

Drupal 6 Performance Tips

Learn how to maximize and optimize your Drupal
framework using Drupal 6 best practice performance
solutions and tools

Trevor James

TJ Holowaychuk

 BIRMINGHAM - MUMBAI

Drupal 6 Performance Tips

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2010

Production Reference: 1080210

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-84-5

www.packtpub.com

Cover Image by Nilesh Mohite (nilpreet2000@yahoo.co.in)

Credits

Authors
Trevor James

TJ Holowaychuk

Reviewers
Daniel Hanold

Joeri Poesen

Acquisition Editor
Douglas Paterson

Development Editor
Steven Wilding

Technical Editor
Akash Johari

Copy Editor
Lakshmi Menon

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Kevin McGowan

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Trevor James is a Drupal developer and web designer based in Middletown, MD,
USA. Trevor has been designing websites for 13 years using a combination of HTML,
XHTML, CSS, and ColdFusion, and has been using Drupal intensively for more
than 2 years. Trevor's focus is on building web portals for higher education, public
education (K-12), non-profit and small business environments. He is interested in
the best methods of developing Drupal themes, Drupal site performance, and using
CCK, Views, and Panels to develop frontend interfaces to support data intensive
websites. He loves teaching people about Drupal and how to use this excellent
open source content management framework.

Trevor has designed and developed websites for many non-profit, education-based,
and small business organizations. He is currently working on a number of
Drupal-related projects.

Trevor created an 11.5 hour video tutorial series comprising 114 lessons titled
Introduction to Drupal 6 for VTC (Virtual Training Company) in 2009. The
video is available via the VTC website here: http://www.vtc.com/products/
Introduction-To-Drupal-6-Tutorials.htm

A huge thank you to my wife, Veronica, and our two beautiful twin
girls, Francesca and Clare, for their love and support while I was
writing this book.

Thanks to my father-in-law, Tony Gornik, for offering his residence
in Hershey, PA, as writing space on weekends. The quiet and slower
pace of Hershey helped inspire the writing of these chapters. Many
thanks to the Hershey Fire Company crew for giving me and my
twin daughters tours of the big trucks during the much-needed
writing breaks.

Many thanks to the entire Packt editorial and project team for
inviting me to work on this project and for continuing to publish
excellent titles on Drupal and open source applications. More thanks
to Steven Wilding, Packt Acquisition Editor; Joel Goveya, Project
Coordinator; Akash Johari, Technical Editor; Lata Basantani, Projects
Team Leader; and Patricia Weir, for keeping the project on track
and for guiding me in the construction of this title. I look forward
to working with you all again in the near future.

TJ Holowaychuk, the president of http://vision-media.ca, is a self-taught
web development guru whose skills range from high performance programming in
C to agile and elegant solutions written in Ruby or PHP. He has contributed to and
started over 50 open source projects including Drupal, JSpec, Evolution CMS, and
jQuery. With such a large array of skills, TJ provides a unique perspective with all
challenges regarding performance, design, or development.

About the Reviewers

Daniel Hanold is a software developer and business consultant based in New
York City. After graduating from Stuttgart Media University with degrees in IT and
Economics, he co-founded PeoplesMD, an online patient education resource. He
began his love affair with Drupal shortly afterwards.

Equipped with his background in PHP and MySQL, Daniel creates applications
ranging from brochure websites for high-profile clients to social networks for non-
profit organizations. Daniel is an expert in combining CSS, JavaScript, and jQuery
to make user interactions with any application as simple, elegant, and efficient
as possible.

Currently, Daniel focuses on large scale community websites and performance
optimization using technologies such as Apache Solr and Memcached. His
personal blog can be found at http://danielhanold.com.

Joeri Poesen is a longtime Drupal user, developer, and trainer. He loves
nothing more than scouring the planet, learning how open source tools such as
Drupal empower individuals and organizations, and how he can contribute to
their adoption.

When not traveling or organizing community events, Joeri is probably giving a
Drupal training session somewhere in Europe—most likely in Paris, France.

I'd like to thank my wife Lies for her endless patience and support.
We've been through some crazy things together the last 12 years, and
I've got a feeling that we ain't seen nothin' yet.

This book is dedicated to my parents, Michael and Judy James,
who taught me the value of hard work and dedication to the task at hand.
 —Trevor James

Table of Contents
Preface 1
Chapter 1: Upgrading Drupal 7

Upgrading Drupal 5.x core 8
Backing up your site and database 10
Taking your site offline 12
Running Status report 13

Upgrading to 5.19 15
Installing the Update Status module 16
Installing contributed module updates 19
Uninstalling and removing Update Status 20
Running cron and checking recent log entries 21
Dealing with contributed modules during upgrades 22

Backing up and exporting your Drupal 5.x Views 23
Reviewing your Panels code 26

Final prep for upgrading to 6.13 27
Disabling all contributed modules 28
Enabling the Garland theme site-wide 29

Downloading Drupal 6.13 29
Upgrading Drupal core 30

Running update.php 33
Upgrading contributed modules 38
Updating your PHP memory limit 41

Installing the updated Zen theme files 44
Upgrading your custom theme 44
Cleaning up and resetting Views 47
Placing your site back online 49

Summary 50

Table of Contents

[ii]

Chapter 2: Maintaining your Drupal Site 51
Checking your Drupal configuration status 52
Checking your PHP and MySQL settings 55
Files to delete and clean up 57
Enabling the Update Status module 57

Disabling unused modules and themes 58
Introduction to Drupal caching 59

Enabling and configuring Drupal caching 61
Cache tables in your MySQL database 65
Clearing your performance cache 67
Clearing your theme registry 68

Running cron manually 69
Installing the Poormanscron module 70
Setting up cron through cPanel 73

Backing up your site using SFTP/FTP and cPanel 74
Backing up your database through phpMyAdmin 77

Tweaking your HTACCESS file 78
Summary 80

Chapter 3: Using Development Modules and Tools 81
Viewing and inspecting recent log entries 82

Viewing your recent log entries 82
Logging and alerts configuration 84
Page not found and access denied errors 84

The Devel module 86
Installing and enabling Devel 87
Checking Devel module permissions 88
Enabling Themer info 89
Devel settings 92
Inspecting database queries and Devel results 95
Enabling the Devel module block 98
Using the Devel module block 100

Database queries 100
Empty cache 101
Disable/Enable Theme developer 101
Execute PHP code 101
Function reference 103
Hook_elements() 103
PHPinfo() 104
Rebuild menus 104
Reinstall modules 105
Running cron 105
Session viewer 105

Table of Contents

[iii]

Theme registry 106
Variable editor 106

Summary 108
Chapter 4: Performance Optimization 109

Enabling and configuring the Throttle module 110
Configuring the Throttle module for auto throttling features 111
Throttling your modules 113
Throttling blocks 114

Generating test users, categories, and content 115
Views caching 120

Clearing your Views 2 module cache 124
Using Panels caching 127

Creating a panel and adding content to it 127
Summary 129

Chapter 5: Using DB Maintenance and Boost 131
Using the DB Maintenance module 132
Using the Boost module 135

Installing and configuring Boost 136
Boost settings 137

Boost File Cache settings 138
Boost cacheability settings 139
Boost directories and file extensions 140
HTACCESS file tweaks 142

Testing your Boost configuration 145
Boost and Poormanscron 147
Configuring Poormanscron 148
Clearing the Boost cache 148
Boost admin and stats blocks 148

Boost: Pages cache status block 149
Boost: Pages cache configuration block 150

Summary of Boost's basic configuration 151
Summary 152

Chapter 6: Advanced Boost 153
Updating contributed modules 154
Recommended modules that work with Boost 154

Global Redirect 155
Transliteration and Pathauto 156

Advanced Boost settings 157
Boost advanced settings 158

Testing your Database timestamp settings 162
Boost crawler settings 167

Summary 168

Table of Contents

[iv]

Chapter 7: Using Memcache API and Integration 169
Using the Memcache API and Integration module 170

MoWeS Portable development WAMP server 171
Installing Memcached libraries and service 172
Integrating and testing Memcached with PHP 5.2.x 173
Installing the Memcache API and Integration module 175
Enabling the Memcache Admin module 177

Memcache status 178
Memcache statistics per page 179

Viewing the Memcache tables in MySQL 181
Running Memcache without saving cache data to your database 181

Summary 182
Chapter 8: Advanced Caching and Contributed Modules
for Caching 183

Cache Router 184
Cache Router versus Memcache API 185

Authenticated User Page Caching (Authcache) 186
Tweaking your settings.php file to support Authcache 187
Configuring the Authcache module 188

Page Caching Settings 190
Testing the Authcache module and its caching mechanism 192

Checking the AuthcacheFooter code 192
Checking the Authcache Debug window 192

Advanced cache 193
block_cache.patch 194
comment_cache.patch 194
forum_cache.patch 194
node_cache.patch 194
path_cache.patch 195
search_cache.patch 195
taxonomy_cache.patch 195

APC (Alternative PHP cache) 197
File Cache module 197
Summary 198

Table of Contents

[v]

Chapter 9: Multisite Configuration and Performance 199
Using Drupal multisite 200

Configuring multisite in a localhost environment 201
Creating the multisite folders 202
Setting up databases for your multisite 202
Tweaking settings.php for each site 205
Editing your Apache configuration 206
Tweaking the hosts driver file on Windows 208
Tweaking the Base URL 209
Loading your multisites 209

Testing your multisite configuration 209
Using core and contributed modules in multisite 210
Installing modules and themes to a multisite 211
Setting themes per multisite 211

Caching and multisite 212
Enabling page caching and CSS/JS optimization per site 212

Multisite resources 213
Summary 214

Index 215

Preface
The Drupal content management framework allows us to get a website up and
running quickly, and proves that a multi-layer website and application environment
doesn't need to be complex to set up and configure. The next step after we get
our site installed, themed, and populated with content, is to monitor our site's
performance. We, as users of the site and developers of the site's architecture and
backend, want our site to run smoothly and quickly. We want our page loads to
be super quick and our backend administration to run lightning fast. How do we
optimize our large Drupal-powered, database-driven, content-heavy website with
performance and speed in mind? This book will show you the steps to enable the
performance 'boost' on your Drupal site.

We will discuss all aspects of Drupal performance from simple optimization and site
maintenance to the larger and more complex issues of anonymous and authenticated
site caching. We'll look at some basic core Drupal modules that help to govern
and control performance on our site, and also look in detail at more advanced
contributed module options, such as the Development, Boost, Authcache,
Advanced Cache, and Cache Router modules.

With speed in mind, both for our anonymous site visitors and our logged in users,
we're going to take a close look at how to optimize our Drupal site for higher
performance. This book is an introduction to this complex and large subject, and we
hope that it serves as a stepping stone for both novice and advanced Drupal users
and developers.

Preface

[2]

What this book covers
Chapter 1, Upgrading Drupal, focuses on preparing a Drupal environment for running
a high performance Drupal website. We will discuss upgrading Drupal 5.x to Drupal
6.x, creating backups of our site files and databases, running the Drupal Status report,
upgrading contributed modules to their latest 6.x versions, and running update.php.
We will also tweak our PHP settings using the Drupal settings.php file.

Chapter 2, Maintaining your Drupal Site, covers the basics of maintaining your
Drupal website including inspecting your Drupal configuration file, checking
your MySQL and PHP configurations, enabling and using the Drupal Update
Status module, disabling and uninstalling contributed modules, and clearing the
Drupal performance cache and theme registry. We'll also look at running cron jobs,
tweaking our php.ini file, and tweaking our .htaccess file.

Chapter 3, Using Development Modules and Tools, focuses on using Drupal
development modules and tools such as the Development module. We will look in
detail at the Development module's functionality and use it to monitor performance
on our site.

Chapter 4, Performance Optimization, focuses on Drupal performance optimization,
including throttling modules and blocks through the Development module to
generate dummy taxonomy, and content for our site using Views 2.x, and clearing
our Views cache.

Chapter 5, Using DB Maintenance and Boost, focuses on using the DB Maintenance
and the Boost modules. We'll look in detail at a basic configuration of the Boost
module to enhance performance for our anonymous site users.

Chapter 6, Advanced Boost, focuses on using the Boost module to do advanced
performance functionality. We'll look at using the Boost module along with Global
Redirect and Transliteration, configuring advanced Boost module caching, configuring
Boost crawler, and how to check and tweak our Boost .htaccess settings.

Chapter 7, Using Memcache API and Integration, focuses on using the Memcache API
and Integration module. We will install a development WAMP environment using
MoWeS Portable in this chapter as well as install the Memcached binary libraries,
integrate and configure Memcached to work with PHP, and test the module on our
development site.

Chapter 8, Advanced Caching and Contributed Modules for Caching, focuses on
Advanced Drupal caching and using contributed modules for caching on our site.
We will discuss using the Cache Router, Authcache, and Advanced Cache modules.

Preface

[3]

Chapter 9, Multisite Configuration and Performance, focuses on Drupal multisite
configuration and performance. We will create multisite folders and configure our
Drupal settings.php for multisite. We will tweak our httpd.conf file to support
multisite, and use caching in a multisite environment.

What you need for this book
To follow along with the examples in this book, you will need a computer which can
run MySQL, PHP, and the Apache web server, which are all prerequisites for Drupal.
Luckily, every major operating system can run these applications. You may want to
create an account with a website hosting company to test your work although you
can also use a regular desktop or a laptop computer.

You will also need the Drupal Content Management framework, which is available
from drupal.org. We will discuss downloading and installing Drupal in Chapter 1.

Who this book is for
This book is for Drupal website users and developers who want to boost and tweak
performance on their website using Drupal's core and contributed performance
module functionality.

You are expected to know about the basic operation of Drupal, be familiar with
the concept of site configuration, and know how core and contributed modules are
installed and work in Drupal. No experience with programming Drupal is required.
The author will teach you how to implement specific code and patches that work
with specific performance modules. Almost everything in the book will be focused
on the module visual interface, and how to use this interface to configure and
implement the performance module.

This book also covers upgrading Drupal, running Drupal security patches, creating
backups of your Drupal site, and other basic Drupal site maintenance that will be
helpful to the novice Drupal user and developer. Modules are covered in both their
basic and advanced configurations; so both novice and advanced developer will
learn how best to implement performance practices on their Drupal site with this
step-by-step guide.

Performance is a large discussion within, and presents a large terrain to cover
throughout, the Drupal community, but this book does not claim to cover every
performance and site optimization issue. The authors have done their best to cover
the majority of performance-based tips and tricks to run your Drupal site. They hope
that the book will enhance the discussion of Drupal performance, and pave the way
for more books and tutorials to be released on Drupal performance topics.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "Update the $conf in your
settings.php file."

A block of code is set as follows:

<?php
$conf = array(
 // The path to wherever memcache.inc is. The easiest is to simply
point it
 // to the copy in your module's directory.
 // 'cache_inc' => './sites/all/modules/memcache/memcache.inc',
 // or
 'cache_inc' => './sites/all/modules/memcache/memcache.db.inc',
);
?>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes, for example, appear in our text like this:
"Once enabled, you can browse to this module's admin interface by going to Reports
| Memcache status via your administrative menu."

Warnings or important notes appear in a box like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an e-mail to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/5845_CODE.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing this you
can save other readers from frustration, and help to improve subsequent versions
of this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide the
location address or website name immediately so we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Upgrading Drupal
To run a high performance and secure Drupal website, you should keep your
Drupal core code and your contributed Drupal module code patched and upgraded
regularly. The Drupal project frequently releases updated security patches to its
core code and it should be a standard maintenance workflow for you as a Drupal
developer to keep your site patched to the latest core Drupal release. This will
prevent security issues on your site (most of these patch releases are security
upgrades) and it will help to improve your site's performance, as these patch
releases fix minor and major issues reported from Drupal's bug tracking tools.
Many performance issues and security issues with the Drupal code are fixed on a
weekly to monthly basis by Drupal developers working with the Drupal project.

Besides security patches, Drupal releases major upgrades every 1-2 years. The
most recent major upgrade was from Drupal 5.x to Drupal 6.x. Plans are underway
now for the next major release, Drupal 7.x. It's good practice to begin the process
of upgrading your Drupal 5.x site to Drupal 6.x as soon as possible, so you'll
be in a better position to eventually upgrade and use Drupal 7.x. Major Drupal
releases often solve performance issues reported over months and years by Drupal
developers using Drupal sites. It's to your benefit and your site's future growth to
upgrade soon after a major release appears.

All security patches and major Drupal upgrade releases are listed at the top of
the home page at http://drupal.org/ and each release provides background
information on why the release has occurred.

Upgrading Drupal

[8]

In this chapter, you will learn how to maintain your Drupal site by doing
the following:

Upgrading your Drupal 5.x core to the latest 5.x version, and upgrading your
Drupal 5.x contributed modules to the latest 5.x versions
Backing up your entire Drupal site and database
Running Status report
Taking your Drupal site offline for maintenance
Upgrading your Drupal 5.x site to Drupal 6.x
Upgrading your contributed modules to the latest 6.x versions
Running update.php
Placing your new Drupal 6.x site back online

Learning these steps will allow you as a Drupal webmaster and developer to easily
maintain your Drupal site and to troubleshoot performance issues with client
websites. You will learn that immediately checking which version of Drupal and
contributed modules the site is running can tell you a lot about the performance
of the site.

There is a wealth of information about the upgrade process along with upgrade
tutorials on drupal.org at the following URLs/pages:

Upgrading from previous versions: http://drupal.org/upgrade/
Upgrading from Drupal 5.x to Drupal 6.x: http://drupal.org/
videocasts/upgrading-to-6

Upgrading Drupal 5.x core
Before we perform a major upgrade from Drupal 5.x to Drupal 6.x, we need to make
sure our Drupal 5.x core and contributed modules are upgraded to the latest 5.x
releases. For Drupal core, this is currently Drupal 5.19. We can determine the latest
release by visiting http://drupal.org/ and downloading the tar.gz for this
release. There are also release notes about each version located at http://drupal.
org/. For example, the Drupal 5.x release notes are located on: http://drupal.org/
drupal-5.0. You can read more release notes specific to a version number in the
CHANGELOG.txt text file and the UPGRADE.txt files located in the Drupal root folder
of that version.

•

•

•

•

•

•

•

•

•

•

Chapter 1

[9]

Here is our 5.x upgrade plan:

We're going to upgrade a site running Drupal 5.18 in preparation for a full version
upgrade to Drupal 6.x. The first thing we're going to do is to upgrade this site to
Drupal 5.19. We're also going to upgrade all of our contributed modules to the latest
5.x versions of those modules. This is important to do before an upgrade to 6.x—if all
of your modules and core code are the latest version of 5.x, it will make the upgrade
process run more smoothly and leave less room for parse errors, white screens, and
other upgrade issues.

Drupal.org notes the importance of upgrading to the latest minor
version of your current Drupal version before starting an upgrade to
a next major version release. So, in our case we need to upgrade to the
latest version of Drupal 5.x (at the time of this writing, it is Drupal 5.19)
before running an upgrade to Drupal 6.13. See the Drupal.org upgrade
tutorial and articles at: http://drupal.org/upgrade/.
It may seem as though this workflow takes more time, but in the end your
upgrade process will run more smoothly and with fewer problems.

The site we're upgrading is running Drupal 5.18. The theme is a custom version of
the Zen StarterKit theme. The contributed modules on this site include CCK, Devel,
Imagecache, Imagefield, FCK, Panels, Webform, jQuery, Views 1, and Lightbox.
One of the main sections of the site includes an image gallery using Views and the
Lightbox module to display photos of fire trucks. The Panels module is used to
create a home page for the site displaying one blog post and the Lightbox-powered
photo gallery.

Upgrading Drupal

[10]

Backing up your site and database
Before beginning, run a full backup of both your Drupal directory and your Drupal
database(s). If you run a backup, you can be confident that if an issue arises during
the upgrade process causing possible corruption of your database, you can easily
restore your site with your backup. The rule is to always run backups before
performing any upgrades, even minor security patches.

If you are on a shared hosting server environment, you may have access to your
site's directory and files through FTP/SFTP or a cPanel type of file manager utility
(cPanel and Plesk being two of the common utilities). You can either use file transfer
protocol (FTP) to download your directory to your local desktop or use a backup
application that your host provides through your cPanel tool.

To backup your database, you can use a tool such as phpMyAdmin—this will allow
you to connect to your MySQL database and export your full database to your local
desktop (as a SQL file). Here are the steps to back up your site:

1. FTP/SFTP into your server and copy all of your Drupal files or directories to
your local desktop.

A good habit is to name your local folder with the date of the
backup: For example, backup-09-08-15—then if something
happens, you can easily locate the last backup you ran.

Chapter 1

[11]

2. Access your phpMyAdmin tool in your web browser (if your host provides
access) and run an export of your Drupal database. Save the export file as
a SQL (.sql) file in the same backup directory as your Drupal files.

Upgrading Drupal

[12]

3. If you are running your Drupal site locally (via localhost) or you have remote
access to the actual server, you can simply copy the entire Drupal site folder
and paste the folder into a backup folder on your server desktop or computer
desktop. Then you can zip the backup or archive and save it until you know
you have successfully completed the upgrade process. Before copying the
entire Drupal site folder, you may want to check to make sure you can see all
the files in your site folder. Occasionally, the operating system will hide files,
for example your .htaccess file, so it's a good idea to show these files before
backing up to make sure you are also backing up your .htaccess and any
other hidden file.

Now you have a full backup of your Drupal site files and your database. You're
ready to proceed with upgrading your site to 5.19.

Taking your site offline
The next step is to take your site offline for maintenance. It's good practice to always
take your Drupal site offline during the upgrade process to prevent any public site
visitor from accessing your site and viewing error messages that may appear during
the upgrade. Your authenticated users with administrative level permissions will
still be able to login to the site while it's offline. Good practice states that you should
advise your authenticated user base that you will be performing site maintenance, so
they avoid logging in during the process.

First login to your site asyour site as site as user/1 (the super user admin) and then:

1. Click on the on the Administer link in your main navigation menu. in your main navigation menu.
2. Click on the Site Maintenance link (in the Site configuration section of your

admin screen).
3. Select the Off-line radio button.
4. Type in a Site offline message that your general public site visitors will see message that your general public site visitors will seemessage that your general public site visitors will see

when they try launching your site while it's offline. You can add full HTML
and images to this message.

5. Click on the Save configuration button.

Chapter 1

[13]

Running Status report
You will be running the Status report often during the upgrade process to check on
the status of your Drupal site. The Status report will tell you if you have any issues
in your site that need to be resolved before trying an upgrade. To have upgrades run
as smoothly as possible, it's good practice to run Status report and make sure the
majority of your report is checked green telling you the site is operating smoothly.
This will cut down on the amount of parse errors you get during the upgrade process
as well as removing other upgrade problems. Let's go ahead and run it now to get
a quick update on the site we'll be upgrading. The Status report tells us how our
Drupal site is currently running and performing.

1. Go to your Drupal Logs' admin section and click on Status report
(Administer | Logs | Status report)

2. Review the current status of your site. Notice that our site is running Drupal
5.18. This tells us immediately that we need to upgrade to Drupal 5.19 before
doing a full upgrade to 6.x.

Upgrading Drupal

[14]

3. Notice that our PHP memory_limit is set too low for performance purposes.
We're getting a flag with our imagecache settings due to the 32M limit we
have set currently. Once we complete the upgrade process, we'll want to
return to this issue and raise our memory_limit. This is something we will
cover in Chapter 2.

4. Run cron manually to flush the Status report and re-index our site. This also
will allow you to check to see if any other red flags show up.

Status report is important when you're maintaining a client site for the first time. You
can login to the site as admin and quickly get an update on the site and check the
exact Drupal version the site is running. It also gives you a link to your PHP settings,
which is something we will cover in Chapter 2.

Chapter 1

[15]

Upgrading to 5.19
Let's go ahead and start the 5.19 upgrade. Here are the steps:

1. Download and extract the 5.19 tar.gz (from(from http://drupal.org/) to your
local desktop. This will create a folder titled drupal-5.19.

2. Connect to your server through FTP/SFTP. Open up your local FTP window
to show the Drupal 5.19 folder. Make sure your remote window shows your
current Drupal site.

3. Select and move the following folders: includes, misc, modules, profiles,
scripts, themes). Also, move over all of the root level files (cron.php,
index.php, and so on). You do not need to move over the /sites folder as
this has your customized settings.php file. You do not want to replace that
file, so just ignore that folder. You do not want to replace your .htaccess file
or your robots.txt file either, as those may also have customized code. The
rest of the folders and files will only replace the core Drupal files and folders,
updating their code with the latest version. You do not need to replace the
/files folder either.

4. Start the transfer.

5. As soon as the files have transferred over through FTP, refresh your site's
Status report. You should now see Drupal 5.19 listed.

Upgrading Drupal

[16]

6. Run cron manually again to see if you receive any new flag messages or
errors. At this point Drupal will tell you that you need to update your
database schema by running update.php. This is a crucial step during any
Drupal upgrade process, as it updates your entire Drupal database schema.
For minor version upgrades, you usually do not need to run update.php, but
if in doubt, run your Status report and this will tell you whether you need to
update your database schema.

7. If you are using the jQuery Update module in Drupal 5.x, you may receive
a message in your Status report telling you to copy the jQuery.js script file
to the correct location. The upgrade process places this script into the /misc
folder and will overwrite your previous jQuery.js file. You will need to
follow the instructions that Drupal gives you in your Status report and copy
the file from sites/all/modules/jquery_update/misc/jquery.js.

8. Run cron once more to check Status report. You should now have a fully
upgraded core Drupal 5.19 site.

Installing the Update Status module
The next step is to upgrade any contributed modules to the latest 5.x versions. This
is a requirement before trying to upgrade to version 6. To determine if there's a new
version of our contributed modules, we can install the Drupal Update Status module.
Drupal 6.x has update status as part of its core modules, but with Drupal 5.x you
need to install a contributed module. This will give you some practice in installing
Drupal modules.

Chapter 1

[17]

1. Go directly here: http://drupal.org/project/update_status and
download the 5.x-2.3 version.

2. Extract the tar.gz file to your desktop and then copy the update_status
folder into your /sites/all/modules folder using FTP.folder using FTP.

3. Enable the module in your modules admin at Administer | Site building |
Modules. Save your module configuration.

Upgrading Drupal

[18]

4. Go back to your Status report. You should see a red-flagged box notifying
you that your modules need updating. The Module update status box will
state: Not secure!

5. Click on the available updates link to see what contributed modules in your
site need updating.

6. The Available Updates page will load and all modules needing updates will
be flagged in red with the recommended version listed. The module provides
a link to the module's project page at http://drupal.org/, so you can easily
download the most recent version to your desktop.

7. Notice in our list, we need to update the ImageField and the
Lightbox2 modules.

Chapter 1

[19]

Installing contributed module updates
Remember that you need to update your contributed modules to the latest 5.x
released versions before attempting to upgrade your Drupal site to 6.x. Before
upgrading the 5.x versions of contributed modules, it's a good idea to back up your
site files and database once more now that you're at the core Drupal 5.19 release.

1. Download the latest stable release of the Imagefield, Lightbox2, and
Webform modules. The Project pages are here:

http://drupal.org/project/imagefield

http://drupal.org/project/lightbox2

http://drupal.org/project/webform

2. Copy the extracted folders to your /sites/all/modules folder to
replace current versions. Be aware here that you will be overwriting
your contributed module code. So if you have made any hacks or edits
to contributed code, you will need to replace those files later aftercontributed code, you will need to replace those files later after, you will need to replace those files later after
you've upgraded.

Remember that the golden rule followed by the Drupal
project and community is do not hack core. This is also a good
rule to follow with your contributed modules. If you have
to manipulate module code, do this by using proper Drupal
theme and module overrides in your template.php file.

3. Once you have replaced your Imagefield, Lightbox2, and Webform
modules, refresh your available updates page.

4. Notice that in our FTP screenshot there's a bunch of tar.gz folders residing
in our /sites/all/modules directory. Sometimes you'll find these zippeddirectory. Sometimes you'll find these zipped
folders remaining in your modules directory. They are just taking up
unnecessary space. You can delete them safely from your /sites/all/
modules directory.

5. Once you copy over your new versions, your available updates page should
be green next to each module.

6. Run your Status report again—this is important because Drupal will
then let you know if you need to run update.php. Very often with
contributed module upgrades and updates, you need to update your
database schema. It's recommended to run update.php after every
contributed module upgrade.

•

•

•

Upgrading Drupal

[20]

7. In this case, after running Status report we do not need to update our
database schema. The three modules we updated did not make any
database level changes. So, we're good to go with our Drupal 5.19
upgrade. The update/upgrade process is now complete and we're
ready to move onto the Drupal 6.x upgrade procedure.

Uninstalling and removing Update Status
Before proceeding with the full version upgrade to Drupal 6.x, we must uninstall
and remove the Drupal Update Status module. This module comes packaged with
Drupal 6.x core, so we cannot leave the 5.x version of the Update status module
in place.

1. Go to your modules admin page (Administer | Site Building | Modules).
2. Uncheck the Update status module checkbox and save the module

configuration. This will disable the module.
3. Click on the Uninstall tab at the top of your modules page. This will load the

uninstall list and any modules available (disabled modules) for uninstalling.
4. Check the Update status module box.
5. Click on the Uninstall button.

6. Drupal will ask you to confirm that you want to uninstall the module. Click
on Uninstall again.

7. The module will be uninstalled.

Chapter 1

[21]

8. If you revisit your module admin list, you'll notice that the Update status
module is still listed, but is not checked/enabled. You need to also delete the
entire file folder for this module from your /sites/all/modules directory
before proceeding with the upgrade. If any files are lingering on the server
for this module, you could generate errors during the upgrade process.

9. FTP into your server and remove the update_status folder from
/sites/all/modules.

10. Refresh your modules admin list and the Update_status module table row
should be deleted.

Running cron and checking recent log entries
Before proceeding with the upgrade to Drupal 6.x, complete the following steps:

1. Run cron again here: /admin/logs/status.
2. View recent log entries to make sure you're not getting any parse errors or

other errors in your current Drupal 5.19 site. It's a good idea to check and try
to get as few errors as possible in your recent log reports before upgrading to
Drupal 6.x. This will make the process go smoother.

Upgrading Drupal

[22]

3. To check recent log entries, go to Administer | Logs | Recent log entries.
Your report or table should list all blue links and successful tasks. If you
notice any red errors, make a note of them to troubleshoot before going
forward. You should see something similar to the following screenshot
(notice that no errors are visible):

Dealing with contributed modules during
upgrades
In our upgrade process to Drupal 6.x, I'm going to focus on two contributed modules
and the process of upgrading these two modules (as well as our other contributed
modules) to their 6.x versions. When upgrading your contributed modules, it's good
practice to read all of the module project information on the drupal.org website.
Visit the Drupal contributed module project page for details about the module
and how the module behaves during the upgrade process. You will also want to
confirm that your contributed modules have 6.x versions. If the module has notcontributed modules have 6.x versions. If the module has not have 6.x versions. If the module has not
been ported to 6.x yet, you will not want to proceed with an upgrade to Drupal 6.x
unless you can live without that module's functionality on your website. Many of
the contributed modules have been ported to Drupal 6.x at this time, but some are
still in development mode. You are responsible for checking for this information
and confirming the release version before upgrading.

