs, legend.text=c("anim", "inanim"))
> barplot(verbs.xtabs, beside = T, legend.text = rownames(verbs.xtabs))
> par(mfrow = c(1, 1))

2.3 Visualizing two or more variables 33

In Chapter 1 we had a first look at the data of Bresnan and colleagues on the

dative alternation in English. Let’s consider their data once more, but now we

make use of the full data set (dative), and cross-tabulate the realization of the

recipient by its animacy and accessibility:

> verbs.xtabs =
+ xtabs(˜ AnimacyOfRec + AccessOfRec + RealizationOfRecipient,
+ data = dative)
> verbs.xtabs
, , RealizationOfRecipient = NP

AccessOfRec
AnimacyOfRec accessible given new

animate 290 1931 78
inanimate 11 99 5

, , RealizationOfRecipient = PP

AccessOfRec
AnimacyOfRec accessible given new

animate 259 239 227
inanimate 55 33 36

Such a contingency table might be visualized with a bar plot, but twelve bars

or smaller numbers of stacked bars quickly become rather complex to interpret.

An attractive alternative is to make use of a mosaic plot, as shown in the left panel

of Figure 2.6:

> mosaicplot(verbs.xtabs, main = "dative")

The areas of the twelve rectangles in the plot are proportional to the counts for the

twelve cells of the contingency table. When there is no structure in the data, as in

the mosaic plot in the right panel of Figure 2.6, each rectangle is approximately

equally large. The many asymmetries in the left panel show, for instance, that in

the actual data set given recipients are more likely to be realized as np than new

or accessible recipients, both for animate and inanimate recipients, irrespective

of the overall preponderance of given recipients.

The relation between two numerical variables with many different values is

often brought to light by means of a scatterplot. Figure 2.7 displays two ver-

sions of the same scatterplot for variables in the ratings data set. The upper

panel was produced in two steps. The first step consisted of plotting the data

points:

> plot(ratings$Frequency, ratings$FamilySize)

All we have to do is specify the vectors of X and Y values as arguments toplot().

By default, the names of the two input vectors are used as labels for the axes. You

can see that words with a very high frequency tend to have a very high family

size. In other words, the two variables are positively correlated. At the same

time, it is also clear that there is a lot of noise, and that the scatter (or variance) in

family sizes is greater for lower frequencies. Such an uneven pattern is referred

to as heteroskedastic, and is endemic in lexical statistics.

34 graphical data exploration

dative

AnimacyOfRec

A
cc

e
ss

O
fR

e
c

animate inanimate

a
cc

e
ss

ib
le

g
iv

e
n

n
e

w

NP PP NPPP

uniform

AnimacyOfRec

A
cc

e
ss

O
fR

e
c

animate inanimate

a
cc

e
ss

ib
le

g
iv

e
n

n
e

w

NP PP NP PP

Figure 2.6. A mosaic plot for observed counts of clauses cross-classified by the animacy of the recipient, the
accessibility of the recipient, and the realization of the recipient (left panel), and for random counts (right).

The second step consisted of adding the grey line to highlight the main trend:

> lines(lowess(ratings$Frequency, ratings$FamilySize), col="darkgrey")

This line shows that you have to proceed almost 2 log frequency units along

the horizontal axis before you begin to see an increase in family size. For larger

frequencies, the family size increases, slowly at first, but then faster and almost like

a straight line. A curve like this is often referred to as a scatterplot smoother,

as it smoothes away all the turbulence around the main trend in the data. The

smoothing function that we used here is lowess(), which takes as input the

X and Y coordinates of the data points and produces as output the X and Y
coordinates of the smooth line. To plot this line, we fed its coordinates into

lines().

The basic idea underlying smoothers is to use the observations in a given span

(or bin) of values of X to calculate the average increase in Y . You then move this

span from left to right along the horizontal axis, each time calculating the new

increase in y. There are many ways in which you can estimate these increases,

and many ways in which you can combine all these estimated increases into a

2.3 Visualizing two or more variables 35

2 3 4 5 6 7 8

0
.0

1
.0

2
.0

3
.0

ratings$Frequency

ra
tin

g
s$

F
a
m

ily
S

iz
e

2 3 4 5 6 7 8

0
.0

1
.0

2
.0

3
.0

Frequency

F
a
m

ily
 S

iz
e

almond

ant

apple

apricotasparagusavocado

badger

banana

bat

beaver

bee

beetroot

blackberry

blueberrybroccolibunny butterfly

camelcarrot

cat

cherry

chicken

clove crocodilecucumber

dog

dolphin donkey

eagle

ggplant

elephant

fox

frog

gherkin

goat
goose

grape

gull

hedgehog

horse

kiwileek

lemon

lettuce

lion

magpie

melonmole

monkeymoose

mouse

mushroom

mustard

olive

orangeowl

paprika

peanut

pear

pig

pigeon

pineapple potato

radish

reindeer

shark

sheep

snake

spider

squid squirrelstork strawberry

swan

tomatotortoisevulturewalnut

wasp

whale

woodpecker

Figure 2.7. Scatterplots for Family Size as a function of Frequency for 81

English nouns.

line. Recall that Figure 2.2 illustrated that the smoothness of a histogram depends

on the width of its bars. In a similar way, the smoothness of the line produced

by lowess() is determined by the bin width used. As lowess() makes use of

a sensible rule of thumb for calculating a reasonable bin width, we need not do

anything ourselves. However, if you think that lowess() engages in too much

smoothing (the line hides variation you suspect to be there) or too little smoothing

(the line has too many idiosyncratic bumps) for your data, you can change the

bin width manually, as documented in the on-line help. Venables and Ripley

(2003:228–232) provide detailed information on various important smoothers

that are available in R.

The lower panel of Figure 2.7 shows a different version of the same scatterplot.

Data points are now labeled by the words they represent. It is now easy to see

that horse and dog are the words with the highest frequency and family size in

the sample. This scatterplot was also made in two steps. The first step consisted

of setting up the axes, now with our own labels, specified with xlab and ylab.

However, we instructed plot() not to add the data points by setting the plot type

to “none” with type = "n":

> plot(ratings$Frequency, ratings$FamilySize, type = "n",
+ xlab = "Frequency", ylab = "Family Size")

36 graphical data exploration

Frequency

0.0 1.5 3.0 3 5 7 9

2
4

6
8

0
.0

1
.5

3
.0

FamilySize

SynsetCount

1
.0

2
.0

3
5

7
9

Length

2 4 6 8 1.0 2.0 0.0 1.0 2.0

0
.0

1
.0

2
.0

DerivEntropy

Figure 2.8. A pairs plot for the five numerical variables in the ratings data frame.

The second step consisted in adding the words to the plot with text(). Like

plot(), it requires input vectors for the X and Y coordinates. Its third argument

should be a vector with the strings that are to be placed in the plot. In the data

frame ratings, the column labeled Word is a factor, so we first convert it into

a vector of strings with as.character() before handing it over to text().

Finally, we set the font size to 0.7 of its default with cex = 0.7:

> text(ratings$Frequency, ratings$FamilySize,
+ as.character(ratings$Word), cex = 0.7)

Thus far, we have considered scatterplots involving two variables only. Many

data sets have more than two variables, however, and although we might con-

sider inspecting all possible pairwise combinations with a series of scatterplots,

it is often more convenient and insightful to make a single multipanel figure

that shows all pairwise scatterplots simultaneously. Figure 2.8 shows such a

2.4 Trellis graphics 37

scatterplot matrix for all two by two combinations of the five numerical

variables in ratings. The panels on the main diagonal provide the labels for the

axes of the panels. For instance, all the panels on the top row have Frequency

on the vertical axis, and all the panels of the first column have Frequency on the

horizontal axis. Each pair of variables is plotted twice, once with a given variable

on the horizontal axis, and once with the same variable on the vertical axis. Such

pairs of plots have coordinates that are mirrored in the main diagonal. Thus, panel

(2, 1) is obtained by mirroring the points in panel (1, 2) across the main diagonal.

Similarly, panel (5, 1) in the lower left has its opposite in the upper right corner at

location (1, 5). The reason for having mirrored panels is that sometimes a pattern

strikes the eye in one orientation, but not in the other.

Figure 2.8 was made with the pairs() plot function, which requires a data

frame with numerical columns as input:

> pairs(ratings[, -c(1, 6:8, 10:14)])

The condition on the columns has a minus sign, indicating that all columns spec-

ified to its right should be excluded instead of included. The columns that we

exclude here are all factors. Factors cannot be visualized in scatterplots, hence

we take them out before applying pairs(). Figure 2.8 reveals that a fair num-

ber of pairs of predictors enter into correlations, a phenomenon that is known as

multicollinearity. Strong multicollinearity among a set of predictor variables

may make it impossible to ascertain which predictor variables best explain the

dependent variable. We will return to this issue in more detail when discussing

multiple regression.

2.4 Trellis graphics

A trellis is a wooden grid for growing roses and other flowers that

need vertical support. Trellis graphics are graphs in which data are visualized by

many systematically organized graphs simultaneously. We have encountered one

trellis graph already, the pairwise scatterplot matrix as illustrated in Figure 2.8,

where each plot is a hole in the trellis. There are more advanced functions for

more complex trellis plots, which are available in the lattice package:

> library(lattice)

Trellis graphics become important when you are dealing with different groups

of data points. For instance, the words in the ratings data frame fall into two

groups: animals on the one hand, and the produce of plants (fruits, vegetables,

nuts) on the other hand. Therefore, the factor Class (with levels animal and

plant) can be regarded as a grouping factor for the words. Another possible

grouping factor for this data is whether the word is morphologically complex (e.g.

woodpecker) or morphologically simple (e.g. snake). With respect to the lexical

38 graphical data exploration

R
T

correct incorrect

6.0

6.5

7.0

7.5

English

correct incorrect

Other

Figure 2.9. Trellis box and whiskers plot for log reaction time by accuracy
(correct versus incorrect response) grouped by the first language of the subject.

decision data in lexdec, the factor Subject is a grouping factor: Each subject

provided response latencies for the same 79 words.

A question that arises when running a lexical decision experiment with native

and non-native speakers of English is whether there might be systematic dif-

ferences in how these two groups of subjects perform. It is to be expected that

non-native speakers require more time for a lexical decision. Furthermore, the

conditions under which they make errors may differ as well. In order to explore

this possibility, we make boxplots for the reaction times for correct and incor-

rect responses, and we do this for both the native speakers and the non-native

speakers in the experiment. In other words, we use the factor NativeLanguage

as a grouping factor. In order to make a grouped boxplot, we use the bwplot()

function from the lattice package as follows:

> bwplot(RT ∼ Correct | NativeLanguage, data = lexdec)

The result is shown in Figure 2.9. As you can see, bwplot() requires two argu-

ments, a formula and a data frame, lexdec in this example. The formula,

RT ∼ Correct | NativeLanguage

considers RT as depending on the correctness of the response (Correct), grouped

by the levels of NativeLanguage. In the formula, the vertical bar (|) is the

grouping operator. Another way of reading this formula is as an instruction to

create box and whiskers plots for the distribution of reaction times for the levels

of Correct conditioned on the levels of NativeLanguage, the groups of native

and non-native speakers. The result is a plot with two panels, one for each level of

the grouping factor. Within each of these panels, we have two box and whiskers

plots, one for each level of Correct.

2.4 Trellis graphics 39

This trellis graph shows some remarkable differences between the native and

non-native speakers of English (referenced as English and Other in Figure 2.9).

First of all, we see that the boxes (and medians) for the non-native speakers are

shifted upwards compared to those for the native speakers, indicating that they

required more time for their decisions, as expected. Interestingly, we also see

that the incorrect responses were associated with shorter decision latencies for

the native speakers, but with longer latencies for the non-native speakers. Finally,

note that there are many outliers only for the correct responses, for both groups of

subjects. Later, we shall see how we can test whether what we see here is indeed

reason for surprise. What is already clear at this point is that there is a pattern in

the data that is worth examining in greater detail.

There are many other kinds of trellis graphs, examples of which can be found

in the on-line help for xyplot(). Here, we restrict ourselves to two important

and easy ways to use trellis functions.

It is often useful to explore data with scatterplots for each of the levels of a

grouping factor. To make this more concrete, we consider the subjective estimates

of weight elicited for the 81 words in the ratings data set that we examined

previously. But now we inspect the individual ratings provided by the subjects to

the different words, as available in the data set weightRatings:

> weightRatings[1:5,]
Subject Rating Trial Sex Word Frequency Class

1 A1 5 1 F horse 7.771910 animal
2 A1 1 2 F gherkin 2.079442 plant
3 A1 3 3 F hedgehog 3.637586 animal
4 A1 1 4 F bee 5.700444 animal
5 A1 1 5 F peanut 4.595120 plant

We inspect how weight ratings were influenced by frequency for each of the

subjects separately by means of Figure 2.10. Each panel plots the data for one

subject, the grouping factor in this trellis graph. Each panel is labeled with the

relevant level of the grouping factor in the accompanying strip, here, an acronym

for the subject. In each panel, the dependent variable (Rating) appears on the

vertical axis, and the predictor (Frequency) on the horizontal axis.

Figure 2.10 suggests that weight ratings increase with increasing (log) fre-

quency, albeit only clearly so for the highest frequencies. There also seems to be

some variation in how strong the effect is. To judge from the scatterplot smoothers,

subject G does not seem to have much of a frequency effect, in contrast to, for

instance, subject R5, for whom the effect seems quite large. This trellis display

invites further research into whether these visual patterns are statistically robust.

The code that produced Figure 2.10 is quite simple:

> xylowess.fnc(Rating ∼ Frequency | Subject, data = weightRatings,

+ xlab = "log Frequency", ylab = "Weight Rating")

The same plot, but now without the lines for the scatterplot smoothers, is obtained

with:

40 graphical data exploration

log Frequency

W
e

ig
h

t
R

a
tin

g

1
2
3
4
5
6
7

2 3 4 5 6 7 8

A1 A2

2 3 4 5 6 7 8

G H

2 3 4 5 6 7 8

I1

I2 J K L

1
2
3
4
5
6
7

M1
1
2
3
4
5
6
7

M2 P R1 R2 R3

R4

2 3 4 5 6 7 8

R5 S1

2 3 4 5 6 7 8

S2

1
2
3
4
5
6
7

T1

Figure 2.10. Weight rating as a function of log word frequency grouped by subject.

> xyplot(Rating Frequency | Subject, data = weightRatings,

+ xlab = "log Frequency", ylab = "Weight Rating")

While xyplot() is part of the lattice package, xylowess.fnc() is not. It is

a function that I wrote around xyplot() in order to make it easy to produce

matrices with scatterplots and smoothers.

A second important trellis graph is the conditioning plot. An example of

a conditioning plot is Figure 2.11. It is based on a data set of 2284 English

monomorphemic and monosyllabic words studied by Balota et al. (2004) and

Baayen et al. (2006). The plot graphs morphological family size as a function of

the number of complex synsets, conditioned on equal counts of written frequency.

Recall that a word’s morphological family size is the count of complex words in

which it occurs as a constituent. The complex words on which this count is based

2.4 Trellis graphics 41

log Number of Complex Synsets

lo
g

 F
a

m
ily

 S
iz

e

1

2

3

4

5

0 1 2 3 4 5 6

equal.count(WrittenFrequency) equal.count(WrittenFrequency)

0 1 2 3 4 5 6

equal.count(WrittenFrequency)

equal.count(WrittenFrequency)

0 1 2 3 4 5 6

equal.count(WrittenFrequency)

1

2

3

4

5

equal.count(WrittenFrequency)

Figure 2.11. A conditioning plot: morphological family size as a function of the number of complex synsets,
for six overlapping ranges of written frequency (English monomorphemic and monosyllabic words).

are words written without internal spaces. Hence, compounds such as apple pie
are not included. By contrast, the count of complex synsets concerns the number

of synonym sets in WordNet in which the word is listed as part of a compound

with internal spaces. Therefore, the count of complex synsets is a complementary

family size measure. Consequently, we may expect that, in general, words that

have a high family size will also have a high value for the complex synsets

measure. We also know that higher-frequency words tend to have more family

members. The importance of a conditioning plot is that it allows us to inspect the

joint correlational structure among three predictors in a single graphical display.

The conditioning plot shown in Figure 2.11 consists of six scatterplots, each

with its own smoother, which graph log Family Size against log Number of

Complex Synsets. The six panels are arranged by increasing intervals of Written

Frequency. The lowest frequency band is found in the lower left plot, and the

highest frequency band in the upper right plot. The shaded areas in the strips above

the panels provide a visual indication of the frequency bands that characterize

the data points in the scatterplots. As indicated by these shaded areas, written

frequency increases as we move from the lower left to the lower right, and then

from the upper left to the upper right. The six frequency bands are chosen such that

there is an equal count of observations in each frequency band. What Figure 2.11

42 graphical data exploration

shows is that the correlation between the Family Size measure and the Number of

Complex Synsets is present predominantly for the higher-frequency words. This

may be due to a lexicographic bias favoring inclusion of compounds with internal

spaces in dictionaries (and hence in WordNet) only if they are sufficiently frequent.

Technically, the phenomenon illustrated here is referred to as an interaction, in

this example an interaction of Written Frequency by Number of Complex Synsets.

To reproduce Figure 2.11, we need the english data set (4568 rows), which

provides mean reaction times to 2284 words for two subject populations. In order

to obtain the characteristics of the items without duplicate entries, we restrict the

data to the subset pertaining to the young subject population:

> english = english[english$AgeSubject == "young",]
> nrow(english)
[1] 2284

This data frame provides a large number of quantitative lexical variables, among

which are WrittenFrequency, FamilySize, and NumberComplexSynsets.

A conditioning plot is useful here. Crucially, we do not condition on Written-

Frequency as such—this would result in one panel for each distinct frequency.

Instead, we use the function equal.count() to obtain what is referred to as a

shingle: six overlapping frequency bands with equal numbers of observations

in each band:

> xylowess.fnc(FamilySize ∼ NumberComplexSynsets |
+ equal.count(WrittenFrequency), data = english)

Workbook section

Exercises

1. The data set warlpiri (data courtesy Carmel O’Shannessy) provides information about the

use of the ergative case in Lajamanu Warlpiri. Data were elicited for adults and children of

various ages. The question of interest is to what extent the use of the ergative case marker is

predictable from the animacy of the subject, word order, and the age of the speaker (adult

versus child). Explore this data set with respect to this issue by means of a mosaic plot. (First

construct a contingency table with xtabs(), then supply this contingency table as argument

to mosaicplot().)

2. In Chapter 1 we created a data frame with mean reaction times and mean base frequencies for

neologisms in the Dutch suffix -heid. Reconstruct the data frame heid2. Both reaction times

and frequencies are logarithmically transformed. Use exp() to undo these transformations

and make a scatterplot of the averaged reaction times (MeanRT) against the frequency of the

base (BaseFrequency). Compare this scatterplot with a scatterplot using the

log-transformed values.

3. The data set moby is a character vector with the text of Melville’s Moby Dick. In this exercise,

we consider whether Zipf’s law holds for Moby Dick. According to Zipf’s law (Zipf, 1949),

2.4 Trellis graphics 43

the frequency of a word is inversely proportional to its rank in a numerically sorted list. The

word with the highest frequency has rank 1, the word with the next highest frequency has

rank 2, etc. If Zipf’s law holds, a plot of log frequency against log rank should reveal a

straight line. We make a table of word frequencies with table()—we cannot use xtabs(),

because words is a vector and xtabs() expects a data frame—and sort the frequencies in

reverse numerical order:

> moby.table = table(moby)

> moby.table = sort(moby.table, decreasing = TRUE)

> moby.table[1:5]

moby

the of and a to

13655 6488 5985 4534 4495

We now have the word frequencies. We use the colon operator and length(), which returns

the length of a vector, to construct the corresponding ranks:

> ranks = 1 : length(moby.table)

> ranks[1:5]

[1] 1 2 3 4 5

Make a scatterplot of log frequency against log rank.

4. The column labeled Trial in the data set lexdec specifies, for each subject, the trial number

of the responses. For a given subject, the first trial in the experiment has trial number 1, the

second has trial number 2, etc. Use xylowess.fnc() to explore the possibility that the

subjects proceeded through the experiment in different ways, some revealing effects of

learning, and others effects of fatigue.

5. The data set english lists lexical decision and word naming latencies for two age groups.

Inspect the distribution of the naming latencies (RTnaming). First plot a histogram for the

naming latencies with truehist(). Then plot the density. The voicekey registering the

naming responses is sensitive to the different acoustic properties of a word’s initial phoneme.

The column Voice specifies whether a word’s initial phoneme was voiced or voiceless. Use

bwplot() to make a trellis boxplot for the distribution of the naming latencies across voiced

and voiceless phonemes with the age group of the subjects (AgeSubject) as grouping factor.

3 Probability distributions

Many statistical tests exploit the properties of the probability distributions of
random variables. This chapter provides an introduction to some of the most
important probability distributions, and lays the groundwork for the statistical
tests introduced in Chapter 4.

3.1 Distributions

When we count how often a word is used, or when we measure the
duration of a vowel, we carry out a statistical experiment. The outcome of such
a statistical experiment varies each time it is carried out. For instance, the fre-
quency of a word (the outcome of a counting experiment) will vary from text
to text and from corpus to corpus, and similarly the length of a given vowel
(the outcome of a measuring experiment) will vary from syllable to syllable and
from word to word. For a given random variable, some outcomes may be more
likely than others. The probability distribution of a random variable specifies
the likelihood of the different outcomes. Random variables fall into two impor-
tant categories. Random variables such as frequency counts are discrete (with
values that are integers), random variables such as durational measurements are
continuous (with values that are reals). We begin by introducing two discrete
distributions.

3.2 Discrete distributions

The celex lexical database (Baayen et al., 1995) lists the frequen-
cies of a large number of English words in a corpus of 18.6 million words.
Table 3.1 provides these frequencies for four words, the high-frequency definite
article the, the medium-frequency word president, and two low-frequency words,
hare and harpsichord. It also lists the relative frequencies of these words,
which are obtained by dividing a word’s frequency by the size of the corpus.
These relative frequencies are estimates of the probabilities of these words in
English.

44

3.2 Discrete distributions 45

Table 3.1. Frequencies and relative frequencies of
four words in the version of the Cobuild corpus
underlying the celex frequency counts (corpus
size: 18580121 tokens).

Frequency Relative Frequency

the 1093547 0.05885575
president 2469 0.00013288
hare 153 0.00000823
harpsichord 16 0.00000086

In the simplest model for text generation, the selection of a word for inclusion
in a text is similar to sampling marbles from a vase. The likelihood of sampling
a red marble is given by the proportion of red marbles in that vase. Crucially, we
sample with replacement, and we assume that the probabilities of words do not
change over time. We also assume independence: the outcome of one trial does not
affect the outcome of the next trial. It is obvious that these assumptions of what
is known as the urn model involve substantial simplifications. The probability
of observing the, a high-probability word, adjacent to another instance of the in
real language is very small. In spoken language such sequences may occasionally
occur, for instance, due to hesitations on the part of the speaker, but in carefully
edited written texts a sequence of two instances of the is highly improbable. On the
other hand, it is also clear that the is indeed very much more frequent than hare
or harpsichord, and for questions at high aggregation levels, even simplifying
assumptions can provide us with surprising leverage.

By way of example, consider the question of how the frequencies of these words
compare to their frequencies observed in other, smaller, corpora of English such
as the Brown corpus (Kučera and Francis, 1967) (1 million words). Table 3.2
lists the probabilities (relative frequencies) for the four words in Table 3.1, as
well as the frequencies observed in the Brown corpus and the frequencies one
would expect given celex. These expected frequencies are easy to calculate. For
instance, if 0.05885575 is the proportion of word tokens in celex representing
the word type the, then a similar proportion of tokens should represent this type
in a 1 million corpus, i.e. 1000000 ∗ 0.05885575 = 58856 tokens. As shown in
Table 3.2, the expected counts are smaller for the and president, larger for hare,
and right on target for harpsichord.

Should we be surprised by the observed differences? In order to answer this
question, we need to make some assumptions about the properties of the distri-
bution of a word’s frequency. There are 382 occurrences of the noun president
in the Brown corpus, but the Brown corpus is only one sample from American
English as spoken in the early 1960s. If additional corpora were compiled from
the same kind of textual materials using the same sampling criteria, the number of
occurrences of the noun president would still vary from corpus to corpus. In other

46 probability distributions

Table 3.2. Probabilities (estimated from celex), expected
frequencies and observed frequencies in the Brown corpus.

observed
p expected frequency frequency

the 0.05885575 58856 69971
president 0.00013288 133 382
hare 0.00000823 8 1
harpsichord 0.00000086 1 1

words, the frequency of a word in a corpus is a random variable. The statistical
experiment associated with this random variable involves creating a corpus of one
million words, followed by counting how often president is used in this corpus.
For repeated experiments sampling one million words, we expect this random
variable to assume values similar to the 382 tokens observed in the Brown cor-
pus. But what we really want to know is the magnitude of the fluctuations of the
frequency of president across corpora.

At this point, we need some further terminology. Let’s define two probabilities:
the probability of observing a specific word and the probability of observing any
other word. We call the former probability p the probability of success, and the
latter probability q the probability of failure. The probability of failure is 1−
probability of success. In the case of hare, these probabilities are p = 0.0000082
and q = 0.9999918. Furthermore, let the number of trials (n) denote the size of
the corpus. Each token in the corpus is regarded as a trial which can result either in
a success (hare is observed) or in a failure (some other word is observed). Given the
previously mentioned simplifying assumption that words are used independently
and randomly in text, it turns out that we can model the frequency of a word
as a binomially distributed random variable with parameters p and n.
(The textbook example of a binomially distributed random variable is the count
of heads observed when tossing a coin n times that has probability p of turning
up heads.) The properties of the binomial distribution are well known, and make
it possible to obtain better insight into how much variability we may expect for
our word frequencies across corpora, given our simplifying assumptions.

There are two kinds of properties that we need to distinguish. On the one
hand, there are the properties of the population, on the other hand, there are the
properties of a given sample. When we consider the properties of the population,
we consider what we expect to happen on average across an infinite series of
experiments. When we consider the properties of a sample, we consider what has
actually occurred in a finite, usually small, series of experiments. We need tools
for both kinds of properties. For instance, we want to know whether an observed
frequency of 382 is surprising for president given that p = 0.000133 according
to the celex counts and n = 1, 000, 000. This is a question about the population.
How often will we observe this frequency across an infinite series of samples of

3.2 Discrete distributions 47

57000 59000 61000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

frequency

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

the

0 5 15 25

0.
00

0.
04

0.
08

0.
12

frequency

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

hare

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

frequency

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

harpsichord

57000 59000 61000

0.
00

2
0.

00
4

0.
00

6
0.

00
8

frequency

sa
m

pl
e

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

the

0 5 15 25

0.
00

0.
05

0.
10

0.
15

frequency

sa
m

pl
e

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

hare

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

frequency

sa
m

pl
e

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

harpsichord

Figure 3.1. The frequencies (horizontal axis) and the probabilities of these frequencies (vertical axis) for
three words under the assumption that word frequencies are binomially distributed. Upper panels show the
population distributions, lower panels the sample distributions for 500 random corpora.

one million words? Is this close to what we would expect on average? In this
book, we will mostly use properties of the population, but sometimes it is also
useful to know what a sample of a given size might look like. R provides tools for
both kinds of questions.

Consider the upper left panel of Figure 3.1. The horizontal axis graphs fre-
quency, the vertical axis the probability of that frequency, given that the word the
is binomially distributed with parameters n = 1, 000, 000 and p = 0.059. The
tool that we use here is the dbinom() function, which is often referred to as
the frequency function and also as the probability density function. It
requires three input values: a frequency (or a vector of frequencies), and values
for the two parameters that define a binomial distribution, n, and p. dbinom()
returns the probability of that frequency (or a vector of such probabilities in case
a vector of frequencies was supplied). For instance, the expected probability of

48 probability distributions

observing the exactly 59000 times averaged over an infinite series of corpora of
one million words given the probability of success p = 0.05885575 is:

> dbinom(59000, 1000000, 0.05885575)
[1] 0.001403392

The upper panels of Figure 3.1 show, for each of the three words from Table 3.2, the
probabilities of the frequencies with which these words are expected to occur. For
each word and each frequency, we used dbinom() to calculate these probabilities
given a sample size n = 1, 000, 000 and the word’s population probability p as
estimated by its relative frequency in celex.

The panel for the shows frequencies that are more or less centered around the
mean frequency, 58856, the expected count listed in Table 3.2. We can see that
the probability of observing values greater than 60000 are infinitesimally small,
hence we have solid grounds to be surprised by the frequency of 69971 observed
in the Brown corpus, given the celex counts. The next panel of Figure 3.1 shows
the distribution of frequencies for hare. This is a low-frequency word, and we
can now see the individual high-density lines for the individual frequencies. The
pattern is one that is less symmetrical. The highest probability is 0.1391, which
occurs for a frequency of 8, in conformity with the expected value we saw earlier in
Table 3.2. The value actually observed in the Brown corpus, 1, is clearly atypically
low. The upper right panel, finally, shows that for the very low-frequency word
harpsichord, a frequency of zero is actually slightly more likely than the frequency
of 1 listed in Table 3.2 (which rounded the expected frequency 0.86 to the nearest
actually possible — discrete — number of occurrences).

The panels in the second row of Figure 3.1 correspond to those in the first
row. The difference concerns the way in which the probabilities were obtained.
The probabilities for the top row are those one would obtain for the frequencies
observed across an infinite series of corpora (experiments) of one million words.
They are population probabilities. The probabilities in the second row are those
one might observe for a particular run of just 500 corpora (experiments) of one
million words. They illustrate the kind of irregularities in the shape of a distribution
that are typical for the actual samples with which we have to deal in practice. The
irregularities that characterize sample distributions are most clearly visible in the
lower left panel, but also to some extent in the lower central panel. Note that here
the mode (the frequency with the highest sample probability) has an elevated
value with respect to the immediately surrounding frequencies, compared to the
upper central panel. Below, we discuss the tool for simulating random samples
of a binomial random variable that we used to make these plots.

Figure 3.1 illustrates how the parameter p, the probability of success, affects
the shape of the distribution. The other parameter, the number of trials (corpus
size) n, likewise co-determines the shape of the distribution. Figure 3.2 illustrates
this for the population, i.e. across an infinite series of corpora of n = 1000 (left)
and n = 50 (right) word tokens. The left panel is still more or less symmetrical,

3.2 Discrete distributions 49

30 50 70 90

0.
00

0.
10

0.
20

frequency

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

1000 trials

0 10 20 30 40 50

0.
00

0.
10

0.
20

frequency

pr
ob

ab
ili

ty
 o

f f
re

qu
en

cy

50 trials

Figure 3.2. The frequencies (horizontal axis) and the probabilities of these
frequencies (vertical axis) for the assuming that its frequency is binomially
distributed with p = 0.05885575 and n = 1000 (left panel) or n = 50 (right
panel).

but by the time that the corpus size is reduced to only 50 tokens, the symmetry is
gone.

It is important to realize that the values that a binomially (n, p)-distributed
random variable can assume are bounded by 0 and n. In the present example, this
is intuitively obvious: a word need not occur in a corpus of size n, and so may
have zero frequency. But a word can never occur more often than the corpus size.
The upper bound, therefore, is n, for a boring but theoretically possible corpus
consisting of just one word repeated n times. It is also useful to keep in mind that
the expected (or mean) frequency is n ∗ p, as p specifies the proportion of the
n trials that are successful.

Let’s now have a closer look at the tools that R provides for working with
the binomial distribution. There are four such tools: the functions dbinom(),
qbinom(), pbinom(), and rbinom(). R provides similar functions for a wide
range of other random variables. Once you know how to use them for the binomial
distribution, you know how to use the corresponding functions for any other
distribution implemented in R.

First consider the observed frequency of 1 for hare where one would expect
8 given the counts in celex. What is the probability of observing such a low
count under chance conditions? To answer this question, we use the function
dbinom() that we have already introduced above. Given an observed value (its
first argument), and given the parameters n and p (its second and third arguments),
it returns the requested probability:

> dbinom(1, size = 1000000, prob = 0.0000082)
[1] 0.002252102

In this example, I have spelled out the names of the second and third parameters,
the size n and the probability p, in order to make it easier to interpret the function

50 probability distributions

call, but the shorter version works just as well as long as the arguments are
provided in exactly this order:

> dbinom(1, 1000000, 0.0000082)
[1] 0.002252102

Of course, if we think 1 is a low frequency, then 0 must also be a low frequency.
So maybe we should ask what the probability is of observing a frequency of 1 or
lower. Since the event of observing a count of 1 is independent of the event of
observing a count of 0, we may add these two probabilities,

> dbinom(0, size = 1000000, prob = 0.0000082) +
+ dbinom(1, size = 1000000, prob = 0.0000082)
[1] 0.002526746

or, equivalently:

> sum(dbinom(0:1, size = 1000000, prob = 0.0000082))
[1] 0.002526746

When dbinom() is supplied with a vector of frequencies, it returns a vector of
probabilities, which we add using sum(). Another way to proceed is to make
use of the pbinom() function, which immediately produces the sum of the prob-
abilities for the supplied frequency as well as the probabilities of all smaller
frequencies:

> pbinom(1, size = 1000000, prob = 0.0000082)
[1] 0.002526746

The low probability that we obtain here suggests that there is indeed reason for
surprise about the low frequency of hare in the Brown corpus, at least, from the
perspective of celex.

Recall that the Brown corpus mentions the word president 382 times, whereas
we would expect only 133 occurrences given celex. In this case, we can ask what
the probability is of observing a frequency of 382 or higher. This probability is
the same as one minus the probability of observing a frequency of 381 or less:

> 1 - pbinom(381, size = 1000000, prob = 0.00013288)
[1] 0

The resulting probability is indistinguishable from zero given machine precision,
and provides ample reason for surprise.

We used the function dbinom() to make the upper panels of Figure 3.1 and
the panels of Figure 3.2. Here is the code producing the left panel of Figure 3.2:

> n = 1000
> p = 0.05885575
> frequencies = seq(25, 95, by = 1) # 25, 26, 27, ..., 94, 95
> probabilities = dbinom(frequencies, n, p)
> plot(frequencies, probabilities, type = "h",
+ xlab = "frequency", ylab = "probability of frequency")

The first two lines define the parameters of the binomial distribution. The third line
defines a range of frequencies for which the corresponding probabilities have to

3.2 Discrete distributions 51

be provided. The fourth line calculates these probabilities. Since frequencies
is a vector, dbinom() provides a probability for each frequency in this vector.
The last two lines plot the probabilities against the frequencies, provide sensible
labels, and specify, by means of type = "h", that a vertical line (a “high-density
line”) should be drawn downwards from each point on the density curve.

Thus far, we have considered functions for using the population properties
of the binomial distribution. But it is sometimes useful to know what a sample
from a given distribution would look like. The lower panels of Figure 3.1, for
instance, illustrated the variability that is typically observed in samples. The tool
for investigating random samples from a binomial distribution is the function
rbinom(). This function produces binomially distributed random numbers. A
random number is a number that simulates the outcome of a statistical experiment.
A binomial random number simulates the number of successes one might observe
given a success probability p and n trials. Technically, random numbers are
never truly random, but for practical purposes they are a good approximation to
randomness.

The following lines of code illustrate how to make the lower panel for hare in
Figure 3.1. We first define the number of random numbers, the corpus size (the
number of trials in one binomial experiment), and the probability of success:

> s = 500 # the number of random numbers
> n = 1000000 # number of trials in one experiment
> p = 0.0000082 # probability of success

Next, we use rbinom() to produce the random numbers representing the sim-
ulated frequencies of hare in the samples. This function takes three arguments:
the number of random numbers required, and the two parameters of the binomial
distribution, n and p. We feed the output of rbinom() into xtabs() to obtain a
table listing for each simulated frequency how often that frequency occurs across
the 500 simulation runs. We divide the resulting vector of counts by the number of
simulation runs s to obtain the proportions (relative frequencies) of the simulated
frequencies:

> x = xtabs(˜ rbinom(s, n, p)) / s
> x
rbinom(s, n, p)

2 3 4 5 6 7 8 9 10
0.012 0.028 0.062 0.086 0.126 0.118 0.138 0.132 0.084

11 12 13 14 16 17 18 19
0.090 0.058 0.044 0.008 0.006 0.004 0.002 0.002

Note that in this simulation there are no instances where hare is observed not at
all or only once. If you rerun this simulation, more extreme outcomes may be
observed occasionally. This is because rbinom() simulates the randomness that
is inherent in the sampling process. For plotting we convert the cell names in the
table to numbers with as.numeric():

> plot(as.numeric(names(x)), x, type = "h", xlim = c(0, 30),
+ xlab = "frequency", ylab = "sample probability of frequency")

52 probability distributions

Recall that pbinom(x, n, p) produces the summed probability of values
smaller than or equal to x , which is why it is referred to as the cumulative

distribution function. It has a mirror image (technically, its inverse func-
tion), qbinom(y, n, p), the quantile function, which takes this summed
probability as input, and produces the corresponding count x :

> pbinom(4, size = 10, prob = 0.5)
[1] 0.3769531 # from count to cumulative probability
> qbinom(0.3769531, size = 10, prob = 0.5)
[1] 4 # from cumulative probability to count

Quantile functions are useful for checking whether a random variable is indeed
binomially distributed. Consider, for example, the frequencies of the Dutch def-
inite determiner for neuter nouns het in the consecutive stretches of 1000 words
of a Dutch novel that gave its name to a fair trade brand in Europe, Max Havelaar
(by Eduard Douwes Dekker, 1820–1887). The data set havelaar contains these
counts for the 99 consecutive complete stretches of 1000 words in this novel:

> havelaar$Frequency
[1] 13 19 19 14 20 18 16 16 17 32 25 10 9 12 15
[16] 22 26 16 23 10 12 11 16 13 8 4 16 13 13 11
[31] 11 18 12 16 10 18 10 11 9 18 15 36 22 10 7
[46] 20 5 13 12 14 9 6 8 7 9 11 14 16 10 9
[61] 12 11 6 20 11 12 12 1 9 11 11 7 13 13 10
[76] 9 13 7 8 16 11 15 8 16 26 23 13 11 15 12
[91] 7 9 18 8 21 5 16 11 13

Are these frequencies binomially distributed? As a first step, we estimate the
probability of success from the sample, while noting that the number of trials n
is 1000:

> n = 1000
> p = mean(havelaar$Frequency / n)

In order to see whether the observed frequencies indeed follow a binomial distri-
bution, we plot the quantiles of an (n, p)-binomially distributed random variable
against the sorted observed frequencies. Recall that the quantile for a given pro-
portion p is the smallest observed value such that all observed values less than
or equal to that value account for the proportion p of the data. If we plot the
observed quantiles against the quantiles of a truly (n, p)-binomially distributed
random variable, we should obtain a straight line if the observed frequencies are
indeed binomially distributed. We therefore define a vector of proportions,

> qnts = seq(0.005, 0.995, by=0.01)

and use the quantile() function to obtain the corresponding expected and
observed frequencies for these percentage points, which we then graph:

> plot(qbinom(qnts, n, p), quantile(havelaar$Frequency,qnts),
+ xlab = paste("quantiles of (", n, ",", round(p, 4),
+ ")-binomial", sep=""), ylab = "frequencies")

3.2 Discrete distributions 53

5 10 15 20

5
10

15
20

25
30

35

quantiles of (1000,0.0134)−binomial

fr
eq

ue
nc

ie
s

Figure 3.3. Quantile-quantile plot for inspecting whether the frequency of the
definite article het in the Dutch novel Max Havelaar is binomially distributed.

As can be seen in Figure 3.3, the points in the resulting quantile-quantile

plot do not follow a straight line. Especially the higher frequencies are too high
for a binomially (1000, 0.0134)-distributed random variable.

To summarize, here is a short characterization of the four functions for working
with the binomial distribution with n trials and success probability p:

dbinom(x, n, p) the probability density function

probability of the value x
qbinom(q, n, p) the quantile function

the largest value for the first q% of ranked data points
pbinom(x, n, p) the cumulative distribution function

the proportion of values with a value less than or equal to x
rbinom(k, n, p) the random number generator

k binomially distributed random numbers

Thus far, we used the binomial distribution to gain some insight into the prob-
abilities of the different frequencies with which the might occur in a corpus of
one million words. We equated corpus size with the parameter n, and defined a
success probability p = 0.05885575 of observing the. With a slight change in
perspective, we can look at the frequency of the as specifying a rate of occur-
rence: the occurs (on average) 58856 times in a corpus of one million words. In
other words, during a sampling time of one million tokens, we count (on average)
58856 tokens of the. This rate of occurrence is the (single) parameter (named λ) of

54 probability distributions

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

x

p
ro

b
a

b
ili

ty
 (

x)

Poisson(0.5)

0 2 4 6 8

0
.0

0
0
.1

0
0
.2

0

x

p
ro

b
a

b
ili

ty
 (

x)

Poisson(3)

20 30 40 50 60 70 80

0
.0

0
0
.0

2
0
.0

4

x

p
ro

b
a

b
ili

ty
 (

x)

Poisson(50)

60 80 100 120 140

0
.0

0
0
.0

2
0
.0

4

x

p
ro

b
a

b
ili

ty
 (

x)

Poisson(100)

Figure 3.4. Poisson frequency functions for λ = 0.5, 3, 50, 100.

a second important discrete probability distribution, the Poisson distribution,
named after the great French mathematician Siméon-Denis Poisson (1781–1840).
If (and only if) n is large and p small, the binomial distribution is very similar to
a Poisson distribution with λ taking as its value the product of n and p. Since the
frequencies with which words occur in a corpus tend to be very small compared
to the corpus size, and since the Poisson distribution has mathematical properties
that are more convenient than those of the binomial distribution, it is useful for
modeling word frequency distributions (Baayen, 2001).

The four functions for the Poisson distribution provided by R are dpois()

for the frequency distribution, rpois() for random numbers, qpois() for
the quantile function, and ppois() for the cumulative distribution function.
Figure 3.4 shows the frequency function for four values of λ. Note that the fre-
quency function becomes more and more symmetrical as we increase λ. For large
λ, the (discrete) Poisson distribution becomes very similar to the continuous
normal distribution that will be discussed in the next section.

Above, we observed that the frequency of the definite article the is not that well
described by a binomial distribution. The same holds for the Poisson distribution.
The average count of tokens of het in 1000 words is 0.0134. In terms of a binomial
distribution, we therefore have n = 1000 trials with a probability of success p =

3.2 Discrete distributions 55

0.0134. In terms of a Poisson distribution, het appears at a rate λ = 13.4 per 1000
tokens. To get a sense of how similar the binomial and Poisson models are, and
how they differ from the observed data, we inspect their frequency functions.

We begin by making a table listing for each frequency the number of text
fragments in which het occurs with that frequency:

> havelaar.tab = xtabs(˜ havelaar$Frequency)
> havelaar.tab
1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 2 2 5 5 8 7 12 8 10 3 4 10 1 5 2 3 1 2 2
25 26 32 36
1 2 1 1

We divide these counts by the total number of text fragments in order to obtain
the sample relative frequencies of the counts for het:

> havelaar.probs = xtabs(˜ havelaar$Frequency)/nrow(havelaar)
> round(havelaar.probs, 3)

1 4 5 6 7 8 9 10 11 12
0.010 0.010 0.020 0.020 0.051 0.051 0.081 0.071 0.121 0.081

13 14 15 16 17 18 19 20 21 22
0.101 0.030 0.040 0.101 0.010 0.051 0.020 0.030 0.010 0.020

23 25 26 32 36
0.020 0.010 0.020 0.010 0.010

These proportions properly sum to 1:

> sum(havelaar.probs)
[1] 1

The upper left panel of Figure 3.5 displays the distribution of these proportions:

> plot(as.numeric(names(havelaar.probs)), havelaar.probs,
+ xlim=c(0, 40), type="h", xlab="counts", ylab="relative frequency")
> mtext("observed", 3, 1)

The upper right panel shows the corresponding binomial distribution. We first
define the size n of the text fragments for which the occurrences of het were
counted, and we also estimate the overall probability p as the average proportion
of tokens of het for batches of 1000 tokens:

> n = 1000
> p = mean(havelaar$Frequency / n)
> p
[1] 0.0134

Counts are in the range 1–36. We choose a slightly broader range, 0–40, for
plotting:

> counts = 0:40
> plot(counts, dbinom(counts, n, p),
+ type = "h", xlab = "counts", ylab = "probability")
+ mtext("binomial (1000, 0.013)", 3, 1)

56 probability distributions

0 10 20 30 40

0
.0

0
2

0
.0

0
6

counts

re
la

tiv
e

 f
re

q
u

e
n

cy

observed

0 10 20 30 40

0
.0

0
0

.0
4

0
.0

8

counts

p
ro

b
a

b
ili

ty

binomial (1000, 0.013)

0 10 20 30 40

0
.0

0
0

.0
4

0
.0

8

counts

p
ro

b
a

b
ili

ty

Poisson (13.4)

Figure 3.5. Observed relative frequencies of the definite article het (“the”) in sequences of
1000 word tokens in the novel Max Havelaar and the corresponding binomial and Poisson
distributions.

The lower panel shows the corresponding Poisson distribution. We define λ,

> lambda = n * p

and now use dpois() instead of dbinom():

> plot(counts, dpois(counts, lambda),
+ type = "h", xlab="counts", ylab="probability")
> mtext("Poisson (13.4)", 3, 1)

Figure 3.5 illustrates, first of all, that the observed counts are much more erratic
than the density functions for the binomial and Poisson distributions. This is to
be expected, because the observed counts constitute a sample of how het was
used in this particular sample of Dekker’s writings. Second, it can be seen that the
densities of the binomial and Poisson distributions are very similar, as expected for
large n and small p. Third, there are obvious gaps in the distribution of observed
counts, and their distribution seems to be somewhat less symmetrical, with more
higher counts than one would expect on the basis of the binomial and Poisson
distributions. This raises a question to which we will return below, namely, how
to test more formally (instead of by visual inspection) whether the differences

3.3 Continuous distributions 57

between what we observe in our data, and what we expect given binomial or
Poisson models, should be attributed to chance, or whether there is reason to
reject these models as inappropriate for this word.

As a final example, suppose a word occurs with a frequency of 100 tokens in
a corpus of one million words. What is the probability that it will occur with at
most 80 tokens in a second corpus of one million words? On the assumption that
words are used independently, we obtain the desired probability with,

> sum(dpois(0:80, 100)) # sum of individual probabilities
[1] 0.02264918

or with:

> ppois(80, 100) # joint probability of first 80
[1] 0.02264918

3.3 Continuous distributions

We now turn to consider some important distributions of continu-
ous random variables. Examples of continuous random variables in language
studies are acoustic measurements of segment durations, response latencies in
chronometric experiments, evoked potentials measured at the scalp, grammati-
cality judgments measured on a gliding scale, and gaze durations in eye-tracking
experiments. Just as there are many different discrete distributions, there are many
continuous distributions. In this section, we focus on those continuous distribu-
tions that play a crucial role in many of the statistical tests that we will use in later
chapters.

The basic concepts for continuous random variables are the same as for discrete
random variables. As in the preceding section, we often need to know whether
the value of a particular test statistic (which itself is a random variable) is extreme
and surprising. If the distribution of the test statistic is known, such questions can
be answered.

The key difference that sets continuous random variables apart from discrete
random variables centers around a problem that arises when dealing with real
numbers. Real numbers have the mathematical property that there are infinitely
many of them in any interval. This has a far-reaching consequence for probabili-
ties. Consider a random variable that assumes any real value in the interval [0, 1]
with equal probability: a uniform random variable. Since there is an infinite
number of values in this interval, the probability of any specific value between 0
and 1 is infinitely small, i.e. zero. For a binomial (n, p) random variable, there
are at most n + 1 values to be considered (0, 1, 2, . . . , n) so each value can be
associated with its own probability. For a continuous random variable, this is not
possible.

58 probability distributions

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

normal(0,1)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

normal(4,1)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

normal(0,0.5)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

x

de
ns

ity

normal(4,0.5)

Figure 3.6. Probability density functions for four normally distributed random variables.

The solution to this technical problem is to consider the probability that a
continuous variable assumes a value in a given interval of values. For instance,
for the uniform random variable mentioned above, the probability of a value in
the interval [0, 0.5] is equal to the probability of a value in the interval [0.5, 1],
and both probabilities are equal to 0.5. Keep in mind that the probability of a
value exactly equal to 0.5 is zero.

This property of continuous random variables has consequences for how we
plot their density functions. For the discrete distributions in the preceding section,
we were able to plot a vertical line representing the probability for each individual
value of the random variable. This is not possible for continuous random variables,
as the individual probabilities are all zero. Instead, we plot a continuous curve,
as shown in Figure 3.6 for the most important continuous random variable, the
normal random variable.

3.3.1 The normal distribution

The upper left panel of Figure 3.6 shows the normal distribution

in its most simple form, the case in which its two parameters, the mean μ and
the standard deviation σ , are 0 and 1 respectively. This specific form of the

3.3 Continuous distributions 59

normal distribution is known as the standard normal distribution. The mean
is represented by a vertical dashed line, and intersects the curve of the probability
density function where it reaches its maximum. The dotted horizontal line segment
represents the standard deviation, the parameter that controls the width of the
curve. We can shift the curve to the left or right by changing the mean, as shown
in the right panel, in which the mean is increased from 0 to 4. We can make the
curve narrower or broader by changing the standard deviation, as shown in the
bottom panels, where the standard deviation is 0.5 instead of 1.0. For all four
panels, the area enclosed by the horizontal axis and the density curve is equal
to 1. It represents the probability of observing any value. The density curves are
symmetrical around the mean. Thus, the area to the left (or right) of the vertical
dashed line that is enclosed by the curve and the horizontal axis represents a
probability of 0.5. In other words, the probability that a random variable assumes
a value less than the mean is 0.5. Similarly, the probability that its value will be
greater than the mean is 0.5.

Plotting the density shown in the upper left panel of Figure 3.6 requires that
we select a range of x-values to plot the density for. We select,

> x = seq(-4, 4, 0.1)

as values outside the interval (−4, 4) have such an extremely low probability
that we can ignore them for our plot. The y-values are obtained with the density
function for the normal distribution, dnorm():

> y = dnorm(x)

We called dnorm() without further arguments. If you do not specify mean
and standard deviation explicitly, dnorm() (and also pnorm(), qnorm(), and
rnorm()) assume that the mean is zero and the standard deviation is 1. Plotting
the density is now straightforward:

> plot(x, y, xlab = "x", ylab = "density", ylim = c(0, 0.8),
+ type = "l")) # line type: the quoted character is lower case L
> mtext("normal(0, 1)", 3, 1)

We add two lines to the plot, a vertical line across all values represented on the
vertical axis, and a horizontal line segment. The vertical line is easiest to produce
with abline(), a function that takes an intercept as first argument and a slope
as second argument, and adds the requested line to the plot. For horizontal or
vertical lines, the argument v is set to specify where a vertical line intersects
with the horizontal axis. Alternatively, the argument h is set to the point where
a horizontal line is to intersect the vertical axis. Here, we set our vertical line to
intersect at X = 0. We also request a dashed line with lty (line type):

> abline(v = 0, lty = 2) # the vertical dashed line

For line segments, we use lines(). This function connects the points specified
by the vector of x coordinates (its first argument) and the vector of y coordinates

60 probability distributions

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

x

pn
or

m
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
2

3

p

qn
or

m
(p

)

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

x

pn
or

m
(x

)

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

x

dn
or

m
(x

)

Figure 3.7. Cumulative distribution function (left panels), quantile function (upper right panel),
and probability density function (lower right panel) for the standard normal distribution.

(its second argument). As X -coordinates, we have −1 and 0, as Y -coordinates,
we have the density for X = −1 for both X -coordinates:

> lines(c(-1, 0), rep(dnorm(-1), 2), lty = 2)

For the remaining panels of Figure 3.6, the range of X -values and the parameters
ofdnorm() have to be adjusted. For instance, for the lower right panel, the density
curve is obtained with:

> x = seq(0, 8, 0.1)
> y = dnorm(x, mean = 4, sd = 0.5)

Figure 3.7 shows the cumulative distribution function (upper left) and the
quantile function (upper right) for a standard normal random variable. As for
discrete random variables, these functions are each other’s inverse:

> pnorm(-1.96)
[1] 0.02499790
> qnorm(0.02499790)
[1] -1.96

The lower left panel of Figure 3.7 illustrates how we calculate the probability
that a standard normal random variable has a value between −1 and 0, using
pnorm(). Since pnorm() plots the cumulative probability, the shaded area to the
left of the dashed vertical line represents the probability of a value in the interval

3.3 Continuous distributions 61

from minus infinity to zero. This area is too large, however. The appropriate area
is highlighted with dark grey. The desired probability is obtained by subtracting
the light grey area from the shaded area:

> pnorm(0) - pnorm(-1)
[1] 0.3413447

The final panel of Figure 3.7 (have a look at shadenormal.fnc() and its
documentation for how this panel was produced) returns to the probability den-
sity function. The shaded areas in the tails of the distribution each represent a
probability of 0.025. In other words, the shaded areas together highlight the 5%
most extreme values in the distribution. The remaining area under the curve that
is not shaded represents the 95% of values that are not extreme, given the rather
arbitrary cutoff point of 5% for being extreme.

A fundamental property of the normal distribution is that it is possible to
transform a normal random variable with mean μ �= 0 and σ �= 1 into a standard
normal random variable with meanμ = 0 andσ = 1. This transformation is called
standardization. Given a vector x, standardization amounts to subtracting the
mean from each of its elements, followed by division by the standard deviation:

> x = rnorm(10, 3, 0.1)
> x
[1] 2.985037 3.079029 2.895863 2.929407 2.841630 2.996799
[7] 2.934391 3.125997 3.015932 3.072539
> x - mean(x)
[1] -0.002625041 0.091366366 -0.091799655 -0.058255139
[5] -0.146032681 0.009136216 -0.053271546 0.138334988
[9] 0.028269929 0.084876563
> (x - mean(x)) / sd(x)
[1] -0.02943848 1.02462691 -1.02948603 -0.65330150 -1.63768158
[6] 0.10245798 -0.59741306 1.55135590 0.31703274 0.95184711

The function sd() provides our best guess of the standard deviation σ for the
vector of sampled observations. By subtracting the mean, we move the density
curve along the horizontal axis so that it is centered around zero. By subsequently
dividing by the standard deviation, we reshape the curve to fit the curve of the
standard normal. For example, a normal random variable with mean 3 and a small
standard deviation of 0.1 is unlikely to have values below zero — in fact, it is
highly unlikely to have values more than 3 standard deviations (0.3) away from
the mean (3). After standardization, however, the new random numbers are nicely
centered around the zero. The function in R for standardization is scale(). When
its output is printed in the console, it also lists the mean and standard deviation
as the object’s attributes scaled:center and scaled:scale:

> scale(x)
[,1]

[1,] -0.02943848
[2,] 1.02462691
[3,] -1.02948603
[4,] -0.65330150
...
[10,] 0.95184711

62 probability distributions

attr(,"scaled:center")
[1] 2.987662
attr(,"scaled:scale")
[1] 0.08917038
> mean(x) == attr(x, "scaled:center")
[1] TRUE
> sd(x) == attr(x1, "scaled:scale")
[1] TRUE

In the past, the standard normal distribution was especially important as it was
only for the standard normal distribution that tables with probabilities for the
cumulative distribution function were available. In order to use these tables, we
had to standardize first. In R, this is no longer necessary. We can use pnorm()

with the mean and standard deviation of our choice,

> pnorm(0, 1, 3) - pnorm(-1, 1, 3)
[1] 0.1169488

or we can standardize first, and then drop mean and standard deviation from
pnorm():

> pnorm(-1/3) - pnorm(-2/3)
[1] 0.1169488

In both cases, the outcome is exactly the same.
The square of the standard deviation is known as the variance. The variance

is calculated with the function var():

> v = rnorm(20, 4, 2) # repeating this command
will result in a different vector
of random numbers

> sd(v)
[1] 2.113831 # sd of sample
> sqrt(var(v)) # square root of variance
[1] 2.113831

Like the standard deviation, the variance is a measure for how much the observa-
tions vary around the mean. At first glance, we might think a measure averaging
divergences from the mean would do a sensible job, but this average is zero:1

> mean(v - mean(v))
[1] -5.32907e-16 # zero

This problem is avoided by the definition of the variance as a kind of average of
the squared divergences from the mean,

> var(v)
[1] 4.46828
> sum((v - mean(v))ˆ2)/(length(v) - 1)
[1] 4.46828

1 The number -5.32907e-16 is in scientific notation. The part e-16 specifies that the period
should be shifted 16 positions to the left, yielding 0.000000000000000532907 in standard notation.

3.3 Continuous distributions 63

where we divide, for technical reasons, not by the number of elements in the
vector (returned by length()) but by that number minus one.

3.3.2 The t , F, and χ2 distributions

Three other continuous distributions that we will make use of repeat-
edly in the remainder of this book are the t , F , and χ2 distributions.

The t-distribution is closely related to the normal distribution. It has one pa-
rameter, known as its degrees of freedom (often abbreviated to df). Informally,
degrees of freedom can be understood as a measure of how much precision an
estimate has. This parameter controls the thickness of the tails of the distribution,
as illustrated in the upper left panel of Figure 3.8. The solid grey line represents
the standard normal distribution, the solid black line a t-distribution with 2 de-
grees of freedom, and the dashed black line a t-distribution with 5 degrees of
freedom. As the degrees of freedom increase, the probability density function
becomes more and more similar to that of the standard normal. For 30 or more
degrees of freedom, the curves are already very similar, and for more than 100
degrees of freedom, they are virtually indistinguishable. The t-distribution plays
an important role in many statistical tests, and we will use it frequently in the
remainder of this book. R makes the by now familiar four functions available for
this distribution: dt(), pt(), qt(), and rt(). Of these functions, the cumu-
lative distribution function is the one we will use most. Here, we use it to illustrate
the greater thickness of the tails of the t-distribution compared to the standard
normal:

> pnorm(-3, 0, 1)
[1] 0.001349898
> pt(-3, 2)
[1] 0.04773298

The probability of observing extreme values (values less than −3 in this example)
is greater for the t-distribution. This is what we mean when we say that the t-
distribution has thicker tails.

There are many other continuous probability distributions besides the nor-
mal and t-distributions. We will often need two of these distributions: the F-

distribution and the χ2
-distribution. The F-distribution has two parameters,

referred to as degrees of freedom 1 and degrees of freedom 2. The upper right
panel of Figure 3.8 shows the probability density function of the F-distribution
for four different combinations of degrees of freedom. The ratio of two variances
is F-distributed, and a question that often arises in statistical testing is whether the
variance in the numerator is so much larger than the variance in the denominator
that we have reason to be surprised.

For instance, if the F ratio is 6, then, depending on the degrees of freedom
associated with the two ratios the probability of this value may be small (surprise)
or large (no surprise):

64 probability distributions

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

x

de
ns

ity

t−distributions

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

de
ns

ity

F−distributions

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

x

de
ns

ity

chi−squared(1) distribution

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

x

de
ns

ity
chi−squared distributions

Figure 3.8. Probability density functions. Upper left: t-distributions with 2 (solid black line) and 5 (dashed
line) degrees of freedom, and the standard normal (grey line). Upper right: F-distributions with 5, 5 (black,
solid line), 2, 1 (grey, dashed line), 5, 1 (grey, solid line) and 10, 10 (black, dashed line) degrees of freedom.
Lower left: a χ 2-distribution with 1 degree of freedom. Lower right: χ2-distributions with 5 (solid line) and
10 (dashed line) degrees of freedom.

> 1 - pf(6, 1, 1)
[1] 0.2467517
> 1 - pf(6, 20, 8)
[1] 0.006905409

Here,pf() is the cumulative distribution function, which gives the probability of a
ratio less than or equal to 6 (compare pt() for the t-distribution and ppois() and
pbinom() for the Poisson and binomial distributions). To obtain the probability
of a more extreme ratio, we take the complement probability.

The lower panels of Figure 3.8 show the probability density functions for three
χ2-distributions. The χ2-distribution has a single parameter, which is also referred
to as its degrees of freedom. The lower left panel shows the density function for

3.3 Continuous distributions 65

a single degree of freedom; the lower right panel gives the densities for 5 (solid
line) and 10 (dashed line) degrees of freedom.

The degree of non-homogeneity of a contingency table (see e.g. Figure 2.6 in
Chapter 2) can be assessed by means of a statistic named chi-squared, which, un-
surprisingly given its name, follows a χ2-distribution. Given a chi-squared value
and its associated degrees of freedom, we use the probability density function
pchisq() to obtain the probability gauging the extent to which we have reason
for surprise:

> 1 - pchisq(4, 1)
[1] 0.04550026
> 1 - pchisq(4, 5)
[1] 0.549416
> 1 - pchisq(4, 10)
[1] 0.947347

These examples illustrate that the p-values for one and the same chi-squared
value (here 4) depends on the degrees of freedom. As the degrees of freedom
increase, p-values increase. This is also evident in the lower panels of Figure 3.8.
For 1 degree of freedom, 4 is already a rather extreme value. But for 5 degrees of
freedom, 4 is more or less in the center of the distribution, and for 10 degrees, it
is in fact a rather low value instead of a very high value.

Workbook section

Exercises

The text of Lewis Carroll’s Alice’s Adventures in Wonderland is available as the data set alice.
The vector alice contains all words (defined as sequences of non-space characters) in this novel.
Here, we convert all upper case letters to lower case with tolower ().

> alice = tolower(alice)

> alice[1:5]

[1] "alice" "s" "adventures" "in" "wonderland"

In this exercise, we study the distribution of three words in this book, Alice, very, and Hare (the
second noun of the collocation March Hare). Our goal is to partition this text into 40 equal-sized
text chunks, and to study the frequencies with which our three target words occur in these 40
chunks.

A text with 27269 words cannot be divided into 40 equal-sized text chunks: We are left with a
remainder of 22 tokens:

> 27269 %% 40 # %% is the remainder operator

[1] 29

We therefore restrict ourselves to the first 27240 tokens, and use cut() to partition the sequence
of tokens into 40 equally sized chunks. The output of cut() is a factor with as levels the
successive equal-sized chunks of data. For each element in its input vector, i.e. for each word, it
specifies the chunk to which that word belongs. We combine the words and the information about
their chunks into a data frame with the function data.frame():

66 probability distributions

> wonderland = data.frame(word = alice[1:27240],

+ chunk = cut(1:27240, breaks = 40, labels = F))

> wonderland[1:5,]

word chunk

1 alice 1

2 s 1

3 adventures 1

4 in 1

5 wonderland 1

We now add a vector of truth values to this data frame to indicate which rows contain the exact
string "alice":

> wonderland$alice = wonderland$word=="alice"

> wonderland[1:5,]

word chunk alice

1 alice 1 TRUE

2 s 1 FALSE

3 adventures 1 FALSE

4 in 1 FALSE

5 wonderland 1 FALSE

We count how often the word Alice (alice) occurs in each chunk:

> countOfAlice = tapply(wonderland$alice, wonderland$chunk, sum)

> countOfAlice

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

10 7 10 9 4 10 8 8 12 6 9 8 8 14 9 11 6 11 11 15 13 13

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

18 10 10 13 12 9 15 14 17 9 13 7 8 3 7 10 4 7

Finally, we make a frequency table of these counts with xtabs():

> countOfAlice.tab = xtabs(˜countOfAlice)

countOfAlice

3 4 6 7 8 9 10 11 12 13 14 15 17 18

1 2 2 4 5 5 6 3 2 4 2 2 1 1

There is one chunk in which Alice appears only three times (chunk 36), and six chunks in which
this word occurs ten times (e.g. chunks 1 and 6).

1. Create similar tables for the words hare and very.

2. Make a plot that displays by means of high-density lines how often Alice occurs in the
successive chunks. Make similar plots for very and hare. What do you see?

3. Make a plot with the number of times Alice occurs in the chunks on the horizontal axis (i.e.
as.numeric(names(alice.tab))), and with the proportion of chunks with that count on
the vertical axis. Use high-density lines. Make similar sample density plots for very and for
hare.

3.3 Continuous distributions 67

4. Also plot the corresponding densities under the assumption that these words follow a Poisson
distribution with an estimated rate parameter λ equal to the mean of the counts in the chunks.
Compare the Poisson densities with the sample densities.

5. Make quantile-quantile plots for graphical inspection of whether Alice, very, and hare might
follow a Poisson distribution. First create the vector of theoretical quantiles for the
X -coordinates, using as percentage points 5%, 10%, 15%, . . . , 100%. Supply the percentage
points as a vector of proportions as first argument to qpois(). The second argument is λ,
estimated by the mean count. The sample quantiles are obtained with quantile().

6. The mean count of Alice is 9.95. In chunk 39, Alice is observed only 4 times. Suppose we
only have this chunk of text available. Calculate the likelihood of observing Alice more than
10 times in another chunk of similar size. Assume that Alice follows a Poisson distribution.
Recalculate this probability on the basis of the mean count, and compare the expected number
of chunks in which Alice occurs more than 10 times with the actual number of chunks.

4 Basic statistical methods

The logic underlying the statistical tests described in this book is simple. A
statistical test produces a test statistic of which the distribution is known.1 What
we want to know is whether the test statistic has a value that is extreme, so extreme
that it is unlikely to be attributable to chance. In the traditional terminology, we
pit a null-hypothesis, actually a straw man, that the test statistic does not have
an extreme value, against an alternative hypothesis according to which its value
is indeed extreme. Whether a test statistic has an extreme value is evaluated by
calculating how far out it is in one of the tails of the distribution. Functions like
pt(), pf(), and pchisq() tell us how far out we are in a tail by means of
p-values, which assess what proportion of the population has even more extreme
values. The smaller this proportion is, the more reason we have for surprise that
our test statistic is as extreme as it actually is.

However, the fuzzy notion of what counts as extreme needs to be made more
precise. It is generally assumed that a probability begins to count as extreme
by the time it drops below 0.05. However, opinions differ with respect to how
significance should be assessed.

One tradition holds that the researcher should begin by defining what counts
as extreme, before gathering and analyzing data. The cutoff probability for con-
sidering a test statistic as extreme is referred to as the α level or significance

level. The α level 0.05 is marked by one asterisk in R. More stringent α levels
are 0.01 (marked by two asterisks) and 0.001 (marked by three asterisks). If the
observed value of our test statistic is extreme given this pre-defined α level, i.e.
if the associated p-value (obtained with, for instance, pnorm()) is less than α,
then the outcome is declared to be statistically significant. If you fix α at 0.05,
the α level enforced by most linguistic and psycholinguistic journals, then all you
should do is report whether p < 0.05 or p > 0.05.

However, a cutoff point like 0.05 is quite arbitrary. This is why I have disabled
significance stars in summary tables when the languageR package is attached
(with options(show.signif.stars=FALSE)). If an experiment that required
half a year’s preparation results in a p-value of 0.052, it would have failed to reveal
a statistically significant effect, whereas if it had produced a p-value of 0.048,

1 This chapter introduces tests based on what is known as frequentist statistical inference. For
an introduction to the alternative school in statistics known as Bayesian inference, see Bolstad
(2004).

68

Basic statistical methods 69

it would have succeeded in showing a statistically significant effect. Therefore,
many researchers prefer to interpret p-values as a measure of surprise. Instead
of reporting p < 0.10 or p < 0.05, they report p = 0.052 or p = 0.048. This
allows you to make up your own mind about how surprising this really is. This
is important, because assessing what counts as surprise often depends on many
considerations that are difficult to quantify.

For instance, although most journals will accept a significance level of 0.05,
no one in his right mind would want to cross a bridge that has a mere probability
of 0.05 of collapsing. Nor would anyone like to use a medicine that has fatal
side effects for one out of twenty patients, or even only one out of a thousand
patients. When a paper with a result that is significant at the 5% level is accepted
for publication, this is only because it opens new theoretical possibilities that have
a fair chance of being replicated in further studies. Such replication experiments
are crucial for establishing whether a given effect is really there. The smaller
the p-value is, and the greater the power of the experiment (i.e. the greater the
number of subjects, items, repetitions, etc.), the more likely it is that replication
studies will also bear witness to the effect. Nevertheless, replication studies remain
essential even when p-values are very small. We also have to keep in mind that
a small p-value does not imply that an observed effect is significant in the more
general sense of being important or applicable. We will return to this issue below.

In practice, our a priori assumptions about how difficult it is to find some hy-
pothesized effect plays a crucial role in thinking about what counts as statistically
significant. In physics, where it is often possible to bring a great many important
factors under experimental control, p-values can be required to be very small. For
an experiment to falsify an existing well-established theory, a p-value as small as
0.00001 may not be small enough. In the social sciences, where it is often difficult
if not outright impossible to obtain full experimental control of the very diverse
factors that play a potential role in an experiment, a p-value of 0.05 can sensibly
count as statistically significant.

One assumption that is brought explicitly into the evaluation of p-values is the
expected direction of an effect. Consider, for instance, the effect of frequency of
use. A long series of experiments has documented that higher-frequency words
tend to be recognized faster than lower-frequency words. If we run yet another
experiment in which frequency is a predictor, we expect to observe shorter la-
tencies for higher frequencies (facilitation) and not longer latencies (inhibition).
In other words, previous experience, irrespective of whether previous experience
has been formalized in the form of a theory, may give rise to expectations about
the direction of an effect: inhibition or facilitation. Suppose that we examine our
directional expectation by means of a test statistic t that follows the t-distribution.
Facilitation then implies a negative t-value (the observed value of the test statistic
is smaller than the value given by the null-hypothesis), and inhibition a positive
t-value (the observed value is greater). Given a t-value of −2 for 10 degrees of
freedom, and given that we expect facilitation, we calculate the probability of
observing a t-value of −2 or lower using the left tail of the t-distribution:

70 basic statistical methods

> pt(-2, 10)
[1] 0.03669402

Since this probability is fairly small, there is reason to be surprised: the observed
t-value is unlikely to be this small by chance. This kind of directional test, for
which you should have very good independent reasons, is known as a one-tailed

test.
Now suppose that nothing is known about the effect of frequency, and that it

might equally well be facilitatory or inhibitory. If the only thing we want to test
is that frequency might matter, one way or another, then the p-value is twice as
large:

> 2 * pt(-2, 10)
[1] 0.07338803

In this case, we reason that the t-value could just as well have been positive
instead of negative, so we sum the probabilities in both tails of the distribution.
This is known as a two-tailed test. Since the density curve of the t-distribution is
symmetrical, the probability of t being less than −2 is the same as the probability
that it is greater than 2. We sum the probabilities in both tails, and therefore obtain
a p-value that is twice as large. Evidently, the present example now gives us less
reason for surprise. Next suppose that we observed a t-value of 2 instead of −2.
Our p-value is now obtained with:

> 2 * (1 - pt(2, 10))
[1] 0.07338803

Recall that pt(2,10) is the probability that the t-statistic assumes a value less
than 2. We need the complementary probability, so we subtract from 1 to obtain
the probability that t has a value exceeding 2. Again, we multiply the result by
2 in order to evaluate the likelihood that our t-value is either in the left tail or in
the right tail of the distribution. We can merge the tests for negative and positive
values into one generally applicable line of code by working with the absolute
value of the t-value:

> 2 * (1 - pt(abs(-2), 10))
[1] 0.07338803
> 2 * (1 - pt(abs(2), 10))
[1] 0.07338803

Table 4.1 summarizes the different one and two-tailed tests that we will often use
in the remainder of this book.

Any test that we run on a data set involves a statistical model, even the sim-
plest of the standard tests described in this chapter. There are a number of basic
properties of any statistical model that should be kept in mind at all times. As
pointed out by Crawley (2002:17):
� All models are wrong.
� Some models are better than others.
� The correct model can never be known with certainty.
� The simpler the model, the better it is.

4.1 Tests for single vectors 71

Table 4.1. One-tailed and two-tailed tests in R. df denotes the number of degrees
of freedom, N the normal distribution.

N one-tailed left tail pnorm(value, mean, sd)
one-tailed right tail 1 - pnorm(value, mean, sd)
two-tailed either tail 2 * (1 - pnorm(abs(value), mean, sd))

t one-tailed left tail pt(value, df)
one-tailed right tail 1 - pt(value, df)
two-tailed either tail 2 * (1 - pt(abs(value), df))

F 1 - pf(value, df1, df2)
χ2 1 - pchisq(value, df)

As a consequence, it is important to check whether the model fits the data. This
part of statistical analysis is known as model criticism. A test may yield a very
small p-value, but if the assumptions on which the test is based are violated,
the p-value is quite useless. In the remainder of this book, model criticism will
therefore play an important role.

In what follows, we begin by discussing tests involving a single vector. We
then proceed with tests addressing the broader range of questions that arise when
you have two vectors of observations. Questions involving more than two vectors
are briefly touched upon, but are discussed in detail in Chapters 5–7.

4.1 Tests for single vectors

4.1.1 Distribution tests

It is often useful to know what kind of distribution characterizes your
data. For instance, since many statistical procedures assume that vectors are nor-
mally distributed, it is often necessary to ascertain whether a vector of values is
indeed approximately normally distributed. Sometimes, the shape of a distribution
is itself of theoretical interest.

By way of example, consider Baayen and Lieber (1997), who studied the
frequency distributions of several Dutch derivational prefixes. The frequencies
of 985 words with the prefix ver- are available in the data set ver. We plot the
estimated density with:

> plot(density(ver$Frequency))

As can be seen in the left panel of Figure 4.1, we have a highly skewed distribution
with a few high-frequency outliers and most of the probability mass squashed
against the vertical axis. It makes sense, therefore, to logarithmically transform
these frequencies, in order to remove at least some of the skewness:

> ver$Frequency = log(ver$Frequency)
> plot(density(ver$Frequency))

72 basic statistical methods

0 5000 15000

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

frequency

d
e
n
si

ty

2 4 6 8 12

0
.0

0
0
.1

0
0
.2

0

log frequency

d
e
n
si

ty

Figure 4.1. Estimated probability density functions for the Dutch prefix ver-.

The result is shown in the right panel of Figure 4.1. We now have a bimodal
frequency distribution with two clear peaks. The question that arises here is what
kind of distribution this might be. Could the logged frequencies follow a normal
distribution that happens to have a second bump due to chance?

There are several ways to pursue this question. Let’s first consider visualization
by means of a quantile-quantile plot. We graph the quantiles of the standard
normal distribution (displayed on the horizontal axis) against the quantiles of the
empirical distribution (displayed on the vertical axis). If the empirical distribution
is normal (irrespective of mean or variance), its quantiles should be identical to
those of the standard normal, and the quantile-quantile plot should produce a
straight line. The left panel of Figure 4.2 provides an example for 985 random
numbers from a normal distribution with mean 4 and standard deviation 3:

> qqnorm(rnorm(length(ver$Frequency), 4, 3))
> abline(v = qnorm(0.025), col = "grey")
> abline(h = qnorm(0.025, 4, 3), col = "grey")

The theoretical and empirical values for the 2.5% percentage points are shown by
means of grey lines. The horizontal axis shows the values of the standard normal,
ordered from small to large. Around −1.96, 2.5% of the data points have been
graphed, and around +1.96, 97.5% of the data points have been covered. The
vertical axis shows the quantiles of the random numbers. In this case, 2.5% of
the data points have been covered by the time you have reached the value −1.87.
Whenever you compare the largest values observed for a given percentage of
the ordered data, you will find that the points always lie very near the same
line.

When we make a quantile-quantile plot for the logged frequencies of words
with the Dutch prefix ver-, we obtain a weirdly shaped graph, as shown in the
right panel of Figure 4.2:

4.1 Tests for single vectors 73

0 1 2 3

0
5

1
0

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
til

e
s

normal random numbers

0 1 2 3

0
2

4
6

8
1
0

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
til

e
s

ver

Figure 4.2. Quantile-quantile plots for a sample of 985 normal
(4, 3)-distributed random numbers (left) and for the logged frequencies of 985
Dutch derived words with the prefix ver-.

> qqnorm(ver$Frequency)

The lowest log frequency, zero, represents 27.8% of the words, and this shows up
as a horizontal bar of points in the graph. It is clear that we are not dealing with
a normal distribution.

Instead of visualizing the distribution, we can make use of two tests. The
simplest to use is the Shapiro-Wilk test for normality:

> shapiro.test(ver$Frequency)
Shapiro-Wilk normality test

data: ver$Frequency
W = 0.9022, p-value = < 2.2e-16

This test makes use of a specific test statistic W, and the probability that W is as
large as it is under chance conditions for a normal distribution is vanishingly small.
We can safely reject the null-hypothesis that the log-transformed frequencies of
words with ver- follow a normal distribution.

A second test that can be used is the Kolmogorov-Smirnov one-sample

test. Its first argument is the observed vector of values; its second argument is
the name of the density function that we want to compare our observed vector
with. As we are considering a normal distribution here, this second argument is
pnorm. The remaining arguments are the corresponding parameters, in this case,
the mean and standard deviation which we estimate from the (log-transformed)
frequency vector:

> ks.test(ver$Frequency, "pnorm",
+ mean(ver$Frequency), sd(ver$Frequency))

One-sample Kolmogorov-Smirnov test
data: ver$Frequency
D = 0.1493, p-value < 2.2e-16
alternative hypothesis: two.sided

Warning message: cannot compute correct p-values with ties

74 basic statistical methods

This test produces a test statistic D that is so large that it is very unlikely to arise
under the assumption that we would be dealing with a normal distribution.

The warning message arises because there are ties (observations with the same
value) in our data. This test presupposes that the input vector is continuous, and
in a continuous distribution ties are, strictly speaking, impossible. The reason that
we have ties in our data is that word frequency counts are discrete, even though
the probabilities of words that we try to estimate with our frequency counts are
continuous. A workaround to silence this warning is to add a little bit of noise to
the frequency vector with the function jitter(), breaking the ties:

> ver$Frequency[1:5]
[1] 5.541264 5.993961 4.343805 0.000000 7.056175
> jitter(ver$Frequency[1:5])
[1] 5.5179064 6.0002591 4.2696683 0.0373808 6.9965528
> ks.test(jitter(ver$Frequency), "pnorm",
+ mean(ver$Frequency), sd(ver$Frequency))

One-sample Kolmogorov-Smirnov test
data: jitter(ver$Frequency)
D = 0.1493, p-value < 2.2e-16
alternative hypothesis: two.sided

When dealing with a vector of counts, we may face the question of whether
the probabilities of the things counted are all essentially the same. For instance,
the most frequent words in an earlier version of the introduction to this book are:

> intro = c(75, 68, 45, 40, 39, 39, 38, 33, 24, 24)
> names(intro) = c("the", "to", "of", "you", "is", "a",
+ "and", "in", "that", "data")
> the to of you is a and in that data

75 68 45 40 39 39 38 33 24 24

Are the probabilities of these words (as estimated by their frequencies) essentially
the same? We can investigate this with a chi-squared test:

> chisq.test(intro)
Chi-squared test for given probabilities

data: intro
X-squared = 59.7294, df = 9, p-value = 1.512e-09

Unsurprisingly, the chi-squared test produces a test statistic named X -squared, that
follows a χ2-distribution, in this case with 9 degrees of freedom. (You can check
that the p-value reported in this summary equals 1 – pchisq(59.7294, 9)).
What this test shows is that the ten most frequent function words do not all have
the same probability (frequency). The range of values is just too large. By contrast,
the counts in the following vector,

> x = c(37, 21, 26, 30, 23, 26, 41, 26, 37, 33)

are much more similar, and the chi-squared test is no longer significant:

> chisq.test(x)
Chi-squared test for given probabilities

data: x
X-squared = 13.5333, df = 9, p-value = 0.1399

4.1 Tests for single vectors 75

4.1.2 Tests for the mean

The question often arises as to whether the mean of a vector of ob-
servations has a particular value. By way of example, we examine the length in
seconds of the n in the Dutch prefix ont-, available in the data set durationsOnt
(Pluymaekers et al., 2005). We calculate the mean length of the n:

> meanLengthN = mean(durationsOnt$DurationPrefixNasal)
> meanLengthN
[1] 0.04981508

Suppose that previous research of similar recordings had resulted in a mean of
0.053 seconds. Is the mean observed for the new sample, 0.0498, significantly
different from 0.053? An answer can be obtained with a two-tailed one-sample

t-test, which requires as input the vector of lengths and the previously observed
mean (mu):

> t.test(durationsOnt$DurationPrefixNasal, mu = 0.053)
One Sample t-test

data: ont$DurationPrefixNasal
t = -1.5038, df = 101, p-value = 0.1358
alternative hypothesis: true mean is not equal to 0.053
95 percent confidence interval:
0.04561370 0.05401646
sample estimates:
mean of x
0.04981508

The function t.test() carried out a one-sample t-test, as we supplied it with
only one vector of data points, the sample of lengths of the n of the prefix ont-.
The test statistic of the t-test is named t , and it follows a t-distribution with, in this
case, 101 degrees of freedom (df). The p-value given in the summary is easily
verified,

> 2 * (1 - pt(abs(-1.5038), 101))
[1] 0.1357535

and shows that the newly observed mean, 0.0498, is not significantly different
from the old mean of 0.053.
R carries out a two-tailed test by default. It reports that the alternative

hypothesis (alternative to the null-hypothesis that the mean is equal to 0.053)
is that the true mean is not equal to 0.053. If you need a one-tailed test, you have
to specify the direction of the test by adding the option alternative="less"

or alternative="greater".
The next lines of the summary report the 95% confidence interval. This

is the interval of values, symmetrical around the observed sample mean 0.0498,
where we expect 95% of the data points to be located. It is the range of values
for which we accept that there is no significant difference with the previously
observed mean. This range is highlighted in Figure 4.3. The 5% of data points
that are extreme, and where we reject the idea that there might be no difference,
fall outside this confidence interval. These rejection regions are the white tails

76 basic statistical methods

0.045 0.050 0.055

length of n (sec)

d
e

n
si

ty

Figure 4.3. 95% confidence interval for the length (in seconds) of the nasal in
the Dutch prefix ont-. The solid line represents the mean, the dashed line the
tested mean, which falls within the acceptance region.

in Figure 4.3. Since the mean previously observed, 0.053, falls well within the
acceptance region, the p-value of the test is larger than 0.05. We therefore have
no reason to suppose that the mean length in the new sample differs from that
obtained in the previous sample.

