

Qmail Quickstarter

Install, Set Up, and Run your own Email Server

A fast-paced and easy-to-follow, step-by-step guide that
gets you up and running quickly

Kyle Wheeler

BIRMINGHAM - MUMBAI

[FM-�]

Qmail Quickstarter
Install, Set Up, and Run your own Email Server

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2007

Production Reference: 1040607

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847191-15-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

[FM-�]

Credits

Author

Kyle Wheeler

Reviewer

Russell Nelson

Development Editor

Nanda Padmanabhan

Assistant Development Editor

Rashmi Phadnis

Technical Editor

Saurabh Singh

Code Testing

Ankur Shah

Project Manager

Patricia Weir

Editorial Manager

Dipali Chittar

Project Coordinator

Abhijeet Deobhakta

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Manjiri Nadkarni

Cover Designer

Manjiri Nadkarni

[FM-�]

About the Author

Kyle Wheeler is a PhD candidate at the University of Notre Dame in the Computer
Science and Engineering Department. Having co-authored papers both nationally
and internationally, he received an M.S.C.S.E. from Notre Dame in 2005 and expects
to receive his doctorate in the field of scalable computing in 2008. As part of his PhD
research, he interned at Sandia National Laboratories from 2006 through 2007.

Kyle began setting up and maintaining qmail-based email servers working for
NetSeats Inc. in 2000. Since then, his client base has expanded to include the
Philadelphia chapter of Notre Dame Alumni, the Church of Epiphany in the
Archdiocese of Louisville, and several other groups, both large and small. He is also
a frequent contributor to the qmail mailing list, which supports qmail users and
administrators internationally.

I'd like to thank my family and my fiancée for their constant support
while writing this book.

[FM-�]

About the Reviewer

Russell Nelson has been a postmaster for twenty years, about half of them using
qmail. In a previous life, he was Mr. Packet Driver, but people still remember him
that way. Russell blogs at http://blog.russnelson.com/.

Table of Contents
Preface 1
Chapter 1: Basic Qmail 5

The Minimum Qmail System 5
Compiling and Installing 6

Preparing the System 6
Compiling and Installing the Necessary Binaries 7
Creating the Basic Configuration Files 7
Creating the Necessary Minimum Account Aliases 8
Default Mail Delivery 9

Basic Configuration 10
Simple Execution 12

qmail-start 12
qmail-smtpd 14

Administrative Conveniences 15
About Patches 15
ucspi-tcp and daemontools 16

Installation 17
Using tcpserver 17
Using svscan 19
Logging 19

The Overall Structure of Qmail 21
Summary 25

Chapter 2: Getting Email into the Queue 27
qmail-queue and the Qmail Queue 27
The qmail-inject and sendmail Interfaces 28
qmail-smtpd and the QMAILQUEUE Patch 30

Accepting or Rejecting Email 30

Table of Contents

[ii]

RELAYCLIENT and Authentication 31
tcprules 31
POP-before-SMTP 32
SMTP-AUTH 34

The QMAILQUEUE Patch 35
Other Mail Protocols 36

Quick Mail Transfer Protocol (QMTP) 36
Old-Fashioned Mail Injection Protocol (OFMIP) 37

Summary 38
Chapter 3: Getting Email Out of the Queue 39

qmail-send and the Qmail Queue 40
Delivering Email Locally 41

The Default 41
.qmail Files 41

Forwards 42
Maildirs and mboxes 42
Pipes and Programs 43

Supporting .forward Files 46
Users 47

The virtualdomains File 47
Defined Users: The users/assign File 48
Aliases 48
Extensions 48

Delivering Email Remotely 50
How It Normally Works 50
Static Routes 51
Authentication 52

Summary 53
Chapter 4: Storing and Retrieving Email 55

Popular Storage Formats 55
Reliability 57
Speed 58

Reading 59
Marking 59
Deleting 60
Delivery 60
Searching 60

On-Disk Efficiency 61
The POP3 and IMAP Protocols 62

Protocol and Server Selection 62

Table of Contents

[iii]

qmail-pop3d Server Setup 64
The Checkpassword Interface 64
Installing the checkpassword Program 65
Running with tcpserver 65

Webmail 67
Summary 68

Chapter 5: Virtualization 69
Generic Virtualization Framework 69

Power of the virtualdomains File 69
Basic Virtual Domains 70
The Path of an Email 72
Non-Virtual Non-System Users 73

User-Management Problem in Assisted Virtual Domains 76
Popular Solutions: vpopmail and VMailMgr 76
Consequences for Other Services 78

Good Reasons to Use Multiple Installations 79
How to Set Up Multiple Qmail Installations 80
Hiding Multiple Queues from the User 82

Summary 84
Chapter 6: Filtering 85

Basic Filtering Architecture 85
Sending Mail Without a Queue 89
Blocking Viruses 91

Heavyweight Filtering 91
Lightweight Filtering 92

Stopping Spam from Getting In 93
Sender Validation 93

SPF 94
DomainKeys 95

Identifying Spam 97
Lightweight 98
Heavyweight 99
Quarantines and Challenges 101
Mistakes 102

Stopping Spam from Getting Out 103
Sender Restrictions 103
Bounce-Back Spam 103

Recipient Validation 104
Recipient Validation is Insufficient 105

Summary 106

Table of Contents

[iv]

Chapter 7: Advanced Features 107
SSL Encryption 107

Patch vs. Wrapper 108
When Receiving Email 109
When Sending Email 110

Mailing Lists 110
Lightweight vs. Heavyweight 111
Speed vs. Size 111

Member Management 112
Efficiency under Load 112

Variable Envelope Return Path 113
Integration with Qmail 114
Web Interface 115

Summary 116
Chapter 8: Administration, Optimization, and Monitoring 117

The Log Files 117
The Basic qmail-smtpd Log 117

Expanding the qmail-smtpd Log 119
The Basic qmail-send Log 120

Basic Analysis 123
qmailanalog 123
Identifying Problems 126

Making It Faster 127
Calculating Your Limits 127
Finding Bottlenecks 128

Concurrency 129
Resource Starvation 130
DNS 130
Filesystem 131

Silly Qmail Syndrome 132
Summary 134

Index 135

Preface
Qmail is one of the most popular email servers. The current release was published
in 1998, and has stood unchanged ever since. It has withstood the test of time
surprisingly well, and a devoted community has grown around it to contribute
experience, ideas, and patches to provide new features. While there is some dispute
over the claim that qmail has no security fl aws yet discovered, it cannot be denied
that its security track record over the last ten years is unparalleled. Qmail includes
several applications, including an SMTP server, a POP3 server, a QMTP server,
and several related utilities for manipulating email and email storage. Qmail has
been used by or is currently used by Hotmail, Yahoo!, NetZero, Speakeasy, Qwest,
PayPal, Aruba.it, and others. You can learn more about qmail at
http://cr.yp.to/qmail.html and http://www.qmail.org/.

This book treats qmail more as an architecture than a mail server, and from that
perspective guides the reader through the installation, administration, customization,
and deployment of a qmail-based server. The book begins with a quick, minimal,
step-by-step walkthrough of a bare-bones qmail server, and then introduces and
explains the basic design of the qmail architecture in easily understood terms.

The later chapters of the book are devoted to using qmail to provide specifi c features
through customization and optimization. Alternative methods of providing each
feature are compared, and a plethora of example scripts are provided to demonstrate
the concepts and techniques.

What This Book Covers
Chapter 1 provides a quick step-by-step guide to installing a basic qmail server
on a computer without an existing mail server, using ucspi-tcp and tcpserver to
provide some of the basic services that a qmail SMTP server relies upon. At the
end of the chapter is an overview of the qmail architecture that is explained in the
following chapters to understand how qmail works and how the structure lends
itself to customization.

Preface

[2]

Chapter 2 and Chapter 3 mirror each other: the former details how email enters the
qmail queue, and the latter details how email leaves the qmail queue. The discussion
of inbound mail includes the basic architectural details as well as discussion of
authentication and the two protocols that qmail supports: SMTP and QMTP. The
discussion of outbound mail also includes the basic architectural details and expands
into basic fi ltering, the defi nition of users and mailboxes, and remote delivery.

Chapter 4 examines in detail the storage formats that qmail supports. Specifi cally,
it covers the factors that infl uence the choice of the format to be used for a given
situation, using mbox, Maildir, and MH as examples. One of the most common
things to do with email is to retrieve it from a central server either via the POP3 or
IMAP protocols, or via a webmail interface. The latter half of this chapter covers all
three, and discusses the reasons for choosing one protocol over the other, how to
choose an IMAP server package, and how to set up qmail's own POP3 server.

Chapter 5 begins the more advanced section of the book with a discussion of server
virtualization. Multiple kinds of virtualization are discussed, including qmail's
built-in virtual domain and virtual user framework, virtual domain management
software, and the possibilities provided by having multiple qmail installations.

Chapter 6 unleashes the full power of the qmail architecture's design. By altering the
fl ow of mail through the architecture—or changing the architecture itself—qmail
can be made to perform virtually any task. Sending mail without a queue, blocking
viruses, detecting spam, validating recipients, and using SPF and/or DomainKeys
are all used as examples in this chapter. Both lightweight and heavyweight methods
of spam and virus prevention are also discussed in detail.

Chapter 7 looks at some advanced features that don't quite fi t into other, larger
categories, such as SSL support and optimization for mailing-list delivery.

Chapter 8 covers ongoing maintenance, monitoring, and good administrative
behavior. It provides a detailed description of the log fi les and how to interpret
them and use the qmailanalog package to get statistical analysis of qmail's behavior.
Expanding the log fi les to contain more information, identifying and recognizing
problems (including "silly-qmail" syndrome), and using information in the logs to
improve qmail's performance are all explored in this chapter.

What You Need for This Book
Qmail works on practically all UNIX systems: AIX, BSD/OS, FreeBSD, HP/UX, Irix,
Linux, NetBSD, OpenBSD, OSF/1, SunOS, Solaris, etc. It automatically adapts itself
to new UNIX variants.

Qmail does not support Windows.

Preface

[3]

Who This Book is For
This book is targeted at System Administrators familiar with Linux/UNIX and DNS
servers who need to set up qmail.

Conventions
In this book, you will fi nd a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are four styles for code. Code words and fi les in text that are not editable are
shown as follows: "Qmail's SMTP server, for example, cannot talk to the network by
itself; this ability is provided by software like inetd or tcpserver or similar." Code
words and fi les in text that are editable are shown as follows: "Qmail comes with a
set of minimal install instructions, in a fi le named INSTALL."