Chapter 1

[23]

While viewing a module's project page at drupal.org, look for the release versions
in the Releases table at the bottom of the project page. For example, for the Views
module you will see this:

Official releases with a green background and blue hyperlinks mean that the release
is stable and ported for that version of Drupal. So, Views has a valid and stable 6.x
release according to the project page. You will also see many development versions
(snapshots) of the release. Use stable versions as much as possible. Development
versions should not be run on production web servers.

Backing up and exporting your Drupal
5.x Views
Drupal 5.x uses Views version 1.x. Our site is currently using the last version of
Views for Drupal 5.x (Views 5.x-1.6). The Views module is notoriously difficult to
upgrade to the latest version of Views2 for Drupal 6.x. You will want to make sure
you export all of your View code from the Drupal 5.x version, and keep it in backup
notepad files in case you need this code to rebuild your Views in Views2 in the
event you receive errors during the upgrade process. This is a good practice before
upgrading the Views module.

On our site we have two custom Views built, both to control photo galleries on the
site. We have a general Photo Gallery view using the Lightbox2 module plugin, and
we have a new View that the developer of the site is working on to integrate some
jQuery code for the display of the images. This view is not completed and enabled
yet, but it's a good idea to export the code to have a backup if necessary.

Upgrading Drupal

[24]

This is also a great time in the upgrade process to see if you have Views in your site
that you no longer need and can delete. Cleaning house is good practice before an
upgrade to 6.x. You can export the View code for your disabled Views and keep
a backup of that exported code. Then, you can delete those Views and not have to
worry about converting them in the upgrade to 6.x.

Default Drupal Views that come packaged in the Drupal Views module should
convert and translate without issues to Views2, but if in doubt it's a good idea to
export these Views as well.

For more on the Views module visit: http://drupal.org/project/views. For
Views2 documentation, you'll need to install the Advanced Help module (we'll do
this after we upgrade to Drupal 6.x.).

1. To export your Views, click on the Export link under the Actions column in
your Views list, next to the View you want to export.

Chapter 1

[25]

2. This will launch a screen that contains all of your View's export code.
Right-click on the code window and select all, or copy all of the code
using your mouse to select it.

Upgrading Drupal

[26]

3. Paste the exported code into WordPad or Notepad and save the file with the
following naming convention—use the name of your View_code.txt. So,
for our example we'll name the file photo_gallery.txt. This can be a text
file, as you'll be copying and pasting the code directly from this file back into
Drupal later in the 6.x version, if you need it while using the Views Import
Code utility.

4. Do the same process for your other Views if you have multiple Views.
5. You now have export backups for all your View code.

Reviewing your Panels code
The other module that tends to give developers a difficult time during the upgrade time during the upgradetime during the upgrade
process is Panels. We'll be upgrading from Panels 5.x-1.2 to the latest stable
version for Drupal 6.x, Panels3 (6.x-3.0-rc1). Upgrading to and installing Panels 3
will also require us to add another dependent module called CTools. You can learn
more about Panels3 and CTools here: http://drupal.org/project/panels.

It's a good idea to make notes about your panel configuration—the type of panel you
created originally in Drupal 5.x, the content you added to the Panel, and any other
detailed configuration you may have added, including CSS styles, and so on. You
may need this information to rebuild your Panels in Drupal 6.x if you run into issues
or errors.

So, on our site we have one Panel titled Home with a URL/path of home. If we click
on the Edit link in our Panels admin, we can view details about the panel.

Chapter 1

[27]

In our panel we do not have any CSS specified. The panel is a two column stacked
panel. We do have two pieces of content loaded into our panel layout. Our top pane
has a node and a View loaded. The node is one Drupal page and the View is our
photo_gallery View. Our other panes are empty. We'll make a note of this layout
arrangement in a WordPad document and save it to our desktop for reference later.

Final prep for upgrading to 6.13
Here's a final prep checklist before we start the 6.13 upgrade:

1. Run cron manually a final time before the upgrade.
2. Check your recent log entries one final time at Administer | Logs | Recent

log entries before upgrading..

Upgrading Drupal

[28]

3. Make a list of all of your contributed modules so that you have a module
checklist to work from during the upgrade process. Here is our list of
contributed modules for the site that we'll need to update once we
upgrade Drupal core:

Administration Menu
CCK
Development (Devel)
Imagecache
FCKEditor
IMCE
Lightbox2
Panels
Webform
jQuery plugins
Views

It's also good practice to print out the list of your modules before doing the upgrade,
so that you have the printout as a reference to fall back on when you're downloading
your 6.x versions.

Disabling all contributed modules
Access your Modules list and uncheck all contributed modules to disable them in
advance of the upgrade. You do not need to uninstall any of the modules (apart from
the Drupal Update Status module that we already removed), but it's a good idea to
disable all contributed modules.

Save your module configuration once you have disabled all the contributed modules.

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[29]

Enabling the Garland theme site-wide
Before upgrading it's a good idea to disable your custom theme (in this case we are
using a sub-theme of Zen called 'Apollo'). Enable the Garland default Drupal theme
(the one you're currently using on the admin portions of the site) for your entire site
during the upgrade process. We're going to be deleting the entire Zen theme in order
to upgrade it to the 6.x version of Zen, so let's disable it first.

1. Go to the Administer | Site building | Themes admin list and disable the
Apollo theme.

2. Check the Default radio button next to the Garland theme to make it your
default system theme for the upgrade process.

3. Save configuration.

Downloading Drupal 6.13
Download the latest stable release of Drupal (for this book it's 6.13) from the
drupal.org home page.

1. Click on Download Drupal 6.13 and then save the tar.gz file to your
local desktop.

2. Extract tar.gz to your desktop. This will create a drupal-6.13 folder.

Upgrading Drupal

[30]

Upgrading Drupal core
We're going to upgrade the Drupal core code first. Here are the steps:

1. Login to your server through FTP/SFTP.
2. You should have your local drupal-6.13 folder on your local FTP side

(left side) and your Drupal site on your right side in the FTP window.
3. Open up /sites/all/modules and delete your entire contributed module

list—you can safely delete all the contributed module code as you'll be
adding the new Drupal 6.x versions during the upgrade process. It's a
good idea to remove the legacy module folders first.

4. After backing up your custom theme files (make sure you have a good
backup of all your CSS, and so on), delete the entire custom theme folder
(in this case Zen). We'll add our custom theme CSS to the site once we
complete the core upgrade process.

Chapter 1

[31]

5. Delete all of your core Drupal files taking care not to delete the /sites or /
files folders. Do not delete your .htaccess, robots.txt files, or any other
files you may have added custom code to either. This includes php.ini.
These files can remain in your Drupal directory.

Upgrading Drupal

[32]

6. Move your Drupal 6.13 files from your local side to your remote server—this
will add all of the Drupal 6.13 core folders and files to your Drupal site/
server. You do not need to move over the /sites folder, .htaccess, or
robots.txt files. If you accidentally do move over the /sites folder, you
will not replace your settings.php file because Drupal 6.x names this
file with a different file name, so you cannot accidentally overwrite the file
during an upgrade.

Chapter 1

[33]

7. Refresh your Drupal site (on whatever admin page you are currently on). If
you receive immediate parse errors or a white screen (the infamous white
screen of death, though it's really nothing to be afraid of), make sure to carry
out the following steps and run your update.php to update the database
schema. You should see a screen with a bunch of parse errors at this point:

Running update.php
Immediately after moving your new Drupal 6.x core files over to your server and
refreshing your site page, you'll see a bunch of parse errors. Don't panic! Follow
these steps to run your update.php script in order to update your Drupal database
schema, so it updates to the latest Drupal 6.x configuration:

1. Type in update.php at the root level of your site URL. So, for this site we'll
have the following URL to run our script: http://variantcube.com/fire/
update.php

2. Click the Return button on your keyboard to load theReturn button on your keyboard to load thebutton on your keyboard to load the update.php script.

Upgrading Drupal

[34]

3. You will see the following Drupal database update page (along with more
parse errors):

Chapter 1

[35]

4. Click on the Continue button to begin the update process.
5. A second Drupal database update page will load. You do not need to select

the versions—Drupal will do this automatically. Click on the Update button.

6. The updates will run. You will see a progress bar and each core module
will be updated in the database schema. Allow all the database updates to
complete. Do not click your mouse during this process.

7. Once completed, you should see a final Drupal database update page
load. A series of messages will be visible telling you the database update is
complete. For example, on our site Drupal tells us that it now has separate
edit and delete permissions. This is good information to read, as you know This is good information to read, as you know
exactly what Drupal did during the upgrade process. You'll also see a long
list of executed database queries. This list will tell you exactly what updates
the Drupal update.php script performed in your database tables. For
example, if the update script altered or replaced tables.

Upgrading Drupal

[36]

8. At this point your update page should show all green messages and gray
query executed updates. You should also see green checks next to your
upgrade list at the top left corner of the page—Overview, Select Updates,
Run updates, and Review log.

9. Your core upgrade process is now completed from the database side.
10. Click on the Main page or Administration pages link to be taken back to

your new 6.13 site. It's a good idea to first click on the Administration pages
link to make sure the admin pages load correctly.

Chapter 1

[37]

11. Once you click on the Administration pages link, you can then go to your
Status report page through the Reports | Status report link.

12. The Status report should now show you the new version of Drupal
6.13 listed. It should also show you green checks next to the rest of your
configuration. This shows you that you have successfully upgraded your
core code to Drupal 6.13. Congratulations!

Upgrading Drupal

[38]

13. Run cron manually to make sure the Status report loads again without any
errors. cron should run successfully.

14. We're now ready to complete the entire upgrade process by installing
the new 6.x versions of our contributed modules, and our Zen theme and
corresponding custom theme files.

15. We will then enable the update status module (that now comes packaged
with Drupal 6.x) and that will complete the entire upgrade.

Upgrading contributed modules
We're now ready to update our contributed modules to their 6.x versions. Follow
these steps:

1. Download all of the contributed module tar.gz files corresponding to the
latest 6.x stable releases to a folder on your desktop. You may want to create
a folder called contrib._module_upgrades to put the new releases in.

2. Once you have downloaded all the tar.gz files, extract them into your
contributed modules folder. This will create all of your module folders folder. This will create all of your module folders
(one for each module).

If you are using CCK and Imagefield, you'll also need to
download the Filefield module—this is a dependency of
Imagefield in Drupal 6.x.

3. Also, make sure you download and extract the Advanced Help module, so
you can add advanced help documentation to your Drupal site (this is a large
scale Drupal 6.x enhancement). The project page is here: http://drupal.
org/project/advanced_help

Chapter 1

[39]

4. You should by now have extracted all of your modules ready to upload
via FTP:

5. Move your new contributed modules using FTP to your /sites/all/
modules directory.

6. Go to your Modules admin list and re-enable the 6.x versions of the modules
you just installed through their respective groups. For example, re-enable all
of the Views modules and then run your update.php script. Then come back
to the modules admin list and re-enable your Panels modules. Doing it in this
way by enabling the modules as groups will help you to identify problems
with your module upgrades and more easily diagnose problems than if you
just re-enable all your contributed modules at the same time.

7. The only module you do not need to enable at this time is the Devel module.
We're going to look at that module in detail in Chapter 3, so leave it disabled
for now. Be sure to enable the Advanced Help module as well. Click on
Save configuration.

Upgrading Drupal

[40]

8. You may receive a Fatal Error warning about your memory_limit size (in
your PHP settings). If you receive this, go ahead to the next step and run
your update.php script. We'll address our memory issue immediately after
running update.php.

9. If you receive parse errors, immediately run update.php again. This time the
script will update all of your contributed modules database schemas.

10. You will see your Drupal database update page again (at update.php). Click
on the Continue button.

11. Click on Update on the next screen (the same as our update.php during core
upgrade above).

12. When I run update.php, Drupal informs that there is not enough memory to
run the upgrade. This is a performance issue due to the amount of modules
we've added to our site and the resources these modules require. Before
continuing our update.php we'll need to upgrade our memory_limit. We
can do this by editing our site's settings.php file. These are screenshots of
the two types of errors which may arise at this stage of the process:

Chapter 1

[41]

Updating your PHP memory limit
We're getting errors related to PHP memory, so we need to increase our
memory_limit in our PHP settings. There are a number of methods of doing this.
You can set a higher memory limit in your .htaccess, php.ini or settings.php
files. We'll try doing this by adding a memory limit increase to our Drupal site's
settings.php file first. There's more about tweaking Drupal PHP memory limits
here: http://drupal.org/node/207036

1. Either login to your cPanel File Manager utility or to your site through FTP to
edit the settings.php file that is in your /sites/default folder. If you do
this via FTP, you will need to edit the file's permissions first in order to add
or edit the file. It needs to have write permissions for editing purposes.

2. I've logged into my cPanel File Manager utility and I've browsed to my
/sites/default directory.

3. I check the box next to my settings.php file and then click on the Change
Permissions button in the File Manager admin screen. I add full write and
execute permissions. I click on the Change Permissions button.

Upgrading Drupal

[42]

4. I then click on the Edit button in the File Manager utility.
5. This launches the settings.php file in edit mode. I look for the PHP settings

section of the file and the array of ini_set settings. I add the following line
of code to my file: ini_set('memory_limit', '96M');

6. I specify 96M as my new memory_limit value.

7. Save the changes to your file.
8. Refresh your site admin screen to see if the changes worked.
9. If you refresh your update.php screen, the updates should automatically

begin because your memory limit is now working. If you receive any
remaining parse errors, run the update.php script again until you see
no errors.

10. Drupal will give you the following note/info when you run update.php to
upgrade your modules.

Please note that the Panels upgrade from Drupal 5 to Drupal 6 is far fromnote that the Panels upgrade from Drupal 5 to Drupal 6 is far from
perfect, especially where Views and CCK are involved. Please check all
your panels carefully and compare them against the originals. You may
need to do some rework to regain your original functionality.
This is why we took the time earlier to make notes about the home page
panel we're using on the site, in case we need to rebuild it.

11. You should now see a final Drupal database update screen with links back to
your Administration pages (just like at the end of the core upgrade process).
Click on the Administration pages link.

Chapter 1

[43]

12. If you have installed the CTools module (to allow Panels to work) you'll
see two messages appear at the top of the Administer page: The directory
files/ctools has been created and The directory files/ctools/css has been created.

13. Load your Status report page and you should see everything in green
mode with checks. You've successfully completed stage 1 of the contributed
module upgrade process. Congratulations! Notice that on your Status report
page you'll see the PHP memory limit is now set to 96M.

Upgrading Drupal

[44]

14. Run cron manually once more to make sure you do not receive any errors.
The last items to address will be to re-enable your View for the photo gallery
and your home page panel. Finally, we'll re-install and enable your custom
Zen sub-theme.

Installing the updated Zen theme files
We're going to install and upgrade the contributed Zen theme (6.x-1.0) so that we can
reinstall and configure our Apollo custom theme files. The first part of this process is to
install the main Zen theme folder in your /sites/all/themes directory.

1. Download the 6.x version of the Zen theme from its project page here:
http://drupal.org/project/zen

2. Extract the file in your contributed modules directory on your desktop.
3. Connect to your site through FTP and browse to the /sites/all/

themes folder.
4. Upload the Zen folder.
5. Now when you refresh your themes admin list, you'll see the 6.x-1.0 versions

of Zen, Zen Classic, and the Zen Themer's Starter Kit.

Upgrading your custom theme
Now we need to add our custom theme back to the site. Our theme is called 'Apollo'
and we originally used the Zen Themer's Starter Kit files in Drupal 5.x to create this
custom theme. Here are the steps for upgrading our custom theme to Drupal 6.x and
for using the new upgraded Zen Themer's Starter Kit code base. Bear in mind that
we did not make any template code edits to our original Apollo theme, so we do
not need to worry about updating our new template files with our existing template
code. This may be different in your specific case. Make sure to have good backups of
all your existing Drupal 5.x custom theme files. We will need to copy over the CSS
files from our existing Apollo theme, so we have the same CSS styles in our new 6.x
site. Here are the steps:

Chapter 1

[45]

1. Copy over your existing apollo folder using FTP into the main Zen directory
in your /sites/all/modules folder.

2. Open the apollo folder on the remote side and delete the following files:
template.php, theme-settings.php, and theme-settings.init.php.
These are the older template files and we will replace these with the latest
TPL versions—make sure you note down any specific theme override
functions you may have customized or added—you can copy those out and
then paste them back into the new TPL files once you add them. In our case,
we did not add any specific theme overrides.

3. Now, with Drupal 6.x themes the new rule is that you need to have a .info
file in your theme directory, so that the theme will show up in the modules
admin list, and in order for all of your theme regions to be defined properly.
You need to add an apollo.info file in the root directory of the theme.
Copy the STARTERKIT.info file (from the STARTERKIT theme folder) to your
local side of FTP. Open the file in WordPad, and change any reference to
STARTERKIT in the file to apollo.

Upgrading Drupal

[46]

4. Save the file and then re-name it to apollo.info. Upload this apollo.info
file back to your apollo theme directory.

5. Refresh your themes admin list and the Apollo theme will now be visible.
6. Grab the template.php file and the theme-settings.php files from the

STARTERKIT folder and move those to your local site. Rename any instance
of STARTERKIT in those 2 files to apollo. This includes the main function in
template.php (function apollo_theme):

 /**
 * Implementation of HOOK_theme().
 */
 function apollo_theme(&$existing, $type, $theme, $path) {
 $hooks = zen_theme($existing, $type, $theme, $path);
 // Add your theme hooks like this:
 /*
 $hooks['hook_name_here'] = array(// Details go here);
 */
 // @TODO: Needs detailed comments. Patches welcome!
 return $hooks;
 }

This is the renamed function in theme-settings.php:
 function apollo_settings($saved_settings) {

 // Get the default values from the .info file.
 $defaults = zen_theme_get_default_settings('apollo');

 // Merge the saved variables and their default values.
 $settings = array_merge($defaults, $saved_settings);

 /*
 * Create the form using Forms API: http://api.drupal.org/api/6
 */

7. Once those functions are renamed, upload those two PHP files to your
/apollo directory.

Chapter 1

[47]

8. Refresh your themes admin listing.
9. Enable your Apollo theme as the Default.

10. Confirm that your Garland theme is set to the default admin theme here:
Administer | Site Configuration | Administration theme. You can also
choose whether you want to use the Garland theme for content editing.
Save configuration.

11. Congratulations! You've upgraded your custom theme to Drupal 6.x.
Good work!

Cleaning up and resetting Views
The last thing to do in order to have a completely successful upgrade process is to
carry out any content cleanup that's required and to reset your Views. Looking at our
photo gallery content pages post-upgrade, I notice that the Lightbox2 imagecache
settings were not implemented during the upgrade process. In order to use the
correct Teaser and Full node display types, you may need to go back into your
Photo Gallery content type and manage the Display fields configuration on your
Photo file field.

The last thing you need to do is import your View code that we had exported from
our Drupal 5.x site before we upgraded. Go ahead and open that .txt tile you saved
and copy all the code.

1. Select all and copy code from your photo_gallery.txt file.
2. Go to your Site Building | Views admin and click on the Import button.
3. Leave the View name field blank.
4. Paste your copied View export code into the box.

Upgrading Drupal

[48]

5. Click on Import.

6. Check your View settings in the new Views2 interface to make sure they're
translated correctly.

7. Save your View.
8. Test your View as a page and a block.

Chapter 1

[49]

Placing your site back online
Now that you have completed the upgrade process, you can place your site back
online. Browse to Administer | Site configuration | Site maintenance and check the
Online radio button. Save configuration and your site will return to online status.

Upgrading Drupal

[50]

Summary
Congratulations! You have successfully upgraded your Drupal site. Here's a brief
recap of what you did in this chapter:

After backing up your site and database, taking your site offline and running
Status report, you upgraded your Drupal core code to Drupal 5.19.
You installed the Drupal Update Status module and later removed the
module so that it would not cause conflicts during the 6.x upgrade.
You upgraded all of your 5.x versions of contributed modules—a very
important step prior to the upgrade to Drupal 6.x.
You backed up your Views by exporting their code.
You prepped for the Drupal 6.x upgrade by disabling all contributed
modules and enabling the default Drupal Garland theme.
You upgraded the Drupal core code to 6.13 and ran update.php to update
the entire Drupal database schema, thereby confirming that your MySQL
database tables were updated.
You made your first major performance tweak to your server and site by
raising the PHP memory_limit settings to 96M—this setting needs to be
larger to run Drupal 6.x and all of the contributed modules you have.

At this point you can bring your site back online using the site maintenance
configuration. We'll see you back here for more performance tips in Chapter 2,
including how to manage the Drupal cache system, clear the theme registry,
and tweak your PHP settings.

•

•

•

•

•

•

•

Maintaining your Drupal Site
Now that you have upgraded to Drupal 6.13, you're ready to learn how to maintain
the site, keep it running smoothly on a regular basis, and enable some performance
enhancements that we will continue to monitor. This chapter will show you a
selection of best practice Drupal maintenance tips and tricks that you can enable
using the core Drupal administration interface. These performance enhancements
will help you to run a powerful and well-maintained Drupal site.

Running a Drupal website is like keeping a fire truck prepared to go on a rescue call.
The apparatus needs to be washed and inspected daily by firefighters so that it's
ready to go fight a fire or rescue someone in need at a moment's notice. Your Drupal
site also needs to be closely taken care of daily so that it runs smoothly, leaving less
room for issues both on the site frontend and the backend, including the server.

By the end of this chapter, you will be able to perform the following maintenance:

Inspect your Drupal configuration file.
Check PHP and MySQL configuration using the Status report.
Delete files you no longer need in your Drupal directory post upgrade.
Enable the Drupal 6.x core Drupal Update Status module.
Disable and uninstall contributed modules that are inactive.
Enable and configure the Drupal performance cache.
Clear your Drupal performance cache and clear the theme registry so that
you can view theme tweaks immediately.
Run cron tasks manually by using the Status report.
Run cron tasks automatically using the Poormanscron module.
Set up server side cron tasks using the cPanel admin.

•

•

•

•

•

•

•

•

•

•

Maintaining your Drupal Site

[52]

Tweak your PHP.ini settings including the memory_limit, upload_max_
size, and post_max_size, and check which PHP extensions are enabled
or disabled.
Tweak your HTACCESS settings and configuration.
Back your site up using phpMyAdmin and SFTP via cPanel. Through direct
remote access, keep regular site directory and database backups, and use
contributed backup modules.

By the conclusion of the chapter, you will develop a new skill set as a Drupal
maintenance technician, ready to maintain your own Drupal site on an hourly and
daily basis. You've already learned how to upgrade your site, so let's learn how to
keep a close watch on the site and maintain its ongoing growth and development.

Checking your Drupal configuration
status
Now that you have successfully upgraded to Drupal 6.13, you can run your Status
report to check on the status of your configuration file and other site components
such as the PHP and MySQL versions; GD library version, memory_limit, and
whether or not your modules are updated. Status report will give you the most
up-to-date checklist on the general performance of your site. When we run Status
report we find out the following:

Our update.php file is protected. The permissions on this file are 644,
meaning that read permissions are granted to user, group, and and world, whilewhile
write and execute permissions are enabled only for the users of the file.
CTool CSS Cache is in use and exists. This is the CSS cache for the CTools
module that is used in conjunction with Panels.
Our main site settings.php file is protected. This has the same permissions
level as the update.php file: read-only permissions.

It's important to emphasize here that your settings.php configuration file should
always be set to read-only when your site is online and publicly accessible. If you
download the file and view it in a text editor, you'll see this information at the top
of the file under the IMPORTANT NOTE section. The file also tells you where it's
located in your Drupal directory. For example, if you are running one Drupal site
then the file is located in the /sites/default folder. If you are running a multisite
installation, the file may be located in the /sites/nameofsite.org/ folder. With
multisite installations, each site will have its own settings.php file in its
root directory.

•

•

•

•

•

•

Chapter 2

[53]

The next set of information in the configuration file specifies your database settings.information in the configuration file specifies your database settings. file specifies your database settings.
With Drupal you can integrate your site with one database (the common install
method) using one $db_url line of code. You can also specify multiple databases if
you need your Drupal site to connect to multiple databases (for example, if you're
running CiviCRM you could set the CiviCRM database as the second database to
use). Finally, you can specify database table prefixes. This is a possible configuration
if you need your Drupal site to have a contributed module like Views2 Integrate with
another module such as CiviCRM—there are times when this type of db_prefix
is necessary.

See the following articles on http://drupal.org/ and CiviCRM
for more information. Views2 Integration Module: http://wiki.
civicrm.org/confluence/display/CRMDOC/Views2+Integrat
ion+Module. How to configure multiple databases in your settings.
php file: http://drupal.org/node/18429

As this article states, the code you'll use depends on whether you're connecting to
one database or multiple. The default Drupal installation has one line of code:

<?php
$db_url = 'mysql://dbusername:dbuserpassword@localhost/dbname';
?>

If you are connecting to multiple databases, you'll need to add another db_url line of
code. Set your main Drupal database as default. For example:

<?php
$db_url['default'] =
 'mysql://dbusername:dbuserpassword@localhost/dbname';
$db_url['db2'] = 'mysql://dbuser:pwd@localhost/anotherdbname';
$db_url['db3'] = 'mysql://dbuser:pwd@localhost/yetanotherdbname';
?>

You may need to configure this type of setup if you are trying to integrate a module
such as CiviCRM with a Drupal module such as Views2. You need to set up the
Drupal database user to have SELECT access to the CiviCRM database as well, and
then add a specific array to your $db_prefix. For example, this array may look
something like the one in this article: http://wiki.civicrm.org/confluence/
display/CRMDOC/Views2+Integration+Module.

Maintaining your Drupal Site

[54]

The next section in your configuration file is your Base URL—this should be
specified though it's not required. In this section of the file, we'll uncomment the
$base_url line of code and add our website's URL. In this case it will be:

$base_url = 'http://variantcube.com/fire'; // NO trailing slash!

Setting the base_url becomes more important when installing Drupal in a multisite
configuration where you have multiple Drupal instances running off one core Drupal
install. In this case you need to set the base_url for each of your multisites so that
each site runs correctly when a user types in that site's subdomain URL. In our case
the base_url is not required and you can simply leave this line of code commented
out. You can also uncomment it as per my instructions above.

To make changes to your settings.php file you'll need to change the permissions
on the file to write permissions. Use SFTP or your cPanel file manager utility. Then
edit the file and make your changes. Save the file, re-upload it to your server, and
then immediately refresh your site to make sure everything is still loading correctly.
Then reset the permissions to read-only. When editing the permissions on the file
using an FTP file manager utility, you set them to 777 or 755. Once you complete the
edits you can restore the permissions to 555.

The next section of your configuration file contains PHP settings. We'll look at this in
the next tip. Your Status report also provides the following information:

When your last cron run was engaged (in minutes).
Whether your database schema is up-to-date.
If your filesystem is writable by the Drupal system.
What version of the GD imaging library is loaded and whether you have
enough site memory to load it.
The versions of MySQL and PHP installed on your server.
Your PHP memory_limit. You will recall that in Chapter 1 we increased this
memory limit to 96M so that we could successfully install our new upgrade
and run all of our contributed modules. 96M tends to be the recommended
default memory limit for a Drupal 6.x site. When you install contributed
modules, such as Views, Panels, or CiviCRM, you may need to raise your
PHP memory_limit to 96M, or the modules will not work or perform well.
A specification that register_globals is disabled. In order to run
Drupal, your host/server will be required to have this PHP setting
disabled. If it's enabled, you will receive an error when you try and
install or upgrade Drupal.
The version of your web server (we're running Apache 2.2.13 here).

•

•

•

•

•

•

•

•

Chapter 2

[55]

Checking your PHP and MySQL settings
You can also access your PHP and MySQL configuration settings via the Drupal
Status report. For PHP it's as simple as clicking on the PHP version number, which
is hyperlinked in your Status report. The same goes for your MySQL version
and settings.

Clicking on the PHP version link loads a php.info file that resides in your site.
This will give you all of your PHP core configuration settings and all of the PHP
extensions you have loaded and enabled on your server. It's good to review this file
for the following information that you'll need as you troubleshoot performance.

The location of your loaded php.ini configuration file: It's good to know where
the default php.ini file is located on your web server. You can overwrite this
configuration with a custom php.ini file or with custom PHP setting code that you
load into either your settings.php and/or .htaccess file. However, there may be
times when you need to edit the original default php.ini file as long as your host
server gives you write access to that file.

Specifications under the PHP Core configuration section of the information file note
the following information:

Whether file_uploads is enabled/on. You will need to confirm that
file_uploads is On in your PHP settings in order to use Drupal's core file
attachments module.
Max_execution_time and max_input_time.
Memory_limit: notice its telling us that the local value of the
memory_limit is 96M, which is what we set by adding a line of custom
code to our settings.php file in Chapter 1. The Master value for
memory_limit is still set server wide to 32M, but our site is using 96M.
The Master value is being forced by the default server php.ini file.
When we added our line of code to our local site's settings.php file,
it only made the new PHP memory_limit effective for our site. The local
value will be used in your site and will override any master value set.

•

•

•

Maintaining your Drupal Site

[56]

Post_max_size and upload_max_filesize. These settings may need to
be tweaked once our users start uploading files to our website. Drupal
allows you to control the file sizes per upload (per file) and per user
through the Drupal administration configuration. When you make a change
to the maximum upload file size (per file and per user) in your Drupal
configuration, you need to make sure that these tweaks have also been made
in your PHP settings first. So, if you want to raise your maximum upload
size per file to 30 MB, you need to make sure to increase your PHP setting
for upload_max_filesize to 30 MB respectively.

The important thing to grasp now is that you have access to review these PHP
settings through your site's Status report and this PHP information file becomes an
invaluable tool to troubleshoot the performance of your Drupal site. For example, if
a user of your site complains that they are receiving errors every time they try and
post a 50 MB PowerPoint file or TIFF image, you can check your PHP settings to see
what the upload_max_filesize is, and then make a local tweak by adding a line of
code to your settings.php file or by adding a custom php.ini file to your server.
We'll try this as an example later in this chapter.

•

Chapter 2

[57]

Files to delete and clean up
Your Status report tells you that your update.php file is protected. This is good as
you do not want anyone to launch your Drupal site and try running update.php
to update your database schema. You only want to do this as a super user admin.
Another tip is to delete your install.php file from your Drupal site. You do not
need to keep the install.php file on your production site. Removing it is a good
precaution and the added benefit is that no unauthorized site user can try and run
your install.php file. To do this:

1. SFTP into your site or access through cPanel.
2. Copy a backup of your install.php to your local backup folder so that you

have it if you need it later.
3. Select your install.php file and delete it.

This would also be a good time to review your site's /sites/modules and
/sites/themes folders, and make sure you do not have any residual files or tar.gz
files remaining post upgrade. If you do, you can safely remove them from your site.
You do not want to have module folders in your site if you don't need them because
they will just take up space, which in turn makes your site/server sluggish.

Enabling the Update Status module
Remember that when we ran our Drupal 5.x site, we had to install the contributed
Update Status module in order to get status notifications on our site's modules. This
module now comes packaged with Drupal 6.13 core. So all we need to do is enable it.
We see the module is currently disabled by checking our Status report and viewing
the notification that the module is disabled:

1. Visit your modules admin page here: http://variantcube.com/fire/
admin/build/modules

2. Under your Core-optional module list, look for Update status and check the
box next to the module to enable it. Save configuration.