The data frame ont also lists the length of the t, the mean of which is:

> mean(durationsOnt$DurationPrefixPlosive)
[1] 0.03633109

We could again use t.test() to test whether this mean is significantly different
from, say, 0.044, and the resulting p-value, 0.008, would support this. Unfortu-
nately, there is a problem here, as the distribution of the lengths of the t is not
normal. Consider Figure 4.4, which shows the estimated densities for the lengths
of the t and those of the n. In the case of the n, we have a reasonably symmetrical
density, but in the case of the t, we have a bimodal density. The Shapiro-Wilk test,

> shapiro.test(durationsOnt$DurationPrefixPlosive)
Shapiro-Wilk normality test

data: ont$DurationPrefixPlosive
W = 0.9248, p-value = 2.145e-05

confirms that we are indeed dealing with a significant departure from normality.
The t-test is an excellent test for data that are more or less normally dis-

tributed. But it should not be used for variables with skewed distributions. For
such variables, the one sample Wilcoxon test, implemented in the function
wilcox.test(), should be used instead. When we apply the Wilcoxon test, we
obtain a p-value that is somewhat larger (although still small) compared to that
of the t-test:

> wilcox.test(durationsOnt$DurationPrefixPlosive, mu = 0.044)
Wilcoxon signed rank test with continuity correction

data: ont$DurationPrefixPlosive
V = 1871, p-value = 0.01151
alternative hypothesis: true mu is not equal to 0.044

4.2 Tests for two independent vectors 77

0 50 100 150

0
.0

0
0

0
.0

1
0

0
.0

2
0

length in ms

d
e

n
si

ty
t
n

Figure 4.4. Estimated probability density functions for the length in
milliseconds of the t and n in the Dutch prefix ont-.

This is usually the case when the p-values of these two tests are compared.
The Wilcoxon test is slightly less good at detecting surprise for normal random
variables than the t-test; it has reduced power, but it still does a good job when
the t-test is inapplicable. The Wilcoxon test is a non-parametric test. It makes
no assumptions about the distribution of the population from which a sample was
drawn. The parametric t-test has greater power because when its distributional
assumptions are justified, it has access to more sophisticated mathematics to
estimate probabilities.

4.2 Tests for two independent vectors

When you have two vectors of observations, it is important to dis-
tinguish between independent vectors (random variables) and paired vectors
(random variables). In the case of independent vectors, the observations in the
one vector are not linked in a systematic way to the observations in the other
vector. Consider, for instance, sampling 100 words at random from a frequency
list compiled for Jane Austen’s Pride and Prejudice, and then sampling another
100 words at random from a frequency list compiled for Herman Melville’s Moby
Dick. The two vectors of frequencies can be compared in various ways in order to
address differences in general frequency of use between the two writers, and con-
tain independent observations. As an example of paired observations, consider
the case in which a specific list of 100 word types is compiled, with for each word
type its frequency in Pride and Prejudice and its frequency in Moby Dick. The
observations in the two vectors are now paired: the frequencies are tied, pairwise,
to a given word. For such paired vectors, more powerful tests are available. In
what follows, we first discuss tests for independent vectors. We then proceed to
the case of paired vectors.

78 basic statistical methods

4.2.1 Are the distributions the same?

Recall that we observed a bimodal density for the Dutch prefix ver-
in Figure 4.1. The presence of two modes for this distribution can be traced
to two distributions having been mixed together, a distribution of semantically
more opaque, non-compositional words, and a distribution of semantically more
transparent, compositional words. The data frame ver with word frequencies
also contains a column with information about semantic class (opaque versus
transparent). Figure 4.5 plots the densities of the opaque and transparent words
separately. The two distributions are quite dissimilar. There are many transparent
and only a few opaque low-frequency words (recall that a log frequency of 0
represents a word with frequency 1, which explains the hump of probability mass
above the zero in the graph for transparent formations).

Figure 4.5 requires the following steps. We first partition the words into the
two classes:

> ver$Frequency = log(ver$Frequency) # if not already logged
> ver.transp = ver[ver$SemanticClass == "transparent",]$Frequency
> ver.opaque = ver[ver$SemanticClass == "opaque",]$Frequency

Next, we calculate the densities and store these, as we have to determine the limits
for the horizontal and vertical axes before we can proceed with plotting:

> ver.transp.d = density(ver.transp)
> ver.opaque.d = density(ver.opaque)
> xlimit = range(ver.transp.d$x, ver.opaque.d$x)
> ylimit = range(ver.transp.d$y, ver.opaque.d$y)
> plot(ver.transp.d, lty = 1, col = "black",
+ xlab = "frequency", ylab = "density",
+ xlim = xlimit, ylim = ylimit, main = "")
> lines(ver.opaque.d, col = "darkgrey")

Before we make too much of the separation visible in our density plot, we should
check whether this separation might have arisen by chance. To avoid complaints

0 5 10

0
.0

0
0
.1

0
0
.2

0

frequency

d
e
n
si

ty

Figure 4.5. Estimated probability density function of the transparent (black
line) and opaque (grey line) words with the Dutch prefix ver-.

4.2 Tests for two independent vectors 79

about ties with the two-sample Kolmogorov-Smirnov test, we add some
jitter:

> ks.test(jitter(ver.transp), jitter(ver.opaque))
Two-sample Kolmogorov-Smirnov test

data: jitter(ver.transp) and jitter(ver.opaque)
D = 0.3615, p-value = < 2.2e-16
alternative hypothesis: two.sided

The very small p-value provides support for the classification of these words into
transparent and opaque subsets, each with its own probability density function.

4.2.2 Are the means the same?

In Chapter 2, we had a first look at the 81 English nouns for which
several kinds of ratings as well as visual lexical decision latencies were collected.
Here we visualize how the word frequencies are distributed for the subsets of
simple and complex words cross-classified by class (plant versus animal) by
means of a trellis boxplot:

> bwplot(Frequency ˜ Class | Complex, data = ratings)

Figure 4.6 suggests that the distributions of frequencies for plants and animals
differ for simplex words, with the animals having somewhat higher frequencies
than the plants. We can ascertain whether we indeed have reason to be surprised
by testing whether the means of these two distributions are different. The boxplots
suggest reasonably symmetrical distributions, so we use the two-sample version
of the t-test and apply it to the subset of morphologically simple words:

> simplex = ratings[ratings$Complex == "simplex",]
> freqAnimals = simplex[simplex$Class == "animal",]$Frequency
> freqPlants = simplex[simplex$Class == "plant",]$Frequency
> t.test(freqAnimals, freqPlants)

Welch Two Sample t-test
data: freqAnimals and freqPlants
t = 2.674, df = 57.545, p-value = 0.009739
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.1931830 1.3443152
sample estimates:
mean of x mean of y
5.208494 4.439745

The summary of the t-test begins with the statement that a Welch two-sample

t-test has been carried out. The t-test in its simplest form presupposes that its two
input vectors are normally distributed with the same variance. Often, however,
the variances of the two input vectors are not the same. The Welch two-sample
t-test corrects for this difference by adjusting the degrees of freedom. Normally,
degrees of freedom are integers. However, you can see in this example that the
Welch adjustment led to a fractional number of degrees of freedom: 57.545.

80 basic statistical methods

F
re

q
u

e
n

cy

animal plant

2

3

4

5

6

7

complex

animal plant

simplex

Figure 4.6. Boxplots for frequency as a function of natural class (animal versus plant) grouped
by morphological complexity for 81 English nouns.

The next lines of the summary explain what the t-test did: it calculated the
difference between the two means, and then tested whether this difference is not
equal to 0. The 95% confidence interval around this difference in the means,
5.208494 − 4.439745 = 0.768749, does not include zero. As expected, the
p-value is less than 0.05. If you need to know another confidence interval,
for instance, the 99% confidence interval, this can be specified with the option
conf.level:

> t.test(simplex[simplex$Class == "animal",]$Frequency,
+ simplex[simplex$Class == "plant",]$Frequency,
+ conf.level = 0.99)
t = 2.674, df = 57.545, p-value = 0.009739
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:
0.002881662 1.534616532

It is important to keep in mind that the two-sample t-test is appropriate only for
reasonably symmetrical distributions. For the opaque and transparent words with
the prefix ver-, where we are dealing with bimodal, and markedly asymmetric
distributions, we use the wilcox.test:

> wilcox.test(ver.opaque, ver.transp)

4.2 Tests for two independent vectors 81

Wilcoxon rank sum test with continuity correction
data: ver.opaque and ver.transp
W = 113443.5, p-value = < 2.2e-16
alternative hypothesis: true mu is not equal to 0

This test confirms the conclusion reached above using the Kolmogorov-Smirnov
test: we are dealing with two quite different distributions. These distributions
differ in shape, and they differ in their medians, such that opaque words have the
higher average frequency of use.

In Chapter 1 we started exploring the data set on the dative alternation in
English studied by Bresnan et al. (2007). We calculated the mean length of the
theme for clauses with animate and inanimate recipients with tapply():

> tapply(verbs$LengthOfTheme, verbs$AnimacyOfRec, mean)
animate inanimate
1.540278 1.071130

We now use a Welch two-sample t-test to verify that the two means are signifi-
cantly different:

> t.test(LengthOfTheme ˜ AnimacyOfRec, data = verbs)
Welch Two Sample t-test

data: LengthOfTheme by AnimacyOfRec
t = 5.3168, df = 100.655, p-value = 6.381e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.2941002 0.6441965
sample estimates:

mean in group animate mean in group inanimate
1.540278 1.071130

Inspection of the distributions by means of a boxplot suggests some asymmetry
for the inanimate group, but, as you may verify for yourself, a Wilcoxon test also
leaves no doubt that we have ample reason for surprise.

4.2.3 Are the variances the same?

It may be important to know whether the variances of two normal ran-
dom variables are different. Here is an example from the R help for var.test().
Two vectors with standard normal random numbers with different means and
standard deviations are defined first:

> x <- rnorm(50, mean = 0, sd = 2)
> y <- rnorm(30, mean = 1, sd = 1)

With var.test() we subsequently observe that, as expected, the two variances
are not the same:

> var.test(x, y)
F test to compare two variances

data: x and y
F = 2.7485, num df = 49, denom df = 29, p-value = 0.004667
alternative hypothesis: true ratio of variances is not equal to 1

82 basic statistical methods

95 percent confidence interval:
1.380908 5.171065
sample estimates:
ratio of variances

2.748496

The F-value is the ratio of the two variances:

> var(x)/var(y)
[1] 2.748496

The degrees of freedom are one less than the numbers of observations in each
vector, so we can just as well calculate the p-value directly without invoking
var.test():

> 2 * (1 - pf(var(x)/var(y), 49, 29))
[1] 0.004666579

This test should be applied only to variances of normally distributed random
variables. The help page for var.test() points to other functions that you
should consider if this condition is not met.

4.3 Paired vectors

The tests described above for comparing the distributions of two de-
pendent variables also apply to paired vectors; vectors with measurements or
counts that are pairwise bound to the same experimental units. There are differ-
ences, however, in how we test for differences in the mean, and new questions
arise as to the functional relation between the two vectors. We discuss these issues
in turn.

4.3.1 Are the means or medians the same?

In order to test whether two paired vectors have the same mean or
median, we again use t.test() and wilcox.test() respectively, but we now
specify that we are dealing with paired observations. By way of example, we re-
turn to the average weight and size ratings elicited from English-speaking subjects
for the 81 nouns denoting animals and plants. One question we may ask is whether
weight ratings are smaller (or perhaps greater) than size ratings. We address this
question using the mean ratings (averaged over participants) as available in the
ratings data set. If we treat the two vectors of ratings (meanWeightRating
and meanSizeRating) as independent, which they are not, then there is already
some evidence that they are not identical in the mean:

> t.test(ratings$meanWeightRating, ratings$meanSizeRating)
Welch Two Sample t-test

data: ratings$meanWeightRating and ratings$meanSizeRating

4.3 Paired vectors 83

t = -2.1421, df = 159.092, p-value = 0.0337
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.64964319 -0.02637656
sample estimates:
mean of x mean of y
2.570370 2.908380

When we apply the appropriate test, and take into account (by specifying
paired = T) the important information that these ratings were elicited for the
same set of 81 nouns, we obtain much stronger evidence that the two vectors
differ in the mean:

> t.test(ratings$meanWeightRating, ratings$meanSizeRating, paired = T)
Paired t-test

data: ratings$meanWeightRating and ratings$meanSizeRating
t = -36.0408, df = 80, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3566737 -0.3193460
sample estimates:
mean of the differences

-0.3380099

Note that the paired t-test reports the difference between the two means. In fact,
you get exactly the same results by applying a one-sample t-test to the vector of
paired differences:

> t.test(ratings$meanWeightRating - ratings$meanSizeRating)
One Sample t-test

data: ratings$meanWeightRating - ratings$meanSizeRating
t = -36.0408, df = 80, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.3566737 -0.3193460
sample estimates:
mean of x
-0.3380099

In this example, the paired differences are less than zero for all 81 words,

> sum(ratings$meanWeightRating - ratings$meanSizeRating < 0)
[1] 81

which explains why we get such an extremely small p-value.
Thus far, we have assumed that the two vectors of ratings are normally dis-

tributed. In order to check whether this assumption is justified, we inspect the
boxplot shown in the left panel of Figure 4.7. There is some asymmetry here: the
horizontal lines representing the medians are not located in the centers of the two
boxes:

> par(mfrow=c(1,2))
> boxplot(ratings$meanWeightRating, ratings$meanSizeRating,
+ names=c("weight", "size"), ylab = "mean rating")
> boxplot(ratings$meanWeightRating - ratings$meanSizeRating,

84 basic statistical methods

weight size

1
2

3
4

m
e

a
n

 r
a

tin
g

m
e

a
n

 r
a

tin
g

 d
iff

e
re

n
ce

Figure 4.7. Boxplots for the distributions of mean size and mean weight ratings
(averaged over subjects; left panel) and their difference (right panel) for 81
English nouns denoting animals and plants.

+ names="difference", ylab = "mean rating difference")
> par(mfrow=c(1,1))

Fortunately, most of this asymmetry is absent from the vector of paired differences,
as witnessed by the mild p-value of the Shapiro-Wilk test and the boxplot shown
in the right panel of Figure 4.7:

> shapiro.test(ratings$meanWeightRating-ratings$meanSizeRating)
Shapiro-Wilk normality test

data: ratings$meanWeightRating - ratings$meanSizeRating
W = 0.9644, p-value = 0.02374

Although we could rerun the test with the Wilcoxon signed rank test, with
paired = T,

> wilcox.test(ratings$meanWeightRating, ratings$meanSizeRating,
+ paired = T)

Wilcoxon signed rank test with continuity correction
data: ratings$meanWeightRating and ratings$meanSizeRating
V = 0, p-value = 5.463e-15
alternative hypothesis: true mu is not equal to 0

the paired t-test is perfectly adequate.

4.3.2 Functional relations: linear regression

Instead of comparing just the means of the size and weight ratings, or
comparing their distributions by means of boxplots, we can graph the individual
data points in a scatterplot, as shown in the left panel of Figure 4.8:

> plot(ratings$meanWeightRating, ratings$meanSizeRating,
+ xlab = "mean weight rating", ylab = "mean size rating")

What this panel shows is that the data points pattern into a nearly straight line. In
other words, we observe an exceptionally clear linear functional relation between
estimated size and weight. This functional relation can be visualized by means

4.3 Paired vectors 85

1 2 3 4

1
.5

2
.5

3
.5

4
.5

mean weight rating

m
e
a
n
 s

iz
e
 r

a
tin

g

1 2 3 4

1
.5

2
.5

3
.5

4
.5

mean weight rating

m
e
a
n
 s

iz
e
 r

a
tin

g

Figure 4.8. Scatterplot for mean weight and size ratings (left), and the same
data points with regression line (right).

of a line drawn through the scatter of data points in such a way that the line is
as close as possible to each of these data points. The question that arises here is
how to obtain this regression line. In order to answer this question, we begin by
recapitulating how a straight line is characterized.

4.3.2.1 Slope and intercept
Consider the two lines shown in Figure 4.9. For the dashed line, the

intercept is 2 and the slope −2. For the dotted line, the intercept is −2 and the
slope 1. It is easy to see that the intercept is the Y -coordinate of the line where it
crosses the vertical axis. The slope of the line specifies the direction of the line
in terms of how far you have to move along the horizontal axis for a unit change
in the vertical direction. For the dashed line, two units down corresponds to one
unit to the right. Using �y and �x to denote the change in y corresponding to
a change in x , we find that we have a slope of �y/�x = −2/1 = −2. For the
dotted line, moving two units up corresponds with moving two units to the right,
so the slope is �y/�x = 2/2 = 1.

The function abline() adds parametrically specified lines to a plot. It takes
two arguments, first the intercept, and then the slope. This is illustrated by the
following code, which produces Figure 4.9:

> plot(c(-4, 4), c(-4, 4), xlab = "x", ylab = "y", type = "n")
set up the plot region

> abline(2, -2, lty = 2) # add the lines
> abline(-2, 1, lty = 3)
> abline(h = 0) # and add the axes
> abline(v = 0)
> abline(h = -2, col = "grey") # and ancillary lines in grey
> abline(h = 2, col = "grey")
> abline(v = 1, col = "grey", lty = 2)
> abline(v = 2, col = "grey", lty = 2)

86 basic statistical methods

0 2 4

0
2

4

x

y

Figure 4.9. Straight lines are defined by intercept and slope.

The right panel of Figure 4.8 shows a straight line that has been drawn through
the data points in such a way that all the data points are as close to the line as
possible. Its intercept is 0.527 and its slope is 0.926:

> plot(ratings$meanWeightRating, ratings$meanSizeRating,
+ xlab = "mean weight rating", ylab = "mean size rating",
+ col = "darkgrey")
> abline(0.527, 0.926)

The question, of course, is how to determine this slope and intercept.

4.3.2.2 Estimating slope and intercept
We estimate slope and intercept with the help of the function for linear

modeling, lm(). This function needs to be told what variable is the dependent
variable (the variable on the Y axis) and what variable is the predictor (the variable
on the X axis). We provide this information by means of a formula that we supply
as the first argument to lm():

> ratings.lm = lm(meanSizeRating ˜ meanWeightRating, data = ratings)

The formula specifies that meanSizeRating is to be modeled as a function of,
or depending on, meanWeightRating. The second argument tells R to look for
these two variables in the data frame ratings. The output of lm() is a linear

model object that we name after its input and the function that created it. By
typing ratings.lm at the prompt, we get to see the coefficients of the desired
least squares regression line. (The term least squares refers to the way
in which slope and intercept are estimated, namely, by minimizing the squared
vertical differences between the data points and the line.)

> ratings.lm
Call:
lm(formula = meanSizeRating ˜ meanWeightRating, data = ratings)
Coefficients:

(Intercept) meanWeightRating
0.5270 0.9265

4.3 Paired vectors 87

We can extract from the model object a vector with just the intercept and slope
with the function coef(), which returns the model’s coefficients:

> coef(ratings.lm)
(Intercept) meanWeightRating

0.5269981 0.9264743

In order to add this regression line to our scatterplot, we simply type,

> abline(ratings.lm)

as abline() is smart enough to extract slope and intercept from the linear model
object by itself.

4.3.2.3 Correlation
You now know how to estimate the intercept and the slope of a regres-

sion line. There is much more to be learned from a linear model than just this. We
illustrate this by looking in some more detail at scatterplots of paired standard
normal random variables. Each panel of Figure 4.10 plots random samples of such
paired vectors. The technical name for such paired distributions is a bivariate

standard normal distribution. The dashed line in these panels represents the
line Y = X ; the solid line the regression line. In the upper left panel, we have a
scatter of points roughly in the form of a disc. Many points are far away from the
regression line, which happens to have a negative slope. The upper right panel also
shows a wide scatter, but here the regression line has a positive slope. The points
in the lower left panel are somewhat more concentrated and closer to the regres-
sion line. The regression line itself is becoming more similar to the line Y = X .
Finally, the lower right panel has a regression line that has crept even closer
to the dashed line, and the data points are again much closer to the regression
line.

The technical term for the degree to which the data points cluster around the
regression line is correlation. This degree of correlation is quantified by means
of a correlation coefficient. The correlation coefficient of a given population
is denoted by ρ, and that of a sample from that population by r . The correlation
coefficient is bounded by −1 (a perfect negative correlation) and +1 (a perfect
positive correlation). When the correlation is −1 or +1, all the data points lie
exactly on the regression line, and in that case the regression line is equal to the
line Y = −X and Y = X respectively. This is a limiting case that never arises in
practice.

The sample correlation r for each of the four scatterplots in Figure 4.10 is listed
above each panel, and varies from −0.07 in the upper left to 0.89 in the lower
right. You can regard r as a measure of how useful it is to fit a straight line to the
data. If r is close to zero, the regression line does not help at all to predict where
the data points will be for a given value of the predictor variable. This is easy
to see by comparing the upper and lower panels. In the upper panels, the scatter
along the Y axis is very large for almost all values of X . For a large majority
of observed data points, the predicted value (somewhere on the regression line)

88 basic statistical methods

0 1 2

0
1

2

x

y

0 1 2

0
1

2

x

y

r = 0.2

0 1 2

0
1

2

x

y

r = 0.61

0 1 2

0
1

2

x

y

r = 0.888

Figure 4.10. Scatterplots for four paired standard normal random variables with different
population correlations (ρ = 0.0, 0.2, 0.5, 0.9). The correlations shown above each panel are
the sample correlations.

is going to be way off. This changes in the lower panels, where the regression
line starts to become predictive. Another way of thinking about r is that it tells
us something about how much of the scatter we get a handle on. In fact, the
appropriate measure for evaluating how much of the scatter is accounted for,
or explained, by the model is not r itself, but r2 (often denoted by R2). More
precisely, R2 quantifies the proportion of the variance in the data that is captured
and explained by the regression model.

Let’s pause for a moment to think about what it means to explain variance.
When we try to fit a model to a data set, the goal is to be able to predict what the
value of the dependent variable is, given the predictors. The better we succeed
in predicting, the better the predictors succeed in explaining the variability in
the dependent variable. When you are in bad luck, with lousy predictors, there is
little variability that your model explains. In that case, the values of the dependent
variable jump around almost randomly. In this situation, R2 will be close to zero.

4.3 Paired vectors 89

The better the model, the smaller the random variation, the variation that we do
not yet understand, will be, and the closer R2 will be to one.

Scatterplots like those shown in the panels of Figure 4.10 can be obtained with
the help of mvrnormplot.fnc,

> mvrnormplot.fnc(r = 0.9)

a convenience function defined in the languageR package. As we are dealing
with random numbers, your output will be somewhat different each time you
run this code, even for the same r . You should try out mvrnormplot.fnc()
with different values of r to acquire some intuitions about what correlations of
different strengths look like.

4.3.2.4 Summarizing a linear model object
We return to our running example of mean size and weight ratings.

Recall that we created a linear model object, ratings.lm, and extracted the
coefficients of the regression line from this object. If we summarize the model with
summary(), we obtain much more detailed information, including information
about R2:

> summary(ratings.lm)
Call:

lm(formula = meanSizeRating ˜ meanWeightRating, data = ratings)
Residuals:

Min 1Q Median 3Q Max
-0.096368 -0.020285 0.002058 0.024490 0.075310

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.526998 0.010632 49.57 <2e-16
meanWeightRating 0.926474 0.003837 241.45 <2e-16

Residual standard error: 0.03574 on 79 degrees of freedom
Multiple R-Squared: 0.9986, Adjusted R-squared: 0.9986
F-statistic: 5.83e+04 on 1 and 79 DF, p-value: < 2.2e-16

In what follows, we will walk through this summary line by line.
The first thing that the summary does is remind us of how the object was

created. We then get a brief summary of the distribution of the residuals. We
postpone to Chapter 6 the discussion of what the residuals are and why they are
so important as to be mentioned in the summary of the model.

Next, we see a table with the coefficients of the model: a coefficient for
the intercept (0.527) and a coefficient for the slope (0.926). Each coefficient
comes with three other numbers: its standard error, a t-value, and a p-value. The
p-value tells us whether the coefficient is significantly different from zero. If the
coefficient for a predictor is zero, there is no relation at all between the predic-
tor and the dependent variable, in which case it is worthless as a predictor. In
order to ascertain whether a coefficient is significantly different from zero, and
hence potentially useful, a two-tailed t-test is carried out, using the t-value and
the associated degrees of freedom (79, this number is listed further down in the
summary). The t-value itself is the value of the coefficient divided by its standard

90 basic statistical methods

error. This standard error is a measure of how sure we are about the estimate of
the coefficient. The smaller the standard error, the smaller the confidence interval
around the estimate, the less likely it is that zero will be included in the acceptance
region, and hence the smaller the probability that it might just as well be zero.

Sometimes, it is useful to be able to access the different parts of
the summary. You can identify the components of the summary with
names(summary(ratings.lm)), and we can extract these components from
the summary with the help of the $ operator. For instance, we obtain the table of
coefficients with $coef:

> summary(ratings.lm)$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5269981 0.010632282 49.56585 2.833717e-61
meanWeightRating 0.9264743 0.003837106 241.45129 4.380725e-115

Because this table is a matrix, we can access the t-values or the estimates of the
coefficients themselves:

> summary(ratings.lm)$coef[,3]
(Intercept) meanWeightRating

49.56585 241.45129
> summary(ratings.lm)$coef[,1]

(Intercept) meanWeightRating
0.5269981 0.9264743

Since summary(ratings.lm)$coef is not a data frame, we cannot reference
columns by name with the $ operator, unfortunately. To do so, we first have to
convert it explicitly into a data frame:

> data.frame(summary(ratings.lm)$coef)$Estimate
[1] 0.5269981 0.9264743

Let’s return to the summary, and proceed to its last three lines. The residual

standard error is a measure of how unsuccessful the model is; it gauges the
variability in the dependent variable that we can’t handle through the predictor
variables. The better a model is, the smaller its residual standard error will be.
The next line states that the multiple R-squared equals 0.9986. This R-squared
is the squared correlation coefficient, r2, which quantifies, on a scale from 0 to
1, the proportion of the variance that the model explains. We get the value of the
correlation coefficient r by taking the square root of 0.9986, which is 0.9993.
This is a bit cumbersome, but, fortunately, there are quicker ways of calculating
r . The function cor() returns the correlation coefficient,

> cor(ratings$meanSizeRating, ratings$meanWeightRating)
[1] 0.9993231

and cor.test() provides the correlation coefficient and also tests whether it is
significantly different from zero. It also lists a 95% confidence interval:

> cor.test(ratings$meanSizeRating, ratings$meanWeightRating)
Pearson’s product-moment correlation

data: ratings$meanSizeRating and ratings$meanWeightRating

4.3 Paired vectors 91

t = 241.4513, df = 79, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9989452 0.9995657
sample estimates:

cor
0.9993231

There is also a distribution-free, non-parametric correlation test, which does
not depend on the input vectors being approximally normally distributed, the
Spearman correlation test, which is based on the ranks of the observations in
the two vectors. It is carried out by cor.test() when you specify the option
method="spearman":

> cor.test(ratings$meanSizeRating, ratings$meanWeightRating,
+ method = "spearman")

Spearman’s rank correlation rho
data: ratings$meanSizeRating and ratings$meanWeightRating
S = 118, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.9986676
Warning message: p-values may be incorrect due to ties

We could have avoided the warning message by adding some jitter to the ratings,
but given the very low p-value, this is superfluous. The Spearman correlation
coefficient is often referenced as rs .

Returning to the summary of ratings.lm and leaving the discussion of the
adjusted R-squared to Chapter 6, we continue with the last line, which lists an
F-value. This F-value goes with an overall test of whether the linear model as
a whole succeeds in explaining a significant portion of the variance. Given the
small p-value listed in the summary, there is no question about lack of statistical
significance.

4.3.2.5 Problems and pitfalls of linear regression
Now that we have seen how to fit a linear model to a data set with

paired vectors, we proceed to two more complex examples that illustrate some
of the problems and pitfalls of linear regression. First consider the left panel of
Figure 4.11, which plots the frequency of the plural against the frequency of the
singular for the 81 nouns for animals and plants in the ratings data frame. The
problem that we are confronted with here is that there is a cluster of observations
near the origin combined with a handful of atypical points with very high values.
The presence of such outliers may mislead the algorithm that estimates the
coefficients of the linear model. If we fit a linear model to these data points,
we obtain the solid line. But if we exclude just the four words with singular
frequencies greater than 500, and then refit the model, we obtain the dashed line.
The two lines tell a rather different story which suggests that these four words are

92 basic statistical methods

0 500 1000 1500

0
2
0
0

4
0
0

6
0
0

8
0
0

frequency of singular

fr
e
q
u
e
n
cy

 o
f
p
lu

ra
l

2 3 4 5 6 7

0
1

2
3

4
5

6
7

log(frequency of singular+1)

lo
g
(f

re
q
u
e
n
cy

 o
f
p
lu

ra
l+

1
)

Figure 4.11. Scatterplots for singular and plural frequency with regression
lines. Solid lines represent ordinary least squares regression on all data points,
the dashed line represents an ordinary least squares regression with four
outliers excluded, and dotted lines represents robust regression lines obtained
with lmsreg().

atypical with respect to the lower-frequency words. There are various regression
techniques that are more robust with respect to outliers than is lm(). The dotted
line illustrates the lmsreg() function, which, unfortunately, does not tell us
whether the predictors are significant. From the graph we can tell that it considers
rather different words to be outliers, namely, the words with high plural frequency
but singular frequency less than 500.

Before we move on to a better solution for this regression problem, let’s first
review the code for the left panel of Figure 4.11:

> plot(ratings$FreqSingular, ratings$FreqPlural)
> abline(lm(FreqPlural ˜ FreqSingular, data = ratings), lty = 1)
> abline(lm(FreqPlural ˜ FreqSingular,
+ data = ratings[ratings$FreqSingular < 500,]), lty = 2)

In order to have access to lmsreg(), we must first load the MASS package:

> library(MASS)
> abline(lmsreg(FreqPlural ˜ FreqSingular, data = ratings), lty = 3)

The problem illustrated in the left panel of Figure 4.11 is that word frequency
distributions are severely skewed. There are many low-probability words and
relatively few high-probability words. This skewness poses a technical problem
to lm(). A few high-probability outliers become overly influential, and shift the
slope and intercept to such an extent that it becomes suboptimal for the majority
of data points. The technical solution is to apply a logarithmic transformation in
order to remove at least a substantial amount of this skewness by bringing many
straying outliers back into the fold. The right panel of Figure 4.11 visualizes these
benefits of the logarithmic transforms. We now have a regression line that captures
the main trend in the data quite well. The robust regression line has nearly the
same slope, albeit a slightly higher intercept. It is influenced less by the four data

4.3 Paired vectors 93

points with exceptionally low plural frequencies given their singular frequencies,
which have a small but apparently somewhat disproportionate effect on lm()’s
estimate of the intercept. In Chapter 6, we will discuss in more detail how undue
influence of potential outliers can be detected and what measures can be taken to
protect your model against them.

The second example addresses the relation between the mean familiarity rating
and mean size rating for our 81 nouns in the ratings data set. The question of
interest is whether it is possible to predict how heavy people think an object is
from how frequently they think the name for that object is used in the language.
We address this question with lm(),

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity, data = ratings)

extract the table of coefficients from the summary, and round it to four decimal
digits:

> round(summary(ratings.lm)$coef, 4)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7104 0.4143 8.9549 0.0000
meanFamiliarity -0.2066 0.1032 -2.0014 0.0488

The summary presents a negative coefficient for meanFamiliarity that is just
significant at the 5% level. This suggests that objects that participants judge to
have more familiar names in the language receive somewhat lower size ratings.

This conclusion is, however, unwarranted as there are lots of things wrong with
this analysis. But this becomes apparent only by graphical inspection of the data
and of the predictions of the model. Let’s make a scatterplot of the data, the first
thing that we should have done anyway. The scatterplot smoother (lowess())
shown in the upper left panel of Figure 4.12 suggests a negative correlation, but
what is worrying is that there are no points close to the line in the center of the
graph. The same holds for the regression line for the model that we just fitted to
the data with lm(), as shown in the upper right panel.

If you look carefully at the scatterplots, you can see that there seem to be two
separate strands of data points, one with higher size ratings, and one with lower
size ratings. This intuition is explored in the lower panels, where we link this
difference to the two kinds of nouns in ratings. The nouns naming plants and
those naming animals (as specified by the factor Class) now receive their own
separate regression lines.

First consider the lower left panel of Figure 4.12. We set up the axes, their
labels, and tick marks, but we prohibit displaying the data points with type =

"n":

> plot(ratings$meanFamiliarity, ratings$meanSizeRating,
+ xlab = "mean familiarity", ylab = "mean size rating",
+ type = "n")

Since we want to consider the plants and animals by themselves, we create separate
data frames,

94 basic statistical methods

2 3 4 5 6

1
.5

2
.5

3
.5

4
.5

mean familiarity

m
e

a
n

 s
iz

e
 r

a
tin

g

2 3 4 5 6

1
.5

2
.5

3
.5

4
.5

mean familiarity

m
e

a
n

 s
iz

e
 r

a
tin

g

2 3 4 5 6

1
.5

2
.5

3
.5

4
.5

mean familiarity

m
e

a
n

 s
iz

e
 r

a
tin

g

p

p

pp p
p

p
p

p p p
pp

p
pp

p
pp p

p
p ppp

pp

p
pp

p

p

p
p

p

a
a

a

a
aa

a

a aa

a

a

a
a

a

a

a a

a

a
a

a

a

a

a

a

aa a
a a

aa a
aa aaaa

a
aa a a

a

2 3 4 5 6
1

.5
2

.5
3

.5
4

.5

mean familiarity

m
e

a
n

 s
iz

e
 r

a
tin

g
p
p

pp

p

p

p
ppp
p
p
p
pppp ppp

p
pp
p
ppp
pp

p
pp

p

p
p

aa
aa

aa

a

a
a

a

a

a

a

aa
aa

a

a

a
aa
aa

a

a
aa

a

a
a

a
a
a
a
a
a a

a
a

a

a
a

aa
a

Figure 4.12. Scatterplots for mean rated size as a function of mean familiarity, with scatterplot
smoothers (left panels) and linear (upper right, lower left) and quadratic (lower right) fits. The
upper panels show fits to all data points, the lower panels show fits to the words for plants (p)
and animals (a) separately.

> plants = ratings[ratings$Class == "plant",]
> animals = ratings[ratings$Class == "animal",]

add the points for the plants together with a scatterplot smoother,

> points(plants$meanFamiliarity, plants$meanSizeRating,
+ pch = ’p’, col = "darkgrey")
> lines(lowess(plants$meanFamiliarity, plants$meanSizeRating),
+ col = "darkgrey")

and repeat the process for the animals:

> points(animals$meanFamiliarity, animals$meanSizeRating,
+ pch = ’a’)
> lines(lowess(animals$meanFamiliarity, animals$meanSizeRating))

Finally, we fit separate models and add their regression lines as well:

> plants.lm = lm(meanSizeRating ˜ meanFamiliarity, plants)
> abline(coef(plants.lm), col = "darkgrey", lty = 2)
> animals.lm = lm(meanSizeRating ˜ meanFamiliarity, animals)
> abline(coef(animals.lm), lty = 2)

The pattern revealed in the lower left panel of Figure 4.12 makes a lot more sense.
The plants and the animals received very different size ratings. Within each subset,

4.3 Paired vectors 95

0 2 4

0
2

4
6

8
1
0

x

y

Figure 4.13. Two parabola.

there seems to be a positive correlation with mean familiarity, as shown by the
smoothers (solid lines) and the linear regression lines (dashed).

However, we are still not there. If you inspect the two kinds of regression lines
carefully, you will see that the smoother is slightly curved, both for the animals
and also for the plants. Fitting a straight line through these data points may not be
justified — after all, we have no theoretical reasons to suppose that this relation
must be strictly linear. In the lower right panel of Figure 4.12, we have relaxed
the linearity assumption by allowing for the possibility that the curve is part of a
parabola.

Figure 4.13 illustrates two parabola, one with a minimum (represented by the
black line) and one with a maximum (represented by a grey line). Given a series
of X -values,

> xvals = seq(-4, 4, 0.1)

we obtain the corresponding Y -values by summing an intercept, a weighted term
with xvals, and a weighted term with xvals-squared:

> yvals1 = 0.5 + 0.25 * xvals + 0.6 * xvalsˆ2
> yvals2 = 2.5 + 0.25 * xvals - 0.2 * xvalsˆ2

We plot the points for the first parabola, connect them with a line (type = "l"),
and add the line for the second parabola using a separate call to lines():

> plot(xvals, yvals1, xlab = "x", ylab = "y",
+ ylim = range(yvals1, yvals2), type = "l")
> lines(xvals, yvals2, col = "darkgrey")

Each parabola has an intercept, which determines where the parabola intersects
with the Y -axis. It also has a slope, the number before xvals, just as do straight
lines. But in addition, it has a second slope for xvals-squared. This is the
quadratic term that brings the curvature into the graph. If this second slope
is positive, the curve is shaped like a cup, if it is negative, the curve is shaped like
a cap.

96 basic statistical methods

In order to do justice to the curvature that we observed in the lower panels of
Figure 4.12, we assume that the data points of, e.g. the nouns denoting plants, are
close to part of the curve of a parabola. Instead of feeding lm() with a formula
describing a straight line, we feed it a formula describing a parabola by adding a
quadratic term, the square of meanFamiliarity. Because the ∧ operator has a
different function in formulas (see Chapter 6), we include meanFamiliarity∧2
within the scope of the protective I() operator:

> plants.lm = lm(meanSizeRating ˜ meanFamiliarity +
+ I(meanFamiliarityˆ2), data = plants)
> summary(plants.lm)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.1902476 1.28517759 4.038545 0.0003142449
meanFamiliarity -1.6717053 0.59334724 -2.817415 0.0082290129
I(meanFamiliarityˆ2) 0.2030369 0.06659252 3.048944 0.0045826280

Instead of the familiar two coefficients, we now have three coefficients, one for
the intercept, one for the linear component, and one for the quadratic compo-

nent. Note that the linear and the quadratic components of meanFamiliarity
are both significant, as you can tell by inspecting their p-values. Their joint effect
is shown by the grey solid line in the lower right panel of Figure 4.12, where we
use the function predict() to obtain the size ratings predicted by the model:

> plot(ratings$meanFamiliarity, ratings$meanSizeRating,
+ xlab = "mean familiarity", ylab = "mean size rating", type = "n")
> points(plants$meanFamiliarity, plants$meanSizeRating,
+ pch = ’p’, col = "darkgrey")
> plants$predict = predict(plants.lm)
> plants = plants[order(plants$meanFamiliarity),]
> lines(plants$meanFamiliarity, plants$predict, col = "darkgrey")

In a similar way, we can fit a quadratic function to the data points for the animals,
extract the fitted values, and add these to the plot. What is unsatisfactory about this
analysis, however, is that we have fitted two models to a single data set, instead
of one. In section 4.4.1 we will return to this data set to show how to specify a
model that can handle all data points simultaneously.

At this point, you may have started to wonder about the term “linear” in linear

model, as we have just used a linear model to produce a curve and not a straight
line. In fact, the term “linear” does not say anything about the relation between
the dependent variable and the predictor(s). What “linear” denotes is that the
dependent variable can be expressed as the sum of a series of weighted (pos-
sibly transformed) predictor variables. The technical term for this is that the
dependent variable is a linear combination of its predictors. The weights of
the predictors are the coefficients that lm() estimates. Thus, in our model fit to
the words for plants, the meanSizeRating is linear in meanFamiliarity and
I(meanFamiliarity∧2). It may help to compare the formula that drives lm()
and the resulting equation that tells us how to predict the mean size rating for a

4.3 Paired vectors 97

given word i from the mean familiarity rating of that word given the coefficients
of the fitted model:

meanSizeRating ∼ meanFamiliarity + I(meanFamiliarity∧2)
meanSizeRatingi = 5.19 − 1.67 ∗ meanFamiliarityi +

+0.20 ∗ meanFamiliarity2
i

Note that we don’t have to specify the intercept in the formula, as lm() adds an
intercept term by default. The corresponding equation has the estimated intercept,
followed by the same terms as in the formula, but now each term is preceded by
its weight, its estimated coefficient that is listed in the summary.

Let’s wrap up with a summary of four basic rules of conduct for the analysis
of paired vectors:

1. Visualize! Make scatterplots, add non-parametric smoothers, look at
your data.

2. Beware of outliers! If your distributions are skewed, transform them
to bring the outliers back into the fold. Outliers due to experimental
flaws should be removed from the data set.

3. Do not impose linearity a priori! Straight lines are often a convenient
simplification at best: curves are ubiquitous in nature.

4. Keep your model as simple as possible! Don’t add unnecessary
quadratic terms.

4.3.3 What does the joint density look like?

When you have two vectors that are paired, the question arises of what
their joint density looks like. Recall that when we are dealing with the density of
a single random variable, the area enclosed by the density curve and the X axis
is equal to 1. When we have two paired vectors, the density is a surface, and the
volume between the density surface and the plane spanned by the X and Y axes is
now equal to 1. The upper left panel of Figure 4.14 illustrates what the density of
a random sample of 1000 bivariate standard normal variates might look like. In
what follows, we go through the steps required to make this density plot. Along
the way, some new functions and concepts will be introduced.

First of all, we need a function for bivariate normal random numbers. The
function rnorm() is not useful here. We could use it to generate two vectors
of random numbers, but these vectors will be uncorrelated. For a function for
generating two or more correlated vectors (brought together in a matrix), we need
to load the MASS package, so that the function mvrnorm() becomes available
to us. We use mvrnorm() to generate a random sample of n = 1000 paired
random numbers sampled from populations with means of 0, variances of 1, and
a correlation of 0.8:

> library(MASS)
> x = mvrnorm(n = 1000, mu = c(0, 0),

98 basic statistical methods

X

Y

d
e
n
sity

bivariate standard normal

log X

lo
g

Y

d
e
n
sity

log types lo
g

ra
nk

d
e
n
sity

lexical neighbors and rank

log Fsg lo
g

Fp
l

d
e
n
sity

singular and plural frequency

Figure 4.14. Random samples of a bivariate standard normal and a
lognormal-Poisson variate (upper panels). The lower left panel shows the joint
distribution of phonological neighborhood size and rank in the neighborhood
for four-phoneme Dutch word forms, the lower right panel shows the joint
distribution for singular and plural frequency for monomorphemic Dutch nouns.

+ Sigma = cbind(c(1, 0.8), c(0.8, 1)))
> head(x)

[,1] [,2]
[1,] 0.5694554 0.7122192
[2,] -1.8851621 -2.2727134
[3,] -1.7352253 -1.7685805
[4,] -1.2654685 -0.1380204
[5,] -0.2449445 -0.7448824
[6,] -1.1241598 -1.0330096

We use cor() to check that the correlation between the two column vectors is
indeed close to the population parameter (0.8) that we specified in the call to
mvrnorm():

> cor(x[,1], x[,2])
[1] 0.7940896

The third argument of mvrnorm(), Sigma,

> Sigma
[,1] [,2]

[1,] 1.0 0.8
[2,] 0.8 1.0

4.3 Paired vectors 99

created with cbind(), which binds vectors column-wise, is the variance-

covariance matrix of our bivariate standard normal sample x. The Sigmamatrix
has the variances on the main diagonal, and the covariances on the subdiagonal.
The covariance is a measure that is closely related to the correlation. But whereas
the correlation is scaled so that its values are between −1 and +1, the value of
the covariance can range between −∞ and +∞, and depends on the scales of
its input vectors. We can illustrate the difference between the covariance and the
correlation by means of the output of mvrnorm(), which as we saw previously
is a two-column matrix. The correlation of the two-column vectors is the same,
irrespective of whether we scale any of the vectors up, or down:

> cor(x[, 1], x[, 2])
[1] 0.7940896
> cor(x[, 1], 100 * x[, 2])
[1] 0.7940896
> cor(0.001 * x[, 1], 100 * x[, 2])
[1] 0.7940896

In contrast, the covariance changes substantially by these changes in scale:

> cov(x[, 1], x[, 2])
[1] 0.7940896
> cov(x[, 1], 100 * x[, 2])
[1] 80.10768
> cov(0.003 * x[, 1], 100 * x[, 2])
[1] 0.2403230

It is only when the two variances are equal to 1, as in the above variance-covariance
matrix, that the covariance and the correlation are identical.

Now that we have seen how to create bivariate normal random numbers, we
proceed to estimate the corresponding density surface with the two-dimensional
analogue of density(), the function kde2d(). The output of kde2d() is a list
with X -coordinates, Y -coordinates, and the Z -coordinate for each combination
of the X and Y . The number of X -coordinates (and Y -coordinates) is specified
with the parameter n, which we set to 50. Jointly, the X -, Y -, and Z -coordinates
define the estimated density surface. We plot this surface with persp(), which
produces a perspective plot:

> persp(kde2d(x[, 1], x[, 2], n = 50),
+ phi = 30, theta = 20, # angles defining viewing direction
+ d = 10, # strength of perspective
+ col = "lightblue", # color for the surface
+ shade = 0.75, ltheta = -100, # shading for viewing direction
+ border = NA, # we use shading, so we disable border
+ expand = 0.5, # shrink the vertical direction by 0.5
+ xlab = "X", ylab = "Y", zlab = "density") # add labels
+ mtext("bivariate standard normal", 3, 1) # and add title

The wide range of options of persp() is described in detail on its help page. You
will also find the command demo(persp) useful, which gives some examples
of what persp() can do, including examples of the required code.

100 basic statistical methods

Paired vectors need not follow a bivariate normal distribution. The upper right
panel of Figure 4.14 plots a bivariate density that is lognormal-Poisson dis-

tributed (cf. Baayen et al., 2003). This is a distribution that provides a reasonable
first approximation for paired word frequency counts obtained, e.g. by calculating
the frequencies of a set of words in two equally sized text corpora. A lognormal

random variable is a variate that is normally distributed after the logarithmic
transformation. Given the (simplifying) assumption that word frequencies are
lognormally distributed, we generate n = 1000 lognormally distributed random
numbers with rlnorm() with which we model the Poisson rates λ at which 1000
words are used in texts. In other words, for a given word, we model its token
frequency in a text corpus as being Poisson-distributed. In order to simulate the
frequency of a given word in two corpora, we generate two random numbers with
rpois() for that word, given its usage rate λ.

Let’s make this more concrete by showing how this works in R. We begin
with defining the number of words n, the corresponding vector of usage rates
lambdas, and a two-column matrix of zeros in which we will store the two
simulated frequencies of a given word:

> n = 1000 # number of words
> lambdas = rlnorm(n, 1, 4) # lognormal random numbers
> mat = matrix(nrow = n, ncol = 2) # define matrix with zeros

We proceed with a for loop to store the two frequencies for each word i in mat.
The variable i in the loop starts at 1, ends at n, and is incremented in steps of 1.
For each value of i, we fill the i-th row of matwith two Poisson random numbers,
both obtained for the same Poisson rate given by the i-th λ:

> for (i in 1:n) { # loop over each word index
+ mat[i,] = rpois(2, lambdas[i]) # store Poisson frequencies
+ }
> mat[1:10,]

[,1] [,2]
[1,] 319 328
[2,] 22 18
[3,] 0 0
[4,] 3 2
[5,] 307 287
[6,] 29 29
[7,] 240 223
[8,] 2 1
[9,] 1 0
[10,] 523 527

The first row of mat lists the frequencies for the first word, the second row those
for the second word, and so on. Now that mat has been properly filled with
simulated frequencies of occurrence, we use it as input to the density estimation
function. Before we do so, it is essential to apply a logarithmic transformation
to remove most of the skew. As there are zero frequencies in mat, and as the
logarithm of zero is undefined, we back off from zero by adding 1 to all cells of
mat before taking the log:

4.4 A numerical vector and a factor: analysis of variance 101

> mat = log(mat+1)

We now use the same code as previously for the bivariate normal density,

> persp(kde2d(mat[, 1], mat[, 2], n = 50),
+ phi = 30, theta = 20, d = 10, col = "lightblue",
+ shade = 0.75, box = T, border = NA, ltheta = -100, expand = 0.5,
+ xlab = "log X", ylab = "log Y", zlab = "density")

but change the accompanying text:

> mtext("bivariate lognormal-Poisson", 3, 1)

The lower panels of Figure 4.14 illustrate two empirical densities. The left
panel concerns the phonological similarity space of 4171 Dutch word forms with
four phonemes. For each of these words, we calculated the type count of four-
phoneme words that differ in only one phoneme, its phonological neighborhood
size. For each word, we also calculated the rank of that word in its neighborhood.
(If the word was the most frequent word in its neighborhood, its rank was 1, etc.)
After removal of words with no neighbors and log transforms, we obtain a density
that is clearly not strictly bivariate normal, but that might perhaps be considered
as sufficiently approximating a bivariate normal distribution when considering a
regression model.

The lower right panel of Figure 4.14 presents the density for the (log) frequen-
cies of 4633 Dutch monomorphemic nouns in the singular and plural form. This
distribution has the same kind of shape as that of the lognormal-Poisson variate
in the upper right.

4.4 A numerical vector and a factor: analysis of variance

Up till now, we have considered the functional relation between two
numerical vectors. In this section, we consider how to analyze a numerical vector
that is paired with a factor. Consider again mean familiarity ratings and the class
of the words in the ratings data frame:

> ratings[1:5, c("Word", "meanFamiliarity", "Class")]
Word meanFamiliarity Class

23 almond 3.72 plant
70 ant 3.60 animal
12 apple 5.84 plant
76 apricot 4.40 plant
79 asparagus 3.68 plant

We can use the lm() function to test whether there is a difference in mean
familiarity between nouns for plants and nouns for animals. This is known as a
one-way analysis of variance:

102 basic statistical methods

> summary(lm(meanFamiliarity ˜ Class, data = ratings))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5122 0.1386 25.348 < 2e-16
Classplant 0.8547 0.2108 4.055 0.000117

The summary shows two highly significant p-values, so we may infer that the
difference between the two group means must somehow be significant. But let’s
delve a little deeper into what is happening here. After all, Class is a factor and
not a numerical variable representing a line for which a slope and an intercept
make sense.

What lm() does for us with the factor Class is to recode its factor levels
into one or more numerical vectors. Because Class has only two levels, one
numerical vector suffices; a vector with zeros for the animals and with ones for
the plants. This numerical vector is labeled as Classplant, and lm() carries out
its standard calculations with this vector just as it would for any other numerical
variable. Hence, it reports an intercept and a slope. However, intercept and slope
receive a special interpretation that crucially depends on how the factor levels are
recoded numerically.

The numerical recoding of factor levels is referred to as dummy coding.
There are many different algorithms for dummy coding. (The help page for
contr.treatment() provides further information.) The kind of dummy cod-
ing used in this book is known as treatment coding. R handles dummy coding
automatically for us, but by way of illustration we add treatment dummy codes
to our data frame by hand. For convenience, we first make a copy of ratings
with only the columns relevant for the current discussion included:

> dummy = ratings[,c("Word", "meanFamiliarity", "Class")]

We now add the dummy codes: a 1 for plants, and a 0 for animals, in a vector
named Classplant, following R’s naming conventions:

> dummy$Classplant = 1
> dummy[dummy$Class == "animal",]$Classplant = 0
> dummy[1:5,]

Word meanFamiliarity Class Classplant
23 almond 3.72 plant 1
70 ant 3.60 animal 0
12 apple 5.84 plant 1
76 apricot 4.40 plant 1
79 asparagus 3.68 plant 1

It does not matter which factor level is assigned a 1 and which a 0. Some decision
has to be made; R bases its decision on alphabetical order. Hence animal is
singled out as the default or reference level that is contrasted with the level
plant. R labels the dummy vector with the factor name followed by the non-
default factor level, hence the name Classplant. If we now run lm() on dummy
with Classplant as predictor instead of Class, we obtain exactly the same
table of coefficients as above:

4.4 A numerical vector and a factor: analysis of variance 103

> summary(lm(meanFamiliarity ˜ Classplant, data = dummy))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.5122 0.1386 25.348 < 2e-16
Classplant 0.8547 0.2108 4.055 0.000117

Let’s now study this table in some more detail. It lists two coefficients. First
consider the coefficient labeled intercept. Since all we are doing is comparing the
ratings for the two levels of the factor Class, the term “intercept” must have a
more general interpretation than “the Y -value of a line when X = 0.” What the
intercept actually represents here is the group mean for the default level, animal.
In other words, the intercept is nothing else but the mean familiarity for the subset
of animals:

> mean(ratings[ratings$Class == "animal",]$meanFamiliarity)
[1] 3.512174
> coef(ratings.lm)[1]
(Intercept)

3.512174

The t-value and its corresponding p-value answer the question as to whether the
group mean for the animals, 3.5122, is significantly different from zero. It clearly
is, but this information is not that interesting to us as we are concerned with the
difference between the two group means.

Consider therefore the second coefficient in the model, 0.8547. The value of
this coefficient represents the contrast (i.e. the difference) between the group
mean of the plants and that of the animals. When a word does not belong to the
default class, i.e. it denotes a plant instead of an animal, then the mean has to
be adjusted upwards by adding 0.8547 to the intercept, the group mean for the
animals. In other words, the group mean for the nouns denoting plants is 4.3669
(3.5122 + 0.8547). What the t-test in the above table of coefficients tells us is
that this adjustment of 0.8547 is statistically significant. In other words, we have
ample reason to suppose that the two group means differ significantly.

The t-value and p-value obtained here are identical to those for a straight-
forward t-test when we force t.test() to treat the variances of the familiarity
ratings for plants and animals as identical:

> t.test(animals$meanFamiliarity, plants$meanFamiliarity,
+ var.equal = TRUE)
t = -4.0548, df = 79, p-value = 0.0001168
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.2742408 -0.4351257
sample estimates:
mean of x mean of y
3.512174 4.366857

Note once more that the mean for animals is identical to the coefficient for the
intercept, and that the mean for plants is the sum of the intercept and the coefficient
adjusting for the level plant of the factor Class.

104 basic statistical methods

Whereas the function t.test() is restricted to comparing two group means,
the lm() function can be applied to a factor with more than two levels. By way
of example, consider the auxiliaries data set, which provides information on
285 Dutch verbs:

> head(auxiliaries)
Verb Aux VerbalSynsets Regularity

1 blijken zijn 1 irregular
2 gloeien hebben 3 regular
3 glimmen zijnheb 2 irregular
4 rijzen zijn 4 irregular
5 werpen hebben 3 irregular
6 delven hebben 2 irregular

The column labeled Aux specifies what the appropriate auxiliary for the perfect
tense is for the verb listed in the first column. Dutch has two auxiliaries for the
perfect tense, zijn (“be”) and hebben (“have”), and verbs subcategorize as to
whether they select only zijn, only hebben, or both (depending on the aspect of
the clause and the inherent aspect of the verb). The column VerbalSynsets

specifies the number of verbal synsets in which a given verb appears in the Dutch
WordNet. The final column categorizes the verbs as regular versus irregular.

We test whether the number of verbal synsets varies significantly with auxiliary
by modeling VerbalSynsets as a function of Aux:

> auxiliaries.lm = lm(VerbalSynsets ˜ Aux, data = auxiliaries)

Let’s first consider the general question of whether Aux helps explain at least
some of the variation in the number of verbal synsets. This question is answered
with the help of the anova() function:

> anova(auxiliaries.lm)
Analysis of Variance Table

Response: VerbalSynsets
Df Sum Sq Mean Sq F value Pr(>F)

Aux 2 117.80 58.90 7.6423 0.0005859
Residuals 282 2173.43 7.71

The anova() function reports an F-value of 7.64, which, for 2 and 282 degrees
of freedom, is highly significant (compare 1-pf(7.6423, 2, 282)). What this
test tells us is that there are significant differences in the mean number of synsets
for the three kinds of verbs. However, it does not specify which of the — in this
case 3 — possible differences in the means might be involved: hebben – zijn,
hebben – zijnheb, and zijn – zijnheb. Some information as to which of
these means are really different can be gleaned from the summary:

> summary(auxiliaries.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.4670 0.1907 18.183 < 2e-16
Auxzijn 0.5997 0.7417 0.808 0.419488
Auxzijnheb 1.6020 0.4114 3.894 0.000123

4.4 A numerical vector and a factor: analysis of variance 105

From the summary we infer that the default or reference level is hebben:
hebben precedes zijn and zijnheb in the alphabet. This explains why there
is no row labeled with Auxhebben in the summary table. Since hebben is the
default, the intercept (3.4670) represents the group mean for hebben. There
are two additional coefficients, one for the contrast between the group mean
of hebben versus zijn, represented by the vector of dummy contrasts labeled
Auxzijn, and one for the contrast between the group mean for hebben and that
of zijnheb, represented by the dummy vector Auxzijnheb. Hence, we can
reconstruct the other two group means from the table of coefficients. The mean
for zijn is 3.4670 + 0.5997, and the mean for verbs allowing both auxiliaries
is 3.4670 + 1.6020. The t-test for the intercept tells us that 3.4670 is unlikely
to be zero, which is not of interest to us here. The coefficient of 0.5997 (for the
verbs taking zijn) is not significant (p > 0.40). This indicates that there is no
reason to suppose that the means of the verbs taking hebben and those taking
zijn are different. The coefficient for verbs taking both auxiliaries is significant,
so we know that this mean is really different from the mean for verbs selecting
only hebben.

There is one comparison that is left out in this example: (zijn versus zijn-
heb). When a factor has more than three levels, there will be more comparisons
that do not appear in the table of coefficients. This is because this table lists only
those pairwise comparisons that involve the default level; the reference level that
is mapped onto the intercept.

A question that often arises when a factor has more than two levels is which
group means are actually different. In the present example, we might consider
renaming the factor levels so that the missing comparison appears in the table
of coefficients. This is not recommended, however, for two reasons. The first is
that it is cumbersome to do so, the second is that there is a statistical snag when
multiple comparisons are carried out on the same data.

Recall that we accept the outcome of a statistical experiment as surprising when
its p-value is extreme, for instance below α = 0.05. When we are interested in the
differences between, for instance, three group means, we have to be careful about
how we define what we count as extreme. The proper definition of an extreme
probability is, in this case, that at least one of the outcomes is truly surprising.
Now, if we simply carry out three separate t-tests with α = 0.05, the probability
of surprise for at least one comparison increases from 0.05 to 0.143. To see this,
we model our statistical experiment as a random variable with a probability of
success equal to 0.05 and a probability of failure equal to 0.95. The probability
of at least one success is the same as one minus the probability of no successes
at all, hence:

> 1 - pbinom(0, 3, 0.05)
[1] 0.142625

In other words, the probability that at least one out of three experiments will
be successful in producing a p-value less than 0.05 just by chance is 0.14. This

106 basic statistical methods

example illustrates that when we carry out multiple comparison we run the risk
of serious inflation in surprise. This is not what we want.

There are several remedies, of which I discuss two. The first is known as a Bon-

ferroni correction. For n comparisons, simply divide α by n. Any comparison
that produces a p-value less than α/n is sure to be significant at the α significance
level. Applied to our example, we begin by noting that Aux has three levels and
therefore three pairwise comparisons of two means are at issue. Since n = 3,
any pairwise comparison that yields a p-value less than 0.05/3 = 0.0167 can be
accepted as significant. If Auxwould have had four levels, the number of possible
pairwise comparisons would be six, so α = 0.0083 would have been appropriate.

The second remedy is to make use of Tukey’s honestly significant differ-

ence, available in R as TukeyHSD(). This method has greater power to detect
significant differences than the Bonferroni method, but has the disadvantage that
the means for each level of the factor should be based on equal numbers of ob-
servations. The implementation of Tukey’s HSD in R incorporates an adjustment
for sample size that produces sensible results also for mildly unbalanced designs.

For the present example, the counts of verbs, cross-classified by the auxiliary
they select, point to a very unbalanced design:

> xtabs(˜ auxiliaries$Aux)
auxiliaries$Aux
hebben zijn zijnheb

212 15 58

Hence, the Bonferroni adjustment is required. We could apply TukeyHSD() to
these data, but the results would be meaningless. To illustrate how to carry out
multiple comparisons using Tukey’s honestly significant difference, consider the
following (simplified) example from the help page of TukeyHSD(). From the
built-in data sets in R, we select the data frame named warpbreaks, which gives
the number of warp breaks per loom, where a loom corresponds to a fixed length
of yarn. For more information on this data set, type ?warpbreaks. We run a
one-way analysis of variance:

> warpbreaks.lm = lm(breaks ˜ tension, data = warpbreaks)
> anova(warpbreaks.lm)
Analysis of Variance Table

Response: breaks
Df Sum Sq Mean Sq F value Pr(>F)

tension 2 2034.3 1017.1 7.2061 0.001753
Residuals 51 7198.6 141.1
> summary(warpbreaks.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.39 2.80 12.995 < 2e-16
tensionM -10.00 3.96 -2.525 0.014717
tensionH -14.72 3.96 -3.718 0.000501

Residual standard error: 11.88 on 51 degrees of freedom
Multiple R-Squared: 0.2203, Adjusted R-squared: 0.1898
F-statistic: 7.206 on 2 and 51 DF, p-value: 0.001753

4.4 A numerical vector and a factor: analysis of variance 107

The table of coefficients suggests that there are significant contrasts of medium
and high tension compared to low tension. In order to make use of TukeyHSD(),
we have to rerun this analysis using a function specialized for analysis of variance,
aov():

> warpbreaks.aov = aov(breaks ˜ tension, data = warpbreaks)

The summary of the aov object gives exactly the same output as the anova

function applied to the lm object:

> summary(warpbreaks.aov)
Df Sum Sq Mean Sq F value Pr(>F)

tension 2 2034.3 1017.1 7.2061 0.001753
Residuals 51 7198.6 141.1

The F-value is the ratio of the variance estimates in the third column of the table,
1017.1/141.1 = 7.21. The F-test evaluates this ratio with the degrees of freedom
listed in the first column:

> 1 - pf (7.206, 2, 51)
[1] 0.0017529

Also note that the F-test in this summary yields the same results as the F-test
following the table of coefficients in the summary of warpbreaks.lm. Both
F-values tell exactly the same story: there are statistically significant differences
in the number of breaks as a function of the amount of tension. Let’s now apply
TukeyHSD():

> TukeyHSD(warpbreaks.aov)
Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = breaks ˜ tension, data = warpbreaks)

$tension
diff lwr upr p adj

M-L -10.000000 -19.55982 -0.4401756 0.0384598
H-L -14.722222 -24.28205 -5.1623978 0.0014315
H-M -4.722222 -14.28205 4.8376022 0.4630831

This table lists the differences in the means, the lower and upper end points of
the confidence intervals, and the adjusted p-value. A comparison of the adjusted
p-values for the M-L and H-L comparisons with the p-values listed in the table
of coefficients for warpbreaks.lm above shows that the adjusted p-values are
more conservative. For visualization (see Figure 4.15) simply type:

> plot(TukeyHSD(warpbreaks.aov))

Above, we fitted a linear model to the auxiliary data using lm(). Alternatively,
we could have used the aov() function. However, both methods, which are un-
derlyingly identical, may be inappropriate. We have already seen that the numbers
of observations for the three levels of Aux differ widely. More importantly, there
are also substantial differences in their variances:

108 basic statistical methods

0 5

L

Differences in mean levels of tension

Figure 4.15. Family-wise 95% confidence intervals for Tukey’s honestly
significant difference for the warpbreaks data. The significant differences
are those for which the confidence intervals do not intersect the dashed zero line.

> tapply(auxiliaries$VerbalSynsets, auxiliaries$Aux, var)
hebben zijn zijnheb

5.994165 18.066667 11.503932

It is crucial, therefore, to check whether a non-parametric test also provides
support for differences in the number of synsets for verbs with different auxiliaries.
The test we illustrate here is the Kruskal-Wallis rank sum test:

> kruskal.test(auxiliaries$VerbalSynsets, auxiliaries$Aux)
Kruskal-Wallis rank sum test

data: auxiliaries$VerbalSynsets and auxiliaries$Aux
Kruskal-Wallis chi-squared = 11.7206, df = 2, p-value = 0.002850

The small p-value supports our intuition that the numbers of synsets are not
uniformly distributed over the three kinds of verbs.

4.4.1 Two numerical vectors and a factor: analysis of covariance

In this section, we return to the analysis of the mean size ratings. What
we have done thus far is to analyze these data either with linear regression (the
first example in section 4.3.2) or with analysis of variance (section 4.4). In linear
regression, we used a numerical vector as predictor; in analysis of variance,
the predictor was a factor. The technical term for analyses with both numeric
predictors and factorial predictors is analysis of covariance. In R, the same
function lm() is used for all three kinds of analyses (regression, analysis of

4.4 A numerical vector and a factor: analysis of variance 109

variance, and analysis of covariance), as all three are built on the same fundamental
principles.

Recall that we observed a nonlinear relation between familiarity and size rat-
ing, and that we fitted a linear model with a quadratic term to the subset of nouns
denoting plants. We could fit a separate regression model to the subset of nouns
denoting animals, but what we really need is a model that tailors the regres-
sion lines to both subsets of nouns simultaneously. This is accomplished in the
following linear model, in which we include both meanFamiliarity and the
factor Class as predictors:

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2), data = ratings)
> summary(ratings.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.42894 0.54787 8.084 7.6e-12
meanFamiliarity -0.63131 0.29540 -2.137 0.03580
I(meanFamiliarityˆ2) 0.10971 0.03801 2.886 0.00508
Classplant -1.01248 0.41530 -2.438 0.01711
meanFamiliarity:Classplant -0.21179 0.09779 -2.166 0.03346

Residual standard error: 0.3424 on 76 degrees of freedom
Multiple R-Squared: 0.8805, Adjusted R-squared: 0.8742
F-statistic: 140 on 4 and 76 DF, p-value: < 2.2e-16

Let’s consider the elements of this model by working through the table of coef-
ficients. As usual, there is an intercept, which represents a modified group mean
for the subset of nouns denoting animals. We are dealing with a modified group
mean because this mean is calibrated for words with zero meanFamiliarity.
As familiarity ratings range between 1 and 7 in this experiment, this group mean
is a theoretical construct. The next two coefficients define the nonlinear effect
of meanFamiliarity, one for the linear term, and one for the quadratic term.
These coefficients likewise concern the subset of nouns for animals.

The last two coefficients summarize how the preceding coefficients should
be modified in order to make them more precise for the nouns that fall into the
plant category. The coefficient of Classplant tells us that we should subtract
−1.012 from the intercept in order to obtain the (modified) group mean for the
plants. The final coefficient, meanFamiliarity:Classplant, tells us that the
coefficient for meanFamiliarity should be decreased by −0.212 in order to
make it precise for the plants. This last coefficient illustrates what is referred to
as an interaction, in this case an interaction between meanFamiliarity and
Class. In the formula that we specified for lm(), this interaction was specified
by means of the asterisk:

meanFamiliarity * Class

This is shorthand for

meanFamiliarity + Class + meanFamiliarity:Class

110 basic statistical methods

where the colon specifies the interaction of the predictors to its left and right. In the
table of coefficients, all terms in the model are spelled out separately, including
the interaction of meanFamiliarity by Class:

meanFamiliarity:Classplant

Since meanFamiliarity is a numeric vector, its name appears as such in the
interaction. Class, by contrast, is a factor, and therefore the level to which the
interaction applies is added to the factor name.

What the interaction tells us is that the linear coefficient of meanFamiliar-
ity has to be adjusted downwards when dealing with plants rather than with
animals. For animals, this coefficient is −0.631, for plants, we add the coefficient
for the interaction of meanFamiliarity by Class to this coefficient: −0.631
−0.212 = −0.843. In other words, the linear term of meanFamiliarity differs
for plants and animals. As there is no adjustment of the quadratic term in this
model, the plants and animals share its coefficient (0.109).

Figure 4.16 shows what we have accomplished. We have a group difference
between the plants and the animals (the plants have lower size ratings), we have
a nonlinear functional relation between the ratings for familiarity and size, and
we have fine-tuned the curves for plants and animals by adjusting the linear term
only. It is left as an exercise to show that an adjustment to the squared term is not
necessary. The present model is both parsimonious and adequate.

A first step for producing Figure 4.16 is to add the values for the mean size
ratings that are predicted by the model to the data frame. These predicted values,
often referred to as the fitted values, are extracted from the model object with
the function fitted():

> ratings$fitted = fitted(ratings.lm)

As before, we set up the axes and plot the data points for plants and animals
separately:

> plot(ratings$meanFamiliarity, ratings$meanSizeRating,
+ xlab = "mean familiarity", ylab = "mean size rating", type = "n")
> text(ratings$meanFamiliarity, ratings$meanSizeRating,
+ substr(as.character(ratings$Class), 1, 1), col = "darkgrey")

With substr() we extracted the first letter of the names of the factor levels. Its
second argument specifies the first position of the substring that is to be extracted
from the string (or vector of strings) supplied as first argument. Its third argument
specifies the last position in the string that is to be extracted. We proceed with
creating separate data frames for the plants and the animals,

> plants = ratings[ratings$Class == "plant",]
> animals = ratings[ratings$Class == "animal",]

which we sort by meanFamiliarity:

> plants = plants[order(plants$meanFamiliarity),]
> animals = animals[order(animals$meanFamiliarity),]

4.5 Two vectors with counts 111

2 3 4 5 6

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

mean familiarity

m
e
a
n
 s

iz
e
 r

a
tin

g

p

p

p
p

p

p

p

p

p
p

p

pp

p

p
p

p

pp p

p

p
p

p
p

p
p

p

p
p

p

p

p

p

p

a

a

a

a

aa

a

a
aa

a

a

a

a

a

a

a a

a

a

a

a

a

a

a

a

aa
a

a a

aa
a

a
a

a
a

a
a

a

aa a a

a

Figure 4.16. Analysis of covariance for size rating as a function of Class
(plant versus animal) and familiarity rating.

As the vectors of the X and Y values are now in the appropriate order to serve as
input to lines(), we finally add the regression curves to the plot:

> lines(plants$meanFamiliarity, plants$fitted)
> lines(animals$meanFamiliarity, animals$fitted)

4.5 Two vectors with counts

The examples in the preceding sections concerned various kinds of
measurements resulting in real numbers. When you are dealing with counts
(integers) instead of measurements, different techniques are called for. Continu-
ing with the data set of Dutch verbs (auxiliaries), we cross-tabulate the verbs
by regularity and auxiliary choice:

> xt = xtabs(˜ Aux + Regularity, data = auxiliaries)
> xt

Regularity
Aux irregular regular

hebben 94 118
zijn 12 3
zijnheb 36 22

Recall that tables with proportions by row or by column are obtained with
prop.table(),

112 basic statistical methods

Aux

R
e

g
u

la
ri

ty
hebben zijn zijnheb

ir
re

g
u

la
r

re
g

u
la

r

Aux
R

e
g

u
la

ri
ty

hebben zijn zijnheb

ir
re

g
u

la
r

re
g

u
la

r
Figure 4.17. Mosaic plots for Dutch verbs cross-classified by regularity and auxiliary (left panel) and a
fictitious data set (right panel).

> prop.table(xt, 1) # rows add up to 1
Regularity

Aux irregular regular
hebben 0.4433962 0.5566038
zijn 0.8000000 0.2000000
zijnheb 0.6206897 0.3793103

> prop.table(xt, 2) # columns add up to 1
Regularity

Aux irregular regular
hebben 0.6619718 0.8251748
zijn 0.0845070 0.0209790
zijnheb 0.2535211 0.1538462

and that the overall proportions are calculated by dividing the table by its sum:

> xt/sum(xt)
Regularity

Aux irregular regular
hebben 0.32982456 0.41403509
zijn 0.04210526 0.01052632
zijnheb 0.12631579 0.07719298

There are more regular verbs with hebben than irregular verbs, while there
are more irregular verbs with zijn compared to regular verbs. This difference is
clearly visible in the mosaic plot shown in the left panel of Figure 4.17:

> mosaicplot(xt, col=TRUE)

The mosaic plot shows very clearly that the smallest subset of verbs, those select-
ing zijn as auxiliary, are also the verbs with the greatest proportion of irregulars.

Suppose that we had observed the following fictitious counts:

4.5 Two vectors with counts 113

> x = data.frame(irregular = c(100, 8, 30),
+ regular = c(77, 6, 22))
> rownames(x) = c("hebben", "zijn", "zijnheb")
> x

irregular regular
hebben 100 77
zijn 8 6
zijnheb 30 22

The mosaic plot of these counts, shown in the right panel of Figure 4.17, shows
that the six blocks are divided by nearly straight horizontal and vertical lines. The
proportions of verbs that are regular are approximately the same across all three
classes of auxiliaries. Similarly, the proportions of verbs with a given auxiliary
are very similar across regulars and irregulars. The counts in the various rows are
nearly proportional, and the same holds for the columns.

The mosaic plots of Figure 4.17 suggest that there is reason for surprise for the
actual data, but not for the artificial counts. Formal tests for the presence of non-
proportionalities in contingency tables are the chi-squared test and Fisher’s exact
test of independence. The chi-squared test is carried out with chisq.test(),
the same function that we encountered previously. It is also reported when the
output of xtabs() is summarized:

> chisq.test(xt)
Pearson’s Chi-squared test

data: xt
X-squared = 11.4929, df = 2, p-value = 0.003194
> summary(xt)
Call: xtabs(formula = ˜Aux + Regularity, data = auxiliaries)
Number of cases in table: 285
Number of factors: 2
Test for independence of all factors:

Chisq = 11.493, df = 2, p-value = 0.003194

The small p-value suggests that the counts in the two columns (or rows) are
indeed not proportional given the total number of observations in each row (or
column). Applied to the artificial data, we obtain a large p-value, as expected:

> chisq.test(x)
Pearson’s Chi-squared test

data: x
X-squared = 0.0241, df = 2, p-value = 0.988

For tables with not too large counts, a test of independence of rows (or columns)
that produces more precise p-values is Fisher’s exact test:

> fisher.test(xt)
Fisher’s Exact Test for Count Data

data: xt
p-value = 0.002885
alternative hypothesis: two.sided

For this example, the exact probability (given the row and column totals) is slightly
smaller than the probability as estimated using the chi-squared test.

114 basic statistical methods

4.6 A note on statistical significance

When a statistical test returns a statistically significant p-value, this
does not imply that the tested effect is actually useful. The smaller the p-value is,
the more likely it is that the effect is replicable. But the magnitude of the effect
can be so small as to be useless for practical applications. By way of example,
we simulate regression data, with n = 100 equally spaced x-coordinates, and
y-coordinates that are one-third of the x-coordinates with substantial random

noise superimposed. The random noise is obtained by adding, to each y-value, a
random number from a normal distribution with mean 0 and a standard deviation
of 80:

> n = 100
> x = seq(1, 100, length = n)
> y = 0.3 * x + rnorm(n, 0, 80)

A simulation run will typically produce non-significant results, such as:

> model100 = lm(y ˜ x)
> summary(model100)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.5578443 16.7875448 -0.2715015 0.7865764
x 0.4621986 0.2886052 1.6014910 0.1124869

Although there is a linear relation between y and x — we built it into the data set
ourselves — the amount of noise that we superimposed is so large that we cannot
detect it. A way around this is to increase the number of observations:

> n = 1000
> x = seq(1, 100, length = n)
> y = 0.3 * x + rnorm(n, 0, 80)
> model1000 = lm(y ˜ x)
> summary(model1000)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.30845 4.90536 -0.471 0.638031
x 0.30795 0.08452 3.644 0.000283

Residual standard error: 76.46 on 998 degrees of freedom
Multiple R-Squared: 0.01313, Adjusted R-squared: 0.01214
F-statistic: 13.28 on 1 and 998 DF, p-value: 0.0002827

The effect of x is now significant. However, even at this sample size it is virtually
impossible to predict y from x . This is immediately evident from the scatterplot
shown in Figure 4.18,

> plot(x, y)
> abline(lm(y ˜ x))

and it is also indicated by the very small value of R2: the regression model explains
a mere 1% of the variance.

4.6 A note on statistical significance 115

0 20 40 60 80 100

0
1
0
0

2
0
0

x

y

Figure 4.18. Simulated regression data with significant p-value (p < 0.01) and
no explanatory value (R2 = 0.008).

In order to assess the magnitude of an effect, p-values are clearly not appropri-
ate. From a rather pessimistic point of view, a p-value merely reflects the sample
size. To this, we should add that the null-hypothesis is often nothing more than
a straw man. If we want to ascertain the effect of a given predictor that is worth
running an experiment for, it is rather unlikely that we are truly interested in
knowing whether its coefficient is exactly zero or not exactly zero. What we are
more likely to be interested in is how close the predictor is to zero. Therefore,
confidence intervals are at least as important as p-values, because they inform us
straightforwardly about how different our estimated coefficient actually is from
zero. For the above two regression models, we obtain the confidence intervals for
the coefficients with the help of the function confint():

> confint(model100)
2.5 % 97.5 %

(Intercept) -37.872181 28.756492
x -0.110529 1.034926
> confint(model1000)

2.5 % 97.5 %
(Intercept) -11.9344605 7.317552
x 0.1420982 0.473801

For the model with 100 observations, we have a wide confidence interval that
straddles zero. We can also see that the coefficient is more likely to be positive
than negative. This is confirmed by the model with 1000 observations, which has
a confidence interval that is much smaller and hence also more informative about
the slope that we built into the model (0.3).

Whether a slope of 0.3 is meaningful and has any practical or theoretical
significance remains an open question that can only be resolved given sufficient

116 basic statistical methods

background information about the nature and the purposes of the experiment that
is being evaluated statistically. For instance, Frauenfelder et al. (1993) showed
that a word’s frequency of use is a significant predictor for the density of its
similarity neighborhood. For practical applications this result is pretty useless
in the light of the very low R2 of the regression model. However, from a certain
theoretical perspective, the presence of this correlation is in fact expected, and the
fact that the correlation is weak is not at all surprising. Similarly, in reaction time
experiments, the amount of the total variance explained by linguistic predictors
tends to be minute compared to the variance that is tied to the participants and
their response execution, i.e. variance that is due to a very noisy measurement
technique. Even though effects may be tiny, if they consistently replicate across
experiments and laboratories, they may nevertheless be informative for theories
of lexical representation and processing.

Workbook section

Exercises

1. In Chapter 1, we made a contingency table cross-tabulating the animacy of the recipient and
the realization of the recipient for the subset of English verbs in the data set of Bresnan and
colleagues that had inanimate themes. The following commands recreate this table:

> verbs.xtabs = xtabs(˜ AnimacyOfRec + RealizationOfRec,

+ data = verbs[verbs$AnimacyOfTheme != "animate",])

> verbs.xtabs

RealizationOfRec

AnimacyOfRec NP PP

animate 517 300

inanimate 33 47

Animate recipients seem to have a slight preference for the np realization, inanimate
recipients for the pp realization. Evaluate whether this asymmetry is statistically significant.

2. In section 3.2, we visualized the density of the frequency of the determiner het in the Dutch
novel Max Havelaar (see Figure 3.5). Are the frequencies in the vector
havelaar$Frequency Poisson-distributed?

3. Pluymaekers et al. (2005) studied the acoustic durations of affixes in derived Dutch words.
The data for the prefix ge- are available in the data set durationsGe. The
DurationOfPrefix is the dependent variable, Frequency is the key predictor:

> colnames(durationsGe, 3)

[1] "Word" "Frequency" "Speaker"

[4] "Sex" "YearOfBirth" "DurationOfPrefix"

[7] "SpeechRate" "NumberSegmentsOnset"

The general question of interest is whether the frequency with which a word is used
codetermines the durations of its constituent morphemes. Is the same morpheme, here ge-,

4.6 A note on statistical significance 117

shorter in higher-frequency words? Address this question by means of a regression model.
Keep in mind that you should carefully check whether the distributions of the predictors are
roughly symmetrical and take appropriate measures if not so before fitting the model to the
data.

4. Show that an interaction of Class by the squared term of meanFamiliarity is superfluous
for the covariance model discussed for the ratings data in section 4.4.1.

5. The exercise accompanying Chapter 3 addressed the frequency distributions for three words
in Alice’s Adventures in Wonderland: alice, very, and hare. Use the Kolmogorov-Smirnov
test to test formally whether these words follow a Poisson distribution.

6. Run a one-way analysis of variance to ascertain whether naming latencies in the english
data set differ for the young and old age groups in the data on English monomorphemic and
monosyllabic nouns and verbs. Age group is labeled as Age Subject, the (log) naming
latencies are labeled RTnaming. What is (in log units) the difference between the group
means for the young and old subjects? What are the two group means?

7. The Dutch prefix ont- is subject to acoustic reduction in spontaneous speech. For instance,
the plosive or the nasal may not be present in the speech signal. Pluymaekers et al. (2005)
measured the acoustic durations of the vowel, the nasal, and the plosive of this prefix in
derived words extracted from a corpus of spoken Dutch. Carry out an analysis of covariance
to investigate whether the duration of the nasal is affected by the word’s frequency and the
presence of the plosive. Exclude the five outlier words for which the nasal was absent from
the data in durationsOnt.

5 Clustering and classification

The previous chapter introduced various techniques for analyzing data with one

or two vectors. The remaining chapters of this book discuss various ways of

dealing with data sets with more than two vectors. Data sets with many vectors

are typically brought together in matrices. These matrices list the observations on

the rows, with the vectors (column variables) specifying the different properties

of the observations. Data sets like this are referred to as multivariate data.

There are two approaches for discovering the structure in multivariate data sets

that we discuss in this chapter. In one approach, we seek to find structure in the data

in terms of groupings of observations. These techniques are unsupervised in the

sense that we do not prescribe what groupings should be there. We discuss these

techniques under the heading of clustering. In the other approach, we know

what groups there are in theory, and the question is whether the data support

these groups. This second group of techniques can be described as supervised,

because the techniques work with a grouping that is imposed by the analyst on

the data. We will refer to these techniques as methods for classification.

5.1 Clustering

5.1.1 Tables with measurements: principal components analysis

Words such as goodness and sharpness can be analyzed as consisting

of a stem, good, sharp, and an affix, the suffix -ness. Some affixes are used in

many words, -ness is an example. Other affixes occur only in a limited number of

words, for instance, the -th in warmth and strength. The extent to which affixes are

used and available for the creation of new words is referred to as the productivity

of the affix. Baayen (1994) addressed the question of the extent to which the

productivity of an affix is codetermined by stylistic factors. Do different kinds of

texts favor the use of different kinds of affixes?

The data set affixProductivity lists, for 44 texts with varying authors and

genres, a productivity index for 27 derivational affixes. The 44 texts represent four

different text types: religious texts (e.g. the Book of Mormon, coded B), books

written for children (e.g. Alice’s Adventures in Wonderland, coded C), literary

texts (e.g. novels by Austen, Conrad, James, coded L), and other texts (including

118

5.1 Clustering 119

officialese from the US government accounting office), codedO. The classification

codes are given in the column labeled Registers:

> affixProductivity[c("Mormon", "Austen", "Carroll", "Gao"), c(5:10, 29)]
ian ful y ness able ly Registers

Mormon 0 0.1887 0.5660 2.0755 0.0000 2.2642 B
Austen 0 1.2891 1.5654 1.6575 1.0129 6.2615 L
Carroll 0 0.2717 1.0870 0.2717 0.4076 6.3859 C
Gao 0 0.3306 1.9835 0.8264 0.8264 4.4628 O

The question of interest is whether there is any structure in this 44 by 27 table of

numbers that sheds light on the relation between productivity and style. The tool

that we will use here is principal components analysis.