A block of code will be set as follows:

#!/bin/sh

Using splogger to send the log through syslog.
Using qmail-local to deliver messages to ~/Mailbox by default.

exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start ./Mailbox splogger qmail

Any command-line input and output is written as follows:

chown root ~alias/.qmail-root

chmod 644 ~alias/.qmail-root

New terms and important words are introduced in a bold-type font. Usernames
have been introduced in an italicized format as follows: "However, qmail does not
deliver mail to the real root user."

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[4]

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The fi les available
for download will then be displayed.

The downloadable fi les contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you fi nd a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you fi nd any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verifi ed, your submission will be
accepted and the errata will be added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Basic Qmail
 If you're diving into this section, chances are you're either entirely new to qmail, or
you're looking to get a feel of this book. There are many very good qmail installation
guides and tutorials that are available for free on the Internet. The current version of
qmail was published on June 15th, 1998. Since then what has changed the most about
the qmail experience is the accumulation of expertise and experience in using and
tailoring it for the most common situations and even some uncommon ones.

Without delving into the architecture, qmail is extremely modular. In many ways,
qmail is less of a mail server and more of mail server architecture. Pieces of qmail
can be replaced, rearranged, fi ltered, and extended as necessary to achieve virtually
any feature the administrator desires. However, along the same lines, qmail requires
certain assistance to provide some features one ordinarily expects. Qmail's SMTP
server, for example, cannot talk to the network by itself; this ability is provided by
software like inetd or tcpserver or similar. This design makes qmail's components
secure and much simpler and easier to verify. This design also makes the details
of how the qmail components are hooked together a vital part of the system
confi guration, as opposed to a single monolithic server with a complex confi guration
fi le that can achieve the same thing.

To get the most out of this book, you're going to need a basic understanding of
UNIX-style operating system conventions and features, simple command-line
operations, and how to edit text fi les.

The Minimum Qmail System
 Qmail comes with a set of minimal install instructions, in a fi le named INSTALL. It
contains eighteen relatively basic steps for compiling qmail on most systems and for
getting it running. These are somewhat simple, but can be trimmed even further if
you're not trying to replace an existing mail server.

Basic Qmail

[6]

Compiling and Installing
 Compiling qmail is generally very easy. Before compiling qmail, fi rst obtain
the prerequisites:

A Unix-style operating system (such as Linux, BSD, Solaris, etc.)
A working C compiler (preferably executable using cc, as that requires less
confi guration before compiling) and the standard C development system
A case-sensitive fi lesystem

Having a case-sensitive fi lesystem is important because during installation, qmail
uses several fi les that are different only in the capitalization of their name. For
example, INSTALL is a text fi le describing basic installation procedures, while
install is a script for putting fi les in the correct places with the correct permissions.
The qmail distribution can be modifi ed to work around that problem, but that is a
little outside the purview of this book.

With those prerequisites, installing a bare-bones version of qmail is a straightforward
fi ve-step process as follows:

1. Prepare the system: add one directory (/var/qmail), seven users
(qmaild, qmaill, qmailp, qmailq, qmailr, qmails, and alias), and two groups (qmail
and nofi les).

2. Run make setup install to compile and install all the necessary binaries.
3. Run the config (or config-fast) script to create the basic confi guration fi les.
4. Create the necessary, minimum account aliases.
5. Tell qmail where to deliver mail by default.

Simple, isn't it? Let's go into a bit more detail here.

Preparing the System
 On most UNIX systems it should be relatively easy to add users and groups, using
tools like useradd, adduser, mkuser, or something similar. For example, on many
Linux distributions, the commands for preparing the system are as follows:

mkdir /var/qmail

groupadd nofiles

useradd -d /var/qmail/alias -s /bin/false -g nofiles alias

useradd -d /var/qmail -s /bin/false -g nofiles qmaild

useradd -d /var/qmail -s /bin/false -g nofiles qmaill

useradd -d /var/qmail -s /bin/false -g nofiles qmailp

•

•

•

Chapter 1

[7]

groupadd qmail

useradd -d /var/qmail -s /bin/false -g qmail qmailq

useradd -d /var/qmail -s /bin/false -g qmail qmailr

useradd -d /var/qmail -s /bin/false -g qmail qmails

The users are required as part of qmail's security setup; almost every major portion
of qmail runs as a different user. The reason for this is simple—it allows qmail to
use standard UNIX user protections to enforce separation between its components,
which communicate via tightly-controlled interfaces (namely, pipes and environment
variables). This user separation is the backbone of qmail's security model—a model
that has done exceedingly well and has been adopted by other security-conscious
programs (e.g. OpenSSH). To complete the protection that these users provide, it's a
good idea to ensure that each of these users cannot be used by anyone to log into the
system. On most modern systems, this is achieved by not giving the user a working
shell (e.g. /bin/false).

Compiling and Installing the Necessary Binaries
 The second step is the compilation step. Generally, this is the simplest of the steps,
provided that the necessary tools (a compiler and the make utility) are available.
Qmail will compile on most systems without further confi guration, by simply
executing the command make setup check. The exceptions are modern Linux
systems that use a more recent version of glibc than version 2.3.1. On these systems,
it is necessary to edit the conf-cc fi le that comes with qmail before compiling, so
that it looks like the following:

gcc -include /usr/include/errno.h

If your compiler cannot be run using the cc command, edit the conf-cc fi le to
contain the correct command to compile fi les.

Creating the Basic Configuration Files
 The third step simply adds the most minimal confi guration information that qmail
requires for functioning—the Fully Qualifi ed Domain Name (FQDN) of the host
computer. The term "fully-qualifi ed" means that the FQDN not only contains the host
name, but also the full domain name. For example, to set up a computer named mail
as part of example.com's computer network, the FQDN would be mail.example.
com. To confi gure qmail for this computer, the minimal confi guration command
would then be:

./config-fast mail.example.com

Basic Qmail

[8]

The alternative command, ./config, does the same thing that
./config-fast does, however, it obtains the FQDN by looking up the computer's
IP address in DNS. If the system is already set to go with the IP address it will
always have, this is a convenient way to avoid extra typing. However, if the system's
network confi guration is not in its fi nal state, using ./config will probably produce
an incorrect set of confi guration fi les. Running either command overwrites any
existing confi guration fi les.

Creating the Necessary Minimum Account Aliases
 The fourth step adds the accounts that are required by the various email standards
documents (in particular, RFC 822). The following accounts are required:

postmaster@yourdomain.com
mailer-daemon@yourdomain.com
abuse@yourdomain.com
root@yourdomain.com

The last one, root@yourdomain.com, needn't necessarily exist. However, qmail
does not deliver mail to the real root user, and the address is commonly assumed to
refer to the administrator of the machine (for example, by scripts and monitoring
programs) when the administrator needs to be notifi ed of something. Thus, creating
an alias for root is generally a good idea.

Aliases are defi ned by creating fi les in the home directory of the alias user. If the alias
user has been created according to the above instructions, that directory is
/var/qmail/alias. The general way of referring to this directory is ~alias/.
The alias-defi ning fi les in this directory must have very specifi c names, all beginning
with .qmail– and ending with the name of the alias. For example, the postmaster
alias is established by creating a fi le named .qmail-postmaster in the directory
~alias/. The mailer-daemon alias is established by creating a fi le named
.qmail-mailer-daemon, and so forth. Capitalization for account names is always
converted to lowercase for delivery, so don't use capital letters in .qmail fi lenames.

The content of these fi les specifi es exactly what should happen to email that is sent
to one of these aliases. In general, the syntax is identical to the generic dot-qmail
(.qmail) fi le syntax, which is discussed later in this book, but the exception is the
bare minimum: an empty fi le. If an alias is established with an empty fi le, it will be
delivered as specifi ed by the default delivery mechanism (for more details refer to
the Default Mail Delivery section).

The simplest option is to put an account name in those fi les, which tells qmail to
forward all mail sent to these aliases to the account specifi ed. For example, if all
email addressed to root@yourdomain.com should be delivered to an account named
steve, put steve into the ~alias/.qmail-root fi le.

Chapter 1

[9]

It is important to note that these fi les should have very specifi c permissions—they
should be readable by any user, but only writable by the root user. This may not be
the default when these fi les are created. To set the permissions to what they need to
be, run a command that looks something like the following:

chown root ~alias/.qmail-root

chmod 644 ~alias/.qmail-root

Default Mail Delivery
 The fi fth and fi nal step is to tell qmail how to deliver mail by default. Default
means how qmail delivers all mail unless told to do something else by a .qmail
fi le. Generally, this is done by selecting a startup script from the /var/qmail/boot
directory and copying it to the fi le /var/qmail/rc.

In the /var/qmail/boot directory, there are several fi les, each of which can start up
qmail with a different default delivery method. The ones that come with qmail are:

home: Delivers email to the fi le Mailbox in the user's home directory.
home+df: Supports Sendmail-style .forward fi les, and otherwise is the same
as home.
proc: Hands the email to procmail for delivery.
proc+df: Supports Sendmail-style .forward fi les, and otherwise is the same
as proc.
binm1: Hands the email to BSD 4.4's binmail program (mail.local)
for delivery.
binm1+df: Supports Sendmail-style .forward fi les, and otherwise is the
same as binm1.
binm2: Hands the email to SVR4's binmail program (/bin/mail -r)
for delivery.
binm2+df: Supports Sendmail-style .forward fi les, and otherwise is the
same as binm2.
binm3: Hands the email to the V7 binmail program (/bin/mail -f)
for delivery.
binm3+df: Supports Sendmail-style .forward fi les, and otherwise is the
same as binm3.

Unless you are migrating from an older mail server and have a reason to want the
compatibility features, the fi le to use is either home or proc. The simplest is home.

•

•

•

•

•

•

•

•

•

•

Basic Qmail

[10]

Basic Configuration
 Once all fi ve steps are completed, a working, bare-bones installation of qmail is ready
in /var/qmail. However, in many situations, a barebones installation is insuffi cient.

The basic questions to answer when confi guring an email server on a new
system include:

What should be done with mail when it is received?
Which mail should be accepted?

The most common and simplest answers to the fi rst question generally fall into
one of the following two categories: either mail should be relayed to a smarter mail
server or the mail should be delivered locally.

The second question can often become far more complicated due to spam and
viruses and the like, but the most basic answer is generally a list of domain names for
which this email server is responsible.

As you can tell already, various answers to these questions can result in wildly
different behaviors. For example, if no mail should be accepted from the network,
no mail should be delivered locally, and all mail should be forwarded to a specifi c
mail server, then this is considered mini-qmail. In such a situation, many of the
more complex features of qmail can be eliminated. In different circumstances, the
qmail server may need to accept any and all email and forward it to a central mail
server (for example, a mail proxy or a caching forwarder). Or it may need to accept
email for a specifi c domain and deliver it to system-defi ned users (the standard
setup). Or it may need to accept email for a set of domains and deliver it locally
via some virtual-domain confi guration. There could be any number of additional
complications, twists, and turns.