Maintaining your Drupal Site

[58]

Revisit your Status report and you should receive new notifications of modules
or themes that need updating. Update Status will flag two types of updates in
its notification system. The first type of update will be shown marked with a
yellow background in your Available updates table. Yellow flagged updates are
recommended version upgrades. These are usually new versions of the module that
include potential new module functionality. They are not required as they do not
include security patches to the module.

The second type of update is marked in dark red with a pastel red background color.
These are required security patch upgrades that you should run as soon as possible
after receiving the notification.

Notice that we have a new security update notification on our site displayed with
the red background and red text. The Drupal Update Status module has located a
new version of ImageCache (6.x-2.0-beta9). This is a security patch release so it's a
required patch we'll need to download in the near future.

Download the latest 6.x version of Imagecache and upload the new module folder to
your server to replace the existing outdated module. You may need to run update.
php again if the module makes any updates on your MySQL database tables. The
latest Imagecache module is here: http://drupal.org/project/imagecache.

Disabling unused modules and themes
Now that you have your Drupal 6.13 site up and running, it's a good idea to review
the core and contributed modules you're using, and to disable those modules and
themes that are not being actively used. Disabling the modules will let Drupal know
that it does not need to load those module hooks when they are not being used on
the site. Disabling the module will keep the module in your site for future use and
will keep that module's data in your database, but it will not be loaded during page
loads or any other Drupal functionality since it's been disabled.

Chapter 2

[59]

You can also choose to uninstall a module completely from your site if you are not
using it, but bear in mind that if you uninstall a module in Drupal, it will remove not
only the module but all the data associated with it. So, be sure to make a full backup
of your site and database before removing any modules for good.

You can also disable all core modules and themes that you are not using. Check
which these are, disable them, and this will help to speed up your website.

1. Go to your modules admin list at: http://variantcube.com/fire/admin/
build/modules.

2. Uncheck any modules not being used. If you uncheck a contributed module
you're no longer using, and do not need the module at all in your site, you
can proceed to uninstall it.

3. For example, currently in my site I'm not using the sub-module of CCK
called Node Reference nor the User Reference module. So I'm going to
disable these. I may use them in the future, so I will leave them on my
site in case I decide to re-enable them later.

4. I'm also not going to allow my users to change the colors of the themes,
so I'm going to disable the core Color module. Go ahead and disable any
specific modules you are not using.

You can also disable any core or contributed themes you are not planning
to use following these instructions. Load the themes admin page here:
http://variantcube.com/fire/admin/build/themes and make sure you only
have the public and admin themes you're using enabled. In our case on the /fire
site, we're using Garland as the admin theme so that's enabled and we're using
Apollo as the Zen sub-theme. I will also leave the main Zen theme enabled. I can
safely disable the other themes.

The good thing about doing this type of maintenance is that it prevents your users
(both admin and public) from being able to access those additional themes.

Introduction to Drupal caching
Drupal gives you various methods of caching your site's data and content by using
the Drupal core administrative interface. There are a variety of contributed modules
that allow for more advanced caching (we'll look at these in later chapters). Drupal
allows you to cache data and content in order to speed up the performance of your
site in terms of how quickly your pages and entire site loads for the end user.

Maintaining your Drupal Site

[60]

Caching as much data and content as possible, especially the content that you show
to your anonymous site visitors which includes content, blocks, and menus that may
not change frequently, will help Drupal to speed up page load times on your site.
Drupal will keep the cached data stored in a temp location either on the server or in
the MySQL database. The site can easily fetch it for load time from that location.

Drupal does this by storing cached data in specific database tables of your MySQL
database, so it can easily retrieve the cached data instead of recomputing, reloading,
and reprocessing menu, block, and theme data each time the page loads. For
example, your Drupal site may have 50 nodes of content. Each time someone visits
your site they may load 5 of those nodes. The next time a visitor comes to your site
and loads the same 5 nodes, Drupal has to process those nodes a second time, and
each successive time for each visitor. So, what Drupal allows you to do is cache this
data so that the node only loads once.

Drupal stores the cached version of the page in the cache table of the database. This
way the next time a visitor launches that page, menu, or block item, they are loading
the cached page. This ultimately speeds up the entire load process and load times of
your site.

Drupal caches the following content and data:

Sessions
Variables
Menus and blocks
Nodes (pages)
Views

There are times, however, when you do not want to cache data and content on your
site. This is what we're going to focus on now in this chapter. We want to take a look
at the methods Drupal gives us for controlling our performance caching on our site,
and the different options we can select for caching when we're, both, in development
of our site and in production 'live' site environments. Other issues can come up with
cached pages. If you are actively developing a site and working on content, when
you make a change to a node and the site visitor loads a cached version of that node,
they will not see your active changes to that node. So, this could be a drawback. We'll
explore these different options and see how we can easily clear our performance
cache, and also set the cache for a specific minimum lifetime so that you can
expire a performance cache on a specific set of Drupal content.

•

•

•

•

•

Chapter 2

[61]

Enabling and configuring Drupal caching
We will first explore the Drupal cache options by looking at what Drupal core
gives us out of the box in terms of caching and performance options to control
and configure.

To access your core performance cache administrative page go to Site configuration
| Performance. This will load the main Performance admin page.

The first section of this page is devoted to Page cache. These settings control how
your Drupal node content is being cached and stored by the Drupal system. There
are 3 caching modes and you must choose one option as the admin or developer of
the site. By default the option for Disabled caching will be set:

Disabled
Normal
Aggressive

The default has caching set to Disabled on the site. The recommended setting is to
have normal caching mode enabled. Normal mode is fine to use for production level
websites. As Drupal explains, normal mode does not cause side effects on your site
or with your modules.

Aggressive mode caching can potentially cause side effects. It's a trade off, as
aggressive caching causes a significant performance boost on your site, but it can also
interfere with your content loading correctly and your contributed modules loading
correctly. When you enable some contributed modules, they may not be compatible
with aggressive caching mode, so be sure to check this page every time you enable a
new module.

•

•

•

Maintaining your Drupal Site

[62]

We're going to enable the Normal caching mode by clicking on the radio button
to select it. We are also going to set our Minimum cache lifetime to 3 hours. This
means that every 3 hours our cache will be cleared by Drupal, but if content is
edited on the site within 3 hours from when the cache was last cleared, your users
may not see that new content, menu item, or block item. We will also enable Page
compression, which will cause the pages to load faster and save bandwidth on our
web server. You may want to check with your hosting company to see if they already
perform this type of optimization on your site/server before enabling it through
your Drupal admin.

We will also enable our Block cache so that our block content and blocks load from
a cached version instead of reloading them each time a user loads a Drupal site
node. Notice that Drupal tells us here that if we also have page cache enabled, the
performance of the block cache will mostly affect authenticated users on the site.
Let's go ahead and enable Block cache mode. Also, note that if we have block content
access restrictions in place, for example, if we have a block only showing to a specific
role, the caching will be disabled for that block at that point in the process.

Chapter 2

[63]

If you have a theme that contains a large amount of CSS files being called and loaded
from different folders of your theme folder, you may want to consider enabling
optimization of CSS files under Optimize CSS files. Drupal will load all of the CSS
code in one temporary cached CSS file as opposed to loading each individual CSS file
separately. This can also improve overall site performance and load times. Beware,
however, that caching CSS will cause issues while you're in development of the
site, and you may not see your CSS changes/tweaks if you have this enabled while
working on your theme. It's best to disable this before working on your theme files.
Because our Zen sub theme is using about 4 different stylesheets, let's go ahead and
enable this optimization and see how it affects our site.

Finally, let's enable our JavaScript file optimization as well. Again, beware that this
can also cause interference with our contributed modules while in development, so
only enable this when you are taking your site to a production environment.

Save your configuration.

Once enabled, your caching and optimization settings will take effect and Drupal
will be in caching mode until the minimum cache lifetime expires or until you
disable the caching manually.

Maintaining your Drupal Site

[64]

Additionally, 2 folders will be created in your /files folder. One is for CSS and one
for your JavaScript cached files. Your cached temp versions of CSS and JS files will be
stored in these folders:

You can see this in action if you download and install the Firebug web developer's
extension tool for Firefox and inspect your CSS. Using Firebug if I click to inspect
the .node h2.title div class element in my Firebug HTML mode, notice that my
style element is being pulled from a temp CSS cached file in the following location:
http://variantcube.com/fire/files/css/css_e89481daee17b96def6fa7826e5
2a571.css.

So, the cached CSS file is being saved to my /files/css folder. Cached versions
of CSS files are saved in a css sub folder of your main site /files folder. I could
potentially edit this CSS file, but the better practice in development would be to
disable CSS optimization, and then edit my main theme's apollo.css file. Once you
disable CSS optimization, and refresh your site and then access Firebug, you should
see the following as the main style path:

http://variantcube.com/fire/sites/all/themes/zen/apollo/apollo.css?9

In this case, the CSS file is being loaded from your theme's root directory. It's not
being cached now. Notice that if you go ahead and disable your CSS caching and
then enable it again, the next temp CSS file will have a different filename than the
first one we loaded above because it will be a new cached file by Drupal. This will
happen each time you re-enable your CSS cache. This is why it's a good idea to only
edit your main apollo.css or style.css (it may be named style.css if you're
using another theme) file if you are having difficulty locating the CSS file to use and
the correct enabled version of that file. Here's what Firebug will look like when you
have CSS optimization enabled. Notice the long CSS filename and location of the
temp file.

Chapter 2

[65]

Here's what you'll see when CSS optimization is disabled:

Cache tables in your MySQL database
If you view your MySQL Drupal database using a tool such as phpMyAdmin
(provided your host provides this utility), then you can view your database tables
including the cache tables. This will show you where the tables are located on your
server and also give you a more detailed look at the content that is being cached.
Follow these steps to view your database cache tables:

1. Open up your phpMyAdmin utility and select your Drupal site database in
the left phpMyAdmin menu.

2. The tables will load in the right screen.
3. Look for the cache tables—this includes the following tables:

Maintaining your Drupal Site

[66]

The phpMyAdmin table shows you the type of data in the table, the collation,
and the size. For caching, it is necessary to pay special attention to the size of your
database cache tables. As you cache more data, and if you do not have a miminum
lifetime set on the cache, these tables will start to grow in data size. For example,
currently the main cache table is 343.7 KiB in size.

The main cache table contains your imagecache presets, if you have set these
through the Imagecache module, and your theme registry files for your sub-theme.
To access this data (browse the data), click on the filesize link in the size column next
to the table in question or check the table box and then click on the Browse icon to
browse the data.

You will then see something like this, if you are browsing the main cache table:

Let's look more closely at the cache_page table. This is the table that stores your
cached Drupal node data. So, each time you load a Drupal node, the cached version
(if you have Page caching enabled) will be stored in the data field of this table. If
you refresh nodes on your site, load a bunch of Drupal nodes, and browse to this
table to view the cached data, then you'll see something like this. For example,
I went ahead and loaded this node numerous times using the web browser:
http://variantcube.com/fire/node-178-book.

Chapter 2

[67]

Now when I browse to my cache_page table to browse the data stored, I see
the following:

This is showing me that 4 nodes on the site have been cached so far—the main home
page, node-178, node-177, and node-189. It also tells me the Drupal content type
that the node is associated with. For example, node-178 is a book and node-189 is a
forum posting. The table also gives us a column showing data size (per node) and
when the cache is set to expire.

Clearing your performance cache
To clear your cache manually through the Drupal performance administration page
go to Administer | Site configuration | Performance. Scroll to the bottom of the
page and click on the Clear cached data button. This will clear your database cache
tables. For example, if you click the button to clear the cache and then refresh your
database cache_page table, you'll see that all of the previous primary key (cid)
rows that were listed (and that we covered above) have been deleted.

Go ahead and try this! Clear your cache by means of the Drupal admin page
and then refresh your database table view through phpMyAdmin to see the
immediate effect. phpMyAdmin will give me the following result if I try browsing
the cache_page table: MySQL returned an empty result set (i.e. zero rows).

Maintaining your Drupal Site

[68]

Clearing your theme registry
Another component of Drupal caching is the theme registry. Your theme and its
associated functions and CSS elements can be cached by Drupal as it loads. Drupal
stores this information as cached data. You may only need to worry about the theme
registry if you are developing your theme and adding theme override functions to
your template.php files and other Drupal theme template files.

Drupal template files control all of the PHP and HTML output of your Drupal theme.
These template files are stored in the root folder of the theme you are using. You will
see the following template files (and you may see more depending on how complex
the theme is) when you look in a theme folder: template.php, page.tpl.php,
node.tpl.php.

After adding a function to your template files, you may notice that your changes do
not take effect immediately when you refresh your page. You can do the following to
ensure that your function overrides show up immediately.

Clear your main Drupal cache using the method discussed earlier. Clear your cache
at Administer | Site configuration | Performance. This will rebuild the theme
registry on your site. Then reload the page in question and you should see your TPL
changes. Another method of clearing the theme registry is to visit your Site building
| Themes configuration page and click on the Save configuration button to re-save
your theme’s configuration. By doing this you will clear the theme registry and your
latest theme changes and tweaks at the template level will be visible.

Enable your theme registry through your theme admin, if the theme developer
provides an admin checkbox for this API function. For example, we're using
a sub-theme of the Zen theme. As we're using the Zen theme, we have this
additional Theme registry checkbox available to us. This is not included in all
contributed themes.

If you go to your theme configuration page at Administer | Site building | Themes
and then click on Configure, and select your specific sub-theme, you'll see a Theme
Registry section. In this case with Zen, it's in a pane of the sub-theme configuration
page, titled Theme development settings.

Check the box to enable the rebuilding of the theme registry on every page
during development.

Drupal warns you not to enable the theme registry on a production website, as
it can cause performance issues if you have it enabled and are rebuilding the
theme registry on every page load. So, for now we're going to leave it disabled by
unchecking the box. You can then select the box again later if you start doing
theme development.

Chapter 2

[69]

For more on the Drupal theme registry click on the link in the text next to the theme
registry checkbox that is hyperlinked to Rebuild the theme registry on every page.
This will launch a help page on drupal.org with more information about theme
registry functionality: http://drupal.org/node/173880#theme-registry.

Running cron manually
Another tip is to run your cron task often in order to clear out your database of stale
data including old log entries (saved through the Drupal watchdog module), cache
entries that have not been cleared when you cleared your cache tables, and any other
stale data. The cron task will also activate other maintenance tasks on your site
and force these tasks to run, including re-indexing your site for the Drupal search
functionality, force RSS feeds to refresh with new feed content and to update and
perform various tasks that are dependent on this utility. For example, if you have the
Statistics module enabled, you'll need to run cron in order to index your latest page
hits and views. You will also need to run cron in order to activate the Search module
indexing of your site's new content.

To run cron you tell Drupal when to execute the cron.php script that sits at the
root of your site's directory. cron will then run on a specified timetable—either
immediately if you run it manually or on a scheduled time specified in hours,
day of the month, or month.

The cron.php file is installed with Drupal core when you extract your Drupal
directory to your server. You just need to tell Drupal when to execute the script.
When it is run, the cron.php file will load at the following URL of our site:

http://variantcube.com/fire/cron.php

Maintaining your Drupal Site

[70]

You can execute the cron script by going to that URL. You can also run it through
the Drupal Status report by following these steps:

1. Go to Administer | Reports | Status report.
2. Look for the table row for cron maintenance tasks. This will show you when

the cron was last run. In our case, we just ran it through the script URL, so
it's showing us that it was Last run 1 sec ago.

3. Go ahead and click on the run cron manually link.
4. This will run cron again and you'll receive a green message when the page

reloads telling you that cron ran successfully.

Installing the Poormanscron module
It will become inconvenient to have to login to your site and run cron manually
each time you want to clear stale data, re-index your search module, and perform
other routine tasks. If you do not have access to set up a scheduled cron task on your
server via cPanel or through other methods your host provides, you may want to
consider installing the Drupal Poormanscron contributed module. This allows you
to install a cron module and configure it to run scheduled cron tasks. The module's
project page is here:

http://drupal.org/project/poormanscron

Chapter 2

[71]

Let's go ahead and install the module. Here are the steps:

1. Download the 6.x-1.0 version from the project page.
2. Extract the folder to your desktop and then upload to your

/sites/all/modules folder via SFTP.
3. Enable the module through your admin modules list.

Now let's configure the module. Here are the steps:

1. Go to Site Configuration | Poormanscron.
2. Here you can set your cron run intervals. We'll set the cron to run every

60 minutes. Every hour, the cron tasks will execute after the first page
loads immediately at the 60 minute mark.

3. We'll set the error wait setting to 10 minutes. This means that if the cron run
experiences an error and does not run completely, the task will re-run and
try again 10 minutes later.

4. We'll log successful cron runs to the watchdog table in our database and
we'll see these appear as line items in our Recent log entries report.

Maintaining your Drupal Site

[72]

5. You can also log the entire cron progress report to your recent log entries.
If you do not want to see a long list of messages related to the cron run, just
leave this set to No.

It appears that developers and Drupal webmasters are divided on
whether this module contributes to other performance issues on your site.
For example, it's been reported that the Drupal system needs to check
through the module if it's time to run the cron job. This check can take
time and cause potential performance bottlenecks. There is more about
the potential disadvantages of using the Poormanscron module in this
article: http://drupal.org/node/102647.

The advantages of using the module for those of us who do not have access to set up
cron scripts on our server are large. We can rely on this module instead of having to
login to our site every day or every hour to run our cron manually.

Chapter 2

[73]

Setting up cron through cPanel
If you have a cPanel or Plesk utility for your server, you can also set up and
configure cron tasks using this tool. We're going to login to our cPanel now
and take a look at the interface to set up cron tasks.

1. Login to cPanel.
2. Look for a cron jobs icon/button under the Advanced section of your cPanel

utility. Click on this icon.

3. cPanel will give you some introductory text detailing what cron is and
then allow you to use either a standard method of setting the cron or the
Advanced Unix style of configuration. More about this is detailed in the
following article on drupal.org: http://drupal.org/node/369267.

Maintaining your Drupal Site

[74]

Backing up your site using SFTP/FTP
and cPanel
Now that we have completed our initial investigation of the best practice methods
for maintaining and monitoring our new Drupal 6.13 site, it's a good idea to run
a full backup of the site directory (all of our Drupal files and folders), and of the
database. We did this in Chapter 1 before we completed our initial Drupal 5.x
upgrade, but we're now going to look at this in more detail. Backups are essential to
keep our site performing well over time. Eventually, you may run into an issue or
glitch in your site or database, which will cause you to be forced to restore some
of your Drupal core or module files and restore your Drupal database. You may
never need to resort to a backup, but it's a requirement to have a backup in case
you do need it because issues and errors in your site and database can come
up unexpectedly.

The first method is to run a backup of all of your Drupal files and folders.
One method of doing this is through SFTP. Connect to your site using an SFTP
client and then copy all of your folders and files back to your local desktop or local
server/sandbox environment. Be sure to run this backup through secure FTP, if your
host gives you access to an SFTP client or connection. This will minimize the risk of
having your data comprised as it is being transferred via FTP. This is the method of
backup we ran in Chapter 1.

Another method of creating a backup of your site and/or server is to use a tool that
your cPanel may provide. Utilities, such as cPanel, often provide a backup interface
that you can use to create a full backup of your site's home directory or public_html
directory. You can then save this backup to another directory on your server and
restore from this directory if necessary. The benefit of doing a backup using this
method is that it's potentially more secure than your SFTP method, as the data
is staying on your remote server. Here are the steps:

1. Login to your cPanel.
2. Locate the Backups icon/button usually under a section titled Files or

File Management. Click on that icon.

Chapter 2

[75]

3. This will launch a page that will give you options to download either a Full
Backup (all of your site directories, databases, and e-mail forwarders and
filters), or a specific Home Directory Backup, which will include all the site
directories in the home directory of your web server.

Maintaining your Drupal Site

[76]

4. You can also download backups of your MySQL databases through
this admin page. Click on the links to the database in question to
download its backup. For example, here we'll click on the link to the
variantc_drup5 database.database.

5. You can also restore your home directory backup and your MySQL databases
from this page.

You can also use the Backup wizard option through cPanel, if your cPanel provides
this. It's basically the same functionality as described above with the Backups utility,
but this walks you through the steps, one at a time, in wizard workflow format.
The wizard asks you if you want to Backup/Restore or Restore. Then you click and
follow the steps. If you select a Backup, it will then prompt you for whether you
want to do a Full Backup or a Partial Backup.

Chapter 2

[77]

Backing up your database through
phpMyAdmin
You can do a full backup of your database using phpMyAdmin, if your host
provides you access to this utility.

1. Launch phpMyAdmin from your cPanel.

2. You will be redirected to your phpMyAdmin URL.
3. When it loads, locate your database name in the left menu and click on it.
4. Once your database tables load, click on the Export tab.
5. Select the tables you want to export or Select All to export the entire

database. Make sure you're exporting the structure and the data of the
database, so check to make sure those checkboxes are selected. You can also
choose to only export the structure of the database or just export the data.

6. Make sure to select the SQL radio button under the Export table in the left
column in order to export the data as SQL data.

Maintaining your Drupal Site

[78]

7. Check the Save as file checkbox and then click on Go to initiate the export.

Tweaking your HTACCESS file
Your site directory contains an .htaccess file that sits at the root level of your
Drupal site. This file comes packaged with the Drupal install and gets installed with
Drupal by default. You can view and edit this file using your cPanel or SFTP, if you. You can view and edit this file using your cPanel or SFTP, if you You can view and edit this file using your cPanel or SFTP, if you
first change its permissions to write permissions as it's a ready-only file.

Your .htaccess file allows you to tweak directory permissions, specify how Drupal
handles error messages, and present errors (404 errors) to the end user. You can also
override your PHP settings in this file in a similar way to how you override your
PHP settings in your settings.php file and your php.ini file. This presents another
option. Usually host servers provide multiple methods of tweaking your PHP
settings in case you do not have permissions or access as a developer to the Drupal
configuration file, the php.ini file, or the .htaccess file. In your .htaccess file,
you'll look for the version of PHP you're using (in this case PHP 5) and then look

Chapter 2

[79]

for the lines of php_value code that's under this version. For example, this is what
that set of values looks like in our .htaccess file:

PHP 5, Apache 1 and 2.
<IfModule mod_php5.c>
 php_value magic_quotes_gpc 0
 php_value register_globals 0
 php_value session.auto_start 0
 php_value mbstring.http_input pass
 php_value mbstring.http_output pass
 php_value mbstring.encoding_translation 0
</IfModule>

You can add overrides for php memory_limit and upload_max_size here to
the .htaccess file and then save your file. Then refresh your Status report and you
should see your changes in effect. Let's go ahead and add a new upload_max_size
value here, as we want to increase our local value above the current 2 MB default.

To do this we're going to add the following lines of code to the PHP5 section of our
.htaccess file:

php_value post_max_size 20M
php_value upload_max_filesize 10M

1. Change your permissions through cPanel on your .htaccess file to 777 so
that you can write to the file.

2. Edit the file.
3. Add the 2 lines of code mentioned above and make the post_max_size 20M.

Make the upload_max_size 10M.
4. Save changes to your file.
5. Refresh your Status report through Drupal. If for some reason your changes

did not take immediate effect, you may need to ask your hosting service to
restart the Apache web server.

Maintaining your Drupal Site

[80]

6. Your .htaccess file code should now look similar to this:
 # PHP 5, Apache 1 and 2.
 <IfModule mod_php5.c>
 php_value magic_quotes_gpc 0
 php_value register_globals 0
 php_value session.auto_start 0
 php_value mbstring.http_input pass
 php_value mbstring.http_output pass
 php_value mbstring.encoding_translation 0
 php_value post_max_size 20M
 php_value upload_max_filesize 10M

 </IfModule>

Summary
Congratulations! Here's a recap of what you accomplised in this chapter and why
it's important:

You reviewed your main settings.php file in detail and made tweaks to the
base_url path designation, and you learned how to tweak PHP settings in
your settings.php file and your .htaccess file.
You reviewed your contributed modules and themes and deleted any of
these that you no longer needed enabled, and also deleted any files in your
Drupal directory that you no longer needed on your production site.
You enabled the Drupal 6.x Update Status module that is now part of
core Drupal.
You learned how to run your cron tasks through the Drupal admin and
cPanel, and you installed and configured the Poormanscron module to
set up and configure your cron.
You received an introduction to Drupal caching and learned where cached
data is stored and why it's stored in your Drupal database. You learned how
to maintain this cached data, and how to clear it and enable it.
You learned the best practice methods for backing up your Drupal site
directory and database.

You're now ready to do more advanced monitoring of your site using some of
Drupal's contributed modules including the Devel (Development) module, as well
as take a closer look at how Drupal caching works, and monitor your log entries and
errors. See you in Chapter 3!

•

•

•

•

•

•

Using Development
Modules and Tools

In this chapter, we're going to use the Devel module to monitor performance on
our Drupal site to assist us in locating bottlenecks. The Devel module can be used
to quickly gather detailed information on your site's theme elements, monitor your
site's page loads and database queries, generate test content for your site, and give
you easy methods for clearing your site's theme registry and performance cache. It's
an essential tool for the performance-minded Drupal developer. We're also going to
look more closely at how your site logs access entries and how you can view your
log entries to troubleshoot performance issues.

Our focus in this chapter will be on using the Devel module to monitor performance.
The module logs performance issues, such as page load times and memory usage,
which allows you as a developer to find issues quickly and troubleshoot. In this
chapter, we'll learn how to enable detailed and summarized performance logging
on our site.

To summarize, here's what we'll be doing in this chapter:

Viewing log entries and reports
Using the Devel module to monitor site performance
Using the Development block to access site performance logs and to
tweak functionality

•

•

•

Using Development Modules and Tools

[82]

Viewing and inspecting recent log entries
The Drupal Dblog (formerly called Watchdog in earlier Drupal versions) module
keeps recent log entries in your Drupal administration as long as you have not
cleared your performance cache. You can tell Drupal how long you want to keep
the log entries stored in your site's database.

Viewing your recent log entries
Having saved the configuration settings, launch the Recent log entries report
pages by going to Administer | Reports | Recent log entries. This will launch the
following page: http://variantcube.com/fire/admin/reports/dblog

The logs will be displayed in a table by Type, Date, and the detailed log Message
or error. Errors will be noted with a red X icon, and warnings will be flagged with
a yellow exclamation point icon. For example, a php error will usually throw a red
X line item, while a page not found error will show a yellow exclamation point
warning. A column is also presented in the log entries table showing the user
account and session during which the error occurred.

You should check this report often so that you can confirm that your site is logging
errors and which errors need troubleshooting. Often, if you are getting an error on
your site it's a good idea to immediately try running your recent log entry report and
check to see if the error is being logged. Viewing the log entries may provide you
with the code line in a specific module and the location in the module code of the
specific error. This can greatly reduce the time spent searching for the issue, as the
error log will usually narrow the error down to a specific line in the template code.
The logs also tell you the date and time of the error so that you can locate an issue
that occurred at a specific moment on the site and/or server.

Notice in this screenshot the Dblog is reporting three php errors from August 18. The
error messages are hyperlinked and if we click on the links, we can see more details
of the entire error.

Chapter 3

[83]

For example, the first error in the list is related to the update.php script
being run. Drupal is telling us that the table the update.php script is trying
to create—cache_views_data—already exists.

Using Development Modules and Tools

[84]

Remember to run cron to clear your older log entries and keep the log entries screen
up-to-date.

Logging and alerts configuration
First, let's check our logging configuration and settings. To access your Dblog
configuration follow these steps:

1. Go to Site configuration | Logging and alerts: http://variantcube.com/
fire/admin/settings/logging

2. Click on Database logging.
3. This will load the configuration page where you can tell Dblog the maximum

number of log entries to keep in the database. So, if you select to keep 1000
log entries at any given time, it will be the most recent 1000 log entries. When
you run cron, the older entries will be cleared and the log will be refreshed.

4. Click on Save configuration.

Page not found and access denied errors
The Dblog module also keeps tabs on your top 'access denied' (403) errors and top
'page not found' (404) errors. For access denied errors go to Reports | Top 'access
denied' errors at http://variantcube.com/fire/admin/reports/access-denied.
This will display a table that shows the Drupal page path that generated the access
denied error and how many times it's been generated. In the following screenshot,
you see that the /admin path has generated access denied errors three times and the
/logout path has generated an error once. Keeping an eye on this it can also tell you

Chapter 3

[85]

where a user interface bottleneck might be occurring. For example, if you see a lot of
access denied errors on a specific page, there may be an issue on your site where you
have a menu link going to this node that anonymous users are clicking on.

Here's a screenshot of the Top 'page not found' errors. As with the Top 'access
denied' errors, this table shows the number of times the page generated the 404
error. This can also help you to determine why a page does not exist on your site,
but continues to be hit, and makes it easier to create a page that does function on
your site.

The recent log entries reports are invaluable to you as a performance-minded
developer. If you check them regularly and try to keep them as clear of errors
and warnings as possible, then your site will continue to perform well.

Using Development Modules and Tools

[86]

The Devel module
The DeDevel module provides a suite of tools for the Drupal theme and performance module provides a suite of tools for the Drupal theme and performance
developer. Two major components of the Devel module include helper utilities thatDevel module include helper utilities that module include helper utilities that
monitor performance of your site, and tools for themers that allow for quick and
more accurate theme development.

Developers can use the module to monitor all of the database queries that occur as
each Drupal page loads. This tool will show you how many times the database query
executes on each page when it loads. Knowing this is essential when monitoring
performance because it allows you to find out which queries are repetitive and
creating potential bottlenecks or other performance issues especially on a large site
or multisite environment. As the module project page points out, you do not want to
see queries running multiple times on the same page. The development component
of the module also tells you how long the queries take to run. This can give you
detailed information on which queries and functions may need to be tweaked and
optimized during your development work.

You can also run print_r commands to print your arrays. This is helpful to a Drupal
developer, as it will show you all of the array variables available and you can do it
through the module interface instead of having to run a print_r command on each
Drupal node or in your template files.

The theming component of Devel offers the developer various tools that are similar
in scope and functionality to the Firebug extension or the Firefox Web Developer
extension. This has caused the Devel module to garner the nickname 'firebug for
Drupal'. The theme wizard in Devel gives you a visual outline of your template
functions and available variables, and allows you to select an element on your
Drupal site visually to gather this information. So, you can outline an element
such that a navigation menu block and then view the theme information on the
Devel screen.

You can also use the Devel module to quickly generate test content, what's
commonly called dummy lorem ipsum content and test nodes, and content types for
your site. The module also gives you a report of any node access issues your site may
be experiencing.

The Devel module is available for download from its project page at drupal.
org ((http://drupal.org/project/devel). I encourage you to read all of the. I encourage you to read all of the
information on the project page and to browse the issues and forum support tickets
that have been generated for this module, as this research will teach you more about
how it works.

Chapter 3

[87]

The current version we are using is 6.x-1.17. Let's go ahead and download the
latest version and upload it to our site. On our site we'll actually be upgrading the
1.16 version that we've had installed since our 6.x upgrade.

Installing and enabling Devel
Let's install the Devel module and proceed with our initial configuration of
the module.