In order to understand the main idea underlying principal components analysis,

consider Figure 5.1. The upper left panel shows a cube, and the grey coloring of

the cube indicates that data points are spread out everywhere in the cube. In order

Figure 5.1. Different distributions of points (highlighted in grey) in a cube.

120 clustering and classification

to describe a point in the cube, we need all three axes. The cube in the upper right

describes the situation in which all the points are located on the grey plane. We

could describe the location of a point on this plane using the three axes of the

cube. But we can also choose new axes in this plane, in which case we can still

describe each and every relevant point. This description is more economical, as it

dispenses with the superfluous third dimension. The cube in the lower left panel

also involves a plane, but now there is more variation (a greater range of values)

in the Y and Z direction than in the X direction. The final cube depicts the case

where all the points are located on a line. To describe the location of these points,

a single axis (the line through these points) is sufficient. Here, we have only one

dimension left.

What principal components analysis does is try to reduce the number of dimen-

sions required for locating the approximate positions of the data points. For the

upper left cube, this is impossible. For the upper right cube, this is possible: we

can get rid of one dimension. The way in which principal components achieves

this is by rotating the axes in such a way that you get two new axes in the diagonal

plane of the original, unrotated, axes. If you imagine the points to be fixed in their

location, while the cube itself can be moved around, then what happens is that

the cube is rotated so that all the data points are lying on the bottom.

In the case of the lower left panel of Figure 5.1, principal components analysis

will rotate the cube so that all the points are on its floor. It will then choose the

dimension with most variation as its first axis (named principal component 1,

henceforth PC1), in this example the axis going up and back. The second axis

(PC2) will be, in this example, the original X axis. The third axis of the rotated

cube (PC3) is one we don’t need anymore, as it does not account for any variability

in the data.

Of course, this example simplifies what happens in real data sets. It rarely

happens that all data points are exactly on a plane, there is nearly always a little

scatter around the plane. And instead of three dimensions, there may be many

more dimensions, and the plane around which points cluster may be a hyperplane

instead of a standard two-dimensional plane. But the key idea remains the same:

we rotate our hypercube, and work with a reduced set of dimensions, ordered by

how much variability they account for.

Returning to our data, we can regard the 44 texts as 44 points in a 27-

dimensional space. Do we need all these 27 dimensions, or can we reduce the

number of dimensions to a (much) smaller number? And do these new dimensions

tell us something about how affixes are used in different kinds of texts?

Let’s consider how we can address this question with the function prcomp(),

which requires a matrix (or a data frame, but then only the numerical columns

in that data frame) as input. As the last two columns of our data frame affixes

contain descriptions of labels for authors and text types, we select only columns

1:27 as input:

> affixes.pr = prcomp(affixProductivity[, 1:(ncol(affixProductivity)-3)])

5.1 Clustering 121

We now have created a principal components object that has several components,

as shown when we request a list of the names of these components with the

function names():

> names(affixes.pr)
[1] "sdev" "rotation" "center" "scale" "x"

Let’s consider these components step by step. The first component, sdev, is the

standard deviation corresponding to each PC:

> round(affixes.pr$sdev, 4)
[1] 1.8598 1.1068 0.7044 0.5395 0.5320 0.4343 0.4095 0.3778
[9] 0.3303 0.2952 0.2574 0.2270 0.2113 0.1893 0.1617 0.1503
[17] 0.1265 0.1126 0.1039 0.0870 0.0742 0.0674 0.0585 0.0429
[25] 0.0260 0.0098 0.0087

The summary() also lists these standard deviations (only part of the output is

shown):

> summary(affixes.pr)
Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 1.860 1.107 0.7044 0.5395 0.5320 0.4343
Proportion of Variance 0.512 0.181 0.0734 0.0431 0.0419 0.0279
Cumulative Proportion 0.512 0.693 0.7663 0.8094 0.8512 0.8791
...

PC23 PC24 PC25 PC26 PC27
Standard deviation 0.05853 0.04292 0.0260 0.00977 0.00872
Proportion of Variance 0.00051 0.00027 0.0001 0.00001 0.00001
Cumulative Proportion 0.99960 0.99987 1.0000 0.99999 1.00000

The proportions of variance are simply the squared standard deviations divided

by the sum of the squared standard deviations, compare:

> props = round((affixes.pr$sdevˆ2/sum(affixes.pr$sdevˆ2)), 3)
> props[1:6]
[1] 0.512 0.181 0.073 0.043 0.042 0.028

The first principal component explains more than half of the variance; the last

component has no explanatory value whatsoever. The question we now have to

address is which dimensions are relevant, and which irrelevant. There is a rule of

thumb stating that only those principal components are important that account for

at least 5% of the variance. Figure 5.2 plots the proportions of variance accounted

for by the principal components, the “significant” components are shown in black:

> barplot(props, col = as.numeric(props > 0.05),
+ xlab = "principal components",
+ ylab = "proportion of variance explained")
> abline(h = 0.05)

A very similar plot is obtained with:

> plot(affixes.pr)

Another rule of thumb is to locate the cutoff point where there is a clear dis-

continuity as you move from right to left. In the present example, the first

122 clustering and classification

principal components

p
ro

p
o
rt

io
n
 o

f
va

ri
a
n
ce

 e
xp

la
in

e
d

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Figure 5.2. Screeplot for the principal components analysis of texts in affix
productivity space.

minor discontinuity is at the fifth PC, and the first large discontinuity at the

third PC. From the summary, we learn that we can reduce 27 dimensions

to 3 dimensions without losing much of the structure in the data: the first

three PCs jointly account for slightly more than three-quarters of the variance

(76.6%). In other words, with just three dimensions, we can already get very

close to the location of our 44 texts in the original 27-dimensional productivity

space.

The coordinates of the texts in the new three-dimensional space spanned by

the new axes, the first three principal components, are available in the component

of affixes.pr labeled x. This component lists the coordinates on all 27 PCs;

here we only need the first three:

> affixes.pr$x[c("Mormon", "Austen", "Carroll", "Gao"), 1:3]

PC1 PC2 PC3
Mormon -3.7613247 1.5552693 1.4117837
Austen -0.1745206 -1.5247233 0.3285241
Carroll 0.3363524 1.5711792 -0.2937536
Gao -1.8250509 -0.8581186 -1.2897237

Figure 5.3 plots the texts in this three-dimensional space by means of a scatter-

plot matrix displaying all three pairs of combinations of PCs. You can think of

this as looking into a cube from three different sides: once from the top, once

from the front, and once from the side. We can observe some clustering, espe-

cially in the panel for PC1 and PC2 (first panel of second row). The literary

5.1 Clustering 123

Scatter Plot Matrix

PC10

2

4 0 2 4

0

0

PC20

1

2 0 1 2

0

0

PC30.0

0.5

1.0

1.5
0.0 0.5 1.0 1.5

0.0

0.0

texts in productivity space
Religious
Children
Literary
Other

Figure 5.3. Scatterplot matrix for the distribution of texts in the space spanned
by the three first principal components of affix productivity scores.

texts are in the center, the religious texts in the upper left, the texts for children

are more to the lower right, and the officialese tends towards the bottom of the

graph.

Visualization with scatterplot matrices is an important part of exploratory data

analysis with principal components analysis. Figure 5.3 was made with a trellis

function, splom() (for scatterplot matrices). This is a powerful function with

many options that are explained in the on-line help. We first load the lattice

package:

> library(lattice)

The next line of code figures out about how points should be represented in terms

of plot symbols and color coding. If you are using the R graphics window, it will

figure out to use color coding. If you are saving the plot as PostScript or jpeg, it

will use plotting symbols in black and white instead:

> super.sym = trellis.par.get("superpose.symbol")

124 clustering and classification

The plot itself can now be produced with the following lines of code:

> splom(data.frame(affixes.pr$x[,1:3]),
+ groups = affixProductivity$Registers,
+ panel = panel.superpose,
+ key = list(
+ title = "texts in productivity space",
+ text = list(c("Religious", "Children",
+ "Literary", "Other")),
+ points = list(pch = super.sym$pch[1:4],
+ col = super.sym$col[1:4])))

A third important component of a principal components object is the rotation

matrix, which looks like this:

> dim(affixes.pr$rotation)
[1] 27 27
> affixes.pr$rotation[1:10, 1:3]

PC1 PC2 PC3 PC4
semi 0.0018753121 -0.001359615 0.003074151 -0.0033841237
anti -0.0003107270 -0.002017771 -0.002695399 0.0005929162
ee -0.0019930399 0.001106277 -0.017102260 -0.0033997410
ism 0.0087251807 -0.046360929 0.046553003 0.0300832267
ian -0.0459376905 -0.008605163 -0.010271978 -0.0937441773
ful 0.0334764289 0.013734791 0.010000845 -0.0966573851
y 0.1113180755 -0.043908360 -0.276324337 -0.5719405630
ness 0.0297280626 -0.112768134 0.700249340 -0.1374734621
able 0.0084568997 -0.124364821 0.012313097 0.1119376764
ly 0.9729027985 -0.111160032 -0.020500850 0.1585457448

This matrix lists the loadings of the affixes on each principal component. These

loadings are proportional to the correlation of the original productivity values of

an affix with the PC. Therefore, you can get some idea of what a PC might indicate

by looking at which affixes have large positive or negative loadings. For instance,

the suffix -ly (as in badly) has a very high positive loading on PC1 compared to

the other affixes shown above.

What makes principal components analysis attractive is the insights offered

when we plot affixes and texts together in a biplot. As you can see in Figure 5.4,

the variation on PC1 is dominated by the suffix -ly, which seems to have been

favored especially in the Barrie novel. There is somewhat more diversification on

PC2. Comparatives and superlatives are somewhat more characteristic for texts

with high values on PC2, such as Kipling, Carroll, and Grimm. On the other

hand, -ation emerges as characteristic for the Federalist papers and also the texts

by James and Austen.

The biplot shown in Figure 5.4 is obtained with the biplot() function, which

in its simplest form simply takes the principal components object as input. Here,

we make use of a number of options to fine-tune the plot:

> biplot(affixes.pr, scale = 0, var.axes = F,
+ col = c("darkgrey", "black"), cex = c(0.9, 1.2))

By default, biplot() rescales the principal components and the loadings. This

rescaling is disabled with scale = 0. I have also disabled the displaying of

5.1 Clustering 125

0 2 4

0
1

2

PC1

P
C

2
Lukeacts

Mormon

Aesop
Baum2

Barrie

Baum
Carroll

Carroll2Grimm
Kipling

Austen

Burroughs

Bronte

Conrad

Conrad2

Dickens

Doyle2

Dickens2

Doyle

Doyle3

James

James2

London2
London

Montgomery

Melville

MorrisMilton

Orczy

Stoker

Startrek

Trollope3

Trollope

Trollope2

Twain

Wells3

Wells
Wells2

Federalist

Hearing
Clinton

DarwinGao

WJames

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

semiantiee
ism
ianful

y
nessable ly

unV

unA

ize

less
erA

erC

ity

super

est

ment

ify
re

ation

in.

exen
be

Figure 5.4. Biplot with principal components 1 and 2 for authors in productivity
space, and the loadings of the affixes on these principal components.

arrows pointing to the affixes with var.axes = F. The parameter col controls

the colors for the texts (dark grey) and the affixes (black), and the parameter

cex controls the font sizes. Note that the primary coordinate system (bottom and

left axes) represents the principal compononts, and that the secondary coordinate

system (upper and right axes) represents the corresponding loadings.

When carrying out a principal components analysis, there are two things that

should be kept in mind. First, the variables should have reasonably symmetrical

distributions. Second, and more importantly, it is almost always advisable to scale

the columns. If the columns contain variables with very different ranges, then the

columns with the greatest ranges may dominate the results. We have seen for the

present data that two affixes dominate the first two principal components, -ly on

PC1 and -ation on PC2. This lopsided effect of a few variables is avoided by

running the prcomp() function with the option scale = TRUE. Technically,

this amounts to running the analysis not on the covariance matrix, but on the

correlation matrix. The upper panel of Figure 5.5 shows the biplot for a principal

components analysis when the correlation matrix is used:

> affixes.pr = prcomp(affixProductivity[,1:27], scale = T, center = T)
> biplot(affixes.pr, var.axes = F, col = c("darkgrey", "black"),
+ cex = c(0.6, 1), xlim = c(-0.42, 0.38))

126 clustering and classification

PC1

P
C

2

Lukeacts
Mormon

Aesop

Baum2
Barrie

BaumCarroll

Carroll2

Grimm

Kipling

Austen

Burroughs

Bronte

Conrad

Conrad2

DickensDoyle2

Dickens2
DoyleDoyle3

James

James2

London2

London

Montgomery
Melville
Morris

Milton

Orczy

Stoker

Startrek

Trollope3

Trollope

Trollope2

Twain

Wells3

Wells

Wells2Federalist

Hearing

Clinton

Darwin

Gao

WJames

semi

anti
ee

ism

ian

ful

y

ness

able

ly
unV

unA

ize

less

erA

erC

ity

super

est
ment

ify

re

ation

in.

ex
en be

Factor1

F
a
ct

o
r2

semi

anti

ee

ism

ianful

y

ness

able

ly

unV
unA

ize

less

erA

erC

ity

super

est

ment

ify
re

ation

in.

ex

en

be

varimax factor rotation

Factor1

F
a
ct

o
r2 semi

anti

ee

ism

ianful

y

ness

able
ly

unV unA

ize

less

erA

erC

ity

super

est

ment

ify

re

ation

in.

ex

en

be

promax factor rotation

Figure 5.5. Upper panel: Biplot for the principal components analysis of texts and affixes based on produc-
tivity scores, now using the correlation matrix instead of the covariance matrix. Lower panel: The loadings
of the affixes on the first two factors in a factor analysis using varimax (left) and promax factor rotation.

The loadings of the affixes now reveal more interesting structure. Native affixes

(e.g. -ness, -less, -er) tend to occur more in the upper and right parts of the plot.

Non-native affixes (e.g. -ation, super-, anti-) tend to occur in the lower left of the

biplot. The use of non-native affixes is more typical for officialese (e.g. congress

hearings (Hearing)) and formal texts such as the Federalist papers. Native

affixes are more typical for, for instance, the stories for children by Carroll and

Baum. In other words, non-native affixes are more productive in more formal

and educated registers.

5.1.2 Tables with measurements: factor analysis

An extension of principal components analysis is exploratory fac-

tor analysis. Factor analysis has been used extensively by Biber (1988, 1995)

5.1 Clustering 127

to study register variation. Factor analysis also plays a key role in an important

technique for corpus-based computational semantics, latent semantic analysis

(Landauer and Dumais, 1997).

In principal components analysis, the total variance is partitioned among the

PCs. Therefore, the proportion of variance explained by a PC is given by that PC’s

variance divided by the summed variance of all PCs, as we saw above. In factor

analysis, however, an error term is added to the model in order to do justice to the

possibility that there is noise in the data. As a consequence, there is no unique

set of principal components (now called factors) and loadings. Instead, various

alternative factors (and loadings) are available thanks to a technique called factor

rotation. Factor rotation serves the purpose of making the interpretation of the

factor model as simple as possible. Interpretation becomes more straightforward

if the variables have high loadings on only a few factors, and if the loadings on a

given dimension are either large or near zero.

To make this more concrete, we carry out a factor analysis on the productivity

data with the function factanal(). This function expects the user to specify

how many factors are required. We choose three, and summarize the resulting

object by typing its name at the R prompt:

> affixes.fac = factanal(affixProductivity[,1:27], factors = 3)
> affixes.fac

Call:
factanal(x = affixes[, 1:27], factors = 3)

Uniquenesses:
semi anti ee ism ian ful y ness ...
0.865 0.909 0.934 0.244 0.705 0.688 0.964 0.633 ...

Loadings:
Factor1 Factor2 Factor3

semi 0.348
anti 0.278
ee -0.246
ism 0.493 0.467 0.543
ian 0.229 -0.490
ful -0.522 0.196
y -0.184
...
est -0.180 -0.266 -0.126
ment 0.486 0.324 -0.139
ify 0.196 0.126
re 0.359 -0.372
ation 0.888 0.211 -0.269
in 0.758 0.134
ex 0.476 0.284 -0.108
en 0.382 -0.127
be -0.142 -0.336 0.107

Factor1 Factor2 Factor3
SS loadings 4.186 2.242 1.853
Proportion Var 0.155 0.083 0.069

128 clustering and classification

Cumulative Var 0.155 0.238 0.307

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 308.11 on 273 degrees of freedom.
The p-value is 0.0707

The summary repeats the original function call, and then reports the uniquenesses

for the affixes, the by-affix amounts of error variance. Next, the factor loadings are

listed. Loadings that are too close to zero are not shown. The table of loadings is

followed by a table reporting the proportions of variance explained by the factors.

Finally, a test is reporting for whether three factors are sufficient for this data.

As the associated p-value is greater than 0.05, we conclude that we do not need

more factors for this data set.

The lower left panel of Figure 5.5 plots the loadings of the affixes on the first

two factors:

> loadings = loadings(affixes.fac)
> plot(loadings, type = "n", xlim = c(-0.4, 1))
> text(loadings, rownames(loadings), cex = 0.8)

From this plot, the distinction between native and non-native affixes emerges

perhaps more clearly than from the biplot in the upper panel. Non-native affixes

tend to the upper right part of the plot, native affixes cluster more to the lower

left. In other words, nativeness is a hidden, latent, variable determining affixal

productivity, but thus far it is expressed by means of two factors. By choosing a

different factor rotation,promax, we can rearrange the affixes such that nativeness

is expressed primarily by the second factor, as shown in the lower right panel of

Figure 5.5:

> affixes.fac2 = factanal(affixProductivity[,1:27], factors = 3,
+ rotation = "promax")
> loadings2 = loadings(affixes.fac2)
> plot(loadings2, type = "n", xlim = c(-0.4, 1))
> text(loadings2, rownames(loadings))
> abline(h = -0.1, col = "darkgrey")

Most non-native affixes are located below the horizontal grey line; most native

affixes are found above this line.

There are no hard and fast rules for choosing a particular kind of rotation. The

varimax rotation builds on the assumption that the rotated factors are uncorrelated.

It is preferentially used when we are interested primarily in the generalizability

of the results. The promax rotation allows the factors to be correlated, and tends

to be selected when the primary concern is to obtain a factor model that provides

a close fit to the data.

5.1.3 Tables with counts: correspondence analysis

In the preceding sections we used principal components analysis and

factor analysis for analyzing a two-way table of measurements (i.e. real-valued

5.1 Clustering 129

numbers). For two-way contingency tables, correspondence analysis provides an

attractive alternative. Like principal components analysis, correspondence anal-

ysis seeks to provide a low-dimensional map of the data.

The correspondence map is made in two steps. First, two matrices of distances

are calculated, one for the distances between columns, and one for the distances

between rows. In daily life, you may have encountered distance matrices for

geographical distances between major cities. The cities are listed in both margins

of the table. Hence, a distance matrix is always a square matrix. The distances

on the main diagonal are zero, as the distance of a city to itself is zero. Further-

more, the distances above the main diagonal are the flip image of the distances

below the main diagonal: A distance matrix is symmetrical. Hence, some dis-

tance tables for cities show only the upper or the lower triangle of the distance

matrix.

In correspondence analysis, we regard row vectors (or column vectors) as pro-

files of “cities,” and calculate the distances between them. There are many different

ways in which distances (or dissimilarities) between vectors can be computed,

the on-line help pages for dist() document a range of options. The distance

measure that is used in correspondence analysis is the so-called chi-squared dis-

tance. Given a contingency table with 20 rows and 5 columns, correspondence

analysis constructs two distance matrices, a 20 by 20 matrix specifying the dis-

tances between the rows, and a 5 by 5 matrix specifying the distances between

the columns.

The second step in correspondence analysis is to represent these distances as

faithfully as possible in a two-dimensional scatterplot; a low-dimensional map.

The larger the distance between two rows, the further these two rows should

be apart in the map for rows. Likewise, dissimilar columns should be far apart,

while similar columns should be near to each other in the map for columns. In

correspondence analysis, we superimpose the row and column maps, analogous

to the superposition of the PC scores and the loadings on these PCs in the biplot.

Thanks to the chi-squared distance measure, we ensure that proximity between

rows and columns in the merged map is as good an approximation as possible of

the correlation between rows and columns. The set of functions illustrated in the

following examples extend the code of Murtagh (2005).

Ernestus et al. (2007) studied register variation and diachronic variation in

the use of syntactic constructions in Medieval French. For 29 authors (some of

whom are anonymous), and often for several manuscript versions of the same

text, the counts of the 35 most frequent tag trigrams (tag triplets) were calcu-

lated. Texts with more than 2000 words were subdivided into chunks of 2000

words.

The data of this study are available in the form of two data frames. The old-

French data frame contains the counts of tag trigrams (columns) for 342 texts

(rows). The oldFrench Meta data frame provides metadata on these texts, in-

cluding information on author, region of origin, date of composition, register, and

topic:

130 clustering and classification

> oldFrench[1:3, 1:4]
T30.16.00 T00.31.51 T16.00.31 T00.60.31

Abe.2 11 2 1 6
Abe.3 13 4 6 5
Abe.4 7 1 4 2
> oldFrenchMeta[1:3,]

Textlabels Codes Author Topic Genre Region Year
1 Abe Abe.2 Meun 12 prose R2 1325
2 Abe Abe.3 Meun 12 prose R2 1325
3 Abe Abe.4 Meun 12 prose R2 1325

In both data frames, rows represent text fragments. Rows are ordered alphabet-

ically by the codes for the fragments. As a consequence, the information in the

two data frames is perfectly aligned. As will become apparent below, this align-

ment allows us to select subsets of rows from oldFrench using information in

oldFrenchMeta with R’s subscripting mechanism.

The columns of oldFrench represent the frequencies of the tag trigrams in

the text fragments. What we would like to know is whether there are system-

atic differences in the frequencies of these tag trigrams as a function of author,

topic, genre, region, and time. As a first step, we make use of the function cor-

res.fnc(), which takes a data frame with counts as input and produces as output

a correspondence analysis object. This object can subsequently be summarized

and plotted:

> oldFrench.ca = corres.fnc(oldFrench)

Let’s first inspect the summary. As its output is rather voluminous, we specify

head = TRUE, so that only the first six lines of relevant tables are shown:

> summary(oldFrench.ca, head = TRUE)

Call:
corres.fnc(oldFrench)

Eigenvalue rates:

0.1704139 0.1326913 0.06854973 0.05852097 0.05394474 ...

Factor 1

coordinates correlations contributions
T30.16.00 -0.113 0.074 0.012
T00.31.51 -0.560 0.464 0.103
T16.00.31 -0.139 0.053 0.006
T00.60.31 -0.122 0.050 0.006
T16.00.33 -0.085 0.020 0.003
T02.00.30 0.293 0.227 0.027
...

Factor 2

coordinates correlations contributions
T30.16.00 0.119 0.082 0.017
T00.31.51 0.205 0.062 0.018
T16.00.31 0.255 0.179 0.024

5.1 Clustering 131

T00.60.31 0.162 0.090 0.014
T16.00.33 -0.220 0.139 0.029
T02.00.30 0.166 0.073 0.011
...

The summary of oldFrench.ca begins with listing eigenvalue rates. These

rates have a similar interpretation to the proportions of the variance explained

by the principal components in principal components analysis. The larger the

rate, the more successful a factor is in accounting for differences among the

distances between the texts. The first rate pertains to the first factor, the X axis

in a correspondence map, the second rate to the second factor, the Y axis in the

map. Higher dimensions are seldom considered in correspondence analysis. (For

inspection of higher dimensions, specify n=a and the summary will display the

first a dimensions.)

The summary then proceeds with two tables that specify, for the first two factors,

how the distances between the columns relate to the distances between the rows.

As we called summary() with head=T, only the first six tag trigrams are shown.

For each tag trigram, its coordinate on the relevant axis is listed first, followed

by its correlation with that axis. These correlations, however, are not standard

correlations. They are more comparable to the loadings in principal components

analysis, and as such they provide an important guide to the interpretation of the

dimensions. The final column provides a measure for the extent to which a row

(tag trigram) contributes to the explanatory value of the factor.

The attractiveness of correspondence analysis resides in the possibilities it

offers for visualization. For instance, we can query whether the difference between

prose and poetry is reflected in the frequencies with which particular tag trigrams

are used. Figure 5.6 shows that there is a clear separation of prose and poetry

on the first factor, which is carried primarily by the tag trigrams T00.30.01,

T00.31.51, and T51.10.00.

This correspondence plot has a number of features that are controlled by a

range of options. First, the texts of the two genres are shown with different colors.

Second, tags are represented with their own font size, and also with another color.

Third, we have not shown all 35 tags, which would clutter the center of the plot,

but only those tags that drive the separation of the genres. Although,

> plot(oldFrench.ca)

is sufficient to obtain a correspondence plot, the result, with 342 texts and 35

tag trigrams, is an extremely cluttered scatterplot. We therefore consider the plot

method for correspondence objects in some more detail.

It is often useful to plot text properties as specified in the metadata rather than

the identifiers of the texts themselves: by default, plot() uses the row names

of the data frame serving as input to corres.fnc() for labeling the row data

points in the scatterplot. We override this default with the option for row labels,

which we set to point to, for instance, the genre labels in oldFrenchMeta by

setting rlabels = oldFrenchMeta$Genre.

132 clustering and classification

0.0 0.5 1.0

0
.0

0
.5

1
.0

Factor 1 (17 %)

F
a
ct

o
r

2

(1

3
.3

 %
)

prose
prose

proseprose

prose

prose

prose

prose

poetrypoetry

poetry

poetry

prose

prose

prose

prose

prose

prose

prose

prose

prose
prose

prose
prose

prose
prose

prose

prose

prose

prose

prose

prose

poetry

poetry

poetry

poetrypoetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetrypoetrypoetry

poetry

poetry

poetry

poetry
poetry

poetry

poetry

poetrypoetry

poetry

prose

prose

prose

prose

prose

prose

prose

proseprose

prose

prose

prose prose

prose
prose

prose
prose

prose

prose

prose
prose

prose
proseprose

prose
prose

prose

prose

prose

prose

prose

prose

prose

prose

prose

prose

prose

prose
prose

prose

prose

prose

prose

poetry
poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetry

poetry
poetrypoetry

poetry

poetry

poetry
poetry

poetry

poetry

poetry

poetry
poetry

poetry

prose

prose

prose
prose

prose

proseprose

prose

prose

prose

prose

prose

prose

prose

prose

prose

prose

proseprose

prose

prose

prose
prose

poetry

poetry

poetry

prose

prose

prose

prose

prose

prose

prose

prose

prose

prose
prose

proseprose

poetry
poetry

poetry
poetry

poetry

poetry

poetry

poetry

poetry
poetry

prose

prose

prose

prose

prose

prose

prose
prose

prose

prose

proseprose proseprose

prose
prose

poetry

poetry
poetry

poetry

poetry
poetry

poetry

poetry
poetry

poetry

poetrypoetry

poetry

poetry

poetrypoetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetrypoetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetrypoetry

poetry

poetry

poetry

poetry

poetry
poetrypoetry

poetry
poetry

poetry

poetry

poetry
poetry

poetry
poetry

poetry

poetry

poetrypoetry
poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetry

poetry

poetry

poetry

prose

prose

prose

proseprose

prose

prose

prose

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetrypoetry

poetry

poetry

poetrypoetry
poetry

poetry

poetry

poetry

poetry

poetry

poetrypoetry

poetry
poetry

poetry

poetry

poetry

poetry
poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetry

poetry

poetry

poetry

poetry
poetrypoetry

poetry
poetry

prose

prose

prose prose

proseprose

prose

proseprose

prose

prose

prose
prose

poetry

poetry

poetry

poetry

poetry

poetry

poetry

poetry
poetry

poetry

poetrypoetry

T00.31.51
T16.00.31

T10.00.30

T10.00.33
T00.33.10

T10.00.55

T00.33.31

T55.10.00

T51.10.00

T00.30.01

T00.30.10T00.30.16

T31.51.31

Figure 5.6. Correspondence analysis of the frequencies of 35 tag trigrams in
342 Medieval French text fragments. Text fragments are labeled by register
(prose versus poetry); only highly predictive tag trigrams are displayed.

The option for row colors, rcol, allows us to specify different colors for the

levels of Genre. This option should point to a vector that specifies, for each row

(text), the color with which it is to be displayed. For instance, we can convert the

factor oldFrenchMeta$Genre into a numerical vector with as.numeric().

The first factor level will now be paired with a 1, the second factor level with a 2,

and so on. We then use these numbers as identifiers of colors by setting rcol =

as.numeric(oldFrenchMeta$Genre).

We scale down the row font size with rcex = 0.5. As it makes no sense to

add 35 column names to the plot, we restrict the tag trigrams to be shown to those

that have extreme values in the first or last decile on either axis with extreme =

0.1. Finally, we set the color for the column names to blue (ccol = "blue").

This completes our plot instructions:

> plot(oldFrench.ca, rlabels = oldFrenchMeta$Genre,
+ rcol = as.numeric(oldFrenchMeta$Genre), rcex = 0.5,
+ extreme = 0.1, ccol = "blue")

In Figure 5.6, colors have been changed to greyscales, the colors will be shown

on your computer screen when the preceding lines of code are used.

When we zoom in on the prose, we find indications of diachronic change. As a

first step, we exclude those texts for which the approximate date of composition

5.1 Clustering 133

is not known. Because the rows of oldFrench and oldFrenchMeta are syn-

chronized, we subscript oldFrench with information in oldFrenchMeta:

> prose = oldFrench[oldFrenchMeta$Genre == "prose" &
+ !is.na(oldFrenchMeta$Year),]

Texts for which we have no information on their approximate date of origin are

labeled as missing data with NA. The function is.na() returns TRUE for those

cells in its input vector that contain missing data. By negating this vector of truth

values, we obtain a condition on the rows that allows only non-missing informa-

tion into the new data frame. We likewise create a version of oldFrenchMeta

that is synchronized with prose,

> proseinfo = oldFrenchMeta[oldFrenchMeta$Genre=="prose" &
+ !is.na(oldFrenchMeta$Year),]

and because the chronological information is coarse, we set a major boundary at

the year 1250:

> proseinfo$Period = as.factor(proseinfo$Year <= 1250)

We apply corres.fnc() and plot the result, disabling the addition of the column

names with addcol = F:

> prose.ca = corres.fnc(prose)
> plot(prose.ca, addcol = F, rcol = as.numeric(proseinfo$Period) + 1,
+ rlabels = proseinfo$Year, rcex = 0.7)

As can be seen in Figure 5.7, the texts from 1250 or before, shown in light grey

(or green on the computer screen), reveal some separation from texts dated after

1250, shown in dark grey (or red on the computer screen).

Let’s now consider the prose text for which the approximate date of composition

is unknown—labeled as NA in oldFrenchMeta$Year. Can anything be said

about their date of composition? To address this issue, we first select the relevant

texts and store them in a separate data frame:

> proseSup = oldFrench[oldFrenchMeta$Genre == "prose" &
+ is.na(oldFrenchMeta$Year),]

We add these additional data to the correspondence plot with corsup.fnc(),

a function for adding so-called supplementary rows or supplementary

columns:

> corsup.fnc(prose.ca, bycol = F, supp = proseSup, font = 2,
+ cex = 0.8, labels = substr(rownames(proseSup), 1, 4))

By default, corsup.fnc() proceeds on the assumption that we add supplemen-

tary columns. In the present example, we are dealing with supplementary rows,

so we change the default by specifying bycol = F. The supplementary rows

themselves are specified with supp = proseSup, and we label them with the

manuscript identifiers provided by the row names, after stripping off the frag-

ment numbers with substr(). Figure 5.7 locates the fragments more or less

134 clustering and classification

0.0 0.5

0
.0

0
.5

1
.0

Factor 1 (18 %)

F
a
ct

o
r

2

(1

3
.4

 %
)

1325
1325

1325
13251325

1325

1325
1325

12501250

1250

1250
12501250

1290

1290

1290
1290

12901290

1290
12901290

1290

1290

12901290

1290

1300

1300

1300

1300

1300

1300

1300

13001300

1300

1300

1300

1300 1300

1300

1300

1300

1290

1290

1290

1290
1290

1290
1290

1290

1290

1290

1290

1290

1290

1290

12901290

1290

1290
1290

1290
1290

1290

1290

1290

1290

1290

1300
1300

13001300

1237

1237
1237

1237
1237 1350

1350

1350 1350

1350

13501350

1350

1250

1250

1250

1250

1250

1250

1250

1250

12501250

1250
12901290

1290

1290

12901250

1250

125012501250

1250

1250

1250

1210

1210

1210

1210

1287

1287

1287

1287

1287

1287

12871287

1287

Hyl1Hyl1Hyl1

Hyl1
Hyl1

Hyl2Hyl2

Hyl2

Hyl2 Hyl2

Hyl2

Hyl2

Hyl3 Hyl3

Hyl3

Hyl3

Hyl3

Hyl3Hyl3

Figure 5.7. Correspondence analysis of the frequencies of 35 tag trigrams in
125 Medieval French prose fragments. Text fragments are labeled by
approximate date of origin, texts dating from 1250 or earlier are shown in light
grey, texts located later in time are shown in dark grey. The texts in black
represent supplementary rows representing texts of unknown date.

at the transition area of the early and late texts, perhaps with a slight bias to-

wards the late texts. The advantage of not including the undated texts from the

beginning in the correspondence analysis is that we establish a correspondence

map on the basis of known data, against which we pit unknown supplementary

data.

Finally consider a sociolinguistic data set, variationLijk, which provides

the frequency counts in eight subcorpora of spoken Dutch for 32 words ending

in the Dutch suffix -lijk (similar to English -ly and -like) (Keune et al. 2005).

The subcorpora are constructed with contrasts along three dimensions: country

(Flanders versus the Netherlands), sex (male versus female), and education level

(high versus mid). We load the data, and display the first four columns for the

first five lines:

> variationLijk[1:5, 1:4]
nlfemaleHigh nlfemaleMid nlmaleHigh nlmaleMid

afhankelijk 1 1 3 4
belachelijk 7 4 7 3
dadelijk 8 13 6 10
degelijk 1 1 1 1
duidelijk 11 6 14 8

5.1 Clustering 135

0.0 0.5 1.0

0
.0

0
.5

Factor 1 (73.2 %)

F
a
ct

o
r

2

(1

0
.9

 %
)

afhankelijk

belachelijk

dadelijk

degelijk

duidelijkeerlijk

eigenlijk

eindelijk

feitelijk

gemakkelijk

gevaarlijk hopelijk

lelijk

makkelijk

moeilijk
mogelijk

natuurlijk

ongelofelijk

ongelooflijk
onmiddellijk

oorspronkelijk

persoonlijk
pijnlijk

redelijk

tamelijk

tuurlijk uiteindelijk

verschrikkelijk

voornamelijk

vriendelijk

vrolijk

waarschijnlijknlfemaleHighnlfemaleMid
nlmaleHigh
nlmaleMid

vlfemaleHigh

vlfemaleMid

vlmaleHighvlmaleMid

Figure 5.8. Correspondence analysis of the frequencies of 32 words ending in
the Dutch suffix -lijk in eight subcorpora of spoken conversational Dutch.

The full set of column names,

> colnames(variationLijk)
[1] "nlfemaleHigh" "nlfemaleMid" "nlmaleHigh" "nlmaleMid"
[5] "vlfemaleHigh" "vlfemaleMid" "vlmaleHigh" "vlmaleMid"

reflects the design of this data set, with nl representing the Netherlands, and vl

representing Flanders. A chi-squared test shows that the words in -lijk are not

uniformly distributed over the subcorpora:

> chisq.test(variationLijk)
...
X-squared = 575.3482, df = 217, p-value < 2.2e-16
...

This chi-squared test is rather uninformative, however. We have lots and lots of

data points, so it is unlikely a priori that the test will report a non-significant p-

value. Furthermore, all that this test tells us is that the counts are not proportionally

distributed in the table. The correspondence plot shown in Figure 5.8 is much more

revealing:

> variationLijk.ca = corres.fnc(variationLijk)
> plot(variationLijk.ca)

The subcorpora from the Netherlands (labels beginning with nl) cluster at the

left hand side of the plot, and those from Flanders (vl) cluster at the right hand

136 clustering and classification

side of the plot. Vriendelijk (“friendly”) emerges from this plot as characteristic

for female speakers from Flanders with a medium education level.

5.1.4 Tables with distances: multidimensional scaling

Multidimensional scaling is a technique for tracing structure in a ma-

trix of distances. Like principal components analysis, it is a technique for dimen-

sion reduction, usually to two or three dimensions. As in correspondence analysis,

which is in fact a special case of multidimensional scaling, the idea is to create a

representation in, for instance, a plane, such that the distances between the points

in that plane mirror as best as possible the distances between the points in the

original multidimensional space.

By way of example, we consider the similarities in conversational Dutch be-

tween 165 speakers as available in a corpus of spoken Dutch. We are interested

in whether the age and sex of the speaker are reflected in a quantitative mea-

sure of textual dissimilarity based on the notion of cross-entropy of two texts

(Juola, 2003), a measure that gauges the extent to which the one text can be pre-

dicted from the other. Metadata on the speakers are available as dutchSpeak-

ersDistMeta; dutchSpeakersDist provides the matrix of between-speaker

cross-entropy distances. We convert this matrix of distances into a distance object

with as.dist(),

> dutchSpeakersDist.d = as.dist(dutchSpeakersDist)

and supply it as input to cmdscale(), the function that carries out standard

multidimensional scaling. We request a reduction to three dimensions with k = 3:

> dutchSpeakersDist.mds = cmdscale(dutchSpeakersDist.d, k = 3)

The result is a matrix with 3 columns and 165 rows: the coordinates of the speakers

in the reduced three-dimensional space that we requested:

> head(dutchSpeakersDist.mds)
[,1] [,2] [,3]

1 -0.68954160 -0.10911462 0.5577156
2 -0.40487679 -0.16424549 -0.3747578
3 -0.25708988 0.06313037 0.2857530
4 -0.37567012 -0.10035375 -0.1644606
5 -0.39665853 -0.08165329 -0.1193554
6 0.02534566 0.09426173 -0.4670765

Do these dimensions reflect differences in the age and sex of the speakers? Before

addressing this question, we first convert this matrix into a data frame and add

speaker information:

> dat = data.frame(dutchSpeakersDist.mds,
+ Sex = dutchSpeakersDistMeta$Sex,
+ Year = dutchSpeakersDistMeta$AgeYear,
+ EduLevel = dutchSpeakersDistMeta$EduLevel)
> dat = dat[!is.na(dat$Year),]
> dat[1:2,]

5.1 Clustering 137

1930 1960

0
.0

0
.5

1
.0

year of birth

d
im

e
n
si

o
n
 1

female male

0
.0

0
.5

1
.0

d
im

e
n
si

o
n
 3

Figure 5.9. Year of birth and sex as reflected in the first and third dimension of a
multidimensional scaling of string-based cross-entropies for the spontaneous
spoken Dutch of 165 speakers.

X1 X2 X3 Sex Year EduLevel
1 -0.6895416 -0.10911462 0.5577156 female 1952 high
2 -0.4048768 -0.16424549 -0.3747578 male 1952 high

Two exploratory plots, shown in Figure 5.9, are now straightforward to make:

> par(mfrow=c(1,2))
> plot(dat$Year, dat$X1, xlab="year of birth",
+ ylab = "dimension 1", type = "p")
> lines(lowess(dat$Year, dat$X1))
> boxplot(dat$X3 ˜ dat$Sex, ylab = "dimension 3")
> par(mfrow=c(1,1))

These plots suggest that there is indeed some interpretable structure in the di-

mensions obtained with multidimensional scaling. The first dimension seems to

capture an effect of age: younger speakers tend to have somewhat higher scores on

the first dimension. Furthermore, the sex of the speaker seems to be represented

to some extent on the third dimension. These visual impressions are supported

by formal tests of significance, a Spearman rank-correlation test for Year,

> cor.test(dat$X1, dat$Year, method="sp")

Spearman’s rank correlation rho

data: dat$X1 and dat$Year
S = 392556.7, p-value = 9.435e-10

138 clustering and classification

alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.4561149

and a t-test for the speaker’s Sex:

> t.test(dat$X3˜dat$Sex)

Welch Two Sample t-test

data: dat$X3 by dat$Sex
t = 2.1384, df = 155.156, p-value = 0.03405
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.008260503 0.208387229
sample estimates:
mean in group female mean in group male

0.04567817 -0.06264569

5.1.5 Tables with distances: hierarchical cluster analysis

The final technique for tracing groups in numerical tables that we con-

sider in this chapter is hierarchical cluster analysis. Hierarchical cluster analysis

is the name for a family of techniques for clustering data and displaying them in a

tree-like format. Just as with multidimensional scaling, these techniques require

a distance object as input.

There are many different ways to form clusters. One way is to begin with an

initial cluster containing all data points, and then to proceed with successively

partitioning clusters into smaller clusters. One of the functions in R that uses

this divisive clustering approach is diana(). This method is reported to have

difficulties finding optimal divisions for smaller clusters. However, when the goal

is to find a few large clusters, it is an attractive method.

More commonly, clustering begins small, with single points, which are then

agglomerated into groups, and these groups into larger groups, and so on. Ag-

glomerative clustering is implemented in the function hclust(). The clus-

tering depends to a considerable extent on the criteria used for combining points

and groups of points into larger clusters. Which criteria hclust() should use

is specified by means of the option method. The default in R is complete,

which evaluates the dissimilarity between two clusters as the maximum of the

dissimilarities between the individual members of these clusters.

By way of example, we consider 23 lexical measures characterizing 2233

monomorphemic and monosyllabic English words as available in the english

data set. For convenience, the information pertaining to just the words and their

associated measures are available separately as the data set lexicalMeasures.

Brief information on these measures can be obtained with ?lexicalMeasures

or help(lexicalMeasures):

5.1 Clustering 139

> lexicalMeasures[1:5, 1:6]
Word CelS Fdif Vf Dent Ient

1 doe 3.912023 1.0216510 1.386294 0.14144 0.02114
2 whore 4.521789 0.3504830 1.386294 0.42706 0.94198
3 stress 6.505784 2.0893560 1.609438 0.06197 1.44339
4 pork 5.017280 -0.5263339 1.945910 0.43035 0.00000
5 plug 4.890349 -1.0445450 2.197225 0.35920 1.75393

All these measures are correlated to some extent. A matrix listing all pairwise

correlations between these variables, the correlation matrix of this data set,

is obtained simply with cor() applied to measures after excluding the first

column, which is not numeric:

> lexicalMeasures.cor = cor(lexicalMeasures[, -1])
> lexicalMeasures.cor[1:5, 1:5]

CelS Fdif Vf Dent Ient
CelS 1.00000000 0.04553879 0.66481876 0.25211726 -0.04662943
Fdif 0.04553879 1.00000000 -0.13101020 -0.02376464 -0.12678869
Vf 0.66481876 -0.13101020 1.00000000 0.68828793 0.08484806
Dent 0.25211726 -0.02376464 0.68828793 1.00000000 -0.06582160
Ient -0.04662943 -0.12678869 0.08484806 -0.06582160 1.00000000

Even correlations that seem quite small, such as the correlation of CelS (fre-

quency) andIent (inflectional entropy) are significant, thanks to the large number

of words in this data set:

> cor.test(lexicalMeasures$CelS, lexicalMeasures$Ient)
Pearson’s product-moment correlation

data: measures$CelS and measures$Ient
t = -2.2049, df = 2231, p-value = 0.02757
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.087940061 -0.005158676
sample estimates:

cor
-0.04662943

The question of interest to Baayen et al. (2006) was whether word frequency

(CelS) enters into stronger correlations with measures of a word’s form (such as

its length) or with measures of its meaning (such as its morphological family size

or its number of synsets in WordNet). The answer to this question may contribute

to understanding the role of frequency in lexical processing. The ubiquitous effect

of word frequency in reaction time experiments has often been interpreted as

reflecting the processing load of a word’s form. But if word frequency happens

to be more tightly correlated with semantic measures, this would suggest that it

might be useful to reconceptualize frequency as a measure of one’s familiarity

with a word’s meaning. In an experimental task such as lexical decision, it might

then be thought of as gauging, at least in part, semantic processing load.

A hierarchical cluster analysis is ideal for exploring the correlational structure

of these 23 measures. However, the above correlation matrix is not the best start-

ing point for a cluster analysis. Correlations can be both positive and negative.

For a matrix of distances, it is desirable to have only non-negative values. This

140 clustering and classification

requirement is easy to satisfy by squaring the correlation matrix. (When we square

the matrix, each of its elements is squared.)

> (lexicalMeasures.corˆ2)[1:5, 1:5]
CelS Fdif Vf Dent Ient

CelS 1.000000000 0.002073781 0.441983979 0.063563114 0.002174303
Fdif 0.002073781 1.000000000 0.017163673 0.000564758 0.016075372
Vf 0.441983979 0.017163673 1.000000000 0.473740272 0.007199192
Dent 0.063563114 0.000564758 0.473740272 1.000000000 0.004332483
Ient 0.002174303 0.016075372 0.007199192 0.004332483 1.000000000

Another consideration is that cor() works best for reasonably symmetrical vec-

tors. However, many of the present measures have skewed distributions or distri-

butions with more than one peak (multimodality). Therefore, it makes sense to

make use of Spearman correlations:

> lexicalMeasures.cor = cor(lexicalMeasures[,-1], method="spearman")ˆ2
> lexicalMeasures.cor[1:5, 1:5]

CelS Fdif Vf Dent Ient
CelS 1.0000000000 0.0004464715 0.44529233 0.097394824 0.003643291
Fdif 0.0004464715 1.0000000000 0.02163948 0.001183269 0.017550778
Vf 0.4452923284 0.0216394843 1.00000000 0.533855660 0.011743931
Dent 0.0973948244 0.0011832693 0.53385566 1.000000000 0.001875520
Ient 0.0036432911 0.0175507780 0.01174393 0.001875520 1.000000000

The last preparatory step is to convert this matrix into a distance object:

> lexicalMeasures.dist = dist(lexicalMeasures.cor)

The cluster analysis itself is straightforward. First consider agglomerative cluster-

ing, for which we use hclust() to carry out the cluster analysis, and plclust()

to plot the dendrogram:

> lexicalMeasures.clust = hclust(lexicalMeasures.dist)
> plclust(lexicalMeasures.clust)

Figure 5.10 shows that the highest split separates three measures of ortho-

graphic consistency from all other measures. The next split isolates another four

measures of orthographic consistency, and the same holds for the next split as

well. The fourth split starts to become interesting, in that its left branch groups

together four semantic measures: family size (Vf), derivational entropy (Dent),

and two synset counts (NsyS, NsyC). It also contains frequency (CelS). The

right branch dominates various measures of form such as the count of neighbors

(Ncou) and word length (Len). But this right branch also contains two measures

that are not measures of form: inflectional entropy (Ient, a measure of the com-

plexity of a word’s inflectional paradigm) and the ratio of the word’s frequency

as a noun and as a verb (NVratio). In other words, the clustering algorithm that

we used shows some structure, but a clear separation of measures of form and

measures of meaning is not obtained.

Let’s now consider divisive clustering with the diana() function from the

cluster package. We feed the output of diana() into pltree(), which han-

dles the graphics. The result is shown in Figure 5.11:

5.1 Clustering 141

ff
V

ff
N

ff
N

o
n
ze

ro sp
e
lV

fr
ie

n
d
sV

sp
e
lN

fr
ie

n
d
sN

fb
V

fb
N

p
h
o
n
V

p
h
o
n
N

V
f

D
e
n
t N
sy

S
C

e
lS

N
sy

C
N

co
u

L
e
n

B
ig

r
Ie

n
t

N
V

ra
tio

F
d
if

In
B

i

0
.0

0
.5

1
.0

1
.5

2
.0

hclust (*, "complete")
measures.dist

H
e
ig

h
t

Figure 5.10. Agglomerative hierarchical cluster analysis of 23 lexical variables.

C
e
lS

N
sy

C N
sy

S
V

f
D

e
n
t

Ie
n
t

N
V

ra
tio

F
d
if

In
B

i
L
e
n

B
ig

r
N

co
u

sp
e
lV

fr
ie

n
d
sV

sp
e
lN

fr
ie

n
d
sN

p
h
o
n
V

p
h
o
n
N

fb
V

fb
N

ff
V

ff
N

ff
N

o
n
ze

ro

0
.0

0
.5

1
.0

1
.5

2
.0

Dendrogram of diana(x = citems.sel)

diana (*, "")
citems.sel

H
e
ig

h
t

Figure 5.11. Divisive hierarchical cluster analysis of 23 lexical variables.

142 clustering and classification

> library(cluster)
> pltree(diana(lexicalMeasures.dist))

Divisive clustering succeeds in bringing all measures that do not pertain to mean-

ing together in one cluster at the left of the dendrogram, the left branch of the

third main split. Again, frequency (CelS) does not side with the measures of word

form.

If you want to know to which clusters the variables are assigned, you first have

to decide how many clusters you think you need, and use this number as the

second argument for cutree(). Here, we opt for five clusters:

> cutree(diana(lexicalMeasures.dist), 5)
[1] 1 2 1 1 1 1 1 2 2 2 2 3 3 4 4 3 3 5 5 4 4 5 1

When combined with the names of the measures, and with the classification of

these measures in the data set lexicalMeasuresClasses, we obtain a very

close correspondence between the class of the variable and cluster number, with

as the only exception the Fdif measure, which gauges the difference between a

word’s frequency in speech versus writing:

> x = data.frame(measure = rownames(lexicalMeasures.cor),
+ cluster = cutree(diana(lexicalMeasures.dist), 5),
+ class = lexicalMeasuresClasses$Class)
> x = x[order(x$cluster),]
> x

measure cluster class
1 CelS 1 Meaning
3 Vf 1 Meaning
4 Dent 1 Meaning
5 Ient 1 Meaning
6 NsyS 1 Meaning
7 NsyC 1 Meaning
23 NVratio 1 Meaning
2 Fdif 2 Meaning
8 Len 2 Form
9 Ncou 2 Form
10 Bigr 2 Form
11 InBi 2 Form
12 spelV 3 Form
13 spelN 3 Form
16 friendsV 3 Form
17 friendsN 3 Form
14 phonV 4 Form
15 phonN 4 Form
20 fbV 4 Form
21 fbN 4 Form
18 ffV 5 Form
19 ffN 5 Form
22 ffNonzero 5 Form

As a second example of cluster analysis, we consider data published by Dunn

et al. (2005) on the phylogenetic classification of Papuan and Oceanic languages

using grammatical features. The vocabularies of Papuan languages are so different

that classification based on the amount of lexical overlap using basic word lists

is bound to fail. Dunn and colleagues showed that it is possible to probe the

5.1 Clustering 143

classification of Papuan languages in an interesting and revealing way using

non-lexical, grammatical traits. Their data set, available as phylogeny, contains

a great many binary features for 15 Papuan and 16 Oceanic languages (columns).

The first column specifies the language, the second the language family, and the

remaining 125 columns the grammatical properties, such as whether a language

has prenasalized stops. Presence is coded by 1, absence by 0:

> phylogeny[1:5, 1:5]
Language Family Frics PrenasalizedStops PhonDistBetweenLAndR

1 Motuna Papuan 1 0 0
2 Kol Papuan 1 0 1
3 Rotokas Papuan 1 0 0
4 Ata Papuan 1 0 0
5 Kuot Papuan 1 0 1

The left panel of Figure 5.12 shows the dendrogram obtained by applying divisive

clustering using diana(). We first create a distance object appropriate for binary

data,

> phylogeny.dist = dist(phylogeny[,3:ncol(phylogeny)], method="binary")

and we also create a vector of language names with the names for Papuan lan-

guages in upper case with toupper():

> plotnames = as.character(phylogeny$Language)
> plotnames[phylogeny$Family=="Papuan"] =
+ toupper(plotnames[phylogeny$Family=="Papuan"])

Divisive clustering and visualization is now straightforward:

> library(cluster)
> plot(diana(dist(phylogeny[, 3:ncol(phylogeny)],
+ method = "binary")), labels = plotnames, cex = 0.8,
+ main = " ", xlab= " ", which.plot = 2)

We note a fairly clear separation of Papuan and Oceanic languages.

The right panel of Figure 5.12 shows an unrooted tree obtained with an algo-

rithm known as neighbor-joining that is often used for phylogeny estimation. In

what follows, we use the ape package developed by Paradis and described in de-

tail, together with other packages for phylogenetic analysis, in Paradis (2006). We

load the ape package. We then apply the nj() function to obtain a phylogenetic

tree object:

> library(ape)
> phylogeny.dist.tr = nj(phylogeny.dist)

The plot method for phylogenetic tree objects has a wide variety of options. One

option, illustrated in the right panel of Figure 5.12, is to use different fonts to

highlight subsets of observations. Since the leaf nodes (or tips) of the tree are

labeled by default with the row numbers of the observations in the input distance

matrix, we need to do some extra preparatory work to get the names of the

languages into the plot. We begin with the row numbers, which are available in

144 clustering and classification

M
O

T
U

N
A

N
A

S
IO

I
B

U
IN

R
O

T
O

K
A

S
Y

E
L

I_
D

N
Y

E
K

O
L

M
A

L
I

S
U

L
K

A
A
TA

A
N

E
M

K
U

O
T

B
IL

U
A

B
a

n
o

n
i

S
is

iq
a

S
ia

r
Ta

io
f

N
a

lik
Tu

n
g

a
g

R
o
vi

a
n

a
K

o
ko

ta B
a

li
G

a
p

a
p

a
iw

a
S

u
d

e
st

K
ili

vi
la

Ya
b

e
m

K
a

u
lo

n
g

K
a

ir
ir

u
Ta

ki
a

T
O

U
O

S
A

V
O

S
A

V
O L

A
V

U
K

A
L

E
V

E

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Divisive Coefficient = 0.47

H
e

ig
h

t

Banoni
Sisiqa

Roviana
Kokota

Siar
Taiof
Nalik

Tungag

Bilua

Yabem

Kaulong
KairiruTakiaKilivila

GapapaiwaSudestBali
Ata

Anem

Kol
Sulka

Mali

TouoSavosavo
Lavukaleve

Nasioi
Buin
Motuna

Yeli Dnye

Rotokas

Kuot

Figure 5.12. Divisive clustering withdiana() (in theclusterpackage) and the corresponding unrooted
tree obtained with the neighbor-joining algorithmnj() (in theape package) of 16 Oceanic and 15 Papuan
languages using 125 grammatical traits (Dunn et al., 2005).

the form of a character vector in the tree object as tip.label. We then use these

row numbers to reconstruct the names of the language families,

> families = as.character(
+ phylogeny$Family[as.numeric(phylogeny.dist.tr$tip.label)])

and also the names of the languages themselves:

> languages = as.character(
+ phylogeny$Language[as.numeric(phylogeny.dist.tr$tip.label)])

We substitute the language names for the row names in the tree object,

> phylogeny.dist.tr$tip.label = languages

and plot the tree:

> plot(phylogeny.dist.tr, type="u",
+ font = as.numeric(as.factor(families)))

The option type="u" requests an unrooted tree. In unrooted trees, all nodes have

at least three connecting branches, and there is no longer a single root node that

can be considered as the common ancestor of all tip nodes. It is easy to see that

the two dendrograms shown in Figure 5.12 point to basically the same topology.

As mentioned above, the focus of the study of Dunn and colleagues was the

internal classification of the Papuan languages, as it is here that traditional word-

based classification fails most dramatically. The tree presented in the upper left

5.1 Clustering 145

Yeli Dnye

Nasioi

Buin

Motuna

KolSulka

Mali

Ata

Anem

Kuot

Lavukaleve

Touo

Savosavo

Bilua

Rotokas

Yeli Dnye

Nasioi

Buin

Motuna

KolSulka

Mali

Ata

Anem

Kuot

Lavukaleve

Touo

Savosavo

Bilua

Rotokas

Anem

Ata

Bilua

Buin
Nasioi

Motuna
Kol

Sulka

Mali

Kuot

Lavukaleve
Rotokas

Savosavo
Touo

Yeli Dnye

Figure 5.13. Unrooted phylogenetic trees for the subset of Papuan languages in the data of Dunn et al.

(2005), obtained with the node-joining algorithm. The fonts represent geographical areas (plain: Bismarck
Archipelago; bold: Bougainville; italic: Central Solomons; bold italic: Louisiade Archipelago). The upper
right tree adds thermometers for bootstrap support to the tree in the upper left. The lower tree is a consensus
tree across 200 bootstrap trees.

of Figure 5.13 shows that the unrooted phylogenetic tree groups languages ac-

cording to geographical region, as indicated by different fonts (plain: Bismarck

Archipelago; bold: Bougainville; italic: Central Solomons; bold italic: Louisiade

Archipelago). This striking result is reproduced as follows:

> papuan = phylogeny[phylogeny$Family == "Papuan",]
> papuan$Language = as.factor(as.character(papuan$Language))
> papuan.meta = papuan[,1:2]
> papuan.mat = papuan[, 3:ncol(papuan)]
> papuan.meta$Geography = c(
+ "Bougainville", "Bismarck Archipelago", "Bougainville",
+ "Bismarck Archipelago", "Bismarck Archipelago", "Central Solomons",
+ "Bougainville", "Louisiade Archipelago", "Bougainville",
+ "Bismarck Archipelago", "Bismarck Archipelago",
+ "Bismarck Archipelago", "Central Solomons", "Central Solomons",

146 clustering and classification

+ "Central Solomons")
> papuan.dist = dist(papuan.mat, method = "binary")
> papuan.dist.tr = nj(papuan.dist)
> fonts = as.character(papuan.meta$Geography[as.numeric(
+ papuan.dist.tr$tip.label)])
> papuan.dist.tr$tip.label =
+ as.character(papuan.meta$Language[as.numeric(
+ papuan.dist.tr$tip.label)])
> plot(papuan.dist.tr, type = "u", font = as.numeric(as.factor(fonts)))

The clustering techniques that we have considered in this section are not based

on a formal model, but on reasonable but nevertheless heuristic procedures. As

a consequence, there are no hard and fast criteria to help decide what kind of

clustering (agglomerative or divisive) is optimal for a given data set. When a

cluster analysis is reported, only one dendrogram tends to be shown, even though

the authors may have tried out a variety of clustering techniques. Typically, the

dendrogram shown is the one that best fits the authors’ hypothesis about the data.

This is fine, as long as you keep in mind that the dendrogram probably depicts an

optimal solution.

A technique that provides a means for validating a cluster analysis is the boot-

strap. The bootstrap is a general technique that we will also use in the chapters

on regression modeling. The basic idea of the bootstrap as applied to the present

data is that we sample (with replacement) from the columns of our data matrix.

For each sample, we construct the distance matrix and grow the corresponding

unrooted tree with the node-joining algorithm. Finally, we compare our original

dendrogram with the dendrograms for the bootstrap samples, and calculate the

proportions of bootstrapped dendrograms that support the groupings (subtrees, or

clades in the terminology of phylogenetics) in the original trees. In this way, we

obtain insight into the extent to which the clustering depends on the idiosyncracies

of the set of grammatical traits that happened to be selected for analysis.

The proportion of support for the different subtrees is shown in the upper right

panel of Figure 5.13 by means of thermometers: the higher the temperature, the

greater the proportional support for a subtree. The bootstrap analysis underlying

this panel closely follows the example of Paradis, 2006:117. We begin by defining

the number of bootstrap runs, and prepare a list in which we save the bootstrap

trees:
> B = 200
> btr = list()
> length(btr) = B

We now create 200 bootstrap trees, sampling with replacement from the columns

of our data matrix:

> for (i in 1:B) {
+ trB = nj(dist(papuan.mat[,sample(ncol(papuan.mat), replace = TRUE)],
+ method = "binary"))
+ trB$tip.label = as.character(papuan.meta$Language[as.numeric(
+ trB$tip.label)])
+ btr[[i]] = trB
+ }

5.1 Clustering 147

The proportions of bootstrap trees that support the subtrees of our original tree

are obtained with the help of prop.clades():

> props = prop.clades(papuan.dist.tr, btr)/B
> props
[1] 1.000 0.600 0.865 0.050 0.100 0.115 0.200 0.315 0.555 0.680 0.625
[12] 0.445 0.920

We plot the original tree,

> plot(papuan.dist.tr, type = "u", font = as.numeric(as.factor(fonts)))

and add the thermometers with nodelabels():

> nodelabels(thermo = props, piecol = c("black", "grey"))

The proportion of bootstrap support decreases as one moves to the center of the

graph. This points to a lack of consensus with respect to how subtrees should be

linked. A different way of bringing this uncertainty out into the open is to plot

a consensus tree. In a consensus tree, subgroups that are not observed in all

bootstrap trees (strict consensus) or in a majority of all bootstrap trees (majority-

rule consensus) will be collapsed. The result is a tree with multichotomies. The

lower left tree of Figure 5.13 shows such a multichotomy in the center, where nine

branches come together. The ape package provides the function consensus()

for constructing a consensus tree for a list of trees, given a proportion p specifying

the required level of consensus:

> btr.consensus = consensus(btr, p = 0.5)

Consensus trees come with a plot method, and can be visualized straightforwardly

with plot(). Some extra steps are required to plot the tree with fonts representing

geographical areas:

> x = btr.consensus$tip.label
> x
[1] "Anem" "Ata" "Bilua" "Buin" "Nasioi"
[6] "Motuna" "Kol" "Sulka" "Mali" "Kuot"

[11] "Lavukaleve" "Rotokas" "Savosavo" "Touo" "Yeli˙Dnye"
> x = data.frame(Language = x, Node = 1:length(x))
> x = merge(x, papuan.meta, by.x = "Language", by.y = "Language")
> head(x)

Language Node Family Geography
1 Anem 1 Papuan Bismarck Archipelago
2 Ata 2 Papuan Bismarck Archipelago
3 Bilua 3 Papuan Central Solomons
4 Buin 4 Papuan Bougainville
5 Kol 7 Papuan Bismarck Archipelago
6 Kuot 10 Papuan Bismarck Archipelago
> x = x[order(x$Node),]
> x$Geography = as.factor(x$Geography)
> plot(btr.consensus, type = "u", font = as.numeric(x$Geography))

The consensus tree shows that the grouping of Bilua, Kuot, Lavukaleve, Rotokas,

and Yeli Dnye is inconsistent across bootstrap runs. We should at the same time

148 clustering and classification

keep in mind that a given bootstrap run will make use of roughly 80 of the 125

available grammatical traits. A loss of about a third of the available grammatical

markers may have had severe adverse consequences for the goodness of the

clustering. Therefore, replication studies with a larger set of languages and an even

broader range of grammatical traits may well support the interesting similarity in

geographical and grammatical topology indicated by the original tree constructed

with all 125 traits currently available.

5.2 Classification

In the previous section, we have been concerned with discerning clus-

ters and groupings for data points described by the rows of numerical matrices.

When we visualized data, we often used color coding or changes in font size to

distinguish subsets of data points. But information on these subsets was never

used in the calculations. We only added it to our plots afterwards. In this section,

we change our perspective from clustering to classification, and take infor-

mation on subsets (classes) of data points as our point of departure. Our aim is

now to ascertain whether the class of a data point can be predicted.

5.2.1 Classification trees

In Chapters 1 and 2 we started exploring data on the dative alternation

in English (Bresnan et al., 2007). The dependent variable in this study is a factor

with levels np (the dative is realized as an np, as in John gave Mary the book)

and pp (the dative is realized as a pp, as in John gave the book to Mary). For 3263

verb tokens in corpora of written and spoken English, the values of a total of 12

variables were determined, in addition to the realization of the dative, coded as

RealizationOfRecipient in the data set dative:

> colnames(dative)
[1] "Speaker" "Modality"
[3] "Verb" "SemanticClass"
[5] "LengthOfRecipient" "AnimacyOfRec"
[7] "DefinOfRec" "PronomOfRec"
[9] "LengthOfTheme" "AnimacyOfTheme"

[11] "DefinOfTheme" "PronomOfTheme"
[13] "RealizationOfRecipient" "AccessOfRec"
[15] "AccessOfTheme"

Short descriptions of these variables are available with ?dative. The question

that we address here is whether the realization of the recipient as np or pp can

be predicted from the other variables. The technique that we introduce here is

cart analysis, an acronym for Classification And Regression Trees. This section

restricts itself to discussing classification trees. (When the dependent variable is

not a factor but a numerical variable, the same principles apply and the result is

a regression tree.)

5.2 Classification 149

|
AccessOfRec=given

AccessOfTheme=accessible,new

PronomOfTheme=nonpronominal

SemanticClass=a,c

SemanticClass=a,c,f,p

LengthOfTheme>=4.5

LengthOfRecipient< 2.5

Modality=spoken

NP
1861/116

NP
119/17

NP
43/16

PP
7/123

NP
165/44

NP
86/44

PP
25/40

PP
23/104

PP
85/345

Figure 5.14. Initial (unpruned) cart tree for the realization of the recipient in English clauses
(np or pp) in written and spoken English.

An initial classification tree for the dative alternation is shown in Figure 5.14.

The tree outlines a decision procedure for determining the realization of the recip-

ient as np or pp. Each split in the tree is labeled with a decision rule. The decision

rule at the root, the top node of the tree, asks whether or not the factor Access-

OfRec has the level given. If so, follow the left branch, otherwise, follow the

right branch. At each next branch a new decision rule is considered that directs us

to a new branch in its subtree. This process is repeated until a leaf node, a node

with no further splits, is reached. A data point for which the accessibility of the re-

cipient is given, for which the accessibility of the theme is given, and for which

the pronominality of the theme is nonpronominal, we go left, right, and left at

which point we reach a leaf node for which the predicted outcome is np. This out-

come is supported by 119 observations and contradicted by only 17 observations.

The leaf nodes of the tree specify a partition of the data, i.e. a division of the

data set into a series of non-overlapping subsets that jointly comprise the full data

set. Hence, cart analysis is often referred to as recursive partitioning. For

any node, the algorithm for growing a tree inspects all predictors and selects the

one that is most useful. The algorithm begins with the root node, which represents

the full data set, and creates two subsets. For each of these subsets, it creates two

new subsets, for which in turn new subsets are created, and so on. Without a

stopping criterion, the tree would keep growing until its leaves would contain

150 clustering and classification

single observations only. Such leaves would be pure, in the sense that only one

level of the dependent variable would be represented at any leaf node. But such

leaf nodes would also be trivially pure, and would not allow generalization: the

tree would severely overfit the data. Therefore, the tree-growing algorithm stops

when there are too few observations at a node, by default 20. In addition, the tree-

growing algorithm refuses to implement useless splits. For a split to be useful, the

daughter nodes should be purer than the mother node, in the sense that the ratio

of np to pp realizations in the daughter nodes should be more extreme (i.e. closer

to 1 or to 0) than in the mother node. How exactly node impurity is assessed

is a technical issue that need not concern us here. What is important is that the

usefulness of a predictor is assessed by its success in reducing the impurity in the

mother node, and its success in creating purer daughter nodes. The vertical parts

of the branches in the tree diagram are proportional to the achieved reduction

in node heterogeneity, and provide a graphical representation of the explanatory

value of a split.

The tree shown in Figure 5.14 was grown by the function rpart() from the

rpart package:

> library(rpart)
> dative.rp = rpart(RealizationOfRecipient ˜ .,
+ data = dative[,-c(1, 3)]) # exclude the columns with subjects, verbs

In this formula, the dot following the equation is shorthand for all variables in

the data frame with the exception of the dependent variable. The tree object

dative.rp is visualized with plot() and labeled with text():

> plot(dative.rp, compress = T, branch = 1, margin = 0.1)
> text(dative.rp, use.n = T, pretty = 0)

The plot options are explained in detail in the help for plot.rpart(), and the

options for labeling in the help for text.rpart(). When the option use.n is set

to TRUE, counts are added to the leaf nodes. By setting pretty to zero, we force

the use of the full names of the factor levels, instead of the codes that rpart()

produces by default.

The problem with this initial tree is that it still overfits the data. It implements too

many splits that have no predictive value for new data. To increase the prediction

accuracy of the tree, we have to prune it by snipping off useless branches. This

is done with the help of an algorithm known as cost-complexity pruning.

Cost-complexity pruning pits the size of the tree (in terms of its number of leaf

nodes) against its success in reducing the impurity in the tree by means of a cost-

complexity parameter cp. The larger the value of cp, the greater the number of

branches that are pruned. For very large cp, all that remains of the tree is its root

stump. When cp is very low, it is too small to induce any pruning.

How should we evaluate the balance between success in classification accuracy

on the one hand and the complexity of our theory (gauged by its number of leaf

nodes) on the other hand? The answer to this question is 10-fold cross-validation.

5.2 Classification 151

cp

0
.4

0
.6

0
.8

1
.0

Inf 0.13 0.071 0.058 0.041 0.024 0.013

1 2 3 4 6 8 9

size of tree

Figure 5.15. Cost-complexity cross-validation plot for the unpruned cart tree
(Figure 5.14) for the realization of the recipient in English.

For successive values of cp, and hence for successive tree sizes, we take the data

and randomly divide it into ten equally sized parts. We then select the first part, put

it aside, and build a tree for the remaining nine parts lumped together. Next, we

evaluate how well this tree predicts the realization of the recipient for the held-out

part by comparing its misclassification rate with the misclassification rate for the

root model, the simplest possible model without any predictors. The result is a

relative error score. We repeat this process for each of the nine remaining parts.

What we end up with is, for each tree size, ten relative error scores that inform

us how well the model generalizes to unseen data. Of course, it would be better

to evaluate the model against new data, but in the absence of a second equivalent

data set, cross-validation provides a way of assessing predictivity anyway.

Figure 5.15, obtained with plotcp(), plots the means of these error scores:

> plotcp(dative.rp)

The horizontal axis displays the values of the cost-complexity parameter cp at

which branches are pruned. The corresponding sizes of the pruned tree are shown

at the top of the plot. The vertical axis represents the cross-validation error. The

small vertical lines for each point mark one standard error above and below the

mean. The dotted line represents one standard error above the mean for the lowest

point in the graph. A common selection rule for the cost-complexity parameter

is to select the leftmost point that is still under this dotted line. In this example,

this leftmost point would also be the rightmost point. To be a little conservative,

we prune the tree (with prune()) for cp = 0.041, and obtain a tree with six

leaves, as shown in Figure 5.16:

> dative.rp1 = prune(dative.rp, cp = 0.041)
> plot(dative.rp1, compress = T, branch = 1, margin = 0.1)
> text(dative.rp1, use.n = T, pretty = 0)

152 clustering and classification

|
AccessOfRec=given

AccessOfTheme=accessible,new

PronomOfTheme=nonpronominal

SemanticClass=a,c,f,p

LengthOfTheme>=4.5

NP
1861/116

NP
119/17

PP
50/139

NP
165/44

PP
134/188

PP
85/345

Figure 5.16. Cost-complexity pruned cart tree for the realization of the recipient in English.

We accept the predictors in this tree as statistically significant, and note that

here cross-validation has taken over the function of the p-values associated with

classical statistics associated with the t , F , or chi-squared distributions.

A verbal summary of the model is obtained by typing the object name at the

prompt:

> dative.rp1
n= 3263

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 3263 849 NP (0.74 0.26)
2) AccessOfRec=given 2302 272 NP (0.88 0.12)

4) AccessOfTheme=accessible,new 1977 116 NP (0.94 0.06) *
5) AccessOfTheme=given 325 156 NP (0.52 0.48)
10) PronomOfTheme=nonpronominal 136 17 NP (0.88 0.12) *
11) PronomOfTheme=pronominal 189 50 PP (0.26 0.74) *

3) AccessOfRec=accessible,new 961 384 PP (0.40 0.60)
6) SemanticClass=a,c,f,p 531 232 NP (0.56 0.44)
12) LengthOfTheme>=4.5 209 44 NP (0.79 0.21) *
13) LengthOfTheme< 4.5 322 134 PP (0.42 0.58) *
7) SemanticClass=t 430 85 PP (0.20 0.80) *

5.2 Classification 153

The first line mentions the number of data points. The second line provides a

legend for the remainder, each line of which consists of a node number, the

splitting criterion, the number of observations in the subtree dominated by the

node, a measure of the reduction in node impurity effected by the split, and the

probabilities of the np and pp realizations.

How successful is the model in predicting the realization of the recipient? To

answer this question, we pit the predictions of the cart tree against the actually ob-

served realizations. We extract the predictions from the model with predict():

> head(predict(dative.rp1))
NP PP

[1,] 0.9413252 0.05867476
[2,] 0.9413252 0.05867476
[3,] 0.9413252 0.05867476
[4,] 0.9413252 0.05867476
[5,] 0.9413252 0.05867476
[6,] 0.9413252 0.05867476

Each row of the input data frame is paired with probabilities, one for each

level of the dependent variable. In the present example, we have a proba-

bility for the realization as np and one for the realization as pp. We choose

the realization with the largest probability (see section 7.4 for a more pre-

cise evaluation method using the somers2() function). Our choice is there-

fore np if the first column has a value greater than or equal to 0.5, and pp

otherwise:

> choiceIsNP = predict(dative.rp1)[,1] >= 0.5
> choiceIsNP[1:6]
[1] TRUE TRUE TRUE TRUE TRUE TRUE

We combine this vector with the original observations,

> preds = data.frame(obs = dative$RealizationOfRecipient, choiceIsNP)
> head(preds)

obs choiceIsNP
1 NP TRUE
2 NP TRUE
3 NP TRUE
4 NP TRUE
5 NP TRUE
6 NP TRUE

and cross-tabulate:

> xtabs(˜ obs + choiceIsNP, data = preds)
choiceIsNP

obs FALSE TRUE
NP 269 2145
PP 672 177

On a total of 3263 data points, only 269 + 177 = 446 are misclassified; 13.7%.

This compares favorably to a baseline classifier that simply predicts the most

likely realization for all data points, and therefore is in error for all and only all

154 clustering and classification

data points with pp as realization:

> xtabs(˜ RealizationOfRecipient, dative)
RealizationOfRecipient

NP PP
2414 849

The misclassification rate for this baseline model is 849/3263 = 26%.

An important property of CART trees is that they deal very elegantly with inter-

actions. Interactions arise when the effects of two predictors are not independent,

i.e. when the effect of one predictor is codetermined by the value of another pre-

dictor. Figure 5.16 illustrates many interactions. For instance, SemanticClass

appears only in the right branch of the tree, hence it is relevant only for clauses

in which the accessibility of the recipient is not given. Hence, we have here

an interaction of SemanticClass by AccessOfRec. The other three predictors

in the model also interact with AccessOfRec. Furthermore, LengthOfTheme

interacts with SemanticClass, and PronomOfTheme with AccessOfTheme.

Whereas such complex interactions can be quite difficult to understand in regres-

sion models, they are transparent and easy to grasp in classification and regression

trees.

5.2.2 Discriminant analysis

Discriminant analysis is used to predict an item’s class on the basis

of a set of numerical predictors. As in principal components analysis, the idea

is to represent the items in a low-dimensional space, typically a plane that can

be inspected with the help of a scatterplot. Instead of principal components, the

analysis produces linear discriminants. In both principal components analysis

(pca) and discriminant analysis, the new axes are linear combinations of the

original variables. But in discriminant analysis, the idea is to choose the linear

discriminants such that the means of the groups are as different as possible while

the variance around these means within the groups is as small as possible. We

illustrate the use of discriminant analysis by a study in authorship attribution

(Spassova, 2006).

Five texts from each of three Spanish writers were selected for analysis. Meta-

data on the texts are given in spanishMeta:

> spanishMeta = spanishMeta[order(spanishMeta$TextName),]
> spanishMeta

Author YearOfBirth TextName PubDate Nwords FullName
1 C 1916 X14458gll 1983 2972 Cela
2 C 1916 X14459gll 1951 3040 Cela
3 C 1916 X14460gll 1956 3066 Cela
4 C 1916 X14461gll 1948 3044 Cela
5 C 1916 X14462gll 1942 3053 Cela
6 M 1943 X14463gll 1986 3013 Mendoza
7 M 1943 X14464gll 1992 3049 Mendoza
8 M 1943 X14465gll 1989 3042 Mendoza
9 M 1943 X14466gll 1982 3039 Mendoza

5.2 Classification 155

10 M 1943 X14467gll 2002 3045 Mendoza
11 V 1936 X14472gll 1965 3037 VargasLLosa
12 V 1936 X14473gll 1963 3067 VargasLLosa
13 V 1936 X14474gll 1977 3020 VargasLLosa
14 V 1936 X14475gll 1987 3016 VargasLLosa
15 V 1936 X14476gll 1981 3054 VargasLLosa

From each text, fragments of approximately 3000 words were extracted. These

text fragments were tagged, and the relative frequencies of tag trigrams were

obtained. These relative frequencies are available as the data set spanish, rows

represent tag trigrams and columns represent text fragments:

> dim(spanish)
[1] 120 15
> spanish[1:5, 1:5]

X14461gll X14473gll X14466gll X14459gll X14462gll
P.A.N4 0.027494 0.006757 0.000814 0.024116 0.009658
VDA.J6.N5 0.000786 0.010135 0.003257 0.001608 0.005268
C.P.N5 0.008641 0.001126 0.001629 0.003215 0.001756
P.A.N5 0.118617 0.118243 0.102606 0.131833 0.118525
A.N5.JQ 0.011783 0.006757 0.014658 0.008039 0.000878

As we are interested in differences and similarities between texts, we transpose

this matrix, so that we can consider the texts to be points in tag space:

> spanish.t = t(spanish)

It is instructive to begin with an unsupervised exploration of these data, for in-

stance with principal components analysis:

> spanish.pca = prcomp(spanish.t, center = T, scale = T)
> spanish.x = data.frame(spanish.pca$x)
> spanish.x = spanish.x[order(rownames(spanish.x)),]
> library(lattice)
> super.sym = trellis.par.get("superpose.symbol")
> splom(˜spanish.x[, 1:3], groups = spanishMeta$Author,
+ panel = panel.superpose,
+ key=list(
+ title=" ",
+ text=list(levels(spanishMeta$FullName)),
+ points = list(pch = super.sym$pch[1:3],
+ col = super.sym$col[1:3])
+)
+)

Figure 5.17 suggests some authorial structure: Cela and Mendoza occupy dif-

ferent regions in the plane spanned by PC1 and PC2. VargasLLosa, however,

seems to be indistinguishable from the other two authors.

Let’s now replace unsupervised clustering by supervised classification. We

order the rows of spanish.t so that they are synchronized with the author

information in spanishMeta, and load the MASS package in order to have access

to the function for linear discriminant analysis, lda():

> spanish.t = spanish.t[order(rownames(spanish.t)),]
> library(MASS)

156 clustering and classification

Scatter Plot Matrix

PC1
0

5 0 5

10

PC2
0

5 0 5

0

0

PC30

2

4

6
0 2 4 6

0

0

Cela
Mendoza
VargasLLosa

Figure 5.17. Principal components analysis of fifteen Spanish texts from three
authors.

lda() takes two arguments, the matrix of numerical predictors and a vector with

class labels. A first attempt comes with a warning about collinearity:

> spanish.lda = lda(spanish.t, spanishMeta$Author)
Warning message:
variables are collinear in: lda.default(x, grouping, ...)

The columns in spanish.t are too correlated for lda() to work properly. We

therefore continue our analysis with the first eight principal components, which, as

revealed by the summary (not shown) of the pca objects, capture almost 80% of the

variance in the data. These principal components are, by definition, uncorrelated,

so the warning message should disappear:

> spanish.pca.lda = lda(spanish.x[, 1:8], spanishMeta$Author)
> plot(spanish.pca.lda)

Figure 5.18 shows a clear separation of the texts by author. We can query the

model for the probability with which it assigns texts to authors with predict(),

supplied with the model object as first argument, and the input data as second

5.2 Classification 157

0 2 4 6

0
1

2
3

LD1

L
D

2

C

C

C

C

C

M

M

M

M

M

V

V

V

V

V

Figure 5.18. Linear discriminant analysis of 15 Spanish texts by author.

argument. A table with the desired probabilities is available under the name

posterior, which we round to four decimal digits for ease of interpretation:

> round(predict(spanish.pca.lda,
+ spanish.x[,1:8])$posterior, 4)

C M V
X14458gll 1.0000 0.0000 0.0000
X14459gll 1.0000 0.0000 0.0000
X14460gll 1.0000 0.0000 0.0000
X14461gll 1.0000 0.0000 0.0000
X14462gll 0.9999 0.0000 0.0001
X14463gll 0.0000 0.9988 0.0012
X14464gll 0.0000 1.0000 0.0000
X14465gll 0.0000 0.9965 0.0035
X14466gll 0.0000 0.9992 0.0008
X14467gll 0.0000 0.8416 0.1584
X14472gll 0.0000 0.0001 0.9998
X14473gll 0.0000 0.0000 1.0000
X14474gll 0.0000 0.0014 0.9986
X14475gll 0.0000 0.0150 0.9850
X14476gll 0.0001 0.0112 0.9887

It is clear that each text is assigned to its own author with a very high probability.

Unfortunately, this table is rather misleading because the model seriously over-

fits the data. It has done its utmost to find a representation of the data that separates

the groups as best as possible. This is fine as a solution for this particular sam-

ple of texts, but it does not guarantee that prediction will be accurate for unseen

text fragments as well. The existence of a problem lurking in the background

is indicated by scrutinizing the group means, as provided by a summary of the

discriminant object, abbreviated here for convenience:

> spanish.pca.lda
...
Group means:

PC1 PC2 PC3 PC4 PC5
C -4.820024 -2.7560056 1.3985890 -0.94026140 0.2141179
M 3.801425 2.9890677 0.6494555 -0.01748498 0.4472681

158 clustering and classification

V 1.018598 -0.2330621 -2.0480445 0.95774638 -0.6613860
PC6 PC7 PC8

C -0.02702131 -0.5425466 0.86906543
M 1.75549883 -0.6416654 0.09646039
V -1.72847752 1.1842120 -0.96552582
...

There are differences among these group means, but they are not that large, and

we may wonder whether any are actually significant. A statistical test appropriate

for answering this question is a multivariate analysis of variance, avail-

able in R as the function manova(). It considers a group of numerical vectors

as the dependent variable, and takes one or more factors as predictors. We use

it to ascertain whether there are significant differences in the mean among the

dependent variables. (Running a series of separate one-way analyses of variance,

one for each PC, would run into the same problem of inflated p-values as dis-

cussed in Chapter 4 for a series of t-tests where a one-way analysis of variance

is appropriate.)