The most basic answers to these questions are specifi ed to qmail via confi guration
fi les. Which mail should be accepted is generally specifi ed by fi les in the
/var/qmail/control directory, and what to do with mail that has been accepted
is generally specifi ed in a combination of fi les in the control directory and the rc
fi le (which was set up in Default Mail Delivery section of the installation procedure).
Note though, that the rc fi le is a shell script. Much of qmail confi guration is in the
form of scripts controlling how qmail and its related binaries are run.

The most basic, most important control fi les for qmail are: me, rcpthosts, locals,
smtproutes, and defaultdomain. The fi les are not necessarily created by default or
by the ./config scripts; but they control qmail's most important functionality. They
control, respectively, the name of the server, which domains' mail to accept, which
domains are to be considered local once mail addressed to them is accepted for
delivery, where to send outbound mail, and which domain to append to bare

•

•

Chapter 1

[11]

usernames to transform them into real email addresses. The defaultdomain and me
fi les are simple one-line fi les. In the case of me, this line is considered the name of
the server. In the case of defaultdomain, this line is considered the name to append
(for example, example.com) to a bare username (for example, user) to construct
a valid email address (for example, user@example.com) when necessary. The
rcpthosts and locals fi les are simply lists of domains, one domain per line in the
fi le. The most complex of the four, smtproutes, is also rather simple. Each line of
the fi le consists of three fi elds separated by colons. The fi rst fi eld is the domain that
needs to be routed this way and the second fi eld is the domain name or IP address
(in square brackets) of the server to which matching email must be sent. The third
fi eld is the port on the server to connect to, which if not present, defaults to port 25.
For example:

somewhere.com:[1.2.3.4]

This line in the fi le informs qmail that any email sent to an address ending in
@somewhere.com must be forwarded to the IP address 1.2.3.4. The fi les
smtproutes, rcpthosts, and locals can all use prefi x-wildcards. A prefi x-wildcard
is a line that begins with a period, followed by the suffi x that must match following
the period. For example:

.somewhere.com:mail.isp.com

This line in the smtproutes fi le will match email addresses ending in
@here.somewhere.com, @there.somewhere.com, @anywhere.somewhere.com, and
so forth, where there is an arbitrary string and a period preceding somewhere.com.
Note that it doesn't match the bare @somewhere.com. Emails addressed to matching
domains are forwarded to mail.isp.com.

Finally there is the special case, where there is nothing to the left of the fi rst colon as
shown in the following example:

:mail.isp.com:1000

This line in the smtproutes fi le will send all email to the mail.isp.com server
listening on port 1000. In the smtproutes fi le, the fi rst match is the one that is used,
and this line will match anything. As such, it's usually at the end of the fi le.

There are many more fi les that qmail looks for in the /var/qmail/control
directory. Explanations of how they work and what they do can be found in the
qmail man pages, however, they are generally for more involved confi guration tasks
and non-basic qmail installations.

Default delivery instructions are part of simple execution.

Basic Qmail

[12]

Simple Execution
 There are two primary architectural segments of qmail involved in setting up a
standard SMTP email server. The fi rst is the set of programs that work together
to perform mail deliveries, either locally or remotely, and the second is the set of
programs that work together to accept messages via the SMTP protocol.

qmail-start
 The programs that work together to perform mail deliveries are: qmail-send,
qmail-lspawn, qmail-rspawn, and qmail-clean, as well as any program that
they spawn to complete their tasks (like qmail-remote, qmail-local, procmail,
etc.). Most of these have corresponding users. In particular, qmail-send and
qmail-clean operate as the qmails user, and qmail-rspawn (and qmail-remote)
operate as qmailr. The qmail-lspawn program runs as root, because it must be able
to deliver mail to each user as that user. In any case, all of these programs are
spawned by the command qmail-start. This command takes two optional
arguments—a default delivery command and a logging command. To understand
exactly how this works, take a look at the most basic of the scripts in the
/var/qmail/boot directory, home:

#!/bin/sh

Using splogger to send the log through syslog.
Using qmail-local to deliver messages to ~/Mailbox by default.

exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start ./Mailbox splogger qmail

The fi rst part of this script is fairly straightforward: using the env command to
remove all environment variables before executing qmail-start, it then sets the
PATH environment variable to make sure that the qmail bin directory is the fi rst
place searched for qmail's binaries. The second part, executing qmail-start with
arguments, requires a little more explanation.

When qmail makes an email delivery, every delivery is made from the perspective
of a program running as the receiving user, in the receiving user's home directory.
Delivery instructions are treated as if they came from a dot-qmail fi le, with one
delivery instruction per line. From that point onwards, fi le names are treated as
mbox-formated mailboxes, directory names (indicated by ending a fi le name with
a forward-slash (/)) are treated as Maildir-formatted mailboxes, and commands
(indicated by starting the line with a pipe symbol (|)) are all located and executed
from within the addressed user's home directory. Thus, using a relative fi le name,
such as ./Mailbox, specifi es a fi le named Mailbox within the current directory at the
time of delivery i.e. the addressed user's home directory.

Chapter 1

[13]

In this case, the default delivery method is very simple, deliver mail to an
mbox-formatted fi le named Mailbox in the user's home directory. However, the
argument specifying the default delivery method can be more complex. Take, for
example, the home+df fi le in /var/qmail/boot:

#!/bin/sh

Using splogger to send the log through syslog.
Using dot-forward to support sendmail-style ~/.forward files.
Using qmail-local to deliver messages to ~/Mailbox by default.

exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start '|dot-forward .forward
./Mailbox' splogger qmail

Note that because of the rules of shell-script quoting, the fi rst argument to
qmail-start in this case is the full text between the single quotes, or:

|dot-forward .forward
./Mailbox

Note that the single argument is, in fact, two lines. Just as if these lines were in
the user's .qmail fi le, this causes the dot-forward command to run fi rst, and if it
returns with a code that indicates that the mail has been delivered via instructions in
a .forward fi le, the delivery is considered complete. On the other hand, if it returns
with a code that indicates that the user did not have a .forward fi le in his or her
home directory, qmail will instead deliver mail to the Mailbox fi le, just as it would
have if the home fi le's delivery instructions were used.

The text after the mail-delivery specifi cation causes qmail-send to send all logging
information to the program specifi ed. In this case, the splogger program will be
run with the argument qmail. The splogger program takes the output from
qmail-send, prefi xes it with "qmail", and logs it via the standard syslog mechanism.
If neither the splogger command nor any other command is provided as an
argument to qmail-send, qmail-send will send its logging information to standard
output (or rather, fi le descriptor one).

 To run this program by hand, simply run your chosen rc fi le, as follows:

/bin/sh /var/qmail/rc &

The ampersand at the end ensures that the program executes in the background.

Basic Qmail

[14]

qmail-smtpd
 The set of programs that provide SMTP service—receiving SMTP connections (and
thus, email) from the network—is organized around qmail-smtpd. Rather than
including basic networking features in the qmail SMTP daemon executable,
qmail-smtpd, qmail pushes that responsibility to a helper program such as
tcpserver, inetd, xinetd, or tcpsvd, among others. This design decision makes
for many useful opportunities. For example, the qmail SMTP service can be tested
from the command-line without needing extra software by simply running
/var/qmail/bin/qmail-smtpd. (Note that the DATA phase of the SMTP
conversation requires CRLFs rather than simply LFs. The correct line endings can
be generated by pressing Ctrl V and then pressing Enter twice.)

Getting qmail-smtpd to listen to the network requires extra software. Many systems
come with either inetd or xinetd and they can be confi gured to run qmail-smtpd
very easily. For example, an inetd.conf entry for qmail-smtpd might look like this
(all one line):

smtp stream tcp nowait qmaild /var/qmail/bin/tcp-env tcp-env
/var/qmail/bin/qmail-smtpd

The current best practice for running qmail-smtpd is to use the tcpserver program,
also written by the author of qmail, Dr. Bernstein, which is distributed as part of the
ucspi-tcp package (http://cr.yp.to/ucspi-tcp.html). It can be used as follows:

tcpserver -u `id -u qmaild` -g `id -g qmaild` \

 0 smtp /var/qmail/bin/qmail-smtpd &

This command can be run manually, added to your system's startup commands, or
executed using Bernstein's daemontools (http://cr.yp.to/daemontools.html)
package. If added to your system's startup commands, the ampersand (&) is critical.
The arguments to tcpserver are straightforward—fi rst, the user and group IDs,
then 0 to specify that it will listen to all network interfaces, then smtp to specify that
it will use the SMTP port (25), and fi nally, the command to be run when a connection
is made to that network port.

Standard qmail-smtpd does not take any run-time arguments; however, its behavior
can be modifi ed at run time by using environment variables. In particular,
qmail-smtpd pays attention to the following environment variables:

Environment Variable Description

TCPLOCALHOST The DNS hostname corresponding to the local interface in
the connection.

TCPLOCALIP The local IP address in the connection.
TCPLOCALPORT The local port number (usually 25 when used with qmail-smtpd).

Chapter 1

[15]

Environment Variable Description

TCPREMOTEHOST The DNS hostname of the remote system.
TCPREMOTEINFO The username responsible for the connection (usually determined

using the ident protocol).
TCPREMOTEIP The IP address of the remote system.
TCPREMOTEPORT The port number used by the remote system.
DATABYTES The maximum number of bytes allowed in a message.
RELAYCLIENT The existence of this variable (even if it contains an empty string)

allows the sender to relay any email message. The content of this
variable is appended to each recipient address.

Most of these variables (the ones that begin with TCP) are set by the program that
handles the network operations. The tcpserver and tcpsvd programs set these
variables. For programs that do not set these variables (for example, inetd and
xinetd), tcp-env will set them. The environment variable you will most commonly
need to set yourself is RELAYCLIENT. If this variable is present in the environment,
qmail-smtpd accepts any mail for delivery even if the destination addresses are not
in the control/rcpthosts fi le. For example, an ISP that relays email from all of its
customers generally adds the RELAYCLIENT variable to qmail-smtpd's environment,
if the connecting client is in its network.

While tcpserver, tcpsvd, and tcp-env will set specifi c environment variables,
any other variable (such as RELAYCLIENT) will generally need to be set using a more
generic method. Environment variables can be set in many ways, like using the
standard env utility, the shell's export/setenv features, and tcprules fi les.