1. Download the latest release of Devel from its Drupal project page.
2. Extract it to your local desktop and upload the folder to your

/sites/all/modules directory in your Drupal site using SFTP or cPanel.

Using Development Modules and Tools

[88]

3. Enable the module and its components via your modules admin page. Make
sure to enable all modules including Devel, Devel generate, Devel node
access, Macro, Performance Logging, and Theme Developer.

4. Save your module configuration.
5. Check your site Status report to see if you need to run update.php afterafter

enabling this module. The performance module components of Devel do
have database tables they write to, so if you're upgrading Devel you may
need to update your database schema as well.

6. Once saved, you should notice an immediate change to your site. In the
lower left-hand corner of your site you'll see a small gray box with the title
Themer info and a check box next to it.

7. Before we start using the Themer info functionality, let's set some Devel
module permissions.

Checking Devel module permissions
Another item to check before you or any of your site admins start using the Devel
module features and the Development block discussed later in this section are the
permissions to use the module. Go to User management | Permissions and look
for the Devel module permissions. Make sure you have checked the appropriate
permissions for your site admins or other admin roles. This may include allowing
them permissions to:

Chapter 3

[89]

Access Devel information
Display source code
Execute PHP code
Switch users

You may also give them permissions to view devel_node_access_information as
part of the devel_node_access module.

Enabling Themer info
To enable the Themer info tool, click on the checkbox or anywhere in the
gray rectangle.

Once clicked, you'll see a second rectangle appear in the upper right corner of your
site. This box tells you to click on elements on your page to see detailed information
about the Drupal theme function and information about the template file that
contains the theme function.

•

•

•

•

Using Development Modules and Tools

[90]

As you move your mouse around the Drupal page you'll notice red borders
surrounding any element that you move over. For example, as I move my mouse
over the left admin menu sidebar, a red box surrounds the entire menu element.
When I click on the element the red border box turns gray and the corresponding
theme function information shows on my right-hand Devel box. Notice that you can
drill down to the specific or element in the navigation and get information
on those elements.

When you click on an element, the element is surrounded by a gray box or border.
This helps to differentiate an active clicked item that will show you information
in the Themer information box from other elements that you have rolled your
mouse over.

Chapter 3

[91]

So, in this case if I select the Blocks menu list item in my administration menu block,
the Themer toolbox tells me the following information:

The function called is theme_menu_item_link(). This is already very helpful
to us if we're going to do any theming. If we wanted to override this function
in our main template.php file, we already know the name of the function
through the Devel module. We do not need to hunt for the function code in
the actual core Block module files. This tool tells us the name of the function
and now we can override that function in our specific theme template by
replacing theme_ with the name of our theme. So, if we're using the Garland
theme, we'd replace theme_ with garland_. The helper text in the theme
developer box tells us that this is a potential candidate for the override.

The Themer information also tells you how long it takes the function to load in
Drupal on that specific page. So, when this page loads, the function loads in
0.25 ms. If you move your mouse over other page elements, you'll notice that the
loading duration will change, increasing or decreasing depending on how complex
the function is.

•

Using Development Modules and Tools

[92]

This is an introduction to how the Devel module can be used for theming
purposes. Our focus is on performance, so let's enable some of the module's
performance-based components.

Devel settings
To enable more Devel module settings, including performance options, go to Site
configuration | Devel settings or to here: http://variantcube.com/fire/admin/
settings/devel

This is where you can configure Devel to collect database query information and
display query logs. Follow these steps to configure performance logging:

1. Check the box next to Collect query info if you want Devel to collect
database query info.

2. Check the Display query log box if you want Devel to display a log of these
database queries. The log will also display the execution time for each query.
It will also keep tabs on repeated queries and note these in the logs in a
separate # column. These queries will be highlighted in red to draw your
attention to them and then you can decide whether you need to focus caching
mechanisms on these specific queries to improve performance.

3. Tell Devel how you want to sort the query log—by source or by duration.
We will leave sorting by source so that it displays them in the order
of execution.

4. In the Slow query highlighting section, you can enter a baseline millisecond
integer that the Devel module will use as its benchmark. Devel will highlight
any query that takes longer than your sourced and benchmarked millisecond
specification. This can also help you decide what needs caching on the site.
Right now, we'll leave this set to the default of 5 millisecond..

5. You can also choose to store statistics about queries in your Devel database.
We'll enable this and store every page view to start, as we're working on a
development site. On a production site, you may not want to capture every
page view, for example, raising this to capture every twentieth page view.
This will help to stop our database table from overloading with statistics,
but still allow us to capture some.

Chapter 3

[93]

6. The next setting is the URL for your API documentation. We'll just leave
this set to the default Drupal API URL, which is api.drupal.org. Some
developers store all of their API documentation locally, so if you do this you
would want to enter your local URL/path here.

7. By checking the Display page timer box we can see page execution times in
our query logs.

8. Check the box next to Display memory usage. We'll want to see how much
memory we're using to generate pages.

9. Check the Display redirection page. This will prevent any query logs from
being lost if a drupal_goto() function is run. We'll be presented with a
redirect hyperlink path to the page that Drupal wants to direct us to after it
shows us the query information.

10. Check the Display form element keys and weights box.
11. Another nice option here is the ability to skin your debug information. The

Krumo display radio buttons allow you to pick a skin for your interface. Go
ahead and choose one. I'll go with orange.

Using Development Modules and Tools

[94]

12. Because we're in the course of developing this site, let's check the box
Rebuild the theme registry on every page load. We would not want to do
this on a production site, as it could cause significant sluggishness, but while
we're in development it's okay.

13. Expand the Administration menu settings. This allows you to tell the Devel
module to display additional information next to each menu item on your
site. For now let's leave this unchecked.

14. Devel node access debug mode allows you to have Devel module test node
access permissions. As it states here, this can cause significant performance
overhead. So for now, even on our development site, let's leave this
unchecked. If we want to check the node access debug, we can come back
and enable it later.

15. Select the default SMTP library.

Chapter 3

[95]

16. Use the Standard drupal error handler.error handler.. Backtrace will give you a nicer
display of your debug information, but you'll need to install the Krumo
library in order to use this.

17. Save configuration.

Inspecting database queries and Devel results
Immediately after you save your Devel settings configuration, you should see the
results. The Devel settings page will reload and you will see a message concerning
the user being redirected to that page at its URL here. The user is being redirected toThe user is being redirected to
http://variantcube.com/fire/admin/settings/devel. This shows you that the
setting to show any redirections is working. This redirection did work. You'll also
see a log entry on the page that shows the Views plugins build time. This would be
more meaningful on a Drupal Views page that is using a Views plugin. The message
we see here is Views plugins build time: 27.6119709015 ms

Using Development Modules and Tools

[96]

The meat and potatoes of our settings are visible at the very bottom of our Drupal
page. If you scroll down, you'll notice all of the database query information. All of
the query logged information presents itself in a styled table directly under your
content. This can be quite intimidating the first time you view the table, as there
is a massive amount of information presented. Remember that Drupal is a content
management framework that is completely database driven. So when you view the
Devel logs, you are really viewing all of the database work that Drupal is doing. This
is excellent evidence of all the database queries being run and all the work Drupal is
doing while integrating with MySQL.

The table starts out with a header that tells you how many queries were run on this
specific page load and how long the entire query run took in milliseconds. Here we
see that 74 queries ran in 362.98 milliseconds. Then, it tells us that our longer queries,
those that are longer than 5 milliseconds, will be highlighted in red in the table
report. These are the queries we want to pay closer attention to, as they take
longer to run.

You can also inspect the table for repeated and duplicated queries, as all the queries
are listed under the query column, and the table also tells you where the query took
place (you can search for bottlenecks and repeated queries in the table).

Chapter 3

[97]

One example we can point out here is the theme registry cache clear that Drupal
runs based on the Devel module setting we chose. We told Devel to clear the
theme registry on each page load. When the settings page reloaded after we made
our settings choices, the query shows in the table. Look for the cache_clear_all
function in the where column. This query took .5 ms to run and it cleared out
the theme registry. The query reads: DELETE FROM cache WHERE cid LIKE 'theme_
registry%'

If you have any doubts about the functions in the where column, you can click on the
function link and it will take you to the API documentation that we enabled when
we saved our Devel module settings. When I click on that link, the API function
document loads at api.drupal.org here: http://api.drupal.org/api/function/
cache_clear_all/6. The CID is set to theme_registry here, so that is what Drupal
clears. The documentation tells us this, explaining the parameter in detail: $cid If set,
the cache ID to delete. Otherwise, all cache entries that can expire are deleted.

Scroll down in the query table to see if you can locate any potential issues or
bottlenecks, especially looking for any red highlighted millisecond columns. Looking
through the table, there appear to be two longer queries run for cache_set. Both of
these come in at over 5 ms. This is probably not severe because this is the caching
that we've set in our Drupal core cache settings. We may want to keep an eye on this
as we view other page loads. You could also disable caching on the site to see if this
makes a difference in the millisecond time.

Using Development Modules and Tools

[98]

The module also reports on queries which are executed more than once on your
page load. These will also be highlighted in red. For example, if I go to the main
Administer page of my site and load the page, then the query table reports that
_update_cache_get query ran twice. The query did not take over 5 milliseconds,
but it did get duplicated. The # column shows this with a red 2.

At the bottom of the page, under the entire table of database queries and logs, the
summary is shown. It should look something like this:
Memory usage:
Memory used at: devel_init()=1.77 MB, devel_shutdown()=32.58 MB.

This reports the total memory used to load this page and all of its queries (1.77 MB).
Another nice feature of this overall memory usage report is that you can run Devel
on your pages and check to make sure your memory usage is consistent. So, if all of
your pages are using a consistent 1.77 MB approximate of memory, then you know
that all pages are equally optimized and that your performance is also optimized. If
you notice one page consuming more memory or large amounts of memory, this is a
potential bottleneck that you will want to investigate in more detail.

Enabling the Devel module block
When you install the Devel module, the module will add a block to your site that
you can enable and use as a site admin. The block allows you to get to Devel module
functionality quickly. To enable the block follow these steps:

1. Go to Site building | Blocks here: http://variantcube.com/fire/admin/
build/block

2. In your disabled blocks region look for the Development block and configure
it. On the configuration screen you can check the block for an authenticated
user or a site admin role (if you've created one) under the Show block for
specific roles. This will prevent any anonymous user or default Drupal This will prevent any anonymous user or default Drupal
authenticated user from viewing the Devel block.

Chapter 3

[99]

3. Save your block configuration.
4. To enable your block, click in the region drop-down box and select right

sidebar, so the block will appear in the right sidebar of your site.

5. Save blocks.

Your Development block will now be visible in your right sidebar. I'm currently
viewing the Devel block in my Apollo Zen sub-theme. You should see something
like this:

You may have noticed that the Development block does not show if you navigate
to an admin section of your site and have the Garland theme installed as the default
administration theme. The workaround for this is to disable your custom theme,
enable Garland as your default theme, and then re-enable the Development block in
Garland in the right sidebar. If you are working on a production site, you may want
to take your site offline before making this tweak.

Using Development Modules and Tools

[100]

Using the Devel module block
The Devel block gives you quick access through links to your Devel functionality.
You can perform the following with the block:

Access your database queries on one page report view
Disable your Theme developer and re-enable it
Empty your entire site performance cache
Execute PHP code
Access a function reference
Access Hook_elements()
Access your node_access summary
Get information on your PHP settings
Rebuild your site menus
Reinstall your modules
Run your cron
View sessions
Clear your Theme registry
Edit variables

Let's look at each of these tools briefly. The best way to learn how to use the Devel
block is to start accessing all of its functionality through the block links and to try out
each component.

Database queries
We've already discussed Database queries in detail, but if you click on this link in the
Devel block, it will launch a page of all the database queries that the Devel module is
running. This is another way to get to those queries.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[101]

Empty cache
Clicking on the Empty cache link will clear your site's performance cache. This is a
nice, quick, and easy method of clearing your cache. Once run, the Empty cache page
will load with a message that your Cache cleared.

Disable/Enable Theme developer
If you want to disable your theme developer functionality, click on thedisable your theme developer functionality, click on thefunctionality, click on the Disable
Theme developer link in the Development block. When you do this, you'll notice
that your theme developer box will disappear. To enable it again, click on the Enable
Theme developer link.

Execute PHP code
To execute PHP code, click on the link and you'll be presented with a page that has
a text area box where you can paste your PHP code. For example, go ahead and
execute a simple PHP info script. Execute this code, but remember not to add any
PHP tags. You do not need to surround your code with opening and closing PHP
brackets. Just type or paste in:

phpinfo();

Using Development Modules and Tools

[102]

Click on the Execute button. Your code will execute. The results will not look as
pretty as the PHP info page you get through your Status report. Basically, here
Drupal will output the results in HTML without any style formatting rendered. So,
you'll see your PHP info report, but it will be surrounded by HTML code. Here's
what I see after executing the script:

Chapter 3

[103]

Function reference
The Function reference link will load a page that shows a list of all the user functions
that are generated during a page load on the site. It's a long list on our site covering
all functions from _advanced_help_parse_ini to xmlrpc. You can click on a
function link to view more details about it and read its documentation. For example,
if you click on the _comment_form_submit function link, you'll load the function
page at api.drupal.org which is here: http://api.drupal.org/api/function/
comment_form_submit/6. This will explain the function and give you an example of
its use.

Hook_elements()
Hook_elements launches a page that displays all of your hook arrays. This will be
presented in a nice Krumo-based screen using the orange skin we selected when we
configured our Devel module.

Using Development Modules and Tools

[104]

You can click on an array in the table to view its corresponding elements.

PHPinfo()
PHPinfo() launches your site's default PHP information page. This is the same PHP
information page that you can launch from your site's Status report. The Devel block
gives you easier access to it, so you do not have to load your Status report page each
time you need information on your PHP settings.

Rebuild menus
Rebuild menus flush your menu configuration, return your menu items to their
default status, and remove any customization you've made to a specific menu
item. Be careful with this setting, as you will most likely not want to do this on a
production site. However, this may prove helpful on a development site if you
need to troubleshoot why menus are not behaving correctly.

Chapter 3

[105]

Reinstall modules
This is another Development block tool that you need to be careful with. It
provides easy access to your modules admin, and you can select any of your core
or contributed modules and reinstall them here. But beware that if you do this,
the module reinstallation will wipe out and override any customizations you had
made. Reinstalling modules will also wipe out any data you have in your module's
database tables, so be sure to only use this functionality if you know what you are
doing as an advanced module developer. This is a good tool for module developers.

Running cron
This link provides easy access to running cron manually on your site without having
to load your Status report.

Session viewer
This shows you the contents of your session variable. Drupal session variables are
variables that store site visitor information in the Drupal application framework for
the entire length of the logged in user's session. So, as soon as you logout of the site,
your session variable will expire. The variable may also expire after a certain period
of inactivity on the website. These variables help to store information about a specific
authenticated site visitor who is logged into your site.

So, when I'm logged into this site at this moment as the admin user,
the session name and session ID is shown. The Session name is
SESS701436a5b5363d46c4148943e8686c89, and the Session ID is 8582e26c836f16d48b
0c1048bfd. Notice here that if I logout of the site and then login, and run the session
viewer link again I will generate different name and ID numbers.

Using Development Modules and Tools

[106]

Theme registry
Theme registry shows you all of your theme arrays and corresponding elements.
This is helpful for the theme developer. For example, you can get theme function
names here by clicking to expand an array and looking at its elements and functions.
If we click on Image, we can see that the function, theme_image, is listed.

Variable editor
Finally, the last link in the Development block is the Variable editor. This shows you
all of the site variables that are stored in the database. This is a very helpful list. I can
glance quickly through the alphabetical list looking for the site_name variable name
and locate its value. The value is the name of our site, for example, Fire Trucks of
Maryland and Pennsylvania. So, this table gives you the variable name along with
its value. Another example is the administration theme we're using. The variable is
called admin_theme and the value for this is s:7:"garland";. This shows that the
Garland theme is our current administration theme.

The Variable editor tool also provides you with an Edit link that allows you to edit
the variable on the fly, using the Devel module. You can also select the checkbox next
to the variable name to delete it, but beware that if you delete the variable here it will
delete it from the database.

Click on the Edit link next to the site_name variable. This will launch a page withvariable. This will launch a page with
a text area box. The box will contain the current value of the variable. Go ahead
and delete the value and add a new one, or edit the one that is there. Then click on
Submit. This is a wonderful tool that allows you to quickly locate site variables and
edit their values without having to search through the Drupal administration for
the specific node, block, or menu, or other configuration that contains the variable.
You can get the entire list here and edit them. I'm going to tweak the value to be Fire
Trucks of Maryland and Pennsylvania. Then I'll click on Submit and refresh my site
page, and the new site name should be visible.

Chapter 3

[107]

Here's a screenshot of the result:

Using Development Modules and Tools

[108]

Summary
We've covered a lot of material in this chapter and looked at one of the larger Drupal
contributed modules—a module that provides a huge amount of functionality and
tools to the Drupal performance developer. You should now take time to use the
Devel module every day during your Drupal development work and get to know
each component in greater detail. Here's what we covered:

We looked at recent log entries in order to check on any potential PHP errors
or other parse errors that may be occurring on our site. We also looked at the
top page not found and access denied errors.
We installed and configured the Devel module and set permissions for our
admin users to use the module.
We used the Devel module to check on database queries that occur during
our page loads and how long these queries take to run. We also looked for
duplicate queries and learned to watch out for those queries that take longer
than our threshold millisecond benchmark.
We used the Development block to get easier access to some common
performance tools such as the manual Drupal cron task, clearing our
performance cache, checking our theme registry, and tweaking our
site variables.

Let's take a break! When we come back in Chapter 4, we'll discuss how best
to implement the trifecta of Drupal modules CCK, Views, and Panels for best
performance on our site. We'll also learn how to clear our Views and Panels
caches, and to throttle content, blocks, and other elements on our site.

•

•

•

•

Performance Optimization
In this chapter, we're going to learn how to throttle modules and blocks on our site in
order to increase performance and reduce server load during high traffic periods. We
will use the Throttle module to do this.Throttle module to do this. module to do this.

We'll return to a discussion of the Devel module and how it can be used to generateDevel module and how it can be used to generatemodule and how it can be used to generate
dummy content, users, and taxonomy categories for our development site. Using
Devel to generate test or dummy content provides an easy method of building a
test or demo site quickly.

We'll look at caching mechanisms in two of the larger scale contributed modules,
Views and Panels, which you may find yourself using frequently. Panels and ViewsPanels and Viewsand ViewsViews
both allow you to cache the data and content that you insert into these modules.
We'll look at how these caching mechanisms work and how you can maintain
your cache in both modules.

To summarize, here's what we'll be doing in this chapter:

Throttling modules and blocks
Using the Development module to generate taxonomy, users, and content
How to run Views 2.x for best performance, including how to clear your
Views cache
Panels module caching mechanisms and how to maintain your Panels cache.

•

•

•

•

Performance Optimization

[110]

Enabling and configuring the Throttle
module
Drupal allows you to control when your modules and blocks get enabled and shown
to your site visitors. This helps you to prevent bottlenecks in your server's web traffic
and to optimize your server load to prevent any congestion that it might experience
with its bandwidth and traffic. Throttling blocks and modules becomes increasingly
important on larger scale websites where you have many blocks and modules active.
You may have a site that contains a large number of blocks, for example, that have
been built with the Views module. You can throttle these blocks, so they only get
enabled when the site visitor calls a page that is supposed to show that block. The
throttle module allows you to configure it, so it automatically gets enabled when
the usage of your site goes above a certain threshold. For example, this can be the
number of anonymous users visiting your site. When a certain amount of visitors
are on your site, you can have Drupal enable throttling.

Using the Throttle module is essential on shared servers where you may not have
all of the resources on the server made available to you at any given time or on a
server that gives you limited CPU resources and bandwidth. You may not need to
use Throttle on higher performance-dedicated servers because they will most likely
be providing you with good performance. But on shared servers it does become
important to use Throttle.

If you did not enable the Throttle module after we upgraded our site to Drupal 6.13,
we need to enable it first. Once enabled, we can then configure the module. Follow
these steps:

Under your Core-optional module list, check the box next to Throttle and then save
your module configuration.

There are two methods of accessing the Throttle module configuration. You can
visit the main Throttle configuration page to set auto throttling settings for your site.
Also, you can enable throttling for each module and block on your site. We'll look
at both methods now. Note that your modules admin page explains how to access
and enable both types of throttling (module and auto) at the top of the page in its
introductory help text. You will only see your module throttle checkboxes available
if you have enabled the Throttle module first.

Chapter 4

[111]

Configuring the Throttle module for auto
throttling features
Go to Site configuration | Throttle to load your Throttle module settings form
or click on the throttle configuration page link through your main modules
admin page.

The Throttle configuration page explains what the Throttle module does and gives
you a link to more information through the more help link. If you click on that link
and have the Advanced Help module active, you will launch a detailed Throttle
module help and explanation page.

On this page you can configure three throttle elements that fall under the default
Throttle module congestion control feature:

Auto-throttle on anonymous users
Auto-throttle on authenticated users
Auto-throttle probability limiter

Auto-throttle on anonymous users allows you to set a threshold for enabling your
congestion control throttle dependent on anonymous user activity. So, for example,
you will want to choose a threshold number of anonymous users to enter into this
field. When this number of anonymous users is reached, the auto-throttle feature will
be enabled. If you want the auto-throttle to be enabled after 250 anonymous users are
on your site at the same time, you can type 250 into this field. Set this field to 0 if you
do not want to use the auto-throttle feature.

Drupal also tells you here that you can determine how many users are on your site
at any given time by enabling the Who's Online block—this will show you all of
the anonymous users who are browsing your site and authenticated users who are
logged into your site.

•

•

•

Performance Optimization

[112]

The Auto-throttle on authenticated users works using the same method. Add the
threshold number of authenticated users that you want logged into your site before
the point your throttle gets enabled. We'll set this to 50 authenticated users.

The Auto-throttle probability limiter helps to reduce the overhead of the
auto-throttle module. It's a built-in performance check just for this Throttle module.
You can set a percentage of page views for your site. For example, if you set the page
view percentage to 10%, then the module will only perform extra database queries
to update the Throttle module status once for every 10 page views. Drupal tells you
that the busier your website, the lower you want to set this value. Leave it set to the
default of 10%. Save your auto-throttle configuration.

Chapter 4

[113]

Throttling your modules
You can also throttle each of your core and contributed modules as long as they
have a Throttle checkbox next to their line item on the modules admin page. Load
your modules admin page and look for the Throttle checkboxes. This allows you
to tell Drupal to throttle a specific module during high traffic periods on your site.
This means that when your site reaches a high traffic threshold (based on the auto
throttling settings you determined above) your site will temporarily disable
the module in question. This will throttle the module until your site returns to a
stable status.

You do need to be careful here. You should throttle those modules that are of lesser
importance when your site reaches its threshold of user activity. When you throttle,
you are temporarily disabling the module, so it will also temporarily disable that
module's functionality during high server loads. So, you may want to disable some
modules, such as Views, but leave your CCK module enabled so that your users can
still see the content that is being filtered into the View. We'll go ahead and throttle
the following modules:

Administration menu (because this module is only being used by our logged
in admins)
Chaos tool suite (all submodules here)
Comment
Contact
Database logging
Help
PHP filter
Search
Statistics
Advanced Help
FCKEditor
IMCE
Lightbox2
Poormanscron

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Performance Optimization

[114]

You can select more modules to throttle based on your preferences and the usage of
your site. Use the above as an example and model to follow. Check the throttle boxes
and save your configuration. During the next high server load period, these modules
will be disabled temporarily to increase the performance of your site during its high
server load period.

Throttling blocks
You can also throttle your blocks. To do this, go to the Blocks admin page here:
Administer | Site building | Blocks. You'll notice that there is a new checkbox
selection for Throttle. You can choose which blocks to throttle by checking the
Throttle checkbox next to each of your enabled blocks. We'll go ahead and throttle
all of our blocks except for the User login, as we still want to allow users to login to
the site during high traffic periods. The throttle functionality works the same here
as it does with modules. These blocks will be temporarily disabled during high
site traffic.

Chapter 4

[115]

Once you check your throttle boxes, save your blocks configuration. The next time
you have high site traffic, these blocks will be temporarily disabled.

Generating test users, categories, and
content
Another use of the Devel module besides all the great functionality we discussed
in Chapter 3 is to generate test 'dummy' content, taxonomy categories, and users
for your website. This functionality is part of the Devel module and to confirm that
you can use this, go to your admin modules list and check to make sure the Devel
generate module is enabled.

Performance Optimization

[116]

To generate users, nodes, and taxonomy terms for your site go to the Generate
items main page in your site admin. That will launch a page with links to Generate
categories, Generate content, and Generate users. As we already have some content
on our site (that I originally implemented by using Generate content), we're going to
try generating some test users for our website. Follow these steps to generate users:

1. Click on the Generate users link.
2. Tell the Devel module how many users to add to the site. The default is 50.

We'll add 10 users to our site. Type 10 in the field.
3. You can also tell Drupal to kill or delete all the other users (if you've already

added test users) on your site apart from the super user admin (with User ID
1). This is helpful. You can add some test users and then easily delete them
using this module. As we do not have any users on our site besides the super
user, we'll leave this box unchecked.

4. The Devel module will randomly generate a user account history time for
each account. You can tell Devel how far back to go in the select box under
the How old should user accounts be?. We'll change this to 4 weeks ago.

5. Click on the Do it! button.

As soon as you click on the Do it! button, the user accounts will be created
automatically by the Devel module.

Chapter 4

[117]

Go to your Users list to see the dummy users that the Devel module created for you.
They should all have usernames and be set to active status.

You can also use the Generate items functionality of the Devel module to generate
content and categories. Click on each of these links to try out this functionality. When
you click on Generate categories, the module will ask you about vocabularies,
terms, and the max word length for a term or vocab name. Plug some numbers into
these fields and then click on the Do it! button. Let's generate 3 vocabs and 10 terms
per vocab. The Max word length of term/vocab names will be set to the default of
12 characters.

Drupal will tell you it created the new vocabs and terms. You can browse to your
taxonomy page to view the vocabs and terms.

Performance Optimization

[118]

Once you click on Do it!, browse to your Taxonomy admin list and you should
now see the new vocabularies and terms in the site that were generated using
the Devel module.

Now that you have added some dummy taxonomy content using the Devel module,
you can view your taxonomy vocabs and terms by visiting Content Management
| Taxonomy. On this page you'll see the new list of vocabs. If you click on the list
terms link, you'll see all of the tags per vocab that were added.

To generate test content go to the Generate content page, fill out the form fields
for the types of node content you'd like to create, how many nodes, the maximum
number of generated comments, whether you want to add taxonomy terms to each
node, and URL aliases per node. This also allows you to delete any previously posted
test content that you may have integrated with your site using the Devel module
before. Fill out all the fields you need and then click on Do it!. The test content
will be generated.

For our next example using the Views module (in the next section on Views
caching), I'm going to generate Blog entry test nodes along with the corresponding
taxonomy. Generate your own test nodes that you will use in the next section on
the Views module. I'm going to go ahead and delete all of my previous test blog
content so that I can start afresh with brand new content. I'll generate the default
50 nodes of content. Nodes will be dated as far back as 4 weeks ago. I'll generate
a maximum number of 10 comments per blog post. I will add taxonomy terms,
upload functionality, and URL aliases to each node. Click on Do it! button.

Chapter 4

[119]

Drupal will generate the content and you'll see a progress task bar as the content
batch is generated. Then, Drupal will show you a confirmation screen showing a list
of all the blog entry content that was created.

Performance Optimization

[120]

If you browse to your main content admin list, you will also see all the new blog
entries that were created using Devel.

Now that we have test content, categories, and terms generated in our site, we're
now ready to build a View using our test content and to start using View caching
to increase the performance of our Views. We can also integrate our View with the
Panels module and utilize some of the Panels module cache functionality.

Views caching
The Views 2 module allows you to cache your Views data and content. You can
cache Views data per View. We're going to enable caching on one of our existing
Views, and also create a brand new View and set caching for that as well using the
test content we just generated. This will show you a nice integration of the Devel
functionality with the Views module and then how caching works with Views.

Go to your Site building | Views configuration page and you'll see many of your
default and custom views listed. We have a view on this site for our main photo
gallery. The view is named photo_gallery in our View listing. Go ahead and click
on one of your Views edit links to get into edit mode for a View.

In our Views 2 interface mode, we'll see our tabs for default, Page, and/or Block
View display. I'm going to click on my Page tab to see my View's page settings.
Under my Basic settings configuration, I'll see a link for Caching. Currently,
our Caching link states None, meaning that no caching has been configured
for this view.

Chapter 4

[121]

Click on the None link. Select the Time-based radio button. This will enable
Time-based caching for our View page.

Click the Update default display button. The next caching options configuration
screen will ask you to set the amount of time for both, your View Query results
and for your View Rendered output. Query results refer to the amount of time raw
queries should be cached. Rendered output is the amount of time the View HTML
output should be cached. So basically, you can cache both your data and your
frontend HTML output.

Set them both to the default of 1 hour. You can also set one to a specific time and the
other to None. Go ahead and tweak these settings to your own requirements. I'm
leaving both set to the default of 1 hour.

Click on the Update button to save your caching options settings.

You are now caching your View. Save your View by clicking on
the Save button. The next time you look at your View interface you should see the
caching time notation listed under your Basic settings. It will say 1 hour/1 hour
for this setting.

Performance Optimization

[122]

Once you enable Views caching, if you make a change to your View settings and
configuration, the results and output of the View may not update while you have
caching enabled. So, while in Views development you may want to disable caching
and set it to None. Otherwise, this next section will show you how to disable your
Views cache while you are in development.

To see the performance results of this, you can use the Devel module's functionality
again. When you load your View after you enable caching, you should see a decrease
in the amount of ms (milliseconds) needed to build your Views plugin, data, and
handlers. So, if your Views plugin build loaded in 27.1 ms before you enabled
caching, you may notice that it changes to something less—for example, in my case
it now shows that it loads in 2.8 ms. You can immediately see a slight performance
increase with your View build.

Let's go ahead and build a brand new View using the test content that we generated
with the Devel module and then enable caching for this View as well.

Go to your Views admin and follow these steps:

1. Add a new View.
2. Name the View, add a description and a tag if applicable.
3. Click on Next.
4. I'm going to create a View that filters my blog entries and lists the new blog

entries in post date order using the Devel content I generated.