> spanish.manova =
+ manova(cbind(PC1, PC2, PC3, PC4, PC5, PC6, PC7, PC8) ˜
+ spanishMeta$Author, data = spanish.x)

There are several methods for evaluating the output of manova(); we use R’s

default, which makes use of the Pillai-Bartlett statistic, which approximately

follows an F-distribution:

Df Pillai approx F num Df den Df Pr(>F)
Author 2 1.6283 3.2854 16 12 0.02134
Residuals 12

The p-value is sufficiently small to suggest that there are indeed significant differ-

ences among the group means. On the other hand, the evidence for such differences

is not that exciting, and certainly not strong enough to inspire confidence in the

perfect classification by authors obtained with lda().

In order to gauge the extent to which our results might generalize, we carry out

a leave-one-out cross-validation. We run fifteen different discriminant analyses,

each of which is trained on fourteen texts and is used to predict the author of

the remaining held-out text. The proportion of correct attributions will give us

improved insight into how well the model would perform when confronted with

new texts by one of these three authors. Althoughlda() has an option for carrying

out leave-one-out cross-validation (CV=TRUE), we cannot use this option here

because the orthogonalization of our input (resulting in spanish.x) takes the

data from all authors and all texts into account. We therefore implement cross-

validation ourselves, and begin by making sure that the texts in spanish.t and

spanishMeta are in sync. We then set the number of PCs to be considered to 8

and define a vector with 15 empty strings to store the predicted authors:

> spanish.t = spanish.t[order(rownames(spanish.t)),]
> n = 8
> predictedClasses = rep("", 15)

5.2 Classification 159

Next, we loop over the fifteen texts. In each pass through the loop, we create a

training data set and a vector with the corresponding information on the author by

omitting the i-th text. Following orthogonalization, we make sure that the texts

remain in sync with the vector of authors, and then apply lda(). Finally, we

obtain the predicted authors for the full data set on the basis of the model for

the training data, but select only the i-th element and store it in the i-th cell of

predictedClasses:

> for (i in 1:15) {
+ training = spanish.t[-i,]
+ trainingAuthor = spanishMeta[-i,]$Author
+ training.pca = prcomp(training, center=T, scale=T)
+ training.x = data.frame(training.pca$x)
+ training.x = training.x[order(rownames(training.x)),]
+ training.pca.lda = lda(training[, 1:n], trainingAuthor)
+ predictedClasses[i] =
+ as.character(predict(training.pca.lda, spanish.t[, 1:n])$class[i])
+ }

Finally, we compare the observed and predicted authors:

> data.frame(obs = as.character(spanishMeta$Author),
+ pred = predictedClasses)

obs pred
1 C V
2 C C
3 C C
4 C C
5 C V
6 M M
7 M M
8 M M
9 M M
10 M V
11 V M
12 V V
13 V V
14 V M
15 V M

The number of correct attributions is,

> sum(predictedClasses==as.character(spanishMeta$Author))
[1] 9

which reaches significance according to a binomial test: The likelihood of ob-

serving 9 or more successes in 15 trials is 0.03:

> sum(dbinom(9:15, 15, 1/3))
[1] 0.03082792

We conclude that there is significant authorial structure, albeit not as crisp and

clear as Figure 5.18 suggested at first. We may therefore expect our discriminant

model to achieve some success at predicting the authorial hand of unseen texts

from one of these three authors.

160 clustering and classification

5.2.3 Support vector machines

Support vector machines are a relatively recent development in clas-

sification, and their performance is often excellent. A support vector machine

for a binary classification problem tries to find a hyperplane in multidimensional

space such that ideally all elements of a given class are on one side of that hyper-

plane, and all the other elements are on the other side. Furthermore, it allocates

a margin around that hyperplane, and points that are exactly the margin distance

away from the hyperplane are called its support vectors. In other words, whereas

discriminant analysis tries to separate groups by focusing on the group means,

support vector machines target the border area where the groups meet, and seeks

to set up a boundary there.

Let’s re-examine the Medieval French texts studied previously with the help

of correspondence analysis. Instead of clustering (unsupervised), we apply clas-

sification (supervised) with the svm() function from the e1071 package:

> library(e1071)

Correspondence analysis revealed a clear difference in the use of tag trigrams

across prose and poetry. We give svm() the reverse task of determining the

amount of support that our a priori classification into prose versus poetry receives

from the use of tag trigrams across our texts. The first argument that we supply to

svm() is the data frame with counts; the second argument is the vector specifying

the genre for each row in the data frame:

> genre.svm = svm(oldFrench, oldFrenchMeta$Genre)

Typing the object name at the prompt results in a brief summary of the parameters

used for the classification (many possibilities are offered, we have simply used

the defaults), and the number of support vectors:
> genre.svm
Call:
svm.default(x = oldFrench, y = oldFrenchMeta$Genre, cross = 10)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.02857143

Number of Support Vectors: 158

There is no straightforward way to visualize the classification. Some intuitions

about the support vectors can be gleaned by means of multidimensional scaling,

with special plot symbols for the observations that are chosen as support vectors,

in Figure 5.19 the plus symbol. Note that the plus symbols are especially dense

in the border area between the two (color-coded) genres:

> plot(cmdscale(dist(oldFrench)),
+ col = c("black", "darkgrey")[as.integer(oldFrenchMeta$Genre)],
+ pch = c("o", "+")[1:nrow(oldFrenchMeta) %in% genre.svm$index + 1])

5.2 Classification 161

o +
+

o
o

+

oo+
+

+

+

+

+

+

+
+

+

o

+
+

o

o
o

o

+
+

o

+

o+

o

+
o +

o

oo
+

o
+

+

o
o

o

+
o

o

o

+

+

+

o

o

+ o

o

+

+

+

o

o
+

o

o
o

+
+

+

o
+

+

+

o

o

+

o o

+
o

o

o o
o

o

+

+

o

o

o+ +
o

o o
o

+
+

o
o

o

oo

+

+
+ o

+o

o
o

o
+

o
o

o

o
oo oo o

o

o

+

o+

o

+

o+

o

+

o+

o

+
+

o

+

o

o

o

+
o

+
+

+o

o

+

+

+

+

+

o

+

o

+

+

o o

+

o

+

o

+

+
+ +

+

+ +

+

+

+

+
+

+

+

oo+
+

+

o

+

+

o

+

o

o+

o

o o

o
+

+o

o o

o
o

o

o

+

o
+

o

+
o

+

+

+

o o

o+

o

o
+ ++

+

+

o

o

o oo

+o

+

oo +
o

+

+

o

o o

o

+

+ oo

o

o

+
+

o

o

o
o

+

+

o

o

++

+

+

o

+

o

+

o

++

+

o o

o

oo

o
o

oo

o

o

oo
o

o

o

o

oo
o +

o

o
++

o
+

o
o

o

+

o
+

+

o
o

o

o

+

+
+

+
o

o

+

+

+

++

+

o

o

+

+

o o

+

+

+

+

+

o o

o

++

+

+

oo

cmdscale(dist(oldFrench))[,1]

cm
d
sc

a
le

(d
is

t(
o
ld

F
re

n
ch

))
[,
2
]

Figure 5.19. Multidimensional scaling for registers in Medieval French on the
basis of tag trigram frequencies, with support vectors highlighted by the plus
symbol. Black points represent poetry, grey points represent prose.

The second and third lines of this plot command illustrate a feature of subscripting

that has not yet been explained, namely, that a vector can be subscripted for more

elements as it is long, provided that these elements refer to legitimate indices in

the vector:

> c("black", "darkgrey")[c(1, 2, 1, 2, 2, 1)]
[1] "black" "darkgrey" "black" "darkgrey" "darkgrey" "black"

In the second line of the plot command, as.integer(oldFrenchMeta$

Genre) is a vector with ones and twos, corresponding to the levels poetry

and prose. This vector is mapped onto a vector with blue representing po-

etry and red representing prose. The same mechanism is at work for the third

line. The vector between the square brackets is dissected as follows. The index

extracted from the model object,

> genre.svm$index
[1] 2 3 6 13 14 15 16 17

refers to the row numbers in oldFrench of the support vectors. The vector

1:nrow(oldFrenchMeta)

is the vector of all row numbers. The %in% operator checks for set membership.

The result is a vector that is TRUE for the support vectors and FALSE for all other

rows. When 1 is added to this vector, TRUE first converts to 1 and FALSE to zero,

162 clustering and classification

so the result is a vector with ones and twos, which are in turn mapped onto the o

and + symbols.

A comparison of the predicted classes with the actual classes shows that only

a single text is misclassified:

> xtabs(˜ oldFrenchMeta$Genre + predict(genre.svm))
predict(genre.svm)

oldFrenchMeta$Genre poetry prose
poetry 198 0
prose 1 143

However, the model might be overfitting the data, so we carry out ten-fold cross-

validation by running svm() with the option cross (by default 0) set to 10:

> genre.svm = svm(oldFrench, oldFrenchMeta$Genre, cross = 10)

The summary specifies the average accuracy as well as the accuracy in each

separate cross-validation run:

> summary(genre.svm)
10-fold cross-validation on training data:

Total Accuracy: 96.78363
Single Accuracies:

97.05882 97.05882 97.05882 94.11765 97.14286 97.05882
97.05882 97.05882 100 94.28571

An average success rate of 0.97 (so roughly eight misclassifications) shows that

genre is indeed very predictable from the authors’ syntactic habits.

Classification by Region, by contrast, poses a more serious challenge:

> region.svm = svm(oldFrench, oldFrenchMeta$Region, cross = 10)
> xtab = xtabs(˜oldFrenchMeta$Region + predict(region.svm))
> xtab

predict(region.svm)
oldFrenchMeta$Region R1 R2 R3

R1 86 32 1
R2 1 152 0
R3 6 18 46

To calculate the proportion of the correct classifications, we extract the diagonal

elements,
> diag(xtab)
R1 R2 R3
86 152 46

take their sum and divide by the total number of observations:

> sum(diag(xtab))/sum(xtab)
[1] 0.8304094

Unfortunately, this success rate is severely inflated due to overfitting, as shown

by ten-fold cross-validation:

> summary(region.svm)
10-fold cross-validation on training data:

5.2 Classification 163

Total Accuracy: 61.9883
Single Accuracies:

64.70588 67.64706 67.64706 50 57.14286 64.70588
44.11765 70.58824 73.52941 60

However, a success rate of 62% still compares favorably with a baseline classifier

that would always assign the majority class, R2:

> max(xtabs(˜ oldFrenchMeta$Region))/nrow(oldFrench)
[1] 0.4473684

This success rate differs significantly from the cross-validated success rate. To see

this, we bring together the number of successes and failures for both classifiers

into a contingency table,

> cbind(c(153, 342-153), c(212, 342-212))
[,1] [,2]

[1,] 153 212
[2,] 189 130

and apply a chi-squared test:

> chisq.test(cbind(c(153, 342-153), c(212, 342-212)))

Pearson’s Chi-squared test with Yates’ continuity correction

data: cbind(c(153, 342 - 153), c(212, 342 - 212))
X-squared = 19.7619, df = 1, p-value = 8.771e-06

An alternative test that produces the same low p-value is the proportions test:

> prop.test(c(153, 212), c(342, 342))
...
data: c(153, 212) out of rep(342, 2)
X-squared = 19.7619, df = 1, p-value = 8.771e-06
alternative hypothesis: two.sided
95 percent confidence interval:
-0.2490838 -0.0959454
sample estimates:

prop 1 prop 2
0.4473684 0.6198830

In summary, support vector machines are excellent classifiers and probably

our best choice if the goal is to achieve optimal classification performance for an

application. Their disadvantage is that they are difficult to interpret and provide

little insight into what factors drive the classification.

Workbook section

Exercises

1. Burrows (1992), in a study using principal components analysis of English authorial hands,

observed that one of his principal components represented time. Burrows’ study was based

on a careful selection of texts from the same register (novels written in the first person

164 clustering and classification

singular). Explore for the affixProductivity data whether time is a latent variable for

productivity for the subset of literary texts (labeled with L in the column Registers), using

the year of birth as specified in the last column of the data frame (Birth). Run a principal

components analysis using the correlation matrix. Make sure to exclude the last three

columns from the data frame before running prcomp. Then use pairscor.fnc() (available

if you have attached the languageR package), that, like pairs(), creates a scatterplot

matrix. Unlike pairs(), it lists correlations in the lower triangle of the matrix. Use the

output of pairscor.fnc() to determine whether there is a principal component that

represents time. Finally use a biplot to investigate which affixes were used most productively

by the early authors and which by the late authors.

2. Consider the lexical measures for English monosyllabic monomorphemic words in the data

set lexicalMeasures. Calculate the correlation matrix (exclude the first column, which

lists the words) using the Spearman correlation. Square the correlation matrix, and use

multidimensional scaling to study whether the measures

CelS,NsyC,NsyS,Vf,Dent,Ient,NVratio, and Fdif form a cluster.

3. Ernestus and Baayen (2003) studied if it is predictable whether a stem-final obstruent in

Dutch alternates with respect to its voice specification. The data set finalDevoicing is a

data frame with 1697 monomorphemic Dutch words, together with the properties of their

onsets, vowels, codas, etc. The dependent variable is Voice, which specifies whether the

final obstruent is voiced instead of voiceless when it is syllable-initial (as, for instance, in the

plural of muis: mui-zen (“mice”). Use a classification tree to trace the probabilistic grammar

underlying voice alternation in Dutch. Calculate the classification accuracy, and compare it

with a baseline model that always selects voiceless. Details on the factors and their levels

are available in the description of the data set—type ?finalDevoicing at the R prompt.

4. The data set spanishFunctionWords provides the relative frequencies of the most

common function words in the Spanish texts studied above using the frequencies of tag

trigrams. Analyze this data set with linear discriminant analysis with cross-validation. As in

the analysis of tag trigrams, first orthogonalize the data with principal components analysis.

Which measure is a better predictor for authorship attribution: tag trigram frequency or

function word frequency?

5. The data set regularity specifies for 700 Dutch verbs whether or not they are regular or

irregular, along with numeric predictors such as frequency and family size, and a categorical

predictor, the auxiliary selected by the verb for the past perfect. Investigate whether a verb’s

regularity is predictable from these variables using support vector machines. After loading

the data, we convert the factor Auxiliary into a numeric predictor as support vector

machines cannot handle factors:

> regularity$AuxNum = as.numeric(regularity$Auxiliary)

Exclude columns 1, 8, 10 (the columns labeling the verbs, their regularity, and the auxiliary)

from the data frame when supplied as first argument to svm(). Use 10-fold cross-validation

and formally test whether the cross-validated accuracy is superior to the baseline model that

always selects regularity.

6 Regression modeling

Sections 4.3 and 4.4 introduced the basics of linear regression and analysis of

covariance. This chapter begins with a recapitulation of the central concepts and

ideas introduced in Chapter 4. It then broadens the horizon on linear regression

in several ways. Section 6.2 discusses multiple linear regression and various ana-

lytical strategies for dealing with multiple predictors simultaneously. Section 6.3

introduces the generalized linear model, which extends the linear modeling

approach to binary dependent variables (successes versus failures, correct ver-

sus incorrect responses, np or pp realizations of the dative, etc.) and factors with

ordered levels (e.g. low, mid, and high education level). (The varbrul program

used widely in sociolinguistics implements the general linear model for binary

variables.) Finally, section 6.4 outlines a method for dealing with breakpoints, and

section 6.5 discusses the special care required for dealing with word frequency

distributions.

6.1 Introduction

Consider again the ratings data set that we studied in Chapter 4. We

are interested in whether the rated size (averaged over subjects) of the referents of

81 English nouns can be predicted from the subjective estimates of these words’

familiarity and from the class of their referents (plant versus animal). We begin

by fitting a model of covariance with meanFamiliarity as nonlinear numeric

predictor and Class as factorial predictor. The simple main effects, i.e. main

effects that are not involved in any interactions, are separated by plus symbols in

the formula for lm():

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity +
+ I(meanFamiliarityˆ2) + Class, data = ratings)
> summary(ratings.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.09872 0.53870 7.609 5.75e-11
meanFamiliarity -0.38880 0.27983 -1.389 0.1687
I(meanFamiliarityˆ2) 0.07056 0.03423 2.061 0.0427
Classplant -1.89252 0.08788 -21.536 < 2e-16

165

166 regression modeling

This model has four coefficients: a coefficient for the intercept, coefficients for

the linear and quadratic terms of meanFamiliarity, and a coefficient for the

contrast between the levels of the factor Class: the group mean for the subset of

plants is −1.89 units lower than that for the animals, the reference level mapped

onto the intercept. Although we want our model to be as simple as possible, we

leave the non-significant coefficient for the linear effect of meanFamiliarity

in the model, for technical reasons, given that the quadratic term is significant.

The model that we ended up with in Chapter 4 was more complex, in that it

contained an interaction term for Class by meanFamiliarity:

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2), data = ratings)
> summary(ratings.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.42894 0.54787 8.084 7.6e-12
meanFamiliarity -0.63131 0.29540 -2.137 0.03580
I(meanFamiliarityˆ2) 0.10971 0.03801 2.886 0.00508
Classplant -1.01248 0.41530 -2.438 0.01711
meanFamiliarity:Classplant -0.21179 0.09779 -2.166 0.03346

This model has three main effects and one interaction. The interpretation of this

main effect, which is no longer a simple main effect because of the presence of

an interaction in which it is involved, is not as straightforward as in the previous

model. In that model, the effect of Class is very similar to the difference in

the group means for animals and plants. (It is not identical to this difference

because meanFamiliarity is also in the model.) In the new model with the

interaction, everything is recalibrated, and the main effect by itself is no longer

very informative. In fact, a main effect need not be significant as long as it is

involved in interactions that are significant, in which case it normally has to be

retained in the model.

Thus far, we have inspected this model withsummary(), which tells us whether

the coefficients are significantly different from zero. There is another way to look

at these data, using anova():

> anova(ratings.lm)
Analysis of Variance Table
Response: meanSizeRating

Df Sum Sq Mean Sq F value Pr(>F)
meanFamiliarity 1 3.599 3.599 30.6945 4.162e-07
Class 1 60.993 60.993 520.2307 < 2.2e-16
I(meanFamiliarityˆ2) 1 0.522 0.522 4.4520 0.03815
meanFamiliarity:Class 1 0.550 0.550 4.6907 0.03346
Residuals 76 8.910 0.117

This summary tells us, by means of F-tests, whether a predictor contributes sig-

nificantly to explaining the variance in the dependent variable. It does so in a

sequential way, by ascertaining whether a predictor further down the list has any-

thing to contribute over and above the predictors higher up the list. Hence the

output of anova() for a model fit with lm() is referred to as a sequential

6.1 Introduction 167

analysis of variance table. A sequential anova table answers different ques-

tions than the summary() function. To see why, we fit a series of separate models,

each with one additional predictor:

> ratings.lm1 = lm(meanSizeRating ˜ meanFamiliarity, ratings)
> ratings.lm2 = lm(meanSizeRating ˜ meanFamiliarity + Class, ratings)
> ratings.lm3 = lm(meanSizeRating ˜ meanFamiliarity + Class +
+ I(meanFamiliarityˆ2), ratings)
> ratings.lm4 = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2), ratings)

We compare the first and the second model to test whether Class is predictive

given that meanFamiliarity is in the model. In the same way, we compare the

second and the third model to ascertain whether we need the quadratic term, and

the third and the fourth model to verify that we need the interaction. We carry out

all these comparisons simultaneously with,

> anova(ratings.lm1, ratings.lm2, ratings.lm3, ratings.lm4)
Analysis of Variance Table
Model 1: meanSizeRating ˜ meanFamiliarity
Model 2: meanSizeRating ˜ meanFamiliarity + Class
Model 3: meanSizeRating ˜ meanFamiliarity + Class + I(meanFamiliarityˆ2)
Model 4: meanSizeRating ˜ meanFamiliarity * Class + I(meanFamiliarityˆ2)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 79 70.975
2 78 9.982 1 60.993 520.2307 < 2e-16
3 77 9.460 1 0.522 4.4520 0.03815
4 76 8.910 1 0.550 4.6907 0.03346

and obtain the same results as produced with anova(ratings.lm). Each suc-

cessive row in a sequential anova table evaluates whether adding a new predic-

tor is justified, given the other predictors in the preceding rows. By contrast, the

summary() function evaluates whether the coefficients are significantly different

from zero in a model containing all other predictors. This is a different question,

that often results in different p-values.

An interaction of Class by the quadratic term for meanFamiliarity turns

out not to be necessary:

> ratings.lm5 = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2) * Class, data = ratings)
> anova(ratings.lm5)
Analysis of Variance Table
Response: meanSizeRating

Df Sum Sq Mean Sq F value Pr(>F)
meanFamiliarity 1 3.599 3.599 30.7934 4.128e-07
Class 1 60.993 60.993 521.9068 < 2.2e-16
I(meanFamiliarityˆ2) 1 0.522 0.522 4.4663 0.03790
meanFamiliarity:Class 1 0.550 0.550 4.7058 0.03323
Class:I(meanFamiliarityˆ2) 1 0.145 0.145 1.2449 0.26810
Residuals 75 8.765 0.117

With a minimal change in the specification of the model, the replacement of the

second asterisk in the model formula by a colon, we obtain a very different result:

168 regression modeling

> ratings.lm6 = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2) : Class, data = ratings)
> anova(ratings.lm5)
Analysis of Variance Table
Response: meanSizeRating

Df Sum Sq Mean Sq F value Pr(>F)
meanFamiliarity 1 3.599 3.599 30.7934 4.128e-07
Class 1 60.993 60.993 521.9068 < 2.2e-16
meanFamiliarity:Class 1 0.095 0.095 0.8166 0.36906
Class:I(meanFamiliarityˆ2) 2 1.122 0.561 4.8002 0.01092
Residuals 75 8.765 0.117

It would now seem as if the interaction is significant after all. In order to understand

what is going on, we inspect the table of coefficients:

> summary(ratings.lm6)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.16838 0.59476 7.008 8.95e-10
meanFamiliarity -0.48424 0.32304 -1.499 0.1381
Classplant 1.02187 1.86988 0.546 0.5864
meanFamiliarity:Classplant -1.18747 0.87990 -1.350 0.1812
Classanimal:I(meanFamiliarityˆ2) 0.09049 0.04168 2.171 0.0331
Classplant:I(meanFamiliarityˆ2) 0.20304 0.09186 2.210 0.0301

Note that the coefficients for meanFamiliarity, Classplant, and their inter-

action are no longer significant. This may happen when a complex interaction is

added to a model. The last two lines show that we have two quadratic coefficients,

one for the animals (0.09) and one for the plants (0.20). This is what we asked

for when we specified the interaction (I(meanFamiliarity ˆ2) : Class)

without including a main effect for meanFamiliarity in the formula for rat-

ings.lm6. The question, however, is whether we need these two coefficients.

At first glance, the two coefficients look fairly different, but the standard error of

the second coefficient is quite large, 0.09. A quick and dirty estimate of the con-

fidence interval for the second coefficient is 0.20 ± 2 ∗ 0.09, which includes the

value of the first coefficient. Clearly, these two coefficients are not significantly

different. This is why the anova() and summary() functions reported a non-

significant effect for model ratings.lm5. What we are asking with the formula

of ratings.lm6 is whether the individual coefficients of the quadratic terms of

meanFamiliarity for the plants and the animals are different from zero. This

they are. We are not asking whether we need two different coefficients. This we

do not. What this example shows is that the main effect of a term in the model,

here the quadratic term for meanFamiliarity, should be specified explicitly in

the model when the question of interest is whether an interaction term is justified.

The conventions governing the specification of main effects and interactions

in the formula of a model are both straightforward and flexible. It is often con-

venient not to have to spell out all interactions for models with many predictors.

The following overview shows how combinations of predictors and their interac-

tions can be specified using parentheses, the plus and minus symbols, and the ∧

operator. With ∧2, for instance, we denote that all interactions involving pairwise

6.2 Ordinary least squares regression 169

combinations of the predictors enclosed within parentheses should be included

in the model:

a + b + c
a + b + c + a:b or a * b + c
a + b + c + a:b + a:c + b:c or (a + b + c)ˆ2
a + b + c + a:b + a:c + b:c + a:b:c or (a + b + c)ˆ3
a + b + c + a:b + a:c or (a + b + c)ˆ2 - b:c

Thus, the formula for ratings.lm5, for instance, can be simplified to:

meanSizeRating ˜ (meanFamiliarity + I(meanFamiliarityˆ2)) * Class

6.2 Ordinary least squares regression

This section introduces the Design package for multiple regression.

This package is described in detail by its author in Harrell (2001), a highly rec-

ommended monograph on regression and modeling strategies. In what follows,

we work through an example that illustrates the full range of complexities that we

may encounter in multiple regression using the data on 2284 monomorphemic

and monosyllabic English nouns and verbs that we have already encountered in

the preceding chapters. A detailed analysis of a subset of these data can be found

in Baayen et al. (2006). Short descriptions of each of the predictors are avail-

able in the on-line documentation (help(english)). We begin by considering

whether a word’s reaction time in visual lexical decision can be predicted from

its frequency of use in written English and from its length in letters. We have data

for 2197 words, divided over two word categories, nouns and verbs:

> xtabs(˜english$WordCategory)
english$WordCategory

N V
2904 1664

The reaction times (RTlexdec) are log-transformed averages calculated for two

subject groups differentiated by age:

> xtabs(˜english$AgeSubject)
english$AgeSubject

old young
2284 2284

The structure of this data set is made more clear by cross-tabulation:

> xtabs(˜english$AgeSubject + english$WordCategory)
english$WordCategory

english$AgeSubject N V
old 1452 832
young 1452 832

170 regression modeling

RTlexdec

0 2 4 6 8 10

6
.2

6
.4

6
.6

6
.8

7
.0

7
.2

0
2

4
6

8
1
0

WrittenFrequency

6.2 6.4 6.6 6.8 7.0 7.2 2 3 4 5 6 7

2
3

4
5

6
7

LengthInLetters

Figure 6.1. Pairs plot for written frequency, length in letters, and reaction time in visual lexical decision,
for English nouns and verbs. For each word, an average reaction time is plotted for two groups of subjects,
differentiated by age.

Each word occurs on two lines in the data frame, once for the young subject

group and once for the old subject group. We begin with a visual inspection of

our variables using the pairs plot shown in Figure 6.1:

> pairs(english[,c("RTlexdec", "WrittenFrequency", "LengthInLetters")],
+ pch = ".")

A negative correlation is visible for frequency and reaction time, which seems

to be non-linear. There also appear to be two parallel bands of points. These

are due, as will become apparent below, to the slower responses of the older

subjects. Finally, we note that there is not much to be seen for length in letters,

an integer-valued variable with a highly restricted range of values.

6.2 Ordinary least squares regression 171

When working with data using the Design package, it is recommended that

you first make an object that summarizes the distribution of your data with the

datadist() function. Such a summary includes, for instance, the ranges of the

predictors, which in turn guide the plot methods of Design objects:

> library(Design)
> english.dd = datadist(english)

It often happens that we have more than one data distribution object in the current

workspace, so we need to tell the functions of the Design package which of

these objects it should use. This is accomplished with the options() function,

which sets a variable with the name datadist to point to the appropriate data

distribution object:

> options(datadist = "english.dd")

In what follows, we switch from lm() to ols() as our tool for regression mod-

eling. The name of this function is an acronym for ordinary least squares,

the method by means of which the coefficients of the linear model are estimated

and that is used by both lm() and ols(). This estimation method seeks to min-

imize the squared vertical distances of data points to the regression line, hence

the terminology of “least squares.” We use ols() in the same way as lm():

> english.ols = ols(RTlexdec˜WrittenFrequency+LengthInLetters, english)

A summary of the model is obtained simply by typing the name of the model

object at the prompt:

> english.ols
Linear Regression Model
ols(formula = RTlexdec ˜ WrittenFrequency + LengthInLetters, english)

n Model L.R. d.f. R2 Sigma
4568 959.7 2 0.1895 0.1413

Residuals:
Min 1Q Median 3Q Max

-0.455240 -0.115826 -0.001086 0.103922 0.562429

Coefficients:
Value Std. Error t Pr(>|t|)

Intercept 6.71845 0.012728 527.832 0.0000
WrittenFrequency -0.03689 0.001137 -32.456 0.0000
LengthInLetters 0.00389 0.002489 1.563 0.1182

Residual standard error: 0.1413 on 4565 degrees of freedom
Adjusted R-Squared: 0.1891

The summary begins with describing english.ols as a linear regression model

object, and specifies the function call with which it was obtained. It then lists the

number of observations (4568), followed by the likelihood ratio statistic (L.R.),

a measure of goodness of fit. Together with its associated degrees of freedom (2),

172 regression modeling

this statistic can be used to test whether the model as a whole is explanatory as

follows:

> 1 - pchisq(959.7, 2)
[1] 0

The extremely small p-value is reassuring.

The proportion of the variance explained by the model, R2, is 0.1895, and

the standard deviation of the residual standard error (Sigma) is estimated

at 0.14. To understand these measures, it is helpful to make a table listing the

observed (log) RTs, the expected or fitted values of these RTs predicted by

the model, and the difference between the observed and expected values, the

residuals. We use the functions fitted() and resid() and bring the result

together in a data frame:

> x = data.frame(obs = english$RTlexdec,
+ exp = fitted(english.ols), resid = resid(english.ols))
> x[1:5,]

obs exp resid
1 6.543754 6.585794 -0.04203996
2 6.397596 6.571078 -0.17348145
3 6.304942 6.501774 -0.19683156
4 6.424221 6.548908 -0.12468768
5 6.450597 6.553591 -0.10299411

The values of R2 and Sigma are now straightforward to calculate:

> cor(xobs, xexp)ˆ2
[1] 0.1894976 # R-squared
> sd(x$resid)
[1] 0.1412707 # Sigma

R2 tells us how tight the fit is between what we observe and what we predict.

Sigma, on the other hand, summarizes the variability in the residuals. The better

the model, the smaller Sigma will be.

The summary proceeds with a description of the distribution of the residuals.

The mathematics underlying ordinary least squares regression depends on the

assumption that the residuals are normally distributed. The summary therefore

lists the quartiles:

> quantile(x$resid)
0% 25% 50% 75% 100%

-0.455239802 -0.115826341 -0.001086030 0.103922388 0.562429031

which suggest a reasonably symmetrical distribution. We can also inspect the

normality of the residuals by means of density and quantile-quantile plots:

> par(mfrow = c(1, 2))
> plot(density(x$resid), main = "")
> qqnorm(x$resid, pch = ".", main = "")
> qqline(x$resid)
> par(mfrow = c(1, 1))

6.2 Ordinary least squares regression 173

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

N = 4568 Bandwidth = 0.02357

D
e

n
s
it
y

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 6.2. Estimated density (left) and quantile-quantile plot (right) for the residuals of english.ols.

Figure 6.2 shows that there is something wrong with the residuals. Both panels

suggest departure from normality. The density plot, furthermore, indicates that

we are missing an important predictor, and that we have here two normal or near-

normal distributions with different means, instead of a single normal distribution.

Next in the summary is the table of coefficients. WrittenFrequency is a sig-

nificant predictor, LengthInLetters apparently not. The summary concludes

with listing the residual standard error, so Sigma again, and its associated degrees

of freedom, 4565. This number is equal to the total number of observations, 4568,

minus the number of coefficients in the model, 3. The last line of the summary

mentions the adjusted R2, a conservative version of R2 optimized for comparing

different models with respect to the amount of variance that they explain.

The density in Figure 6.2 suggests we have failed to bring an important predictor

into the model. This predictor turns out to be the age group (young versus old) of

the subjects in the experiment. We therefore include AgeSubject as a predictor,

and rerun ols():

> english.olsA = ols(RTlexdec ˜ WrittenFrequency + AgeSubject +
+ LengthInLetters, data = english)
> english.olsA
Linear Regression Model
ols(formula = RTlexdec ˜ WrittenFrequency + AgeSubject +
LengthInLetters, data = english)

174 regression modeling

n Model L.R. d.f. R2 Sigma
4568 5331 3 0.6887 0.08758

Residuals:
Min 1Q Median 3Q Max

-0.34438 -0.06041 -0.00695 0.05241 0.45157

Coefficients:
Value Std. Error t Pr(>|t|)

Intercept 6.82931 0.0079946 854.245 0.00000
WrittenFrequency -0.03689 0.0007045 -52.366 0.00000
AgeSubject=young -0.22172 0.0025915 -85.556 0.00000
LengthInLetters 0.00389 0.0015428 2.521 0.01173

Residual standard error: 0.08758 on 4564 degrees of freedom
Adjusted R-Squared: 0.6885

Note, first of all, that R2 is very much higher, and that Sigma is substantially

reduced. We now have a much better model. With the most important source of

variation under control, LengthInLetters emerges as significant as well.

Thus far, we have assumed that our predictors are linear. Given the curvature

visible in Figure 6.1, we need to address the possibility that this convenient

assumption is too simplistic.

6.2.1 Nonlinearities

We have already studied a regression model with a nonlinear relation

between the predictor and the dependent variable. We could add a quadratic term

to the model, using lm(),

> english.lm = lm(RTlexdec ˜ WrittenFrequency + I(WrittenFrequencyˆ2) +
+ AgeSubject + LengthInLetters, data = english)
> summary(english.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.9181819 0.0100832 686.112 < 2e-16
WrittenFrequency -0.0773456 0.0029733 -26.013 < 2e-16
I(WrittenFrequencyˆ2) 0.0038209 0.0002732 13.987 < 2e-16
AgeSubjectyoung -0.2217215 0.0025380 -87.362 < 2e-16
LengthInLetters 0.0050257 0.0015131 3.321 0.000903

and it is clear from the summary that the quadratic term for WrittenFrequency

is justified. The technical term for this way of handling nonlinearities is that we

made use of a quadratic polynomial.

It is not possible (nor necessary, as we shall see) to add a quadratic term in the

same way to the model formula when using ols(). This is because ols() tries

to look up the quadratic term in the data distribution object that we constructed for

our data frame. As there is no separate quadratic term available in our data frame,

ols() reports an error and quits. Fortunately, ols() provides alternative ways of

modeling nonlinearities that are in fact simpler to specify in the model formula. In

order to include a quadratic term for WrittenFrequency, we use the function

6.2 Ordinary least squares regression 175

pol(), an abbreviation for polynomial. It takes two arguments, the name of the

predictor, and a number specifying the complexity of the polynomial function.

A 2 specifies a linear and a quadratic component, a 3 defines the combination

of a linear, a quadratic, and a cubic component, etc. Here, we opt for minimal

nonlinearity with a quadratic fit:

> english.olsB = ols(RTlexdec ˜ pol(WrittenFrequency, 2) + AgeSubject +
+ LengthInLetters, data = english)
> english.olsB
Coefficients:

Value Std. Error t Pr(>|t|)
Intercept 6.918182 0.0100832 686.112 0.0000000
WrittenFrequency -0.077346 0.0029733 -26.013 0.0000000
WrittenFrequencyˆ2 0.003821 0.0002732 13.987 0.0000000
AgeSubject=young -0.221721 0.0025380 -87.362 0.0000000
LengthInLetters 0.005026 0.0015131 3.321 0.0009026

The estimates of the coefficients are identical to those estimated by lm(), but we

did not have to spell out the quadratic term ourselves.

The use of ols() has some further, more important advantages, however.

First, the anova table lists the overall significance of WrittenFrequency, and

separately the significance of its nonlinear component(s):

> anova(english.olsB)
Analysis of Variance Response: RTlexdec

Factor d.f. Partial SS MS F P
WrittenFrequency 2 21.3312650 10.665632502 1508.39 <.0001
Nonlinear 1 1.4462474 1.446247447 204.54 <.0001
AgeSubject 1 54.4400676 54.440067616 7699.22 <.0001
LengthInLetters 1 0.0821155 0.082115506 11.61 7e-04
REGRESSION 4 76.0907743 19.022693573 2690.30 <.0001
ERROR 4461 31.5430668 0.007070851

Unlike when anova() is applied to model objects produced by lm(), the

anova() method for ols objects provides a non-sequential analysis of vari-

ance table. This table lists, for each predictor, the F-statistics and associated

p-values, given that all the other predictors are already in the model.

A second advantage of ols() is that it is straightforward to visualize the effects

of the predictors. For this example, we begin with creating space for three panels

with mfrow(), and then we apply plot() to the model object. When setting

up the plot regions, we also specify that we need a smaller font size (0.6 of the

standard) with the cex parameter, so that the text accompanying each panel is

fully readable:

> par(mfrow = c(2, 2), cex = 0.6)
> plot(english.olsB)
> par(mfrow = c(1, 1), cex = 1.0)

Figure 6.3 shows the partial effects of each of the predictors, i.e. the effect of

a given predictor when the other predictors in the model are held constant. The

position of each curve with respect to the vertical axis depends on the actual values

176 regression modeling

WrittenFrequency

R
T

le
xd

e
c

0 2 4 6 8 10 12

6
.6

6
.7

6
.8

6
.9

Adjusted to: AgeSubject=old LengthInLetters=4
AgeSubject

R
T

le
xd

e
c

old young

6
.4

5
6
.5

0
6
.5

5
6
.6

0
6
.6

5

Adjusted to: WrittenFrequency=4.832 LengthInLetters=4

LengthInLetters

R
T

le
xd

e
c

2 3 4 5 6 7

6
.6

4
6
.6

5
6
.6

6
6
.6

7

Adjusted to: WrittenFrequency=4.832 AgeSubject=old

Figure 6.3. Partial effects of the predictors in the model english.olsB.

for which the other parameters in the model are held constant. These values are

spelled out beneath each panel. For instance, the curve for frequency represents

the old subjects, and words with four letters (the median word length). The line for

the effect of length is adjusted so that it describes the effect for the old subjects

and for a written frequency of 4.8 (the median frequency). The dashed lines

show the 95% confidence bands for the regression lines. Confidence intervals are

indicated by hyphens above and below the points representing factor levels. For

AgeSubject, the intervals are so small that the hyphens coincide with the point

symbols.

There are disadvantages to the use of polynomials, however. A quadratic poly-

nomial presupposes the data follow part of a parabola. For more complex curva-

ture, higher-order polynomials can be used (i.e. models including additional cubic

or higher terms), but they are costly in the number of parameters they require,

they tend to overfit the data, and a priori impose a very specific functional form

on the curve. A more flexible alternative is to use restricted cubic splines. In

construction, a spline is a flexible strip of metal or a piece of rubber that is used

for drawing the curved parts of objects. In statistics, a spline is a function for

6.2 Ordinary least squares regression 177

modeling nonlinear relations. The spline function combines a series of simpler

functions (in fact, cubic polynomials) defined over a corresponding series of in-

tervals. These simpler functions are constrained to have smooth transitions where

they meet, at the knots of the spline. The number of knots determines the num-

ber of intervals. When you use more intervals, the simpler functions are defined

over smaller intervals, so this allows you to model more subtle nonlinearities. In

other words, the number of knots controls how smooth your curve will be. The

minimum number of knots is three (so two intervals), in which case the curve is

maximally smooth. As more knots are added, more wriggly curves can be fitted.

Restricted cubic splines are cubic splines that are adjusted to avoid overfitting for

the more extreme values of the predictor. For details, see Harrell, 2001:16–24,

and references cited there.

Let’s consider two models, one with a restricted cubic spline with three knots,

and one with seven knots. In the model formula, we replace pol() by rcs(). The

number of knots is the second parameter for rcs(), the first parameter specifies

what predictor a spline is requested for:

> english.olsC = ols(RTlexdec ˜ rcs(WrittenFrequency, 3) + AgeSubject +
+ LengthInLetters, data = english)
> english.olsC

Value Std. Error t Pr(>|t|)
Intercept 6.903062 0.009248 746.411 0.000000
WrittenFrequency -0.059213 0.001650 -35.882 0.000000
WrittenFrequency’ 0.030576 0.002055 14.881 0.000000
AgeSubject=young -0.221721 0.002531 -87.598 0.000000
LengthInLetters 0.004875 0.001508 3.232 0.001238

The mathematics of restricted cubic splines work out so that the number of pa-

rameters required is one less than the number of knots. This explains why the

summary lists two coefficients for WrittenFrequency. For seven knots, we get

six coefficients:

> english.olsD = ols(RTlexdec ˜ rcs(WrittenFrequency,7) + AgeSubject +
+ LengthInLetters, data = english)
> english.olsD

Value Std. Error t Pr(>|t|)
Intercept 6.794645 0.013904 488.697 0.000e+00
WrittenFrequency -0.010971 0.005299 -2.070 3.847e-02
WrittenFrequency’ -0.348645 0.052381 -6.656 3.147e-11
WrittenFrequency’’ 2.101416 0.474765 4.426 9.814e-06
WrittenFrequency’’’ -2.987002 1.081374 -2.762 5.764e-03
WrittenFrequency’’’’ 1.880416 1.121685 1.676 9.372e-02
WrittenFrequency’’’’’ -0.951205 0.649998 -1.463 1.434e-01
AgeSubject=young -0.221721 0.002497 -88.784 0.000e+00
LengthInLetters 0.005238 0.001491 3.513 4.468e-04

Note that the last two coefficients for WrittenFrequency have large p-values.

This suggests that five knots should be sufficient to capture the nonlinearity with-

out undersmoothing or oversmoothing. Figure 6.4 compares the different spline

curves with the curve obtained with a quadratic polynomial. With only three knots

(so two intervals), we basically get two straight lines with a smooth bend, that

178 regression modeling

together are very similar to the polynomial curve. With seven knots, the curve

becomes somewhat wriggly in the center, with several points of inflection. These

are removed when the number of intervals is reduced to four.

Figure 6.4 is built panel by panel. Presuming the plot region is defined properly

with mfrow(), we obtain the upper left panel by setting WrittenFrequency

to NA:

> plot(english.olsC, WrittenFrequency=NA, ylim=c(6.5, 7.0), conf.int=F)

This tells the plot method for ols objects that it should suppress panels for

the other predictors in the model. As we want to avoid cluttering our plot with

very similar confidence intervals, we set conf.int = F. In order to add the

polynomial curve to the same plot we specify add = T:

> plot(english.olsB, WrittenFrequency = NA, add = T,
+ lty = 2, conf.int = F)
> mtext("3 knots, undersmoothing", 3, 1, cex = 0.8)

The other two panels are obtained in a similar way. Note that we force the same

interval on the vertical axis across all panels:

> plot(english.olsD, WrittenFrequency=NA, ylim=c(6.5, 7.0), conf.int=F)
> plot(english.olsB, WrittenFrequency=NA, add=T, lty=2, conf.int=F)
> mtext("7 knots, oversmoothing", 3, 1, cex = 0.8)
> english.olsE = ols(RTlexdec ˜ rcs(WrittenFrequency,5) + AgeSubject +
+ LengthInLetters, english)
> plot(english.olsE, WrittenFrequency=NA, ylim=c(6.5, 7.0), conf.int=F)
> plot(english.olsB, WrittenFrequency=NA, add=T, lty=2, conf.int=F)
> mtext("5 knots", 3, 1, cex = 0.8)

It turns out that there is an interaction of WrittenFrequency by age:

> english.olsE = ols(RTlexdec ˜ rcs(WrittenFrequency, 5) + AgeSubject +
+ LengthInLetters + rcs(WrittenFrequency,5) : AgeSubject,
+ data = english)

The summary shows that there are four coefficients for the interaction of age by

frequency, matching the four coefficients for frequency by itself:

> english.olsE
Coefficients:

Value ...
Intercept 6.856846
WrittenFrequency -0.039530
WrittenFrequency’ -0.136373
WrittenFrequency’’ 0.749955
WrittenFrequency’’’ -0.884461
AgeSubject=young -0.275166
LengthInLetters 0.005218
WrittenFrequency * AgeSubject=young 0.017493
WrittenFrequency’ * AgeSubject=young -0.043592
WrittenFrequency’’ * AgeSubject=young 0.010664
WrittenFrequency’’’ * AgeSubject=young 0.171251 ...

Residual standard error: 0.08448 on 4557 degrees of freedom
Adjusted R-Squared: 0.7102

6.2 Ordinary least squares regression 179

WrittenFrequency

R
T

le
xd

e
c

0 2 4 6 8 10 12

6
.5

6
.6

6
.7

6
.8

6
.9

7
.0

Adjusted to: AgeSubject=old LengthInLetters=4

3 knots, undersmoothing

WrittenFrequency

R
T

le
xd

e
c

0 2 4 6 8 10 12

6
.5

6
.6

6
.7

6
.8

6
.9

7
.0

Adjusted to: AgeSubject=old LengthInLetters=4

7 knots, oversmoothing

WrittenFrequency

R
T

le
xd

e
c

0 2 4 6 8 10 12

6
.5

6
.6

6
.7

6
.8

6
.9

7
.0

Adjusted to: AgeSubject=old LengthInLetters=4

5 knots

Figure 6.4. The partial effect of written frequency using a restricted cubic spline with three knots (upper left),
seven knots (upper right), and five knots (lower left). The dashed line represents a quadratic polynomial.

The anova table confirms that all these coefficients are really necessary:

> anova(english.olsE)
Analysis of Variance Response: RTlexdec

Factor df SS MS F P
WrittenFrequency
(Factor+Higher Order Factors) 8 23.5123 2.9390 411.80 <.0001
All Interactions 4 0.1093 0.0273 3.83 0.0041
Nonlinear
(Factor+Higher Order Factors) 6 2.4804 0.4134 57.92 <.0001
AgeSubject
(Factor+Higher Order Factors) 5 56.2505 11.2501 1576.29 <.0001
All Interactions 4 0.1093 0.0273 3.83 0.0041

180 regression modeling

LengthInLetters 1 0.0874 0.0874 12.24 0.0005
WrittenFrequency * AgeSubject
(Factor+Higher Order Factors) 4 0.1093 0.0273 3.83 0.0041
Nonlinear 3 0.1092 0.0364 5.10 0.0016
TOTAL NONLINEAR 6 2.4804 0.4134 57.92 <.0001
TOTAL NONLINEAR + INTERACTION 7 2.4806 0.3544 49.65 <.0001
REGRESSION 10 79.9318 7.9932 1119.95 <.0001
ERROR 4557 32.5237 0.0071

It is worth taking a closer look at this anova table. It first lists the statistics for

Written Frequency as a whole, including its nonlinear terms and its interac-

tions. The column labeled df lists the number of coefficients in the model for the

different predictors and their interactions. For WrittenFrequency, for instance,

we have 8 coefficients, 4 for the main effect and another 4 for the interaction with

AgeSubject. The nonlinearity of WrittenFrequency is accounted for with 6

coefficients (the ones listed with one or more apostrophes in the summary table

for the coefficients and their p-values). For AgeSubject, we spend 5 parameters:

one coefficient for AgeSubject itself, and 4 for the interaction with Written-

Frequency. The last lines of the summary evaluate the combined nonlinearities

as well as the nonlinearities and interactions considered jointly, and conclude

with the F-test for the regression model as a whole.

Each coefficient costs us a degree of freedom. In the present model, we have

4557 degrees of freedom left. If we were to add another predictor requiring

one coefficient, the residual degrees of freedom would become 4556. Since p-

values for the t- and F-tests become smaller for larger degrees of freedom, it

becomes more and more difficult to observe significant effects as we add more

parameters to the model. This is exactly what is needed, as we want our model to

be parsimonious and to avoid overfitting the data.

Figure 6.5 shows the partial effects of the predictors in this model. As before,

we add the curve representing WrittenFrequency for the young subjects to the

plot for the old subjects with the option add=T:

> par(mfrow = c(2, 2), cex = 0.7)
> plot(english.olsE, WrittenFrequency = NA, ylim = c(6.2, 7.0))
> plot(english.olsE, WrittenFrequency = NA, AgeSubject = "young",
+ add = T, col = "darkgrey")
> plot(english.olsE, LengthInLetters = NA, ylim = c(6.2, 7.0))
> plot(english.olsE, AgeSubject = NA, ylim = c(6.2, 7.0))
> par(mfrow = c(1, 1), cex = 1)

With the same range of values on the vertical axis, the huge differences in the

sizes of the partial effects of frequency, length, and age group become apparent.

You now know how to run a multiple regression with ols(), how to handle

potential nonlinearities, and how to plot the partial effects of the predictors. For

the present data set, the analysis is far from complete, however, as there are

many more variables in the model that we have not yet considered. As many of

these additional predictors are pairwise correlated, we run into the problem of

collinearity.

6.2 Ordinary least squares regression 181

WrittenFrequency

R
T

le
xd

e
c

0 2 4 6 8 10 12

6
.2

6
.4

6
.6

6
.8

7
.0

Adjusted to: AgeSubject=old LengthInLetters=4
LengthInLetters

R
T

le
xd

e
c

2 3 4 5 6 7

6
.2

6
.4

6
.6

6
.8

7
.0

Adjusted to: WrittenFrequency=4.832 AgeSubject=old

AgeSubject

R
T

le
xd

e
c

gnuoy dlo

6
.2

6
.4

6
.6

6
.8

7
.0

Adjusted to: WrittenFrequency=4.832 LengthInLetters=4

Figure 6.5. The partial effects according to model english.olsE. As the vertical axes are all on the same
scale, the huge differences in the sizes of the effects are clearly visible.

6.2.2 Collinearity

The ideal data set for multiple regression is one in which all the

predictors are uncorrelated. Severe problems may arise if the predictors enter

into strong correlations, a phenomenon known as collinearity (Belsley et al.,
1980). A metaphor for understanding the problem posed by collinearity builds on

Figure 6.6. The ideal situation is shown to the left. The variance to be explained

is represented by the square. The small circles represent the part of the variance

captured by four predictors. In the situation shown on the left, each predictor

captures its own unique portion of the variance. In this case, the predictors are

said to be orthogonal; they are uncorrelated. The situation depicted to the right

illustrates collinear predictors. There is little variance that is captured by just one

predictor. Instead, almost the same part of the variance is captured by all four

predictors. Hence, it becomes difficult to tease the explanatory values of these

predictors apart.

182 regression modeling

Figure 6.6. Orthogonal (left) and collinear (right) predictors.

Collinearity is generally assessed by means of the condition number κ . The

greater the collinearity, the closer the matrix of predictors is to becoming singu-

lar. When a matrix is singular, the problem that arises is similar to attempting

to divide a number by zero: the operation is not defined. The condition number

estimates the extent to which a matrix is singular, i.e. how close the task of es-

timating the parameters is to being unsolvable. R provides a function, kappa(),

for estimating the condition number, but we calculate κ with collin.fnc()

following Belsley et al. (1980). These authors argue that not only the predictors,

but also the intercept should be taken into account when evaluating the condition

number. When the condition number is between 0 and 6, there is no collinearity

to speak of. Medium collinearity is indicated by condition numbers around 15,

and condition numbers of 30 or more indicate potentially harmful collinearity.

In order to assess the collinearity of our lexical predictors, we first remove word

duplicates from the english data frame by selecting those rows that concern the

young age group. We then apply collin.fnc() to the resulting data matrix of

items, restricted to the columns of the 23 numerical variables in which we are

interested (in columns 7 through 29 of our data frame). From the list of objects

returned by collin.fnc() we select the condition number with the $ operator:

> collin.fnc(english[english$AgeSubject == "young",], 7:29)$cnumber
[1] 132.0727

Note that the second argument to collin.fnc() specifies the columns to be

selected from the data frame specified as its first argument. A condition number

as high as 132 indicates that it makes no sense to consider these 23 predictors

jointly in a multiple regression model. Too many variables tell the same story.

The numerical algorithms used to estimate the coefficients may even run into

problems with machine precision.

As a first step towards addressing this problem, we visualize the correlational

structure of our predictors. In section 5.1.4 we studied this correlational structure

with the help of hierarchical clustering. The Design package provides a con-

venient function for visualizing clusters of variables, varclus(), that obviates

intermediate steps:

> plot(varclus(as.matrix(english[english$AgeSubject == "young", 7:29])))

6.2 Ordinary least squares regression 183

C
o
n
ff
V

C
o
n
ff
N C

o
n
fb

V

C
o
n
fb

N

C
o
n
p
h
o
n
N

C
o
n
s
p
e
lN

C
o
n
fr

ie
n
d
s
N

C
o
n
p
h
o
n
V

C
o
n
s
p
e
lV

C
o
n
fr

ie
n
d
s
V

W
ri

tt
e
n
S

p
o
k
e
n
F

re
q
u
e
n
c
y
R

a
ti
o

N
c
o
u
n
t

L
e
n
g
th

In
L
e
tt
e
rs

M
e
a
n
B

ig
ra

m
F

re
q
u
e
n
c
y

In
fl
e
c
ti
o
n
a
lE

n
tr

o
p
y

V
e
rb

F
re

q
u
e
n
c
y

F
re

q
u
e
n
c
y
In

it
ia

lD
ip

h
o
n
e

F
a
m

ily
S

iz
e

D
e
ri

va
ti
o
n
a
lE

n
tr

o
p
y

N
u
m

b
e
rS

im
p
le

x
S

y
n
s
e
ts

N
u
m

b
e
rC

o
m

p
le

x
S

y
n
s
e
ts

W
ri

tt
e
n
F

re
q
u
e
n
c
y

N
o
u
n
F

re
q
u
e
n
c
y

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

S
p
e
a
rm

a
n

 ρ
2

Figure 6.7. Hierarchical clustering of 23 predictors in the english data set, using the square of Spear-
man’s rank correlation as similarity measure.

The varclus() function carries out a hierarchical cluster analysis, using the

square of Spearman’s rank correlation as a similarity metric to obtain a more

robust insight into the correlational structure of (possibly nonlinear) predictors.

Figure 6.7 shows that there are several groups of tightly correlated predictors. For

instance, the second cluster from the left brings together six correlated measures

for orthographic consistency, which subdivide by whether they are based on token

counts (the left subcluster with variable names ending in N) or whether they are

based on type counts (the right subcluster with names ending in V).

There are several strategies that one can pursue to reduce collinearity. The

simplest strategy is to select one variable from each cluster. The problem with

this strategy is that we may be throwing out information that is actually useful.

Belsley et al. (1980) give as example an entrance test gauging skills in mathematics

and physics. Normally, grades for these subjects will be correlated, and one could

opt for looking only at the grades for physics. But some students might like only

math, and basing a selection criterion on the grades for physics would exclude

students with excellent grades for math but low grades for physics. In spite of this

consideration, one may have theoretical reasons for selecting one variable from a

cluster. For instance, FamilySize and DerivationalEntropy are measures

that are mathematically related, and that gauge the same phenomenon. As we are

not interested in which of the two is superior in this study, we select one.

184 regression modeling

In the case of our 10 measures for orthographic consistency, we can do more.

We can orthogonalize these predictors using principal components analysis, a

technique that was introduced in Chapter 5. Columns 19 through 28 contain the

orthographic consistency measures for our words, and just for these 10 variables

by themselves, the condition number is already quite large:

> collin.fnc(english[english$AgeSubject == "young",], 18:27)$cnumber
[1] 49.05881

We reduce these 10 correlated predictors to 4 uncorrelated, orthogonal, predictors

as follows. With prcomp() we create a principal components object. Next, we

inspect the proportions of variance explained by the successive principal compo-

nents:

> items = english[english$AgeSubject == "young",]
> items.pca = prcomp(items[, c(18:27)], center = T, scale = T)
> summary(items.pca)
Importance of components:

PC1 PC2 PC3 PC4 PC5 ...
Standard deviation 2.087 1.489 1.379 0.9030 0.5027 ...
Proportion of Variance 0.435 0.222 0.190 0.0815 0.0253 ...
Cumulative Proportion 0.435 0.657 0.847 0.9288 0.9541 ...

The first four pcs each capture more than 5% of the variance, and jointly account

for 93% of the variance,

> sum((items.pca$sdevˆ2/sum(items.pca$sdevˆ2))[1:4])
[1] 0.9288

so they are excellent candidates for replacing the 10 original consistency mea-

sures. Inspection of the rotation matrix allows insight into the relation between

the original and new variables. For instance, sorting the rotation matrix by PC4

shows that this component distinguishes between the token-based and type-based

measures:

> x = as.data.frame(items.pca$rotation[,1:4])
> x[order(x$PC4),]

PC1 PC2 PC3 PC4
ConfriendsN 0.37204438 -0.28143109 0.07238358 -0.44609099
ConspelN 0.38823175 -0.22604151 -0.15599471 -0.40374288
ConphonN 0.40717952 0.17060014 0.07058176 -0.35127339
ConfbN 0.24870639 0.52615043 0.06499437 -0.06059884
ConffN 0.10793431 0.05825320 -0.66785576 0.05538818
ConfbV 0.25482902 0.52696962 0.06377711 0.10447280
ConffV 0.09828443 0.03862766 -0.67055578 0.13298443
ConfriendsV 0.33843465 -0.35438183 0.20236240 0.38326779
ConphonV 0.38450345 0.22507258 0.13966044 0.38454580
ConspelV 0.36685237 -0.32393895 -0.03194922 0.42952573

The principal components themselves are available in items.pca$x. That there

is indeed no collinearity among these four principal components can be verified

by application of collin.fnc():

> collin.fnc(items.pca$x, 1:4)$cnumber
[1] 1

6.2 Ordinary least squares regression 185

Finally, we add these four principal components to our data, first for the young

age group, and then for the old age group. We then combine the two data frames

into an expanded version of the original data frame english with the help of

rbind(), which binds vectors or data frames row-wise:

> items$PC1 = items.pca$x[,1]
> items$PC2 = items.pca$x[,2]
> items$PC3 = items.pca$x[,3]
> items$PC4 = items.pca$x[,4]
> items2 = english[english$AgeSubject != "young",]
> items2$PC1 = items.pca$x[,1]
> items2$PC2 = items.pca$x[,2]
> items2$PC3 = items.pca$x[,3]
> items2$PC4 = items.pca$x[,4]
> english2 = rbind(items, items2)

Sometimes, simpler solutions are possible. For the present data, one question

of interest concerned the potential consequences of the frequency of use of a word

as a noun or as a verb (e.g. the work, to work). Including two correlated frequency

vectors is not advisable. As a solution, we include as a predictor the difference

of the log frequency of the noun and that of the verb. (This is mathematically

equivalent to considering the log of the ratio of the unlogged nominal and ver-

bal frequencies.) With this new predictor, we can investigate whether it matters

whether a word is used more often as a noun, or more often as a verb:

> english2$NVratio =
+ log(english2$NounFrequency+1) - log(english2$VerbFrequency+1)

Similarly, the frequencies of use in written and spoken language can be brought

together in a ratio, WrittenSpokenFrequencyRatio, that is already available

in the data frame. With just three frequency measures, WrittenFrequency,

WrittenSpokenFrequency Ratio, and NVratio, instead of four frequency

measures, we reduce the condition number for the frequency measures from 9.45

to 3.44. In what follows, we restrict ourselves to the following predictors,

> english3 = english2[,c("RTlexdec", "Word", "AgeSubject",
+ "WordCategory", "WrittenFrequency",
+ "WrittenSpokenFrequencyRatio", "FamilySize",
+ "InflectionalEntropy", "NumberSimplexSynsets",
+ "NumberComplexSynsets", "LengthInLetters", "MeanBigramFrequency",
+ "Ncount", "NVratio", "PC1", "PC2", "PC3", "PC4", "Voice")]

and create the corresponding data distribution object:

> english3.dd = datadist(english3)
> options(datadist = "english3.dd")

We also include the interaction of WrittenFrequency by AgeSubject ob-

served above in the new model:

> english3.ols = ols(RTlexdec ˜ Voice + PC1 + PC2 + PC3 + PC4 +
+ LengthInLetters + MeanBigramFrequency + Ncount +
+ rcs(WrittenFrequency, 5) + WrittenSpokenFrequencyRatio +

186 regression modeling

+ NVratio + WordCategory + AgeSubject +
+ FamilySize + InflectionalEntropy +
+ NumberSimplexSynsets + NumberComplexSynsets +
+ rcs(WrittenFrequency, 5) * AgeSubject, data = english3)

An anova summary shows remarkably few non-significant predictors: the princi-

pal components PC2–4, length, neighborhood density, and the number of simplex

synsets. A procedure in the Design package for removing superfluous predictors

from the full model is fastbw(), which implements a fast backwards elimination

routine:

> fastbw(english3.ols)

Deleted Chi-Sq df P Residual df P AIC R2
NumberSimplexSynsets 0.00 1 0.9742 0.00 1 0.9742 -2.00 0.734
Ncount 0.05 1 0.8192 0.05 2 0.9737 -3.95 0.734
PC3 0.74 1 0.3889 0.80 3 0.8505 -5.20 0.734
PC2 0.90 1 0.3441 1.69 4 0.7924 -6.31 0.734
LengthInLetters 1.15 1 0.2845 2.84 5 0.7252 -7.16 0.734
PC4 1.40 1 0.2364 4.24 6 0.6445 -7.76 0.734
NVratio 4.83 1 0.0279 9.07 7 0.2476 -4.93 0.734
WordCategory 2.01 1 0.1562 11.08 8 0.1971 -4.92 0.733

Approximate Estimates after Deleting Factors

Coef S.E. Wald Z P
Intercept 6.865088 0.0203124 337.97550 0.000e+00
Voice=voiceless -0.009144 0.0025174 -3.63235 2.808e-04
PC1 0.002687 0.0005961 4.50736 6.564e-06
MeanBigramFrequency 0.007509 0.0018326 4.09740 4.178e-05
WrittenFrequency -0.041683 0.0047646 -8.74852 0.000e+00
WrittenFrequency’ -0.114355 0.0313057 -3.65285 2.593e-04
WrittenFrequency’’ 0.704428 0.1510582 4.66329 3.112e-06
WrittenFrequency’’’ -0.886685 0.1988077 -4.46002 8.195e-06
WrittenSpokenFrequencyRatio 0.009739 0.0011305 8.61432 0.000e+00
AgeSubject=young -0.275166 0.0187071 -14.70915 0.000e+00
FamilySize -0.010316 0.0022198 -4.64732 3.363e-06
InflectionalEntropy -0.021827 0.0022098 -9.87731 0.000e+00
NumberComplexSynsets -0.006295 0.0012804 -4.91666 8.803e-07
Frequency * AgeSubject=young 0.017493 0.0066201 2.64244 8.231e-03
Frequency’ * AgeSubject=young -0.043592 0.0441450 -0.98747 3.234e-01
Frequency’’ * AgeSubject=young 0.010664 0.2133925 0.04998 9.601e-01
Frequency’’’ * AgeSubject=young 0.171251 0.2807812 0.60991 5.419e-01

Factors in Final Model

[1] Voice PC1 MeanBigramFrequency
[4] WrittenFrequency WrittenSpokenFrequencyRatio AgeSubject
[7] FamilySize InflectionalEntropy NumberComplexSynsets
[10] WrittenFrequency * AgeSubject

The output of fastbw() has two parts. The first part lists statistics summarizing

why factors are deleted. As can be seen in the two columns of p-values, none

6.2 Ordinary least squares regression 187

Voice

R
T

le
x
d

e
c

voiced voiceless

6
.4

6
.6

6
.8

PC1

R
T

le
x
d

e
c

6
.4

6
.6

6
.8

MeanBigramFrequency

R
T

le
x
d

e
c

6 7 8 9 10 11

6
.4

6
.6

6
.8

WrittenFrequency

R
T

le
x
d

e
c

0 2 4 6 8 10

6
.4

6
.6

6
.8

WrittenSpokenFrequencyRatio

R
T

le
x
d

e
c

6
.4

6
.6

6
.8

NVratio

R
T

le
x
d

e
c

6
.4

6
.6

6
.8

WordCategory

R
T

le
x
d

e
c

N V

6
.4

6
.6

6
.8

AgeSubject

R
T

le
x
d

e
c

old young

6
.4

6
.6

6
.8

FamilySize

R
T

le
x
d

e
c

0 1 2 3 4 5

6
.4

6
.6

6
.8

InflectionalEntropy

R
T

le
x
d

e
c

0.0 1.0 2.0

6
.4

6
.6

6
.8

NumberComplexSynsets

R
T

le
x
d

e
c

0 1 2 3 4 5 6

6
.4

6
.6

6
.8

Figure 6.8. Partial effects of the predictors according to model english3.olsA.

of the deleted variables comes anywhere near explaining a significant part of the

variance. Unsurprisingly, all predictors that did not reach significance in the anova

table are deleted. In addition, WordCategory and NVratio, which just reached

significance at the 5% level, are removed as well. The second part of the output of

fastbw() lists the estimated coefficients for the remaining predictors, together

with their associated statistics.

We should not automatically accept the verdict of fastbw(). First, it is only

one of many available methods for searching for the most parsimonious model.

Second, it often makes sense to remove predictors by hand, guided by our theo-

retical knowledge of the predictors. In the present example, pc1 remains in the

model as the single representative of ten control variables for orthographic con-

sistency. We gladly accept the removal of the other three principal components.

188 regression modeling

LengthInLetters is also deleted. Given the very small effect size we observed

above for this variable, and given that a highly correlated control variable for

orthographic form, MeanBigramFrequency, remains in the model, we have no

regrets either for word length. With respect to WordCategory and NVratio, we

need to exercise some caution. Not only did these predictors reach significance

at the 5% level, we also have theoretical reasons for predicting that nouns should

have a processing advantage compared to verbs in visual lexical decision. Third,

we need to check at this point whether there are nonlinearities for other predictors

besides written frequency. In fact, nonlinearities turn out to be required for Fam-

ilySize and WrittenSpokenFrequencyRatio, and once these nonlinearities

are brought into the model, WordCategory and NVratio emerge as predictive

after all (both p < 0.05):

> english3.olsA = ols(RTlexdec ˜ Voice + PC1 + MeanBigramFrequency +
+ rcs(WrittenFrequency, 5) + rcs(WrittenSpokenFrequencyRatio, 3) +
+ NVratio + WordCategory + AgeSubject + rcs(FamilySize, 3) +
+ InflectionalEntropy + NumberComplexSynsets +
+ rcs(WrittenFrequency, 5):AgeSubject, data=english3, x=T, y=T)

We summarize this model by means of Figure 6.8, removing confidence bands

(which are extremely narrow) and the subtitles specifying how the partial effects

are adjusted for the other predictors in the model (as this is a very long list with

so many predictors):

> par(mfrow = c(4, 3), mar = c(4, 4, 1, 1), oma = rep(1, 4))
> plot(english3.olsA, adj.subtitle=F, ylim=c(6.4, 6.9), conf.int=F)
> par(mfrow = c(1, 1))

6.2.3 Model criticism

Before we can accept the model we have now arrived at, we need

to ascertain whether this model provides a satisfactory fit to the data. There are

a number of things to be checked. First of all, we check whether the residuals

properly follow a normal distribution. The estimated probability density in the

upper left panel of Figure 6.9 has a right tail that is somewhat thicker and longer

than expected for a normal distribution. This asymmetry is also reflected in the

quantile-quantile plot in the upper right panel. This shows that the model is

stressed when it tries to fit the longest response latencies:

> english3$rstand = as.vector(scale(resid(english3.olsA)))
> plot(density(english3$rstand), main=" ")
> qqnorm(english3$rstand, cex = 0.5, main = " ")
> qqline(english3$rstand)

The lower left panel plots standardized residuals against the fitted values. There is a

small increase in the residuals for larger fitted values, suggesting heteroskedas-

ticity, but the number of potentially offending data points is small and the of-

fending points are outside the range of −2.5 to 2.5 and hence probably outliers:

6.2 Ordinary least squares regression 189

0
.0

0
.1

0
.2

0
.3

0
.4

N = 4568 Bandwidth = 0.1598

D
e
n
s
it
y

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

6.3 6.5 6.7 6.9

fitted(english3.olsA)

e
n
g
lis

h
3
$
rs

ta
n
d

0 1000 3000

0
.0

0
.2

0
.4

0
.6

Index

d
ff
it
s

Figure 6.9. Model criticism for english3.olsA: a density plot of the standardized residuals (upper left),
the corresponding quantile-quantile plot (upper right), standardized residuals by predicted reaction time
(lower left), and dffits (lower right).

> plot(english3$rstand ˜ fitted(english3.olsA), pch=".")
> abline(h = c(-2.5, 2.5))

There are many diagnostics for identifying outliers. One such diagnostic cal-

culates, for each data point, a scaled difference between the fitted value given the

full data set and the fitted value when that data point is not included when building

the model. The resulting numbers are known as dffits (differences in the fits). If

the two values are very different, a data point has atypical leverage, and may

have undue influence on the values of the model’s coefficients. The lower right

panel of Figure 6.9 plots the absolute values of the dffits for each successive data

point in english3, where we use the function abs() to obtain absolute values:

> dffits = abs(resid(english3.olsA, "dffits"))
> plot(dffits, type="h")

Observations for which the absolute dffits stand out from the others are suspect

as exerting undue leverage. A metaphor may help explain this. Consider a flock

of sheep, moving north, and one sheep moving west. One would like to say

that the sheep are actually moving north, but the one exceptional sheep may

190 regression modeling

cause the model to report the sheep are moving to the northwest. To obtain a

good estimate of the direction in which the flock is moving, we need to identify

atypical individuals, and check whether they are distorting the general pattern.

The dffits provide a global measure for detecting leverage. There are also

measures for detecting leverage with respect to specific predictors. The function

dfbetas() (differences with respect to the betas, i.e. the values of the coeffi-

cients) gives the change in the estimated coefficients if an observation is excluded,

relative to its standard error. For a linear model obtained with ols(), the function

which.influence() returns a list with, for each predictor, the row numbers of

high-leverage observations in the data frame english3 that we used to obtain the

model english3.olsA. A data point is marked as influential when the absolute

relative change exceeds 0.2 (the default cutoff):

> w = which.influence(english3.olsA)
> w
$Intercept
[1] 2844 3714 3815

$PC1
[1] 4365

$WrittenFrequency
[1] 2419 2458 2844 2883 3628 3714 3815 3850 4381

$WrittenSpokenFrequencyRatio
[1] 1036 2400 2612 3320 3328 4148 4365

$AgeSubject
[1] 385 2097 2419 2458 2844 3628 3714 3815 3850 4381

$"WrittenFrequency * AgeSubject"
[1] 385 2419 2458 2844 3628 3714 3815 3850 4381

It can be useful to inspect the individual data points that are a potential source

of trouble. We do so with a for loop over the elements of the list returned by

which.influence, after isolating the names of the elements in a separate vector.

Within the loop, we use cat(), which echoes its arguments to the console, to

report on the subsets of outliers:

> nam = names(w)
> for (i in 1:length(nam)) {
+ cat("Influential observations for effect of", nam[i], "\n")
+ print(english3[w[[i]], 1:3])
+ }

Note that w[[i]] is a vector of row numbers, the row numbers of a subset of

outliers in english3. For each of the selected rows, we print the first three

columns to the console:

Influential observations for effect of Intercept
RTlexdec Word AgeSubject

2012 6.578709 skit old
2882 6.722401 slat old

6.2 Ordinary least squares regression 191

3815 6.648596 wilt old
Influential observations for effect of PC1

RTlexdec Word AgeSubject
4365 7.006052 piss old
Influential observations for effect of WrittenFrequency

RTlexdec Word AgeSubject
1587 7.097689 nonce old
1626 6.549551 champ old
2012 6.578709 skit old
2051 6.631857 cox old
2796 6.751335 mitt old
2882 6.722401 slat old
3815 6.648596 wilt old
3850 6.549551 champ old
4381 6.606934 broil old
Influential observations for effect of WrittenSpokenFrequencyRatio

RTlexdec Word AgeSubject
1036 6.571149 mum young
1568 6.956155 boon old
1780 7.078021 gel old
2488 6.760079 mum old
2496 6.867641 god old
4148 7.086813 dun old
4365 7.006052 piss old
Influential observations for effect of AgeSubject

RTlexdec Word AgeSubject
385 6.253194 jape young
3549 6.369661 broil young
1587 7.097689 nonce old
1626 6.549551 champ old
2012 6.578709 skit old
2796 6.751335 mitt old
2882 6.722401 slat old
3815 6.648596 wilt old
3850 6.549551 champ old
4381 6.606934 broil old
Influential observations for effect of WrittenFrequency * AgeSubject

RTlexdec Word AgeSubject
385 6.253194 jape young
1587 7.097689 nonce old
1626 6.549551 champ old
2012 6.578709 skit old
2796 6.751335 mitt old
2882 6.722401 slat old
3815 6.648596 wilt old
3850 6.549551 champ old
4381 6.606934 broil old

Many of the words identified as outliers are unknown words or words that are

relatively uncommon, or uncommon in written form (e.g. mum). It is not at all

surprising that these words elicited atypical reaction times. Their removal will

allow us to obtain improved insight into the processing complexity of more normal

words. We therefore create a vector with the row numbers of the offending data

points:

192 regression modeling

> outliers=as.numeric(rownames(english3[abs(english3$rstand) > 2.5,]))
> dfBetas=as.numeric(unique(unlist(as.vector(w))))
> outliers2=unique(c(dfBetas, outliers))

The resulting vector of unique row names accounts for less than 2% of the data

points:

> length(outliers2)/nrow(english3)
[1] 0.01904553

We use negative subscripting to take the outliers out of the data, create an updated

data distribution object,

> english4 = english3[-outliers2,]
> english4.dd = datadist(english4)
> options(datadist = "english4.dd")

and refit the model:

> english4.ols = ols(RTlexdec ˜ Voice + PC1 + MeanBigramFrequency +
+ rcs(WrittenFrequency, 5) + rcs(WrittenSpokenFrequencyRatio, 3) +
+ NVratio + WordCategory + AgeSubject + rcs(FamilySize, 3) +
+ rcs(WrittenFrequency, 5):AgeSubject + InflectionalEntropy +
+ NumberComplexSynsets, data = english4, x = T, y = T)

The specification of x = T, y = T instructs ols() to create a model object

that stores detailed information about the input (such as the internal coding for

restricted cubic splines) and the output. This is essential for later plotting and

model validation:

> anova(english4.ols)
Analysis of Variance Response: RTlexdec

Factor d.f. Part SS MS F P
Voice 1 0.0629 0.0629 10.50 0.0012
PC1 1 0.1355 0.1355 22.63 <.0001
MeanBigramFrequency 1 0.1247 0.1247 20.82 <.0001
WrittenFrequency
(Factor+Higher Order Factors) 8 8.7284 1.0910 182.09 <.0001
All Interactions 4 0.1464 0.0366 6.11 0.0001
Nonlinear
(Factor+Higher Order Factors) 6 1.5158 0.2526 42.16 <.0001
WrittenSpokenFrequencyRatio 2 0.5377 0.2688 44.88 <.0001
Nonlinear 1 0.0269 0.0269 4.50 0.0340
NVratio 1 0.0446 0.0446 7.46 0.0063
WordCategory 1 0.0427 0.0427 7.14 0.0076
AgeSubject
(Factor+Higher Order Factors) 5 54.9897 10.9979 1835.51 <.0001
All Interactions 4 0.1464 0.0366 6.11 0.0001
FamilySize 2 0.4368 0.2184 36.46 <.0001
Nonlinear 1 0.3250 0.3250 54.25 <.0001
InflectionalEntropy 1 0.2668 0.2668 44.53 <.0001
NumberComplexSynsets 1 0.1354 0.1354 22.60 <.0001
WrittenFrequency * AgeSubject
(Factor+Higher Order Factors) 4 0.1464 0.0366 6.11 0.0001
Nonlinear 3 0.1461 0.0487 8.13 <.0001

6.2 Ordinary least squares regression 193

Nonlinear Interaction :
f(A,B) vs. AB 3 0.1461 0.0487 8.13 <.0001

TOTAL NONLINEAR 8 2.6352 0.3294 54.98 <.0001
TOTAL NONLINEAR + INTERACTION 9 2.6356 0.2928 48.87 <.0001
REGRESSION 20 81.1652 4.0582 677.31 <.0001
ERROR 4460 26.7232 0.0059

Compared to english3.olsA, most predictors have become more significant.

In addition, the proportion of variance explained increased as well, as witnessed

by the change in the adjusted R2 from 0.736 to 0.751 (the adjusted R2 is provided

by the summary, not shown here, obtained when you type the name of the model

object at the prompt). In short, we have identified those data points for which

we do not have a good theory, and we have developed a model with improved

goodness of fit for the remaining data points.

6.2.4 Validation

We are still not there. We need to ascertain to what extent we have

been overfitting the model to this specific set of data points. To do so, we make

use of the bootstrap. The bootstrap proceeds as follows. From our data set with

4492 words, we randomly draw 4492 observations with replacement. This is

called a bootstrap sample. For our data set, something like 2820 of the original

observations will be present in such a bootstrap sample, many of which will be

represented more than once, compare:

> length(unique(sample(1:4492, replace=T)))
[1] 2838
> length(unique(sample(1:4492, replace=T)))
[1] 2820
> length(unique(sample(1:4492, replace=T)))
[1] 2824

(The total number of data points in each bootstrap sample is always 4492.) We now

fit our model to the data in the sample, and use this model to predict the reaction

times for the original full data set, which contains many data points on which the

bootstrap model has not been trained. Next, we compare the resulting goodness

of fit of the bootstrap model with the goodness of fit of the original model, in our

case, english4.ols. Averaged over a large number of bootstrap samples, these

comparisons reveal to what extent the original model overfits the data. To see how

this works, we make use of the validate() function in the Design package. It

takes as arguments the model that is to be validated, and the number of bootstrap

runs, as specified by the argument B. In the following example, we also specify

that fast backwards elimination of superfluous predictors should be allowed, both

for the input model and for the bootstrap models. (For validate() to work,

the model object should have been created with the options x = T and y = T,

as in the function call to ols() above that created english4.ols. These are

instructions to store more information about the model in the model object.)

> validate(english4.ols, bw = T, B = 200)
Backwards Step-down - Original Model

194 regression modeling

No Factors Deleted
Frequencies of Numbers of Factors Retained

9 10 11 12
3 16 28 153

index.orig training test optimism
R-square 0.748543387 0.74942258 0.747215839 2.206745e-03
MSE 0.006095415 0.00609558 0.006127595 -3.201435e-05
Intercept 0.000000000 0.00000000 0.015134152 -1.513415e-02
Slope 1.000000000 1.00000000 0.997676416 2.323584e-03

index.corrected n
R-square 0.746336642 200
MSE 0.006127429 200
Intercept 0.015134152 200
Slope 0.997676416 200

For the present model, no predictors are removed by the backwards step-down

algorithm for the input model. The summary then specifies the numbers of pre-

dictors retained by the step-down algorithm across 200 bootstrap runs. All twelve

predictors are retained for 153 runs, one predictor is removed for 28 runs, two

predictors for 16 runs, and three for 9 runs. (When you rerun this validation, the

numbers will change slightly.) The final part of the summary compares goodness

of fit statistics for the input model with the average of the corresponding statistics

for the model fitted to the bootstrap samples. The first row lists the R2, the second

the mean squared error, which is the mean of the squared residuals:

> sum(resid(english4.ols)ˆ2)/length(resid(english4.ols))
[1] 0.006095415

The third and fourth line list the intercept and slope of the regression line obtained

when the observed reaction times are regressed against the fitted values:

> coef(lm(english4$RTlexdec˜fitted(english4.ols)))
(Intercept) fitted(english4.ols)
3.998611e-15 1.000000e-00

Slope and intercept are by necessity 0 and 1 for the original data. However, when

we regress the observed reaction times in the full data set against the fitted values

obtained in a simulation run, the slope may be less than one, in which case the

intercept will shift away from zero to compensate. Therefore, these bootstrap

slopes and intercepts may also shed light on the degree of overfitting.

The next column in the output of validate() reports the average of these

four statistics for the 200 models fitted to the bootstrap samples. The third column

lists these statistics when the bootstrap models are used to predict the reaction

times in the full data set. Prediction for the test set is less accurate than for the

training set: the R2 decreases by 0.748543387 − 0.746336642 = 0.002206745,

and the mean squared error increases from 0.006095415 to 0.006127429 by

−3.2014e − 05. These (in this example minute) differences between the train-

ing and the test statistics are listed in the column labeled optimism. Comparing

training and test statistics, we find that we are too optimistic about the R2, our

undue optimism is 0.002. Similarly, the mean squared error is somewhat larger

6.3 Generalized linear models 195

that we thought; here we were too optimistic as well. Similarly, intercept and

slope move away from 0 and 1. The last column in the summary corrects the

original estimates in the first column for optimism. Thus, the corrected value

for R2 is 0.748543387 − 2.206745e − 03 = 0.7463366. For the present data, the

bootstrap corrections are minimal, which allows us to conclude that we are not

overfitting the data. Likewise, there are relatively few bootstrap runs in which

the fast backwards elimination routine decides that predictors can be dispensed

with. The tiny amount of overfitting in the present example does not come as a

surprise in the light of the large number of data points compared to the number

of coefficients in the model. As a rule of thumb, there should be at least fifteen

times more observations than coefficients (for more precise estimates depending

on the kind of regression analysis used, see Harrell (2001:61)). For small data

sets and large numbers of predictors, it is not unusual to find that the amount of

variance explained is halved or even decimated when adjusted for optimism.

6.3 Generalized linear models

Generalized linear models are an important extension to ordinary

least squares regression models. Parameter estimation, however, is not based on

minimizing the sum of squared errors. Instead, parameters are chosen such that,

given the data and our choice of model, they make the model’s predicted values

most similar to the observed values. This general technique is known as maximum

likelihood estimation. Maximum likelihood estimation for generalized linear

models makes use of iterative fitting techniques.

6.3.1 Logistic regression

Thus far, we have been concerned with observations involving mea-

surements. In many experiments, however, outcomes are not real numbers, but

take one of two possible values: head or tail, success or failure, correct versus in-

correct, regular or irregular, direct object construction versus prepositional object

construction, etc. For data sets with such binary dependent variables, we would

like to be able to estimate the probability of a given outcome (e.g. head, or success,

or regular, or direct object construction) given the predictors. This is accomplished

with logistic regression, a technique that is widely used in sociolinguistics where

it is known as varbrul analysis.

To see how logistic regression works, we return to the visual lexical decision

data (english), but now consider the accuracy of the responses. In lexical deci-

sion, subjects have to decide whether the letter string presented on the screen is a

word. If they press the no button when a real word is presented, this is counted as

an error. Is the probability of an error determined by the same predictors that we

observed to be significant for the reaction times? The column CorrectLexdec

196 regression modeling

lists for each word the number of subjects, out of a total of 30, that provided the

correct (yes) response. Let’s look at the counts of correct responses for the first

ten words in the data frame:

> nCorrect = english2$CorrectLexdec[1:10]
> nCorrect
[1] 27 30 30 30 26 28 30 28 25 29

At first, you might think that it would be useful to transform these counts into

proportions (or percentages, when multiplied by 100),

> proportions = nCorrect/30
> proportions
[1] 0.9000000 1.0000000 1.0000000 1.0000000 0.8666667
[5] 0.9333333 1.0000000 0.9333333 0.8333333 0.9666667

and to use these proportions as the dependent variable in a standard linear regres-

sion model. There are several considerations that argue against this approach.