Administrative Conveniences
 Qmail setup as described so far can provide full email service. This setup is,
however, rather minimal, and lacks many administrative, maintenance, and
troubleshooting features. Because qmail is designed to be modular, these defi ciencies
are easily remedied with additional programs.

About Patches
 There are a great number of patches available for qmail that provide various sundry
features, behavioral tweaks, and even minor bug fi xes. There are two schools of
thought on how to approach qmail with its plethora of patches. One is to come
up with some "offi cial" collection of patches (or just all the patches that sound
suffi ciently nifty or useful), apply them all, and go from there. The other is to treat
qmail more like an effi cient mechanism to achieve exactly what needs to be done and
no more. This book falls into the latter category. There are several projects

Basic Qmail

[16]

that provide "mega"-patches or that package qmail in a way that includes many
patches, such as qmailrocks (http://www.qmailrocks.com), Bill Shupp's megapatch
(http://www.shupp.org/), Matt Simerson's megatoaster (http://www.tnpi.biz/
internet/mail/qmail/qmail.toaster1.2.shtml), and many others.

It is very tempting, particularly when new to qmail, to simply grab a bunch of
(neat-sounding) patches and apply them all. This can be a dangerous thing to do
unless you know C and SMTP well and can resolve patch confl icts. Even if the patches
apply cleanly, the new features may be unnecessary and/or confusing (and may still
confl ict in terms of their effect). Keep in mind that qmail works just fi ne without them,
and many of them provide features that can be obtained in other ways. Patching is an
option, and one that should be used carefully. Every unused feature is memory (and
CPU-time) wasted, and a potential source for an unexpected bug or security
fl aw—many patches have not been as rigorously designed or tested as qmail.

The approach encouraged in this book is one of being pragmatic and effi cient (and,
consequently, rather minimalist): use patches because the features they provide are
necessary, and understand them before applying them. Thus, in this book patch
URLs are presented alongside more lengthy explanations of the goal they accomplish
and the alternatives and/or downsides.

ucspi-tcp and daemontools
 The most widely recommended method for running qmail uses the daemontools and
ucspi-tcp packages, both written by the author of qmail, Dr. Bernstein.

The ucspi-tcp package consists of a set of useful programs for connecting to the
network and maintaining simple databases of environment-variable/connection
rules. For example, tcpserver is included as part of ucspi-tcp.

The daemontools package contains the svscan/supervise programs for running,
monitoring, and controlling long-running programs (daemons), and for connecting
them to safe logging mechanisms (e.g. multilog). The default installation of
daemontools creates a /service directory. To control a daemon with svscan, add
a directory for that daemon to the /service directory. The svscan program starts
up an instance of the supervise program for each subdirectory of the /service
directory. Each of these directories must contain a shell script named run that
contains all the necessary commands for starting the specifi c daemon. The run script
must not exit until the daemon it commands exits. When the run script exits, the
directory's supervise process restarts it, unless the supervise process has been told
not to do so (for e.g. by placing a fi le named down in the subdirectory).

The combination of these two packages is a powerful setup for controlling,
monitoring, and maintaining a qmail server.

Chapter 1

[17]

Installation
 Installing these packages is very simple. The ucspi-tcp package can be installed by
simply downloading it (http://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz),
decompressing it, and running make setup check in the decompressed
source directory.

The daemontools' installation is slightly more complicated.

1. You must create a /package directory:
 mkdir -p /package

 chmod 1755 /package

 cd /package

2. Download the daemontools source into this /package directory, decompress
it, and move into the resulting folders, as follows:

 wget http://cr.yp.to/daemontools/daemontools-0.76.tar.gz

 tar –xzvf daemontools-0.76.tar.gz

 rm daemontools-0.76.tar.gz

 cd admin/daemontools-0.76

3. Compile and install the daemontools programs:
 ./package/install

4. If you're on a BSD system, reboot to start up the svscan program, or run it
manually as follows:

 csh -cf '/command/svscanboot &'

If you're using a system that uses /etc/inittab, you should add
svscanboot to the /etc/inittab, for example, with a line similar to
the following:
SV:123456:respawn:/command/svscanboot

Using tcpserver
 Basic use of the tcpserver program from the ucspi-tcp package has been covered
previously. However, the tcpserver program has many options that are of
importance to a well-maintained qmail installation. There are two main areas where
tcpserver shines and is often confi gured according to the system-administrator's
personal preference. The fi rst is in data collection; the second is in setting appropriate
environment variables and asserting behaviors based on which remote system
connects to tcpserver.

Basic Qmail

[18]

The tcpserver program can collect some basic information about the remote
server, as described by the possible environment variables in the previous table.
However, in many cases, such information is either irrelevant or unnecessary, and
the collection of such data can be eliminated to improve connection latency. For
example, looking up the remote host's IP address in DNS or attempting to make an
ident query to identify the remote user may not provide much benefi t, but does
slow down connection attempts. Turning off such queries may improve initial
connection latency, if that is a concern.

For example, by default, tcpserver looks up the remote host's hostname in DNS.
If this is unnecessary, giving tcpserver the -H fl ag prevents this, and consequently
prevents tcpserver from providing the TCPREMOTEHOST environment variable
to whatever program it runs (e.g. qmail-smtpd). Similarly, if ident information is
unnecessary, giving tcpserver the -R fl ag will prevent it from performing that query.

The tcpserver program can also be confi gured to use a small database (in CDB
format) of rules defi ning when to allow or deny connections and which (if any)
environment variables to set, based on the data it knows about the remote host.

The most common method of specifying these connection rules is to create a text fi le,
/etc/tcp.smtp, in a specifi c format that is compiled by the tcprules program into
the CDB database used by tcpserver (e.g. /etc/tcp.smtp.cdb). The format of a
rule in a tcprules fi le (such as /etc/tcp.smtp) is:

matcher : decision , environment-variables (if any)

Connection rules are matched on a fi rst-match-wins basis. For example:

192.168.1.2:deny
192.168.1.:allow,RELAYCLIENT=""
=www.example.com:allow,RELAYCLIENT=""
=:allow
:deny

This rule fi le would deny all connections from the 192.168.1.2 IP address, but
would allow anything else in the 192.168.1.x IP range to connect and would set the
RELAYCLIENT environment variable for those connections. If the DNS hostname of
the remote host is www.example.com, this fi le allows that host to connect and sets the
RELAYCLIENT environment variable. Any other host that has a hostname (denoted by
the = sign) is allowed to connect, and fi nally any other connection attempt (i.e. from a
host without a hostname) is rejected.

This rule fi le can be compiled into a CDB database fi le as follows:

tcprules /etc/tcp.smtp.cdb /etc/tcp.smtp.tmp < /etc/tcp.smtp

Chapter 1

[19]

The tcpserver program can then be told to use that CDB database by giving it the
-x fl ag with the name of the CDB fi le, for example:

tcpserver -u `id -u qmaild` -g `id -g qmaild` \

 -x /etc/tcp.smtp.cdb \

 0 smtp /var/qmail/bin/qmail-smtpd

Using svscan
 The basic format of a supervise-controlled service is a folder containing a shell script
named run. This shell script eventually must run the service (daemon) that is to be
controlled and must not exit until that daemon does. A good example of what might
go into a run fi le is the /var/qmail/rc script built as part of the previously discussed
basic qmail install. This script prepares qmail to run, and then runs it. As long as
qmail-start is still running, the script does not exit. Thus, a very simple service
folder for the delivery side of qmail is a folder containing that rc fi le, renamed run.

Logging
 An extension to the previously described basic service-directory format is possible.
The extension is to add a folder named log within the daemon's directory, which
contains another shell script named run. In this extension, the standard output of the
fi rst fi rst-level run fi le is piped as input to the log directory's run fi le. In this way,
the daemon can be stopped and started independently of the logging mechanism,
which can be any logging mechanism that accepts standard input, such as splogger
or something similar. An easy, powerful method of logging is the multilog program
(a part of the daemontools package), which saves log output in a crash-resistant,
automatically rotating manner with high-precision timestamps.

Ordinarily, qmail-start uses the logging mechanism specifi ed in the rc fi le, usually
splogger. However, if the rc fi le (and thus, qmail-start) is controlled by svscan,
it can be more useful to remove the logging argument from the rc fi le. This change
causes qmail-send's log messages to be sent to standard output, which can then
be used by svscan's more fl exible logging architecture. There's no benefi t from
this if you are using the splogger utility, but more powerful logging tools, such
as multilog, do benefi t from the change. The run fi le for the qmail-send service
directory might look something like the following:

#!/bin/sh
exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start ./Mailbox

Basic Qmail

[20]

A log/run fi le for the qmail-send service directory might look similar to
the following:

#!/bin/sh
exec setuidgid qmaill multilog t /var/log/qmail/qmail-send/

The beginning of this command, setuidgid qmaill uses the setuidgid tool from the
ucspi-tcp package. The previous command is essentially equivalent to the following:

exec su qmaill -c 'multilog t /var/log/qmail/qmail-send/'

This is because both switch to a different user (qmaill) before running the rest of the
command, but the setuidgid version is easier to read and type. The reason for using
the qmaill user for logging is that it prevents the logs from being altered even if an
attacker controls the process generating the logs (qmail-send, in this case).

This same structure can be used for running qmail-smtpd in a controllable,
monitorable fashion. Simply create a directory for it
(e.g. /var/qmail/supervise/smtpd) and create a run fi le for it, such as:

#!/bin/sh
QUID=`id -u qmaild`
QGID=`id -g qmaild`
LOCAL=`head -1 /var/qmail/control/me`
if [! –f /var/qmail/control/rcpthosts]; then
 echo "Without a rcpthosts file, qmail is an open relay."
 echo "Open relays are spammer havens."
 echo "Please use a rcpthosts file."
 exit 1
fi
exec tcpserver -R -l "$LOCAL" -H \
 -x /etc/tcp.smtp.cdb \
 -u "$QUID" -g "$QGID" \
 0 smtp \
 /var/qmail/bin/qmail-smtpd 2>&1

Then create in that directory another directory named log, and in the log directory,
a run fi le such as:

#!/bin/sh
exec setuidgid qmail multilog t /var/log/qmail/smtpd/

Once these fi les are created, telling svscan to use them to control the service they
specify is a two-step process. First, make sure that the run fi les are executable:

chmod +x /var/qmail/supervise/smtpd/run

chmod +x /var/qmail/supervise/smtpd/log/run

Chapter 1

[21]

Then link the daemon's directory into /service, as follows:

ln -s /var/qmail/supervise/smtpd /service/qmail-smtpd

Wait a few moments, and then run the following to double-check that all is well.

svstat /service/qmail-smtpd

If it started as it should, the output of that command should indicate that the service
in question (qmail-smtpd) has been running for a few seconds already. You can
perform essentially the same procedure on the qmail-start service directory, or any
other daemon to be controlled by svscan.