Chapter 4

[123]

5. Add a Page display to your new View.
6. Name the page View.
7. Give the page View a title.
8. Give your View an HTML list style.
9. Set the View to display 5 posts and to use a full pager.
10. Set your caching to Time-based (following instructions above in the first

view we edited).
11. Give the view a path.
12. Add a Node:Title field and set the field to be linked to its node.
13. Add a filter in order to filter by Node:Type and then select Blog entry.
14. Set your Sort criteria to sort by Node:Post date in ascending order by hour.
15. Your settings should look similar to this:

Performance Optimization

[124]

Save your View by clicking on the Save button. Your new View will be visible at the
Page path you gave it and it will also be caching the content and data it presents.
Again, if you refresh your View page each time you should notice that the plugins,
data, and handlers build times decrease or stay very similar and consistent in load
times. You should also notice that the Devel database queries status is telling you
that it's using the cached results and cached output for the View build times and
the MySQL statements. You should see the following code sitting below your page
content on the View page you are looking at. It will resemble this:

Views plugins build time: 23.509979248 ms

Views data build time: 55.7069778442 ms

Views handlers build time: 1.95503234863 ms

SELECT node.nid AS nid,
 node_data_field_photo_gallery_photo.field_photo_gallery_photo_fid
AS node_data_field_photo_gallery_photo_field_photo_gallery_photo_fid,
 node_data_field_photo_gallery_photo.field_photo_gallery_photo_list
AS node_data_field_photo_gallery_photo_field_photo_gallery_photo_list,
 node_data_field_photo_gallery_photo.field_photo_gallery_photo_data
AS node_data_field_photo_gallery_photo_field_photo_gallery_photo_data,
 node.type AS node_type,
 node.vid AS node_vid,
 node.title AS node_title,
 node.created AS node_created
 FROM {node} node
 LEFT JOIN {content_type_photo} node_data_field_photo_gallery_photo ON
node.vid = node_data_field_photo_gallery_photo.vid
 WHERE (node.status <> 0) AND (node.type in ('%s'))
 ORDER BY node_created ASC

Used cached results

Used cached output

The next section will show you how to clear your Views cache while you are in
development mode.

Clearing your Views 2 module cache
If you are working with the Views module in your site, you'll want to know how to
clear your Views module cache so that updates and tweaks you make to your Views
via the Views 2 UI show up immediately. The Views module will cache existing
View configuration, settings, and content, so if you're not seeing the changes you've
made or are experiencing other issues with your Views, you'll want to make sure to
clear the cache.

Chapter 4

[125]

Here are the steps to clear your Views cache:

1. Go to Site building | Views to access your Views admin.
2. At the top of the page you'll see a Tools button. Click on it.
3. The simplest method of clearing your Views cache is to click on the Clear

Views' cache button.
4. You will receive a message: The cache has been cleared.

There are other settings available to you through this Views Tools page. You can
choose to Add View signatures to all SQL queries—doing this will add a VIEWS
string to the WHERE clause in your query. This can cause a performance issue
potentially though, as it is more work for the database. So, you can opt out of this.
Drupal advises that you should only use this method for troubleshooting and
development purposes.

You can also choose to disable Views caching. However, we do want Views todisable Views caching. However, we do want Views to. However, we do want Views to
cache data because it will give us a performance enhancement. We can easily clear
our Views cache using the above method if necessary, so let's leave the caching
functionality for Views enabled.

If you do not have the Advanced Help module installed or if it's disabled, you can
tell Views to ignore this and not show you errors telling you the Advanced Help
integration with Views is disabled. Again, this is optional, but a nice setting to have
if you do not want to see the error messages popping up.

Performance Optimization

[126]

We can also enable Views performance statistics if we have the Devel moduleenable Views performance statistics if we have the Devel module if we have the Devel module
installed. Go ahead and make sure this is checked. It should be, if you have been
receiving Devel module Views statements regarding build times as noted earlier.

Set the Page region to output performance statistics as the Footer region—this is
the default.

Click on the Save configuration button.

Chapter 4

[127]

Using Panels caching
The Panels 3.x module allows you to distribute your site's content and Views into
custom layouts. You can use Panels to set up and configure these layouts and then
integrate content into the layout that you choose. The Panels module uses what the
module developers call a pluggable caching mechanism. This mechanism allows
you to set up caching for all of your panels as a whole or for specific individual
content panes within one panel. This allows for a large amount of caching flexibility.
This section assumes that you have some experience using the Panels module to
configure a panel layout and add content to it. I'm going to walk you through those
configuration steps quickly and then we'll look at Panels caching more closely.

Creating a panel and adding content to it
To get started with Panels caching, make sure you have a Panel to use on your site.
I'm going to go ahead and set up a Panel quickly and add some content to it, which
we'll use to test the Panels caching mechanism.

To create a new panel go to Site building | Panels and click on the Panel page link
to create a new panel. Give the panel an administrative title, machine name, and a
path. Click on the Continue button.

Choose a layout for your panel. Let's use the Two column bricks layout. Click on the
Continue button.

This will launch your layout admin page where you can click on each panel section
to add content to it. Add content to your panel's regions. We'll add two of our Views
to the panel. Let's add our photo gallery View to our Top panel region. Click on the
gear icon in the left corner of the region to open the region options. Click on Add
content. Browse for your photo gallery view and add it to that panel region.

Performance Optimization

[128]

Once added, you will notice another gear icon in the upper right corner of the
content pane you just added to your panel region. Click on this icon. When you click
on this icon, a selection box will open and you will see a link to Cache method. The
cache method for this content in your panel is currently set to None. Click on this
link to open the cache method settings.

Similar to how you were presented with the Views caching configuration, Panels
caching will ask you if you want to implement No caching on the content in the
Panel or Simple cache. Select the Simple cache radio button and click on Next.

Like the Views caching, panels simple cache is time-based. Content will remain
cached for the length of the time limit that you configure. Set a Lifetime cache time
limit. We'll set a Lifetime cache of 1 hour.

Chapter 4

[129]

Also, set a Granularity cache if you are using contexts or arguments in your Panel.
We're not using either, so we'll leave this set to None. If you do have contexts
selected in your Panel, you can further cache depending on the context using this
granularity cache mechanism. Again, Drupal and panels are giving you a lot of
flexibility and granularity here.

Click on the Save button to save your cache settings. Make sure to update and save
your Panel again now that you have configured its cache mechanism by clicking
on the Update button. Your panels are now set to cache the content you specifically
configured using the cache configuration above.

Summary
In this chapter, we learned the following performance tips:

Used the Throttle module to throttle our blocks and modules.
Used the Devel module to generate test content, users, and categories.
Configured caching for our Views and learned how to enable and disable
caching per View. We also looked at how the Devel module returns
information about our Views build times based on these cache settings.
Learned how to clear our Views cache.
Looked at how the Panels module uses caching and how you can enable
caching per panel.

Let's take a break! When we come back in Chapter 5, we'll take a look at contributed
modules that are built for specific types of performance monitoring. This will include
the Boost, Memcache, DB Maintenance, Block Cache, Advanced Cache, and File
Based Caching modules.

•

•

•

•

•

Using DB Maintenance
and Boost

In this chapter, we're going to install, configure, and utilize the DB Maintenance and
Boost modules. DB Maintenance will allow us to maintain and optimize our MySQL
database from within the Drupal admin interface. Boost will help us to speed up
page load times on our site for our anonymous site users by using its sophisticated
and advanced page, HTML, CSS, and JavaScript caching mechanisms. We'll look at
basic introductory Boost concepts in this chapter, and later in Chapter 6 we will look
at more advanced topics using the Boost module. Consider this a two part dose of the
Boost module. Both of these contributed modules will help you diagnose problems
on your site and server as well as help to keep your site running smoothly and in
an optimized fashion. These are not required modules, but rather are recommended
modules to add to your Drupal performance arsenal. The way this chapter will work
is that we'll outline the purpose of each module, install and configure it, and then use
it on a specific topic, for example, within your site. This will give you some practice
using contributed Drupal modules and also a look at the variety of performance-
based modules that are available from the Drupal project community.

By the end of this chapter you will know how to install, configure, and use the
following contributed performance modules:

DB Maintenance module
Boost

•

•

Using DB Maintenance and Boost

[132]

Using the DB Maintenance module
The DB Maintenance module can be used to optimize your MySQL database tables.
Depending on the type of database you are running, the module allows you to
use a function called OPTIMIZE TABLE, which troubleshoots and then optimizes
various errors in your MySQL tables. For MyISAM tables, the OPTIMIZE TABLE
will repair your database tables if they have deleted rows. For BDB and InnoDB
types of tables the function will rebuild the entire table. You can use this module
in tandem with phpMyAdmin to determine if you do or do not need to optimize
your database tables. The benefit of this module is that it allows you to keep your
database optimized and defragmented, similar to keeping your computer hard drive
optimized and defragmented so that it runs faster, and you can do all this from the
Drupal administrative interface.

The project page where you can download the module is here:
http://drupal.org/project/db_maintenance.

Download the module tar.gz and extract it to your desktop. Then, upload the files
through FTP, or upload and extract using a cPanel utility if your host provides this.
The module should go in your /sites/all/modules directory.

Once you upload and extract the module folder, enable the module on your modules
admin page and save your configuration. We'll use the version that's recommended
for Drupal 6.x, which is 6.x-1.1. You can try out the beta version, but you should not
run this beta version on a production level website unless you've tested it sufficiently
in a sandbox environment.

Once you save your module configuration, you'll notice that the module adds a link
to its settings and configuration page under your main Site configuration section. Go
to Site configuration | DB maintenance to access the configuration admin screen for
the module. The DB maintenance screen will contain a checkbox at the top allowing
you to log OPTIMIZE queries. If you check this box, your watchdog log entries
module will log all table optimization entries and give you detailed information
on the tables that were optimized.

Chapter 5

[133]

At the time of writing this book, the 1.1 version of the DB Maintenance
module contained bugs that caused glitches with the method of adding
this module's queries to the recent log entries or prevented this entirely.
You may also experience these glitches. The module's developers are
aware of the issues because they have been posted to the issue queue at
http://drupal.org/ on the module project page.

Let's go ahead and check this box. You can then select the frequency with which you
would like to run the optimization. The choices are daily, Run during every cron,
Hourly, Bi-Hourly, Daily, Bi-Daily, Weekly, Bi-Weekly, Monthly, and Bi-Monthly.
You can also click on the Optimize now link to force the optimization to occur
immediately without scheduling in advance. We'll click on this link for the purpose
of this demo, but in future you may want to schedule the optimization. We'll then
run a cron job through the Status report, or a module such as Poormanscron, and the
tables will be optimized.

Next, you can select the tables in your Drupal database that you want to optimize.
A nice feature of this module is that it allows you to multi select database tables,
only select a few tables, or just one table. This gives you the same flexibility and
functionality as your phpMyAdmin tool, but you can run everything from within
your Drupal interface. It's like a phpMyAdmin lite version right in your Drupal site.
This is a preferred option for those developers who may not have immediate access
to a client's phpMyAdmin or a host's database management utility.

Using DB Maintenance and Boost

[134]

Choose a selection of tables that you want to optimize, or select all the tables. For this
demo I'm going to optimize all of my content type tables, so I'll select all of those. I'll
also optimize my block tables:

blocks
blocks_roles
content_type_blog
content_type_book
content_type_forum
content_type_page
content_type_photo
content_type_poll
content_type_story
content_type_webform

Once you've selected the tables you want to optimize, click on the Optimize
now link.

As with any module or optimization enhancement that you make to
your Drupal site, it is good practice to run a full backup of your MySQL
database before performing any maintenance, including optimizing tables
using the DB Maintenance module. This way you will have a full backup
of your data if you run into any issues that the module could potentially
create. It's better to play it safe and perform the backup first.

Once you click on the Optimize now link, you should receive a message notifying
you that the Database tables are optimized.

This concludes our discussion and walkthrough of using the DB Maintenance
module. Let's now turn to the Boost module and use it to speed up our site page
and content loads.

Chapter 5

[135]

Using the Boost module
We're going to turn our attention to the Boost module in this section. Boost is a
contributed module that allows you to run incredibly advanced static page caching
on your Drupal site. This caching mechanism will help to increase performance
and scalability on your site, especially if it gets heavy traffic and anonymous page
visits, and it is on a shared hosting environment. This is usually the first contributed
performance-based module to turn to for help when you host your Drupal site on a
shared server. Developers running Drupal sites on shared servers and running sites
that serve predominantly anonymous Drupal users will definitely want to try out
this module. It's also a fun module to use from a technical standpoint because you
can see the results immediately, as you configure it.

The Drupal project page for the module is here: http://drupal.org/project/
boost. There is a wealth of detailed information about the module on this project
page, including announcements about upcoming conference presentations that focus
on the Boost module, testimonials, install instructions, and links to documentation
and associated modules that you may want to run alongside Boost. It is very popular
and has quite a following in the Drupal development community. I definitely
recommend reading about this module and all of its install and configuration
instructions in detail before attempting to use it.

The install paragraph suggests reading through the module README.txt file before
running the install for details on how the module works. There are also detailed
instructions and documentation on the module here: http://drupal.org/
node/545664.

Note that the one requirement to use this module is that your Drupal site must have
clean URLs configured and enabled. It's a good idea to make sure you are running
clean URLs on your site before you start installing and configuring Boost.

Additionally, there are some recommended modules that the developers encourage
you to install in tandem with the Boost module. We will install two of these modules:
Global Redirect and Transliteration. The Global Redirect module runs a number of
checks on your website including the following:

Checks the current URL for a Drupal path alias and does a 301 redirect to the
URL if it is not being used.
Checks the current URL for a trailing / and removes the slash if it's present in
Drupal URLs.
Checks if the current URL is the same as the site's front page and redirects to
the front page if it locates a match.

•

•

•

Using DB Maintenance and Boost

[136]

Checks to see if you are using clean URLs. If you do have clean URLs
enabled, this module ensures URLs are accessed using the clean URL
method rather than an unclean method (for example, ?q=user).
Checks access to the URL. If a user does not have permissions to view
the URL, then no redirects are allowed. This helps to protect private
URL aliases.
Checks to ensure the alias matches the URL it is aliasing. So, if you have a
URL alias such as /about and this directs to node/23, then a user on your
site can access the page using either of those URLs.
The Transliteration module removes white space and non-ASCII characters
in your URLs. For example, it will try and add underscores to fill white space
in a URL.

Installing and enabling these two modules will help remove glitches and errors in
your site's path structure.

If you haven't already, we'll also take the time now to install the Poormanscron
module and set up and configure automatic cron runs instead of having to continue
running cron manually. We'll return to installing and configuring Poormanscron
later in this chapter, but just keep it on your radar for now.

Let's go ahead and install the Boost module and take a closer look at some of
its features.

Installing and configuring Boost
Installation and configuration instructions are provided on drupal.org and also
in the module's README file. Read these in detail before installing and enabling the
module: http://drupal.org/node/545908.

Additionally, the module notes specify that the module will install and enable using
smart defaults and these should work fine in most shared server environments.
We'll look at the default settings in this chapter and how to make more advanced
configurations in Chapter 6.

•

•

•

•

Chapter 5

[137]

Follow these steps to install the module(s):

Download the Boost module along with Transliteration, Global Redirect,
and Poormanscron to your desktop. Unzip them and then upload to your
/sites/all/modules directory. The latest version of Boost is 6.x-1.13,
Transliteration is 6.x-2.1, and Global Redirect is 6.x-1.2.
Check to make sure you have clean URLs enabled and working correctly in
your site at the settings page here: /admin/settings/clean-urls.
Go to your modules admin list and enable the Boost, Transliteration, Global
Redirect, and Poormanscron modules. Boost will be in its own Caching
section of the modules list.

Once enabled, you will see a series of messages loading on the modules page telling
you that:

Existing filenames have not been transliterated.
Boost has been successfully installed. There will be a link to the module
configuration settings page and a notification telling you that two blocks can
be enabled to help you administer Boost, as well as a block to support stats.

It's nice that the Transliteration module informs you that it has not changed the URL
paths of your previously posted Drupal pages. It's only going to affect new pages,
and only if you enable and configure the module.

Click on the configuration settings link to launch the Boost admin page. You'll
notice that the Boost configuration page is a tab that's part of the overall Drupal
Performance admin section of the site. You can also get to the configuration page
by going to Site configuration | Performance | Boost Settings.

Boost settings
Boost settings are split up into the following sections:

Boost File Cache
Boost cacheability settings
Boost directories and file extensions
Boost advanced settings
Boost crawler
Boost Apache
Clear Boost's Database

•

•

•

•

•

•

•

•

•

•

•

•

Using DB Maintenance and Boost

[138]

All of these sections and settings are explained in detail on the Drupal module
project Installation and Settings page here: http://drupal.org/node/545908.
We're going to look at most of these configuration settings in detail.

Boost File Cache settings
Most of the default settings will work for us here, but let's run through them all. We
want to make sure that we have Boost – Static page cache set to Enabled. What this
will do is store all of our Drupal-generated nodes and pages as static HTML files in
a special cache directory in our Drupal site directory. Caching pages will help our
site to deliver its pages and content in the fastest possible manner without turning
to PHP or Drupal. This will provide us with improved performance, but you need to
bear in mind that this type of caching will mostly benefit anonymous users of your
website and not logged-in authenticated users who will be depending more on your
Drupal functionality. In some cases, if you have a site that functions on multiple
levels (for anonymous and authenticated users), it will be a trade-off to use this
module, it is more advantageous to use it on sites that have more anonymous user
access. On popular sites that allow mostly anonymous user visits, this module is
a necessity.

Gzip page compression setting should be set to Disabled for our example. Page
compression is normally handled by the Apache web server itself and you will not
need to enable any additional page compression. If Apache is compressing pages,
this can actually interfere with the Drupal page compression and crash your website,
so do not enable this until you are sure Apache or the web server you are using is not
performing page compression.

We'll leave the Boost – HTML – Default minimum cache lifetime set to 1 hour for
HTML, XML, and JSON.

You will also notice that you can easily clear your Boost cached data by clicking on
the Clear ALL Boost cached data button, and your expired cached data by clicking
on that button. Your screen should look something like this:

Chapter 5

[139]

Boost cacheability settings
Scroll to this section and leave the defaults enabled—this includes Cache pages
that contain URL Variables and Cache HTML documents that will cause Boost to
cache all content in your Drupal pages. You can choose here to Cache your XML and
JSON. When you select cache XML and JSON, the corresponding Boost – XML and
Boost – JSON minimum cache lifetimes will be selectable in the Boost File Cache
section. Let's go ahead and check the box to cache our XML and RSS feeds.

Let's leave the Cache .css and Cache .js checked, so our CSS and JavaScript files are
also cached.

Using DB Maintenance and Boost

[140]

Optionally, you can specify which pages on your site to cache by adding the page
URLs to the Pages box and then by specifying that you only want to cache those
pages. You can also enable PHP code here if you have specific PHP code snippets
you want to run. This is similar to how the core Drupal Block configuration works.
You can see that the module developers spent a lot of time working out the best
workflow for the configuration so that it matches other core Drupal module
configuration pages in usability and workflow.

At this point your screen should look similar to this:

Boost directories and file extensions
This is a very important section. Here you tell Boost module where to store your
cached data and files. The README file also explains this section in detail and the
corresponding tweaks we will eventually run to our HTACCESS file to enable Boost
to work.

Chapter 5

[141]

We need to create a folder in our site's directory for our cached material. Our
folder will be called cache, but it needs to exist on the site. So if this folder and
the subsequent path folders do not exist, you need to create them and make sure
they are writeable on the web server. The /cache folder should be created in the
root directory of your Drupal site. Create a folder called cache at the root of your
Drupal installation alongside your other Drupal folders such as /files, includes,
misc, and so on. Make sure the /cache folder is writeable. This means setting your
permissions for the /cache folder to 777. Drupal or the Boost module may create the
folder automatically if you do not create the folder in advance, but it's a good idea to
create it anyway.

You can create the cache folder through FTP or a file manager utility like cPanel.
The directory we create must be named cache, and the Cache file path is set to
cache/normal/variantcube.com/fire. Then make sure that this directory and its
sub folders are created on the site and are writeable. So I'll go ahead and create the
cache, normal, variantcube.com, and fire folders.

We'll return to this discussion during our multisite chapter because we can tell the
Boost module not to store cache file paths in the database. This is helpful in multisite
installations when you are running Boost.

Your screen should look something like this:

Using DB Maintenance and Boost

[142]

You can also specify storage locations for your HTML, XML, and AJAX output, and
static storage for your CSS and JS files if you want to keep those in a specific location
of the cache folder. I will leave these as the default settings for our examples and let
Boost decide where it wants to store each set of files within the path and directory
structure I've created.

Before moving on to enabling the Boost default admin blocks, save the configuration
and then create the .htaccess file. First, save configuration on your mainsave configuration on your main on your main Boost
settings configuration page. This will save the configuration work we've just
enabled. Having done this, let's move on to make a required tweak to our
.htaccess file.

HTACCESS file tweaks
There is one important tweak that we need to carry out on our .htaccess file. We
need to do this in order to make our Boost configuration work. So far in this section
on the Boost module, this is the most complex configuration step we've taken. Follow
these steps in order to tweak your .htaccess (this is also explained in detail in the
README file in the module folder):

1. Back up your original .htaccess file in your Drupal install directory so that
you have a backup in case of problems.

2. Copy the custom generated htaccess rule fromrule from Administer | Site
configuration | Performance | htaccess rules generation or by clicking
on the tab in your Performance section that says Boost htaccess rules
generation.

3. When you click on the button, you'll see a text box with the rules presented
as a big block of code. Copy this code and paste it into your .htaccess file
(through editing mode in either FTP or cPanel). The module help text here
tells you to copy this rule and paste it below the # RewriteBase / and
above the # Rewrite URLs of the form 'x' to the form
'index.php?q=x'.
So you should have something in your current .htaccess that looks like the
following:

 # RewriteBase /
 ------------ paste the rules here ------------

 #Rewrite URLs of the form 'x' to the form 'index.php?q=x'.

4. Paste the code in the position indicated paste the rules here. Make sure
you look for the # RewriteBase / commented line of code and then paste in
your rewrite rules immediately following that comment line. Go ahead and
do this now.

Chapter 5

[143]

The resulting code looks like this:

 ### BOOST START ###
 AddDefaultCharset utf-8
 <FilesMatch "(\.html|\.xml)$">
 <IfModule mod_headers.c>
 Header set Expires "Sun, 19 Nov 1978 05:00:00 GMT"
 Header set Cache-Control "no-store, no-cache, must-revalidate,
 post-check=0, pre-check=0"
 </IfModule>
 </FilesMatch>
 <IfModule mod_mime.c>
 AddCharset utf-8 .html
 AddCharset utf-8 .xml
 AddCharset utf-8 .css
 AddCharset utf-8 .js
 </IfModule>
 <FilesMatch "\.html\.gz$">
 ForceType text/html
 </FilesMatch>
 <FilesMatch "\.xml\.gz$">
 ForceType text/xml
 </FilesMatch>
 <FilesMatch "\.css\.gz$">
 ForceType text/css
 </FilesMatch>
 <FilesMatch "\.js\.gz$">
 ForceType text/javascript
 </FilesMatch>

 # Gzip Cookie Test
 RewriteRule boost-gzip-cookie-test\.html cache/perm/boost-gzip-
cookie-test\.html\.gz [L,T=text/html]

 # NORMAL - Cached css & js files
 RewriteCond %{DOCUMENT_ROOT}/fire/cache/perm/%{SERVER_
NAME}%{REQUEST_URI}_\.css -s
 RewriteRule .* cache/perm/%{SERVER_NAME}%{REQUEST_URI}_\.css
[L,QSA,T=text/css]
 RewriteCond %{DOCUMENT_ROOT}/fire/cache/perm/%{SERVER_
NAME}%{REQUEST_URI}_\.js -s
 RewriteRule .* cache/perm/%{SERVER_NAME}%{REQUEST_URI}_\.js
[L,QSA,T=text/javascript]

 # Caching for anonymous users

Using DB Maintenance and Boost

[144]

 # Skip boost IF not get request OR uri has wrong dir OR cookie is
set OR request came from this server OR https request
 RewriteCond %{REQUEST_METHOD} !^GET$ [OR]
 RewriteCond %{REQUEST_URI} (^/fire(admin|cache|misc|modules|s
ites|system|themes|node/add))|(/(comment/reply|edit|user|user/
(login|password|register))$) [OR]
 RewriteCond %{HTTP_COOKIE} DRUPAL_UID [OR]
 RewriteCond %{REMOTE_ADDR} ^74\.220\.207\.144$ [OR]
 RewriteCond %{HTTPS} on
 RewriteRule .* - [S=2]

 # NORMAL
 RewriteCond %{DOCUMENT_ROOT}/fire/cache/normal/%{SERVER_
NAME}%{REQUEST_URI}_%{QUERY_STRING}\.html -s
 RewriteRule .* cache/normal/%{SERVER_NAME}%{REQUEST_URI}_%{QUERY_
STRING}\.html [L,T=text/html]
 RewriteCond %{DOCUMENT_ROOT}/fire/cache/normal/%{SERVER_
NAME}%{REQUEST_URI}_%{QUERY_STRING}\.xml -s
 RewriteRule .* cache/normal/%{SERVER_NAME}%{REQUEST_URI}_%{QUERY_
STRING}\.xml [L,T=text/xml]

 ### BOOST END ###

Once it's pasted in my .htaccess file, I should see the code start below my
#RewriteBase / and it will look like this (this is just an excerpt):

RewriteBase /
 ### BOOST START ###
 AddDefaultCharset utf-8
 <FilesMatch "(\.html|\.xml)$">
 <IfModule mod_headers.c>
 Header set Expires "Sun, 19 Nov 1978 05:00:00 GMT"
 Header set Cache-Control "no-store, no-cache, must-revalidate,
post-check=0, pre-check=0"
 </IfModule>
 </FilesMatch>
 <IfModule mod_mime.c>
 AddCharset utf-8 .html
 AddCharset utf-8 .xml
 AddCharset utf-8 .css
 AddCharset utf-8 .js
 </IfModule>
 <FilesMatch "\.html\.gz$">
 ForceType text/html
 </FilesMatch>
 <FilesMatch "\.xml\.gz$">

Chapter 5

[145]

 ForceType text/xml
 </FilesMatch>
 <FilesMatch "\.css\.gz$">
 ForceType text/css
 </FilesMatch>
 <FilesMatch "\.js\.gz$">
 ForceType text/javascript
 </FilesMatch>

Refresh your Performance settings page in Drupal. That's it! You're now ready to use
the Boost module and start speeding up your page loads. Let's start using it as an
anonymous user on our site.

Testing your Boost configuration
Now we're going to test out our Boost configuration and make sure everything is
working with our initial basic settings and the .htaccess configuration that we're
running. Log out of your website in your current browser or open up another web
browser so that you can browse around your site as an anonymous user.

The main thing we want to check on is that our static HTML type files (our Drupal
pages or nodes) are being cached and stored in the cache directory we have specified
in the module configuration. If we chose to use a GZIP compression, we will want to
check to make sure the ZIP files are being generated and stored.

Also, run your Status report and view your log entries to check to see if any errors
related to the module configuration are being thrown.

You should start noticing a performance boost on your site immediately, as you
browse around your site. Start clicking around and opening different nodes on
your site and admire the faster performance! You should notice it.

If we check the cache directory on our site, we should notice that the Boost moduledirectory on our site, we should notice that the Boost module
has started writing HTML files to our cache directory. In the directory you should
now see the following folders:

/cache/normal/variantcube.com/fire/node

Using DB Maintenance and Boost

[146]

Boost has automatically created a new folder called /node where it will store thewhere it will store the
cached HTML versions of the Drupal pages it loads. For example, if we look into
our /node directory, we should see a bunch of HTML files that have been cached
while we've browsed anonymously on our site. You can almost see this happen in
real time if you browse to a page and then immediately refresh your remote server/
site window in your FTP client (while in the /node folder). I see the following files
corresponding to their Drupal nodes:

201_.html
202_.html
203_.html
206_.html
208_.html

These correspond to:

node/201
node/202
node/203
node/206
node/208

Also, at the root of our /fire directory, we should see any non-node pages (for
example, pages created using Drupal Views module). In our case, our main Photo
gallery View page has been cached: photo_gallery.html. This page corresponds to
our photo_gallery View page.

You can immediately see the power and flexibility of this module by inspecting your
cache directory.

You should notice a performance increase on all of these cached pages because the
pages that are loading are now your Boost-powered HTML pages. So, multiple
clicking on one Drupal node should demonstrate how quickly your pages are
now loading.

The module has created another folder in your /fire/cache directory called perm.
The /perm folder contains your CSS and JS files as they are cached. If you look in this
folder, you'll see paths to the following folders:

/cache/perm/variantcube.com/fire/files/css
/cache/perm/variantcube.com/fire/files/js

If you look in your CSS directory, you should see cached versions of your
CSS files, and if you look in your /js directory, you should see a cached version
of your JavaScript.

Chapter 5

[147]

Another method of checking the module is working correctly is to view source on
your pages (by viewing source in your web browser) and see if the following code is
being added to your HTML output:

<!-- Page cached by Boost @ 2009-10-23 13:56:03, expires @ 2009-10-23
 14:56:03 -->

So the actual HTML source in the web browser will tell you that you are viewing
a cached version of the page rather than a dynamically generated version of the
page. It also tells you when this cached page version will expire—based on our
configuration, basically one hour after it's been loaded depending on our Boost
module settings.

Everything appears to be working fine with our initial Boost installation and
configuration. Sit back and behold the power of Boost!

Boost and Poormanscron
Checking our Status report will show us that we're running an incorrect version
of Poormanscron. Boost is optimized to work with the latest dev or 2.0 branch ofPoormanscron. Boost is optimized to work with the latest dev or 2.0 branch of. Boost is optimized to work with the latest dev or 2.0 branch of
Poormanscron. So let's go ahead and install the latest version so that our So let's go ahead and install the latest version so that our cron runs
will work correctly with Boost.

Visit the Poormanscron project page and download the 6.x.-2.0-beta1 release and
extract and upload it to our /sites/all/modules directory. Then run your Status
report again to check to make sure the Boost warning has disappeared. You may need
to run your update.php script, as this module update will make changes to your
database schema. Run update.php and then refresh your Status report.

In your Status report, you should now see the Boost row state:: Boost Installed
correctly, should be working if properly configured.

Using DB Maintenance and Boost

[148]

Configuring Poormanscron
The updated 2.x-beta1 version of Poormanscron is the precursor module to the
eventual Drupal 7 core cron functionality. In Drupal 7, the functionality of the
Poormanscron module will be part of the default core processes. For this reason the
beta1 version does not give you a module configuration page. It will just run cron
automatically, based on a setting on your Site information page. Go here to see that
setting: Site configuration | Site information. Now you have an automatically run
cron setting that you can select from. We'll use the default 1 hour cron run. This is a
nice preview of some of the new built-in functionality of Drupal 7 core.

Clearing the Boost cache
If you want to clear your Boost cache at any time and see how this affects the /cache
folder on your site, go to the Boost cache configuration page at Performance | Boost
Settings and click on the Clear ALL Boost cached data button and the Clear Boost
expired data button. Since you started caching, these buttons will tell you how many
pages they are caching respectively. This is another good example of the flexibility of
this module.

Once you have cleared cached data from Boost, you will receive messages telling
you that the Boost: Static page cache cleared and/or a message stating Boost:
Expired stale files from static page cache. To see the results, check your /cache
directories and you should see that all the previously cached HTML pages are now
deleted. Through FTP you may need to run your F5 function key to refresh the /
node directory. The HTML files will be deleted. If you refresh your /node directory,
it should now be empty. This is a method of clearing the cache manually instead of
waiting for it to clear based on the minimum cache lifetime you set as per cron runs.
Again, this is a very flexible functionality allowing you both manual control and auto
control of your page caching.