First, proportions are bounded between 0 and 1, but lm() and ols() don’t know

about this and might come up with predicted proportions greater than one or

smaller than zero. Second, proportions have the property that the variance in-

creases with the mean. But lm() (and ols()) presuppose that the variance is

constant and does not vary with the values of any of the predictors. Third, pro-

portions don’t provide information about how many observations went into the

calculation of the proportion. In a lexical decision experiment, for instance, ob-

servations are sometimes lost due to failure of the button box. Suppose that only

4 responses are available, 2 correct and 2 errors, and compare this with the case

that 30 responses are available, 15 correct and 15 incorrect. With 30 responses,

we can be more confident that the probability of an error is 0.5 than for just four

responses. What needs to be done is to weight the proportions for the number of

contributing observations.

The solution is to model the probabilities indirectly through a link function.

For binary data, this link function is the logit transformation of the probability.

For the above proportions, we obtain the corresponding logits (log odds ratios)

as follows:

> logits = log(nCorrect/(30 - nCorrect))
> logits
[1] 2.197225 Inf Inf Inf 1.871802
[6] 2.639057 Inf 2.639057 1.609438 3.367296

Note that there are four cases where the logit is infinite. This happens when there

are no errors, in which case we are dividing 30 by 0, to which R responds with the

error code Inf. Fortunately, the R functions for logistic modeling have principled

methods for backing away from zero, so we will not calculate logits ourselves.

Instead, we will leave these calculations to the proper functions, glm() and, in

the Design package, lrm(). The choice between these functions depends on

the form of your data frame. When there is a single elementary observation in a

row of the data frame, with a column specifying the value of the binary predictor,

6.3 Generalized linear models 197

we use lrm(). If our data is in a format in which the numbers of successes and

failures are listed for each line in the data frame, we use glm(). We begin with

an example requiring glm(), an acronym for Generalized Linear Model.

As always, glm() requires us to specify the model that we want to fit to the

data by means of a formula. The dependent variable requires special care: glm()

needs to know both the number of successes and the number of failures. This

information is supplied in the form of a two-column matrix, which we create with

the cbind() (column bind) function as follows:

> cbind(english$CorrectLexdec, 30 - english$CorrectLexdec)
[,1] [,2]

[1,] 27 3
[2,] 30 0
[3,] 30 0
[4,] 30 0
[5,] 26 4
[6,] 28 2
...

We specify the same model for the error data as for the decision latencies, us-

ing english2 (which includes CorrectLexdec as predictor) as the input data

frame:

> english2.glm =
+ glm(cbind(english2$CorrectLexdec, 30 - english2$CorrectLexdec) ˜
+ Voice + PC1 + MeanBigramFrequency + LengthInLetters + Ncount +
+ WordCategory + NVratio + poly(WrittenFrequency, 2) +
+ poly(WrittenSpokenFrequencyRatio, 2) + poly(FamilySize, 2) +
+ InflectionalEntropy + NumberComplexSynsets + AgeSubject, english2,
+ family = "binomial")

The last line of this command is new: family = "binomial". It tells glm()

to expect two-column input, to use the logit link function, and to assume that the

variance increases with the mean according to the binomial distribution:

> summary(english2.glm)
Deviance Residuals:

Min 1Q Median 3Q Max
-8.5238 -0.6256 0.4419 1.3549 6.5136

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.282741 0.144491 15.798 < 2e-16
Voicevoiceless 0.010561 0.019964 0.529 0.597
PC1 -0.020694 0.004857 -4.261 2.03e-05
MeanBigramFrequency -0.131139 0.023195 -5.654 1.57e-08
LengthInLetters 0.269007 0.023088 11.651 < 2e-16
Ncount 0.002157 0.002694 0.800 0.423
WordCategoryV 0.138718 0.031253 4.439 9.06e-06
NVratio 0.021836 0.005156 4.235 2.28e-05
poly(WrittenFrequency, 2)1 40.896851 1.099373 37.200 < 2e-16
poly(WrittenFrequency, 2)2 -14.810919 0.757810 -19.544 < 2e-16
poly(WrSpFrequencyRatio, 2)1 -10.882376 0.717038 -15.177 < 2e-16
poly(WrSpFrequencyRatio, 2)2 0.181922 0.549843 0.331 0.741
poly(FamilySize, 2)1 6.962633 1.060134 6.568 5.11e-11
poly(FamilySize, 2)2 -10.258182 0.703623 -14.579 < 2e-16

198 regression modeling

InflectionalEntropy 0.361696 0.023581 15.338 < 2e-16
NumberComplexSynsets 0.120928 0.011454 10.558 < 2e-16
AgeSubjectyoung -0.873541 0.020179 -43.290 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24432 on 4567 degrees of freedom
Residual deviance: 12730 on 4551 degrees of freedom
AIC: 21886

Number of Fisher Scoring iterations: 5

After repeating the call to glm() (not shown), the summary provides a brief

overview by means of quartiles of the distribution of the deviance residuals,

the differences between the observed and expected values. These deviances are

comparable to the residuals of an ordinary least squares regression. However, the

deviance residuals are expressed in logits, and unlike the residuals of lm() or

ols(), they need not follow a normal distribution.

The next part of the summary lists the estimates of the coefficients. These co-

efficients also pertain to the logits. The coefficient for AgeSubject, for instance,

which expresses the contrast between the old subjects (the reference level mapped

onto the intercept) and the young subjects is negative. Negative coefficients indi-

cate that the probability of a correct response (the first column of the two-column

matrix for the dependent variable) goes down. A positive coefficient indicates

that this probability increases. What we see here, then, is that the older subjects

were more accurate responders. This ties in nicely with the observation that they

were also slower responders.

Each estimated coefficient is accompanied by its estimated standard error, a

Z -score, and the associated p-value. The p-value for the Noun-to-Verb frequency

ratio, for instance, can be calculated simply with:

> 2 * (1 - pnorm(4.235))
[1] 2.285517e-05

The next line in the summary mentions that the dispersion parameter for the bi-

nomial family is taken to be 1. This note is to remind us that the variance of a

binomial random variable depends entirely on the mean, and that the model as-

sumed that this property characterizes our data. The next two lines in the summary

provide the information necessary to check whether this assumption is met.

The null deviance is the deviance that you get with a model with only an

intercept. In the present example, this is a model that thinks that the probability

of an error is the same for all words. By itself, the null deviance is uninteresting.

It is useful, though, for ascertaining whether the predictors in the full model

jointly earn their keep. The difference between the null deviance and the residual

deviance approximately follows a chi-squared distribution with, as degrees of

freedom, the difference between the degrees of freedom of the two deviances:

> 1 - pchisq(24432 - 12730, 4567 - 4551)
[1] 0

6.3 Generalized linear models 199

The very small p-value shows that we have a model with explanatory value. The

reason that glm() does not list this p-value is that the approximation to the chi-

squared distribution is valid only for large expected counts. So be warned: these

p-values may provide a rough indication only.

The residual deviance is used to examine whether the assumption of non-

constant, binomial variance, holds. We again use a test based on the chi-squared

approximation, that again is approximate only (perhaps even useless, according

to Harrell (2001:231)):

> 1 - pchisq(12730, 4551)
[1] 0

The very small p-value indicates that the assumption of binomial variance is

probably not met. The variance is much larger than expected — if it had been

in accordance with our modeling assumption, the residual deviance should be

approximately the same as the number of degrees of freedom. Here it is more

than four times too large. This is called overdispersion. Overdispersion indicates

a lack of goodness of fit. We may be missing crucial predictors, or we may have

missed nonlinearities in the predictors.

The final line of the summary mentions the number of scoring iterations, 5 in

the present example. The algorithm for estimating the coefficients of a general

linear model is iterative. It starts with an initial guess at the coefficients, and

refines this guess in subsequent iterations until the guesses become sufficiently

stable.

Recall that there is a second function summarizing the model, anova(). For

lm() and glm() it has two functions. Its first function is to allow us to carry out

a sequential analysis in which terms are added successively to the model. In the

summary table shown above, we see that Voice is not predictive. But the analysis

of deviance table produced by the anova() function seems to provide a different

verdict:

> anova(english2.glm, test = "Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 4567 24432.1
Voice 1 52.6 4566 24379.5 4.010e-13
PC1 1 169.2 4565 24210.3 1.123e-38
MeanBigramFrequency 1 109.4 4564 24100.9 1.317e-25
LengthInLetters 1 11.7 4563 24089.2 6.370e-04
Ncount 1 27.0 4562 24062.2 2.003e-07
...

This is because Voice is explanatory only when there are no other predictors in

the model. If we enter Voice and Ncount last to the model formula, then the

results are in harmony with the table of coefficients:

200 regression modeling

> english2.glm =
+ glm(cbind(english2$CorrectLexdec, 30 - english2$CorrectLexdec) ˜
+ MeanBigramFrequency + LengthInLetters + WordCategory + NVratio +
+ poly(WrittenFrequency, 2) + WrittenSpokenFrequencyRatio +
+ poly(FamilySize, 2) + InflectionalEntropy + NumberComplexSynsets +
+ AgeSubject + PC1 + Voice + Ncount, data=english2, family="binomial")
> anova(english2.glm, test = "Chisq")
...
Voice 1 0.3 4553 12730.9 0.6
Ncount 1 0.6 4552 12730.2 0.4

The second function of anova() is to allow us to evaluate the overall significance

of factors. When a factor has only two levels, the test for the (single) coefficient

based on its Z -score is very similar to the test in the anova() function when

the relevant factor is entered last into the model equation. But when a factor has

more than two levels, the table of coefficients lists a t-value or a Z -score for each

coefficient. In order to assess whether the factor as a whole is explanatory, the

anova() table is essential.

You may have noted that we called the anova() function with an argument

that we did not need before, test = "Chisq". This is because there are two

kinds of tests that we can run for a logistic model, a test that makes use of the chi-

squared distribution, and a test that makes use of the F-distribution. The latter test

is more conservative, but is sometimes recommended (see, e.g. Crawley, 2002)

when there is evidence for overdispersion. The most recent implementation of

the anova() function, however, adds a warning that the F-test is inappropriate

for binomial models.

Let’s look at the predictions of the model by plotting the predicted counts

against the observed counts. The left panel of Figure 6.10 shows that the model

is far too optimistic about the probability of a correct response, especially for

words for which many incorrect responses were recorded. Our model is clearly

unsatisfactory, even though it supports the relevance of most of our predictors.

What is needed is model criticism.

First, however, we consider how to obtain the left panel of Figure 6.10. We

extract the predicted probabilities of a correct response with predict(), which

we instruct to produce probabilities rather than logits by means of the option type

= "response". In order to proceed from probabilities (proportions) to counts,

we multiply by the total number of subjects (30):

> english2$predictCorrect = predict(english2.glm, type = "response")*30

The plot is now straightforward:

> plot(english2$CorrectLexdec, english2$predictCorrect, cex = 0.5)
> abline(0,1)

Let’s now remove observations from the data set for which the standardized

residual falls outside the interval (−5, 5), in the hope that this will reduce overdis-

persion:

> english2A = english2[abs(rstandard(english2.glm)) < 5,]

6.3 Generalized linear models 201

0 5 10 20 30

1
0

1
5

2
0

2
5

3
0

english2$CorrectLexdec

e
n
g
lis

h
2
$
p
re

d
ic

tC
o
rr

e
c
t

english2.glm

5 10 20 30

1
0

1
5

2
0

2
5

3
0

english2A$CorrectLexdec

p
re

d
ic

t(
e
n
g
lis

h
2
A

.g
lm

,
ty

p
e
 =

 "
re

s
p
o
n
s
e
")

 *
 3

0

english2A.glm

Figure 6.10. Predicted and observed counts of correct responses for the visual lexical decision data in
english2 (left panel). This model seriously overestimates the number of correct responses for words where
many mistakes are observed. The right panel shows the improvement obtained after removal of data points
with extreme residuals.

It is easy to see that this amounts to removing slightly more than 1% of the data

points:

> (nrow(english2) - nrow(english2A)) / nrow(english2)
[1] 0.01357268

We now refit our model,

> english2A.glm =
+ glm(cbind(english2A$CorrectLexdec, 30 - english2A$CorrectLexdec) ˜
+ MeanBigramFrequency + LengthInLetters + WordCategory + NVratio +
+ poly(WrittenFrequency, 2) + WrittenSpokenFrequencyRatio +
+ poly(FamilySize, 2) + InflectionalEntropy + NumberComplexSynsets +
+ AgeSubject + Voice + PC1 + Ncount, english2A, family = "binomial")

and inspect the table of coefficients:

> summary(english2A.glm)
Deviance Residuals:

Min 1Q Median 3Q Max
-5.3952 -0.6600 0.3552 1.2885 4.7383

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.905725 0.151493 19.181 < 2e-16
MeanBigramFrequency -0.195028 0.024326 -8.017 1.08e-15

202 regression modeling

LengthInLetters 0.303197 0.024159 12.550 < 2e-16
WordCategoryV 0.123030 0.032056 3.838 0.000124
NVratio 0.023568 0.005226 4.510 6.48e-06
poly(WrittenFrequency, 2)1 40.133735 1.092606 36.732 < 2e-16
poly(WrittenFrequency, 2)2 -17.077597 0.753239 -22.672 < 2e-16
WrSpFrequencyRatio -0.153989 0.009509 -16.194 < 2e-16
poly(FamilySize, 2)1 5.327479 1.082136 4.923 8.52e-07
poly(FamilySize, 2)2 -8.887187 0.715517 -12.421 < 2e-16
InflectionalEntropy 0.334942 0.024447 13.701 < 2e-16
NumberComplexSynsets 0.107175 0.011763 9.111 < 2e-16
AgeSubjectyoung -0.882157 0.020997 -42.013 < 2e-16
Voicevoiceless 0.060491 0.020699 2.922 0.003473
PC1 -0.020570 0.005076 -4.052 5.07e-05
Ncount -0.001153 0.002792 -0.413 0.679692

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20894 on 4505 degrees of freedom
Residual deviance: 10334 on 4490 degrees of freedom

Voice now emerges as significant. This illustrates the importance of model crit-

icism: the distorting presence of just a few atypical outliers may obscure effects

that characterize the majority of the data points. Also note that the residual de-

viance is substantially reduced, from 12730 to 10334, but, with 4490 degrees of

freedom, we still have overdispersion. This leads to the conclusion that there may

be important predictors for subjects’ accuracy scores that we have failed to take

into account. As can be seen in the right panel of Figure 6.10, the removal of a

few atypical outliers has led to a visible improvement in the fit:

> plot(english2A$CorrectLexdec,
+ predict(english2A.glm, type = "response")*30, cex = 0.5)
> abline(0,1)

This completes this example of a logistic regression for a data set in which the

successes and failures are available in tabular format. The next example illustrates

the lrm() function from the Design package for logistic regression modeling

of data in long format, i.e. data in which each row of the data frame specifies a

single outcome, either a success or a failure. We consider a data set reported by

Tabak et al. (2005) that specifies, for 700 Dutch verbs that belong to the Germanic

stratum of the Dutch vocabulary, whether that verb is regular or irregular, together

with a series of other predictors, such as the auxiliary selected by the verb in the

present and past perfect, its frequency, and its morphological family size. Further

information is available through help(regularity). We begin by creating a

data distribution object, and specify that this is the current data distribution object

with options():

> regularity.dd = datadist(regularity)
> options(datadist = "regularity.dd")
> xtabs(˜ regularity$Regularity)
regularity$Regularity
irregular regular

159 541

6.3 Generalized linear models 203

Fitting a logistic regression model with lrm() is straightforward:

> regularity.lrm = lrm(Regularity ˜ WrittenFrequency+rcs(FamilySize,3)+
+ NcountStem + InflectionalEntropy + Auxiliary + Valency + NVratio +
+ WrittenSpokenRatio, data = regularity, x = T, y = T)

The anova() function applied to an lrm object does not produce a sequential

analysis of deviance table, but a table listing the partial effects of the predictors,

which, in the present example, are all significant. Significance is evaluated by

means of the chi-squared test statistic:

> anova(regularity.lrm)
Wald Statistics Response: Regularity

Factor Chi-Square d.f. P
WrittenFrequency 8.76 1 0.0031
FamilySize 15.92 2 0.0003
Nonlinear 11.72 1 0.0006
NcountStem 14.21 1 0.0002
InflectionalEntropy 9.73 1 0.0018
Auxiliary 16.12 2 0.0003
Valency 10.29 1 0.0013
NVratio 7.79 1 0.0053
WrittenSpokenRatio 4.61 1 0.0318
TOTAL 126.86 10 <.0001

A table with the coefficients of the model and further summary statistics is ob-

tained by typing the name of the fitted model at the prompt:

> regularity.lrm
Logistic Regression Model

lrm(formula = Regularity ˜ WrittenFrequency + rcs(FamilySize, 3) +
NcountStem + InflectionalEntropy + Auxiliary + Valency +
NVratio + WrittenSpokenRatio, data = regularity, x = T, y = T)

Frequencies of Responses
irregular regular

159 541

Obs Max Deriv Model L.R. d.f. P C
700 1e-05 215.62 10 0 0.843

Dxy Gamma Tau-a R2 Brier
0.687 0.688 0.241 0.403 0.121

Coef S.E. Wald Z P
Intercept 4.4559 0.97885 4.55 0.0000
WrittenFrequency -0.2749 0.09290 -2.96 0.0031
FamilySize -1.2608 0.31684 -3.98 0.0001
FamilySize’ 1.1752 0.34333 3.42 0.0006
NcountStem 0.0730 0.01937 3.77 0.0002
InflectionalEntropy 0.9999 0.32049 3.12 0.0018
Auxiliary=zijn -1.9484 0.57629 -3.38 0.0007
Auxiliary=zijnheb -0.6974 0.28433 -2.45 0.0142
Valency -0.1448 0.04514 -3.21 0.0013
NVratio 0.1323 0.04739 2.79 0.0053
WrittenSpokenRatio -0.2146 0.09993 -2.15 0.0318

204 regression modeling

The summary first lists how the model object was created, as well as the fre-

quencies of the two levels of our dependent variable: 159 irregulars, and 541

regulars. The regulars (listed last) are interpreted as successes, and the irregulars

as failures. The next section of the summary lists a series of statistics that assess

the goodness of fit. It starts off with the number of observations, 700. The most

important statistics are Model L.R., C, Dxy and R2. Model L.R. stands for

model likelihood chi-square, the difference between the Null Deviance and the

Residual Deviance that we encountered above with glm(). In the summary, it

is followed by its associated degrees of freedom and p-value. The very small

p-value indicates that jointly the predictors are explanatory.

The remaining statistics address the predictive ability of the model. Recall that

for normal regression models, the R2 measure provides insight into how accu-

rate the predictions of the model are. The problem with dichotomous response

variables such as Regularity is that the model produces estimates of the prob-
ability that a verb is regular, whereas our observations simply state whether a

verb is regular or irregular. We could dichotomize our probabilities by mapping

probabilities greater than 0.5 onto success and probabilities less than 0.5 onto

failure, but this implies a substantial loss of information. (Consider the conse-

quences for a data set in which success probabilities all range between 0 and 0.4.)

Fortunately, lrm() provides a series of measures that deal with this problem in

a more principled way.

The measure named C is an index of concordance between the predicted prob-

ability and the observed response. C is obtained by inspecting all pairs of verbs

with both a regular and an irregular verb for which the regular verb does indeed

have the higher expected probability of being regular. When C takes the value

0.5, the predictions are random, when it is 1, prediction is perfect. A value above

0.8 indicates that the model may have some real predictive capacity. Since C is

listed with the value 0.843, our confidence in the model is strengthened. A related

measure is Somers’ Dxy , a rank correlation between predicted probabilities and

observed responses. This measure, 0.687 for our data, which can be obtained

from C (0.843) as follows,

> 2 * (0.843 - 0.5)
[1] 0.686

ranges between 0 (randomness) and 1 (perfect prediction). Finally, the R2 men-

tioned in the table is a generalized index that is calculated from log-likelihood

ratio statistics, and also provides some indication of the predictive strength of the

model.

Bootstrap validation provides further evidence that we have a reasonable model:

> validate(regularity.lrm, bw = T, B = 200)
Backwards Step-down - Original Model
No Factors Deleted
Factors in Final Model

[1] WrittenFrequency FamilySize NcountStem

6.3 Generalized linear models 205

[4] InflectionalEntropy Auxiliary Valency
[7] NVratio WrittenSpokenRatio
Iteration:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
...
Frequencies of Numbers of Factors Retained

4 5 6 7 8
1 11 24 46 118

index.orig training test optimism index.corrected
Dxy 0.6869 0.7026 0.6713 0.0313 0.6556
R2 0.4032 0.4216 0.3839 0.0377 0.3655
Intercept 0.0000 0.0000 0.0758 -0.0758 0.0758
Slope 1.0000 1.0000 0.9128 0.0872 0.9128
Emax 0.0000 0.0000 0.0336 0.0336 0.0336
D 0.3066 0.3234 0.2896 0.0339 0.2727
U -0.0029 -0.0029 0.0019 -0.0047 -0.0019
Q 0.3095 0.3263 0.2877 0.0386 0.2709
B 0.1210 0.1175 0.1243 -0.0068 0.1278

The fast backwards elimination algorithm reports that all predictors are retained.

During the bootstrap runs, it does eliminate predictors, most likely those with

weak p-values in the summary() and anova() tables. Except for 12 out of

200 bootstrap validation runs, at most two predictors are deleted. The optimism

with respect to Dxy , and R2
N is somewhat larger than in the previous example of

bootstrap validation. The changes in slope and intercept are also more substantial.

In all, there is evidence that we are somewhat overfitting the data.

Overfitting is an adverse effect of fitting a model to the data. In the process

of selecting coefficients that approximate the data to the best of our abilities, it

is unavoidable that noise is also fitted. Data points with extreme values due to

noise are taken just as seriously as normal data points. Across experiments, it is

unlikely that the extreme values will be replicated. As a consequence, coefficients

in the fitted model run the risk of having values that are also too extreme: In

replication studies, the values of these coefficients will generally be somewhat

closer to zero. This phenomenon is known as shrinkage. For models fitted by

means of maximum likelihood estimation, the Design package offers a tool,

pentrace(), that helps us find estimates of the coefficients that anticipate this

shrinkage. Because the coefficients in a penalized model have been shrunk towards

zero, their values are less vulnerable to overfitting and more accurate for prediction

for unseen data. The pentrace() function makes use of a technique known

as penalized maximum likelihood estimation. This technique introduces a

penalty factor into the estimation process that discourages large values for the

coefficients. We do not know beforehand what the best penalty is, so a series of

penalty values has to be considered. For each penalty, a model is fitted to the data.

The penalized model with the best fit is then selected.

Applied to the current data, pentrace() expects as first argument the fitted

model, and as second argument the penalties that should be considered. Its output

informs us about what the best penalty is:

206 regression modeling

> pentrace(regularity.lrm, seq(0, 0.8, by = 0.05))
Best penalty:
penalty df

0.6 9.656274
simple df aic bic aic.c

1 0.00 10.000000 195.6179 150.1071 195.2986
2 0.05 9.967678 195.6792 150.3155 195.3619
3 0.10 9.936161 195.7327 150.5124 195.4173
4 0.15 9.905399 195.7789 150.6986 195.4654
5 0.20 9.875348 195.8184 150.8749 195.5067
6 0.25 9.845965 195.8519 151.0421 195.5419
7 0.30 9.817215 195.8796 151.2007 195.5714
8 0.35 9.789063 195.9021 151.3513 195.5957
9 0.40 9.761478 195.9198 151.4945 195.6150
10 0.45 9.734432 195.9330 151.6308 195.6298
11 0.50 9.707899 195.9420 151.7606 195.6404
12 0.55 9.681853 195.9472 151.8843 195.6471
13 0.60 9.656274 195.9487 152.0023 195.6502
14 0.65 9.631140 195.9470 152.1149 195.6499
15 0.70 9.606432 195.9421 152.2225 195.6465
16 0.75 9.582133 195.9343 152.3253 195.6402
17 0.80 9.558225 195.9239 152.4236 195.6311

The best penalty is 0.60, for which we have the largest values of aic (the Akaike

Information Criterion) and aic.c (a corrected version of aic). Larger values of

these measures imply improved goodness of fit.

Now that we know the optimal value for the penalty, we take our original

unpenalized model and update it with this penalty to obtain the corresponding

penalized model:

> regularity.lrm.pen = update(regularity.lrm, penalty = 0.6)
> regularity.lrm.pen
Frequencies of Responses
irregular regular

159 541
Penalty factors:
simple nonlinear interaction nonlinear.interaction

0.6 0.6 0.6 0.6
Final penalty on -2 log L: 3.24

Obs Max Deriv Model L.R. d.f. P C
700 1e-06 215.26 9.66 0 0.843
Dxy Gamma Tau-a R2 Brier

0.686 0.688 0.241 0.397 0.121

Coef S.E. Wald Z P Penalty Scale
Intercept 4.18590 0.93607 4.47 0.0000 0.0000
WrittenFrequency -0.27410 0.09125 -3.00 0.0027 1.5030
FamilySize -1.10885 0.28526 -3.89 0.0001 0.9161
FamilySize’ 1.01248 0.31279 3.24 0.0012 0.7468
NcountStem 0.07153 0.01911 3.74 0.0002 5.0767
InflectionalEntropy 0.96949 0.31762 3.05 0.0023 0.3114
Auxiliary=zijn -1.74304 0.53771 -3.24 0.0012 0.6325
Auxiliary=zijnheb -0.70646 0.27883 -2.53 0.0113 0.6325
Valency -0.14079 0.04429 -3.18 0.0015 2.7047

6.3 Generalized linear models 207

NVratio 0.12880 0.04660 2.76 0.0057 2.6535
WrittenSpokenRatio -0.21421 0.09850 -2.17 0.0297 1.1694

The summary has a structure that is very similar to that of the unpenalized model.

It adds the information that (in this example) the same penalty was applied to

all types of terms in the model. (This is the default, other options are available.

For instance, only nonlinear terms and interactions can be penalized. Consult the

documentation for lrm() for further details.)

To see what penalization has accomplished, we arrange the coefficients of the

two models side by side, and also list the difference between the two:

> cbind(coef(regularity.lrm), coef(regularity.lrm.pen),
+ abs(coef(regularity.lrm) - coef(regularity.lrm.pen)))

[,1] [,2] [,3]
Intercept 4.45591812 4.18590117 0.2700169476
WrittenFrequency -0.27489322 -0.27410296 0.0007902561
FamilySize -1.26081754 -1.10884722 0.1519703217
FamilySize’ 1.17521466 1.01248128 0.1627333834
NcountStem 0.07300013 0.07153112 0.0014690074
InflectionalEntropy 0.99994212 0.96948811 0.0304540066
Auxiliary=zijn -1.94843887 -1.74304390 0.2053949677
Auxiliary=zijnheb -0.69740672 -0.70645984 0.0090531198
Valency -0.14480320 -0.14078808 0.0040151257
NVratio 0.13228590 0.12880451 0.0034813886
WrittenSpokenRatio -0.21457506 -0.21421097 0.0003640932

Note that with the exception ofAuxiliary=zijnheb all coefficients are shrunk

towards zero. The largest adjustments are those for Family Size and for Auxil-

iary=zijn. For the latter predictor, this does not come as a surprise, as there are

only a few verbs in the data set that select zijn:

> table(regularity$Auxiliary)

hebben zijn zijnheb
577 20 103

It is precisely the magnitude of the contrast coefficient for zijn that is reduced

substantially. Here, our data are most sparse, and hence we should be restrained

most for prediction.

Let’s finally inspect the partial effects of the model by plotting all effects with

the same range on the vertical axis:

> par(mfrow = c(3, 3))
> plot(regularity.lrm.pen, fun = plogis, ylab = "Pr(regular)",
+ adj.subtitle = F, ylim = c(0, 1))
> par(mfrow = c(1, 1))

Figure 6.11 shows that the probability of a verb being regular decreases with

increasing frequency, as expected. But it is clear that in addition to frequency,

there are many other predictors that have similar effect sizes, such as inflectional

entropy, valency (a variable that is strongly correlated with number of mean-

ings), and the noun-to-verb frequency ratio. Tabak et al. (2005) and Baayen and

208 regression modeling

WrittenFrequency

P
r(

re
g

u
la

r)

2 4 6 8 10 12

0
.0

0
.4

0
.8

FamilySize

P
r(

re
g

u
la

r)

0 1 2 3 4 5 6

0
.0

0
.4

0
.8

NcountStem

P
r(

re
g

u
la

r)

0 5 10 15 20 25

0
.0

0
.4

0
.8

InflectionalEntropy

P
r(

re
g

u
la

r)

0.5 1.5 2.5

0
.0

0
.4

0
.8

Auxiliary

P
r(

re
g

u
la

r)

hebben zijn zijnheb

0
.0

0
.4

0
.8

Valency

P
r(

re
g

u
la

r)

0 5 10 15 20

0
.0

0
.4

0
.8

NVratio

P
r(

re
g

u
la

r)

0
.0

0
.4

0
.8

WrittenSpokenRatio

P
r(

re
g

u
la

r)

0
.0

0
.4

0
.8

Figure 6.11. Partial effects of the predictors for the log odds ratio of a Dutch simplex verb from the native
(Germanic) stratum being regular.

Moscosodel Prado Martı́n (2005) discuss these results in the context of the hy-

pothesis that irregular verbs live in denser semantic similarity neighborhoods than

do regular verbs.

6.3.2 Ordinal logistic regression

Logistic regression is appropriate for dichotomous response variables.

Ordinal regression is appropriate for dependent variables that are factors

with ordered levels. For a factor such as gender in German, the factor levels

“masculine,” “feminine,” and “neuter” are not intrinsically ordered. In contrast,

vowel length in Estonian has the ordered levels “short,” “long,” and “extra long.”

6.3 Generalized linear models 209

Regression models for such ordered factors are available. The technique that

we introduce here, ordinal logistic regression, is a generalization of the lo-

gistic regression technique.

As an example, we consider the data set studied by Tabak et al. (2005). The

model predicting regularity for Dutch verbs developed in the preceding section

showed that the likelihood of regularity decreased with increasing valency. An

increase in valency (here, the number of different subcategorization frames in

which a verb can be used) is closely related to an increase in the verb’s number

of meanings.

Irregular verbs are generally described as the older verbs of the language.

Hence, it could be that they have more meanings and a greater valency because

they have had a longer period of time in which they could spawn new meanings

and uses. Irregular verbs also tend to be more frequent than regular verbs, and it

is reasonable to assume that this high frequency protects irregular verbs through

time against regularization.

In order to test these lines of reasoning, we need some measure of the age of

a verb. A rough indication of this age is the kind of cognates a Dutch verb has

in other Indo-European languages. On the basis of an etymological dictionary,

Tabak et al. (2005) established whether a verb appears only in Dutch, in Dutch and

German, in Dutch, German and other West-Germanic languages, in any Germanic

language, or in Indo-European. This classification according to etymological age

is available in the column labeled EtymAge in the data set etymology:

> colnames(etymology)
[1] "Verb" "WrittenFrequency" "NcountStem"
[4] "MeanBigramFrequency" "InflectionalEntropy" "Auxiliary"
[7] "Regularity" "LengthInLetters" "Denominative"

[10] "FamilySize" "EtymAge" "Valency"
[13] "NVratio" "WrittenSpokenRatio"

When a data frame is read into R, the levels of any factor are assumed to be

unordered by default. In order to make EtymAge into an ordered factor with

the levels in the appropriate order, we use the function ordered():

> etymology$EtymAge = ordered(etymology$EtymAge, levels = c("Dutch",
+ "DutchGerman", "WestGermanic", "Germanic", "IndoEuropean"))

When we inspect the factor,

> etymology$EtymAge
...
[276] WestGermanic Germanic IndoEuropean Germanic Germanic
[281] Germanic WestGermanic Germanic Germanic DutchGerman
Levels: Dutch < DutchGerman < WestGermanic < Germanic < IndoEuropean

we see that the ordering relation between its levels is now made explicit. We leave

it as an exercise for you to verify that etymological age is a predictor for whether a

verb is regular or irregular over and above the predictors studied in the preceding

section. Here, we study whether etymological age itself can be predicted from

210 regression modeling

frequency, regularity, family size, etc. We create a data distribution object, set the

appropriate variable to point to this object,

> etymology.dd = datadist(etymology)
> options(datadist = "etymology.dd")

and fit a logistic regression model to the data with lrm():

> etymology.lrm = lrm(EtymAge ˜ WrittenFrequency + NcountStem +
+ MeanBigramFrequency + InflectionalEntropy + Auxiliary +
+ Regularity + LengthInLetters + Denominative + FamilySize + Valency +
+ NVratio + WrittenSpokenRatio, data = etymology, x = T, y = T)
> anova(etymology.lrm)
Wald Statistics Response: EtymAge

Factor Chi-Square d.f. P
WrittenFrequency 0.45 1 0.5038
NcountStem 3.89 1 0.0487
MeanBigramFrequency 1.89 1 0.1687
InflectionalEntropy 0.94 1 0.3313
Auxiliary 0.38 2 0.8281
Regularity 14.86 1 0.0001
LengthInLetters 0.30 1 0.5827
Denominative 8.84 1 0.0029
FamilySize 0.42 1 0.5191
Valency 0.26 1 0.6080
NVratio 0.07 1 0.7894
WrittenSpokenRatio 0.18 1 0.6674
TOTAL 35.83 13 0.0006

The anova table suggests three significant predictors, Regularity, as expected,

the neighborhood density of the stem (NcountStem), and whether the verb is de-

nominative (Denominative). We simplify the model, and inspect the summary:

> etymology.lrmA = lrm(EtymAge ˜ NcountStem + Regularity + Denominative,
+ data = etymology, x = T, y = T)
> etymology.lrmA
Frequencies of Responses
Dutch DutchGerman WestGermanic Germanic IndoEuropean

8 28 43 173 33

Obs Max Deriv Model L.R. d.f. P C
285 2e-08 30.92 3 0 0.661

Dxy Gamma Tau-a R2 Brier
0.322 0.329 0.189 0.114 0.026

Coef S.E. Wald Z P
y>=DutchGerman 4.96248 0.59257 8.37 0.0000
y>=WestGermanic 3.30193 0.50042 6.60 0.0000
y>=Germanic 2.26171 0.47939 4.72 0.0000
y>=IndoEuropean -0.99827 0.45704 -2.18 0.0289
NcountStem 0.07038 0.02014 3.49 0.0005
Regularity=regular -1.03409 0.25123 -4.12 0.0000
Denominative=N -1.48182 0.43657 -3.39 0.0007

The summary lists the frequencies with which the different levels of our or-

dered factor for etymological age are attested, followed by the usual measures for

6.3 Generalized linear models 211

gauging the predictivity of the model. The values of C , Dxy , and R2
N are all low,

so we have to be careful when drawing conclusions.

The first four lines of the table of coefficients are new, and specific to ordinal

logistic regression. These four lines represent four intercepts. The first intercept

is for a normal binary logistic model that contrasts data points with Dutch as

etymological age with all other data points, for which the etymological age (re-

presented by y in the summary) is greater or equal than DutchGerman. For this

standard binary model, the probability of greater age increases with neighborhood

density, it is smaller for regular verbs, and also smaller for denominative verbs.

The second intercept represents a second binary split, now between Dutch and

DutchGerman on the one hand, and WestGermanic, Germanic, and IndoEu-

ropean on the other. Again, the coefficients for the three predictors show how

the probability of having a greater etymological age has to be adjusted for neigh-

borhood density, regularity, and whether the verb is denominative. The remaining

two intercepts work in the same way, each shift the criterion for “young” versus

“old” further towards the greatest age level.

There are two things to note here. First, the four intercepts are steadily de-

creasing. This simply reflects the distribution of successes (old etymological age)

and failures (young etymological age) as we shift our cutoff point for old versus

young further towards IndoEuropean. To see this, we first count the data points

classified as “old” versus “young”:

> tab = xtabs(˜etymology$EtymAge)
> tab
etymology$EtymAge
Dutch DutchGerman WestGermanic Germanic IndoEuropean

8 28 43 173 33
> sum(tab)
[1] 285

For the cutoff point between Dutch and DutchGerman, we have 285 − 8 = 277

old observations (successes) and 8 young observations (failures), and hence a log

odds ratio of 3.54. The following code loops through the different cutoff points

and lists the counts of old and young observations, and the corresponding log

odds ratio:

> for (i in 0:3) {
+ cat(sum(tab[(2 + i) : 5]), sum(tab[1 : (1 + i)]),
+ log(sum(tab[(2 + i) : 5]) / sum(tab[1 : (i + 1)])), "\n")
+ }
277 8 3.544576
249 36 1.933934
206 79 0.9584283
33 252 -2.032922

We see the same downwards progression in the logits as in the table of intercepts.

The numbers are not the same, as our logits do not take into account any of the

other predictors in the model. In other words, the progression of intercepts is by

212 regression modeling

EtymAge

N
c
o
u
n
tS

te
m

DutchGerman WestGermanic Germanic IndoEuropean

EtymAge

N
c
o
u
n
tS

te
m

EtymAge

R
e
g
u
la

ri
ty

=
re

g
u
la

r

DutchGerman WestGermanic Germanic IndoEuropean

EtymAge

R
e
g
u
la

ri
ty

=
re

g
u
la

r

EtymAge

D
e
n
o
m

in
a
ti
ve

=
N

DutchGerman WestGermanic Germanic IndoEuropean

EtymAge

D
e
n
o
m

in
a
ti
ve

=
N

EtymAge

M
e
a
n
 o

f
N

c
o
u
n
tS

te
m

Dutch DutchGerman Germanic IndoEuropean

7
8

9
1
0

1
1

n=285

Figure 6.12. Diagnostics for the proportionality assumption for the ordinal logistic regression model for
etymological age. The lower right panel compares observed (observed) and expected (given proportionality,
dashed) mean neighborhood density for each level of etymological age, the remaining panels plot for each
predictor the distribution of residuals for each cutoff point.

itself not of interest, just as the intercept in least squares regression or standard

logistic regression is generally not of interest by itself.

The second thing to note is thatlrm() assumes that the effects of our predictors,

NcountStem, Regularity, and Denominative, are the same, irrespective of

the cutoff point for etymological age. In other words, these predictors are taken to

have the same proportional effect across all levels of our ordered factor. Hence,

this kind of model is referred to as a proportional odds model. The assumption

of proportionality should be checked. One way of doing so is to plot, for each

cutoff point, the mean of the partial binary residuals together with their 95%

confidence intervals. If the proportionality assumption holds, these means should

6.3 Generalized linear models 213

be close to zero. As can be seen in the first three panels of Figure 6.12, the

proportionality assumption is not violated for our data. The means are very close

to zero in all cases. The last panel takes a closer look at our continuous predictor,

NcountStem. For each successive factor level, two points are plotted. The circles

connected by the solid line show the means as actually observed; the dashed

line shows what these means should be if the proportionality assumption would

be satisfied perfectly. There is a slight discrepancy for the first level, Dutch,

for which we also have the lowest number of observations. But since the two

lines are otherwise quite similar, we conclude that a proportional odds model

is justified. The diagnostic plots shown in Figure 6.12 were produced with two

functions from the Design package, resid() and plot.xmean.ordinaly()

as follows:

> par(mfrow = c(2, 2))
> resid(etymology.lrmA, ’score.binary’, pl = T)
> plot.xmean.ordinaly(EtymAge ˜ NcountStem, data = etymology)
> par(mfrow = c(1, 1))

Bootstrap validation calls attention to changes in slope and intercept,

> validate(etymology.lrmA, bw=T, B=200)
1 2 3
2 7 191

index.orig training test optimism index.corrected
Dxy 0.3222059 0.3314785 0.31487666 0.01660182 0.30560403
R2 0.1138586 0.1227111 0.10597692 0.01673422 0.09712436
Intercept 0.0000000 0.0000000 0.04821578 -0.04821578 0.04821578
Slope 1.0000000 1.0000000 0.95519326 0.04480674 0.95519326
Emax 0.0000000 0.0000000 0.01871305 0.01871305 0.01871305
D 0.1049774 0.1147009 0.09714786 0.01755301 0.08742437

but the optimism is fairly small, and a pentrace recommends a penalty of zero,

> pentrace(etym.lrmA, seq(0, 0.8, by=0.05))
Best penalty:
penalty df

0 3

so we accept etymology.lrmA as our final model, and plot the partial effects

(Figure 6.13):

> plot(etymology.lrmA, fun = plogis, ylim = c(0.8, 1))

We conclude that the neighborhood density of the stem is a predictor for the age

of a verb. Words with a higher neighborhood density are phonologically more

regular, and easier to articulate. Apparently, phonological regularity and ease of

articulation contribute to a verb’s continued existence through time, in addition

to morphological regularity. It is remarkable that frequency is not predictive at

all.

214 regression modeling

NcountStem

0 5 10 15 20 25

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Adjusted to: Regularity=regular Denominative=N
Regularity

irregular regular

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Adjusted to: NcountStem=8 Denominative=N

Denominative

Den N

0
.8

0
0

.8
5

0
.9

0
0

.9
5

1
.0

0

Adjusted to: NcountStem=8 Regularity=regular

Figure 6.13. Partial effects of the predictors for the probability of the etymological age of Dutch verbs.
Den: denominative; N: not denominative.

6.4 Regression with breakpoints

Thus far, all examples of nonlinear relations involved smooth, contin-

uous functions that we modeled with polynomials or with splines. However, one

may also encounter situations in which there is a discontinuity in an otherwise

linear relation. An example is a study of the frequency with which years were

referenced in the Frankfurter Allgemeine Zeitung (Pollman and Baayen, 2001).

The relevant data are available as the data set faz:

6.4 Regression with breakpoints 215

> head(faz, 3)
Year Frequency

1 1993 12068
2 1992 6338
3 1991 3791
> tail(faz, 3)

Year Frequency
798 1196 0
799 1195 1
800 1194 2

For each year in the time period 1993–1194, faz lists the frequency of that year

as referenced in this newspaper in 1994. Most of the year references in the issues

of 1994 were to the previous year, 1993, followed by 1992, then by 1991, etc. We

add a column to faz specifying the distance from 1994,

> faz$Distance = 1:nrow(faz)

and plot log frequency of use as a function of log distance from 1994, as shown

in the upper left panel of Figure 6.14:

> plot(log(faz$Distance), log(faz$Frequency + 1),
+ xlab = "log Distance", ylab = "log Frequency")

What is of interest in this plot is that there seems to be a linear relation up

till approximately a log distance of four. Around the location of the vertical solid

line, the slope of the regression line changes fairly abruptly. This suggests that the

collective consciousness of events in the past is substantially reduced for events

occurring more than a lifetime (some 60 years) ago. The dashed vertical line marks

1945, the end of the Second World War. Therefore, an alternative explanation of

the observed change is that the Second World War is the dividing line between

recent and more distant history. In order to evaluate these hypotheses, we need

to establish whether there is indeed a sudden change—a significant change in the

slope—and if so, where this discontinuity is located.

The simplest regression model for this data that takes the discontinuity into

account is one with a single linear regression line that changes slope at a so-called

breakpoint. Let’s assume that the breakpoint is at distance 59. For convenience,

we log frequency and distance,

> faz$LogFrequency = log(faz$Frequency + 1)
> faz$LogDistance = log(faz$Distance)
> breakpoint = log(59)

and then shift all the data points leftwards along the horizontal axis, so that the

breakpoint coincides with the vertical axis. This is shown in the upper right panel

of Figure 6.14:

> faz$ShiftedLogDistance = faz$LogDistance - breakpoint
> plot(faz$ShiftedLogDistance, faz$LogFrequency,
+ xlab = "log Shifted Distance", ylab = "log Frequency")

216 regression modeling

0 1 2 3 4 5 6

0
2

4
6

8

log Distance

lo
g
 F

re
q
u
e
n
c
y

0
2

4
6

8

log Shifted Distance

lo
g
 F

re
q
u
e
n
c
y

0 1 2 3 4 5 6

2
6
0

2
8
0

3
0
0

breakpoint

d
e
v
ia

n
c
e

0 1 2 3 4 5 6

0
2

4
6

8

log Distance

lo
g
 F

re
q
u
e
n
c
y

Figure 6.14. Breakpoint analysis of the frequency of use of references to years in the Frankfurter Allgemeine

Zeitung in 1994 as a function of the distance of the year name from 1994.

We can now fit two regression models to the data, one for the data points to the

left of the vertical axis, and one for the data points to its right. As can be seen in

the upper right panel of Figure 6.14, the two lines cross the vertical axis at nearly

the same place:

> faz.left = lm(LogFrequency ˜ ShiftedLogDistance,
+ data = faz[faz$ShiftedLogDistance <= 0,])
> faz.right = lm(LogFrequency ˜ ShiftedLogDistance,
+ data = faz[faz$ShiftedLogDistance >= 0,])
> abline(faz.left, lty = 1)
> abline(faz.right, lty = 2)

What we need to do is to integrate these two models into a single regression

model. We do this by introducing an indicator variable that specifies whether

the shifted log distance is greater than zero,

> faz$PastBreakPoint = as.factor(faz$ShiftedLogDistance > 0)

and by constructing a model in which the only term in the formula is the interaction

of ShiftedLogDistance with this indicator variable PastBreakPoint:

6.4 Regression with breakpoints 217

> faz.both = lm(LogFrequency ˜ ShiftedLogDistance : PastBreakPoint,
+ data=faz)

Normally, one would not include an interaction without including the main effects,

but in this special case we do not want these main effects to be present. To see

why, consider the table of coefficients in the summary:

> summary(faz.both)
...

Residuals:
Min 1Q Median 3Q Max

-1.76242 -0.31593 -0.02271 0.34838 1.87073
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.52596 0.05434 101.70 <2e-16
ShiftedLogDist:PastBreakPointFALSE -0.84124 0.06460 -13.02 <2e-16
ShiftedLogDist:PastBreakPointTRUE -1.88383 0.02872 -65.60 <2e-16

Residual standard error: 0.5705 on 797 degrees of freedom
Multiple R-Squared: 0.8898, Adjusted R-squared: 0.8895
F-statistic: 3218 on 2 and 797 DF, p-value: < 2.2e-16

We have three coefficients, one for the intercept, one for the slope when we are to

the left of the breakpoint, and one for when we are to the right of the breakpoint.

Since the intercept represents the frequency when the shifted distance is zero, we

have succeeded in building a model that combines the first half of the solid line

in the upper right panel with the second half of the dashed line. An anova test

comparing this model with a model with just a simple regression line shows that

the extra parameter for modeling the breakpoint is justified:

> anova(faz.both, lm(LogFrequency ˜ ShiftedLogDistance, data = faz))
Analysis of Variance Table

Model 1: LogFrequency ˜ ShiftedLogDistance:PastBreakPoint
Model 2: LogFrequency ˜ ShiftedLogDistance

Res.Df RSS Df Sum of Sq F Pr(>F)
1 797 259.430
2 798 312.945 -1 -53.515 164.41 < 2.2e-16

Up till now, we have worked with one sensible breakpoint, but we still need to

ascertain what the most likely breakpoint is. To do so, we fit a series of models,

one for each possible breakpoint. For each model, we calculate the deviance; the

sum of the squared differences between the observed and the fitted values:

> sum((fitted(faz.both) - faz$LogFrequency)ˆ2)
[1] 259.4298
> deviance(faz.both)
[1] 259.4298

The following lines of code implement this idea. We begin by creating a vector

in which we store the deviances for the models. We then loop over all sensible

breakpoints, and carry out the same sequence of steps as above:

218 regression modeling

> deviances = rep(0, nrow(faz)-1)
> for (pos in 1 : (nrow(faz)-1)) {
+ breakpoint = log(pos)
+ faz$ShiftedLogDistance = faz$LogDistance - breakpoint
+ faz$PastBreakPoint = as.factor(faz$ShiftedLogDistance > 0)
+ faz.both = lm(LogFrequency ˜ ShiftedLogDistance:PastBreakPoint,
+ data = faz)
+ deviances[pos] = deviance(faz.both)
+ }

We select the breakpoint for which the deviance is smallest,

> best = which(deviances == min(deviances))
> best
[1] 58
> breakpoint = log(best)

and refit the model one last time for this breakpoint:

> faz$ShiftedLogDistance = faz$LogDistance - breakpoint
> faz$PastBreakPoint = as.factor(faz$ShiftedLogDistance > 0)
> faz.both = lm(LogFrequency ˜ ShiftedLogDistance:PastBreakPoint,
+ data = faz)

We now add the lower panels to Figure 6.14:

> plot(log(1:length(deviances)), deviances, type = "l",
+ xlab = "breakpoint", ylab = "deviance")
> plot(faz$LogDistance, faz$LogFrequency,
+ xlab = "log Distance", ylab = "log Frequency", col = "darkgrey")
> lines(faz$LogDistance, fitted(faz.both))

Note that the final plot has the unshifted distances on the horizontal axis, and the

fitted values (obtained for the shifted values) on the vertical axis. (A moment’s

thought should reveal why this is legitimate.) The breakpoint is at distance 58

from 1994, in 1936, so this suggests that the change in historical consciousness

is located well before the beginning of the Second World War.

A second example illustrating the use of indicator variables addresses changes

in the frequency with which constructions with periphrastic do were used in

English from the end of the fourteenth to the end of the sixteenth century. Ellegård

(1953) studied the use of periphrastic do in 107 texts. Counts of periphrastic do
for four sentence types are available as the data set periphrasticDo:

> head(periphrasticDo)
begin end type do other

1 1390 1425 affdecl 17 49583
2 1425 1475 affdecl 121 45379
3 1475 1500 affdecl 1059 58541
4 1500 1525 affdecl 396 28204
5 1525 1535 affdecl 494 18306
6 1535 1550 affdecl 1564 17636
> table(periphrasticDo$type)
affdecl affquest negdecl negquest

11 11 11 11

6.4 Regression with breakpoints 219

1400 1500 1600 1700

0
.0

0
.4

0
.8

year

p
ro

p
o

rt
io

n

affdecl

1400 1500 1600 1700

0
.0

0
.4

0
.8

year

p
ro

p
o

rt
io

n

affquest

1400 1500 1600 1700

0
.0

0
.4

0
.8

year

p
ro

p
o

rt
io

n

negdecl

1400 1500 1600 1700

0
.0

0
.4

0
.8

year

p
ro

p
o

rt
io

n

negquest

Figure 6.15. The relative frequency of periphrastic do in four sentence types across three centuries. Circles
represent observed relative frequencies, dashed and solid lines a regression model without and with an
indicator variable adjusting for the fifteenth century.

The columns begin and end list the beginning and end of the period for

which Ellegård counted the occurrences of do and other constructions for af-

firmative declarative sentences (affdecl), affirmative questions (affquest),

negative declarative sentences (negdecl), and negative questions (negquest).

Figure 6.15 shows, for each sentence type, the observed proportion of sentences

with periphrastic do for the midpoints of each time period. Except for affirmative

declarative sentences, the use of periphrastic do increased over the years.

The curve for affirmative questions has been analyzed with a logistic regression

model by Kroch (1989); see Vulanović and Baayen (2006) for further references

to studies that propose models for subsets of the sentence types. The question

considered by the latter study is whether a single model can be fitted to the data of

all four sentence types. After all, each sentence type shows a pattern of linguistic

change, including the affirmative declarative sentences, for which the change did

not carry through.

Since we are dealing with binary data (counts of sentences with and without

periphrastic do) in tabular format, we use glm() and allow points of inflection

220 regression modeling

into the curves by using both quadratic and cubic polynomial terms, which we

allow to interact with sentence type:

> periphrasticDo$year = periphrasticDo$begin +
+ (periphrasticDo$end-periphrasticDo$begin)/2 # midpoints
> periphrasticDo.glm = glm(cbind(do, other) ˜
+ (year + I(yearˆ2) + I(yearˆ3)) * type,
+ data = periphrasticDo, family = "binomial")
> summary(periphrasticDo.glm)
Deviance Residuals:

Min 1Q Median 3Q Max
-18.4741 -1.7182 -0.1357 1.7668 14.8644

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.901e+02 2.163e+02 -2.266 0.0235
year 6.024e-01 4.167e-01 1.445 0.1483
I(yearˆ2) -1.759e-04 2.675e-04 -0.658 0.5107
I(yearˆ3) -6.345e-09 5.720e-08 -0.111 0.9117
typeaffquest -6.073e+02 9.088e+02 -0.668 0.5040
typenegdecl -4.009e+03 7.325e+02 -5.473 4.42e-08
typenegquest -8.083e+02 1.229e+03 -0.658 0.5106
year:typeaffquest 1.328e+00 1.726e+00 0.769 0.4418
year:typenegdecl 7.816e+00 1.392e+00 5.613 1.99e-08
year:typenegquest 1.790e+00 2.365e+00 0.757 0.4492
I(yearˆ2):typeaffquest -9.591e-04 1.092e-03 -0.878 0.3800
I(yearˆ2):typenegdecl -5.078e-03 8.816e-04 -5.760 8.43e-09
I(yearˆ2):typenegquest -1.299e-03 1.517e-03 -0.856 0.3918
I(yearˆ3):typeaffquest 2.298e-07 2.303e-07 0.998 0.3183
I(yearˆ3):typenegdecl 1.100e-06 1.860e-07 5.915 3.32e-09
I(yearˆ3):typenegquest 3.111e-07 3.241e-07 0.960 0.3370

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 20431.1 on 43 degrees of freedom
Residual deviance: 1236.0 on 28 degrees of freedom
AIC: 1504.6

Since the residual deviance is much larger than the corresponding degrees of

freedom, we have overdispersion, so we use the F-test to evaluate the significance

of the interactions, following Crawley (2002):

> anova(periphrasticDo.glm, test = "F")
Analysis of Deviance Table
Model: binomial, link: logit
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 43 20431.1
year 1 6302.2 42 14128.9 6302.225 < 2.2e-16
I(yearˆ2) 1 4085.6 41 10043.3 4085.613 < 2.2e-16
I(yearˆ3) 1 31.3 40 10012.0 31.321 2.187e-08
type 3 7810.5 37 2201.4 2603.510 < 2.2e-16
year:type 3 750.9 34 1450.5 250.296 < 2.2e-16
I(yearˆ2):type 3 173.3 31 1277.2 57.767 < 2.2e-16
I(yearˆ3):type 3 41.3 28 1236.0 13.754 5.752e-09

The dotted lines in Figure 6.15 show that this model captures the main trends for

all sentence types, but the fit is rather poor for especially the negative questions.

6.4 Regression with breakpoints 221

In order to improve the fit, we note that there is very little development during

the fifteenth century. We therefore create an indicator variable that is zero for the

first three time periods, and one for the remaining periods:

> periphrasticDo$Indicator = rep(c(rep(0, 3), rep(1, 8)), 4)
> periphrasticDo.glmA = glm(cbind(do, other) ˜
+ (year + I(yearˆ2) + I(yearˆ3)) * type +
+ Indicator * type + Indicator * year,
+ data = periphrasticDo, family = "binomial")

The anova summary shows that the indicator variable is significant,

> anova(periphrasticDo.glmA, test = "F")
Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 43 20431.1
year 1 6302.2 42 14128.9 6302.225 < 2.2e-16
I(yearˆ2) 1 4085.6 41 10043.3 4085.613 < 2.2e-16
I(yearˆ3) 1 31.3 40 10012.0 31.321 2.187e-08
type 3 7810.5 37 2201.4 2603.510 < 2.2e-16
Indicator 1 174.7 36 2026.8 174.663 < 2.2e-16
year:type 3 717.0 33 1309.8 238.990 < 2.2e-16
I(yearˆ2):type 3 199.9 30 1109.9 66.636 < 2.2e-16
I(yearˆ3):type 3 46.1 27 1063.8 15.359 5.459e-10
type:Indicator 3 48.2 24 1015.6 16.081 1.891e-10
year:Indicator 1 485.8 23 529.8 485.820 < 2.2e-16

so it does indeed make sense to allow coefficients to change when going from the

fifteenth century to the next two centuries. The solid lines in Figure 6.15 show

that the new model is superior to the old model for all sentence types, with the

exception of the affirmative declaratives, for which there is no improvement that

is visible to the eye.

Compared to previous models proposed in the literature, the present model

has the advantage of fitting all sentence types simultaneously. This brings out a

similarity between the two types of declarative clauses. For both, an initial increase

is followed by a decrease that perseveres in the case of affirmative sentences, but

that is followed by a slight increase in the case of negative declaratives. For further

discussion of the mathematics of the functional considerations motivating these

patterns of language change, see Vulanović and Baayen (2006).

At this point, you might be asking yourself whether we are overfitting the

data, with 21 coefficients for 4 sentence types with 11 time points each. The

rule of thumb given by Harrell (2001:61) is that for logistic models, the number

of coefficients should be smaller than the total number of observations with the

minority outcome, divided by 20. For the present data,

> min(apply(periphrasticDo[, c("do", "other")], 2, sum))
[1] 9483

the 9483 observations for the less frequent outcome (do) is much larger than the

number of parameters (21) multiplied by 20, so we are doing fine.

Figure 6.15 was made by looping over the level of sentence type in order to

create the successive panels:

> periphrasticDo$predict = predict(periphrasticDo.glm, type="response")

222 regression modeling

> periphrasticDo$predictA=predict(periphrasticDo.glmA, type="response")
> par(mfrow=c(2, 2))
> for (i in 1:nlevels(periphrasticDo$type)) {
+ subset = periphrasticDo[periphrasticDo$type ==
+ levels(periphrasticDo$type)[i],]
+ plot(subset$year,
+ subset$do/(subset$do + subset$other),
+ type = "p", ylab = "proportion", xlab = "year",
+ ylim = c(0, 1), xlim = c(1400, 1700))
+ mtext(levels(periphrasticDo$type)[i], line = 2)
+ lines(subset$year, subset$predict, lty = 3)
+ lines(subset$year, subset$predictA, lty = 1)
+ }

6.5 Models for lexical richness

The frequencies of linguistic units such as words, word bigrams

and trigrams, syllables, constructions, etc. pose a special challenge for sta-

tistical analysis. This section illustrates this challenge by means of an in-

vestigation of lexical richness in Alice’s Adventures in Wonderland. The

data set alice is based on a version obtained from the project Guten-

berg (http://www.gutenberg.org/wiki/MainPage) from which header

and trailer were removed. The resulting text was loaded into R with

scan("alice.txt", what="character") and converted to lower case with

tolower(). This ensures that variants such as Went and went are considered

as tokens of the same word type. To clarify the distinction between types and

tokens, consider the first sentence of Alice’s Adventures in Wonderland:

Alice was beginning to get very tired of sitting by her sister on the bank and
of having nothing to do.

There are 21 words in this sentence, of which two are used twice. We will refer to

the number of unique words as the number of types, and to the number of words

regardless of their identity as the number of tokens.

The question that we consider here is how to characterize the vocabulary rich-

ness of Alice’s Adventures in Wonderland. Intuitively, vocabulary richness (or

lexical richness) should be quantifiable in terms of the number of different word

types. However, the number of different word types depends on the number of

tokens.

If we read through a text or corpus, and at regular intervals keep note of

how many different types we have encountered, we find that, unsurprisingly, the

number of types increases, first rapidly, and then more and more slowly. This

phenomenon is illustrated in the upper left panel of Figure 6.16. For 40 equally

spaced measurement points in “token time,” the corresponding count of different

types is graphed. I refer to this curve as the growth curve of the vocabulary.

The panel to its right shows the rate at which the vocabulary is increasing, quickly

6.5 Models for lexical richness 223

at first, more and more slowly as we proceed through the text. The vocabulary

growth rate is estimated by the ratio of the number of hapax legomena

(types with a frequency of 1) to the number of tokens sampled. The growth rate

is a probability, the probability that, after having read N tokens, the next token

sampled represents an unseen type, a word type that did not occur among the

preceding N tokens (Good, 1953; Baayen, 2001).

The problem that arises is that, although we could select the total number of

types counted for the full text as a measure of lexical richness, this measure would

not lend itself well for comparison with longer or with shorter texts. Therefore,

considerable effort has been invested in developing measures of lexical richness

that would supposedly be independent of the number of tokens sampled. The

remaining six panels of Figure 6.16 illustrate that these measures have not been

particularly successful. The third panel on the upper row shows the worst measure

of all, the type-token ratio, obtained by dividing the number of types by the

number of tokens. It is highly correlated (r = 0.99) with the growth rate of the

vocabulary shown in the panel to its left. The panel in the upper right explores

the idea that word frequencies might follow a lognormal distribution. If so, the

mean log frequency might be expected to remain roughly constant and in fact

to narrow down to its true value as the sample size increases. We return to this

issue below; here we note that there is no sign that the curve is anywhere near

reaching a stable value. The bottom panels illustrate the systematic variability in

four more complex measures that have been put forward in the literature. None

of these putative constants is a true constant. The only measure of these last four

that is, at least under the simplifying assumption that words are used randomly

and independently, truly constant is Yule’s K , but due to the non-random way in

which Lewis Carroll used the words in Alice’s Adventures in Wonderland, even

K fails to be constant.

Before considering the implications of this conclusion, we first introduce the

function that was used to obtain Figure 6.16, growth.fnc(). We instruct it to

calculate lexical measures at 40 intervals with 648 tokens in each interval:

> alice[1:5]
[1] "alice" "s" "adventures" "in" "wonderland"
> alice.growth = growth.fnc(text = alice, size = 681, nchunks = 40)

The output ofgrowth.fnc() is a growth object, and its contents can be inspected

with head.growth() or tail.growth():

> head.growth(alice.growth, 3)
Chunk Tokens Types HapaxLegomena DisLegomena TrisLegomena

1 1 681 280 179 42 21
2 2 1362 450 269 71 27
3 3 2043 590 344 92 41

Yule Zipf TypeTokenRatio Herdan Guiraud
1 107.38290 -0.6634960 0.4111601 0.7410401 10.72962
2 102.02453 -0.7365004 0.3303965 0.7150101 12.19338
3 98.60922 -0.7691661 0.2887910 0.7041325 13.05323

224 regression modeling

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●

●
●
●●●●●

●●●
●●●●●●

●

0 5000 15000 25000

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
2

5
0

0

tokens

ty
p

e
s

●

●

●

●

●
●
●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 5000 15000 25000

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
tokens

g
ro

w
th

 r
a

te

●

●

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 5000 15000 25000

0
.1

0
0

.2
0

0
.3

0
0

.4
0

tokens

●

●

●

●

●
●●●

●
●
●
●●

●●●
●●●●

●
●●●

●●●●
●
●●●

●●●●●●●●

0 5000 15000 25000

0
.5

0
.6

0
.7

0
.8

0
.9

tokens

m
e

a
n

 lo
g

 f
re

q
u

e
n

cy

●

●

●

●

●

●
●
●
●●

●
●
●●

●
●
●●●●●●●

●●●●●
●●●●

●●●●●●●●

0 5000 15000 25000

0
.6

0
0

.6
5

0
.7

0

tokens

H
e

rd
a

n
's

 C

●

●

●
●

●

●

●

●
●●●●

●●●
●●

●
●●●●●●●

●●●●●
●●

●
●●●●●●●

0 5000 15000 25000

1
1

1
2

1
3

1
4

1
5

1
6

tokens

G
u

ir
a

u
d

's
 R

●

●

●
●●

●
●●●

●
●

●

●

●●●●
●
●
●
●●

●●●●

●
●
●●

●
●●●

●

●

●
●
●

●

0 5000 15000 25000

9
6

9
8

1
0

0
1

0
2

1
0

4
1

0
6

tokens

Y
u

le
's

 K

●

●

●

●

●
●
●
●
●
●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●

0 5000 15000 25000

tokens

Z
ip

f
sl

o
p

e

Figure 6.16. The vocabulary growth curve and selected measures of lexical richness, all of which depend
on the text size.

Sichel Lognormal
1 0.1500000 0.4604566
2 0.1577778 0.5503570
3 0.1559322 0.5926050

The first three columns list the indices of the chunks, the corresponding (cumu-

lative) number of tokens, and the counts of different types in the text up to and

including the current chunk. The next three columns list the numbers of hapax,

dis, and tris legomena, the words that are counted exactly once, exactly twice,

or exactly three times at a given text size. The remaining columns list various

measures of lexical richness: Yule’s K (Yule, 1944), the Zipf slope (Zipf, 1935),

the type-token ratio, Herdan’s C (Herdan, 1960), Guiraud’s R (Guiraud, 1954),

Sichel’s S (Sichel, 1986), and the mean of log frequency (Carroll, 1967). Once

a growth object has been created, Figure 6.16 is obtained straightforwardly by

applying the standard plot() function to the growth object:

> plot(alice.growth)

Let’s return to the issue of the variability of the lexical constants. This variability

would not be much of a problem if a constant’s range of variability within a

given text would be very small compared to its range of variability across texts.

Unfortunately, this is not the case, as shown by Tweedie and Baayen (1998) and

Hoover (2003). The within-text variability can be of the same order of magnitude

as the between-text variability.

There are two approaches to overcome this problem. A practical solution is

to compare the vocabulary size (number of types) across texts for the same text

sizes. For larger texts, a random sample of the same size as the smallest text in

6.5 Models for lexical richness 225

the comparison set has to be selected. The concomitant data loss (all the other

words in the larger text that are discarded) is taken for granted. The function

compare.richness.fnc() carries out such comparisons. By way of example,

we split the text of Alice’s Adventures in Wonderland into unequal parts:

> aiw1 = alice[1:17000]
> aiw2 = alice[17001:27269]

If we straightforwardly compare these texts by examining the number of types,

we find that there is a highly significant difference in vocabulary richness:

> compare.richness.fnc(aiw1, aiw2)
comparison of lexical richness for aiw1 and aiw2
with approximations of variances based on the LNRE models
gigp (X2 = 12.17) and gigp (X2 = 22.29)

Tokens Types HapaxLegomena GrowthRate
aiw1 17000 2020 941 0.05535
aiw2 10269 1522 736 0.07167

two-tailed tests:
Z p

Vocabulary Size 14.0246 0
Vocabulary Growth Rate -5.8962 0

In order to evaluate differences in the observed numbers of types, the variances of

these type counts have to be estimated. compare.richness.fnc() does this

by fitting word frequency models (see below) to each text, and selecting for each

text the model with the best goodness of fit. (Models with a better goodness of fit

have a lower chi-squared value). Given the estimates of the required variances,

Z -scores are obtained that evaluate the difference between the number of types

in the first and the second text. Because aiw1 has more tokens than aiw2, this

difference is positive. Hence the Z -score is also positive. Its very large value,

14.02, is associated with a very small p-value, effectively zero.

When we reduce the size of the larger text to that of the smaller one, the

differences in lexical richness are no longer significant, as expected:

> aiw1a = aiw1[1:length(aiw2)]
> compare.richness.fnc(aiw1a, aiw2)
comparison of lexical richness for aiw1a and aiw2
with approximations of variances based on the LNRE models
gigp (X2 = 23.19) and gigp (X2 = 22.29)

Tokens Types HapaxLegomena GrowthRate
aiw1a 10269 1516 740 0.07206
aiw2 10269 1522 736 0.07167

two-tailed tests:
Z p

Vocabulary Size -0.1795 0.8575
Vocabulary Growth Rate 0.1201 0.9044

226 regression modeling

Note that compare.richness.fnc() compares texts not only with respect to

their vocabulary sizes, but also with respect to their growth rates. A test of growth

rates is carried out because two texts may have made use of the same number of

types, but may nevertheless differ substantially with respect to the rate at which

unseen types are expected to appear.

The other approach to the problem of lexical richness is to develop better statis-

tical models. The challenge that this poses is best approached by first considering

in some more detail the problems with the models proposed by Herdan (1960)

and Zipf (1935). In fact, there are two kinds of problems. The first is illustrated in

Figure 6.17. The upper left panel plots log types against log tokens. The double

log transformation changes a curve into what looks like a straight line. Herdan

proposed that the slope of this line is a text characteristic that is invariant with

respect to text length. This slope is known as Herdan’s C and was plotted in the

lower left panel of Figure 6.16 for a range of text sizes. A plot of the residuals,

shown in the upper right panel of Figure 6.17, shows that the residuals are far from

random. Instead, they point to the presence of some curvature that the straight line

fails to capture. In other words, the regression model proposed by Herdan is too

simple. This is the first problem. The second problem is that when we estimate

the slope of the regression line at forty equally spaced intervals for varying text

sizes, the estimated slope changes systematically. This is clearly visible in the

lower left panel of Figure 6.16.

Zipf’s law is beset by exactly the same problems. The lower left panel of

Figure 6.17 plots log frequency against log rank. The overall pattern is that of a

straight line, as shown by the ordinary least squares regression line shown in grey.

The slope of this line, the Zipf slope, is supposed to be a textual characteristic

independent of the sample size. But the residuals (see the lower right panel of

Figure 6.17) again point to systematic problems with the goodness of fit. And the

lower right panel of Figure 6.16 shows that the slope of this regression line also

changes systematically as we vary the size of the text, a phenomenon first noted

by Orlov (1983). We could try to fit more complicated regression models to the

data using quadratic terms or cubic splines. Unfortunately, although this might

help to obtain a better fit for a fixed text size, it would leave the second problem

unsolved. Any non-trivial change in the text size leads to a non-trivial change in

the values of the regression coefficients. Before explaining why these changes

occur, we pause to discuss the code for Figure 6.17.

The object alice.growth is a growth object. Internal to that object is a data

frame, which we extract as follows:

> alice.g = alice.growth@data$data
> head(alice.g, 3)

Chunk Tokens Types HapaxLegomena DisLegomena TrisLegomena Yule
1 1 681 280 179 42 21 107.38290
2 2 1362 450 269 71 27 102.02453
3 3 2043 590 344 92 41 98.60922

Zipf TypeTokenRatio Herdan Guiraud Sichel Lognormal
1 -0.6634960 0.4111601 0.7410401 10.72962 0.1500000 0.4604566

6.5 Models for lexical richness 227

7 8 9 10

6
.0

7
.0

log(aiw.g$Tokens)

lo
g

(a
iw

.g
$

Ty
p

e
s)

7 8 9 10

log(aiw.g$Tokens)

re
si

d
(a

iw
.g

.lm
)

0 2 4 6 8

0
2

4
6

log rank

lo
g

 f
re

q
u

e
n

cy

0 2 4 6 8

log(z$rank)

re
si

d
(z

.lm
)

Figure 6.17. Herdan’s law (upper left) and Zipf’s law (lower left) and the corresponding residuals (right
panels) for Alice’s Adventures in Wonderland.

2 -0.7365004 0.3303965 0.7150101 12.19338 0.1577778 0.5503570
3 -0.7691661 0.2887910 0.7041325 13.05323 0.1559322 0.5926050

The upper left panel of Figure 6.17 is obtained by regressing log Types on log

Tokens:

> plot(log(alice.g$Tokens), log(alice.g$Types))
> alice.g.lm = lm(log(alice.g$Types)˜log(alice.g$Tokens))
> abline(alice.g.lm, col="darkgrey")

The summary of the model,

> summary(alice.g.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.900790 0.041020 46.34 <2e-16
log(alice.g$Tokens) 0.586259 0.004401 133.22 <2e-16

Residual standard error: 0.024 on 38 degrees of freedom
Multiple R-Squared: 0.9979, Adjusted R-squared: 0.9978
F-statistic: 1.775e+04 on 1 and 38 DF, p-value: < 2.2e-16

228 regression modeling

shows we have been extremely successful with an R-squared of 0.998. But the

residual plot shows the model is nevertheless inadequate:

> plot(log(alice.g$Tokens), resid(alice.g.lm))
> abline(h=0)

The lower left panel of Figure 6.17 is obtained with zipf.fnc(). Its output is a

data frame with the word frequencies, the frequencies of these frequencies, and

the associated ranks:

> z = zipf.fnc(alice, plot = T)
> head(z, n = 3)

frequency freqOfFreq rank
117 1639 1 1
116 866 1 2
115 725 1 3
> tail(z, n = 3)

frequency freqOfFreq rank
3 3 228 1052
2 2 397 1449
1 1 1166 2615

When plot is set to true, it shows the rank-frequency step function in the

graphics window, as illustrated in the lower left panel of Figure 6.17. The code it

executes is simply:

> plot(log(z$rank), log(z$frequency), type = "S")

The step function (obtained with type = "S") highlights that, especially for the

lowest frequencies, large numbers of words share exactly the same frequency but

have different (arbitrary) ranks. We fit a linear model predicting frequency from

the highest rank with that frequency, and add the regression line:

> z.lm = lm(log(z$frequency) ˜ log(z$rank))
> abline(z.lm, col = "darkgrey")

Finally, we add the plot with the residuals at each rank:

> plot(log(z$rank), resid(z.lm))
> abline(h=0)

So why is it that the slopes of the regression models proposed by Herdan

and Zipf change systematically as the text size is increased? A greater text size

implies a greater sample size, and under normal circumstances, a greater sam-

ple size would lead us to expect not only more precise estimates but also more

stable estimates. Consider, for instance, what happens if we regress reaction

time on frequency for increasing samples of words from the data set of English

monomorphemic and monosyllabic words in the data set english. We simplify

by restricting ourselves to the data pertaining to the young age group, and by

ignoring all other predictors in the model:

> young = english[english$AgeSubject == "young",]
> young = young[sample(1:nrow(young)),]

6.5 Models for lexical richness 229

The last line randomly reorders the rows in the data frame. We next define a vector

with sample sizes,

> samplesizes = seq(57, 2284, by = 57)

and create vectors for storing the coefficients, their standard errors, and the lower

bound of the 95% confidence interval:

> coefs = rep(0, 40)
> stderr = rep(0, 40)
> lower = rep(0, 40)

We loop over the sample sizes, select the relevant subset of the data, fit the model,

and extract the statistics of interest:

> for (i in 1:length(samplesizes)) {
+ young.s = young[1:samplesizes[i],]
+ young.s.lm = lm(RTlexdec ˜ WrittenFrequency, data = young.s)
+ coefs[i] = coef(young.s.lm)[2]
+ stderr[i] = summary(young.s.lm)$coef[2, 2]
+ lower[i] = qt(0.025, young.s.lm$df.residual) * stderr[i]
+ }

Finally, we plot the coefficients as a function of sample size, and add the 95%

confidence intervals:

> plot(samplesizes, coefs, ylim = c(-0.028, -0.044), type = "l",
+ xlab = "sample size", ylab = "coefficient for frequency")
> points(samplesizes, coefs)
> lines(samplesizes, coefs - lower, col = "darkgrey")
> lines(samplesizes, coefs + lower, col = "darkgrey")

What we see, as shown in Figure 6.18, is that after some initial fluctuations

the estimates of the coefficient become stable, and that the confidence interval

becomes narrower as the sample size is increased. This is the normal pattern: we

expect that as the sample size grows larger, the difference between the sample

mean and the population mean will approach zero. (This is known as the law of

large numbers.) However, this pattern is unlike anything that we see for our

lexical measures.

The reason that our lexical measures misbehave is that word frequency dis-

tributions, and even more so the distributions of bigrams and trigrams, are char-

acterized by large numbers of very low probability elements. Such distributions

are referred to as lnre distributions, where the acronym lnre stands for Large

Number of Rare Events (Chitashvili and Khmaladze, 1989; Baayen, 2001). Many

of the rare events in the population do not occur in a given sample, even when

that sample is large. The joint probability of the unseen words is usually so sub-

stantial that the relative frequencies in the sample become inaccurate estimates

of the real probabilities. Since the relative frequencies in the sample sum up to 1,

they leave no space for probabilities of the unseen types in the population. Hence,

the sample relative frequencies have to be adjusted so that they become slightly

smaller, in order to free probability space for the unseen types (Good, 1953; Gale

230 regression modeling

0 500 1000 1500 2000

sample size

c
o
e
ff
ic

ie
n
t
fo

r
fr

e
q
u
e
n
c
y

Figure 6.18. Estimated coefficient for written frequency for English lexical decision times for
increasing sample size, with 95% confidence interval.

and Sampson, 1995; Baayen 2001). An estimate for the joint probability of the

unseen types is the growth rate of the vocabulary. For Alice’s Adventures in Won-
derland, this probability equals 0.05. In other words, the likelihood of observing

a new word at the end of the text is 1 out of 20. It is not surprising, therefore, that

lexical measures have to be updated continuously as the text sample is increased.

The package zipfR, developed by Evert and Baroni (2006), provides tools for

fitting the two most important and useful lnre models, the Generalized Inverse

Gauss-Poisson model of Sichel (1986), and the finite Zipf-Mandelbrot model

of Evert (2004). An object type that is fundamental to the zipfR package is

the frequency spectrum. A frequency spectrum is a table with frequencies of

frequencies. When working with raw text we can make a frequency spectrum

within R. (This, however, is feasible only with texts or small corpora with less

than a million words.) By way of illustration, we return to Alice’s Adventures in
Wonderland, and apply table() twice:

> alice.table = table(table(alice))
> head(alice.table)

1 2 3 4 5 6
1166 397 228 147 94 58

6.5 Models for lexical richness 231

> tail(alice.table)
553 595 631 725 866 1639

1 1 1 1 1 1

There are 1166 hapax legomena, 397 dis legomena, 228 tris legomena, and steadily

decreasing counts of words with higher frequencies. At the tail of the frequency

spectrum we see that the highest frequency, 1639, is realized by only a single

word. To see which words have the highest frequencies, we apply table() to

the text, but now only once. After sorting, we see that the highest frequency is

realized by the definite article:

> tail(sort(table(alice)))
alice
she it a to and the
553 595 631 725 866 1639

In order to convert alice.table into a spectrum object, we apply spc(). Its

first argument, m, should specify the word frequencies, its second argument, Vm,

should specify the frequencies of these word frequencies:

> alice.spc = spc(m = as.numeric(names(alice.table)),
+ Vm = as.numeric(alice.table))
> alice.spc

m Vm
1 1 1166
2 2 397
3 3 228
4 4 147
5 5 94
6 6 58
7 7 61
8 8 51
9 9 33
10 10 37

...

N V
27269 2615

Spectrum objects have a summary method, which lists the first ten elements of

the spectrum, together with the number of tokens N and the number of types V
in the text. A spectrum behaves like a data frame, so we can verify that the counts

of types and tokens are correct with:

> sum(alice.spc$Vm) # types
[1] 2615
> sum(alice.spc$m * alice.spc$Vm) # tokens
[1] 27269

For large texts and corpora, frequency spectra should be created by independent

software. For a corpus of Dutch newspapers of some 80 million words (part of the

Twente News Corpus), a frequency spectrum is available as the data set twente.

We convert this data frame into a zipfR spectrum object with spc():

232 regression modeling

> twente.spc = spc(m=twente$m, Vm = twente$Vm)
> N(twente.spc) # ask for number of tokens
[1] 78934379
> V(twente.spc) # ask for number of types
[1] 912289

Note that a frequency spectrum provides a very concise summary of a frequency

distribution. We have nearly a million different words (defined as sequences of

characters separated by spaces), but twente.spc has a mere 4639 rows.

We return to Alice’s Adventures in Wonderland and fit an lnre model to this

text with lnre(). This function takes two arguments, the type of model and a

frequency spectrum. We first choose as a model the Generalized Inverse Gauss-

Poisson model, gigp:

> alice.lnre.gigp = lnre("gigp", alice.spc)

A summary of the model is obtained by typing the name of the model object at

the prompt:

> alice.lnre.gigp
Generalized Inverse Gauss-Poisson (GIGP) LNRE model.
Parameters:
Shape: gamma = -0.7054636
Lower decay: B = 0.02646131
Upper decay: C = 0.0358188
[Zipf size: Z = 27.9183]
Population size: S = 5901.3
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 27269:
V V1 V2 V3 V4 V5

Observed: 2615.00 1166.00 397.00 228.00 147.00 94.00 ...
Expected: 2600.98 1149.66 450.99 227.14 136.58 91.84 ...

Goodness-of-fit (multivariate chi-squared test):
X2 df p

61.72194 13 2.580101e-08

The summary first lists the model and its parameters. It then mentions the pop-

ulation size S, an estimate of the number of types in the population sampled by

the text. Because lnre models take the probability mass of unseen word types

into account, they are able to provide estimates of the number of unseen types.

By combining the count of observed types with the estimated count of unseen

types, an estimate of the population number of types is obtained. For the present

example, this estimate concerns the number of words Lewis Carroll might have

found appropriate to use when writing stories about Alice.

Of course, the accuracy of this estimate depends on how well the model fits

the data. Skipping a technical comment about the sampling method, we there-

fore inspect the final part of the summary, which provides information about the

goodness of fit. It first lists the observed and expected counts for the total vocab-

ulary as well as for the numbers of types with frequencies 1 through 5. A visual

comparison of the first 15 observed and expected spectrum elements, shown in

6.5 Models for lexical richness 233

the upper left panel of Figure 6.19, is obtained with the help of the lnre.spc()

function, which takes as argument an lnre model and the sample size (in tokens)

for which a spectrum is required, here 25942, the number of tokens in Alice’s
Adventures in Wonderland:

> plot(alice.spc, lnre.spc(alice.lnre.gigp, 27269))

Note that the observed number of dis legomena is somewhat smaller than the

expected number. This lack of goodness of fit is also highlighted by a special

version of the chi-squared test, listed at the end of the summary. For a good fit,

the X2-value should be low, and the corresponding p-value large and preferably

well above 0.05. In the present example, the model is clearly unsatisfactory. It

should be kept in mind that the statistical theory underlying these lnre models

proceeds on the assumption that words are used at random and independently of

each other in text. This is obviously a simplification and may underlie the present

lack of goodness of fit.

A more successful fit is obtained for the spectrum of the Dutch newspaper

corpus with the finite Zipf-Mandelbrot model:

> twente.lnre.fzm = lnre("fzm", twente.spc)
> twente.lnre.fzm
finite Zipf-Mandelbrot LNRE model.
Parameters:
Shape: alpha = 0.5446703
Lower cutoff: A = 3.942826e-11
Upper cutoff: B = 0.0005977105
[Normalization: C = 13.37577]
Population size: S = 11402151
Sampling method: Poisson, with exact calculations.

Parameters estimated from sample of size N = 78934379:
V V1 V2 V3 V4 V5

Observed: 912289 478416.0 119055.0 56944.00 35373.00 24330.0 ...
Expected: 912289 478358.3 118540.7 57515.25 35304.73 24397.9 ...

Goodness-of-fit (multivariate chi-squared test):
X2 df p

17.05788 13 0.1966717

The excellent fit is also apparent from the plot of the observed and expected

spectrum shown in the upper right panel of Figure 6.19:

> plot(twente.spc, lnre.spc(twente.lnre.fzm, N(twente.spc)))

Note that the function N() extracts the number of tokens from the spectrum object

to which it is applied. Also note that the expected number of string types in the

population is an order of magnitude larger than the observed number of types.