Once svscan is controlling a folder and the associated daemon, you can command
the daemon with the svc command. For example:

svc -d /service/qmail-smtpd

This will order the qmail-smtpd service to stop by sending it a TERM signal. Using
the -h fl ag instead of -d will cause the service to receive a HUP signal; in the case
of qmail-start, this causes qmail to re-read many of its confi guration fi les. This
reread-confi g-on-HUP is a behavior shared by many UNIX daemons. The -u fl ag will
cause the service to start again after having been stopped by the -d fl ag. The -t fl ag,
like the -d fl ag, also sends a TERM signal. However, unlike the -d fl ag, the service is
restarted as soon as it exits.

It is important to note that the TERM signal sent by the -t and -d fl ags does
not cause all daemons to exit immediately. For example, when qmail-send
receives a TERM signal, it fi nishes all deliveries currently in progress before
exiting—which means that it may take several minutes to exit. To bring a daemon
down immediately, use the -k fl ag, which sends the un-ignorable KILL signal. Note,
though, that while the KILL signal will immediately terminate any process not
protected by the kernel, the signal is not propagated to any of the daemon's child
processes. Also, the -k fl ag alone allows the server to restart once it exits (similar to
the -t fl ag). Thus, it is often used after the -d fl ag has been used fi rst, to terminate a
recalcitrant daemon.

The Overall Structure of Qmail
 Before delving too deeply into further confi guration and tailoring of qmail, it
is important to understand the basic structure of qmail. Qmail is often referred
to as merely a mail server software package. While this may be accurate in one
sense, it is more accurate to think of qmail as a mail delivery architecture whose
architect has thoughtfully provided a basic implementation of all the components
of that architecture.

Basic Qmail

[22]

 Qmail is very modular—it consists of a series of simple programs communicating via
specifi c and limited interfaces. Each simple program has a specifi c and limited task to
perform. This architecture allows each component program to be easily replaced or
new programs to be inserted between the basic components.

Additionally, this architecture limits the security impact of any one of the
components. Each program is further separated from the others, whenever possible,
by giving each program a different UNIX user and specifi c permissions so that it
can't affect anything it is not supposed to. Because the communication interfaces are
limited, it is signifi cantly more diffi cult to attack the software and achieve
much—attacking a component that does not have enough privileges to do anything
other than what it is supposed to do is much less useful for an attacker.

The simplest example is receiving email from the network. The trail of programs
in basic qmail is as follows: tcpserver to qmail-smtpd to qmail-queue. The
tcpserver program has two tasks: open up a port to listen to the network, and run
qmail-smtpd as the appropriate user for every connection. Because listening to low
ports (such as the SMTP port, 25) requires root permissions, tcpserver generally
runs as root. However, because tcpserver doesn't attempt to understand the
communication, it is very diffi cult to attack. The qmail-smtpd program has only two
tasks as well: speaking the SMTP protocol suffi ciently to receive email messages,
and sending these email messages to qmail-queue. As such, qmail-smtpd need not
do anything with the on-disk queue or the network. This allows qmail-smtpd to be
run as a user with very limited permissions, and also allows qmail-smtpd to be a
much simpler, and easier to verify and debug, program than it would be otherwise,
even though it has to interact directly with user (or attacker) input. The qmail-queue
program has only one task—to write messages to the on-disk queue prepended with
a Received header. It need not talk to the network, or understand the contents of the
messages it writes to disk, making the program simple and easy to verify and thus
hard for an attacker to break.

Note that this architecture can be easily extended. The tcpserver program can
execute any program, which can in turn execute qmail-smtpd as necessary.
This might be useful, for example, to make decisions about whether to permit a
connection to reach qmail-smtpd or to set and unset environment variables before
qmail-smtpd is executed. It could even be used to sanitize data before it gets to
qmail-smtpd. Similarly, while qmail-smtpd normally executes qmail-queue, it
may invoke any program. This program can then execute qmail-queue as necessary,
which might be useful, for example, to fi lter out email messages that contain viruses.

Chapter 1

[23]

As another example, the qmail-start program executes several programs:
qmail-send, qmail-lspawn, qmail-rspawn, and qmail-clean. Each of these
programs has a specifi c task. qmail-send must monitor the on-disk queue of
mail and route mail appropriately by commanding either qmail-lspawn or
qmail-rspawn to deliver the message depending on whether the message should
be delivered to a local user or a remote user, respectively. Once messages have
been delivered, it commands qmail-clean to remove the message from the queue.
Both qmail-lspawn and qmail-rspawn receive delivery commands and spawn
the necessary number of instances of qmail-local and qmail-remote to do the
actual delivery. The qmail-remote program is a simple program that reads an email
from standard input, and delivers it to the hosts and recipients specifi ed to it by
arguments. It does not have suffi cient permissions to read out of the queue itself, and
so must be handed the message to deliver. It can even be used alone as follows:

echo message | qmail-remote \

 smtp.example.com sender@example.com recipient@example.com

The qmail-local program is also simple; its task is to read an email from standard
input and deliver it to the specifi ed local user, using the procedures detailed in that
user's .qmail fi les. Like qmail-remote, it does not have suffi cient permissions to
read or modify the on-disk queue.

Each of these programs is independent of the others, and relies only on the
interface provided to it. By restricting the permissions that each component has,
both attacking the system as well as achieving much with a single compromised
component is made signifi cantly more diffi cult. This is the fundamental concept
behind the privilege-separation security technique employed by qmail.

Basic Qmail

[24]

The following diagram depicts this description graphically:

multilog
log

directory

multilog
log

directory

User: qmaill

User:qmails

qmail-clean

qmail-queue

qmail-rspawn

qmail-remote

tcpserver

The Network

qmail-smtpd

User: root

on-disk
queue

User: qmaild

qmail-inject

qmail-send

qmail-lspawn

qmail-local

User: qmailr

explained in Chapter 3

explained in Chapter 2

User: root

U
s
e
r:

q
m

a
ilq

U
s
e
r:

q
m

a
ils

I n this diagram, each on-disk element is a hexagon, each process is a rectangle, and
each separate user-protected domain is a tinted rounded-rectangle (root domains are
darker). The arrows indicate the direction email travels through the system. As you
can see, the central feature of the qmail architecture is the on-disk queue. Despite its
centrality, very few components of qmail need to read or modify the queue.

Chapter 1

[25]

Summary
This chapter has laid out the most fundamental details of qmail: fi rst how to install
a minimal qmail server, then convenient means of controlling the qmail server, and
fi nally the basics of the qmail architecture. The fundamental innovation of qmail is
its architecture, and as such the rest of this book is devoted, in one way or another,
to examining and exploiting the benefi ts of that architecture. The next chapter talks
about the input end of the qmail mail system.

The next two chapters talk about how to operate the queue—fi rst putting messages
into the queue and then controlling how messages exit the queue. In essence,
the next two chapters focus on the top and bottom halves, respectively, of the
qmail architecture.

Getting Email into the Queue
This chapter covers the input end of the qmail mail system. It focuses on the SMTP
protocol and related protocols, and the details of how the tcpserver, qmail-smtpd,
and qmail-queue programs provide that service.

qmail-queue and the Qmail Queue
 The following diagram is a part of the overall structure of qmail described in
Chapter 1.

qmail-queue

on-disk
queue

tcpserver

The Network

qmail-smtpd

qmail-inject
or

sendmail

Receive from
Local Processes

Receive from
Remote

T he only way of getting email into the on-disk queue in qmail is to use the
qmail-queue program. This is a simple program with a single task: take an email
and store it in the on-disk queue.

Getting Email into the Queue

[28]

Any program can use qmail-queue to inject a message into the queue, provided it
can present the email message and the envelope information (the sender and the list
of recipients) in the form that qmail-queue requires.

The on-disk queue is somewhat complicated. It is the communication and storage
mechanism used for handing messages to the qmail-send component. The
qmail-queue program handles the details of injecting messages into the queue, just
as the qmail-clean program handles the details of removing messages from the
queue. It is often tempting to attempt to manipulate the queue directly—for example,
to remove a message from it. Naïvely modifying the queue, however, is a quick
way to corrupt the queue and make qmail-send behave in unpredictable ways. The
correct way to modify the queue is to stop qmail-send and use a queue modifi cation
tool (such as qmHandle, qmqtool, or qqtool).

Each message in the queue is represented by several fi les. Which fi les compose a
message depends on the current delivery state of the message.

Viewing the current state of the queue, however, is very simple. The program
qmail-qstat displays the number of messages currently in the queue and how
many are currently being injected into the queue. The qmail-qread program lists
each message in the queue with the date and time the message was injected into the
queue, the message's sender, and the list of recipients. With each recipient,
qmail-qread provides an indication of whether the message has been delivered to
that recipient and, if not, whether the recipient is considered a local recipient (whose
delivery will be handled by qmail) or a remote recipient (whose delivery requires the
message to be relayed to another mail server).

There are two primary methods qmail provides for supplying qmail-queue with
messages: the local execution method and the remote method. Programs running
on the same machine as qmail—such as cron, atd, mail, and any user's email
program—use the local execution method for sending email. Local execution means
that these programs feed the message to either the sendmail, qmail-inject, or
qmail-queue program. The remote method accepts incoming email messages via the
network (usually using the SMTP protocol).

The qmail-inject and sendmail Interfaces
T he sendmail program and the qmail-inject program are convenient ways of
sending mail from a program running on the same computer as the qmail server.

Of the two, qmail-inject is the more basic one. Its simplest invocation, sending an
email that is stored in a fi le named message, can be done as follows:

qmail-inject <message

Chapter 2

[29]

Part of the simplicity of this is that qmail-inject expects the input fi le to be a
correctly formatted email message, complete with correctly formatted headers. The
headers may be used as a last resort to guess the envelope recipients (qmail-inject
searches for To:, Cc:, Bcc:, Apparently-To:, Resent-To:, Resent-Cc:, and Resent-Bcc:
headers, in that order) and the envelope sender (qmail-inject searches for Sender:,
From:, Reply-To:, Return-Path:, Return-Receipt-To:, Errors-To:, Resent-Sender:,
Resent-From:, and Resent-Reply-To: headers, in that order). However, it is better
to specify the envelope information with the command-line either as arguments to
qmail-inject or by defi ning specifi c environment variables. While qmail-inject
has a low tolerance for incorrectly formatted headers, if important headers are
missing (for example, From:), qmail-inject will insert them using information
it has gained through other methods (i.e. arguments or environment variables). A
simple correctly formed message looks like this:

From: me@here.com
To: someone@somewhere.com
Subject: An Example Message

This is the body of the example message.