Boost admin and stats blocks
The Boost module provides you with three blocks that you can enable and use on
the administrative side of the site. Go to Site building | Blocks and look for theand look for the
following blocks:

Boost: AJAX core statistics
Boost: Pages cache configuration
Boost: Pages cache status

•

•

•

Chapter 5

[149]

Enable all three of these blocks to show in the right sidebar of your site. You can
configure each block and choose to show it only on specific pages of your site and
for specific roles as well, such as site admin, if you prefer. Configure each block and
then enable in your right sidebar. I'm also going to make sure my two new blocks
are showing at the top of the right sidebar area above any other blocks I may have
configured. I'll put the status block first and the cache configuration block second in
weight order.

Now, in your right sidebar on each page, when you are logged in as an admin user
you should see both the Pages cache configuration block and the Pages cache status
block. In another browser (if you haven't already), browse around your website as
an anonymous user. Now load those same pages as an authenticated admin user
and view the blocks and the information they are showing you about each page.

Boost: Pages cache status block
This is what the Boost: Pages cache status block should look like (or similar to) in
your site. Here I'm on node/203 of our site and the block looks like this:

The status block tells us whether the site is being served to anonymous users as a
static cached HTML page or whether it's still being served 'live' as a dynamic Drupal
page. This is very helpful if you have thousands of pages on your site and you're
trying to determine if the page is being served static or live. You can then determine
quickly if you need to enable caching on that specific page (if you have a more
complex Boost configuration where you're only using Boost to serve specific pages).

Using DB Maintenance and Boost

[150]

This block also tells us how many seconds it takes to generate the cached page.
Here, on node/203, it takes 2.186 seconds to serve the HTML version of the page.
Additionally, the status block tells us when the cached copy of the page is set to
expire (based on our minimum cache lifetime settings).

You can also click on the Flush Page button and this will clear the Drupal page from
the Boost cache entirely. Again, this is a very nice functionality to have if you are
setting up a more complex Boost cache configuration.

Load some other pages both as an anonymous user and as your admin user, and
check the status blocks for Status reports on the caching for that specific page.

Boost: Pages cache configuration block
This block allows you to configure your basic Boost settings for a specific Drupal
page while you're administering the page itself. So go ahead and launch a node on
your site and you'll see the block in the right sidebar. It will look similar to this:

Chapter 5

[151]

This block allows you to set and adjust the minimum cache lifetime (1 hour, 3 hours,
and so on), the preemptive cache and whether it's enabled, as well as the scope of the
Drupal page you are viewing. Scope will tell you the page ID of the node and what
type of content the node is built from—in this case we're looking at a Photo content
type node. The type of container (node, block, or otherwise) is also noted here. You
can tweak the configuration settings here and save a new configuration. You can also
delete your configuration here.

If you choose to set a new configuration here, for example, changing your page cache
minimum cache lifetime to 3 hours versus 1 hour, the cache will be flushed and reset
to your new 3 hour lifetime. So your status block will show that the page is being
served live again on the site until you visit that page as an anonymous user. When
the Drupal node is being served live, this is what the status block looks like:

Summary of Boost's basic configuration
The one thing to remember when using the Boost module is that only your
anonymous site visitors will be served static HTML page versions of your Drupal
dynamic data. It will be business as usual for your authenticated site visitors. When
they login, they will continue to receive the dynamic live version of the Drupal
node. You will want to keep this in mind when you decide whether you will use
this module on your site. If your site is heavily trafficked by anonymous users, then
you'll want to try out Boost. If you have a community portal site that depends on
authenticated user comments and forum activity, you may not want to use the Boost
module or at least be aware of its limitations when it comes to how it works on that
type of site.

Additionally, the Boost module only works on web servers running Apache server
software. Much more about Boost is available on its Drupal module project page.

Using DB Maintenance and Boost

[152]

Summary
In this chapter, we looked in detail at two contributed modules—DB Maintenance
and Boost, which help to both maintain and speed up performance of our website.
Specifically, we did the following:

Installed and configured the DB Maintenance contributed module in order to
optimize, repair, and back up our MySQL database.
Installed and configured the Boost module in order to set up basic static
HTML page cached versions of our Drupal nodes.
Tweaked our HTACCESS file to enable the Boost settings through the Boost
htaccess rules generator functionality.
Enabled the following Boost module blocks: Pages cache status, Pages cache
configuration, and AJAX core configuration.

Let's take a break! When we come back in Chapter 6, we'll take a detailed look at
Boost's advanced settings, including a discussion of how to troubleshoot the Boost
module if it's not working correctly on your site.

•

•

•

•

Advanced Boost
In this chapter, we're going to continue to use the Boost module and look in detail at
some of the module's advanced settings and its configuration.

By the end of this chapter you will know how to install, configure, and use
the following contributed modules as well as how to use the advanced
Boost functionality:

Global Redirect module and configuration
Transliteration module and configuration
Configuring advanced Boost cache settings
Using and configuring the Boost crawler
Knowing where to look for the Boost .htaccess settings if you need to
tweak their configuration after enabling Boost crawler settings

•

•

•

•

•

Advanced Boost

[154]

Updating contributed modules
Before we start looking at Boost's advanced settings, let's run our Status report and
check on our site's contributed module status. I have been noticing some warning
messages appearing across the site notifying us that we need to upgrade the
following contributed modules to their latest security patch releases. So now
is a good time to do that. The modules we're going to upgrade are:

Devel module (upgrade to 6.x-1.18)
FileField (upgrade to 6.x-3.2)

Download the updates from the modules' project page at http://drupal.org/,
extract them locally on your desktop, and then upload the modules to your /sites/
all/modules folder. You'll be asked to replace the existing files. Click on Yes to this
and then browse to your Status report page once you have completed the copy of
the module files. You should notice that your Update Notifications are enabled and
in green mode showing that everything on your site module-wise has been updated.
We are ready to move on.

Recommended modules that work with
Boost
You will recall that when we installed the Boost module for the first time, there were a
couple of recommended modules that work with Boost to help optimize your site for
performance. These are the Global Redirect, Pathauto, and Transliteration modules.
Let's briefly look at each of these modules and view their configuration and settings
to understand how they will work on our site and help speed up performance.

•

•

Chapter 6

[155]

Global Redirect
The Global Redirect module allows you to remove trailing slashes / from URLs. It
also checks to see if your Drupal site has clean URLs enabled and, if so, will prevent
unclean URLs from ever being accessed. You can do a lot more with this module
and all of the details are listed on its Drupal project page here: http://drupal.org/
project/globalredirect.

The module also redirects any specific node/ID page to its alias if an alias exists. This
is important, as your site will get requests by visitors for duplicate nodes or pages.
Some people will visit your node/12 page and others may visit it by its alias name.
This module makes sure they can only load your node through its corresponding
alias. This helps with performance and also makes sure you're not getting slammed
by search engine bots. We already installed Global Redirect in the last chapter. Let's
go to its settings page and see what we can configure. Go to Site configuration |
Global Redirect. This will launch the configuration page.

Here you find the items you'll want to configure. First, make sure that you have
selected to enable the deslash. This will remove all trailing / from URLs in your site.
This will help to prevent duplicate node content from being loaded. One thing to
consider is that if you do have a requirement for requests using a /, then you maythen you may
need to leave this disabled. It will depend on your site requirements. Enable it
for now.

Enable the Non-clean to Clean URL configuration. This will stop any requests
loading a non-clean URL such as variantcube.com/fire?q=node/1.

Enable the Remove Trailing Zero Argument setting. This will help to trim your
taxonomy URLs and prevent duplicate term URLs from loading when the URL refers
to the same taxonomy term. For example, if you have a URL /taxonomy/term/1 and
this term can also be loaded by going to /taxonomy/term/1/0, then enabling this
functionality will trim the /0 from the URL and load the default depth of the term
which is the /taxonomy/term/1.

Enable Menu Access Checking, as this will help to prevent your anonymous users
or authenticated users who do not have permissions from trying to load admin
content through admin URLs.

Also enable Case Sensitive URL Checking. This will make sure the user is always
directed to the correct URL in your site based on specific characters in the URL.

Advanced Boost

[156]

Once you have configured the module settings, click on the Save configuration button.

Transliteration and Pathauto
This module can be enabled from your main modules admin list. The current
version is 6.x-2.1. Go ahead and enable it on your site. The module does not have
a configuration admin page in your Drupal site, but you can learn more about its
configuration and what it does through its Drupal project page: http://drupal.
org/project/transliteration.

In a nutshell, this module provides transliteration resources for other Drupal
modules including Boost, and also sanitizes your file upload names. For example,
if a user uploads a file to your site using the Drupal attachment core module and
the filename contains special non-ASCII characters, this module, if enabled, will
convert and try to represent that data in US-ASCII characters, which are the
universally accepted character codebase.

Chapter 6

[157]

You can also use Transliteration along with the Pathauto module and it works
similarly to its configuration for file uploads. In your Pathauto settings, you can
enable Transliteration prior to creating any automatic alias. In order to do this
you'll need to add an i18n-ascii.txt file tfile to the Pathauto directory. You can view
instructions for configuring this functionality by going to Site building | URL
aliases | Automated alias settings and then expanding the General settings in the
Pathauto module configuration. You will see a checkbox next to Transliterate prior
to creating alias.

You can find this i18n-ascii.txt file by doing a search for it onfile by doing a search for it on http://drupal.
org/. Using Google search, one example of the file is here: http://textpattern.
googlecode.com/svn/development/crockery/textpattern/lib/i18n-ascii.txt.
Download the file and copy it to your Pathauto module directory. Once you do this,
you can enable the Transliterate prior to creating alias setting. When you upload this
file, make sure to rename it i18n-ascii.txt so that it's recognized by the Pathauto
and Transliteration modules. Again, much of this will be your personal preference and
decision as to whether you want to use the Transliteration module in your site. If you
do, it will open up various configuration possibilities for your Boost module. It's good
to understand generally how all of these modules work hand in hand to help optimize
your site.

Let's take a look at some advanced Boost module settings and their configuration.

Advanced Boost settings
Let's do a quick review of our Boost configuration upto this point. We have set up
Boost to cache our Drupal nodes. This stores our Drupal nodes as static HTML web
pages. When an anonymous user visits our site, they are delivered the static HTML
version of the web page, and this helps considerably with speed and optimization
of our page loads. We have set our minimum cache lifetimes for HTML, XML,
and JSON content to be 1 hour. We also have the option of clearing all of our
Boost-cached data and expired data manually by clicking on the respective
buttons on the Boost settings page in the Boost File Cache pane.

Advanced Boost

[158]

We configured Boost to cache pages that contain URL variables even though we're
using clean URLs on our site. We are caching all HTML documents or Drupal pages,
all XML and feed content, all AJAX and JSON content, and CSS and JavaScript files.
We also determined that we can tell Boost to only cache specific pages or use PHP
code to run conditional statements for our cache settings. This is very similar to how
the Blocks settings and configuration works.

We configured Boost to store all of our cached files and pages in the main /cache
directory and specifically in /cache/normal/variantcube.com/fire. Once we
configured this, we edited our .htaccess file to permit this storage to occur. We alsofile to permit this storage to occur. We also
looked at the specific configurations we can set up to store files using Boost. We can
store our HTML, XML, and AJAX files in specific subdirectories in the /cache folder,
and we can also store our CSS and JS files in specific subdirectories. Boost provides a
lot of flexible storage options for us to take advantage of.

Boost advanced settings
Let's start looking at our advanced Boost configuration. The first item we want to
note is that we can tell Boost to clear expired pages onclear expired pages on cron runs. This will clear all. This will clear all
expired cached pages when our cron runs. If you disable this, you will need to clear
your Boost cache manually through the Boost: Pages cache status block (we looked
at this block configuration in Chapter 5).

The next setting is even more flexible. Boost will only clear and flush expired content
if it sees that there's been a change in the database timestamps, that is, if there's new
database content. This is a setting you'll want to enable if you do not want to rely on
the cron run to clear your site cache and if you have content being posted to your
site frequently that you want your anonymous users to view without problems. Here
we will take advantage of the Boost timestamp function, and use it to rebuild and
flush cache only on pages that have been updated in the database. This PHP-based
functionality will refresh the cache on that one specific Drupal node and not have to
flush or rebuild the entire site cache. This enables you to target your Drupal nodes
and database much more granularly rather than having to flush the entire
Boost cache.

Let's go ahead and do this. We'll first check the box next to the Check database
timestamps for any site changes.

Next, we're going to install the Rules module so that we can set up a rule that will
run cron on our site every time a node is updated and saved. The Rules module
allows you to define conditional PHP statements throughout your Drupal site and on
specific Drupal events. The Rules module is on drupal.org ((http://drupal.org/
project/rules). Download the latest version of Rules, which is Download the latest version of Rules, which is 6.x-1.1. Extract
and upload the module to your /sites/all/modules directory.

Chapter 6

[159]

Once uploaded to your site, go to your modules admin list and enable the Rules
module and its constituent modules. Also, enable the PHP filter module if you have
not already.

Save your module configuration. Then visit the Rules configuration page by going to
Rules | Triggered Rules | Add a new rule.

We're going to add a new rule and event by doing the following:

1. In the Label field, type in the following: Run cron when node is saved.
2. In the Event drop-down menu, choose the following event under the Node

category: Content is going to be saved.

Advanced Boost

[160]

3. Check the box next to the statement: This rule is active and should be
evaluated when the associated event occurs.

4. Click on Save changes.

Once you click on Save changes, you'll be presented with a screen that allows you to
edit the Database Timestamp Boost rule you just configured. Here do the following:

Click on the Add an action link.•

Chapter 6

[161]

From the Select an action to add drop-down menu, select the Execute
custom PHP code statement and then click on Next.

On the next screen, in the PHP Code box, copy and paste the following code.
Remember here that you do not need to include the opening and closing PHP
brackets <?php and ?>.

 global $base_root, $base_path;
 drupal_http_request($base_root . $base_path . 'cron.php');

•

•

Advanced Boost

[162]

This code is provided from the Boost advanced settings help and
support documentation page on drupal.org (http://drupal.
org/node/583264)

Click on Save. You will receive a confirmation that The action Execute
custom PHP code has been saved.
Return to your Boost advanced settings and check the box next to Check
database timestamps for any site changes. Only if there's been a change will
Boost flush the expired content on cron.
Save your Boost settings configuration. your Boost settings configuration.

As soon as you do this, Boost will now refresh the cache on any one page on your
site that has been changed in the database.

Testing your Database timestamp settings
Let's go ahead and test the functionality we just implemented. You'll see
immediately how this works in the new caching mechanism we've configured. First,
logout of your site and then browse to a page and load it as an anonymous user.
Check your /cache/normal/variantcube.com/fire/node folder to make sure the
HTML version of the cached page is showing up. I'm visiting node/207 on my site
and I notice immediately that once I load node/207, the HTML version shows up in
my cache folder.

If you are having trouble seeing this happen through FTP or SFTP, refresh your
remote window in your FTP client.

Now log back into your site and visit the same node as your admin authenticated
user. Edit the node and add some content to it, or tweak some content so that the
change will be noticeable to your anonymous users. I'm editing node/207 and I'm
adding some new textual content to my title field for that node. Save your node.

•

•

•

Chapter 6

[163]

Now, immediately go into your FTP client and refresh your remote view. You should
see the HTML version of the node disappear. The script you are running through the
Rules module and Boost is working. You made a database level change to this node
and now the node cache has been flushed. The HTML version is gone and you're
ready to serve out the latest version of this node to your anonymous users. To finish
the test, logout of your site and load the same node, as an anonymous user. Now,
immediately go into your FTP client and refresh. You should now see the cached
version of the node again and you should also see the edited content on your node
as an anonymous user. It's working!

You'll also notice that all of your other cached HTML page versions are unchanged
and unaffected by this rule's actions. The PHP script you are running only targeted
this one node that had changed content. Bear in mind that running cron using
the rule you have created will cause the cron to run every time a node is saved.
This may cause cron to run more frequently than you have it set to run via your
Poormanscron module or a cron configuration you have configured on the server.
If this is the case, then your cron could take more time to run because it will be
flushing other module actions, for example, if your modules rely on cron for
specific module functionality. Just keep this in mind as you work with this rule.

Advanced Boost

[164]

Let's look at some more Boost advanced settings. The next checkbox on the Boost
settings page asks you if you want to force the site to only allow ASCII charactersforce the site to only allow ASCII characters
in a URL path. I would suggest leaving this checked if you're not using any content. I would suggest leaving this checked if you're not using any content
translation or i18n functionality on your Drupal site.

The next setting pertains to multisite environment and development. If you're
running a multisite, you can select to Flush all sites caches in this database. This
will only work if you're running a multisite environment from one Drupal database.
So, if you want to flush all the sites' caches, you can enable this here. We're not
running multisite currently, so I'm going to leave this unchecked.

Asynchronous Operation: output HTML, close connection, then store static file
helps to speed up your caching process even more. Here the caching will generate
the cached HTML page without paying close attention to the PHP on the page. PHP
will remain running in the background, but the cache page will only pay attention to
HTML. This will also help to generate faster page loads.

The next setting allows you to not only clear cached files, but also the entire folder in
your /cache directory. This gives you an added feature to help clean house, but you
need to be careful if you have set specific writeable subdirectories. If you clear those
subdirectories, you will need to rebuild them again through FTP or a file manager
and set the correct permission because clearing them will wipe them from the server.
So use this with caution.

Chapter 6

[165]

The next four settings refer to Boost's integration and behavior with the CCK, Views,
and Taxonomy modules. You can tell Boost to Clear all cached pages referenced
via CCK with a node on insert/update/delete. This will clear the cached pages for
any node that references another node via a CCK node reference field. Both nodes
will be cleared. There is a module that works well with this functionality called the
Node Referrer module. If you plan to use this functionality, you should install and
configure this module.

You can also have Boost Clear all cached terms pages associated with a node
on insert/ update/delete, Clear all cached views pages associated with a node
on insert/update/and delete. Note that if you do this specifically, the views page
associated with a node on insert can be a slow process because all of your Views will
process so that Boost can locate the node that is being cached. Use this functionality
with caution.

You can tell Boost to clear cache when you put your site offline for maintenance
mode, overwrite the cached file if it already exists, and not to cache a page if there is
a PHP error on the page. We'll go ahead and check this box. You can also check the
box next to the Do not cache if a message is on the page.

You can choose to turn off clean URLs for logged in users. We want to use clean
URLs for both of our user bases, so we'll leave this unchecked. This setting is
recommended for sites that have mostly admin-based authenticated users who
may not mind using non-clean URLs.

Advanced Boost

[166]

You can also choose to use Aggressive Gzip caching if you have your site configured
to use Books for Gzip caching.

Another one of the tweaks that Boost allows for is the Expire content in DB, do
not flush file. This will expire the database entry for the file or node before actually
flushing the cached version of the node. Again, this provides even greater flexibility
in your Boost configuration.

Finally, you can tell Boost to Ignore cache flushing (recommended only if you are
caching CSS and JS files) and whether you want to record all Boost errors to the
Drupal watchdog recent log entries.

Chapter 6

[167]

Boost crawler settings
Boost crawler allows you to cache your Drupal pages preemptively, allowing pages
to be cached before anonymous users or any visitor on your site loads them. First,
you need to check the box to enable theenable the cron crawler.. You must check this box and
save your entire configuration before you are able to check the specific caching
boxes in the Boost crawler section of the Boost settings. I encourage you to test this
functionality on your site before putting it in a production environment. You may
not need to use pre-caching, but again the module provides you with this flexible
functionality. The handbook content recommends using this functionality on shared
hosts and in conjunction with the database timestamp configuration we enabled
earlier in this chapter. You may also have to update your .htaccess settings to
use this type of configuration.

Advanced Boost

[168]

Remember that if you do change the above settings in the Boost crawler section,do change the above settings in the Boost crawler section, change the above settings in the Boost crawler section,
you may need to regenerate your .htaccess rules and re-paste them into your
.htaccess file, as you will now have updated and potentially changed the settings.
So, save your entire Boost advanced settings and main settings configuration first.
Then, having done this, run your site's Status report. This will tell you whether
Boost is configured correctly or if you need to update your .htaccess.

For example, I enabled the Boost cron crawler. Once I did this and visited my Status
report, I received this error message:

If you do need to make updates, go back to your Boost configuration page and click
on the Boost htaccess rules generation link and copy your latest Generated Rules.
Then paste this into your .htaccess file to update it.

Since I'm receiving this error, I'm going to go back and regenerate my Boost
htaccess rules and re-paste them into my .htaccess file. Once I do this and
run my Status report again, I should receive the green box telling me that Boost
is running correctly and can run the Boost crawler.

Summary
In this chapter, we learned the following Boost module advanced configuration tips:

Installing and configuring the Global Redirect contributed module.
Setting up a Boost database timestamp PHP-based rules configuration
for clearing static pages using the Rules module and Boost advanced
configuration
Testing the database timestamp rule
Configuring additional Boost advanced configuration
Configuring Boost crawler settings

Let's take a break! When we come back in Chapter 7, we'll take a look at contributed
modules that are built for specific types of performance monitoring. These will
include the Memcache, Advanced Cache, and File Based Caching modules.

•

•

•

•

•

Using Memcache API
and Integration

In this chapter, we're going to return to our discussion of Drupal caching
mechanisms and take a detailed look at the Memcache API and Integration
contributed module along with the best methods of installing and configuring this
module to allow for more granular and advanced cache configurations within our
site. In Chapters 5 and 6, we used the Boost module to enable advanced caching for
our anonymous site visitors. In this chapter and in Chapter 8, we're going to look at
the best methods of enabling caching for our authenticated users, and investigate
how to get even more control and flexibility over the Drupal caching system using
contributed modules.

By the end of this chapter you will know how to:

Install a development WAMP environment using MoWeS Portable
Install Memcached binary libraries on your development server
Integrate and configure Memcached to work with your PHP 5.2.x application
Extract and install the Memcache API and Integration module
Configure your settings.php to recognize and use the Memcache
API module
Enable the Memcache admin module
Test the module on your development site and view its detailed reporting
and statistics

•

•

•

•

•

•

•

Using Memcache API and Integration

[170]

The focus of this chapter will be how to use the Memcache API and Integration
contributed caching module and integrate this with a Drupal 6.x site, and how
best to implement these modules first in a development or sandbox type of hosting
environment with the flexibility to implement them later on production websites.
By doing this we'll actually see how the modules can contribute to performance
optimization and speed on our sandbox and development sites before rolling
them out into a production environment. Let's get started!

Using the Memcache API and Integration
module
The Memcache API and integration module provides an API for integration with
the Memcached daemon or service. There are many methods of installing the
prerequisites for using this module, specifically the Memcached library; but we're
going to focus on how to easily install Memcached and the Drupal 6.x version of
the module in a Windows WAMP environment using PHP 5.2.x. In order to use
the Drupal module, we'll need to first install the Memcached service on our local
development server and then integrate this service with our PHP version. There
are many instructions available on the web for installing Memcached on a Linux or
Mac OS system. You can do a Google search for tutorials on how to get Memcached
installed or see the note below with links to resources on http://drupal.org/ and
on Lullabot's website. Our focus here is to get Memcached up and running as quickly
as possible so that you can see examples of how it works in a sandbox environment,
so we're going to install using WAMP on Windows XP.

The drupal.org project page for the Memcache API and Integration
module is here and provides a wealth of information and resources
about the module: http://drupal.org/project/memcache. There
are instructions and tutorials on how to install Memcached and the
module in a Linux environment (Red Hat, CentOS, and Debian) through
the Lullabot.com websites at the following URLS: http://www.
lullabot.com/articles/how_install_memcache_debian_
etch and http://www.lullabot.com/articles/installing-
memcached-redhat-or-centos. If you want to read more about
Memcached, you can find resources on its main organization website
here: http://memcached.org/.

Chapter 7

[171]

MoWeS Portable development WAMP server
The first thing you'll want to do in order to follow these instructions is make sure
you're running a WAMP localhost environment on your Windows XP system. I
am using the portable application called MoWeS that installs Apache, MySQL, and
PHP on your C drive so that you can run the Apache web server in a development
configuration through your localhost. You can download the MoWeS Portable
packages here: http://www.chsoftware.net/en/useware/mowes/mowes.htm.

To install MoWeS follow these steps:

1. Visit the MoWeS website and go to the Download link.
2. Select the I do not have a MoWeS portable II Package and want to obtain

a new package link if you are installing a brand new MoWeS install. Click
on Go.

3.	 Choose the applications you want to install. I chose the following: Apache
2, MySQL 5, PHP52 (version 5.2.10). If you choose to use another popular
localhost package such as WAMP (Windows Apache, MySQL, PHP) make
sure to use the package that includes PHP 5.2.x. PHP 5.3.x will cause issues
with some Drupal contributed modules due to an issue with ereg() being
deprecated in PHP 5.3 and higher. So for now make sure that you are using
PHP 5.2 in your production and live environments.

4. You do not need to choose any application software because you can install
Drupal manually in your /www directory once you install MoWeS.

5. Download the package called mowes_portable.zip to your desktop.
6. Move the ZIP file to your C drive and extract it. It will create all of the

application directories necessary including mysql and php5.
7. Run the mowes.exe file to install MoWeS. If you run into installation issues,

check the MoWeS documentation and support on the MoWeS site.

Once you get MoWeS (or a similar portable application that provides a WAMP
environment) installed, you should have the following folders located in your
C drive:

www: This is where all of your localhost Drupal sites will reside.
apache2: The Apache web server folder and files.
mysql: The MySQL folder and files.
php5: PHP folder and files.
mowes.exe: This is the MoWeS Portable executable file that lives at the
root of your C drive. Double-click on this to fire up your MoWeS Portableouble-click on this to fire up your MoWeS Portable on this to fire up your MoWeS Portable
application and start the Apache web server.

•

•

•

•

•

Using Memcache API and Integration

[172]

Start up your MoWeS Portable application by clicking on the mowes.exe file. Once
you do this, you should see a MoWeS Portable status box open telling you that
Apache and MySQL are running without issue. Everything in the box should be
green and you should also see a Stop server button and an End button.

Now that you have a MoWeS development environment make sure you install
a Drupal site and database that you can use for the rest of this chapter and its
examples, following the instructions provided in Chapter 1 of this book for installing
Drupal. Once you have a Drupal site installed and configured, you're ready to install
Memcached and the Memcache API.

Installing Memcached libraries and service
Memcached is an entire service similar to MySQL or PHP that runs on your web
server and integrates with other applications like PHP and Drupal. We need to get
Memcached installed first on our development server and then we need to integrate
it with our PHP installation and environment.

To install Memcached on Windows XP, you first need to download the
memcached-1.2.6 version for win32. I'm using the binary version available
from this website: http://code.jellycan.com/memcached/.

Download the memcached-1.2.6-win32-bin.zip to your C drive.

Chapter 7

[173]

We're going to now install Memcached as a service on our web server. To do this,
first create a new folder on your C drive called memcached. You should have a folder
c:\memcached and in that folder move and extract the ZIP file you just downloaded.
This will extract and create a file called memcached.exe. You should see something
in your folder that looks like this:

You now have the executable file of the Memcached binaries on your local computer.
Now we want to install them. To do this, follow these steps:

1. Click on your Start menu button, select Run, then enter cmd or cmd.exe, and
hit the Enter key. This will put you in command-line mode.

2. Install the Memcached service by typing the following:
c:\memcached\memcached.exe –d install

3. Once installed, you need to start the service. To do this type in the following:
c:\memcached\memcached.exe –d start

The Memcached service should now be installed and started. Now we need to
integrate it with your PHP so that you can use it with your Drupal websites.

Integrating and testing Memcached with
PHP 5.2.x
The first thing you need to do is check your PHP extensions directory to see if the
Memcached extension is already installed. Go to c:\php5\ext directory and see if
you can locate the php_memcache.dll file. If it's not there, you need to download it
and paste it into your \ext folder.

You can get a copy of the DLL file here. This file works with PHP 5.2.xDLL file here. This file works with PHP 5.2.xfile here. This file works with PHP 5.2.x
configurations: www.pureformsolutions.com/pureform.wordpress.
com/2008/06/17/php_memcache.dll.

Now you need to tell your main php.ini file to reference the php_memcache dll
extension. To do this, find your php.ini file and open it to edit in WordPad. Look
for the extensions section of the .ini file and add the following extension:

extension=php_memcache.dll

Using Memcache API and Integration

[174]

Save your php.ini file and then click on the Stop server button in your MoWeS
Portable utility window. Then Restart the server. Once you restart Apache, go
ahead and create a file called phpinfo.php and add this line of code to it: <?php
phpinfo(); ?>. Then browse to that phpinfo file in your web browser, for example:
http://localhost/start/phpinfo.php. This will give you all of your PHP
configuration and lists of extensions. You should see the following section on this
page showing you that Memcache is indeed installed and running on the server:

You can also test your Memcached installation by creating a PHP file in your
/www root and running the following code. I called my file memcache.php and
the code follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
 lang="en-US">
<head>
 <titleMemcache Test</title>
 <meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1" />
 <title>Testing Memcache</title>
</head>
<body>
<?php
 $memcache = new Memcache;
 $memcache->connect("localhost",11211);
 # You might need to set "localhost" to "127.0.0.1"

 echo "Server's version: " . $memcache->getVersion() . "
\n";

 $tmp_object = new stdClass;

Chapter 7

[175]

 $tmp_object->str_attr = "test";
 $tmp_object->int_attr = 123;

 $memcache->set("key",$tmp_object,false,10);
 echo "Store data in the cache (data will expire in 10 seconds)

\n";

 echo "Data from the cache:
\n";
 var_dump($memcache->get("key"));
?>
</body>
</html>

Running this code should return something similar to the following as a web page
display when you browse to /localhost/memcache.php. If you receive no errors,
you're good to go and have installed Memcached correctly.

Server's version: 1.2.6
Store data in the cache (data will expire in 10 seconds)
Data from the cache:
object(stdClass)#3 (2) { ["str_attr"]=> string(4) "test" ["int_
attr"]=> int(123) }

Installing the Memcache API and Integration
module
We're now ready to install the Drupal contributed Memcache API module into our
Drupal site. Bear in mind here that this is a good starting point for you to work
from. But the focus here will be on a Windows development environment using the
MoWeS Portable Apache configuration. You may be using a different WAMP set up
on Windows or using MAMP on a Mac. Your configuration may be different, so you
can use this as a starting guide to getting Memcache up and running.

There is an additional configuration step to take with the previously installed
Memcached libraries before we continue. Open up your php.ini file in WordPad
again and add the following line if it's not in there already:

memcache.hash_strategy=consistent

You can add this line immediately after the last extension listed in your Windows
extensions section.

Using Memcache API and Integration

[176]

If you run phpinfo.php before making this change, you'll notice that your
memcache.hash_strategy is set to standard—you're changing it to be consistent.
You'll need to restart your Apache server using MoWeS to effect the changes. Go
ahead and do this and then refresh your phpinfo page.

Now you're ready to install and enable the module. First, you want to put your
development Drupal site in offline mode. This is good practice before implementing
any advanced modules such as Memcache.

Before installing the Memcache module make sure to read thoroughly the
installation instructions provided on the drupal.org project page as well as
those in the INSTALLATION.txt file that comes with the module.

Here are the steps to install the Memcache API and Integration module:

Put your Drupal site in offline mode.
Download the latest version of the module from the project page here:
http://drupal.org/project/memcache. Latest version is 6.x-1.4.
Extract and copy the memcache module folder to your
/sites/all/modules folder.
Confirm that you have Memcached running as a service on your server
(using instructions in the previous section).