234 regression modeling

m

V
m

E
[V

m
]

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
Frequency Spectrum: Alice in Wonderland

m

V
m

E
[V

m
]

0
e

+
0

0
1

e
+

0
5

2
e

+
0

5
3

e
+

0
5

4
e

+
0

5
5

e
+

0
5

Frequency Spectrum: Twente News Corpus

0 10000 30000 50000

0
5

0
0

1
0

0
0

2
0

0
0

3
0

0
0

N

V
(N

)
E

[V
(N

)]
V

1
(N

)
E

[V
1
(N

)]
V

2
(N

)
E

[V
2
(N

)]
V

3
(N

)
E

[V
3
(N

)]

Vocabulary Growth: Alice in Wonderland

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0
2

0
0

0
0

0
6

0
0

0
0

0
1

0
0

0
0

0
0

N

E
[V

(N
)]

E
[V

1
(N

)]
E

[V
2
(N

)]
E

[V
3
(N

)]

Vocabulary Growth: Twente News Corpus

Figure 6.19. Observed (black) and expected (white) frequency spectrum for Alice’s Adventures in Wonder-

land and the Twente News Corpus (upper panels) and the corresponding vocabulary growth curves (lower
panels). For the growth curves, black lines represent interpolation, grey lines extrapolation to twice the
observed sample size, and dashed lines the observed growth curves (only available for Alice’s Adventures

in Wonderland).

6.5 Models for lexical richness 235

This is probably due to the productivity of typos, morphology, brand names, and

names for people and places, both nationally and internationally.

Once an lnre model has been fitted to a frequency spectrum, the model

can be used to obtain expected values for the vocabulary size and the spec-

trum elements both at smaller sample sizes (interpolation) and at larger sample

sizes (extrapolation). The lower panels of Figure 6.19 illustrate these possibil-

ities for Alice’s Adventures in Wonderland (left) and the Twente News Corpus

(right). The black lines represent interpolated values, the grey lines extrapolated

values.

The lower left panel was obtained with the following lines of code. First, the

extrapolated curves were determined with the help of lnre.vgc(), which takes

as arguments a fitted model, a sequence of sample sizes, and the number of

required spectrum elements:

> alice.ext.gigp = lnre.vgc(alice.lnre.gigp,
+ seq(N(alice.lnre.gigp), N(alice.lnre.gigp)*2, length = 20), m.max = 3)

The interpolated curves are obtained similarly:

> alice.int.gigp = lnre.vgc(alice.lnre.gigp,
+ seq(0, N(alice.lnre.gigp), length=20), m.max=3)

In order to plot the observed growth curves, we use growth2vgc.fnc() to

convert a growth object into a vgc object (vocabulary growth object) as required

for the zipfR functions:

> alice.vgc = growth2vgc.fnc(alice.growth)

The plot itself is straightforward:

> plot(alice.int.gigp,alice.ext.gigp,alice.vgc,add.m = 1:3,main = " ")
> mtext("Vocabulary Growth: Alice in Wonderland", cex = 0.8, side = 3,
+ line=2)

In the case of Alice’s Adventures in Wonderland we are dealing with continuous

text rather than with a compilation of text fragments, so here we can compare

the actual observed growth curves (dashed lines) with the expected interpolated

growth curves. Note that the interpolated values for the vocabulary size and the

hapax legomena tend to be slightly too high. This overestimation bias is probably

due to discourse structure. In cohesive discourse, topical words tend to be used

intensively. As a consequence, new types are sampled at a slower rate than one

would expect if words were used randomly and independently of each other (see

Baayen 2001, Chapter 5). Another consequence of this overestimation bias for

interpolation is an underestimation bias for extrapolation. Hence, the number of

types estimated for the population, S, the asymptote that the vocabulary growth

curve approaches when the sample size becomes infinitely large, probably is a

lower bound.

236 regression modeling

For corpora consisting of collections of randomly sampled short text fragments,

this overestimation bias tends to be attenuated. In this case, the interpolated

vocabulary and spectrum can be viewed as the counts one would obtain on average

when randomly permuting the texts in the corpus. (For the problems that may

arise due to sampling asymmetries when dealing with diachronic corpora, see,

e.g., Lüdeling and Evert (2005).)

In summary, comparing texts with respect to their lexical richness is a tricky

business. Standard linear modeling of the growth curve of the vocabulary may at

first sight provide excellent fits, but due to the lnre property of many linguistic

frequency distributions, these fits are misleading. Lnre models provide a princi-

pled solution, that, however, will remain approximate for many actual data sets.

As mentioned above, a practical solution is to compare texts for a fixed text size,

or to plot interpolated growth curves for different texts side by side (see, e.g., the

tutorial referenced in the documentation of the zipfR package).

6.6 General considerations

There are two very different ways in which statistical models are used.

Ideally, a model is used to test a pre-specified hypothesis, or a set of hypotheses.

We fit a model to the data, remove overly influential outliers, use bootstrap val-

idation, and if required shrink the estimated coefficients. Only after this process

is completed do we inspect the anova and summary tables, to see whether the

p-values and the direction of the effects are as predicted by our hypotheses. The

p-values in the summary tables are correct under these circumstances, and only

under these circumstances.

In practice, this ideal procedure is hardly ever realistic, for a variety of rea-

sons. First, it is often the case that our initial hypotheses are very underspecified.

Under these circumstances, we engage in statistical modeling in order to ex-

plore the potential relevance of predictors, to learn about their functional form,

and to come to a better understanding of the structure of our data. In this ex-

ploratory process, we screen predictors for significant p-values, remove variables

accordingly, and gradually develop a model that we feel is both parsimonious

and adequate. The p-values of such a final model are still informative, but far

from exact. According to some, they are even totally worthless and completely

uninterpretable. This highlights the crucial importance of model validation, for

instance by means of the bootstrap, as this will inform us about the extent to

which we might be overfitting the data. It is equally crucial to replicate our

experiment with new materials. The same factors should be predictive, the mag-

nitudes of the coefficients should be similar, and we would hope to find that the

model for the original experiment provides reasonable predictions for the new

data.

6.6 General considerations 237

What you should avoid at all times is what statisticians refer to as cherry-

picking. You should not tweak the data by removing data points so that a non-

significant effect becomes significant. It is not bad to remove data points, but

you should have reasons for removing them that are completely independent of

whether as a result predictors will be significant. Overly influential outliers have

to be removed, and any other data points that are suspect. For instance, in experi-

ments using lexical decision, response latencies of less than 200 milliseconds are

probably artefactual, simply because the time for reading the stimulus combined

with the time required for planning and carrying out the movements involved in

pushing the response button already require at least 200 milliseconds.

Similarly, you should not hunt around for a method that will make an effect

significant. It is true that there are often several different methods available for

modeling a given data set. And yes, there is no single best model. However, when

different modeling techniques have been considered, and when each technique is

appropriate, then the combined evidence should be taken into account. A predictor

that happens to be significant in only one analysis but not in the others should not

be reported as significant.

The examples in this chapter illustrate the steps in data analysis: the construc-

tion of an initial model, the exploration of nonlinear relations, model criticism, and

validation. All these steps are important, and crucial for understanding your data.

As you build up experience with regression modeling, you will find that notably

model criticism almost always allows theoretically well-supported predictors to

emerge more strongly.

A final methodological issue that should be mentioned is the unfortunate prac-

tice in psycholinguistics of dichotomizing continuous variables. For instance,

Baayen et al. (1997) studied frequency effects in visual word recognition by con-

trasting high-frequency words with low-frequency words. The two sets of words

were matched in the mean for a number of other lexical variables. However, this

dichotomization of frequency reduces an information-rich continuous variable

into an information-poor two-level factor. If frequency were a treatment that we

could administer to words, like raising the temperature or the humidity in an agri-

cultural experiment, then it would make sense to maximize our chances of finding

an effect by contrasting observations subjected to a fixed very low level of the

treatment with observations subjected to a fixed very high level of the treatment.

Unfortunately, frequency is a property of our experimental units; it cannot be ad-

ministered independently, and it is correlated with many other lexical variables.

Due to this correlational structure, dichotomization of linguistic variables almost

always leads to factor levels with overlapping or nearly overlapping distributions

of the original variable—it is nearly impossible to build contrasts for extreme

values on one linguistic variable while matching for a host of other correlated

linguistic variables. As a consequence, the enhanced statistical power obtained by

comparing two very different treatment levels is not available. In these circum-

stances, dichotomization comes with a severe loss of statistical power, precise

information is lost and nonlinearities become impossible to detect. Furthermore,

238 regression modeling

samples obtained through dichotomization tend to be small and to get ever smaller

the more variables are being matched for. Such samples are also non-random in

the extreme, and hence do not allow proper statistical inference. To make matters

even worse, dichotomization may also have various other adverse side effects,

including spurious significance (see, e.g., Cohen, 1983; Maxwell and Delaney,

1993; MacCallum et al., 2002). Avoid it. Use regression.

Workbook section

Exercises

1. Analyze the effect of PC1 on the naming latencies in the english2 data set that we created

in section 6.2.2. Attach the Design package, make a data distribution object, and set the

datadist variable to point to this object with the options() function. First fit a model with

AgeSubject and WrittenFrequency, and PC1 as predictors. Use a restricted cubic

spline with three knots for WrittenFrequency, and include an interaction of

WrittenFrequency by AgeSubject. Is the linear effect of PC1 significant? Now allow the

effect of PC1 to be nonlinear with a restricted cubic spline with three knots. Plot the partial

effect of PC1 in this new model, and explain the difference with respect to the first model.

2. Exercise 5.3 addressed the prediction of the underlying voice specification of the stem-final

obstruent in Dutch words with the help of a classification tree. Ernestus and Baayen (2003)

compared several statistical models for the finalDevoicing data set, including a logistic

regression model. Load the data, and use the lrm() function from the Design package to

model the dependent variable Voice as a function of the other variables in the data frame.

Use fastbw() to remove irrelevant predictors from the model.

3. Check that the danger of overfitting has been reduced for the penalized model

dutch.lrm.pen by means of bootstrap validation.

4. We fit a logistic regression model to the data set etymology with, as dependent variable, the

Regularity of the verb, and the ordered factor EtymAge (etymological age) as

etymological age as main predictor of interest:

> etymology$EtymAge = ordered(etymology$EtymAge, levels=c("Dutch",

+ "DutchGerman", "WestGermanic", "Germanic", "IndoEuropean"))

> library(Design)

> etym.dd = datadist(etym)

> options(datadist=’etym.dd’)

> etymology.lrm = lrm(Regularity ˜ rcs(WrittenFrequency,3) +

+ rcs(FamilySize,3) + NcountStem + InflectionalEntropy +

+ Auxiliary + Valency + NVratio + WrittenSpokenRatio + EtymAge,

+ data=etymology, x=T, y=T)

Warning message: Variable EtymAge is an ordered factor.

You should set

options(contrasts=c("contr.treatment","contr.treatment"))

or Design will not work properly. in: Design(eval(m, sys.parent()))

6.6 General considerations 239

The warning message tells us that the defaults for the dummy coding of factors have to be

reset. We do as instructed:

> options(contrasts = c("contr.treatment", "contr.treatment"))

Rerun the model, inspect the result by means of an anova table, and validate it. You will

observe considerable overfitting, so use the pentrace() function to find an optimal penalty

for shrinking the coefficients. Make a plot of the partial effects of the predictors in the

penalized model.

5. Consider again the breakpoint analysis of the frequencies of references to years in the

Frankfurter Allgemeine Zeitung (faz). Explain why the model,

> faz.bothA = lm(LogFrequency ˜ ShiftedLogDistance +

+ ShiftedLogDistance : PastBreakPoint, data = faz)

is a correct alternative formulation of the model presented in the main text, and also explain

why the model,

> faz.bothA = lm(LogFrequency˜ShiftedLogDistance * PastBreakPoint,

+ data = faz)

is incorrect for our purposes.

6. Compare the lexical richness of Lewis Carroll’s Alice’s Adventures in Wonderland with

that of his Through the Looking-Glass, available as the data set through, using

compare.richness.fnc() for equal text sizes, i.e. for the number of tokens in the smallest

of the two texts. Use the same method to compare Alice’s Adventures in Wonderland with

Baum’s The Wonderful Wizard of Oz (oz) and with Melville’s Moby Dick (moby).

7. Plag et al. (1999) studied morphological productivity for selected affixes in the British

National Corpus (BNC). The BNC consists of three subcorpora: written English, spontaneous

conversations (the demographic subcorpus), and spoken English in more formal settings (the

context-governed subcorpus). Frequency spectra for the English suffix -ness calculated for

these subcorpora are available as the data sets nessw, nessdemog, and nesscg. Convert

them into scp objects with spc(). Then fit the finite Zipf-Mandelbrot lnre model to each of

the spectra. Inspect the goodness of fit, and refit with the Generalized Inverse Gauss-Poisson

model where necessary. Plot the growth curve of the vocabulary at 40 equally spaced

intervals in the range from zero to the size of the sample of written words with -ness.

Comment on the relation between the shape of the growth curves and the estimated numbers

of types in the population. Finally, calculate the growth rates of the vocabulary both at the

sample size of the largest subcorpus, and for that of the smallest subcorpus. Use the function

Vm() from the zipfR package, which takes as first argument a frequency spectrum and as

second argument the spectrum element (1 for the hapax legomena).

8. Tyler et al. (2005) combined fMRI and priming data in a study addressing the extent to which

phonological and semantic processes recruit the same brain areas. Figure 6.20, reconstructed

from the graphics coordinates of their Figure 2b, summarizes the main structure of one of

their subanalyses. The authors argue that the priming scores (horizontal axis) for the semantic

condition are significantly correlated with the intensity of the most significant voxel (vertical

axis), which is located in an area of the brain typically associated with semantic processing.

240 regression modeling

0
2

0
4

0
6

0
8
0

imaging$BehavioralScore

im
a
g
in

g
$
F

ilt
e
re

d
S

ig
n
a
l

r = 0.82

Figure 6.20. Signal intensity in fMRI at the peak voxel in the left medial
fusiform gyrus and priming scores for semantically related (card/paper) and
morphologically related (begin/began) conditions. Each data point represents a
brain-damaged patient. (After Tyler et al. (2005)).

They also argue that there is no such correlation for the morphological condition. Figure 6.20

is based on the data set imaging. Carry out an analysis of covariance with

FilteredSignal as dependent variable in the model, and test whether there is a significant

interaction of BehavioralScore by Condition. Then apply model criticism, and use this

to evaluate the conclusions reached by Tyler and colleagues.

7 Mixed models

Consider a study addressing the consequences of adding white noise to the com-

prehension of words presented auditorily over headphones to a group of subjects,

using auditory lexical decision latencies as a measure of speed of lexical access. In

such a study, the presence or absence of white noise would be the treatment factor,

with two levels (noise versus no noise). In addition, we would need identifiers

for the individual words (items), and identifiers for the individual participants (or

subjects) in the experiment. The item and subject factors, however, differ from

the treatment factor in that we would normally only regard the treatment factor

as repeatable.

A factor is repeatable, if the set of possible levels for that factor is fixed, and if,

moreover, each of these levels can be repeated. In our example, the treatment factor

is repeatable, because we can take any new acoustic signal and either add or not

add a fixed amount of white noise. We would not normally regard the identifiers

of items or subjects as repeatable. Items and subjects are sampled randomly

from populations of words and participants, and replicating the experiment would

involve selecting other words and other participants. For these new units, we would

need new identifiers. In other words, we would be introducing new levels of these

subject and item factors in the experiment that had not been seen previously.

To see the far-reaching consequences of this, imagine that we have eight sub-

jects and eight items, and that we create two factors, each with eight levels, using

contrast coding. One of the subjects and one of the items will be mapped onto the

intercept, the other subjects and items will receive coefficients specifying how

they differ from the intercept. How useful is this model for predicting response

latencies for new subjects and items? A moment’s thought will reveal that it is

completely useless. New subjects and new items have new identifiers that do not

match the identifiers that were used in building the contrasts and the model using

these contrasts. We can still assign new data points to the levels of the treatment

factor, noise versus no noise, because these levels are repeatable. But subjects

and items are not repeatable, hence we cannot use our model to make predictions

for new subjects and new items. In short, the model does not generalize to the

populations of subjects and items. It is tailored to the specific subjects and items

in the experiment only.

The statistical literature therefore makes a crucial distinction between fac-

tors with repeatable levels, for which we use fixed-effects terms, and factors

with levels randomly sampled from a much larger population, for which we use

241

242 mixed models

random-effects terms. Mixed-effects models, or more simply, mixed mod-

els, are models which incorporate both fixed and random effects.

While fixed-effect factors are modeled by means of contrasts, random effects

are modeled as random variables with a mean of zero and unknown variance. For

instance, the participants in a reaction time experiment will differ with respect to

how quickly they respond. Some tend to be slow, others tend to be fast. Across

the population of participants, the average adjustment required to account for

differences in speed will be zero. The adjustments required for individual subjects

will in general not be zero, instead, they will vary around zero with some unknown

standard deviation. In mixed models, the standard deviations associated with

random effects are parameters that are estimated, just as the coefficients for the

fixed effects are parameters that are estimated.

7.1 Modeling data with fixed and random effects

The package for building mixed-effects models is named lme4. This

package automatically loads two other libraries, lattice and Matrix. The key

function in this package islmer(). Bates (2005) provides a brief introduction with

examples of its use, and Faraway (2006) provides more extensive examples for

a variety of experimental designs. The lme4 package is still under development.

Results with newer versions may differ slightly from the examples in this chapter,

which are based on lme4 version 0.99875-6 running under R version 2.5.1.

We illustrate how to use the lmer() function by returning to the lexdec

data set that we have already considered in Chapter 2. Recall that this data set

provides visual lexical decision latencies elicited from 21 subjects for a set of 79

words: 44 nouns for animals, and 35 nouns for plants (fruits and vegetables). An

experimental design in which we have multiple subjects responding to multiple

items is referred to as a repeated measures design. For each word (item), we have

21 repeated measures (one measure from each subject). At the same time, we have

79 repeated measures for each subject (one for each item). Subject and item are

random-effects factors; fixed-effects factors that are of interest include whether

the subject was a native speaker of English, and whether the word referred to an

animal or a plant, as well as lexical covariates such as frequency and length.

The reaction times in lexdec are already logarithmically transformed. Nev-

ertheless, it makes sense to inspect the distribution of the reaction times before

beginning with fitting a model to the data. We do so with quantile-quantile plots

for each subject separately, using the qqmath() function from the lattice

package. Similar plots should be made for the items:

> qqmath(˜RT|Subject, data = lexdec)

The result is shown in Figure 7.1. For data sets with more subjects than can be

plotted on a single page, we use the layout parameter. Its first argument specifies

7.1 Modeling data with fixed and random effects 243

qnorm

R
T

6.0

6.5

7.0

7.5

A1 A2 A3 C D

I J K M1

6.0

6.5

7.0

7.5

M2

6.0

6.5

7.0

7.5

P R1 R2 R3 S

T1 T2 V W1

6.0

6.5

7.0

7.5

W2

6.0

6.5

7.0

7.5

Z

Figure 7.1. Quantile-quantile plots for the log-transformed reaction times in
visual lexical decision grouped by subject.

the number of columns, the second argument the number of rows, and the third

argument the number of pages. To inspect the graphs page by page, we instruct

R to ask us to hit the <return> key to see the next plot, at the same time saving

the old prompting value. We then run the plot function itself, and finally reset the

prompting option to its old value once we have paged through the lattice graphs:

> old.prompt = grid::grid.prompt(TRUE)
> qqmath(˜RT|Word, data = lexdec, layout = c(5,5,4))
> grid::grid.prompt(old.prompt)

As can be seen in Figure 7.1, subjects such as C and W1 have reaction times that

follow a normal distribution, whereas subjects such as S and M2 have thick right

tails. We also see that there are subjects such as R1 or M1 with clear outliers, but

also subjects such as C or Z with no outliers at all.

The question that arises at this point is whether to clean the data before fitting

the model. In answer to this question, we note first of all that data points that are

suspect for experimental reasons should be removed. For instance, reaction times

of less than 200 milliseconds in visual lexical decision are probably erroneous

button presses, as visual uptake and response execution normally require 200

milliseconds if not more. Similarly, very long reaction times and error responses

can be removed from the data set. It is less straightforward what to do with outlier

responses. In the present data set, many individual outliers will be removed by

244 mixed models

setting a threshold at log RT = 7, which amounts to roughly 1100 milliseconds.

You may verify this with,

> qqmath(˜RT|Subject, data = lexdec[lexdec$RT<7,])

all potentially troublesome outliers (0.025% of the data) have now been elimi-

nated. Since these outliers might obscure the initial model fitting stages, I tend to

take them out, especially as they almost always will be eliminated anyway at the

stage of model criticism:

> lexdec2 = lexdec[lexdec$RT < 7,]
> nrow(lexdec) - nrow(lexdec2)
[1] 45
> (nrow(lexdec) - nrow(lexdec2)) / nrow(lexdec)
[1] 0.02471368
> lexdec3 = lexdec2[lexdec2$Correct == "correct",]

Alternatively, individual outliers can be identified for each subject and item sep-

arately in the quantile-quantile plots and then removed manually from the data

frame (which would then need to be sorted first by subject (or item), and then

by RT). A procedure that is certain to lead to unnecessary data loss is to blindly

remove data points with extreme values (more than two or three standard devi-

ations away from an item’s or subject’s group mean) a priori, as subjects and

items with perfectly regular distributions will undergo completely unnecessary

data trimming.

We begin our analysis by examining a control variable for possible longitudinal

effects of familiarization or fatigue during the experiment, using the position (or

rank) of a trial in the experimental list:

> xylowess.fnc(RT ˜ Trial | Subject, data = lexdec3, ylab = "log RT")

Figure 7.2 shows a clear effect of familiarization for, for instance, subject T2, and

a clear effect of fatigue for subject D. Is there a main effect of Trial? Let’s fit a

mixed-effects model with Trial as covariate and Subject and Word as random

effects as a first step towards answering this question:

> lexdec3.lmer = lmer(RT ˜ Trial + (1|Subject) + (1|Word), lexdec3)

The lmer() function call has the familiar components of a formula followed by

the data frame to be used. The first part of the formula is also familiar: reaction

times are modeled as depending on Trial. The remainder of the formula

specifies the random-effects terms for Subject and Word. The vertical line in

an expression such as (1|Subject) separates the grouping factor (to its right)

from the fixed-effects terms for which random effects have to be included. In

the present example, there is only a 1, which represents the intercept. Recall

that in linear models the intercept provides a kind of baseline mean. Changing

from one factor level to another, or changing the value of a covariate, provides

fine-tuning with respect to this baseline. Lowering the intercept for a subject

implies that all reaction times for that subject become somewhat shorter. This

is what we want to do for a subject who happens to be a quick responder. For

7.1 Modeling data with fixed and random effects 245

Trial

lo
g

 R
T

6.0
6.2
6.4
6.6
6.8
7.0

50 100 150

A1 A2

50 100 150

A3 C

50 100 150

D I

J K M1 M2 P

6.0
6.2
6.4
6.6
6.8
7.0

R1

6.0
6.2
6.4
6.6
6.8
7.0

R2 R3 S T1 T2 V

W1

50 100 150

W2

6.0
6.2
6.4
6.6
6.8
7.0

Z

Figure 7.2. RT as a function of trial for the subjects in a visual lexical decision experiment.

slower subjects, we may need to increase the intercept, so that all their responses

become longer. The random-effects term (1|Subject) specifies that the model

will make such by-subject adjustments for the average speed by means of small

changes to the intercept. Similarly, some words may be more difficult than other

words, and elicit longer response latencies. Just as for the subjects, we may have

to adjust the intercept for the individual words by means of a random-effects

term (1|Word). Importantly, such by-subject or by-word adjustments are not
parameters (coefficients) of the model. Only two parameters are involved, one

parameter specifying the variance of the random variable for the subjects, and one

parameter for the variance of the random variable for the words. Given these two

parameters, the individual by-word and by-subject adjustments simply follow.

To make this more concrete, consider the summary of the model that we just

obtained by typing the name of the model object at the prompt:

> lexdec3.lmer
Linear mixed-effects model fit by REML
Formula: RT ˜ Trial + (1 | Subject) + (1 | Word)

Data: lexdec3
AIC BIC logLik MLdeviance REMLdeviance

-1243 -1222 625.7 -1274 -1251

246 mixed models

Random effects:
Groups Name Variance Std.Dev.
Word (Intercept) 0.0046579 0.068249
Subject (Intercept) 0.0186282 0.136485
Residual 0.0225642 0.150214
number of obs: 1557, groups: Word, 79; Subject, 21

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.394e+00 3.217e-02 198.74
Trial -1.835e-04 8.194e-05 -2.24

Correlation of Fixed Effects:
(Intr)

Trial -0.268

The summary begins with telling you what kind of object you are looking at:

a linear mixed-effects model fit by a technique called relativized maximum

likelihood, also known as restricted or residual maximum likelihood. The

next line reminds you of how the object was created. After a list of summary

statistics that describe the quality of the fit of the model to the data, we come to

the more interesting sections of the summary: a table with the random effects in

the model, followed by a table with the fixed effects. The summary concludes

with a table listing the correlations of the fixed effects. The numbers listed here

can be used to construct confidence ellipses for pairs of fixed-effects parameters,

and should not be confused with the normal correlations obtained by applying

cor() to pairs of predictor vectors in the input data. For models with many pre-

dictors this table may become very large. Since constructing confidence ellipses

is beyond the scope of this book, we will often suppress this table in our output as

follows:

> print(lexdec3.lmer, corr=FALSE)

First consider the table with random effects. It provides information on three

random effects, listed under the heading Groups: Word, Subject, and Resid-

ual. Residual stands for the residual error, the unexplained variance. This

is a random variable with mean zero and unknown variance, and is there-

fore a random effect just as are the random effects of Subject and Word.

The next column shows that the random effects of Subject and Word are

defined with respect to the intercept, in accordance with the specifications

(1|Subject) and (1|Word). The third and fourth columns show the estimated

variances and the corresponding standard deviations for these random effects.

The means of these three random variables are not listed, as they are always

zero.

The summary of the random effects lists the parameters for the random ef-

fects: the three variances, or, equivalently, the three corresponding standard de-

viations (their square roots). The actual adjustments for specific subjects and

specific words to the intercept can be extracted from the model with the ranef()

7.1 Modeling data with fixed and random effects 247

function, an abbreviation for random effects. The adjustments for words

are,

> ranef(lexdec3.lmer)$Word
(Intercept)

almond 0.0076094201
ant -0.0409265042
apple -0.1040504847
apricot -0.0086191706
asparagus 0.1002836459
avocado 0.0218818091
...

and their variance is similar in magnitude to the variance listed for Word in the

summary table, 0.0046579:

> var(ranef(lexdec3.lmer)$Word)
(Intercept)

(Intercept) 0.003732362

It should be kept in mind that the variance in the summary is a parameter of the

model, and that the best linear unbiased predictors (or blups in short) for

the by-word adjustments produced by ranef() are derived given this parameter.

Hence the sample variance of the blups is not identical to the estimate in the

summary table. The blups for the intercept are often referred to as random

intercepts. In the present example, we have both by-subject random intercepts

and by-word random intercepts.

The part of the summary dealing with the fixed effects is already familiar

from the summaries for objects created by the lm() and ols() functions for

models with fixed effects only. The table lists the coefficients of the fixed ef-

fects, in this case the coefficient for the intercept and for the slope of Trial,

and their associated standard errors and t-values. The slope of Trial is small

in part because Trial ranges from 23 to 185 and reaction time is on a log

scale.

The fitted values can be extracted from the model object by means of

fitted():

> fitted(lexdec3.lmer)[1:4]
6.272059 6.318508 6.245524 6.254167

Let’s reconstruct how the model arrived at the fitted reaction time of 6.272 for

subject A1 to item owl at trial 23 (the first word trial after an initial practice session

familiarizing the participants with the experiment). We begin with the coefficient

for the intercept, 6.394, and adjust this intercept for the specified subject and item,

and then add the effect of Trial:

> 6.394 + ranef(lexdec3.lmer)$Word["owl",] +
+ ranef(lexdec3.lmer)$Subject["A1",] -1.835e-04*23
[1] 6.272 # 6.394 - 0.01449 - 0.1031 - 1.8350e-04*23

The current version of the lme4 package does not provide p-values for t- and

F-tests. The reason is that it is at present unclear how to calculate the appropriate

248 mixed models

degrees of freedom. An upper bound for the degrees of freedom for the t-tests

can be obtained by taking the number of observations (1557) and subtracting the

number of fixed-effects parameters (2). This allows us to estimate the p-value for

Trial as usual:

> 2 * (1 - pt(abs(-2.24), 1557 - 2))
[1] 0.02523172

As we shall see below, this upper bound works reasonably well for large data sets

with thousands of observations, but it is anticonservative for small data sets: for

small data sets, the p-values may be too small. Since for large numbers of degrees

of freedom (>100) the t-distribution approximates the normal distribution, a

simple way of assessing significance at the 5% significance level is to check

whether the absolute value of the t-statistic exceeds 2.

An alternative that works very well for both small and large samples is to make

use of Markov chain Monte Carlo (mcmc) sampling. Each mcmc sample contains

one number for each of the parameters in our model. For lexdec3.lmer, we

obtain five such numbers, three variances for the random effects and two coeffi-

cients for the fixed effects. With many such samples, we obtain insight into what

is called the posterior distributions of the parameters. On the basis of these

distributions we can estimate p-values and confidence intervals known as high-

est posterior density (hpd) intervals. The functions for Markov chain Monte

Carlo sampling are mcmcsamp() and HPDinterval() in the coda package.

The function pvals.fnc() carries out mcmc sampling (with by default 10000

samples) and also reports the p-values based on the t-statistic:

> pvals.fnc(lexdec3.lmer)$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 6.3939620 6.3938802 6.3246413 6.45951910 0.0001 0.0000
Trial -0.0001835 -0.0001845 -0.0003468 -0.00002344 0.0224 0.0253

In the light of Figure 7.2, it remains somewhat surprising that the effect of

Trial does seem to reach significance, even if only at the 5% level. What we

see in Figure 7.2 is that some subjects show an effect, sometimes in opposite

directions, but also that many subjects have no clear effect at all. In terms of

model building, what we would like to do is to allow the slope of the effect of

Trial to vary across subjects. In other words, what we need here are by-subject

random slopes for Trial. We build these into the model by expanding the

expression for the subject random-effects structure:

> lexdec3.lmerA = lmer(RT ˜ Trial + (1+Trial|Subject) + (1|Word),
+ data = lexdec3)
> print(lexdec3.lmerA, corr = FALSE)
Random effects:
Groups Name Variance Std.Dev. Corr
Word (Intercept) 4.7620e-03 0.0690074
Subject (Intercept) 2.9870e-02 0.1728293

Trial 4.4850e-07 0.0006697 -0.658
Residual 2.1600e-02 0.1469704
number of obs: 1557, groups: Word, 79; Subject, 21

7.1 Modeling data with fixed and random effects 249

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.3963562 0.0396077 161.49
Trial -0.0002033 0.0001669 -1.22

In this new model, the estimate of Trial is very similar to the previous model,

but it is now no longer significant. In what follows, we leave Trial as a main

fixed effect in the model because we also have random slopes for Trial in the

model. (The by-subject random effect of Trial is the functional equivalent of an

interaction of Subject by Trial in a model treating Subject as a fixed effect.)

We compare the predictions of the new model with the predictions of the simpler

model graphically, using a customized panel function for xyplot():

> xyplot(RT ˜ Trial | Subject, data = lexdec3,
+ panel = function(x, y, subscripts) {
+ panel.xyplot(x, y) # the scatterplot
+ subject = as.character(lexdec3[subscripts[1], "Subject"])
+ coefs = as.numeric(unlist(coef(lexdec3.lmer)$Subject[subject,]))
+ panel.abline(coefs, col = "black", lty = 2) # add first line
+ coefs = as.numeric(unlist(coef(lexdec3.lmerA)$Subject[subject,]))
+ panel.abline(coefs, col = "black", lty = 1) # add second line
+ })

We first add the data points to a given panel withpanel.xyplot(). When a panel

is prepared for a given subject, the vector subscripts contains the row indices

in lexdec3 of this subject’s data points in lexdec3. This allows us to identify

the name of the subject under consideration by taking the first row in the data

frame with data for this subject, and extracting the value in its Subject column.

With the subject name in hand, we proceed to extract that subject’s coefficients

from the two models. Finally, we feed these coefficients to panel.abline(),

which adds lines to panels.

The dashed lines in Figure 7.3 illustrate that the first model assigns the same

slope to each subject, the solid lines show that the second model adjusts the slopes

to fit the data of each individual subject. It is clear that the second model provides

an improved fit to the data. It seems that subjects went through the experiment in

somewhat different ways, with some adapting to the task, and others becoming

tired.

Does the experiment also reveal differences between native and non-native

speakers of English? The data frame lexdec3 contains a column labeled Na-

tiveLanguage for this fixed-effects factor, with levels English and Other:

> lexdec3.lmerB = lmer(RT ˜ Trial + NativeLanguage +
+ (1+Trial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerB
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.3348827 0.0435378 145.50
Trial -0.0002026 0.0001669 -1.21
NativeLanguageOther 0.1433655 0.0506176 2.83

250 mixed models

Trial

R
T

6.0
6.2
6.4
6.6
6.8
7.0

50 100 150

A1 A2

50 100 150

A3 C

50 100 150

D

I J K M1

6.0
6.2
6.4
6.6
6.8
7.0

M2

6.0
6.2
6.4
6.6
6.8
7.0

P R1 R2 R3 S

T1 T2 V W1

6.0
6.2
6.4
6.6
6.8
7.0

W2

6.0
6.2
6.4
6.6
6.8
7.0

Z

Figure 7.3. Response latency as a function of trial. The black lines represent the slopes estimated by model
lexdec3.lmerA, which allows slopes to vary among subjects. The dashed lines are those obtained with
lexdec3.lmer, which assigns the same slope to all subjects.

There indeed appears to be support for the possibility that the non-native speakers

are the slower responders. Since native speakers have more experience with their

language, the frequency effect might be stronger for native speakers, leading

to greater facilitation. We test this hypothesis by including Frequency as a

predictor, together with an interaction of NativeLanguage by Frequency:

> lexdec3.lmerC = lmer(RT ˜ Trial + Frequency*NativeLanguage +
+ (1+Trial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerC
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4797681 0.0512770 126.37

7.1 Modeling data with fixed and random effects 251

Trial -0.0002036 0.0001658 -1.23
Frequency -0.0305036 0.0058148 -5.25
NativeLanguageOther 0.2353085 0.0584242 4.03
Frequency:NativeLanguageOther -0.0190195 0.0060335 -3.15

Since the reference level for NativeLanguage is English, we note that non-

native speakers of English had significantly longer response latencies. Further-

more, we find that the coefficient for the frequency effect for native speakers of

English is −0.03, while for non-native speakers, this coefficient is −0.030

−0.019 = −0.049. Apparently, the frequency effect is stronger and more fa-

cilitative for non-native speakers, contrary to what we expected. Why would this

be so? Possibly, we are led astray by a confound with word length — more fre-

quent words tend to be shorter, and non-native readers might find shorter words

easier to read compared to native readers. When we add a Length by Native-

Language interaction to the model, inspection of the summary shows that the

Frequency by NativeLanguage interaction is no longer significant, in contrast

to the interaction of NativeLanguage by Length:

> lexdec3.lmerD = lmer(RT ˜ Trial + Length*NativeLanguage +
+ NativeLanguage*Frequency + (1+Trial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerD
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4548536 0.0637955 101.18
Trial -0.0002128 0.0001677 -1.27
Length 0.0029408 0.0042965 0.68
NativeLanguageOther 0.0973266 0.0706921 1.38
Frequency -0.0286264 0.0062827 -4.56
Length:NativeLanguageOther 0.0154950 0.0045037 3.44
NativeLanguageOther:Frequency -0.0093742 0.0066275 -1.41

We therefore take the spurious NativeLanguage:Frequency interaction out of

the model. Note that the Length by NativeLanguage interaction makes sense.

For native readers, there is no effect of Length, while non-native readers require

more time to respond to longer words.

Thus far, we have examined only the table of coefficients. Let’s redress our

neglect of the table of random effects:

> lexdec3.lmerD
Random effects:
Groups Name Variance Std.Dev. Corr
Word (Intercept) 2.2525e-03 0.04746081
Subject (Intercept) 2.7148e-02 0.16476753

Trial 4.5673e-07 0.00067582 -0.740
Residual 2.1286e-02 0.14589823
number of obs: 1557, groups: Word, 79; Subject, 21

In addition to the usual standard deviations listed in the fourth column, the final

column of the random effects table lists a correlation. This correlation concerns

the by-subject random intercepts and the by-subject random slopes for Trial.

Since we have random slopes and random intercepts that are paired by subject, it

is possible that the vectors of random slopes and random intercepts are correlated.

252 mixed models

(Intercept)

T
ri

a
l

BLUPs

6.3 6.5 6.7

(Intercept)

T
ri

a
l

coefficients

Figure 7.4. Best linear unbiased predictors (blups) for the by-subject random
effects for model lexdec3.lmerD (left panel), and the corresponding by-subject
coefficients (right panel).

The way in which we specified the random-effects structure for Subject, (1 +

Trial | Subject), explicitly instructed lmer() to allow for this possibility by

including a special parameter for this correlation of the blups for the intercept and

the blups for Trial. The left panel of Figure 7.4 is a scatterplot that visualizes

this correlation for these blups:

> ranefs = ranef(lexdec3.lmerD)$Subject
> head(ranefs)

(Intercept) Trial
A1 -0.057992023 1.368812e-04
A2 -0.127666091 4.443818e-04
A3 -0.131176609 5.246854e-04
C -0.004438559 1.274880e-04
D -0.215372691 1.617985e-03
I -0.216234737 3.445517e-05
> plot(ranefs)
> abline(h = 0, col = "grey")
> abline(v = 0, col = "grey")

In this scatterplot, each data point represents a subject. Subjects with a large

negative adjustment for the intercept are fast responders, subjects with a large

positive adjustment are slow responders. Fast responders have positive adjust-

ments for Trial, while slow responders have negative adjustments for Trial.

Since the estimated fixed-effects coefficient for Trial equals a mere −0.0002,

the fastest responders appear to slow down in the course of the experiment,

whereas the slowest responders speed up. This is also visible, perhaps more

clearly so, when we plot the by-subject coefficients, as shown in the right

panel of Figure 7.4. These by-subject coefficients differ for the intercept and

for Trial (where they are adjusted by the blups), and are identical for all other

predictors:

7.1 Modeling data with fixed and random effects 253

> coefs = coef(lexdec3.lmerD)$Subject
> round(head(coefs),4)

(Intercept) Trial Length NativeLanguageOther Frequency
A1 6.3969 -0.0001 0.0029 0.0973 -0.0286
A2 6.3272 0.0002 0.0029 0.0973 -0.0286
A3 6.3237 0.0003 0.0029 0.0973 -0.0286
C 6.4504 -0.0001 0.0029 0.0973 -0.0286
D 6.2395 0.0014 0.0029 0.0973 -0.0286
I 6.2386 -0.0002 0.0029 0.0973 -0.0286

Length:NativeLanguageOther NativeLanguageOther:Frequency
A1 0.0155 -0.0094
A2 0.0155 -0.0094
A3 0.0155 -0.0094
C 0.0155 -0.0094
D 0.0155 -0.0094
I 0.0155 -0.0094
> plot(coefs[,1:2])

The right panel of Figure 7.4 shows straightforwardly that subjects with a large

intercept have a large negative coefficient for Trial, while subjects with a small

intercept have a large positive coefficient for Trial.

The total number of parameters in lexdec3.lmerD is 12: we have 7 fixed-

effects coefficients (including the intercept), and 5 random-effects parameters.

The question that arises at this point is whether all these random-effects parameters

are justified. The significance of parameters for random effects is assessed by

means of likelihood ratio tests, which are carried out by the anova() function

when supplied with two mixed-effects models that have the same fixed-effects

structure but different numbers of random-effects parameters. For instance, we

can evaluate the significance of the two by-subject random effects for Subject

by fitting a simpler model with only a by-subject random intercept that we then

compare with the full model:

> lexdec3.lmerD1 = lmer(RT ˜ Trial + Length * NativeLanguage +
+ NativeLanguage * Frequency + (1|Subject) + (1|Word), data = lexdec3)
> anova(lexdec3.lmerD, lexdec3.lmerD1)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerD1 9 -1327.88 -1279.73 672.94
lexdec3.lmerD 11 -1361.28 -1302.42 691.64 37.398 2 7.572e-09

The likelihood ratio test takes the log likelihood (logLik, an important measure

of goodness of fit) for the smaller model with 9 parameters (Df) and compares it

with the log likelihood for the larger model with 11 parameters. The difference

between the two log likelihoods (692.76 − 673.85), multiplied by 2, follows a

chi-squared distribution with as degrees of freedom the difference in the number

of parameters, 11 − 9 = 2. As the associated probability is small, the additional

parameters in the more complex model are justified. Similarly, we can peel off the

random effect for Word to see whether the inclusion of by-word random intercepts

is justified:

254 mixed models

x

y

4

6

8

10

uncentered centered

Figure 7.5. A small change in the data may change the slope of the regression line, with a
concomitant change in the intercept when the X-values are not centered. (The vertical grey
lines represent the Y -axes.) As a consequence, random intercepts and slopes may be correlated
in uncentered data (left panel) but uncorrelated in centered data (right panel).

> lexdec3.lmerD2 = lmer(RT ˜ Trial + Length * NativeLanguage +
+ NativeLanguage * Frequency + (1|Subject), data = lexdec3)
> anova(lexdec3.lmerD1, lexdec3.lmerD2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerD2 8 -1280.36 -1237.55 648.18
lexdec3.lmerD1 9 -1327.88 -1279.73 672.94 49.522 1 1.962e-12

The large chi-squared value indicates that the random effect for Word is fully

justified.

There is one potential problem with the correlation parameter for the by-subject

random slopes and intercepts, however. The values of Trial are all greater than

zero; they are bounded by zero to the left. As a consequence, a change in the slope

may correlate with a change in the intercept. This is illustrated in the left panel

of Figure 7.5. The solid line fits the bivariate normal simulated data points shown

in the scatterplot. When we take the y-value for the minimum of x and increase

it by 2, and likewise take the y-value for the maximum of x and decrease it

7.1 Modeling data with fixed and random effects 255

by 2, and then refit the model, we obtain the dashed regression line. The resulting

small shift in the slope of the regression line is accompanied by a small change

in the intercept. Suppose that we have many parallel plots like the one shown in

the left panel of Figure 7.5, one for each subject. Then we may expect that across

subjects, slopes and intercepts will covary. The way to eliminate such a spurious

correlation is to center the data by subtracting the mean of x from each x-value,

as shown in the right panel of Figure 7.5. Both regression lines cross the vertical

axis at the same point: intercept and slope can now be varied independently. We

therefore center Trial and refit the model:

> lexdec3$cTrial = lexdec3$Trial - mean(lexdec3$Trial)
> lexdec3.lmerD3 = lmer(RT ˜ cTrial + Length*NativeLanguage +
+ NativeLanguage*Frequency + (1+cTrial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerD3
Random effects:
Groups Name Variance Std.Dev. Corr
Word (Intercept) 2.2520e-03 0.04745557
Subject (Intercept) 1.4874e-02 0.12195841

cTrial 4.5662e-07 0.00067573 -0.417
Residual 2.1286e-02 0.14589851

The likelihood ratio test shows that after centering, the correlation parameter has

nearly halved. We can test formally whether its presence in the model is still justi-

fied by fitting a new model without the correlation parameter, which we then com-

pare with our present model using the likelihood ratio test. In the model formula

we first specify the random intercepts for Subject. We then add a second term

with Subject as grouping factor, (0+cTrial|Subject), which specifies the

random by-subject slopes for Trial, with the zero indicating not to add the cor-

relation parameter. An alternative equivalent notation is (cTrial-1|Subject),

where the -1 indicates that the correlation parameter should be taken out:

> lexdec3.lmerD3a = lmer(RT ˜ cTrial + Length*NativeLanguage +
+ NativeLanguage*Frequency + (1|Subject)+(0+cTrial|Subject)+(1|Word),
+ lexdec3)
> anova(lexdec3.lmerD3a,lexdec3.lmerD3)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerD3a 10 -1360.25 -1306.74 690.12
lexdec3.lmerD3 11 -1361.28 -1302.42 691.64 3.0282 1 0.08183

The p-value of the likelihood ratio test suggests that the correlation parameter may

be superfluous. This impression receives support from an inspection of the mcmc

distribution of the correlation parameter, obtained by running pvals.fnc() but

now extracting the random component of the list that it returns:

x = pvals.fnc(lexdec3.lmerD3, nsim = 10000)
x$random

MCMCmean HPD95lower HPD95upper
sigma 0.1459890 0.1408218 0.151687
Word.(In) 0.0470265 0.0359103 0.059393
Sbjc.(In) 0.1330270 0.0950869 0.188165
Sbjc.cTrl 0.0007254 0.0004736 0.001123
Sbj.(I).cTr -0.4361482 -0.7714082 0.114836

256 mixed models

For each random effect in the model, the mcmc mean of the corresponding standard

deviation is listed, together with its 95% hpd interval. When the model contains

correlation parameters, these are also listed, in this example at the bottom of

the table. When reading tables like this, it is important to carefully distinguish

between the standard deviations on the one hand, and the correlations on the

other. Correlations are bounded between minus one and plus one by definition.

Hence it makes sense to ask ourselves whether zero is contained in a correlation’s

95% confidence interval. For the present correlation this is indeed the case, so we

conclude that a model without the correlation parameter is adequate.

Standard deviations, by contrast, are always positive, so their hpd interval will

never ever contain zero. As a consequence, we cannot use these confidence inter-

vals to ascertain whether the random effect is significant. In this case significance

testing has to be done by means of the likelihood ratio test. However, the hpd

intervals do provide important information about the standard deviations. They

allow us to check whether the spread in the distribution of the parameter makes

sense. For all standard deviations in the above table the intervals are narrow, which

is good. But if the upper and lower limits of the hpd interval differ substantially,

this indicates there is something wrong with the model. For instance, a by-item

standard deviation with mcmc mean 0.02 and a 95% confidence interval ranging

from 0.00000001 to 0.6 would indicate that it is actually completely impossible

to estimate this parameter. With so much uncertainty about its actual value, it

should be taken out of the model.

Our model for the reaction times in this lexical decision experiment is still

incomplete. Another predictor that we should consider is the by-subject mean

of the estimated weight of the referents of the words presented to the subjects,

available in the data frame by the column name meanWeight. (As the Native-

Language by Frequency interaction was not significant, we remove it from the

model specification.)

> lexdec3.lmerE = lmer(RT ˜ cTrial + Frequency +
+ NativeLanguage * Length + meanWeight +
+ (1|Subject) + (0+cTrial|Subject) + (1|Word), lexdec3)
> lexdec3.lmerE
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.4319956 0.0545209 117.97
cTrial -0.0002089 0.0001668 -1.25
Frequency -0.0404232 0.0057107 -7.08
NativeLanguageOther 0.0303136 0.0594427 0.51
Length 0.0028283 0.0039709 0.71
meanWeight 0.0235385 0.0064834 3.63
NativeLanguageOther:Length 0.0181745 0.0040862 4.45

We see that objects that are judged to be heavier elicited longer response latencies.

As always, we have to check the residuals for potential problems with the

model specification. The upper panels of Figure 7.6 show that the model is not

coping properly with especially the longer response latencies. A simple solution

for checking that the pattern of results obtained is not due to the presence of

outliers is to remove the extreme outliers from the data, to refit the model, and to

7.1 Modeling data with fixed and random effects 257

6.2 6.4 6.6 6.8

fitted(lexdec3.lmerE)

re
s
id

u
a

ls
(l
e
x
d

e
c
3

.l
m

e
rE

)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

6.2 6.4 6.6 6.8

fitted(lexdec3.lmerEtrimmed)

re
s
id

u
a

ls
(l
e
x
d

e
c
3

.l
m

e
rE

tr
im

m
e

d
)

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 7.6. Residual diagnostics for the models before (upper panels) and after (lower panels) removal of
37 data points with extreme residuals.

inspect whether the non-normality of the residuals has been removed or at least

attenuated. Refitting the model after excluding the 37 outliers with a standardized

residual at a distance greater than 2.5 standard deviations from zero,

> lexdec3.lmerEtrimmed =
+ lmer(RT ˜ cTrial + Frequency + meanWeight + NativeLanguage * Length +
+ (1|Subject) + (0+cTrial|Subject) + (1|Word),
+ data = lexdec3, subset = abs(scale(resid(lexdec3.lmerE))) < 2.5)
> nrow(lexdec3)-nrow(lexdec3[abs(scale(resid(lexdec3.lmerE))) < 2.5,])
[1] 37

we find that that the quantile-quantile plot has improved somewhat, as shown in

the lower panels of Figure 7.6:

> par(mfrow=c(2,2))
> plot(fitted(lexdec3.lmerE), residuals(lexdec3.lmerE))
> qqnorm(residuals(lexdec3.lmerE), main=" ")
> qqline(residuals(lexdec3.lmerE))
> plot(fitted(lexdec3.lmerEtrimmed), residuals(lexdec3.lmerEtrimmed))
> qqnorm(residuals(lexdec3.lmerEtrimmed), main=" ")
> qqline(residuals(lexdec3.lmerEtrimmed))
> par(mfrow=c(1,1))

258 mixed models

In the trimmed model, the same predictors have remained significant. The esti-

mates of the coefficients have changed slightly, however, and may now be some-

what more precise. Since very long reaction times in lexical decision are likely

to be codetermined by later processes that are usually not of primary interest

to the researcher, trimming the model is justified not only technically but also

conceptually:

> x = pvals.fnc(lexdec3.lmerEtrimmed)
> x$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 6.411494 6.4117333 6.3084566 6.5264888 0.0001 0.0000
cTrial -0.000192 -0.0001945 -0.0004923 0.0001250 0.2082 0.2058
Frequency -0.037813 -0.0377575 -0.0490303 -0.0264884 0.0001 0.0000
meanWeight 0.020679 0.0206687 0.0079811 0.0337784 0.0030 0.0015
NatLanOther 0.039060 0.0389072 -0.0828886 0.1585393 0.5166 0.5091
Length 0.003183 0.0031761 -0.0044192 0.0110505 0.4142 0.4157
NatLanOth:Len 0.017492 0.0174837 0.0103630 0.0243377 0.0001 0.0000
> x$random

MCMCmean HPD95lower HPD95upper
sigma 0.1269356 0.1223552 0.1317316
Word.(In) 0.0448592 0.0354490 0.0568323
Sbjc.cTrl 0.0006203 0.0004132 0.0009482
Sbjc.(In) 0.1274543 0.0930270 0.1781425
deviance -1741.5971505 -1750.1482009 -1731.9742494
> lexdec3.lmerEtrimmed
Random effects:
Groups Name Variance Std.Dev.
Word (Intercept) 2.0464e-03 0.04523680
Subject cTrial 3.8438e-07 0.00061998
Subject (Intercept) 1.5506e-02 0.12452139
Residual 1.6083e-02 0.12682059

Unlike summaries for lm or ols model objects, summary tables for mixed-

effects models obtained with lmer() do not list the proportion of variance (R2)

accounted for. This is not without reason, as there are a number of different

sources of variance that are modeled jointly. In addition to the variance explained

by fixed effects, we have the variance explained by one or more random effects.

As a consequence, an R2 calculated by correlating observed and fitted values,

> cor(fitted(lexdec3.lmerE), lexdec3$RT)ˆ2
[1] 0.5296985

does not inform us at all about the variance explained by just the fixed effects, the

variance that would be comparable to the explained variance by models obtained

with lm() or ols() (which contain fixed effects only). For mixed-effects models

fitted to experimental data, a large part of the explained variance is often due to

by-item and by-subject variability. We can gain some insight into the amount of

variance accounted for by only non-linguistic variables by fitting a model without

lexical fixed-effects predictors and without Word as random effect:

> lexdec3.lmer00 = lmer(RT ˜ Trial +
+ (1|Subject) + (0+Trial|Subject), data = lexdec3)

7.2 A comparison with traditional analyses 259

> cor(fitted(lexdec3.lmer00), lexdec3$RT)ˆ2
[1] 0.4005094

This linguistically uninteresting model captures 0.4005/0.5297 = 76% of the

variance explained by our full model. As is often the case in these kinds of

experiments, a large proportion of the variance is accounted for just by variability

among subjects. In this example, only 100 − 76 = 24% of the variance that we

can account for can be traced to linguistic variables, and almost all of this linguistic

variance can already be captured just by including the random effect for word:

> lexdec3.lmer0 = lmer(RT ˜ 1+(1|Subject)+(0+Trial|Subject)+(1|Word),
+ data = lexdec3)
> cor(fitted(lexdec3.lmer0), lexdec3$RT)ˆ2
[1] 0.5263226

Only 0.3% of the overall variance can therefore be traced to the lexical predictors

in the fixed-effects structure of the model. Fortunately, inspection of the random-

effects structure of these models shows that including the lexical predictors does

lead to a reduction in the standard deviation for Word by 1 − (0.0419/0.0687) =
39%:

> lexdec3.lmer0
Random effects:
Groups Name Variance Std.Dev.
Word (Intercept) 4.7232e-03 0.06872577
Subject Trial 3.7151e-07 0.00060951
Subject (Intercept) 2.5022e-02 0.15818286
Residual 2.1663e-02 0.14718479
> lexdec3.lmerE
Random effects:
Groups Name Variance Std.Dev.
Word (Intercept) 1.7537e-03 0.04187756
Subject Trial 3.5455e-07 0.00059544
Subject (Intercept) 2.2573e-02 0.15024339
Residual 2.1375e-02 0.14620023

This example is typical of what we find across many psycholinguistic tasks, where

the method of data acquisition is inherently very noisy. The low signal-to-noise

ratio is of course exactly the reason why these experiments are generally run with

many different subjects and a wide range of items.

7.2 A comparison with traditional analyses

Mixed-effects models with crossed random effects are a recent devel-

opment in statistics. Because these models are new, the present section discusses

three common designs in psycholinguistic studies, and compares the advantages

of the mixed-effects approach to the gold standards imposed over the last decades

by many psycholinguistics journals. Pinheiro and Bates (2000) is the authoritative

reference on mixed-effects modeling in R, but the software they discuss is suited

primarily for analyzing hierarchical, nested designs (e.g. children nested under

260 mixed models

schools nested under cities). A short introduction to the more recent package

(lme4) used in this chapter is Bates (2005); Everitt and Hothorn (2006) provide

some introductory discussion as well. More comprehensive discussion is available

in Faraway (2006) and Wood (2006). A technical overview of the mathematics

underlying the implementation of mixed-effects models in the lme4 package is

Bates (2006).

7.2.1 Mixed-effects models and quasi-F

Mixed-effects models are the response of the statistical community

to a problem that was first encountered in the 1940s. The quasif data set illus-

trates this problem. This (constructed) data set is taken from Raaijmakers et al.
(1999:see their Table 2). Their data concern reaction times (RT) with Subject

and Item as random effects and soa (stimulus onset asynchrony, the time be-

tween the presentation of a prime or distractor and the presentation of the target

in chronometric experiments) as a fixed-effects factor:

> quasif[1:4,]
Subject RT Item SOA

1 S1 546 W1 short
2 S2 566 W1 short
3 S3 567 W1 short
4 S4 556 W1 short

We inspect the experimental design by means of summary tables:

> table(quasif$SOA)
long short

32 32

The treatment factor SOA has two levels, long and short. Each subject responds

to each word once:

> table(quasif$Subject, quasif$Item)
W1 W2 W3 W4 W5 W6 W7 W8

S1 1 1 1 1 1 1 1 1
S2 1 1 1 1 1 1 1 1
S3 1 1 1 1 1 1 1 1
S4 1 1 1 1 1 1 1 1
S5 1 1 1 1 1 1 1 1
S6 1 1 1 1 1 1 1 1
S7 1 1 1 1 1 1 1 1
S8 1 1 1 1 1 1 1 1

Subject and item are crossed in this design. Subject and the SOA treatment are

also crossed, and each subject responds an equal number of times to the items

presented in the two SOA conditions:

> table(quasif$Subject, quasif$SOA)
long short

S1 4 4
S2 4 4
S3 4 4

7.2 A comparison with traditional analyses 261

S4 4 4
S5 4 4
S6 4 4
S7 4 4
S8 4 4

The items, however, are nested under SOA: items 1 through 4 are always used in

the short condition, and items 5 through 8 in the long condition:

> table(quasif$Item, quasif$SOA)

long short
W1 0 8
W2 0 8
W3 0 8
W4 0 8
W5 8 0
W6 8 0
W7 8 0
W8 8 0

It is straightforward to fit a linear mixed-effects model to this data set. We

begin with a model in which subjects and items receive random intercepts and in

which subjects also receive random slopes for the SOA treatment:

> quasif.lmer = lmer(RT ˜ SOA + (1+SOA|Subject) + (1|Item),
+ data = quasif)
> quasif.lmer
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 861.99 29.360

SOAshort 502.65 22.420 -0.813
Item (Intercept) 448.29 21.173
Residual 100.31 10.016
number of obs: 64, groups: Subject, 8; Item, 8

Fixed effects:
Estimate Std. Error t value

(Intercept) 540.91 14.93 36.23
SOAshort 22.41 17.12 1.31

We check that we really need this complex random-effects structure for Subject

by comparing it with a simpler model using the likelihood ratio test:

> quasif.lmerA = lmer(RT ˜ SOA + (1|Subject) + (1|Item),
+ data = quasif)
> anova(quasif.lmer, quasif.lmerA)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
quasif.lmerA 4 580.29 588.92 -286.14
quasif.lmer 6 555.72 568.67 -271.86 28.570 2 6.255e-07

The small p-value shows that we need to stay with the original, full model. Note

that we do not have to take special measures to indicate that the items are nested

under SOA, the determination of nested or non-nested is done for us by lmer().

262 mixed models

The t-value for SOA is well below 2, so it is clear that it is not significant. For this

small data set with only 64 observations, it is crucial to use the p-values obtained

through mcmc sampling — the p-value based on the t-statistic is too small:

> pvals.fnc(quasif.lmer, nsim = 50000)$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 540.91 540.95 500.03 580.97 0.00002 0.0000
SOAshort 22.41 22.33 -22.83 65.17 0.27224 0.1956

Doing the analysis the traditional way recommended by Raaijmakers et al.
(1999) is a pain. We begin by fitting a simple linear model with lm(), without

distinguishing between fixed and random-effects terms.

> quasif.lm = lm(RT ˜ SOA + Item + Subject + SOA:Subject +
+ Item:Subject, data = quasif)
> anova(quasif.lm)

Df Sum Sq Mean Sq F value Pr(>F)
SOA 1 8032.6 8032.6
Item 6 22174.5 3695.7
Subject 7 26251.6 3750.2
SOA:Subject 7 7586.7 1083.8
Item:Subject 42 4208.8 100.2
Residuals 0 0.0

The anova() summary does not produce any p-values. The model is saturated,

the residual error is zero, and the number of parameters in the model,

> length(coef(quasif.lm))
[1] 72

exceeds the number of data points:

> nrow(quasif)
[1] 64

In fact, 8 of the coefficients in the model are inestimable:

> sum(is.na(coef(quasif.lm)))
[1] 8

This model is completely useless for prediction for new subjects or new items;

it overfits the data, but we can squeeze out a p-value. Recall that in analysis

of variance, the idea is to compare variances in the form of mean squares. The

problem that the present experimental design causes for classical analysis of

variance is that there is no proper mean squares to test the mean squares of SOA

against. The way out of this dilemma was developed by Satterthwaite (1946)

and Cochran (1951). They devised an approximative F-value known as quasi-

F . For the present design, we can calculate this quasi-F ratio with the function

quasiF.fnc, which takes as input four mean squares and their associated degrees

of freedom as listed in the above anova() table:

> x = anova(quasif.lm)
> quasiF.fnc(x["SOA","Mean Sq"], x["Item:Subject", "Mean Sq"],
+ x["SOA:Subject", "Mean Sq"], x["Item", "Mean Sq"],

7.2 A comparison with traditional analyses 263

+ x["SOA","Df"], x["Item:Subject", "Df"],
+ x["SOA:Subject", "Df"], x["Item", "Df"])
$F
[1] 1.701588

$df1
[1] 1.025102

$df2
[1] 9.346185

$p
[1] 0.2239887

Instead of specifying the cells in the anova table, we could also have plugged in

the values listed in the tables directly. The p-value returned for the quasi-F ratio,

0.224, is slightly smaller than the p-value suggested by mcmc sampling.

In psycholinguistics, a specific methodology evolved over the years to work

around having to calculate quasi-F ratios, which were computationally very de-

manding thirty years ago. Clark (1973) suggested an easy-to-calculate conser-

vative estimate for quasi-F ratios which involved two simpler F-values. These

F-values were obtained by averaging over the items to obtain subject means for

each level of the treatment effect, and similarly by averaging over subjects to

obtain item means. Forster and Dickinson (1976) proposed an alternative proce-

dure, which has become the gold standard of psycholinguistics. In this procedure,

separate analyses of variance are carried out on the by-item and the by-subject

means. The by-item analysis is supposed to be informative over the reliability of

an effect across items, and the by-subject analysis is likewise supposed to ascer-

tain reliability across subjects. A predictor is accepted as significant only when

it is significant both by subjects and by items.

For the present example, the by-subject analysis proceeds as follows. We cal-

culate the mean RTs averaged over the items for each combination of Subject

and SOA with the help of aggregate(), which has a syntax similar to that of

tapply():

> subjects = aggregate(quasif$RT, list(quasif$Subject,
+ quasif$SOA),mean)
> subjects

Group.1 Group.2 x
1 S1 long 553.75
2 S2 long 532.00
3 S3 long 546.25
4 S4 long 521.00
5 S5 long 569.75
6 S6 long 529.50
7 S7 long 490.00
8 S8 long 585.00
9 S1 short 556.50
10 S2 short 556.50
11 S3 short 579.25
12 S4 short 551.75

264 mixed models

13 S5 short 594.25
14 S6 short 572.50
15 S7 short 535.75
16 S8 short 560.00

The column labels are unhelpful, however, so we rename them:

> colnames(subjects) = c("Subject", "SOA", "MeanRT")

We now test for an effect of SOA by means of an analysis of variance. Since

subjects are crossed with SOA, we have to use the aov() function with Subject

specified explicitly as error stratum (random effect):

> summary(aov(MeanRT ˜ SOA + Error(Subject), data = subjects))

Error: Subject
Df Sum Sq Mean Sq F value Pr(>F)
Residuals 7 6562.9 937.6

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
SOA 1 2008.16 2008.16 7.4114 0.02966
Residuals 7 1896.68 270.95

The summary reports two error strata, one concerning the variance between sub-

jects, and one concerning the variance within subjects. It is in the second part of

the table that we find the F-value for SOA, which for 1 and 7 degrees of freedom

happens to be significant.

For the by-item analysis, we proceed along similar lines. We first construct a

data frame with the by-item means,

> items = aggregate(quasif$RT, list(quasif$Item, quasif$SOA),
+ mean)
> items

Group.1 Group.2 x
1 W5 long 533.125
2 W6 long 529.250
3 W7 long 583.250
4 W8 long 518.000
5 W1 short 559.625
6 W2 short 575.250
7 W3 short 553.375
8 W4 short 565.000
> colnames(items) = c("Item", "SOA", "MeanRT")

and then run the by-item analysis of variance. Because items are nested under

SOA instead of crossed, we can simply run a one-way analysis of variance:

> summary(aov(MeanRT ˜ SOA, items))
Df Sum Sq Mean Sq F value Pr(>F)
SOA 1 1004.08 1004.08 2.1735 0.1908
Residuals 6 2771.81 461.97

In contrast to the by-subject analysis, there is no trace of significance in the by-

item analysis. As it is not the case that both the by-subject (or F1) analysis and

the by-item (or F2) analysis are both significant, the effect of SOA is evaluated

7.2 A comparison with traditional analyses 265

as not significant. Thus, we reach the same conclusion as offered by the quasi-F
test and the mixed-effects model.

Inspection of a single data set is not that informative about how the different

techniques perform across experiments. The simulateQuasif.fnc() function

allows us to examine multiple simulated data sets with the same underlying

structure. It takes three arguments: a data set with the same design and variable

names as our current example data frame quasif, the number of simulation

runs required, and whether an effect of SOA should be present (with = TRUE)

or absent (with = FALSE). The function estimates fixed and random effects

by fitting a mixed-effects model to the input data frame, and then constructs

simulated data sets that follow the corresponding theoretical distribution. Its

output is a list that specifies for both the 95% and 99% significance levels what the

proportion of simulation runs is for which a significant effect for SOA is observed.

We apply this simulation function, once with and once without an effect of

SOA. The first simulation will tell us how successful our models are in detecting

an effect that is really there. It informs us about the power of the models. The

second simulation will tell us how often the models incorrectly lead us to believe

that there is a significant effect. It provides an estimate of the type i error rate

of the models. (These simulations may take a long time to run.)

> y3 = simulateQuasif.fnc(quasif, nruns=1000, with=FALSE)
> y3$alpha05

quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC
0.055 0.310 0.081 0.079 0.088 0.032

> y3$alpha01
quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC

0.005 0.158 0.014 0.009 0.031 0.000

The error rates for the quasi-F test are close to the nominal levels. The by-subject

analysis by itself is far off, and the by-item analysis by itself has a high error

rate for α = 0.05. This high error rate carries over to the F1+F2 procedure. As

expected for small samples, the p-values for lmer() based on the t-statistic are

clearly anticonservative. By contrast, the p-values based on mcmc sampling are

somewhat conservative. When we consider the power for those techniques with

nominal Type I error rates (editing the output of simulateQuasif.fnc()),

> x3 = simulateQuasif.fnc(quasif, nruns=1000, with=TRUE)
> x3$alpha05

quasi-F lmer:pMCMC
0.233 0.163

> x3$alpha01
quasi-F F1+F2 lmer:pMCMC

0.087 0.089 0.043

we find that the quasi-F test has the greatest power. This suggests that for small

data sets as typically found in textbooks, the quasi-F test is to be preferred. We

should keep in mind, however, that in real life experiments are characterized by

missing data and that, unlike mixed-effects models, the quasi-F test is highly

vulnerable to missing data and inapplicable to unbalanced designs.

266 mixed models

This example illustrates that the p-values based on the t-statistic in mixed-

effects models are anticonservative for small data sets with the present design. For

larger numbers of subjects and items, this anticonservatism is largely eliminated.

This is easy to see in a series of simulations in which we use 20 instead of 8

subjects and 40 instead of 8 items:

> y4 = simulateQuasif.fnc(quasif, nruns=1000, nsub=20, nitem=40,
+ with = F)
> y4$alpha05

quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC
0.052 0.238 0.102 0.099 0.055 0.027

> y4$alpha01
quasi-F by-subject by-item F1+F2 lmer:pt lmer:pMCMC

0.009 0.120 0.036 0.036 0.013 0.001

The F1+F2 procedure emerges as slightly anticonservative at both alpha levels. If

we now consider the power for the subset of techniques with nominal error rates,

> x4 = simulateQuasif.fnc(quasif, nruns=1000, nsub=20, nitem=40)
> x4$alpha05

quasi-F lmer:pt lmer:pMCMC
0.809 0.823 0.681

> x4$alpha01
quasi-F lmer:pt lmer:pMCMC

0.587 0.618 0.392

we find that lmer()’s p-values based on the t-distribution are now an excellent

choice. The mcmc p-values remain conservative.

In summary, for realistic data sets mixed-effects models have at least the same

power as the quasi-F test of detecting an effect if it is there, while the risk of

incorrectly concluding a predictor is significant is comparable. Mixed-effects

models offer the advantages of being robust with respect to missing data, of

allowing covariates to be taken into account, and of providing insight into the full

structure of your data, including the random effects. They can also be applied

straightforwardly to other designs for which quasi-F ratios would be difficult and

cumbersome to derive.

7.2.2 Mixed-effects models and Latin Square designs

For a second design that is commonly encountered in psycholinguistic

studies, Raaijmakers et al. (1999) recommend an F1 analysis. Let’s consider this

recommendation in some more detail as well. We load the data set that they

discuss (their Table 4), available as latinsquare:

> latinsquare[1:4,]
Group Subject Word RT SOA List

1 G1 S1 W1 532 short L1
2 G1 S2 W1 542 short L1
3 G1 S3 W1 615 short L1
4 G1 S4 W1 547 short L1

7.2 A comparison with traditional analyses 267

In this (constructed) data set, the factor SOA has three levels (short, medium,

long). The design underlying this data set is that of the Latin Square. The

twelve words in this experiment were divided into three lists with four words

each. These three lists were rotated over subjects, such that each subject was

exposed to a given list for a single condition of SOA. There were three groups

of four subjects, which differed only with respect to which combination of List

and SOA was presented to them:

> table(latinsquare$Group,
+ as.factor(paste(latinsquare$List, latinsquare$SOA)))

L1 long L1 medium L1 short
G1 0 0 16
G2 0 16 0
G3 16 0 0

L2 long L2 medium L2 short
G1 0 16 0
G2 16 0 0
G3 0 0 16

L3 long L3 medium L3 short
G1 16 0 0
G2 0 0 16
G3 0 16 0

Analyzing these data with lmer() is again straightforward:

> latinsquare.lmer = lmer(RT ˜ SOA + (1|Word) + (1|Subject),
+ data = latinsquare)

We use pvals.fnc() to generate p-values, and specify that it should also save

the matrix with the simulated mcmc data:

> x = pvals.fnc(latinsquare.lmer, nsim=10000, withMCMC=TRUE)
> names(x)
[1] "fixed" "random" "mcmc"
> x$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 533.9583 533.7189 504.252 562.985 0.0001 0.0000
SOAmedium 2.1250 2.1363 -1.767 6.197 0.2886 0.2912
SOAshort -0.4583 -0.4463 -4.297 3.648 0.8184 0.8196

Since SOA is now a factor with three levels, we have two contrast coefficients,

neither of which is significantly different from zero. In order to evaluate the

significance of the factor SOA as a whole, we use aovlmer.fnc(). Its ar-

guments are a fitted mixed-effects model, a matrix of mcmc samples as pro-

vided by pvals.fnc(), and the row names of the factor levels that are to be

evaluated:

> latinsquare.aov = aovlmer.fnc(latinsquare.lmer, x$mcmc,
+ c("SOAmedium", "SOAshort"))

268 mixed models

The output is a list with two elements. The first element is a list with the mcmc

p-value and the factor levels that are jointly evaluated. The second element is an

anova table with a potentially anticonservative p-value:

> latinsquare.aov
$MCMC
$MCMC$p
[1] 0.3855
$MCMC$which
[1] "SOAmedium" "SOAshort"

$Ftests
Analysis of Variance Table

Df Sum Sq Mean Sq F Df2 p
SOA 2 182.389 91.194 0.9444 141.000 0.391

For the present design, the p-values based on the mcmc samples and those based on

the t-statistic are very similar. Both suggest that SOA is not a significant predictor.

The by-subject analysis recommended by Raaijmakers et al. requires more

work. We first average RTs for each combination of List, SOA, and Subject:

> subjects = aggregate(latinsquare$RT, list(latinsquare$Subject,
+ latinsquare$Group, latinsquare$SOA, latinsquare$List), mean)
> colnames(subjects) = c("Subject", "Group", "SOA", "List", "MeanRT")
> subjects[1:12,]

Subject Group SOA List MeanRT
1 S10 G3 long L1 592.25
2 S11 G3 long L1 508.75
3 S12 G3 long L1 483.00
4 S9 G3 long L1 534.25
5 S5 G2 medium L1 590.50
6 S6 G2 medium L1 483.25
7 S7 G2 medium L1 513.50
8 S8 G2 medium L1 560.50
9 S1 G1 short L1 511.00
10 S2 G1 short L1 521.50
11 S3 G1 short L1 588.50
12 S4 G1 short L1 554.75

As a next step, we fit a model with Subject nested under Group and with SOA

in interaction with List:

> subjects.lm = lm(MeanRT ˜ Group/Subject + SOA*List, data = subjects)

We then obtain an analysis of variance table, but we ignore the last two columns

because the F-values and p-values are based on the assumption that all factors

are fixed, contrary to fact:

> anova(subjects.lm)[,1:3]
Df Sum Sq Mean Sq F value Pr(>F)

Group 2 1696 848 28.9395 2.379e-06
SOA 2 46 23 0.7781 0.4741
List 2 3116 1558 53.1724 2.791e-08
Group:Subject 9 47305 5256 179.3974 9.422e-16
SOA:List 2 40 20 0.6830 0.5177
Residuals 18 527 29

7.2 A comparison with traditional analyses 269

In order to obtain the desired p-value, we compare the Mean Sq for SOA with

that for SOA:List, and obtain an F-value of 23/20 = 1.15 and a p-value of:

> 1 - pf(23/20, 2, 2)
[1] 0.4651163

This by-subject analysis also points to a non-significant effect of SOA.

The averaging procedure of Raaijmakers and colleagues yields a larger p-value

than the mixed-effects model, suggesting that it is more conservative and may have

less power to detect the significance of predictors. We investigate whether this is

indeed the case with simulateLatinsquare.fnc(). This function takes a data

set as input, fits a mixed-effects model to this data set, extracts the coefficients of

the fixed effects (using fixef()) and the random-effects parameters (estimating

standard deviations from the output of ranef()), and uses the values obtained

to generate random samples according to the theoretical distribution of the fitted

model. When the option with is set to FALSE, the contrasts for SOA are set to

zero. The Type I error rates are in conformity with the nominal levels,

> latinsqY = simulateLatinsquare.fnc(latinsquare, nruns=1000, with=F)
> latinsqY$alpha05
Ftest MCMC F1
0.055 0.053 0.052
> latinsqY$alpha01
Ftest MCMC F1
0.011 0.011 0.010

irrespective of whether we use the by-subject analysis (F1), the F-test of the mixed

model (Ftest), or the mcmc-based test (MCMC). However, the mixed-effects model

has greater power:

> latinsqX = simulateLatinsquare.fnc(latinsquare, nruns=1000, with=T)
> latinsqX$alpha05
Ftest MCMC F1
0.262 0.257 0.092
> latinsqX$alpha01
Ftest MCMC F1
0.082 0.080 0.020

Raaijmakers, Schrijnemakers, and Gremmen (1999) suggest a somewhat more

powerful test that can be applied when the interaction of SOA by List is not

significant. When this interaction is not significant it can be removed from the

model. The treatment effect can now be tested against a larger error term, leading to

smaller p-values. The power of this test is closer to that of the mixed-effects analy-

sis, but even this test tends to be slightly more conservative (Baayen, Davidson,

and Bates, forthcoming).

7.2.3 Regression with subjects and items

In the psycholinguistics literature, a range of regression techniques

are in use for data sets with subjects and items. We illustrate this by means of

simulated data sets in which reaction time is defined as linearly dependent on

270 mixed models

three fixed-effects predictors, X , Y , and Z . The fixed effects are tied to the items

and quantify properties of these items. For items that are words, these properties

could be word length, word frequency, and inflectional entropy. Each subject

provides one RT to each item. The function make.reg.fnc() creates simulated

data sets with this layout.

A simulated data set obtained with make.reg.fnc() allows us to reconstruct

exactly how the RTs depend on the fixed and random effects:

> simdat = make.reg.fnc()
> simdat[1:4,]
Intr X Y Z Item RanefItem RanefSubj Subject Error RT

1 1 1 8 7 Item1 -81.56308 137.1683 Subj1 16.22481 549.8300
2 1 2 13 8 Item2 14.27047 137.1683 Subj1 -16.89636 648.5424
3 1 3 5 1 Item3 19.51690 137.1683 Subj1 34.03299 630.7182
4 1 4 19 18 Item4 -63.28945 137.1683 Subj1 68.03613 735.9150

The RT on the first line, for instance, can be reconstructed given the vector of

fixed-effects coefficients (400, 2, 6, 4) for the intercept and X , Y , and Z that

make.reg.fnc() works with by default, together with the random-effects ad-

justments for subject and item and the error term:

> 400*1 + 2*1 + 6*8 + 4*7 - 81.56308 + 137.1683 + 16.22481
[1] 549.83

The task of a regression analysis is to infer from the data the parameters of the

model: the coefficients for the fixed effects, and the standard deviations for the

random effects. Here is what lmer() reports for this particular simulation run:

> simdat.lmer = lmer(RT ˜ X+Y+Z+(1|Item)+(1|Subject), data=simdat)
> simdat.lmer
Random effects:
Groups Name Variance Std.Dev.
Item (Intercept) 2051.4 45.293
Subject (Intercept) 3881.5 62.301
Residual 2645.7 51.436
number of obs: 200, groups: Item, 20; Subject, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 436.490 39.320 11.101
X 2.410 2.008 1.200
Y 5.178 1.926 2.689
Z 2.643 1.988 1.329

The estimates for the fixed effects in the summary table of this mixed-effects

regression model are close to the values that we used to generate this data set,

(400, 2, 6, 4). Averaged over a large series of simulated data sets, these estimates

become more and more similar to the values that we actually used to construct the

data sets. Turning to the random effects, we observe that the estimated standard

deviations are also well-estimated: the standard deviations thatmake.reg.fnc()

assumes by default are 40 for item, 80 for subject, and 50 for the residual error.

Traditionally, regression for data with subjects and items is carried out with the

help of two separate regression analyses. One regression begins with calculating

7.2 A comparison with traditional analyses 271

by-item means, averaging over subjects, and then proceeds with ordinary least

squares regression. We will refer to this as by-item regression:

> items = aggregate(simdat$RT, list(simdat$Item), mean)
> colnames(items) = c("Item", "Means")
> items = merge(items, unique(simdat[,c("Item", "X", "Y", "Z")]),
+ by.x = "Item", by.y = "Item")
> items.lm = lm(Means ˜ X + Y + Z, data = items)
> summary(items.lm)
Residuals:

Min 1Q Median 3Q Max
-100.570 -6.932 4.895 20.553 85.639

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 436.490 34.029 12.827 7.79e-10
X 2.410 2.008 1.200 0.2476
Y 5.178 1.926 2.689 0.0161
Z 2.643 1.988 1.329 0.2024

Residual standard error: 48.12 on 16 degrees of freedom
Multiple R-Squared: 0.4299, Adjusted R-squared: 0.323
F-statistic: 4.022 on 3 and 16 DF, p-value: 0.02611

These estimates for the fixed-effects coefficients are identical to those returned

by lmer(). Across regression techniques, this is almost always the case. When

we compare p-values for the by-item regression with those for mixed-effects

regression, we also obtain comparable values:

> pvals.fnc(simdat.lmer)$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 436.490 436.247 356.687 520.706 0.0001 0.0000
X 2.410 2.425 -2.021 6.498 0.2326 0.2316
Y 5.178 5.188 1.037 8.923 0.0106 0.0078
Z 2.643 2.653 -1.429 6.913 0.1996 0.1853

Rather different p-values are obtained with a second regression technique known

as random regression. This kind of regression has been advocated in psychology

by Lorch and Myers (1990), and has become the gold standard in psycholinguis-

tics. In random regression, we fit a separate model to the data for each individual

subject. The function from the lme4 package that calculates these by-subject

coefficients is lmList():

> simdat.lmList = lmList(RT ˜ X + Y + Z | Subject, simdat)
> coef(simdat.lmList)

(Intercept) X Y Z
Subj1 628.1484 -1.9141021 1.649215 3.4021119
Subj2 458.7045 3.1036178 3.374996 1.5192233
Subj3 469.3044 2.9379676 3.484233 2.8355168
Subj4 418.5968 5.6396018 4.241479 -0.4764763
Subj5 467.6317 4.1477264 7.123812 -0.6388146
Subj6 328.9318 3.8245708 7.373426 2.5304837
Subj7 308.7975 3.0110525 6.709779 1.7966127
Subj8 360.2321 2.6404247 7.098332 6.0430440
Subj9 473.5752 0.1909166 3.849270 5.4122264
Subj10 450.9785 0.5152209 6.873633 4.0021081

272 mixed models

We note that for Y , the coefficient is greater than zero for all subjects, while

for X , one coefficient is negative and nine are positive. For Z , two coefficients

are negative and eight are positive. We formally test whether the coefficients are

significantly different from zero (at the risk of combining precise and imprecise

information) by means of one-sample t-tests. We do so for all four columns

simultaneously with apply():

> apply(coef(simdat.lmList), 2, t.test)

Abbreviating the output, we obtain means that are again identical to the estimates

obtained with lmer() and by-item regression:

$‘(Intercept)‘
t = 15.1338, df = 9, p-value = 1.044e-07; mean of x 436.4901
$X
t = 3.4527, df = 9, p-value = 0.007244; mean of x 2.409700
$Y
t = 7.8931, df = 9, p-value = 2.464e-05; mean of x 5.177817
$Z
t = 3.7716, df = 9, p-value = 0.004406; mean of x 2.642604

However, the p-values are much smaller, and would suggest that all predictors are

significant. Interestingly, when we run a mixed-effects model with only Subject

as random effect, omitting Item, we also obtain similarly small p-values:

> simdat.lmerS = lmer(RT ˜ X+Y+Z + (1|Subject), data=simdat)
> pvals.fnc(simdat.lmerS)$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
Intr 436.490 436.746 386.3913 490.913 0.0001 0.0000
X 2.410 2.420 0.7133 4.111 0.0070 0.0065
Y 5.178 5.168 3.4939 6.838 0.0001 0.0000
Z 2.643 2.639 0.8610 4.301 0.0036 0.0026

Inspection of the random-effects structure of the model,

> simdat.lmerS
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 3793.7 61.593
Residual 4401.0 66.340

and a comparison with the random-effects structure for the model including Item

as a random effect shows that the standard deviation for the residual error is over-

estimated: the value used when constructing the data set was 50, the model with

subject and item as random effects estimated it at 51, but the present model at 66.

This model is confounding item-bound systematic error with the residual error.