As an example of defi ning the envelope senders and recipients on the command line,
if a message to be sent is stored in a fi le named message, and the message must
be sent to the email address someone@somewhere.com from the email address
me@here.com, then sending the message works as follows:

qmail-inject -fme@here.com someone@somewhere.com <message

The qmail-inject program is, of course, qmail-specifi c. Many programs (such
as mail, crond, and PHP, among others) expect a program named sendmail to
be available for sending email. This convention originated from the fact that the
Sendmail email server was the universal standard. Besides, it is also very useful to
have a standard interface for sending an email that is independent of the specifi c
email server. Thus, qmail also provides a sendmail executable, which emulates
the basic email sending behaviors of the Sendmail sendmail program. Making
this program available in /usr/bin/sendmail is all that is needed to allow most
common email programs to send email. Qmail's sendmail program uses
qmail-inject to do the actual work and merely translates Sendmail-style
arguments into the necessary forms for qmail-inject.

The qmail-inject program expects, as input, a message with correctly formatted
email headers. It does not do any further validation or correction of email content,
and so can permit badly formed messages to be queued. Badly formatted headers,
however, can confuse it and cause it to refuse to send the message to qmail-queue.
Because the sendmail program uses qmail-inject, it is subject to the same
restrictions. In cases where it may be diffi cult to ensure that headers are correctly

Getting Email into the Queue

[30]

formatted, the new-inject program, from the mess822 package (http://cr.yp.to/
mess822.html) can correct many badly formed message headers. The new-inject
command can be used as a drop-in replacement for qmail-inject.

qmail-smtpd and the QMAILQUEUE Patch
R eceiving email from the network via the SMTP protocol is perhaps the most
common use of qmail. As described before, qmail-smtpd is run by another program
that handles all the networking details. The behavior of qmail-smtpd is affected by
environment variables. For the purpose of this book, discussion is limited to using
tcpserver with qmail-smtpd, but the basic techniques discussed here apply to
whatever software is used in its stead.

Accepting or Rejecting Email
W hen a remote machine connects and talks to qmail-smtpd, qmail-smtpd has two
primary responsibilities: determining whether the message should be accepted, and
if it should, then handing the message to qmail-queue for injection into the on-disk
queue. qmail-smtpd uses four key pieces of information to decide whether to accept
each message and hand it to qmail-queue:

1. The recipients of the message
2. The existence of the RELAYCLIENT environment variable
3. The size of the message
4. The message's envelope sender

The fi rst two in the list are positive reasons: they cause the message to be accepted.
The last two are negative reasons: they cause the message to be rejected. Submitted
email messages are not accepted unless one of the fi rst two reasons applies.
However, the last two tests are also applied and can overrule the fi rst two.

The size of the message is probably the most obvious reason to reject a message. If
the message cannot be stored on the disk, it simply cannot be accepted for delivery.
The qmail-smtpd program doesn't necessarily know whether the queue currently
has enough space for the message because qmail-smtpd doesn't touch the queue.
That is qmail-queue's prerogative. However, qmail-smtpd doesn't always have to
invoke qmail-queue to make a decision about the message's size; a size limit may be
specifi ed (in bytes) in the control/databytes fi le or in the DATABYTES environment
variable. Any message exceeding the limit is not accepted, and if no limit is specifi ed,
qmail-smtpd will not reject a message based on its size.

Chapter 2

[31]

The address of the sender is perhaps an unlikely reason for qmail-smtpd to accept or
reject a message. However, qmail contains a simple (albeit ineffective against modern
spammers) anti-spam mechanism that instructs qmail-smtpd to reject messages
based on the sender. The fi le control/badmailfrom is interpreted as a list (one
per line) of email addresses that, if used as the envelope sender of a message sent
to qmail-smtpd, cause the message to be rejected. Each line may also contain lines
with only an at sign (@) and a domain name, which instructs qmail-smtpd to reject
messages from any address ending with that domain name.

The recipients of a message—or more precisely, the envelope recipients—are an
understandable detail that qmail-smtpd uses to decide whether to accept a message.
For example, if the qmail server is set up to receive email for example.com (in other
words, example.com is listed in control/rcpthosts), and if the recipient of an
incoming message is somebody@example.com the message is accepted and given to
qmail-queue.

The most fl exible of the four pieces of information qmail-smtpd uses to decide
whether to accept an email is the existence of the RELAYCLIENT environment
variable; fl exible because wrapper applications can use this for any purpose.

RELAYCLIENT and Authentication
T he basic semantics of the RELAYCLIENT variable are that if it exists, the message is
accepted; otherwise the message is accepted only if one of the recipients' domains is
in the control/rcpthosts fi le. This variable can be set for any reason. For example,
the tcpserver program allows environment variables to be set based on the IP
address or DNS hostname of the remote machine sending the message.

tcprules
A s a basic example, ISPs frequently have the policy that any of their customers may
send email through the ISP's mail server. To implement this, they tell tcpserver to
set the RELAYCLIENT variable for all clients whose IP address is in the ISP's pool of
client addresses.

The tcpserver program can use CDB databases created by the tcprules program
to make decisions about whether to allow or reject a connection and, if it is allowed,
what environment variables to set. To implement the previously described ISP's
policy, assuming all the clients have addresses in the B-class network 192.168.x.x,
the necessary tcprules fi le would look like the following (because only the fi rst
matching rule is used):

192.168.:allow,RELAYCLIENT=
:allow

Getting Email into the Queue

[32]

However, if they want to refuse messages from anyone other than their clients, then
they would use the following:

192.168.:allow,RELAYCLIENT=
:deny

Further details of the syntax of the tcprules fi le and the use of the tcprules program
are in the tcprules manual (http://cr.yp.to/ucspi-tcp/tcprules.html).

The RELAYCLIENT environment variable can be used for more than simply making
qmail-smtpd accept email. The behavior described so far is obtained by simply
creating the variable versus not creating it. If the variable is not empty, the contents
of the variable are appended to each recipient email address as the message is
accepted. For example, if RELAYCLIENT contains the string "FOO", a recipient
someone@here.com is altered to someone@here.comFOO. This is primarily useful
for changing the delivery actions based on where the message came from, or
to redirect email entirely, such as if RELAYCLIENT contained the string
"-forwarded@elsewhere.com". The appended string becomes a part of the recipient's
address before the message is evaluated by qmail-send, and may completely alter
the destination. The previous example's recipient would, in this situation, become
someone@here.com-forwarded@elsewhere.com.

The RELAYCLIENT variable may also be used for authenticating senders who are
allowed to send mail but who do not always have a predictable IP address. This
is achieved in many ways; the most common ways are POP-before-SMTP (or
IMAP-before-SMTP) and SMTP-AUTH (or SMTP authentication).

 POP-before-SMTP
O riginally, the SMTP protocol was not written with an inherent method of
authenticating a user, such as the standard username-and-password formula that is
so prevalent. One way of addressing this drawback is to connect SMTP with another
protocol that does support some form of authentication. One common protocol used
for this purpose is the POP3 protocol, though technically any protocol that supports
authentication of some kind (such as IMAP or HTTP) can be used. The basic idea
is that when a user authenticates with this other protocol, the server will record
the IP address of that user. This record then causes the SMTP server to consider all
communication with that IP address authenticated for a limited time.

This is made relatively easy by the checkpassword-compatible authentication
tools—commonly used with qmail-pop3d—which run a specifi ed program upon
successful authentication.

Chapter 2

[33]

For example, the standard way to run qmail-pop3d (ignoring tcpserver for the
moment) is as follows:

qmail-popup mail.example.com \

 checkpassword \

 qmail-pop3d ./Maildir/

This requires a little explanation. The qmail-popup program requests the username
and password from the user, which it validates using the program mentioned after
the domain name in its arguments—in this case, the checkpassword program. If
the username and password are correct, the checkpassword program changes to
that user's home directory and runs the program specifi ed in the remaining part
of its argument list—in this case, the qmail-pop3d program. The qmail-pop3d
program then provides the POP3 protocol for reading the contents of the specifi ed
mailbox—in this case, ./Maildir/.

Assuming the usual environment variables have been set, one can easily add a script
in between checkpassword and qmail-pop3d to perform the necessary bookkeeping
to save the IP address of the just-authenticated computer. For example, a script
named saveip.sh:

#!/bin/sh
touch /authenticated/$TCPREMOTEIP
exec "$@"

This script can be added to the previous execution line as follows:

qmail-popup mail.example.com \

 checkpassword \

 saveip.sh \

 qmail-pop3d ./Maildir/

If authentication is successful, checkpassword will run the saveip.sh script. This
script creates a fi le in the /authenticated directory whose name is the IP address
of the client that just authenticated itself and then runs the program specifi ed in its
arguments. Checking the /authenticated directory for fi les created in the last ten
minutes is done with another script (such as checkauth.sh):

#!/bin/sh
TIMESTAMP=/tmp/$$.stamp
touch -d "10 minutes ago" $TIMESTAMP
test -f /authenticated/$TCPREMOTEIP -a \
 $TIMESTAMP -ot /authenticated/$TCPREMOTEIP && \
 export RELAYCLIENT="" || \
 rm -f /authenticated/$TCPREMOTEIP
rm -f $TIMESTAMP
exec "$@"

Getting Email into the Queue

[34]

Now, as an alteration to the qmail-smtpd execution line from Chapter 1:

exec tcpserver -R -l "$LOCAL" -H \

 -x /etc/tcp.smtp.cdb \

 -u "$QUID" -g "$QGID" \

 0 smtp \

 checkauth.sh \

 /var/qmail/bin/qmail-smtpd 2>&1

This makes tcpserver run the checkauth.sh script instead of qmail-smtpd. This
script runs qmail-smtpd itself once it has performed its magic and potentially
creates the RELAYCLIENT environment variable. Thus, when qmail-smtpd runs, if
the same client has authenticated via POP3 in the last ten minutes, the RELAYCLIENT
environment variable is set, and qmail-smtpd allows that client to relay email.

SMTP-AUTH
U sing POP-before-SMTP can be rather inconvenient. It requires that the users
check their email via the POP3 protocol before being allowed to send via the SMTP
protocol. Since POP3 and SMTP are not inherently connected, email clients rarely
make connecting them this way very convenient. Also, when using a non-qmail
POP3 server, or running the POP3 server on a separate machine from the SMTP
server, saving the authenticated IP address can be diffi cult (though not impossible)
to implement.