Now, as you're going to be using the Memcache module to perform all caching on
your website, you need to make sure that your Drupal site knows which Memcache
include file to use when it's running its caching mechanism.

There are two Memcache module INC files: Memcache.inc is the default core INC
file to use whereas Memcache.db.inc can be used as a variant that offers you more
flexibility. Using Memcache.db.inc will save all your cached data into the MySQL
database, so you can still use caching if your site is offline. Memcache.inc does not
store any data in the database, so it's much lower overhead and lighter in weight
on your site and site database, and this will give you the best performance results.
However, this file also uses the most memory resources allocated to your site, so
make sure you have enough PHP memory running because it will be storing all the
page caching directly in memory and not in the database.

•

•

•

•

Chapter 7

[177]

You can decide which INC files to use. You do need to tell Drupal to use a specific
INC file, so you'll need to edit your settings.php file and add the following code
to call the specific .inc file you want to use. We'll use the memcache.db.inc file
for now and then tweak this to try and run everything from memory using the
memcache.inc file later. Update the $conf in your settings.php file to contain
the following code:

<?php
$conf = array(
 // The path to wherever memcache.inc is. The easiest is to simply
point it
 // to the copy in your module's directory.
 // 'cache_inc' => './sites/all/modules/memcache/memcache.inc',
 // or
 'cache_inc' => './sites/all/modules/memcache/memcache.db.inc',
);
?>

Make sure you comment out the correct line above so that the memcache.db.inc is
the reference being used.

Also, make sure you're running high enough on your PHP memory_limit in your
php.ini. I had to raise my setting in this site to 96M.

Bring your site back online and browse to your modules admin list in your
Drupal site.

Enabling the Memcache Admin module
Congratulations! You now have the Memcache module running on your development
site. Memcache API and Integration provides a sub module called Memcache Admin
that gives you a simple Drupal-based admin interface to check on your Memcache
stats and reporting. The module is located under your Caching modules section.
Enable this module and save your module configuration.

Using Memcache API and Integration

[178]

Once enabled, you can browse to this module's admin interface by going to
Reports | Memcache status through your administrative menu.

Memcache status
The Memcache status page gives you a table showing your site's Memcache status
and configuration on one Drupal page. You should see a column listing properties
and a column listing values. It should look similar to this:

Chapter 7

[179]

For example, this page shows you how much memory you're using (0.24%), uptime
of your site, version of Memcached you are running, total_items that you are
caching, and the memory_limit that Memcache is using here (64MB).

Memcache statistics per page
You can also tell Drupal whether to show Memcache module statistics on each
Drupal page when you're logged into the site. To access this setting, go to Site
configuration | Memcache and check the Show memcache statistics at the bottom
of each page. As the module notes, these statistics will be visible to any role or user
that has permissions to access Memcache statistics.

Now, browse to one of your nodes and you would see the Memcache statistics
shown at the bottom of the page.

Memcache statistics
get:

variables
schema
content_type_info
2:235414efa8e61006e64907a167bdde0e
fieldgroup_data
theme_registry:garland
2:131b75eb6b19b2335d70625889990433
links:navigation:page-cid:node/9:1
links:navigation:tree-data:367b971e55cf3486a97ca90fde50b6fe
links:secondary-links:page-cid:node/9:1

Using Memcache API and Integration

[180]

links:secondary-links:tree-data:38163dbbcf6e9baec7e1ea26143c42de
links:primary-links:page-cid:node/9:1
links:primary-links:tree-data:d2d9d9bd2c2432fa9266e090b3a3d72a
links:admin_menu:all-cid:0
links:admin_menu:tree-data:81b7e3b51fc4399be385976c0fc112fc
set:

variables
links:navigation:tree-data:367b971e55cf3486a97ca90fde50b6fe
links:navigation:page-cid:node/9:1
links:secondary-links:page-cid:node/9:1
links:primary-links:page-cid:node/9:1
hit:

schema
content_type_info
2:235414efa8e61006e64907a167bdde0e
fieldgroup_data
theme_registry:garland
2:131b75eb6b19b2335d70625889990433
links:secondary-links:tree-data:38163dbbcf6e9baec7e1ea26143c42de
links:primary-links:tree-data:d2d9d9bd2c2432fa9266e090b3a3d72a
links:admin_menu:all-cid:0
links:admin_menu:tree-data:81b7e3b51fc4399be385976c0fc112fc
bins:

cache
cache
cache
cache_content
cache_filter
cache_content
cache
cache_filter
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu
cache_menu

Chapter 7

[181]

Viewing the Memcache tables in MySQL
The Memcache API utilizes your default Drupal cache tables in your MySQL
database if you are using the memcache.db.inc file and configuration. If you view
your Memcache module statistics per Drupal page, you'll see that the statistics
show the module referencing the MySQL cache tables via the bins section. These
include cache, cache_filter, and cache_menu. If you view your MySQL database
via phpMyAdmin, you'll see the cache tables. This is a nice flexible feature, as this
module does not insert any new database tables or special database configuration.
Memcache API uses your Drupal default core caching tables to store the cached data.

Running Memcache without saving cache
data to your database
Now, let's tweak our settings.php file to change the $conf array to reference the
other include file in our arsenal. This will be the memcache.inc file. Comment out
the memcache.db.inc file, and then remove the comment before your memcache.inc
file line of code.

Your settings.php $conf array should read the following:

$conf = array(
 // The path to wherever memcache.inc is. The easiest is to simply
point it
 // to the copy in your module's directory.
 'cache_inc' => './sites/all/modules/memcache/memcache.inc',
 // or
 //'cache_inc' => './sites/all/modules/memcache/memcache.db.inc',
);

You're now caching your site content without saving to the cache tables in your
MySQL database. One thing to be careful about here—as we're not saving our cached
data to the MySQL tables, we're relying on the Memcached libraries more here, so
make sure you have enough system memory on your server to handle this load. Your
website should be responding much faster now, but you also want to make sure you
have enough system resources to handle Memcache. The default that Memcache is
using is 64MB of system memory, but this tends to be low. You know that it's runningof system memory, but this tends to be low. You know that it's running
64MB by checking your Memcache status in your Drupal site. It tells you this as the
value of the limit_maxbytes property. You may want to change your Memcached
memory to run with 512MB of memory. To do this, follow these instructions:of memory. To do this, follow these instructions:

1. Go to your HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
memcached Server in your system registry.

Using Memcache API and Integration

[182]

2. Locate the ImagePath entry and change it to look like this:
c:\memcached\memcached.exe –d runservice –m 512

3. You'll only be able to make these adjustments if you have access to your
system registry.

Summary
In this chapter we completed the following steps and now have a good
understanding of how Memcached API and Integration module works with our
Drupal site:

Installed the MoWeS Portable suite of applications and Apache server on our
Windows XP local machine
Installed the Memcached service and libraries in order to use the Memcache
API and Integration module
Integrated and tested Memcached with our PHP settings
Installed and configured the Memcache API and Integration module into our
Drupal site
Enabled the Memcache Admin module in order to display our Memcache
statistics on each page load
Checked our Memcache stats on example nodes

Let's take a break! When we come back in Chapter 8, we'll take a look at contributed
modules that are built to work along with the Memcache API module and will help
us to enhance our caching mechanisms in our Drupal site even further. This will
include the Cache Router, Authenticated User Page Caching, Advanced Cache,
and File Based Caching modules. See you back in Chapter 8.

•

•

•

•

•

•

Advanced Caching and
Contributed Modules

for Caching
This chapter will discuss contributed modules for advanced caching including Cache
Router, Authenticated User Page Caching, Advanced Cache, APC (Alternative PHP
Cache), File Cache, and so on.

In this chapter, we're going to return to our discussion of Drupal caching
mechanisms and take a detailed look at a group of contributed caching modules
that allow for more granular and advanced cache configurations within our site.

By the end of this chapter you will know how to install and configure the following
contributed caching modules:

Cache Router
Authenticated User Page Caching (Authcache)
Advanced Cache

The focus of this chapter will be how to use contributed caching modules that work
and integrate well with Drupal 6.x sites, and how best to implement these modules,
first in a development or sandbox type of hosting environment, with the flexibility
to implement them later in practice on production websites. We'll see how the
modules can contribute to performance optimization and speed on our sandbox
and development sites, before rolling them out into a production environment.

•

•

•

Advanced Caching and Contributed Modules for Caching

[184]

Cache Router
The Cache Router contributed module allows you to set up a caching system that
assigns specific cache tables to specific Drupal cache technologies. This module
works closely with the following cache technologies including Memcache API, the
module we worked with in Chapter 7.

APC
Database
eAccelerator
File
Memcache API
XCache

Cache Router is a relatively new and promising module contributed by Steve Rude,
available for download at http://drupal.org/project/cacherouter. The module
allows you to map specific caching technologies or engines to specific cache tables.
As mentioned on the module's project page, the engines mainly consist of refactoring
previous cache modules such as the Memcache module already discussed.

This module also implements the page_cache_fastpath Drupal function for all
engines except the database engine, allowing nearly all of Drupal to be bypassed for
anonymous users.

Download the latest version of the module 6.x-1.0-rc1 for Drupal 6, extract it to
your desktop, and then install it in your /sites/all/modules folder. Then enable
it from the Drupal modules admin. Also, make sure you have another caching
technology, engine, or module installed (such as Memcache API) before using
this module.

Enable the module at your modules admin page and save your module configuration.

Now the default Cache Router settings will work for your site. However, the module
project page does point out that there are some tweaks you can make to your
settings.php file to get the module to work with Memcache as the main caching
engine on your site and server.

•

•

•

•

•

•

Chapter 8

[185]

Open up your settings.php file in a text editor and add the following lines of code.
We're currently using Memcache API as our caching engine, so I'll add Memcache
as the engine. If you were using APC, Database, File, or Xcache, you would add
one of those caching engines. Our server will be localhost and then an array of
port combinations.

Go ahead and add the following code to your settings.php file:

$conf['cacherouter'] = array(
 'default' => array(
 'engine' => 'memcache',
 'server' => array('MYIP:MYPORT'),
 'shared' => TRUE,
 'prefix' => '',
 'path' => 'sites/default/files/filecache',
 'static' => FALSE,
 'fast_cache' => TRUE,
),
);

Now you will have Cache Router working along with your Memcache API
caching system.

Cache Router versus Memcache API
There are some drawbacks to using and configuring Cache Router in your site.
Memcache API, as we discovered in Chapter 7, provides a nice administrative user
interface and shows you statistics on each Drupal page. The Cache Router does not
have an administrative interface and will not show you statistics in a visual mode.
The project page advertises this with screenshots, but evidently this functionality
has been removed from the latest Cache Router version. The module developer is
working on integrating stats in future releases of the module as noted in this post
on drupal.org: http://drupal.org/node/338906.

Advanced Caching and Contributed Modules for Caching

[186]

Authenticated User Page Caching
(Authcache)
Let's take a look at another contributed module for caching. This module will allow
us to configure caching for our authenticated users. It is frequently referred to as
the Authcache module and the project page is here: http://drupal.org/project/
authcache. The module will cache for both anonymous and authenticated users, The module will cache for both anonymous and authenticated users,
and it will increase your page load and Drupal site performance because the page
loads will be optimized to about 1-2 milliseconds (according to the module project
description). To use this module for anonymous page caching is relatively
straightforward. Setting it up for authenticated users will take more detailed
and complex crafting.

Authcache will save static HTML versions of Drupal pages and you can configure will save static HTML versions of Drupal pages and you can configure
it to work for specific authenticated user roles in Drupal. The module depends on
JavaScript and AJAX to function, and if an anonymous user has JavaScript disabled,
they will not see cached versions of the pages. The project page explains how this
module works with AJAX in detail.

As with the Memcache API module, you can choose to use Drupal database caching
where the module will store all cached pages in the cache_page table.

If you do not want to save cached pages to the database (as the Cache Router module
works), the Authcache module works with caching engines such as Memcache and
the Memcache API module. The advantage—as the project page points out as a
general benefit of a caching engine—is that the database will not be storing all the
cached data and this will increase your site's performance.

The huge benefit of using this module for your site's performance is that it will
greatly increase page load times. According to the module project page, you have
a chance of getting page load times under 1 millisecond.

Let's go ahead and try out the module. First, make sure you have a Drupal cache
handler module and engine installed, such as Cache Router or Memcache API. We're
already using Memcache API, so let's continue to use that. To simplify our caching
mechanisms, I'm going to disable Cache Router for the moment and just rely on
Memcache API since we have that installed and configured. So, I'll disable Cache
Router through my modules admin page and then I'll check my Memcache status
to make sure that module is still running without issue.

Download the latest version of the Authcache module (6.x-1.0-rc1) for Drupal
6.x and install it in your /sites/all/modules folder. Enable the module on your
modules admin page. Enable both the Authcache and the Authcache Example
modules in your caching section. Save your module configuration.

Chapter 8

[187]

Once enabled, the module will give you a message when you reload your
modules admin page that you need to update your settings.php file in order to
properly configure the Authcache module. It will also give you a link to yourAuthcache module. It will also give you a link to your module. It will also give you a link to your Site
Configuration | Performance | Authcache configuration settings page. Let's look
at both of these elements next.

Tweaking your settings.php file to support
Authcache
Based on the warning message we see once we enable the Authcache module, we
need to make some tweaks to our settings.php file to reflect the change to our
$conf array for our cache_inc. As you recall we're currently using the Memcache
API module and referencing this in our $conf array. We need to tweak this and
reference our new Authcache module, and also add a reference to our Memcache so
that we can use both of these integrated. Open your settings.php file and comment
out the previous array you configured for Memcache. Then add the following lines
of code to your file. First, to reference the Memcache API module, we're going to
add this:

$conf['memcache_servers'] = array('localhost:11211' => 'default');

Then to reference our Authcache module we'll add this:Authcache module we'll add this: module we'll add this:

$conf['cache_inc'] = './sites/all/modules/authcache/authcache.inc';

Once you make these tweaks save your settings.php file and then refresh your
main modules admin page. The warning message should disappear.

Advanced Caching and Contributed Modules for Caching

[188]

Remember that if no caching engine or module such as Memcache API is installed,
the Authcache module will use the default Drupal core database cache tables
to work.

Configuring the Authcache module
To configure the Authcache module settings, go to Site Configuration |
Performance | Authcache or by visiting this URL: http://localhost/drupal/
admin/settings/performance/authcache. You should see a form that looks
similar to this:

This settings page shows us that we can set caching for specific roles. You can set
caching for all of your site's roles or just for specific roles such as anonymous users.
The settings also tell you here that the super user admin role account will never be
cached. Let's check the Enable caching for specified user roles boxes next to the
anonymous user and the authenticated user.

Chapter 8

[189]

Check the box next to Invalidate all user sessions. By doing this your authenticated
users will be forced to login to the site again (if they are currently logged in for their
user session).

Expand the Authcache Debugging/Development section and check the boxes for
Enable debug mode for all roles and Enable for session if http://localhost/drupal/
authcache_debug is visited. Also, check the box next to Benchmark database
queries so that you can gather statistics on the number of queries used, query
time, and percentages related to the page load time.

Click on the Save & clear cached pages button.

Advanced Caching and Contributed Modules for Caching

[190]

Once saved, Authcache will show you a message stating the following:

0 user sessions have been invalidated
Drupal's built-in page caching for anonymous users has been disabled to
avoid redundant caching
Your Authcache settings have been saved
Cached pages have been cleared

You may also see a message telling you to enable Page compression in your
performance settings. This will help to optimize your page load performance even
more. You can decide whether you want to enable Page compression or not.

Page Caching Settings
Click on the Page Caching Settings tab on your Authcache Page Caching Settings
admin page. This will launch the Caching Ruleset configuration. This page and form is
only visible once you set up the initial Authcache configuration as per the instructions
in the previous section. You should see a screen that looks like the following:

•
•

•
•

Chapter 8

[191]

This form allows you to cache specific pages on your site using Authcache or to
cache all pages. The Cache-specified pages section is set up similar to how Boost
works, as well as the block administration page. You'll notice here that Authcache
adds some default pages that are not going to be cached including any /admin page.
The full list of these pages looks like this:

admin*
user*
node/add/*
node/*/edit
node/*/track
tracker*
comment/edit*
civicrm*
cart*
/ajax/
/autocomplete/
ajax_comments*

Let's leave these sensible Authcache defaults in place. You can also choose whichAuthcache defaults in place. You can also choose which defaults in place. You can also choose which
roles to apply this specific ruleset. If you want to add different rulesets for each role,
you can then click on the Add new ruleset… button and this will add an entirely
new ruleset that you can configure for your role. You can see that this module
provides a lot of flexibility and functionality similar to the Boost module.

Clicking on the Add new ruleset… button, you'll then be presented with a new
ruleset form:

Advanced Caching and Contributed Modules for Caching

[192]

When you are satisfied with your configuration, click on the Save & clear cached
pages button again.

Testing the Authcache module and its
caching mechanism
Let's test out the module now to make sure it's caching our pages for anonymous and
authenticated users.

There are two methods of testing whether the module is working correctly.
Let's look at both.

Checking the AuthcacheFooter code
When the module is enabled and configured, logout of the website and view one of
your nodes as an anonymous user. If you view source on the node, you should see the
following script code and JSON object at the bottom of your HTML code. It should
look like this and it will be commented out as the Authcache Footer JSON object:

<!-- Authcache Footer JSON -->
<script language="JavaScript">
var authcacheFooter = { "info": { "page_render": 853.31, "page_
queries": "75 queries @ 207.73 ms (24%)", "cache_render": "-1",
"cache_uid": 0, "cache_inc": "memcache.inc", "cache_time": 1258139658,
"node_author": "" }, "ajax": { "q": "node/8" } };
</script>

This code actually gives you some debug information including page_queries,
cache_render, and memcache cache time, all for that specific node.

Checking the Authcache Debug window
You can also enable and give permissions to specific roles to view the debug statistics
for a node via the Authcache Debug window. This is a JavaScript-powered window
that appears in the upper-left corner of your site via the Authcache Debug link. If
you click on this link, you'll see the debug stats expand. You should see something
similar to this:

Chapter 8

[193]

If you only want specific roles to be able to view this debug information, tweak the
permissions for viewing it. Uncheck the Enable debug mode for all roles if you do
not want your anonymous users viewing your debug window and statistics.

Remember that you also enabled caching for your authenticated user role. Log in as
an authenticated user to test this out. Once logged in, view a node and you should
see the debug information. This shows you that caching is working for authenticated
users as well.

You now have a clear overview of the Authcache module, have put it into action on
your site, and used it for both anonymous and authenticated user page caching. Let's
move on and look at another module that we can use for caching.

Advanced cache
Now, what if you like to take advantage of several new cache opportunities, such as
setting up caching for your site's comments, forums, search, taxonomy, and more?
This is where the Advanced cache module will help out. This module provides
advanced level caching by way of running a set of patches to your site's code that
will allow for caching in areas of Drupal that do not currently cache by default. This
includes comments, taxonomy terms, trees, vocabs and terms-per-node, path aliases,
and search results.

Advanced Caching and Contributed Modules for Caching

[194]

To use this module, you need to install the Advanced cache module that currently
has a production version for Drupal 5.x and development versions for Drupal 6.x.
You will also need to apply some or all of the patches that come with the module.
You can apply patches through command line or shell if you have access to your
server via shell. The main Drupal module project page, http://drupal.org/
project/advcache, contains detailed descriptions of all the patches that ship with
the module. Of course, as with any dev version module, there are noted bugs in
some of these patches, so you use this module and its patches at your own risk.

Not only do these patches allow for modules, such as Memcache, to do an even
greater job, they will increase performance for authenticated users. Once installed
from http://drupal.org/project/advcache, we may now patch all using
all_patches.patch or choose the select few that we are interested in.

We will now touch on what additional functionality each of the patches provides,
helping us decide which patch we should apply.

block_cache.patch
Caches enable blocks per user and then per theme for both authenticated and
anonymous users. This patch is compatible with the blockcache module. The module
project page claims that this module will take 1.5 milliseconds off of your page
load times.

comment_cache.patch
Caches comment markup. It will still display changes made via settings or new
comments (including the new indication).

forum_cache.patch
This patch caches the forum structure on your site, but beware that this patch is
buggy and broken, and you are not advised to use it.

node_cache.patch
Caches node displays for users. When your site is made up of nearly all anonymous
users, this is a patch you may wish to skip. However, if many users authenticate to
your site and do not contain multiple roles, this patch will be very beneficial.

Chapter 8

[195]

path_cache.patch
This patch will cache path aliases. So if you are using the path module, you most
likely would like to apply this patch, shaving off a single query per internal link
displayed on the site (not including those previously cached in blocks, nodes,
and so on). This patch is also buggy and broken at this point, so beware and use
with caution.

search_cache.patch
Similar to node_cache.patch, this will cache search results per authenticated user,
per role. This patch is also broken at this point.

taxonomy_cache.patch
Caches taxonomy trees, terms, and vocabularies.

Let's go ahead and install the module and apply one of these patches. First,
download the development version of the Advanced Cache module for Drupal 6.x.
The current version is 6.x-1.x-dev. Download and install in your /sites/all/
modules directory.

Enable the module on your admin modules page.

If you try enabling the dev version of the module, you may receive the following
parse error:

Fatal error: Cannot redeclare advcache_update_1() (previously declared in
C:\www\drupal\sites\all\modules\advcache\advcache.install:58) in
C:\www\drupal\sites\all\modules\advcache\advcache.install on line 238

To fix this, you will need to apply the following patch as per this troubleshooting
document on drupal.org (http://drupal.org/node/430700).

Advanced Caching and Contributed Modules for Caching

[196]

Here's the patch:

--- advcache.install.bak 2009-04-11 11:00:19.000000000 +0200
+++ advcache.install 2009-04-11 11:02:22.000000000 +0200
@@ -206,33 +206,3 @@
 }
 }

-
-function advcache_update_1() {
- switch ($GLOBALS['db_type']) {
- case 'mysql':
- case 'mysqli':
- $ret[] = update_sql("CREATE TABLE {cache_forum} (
- cid varchar(255) NOT NULL default '',
- data longblob,
- expire int NOT NULL default '0',
- created int NOT NULL default '0',
- headers text,
- PRIMARY KEY (cid),
- INDEX expire (expire)
-) /*!40100 DEFAULT CHARACTER SET UTF8 */ ");
- break;
-
- case 'pgsql':
- $ret[] = update_sql("CREATE TABLE {cache_forum} (
- cid varchar(255) NOT NULL default '',
- data bytea,
- expire int NOT NULL default '0',
- created int NOT NULL default '0',
- headers text,
- PRIMARY KEY (cid)
-)");
- db_query("CREATE INDEX {cache_forum}_expire_idx ON {cache_
forum} (expire)");
- break;
- }
- return $ret;
-}

Install the patch, and then try refreshing the browser to see if the parse error
disappears. The patch basically tells you to delete the entire second occurrence of this
set of code because it's duplicated in the advcache.install file. Remove the second
instance of this function.

Chapter 8

[197]

The development version of this module for Drupal 6.x currently only has the
following patches for you to try:

node.patch

nath.patch

taxonomy.patch

To run a patch, open up your command line or command/shell utility if using
Windows and type in the following:

Cd C:\www\drupal patch < sites/all/modules/advcache/
 DRUPAL-6-10/taxonomy.patch

Alternatively copy the patch file in question to the root of your /advcache folder and
then run the patch from that directory.

APC (Alternative PHP cache)
At the time of writing, the APC module has been revoked for Drupal 5 and 6.x.
This is due to the fact that APC will be included in Drupal 7 with the Drupal 7
caching system. The Drupal 7.x caching system will allow for custom cache backend
configuration, thus making the module unnecessary and not supportable in earlier
versions of Drupal. The module maintainer informs the developer that they can use
other caching modules, such as Cache Router, to perform similar caching operations.
See the APC module page here: http://drupal.org/project/apc.

File Cache module
The File Cache module is currently available for Drupal 5.x, but does not have a
version for Drupal 6.x. The module maintainer recommends using the Memcache
API for any type of complex file caching that you may need to implement. The
project page for this module is here: http://drupal.org/project/filecache

•

•

•

Advanced Caching and Contributed Modules for Caching

[198]

Summary
In this chapter, we completed the following steps and now have a good
understanding of how more complex and advanced caching modules work
with our Drupal site. We have:

Installed and configured the Cache Router module
Installed and configured the Authcache moduleAuthcache module module
Tweaked our settings.php file to support the Authcache moduleAuthcache module module
Integrated and tested AuthcacheAuthcache
Installed and configured the Advanced Cache module
Briefly glanced at the Alternative PHP cache module (APC)
Briefly discussed File caching

Let's take a break! When we come back in Chapter 9, we'll take a look at how best to
run a high performance Drupal multisite. See you back in Chapter 9.

•

•

•

•

•

•

•

Multisite Configuration
and Performance

In this final chapter, we are going to set up and configure a Drupal multisite
environment on our localhost development server. The benefits to running a
multisite installation include allowing multisites to share one Drupal database and
core module configuration, or to share a core module configuration and allow each
site to have its own database. We will also look at how multisite installations can
help to boost performance for your overall Drupal configuration and help to increase
performance on your server whether it be a shared or dedicated server environment.

By the end of this chapter you will know how to install and configure a Drupal
multisite including the following configuration steps:

Creating multisite folders and settings.php files
Allowing each multisite to talk to its own MySQL database
Configuring your HTTPD configuration file (httpd.conf) to support
Virtual Hosts
Tweaking the Windows system driver for Hosts
Using caching in a multisite environment
Looking at Shared database tables versus individual databases
Installing modules and themes to multisites
Using update.php on multisites
Exploring Resources for Drupal multisite development

Let's go ahead and set up a Drupal multisite environment.

•

•

•

•

•

•

•

•

•

Multisite Configuration and Performance

[200]

Using Drupal multisite
What is Drupal multisite and why should we use it? Multisite allows you to run
multiple Drupal websites and instances from one main Drupal core codebase. As
we have seen throughout this book, when we install and configure Drupal, we are
using Drupal's main core system and database to power and drive our website. This
includes the core /modules and /themes folders, as well as /scripts, /profiles,
/misc, and /includes. The flexibility of Drupal allows us to install additional The flexibility of Drupal allows us to install additional
websites (as many as we need) and share all of our core files, modules, and themes
within these multisites. This helps tremendously when we are planning to build
a large website environment for a company or organization that has multiple
departments, divisions, or stakeholders. We can offer these types of clients a large
scale Drupal multisite. The sites will be more flexible, will perform better, and be
easier to maintain.

One benefit here is that when you need to upgrade or patch a core or contributedyou need to upgrade or patch a core or contributed need to upgrade or patch a core or contributed
module or theme and you're sharing those modules and themes with the other
Drupal sites in your /sites folder, you only need to patch once and the updates
will work across all sites. You can easily see the benefits from a maintenance and
performance perspective here. If you need to update the modules only once and the
updates are applied to all your sites, then this will save you time from a maintenance
perspective. It will also provide for a much more consistent development and
performance framework because all the sites will be running smoothly from the
same codebase.

The other large benefit of a multisite is that you can install contributed and custom
themes and modules to specific sites. All of your multisites can be running different
custom themes and they can run different contributed modules. They will also have
their own file system for associated images, documents, and other files. Finally, you
can tweak performance per site so that if you want to run caching on one site, you
can, without that caching mechanism affecting your other multisites.

We're going to focus on running multiple Drupal sites that all work with their
own MySQL database. The benefit to this is that you have data separation for your
contributed content and module code. Each site has its own database and therefore
if issues arise with one site, these issues will not necessarily affect the other sites
in your multisite environment. This type of environment will also help you to
troubleshoot better. You can also run Drupal multisite from one shared database
and we'll discuss this method as well. Both methods have their advantages and
disadvantages.

Chapter 9

[201]

Configuring multisite in a localhost
environment
We are going to configure our Drupal multisite environment on our localhost
development server, either on Windows or Linux. I'm going to walk through the
steps of setting this up on Windows because there's an additional trick for Windows
users to make sure they can get a Drupal multisite environment functioning easily in
a Windows development environment. However, these instructions will also work
on a Linux system or a MAMP system on Mac OS. We'll also briefly discuss how to
best approach setting up multisite environments on production servers including
Ubuntu Linux, and using a more common cPanel solution on shared servers.
First let's start by configuring a multisite development environment on our local
development environment.

You have already prepped your multisite environment in the previous chapter
when we set up a Drupal site on our localhost using MoWeS Portable applications.
When doing this we installed the Apache web server, PHP, and MySQL on our
local development environment. We now have Apache running and we have access
to phpMyAdmin to do our database work by going here: http://127.0.0.1/
phpmyadmin/.

We also installed a Drupal website in our C:\www root web docs folder. Our site is
simply called /drupal and is located here via the web browser: http://localhost/.

So, we have the base Drupal core site set up. Our core Drupal site is working
smoothly, and in the previous chapter recall that we also configured Memcache API
and Authcache to run caching mechanisms on our site. The next thing we're going
to do is configure this core /drupal site to be the core codebase for two new Drupal
sites that we're going to install and configure. To make things simple, I'm going to
just duplicate this site and use the same content for the two new sites. I'll do this by
exporting the data from the core /drupal site's database and importing that data
into two new MySQL databases that we're going to create. Once we complete the
multisite configuration, all three of our Drupal sites will be running from their own
database, but they will be sharing the core codebase, core modules, and themes.

Multisite Configuration and Performance

[202]

Creating the multisite folders
The first thing we need to do is create folders for each site we want to run. To do
this, go to your main /drupal site folder and open the main /sites folder. For
Drupal multisite, you need to add your site folders into the main core /sites
folder. So, we're going to add two sites and create the following folders in our
/drupal/sites folder:

site1

site2

You should now have your folder directory looking like this:

/sites/site1
 /site2

The next step is to copy your main /sites/default/settings.php file and paste a
copy of it into each of your multisite folders. So you'll have:

/site1/settings.php
/site2/settings.php

The reason you do this is that each multisite needs to have its own settings.php
configuration file so that you can tell that site what database to work with and also
what base_url to use. We'll change those settings in a moment.

You must also create /files folders inside each of your site's directories.inside each of your site's directories. each of your site's directories.
So you'll have:

/site1/files
/site2/files

Setting up databases for your multisite
Now we already have a core database for our /drupal folder. We're going to createfolder. We're going to create
two new databases (one for each of our new sites). To do this I'm going to use the
same data that my core database contains. So the first thing I'm going to do is export
a clean database dump of the /drupal database and save that locally on my desktop.
Then I'll import that data into each new database that I configure. Here are the steps:

1. Fire up your phpMyAdmin at: http://localhost/phpmyadmin.
2. Locate your main site's database and open it.

•

•

Chapter 9

[203]

3. Click on the Export tab and then select Save as file and click on the
GO button.

4. TThis will save a .sql file to your desktop.
5. Now load your main phpMyAdmin screen and click on the Privileges link.link.

6. Click on Add a new User.

Multisite Configuration and Performance

[204]

7. Type in a new username in the text field box and set the host to localhost.
Type and confirm a password into the Password field. This will be the
username and password for your new site's database, so make a note
of this because you will be re-entering this information into your site's
settings.php file. You will need to know the database username, password,
and database name. A hint for what to name your new site's databases:
call them _site1 and _site2, using your main core's database name as
the appended name. So, for example, my new site's databases are called
drupal6_site1 and drupal6_site2.