Because mixed-effects models were developed historically for nested designs,

there are proposals in the literature that items should be analyzed as nested under

subjects (see, e.g., Quené and Van den Bergh, 2004). It is important to realize

the consequences of this proposal. Nesting items under subjects implies that we

allow ourselves to assume that each subject is exposed to in principle a completely

different set of items. The idea that a given item has basically the same effect on

any subject (modulo the residual error) is completely given up. The design of the

7.2 A comparison with traditional analyses 273

lmer() function forces the distinction between crossed and nested effects out

into the open. Because lmer() figures out from the input data frame whether

subject and item are crossed or nested, crossing versus nesting has to be made fully

explicit in the input. In simdat, every level of Subject occurs in conjunction

with the same 20 levels of item, as shown by cross-tabulation of subject and item:

> table(simdat$Subject, simdat$Item)[1:4, 1:4]

Item1 Item10 Item11 Item12
Subj1 1 1 1 1
Subj2 1 1 1 1
Subj3 1 1 1 1
Subj4 1 1 1 1

In order to specify that the items are nested under subject instead of crossed, we

have to create new names for the items, such that the labels for the 20 items will

be different for each subject. We can achieve this by pasting the name of the item

onto the name of the subject, by converting the resulting character vector into a

factor, and adding the result as a new column to simdat:

> simdat$Item2 = factor(paste(simdat$Subject, simdat$Item, sep = "."))

A cross-tabulation now results in a table of 10 rows (subjects) by 200 columns

(the new items). Most of the cells of this table are zero:

> table(simdat$Subject, simdat$Item2)[1:10, 1:4]

Subj10.Item1 Subj10.Item10 Subj10.Item11 Subj10.Item12
Subj1 0 0 0 0
Subj2 0 0 0 0
Subj3 0 0 0 0
Subj4 0 0 0 0
Subj5 0 0 0 0
Subj6 0 0 0 0
Subj7 0 0 0 0
Subj8 0 0 0 0
Subj9 0 0 0 0
Subj10 1 1 1 1

Note that effectively we now have 200 different items, instead of just 20 items. In

other words, nesting implies that one subject may respond to, say, scythe, in the

way another subject might respond to, say, antidisestablishmentarianism, once

the fixed-effects predictors have been accounted for. This is not what we want, not

for the present data, and more generally not for linguistic data sets in which the

items are sensibly distinct. Proponents of nesting argue that nesting does justice

to the idea that each subject has her own experience with a given item. With

respect to the mental lexicon, for instance, expertise in the nautical domain and

expertise in the medical domain will lead to differential familiarity with nautical

terms and medical terms across subpopulations. However, nesting gives up on

the commonality of words altogether. Also note that with full nesting structure

the random effect for Item is confounded with the residual error. We have 200

data points, so 200 residual error values, but also 200 by-item adjustments. As

274 mixed models

Table 7.1. Type I error rate and power comparison for four regression models
(lmer: mixed-effects regression with crossed random effects for subject and
item, lmerS: mixed-effects regression with random effect for subject only,
lmList: random regression, item: by-item regression) across 1000 simulation
runs. The mcmc extension denotes p-values based on 10000 Markov chain
Monte Carlo samples.

βZ = 0

α = 0.05 α = 0.01

X Y Z X Y Z

lmer 0.248 0.898 0.077 0.106 0.752 0.018
lmer-mcmc 0.219 0.879 0.067 0.069 0.674 0.013
lmerS 0.609 0.990 0.380 0.503 0.982 0.238
lmerS-mcmc 0.606 0.991 0.376 0.503 0.982 0.239
lmList 0.677 0.995 0.435 0.519 0.979 0.269
item 0.210 0.873 0.063 0.066 0.670 0.012

βZ = 4

α = 0.05 α = 0.01

X Y Z X Y Z

lmer 0.219 0.897 0.626 0.089 0.780 0.415
lmer-mcmc 0.190 0.881 0.587 0.061 0.651 0.304
lmerS 0.597 0.989 0.925 0.488 0.978 0.867
lmerS-mcmc 0.594 0.989 0.924 0.485 0.978 0.869
lmList 0.650 0.992 0.931 0.487 0.979 0.868
item 0.183 0.875 0.574 0.055 0.642 0.295

a consequence, nesting of items under subjects leads to an ill-defined model. If

items are truly nested, then the simpler model with only Subject as random

effect is appropriate.

Thus far, we have considered only one simulated data set. But it is useful

to know how these regression techniques perform across many simulated data

sets. The function simulateRegression.fnc() applies the different regres-

sion techniques to a series of simulated data sets. We apply it once with and once

without an effect for the predictor Z . Table 7.1 summarizes the results. The up-

per half of the table shows that the by-subject methods (lmerS and lmList) so

badly inflate the Type I error compared to the nominal 0.05 and 0.01 values that

it does not make sense to consider them in the power comparison. The rows for

these models are therefore shown in grey in the lower half of Table 7.1. It is clear

that the only acceptable models are the by-item regression and the mixed-effects

regression with crossed random effects for subject and item. Of these two, the

mixed-effects model has slightly greater power.

7.3 Shrinkage in mixed-effects models 275

It is also worth noting that the mixed-effects model with only subject as random

effect (lmerS) does not provide proper estimates of the standard deviations of

the random effects (defined in the model as 40 for Item, 80 for Subject, and 50

for the residual error). Averaged across 1000 simulation runs for the simulation

without an effect for Z ,

> s = simulateRegression.fnc(beta = c(400, 2, 6, 0), nruns = 1000)
> s$ranef

Item Subject Residual
lmer 39.35468 77.22093 49.84096
lmerS NA 76.74287 62.04566

we find that the estimate provided by lmerS for the residual error is too high, and

that for subject is too low. The same pattern emerges for the simulation with an

effect of Z included.

Mixed-effects regression with crossed random effects for subject and item

therefore offers several advantages. First, it provides insight into the full random-

effects structure. Second, it has slightly superior power. Third, it allows us to bring

into the model longitudinal effects and also to study more complex random-effects

structure with random slopes. Finally, mixed-effects regression makes it possible

to include in the model by-subject predictors such as age or education level along

with by-item predictors such as frequency and length.

Under what conditions, then, is random regression or mixed-effects regression

with subject as only random effect, appropriate? The answer is simple: when the

predictors are true treatment factors that have no relation to the properties of

the basic unit in the experiment. Consider, for instance, an experiment measuring

the velocity of a tennis ball with as predictors the humidity of the air and wind

force. When the same tennis ball is tested under different treatments of humidity

and wind force, there is no by-item random effect. When the same experiment is

repeated across laboratory, laboratory can be included as random effect. But no

random effect is necessary at the item level. However, in linguistics and psycholin-

guistics, we hardly ever study just a single linguistic object. A word’s frequency,

for instance, is not a treatment that can be applied to it. Frequency is an intrinsic

property of individual words, and it is highly correlated to many other lexical prop-

erties, as we have seen in preceding chapters. We have no guarantee that all rele-

vant item-specific properties are actually captured adequately by our item-specific

predictors. It is much more likely that there is still unexplained by-item variance.

In these circumstances, one must bring item as random effect into the model.

7.3 Shrinkage in mixed-effects models

Linear mixed-effects models are also attractive compared to classical

analysis of variance and multiple regression because they provide shrinkage

estimates for the by-subject and by-item adjustments — the best linear unbiased

predictors or blups. To illustrate shrinkage in mixed-effects models, it is useful to

276 mixed models

consider a simple simulated experiment with 10 subjects and 20 words in which we

have a dependent variable (RT) that is modeled as a straightforward linear function

(with an intercept of 400 and a slope of 5) of a numerical predictor (frequency).

The frequencies of the 20 items were simulated by sampling 20 random numbers

from a normal distribution with a mean of 20 and a standard deviation of 4. This

data set, available as shrinkage, was created with two random effects: random

intercepts for subject, and the residual error. For simplicity, there are no random

intercepts for item. The standard deviation for the subject random effect for the

intercept was 20, and the standard deviation of the residual error was 50. We load

these data, and run lmer() to see how it reconstructs the parameters that we used

to construct the data set:

> shrinkage.lmer = lmer(RT ˜ frequency + (1|subject), data = shrinkage)
> shrinkage.lmer
Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 185.99 13.638
Residual 2444.57 49.443
number of obs: 200, groups: subject, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 393.0311 21.4566 18.318
frequency 1.0866 0.1936 5.613

The summary reports the estimates for our four parameters. The estimate for

the intercept is close, as is the estimate of the standard deviation of the residual

error. The standard deviation for subjects is somewhat too low, and the slope for

frequency is likewise underestimated. This is the best we can do, given the level

of noise in this data set:

Now consider a random regression on this data set:

> shrinkage.lmList = lmList(RT ˜ frequency | subject, data = shrinkage)
> coef(shrinkage.lmList)

(Intercept) frequency
S1 365.2841 1.2281146
S10 377.3522 1.1365690
S2 319.4524 1.7300404
S3 445.8967 0.6943159
S4 542.5428 -0.2364537
S5 325.6736 1.6250778
S6 478.6631 0.2033189
S7 471.4654 0.6686009
S8 367.1283 1.5067342
S9 236.8524 2.3100814

A t-test on the slope for frequency yields a significant p-value, as expected

given that only subject S4 had a negative slope:

> t.test(coef(shrinkage.lmList)$frequency)
t = 4.4952, df = 9, p-value = 0.001499
mean of x
1.08664

7.3 Shrinkage in mixed-effects models 277

As before, the mean slope, 1.08664, is indistinguishable from the slope estimated

by lmer().

However, mixed-effects models provide improved estimates of the by-subject

differences compared to random regression. To see this, we first tabulate the

estimated coefficients for the two models side by side:

> coef(shrinkage.lmList) > coef(shrinkage.lmer)$subject
(Intercept) frequency (Intercept) frequency

S1 365.2841 1.2281146 S1 385.4278 1.08664
S10 377.3522 1.1365690 S10 386.7957 1.08664
S2 319.4524 1.7300404 S2 390.1994 1.08664
S3 445.8967 0.6943159 S3 399.5851 1.08664
S4 542.5428 -0.2364537 S4 397.7705 1.08664
S5 325.6736 1.6250778 S5 387.1721 1.08664
S6 478.6631 0.2033189 S6 387.6356 1.08664
S7 471.4654 0.6686009 S7 413.3528 1.08664
S8 367.1283 1.5067342 S8 404.5415 1.08664
S9 236.8524 2.3100814 S9 377.8304 1.08664

There are two striking differences. First, the mixed-effects model does not vary

the coefficient for frequency across subjects, as there is no random slope in the

model. Second, the random regression offers estimates for the intercept that have

a much wider range than those for the mixed-effects model. This is illustrated

graphically in Figure 7.7. In both panels, the circles represent the intercepts that

were actually used to construct the RTs in the simulated data set. The intercepts

labeled S1, S2, . . . , S10 represent the estimated intercepts. The left panel shows

the estimates for random regression, the right panel shows the estimates for mixed-

effects regression. It is immediately apparent that the mixed-effects model does

a much better job at getting accurate estimates that approach the true by-subject

differences in the intercept.

The reason that lmer() is so much more successful is that lmer() considers

a given subject in the light of what it knows about the other subjects. Consider

again the left panel of Figure 7.7. The horizontal axis ranks the subjects from

short to long RTs (intercepts). Subject S9 is extremely fast, and subject S4 ex-

tremely slow. Such extremes are unlikely to be observed for the same subjects

in a second experiment with these same subjects. In such a second experiment,

they are much more likely to have less extreme intercepts. In other words, the

estimates for the intercepts are subject to a general phenomenon known as re-

gression towards the mean: in replication studies with the same subjects, the

extremely slow subjects will be faster, and the extremely fast subjects will be

slower responders. Shrinkage towards the mean across replication studies is an

adverse result of traditional modeling. The model provides too tight a fit to the

data. In mixed-effects regression, this shrinkage is anticipated and brought into

the model. Informally, you can think of this in terms of the model considering

the behavior of any given subject in the light of what it knows about the behavior

of all the other subjects. In the present example, for instance, the assumption of

a common slope in the lmer model damps the variation in the intercept. As a

278 mixed models

rank

c
o

e
f

250

300

350

400

450

500

550

2 4 6 8 10

S9

S2
S5

S1 S8
S10

S3

S7
S6

S4

random regression

2 4 6 8 10

S9
S2 S5 S1

S8

S10
S3

S7

S6
S4

Figure 7.7. The estimated intercepts for subjects (S1, S2, . . . , S10) in random regression (left panel) and
mixed-effects regression (right panel). The grey circles represent the actual intercepts that were present in
the simulation. The dark grey horizontal line denotes the true mean of the intercept (400). The horizontal
axes represent the rank of the intercept as estimated in the random regression model.

consequence, the blups produced by lmer() are much closer to the actual val-

ues. Because they have already been shrunk towards the mean in the model, they

no longer shrink towards the mean when you repeat the experiment. Hence, they

make more precise prediction possible.

7.4 Generalized linear mixed models

Thus far, we have considered mixed-effects models that extend ordi-

nary least squares models fitted with lm() or ols(). In this section we consider

the mixed-effects parallel to glm() and lrm(), the generalized linear mixed

7.4 Generalized linear mixed models 279

model. We return for a final time to the data of Bresnan et al. (2007), addressing

the choice between the pp and np realization of the dative in English, available as

the data set dative. In Chapter 5 we analyzed this data set by means of a cart

tree. Here, we use logistic regression. We begin with an analysis using the lrm()

function from the Design package discussed in Chapter 6, and consider a model

with main effects only:

> library(Design)
> dative.dd = datadist(dative)
> options(datadist = ’dative.dd’)
> dative.lrm = lrm(RealizationOfRecipient ˜
+ AccessOfTheme + AccessOfRec + LengthOfRecipient + AnimacyOfRec +
+ AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOfTheme+
+ SemanticClass + Modality,
+ data = dative)
> anova(dative.lrm)
Wald Statistics

Factor Chi-Square d.f. P
AccessOfTheme 30.79 2 <.0001
AccessOfRec 258.06 2 <.0001
LengthOfRecipient 69.87 1 <.0001
AnimacyOfRec 93.35 1 <.0001
AnimacyOfTheme 3.71 1 0.0542
PronomOfTheme 54.42 1 <.0001
DefinOfTheme 28.72 1 <.0001
LengthOfTheme 79.03 1 <.0001
SemanticClass 166.55 4 <.0001
Modality 49.91 1 <.0001
TOTAL 747.64 15 <.0001

The animacy of the theme is the only potentially irrelevant predictor. However,

the problem with this analysis is that we have repeated measures for many of the

verbs:

> rev(sort(table(dative$Verb)))
give pay sell send cost tell
1666 207 206 172 169 128
offer teach take show bring charge

79 64 58 58 55 43
owe do loan lend award write
31 31 21 20 19 17

feed hand mail grant allow deny
17 15 14 13 13 12

...
get funnel float flip carry bequeath

1 1 1 1 1 1
assess afford accord

1 1 1

The structure of this data set differs from the data set of Dutch verbs that we

analyzed in Chapter 4. The Dutch data set contained nearly 1100 verbs, but each

verb occurred only once. In the data of Bresnan and colleagues, some verbs occur

only once, but others are highly frequent, with give the most frequent verb of all.

280 mixed models

It is not unlikely that the data of just the single verb give dominate the effects

observed with lrm(). To alleviate this problem, we rerun the analysis with a

mixed-effects logistic regression with a random effect for Verb. It remains un-

fortunate that the numbers of observations for the different verbs are so different.

This is a problem that one often encounters in corpus studies. We will therefore

have to depend on the robustness of the mixed-effects algorithms with respect to

unequal numbers of observations.

For a generalized linear mixed-effects model, we again use lmer(), but now

select the binomial distribution and the logistic link function with family =

"binomial":

> library(lme4, keep.source=F)
> dative.glmm = lmer(RealizationOfRecipient ˜ AccessOfTheme +
+ AccessOfRec + LengthOfRecipient + AnimacyOfRec + AnimacyOfTheme +
+ PronomOfTheme + DefinOfTheme + LengthOfTheme + SemanticClass +
+ Modality + (1|Verb), data = dative, family = "binomial")

I have used the extension glmm to mark the object as a Generalized Linear Mixed

Model, in order to distinguish it from “normal” mixed models, to which I give

the extension lmer:

> print(dative.glmm, corr = FALSE)
Random effects:
Groups Name Variance Std.Dev.
Verb (Intercept) 4.3982 2.0972
number of obs: 3263, groups: Verb, 75

Estimated scale (compare to 1) 0.870155

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.29308 0.65005 1.989 0.0467
AccessOfThemegiven 1.50541 0.25504 5.903 3.58e-09
AccessOfThemenew -0.41979 0.19067 -2.202 0.0277
AccessOfRecgiven -2.46129 0.17761 -13.858 < 2e-16
AccessOfRecnew 0.12461 0.24423 0.510 0.6099
LengthOfRecipient 0.41485 0.04754 8.727 < 2e-16
AnimacyOfRecinanimate 2.24228 0.25864 8.669 < 2e-16
AnimacyOfThemeinanimate -0.86354 0.48283 -1.788 0.0737
PronomOfThemepronominal 2.20501 0.24624 8.955 < 2e-16
DefinOfThemeindefinite -0.93295 0.19024 -4.904 9.39e-07
LengthOfTheme -0.23354 0.02766 -8.443 < 2e-16
SemanticClassc 0.38583 0.34929 1.105 0.2693
SemanticClassf 0.02204 0.57971 0.038 0.9697
SemanticClassp -3.77588 1.47575 -2.559 0.0105
SemanticClasst 0.31043 0.20895 1.486 0.1374
Modalitywritten 0.85021 0.18536 4.587 4.50e-06

The estimated scale parameter at the beginning of the summary is a measure of

how the actual variance in the data compares to the variance assumed by the

binomial model. Ideally, it is close to 1. In the present example, it is somewhat

smaller than 1 (underdispersion), probably because of the very unequal numbers

of verbs in the data. It is not so low as to be a cause of serious concern.

7.4 Generalized linear mixed models 281

The estimates of the coefficients are very similar to those estimated by lrm():

> cor.test(coef(dative.lrm), fixef(dative.glmm))
t = 8.5114, df = 14, p-value = 6.609e-07

cor
0.9154485

The main difference concerns the p-values for the contrasts for semantic class.

According to lrm(), most contrasts are highly significant, but once we have taken

by-verb variability into account, there is little left for semantic class to explain.

Apparently, there is much more variation among individual verbs than among

semantic classes. In other words, semantic class was an indirect and imperfect

means for accounting for by-verb variability.

Unlike lrm(), lmer() does not specify Somers’ Dxy or the C index of con-

cordance,. A function from the Hmisc package that calculates these measures for

a vector of predicted probabilities and a vector of observed binary outcomes is

somers2(). We transform the fitted log odds ratios into probabilities either by

hand,

> probs = 1/(1+exp(-fitted(dative.glmm)))

or with,

> probs = binomial()$linkinv(fitted(dative.glmm))

and then apply somers2():

> somers2(probs, as.numeric(dative$RealizationOfRec)-1)
C Dxy n Missing

0.9613449 0.9226899 3263.0000000 0.0000000

Both measures indicate the fit is excellent.

Another way of inspecting the goodness of fit is to divide the range of possible

expected probabilities into ten equally sized bins (0 − 0.1, 0.1 − 0.2, . . . , 0.9 −
1.0), and to compare for each bin the mean expected proportion of successes

with the observed proportion of successes for the data points falling into that bin.

plot.logistic.fit.fnc carries out this comparison. It takes as arguments a

model fit by either lrm() or lmer(), and the corresponding data frame:

> par(mfrow=c(1,2))
> plot.logistic.fit.fnc(dative.lrm, dative)
> mtext("lrm", 3, 0.5)
> plot.logistic.fit.fnc(dative.glmm, dative)
> mtext("lmer", 3, 0.5)
> par(mfrow=c(1,1))

As can be seen in Figure 7.8, the observed proportions and the corresponding

mean expected probabilities are very similar for both models.

In our analyses thus far, we have ignored a potentially important source of

variation, the speakers whose utterances were sampled. For the subset of spoken

282 mixed models

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

mean predicted probabilities

o
b
se

rv
e
d
 p

ro
p
o
rt

io
n
s

●

●

● ●

●

●

●

●

●

●

lrm

0.0 0.4 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

mean predicted probabilities

o
b
se

rv
e
d
 p

ro
p
o
rt

io
n
s

●

●

●

●

●

●

●

●

●

●

lmer

Figure 7.8. Observed proportions of pp realizations and the corresponding mean predicted probabilities for
dative.lrm (left) and dative.glmm (right).

English, identifiers for the individual speakers are available. It turns out that the

numbers of observations contributed by a given speaker vary substantially:

> spoken = dative[dative$Modality != "written",]
> spoken$Speaker = spoken$Speaker[drop=TRUE]
> range(table(spoken$Speaker))
[1] 1 40

In principle, we can include a random effect for Speaker in our model, accepting

that subjects with few observations contribute almost no information:

> spoken.glmm = lmer(RealizationOfRecipient ˜
+ AccessOfTheme + AccessOfRec + LengthOfRecipient + AnimacyOfRec +
+ AnimacyOfTheme + PronomOfTheme + DefinOfTheme + LengthOfTheme +
+ SemanticClass + (1|Verb) + (1|Speaker),
+ data = spoken, family = "binomial")

However, the estimated variance for factor Speaker is effectively zero, as is

evident from the table of random effects:

> print(spoken.glmm, corr=FALSE)
Random effects:
Groups Name Variance Std.Dev.
Speaker (Intercept) 5.0000e-10 2.2361e-05
Verb (Intercept) 4.3753e+00 2.0917e+00

The random effect forSpeaker is superfluous. From this we conclude that speaker

variation is unlikely to distort our conclusions. Another way in which we may

7.4 Generalized linear mixed models 283

ascertain that our results are valid across speakers is to run a bootstrap validation

in which we sample speakers (and all their data points) with replacement:

> speakers = levels(spoken$Speaker)
+ nruns = 100 # number of bootstrap runs
+ for (run in 1:nruns) {
+ # sample with replacement from the speakers
+ mysampleofspeakers = sample(speakers, replace = TRUE)
+ # select rows from data frame for the sampled speakers
+ mysample = spoken[is.element(spoken$Speaker, mysampleofspeakers),]
+ # fit a mixed effects model
+ mysample.lmer = lmer(RealizationOfRecipient ˜ SemanticClass +
+ AccessOfRec + AccessOfTheme + PronomOfRec + PronomOfTheme +
+ DefinOfRec + DefinOfTheme + AnimacyOfRec + LengthOfTheme +
+ LengthOfRecipient + (1|Verb), family="binomial", data=mysample)
+ # extract fixed effects from the model
+ fixedEffects = fixef(mysample.lmer)
+ # and save them for later inspection
+ if (run == 1) res = fixedEffects
+ else res = rbind(res, fixedEffects)
+ # this takes time, so output dots to indicate progress
+ cat(".")
+ }
+ cat("\n") # add newline to console
+ # assign sensible rownames
+ rownames(res) = 1:nruns
+ # and convert into data frame
+ res = data.frame(res)

The res data frame contains, for each of the predictors, 100 bootstrap estimates

of the coefficients:

> res[1:4, c("AccessOfThemegiven", "AccessOfThemenew")]
AccessOfThemegiven AccessOfThemenew

1 1.928998 -0.2662725
2 1.894876 -0.4450632
3 1.891211 -0.6237502
4 1.347860 -0.3443248

With the help of the quantile() function we obtain for a given column the

corresponding 95% confidence interval as well as the median:

> quantile(res$AccessOfThemegiven, c(0.025, 0.5, 0.975))
2.5% 50% 97.5%

1.248588 1.682959 2.346539

We apply the quantile function to all columns simultaneously, and transpose the

resulting table for expository convenience:

> t(apply(res, 2, quantile, c(0.025, 0.5, 0.975)))
2.5% 50% 97.5%

X.Intercept. -0.75399640 0.07348911 1.07283054
SemanticClassc -0.68274579 0.16244792 0.80071553
SemanticClassf -1.51546566 0.12709561 1.62158050
SemanticClassp -216.54050927 -4.40976146 -3.65166274
SemanticClasst -0.03004542 0.32834900 0.89482430
AccessOfRecgiven -1.98532032 -1.41952502 -0.83553953

284 mixed models

AccessOfRecnew -1.40423078 -0.64366428 -0.04868748
AccessOfThemegiven 1.14068980 1.73408922 2.07713229
AccessOfThemenew -0.65928103 -0.28711212 0.14225554
PronomOfRecpronominal -2.35856122 -1.76332487 -1.17819294
PronomOfThemepronominal 2.14508430 2.45161684 2.80406841
DefinOfRecindefinite 0.24902836 0.58052840 1.14548685
DefinOfThemeindefinite -1.65686315 -1.14979881 -0.72662940
AnimacyOfRecinanimate 1.86492658 2.53141426 3.13096327
LengthOfTheme -0.31025375 -0.19152255 -0.12557149
LengthOfRecipient 0.29265114 0.43854148 0.65946138

Confidence intervals that do not include zero, i.e. rows with only positive or only

negative values, characterize coefficients that are significantly different from zero

at the 5% significance level. For instance, since the 95% confidence interval for

AccessOfThemegiven does not include zero, in contrast to the 95% confidence

interval for AccessOfThemenew, only the former coefficient is significant.

7.5 Case studies

This section discusses four case studies that illustrate some of the

new possibilities offered by mixed-effects models for coming to grips with the

structure of your data.

7.5.1 Primed lexical decision latencies for Dutch neologisms

De Vaan et al. (2007) report a priming study using visual lexical

decision that addressed the question of whether new complex words that subjects

have not seen before are processed differently when encountered for the first

time or for the second time. The data set primingHeid concerns 40 newly

created neologisms with the Dutch suffix -heid, e.g. lobbigheid “fluffiness,” which

we presented to 26 subjects in two conditions. In the first condition, subjects

first responded to the base (lobbig) and 40 trials later encountered its derivative

(lobbigheid). In the alternative condition, they were exposed to the complex word

(lobbigheid), and 40 trials later this same word was repeated. A given subject

was exposed to a word in either the base-priming condition or in the derivative-

priming condition. Our expectation was that subjects who had seen the complex

word before would respond more quickly at the second exposure compared to

subjects who had only seen the stem before, due to a nascent frequency effect:

> primingHeid.lmer0 = lmer(RT ˜ Condition +
+ (1|Subject) + (1|Word), data = primingHeid)
> print(primingHeid.lmer0, corr = FALSE)
Random effects:
Groups Name Variance Std.Dev.
Word (Intercept) 0.0034119 0.058412
Subject (Intercept) 0.0408438 0.202098
Residual 0.0440838 0.209962

7.5 Case studies 285

residuals primingHeid.lmer0

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

0 200 400 600 800

6
.0

6
.4

6
.8

7
.2

primingHeid.lmer0

Index

s
o
rt

(p
ri

m
in

g
H

e
id

$
R

T
)

residuals primingHeid2.lmer0

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

residuals priming2Heid.lmer1

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 7.9. Residuals for the initial model for priming condition (upper left), the ordered reaction times,
and the residuals for the model with 45 extremely long and atypical reaction times removed.

number of obs: 832, groups: Word, 40; Subject, 26

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.60297 0.04215 156.66
Conditionheid 0.03127 0.01467 2.13

The p-value suggests there is indeed an effect of condition, surprisingly an effect

that is inhibitory instead of facilitatory. Inspection of the residuals reveals that

the model fails to fit the longer reaction times, as shown in the upper panels of

Figure 7.9:

> qqnorm(residuals(primingHeid.lmer0),
+ main = "residuals primingHeid.lmer0")
> qqline(residuals(primingHeid.lmer0))
> plot(sort(primingHeid$RT), main = "primingHeid.lmer0")

286 mixed models

We remove the outliers with the greatest reaction times,

> primingHeid2 = primingHeid[primingHeid$RT < 7.1,]
> nrow(primingHeid)-nrow(primingHeid2)
[1] 45
> 45/nrow(primingHeid)
[1] 0.05408654

and refit the model:

> primingHeid2.lmer0 = lmer(RT˜Condition+
+ (1|Subject)+(1|Word), data = primingHeid2)
> primingHeid2.lmer0
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.580379 0.035929 183.15
Conditionheid 0.009115 0.012695 0.72

The effect of Condition is no longer significant. Thus it would seem that the

effect of priming condition is carried only by 45 atypical data points, a mere 5%

of the full data set.

It is at this point that we can profit from the full power of mixed-effects model-

ing. The central concept of priming is that prior processing affects later processing

of related words. By only looking at the effect of condition by itself, we are in fact

ignoring two important sources of variation. First, a subject may have decided

that the base or the neologism was a non-word 40 trials back. If so, that prior

rejection must have been revised, as the data that we are analyzing only contains

the yes-responses. Such a revision may introduce variance, variance that we have

left unaccounted for thus far. Furthermore, the latency elicited for the prime may

help predict the latency for the target word. Again, this is a source of variation

that we can bring into the model. Finally, it is conceivable that the latency for the

prime is not a good predictor for the latency to the target in case the prime was

rejected as a word, as a process of revision of opinion is then superimposed—only

targets eliciting a yes response are considered here. We therefore include as new

predictors the reaction time for the prime (RTtoPrime), whether the prime was

accepted or rejected as a word (ResponseToPrime), and the interaction of these

two predictors. This leads to the following model:

> primingHeid2.lmer1 = lmer(RT ˜ RTtoPrime*ResponseToPrime+Condition+
+ (1|Subject) + (1|Word), data = primingHeid2)
> pvals.fnc(primingHeid2.lmer1, nsim=10000)$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.27072 5.33992 4.93105 5.78696 0.0001 0.0000
RTtoPrime 0.19871 0.18840 0.12483 0.25336 0.0001 0.0000
Respincrrct 1.63316 1.50885 0.75650 2.23385 0.0001 0.0000
Conditionheid -0.03876 -0.03845 -0.06644 -0.01127 0.0060 0.0055
RTtoPrime:
Respincorrct -0.22877 -0.21081 -0.32099 -0.10025 0.0001 0.0000

We see that the two new predictors are relevant. The RT for the prime is a predic-

tor for the RT to the target. However, the interaction indicates that this positive

7.5 Case studies 287

correlation holds only when the prime was accepted as a word. When it was re-

jected, we have to adjust the coefficient for the RT to the prime down to roughly

zero. As expected, revision of opinion masks the correlation with earlier process-

ing. Crucially, we now see a solidly significant effect of Condition, indicating

that indeed a neologism is responded to more quickly upon the second exposure.

This may indicate that memory traces for complex words already begin to develop

after the very first time they have been encountered. A check of the residuals of

this model (as depicted in the lower right panel of Figure 7.9) shows that there is

still room for improvement, but there is no serious worry about atypical outliers

driving the effects.

> qqnorm(residuals(primingHeid2.lmer1),
+ main="residuals primingHeid2.lmer1")
> qqline(residuals(primingHeid2.lmer1))

It is left to you as an exercise to verify that none of the other predictors in the data

frame (family size, length in letters, number of synsets, or trial) are sufficient by

themselves to pull the effect of condition out of the noise. To do so, it is crucial

to have access to the specific response latencies of subjects to the specific primes

they encountered earlier in the experiment. There is no way in which this can be

accomplished with the traditional by-subject and by-item analyses.

7.5.2 Self-paced reading latencies for Dutch neologisms

De Vaan et al. (2007) also used the experimental design described

in the previous section with another task, self-paced reading. Instead of embed-

ding primes and targets in a list of isolated words, they embedded them in short

texts. The question is whether neologisms will similarly benefit from prior expo-

sure when there is meaningful context to guide interpretation. We remove a few

extremely low-valued outliers and a few high-valued outliers, 13 data points in

all:

> selfPacedReadingHeid=selfPacedReadingHeid[selfPacedReadingHeid$RT>5 &
+ selfPacedReadingHeid$RT < 7.2,]

A simple model with Condition as the only predictor does not support an effect

for this predictor:

> selfPacedReadingHeid.lmer = lmer(RT ˜ Condition +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> selfPacedReadingHeid.lmer
Fixed effects:

Estimate Std. Error t value
(Intercept) 5.95569 0.05023 118.57
Conditionheidheid 0.01157 0.02139 0.54

Adding the reading latency for the prime as covariate does help:

> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime + Condition +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)

288 mixed models

> selfPacedReadingHeid.lmer
Fixed effects:

Estimate Std. Error t value
(Intercept) 4.91831 0.15260 32.23
RTtoPrime 0.17574 0.02485 7.07
Conditionheidheid -0.01648 0.02148 -0.77

What we need to do at this point is examine whether we can control for differences

in how the words immediately preceding the target word were read. The preceding

discourse context may lead up to the target to a greater or lesser extent. It may be

necessary to bring this source of variance under control in order for the effect of

Condition to become fully visible. We therefore inspect the correlations of the

reading latency for the target word with the latencies to the four words preceding

the target word:

> round(cor(selfPacedReadingHeid[,c(3, 12:15)]),3)
RT RT4WordsBack RT3WordsBack RT2WordsBack RT1WordBack

RT 1.000 0.453 0.490 0.408 0.453
RT4WordsBack 0.453 1.000 0.484 0.387 0.391
RT3WordsBack 0.490 0.484 1.000 0.405 0.397
RT2WordsBack 0.408 0.387 0.405 1.000 0.453
RT1WordBack 0.453 0.391 0.397 0.453 1.000

There is considerable correlational structure here. Including four correlated vari-

ables as separate predictors makes no sense, as it would give rise to very high

collinearity. A solution is to orthogonalize the latencies for the preceding words

using principal components analysis, and to add the first three (orthogonal) prin-

cipal components as predictors to the model:

> x = selfPacedReadingHeid[,12:15]
> x.pr = prcomp(x, center = T, scale = T)
> selfPacedReadingHeid$PC1 = x.pr$x[,1]
> selfPacedReadingHeid$PC2 = x.pr$x[,2]
> selfPacedReadingHeid$PC3 = x.pr$x[,3]
> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime + PC1 + PC2 + PC3 +
+ Condition + (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> selfPacedReadingHeid.lmer
Fixed effects:

Estimate Std. Error t value
(Intercept) 5.250310 0.139242 37.71
RTtoPrime 0.119199 0.023283 5.12
PC1 0.150975 0.008757 17.24
PC2 -0.010937 0.012907 -0.85
PC3 0.020720 0.013742 1.51
Conditionheidheid -0.003850 0.020160 -0.19

Only the first principal component (which captures 55.4% of the variance of the

four preceding reading latencies) is required in the model. We remove the other

principal components, and test for interactions with PC1:

> selfPacedReadingHeid.lmer = lmer(RT ˜ (RTtoPrime + Condition)*PC1 +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> pvals.fnc(selfPacedReadingHeid.lmer, nsim=10000)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)

7.5 Case studies 289

(Intercept) 5.244705 4.95947 5.523279 0.0001 0.0000
RTtoPrime 0.119359 0.07438 0.169190 0.0001 0.0000
Conditionheidheid -0.005128 -0.04612 0.034474 0.7878 0.7991
PC1 0.080316 -0.05934 0.225098 0.2654 0.2729
RTtoPrime:PC1 0.013893 -0.01027 0.037403 0.2504 0.2549
Conditionheidheid:PC1 -0.028234 -0.05575 -0.001841 0.0390 0.0367

Since PC1 is positively correlated with the latencies to the preceding words,

> cor(selfPacedReadingHeid[,c(19,12:15)])[,"PC1"]
PC1 RT4WordsBack RT3WordsBack RT2WordsBack RT1WordBack

1.0000000 0.7536694 0.7636564 0.7446181 0.7432292

we may interpret PC1 as a measure of the difficulty of the immediately pre-

ceding discourse. The more difficult the preceding discourse is, the longer the

reading latencies for the target, as witnessed by the positive sign of the coeffi-

cient of PC1. The interaction with Condition shows that if the neologism had

been read 40 words earlier in the discourse, the inhibitory effect of PC1 is at-

tenuated compared to when the base had been read previously. Inspection of the

residuals shows that there still is some lack of goodness of fit for the longest

latencies. The effect of Condition remains stable after removal of outliers with

high standardized residuals, however, so it is not driven by a few atypical data

points:

> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime +
+ PC1 * Condition + (1|Subject) + (1|Word),
+ data = selfPacedReadingHeid)
> selfPacedReadingHeid.lmerA = lmer(RT ˜ RTtoPrime +
+ PC1 * Condition + (1|Subject) + (1|Word), data =
+ selfPacedReadingHeid[abs(scale(residuals(selfPacedReadingHeid.lmer)))
+ < 2.5,])
> pvals.fnc(selfPacedReadingHeid.lmerA,nsim=10000)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.32173 5.07890 5.559462 0.0001 0.0000
RTtoPrime 0.10532 0.06571 0.145635 0.0001 0.0000
PC1 0.15057 0.13161 0.169758 0.0001 0.0000
Conditionheidheid -0.01810 -0.05148 0.015194 0.2848 0.2836
PC1:Conditionheidheid -0.02673 -0.04882 -0.005017 0.0184 0.0175

To conclude, this example shows how an effect that is masked initially by a

strong effect of context can nevertheless be detected, but only by taking into

account the correlational structure with the reading times of the words in the

immediately preceding discourse. There is no way of doing so with traditional

analyses requiring prior averaging over subjects and items.

7.5.3 Visual lexical decision latencies of Dutch eight-year-olds

Perdijk et al. (2007) studied the reading skills of eight-year-old Dutch

children using visual lexical decision. Key questions addressed by this experiment

are whether the morphological family size measure is predictive for beginning

readers, and whether systematic differences between beginning readers can be

290 mixed models

traced to lexical predictors such as a word’s frequency and orthographic length.

Perdijk’s data, with the latencies of 59 children to 184 words, are available as the

data set beginningReaders. The list of column names,

> colnames(beginningReaders)
[1] "Word" "Subject" "LogRT"
[4] "Trial" "OrthLength" "LogFrequency"
[7] "LogFamilySize" "ReadingScore" "ProportionOfErrors"

[10] "PC1" "PC2" "PC3"
[13] "PC4"

includes two random-effects variables, Subject and Word, and as the depen-

dent variable the log-transformed reaction time (LogRT). Predictors are Trial

(the rank of a trial in the experimental list), length in letters (OrthLength),

log frequency in a word frequency list based on reading materials for children

(LogFrequency), log morphological family size with counts of words not known

to young children removed (LogFamilySize), by-word error proportions (Pro-

portionOfErrors), a score for reading proficiency (Reading Score), and

four principal components orthogonalizing the reaction times to the preceding

four trials. We centralize OrthLength and LogFrequency because, as we shall

see shortly, by-subject random slopes are required for these predictors and we

want to avoid running into spurious correlation parameters for our random effects:

> beginningReaders$OrthLength = scale(beginningReaders$OrthLength,
+ scale=FALSE)
> beginningReaders$LogFrequency = scale(beginningReaders$LogFrequency,
+ scale=FALSE)

A first mixed-effects model for this data set is:

> beginningReaders.lmer = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1 |Subject), data = beginningReaders)
> pvals.fnc(beginningReaders.lmer, nsim = 1000)$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 7.545557 7.547105 7.476803 7.617784 0.001 0.0000
PC1 0.135777 0.135792 0.129275 0.142626 0.001 0.0000
PC2 0.056464 0.056584 0.047318 0.068183 0.001 0.0000
PC3 -0.027804 -0.027779 -0.039130 -0.017392 0.001 0.0000
ReadingScore -0.004119 -0.004141 -0.005425 -0.002939 0.001 0.0000
OrthLength 0.045510 0.045346 0.036436 0.053244 0.001 0.0000
I(OrthLenˆ2) -0.004114 -0.004107 -0.007593 -0.001189 0.020 0.0165
LogFrequency -0.043652 -0.043798 -0.057531 -0.031607 0.001 0.0000
LogFamilySize -0.014483 -0.014721 -0.031604 0.002729 0.090 0.0908

We note that there is an effect of family size, facilitatory as expected given previous

work, and significant at the 5% level when evaluated with one-tailed tests.

Of special interest in this data set is the random-effects structure. In our initial

model, we included only random intercepts, one for Word and one for Subject.

However, in general, predictors tied to subjects (age, sex, handedness, education

level, etc.) may require by-item random slopes, and predictors related to items

(frequency, length, number of neighbors, etc.) may require by-subject random

7.5 Case studies 291

slopes. For the present example, it turns out we need by-subject random slopes

for word length. These random slopes allow us to bring into the model that children

cope in rather different ways with reading long words:

> beginningReaders.lmer1 = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject), beginningReaders)
> anova(beginningReaders.lmer1, beginningReaders.lmer)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer 11 6019.1 6095.9 -2998.6
begReaders.lmer1 12 5976.8 6060.5 -2976.4 44.383 1 2.701e-11
> beginningReaders.lmer2 = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject)+(1+OrthLength|Subject), beginningReaders)
> anova(beginningReaders.lmer1, beginningReaders.lmer2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer1 12 5976.8 6060.5 -2976.4
begReaders.lmer2 14 5980.1 6077.8 -2976.0 0.6781 2 0.7125

A similar series of steps shows we also need random slopes for LogFrequency

and that again the correlation parameter can be dispensed with:

> beginningReaders.lmer3 = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (1+LogFrequency|Subject), data = beginningReaders)
> anova(beginningReaders.lmer1, beginningReaders.lmer3)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer1 12 5976.8 6060.5 -2976.4
begReaders.lmer3 15 5962.1 6066.8 -2966.1 20.647 3 0.0001246
> beginningReaders.lmer4 = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (0+LogFrequency|Subject), data = beginningReaders)
> anova(beginningReaders.lmer4, beginningReaders.lmer3)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer4 13 5961.1 6051.8 -2967.6
begReaders.lmer3 15 5962.1 6066.8 -2966.1 2.9944 2 0.2238
> anova(beginningReaders.lmer4, beginningReaders.lmer1)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
begReaders.lmer1 12 5976.8 6060.5 -2976.4
begReaders.lmer4 13 5961.1 6051.8 -2967.6 17.652 1 2.652e-05

After removal of outliers and refitting, we make sure that the random-effects pa-

rameters have sensible values and have properly constrained confidence intervals:

> beginningReaders.lmer4a = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (0+LogFrequency|Subject), data = beginningReaders,
+ subset=abs(scale(resid(beginningReaders.lmer4)))<2.5)
> x = pvals.fnc(beginningReaders.lmer4a, nsim=10000)
> x$random

MCMCmean HPD95lower HPD95upper
sigma 0.30937 0.30436 0.31441
Word.(In) 0.06650 0.05690 0.07781
Sbjc.(In) 0.11441 0.09364 0.13845
Sbjc.OrtL 0.03182 0.02443 0.04168

292 mixed models

LogFrequency

(I
n

te
rc

e
p

t)

7.0

7.2

7.4

7.6

7.8

Figure 7.10. Shrinkage for the by-subject coefficients for frequency and intercept: lmList() (circles,
within-group estimates) versus lmer() (+ symbols). Solid grey lines denote the population means.

Sbjc.LgFr 0.03191 0.02258 0.04416
deviance 4327.23205 4315.36462 4340.66993

Without linear mixed-effects models, it would be a formidable task to trace

differential effects for frequency and word length such as observed for the children

in this reading experiment in a principled way. Estimates of by-subject differences,

which in actual tests evaluating reading skills in schools may be quite important,

would be suboptimal without shrinkage (see Figure 7.10).

7.5 Case studies 293

Finally, we examine the table of coefficients. The morphological family size

effect (LogFamilySize) is now significant at the 5% level (one-tailed tests)

according to both the mcmc p-value and the p-value based on the t-statistic:

> x = pvals.fnc(beginningReaders.lmer4a, nsim = 10000, withMCMC=TRUE)
> x$fixed

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 7.584160 7.584132 7.505149 7.659856 0.0001 0.0000
PC1 0.127112 0.127097 0.120748 0.133404 0.0001 0.0000
PC2 0.050347 0.050476 0.040787 0.059970 0.0001 0.0000
PC3 -0.024551 -0.024680 -0.034846 -0.014469 0.0001 0.0000
ReadingScore -0.004687 -0.004687 -0.006160 -0.003246 0.0001 0.0000
OrthLength 0.048587 0.048587 0.036764 0.060110 0.0001 0.0000
I(OrthLenˆ2) -0.004540 -0.004530 -0.007847 -0.001198 0.0084 0.0076
LogFrequency -0.046391 -0.046363 -0.061484 -0.030940 0.0001 0.0000
LogFamSize -0.015548 -0.015412 -0.031732 0.001559 0.0756 0.0669

It is often useful to plot the fixed effects, but as yet there is no general plot method

for lmer objects. As a consequence, we have to make the plots ourselves. As a

first step, we extract the coefficients with fixef():

> coefs = fixef(beginningReaders.lmer4a)
> coefs

(Intercept) PC1 PC2 PC3 ReadingScore
7.584160135 0.127111560 0.050346964 -0.024551161 -0.004687245
OrthLength I(OrthLengthˆ2) LogFrequency LogFamilySize
0.048587098 -0.004540186 -0.046390578 -0.015547652

We also attach the data frame: attaching a data frame makes the columns of the

data frame immediately available.

> attach(beginningReaders)

Next, we select the ranges for each of the predictors for which we want to graph

the partial effect on the reaction times, using the max() and min() functions, and

feed these extreme values to seq() with the specification that it should create a

vector with 40 equally spaced points in the range specified, except for the discrete

length variable:

> pc1 = seq(min(PC1), max(PC1), length = 40)
> pc2 = seq(min(PC2), max(PC2), length = 40)
> pc3 = seq(min(PC3), max(PC3), length = 40)
> score = seq(min(ReadingScore), max(ReadingScore), length = 40)
> freq = seq(min(LogFrequency), max(LogFrequency), length = 40)
> olength = sort(unique(OrthLength))
> famsize = seq(min(LogFamilySize), max(LogFamilySize), length = 40)

Now consider plotting the partial effect for LogFrequency. We start with the

intercept, and add the product of the coefficient for frequency and the vector of

frequencies freq:

> plot(freq, coefs["(Intercept)"] + coefs["LogFrequency"] * freq)

This is sufficient to visualize the shape of the frequency effect, but if we would

stop here the intercept of the regression line would be positioned for words with

294 mixed models

zero as the value for all other predictors. This is undesirable, as there are no words

with zero length, for instance. To obtain an intercept that is appropriate for the

most typical values of the other predictors, we adjust the intercept for the effects

of the other predictors at their medians. We therefore define a vector with these

adjustments:

> adjustments = c(coefs["PC1"] * median(PC1),
+ coefs["PC2"] * median(PC2),
+ coefs["PC3"] * median(PC3),
+ coefs["ReadingScore"] * median(ReadingScore),
+ coefs["OrthLength"] * median(OrthLength) +
+ coefs["I(OrthLengthˆ2)"] * median(OrthLength)ˆ2,
+ coefs["LogFrequency"] * median(LogFrequency),
+ coefs["LogFamilySize"] * median(LogFamilySize))
> adjustments

PC1 PC2 PC3 ReadingScore
2.653726e-02 -4.719135e-04 3.194531e-05 -2.192327e-01

OrthLength LogFrequency LogFamilySize
1.101314e-02 3.487795e-03 -2.105395e-02

The required adjustment to the intercept for the partial effect of frequency is the

sum of all these individual adjustments, with the exception of the adjustment for

frequency itself, the sixth element of the vector of adjustments:

> sum(adjustments[-6])
[1] -0.2031762

We combine all bits and pieces into a data frame,

> dfr = data.frame(
+ x =
+ c(pc1, pc2, pc3, score, olength, freq, famsize),
+ y =
+ c(coefs["(Intercept)"] + coefs["PC1"] * pc1 + sum(adjustments[-1]),
+ coefs["(Intercept)"] + coefs["PC2"] * pc2 + sum(adjustments[-2]),
+ coefs["(Intercept)"] + coefs["PC3"] * pc3 + sum(adjustments[-3]),
+ coefs["(Intercept)"] + coefs["ReadingScore"] * score +
+ sum(adjustments[-4]),
+ coefs["(Intercept)"] + coefs["OrthLength"] * olength +
+ coefs["I(OrthLengthˆ2)"] * olengthˆ2 + sum(adjustments[-5]),
+ coefs["(Intercept)"] + coefs["LogFrequency"] * freq +
+ sum(adjustments[-6]),
+ coefs["(Intercept)"] + coefs["LogFamilySize"]*famsize +
+ sum(adjustments[-7])),
+ which = # the grouping factor for xyplot()
+ c(rep("PC1", length(pc1)), rep("PC2", length(pc2)),
+ rep("PC3", length(pc3)), rep("Reading Score", length(score)),
+ rep("Length in Letters", length(olength)),
+ rep("Log Frequency", length(freq)), rep("Log Family Size",
+ length(famsize))))

and produce Figure 7.11 with xyplot():

> xyplot(y˜x|which, data=dfr, ylim=c(6.5,8.0), scales="free",
+ as.table = TRUE, xlab=" ", ylab="Log RT",
+ panel = function(x, y) panel.lines(x,y))

7.5 Case studies 295

L
o

g
 R

T

6
.5

7
.0

7
.5

8
.0

Length in Letters

6
.5

7
.0

7
.5

8
.0

0 1 2 3

Log Family Size

6
.5

7
.0

7
.5

8
.0

Log Frequency

6
.5

7
.0

7
.5

8
.0

PC1

6
.5

7
.0

7
.5

8
.0

PC2

6
.5

7
.0

7
.5

8
.0

PC3

6
.5

7
.0

7
.5

8
.0

20 40 60 80 100

Reading Score

Figure 7.11. Partial effects of frequency, word length, and family size for Dutch 8-year-olds in
visual lexical decision. Length in letters and Log Frequency have been centralized.

The effects for frequency, word length, and reading score are large compared to

the effect of family size, but small compared to that of pc1. Note that the nonlinear

effect for length suggests a ceiling effect — beginning readers have difficulties

with longer word lengths, but by a length of 9, reaction times are just about as

slow as they can be. We should keep in mind that we imposed a functional form

on the effect of length by using a quadratic polynomial, and a restricted cubic

spline could be considered instead. To visualize mixed-effects models with splines

obtained with rcs(), you can use the plot function for mixed-effects models in

the languageR package, plotLMER.fnc() (see the on-line help for details).

7.5.4 Mixed-effects models in corpus linguistics

The final example of a mixed-effects model comes from corpus lin-

guistics. Keune et al. (2005) studied the frequency of use of words ending in

the Dutch suffix -lijk (compare -ly in English) in written Dutch in the Nether-

lands and in Flanders. The data, available as writtenVariationLijk, bring

together counts in seven newspapers, four from Flanders and three from the

296 mixed models

Netherlands, representing three global registers (Regional, National, and

Quality newspapers). From each of these newspapers, the first 1.5 million words

available in the condiv corpus (Grondelaers et al., 2000) were selected. The fre-

quencies for the 80 most frequent words in -lijk are available in the column labeled

Count:

> writtenVariationLijk[1:4,]
Corpus Word Count Country Register

1 belang aantrekkelijk 26 Flanders Regional
2 gazet aantrekkelijk 17 Flanders Regional
3 laatnieu aantrekkelijk 19 Flanders National
4 limburg aantrekkelijk 33 Netherlands Regional

There are two sets of questions that we want to address. First of all, are words

in -lijk used more often in the Netherlands, or more often in Flanders? Are there

similar differences in their use across written registers? These are questions that

concern the presence or absence of main effects of Country and Register, as

well as their interaction. Second, to what extent might main effects be modulated

by differences that are specific to the individual words in -lijk? Questions of this

kind concern the random effects of Word.

We analyze the data with a generalized mixed-effects model, but we do not

use the binomial distribution, which is appropriate for counts of successes and

failures. Instead, we use the Poisson distribution (with a log link function),

which is appropriate for counts of events in a fixed time window. Here, the fixed

time window is 1.5 million words. Note that a count of, e.g. 26 occurrences for

aantrekkelijk in a subcorpus of 1.5 million words, defines the rate at which this

word appears in that subcorpus.

We begin with a simple model with only random intercepts,

> writtenVariationLijk.lmer = lmer(Count ˜ Country*Register + (1|Word),
+ data = writtenVariationLijk, family = "poisson")

and then fit a more complex model with random slopes for Country:

> writtenVariationLijk.lmer1 = lmer(Count ˜ Country * Register +
+ (1+Country|Word), data = writtenVariationLijk,
+ family = "poisson")

A likelihood ratio test shows that adding random slopes is fully justified, and the

summary of the model provides reasonable estimates:

> anova(writtenVariationLijk.lmer, writtenVariationLijk.lmer1)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

writVarLijk.lmer 7 4505.6 4535.9 -2245.8
writVarLijk.lmer1 9 2856.5 2895.5 -1419.3 1653.1 2 < 2.2e-16
> print(writtenVariationLijk.lmer1, corr=FALSE)
Random effects:
Groups Name Variance Std.Dev. Corr
Word (Intercept) 0.87432 0.93505

CountryNetherlands 0.40269 0.63458 -0.356
number of obs: 560, groups: Word, 80

Estimated scale (compare to 1) 1.948123

7.5 Case studies 297

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.62081 0.10576 34.24 < 2e-16
CountryNetherlands 0.28381 0.07421 3.82 0.000131
RegisterQuality -0.04582 0.01992 -2.30 0.021447
RegisterRegional 0.14419 0.01667 8.65 < 2e-16
CountryNeth:RegisterQuality 0.02022 0.02649 0.76 0.445275
CountryNeth:RegisterRegional -0.22597 0.02432 -9.29 < 2e-16

However, the choice of the Poisson distribution entails the assumption that the

variance of the errors increases with the mean. The ratio of the two should be

1. The estimated actual ratio for our data, listed as Estimated scale is 1.9,

so we are running the risk of overdispersion. There are several ways in which

this lack of goodness of fit can be addressed. One option is to allow the vari-

ance of the errors to increase with the square of the mean, instead of with the

mean, retaining the log link function to constrain the predicted counts to be non-

negative:

> writtenVariationLijk.lmer1A = lmer(Count ˜ Country * Register +
+ (1|Word) + (1+Country|Word), data = writtenVariationLijk,
+ family = quasi(link = "log", variance = muˆ2))

We inspect the coefficients with pvals.fnc(). As Markov chain Monte Carlo

sampling is not yet implemented for generalized linear mixed models, p-values

are based on the t-statistic:

> pvals.fnc(writtenVariationLijk.lmer1A)
Estimate Pr(>|t|)

(Intercept) 3.5683284 0.0000
CountryNetherlands 0.3867314 0.0000
RegisterQuality 0.1518658 0.0825
RegisterRegional 0.2493743 0.0010
CountryNetherlands:RegisterQuality -0.1162445 0.3469
CountryNetherlands:RegisterRegional -0.3455769 0.0029

An alternative for count data is to apply either a square root transformation or a

log transformation. We select the square root transformation here, leaving the log

transformation as an exercise, and now fit a straightforward linear mixed-effects

model:

> writtenVariationLijk.lmer1B = lmer(sqrt(Count) ˜ Country * Register +
+ (1+Country|Word), data = writtenVariationLijk)
> pvals.fnc(writtenVariationLijk.lmer1B)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 6.5878 5.60904 7.5638 0.0001 0.0000
CountryNetherlands 1.2284 0.69321 1.7596 0.0001 0.0000
RegisterQuality 0.3026 -0.04734 0.6415 0.0872 0.0885
RegisterRegional 0.7884 0.49056 1.0944 0.0001 0.0000
CountryNeth:RegQuality -0.2273 -0.74825 0.2355 0.3506 0.3652
CountryNeth:RegRegional -1.1157 -1.58444 -0.6503 0.0001 0.0000

Since the two alternative models support the presence of the same main effects

and their interaction, we return to the original Poisson model. We add the fitted

counts to the data, and compare them with the observed counts:

298 mixed models

ranefs$"(Intercept)"

ra
n
e
fs

$
C

o
u
n
tr

y
N

e
th

e
rl

a
n
d
s

aantrekkelijk
aanvankelijk

aanzienlijk

afhankelijk
begrijpelijk

behoorlijkbelachelijk

daadwerkelijk

degelijk

dergelijk

dodelijk duidelijk

eerlijk

eigenlijk

eindelijk

feitelijk

gebruikelijk

gedeeltelijk

geleidelijk

gemakkelijk

gemeentelijk

gerechtelijk

gevaarlijk
gewoonlijk

gezamenlijk

heerlijk

herhaaldelijk

hoofdzakelijk

hopelijk

inhoudelijk

kennelijk

koninklijk

landelijk

letterlijkmaatschappelijk

makkelijk
menselijk

moeilijk

mogelijk

nadrukkelijk

namelijk

natuurlijk
noodzakelijk

onafhankelijk

onbegrijpelijk

onduidelijk

ongelooflijk

onmiddellijk

onmogelijk

onvermijdelijkonwaarschijnlijk

oorspronkelijk

openlijkopmerkelijk
persoonlijk

pijnlijk

plaatselijk

redelijk

respectievelijk
schriftelijk

stedelijk

tamelijk

tijdelijk

toegankelijk

uitdrukkelijk

uiteindelijk

uitzonderlijk

verantwoordelijk

vermoedelijk

verschrikkelijk
verwonderlijk

voornamelijk

voorwaardelijk

vreselijk

vriendelijk

vrolijk

waarschijnlijkwerkelijk

wetenschappelijkwettelijk

Figure 7.12. The blups for intercept and CountryNetherlands in the Poisson
model fit to counts of words with the Dutch suffix -lijk in seven Dutch and
Flemish newspapers.

> writtenVariationLijk$fitted = exp(fitted(writtenVariationLijk.lmer1))
> cor(writtenVariationLijk$fitted, writtenVariationLijk$Count)ˆ2
[1] 0.9709

It is clear that the fit is good. (An alternative option that we might consider here is

to use family="quasipoisson" instead of family="poisson". This option

relaxes the requirement that the dispersion parameter should be close to 1.)

We can visualize how the coefficients of individual words compare to the pop-

ulation means by plotting pairs of random effects. For instance, suppose we want

to compare differences in the frequencies of the words as they are used in the

Dutch and Flemish national newspapers. Since the national newspapers represent

the reference level, this comparison can be carried out graphically by plotting the

blups for the intercept against the blups for CountryNetherlands, as shown

in Figure 7.12. One can read off the scatterplot that mogelijk (“possible”) and

duidelijk (“clear”) are words that appear more often in the Flemish newspaper

(they are at the far right of the plot), whereas landelijk (“country-specific”) and

kennelijk (“apparently”) are more fashionable in the corresponding Dutch news-

paper (they are at the top of the graph):

> ranefs = ranef(writtenVariationLijk.lmer1)$Word
> plot(ranefs$"(Intercept)", ranefs$CountryNetherlands, type="n")
> text(ranefs$"(Intercept)", ranefs$CountryNetherlands,
+ rownames(ranefs), cex = 0.8)

7.5 Case studies 299

nl$ranef

v
l$

ra
n
e
f

aantrekkelijk

aanvankelijk

aanzienlijk

afhankelijk

begrijpelijk

behoorlijk

belachelijk
daadwerkelijk

degelijk

dergelijk

dodelijk

duidelijk

eerlijk

eigenlijk

eindelijk

feitelijk

gebruikelijk

gedeeltelijk

geleidelijk

gemakkelijk

gemeentelijk
gerechtelijk

gevaarlijk

gewoonlijk

gezamenlijk

heerlijk

herhaaldelijkhoofdzakelijk

hopelijk

inhoudelijk

kennelijk

koninklijk

landelijk

letterlijk

maatschappelijk

makkelijk

menselijk

moeilijk

mogelijk

nadrukkelijk

namelijk

natuurlijk

noodzakelijk

onafhankelijk

onbegrijpelijk

onduidelijkongelooflijk

onmiddellijk

onmogelijk

onvermijdelijk

onwaarschijnlijk

oorspronkelijk

openlijk

opmerkelijk

persoonlijk

pijnlijk

laatselijk
redelijk

respectievelijk

schriftelijk

stedelijk

tamelijk

tijdelijk

toegankelijk

uitdrukkelijk

uiteindelijk

uitzonderlijk

verantwoordelijkvermoedelijk

verschrikkelijk

verwonderlijk

voornamelijk

voorwaardelijk

vreselijk

vriendelijk

vrolijk

waarschijnlijk

werkelijk

wetenschappelijk
wettelijk

Figure 7.13. By-word adjustments for Flanders and the Netherlands according to a mixed-
effects Poisson model with equal variances for the random effects for Country. Words with
positive scores are used more often than the population average; words above the diagonal are
used preferentially in Flanders.

When we are dealing with random slopes for a factor, a different parameter-

ization is available that assumes: (i) that the adjustments for different levels are

uncorrelated; and (ii) that the variances for the different factor levels are identical.

This is often useful for factors with more than two levels. We illustrate it here for

the two-level factor Country:

> writtenVariationLijk.lmer2 = lmer(Count ˜ Country * Register +
+ (1|Word)+(1|Country:Word), writtenVariationLijk, family="poisson")
> writtenVariationLijk.lmer2
Random effects:
Groups Name Variance Std.Dev.
Country:Word (Intercept) 0.20135 0.44872
Word (Intercept) 0.66323 0.81439
number of obs: 560, groups: Country:Word, 160; Word, 80

The blups for word now specify adjustments for the words with respect to their

population average,

> words = ranef(writtenVariationLijk.lmer2)[[2]]
> head(words, 3)

300 mixed models

(Intercept)
aantrekkelijk -0.3008298
aanvankelijk 0.8413145
aanzienlijk 0.1609281

and the blups for Country now specify independent country-specific adjust-

ments:

> countries = ranef(writtenVariationLijk.lmer2)[[1]]
> head(countries,3)

(Intercept)
Flanders:aantrekkelijk -0.24646081
Flanders:aanvankelijk -0.01005619
Flanders:aanzienlijk -0.25390726
> tail(countries, 3)

(Intercept)
Netherlands:werkelijk 0.13987759
Netherlands:wetenschappelijk -0.09695836
Netherlands:wettelijk -0.07178403

We can combine these blups to obtain by-word adjustments for Flanders and

for the Netherlands. When plotted (see Figure 7.13) they provide an intuitive

overview of the country-specific preferences:

> countries$which = factor(substr(rownames(countries),1,4))
> countries$words = rep(rownames(words),2)
> countries$intWords = rep(words[,1], 2)
> countries$ranef = countries$"(Intercept)" + countries$intWords
> vl = countries[countries$which=="Flan",]
> nl = countries[countries$which!="Flan",]
> plot(nl$ranef, vl$ranef, type="n")
> text(nl$ranef, vl$ranef, nl$words, cex=0.7)
> abline(0, 1, col="grey")

Mixed-effects models thus provide a useful tool side by side with principal com-

ponents analysis and correspondence analysis for the joint study of the textual

frequencies of a large number of words. They offer the advantage that the signifi-

cance of main effects and interactions can be ascertained directly, while offering

insight into the specific properties of the individual words through their blups.

Workbook section

Exercises

1. Consider our final model for the visual lexical decision data lexdec3.lmerE, and test

whether subjects differ in their sensitivity to word length. Answering this exercise involves

three steps. First, recreate lexdec3 and make sure that Trial and also Length are centered.

Then recreate lexdec3.lmerE with the centered version of word length as predictor.

Second, add Length as a random slope for subject, once without and once with a correlation

parameter for the random intercepts and random slopes for length. Third, use the anova()

function to select the appropriate model.

7.5 Case studies 301

2. Above, we modeled the reaction times of young children to Dutch words with a

mixed-effects model with both Subject and Word as random effect:

> beginningReaders.lmer4 = lmer(LogRT ˜ PC1 + PC2 + PC3 +

+ ReadingScore + OrthLength + I(OrthLengthˆ2) + LogFrequency +

+ LogFamilySize + (1|Word) + (1|Subject)+(0+LogFrequency|Subject) +

+ (0+OrthLength|Subject), data = beginningReaders)

Show that the presence of the random effect for Word is justified by first fitting a model with

the same fixed effects but without Word as random effect, followed by a likelihood ratio test

comparing beginningReaders.lmer4 with this new, more parsimonious model. Next,

consider whether random slopes are required for PC1. Do not include parameters for

correlations with other random slopes.

3. Investigate whether the following predictors should be added to the model for the self-paced

reading latencies (reading.lmerA): subjective frequency rating (Rating), word length

(LengthInLetters), and the number of synsets (NumberOfSynsets). The starting model

of this exercise is obtained with the following lines of code:

> selfPacedReadingHeid =

+ selfPacedReadingHeid[selfPacedReadingHeid$RT > 5 &

+ selfPacedReadingHeid$RT < 7.2,]

> x = selfPacedReadingHeid[,12:15]

> x.pr = prcomp(x, center = T, scale = T)

> selfPacedReadingHeid$PC1 = x.pr$x[,1]

> selfPacedReadingHeid$PC2 = x.pr$x[,2]

> selfPacedReadingHeid$PC3 = x.pr$x[,3]

> selfPacedReadingHeid.lmer = lmer(RT ˜ RTtoPrime +

+ LengthInLetters + PC1 * Condition + (1|Subject) + (1|Word),

+ data = selfPacedReadingHeid)

4. Use the writtenVariationLijk data set to fit a mixed-effects model with the logarithm of

Count as the dependent variable, with Country and Register and their interaction as

fixed-effects predictors, and with random intercepts for Word and by-word random slopes for

Country. Consider the residuals, remove outliers, refit the model, and inspect the residuals

of the trimmed model.

5. We return to the data on the use of word order and ergative case marking in Lajamanu

Warlpiri for which the first exercise of Chapter 2 considered a mosaic plot. Use a

mixed-effects logistic regression model with Speaker and Text as random effects,

CaseMarking (ergative versus other) as dependent variable, and as predictors

AnimacyOfSubject, AnimacyOfObject, OvertnessOfObject, WordOrder (whether the

subject is initial), and AgeGroup (child versus adult) to study how children and adults use the

ergative case. Begin with a simple main effects model with all predictors included. Then

remove the two object-related predictors, and refit. Finally include an interaction of

AgeGroup by WordOrder. The data set is available as warlpiri.

6. In Chapter 4 (section 4.4.1) we fitted a model of covariance to size ratings obtained by

averaging over subjects. The question addressed here is whether the results of this by-item

302 mixed models

analysis are supported by a mixed-effects model. The data are available as the data set

sizeRatings. Fit a model with Subject and Word as crossed random effects, with Rating

as dependent variable, and with the MeanFamiliarity ratings for the words and Class as

predictors. Also include two variables that provide information on the subjects: Language,

which specifies whether their native language is English, and Naive, which specifies whether

the subjects were informed about the purpose of the experiment. Include interactions of

Class by Naive and of Language by the linear and quadratic terms of MeanFamiliarity.

7. Verify that the simpler model for the corpus data, writtenVariationLijk.lmer2, is

justified compared to the more complex model writtenVariationLijk.lmer1, using a

likelihood ratio test.

Appendix A Solutions to the exercises

1.1

> spanishMeta
Author YearOfBirth TextName PubDate Nwords FullName

1 C 1916 X14458gll 1983 2972 Cela
2 C 1916 X14459gll 1951 3040 Cela
...
> colnames(spanishMeta)
[1] "Author" "YearOfBirth" "TextName" "PubDate" "Nwords"
[6] "FullName"
> nrow(spanishMeta)
[1] 15

1.2

> xtabs(˜ Author, data=spanishMeta)
Author
C M V
5 5 5

The means can be obtained in two ways:

> aggregate(spanishMeta$PubDate, list(spanishMeta$Author), mean)
Group.1 x

1 C 1956.0
2 M 1990.2
3 V 1974.6
> tapply(spanishMeta$PubDate, list(spanishMeta$Author), mean)

C M V
1956.0 1990.2 1974.6

1.3

> spanishMeta[order(spanishMeta$YearOfBirth, spanishMeta$Nwords),]

1.4

> v = spanishMeta$PubDate
> sort(v)
[1] 1942 1948 1951 1956 1963 1965 1977 1981 1982 1983
[11] 1986 1987 1989 1992 2002
> ?sort
> sort(v, decreasing=T)
[1] 2002 1992 1989 1987 1986 1983 1982 1981 1977 1965
[11] 1963 1956 1951 1948 1942
> sort(rownames(spanishMeta))

303

304 appendix a solutions to the exercises

[1] "1" "10" "11" "12" "13" "14" "15" "2" "3" "4"
[11] "5" "6" "7" "8" "9"

1.5

> spanishMeta[spanishMeta$PubDate < 1980,]

1.6

> mean(spanishMeta$PubDate)
[1] 1973.6
> sum(spanishMeta$PubDate)/length(spanishMeta$PubDate)
[1] 1973.6

1.7

> spanishMeta = merge(spanishMeta, composer, by.x="FullName",
+ by.y="Author")

2.1

> warlpiri.xtabs= xtabs(˜ CaseMarking + AnimacyOfSubject + AgeGroup +
+ WordOrder, data = warlpiri)
> mosaicplot(warlpiri.xtabs,xlab="",ylab="",main="")

Figure A.1 reveals an asymmetry in how frequently adults and children use erga-

tive case marking across word orders. For instance, in subject-initial sentences,

adults are more likely to use ergative case marking for animate subjects than

children.

2.2 (Figure A.2)

> par(mfrow = c(1, 2))
> plot(exp(heid2$BaseFrequency), exp(heid2$MeanRT))
> plot(heid2$BaseFrequency, heid2$MeanRT)
> par(mfrow=c(1, 1))

2.3 (Figure A.3)

> plot(log(ranks), log(moby.table),
+ xlab = "log rank", ylab = "log frequency")

2.4

> xylowess.fnc(RT Trial | Subject, data = lexdec, ylab="log RT")

Figure A.4 suggests that subjectT2 speeds up as the experiment proceeds, possibly

due to within-experiment learning of how to do lexical decision efficiently. Subject

D started out with fast response latencies, but slowed down later in the experiment,

possibly because of fatigue.

Appendix A Solutions to the exercises 305

ergative other

a
n
im

a
te

in
a
n
im

a
te

adult child

su
b
In

iti
a
l

su
b
N

o
tI
n
iti

a
l

su
b
N

o
tI
n
iti

a
l s

u
b
In

iti
a
l

adult child

Figure A.1. Mosaic plot for the use of ergative case marking in Lajamanu Warlpiri, cross-
classified by the animacy of the subject (left: inanimate versus animate), word order (left:
initial versus non-initial subject), case-marking (top: ergative versus other) and age group
(top: adult versus child).

2.5

> library(MASS)
> par(mfrow = c(1, 2))
> truehist(english$RTnaming)
> plot(density(english$RTnaming))
> par(mfrow = c(1, 1))

The histogram and the density of Figure A.5 show two separate peaks or modes.

This bimodal distribution consists of two almost separate distributions, one for

the younger subjects, and one for the older subjects.

> library(lattice)
> bwplot(RTnaming ˜ Voice | AgeSubject, data = english)

The trellis boxplot (not shown) illustrates that the distribution of longer latencies

belongs to the older subjects. The boxplot also visualizes the effect of the differ-

ential sensitivity of the voicekey for how naming latencies are registered: Voiced

phonemes are registered earlier.

306 appendix a solutions to the exercises

0 2000 4000

6
5

0
7

0
0

7
5

0
8

0
0

exp(heid2$BaseFrequency)

e
x
p

(h
e

id
2

$
M

e
a

n
R

T
)

0 2 4 6 8

6
.4

5
6

.5
5

6
.6

5

heid2$BaseFrequency

h
e

id
2

$
M

e
a

n
R

T

Figure A.2. Scatterplots of reaction time in visual lexical decision by base frequency for
neologisms in -heid without (left) and with (right) logarithmically transformed variables. Note
that without the log transformation, the pattern in the data is dominated by just one word with
a very high base frequency.

0 2 4 6 8 10

0
2

4
6

8

log rank

lo
g

 f
re

q
u

e
n

c
y

Figure A.3. Scatterplot for frequency and rank in the double logarithmic plane
for Melville’s Moby Dick. Except for the six highest-frequency words, the
pattern is reasonably linear, as expected on the basis of Zipf’s law.

3.1

> wonderland$hare = wonderland$word=="hare" #March Hare
> countOfHare = tapply(wonderland$hare, wonderland$chunk, sum)
> countOfHare.tab = xtabs(˜countOfHare)
> wonderland$very = wonderland$word=="very"
> countOfVery = tapply(wonderland$very, wonderland$chunk, sum)
> countOfVery.tab = xtabs(˜countOfVery)

Appendix A Solutions to the exercises 307

Trial

lo
g

 R
T

6.0

6.5

7.0

7.5

50 100 150

A1 A2

50 100 150

A3 C

50 100 150

D

I J K M1

6.0

6.5

7.0

7.5

M2

6.0

6.5

7.0

7.5

P R1 R2 R3 S

T1 T2 V W1

6.0

6.5

7.0

7.5

W2

6.0

6.5

7.0

7.5

Z

Figure A.4. Trellis scatterplot with smoother for RT as a function of Trial. Each panel represents one subject.

3.2

> plot(1:40, countOfAlice, type = "h")
> plot(1:40, countOfVery, type = "h")
> plot(1:40, countOfHare, type = "h")

The three leftmost panels in Figure A.6 illustrate that Alice and very occur rela-

tively uniformly through the text, but that hare occurs only in the second half of

the text (in the collocate March Hare), and even there it is bursty instead of being

relatively evenly distributed across the chunks.

3.3

> plot(as.numeric(names(countOfAlice.tab)), countOfAlice.tab/
+ sum(countOfAlice.tab), type = "h", xlim = c(0,18), ylim = c(0,0.9))
> plot(as.numeric(names(countOfVery.tab)), countOfVery.tab/

308 appendix a solutions to the exercises

6.0 6.2 6.4 6.6

0
1

2
3

4

english$RTnaming

6.0 6.2 6.4 6.6 6.8
0

1
2

3

N = 4568 Bandwidth = 0.02978

D
e
n
s
it
y

Figure A.5. Histogram and density of the naming latencies to 2197 English monomorphemic monosyllabic
words, collected for two subject populations (old and young speakers).

+ sum(countOfVery.tab), type = "h", xlim = c(0,18), ylim = c(0,0.4))
> plot(as.numeric(names(countOfHare.tab)), countOfHare.tab/
+ sum(countOfHare.tab), type = "h", xlim = c(0,18), ylim = c(0,0.9))

See the three panels in the second column of Figure A.6.

3.4

> plot(0:18, dpois(0:18, mean(countOfAlice)), type = "h",
+ xlim = c(0, 18), ylim = c(0, 0.9))
> plot(0:18, dpois(0:18, mean(countOfVery)), type = "h",
+ xlim = c(0, 18), ylim = c(0, 0.4))
> plot(0:18, dpois(0:18, mean(countOfHare)), type = "h",
+ xlim = c(0, 18), ylim = c(0, 0.9))

See the third column of panels in Figure A.6. Note that for Alice and very, the Pois-

son densities might be smoothed versions of the sample densities. However, for

hare the sample densities are very unevenly distributed compared to the Poisson

density.

3.5

> plot(qpois(1:20 / 20, mean(countOfAlice)), quantile(countOfAlice,
+ 1:20 / 20), xlab="theoretical quantiles", ylab = "sample quantiles")
> plot(qpois(1:20 / 20, mean(countOfVery)), quantile(countOfVery,
+ 1:20 / 20), xlab="theoretical quantiles", ylab = "sample quantiles")
> plot(qpois(1:20 / 20, mean(countOfHare)), quantile(countOfHare,
+ 1:20 / 20), xlab="theoretical quantiles", ylab = "sample quantiles")

Appendix A Solutions to the exercises 309

0 10 20 30 40

5
1
0

1
5

1:40

co
u
n
tO

fA
lic

e

0 5 10 15
0
.0

0
.2

0
.4

0
.6

0
.8

0:18

n
u
m

b
e
r

o
f
ch

u
n
ks

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

0:18

d
p
o
is

(0
:1

8
,
m

e
a
n
(c

o
u
n
tO

fA
lic

e
))

6 8 12

4
6

8
1
0

1
4

1
8

theoretical quantiles

sa
m

p
le

 q
u
a
n
til

e
s

0 10 20 30 40

0
2

4
6

8

1:40

co
u
n
tO

fV
e
ry

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0:18

n
u
m

b
e
r

o
f
ch

u
n
ks

0 5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0:18

d
p
o
is

(0
:1

8
,
m

e
a
n
(c

o
u
n
tO

fV
e
ry

))

1 3 5 7

2
4

6
8

theoretical quantiles

sa
m

p
le

 q
u
a
n
til

e
s

0 10 20 30 40

0
2

4
6

8

1:40

co
u
n
tO

fH
a
re

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

0:18

n
u
m

b
e
r

o
f
ch

u
n
ks

0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

0:18

d
p
o
is

(0
:1

8
,
m

e
a
n
(c

o
u
n
tO

fH
a
re

))

0.0 1.0 2.0

0
2

4
6

8

theoretical quantiles

sa
m

p
le

 q
u
a
n
til

e
s

Figure A.6. Counts of the occurrences of Alice, hare and very across text chunks (left), sample densities
(second column), the corresponding Poisson densities (third column), and quantile-quantile plots (right).

See the fourth column of panels in Figure A.6. The quantile-quantile plots are

roughly linear for Alice and very, and therefore support the possibility that Alice
and very are Poisson-distributed. By contrast, hare clearly does not follow a

Poisson distribution.

3.6

> 1 - ppois(10, 4)
[1] 0.002839766

A much better estimate of λ is the mean across chunks, 9.95:

> 1 - ppois(10, 9.95)
[1] 0.410705

310 appendix a solutions to the exercises

That this is a good estimate of the actual proportion of chunks with 10 or more

occurrences is verified with the quantile() function, supplied with the com-

plementary proportion:

> quantile(countOfAlice, 0.589295)
58.9295%

10

4.1

> chisq.test(verbs.xtabs)

Pearson’s Chi-squared test with Yates’ continuity correction

data: verbs.xtabs
X-squared = 13.9948, df = 1, p-value = 0.0001833

4.2 We first estimate the rate at which het appears in chunks of 1000 words:

> lambda = mean(havelaar$Frequency)

Given lambda, we apply a Kolmogorov-Smirnov test, with the vector of fre-

quencies as its first argument, the distribution function ppois() as its second

argument, and the Poisson parameter lambda as its third argument:

> ks.test(havelaar$Frequency, "ppois", lambda)

One-sample Kolmogorov-Smirnov test

D = 0.1198, p-value = 0.1164

Warning message: cannot compute correct p-values with ties

The large p-value suggests that there is no reason to suppose that the frequency of

het does not follow a Poisson distribution. However, if we resolve the ties using

jitter(), we do find evidence against het following a Poisson distribution:

> ks.test(jitter(havelaar$Frequency), "ppois", lambda)
D = 0.1738, p-value = 0.004389

4.3 Density plots (Figure A.7) show that DurationOfPrefix is roughly sym-

metrically distributed, but that Frequency is roughly symmetrical only after a

log transform:

> par(mfrow = c(1, 3), pty = "s")
> plot(density(durationsGe$DurationOfPrefix), main="duration")
> plot(density(durationsGe$Frequency), main = "frequency")
> plot(density(log(durationsGe$Frequency)), main = "log frequency")
> par(mfrow = c(1, 1), pty = "m")

Both distributions have slightly thicker right tails, so it does not come as a surprise

that the Shapiro-Wilk test of normality is significant:

Appendix A Solutions to the exercises 311

0.00 0.15 0.30

0
2

4
6

8
duration

N = 428 Bandwidth = 0.01216

D
e

n
si

ty

0 2000 6000

0
.0

0
0

0
.0

0
6

0
.0

1
2

frequency

N = 428 Bandwidth = 10.65
D

e
n

si
ty

0 2 4 6 8 10

0
.0

0
0

.1
0

0
.2

0

log frequency

N = 428 Bandwidth = 0.4578

D
e

n
si

ty

Figure A.7. Densities for the duration of the Dutch prefix ge- and the frequencies of its carrier words.

> shapiro.test(durationsGe$DurationOfPrefix)
...
W = 0.9633, p-value = 7.37e-09

> shapiro.test(log(durationsGe$Frequency))
...
W = 0.9796, p-value = 9.981e-06

There is sufficient symmetry to run a linear model, although we should keep an

eye open for the harmful effect of outliers (see Chapter 6 for further discussion):

> ge.lm = lm(DurationOfPrefix ˜ log(Frequency + 1), data = durationsGe)
> summary(ge.lm)

Call:
lm(formula = DurationOfPrefix ˜ log(Frequency + 1), data = ge)

Residuals:
Min 1Q Median 3Q Max

-0.101404 -0.031994 -0.006107 0.027866 0.185379

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.139883 0.005028 27.82 < 2e-16
log(Frequency + 1) -0.004658 0.001429 -3.26 0.00121

Residual standard error: 0.04689 on 426 degrees of freedom
Multiple R-Squared: 0.02433, Adjusted R-squared: 0.02204
F-statistic: 10.62 on 1 and 426 DF, p-value: 0.001205

We observe significant predictivity for frequency: more frequent words tend to

have past participles with a shorter prefix. The R-squared, however, is only a

mere 2%. On the one hand, this is not surprising, as the model neglects many

other potential predictors such as speech rate. On the other hand, these data do

not suggest that the quality of a speech synthesis system would benefit greatly by

making the duration of the prefix depend on word frequency.

312 appendix a solutions to the exercises

4.4 A model with an interaction with the quadratic term is specified as follows:

> ratings.lm = lm(meanSizeRating ˜ meanFamiliarity * Class +
+ I(meanFamiliarityˆ2)*Class, data = ratings)

Inspection of the summary,

> summary(ratings.lm)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.16838 0.59476 7.008 8.95e-10
meanFamiliarity -0.48424 0.32304 -1.499 0.1381
Classplant 1.02187 1.86988 0.546 0.5864
I(meanFamiliarityˆ2) 0.09049 0.04168 2.171 0.0331
meanFamiliarity:Classplant -1.18747 0.87990 -1.350 0.1812
Classplant:I(meanFamiliarityˆ2) 0.11254 0.10087 1.116 0.2681
...

shows that this interaction is not significant. Note that by including one

superfluous interaction the significance of the majority of other predictors in the

model is masked.

4.5 Given the objects alice, very, and hare as created in the exercise for

Chapter 3, we carry out the Kolmogorov-Smirnov tests as follows:

> ks.test(countOfAlice, ppois, mean(countOfAlice))
D = 0.1181, p-value = 0.6325
> ks.test(countOfVery, ppois, mean(countOfVery))
D = 0.1902, p-value = 0.1106
> ks.test(countOfHare, ppois, mean(countOfHare))
D = 0.4607, p-value = 8.449e-08

There is no evidence that Alice and very do not follow a Poisson distribution.

Hare, however, is clearly not Poisson-distributed.