Fortunately, most email clients these days support an extension to SMTP called
SMTP-AUTH that adds support for authentication to the SMTP protocol.
Unfortunately, basic qmail-smtpd does not support SMTP-AUTH. There are two
primary ways of adding this feature.

The fi rst method is to provide a replacement to qmail-smtpd that understands
SMTP-AUTH. The classic example of this sort of software is Bruce Guenter's
mailfront program (http://untroubled.org/mailfront/), which also provides
several other useful features. Another good example is Linux Magic's magic-smtpd
(http://www.linuxmagic.com/opensource/magicmail/magic-smtpd/), which
provides even more features.

The second method is to patch qmail-smtpd so it supports SMTP-AUTH itself. There
are several such patches available, some of which have confl icting semantics, so be
careful that the documentation matches the patch exactly. One of the best maintained
patches is maintained by Dr. Erwin Hoffman (http://www.fehcom.de/qmail/
smtpauth.html). The main drawback of this method is that it confl icts with some
connection-encryption technologies, particularly the SSL patch to qmail-smtpd.

Chapter 2

[35]

 Which of these methods is best to use depends on your particular needs. The security
consequences of both options are essentially the same. Using replacement software
(i.e. mailfront or magic-smtpd) is particularly good for people who wish to avoid
using source patches and dealing with potential patching errors. On the other hand,
there is a larger existing library of potential features that can be added to
qmail-smtpd via a patch than to these replacement packages. Additionally, patching
qmail-smtpd allows the administrator to limit the code that is included in their
SMTP daemon. Packages like mailfront provide additional features, but not all of
them are useful in all cases, and unused features represent (at some level) wasted
memory. In essence, using a replacement is simpler, but patching qmail-smtpd is
more fl exible and potentially more resource effi cient.

The QMAILQUEUE Patch
I n some cases, it is desirable to fi lter messages in a slightly more complex or
extensible way than has been described so far. For example, one may want to scan all
incoming messages for viruses, or for spam, or for some other purpose. The message
may need to be either modifi ed or blocked based on this fi lter.

An extension to qmail-smtpd that allows for such fi lters is known as the QMAILQUEUE
patch (http://www.qmail.org/qmailqueue-patch). The basic idea of this patch
is that qmail-smtpd hands email to the program specifi ed in the QMAILQUEUE
environment variable rather than the standard qmail-queue program.

This patch is used to accomplish many things. For example, the
QMAILQUEUE environment variable can point to Inter7's simscan program
(http://www.inter7.com/?page=simscan). The simscan program writes each
message to a temporary location where it then runs a virus scanner (such as
ClamAV, available at http://www.clamav.org) and/or a spam scanner (such as
SpamAssassin available at http://spamassassin.apache.org) on it. simscan then
takes action based on the results of these programs. For example, if the message
contains a virus, or has a spam score that is too high, simscan can exit with an error
code rather than handing it to qmail-queue, thus causing qmail-smtpd to reject
the message.

The program specifi ed in the QMAILQUEUE environment variable is not required
to relay the message to the real qmail-queue program unchanged. The
qmail-dk program (available at http://qmail.org/) adds a DomainKeys signature
or validation result header to messages before delivering them to qmail-queue. This
technique can chain together multiple programs to create much more complicated
fi lters. For example, qmail-dk can be confi gured to hand messages to simscan,
which then sends the messages to qmail-queue.

Getting Email into the Queue

[36]

Note, however, that once qmail-smtpd hands the message to the next program in
the chain, its only responsibility is to report any errors from that program to the
connected client. It does not retain control of the email, but instead trusts that the
qmail-queue-compatible program (or wrapper) it has called will either queue the
message successfully or return a failure code.

Other Mail Protocols
 qmail-smtpd is the most common method of accepting email messages for delivery
from the network, but it is not the only one that comes with qmail. There is another
program that comes with qmail called qmail-qmtpd. As the name indicates, just as
qmail-smtpd is a Simple Mail Transfer Protocol (SMTP) server, the qmail-qmtpd
program is a Quick Mail Transfer Protocol (QMTP) server.

While SMTP is the standard protocol for email transmission on the Internet, there
are many email servers and clients that do not strictly adhere to the defi nition and
requirements of SMTP. Most of them, however, deviate from the SMTP standard
in predictable, common ways. This has become, in essence, a distinct de-facto
protocol that was dubbed by Dr. Bernstein the Old-Fashioned Mail Injection
Protocol (OFMIP).

Quick Mail Transfer Protocol (QMTP)
 QMTP is a protocol invented by the author of qmail, Dr. Bernstein, to address some
of the ineffi ciencies in the SMTP protocol. For example, the commands are not
blocking (which is only partially addressed by the SMTP PIPELINING extension)
and use fewer bytes to transmit the same information. QMTP has not garnered
widespread popularity for delivering mail across the Internet; however, it can be
useful for transferring messages between servers in the same organization. Besides
qmail-qmtpd, another tool in the qmail package that speaks QMTP is maildir2qmtp,
which takes a given Maildir-formatted mailbox and transmits all the messages in it to
a specifi ed computer using QMTP.

To be able to receive email via QMTP as well as SMTP, simply start up another
instance of tcpserver on port 209, in a similar fashion to the SMTP server. An
example run fi le, based on the qmail-smtpd run fi le, looks like the following:

#!/bin/sh
QUID=`id -u qmaild`
QGID=`id -g qmaild`
LOCAL=`head -1 /var/qmail/control/me`

if [! –f /var/qmail/control/rcpthosts]; then
 echo "Without a rcpthosts file, qmail is an open relay."

Chapter 2

[37]

 echo "Open relays are spammer havens."
 echo "Please use a rcpthosts file."
 exit 1
fi

exec tcpserver -R -l "$LOCAL" -H \
 -x /etc/tcp.smtp.cdb \
 -u "$QUID" -g "$QGID" \
 0 209 \
 /var/qmail/bin/qmail-qmtpd 2>&1

It is important to point out that qmail-send does not use QMTP. It is possible to
add this support to qmail via a patch by Russ Nelson (http://www.qmail.org/
qmail-1.03-qmtpc.patch). The patch alters qmail-remote to understand the
QMTP extension to standard MX priorities. Normally, qmail-remote looks up the
MX records of the destination address (or A records if no MX records exist) in DNS,
examines the MX priority information, and attempts to send the mail to the listed
MX servers in order of priority. With the patch, if there is an MX record with a
priority between 12800 and 13055 (normally, SMTP hosts don't use a priority greater
than about 1000), it identifi es the site as one that receives mail via QMTP in addition
to SMTP. Thus, qmail-remote uses QMTP to transfer the mail rather than SMTP. By
the same logic, to advertise that a system is capable of receiving mail via QMTP, it
needs an MX record with a priority between 12800 and 13055.

Old-Fashioned Mail Injection Protocol
(OFMIP)
 There are no standard documents defi ning the deviations from the defi ned SMTP
standard that make up the de-facto OFMI protocol. However, the general behavior
is that an OFMIP server performs many transformations on the messages that it
receives—usually to make accepted messages conform to the SMTP specifi cation.

For example, while an SMTP server is directed to deliver messages only to recipient
addresses in the form user@fully-qualified-domain-name, an OFMIP server
accepts addresses that are simply user or user@host and will transform the address
into the SMTP-required fully qualifi ed form (FQDN) by appending more DNS
information. Another example is that SMTP specifi es that a Date: header must be
present in all messages whereas an OFMIP server adds a Date: header to messages
that do not have one.

In general, SMTP is used for two purposes: receiving email from other servers and
receiving email from mail-composing software (such as Apple's Mail, Microsoft's
Outlook, Mozilla's Thunderbird, or Qualcomm's Eudora). Old mail-composing
software frequently does not correctly use SMTP. Because it is so forgiving, an

Getting Email into the Queue

[38]

OFMIP server is a convenient approximation of SMTP for injecting mail into
an SMTP server (such as qmail), particularly from such clients. However, when
receiving email from other servers, it is generally better to enforce the SMTP protocol
more strictly.

Included in the mess822 package (http://cr.yp.to/mess822.html) is a program
that provides an OFMIP service, and functions (more or less) as a drop-in
replacement for qmail-smtpd. The program is called ofmipd. It is not a general-
purpose replacement for qmail-smtpd because it is too forgiving and does not
enforce most of the restrictions that the SMTP protocol requires. In addition to
adding Date: headers, correcting email addresses, and allowing a host of other
sloppy behaviors, ofmipd corrects and accepts all email. Thus, if it were to be used
in place of qmail-smtpd for SMTP reception, it would provide an open relay that
spammers could use to send mail through the system.

Summary
In this chapter, we took a look at how to inject and queue email in the qmail
architecture. Next we will examine the output end of the qmail email architecture.

Getting Email Out of
the Queue

 This chapter covers the output end of the qmail mail system, or how email is
delivered by qmail and how it leaves the message queue. The following fi gure
describes this part of the overall structure of qmail described in Chapter 1.

qmail-clean

qmail-rspawn

qmail-remoteqmail-local

D
e
liv

e
r

to
L
o
c
a
l
U

s
e
rs

D
e
liv

e
r

to
E

v
e
ry

o
n
e

E
ls

e

qmail-lspawn

on-disk
queue

qmail-send

Getting Email Out of the Queue

[40]

qmail-send and the Qmail Queue
T he primary function of the on-disk queue is to serve as a reliable storage and
signaling mechanism for the qmail-send program, which is the heart of the qmail
queuing system. The qmail-send program's most fundamental task is to make the
primary routing decision: whether a given email should be delivered locally or
remotely. This decision is made exactly once per recipient, and is stored in the queue
with the email.

The qmail-send program can be thought of as a military general, commanding
the qmail delivery army. As a general, it has two sergeants: qmail-lspawn and
qmail-rspawn. Depending on whether a given email should be delivered locally
or remotely, delivery commands for that email are given to either qmail-lspawn
(for local deliveries) or qmail-rspawn (for remote deliveries). Like qmail-send,
these two programs make key decisions and then delegate responsibility to the foot
soldiers of the qmail delivery army: qmail-local and qmail-remote. The
qmail-send program limits the concurrency of deliveries performed by
qmail-lspawn and qmail-rspawn, according to the content of the control fi les
control/concurrencyremote (defaults to 20 concurrent deliveries) and
control/concurrencylocal (defaults to 10 concurrent deliveries).

Determining whether an address is local or remote is based on two control fi les:
control/locals and control/virtualdomains. The control/locals fi le is a list
of local domains, one per line. Any address whose host part (after the @ symbol) is
listed in control/locals is considered local. The control/virtualdomains fi le
specifi es patterns that will match against domains, domain-suffi xes, and users at
specifi c domains. Any address matching a pattern in the control/virtualdomains
fi le is considered to be a virtual address. Virtual addresses are handled in a manner
similar to local addresses—they are not relayed to another machine and are
delivered locally.