8. CheCheck the radio button next to Create database with same name and grant
all privileges.

9. Click on the Check All link in the in the Global privileges section and then click on
Go. This will create the new database.

10. Repeat steps 5 to 9 to create a database for your second multisite site. Now
you have both databases created. The username for each database is the same
as the database name, and the password used for each is drupal. You will
want to use a more complex password combination on a production site or
server, but here we can keep things simple. Make a note of these details, as
you'll need them when we edit the settings.php file for each new site.

Chapter 9

[205]

11. Now you need to import the exported data (from your main core database)
into these new databases.

12. Click on the database link in the left sidebar of phpMyAdmin and then click
on the Import tab.

13. Browse for your saved .sql file and then make sure the format of the file to
be imported is set to SQL.

14. ClicClick on Go and this will import the database tables to your new database.
15. Repeat steps 11 to 14 for your second site's database.
16. You should now have a set of three databases with the same data in your

phpMyAdmin. The main drupal6 database is your core site's database.
The _site1 and _site2 databases are for each of your site's multisite
installations. You should see something in phpMyAdmin that looks like
the following screenshot:

Tweaking settings.php for each site
Now that you have duplicated your database and set up your databases for
your new multisites, let's make tweaks to the settings.php file for each of
these new sites.

Open up your /site1 folder and open the settings.php file to edit it in a text
editor. You will need to change the permissions on the settings.php file before
editing it because the file is normally set to read-only. To do that in a Windows
environment, right-click on the file and select Properties from your menu options.
Then on your properties General tab, uncheck Read-only in the Attributes section.
You can also click on the Security tab in your Properties box and then check
the permissions for your system Users. Make sure that system Users (or at least
Administrators if you are currently logged into your computer as its main admin
user) have write permissions to the file. You can also change these permissions using
FTP or a Filemanager utility. With FTP on your remote host side of the FTP client,
right-click on the settings.php file and you should be able to set the permissions
for the file. In a Filemanager utility via cPanel, you should see a button (Change
Permissions) to change permissions for the file.

Multisite Configuration and Performance

[206]

We need to update the $db_url to reference our new _site1 database. You insert
your database user, password, and then the database name in this line of code in the
settings.php file. This site will have its own database, but will share core resources
with the main Drupal site configuration, as those database tables have been copied
over into the _site1 database. Change your db_url to:

$db_url = 'mysqli://drupal6_site1:drupal@localhost/drupal6_site1';
$db_prefix = '';

Do the same for the settings.php file of /site2. That site's $db_url should read:

$db_url = 'mysqli://drupal6_site2:drupal@localhost/drupal6_site2';
$db_prefix = '';

If you are installing multisites, but sharing the additional sites with the main core
Drupal site database, you'll need to reference the same $db_url, but update your
$db_prefix to note the additional site name. This way you can share the same
database and make sure each site has its own database table prefix. That code
would look like the following for site1:

$db_url = 'mysqli://drupal6:drupal@localhost/drupal6';
$db_prefix = 'site1_';

This would be the site2 configuration:

$db_url = 'mysqli://drupal6:drupal@localhost/drupal6';
$db_prefix = 'site2_';

For now let's keep this configuration using different databases as per my
instructions above.

Editing your Apache configuration
The next step in multisite configuration is to add virtual host entries to our Apache
web server configuration. You need to tell Apache to look for these additional sites in
our multisite configuration when a site visitor loads the site's web address in the web
browser. To do this we use a virtual host entry in the Apache configuration file.

Locate your Apache httpd.conf file. It should be in the following folder location on
your localhost server:

C:\apache2\conf\httpd.conf

Open this .conf file in your text editor. You will need to know what port yourfile in your text editor. You will need to know what port your
localhost is listening on. Usually it's port 80, but if you are not sure check yourbut if you are not sure check your
server configuration. The default settings in the httpd.conf file should be correct.file should be correct.

Chapter 9

[207]

First look for the following code in your httpd.conf file and make sure it's
uncommented. This code should be in Section 3: Virtual Hosts of your conf file.
We want the following uncommented:

NameVirtualHost *:80

Below this you will see some VirtualHost examples. You can use the examples the
configuration file provides, and just make sure they are uncommented and have the
correct settings as per your configuration. This is what the code should look like:

<VirtualHost *:80>
 DocumentRoot /www/drupal
 ServerName localhost
</VirtualHost>

<VirtualHost 127.0.0.1:80>
ServerName site1
DocumentRoot "C:/www/drupal"
 <Directory />
 Options All
 AllowOverride All
 #Simply allow all directives to be overridden in .htaccess
 Order allow,deny
 Allow from localhost
 #Only allow access from localhost
 </Directory>
</VirtualHost>

<VirtualHost 127.0.0.1:80>
ServerName site2
DocumentRoot "C:/www/drupal"
 <Directory />
 Options All
 AllowOverride All
 #Simply allow all directives to be overridden in .htaccess
 Order allow,deny
 Allow from localhost
 #Only allow access from localhost
 </Directory>
</VirtualHost>

Make these code additions and tweaks, then save your httpd.conf file and close it.
Then stop your MoWeS Apache web server and restart it so that the above changes
take effect.

Multisite Configuration and Performance

[208]

Here's what the above code does. The first section of code tells Apache to use
localhost as the server and to set the document root for that server to the Drupal
core site you have configured. In this case, the document root is /www/drupal.
This is reflected in this code excerpt:

<VirtualHost *:80>
 DocumentRoot /www/drupal
 ServerName localhost
</VirtualHost>

The next set of code is the VirtualHost directives to tell Apache to look for your
multisites. First, we have a selection that names ServerName as the multisite entry
(site1 or site2) and then instructs it to use the same document root as the main
core site /www/drupal. This allows Apache to look for these multisites in your main
core /sites folder and then to deliver them to the site visitor when they type infolder and then to deliver them to the site visitor when they type in
site1 or site2 in the web browser URL menu.

Once you restart the web server, you will need to make one final tweak on Windows
computers to make sure this new multisite configuration works for you.

Tweaking the hosts driver file on Windows
Now, in order for this to work on Windows, we need to tweak the driver file for Host
configurations in the system settings folder. Browse to the C:\WINDOWS\system32\
drivers\etc folder and look for the hosts file. If you do not see the file, then it's
most likely hidden. To show the file on your Windows system, go to the Tools menu
at the top of your folder window and select Folder Options. Then click on the View
tab and select the Show hidden files and folders radio button that resides in the
Hidden files and folders folder icon. Open that file in the text editor.

Look for the hostname code at the bottom of the file and make sure it lists localhost
as well as your multisites. You should add the following if it's not there already:

127.0.0.1 localhost
127.0.0.1 site1
127.0.0.1 site2

Make sure this code is uncommented. Save this file.

Chapter 9

[209]

Tweaking the Base URL
You should also make sure to tweak your Base URL setting in each of your site's
settings.php files. Open each settings.php file and look for the Base URL section.
You will need to uncomment the line of code that reads:

$base_url = 'http://localhost'; // NO trailing slash!

Make sure this has the URL address for your site. So the above is for the main
localhost site and the following are for your multisites (in their respective
settings.php files):

$base_url = 'http://site1'; // NO trailing slash!
$base_url = 'http://site2'; // NO trailing slash!

Loading your multisites
That's it! You are ready to fire up all of your sites in your web browser. First, load
the main localhost site, which is your main core Drupal site. Load that by going to:
http://localhost/.

Now load site1, which will be: http://site1/.

Site2 will be: http://site2/.

Each of these sites is now behaving as their own Drupal site with their own
databases. We will now work with each site to show you how you can install and
enable modules independently on each site or share core and contributed modulescontributed modules
from site to site. Congratulations on getting multisite configured and working!

Testing your multisite configuration
Now that we have Drupal multisite working in our localhost environment, let's go
ahead and test it to make sure all three databases and sites are working correctly and
independently. First, go to your site2 site and login to it here: http://site2/user.
Your username and password on this site will be the same as on your core site, as
you simply duplicated the same database to use with this new multisite. Go ahead
and login.

Now, if you have caching enabled on this site, let's disable the caching modules for
the moment so that we can immediately see our content edits occur for anonymous
users. Disable the Authcache and Memcache API modules if you have enabled them
in site2, and also clear this site's database performance cache.

Multisite Configuration and Performance

[210]

Now open one of your site's nodes and make some edits to the node. For example,
I'm going to edit the home page pane content that states Welcome to Everything
Drupal! and I'm going to add a note in that pane that specifies that this site is
Drupal Web site Multisite 2!. Here's a screenshot of what that content looks like:

Now, logout of site2 and browse back to your main localhost core site here:
http://localhost/. Here you should not see the above text tweaks you made Here you should not see the above text tweaks you made
to the content on site2. Here it should look like your original, or:

This shows that content editing is working correctly in your multisite. The site2
edits are posting to the site2 database, but not to your core site's database.

Using core and contributed modules in multisite
One large benefit of using Drupal multisite is that you can install all of your core
and contributed modules into the main core Drupal site installation and then enable
or disable modules in each of your sites in your /sites folder. So your main site
can run specific core and contributed modules while your multisites can run their
own choice of core and contributed modules. Let's look at this in detail to see how it
works. First, login to your core Drupal site and browse to the modules admin page to
view the modules you have currently installed.

Notice that we have the Webform and Panels contributed modules installed on our
core site. Let's leave all of these modules enabled on our core site. Now, login to
one of your new multisite installs, such as site1, and browse to the modules
admin page.

On site1, uncheck the boxes next to Webform and Panels to disable these modules,
only on our site1 site. Save the configuration on your modules page. This will
disable these modules on site1. But if you browse back to your main localhost
site, you will see that these contributed modules are still enabled. You will see
the power and flexibility of Drupal multisite with this example.

Chapter 9

[211]

Installing modules and themes to a multisite
Another flexible bonus to a multisite installation is the ability to install and enable
contributed modules on your multisites, but not on your main core site. Here you
just need to remember that when the contributed module receives a security upgrade
or patch, you'll need to update the module in the /sites/site/modules folder for
that specific site and then run update.php on that site so that the site updates the
database schema correctly.

Let's go ahead and install and enable a module in our site1 site. Download a
module such as the Drupal AddThis Button module and extract this module in
your /sites/site1/modules directory. If you do not have a /modules or /themes
directory in /sites/site1/, make sure to create these folders. These will containmake sure to create these folders. These will contain
just the contributed modules and themes for your /site1.

Once extracted, browse to your site1 modules page, you should see the AddThis
module in your list. However, if you browse to your modules admin page in your
localhost or your site2 sites, you will not see the module in the list.

Once enabled, this AddThis module will show up in your site1 administration
menu. Look for Site configuration | AddThis. Browse to the AddThis configuration
page. If you try this in site2 or localhost, you will see that you cannot get to this
configuration page, as the module is not enabled in those sites.

Setting themes per multisite
With Drupal multisite you can also set different themes as the default enabled theme
on each multisite. So, we can run one specific theme, such as Garland, on our main
localhost and a different core or contributed module on our site1 and/or site2.
Let's go ahead and try this. Leave the core Garland theme set as the default enabled
theme on your localhost site. Then browse to your themes admin page in either
site1 or site2 and enable a different core theme as your default enabled theme.

I'm going to set the site1 theme to Bluemarine. I could also choose a contributed or
custom theme if I have one installed in my /site1/themes folder. Save your theme
configuration. You will also notice that if you have a contributed theme installed in
your core site's /sites/themes folder, then these contributed themes will show up
in your multisites' themes admin page and you can choose to enable those as well.

Multisite Configuration and Performance

[212]

Now if you browse to your site1 home page, you should see that Bluemarine is
active as the default site theme. If you browse back to your localhost or site2 sites,
you will see that the Garland theme is still active and enabled.

Caching and multisite
As you work through these examples, you may notice that changes do not take effect
immediately on each site or that if you make a change on site1 or site2, then those
changes also take effect on localhost. This is not supposed to happen. But if you
have caching enabled from your previous single site experiments using Memcache
API, Memcached, or Authcache, you will need to disable those modules and also
comment out your caching code from your settings.php files.

You'll recall that the configuration instructions for enabling caching in a multisite
environment are different from a single site environment. So, let's first disable the
Memcache and Authcache code, and then come back to this to tweak later if we want
to enable caching on our multisite environment.

Open your settings.php files and comment out the following lines (comment these
out in each settings.php file):

#$conf['memcache_servers'] = array('localhost:11211' => 'default');
#$conf['cache_inc'] = './sites/all/modules/authcache/authcache.inc';

Now when you revisit your multisites, all of your tweaks and changes per site
following the previous examples in this chapter should work without any issues.

Enabling page caching and CSS/JS optimization
per site
With the Memcached disabled, you can visit your main site's performance admin
page and enable page caching, compression, and CSS/JS optimization for each site.
Then site1 and site2 could potentially run Drupal caching while you leave caching
disabled on your localhost site.

In your site1, visit the main Site configuration | Performance page and set the
page caching mode to Normal. Also, set a minimum cache lifetime, leave page
compressions disabled, enable block cache, and optimize CSS and JavaScript files.
Save configuration. Now you will have caching working on site1.

Chapter 9

[213]

To run more advanced caching mechanisms in a multisite environment, you will
need to review the configuration instructions for the respective module. For example,
if you visit the Memcache API project page, you will see that there's an entire section
devoted to Prefixing. If you have a multisite installation and you want to share
the Memcached instance, you will need to add a unique prefix to each of the site's
settings.php files in the $conf section. We already commented this code out, so we
would need to go back to our settings.php file and tweak the Memcache $conf to
make it look something like this:

$conf = array(
 'memcache_key_prefix' => 'site1',
);

The conf array for site2 would look something like this:
$conf = array(
 'memcache_key_prefix' => 'site2',
);

Earlier in the book, we discussed the Boost module. If you are using Boost to enhance
performance on a multisite instance of Drupal, make sure to re-configure your Boost
settings to support multisite. The Boost project page contains a wealth of resources
and information on how to configure Boost for Drupal multisite. For example, if
you are using Boost to cache directories and file extensions, you'll need to pay
attention to the multisite information that the project page gives you regarding
Boost directories and file extensions.

Multisite resources
If you continue using Drupal multisite, you will want to investigate how to
configure multisite in various different environments, such as Linux, Mac, shared
and dedicated servers. Drupal.org provides a wealth of resources on the Drupal
multisite topic. There's an entire Multi-site how-tos page on drupal.org that
contains links to various resources on Drupal. Everything, from installing multisite
in 10 minutes to running multiple domains or virtual hosts using different databases,
is covered. The Drupal multisite universe is a large one and will only become more
flexible with the imminent release of Drupal 7.x. The Multisite resource guides are
here on drupal.org: http://drupal.org/node/43816.

Multisite Configuration and Performance

[214]

Summary
In this chapter, we installed and configured Drupal multisite in order to run multiple
Drupal websites from the same core codebase, utilize contributed modules per
multisite, and integrate with databases per site. We also discussed performance
monitoring and caching in the Drupal multisite environment. You have successfully
completed the following steps to configuring and setting up a Drupal multisite for
fast performance:

Installed Drupal multisite on Windows in a localhost development
environment
Set up multiple databases to support each site in our multisite
Tweaked the settings.php file for each site in our multisite
Edited the Apache configuration file to support VirtualHosts
Tweaked the Windows hosts drivers to support our multiple sites
and domain URLs
Enabled modules and themes in each multisite site
Discussed caching in a multisite environment
Looked at multisite Drupal resources on drupal.org

You have successfully completed the Drupal 6 Performance Tips book and learned
a wealth of information and resources about running your Drupal sites for faster
optimized performance. To conclude, you should continue to work with Drupal
daily and experiment with the myriad of performance, caching, and modular
solutions that can help speed up your Drupal site and make it perform as well
as possible. Drupal on!

•

•

•

•

•

•

•

•

Index
Symbols
.htaccess file

tweaking 78, 142-145

A
access denied (403) errors 84
advanced Boost configuration

about 157, 158
Boost Crawler settings 167, 168
database timestamp Boost rule, editing

160-162
database timestamp settings, checking 158
database timestamp settings, testing

162-166
event, adding 159
PHP filter module, enabling 159
rule, adding 159
Rules module, installing 158

Advanced cache module
about 193
block_cache.patch 194
comment_cache.patch 194
forum_cache.patch 194
installing 194
node_cache.patch 194
path_cache.patch 195
search_cache.patch 195
taxonomy_cache.patch 195

APC module 184, 197
Authcache

about 186, 212
Authcache Debug window, checking

192, 193
authcacheFooter code, checking 192

benefits 186, 187
configuring 188, 190
downloading 186
methods, for testing 192
page caching settings 190-192
settings.php file, tweaking 187
testing 192

B
block_cache.patch 194
blocks, Boost module

about 148
AJAX core statistics 149
pages cache configuration 149
pages cache status 149

Boost cache
clearing 148

Boost cacheability settings 139, 140
Boost configuration

about 137
testing 145, 146

Boost Crawler settings 167, 168
Boost directories 140, 142
Boost File Cache settings

about 138
Boost - HTML - Default minimum cache

lifetime 138
Boost - Static page cache 138
Gzip page compression setting 138

Boost installation 136
Boost module

about 135
basic configuration 151
blocks 148
Boost cache, clearing 148

[216]

configuration, testing 145, 146
configuring 136
Global Redirect module 135
installing 136
Poormanscron, configuring 148
Poormanscron project 147
settings 137

Boost settings
about 137
Boost cacheability settings 139
Boost directories 140
Boost File Cache settings 138
file extensions 140, 142
HTACCESS file, tweaking 142

C
Cache Router

about 184
configuration 184
downloading 184
drawbacks 185
features 184

cache technologies
APC 184
database 184
eAccelerator 184
file 184
Memcache API 184
XCache 184

caching, Drupal multisite 212
CCK module 9
CiviCRM 53
comment_cache.patch 194
contributed module

updating 154
upgrading 38

contributed module updates
dealing with 22, 23
installing 19

cron
about 14
running 16, 21

cron crawler 167
cron run 158
cron task

Poormanscron module, installing 70

running 69
setting up, cPanel used 73

CTools 26

D
database 184
DBlog

about 82
access denied (403) errors 84
configuration 84
page not found (404) errors 84

DB Maintenance module
about 132
downloading 132
features 132-134

Devel module
about 9, 86
block, enabling 98, 99
block, using 100
configuring 87, 92-95
database queries, inspecting 95-98
downloading 87
download link 86
enabling 88
installing 87, 88
permissions, checking 88, 89
settings 92-95
Themer info tool, enabling 89-91
uses 86

Devel module block
cron, running 105
database queries 100
empty cache link 101
enabling 98, 99
function reference 103
Hook_elements() 103
menus, rebuilding 104
modules, reinstalling 105
PHP code, executing 101
PHPinfo() 104
session, viewing 105
theme developer, disabling/enabling 101
theme registry, cleaning 106
uses 100
Variable editor 106
variables, editing 106

[217]

Devel module permissions
checking 88, 89

Devel module settings
enabling 92

Devel results
inspecting 95-98

Drupal 5.19
upgrading steps 15, 16

Drupal 5.19 upgrade
about 15
contributed modules, dealing with 22, 23
contributed module updates, installing 19
cron, running 21
recent log entries, checking 21
Update Status module, installing 16-18
Update Status module, uninstalling 20, 21

Drupal 5.x core
contributed modules 9
database, backing up 10-12
site, backing up 10-12
site, taking offline 12
Status report, running 13, 14
upgrading 8, 9

Drupal 5.x core, contributed modules
CCK 9
Devel 9
FCK 9
Imagecache 9
Imagefield 9
jQuery 9
Lightbox 9
Panels 9
Views 1 9
Webform 9

Drupal 5.x upgrade plan 9
Drupal 5.x Views

backing up 23
exporting 24, 26
Panels code, reviewing 26, 27

Drupal 6.13
downloading 29
modules, disabling 58
status report 52
status report, checking 52
themes, disabling 59

Drupal 6.13 site
backing up, cPanel used 74-76

backing up, SFTP/FTP used 74-76
database, backing up through

phpMyAdmin 77
Drupal 6.13 upgrade

contributed modules, disabling 28
final prep checklist 27, 28
Garland theme, enabling 29

Drupal caching
about 59, 60
block cache, enabling 62
cache tables, in MySQL database 65
configuring 64
enabling 61
Javascript file optimization, enabling 63
normal caching, enabling 62
page cache, enabling 61
page compression, enabling 62
performance cache, clearing 67
theme registry, clearing 68

Drupal configuration status
checking 52-54

Drupal core
upgrading 30

Drupal core upgrade
contributed modules, upgrading 38, 39
PHP memory limit, upgrading 41-44
steps 30, 32
update.php, running 33-38

Drupal Dblog module 82
Drupal multisite

about 200
caching 212
configuration, testing 209
configuring, in localhost environment 201
contributed modules, using 210
core, using 210
CSS/JS optimization, enabling 212, 213
features 200
modules, installing 211
page caching, enabling 212, 213
resources 213
themes, installing 211
themes, setting 211

E
eAccelerator 184

[218]

F
FCK module 9
file 184
Filecache module 197
file extensions, Boost 140, 142
forum_cache.patch 194

G
Garland theme 29
Global Redirect module

about 135, 155
checks, running 135
configuring 155

H
Hook_elements() 103

I
i18n-ascii.txt file 157
Imagefield module 9

J
jQuery module 9

L
Lightbox2 module plugin 23
Lightbox module 9

M
Memcache

running, without saving cache data 181
Memcache Admin module

enabling 177
Memcache statistics per page 179
Memcache status page 178, 179
Memcache tables, viewing in MySQL 181

Memcache API 184, 212
Memcache API and integration module

about 170
installing 175, 176
Memcache, running, without saving cache

data 181

Memcache Admin module, enabling 177
Memcached, integrating with PHP 5.2.x

173
Memcached libraries, installing 172
Memcached service, installing 172
Memcache tables, viewing in MySQL 181
MoWeS, installing 171
prerequisites, installing 170

Memcached
about 212
installing 170
integrating, with PHP 5.2.x 173-175

Memcached libraries
installing 172, 173

Memcached service
installing 172, 173

MoWeS
installing 171

MoWeS Portable development WAMP
server 171

multisite configuration, in localhost
environment

about 201
Apache configuration, editing 206-208
Base URL, tweaking 209
databases, setting up 202-205
hosts driver file, tweaking on Windows 208
multisite folders, creating 202
multisites, loading 209
settings.php file, tweaking 205, 206
testing 209, 210

MySQL Drupal database
about 65
cache_page table 66
phpMyAdmin table 65, 66

N
node_cache.patch 194

P
page caching settings, Authcache

about 190-192
page not found (404) errors 84
pages cache configuration block 150, 151
pages cache status block 149
Panels 3.x module 127

[219]

Panels caching
about 127
panel, adding to content 127-129
panel, creating 127-129
using 127

Panels module 9
path_cache.patch 195
Pathauto module 156, 157
Photo Gallery view 23
PHP and MySQL configuration settings

checking 55, 56
PHPinfo() 104
PHP memory limit

upgrading 41
phpMyAdmin 10
Plesk 10
Poormanscron

about 147
configuring 148
project page 147

Poormanscron module
about 70
installing 70-72

R
recent log entries

checking 22
viewing 82, 83

S
search_cache.patch 195
status report, Drupal 6.13

checking 52
files, removing 57
PHP and MySQL settings, checking 55
Update Status module, enabling 57, 58

T
taxonomy_cache.patch

about 195
downloading 195
enabling 195, 196
installing 195

test categories
generating 118, 119

test content
generating 119, 120

test users
generating 115-117

Themer info tool, Devel module
enabling 89-91

Throttle module
about 110
blocks, throttling 114, 115
configuration, accessing 110
configuring 110
configuring, for auto throttling features

111, 112
enabling 110
modules, throttling 113, 114

Transliteration module 156, 157

U
update.php

running 33-38
updated Zen theme files

installing 44
updated Zen theme files installation

about 44
custom theme, upgrading 44-46
site, placing online 49, 50
Views, cleaning up 47, 48
Views, resetting 47, 48

Update Status module
enabling 57, 58
installing 16-18
uninstalling 20, 21

V
Variable editor 106
Views

caching 120-124
Views 1 module 9
Views 2 module 120
Views 2 module cache

clearing 124, 125
Views module 24

[220]

W
WAMP 171
Webform module 9

X
XCache 184

Z
Zen StarterKit theme 9

Thank you for buying
Drupal 6 Performance Tips

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Drupal 6 Performance Tips, Packt will have given some of
the money received to the Drupal project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Drupal 6 Content Administration
ISBN: 978-1-847198-56-3 Paperback: 196 pages

Maintain, add to, and edit content of your Drupal site
with ease

1. Keep your Drupal site up to date: easily edit,
add to, and maintain your site’s content, even if
you’ve never used Drupal before!

2. Covers the full range of content that you might
want on your site: richly formatted text, images,
videos, as well as blog posts, calendar events,
and more

3. Get to grips with managing users, slaying
spam, and other activities that will help you
maintain a content-rich site

4. Concise, targeted information with
easy-to-follow hands-on examples

Drupal 6 JavaScript and jQuery
ISBN: 978-1-847196-16-3 Paperback: 340 pages

Putting jQuery, AJAX, and JavaScript effects into
your Drupal 6 modules and themes

1. Learn about JavaScript support in Drupal 6

2. Packed with example code ready for you to use

3. Harness the popular jQuery library to enhance
your Drupal sites

4. Make the most of Drupal’s built-in
JavaScript librarie

Please check www.PacktPub.com for information on our titles

Drupal 6 Site Blueprints
ISBN: 978-1-847199-04-1 Paperback: 272 pages

Ready-made plans for 12 different professional
Drupal sites

1. Instant Drupal – Build 12 exciting and simple
web projects

2. Expand and tailor the sample projects to your
client’s need

3. Create quick prototypes of commonly used
applications within hours

4. Develop your own custom application by
merging features from the example projects

5. Apply easy methods to optimize the
performance of your site

Drupal E-commerce
with Ubercart 2.x
ISBN: 978-1-847199-20-1 Paperback: 300 pages

Build, administer, and customize an online store
using Drupal with Ubercart

1. Create a powerful e-shop using the award-
winning CMS Drupal and the robust e-
commerce module Ubercart

2. Create and manage the product catalog and
insert products in manual or batch mode

3. Apply SEO (search engine optimization)
to your e-shop and adopt turn-key internet
marketing techniques

4. Implement advanced techniques like cross-
selling, product comparison, coupon codes, and
segmented pricing

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Upgrading Drupal
	Upgrading Drupal 5.x core
	Backing up your site and database
	Taking your site offline
	Running Status report

	Upgrading to 5.19
	Installing Update Status module
	Installing contributed module updates
	Uninstalling and removing Update Status
	Running cron and checking recent log entries
	Dealing with contributed modules during upgrades

	Backing up and exporting your Drupal 5.x Views
	Reviewing your Panels code

	Final prep for upgrading to 6.13
	Disabling all contributed modules
	Enabling the Garland theme site-wide

	Downloading Drupal 6.13
	Upgrading Drupal core
	Running update.php
	Upgrading contributed modules
	Updating your PHP memory limit

	Installing the updated Zen theme files
	Upgrading your custom theme
	Cleaning up and resetting Views
	Placing your site back online

	Summary

	Chapter 2: Maintaining your Drupal site
	Checking your Drupal configuration status
	Checking your PHP and MySQL settings
	Files to delete and clean up
	Enabling the Update Status module
	Disabling modules and themes not being used

	Introduction to Drupal caching
	Enabling and configuring Drupal caching
	Cache tables in your MySQL database
	Clearing your performance cache
	Clearing your theme registry

	Running cron manually
	Installing the Poormanscron module
	Setting up cron through cPanel

	Backing up your site using SFTP/FTP and cPanel
	Backing up your database through phpMyAdmin

	Tweaking your HTACCESS file
	Summary

	Chapter 3: Using Development Modules and Tools
	Viewing and inspecting recent log entries
	Viewing your Recent log entries
	Logging and alerts configuration
	Page not found and access denied errors

	The Devel module
	Installing and enabling Devel
	Checking Devel module permissions
	Enabling Themer info
	Devel settings
	Inspecting database queries and Devel results
	Enabling the Devel module block
	Using the Devel module block
	Database queries
	Empty cache
	Disable/Enable Theme developer
	Execute PHP code
	Function reference
	Hook_elements()
	PHPinfo()
	Rebuild menus
	Reinstall modules
	Running cron
	Session viewer
	Theme registry
	Variable editor

	Summary

	Chapter 4: Performance Optimization
	Enabling and configuring the Throttle module
	Configuring the Throttle module for auto throttling features
	Throttling your modules
	Throttling blocks

	Generating test users, categories, and content
	Views caching
	Clearing your Views 2 module cache

	Using Panels caching
	Creating a panel and adding content to it

	Summary

	Chapter 5: Using DB Maintenance and Boost
	Using the DB Maintenance module
	Using the Boost module
	Installing and configuring Boost
	Boost settings
	Boost File Cache settings
	Boost cacheability settings
	Boost directories and file extensions
	HTACCESS file tweaks

	Testing your Boost configuration
	Boost and Poormanscron
	Configuring Poormanscron
	Clearing the Boost cache
	Boost admin and stats blocks
	Boost: Pages cache status block
	Boost: Pages cache configuration block

	Summary of Boost's basic configuration

	Summary

	Chapter 6: Advanced Boost
	Updating contributed modules
	Recommended modules that work with Boost
	Global Redirect
	Transliteration and Pathauto

	Advanced Boost settings
	Boost advanced settings
	Testing your Database timestamp settings
	Boost crawler settings

	Summary

	Chapter 7: Using Memcache API and Integration
	Using the Memcache API and Integration module
	MoWeS Portable development WAMP server
	Installing Memcached libraries and service
	Integrating and testing Memcached with PHP 5.2.x
	Installing the Memcache API and Integration module
	Enabling the Memcache Admin module
	Memcache status
	Memcache statistics per page

	Viewing the Memcache tables in MySQL
	Running Memcache without saving cache data to your database

	Summary

	Chapter 8: Advanced Caching and Contributed Modules for Caching
	Cache Router
	Cache Router versus Memcache API

	Authenticated User Page Caching (Authcache)
	Tweaking your settings.php file to support Authcache
	Configuring the Authcache module
	Page Caching Settings

	Testing the Authcache module and its caching mechanism
	Checking the AuthcacheFooter code
	Checking the Authcache Debug window

	Advanced cache
	block_cache.patch
	comment_cache.patch
	forum_cache.patch
	node_cache.patch
	path_cache.patch
	search_cache.patch
	taxonomy_cache.patch

	APC (Alternative PHP cache)
	File Cache module
	Summary

	Chapter 9: Multisite Configuration and Performance
	Using Drupal multisite
	Configuring multisite in a localhost environment
	Creating the multisite folders
	Setting up databases for your multisite
	Tweaking settings.php for each site
	Editing your Apache configuration
	Tweaking the hosts driver file on Windows
	Tweaking the Base URL
	Load your multisites

	Testing our multisite configuration
	Using core and contributed modules in multisite
	Installing modules and themes to a multisite
	Setting themes per multisite

	Caching and multisite
	Enabling page caching and CSS/JS optimization per site

	Multisite resources
	Summary

	Index