4.6 We have the choice between using lm() for a one-way analysis of variance,

> english.lm = lm(RTlexdec ˜ AgeSubject, data = english)
> summary(english.lm)$coef
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.493500 0.001069 6073.7 <2e-16
AgeSubjectyoung -0.341989 0.001512 -226.2 <2e-16

or between using the aov() function:

> summary(aov(RTnaming ˜ AgeSubject, data = english))
Df Sum Sq Mean Sq F value Pr(>F)

AgeSubject 1 133.564 133.564 51161 < 2.2e-16
Residuals 4566 11.920 0.003

Appendix A Solutions to the exercises 313

The lm() function is more useful, because it informs us that the difference be-

tween the two group means is −0.34, and that the group mean for the old subjects

is 6.49. To obtain the group mean for the young subjects, we subtract 0.34:

> 6.493500 - 0.341989
[1] 6.151511

4.7 We use lm() for the analysis of covariance:

> summary(lm(DurationPrefixNasal ˜ PlosivePresent + Frequency,
+ data = durationsOnt, subset = DurationPrefixNasal > 0))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0723609 0.0037796 19.145 < 2e-16
PlosivePresentyes -0.0218871 0.0034788 -6.292 9.88e-09
log(Frequency) -0.0016590 0.0009575 -1.733 0.0864

Residual standard error: 0.0155 on 94 degrees of freedom
Multiple R-Squared: 0.3194, Adjusted R-squared: 0.305
F-statistic: 22.06 on 2 and 94 DF, p-value: 1.395e-08

The effect of frequency is in the expected direction: a greater frequency of use

implies greater reduction. Hence, we are allowed to use a one-tailed test, and

accept it as a significant predictor. If the plosive is present, the nasal is realized

shorter than when it is absent, which is suggestive of a compensatory lengthening

effect.

5.1

> dat = affixProductivity[affixProductivity$Registers == "L",]
> dat.pr = prcomp(dat[, 1:27], center = T, scale = T)
> summary(dat.pr)
Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 2.030 1.768 1.635 1.5789 1.5271
Proportion of Variance 0.153 0.116 0.099 0.0923 0.0864
Cumulative Proportion 0.153 0.268 0.367 0.4597 0.5461

We visually inspect the first four PCs with pairscor.fnc():

> pairscor.fnc(data.frame(dat.pr$x[,1:4], birth = dat$Birth))

The result is shown in Figure A.8. Date of birth is significantly correlated with

PC2, also when Milton and Startrek are removed from the data set:

> dat2 = dat[-c(21, 18),]
> dat2.pr = prcomp(dat2[, 1:27], center = T, scale = T)
> cor.test(dat2.pr$x[,2], dat2$Birth)
t = -4.3786, df = 24, p-value = 0.0002017

cor
-0.6663968

A biplot (Figure A.9) suggests that the early authors used -able, est, and be- more

productively, and that the late authors used -ize and -less more productively:

314 appendix a solutions to the exercises

PC1

r = 0

p = 1

rs = 0.3

p = 0.1172

PC2

r = 0

p = 1

rs = 0

p = 0.9889

r = 0

p = 1

rs = 0.06

p = 0.7657

PC3

r = 0

p = 1

p = 0.2546

r = 0

p = 1

rs = 0.01

p = 0.9445

r = 0

p = 1

p = 0.9523

PC4

r = 0.55

p = 0.0026

rs = 0.21

p = 0.291 p = 0.0032

r = 0.07

p = 0.7182

p = 0.418

r = 0.34

p = 0.0727

rs = 0.25

p = 0.1987

1600 1750 1900

1
6
0
0

1
7
5
0

1
9
0
0

birth

Figure A.8. Scatterplot matrix for the correlations of the principal components for 27 texts in productivity
space. Note that all PCs are pairwise uncorrelated, as expected, and that PC2 is significantly correlated
with year of birth.

> biplot(dat2.pr, var.axes = F)

5.2

> lexicalMeasures.cor = cor(lexicalMeasures[, -1], method = "spearman")ˆ2
> lexicalMeasures.scale = cmdscale(dist(lexicalMeasures.cor), k = 2)

To plot the two kinds of measures in black and grey, we define a vector with the

semantic measures, and take advantage of the subscripting capacities of R:

> semanticvars = c("Vf", "Dent", "NsyC", "NsyS", "CelS", "Fdif",
+ "NVratio", "Ient")
> plot(lexicalMeasures.scale[,c(1,2)],type="n")
> text(lexicalMeasures.scale[,c(1,2)], rownames(lexicalMeasures.scale),

Appendix A Solutions to the exercises 315

PC1

P
C

2

Austen

Burroughs

Bronte

Conrad

Conrad2

Dickens

Doyle2

Dickens2

Doyle

Doyle3

Jamesames2

London2

London

Montgomery

Melville

Morris

Orczy

Stoker

Trollope3

Trollope

Trollope2

Twain

Wells3

Wells

Wells2
semi

anti

ee

ism

ian

ful

y

ness

able

ly unV

unA

ize less

erA

erC

ity
super

est

ment

ify

re

ation

in.

ex

en

be

Figure A.9. Biplot for texts and affixes, the second principal component
captures year of birth.

+ col=c("red","blue")[(rownames(lexicalMeasures.scale) %in% semanticvars)+
+ 1])

The result is shown in Figure A. 10.

5.3

> finalDevoicing[1:3,]
Word Onset1Type Onset2Type VowelType ConsonantType

1 madelief None Sonorant iuy None
2 boes None Obstruent iuy None
3 accuraat None Sonorant long None

Obstruent Nsyll Stress Voice
1 F 3 F voiced
2 S 1 F voiced
3 T 3 F voiceless

A cart tree is fitted to the data with,

> finalDevoicing.rp = rpart(Voice ˜ ., data = finalDevoicing[, -1])

where we exclude the column labeling the words. We examine the cross-validation

error scores by plotting the object, select cp = 0.021 and prune accordingly:

> plotcp(finalDevoicing.rp)
> finalDevoicing.rp1 = prune(finalDevoicing.rp, cp = 0.021)

Finally, we plot the cross-validated tree, shown in Figure A.11:

316 appendix a solutions to the exercises

measures.scale[, c(1, 2)][,1]

m
e
a
s
u
re

s
.s

c
a
le

[,
 c

(1
,
2
)]

[,
2
]

CelS

Fdif

Vf

Dent

Ient

NsyS

NsyC

Len

Ncou

BigrInBi

spelV
spelN

phonV
phonN

friendsV
riendsN

ffV
ffN

fbVfbN

ffNonzer

NVratio

Figure A.10. Multidimensional scaling for the correlation matrix of lexical measures for 2233

English monomorphemic and monosyllabic words. Semantic measures are shown in grey, non-
semantic measures are depicted in black.

> plot(finalDevoicing.rp1, margin = 0.1, compress = T)
> text(finalDevoicing.rp1, use.n = T, pretty = 0)

The main split is on the type of obstruent: labiodental and velar fricatives (F,

X), as opposed to alveolar fricatives (S) and plosives (P, T). The latter subset is

partitioned by vowel type (phonologically long vowels, including phonetically

short high vowels) versus short vowels. The phonologically long vowels are in

turn partitioned by whether the obstruent is an alveolar fricative or a plosive.

Final splits are by sonorant type. Note that, not surprisingly, the characteristics

of the onset (Onset1Type, Onset2Type) are not predictive. We cross-tabulate

observed and expected voicing,

> xtab = xtabs(˜ finalDevoicing$Voice +
+ predict(finalDevoicing.rp1, finalDevoicing, type="class"))
> xtab

predict(finalDevoicing.rp1, finalDevoicing, type = "class")
finalDevoicing$Voice voiced voiceless

voiced 387 205
voiceless 104 1001

Appendix A Solutions to the exercises 317

|
Obstruent=F,X

VowelType=iuy,long

Obstruent=S

ConsonantType=None,Sonoran t ConsonantType=Sonorant

voiced
243/54

voiced
117/36

voiceless
0/18

voiced
27/14

voiceless
73/259

voiceless
132/724

Figure A.11. Classification tree for the voicing alternation of stem-final
obstruents in Dutch monomorphemic verbs.

and observe a classification accuracy of 82% that is a significant improvement on

the classification accuracy of a baseline model that always selects voiceless:

> xtabs(˜finalDevoicing$Voice)
finalDevoicing$Voice

voiced voiceless
592 1105

> prop.test(c(387+1001, 1105), rep(nrow(finalDevoicing), 2))
...
X-squared = 120.1608, df = 1, p-value < 2.2e-16

prop 1 prop 2
...
0.8179140 0.6511491

5.4 We follow exactly the same steps as in the analysis of the tag trigrams:

> spanishFunctionWords.t = t(spanishFunctionWords)
> spanishFunctionWords.t =
+ spanishFunctionWords.t[order(rownames(spanishFunctionWords.t)),]
> spanishFunctionWords.pca =
+ prcomp(spanishFunctionWords.t, center = T, scale = T)

The number of orthogonal dimensions to be considered in what follows is:

> sdevs = spanishFunctionWords.pca$sdevˆ2
> n = sum(sdevs/sum(sdevs)> 0.05)
> n
[1] 8

318 appendix a solutions to the exercises

The cross-validation for loop is,

> predictedClasses = rep("", 15)
> for (i in 1:15) {
+ training = spanishFunctionWords.t[-i,]
+ trainingAuthor = spanishMeta[-i,]$Author
+ training.pca = prcomp(training, center = T, scale = T)
+ training.x = data.frame(training.pca$x)
+ training.x = training.x[order(rownames(training.x)),]
+ training.pca.lda = lda(training[, 1:n], trainingAuthor)
+ cl=predict(training.pca.lda,spanishFunctionWords.t[,1:n])$class[i]
+ predictedClasses[i] = as.character(cl)
+ }

and the number of correctly attributed texts is,

> sum(predictedClasses==spanishMeta$Author)
[1] 8

which fails to reach significance:

> sum(dbinom(8:15, 15, 1/3))
[1] 0.0882316

As is often found, trigram probabilities emerge as superior to the probabilities of

function words.

5.5

> regularity.svm = svm(regularity[, -c(1, 8, 10)],
+ regularity$Regularity, cross=10)
> summary(regularity.svm)
10-fold cross-validation on training data:

Total Accuracy: 81.85714
Single Accuracies:
80 72.85714 82.85714 87.14286 78.57143 84.28571 80 87.14286 ...

The cross-validated number of correct classifications is,

> round(0.81857*nrow(regularity),1)
[1] 573

and given that selecting the majority option would result in 541 correct classifi-

cations,

> xtabs(˜regularity$Regularity)
regularity$Regularity
irregular regular

159 541

we apply a proportions test,

> prop.test(c(541, 573), rep(nrow(regularity),2))
X-squared = 4.2228, df = 1, p-value = 0.03988
alternative hypothesis: two.sided

Appendix A Solutions to the exercises 319

95 percent confidence interval:
-0.08931373 -0.00211484
sample estimates:

prop 1 prop 2
0.7728571 0.8185714

and observe we have achieved a small but significant gain in classification accu-

racy with the support vector machine.

6.1 Running the examples for the english data set with,

> example(english)

will add the PCs to the data frame. A model which takes PC1 to have a linear

effect on naming latency,

> naming.ols = ols(RTnaming ˜ AgeSubject + rcs(WrittenFrequency, 3) +
+ rcs(WrittenFrequency,3) : AgeSubject + PC1,
+ data = english, x = T, y = T)
> naming.ols
Coefficients:

Value Std. Error t Pr(>|t|)
Intercept 6.565e+00 0.0050947 1288.5788 0.000e+00
AgeSubject=young -3.753e-01 0.0071771 -52.2845 0.000e+00
WrittenFrequency -1.536e-02 0.0013106 -11.7213 0.000e+00
WrittenFrequency’ 5.160e-03 0.0016263 3.1731 1.518e-03
PC1 -5.792e-05 0.0003473 -0.1668 8.676e-01
Age=young * WrittenFreq 7.497e-03 0.0018488 4.0552 5.092e-05
Age=young * WrittenFreq’ -3.937e-03 0.0022998 -1.7120 8.696e-02

suggests that it is not significant, its slope is very small and indistinguishable

from a zero slope. However, models that allow PC1 to have a nonlinear effect,

> naming.ols = ols(RTnaming ˜ AgeSubject + rcs(WrittenFrequency, 3) +
+ rcs(WrittenFrequency, 3) : AgeSubject + rcs(PC1, 3),
+ data = english, x = T, y = T)
> naming.ols
Coefficients:

Value Std. Error t Pr(>|t|)
Intercept 6.554979 0.0052809 1241.260 0.000e+00
AgeSubject=young -0.375250 0.0071427 -52.536 0.000e+00
WrittenFrequency -0.014801 0.0013070 -11.325 0.000e+00
WrittenFrequency’ 0.004611 0.0016206 2.845 4.455e-03
PC1 -0.004213 0.0007091 -5.941 3.039e-09
PC1’ 0.005685 0.0008471 6.711 2.173e-11
Age=young * WrittenFreq 0.007497 0.0018399 4.075 4.685e-05
Age=young * WrittenFreq’ -0.003937 0.0022888 -1.720 8.545e-02

suggest it is a significant predictor. Figure A.12,

> plot(naming.ols, PC1 = NA)

reveals initial facilitation followed by inhibition. A linear model averages over

these opposite trends, unsurprisingly resulting in a null effect.

320 appendix a solutions to the exercises

PC1

R
T

n
a

m
in

g

6
.4

8
5

6
.4

9
5

6
.5

0
5

6
.5

1
5

Adjusted to: AgeSub=old WrittenFrq=4.83

Figure A.12. The partial effect of PC1 on the naming latencies in the
english data set.

6.2 We first create the data distribution object:

> finalDevoicing.dd = datadist(finalDevoicing)
> options(datadist = "finalDevoicing.dd")

We then fit a logistic regression model to the data with lrm(),

> finalDevoicing.lrm = lrm(Voice ˜ VowelType+ConsonantType+
+ Obstruent+Nsyll+Stress+Onset1Type+Onset2Type, data=finalDevoicing)

and inspect the significance of the predictors with an anova table:

> anova(finalDevoicing.lrm)
Wald Statistics Response: Voice

Factor Chi-Square d.f. P
VowelType 130.65 2 <.0001
ConsonantType 103.40 2 <.0001
Obstruent 194.87 4 <.0001
Nsyll 20.77 1 <.0001
Stress 5.67 2 0.0586
Onset1Type 0.77 2 0.6811
Onset2Type 6.06 2 0.0483
TOTAL 351.37 15 <.0001

The relevance of the last three variables is questionable, unsurprisingly, they are

removed by fastbw():

> fastbw(finalDevoicing.lrm)

Deleted Chi-Sq d.f. P Residual d.f. P AIC
Onset1Type 0.77 2 0.6811 0.77 2 0.6811 -3.23
Onset2Type 5.30 2 0.0707 6.07 4 0.1942 -1.93
Stress 5.38 2 0.0678 11.45 6 0.0755 -0.55
...

Appendix A Solutions to the exercises 321

VowelType

p
(v

o
ic

e
le

ss
)

●

●

●

iuy long short

0
.0

0
.4

0
.8

ConsonantType

p
(v

o
ic

e
le

ss
)

●

●

●

None Obstruent Sonorant

0
.0

0
.4

0
.8

Obstruent

p
(v

o
ic

e
le

ss
)

●

●

●

●

●

F P S T X

0
.0

0
.4

0
.8

Nsyll

p
(v

o
ic

e
le

ss
)

●
● ● ●

1 2 3 4

0
.0

0
.4

0
.8

Figure A.13. Partial effects of the predictors in a logistic regression model for the probability of a Dutch
word having a non-alternating final obstruent.

We redo the simplified model by hand,

> finalDevoicing.lrm = lrm(Voice ˜ VowelType + ConsonantType +
+ Obstruent + Nsyll, data = finalDevoicing, x = T, y = T)
> anova(finalDevoicing.lrm)

Wald Statistics Response: Voice

Factor Chi-Square d.f. P
VowelType 128.24 2 <.0001
ConsonantType 100.25 2 <.0001
Obstruent 196.45 4 <.0001
Nsyll 18.01 1 <.0001
TOTAL 348.07 9 <.0001

and plot the partial effects, as shown in Figure A.13.

> plot(finalDevoicing.lrm, fun = plogis, ylim = c(0, 1),
+ ylab = "p(voiceless)")

Finally, we validate the model with 200 bootstrap runs:

> validate(finalDevoicing.lrm, B = 200)
...

322 appendix a solutions to the exercises

index.orig training test optimism
Dxy 0.755124129 0.752633653 0.7493642840 0.003269369
R2 0.517717019 0.520005018 0.5126806067 0.007324411
Intercept 0.000000000 0.000000000 0.0017320605 -0.001732060
Slope 1.000000000 1.000000000 0.9764758156 0.023524184
...

index.corrected n
Dxy 0.7518547594 200
R2 0.5103926079 200
Intercept 0.0017320605 200
Slope 0.9764758156 200
...

The small values for the optimism show that the model validates well.

6.3

> validate(dutch.lrm.pen, B = 200)
index.orig training test optimism

Dxy 0.686301864 0.695511136 0.6717651914 0.023745944
R2 0.397411938 0.407178229 0.3842901407 0.022888089
Intercept 0.000000000 0.000000000 0.0347286565 -0.034728656
Slope 1.000000000 1.000000000 0.9615599722 0.038440028

index.corrected
Dxy 0.6625559192
R2 0.3745238493
Intercept 0.0347286565
Slope 0.9615599722

The slope is closer to one, and the intercept closer to zero, so the danger of

overfitting has indeed been reduced.

6.4 We rerun the model,

> etym.lrm = lrm(formula = Regularity ˜ rcs(WrittenFrequency, 3) +
+ rcs(FamilySize, 3) + NcountStem + InflectionalEntropy + Auxiliary +
+ Valency + NVratio + WrittenSpokenRatio + EtymAge, data = etym,
+ x = T, y = T)
> anova(etym.lrm)

Wald Statistics Response: Regularity

Factor Chi-Square d.f. P
WrittenFrequency 18.15 2 0.0001
Nonlinear 15.67 1 0.0001
FamilySize 7.28 2 0.0262
Nonlinear 6.46 1 0.0110
NcountStem 10.23 1 0.0014
InflectionalEntropy 4.53 1 0.0334
Auxiliary 6.64 2 0.0362
Valency 6.67 1 0.0098
NVratio 4.97 1 0.0257
WrittenSpokenRatio 4.18 1 0.0408
EtymAge 12.96 4 0.0115
TOTAL NONLINEAR 18.50 2 0.0001
TOTAL 55.77 15 <.0001

Appendix A Solutions to the exercises 323

but before we accept it, we should validate it:

> validate(etym.lrm, bw = T, B = 200)
...

Frequencies of Numbers of Factors Retained

2 3 4 5 6 7 8 9
1 1 14 28 39 39 41 37

index.orig training test optimism
Dxy 0.621491185 0.639033808 0.549117995 0.089915814
R2 0.382722800 0.404198572 0.300891734 0.103306838
Intercept 0.000000000 0.000000000 0.004753967 -0.004753967
Slope 1.000000000 1.000000000 0.749752658 0.250247342

index.corrected
Dxy 0.531575371
R2 0.279415962
Intercept 0.004753967
Slope 0.749752658
...

There is substantial optimism and a large change in the slope, so it makes sense

to shrink the estimated coefficients:

> pentrace(etym.lrm, seq(0, 0.8, by = 0.05))

Best penalty:

penalty df
0.65 13.76719

...

> etym.lrm2 = update(etym.lrm, penalty = 0.65, x = T, y = T)
> anova(etym.lrm2)

Wald Statistics Response: Regularity

Factor Chi-Square d.f. P
WrittenFrequency 15.99 2 0.0003
Nonlinear 13.57 1 0.0002
FamilySize 5.92 2 0.0518
Nonlinear 5.25 1 0.0219
NcountStem 9.62 1 0.0019
InflectionalEntropy 4.39 1 0.0362
Auxiliary 6.17 2 0.0458
Valency 6.73 1 0.0095
NVratio 5.01 1 0.0251
WrittenSpokenRatio 3.53 1 0.0601
EtymAge 11.58 4 0.0207
TOTAL NONLINEAR 16.36 2 0.0003
TOTAL 57.42 15 <.0001
> plot(etym.lrm2, EtymAge = NA, fun = plogis, ylab = "p(regular)",
+ ylim = c(0,1))

The partial effects of the predictors are shown in Figure A.14. The lower right

panel shows the effect of etymological age. Only two of the labels for the tick

marks are shown. As the labels are ordered by the ordering of the factor levels,

324 appendix a solutions to the exercises

WrittenFrequency

p
(r

e
g

u
la

r)

4 6 8 10 12

0
.0

0
.4

0
.8

FamilySize

p
(r

e
g

u
la

r)

1 2 3 4 5

0
.0

0
.4

0
.8

NcountStem

p
(r

e
g

u
la

r)

0 5 10 15 20 25

0
.0

0
.4

0
.8

InflectionalEntropy

p
(r

e
g

u
la

r)

1.6 2.0 2.4 2.8

0
.0

0
.4

0
.8

Auxiliary

p
(r

e
g

u
la

r)

hebben zijn zijnheb

0
.0

0
.4

0
.8

Valency

p
(r

e
g

u
la

r)

0 5 10 15 20

0
.0

0
.4

0
.8

NVratio

p
(r

e
g

u
la

r)

0
.0

0
.4

0
.8

WrittenSpokenRatio

p
(r

e
g

u
la

r)

0
.0

0
.4

0
.8

EtymAge

p
(r

e
g

u
la

r)

Dutch Germanic

0
.0

0
.4

0
.8

Figure A.14. The partial effects in a penalized maximum likelihood logistic regression model for Regularity
for a data set of 285 Dutch verbs.

etymological age increases from left to right. Hence, we see that the probability

of being regular decreases with increasing etymological age.

The nonlinear effect of frequency in the upper left panel is an artefact of the

selection of the data. The present subset of verbs was selected such that the mean

written frequency for regulars and irregulars was approximately matched. As there

are approximately the same number of regular and irregular verbs in the sample,

and as low-frequency irregular verbs are infrequent, the composition of the sample

is such that low-frequency regular verbs are underrepresented compared to the

population.

6.5 The second correct model formulation specifies the slope for the second part

of the data as an adjustment to the slope for the first part. The model with both

main effects includes two intercepts, one for the regression line to the left of the

vertical axis, and a second intercept for the regression line to its right. For our

breakpoint analysis, we want a model with a single intercept that is shared by both

lines. The anova test shows that this additional intercept is indeed superfluous:

Appendix A Solutions to the exercises 325

> faz.both = lm(LogFrequency ˜ ShiftedLogDistance : PastBreakPoint,
+ data = faz)
> faz.bothB = lm(LogFrequency ˜ ShiftedLogDistance * PastBreakPoint,
+ data = faz)
> anova(faz.both, faz.bothB)
Analysis of Variance Table

Model 1: LogFrequency ˜ ShiftedLogDistance:PastBreakPoint
Model 2: LogFrequency ˜ ShiftedLogDistance * PastBreakPoint

Res.Df RSS Df Sum of Sq F Pr(>F)
1 797 259.430
2 796 259.429 1 0.001 0.0033 0.9544

6.6 We convert words to lower case with tolower() for each text:

> alice = tolower(alice)
> through = tolower(through)
> oz = tolower(oz)
> moby = tolower(moby)

We base our comparisons on the first 27269 words in each text:

> compare.richness.fnc(alice, through[1:27269])
Tokens Types HapaxLegomena GrowthRate

alice 27269 2615 1166 0.04276
through[1:27269] 27269 2727 1208 0.04430

two-tailed tests:
Z p

Vocabulary Size -2.7041 0.0068
Vocabulary Growth Rate -1.0113 0.3119

Apparently, there is a small difference in lexical richness between the two novels

by Carroll. The Wonderful Wizard of Oz, on the other hand, has a substantially

smaller lexical richness than Alice’s Adventures in Wonderland.

> compare.richness.fnc(alice, oz[1:27269])
Tokens Types HapaxLegomena GrowthRate

alice 27269 2615 1166 0.04276
oz[1:27269] 27269 2383 1003 0.03678

two-tailed tests:
Z p

Vocabulary Size 5.8457 0
Vocabulary Growth Rate 4.0938 0

The lexical richness of Moby Dick is substantially greater, as expected for a novel

aimed at an adult audience:

> compare.richness.fnc(alice, moby[1:27269])
Tokens Types HapaxLegomena GrowthRate

alice 27269 2615 1166 0.04276
moby[1:27269] 27269 5405 3314 0.12153

326 appendix a solutions to the exercises

two-tailed tests:
Z p

Vocabulary Size -47.2373 0
Vocabulary Growth Rate -36.9145 0

6.7
> nesscg.spc = spc(m = nesscg$m, Vm = nesscg$Vm)
> nessw.spc = spc(m = nessw$m, Vm = nessw$Vm)
> nessdemog.spc = spc(m = nessdemog$m, Vm = nessdemog$Vm)

A model for context-governed spoken English with an excellent fit is obtained

with:

> nesscg.fzm = lnre("fzm", nesscg.spc)
> nesscg.fzm
finite Zipf-Mandelbrot LNRE model.
...
Population size: S = 810.356
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
6.811325 4 0.1462011

A very similar model for the demographic sample of spoken English is:

> nessdemog.fzm = lnre("fzm", nessdemog.spc)
> nessdemog.fzm
...
Population size: S = 839.2886
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
4.157912 3 0.2449096

A finite Zipf-Mandelbrot model,

> nessw.fzm = lnre("fzm", nessw.spc)
> nessw.fzm
finite Zipf-Mandelbrot LNRE model.
...
Population size: S = 4867.91
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
31.76712 13 0.002600682

turns out to be inferior to a Generalized Inverse Gauss-Poisson model:

> nessw.gigp = lnre("gigp", nessw.spc)
> nessw.gigp
Generalized Inverse Gauss-Poisson (GIGP) LNRE model.
...
Population size: S = 5974.933
...
Goodness-of-fit (multivariate chi-squared test):

X2 df p
22.62322 13 0.04642629

Appendix A Solutions to the exercises 327

We plot the growth curves for 40 equally sized intervals between 0 and 106957, the

number of tokens sampled for -ness in the written subcorpus, the largest subcorpus

of the BNC. After calculating the vocabulary growth curves with lnre.vgc(),

> nessw.vgc = lnre.vgc(nessw.gigp, seq(0, N(nessw.spc), length = 40))
> nessdemog.vgc = lnre.vgc(nessdemog.fzm, seq(0, N(nessw.spc),
+ length = 40))
> nesscg.vgc = lnre.vgc(nesscg.fzm, seq(0, N(nessw.spc), length = 40))

we graph them with plot(), adding a legend (see Figure A.15):

> plot(nessw.vgc, nessdemog.vgc, nesscg.vgc, lwd = rep(1, 3),
+ lty=c(1,1,2), col=c("black", "grey", "black"),
+ legend=c("written", "spoken:demographic", "spoken:context-governed"))

The population number of types estimated for the demographic and context-

governed subcorpora are 839 and 810 respectively. We add these horizontal

asymptotes to the plot:

> abline(h = 839, col = "grey")
> abline(h = 810, col = "black")

Note that both curves for spoken language have almost reached their asymptotic

values within the range of sample sizes shown. By contrast, -ness in written

English is nowhere near reaching its asymptote, which is estimated at 5975 types.

This difference between morphological productivity between spoken and written

registers of English is also apparent from the growth rates of the vocabulary,

which we calculate here for the sample size of the sample with the largest number

of tokens:

> nessw.lnre.spc = lnre.spc(nessw.gigp, N(nessw.spc), m.max = 1)
> Vm(nessw.lnre.spc, 1)/N(nessw.lnre.spc)
[1] 0.008786915
> nessdemog.lnre.spc = lnre.spc(nessdemog.fzm, N(nessw.spc),
+ m.max = 1)
> Vm(nessdemog.lnre.spc, 1)/N(nessdemog.lnre.spc)
[1] 0.0003230424
> nesscg.lnre.spc = lnre.spc(nesscg.fzm, N(nessw.spc),m.max=1)
> Vm(nesscg.lnre.spc, 1)/N(nesscg.lnre.spc)
[1] 0.0002389207

At this large sample size, the differences in productivity are even more pronounced

than for a comparison based on the smallest sample size, the demographic sub-

corpus:

> nessw.lnre.spc = lnre.spc(nessw.gigp, N(nessdemog.spc), m.max = 1)
> Vm(nessw.lnre.spc, 1)/N(nessw.lnre.spc)
[1] 0.1544806
> nessdemog.lnre.spc=lnre.spc(nessdemog.fzm,N(nessdemog.spc),m.max=1)
> Vm(nessdemog.lnre.spc, 1)/N(nessdemog.lnre.spc)
[1] 0.08195576
> nesscg.lnre.spc = lnre.spc(nesscg.fzm, N(nessdemog.spc),m.max=1)
> Vm(nesscg.lnre.spc, 1)/N(nesscg.lnre.spc)
[1] 0.08755167

328 appendix a solutions to the exercises

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Vocabulary Growth

N

E
[V

(N
)]

written

spoken:demographic

Figure A.15. The growth curve of the vocabulary for the English suffix -ness in
the three main subcorpora of the British National Corpus.

6.8 We fit a first covariance model:

> imaging.lm=lm(FilteredSignal˜BehavioralScore*Condition,data=imaging)
> summary(imaging.lm)
Residuals:

Min 1Q Median 3Q Max
-22.5836 -2.7216 -0.7092 3.7008 10.1119

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.5804 4.2089 16.532 < 2e-16
BehavioralScore -0.2606 0.2147 -1.214 0.23405
Conditionsemantics -10.2184 4.6626 -2.192 0.03605
BehavioralScore:Conditionsemantics 0.7787 0.2498 3.118 0.00392

Residual standard error: 5.926 on 31 degrees of freedom
Multiple R-Squared: 0.3674, Adjusted R-squared: 0.3061
F-statistic: 6.001 on 3 and 31 DF, p-value: 0.002396

The residuals of this model are clearly asymmetrical, not surprising given the

marked outlier structure visible in Figure 6.20, so model criticism is called for. A

plot of the model provides a series of diagnostic plots, from which data points with

row numbers 1 and 19 emerge as outliers with high leverage (see Figure A.16):

Appendix A Solutions to the exercises 329

50 55 60 65 70

Fitted values

R
e

si
d

u
a

ls

Residuals vs Fitted

19

2026

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

19

20
26

50 55 60 65 70

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d
a
rd

iz
e
d
 r

e
si

d
u
a
ls

19

20
26

0 5 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Obs. number

C
o

o
k’

s
d

is
ta

n
ce

Cook’s distance
1

19

20

0.0 0.2 0.4 0.6

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
si

d
u

a
ls

Cook’s distance

1
0.5

0.5
1

Residuals vs Leverage

1

19

20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Leverage

C
o

o
k’

s
d

is
ta

n
ce

0 0.2 0.4 0.5 0.6

0

12345

Cook’s dist. vs Leverage
1

19

20

Figure A.16. Diagnostic plots for the linear model fit to the reconstructed patient data from Tyler et al.

(2005).

> par(mfrow=c(2,3))
> plot(imaging.lm, which = 1:6)
> par(mfrow=c(1,1))

After removal of these two outliers, there are no significant effects:

> imaging.lm = lm(FilteredSignal ˜ BehavioralScore * Condition,
+ data = imaging[-c(1,19),])
> summary(imaging.lm)

Residuals:
Min 1Q Median 3Q Max

-6.525 -2.525 0.140 1.685 7.980

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.71994 2.67193 24.596 <2e-16
BehavioralScore 0.03398 0.14019 0.242 0.810
Conditionsemantics -2.71410 3.24800 -0.836 0.410
BehavioralScore:Conditionsemantics 0.23757 0.18560 1.280 0.211

Residual standard error: 3.673 on 29 degrees of freedom

330 appendix a solutions to the exercises

Multiple R-Squared: 0.1494, Adjusted R-squared: 0.06145
F-statistic: 1.698 on 3 and 29 DF, p-value: 0.1892

The correlation of 0.82 reported by Tyler and colleagues for the semantic condition

depends on the presence of a single outlier, and reduces to 0.52 after removal of

this outlier. We conclude that it cannot be claimed for this data set that the priming

scores for the semantic condition are predictive for the intensity of the filtered

signal.

7.1 We first rebuild lexdec3.lmerE:

> lexdec2 = lexdec[lexdec$RT < 7 ,]
> lexdec3 = lexdec2[lexdec2$Correct == "correct",]
> lexdec3$cTrial = lexdec3$Trial - mean(lexdec3$Trial)
> lexdec3$cLength = lexdec3$Length - mean(lexdec3$Length)
> lexdec3.lmerE = lmer(RT ˜ cTrial + Frequency +
+ NativeLanguage * cLength + meanWeight +
+ (1|Subject) + (0+cTrial|Subject) + (1|Word), lexdec3)

Next, we add cLength to the random-effects specification for Subject:

> lexdec3.lmerE1 = lmer(RT ˜ cTrial + Frequency + meanWeight +
+ NativeLanguage*cLength + (1|Word) + (1|Subject) +
+ (0+cTrial|Subject) + (0+cLength|Subject), data = lexdec3)
> lexdec3.lmerE2 = lmer(RT ˜ cTrial + Frequency + meanWeight +
+ NativeLanguage*cLength + (1|Word) + (1+cLength|Subject) +
+ (0+cTrial|Subject), data = lexdec3)

Finally, we compare the models with the anova() function,

> anova(lexdec3.lmerE, lexdec3.lmerE1)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

lexdec3.lmerE 10 -1370.90 -1317.39 695.45
lexdec3.lmerE1 11 -1374.59 -1315.73 698.29 5.6933 1 0.01703
> anova(lexdec3.lmerE1, lexdec3.lmerE2)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
lexdec3.lmerE1 11 -1374.59 -1315.73 698.29
lexdec3.lmerE2 12 -1379.12 -1314.92 701.56 6.5351 1 0.01058

and find that the correlation parameter for the by-subject slopes for length and

intercepts is justified. The table of coefficients shows that the interaction of Na-

tiveLanguage by Length survives the subject variability for length:

> pvals.fnc(lexdec3.lmerE2, nsim=10000)$fixed
Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 6.4485380 6.356195 6.5442545 0.0001 0.0000
cTrial -0.0002073 -0.000551 0.0001224 0.2130 0.2098
Frequency -0.0404660 -0.051234 -0.0290932 0.0001 0.0000
meanWeight 0.0236185 0.009854 0.0360040 0.0004 0.0003
NatLanOth 0.1377618 0.022278 0.2629398 0.0278 0.0120
cLength 0.0026727 -0.007001 0.0125276 0.5776 0.5850
NatLanOth:cLen 0.0189074 0.006944 0.0308654 0.0038 0.0015

7.2 We fit models with and without Word as random effect to the data,

Appendix A Solutions to the exercises 331

> beginningReaders.lmer4 = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject)+(0+OrthLength|Subject) +
+ (0+LogFrequency|Subject), data = beginningReaders)
> beginningReaders.lmer4w = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Subject)+(0+OrthLength|Subject) + (0+LogFrequency|Subject),
+ data = beginningReaders)

and compare the two models with anova():

> anova(beginningReaders.lmer4, beginningReaders.lmer4w)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

begReaders.lmer4w 12 6059.5 6143.2 -3017.8
begReaders.lmer4 13 5961.1 6051.8 -2967.6 100.40 1 < 2.2e-16

The likelihood ratio test clearly provides ample justification for including Word

as random effect. Next, we add random slopes for PC1,

> beginningReaders.lmer4pc1 = lmer(LogRT ˜ PC1+PC2+PC3 + ReadingScore +
+ OrthLength + I(OrthLengthˆ2) + LogFrequency + LogFamilySize +
+ (1|Word) + (1|Subject) + (0+LogFrequency|Subject) +
+ (0+OrthLength|Subject) + (0+PC1|Subject), data = beginningReaders)

and carry out a likelihood ratio test to ascertain whether these random slopes are

justified:

> anova(beginningReaders.lmer4, beginningReaders.lmer4pc1)
Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

begReaders.lmer4 13 5961.1 6051.8 -2967.6
begReaders.lmer4pc1 14 5778.3 5876.0 -2875.2 184.8 1 < 2.2e-16

We check that the confidence intervals of the random effects are all properly

bounded:

> x = pvals.fnc(beginningReaders.lmer4pc1, nsim=10000)
> x$random

MCMCmean HPD95lower HPD95upper
sigma 0.33694 0.33167 0.34248
Word.(In) 0.06244 0.05412 0.07303
Sbjc.(In) 0.06304 0.05027 0.07901
Sbjc.LgFr 0.05190 0.04085 0.06596
Sbjc.OrtL 0.05307 0.04182 0.06773
Sbjc.PC1 0.06127 0.04853 0.07745

7.3

> reading.lmer = lmer(RT ˜ RTtoPrime + PC1 * Condition +
+ Rating + LengthInLetters + NumberOfSynsets +
+ (1|Subject) + (1|Word), data = selfPacedReadingHeid)
> pvals.fnc(reading.lmer, nsim=10000)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 5.005005 4.646787 5.364812 0.0001 0.0000
RTtoPrime 0.094166 0.051356 0.139342 0.0002 0.0000
PC1 0.153690 0.133163 0.174926 0.0001 0.0000
Conditnheidheid -0.005611 -0.043819 0.028946 0.7524 0.7629

332 appendix a solutions to the exercises

Rating 0.028568 -0.018961 0.079343 0.2560 0.2514
LengthInLetters 0.029624 0.001995 0.058489 0.0378 0.0362
NumberOfSynsets 0.011431 -0.012116 0.034077 0.3280 0.3335
PC1:Condheidheid -0.025404 - -0.049701 -0.001355 0.0422 0.0415

Only word length is relevant as additional predictor.

7.4 The desired initial model is,

> writtenVariationLijk.lmer = lmer(log(Count) ˜ Country * Register +
+ (Country|Word), data = writtenVariationLijk)
> aovlmer.fnc(writtenVariationLijk.lmer, noMCMC=TRUE)
Analysis of Variance Table

Df Sum Sq Mean Sq F Df2 p
Country 1 0.98 0.98 6.7945 554.00 0.01
Register 2 2.70 1.35 9.3265 554.00 1.038e-04
Country:Register 2 3.79 1.89 13.0942 554.00 2.777e-06

but its residuals are weirdly distributed, as shown in the left panel of Figure A.17:

> qqnorm(resid(writtenVariationLijk.lmer))

We therefore consider a trimmed model with the offending data points excluded:

> writtenVariationLijk.lmerA = lmer(log(Count) ˜ Country * Register +
+ (Country|Word), data = writtenVariationLijk,
+ subset = resid(writtenVariationLijk.lmer) > -0.5)
> aovlmer.fnc(writtenVariationLijk.lmerA, noMCMC=TRUE)

Df Sum Sq Mean Sq F Df2 p
Country 1 0.67 0.67 7.4609 524.00 0.01
Register 2 1.07 0.53 5.9767 524.00 2.713e-03
Country:Register 2 1.97 0.99 11.0275 524.00 2.036e-05

The residuals of this trimmed model are well-behaved, as shown in the right panel

of Figure A.17. Note that 30 outliers (the difference in Df2) gave rise to p-values

for the untrimmed model that are too small.

7.5

> warlpiri.lmer = lmer(CaseMarking ˜ WordOrder + AgeGroup +
+ AnimacyOfSubject + OvertnessOfObject + AnimacyOfObject +
+ (1|Text) + (1|Speaker), family = "binomial", data = warlpiri)

Inspection of the model summary shows that the two predictors relating specif-

ically to the Object are irrelevant. We refit the model without them, and now

include the interaction of AgeGroup by WordOrder that emerged from the mo-

saic plot of this data set that we made earlier:

> warlpiri.lmer = lmer(CaseMarking ˜ WordOrder * AgeGroup +
+ AnimacyOfSubject + (1|Text) + (1|Speaker),
+ family = "binomial", data = warlpiri)
> warlpiri.lmer
Random effects:
Groups Name Variance Std.Dev.
Speaker (Intercept) 0.454679 0.67430
Text (Intercept) 0.019611 0.14004

Appendix A Solutions to the exercises 333

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s
Figure A.17. Quantile-quantile plots for linear mixed-effects models fit to the
country data, with log(Count) as dependent variable. Left: untrimmed
model, right: trimmed model.

Estimated scale (compare to 1) 0.948327
Fixed effects: Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.4064 0.3816 -6.307 2.85e-10
WordOrdersubNotInitial 0.2953 0.4994 0.591 0.55433
AgeGroupchild 1.2167 0.4691 2.594 0.00949
AnimacyOfSubjectinanimate 0.8378 0.3664 2.287 0.02221
WordOrdersubNotInitial:AgeGrpchild -1.8501 0.7326 -2.525 0.01156

The estimated scale is reasonably close to 1, and the standard deviations for

the random effects seem reasonable. Once mcmc sampling is implemented for

logistic mixed-effects models, one will also want to check the hpd intervals for

the random-effects parameters.

7.6 We fit the requested model:

> size.lmer = lmer(Rating ˜ Class * Naive + MeanFamiliarity *
+ Language + I(MeanFamiliarityˆ2) * Language + (1|Subject) +
+ (1|Word), data = sizeRatings)
> pvals.fnc(size.lmer, nsim = 10000)$fixed

The coefficients involving the quadratic term forMeanFamiliarity do not reach

significance. As we have 6 by-item predictors and fewer than 6 ∗ 15 data points,

we run the risk of overfitting, so we remove them without hesitation:

> size.lmer = lmer(Rating ˜ Class * Naive + MeanFamiliarity *
+ Language + (1|Subject) + (1|Word), data = sizeRatings)
> pvals.fnc(size.lmer, nsim = 10000)$fixed

Estimate HPD95lower HPD95upper pMCMC Pr(>|t|)
(Intercept) 3.87498 3.34603 4.37861 0.0001 0.0000
Classplant -1.78310 -2.35496 -1.22164 0.0001 0.0000
NaivenotNaive -0.07878 -0.37866 0.20951 0.5924 0.5886
MeanFamiliarity -0.13910 -0.46626 0.19103 0.3864 0.3963

334 appendix a solutions to the exercises

LanguagenotEnglish -0.14275 -0.44275 0.19711 0.3752 0.3616
Clssplnt:NaivenotNaive -0.13866 -0.23985 -0.04267 0.0054 0.0068
MeanFam:LangnotEnglish 0.07486 0.01206 0.13708 0.0178 0.0182

We conclude that the effect of lexical familiarity on size ratings appears to

be restricted to the non-native speakers of English. Note, furthermore, that a

subject’s prior knowledge of Class as a predictor leads to a slight increase in

the effect of Class.

7.7

anova(writtenVariationLijk.lmer1,writtenVariationLijk.lmer2)
Df AIC BIC logLik

writtenVariationLijk.lmer2 8 2854.6 2889.2 -1419.3
writtenVariationLijk.lmer1 9 2856.5 2895.5 -1419.3

Chisq Chi Df Pr(>Chisq)
writtenVariationLijk.lmer2
writtenVariationLijk.lmer1 0.0246 1 0.8753

Appendix B Overview of R functions

workspace

list contents of current workspace objects() or ls()
remove object a from workspace rm(a)

quit R q()

file with r objects .RData

file with history of commands .Rhistory

packages

load a package library("libname")

unload a package detach("package:pkg")

attach a data set data() or data(package = ...)

load new functions from ascii file source("filename")

the help system

help.start() start gui or browser
example() run examples in the documentation
help(object), ?object show documentation for object

335

336 appendix b overview of r functions

operators

assignment to the left: =, <-
to the right: ->

arithmetic multiplication * and division /

addition + and subtraction -

exponentiation ∧ and remainder %%
logic and &, or |, not !

relations equality ==, inequality !=

smaller than <, smaller than or equal to <=

greater than >, greater than or equal to >=

numerical logarithm log(), exponential function exp()

smallest value min(), largest value max()
range of values range(), sum of values sum()

vectors

c(1, 3:5, 7) 1 3 4 5 7

seq(1, 10, by=2) 1 3 5 7 9

seq(1, 10, length=5) 1.00 3.25 5.50 7.75 10.00

1:10 1 2 3 4 5 6 7 8 9 10

10:1 10 9 8 7 6 5 4 3 2 1

rep(1, 5) 1 1 1 1 1

rep(1:3, 2:4) 1 1 2 2 2 3 3 3 3

length(rep(1:3,2:4)) 9

1 3
cbind(c(1,2), c(3,4))

2 4

1 2
rbind(c(1,2), c(3,4))

3 4

sort(c("b", "a")) "a" "b"

strings

tolower("Alice") "alice"

substr("Alice", 2, 5) "lice"

paste("a", "lice", sep="-") "a-lice"

nchar("Alice") 5

Appendix B Overview of R functions 337

factors

ordered() create ordered factor
as.factor() convert into factor
as.character() convert factor into character vector
relevel() select new reference level
[drop=TRUE] drop unused factor levels

data frames

create data frame from vectors data.frame(X = x, Y = y)

add variable to data frame mydata$Z = z

first three rows mydata[1:3,]

first three columns mydata[, 1:3]

rows where X < 5 mydata[mydata$X < 5,]

merge data frames merge()

dimensions of data frame dim()

row and column names rownames(), colnames()

initial rows, final rows head(), tail()

sort by column X mydata[order(mydata$X),]

getting data in and out of R

load vector of numbers scan("file")

load vector of strings scan("file", what="character")

load table with column names read.table("file", header=TRUE)

load csv with column names read.csv("file", header=TRUE)

write data frame write.table(mydata, "file")

write data frame in csv format write.csv(mydata, "file")

execute code in file source("file")

summary statistics

mean mean()

median median()

variance var()

standard deviation sd()

quantiles quantile()

correlation cor()

covariance cov()

338 appendix b overview of r functions

tabulation, grouping, aggregating

(cross)tabulation table(), xtabs()
table of means tapply()

table of proportions prop.table()

aggregate aggregate()

group cut()

graphics

scatterplot plot()

adds lines to scatterplot lines()

adds points to scatterplot points()

adds text to scatterplot text()

adds text in margins mtext()

adds regression line abline()

matrix of plots par(mfrow=c(x,y))

histogram hist()

truehist() (MASS package)
boxplot boxplot()

bar plot barplot()

mosaic plot mosaicplot()

scatterplot matrix pairs()

scatterplot matrix with correlations pairscor.fnc()

trellis scatterplots xyplot(), splom()
(lattice package)

trellis boxplot bwplot()

(lattice package)
trellis scatterplots with smoother xylowess.fnc()

scatterplot matrix with qq-plots qqmath()

scatterplot matrix with densities densityplot()

saving graphics postscript(), jpeg, png()

distributions

normal pnorm(x, mean, sd)

lognormal plnorm(x, mean, sd)

student’s t pt(x, df)

F-distribution pF(x, df1, df2)

chi-squared pchisq(x, df)

binomial pbinom(x, n, p)

Poisson ppois(x, lambda)

Appendix B Overview of R functions 339

distribution functions

density dnorm(), dt(), df() . . .
cumulative distribution pnorm(), pt(), pf() . . .
quantiles qnorm(), qt(), qf() . . .
random numbers rnorm(), rt(), rf() . . .

tests and models for continuous variables

a single vector t.test(), wilcox.test()

shapiro.test() (for normality)
two vectors t.test(), wilcox.test()

ks.test()

var.test()

two paired vectors t.test(x, y, paired=T),
wilcox.test(x, y, paired=T)

cor.test(x, y),
cor.test(x, y, method="spearman")

lm(y ∼ x)

multiple regression lm(y ∼ x1 + x2 + x3)

ols(y ∼ x1 + x2 + x3)

(Design package)
mixed-effects regression lmer(y ∼ x1 + x2 + x3 +

+ (1|Subject) + (1|Item)),
(lme4 package)

models for a continuous dependent variable and factors

one-way anova lm(y ∼ f),
aov(y ∼ f)

kruskal.test()

ols(y ∼ f) (Design)
lmer(y ∼ f + (1|G)) (lme4)

two-way anova lm(y ∼ f1 + f2)

aov(y ∼ f1 + f2)

ols(y ∼ f1 + f2) (Design)
lmer(y ∼ f1 + f2 + (1|G)) (lme4)

340 appendix b overview of r functions

models for a continuous variable and factors

analysis of covariance lm(y ∼ x1 + x2 + f1 + f2),
ols(y ∼ x1 + x2 + f1 + f2)

(Design package)
mixed-effects analysis of covariance lmer(y ∼ x1 + x2 + f1 + f2 +

+ (1|Subject) + (1|Item))

(lme4 package)

tests and models for counts

contingency tables chisq.test(), fisher.test()

proportions test prop.test()

generalized linear models glm(cbind(s, f) ∼ x1 + f1,

family = "binomial")

logistic regression lrm(y ∼ x1 + f1)

(Design package)
mixed-effects logistic regression lmer(y ∼ x1 + f1 +

+ (1|Subject) + (1|Item),

family = "binomial")

(lme4 package)

model summaries and model criticism

coefficients coef()

t-tests coefficients summary()

sequential F-tests anova() (lm(), aov(), lmer())
marginal F-tests anova() (ols(), lrm())
multiple comparisons TukeyHSD()

predicted values predict()

fitted values fitted()

residuals resid()

fixed effects fixef() (lme4 package)
random effects ranef() (lme4 package)
p-values for lmer() pvals.fnc(), aovlmer.fnc()

outliers dfbetas(), which.influence(),
dffits()

collinearity kappa(), collin.fnc()

bootstrap validation validate() (Design package)
Markov chain Monte Carlo sampling mcmcsamp()

Highest Posterior Density intervals HPDinterval() (coda package)

Appendix B Overview of R functions 341

word frequency distributions

empirical vocabulary growth curve growth.fnc()

rank-frequency distribution zipf.fnc()

load frequency spectrum read.spc() (zipfR package)
create spectrum object spc() (zipfR package)
load vocabulary growth curve read.vgc() (zipfR package)
fit lnre model lnre() (zipfR package)
plot growth curves plot.vgc() (zipfR package)

clustering

principal components analysis prcomp()

factor analysis factanal()

correspondence analysis corres.fnc()

multidimensional scaling cmdscale()

hierarchical cluster analysis hclust() (agglomerative)
diana() (divisive)
nj() (unrooted trees)

classification

classification trees rpart()

discriminant analysis lda() (MASS package)
support vector machines svm() (e1071 package)

programming

for loop for (i in vec)

define new function function()

References

R. H. Baayen, D. J. Davidson, and D. M. Bates. Mixed-effects Modeling with Crossed

Random Effects for Subjects and Items. Forthcoming in Journal of Memory and Lan-
guage.

R. H. Baayen, T. Dijkstra, and R. Schreuder. Singulars and Plurals in Dutch: Evidence

for a Parallel Dual Route Model. Journal of Memory and Language, 36:94–117,

1997.

R. H. Baayen, L. Feldman, and R. Schreuder. Morphological Influences on the Recognition

of Monosyllabic Monomorphemic Words. Journal of Memory and Language, 53:496–

512, 2006.

R. H. Baayen and R. Lieber. Word Frequency Distributions and Lexical Semantics. Com-
puters and the Humanities, 30:281–291, 1997.

R. H. Baayen and F. Moscoso del Prado Martı́n. Semantic Density and Past-Tense For-

mation in Three Germanic Languages. Language, 81:666–698, 2005.

R. H. Baayen, F. Moscoso del Prado Martı́n, R. Schreuder, and L. Wurm. When Word

Frequencies do NOT Regress Towards the Mean. In R. Harald Baayen and Robert

Schreuder, editors, Morphological Structure in Language Processing. Mouton de

Gruyter, Berlin, pages 463–484, 2003.

R. H. Baayen, R. Piepenbrock, and L. Gulikers. The CELEX Lexical Database (CD-ROM).
Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, 1995.

R. H. Baayen. Derivational Productivity and Text Typology. Journal of Quantitative Lin-
guistics, 1:16–34, 1994.

R. H. Baayen. Word Frequency Distributions. Kluwer Academic Publishers, Dordrecht,

2001.

D. Balota, M. Cortese, S. Sergent-Marshall, D. Spieler, and M. Yap. Visual Word Recogni-

tion of Single-Syllable Words. Journal of Experimental Psychology:General, 133:283–

316, 2004.

D. M. Bates. Fitting Linear Mixed Models in R. R News, 5:27–30, 2005.

D. M. Bates. Linear Mixed Model Implementation in lme4. URL http://spider.
stat.umn.edu/R/library/lme4/doc/Implementation.pdf. Depart-

ment of Statistics, University of Wisconsin – Madison, 2006.

R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language. A Programming En-
vironment for Data Analysis and Graphics. Wadsworth & Brooks/Cole, Pacific Grove,

1988.

D. A. Belsley, E. Kuh, and R. E. Welsch. Regression Diagnostics. Identifying Influen-
tial Data and Sources of Collinearity. Wiley Series in Probability and Mathematical

Statistics. Wiley, New York, 1980.

342

References 343

D. Biber. Variation Across Speech and Writing. Cambridge University Press, Cambridge,

1988.

D. Biber. Dimensions of Register Variation. Cambridge University Press, Cambridge,

1995.

W. M. Bolstad. Introduction to Bayesian Statistics. John Wiley & Sons, Hoboken, NJ,

2004.

J. Bresnan, A. Cueni, T. Nikitina, and R. H. Baayen. Predicting the Dative Alternation. In

G. Bouma, I. Kraemer, and J. Zwarts, editors, Cognitive Foundations of Interpretation,

pages 69–94. Royal Netherlands Academy of Science, 2007.

J. F. Burrows. Computers and the Study of Literature. In C. S. Butler, editor, Computers
and Written Texts, pages 167–204. Blackwell, Oxford, 1992.

J. B. Carroll. On Sampling from a Lognormal Model of Word Frequency Distribution.

In H. Kučera and W. N. Francis, editors, Computational Analysis of Present-
Day American English, pages 406–424. Brown University Press, Providence,

1967.

R. J. Chitashvili and E. V Khmaladze. Statistical Analysis of Large Number of Rare

Events and Related Problems. Transactions of the Tbilisi Mathematical Institute,

92:196–245, 1989.

H. H. Clark. The Language-as-Fixed-Effect Fallacy: A Critique of Language Statistics in

Psychological Research. Journal of Verbal Learning and Verbal Behavior, 12:335–359,

1973.

W. G. Cochran. Testing a Linear Relation among Variances. Biometrics, 7:17–32,

1951.

J. Cohen. The Cost of Dichotomization. Applied Psychological Measurement, 7:249–254,

1983.

M. J. Crawley. Statistical Computing. An Introduction to Data Analysis using S-PLUS.

Wiley, Chichester, 2002.

P. Dalgaard. Introductory Statistics with R. Springer, New York, 2002.

L. De Vaan, R. Schreuder, and R. H. Baayen. Regular Morphologically Complex

Neologisms Leave Detectable Traces in the Mental Lexicon. The Mental Lexicon,

2:1–23, 2007.

M. Dunn, A. Terrill, G. Reesink, R. A. Foley, and S. C. Levinson. Structural Phyloge-

netics and the Reconstruction of Ancient Language History. Science, 309:2072–2075,

2005.

A. Ellegård. The Auxiliary Do: The Establishment and Regulation of its use in English.

Almquist & Wiksell, Stockholm, 1953.

M. Ernestus and R. H. Baayen. Predicting the Unpredictable: Interpreting Neutralized

Segments in Dutch. Language, 79:5–38, 2003.

M. Ernestus, M. van Mulken, and R. H. Baayen. Ridders en heiligen in tijd en ruimte:

moderne stylometrische technieken toegepast op Oud-Franse teksten (The Syntax of

Old-French Knights and Saints in Space and Time). Taal en Tongval, 58:70–83, 2007.

B. Everitt and T. Hothorn. A Handbook of Statistical Analyses using R. Chapman &

Hall/CRC, Boca Raton, FL, 2006.

S. Evert. A simple LNRE Model for Random Character Sequences. In G. Purnelle,

C. Fairon, and A. Dister, editors, Le poids des mots. Proceedings of the 7th International
Conference on Textual Data Statistical Analysis, pages 411–422. Louvain-la-Neuve,

UCL, 2004.

344 references

S. Evert and M. Baroni. The zipfR Library: Words and Other Rare Events in R. useR!

2006: The Second R User Conference, Vienna, June 2006.

J. J. Faraway. Extending Linear Models with R: Generalized Linear, Mixed Effects
and Nonparametric Regression Models. Chapman & Hall/CRC, Boca Raton, FL,

2006.

K. I. Forster and R. G. Dickinson. More on the Language-as-Fixed Effect: Monte-Carlo

Estimates of Error Rates for F1, F2, F′, and minF′. Journal of Verbal Learning and
Verbal Behavior, 15:135–142, 1976.

U. H. Frauenfelder, R. H. Baayen, F. M. Hellwig, and R. Schreuder. Neighborhood

Density and Frequency across Languages and Modalities. Journal of Memory and
Language, 32:781–804, 1993.

W. A. Gale and G. Sampson. Good-Turing Frequency Estimation without Tears. Journal
of Quantitative Linguistics, 2:217–237, 1995.

I. J. Good. The Population Frequencies of Species and the Estimation of Population

Parameters. Biometrika, 40:237–264, 1953.

S. Grondelaers, K. Deygers, H. Van Aken, V. Van den Heede, and D. Speelman. Het

Condiv-Corpus Geschreven Nederlands. Nederlandse Taalkunde, 5:356–363, 2000.

H. Guiraud. Les Caractères Statistiques du Vocabulaire. Presses Universitaires de France,

Paris, 1954.

W. Haerdle. Smoothing Techniques With Implementation in S. Springer-Verlag, Berlin,

1991.

F. E. Harrell. Regression Modeling Strategies. Springer, Berlin, 2001.

G. Herdan. Type-Token Mathematics. Mouton, The Hague, 1960.

D. Hoover. Another perspective on vocabulary richness. Computers and the Humanities,

37:151–178, 2003.

P. Juola. The Time Course of Language Change. Computers and the Humanities,

37(1):77–96, 2003.

K. Keune, M. Ernestus, R. Van Hout, and R. H. Baayen. Social, Geographical, and

Register Variation in Dutch: From Written “mogelijk” to Spoken “mok”. Corpus
Linguistics and Linguistic Theory, 1:183–223, 2005.

A. S. Kroch. Function and Grammar in the History of English: Periphrastic Do. In R.

W. Fasold and D. Schiffrin, editors, Language Change and Variation, pages 133–172.

John Benjamins, Amsterdam, 1989.

H. Kučera and W. N. Francis. Computational Analysis of Present-Day American English.

Brown University Press, Providence, RI, 1967.

T. K. Landauer and S. T. Dumais. A Solution to Plato’s Problem: The Latent Semantic

Analysis Theory of Acquisition, Induction and Representation of Knowledge.

Psychological Review, 104(2):211–240, 1997.

R. F. Lorch and J. L. Myers. Regression Analysis of Repeated Measures Data in Cognitive

Research. Journal of Experimental Psychology: Learning, Memory, and Cognition,

16:149–157, 1990.

A. Lüdeling and S. Evert. The Emergence of Non-Medical -itis. Corpus Evidence and

Qualitative Analysis. In S. Kepser and M. Reis, editors, Linguistic evidence. Empirical,
Theoretical, and Computational Perspectives, pages 315–333. Mouton de Gruyter,

Berlin, 2005.

R. C. MacCallum, S. Zhang, K. J. Preacher, and D. D. Rucker. On the Practice of

Dichotomization of Quantitative Variables. Psychological Methods, 7(1):19–40, 2002.

References 345

S. E. Maxwell and H. D. Delaney. Bivariate Median Splits and Spurious Statistical

Significance. Psychological Bulletin, 113(1):181–190, 1993.

G. A. Miller. WordNet: An On-Line Lexical Database. International Journal of
Lexicography, 3:235–312, 1990.

F. Murtagh. Correspondence Analysis and Data Coding with JAVA and R. Chapman &

Hall/CRC, Boca Raton, FL, 2005.

J. K. Orlov. Dynamik der Häufigkeitsstrukturen. In H. Guiter and M. V. Arapov, editors,

Studies on Zipf’s Law, pages 116–153. Brockmeyer, Bochum, 1983.

E. Paradis. Analysis of Phylogenetics and Evolution with R. Springer, New York, 2006.

K. Perdijk, R. Schreuder, L. Verhoeven, and R. H. Baayen. Development of Morphological

Relatedness in the Mental Lexicon: a Mixed Model Approach. Manuscript, Radboud

University Nijmegen, 2007.

J. C. Pinheiro and D. M. Bates. Mixed-Effects Models in S and S-PLUS. Statistics and

Computing. Springer, New York, 2000.

I. Plag, C. Dalton-Puffer, and R. H. Baayen. Morphological Productivity across Speech

and Writing. English Language and Linguistics, 3(2):209–228, 1999.

M. Pluymaekers, M. Ernestus, and R. H. Baayen. Frequency and Acoustic Length: the

Case of Derivational Affixes in Dutch. Journal of the Acoustical Society of America,

118:2561–2569, 2005.

T. Pollman and R. H. Baayen. Computing Historical Consciousness. A Quantitative

Inquiry into the Presence of the Past in Newspaper Texts. Computers and the
Humanities, 35:237–253, 2001.

H. Quené and H. Van den Bergh. On Multi-Level Modeling of Data from Repeated

Measures Designs: A Tutorial. Speech Communication, 43:103–121, 2004.

J. G. W. Raaijmakers, J. M. C. Schrijnemakers, and F. Gremmen. How to Deal with

“the Language as Fixed Effect Fallacy”: Common Misconceptions and Alternative

Solutions. Journal of Memory and Language, 41:416–426, 1999.

F. E. Satterthwaite. An Approximate Distribution of Estimates of Variance Components.

Biometrics Bulletin, 2:110–114, 1946.

H. S. Sichel. Word Frequency Distributions and Type-Token Characteristics. Mathemat-
ical Scientist, 11:45–72, 1986.

M. S. Spassova. Las Marcas Sintácticas de Atribución Forense de Autorı́a de Textos

Escritos en Español. Master’s Thesis, Institut Universitari de Lingüı́stica Aplicada,

Universitat Pompeu Fabra, Barcelona, May 2006.

R. Sproat. Morphology and Computation. The MIT Press, Cambridge, MA, 1992.

W. Tabak, R. Schreuder, and R. H. Baayen. Lexical Statistics and Lexical Process-

ing: Semantic Density, Information Complexity, Sex, and Irregularity in Dutch.

In S. Kepser and M. Reis, editors, Linguistic Evidence — Empirical, Theoretical,
and Computational Perspectives, pages 529–555. Mouton de Gruyter, Berlin,

2005.

F. J. Tweedie and R. H. Baayen. How Variable May a Constant be? Measures of Lexical

Richness in Perspective. Computers and the Humanities, 32:323–352, 1998.

L. K. Tyler, W. D. Marslen-Wilson, and E. A. Stamatakis. Differentiating Lexical Form,

Meaning, and Structure in the Neural Language System. PNAS, 102:8375–8380,

2005.

W. N. Venables and B. D. Ripley. S Programming. Springer, New York, 2002.

346 references

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-Plus. Springer, New

York, 4th edition, 2003.

J. Verzani. Using R for Introductory Statistics. Chapman & Hall, New York, 2005.

R. Vulanović and R. H. Baayen. Fitting the Development of Periphrastic do in all Sentence

Types. In P. Grzybek and R. Koehler, editors, Festschrift für Gabriel Altmann, pages

679–688. Walter de Gruyter, Berlin, 2006.

S. N. Wood. Generalized Additive Models. Chapman & Hall/CRC, New York, 2006.

G. U. Yule. The Statistical Study of Literary Vocabulary. Cambridge University Press,

Cambridge, 1944.

G. K. Zipf. The Psycho-Biology of Language. Houghton Mifflin, Boston, 1935.

G. K. Zipf. Human Behavior and the Principle of the Least Effort. An Introduction to
Human Ecology. Hafner, New York, 1949.

Index

Data sets

affixProductivity, 118
alice, 65
auxiliaries, 104
beginningReaders, 290, 301
dative, 4, 33, 148, 279
durationsGe, 116
durationsOnt, 75, 117
dutchSpeakersDist, 136
dutchSpeakersDistMeta, 136
english, 42, 43, 117, 169, 195, 228
etymology, 209, 238
faz, 214
finalDevoicing, 164, 320
havelaar, 52
heid, 16, 42
imaging, 240
latinsquare, 266
lexdec, 25, 242
lexicalMeasures, 138, 164, 314
nesscg, 239
nessdemog, 239

nessw, 239
oldFrench, 129, 160
oldFrenchMeta, 129, 160
periphrasticDo, 218
phylogeny, 143
primingHeid, 284
ratings, 21, 82, 165
regularity, 164, 202
selfPacedReadingHeid, 287, 301
sizeRatings, 302, 333
spanish, 155
spanishFunctionWords, 317
spanishMeta, 19, 154, 303
twente, 231
variationLijk, 134
ver, 71
verbs, 4, 32
warlpiri, 42, 301, 304
weightRatings, 39
writtenVariationLijk, 295, 301

R

$, 6, 12, 90
&, |, 9
∼, 13
|, 9, 38
∧, 96
∧, 168
-> (assignment), 3
: (sequence operator), 8
<- (assignment), 3
== (equality), 8
= (assignment), 3, 8
HPDinterval(), 248
I(), 96
MASS package, 23, 97
N(), 233
TukeyHSD(), 106

Vm(), 239
.RData, 1, 18
.Rhistory, 1, 18
abline(), 59, 72, 85, 87
abs(), 189
aggregate(), 17, 263
anova(), 104, 166, 200, 203, 253
aov(), 107, 264
apply(), 272, 283
as.character(), 10, 36
as.dist(), 136
as.factor(), 10
as.numeric(), 51, 132
attach(), 293
attr(), 61
barplot(), 21, 32

347

348 index

biplot(), 124
boxplot(), 30
bwplot(), 43, 79
c(), 7
cat(), 190
cbind(), 99, 197
cex, 36
chisq.test(), 74, 113, 163, 172, 198
cluster package, 140
cmdscale(), 136
coda package, 248
coef(), 87
col, 21
collin.fnc(), 182
colnames(), 9
compare.richness.fnc(), 225, 239
confint(), 115
consensus() (ape package), 147
contr.treatment(), 102
cor(), 90, 139, 172
cor.test(), 90, 139
corres.fnc(), 130
corsup.fnc(), 133
cut(), 65
cutree(), 142
data.frame(), 19, 65, 90
datadist(), 171
dbinom(), 47, 49, 53
demo(), 99
density(), 25, 99, 172, 188
Design, 171
detach(), 23
dev.off(), 24
deviance(), 217
dfbetas(), 190
dffits(), 189
diag(), 162
diana(), 138, 140
dist(), 129, 140
dnorm(), 59
dpois(), 54
dt(), 63
e1071 package, 160
equal.count(), 42
example(), 5
exp(), 5
fastbw(), 186, 320
fisher.test(), 113
fitted(), 110, 172, 247, 297
fixef(), 293
glm(), 197
grid::grid.prompt(), 243
growth.fnc(), 223
hclust(), 138, 140
head(), 4, 223
help(), 5

install.packages(), 23
jitter(), 74, 79, 310
jpeg(), 24
kappa(), 182
kde2d(), 99
kruskal.test(), 108
ks.test(), 73
lattice, 242
lattice (package), 123
lda(), 155
length(), 19, 43, 63
levels(), 13
library(), 23
lines(), 27, 59, 111
list(), 16
lm(), 86, 107, 165, 174, 262
lmer(), 242
lmList(), 271
lmsreg(), 92
lnre(), 232, 326
lnre.spc(), 233
lnre.vgc(), 235, 327
log(), 5
lowess(), 34, 93
lrm(), 210, 238, 279, 320
lty, 59
make.reg.fnc(), 270
manova(), 158
max(), 22
mcmcsamp(), 248
mean(), 15, 22
median(), 22
merge(), 17
mfrow, 24
mfrow(), 175
min(), 22, 293
mosaicplot(), 33, 42
mtext(), 29
mvrnorm(), 97
mvrnormplot.fnc(), 89
names(), 121
nchar(), 12
nj() (ape package), 143
nodelabels() (ape package), 147
nrow(), 14
objects(), 18
ols(), 171
options(), 171
order(), 11
ordered(), 209
pairs(), 37, 164
pairscor.fnc(), 164, 313
panel.abline(), 249
panel.xyplot(), 249
par(), 24
paste(), 30

Index 349

pbinom(), 49, 52, 53
pchisq(), 65, 68, 74
pdf(), 24
pentrace(), 205
persp(), 99
pf(), 64, 68
plclust(), 140
plot(), 27, 150
plot.logistic.fit.fnc(), 281
plot.xmean.ordinaly(), 213
plotcp(), 151
png(), 24
pnorm(), 59, 60, 73
pol(), 175
postscript(), 24, 25
ppois(), 54
prcomp(), 120, 184
predict(), 96, 153, 156, 200
prop.clades(), 147
prop.table(), 15, 111
prop.test(), 163, 318
prune(), 151
pt(), 63, 68
pvals.fnc(), 248
q(), 18
qbinom(), 49, 52, 53
qnorm(), 59
qpois(), 54, 67
qqline(), 172
qqmath(), 242
qqnorm(), 72, 172, 188
qt(), 63, 229
quantile(), 28, 52, 67, 172, 283
quasiF.fnc(), 262
ranef(), 246
range(), 22, 26
rbind(), 185
rbinom(), 49, 51, 53
rcs(), 177
read.table(), 5
resid(), 172, 213
rlnorm(), 100
rm(), 18
rnorm(), 59, 81, 114
round(), 52, 55, 93
rownames(), 9

rpart(), 150
rpois(), 54, 100
rt(), 63
scale(), 61, 290
scan(), 222
sd(), 61, 172
seq(), 29, 50, 95, 293
simulateLatinsquare.fnc(), 269
simulateRegression.fnc(), 274
simulateSplitPlot.fnc(), 265
somers2(), 153, 281
sort(), 11
spc(), 231, 326
splom(), 123
sqrt(), 4
substr(), 110
sum(), 14
summary(), 89, 121
svm(), 160, 164
t(), 155
t.test(), 75, 79, 82, 103
table(), 43
tail(), 223
tapply(), 15, 81, 107
text(), 36, 150
tolower(), 222, 325
toupper(), 143
truehist(), 23, 43
unique(), 17
update(), 206
validate(), 193
var(), 62
var.test(), 81
varclus(), 182
which.influence(), 190
wilcox.test(), 76, 80, 82, 84
with(), 16
write.table(), 5
xaxt, 29
xlab, 21
xlim, 27
xtabs(), 13, 42, 43, 51, 66
xylowess.fnc(), 40
xyplot(), 40
ylim, 27
zipf.fnc(), 228

Topic index

α-level, 68, 105
agglomerative clustering, 138
Akaike Information Criterion, 206
alternative hypothesis, 75

analysis of covariance, 108
analysis of variance, 101, 107
anticonservative, 248
arithmetic operators, 2

350 index

assignment (=, <-, ->), 3

bar plot, 21, 32
bimodal, 305
bimodal density, 78
bimodal distribution, 72
binomial distribution, 197, 296
binomial random variable, 46
biplot, 124, 129
bivariate standard normal distribution, 87
blup, 247
Bonferroni correction, 106
bootstrap, 146, 193, 204
boxplot, 30
breakpoint, 215
British National Corpus, 239
Brown corpus, 45
by-item regression, 271

canceling a command (control-c, Esc), 2
cart analysis, 148
celex, 16, 44
χ2-distribution, 63
chi-squared distance, 129
chi-squared test, 74, 113
classification, 148
classification trees, 148
clustering, 148
coefficients, 87
collinearity, 181
comments (#), 3
conditioning plot, 40
confidence interval, 75, 80
confidence intervals, 115, 229
confound, 273
contingency table, 13, 129
continuous distribution, 74
continuous random variable, 44, 57
correlated, 33
correlation, 87
correlation coefficient, 87
correlation matrix, 125, 139
correlation test, 90
correspondence analysis, 129
cost-complexity pruning, 150
covariance, 99
covariance matrix, 125
cran, X
cross-entropy, 136
cross-validation, 158, 162
crossed, 260
cumulative distribution function, 52, 53, 60, 64

data frame, 5
dative alternation, 4
deciles, 28

default level, 102
degrees of freedom, 63, 71
density, 26
density estimation, 25
dependent variable, 13
deviance residuals, 198
dfbetas, 190
dffits, 189
discrete random variable, 44
distance matrices, 129
distances, 136
divisive clustering, 138
dummy coding, 102, 239
Dutch, 16, 42, 52, 71, 75, 104, 164, 202

eigenvalue rates, 131
encapsulated PostScript, 25
English, 4, 169, 239
equality, 8
error stratum, 264
explained variance, 88

F-distribution, 63
factor, 9
factor analysis, 126
factor rotation, 127
fast backwards elimination, 186
Fisher’s exact test of independence, 113
fitted values, 110
for loop, 100, 190
formula, 13, 86, 109
fractional degrees of freedom, 79
frequency function, 47
frequency spectrum, 230
functions, 4

generalized linear mixed model, 279
generalized linear model, 197
German, 214
graphical parameters: see par(), 24
grid prompt, 243
grouping factor, 37
grouping operator, 38
growth curve of the vocabulary, 222

hapax legomena, 223
Herdan’s law, 226
heteroskedasticity, 33, 188
high-density line, 48, 51
highest posterior density intervals, 248
histogram, 21, 23

independent random variables, 77
independent variable, 13
index of concordance, 281
indicator variable, 216

Index 351

inflation in surprise, 106
interaction, 42, 109, 154, 166
intercept, 59, 85, 103
inverse, 52, 60
inverse transformation, 32

jitter, 79
jpeg, 24

knots (of spline), 177
Kolmogorov-Smirnov test, 73, 79
Kruskal-Wallis rank sum test, 108

latent semantic analysis, 127
latent variable, 128
Latin Square design, 267
law of large numbers, 229
least squares, 171
least squares regression, 86
levels (of a factor), 9
leverage, 189
lexical richness, 222
linear combination, 96
linear discriminant analysis, 155
linear discriminants, 154
linear model, 86, 96
linearity assumption, 95
link function, 196
list, 16
lnre distributions, 229
loadings, 124
log link function, 296, 297
logarithmic transformation, 31, 71, 92
logit, 196
lognormal distribution, 223
lognormal random variable, 100
lognormal-Poisson distribution, 100
long data format, 5, 202

Markov chain Monte Carlo sampling, 248
maximum likelihood, 195
mean, 58
mean squared error, 194
median, 21, 28
missing data, 133
mixed-effects regression, 270
mode, 21, 305
model criticism, 71
model likelihood, 204
mosaic plot, 33, 112, 305
multicollinearity, 37
multidimensional scaling, 136
multimodal, 140
multiple comparisons, 105
multivariate analysis of variance, 158
multivariate data, 118

negative subscripting, 37
neighbor joining, 143
nested, 261
noise, 74
non-parametric test, 77
non-sequential anova table, 175
normal distribution, 58
null deviance, 198, 204
null-hypothesis, 68, 75, 115

one-tailed test, 70, 71, 75, 290
one-way analysis of variance, 101
optimism, 194
ordered factor, 209
ordinal logistic regression, 209
orthogonal predictors, 181
outliers, 27, 91, 92, 188, 190, 311
overdispersion, 199

paired observations, 82
paired random variables, 77
paired t-test, 83
parabola, 95
parameters of the binomial distribution, 46
parametric test, 77
partial effects, 175
partitioning, 138
pdf, 24
penalized maximum likelihood estimation, 205
penalty, 205
perspective plot, 99
phylogenetic classification, 142
phylogeny estimation, 143
png, 24
Poisson, 54
Poisson distribution, 54, 100, 296
polynomial, 175
population, 46
population probabilities, 48
posterior distribution, 248
PostScript, 24
power, 69, 77, 265
predictor, 13
principal components analysis, 119, 163
probability, 44
probability density function, 47, 53, 65
probability distribution, 20, 44
probability of failure, 46
probability of success, 46
productivity, 118
prompting, 243
proportional odds model, 212
proportions test, 163

quadratic term, 95
quantile function, 52, 53, 60

352 index

quantile-quantile plot, 53, 72
quartiles, 28
quasi-F , 262

ρ, 87
r , 87
rs , 91
R-squared, 88
random intercepts, 247
random noise, 114
random number generator, 53
random numbers, 51, 81
random regression, 271
random slopes, 248
random variable, 20, 44
rank-frequency step function, 228
recursive partitioning, 149
reference level, 102
register variation, 118
regression line, 87
regression towards the mean, 277
rejection regions, 75
relative frequency, 44
remainder operator, 65
repeatable factors, 241
residual deviance, 199, 204
residual standard error, 90, 172
residuals, 172
restricted cubic spline, 176
rotation matrix, 124

S-PLUS, xii
sample, 46, 51
scatterplot, 33, 84
scatterplot matrix, 37
scatterplot smoother, 34, 39
semantic transparency, 78
sequence, 8
sequential anova table, 167
Shapiro-Wilk test for normality, 73, 76
shingle, 42
shrinkage, 205, 275, 277
significance level, 68
simple main effect, 165
skew, 71
skewed distributions, 76
skewness, 92

slope, 59, 85
Somers’ Dxy , 281
sorting, 10
Spearman correlation, 91, 140
standard deviation, 58, 121
standard error, 89
standard normal distribution, 59, 62
standardization, 61
statistical significance, 68, 114
string, 8
subscripting, 6, 7, 130
supervised methods, 118
supplementary data, 134
supplementary rows, columns, 133
support vector machines, 160

t-distribution, 63
t-test, 75, 79, 103
t-value, 89
test statistic, 68, 73–75
tick marks, 28
ties, 74, 79
tokens, 222
treatment, 275
treatment coding, 102
Tukey’s HSD test, 106
two-tailed test, 70, 71
type I error rate, 265
type-token ratio, 223, 224
types, 222

uniform random variable, 57
unsupervised methods, 118

validation, 193, 204
variable, 3
variance, 62
vector, 6–8
vocabulary growth rate, 223
vocabulary richness, 222

Warlpiri, 42, 301, 305
Welch t-test, 79
Wilcoxon test, 76, 80, 84
WordNet, 21

Zipf’s law, 226

Author index

Balota, 40
Bates, x, 242
Becker, ix
Belsley, 181, 183

Biber, 126
Bresnan, 4, 13, 32, 81, 116, 148,

279
Burrows, 163

Index 353

Carroll, J.B., 224
Chambers, ix
Chitashvili, 165
Clark, 263
Cochran, 262
Cortese, 40
Crawley, ix, x, 200
Cueni, 148, 279

Dalgaard, ix
Dalton-Puffer, 239
Dickinson, 263
Dumas, 127
Dunn, 142

Ellegård, 218
Ernestus, 75, 116, 117, 129, 134, 164, 295

Faraway, 242
Feldman, 40
Foley, 142
Forster, 263
Francis, 20, 45
Frauenfelder, 116

Gale, 230
Good, 223, 230
Gremmen, 260
Guiraud, 224

Haerdle, 25
Harrell, 195, 221
Hellwig, 116
Herdan, 224, 226
Hoover, 224

Keune, 134, 295
Khmaladze, 229
Kroch, 219
Kučera, 20, 45
Kuh, 181

Landauer, 127
Levinson, 142
Lieber, 71
Lorch, 271

Miller, 21
Moscoso del Prado, 208

Mulken, 129
Murtagh, 129
Myers, 271

Nikitina, 148, 279

O’Shannessy, 42, 301
Orlov, 226

Paradis, 143, 146
Perdijk, 289
Plag, 239
Pluymaekers, 75, 116, 117
Pollman, 214

Quené, 272

Raaijmakers, 260, 266, 268
Reesink, 142
Ripley, xi, 23, 25, 35

Sampson, 230
Satterthwaite, 262
Schreuder, 40, 116, 202, 208,

209
Schrijnemakers, 260
Sergent-Marschall, 40
Sichel, 224
Spassova, 154
Spieler, 40
Sproat, 12

Tabak, 202, 208, 209
Terrill, 142
Tweedie, 224

Van den Bergh, 272
Van Hout, 134, 295
Venables, xi, 23, 25, 35
Verzani, xi
Vulanović, 219, 221

Welsch, 181
Wilks, xi

Yap, 40
Yule, 224

Zipf, 42, 224, 226, 306

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	1 An introduction to R
	1.1 R as a calculator
	1.2 Getting data into and out of R
	1.3 Accessing information in data frames
	1.4 Operations on data frames
	1.4.1 Sorting a data frame by one or more columns
	1.4.2 Changing information in a data frame
	1.4.3 Extracting contingency tables from data frames
	1.4.4 Calculations on data frames

	1.5 Session management

	2 Graphical data exploration
	2.1 Random variables
	2.2 Visualizing single random variables
	2.3 Visualizing two or more variables
	2.4 Trellis graphics

	3 Probability distributions
	3.1 Distributions
	3.2 Discrete distributions
	3.3 Continuous distributions
	3.3.1 The normal distribution
	3.3.2 The t, F, and X2 distributions

	4 Basic statistical methods
	4.1 Tests for single vectors
	4.1.1 Distribution tests
	4.1.2 Tests for the mean

	4.2 Tests for two independent vectors
	4.2.1 Are the distributions the same?
	4.2.2 Are the means the same?
	4.2.3 Are the variances the same?

	4.3 Paired vectors
	4.3.1 Are the means or medians the same?
	4.3.2 Functional relations: linear regression
	4.3.2.1 Slope and intercept
	4.3.2.2 Estimating slope and intercept
	4.3.2.3 Correlation
	4.3.2.4 Summarizing a linear model object
	4.3.2.5 Problems and pitfalls of linear regression

	4.3.3 What does the joint density look like?

	4.4 A numerical vector and a factor: analysis of variance
	4.4.1 Two numerical vectors and a factor: analysis of covariance

	4.5 Two vectors with counts
	4.6 A note on statistical significance

	5 Clustering and classification
	5.1 Clustering
	5.1.1 Tables with measurements: principal components analysis
	5.1.2 Tables with measurements: factor analysis
	5.1.3 Tables with counts: correspondence analysis
	5.1.4 Tables with distances: multidimensional scaling
	5.1.5 Tables with distances: hierarchical cluster analysis

	5.2 Classification
	5.2.1 Classification trees
	5.2.2 Discriminant analysis
	5.2.3 Support vector machines

	6 Regression modeling
	6.1 Introduction
	6.2 Ordinary least squares regression
	6.2.1 Nonlinearities
	6.2.2 Collinearity
	6.2.3 Model criticism
	6.2.4 Validation

	6.3 Generalized linear models
	6.3.1 Logistic regression
	6.3.2 Ordinal logistic regression

	6.4 Regression with breakpoints
	6.5 Models for lexical richness
	6.6 General considerations

	7 Mixed models
	7.1 Modeling data with fixed and random effects
	7.2 A comparison with traditional analyses
	7.2.1 Mixed-effects models and quasi-F
	7.2.2 Mixed-effects models and Latin Square designs
	7.2.3 Regression with subjects and items

	7.3 Shrinkage in mixed-effects models
	7.4 Generalized linear mixed models
	7.5 Case studies
	7.5.1 Primed lexical decision latencies for Dutch neologisms
	7.5.2 Self-paced reading latencies for Dutch neologisms
	7.5.3 Visual lexical decision latencies of Dutch eight-year-olds
	7.5.4 Mixed-effects models in corpus linguistics

	Appendix A Solutions to the exercises
	Appendix B Overview of R functions
	References
	Index
	Data sets
	R
	Topic index
	Author index