Once an email is delivered, either remotely or locally, it is removed from the on-
disk queue by qmail-clean at the behest of qmail-send. If any messages fail to
be delivered (in a temporary way, for example if the destination server could not
be contacted), the qmail-send program retries sending them according to an
exponential back-off schedule. If a message remains in the queue for too long, or was
permanently rejected during delivery, qmail-send creates a bounce message to be
sent to the original message's sender.

Chapter 3

[41]

Delivering Email Locally
T he qmail-lspawn program is given delivery commands for local messages. Each
delivery command consists of a message number, a sender, and a recipient. It
uses fi rst the qmail-users mechanism and, if necessary, the qmail-getpw program
(the qmail interface to UNIX system users) to locate the home directory and other
relevant details about each recipient. Then qmail-lspawn spawns a
qmail-local instance to deliver to that user. The qmail-local instance is spawned
asynchronously, so the actual deliveries can occur in any order. In order to execute
deliveries safely and securely, the qmail-local program must run with the UNIX
User Identifi cation Number (UID) and UNIX Group Identifi cation Number
(GID) of the recipient. Thus, qmail-lspawn must run as the root user, so that when
spawning the qmail-local program to do the delivery, qmail-lspawn can change
to the necessary UID.

One thing to note is that because qmail-lspawn runs as root and qmail-local runs
as the user to whom the mail is being delivered, qmail-local cannot read messages
out of the on-disk queue but qmail-lspawn can. Thus, part of qmail-lspawn's job is
to open the message in the queue and hand it to qmail-local.

The Default
W hen qmail-lspawn starts via qmail-start, it receives a single argument—a
default delivery instruction. This instruction is passed on to each qmail-local
instance as they are created. In the absence of further delivery instructions,
qmail-local uses this method to deliver the email it is given. This default
instruction can be as complex as a .qmail fi le; indeed, the default instruction format
is identical to the format of the contents of a .qmail fi le. In a typical install, this
default is specifi ed in the rc fi le, which is the script that uses qmail-start to set up
all of the persistent sending processes (qmail-send, qmail-lspawn, qmail-rspawn,
and qmail-clean).

.qmail Files
T he qmail-local program's task is to fi rst locate the correct .qmail fi le for
the recipient and then use that fi le's contents (or, if there isn't one, the default
instructions) as a list of instructions for delivering the email.

The syntax of these fi les is very simple, but allows for some rather complex behavior.
Every line of the .qmail fi le is either a delivery instruction or a comment. Comments
are lines that begin with a hash mark (#).

Getting Email Out of the Queue

[42]

There are three types of delivery instructions that are processed in the order they
appear in the fi le:

A forward
A fi le or folder to deliver to
A pipe to a program

Forwards
T he fi rst type of delivery instruction is the simplest. To tell qmail to deliver the
message to a different address, simply create a line containing only an email address
to which it must be delivered. In cases where a given address is confusing, putting
an ampersand (&) at the beginning of the line makes it explicit. For example:

&user@example.com

Extraneous spaces or extra comments cause qmail to complain about malformed
delivery instructions. If the new recipient address is a local address, only the account
name is necessary.

 Maildirs and mboxes
T he second type of delivery instruction is also simple, but has a convenient twist.
Files and folders can be specifi ed as either full paths or relative paths. A full path
begins with a forward slash and a relative path begins with a period. Relative paths
are relative from the user's home directory. For example:

This is a full path
/home/user/mailbox
This is a relative path
./mailbox

If these instructions are in the user's .qmail fi le, two copies of the message are
delivered to the mailbox fi le in the user's home directory. Qmail delivers email
in one of the following two formats: mbox and Maildir. A full discussion of the
comparative merits of these two formats is given in Chapter 4. For now, it is
suffi cient to say that an mbox is a single fi le containing multiple email messages.
It is specifi ed in a delivery instruction as any fi le whose name does not end in a
slash. A Maildir is a directory-based mail storage format. It is specifi ed in a delivery
instruction as any fi le whose name ends in a slash. For example:

This is an mbox in the user's home directory
./Mail
This is a Maildir in the user's home directory
./Mail/

•

•

•

Chapter 3

[43]

Before messages are delivered to a mailbox (either mbox- or Maildir-formatted),
qmail tags them with a Delivered-To header indicating the name of the recipient and
a Return-Path header, indicating the original envelope sender. Messages delivered to
an mbox also receive the mbox-required "From_" header (which is different than the
standard From header).

It is important to note that getting rid of email by specifying delivery to /dev/null
is not a good idea. The reason for this is that qmail will treat /dev/null as an mbox
that needs to be locked (with flock()) before delivery takes place. Unfortunately,
according to the POSIX standard, flock() cannot operate on special fi les like
/dev/null. Even if an operating system allows it, this slows down the process
of discarding the message, because multiple messages that need to be discarded
simultaneously are discarded one at a time. A better way to tell qmail-local to
discard the email is to create a .qmail fi le containing only comments. Note that
an empty .qmail fi le is treated as if it does not exist (and thus the default delivery
instructions are used). However, if the fi le contains only comments (lines that start
with a hash mark), it overrides the default delivery instructions and causes
qmail-local to discard the email.

Pipes and Programs
T he third type of delivery instruction is deceptively simple in appearance. Any line
that begins with a vertical bar, also known as a pipe, indicates that the rest of the
line should be interpreted by /bin/sh and the content of the email provided on
standard input.

For example, a simple program that only discards the email (this is not the best way
to discard email) is something like this:

| cat > /dev/null

A common use for this type of delivery instruction is to use a program to create
vacation messages. For example, the following delivery instructions deliver the
message to a mailbox and create a vacation message:

deliver it
./Mail
send to the "vacation" program (may not work, see below)
| vacation

Unlike what happens when messages are saved to an mbox or Maildir, emails sent
to programs in this manner are not prepended with the Delivered-To, Return-Path,
or From_ headers. If these headers are needed, use the preline program to add
these headers and then send the message to the command specifi ed in its arguments.
For example, most vacation programs require the use of the preline program to
operate correctly:

Getting Email Out of the Queue

[44]

generate vacation message
| preline vacation

If a delivery program specifi ed in the .qmail fi le sends anything to standard output,
this output is collected and logged in the qmail-send log fi le. For example, the
following will save message Subject headers in the log:

log the subject
| grep '^Subject: '

Actually, the above instruction will log all lines in the email that start with "Subject:".
If, for example, the message contains a forwarded message in its body that also has
a Subject header, both will be logged. Another complication is that long subjects are
sometimes split into multiple lines, and grep will only report the fi rst line. Instead
of grep, a better tool to use for this purpose is the 822field program in the mess822
package (http://cr.yp.to/mess822.html):

log the subject
| 822field Subject

The program specifi ed by the delivery instruction doesn't have to do anything with
the email it is given. For example:

| echo this goes in the log!

Environment variables can be used in these commands. Qmail provides several
helpful environment variables. For example, the following logs the sender and
recipient of messages (this is just an example; that information is part of the
standard log):

log the sender and recipient
| echo $SENDER sent a message to $RECIPIENT

Qmail provides the following environment variables:

Environment Variable Description

SENDER The envelope sender address.
NEWSENDER The sender used for forwarding messages (i.e. delivery

instructions beginning with an ampersand &).
RECIPIENT The envelope recipient address; local@domain.
LOCAL The local part of the RECIPIENT address.
USER The user receiving the message.
HOME The receiving user's home directory.
HOST The domain part of the RECIPIENT address.
HOST2 The portion of HOST preceding the last dot. For example, if HOST

is server1.example.com, HOST2 will be server1.example.

Chapter 3

[45]

Environment Variable Description

HOST3 The portion of HOST2 preceding the last dot, if there is one. From
the previous example, HOST3 is server1. However, if HOST is
something shorter, like example.com, HOST3 is undefi ned.

HOST4 The portion of HOST3 preceding the last dot, if there is one.
EXT The address extension. For example, if LOCAL is

user-extension1-extension2, then EXT is
extension1-extension2.

EXT2 The second part of the address extension, if there is one,
otherwise EXT2 is undefi ned. From the above example, EXT2 is
extension2.

EXT3 The third part of the address extension, if there is one.
EXT4 The fourth part of the address extension, if there is one.
DEFAULT The part of EXT that matched against a default .qmail

fi lename, if there is one.
DTLINE The Delivered-To header that may be added to the message.
RPLINE The Return-Path header that may be added to the message.
UFLINE The UUCP-style From_ header that may be added to

the message.

Commands specifi ed after the pipe symbol can use any syntax that /bin/sh
understands, including conditionals and pipes. For example:

sanitize the subject before logging it
| 822field Subject | sed s/unspeakable/____/g

Another good example is a script that replaces the behavior of the preline program:

generate vacation message
| (echo "$UFLINE$RPLINE$DTLINE"; cat -) | vacation

It is important to note that the output of one delivery instruction cannot be used as
input to any of the others. Each delivery instruction receives an identical copy of
the email. One of the ways to work around this is to use multiple addresses. The
fi rst recipient address will receive the message and pipe it to a fi lter, which will
then requeue the message to be delivered to another address, which can do multiple
deliveries based on the fi ltered form of the message. A fi lter behaving in this manner
looks something like the following:

filter and forward
remove all instances of the word "foo"
| sed s/\<foo\>//g | forward $LOCAL-filtered@$HOST

The fi nal twist that makes .qmail fi les a viable form of mail fi ltering is the exit code
of the programs run. The exit codes of programs called by qmail-local are used to
control progress through the .qmail fi le. Specifi cally, an exit code of 0 indicates

Getting Email Out of the Queue

[46]

a successful delivery, while an exit code of 99 indicates that the mail was delivered
successfully but that none of the subsequent delivery instructions should be
followed. An exit code of 100 indicates that the delivery failed permanently (i.e. the
message was rejected, which prevents the rest of the delivery instructions from being
followed), and an exit code of 111 indicates that the delivery failed temporarily and
that delivery should be retried later (which also stops progress through the fi le). This
allows for some interesting fi ltering possibilities:

user2 never has anything good to say
| test $SENDER == user2@example.com && exit 100
user3 doesn't either, but he gets mad if I reject his emails
| test $SENDER == user3@example.com && exit 99
do I have enough space?
(this is unnecessary, and is just for demonstration)
|quota|tail -1|awk '$4 < 90 { print yes }'|grep -q yes||exit 111
if I make it this far, it's time to deliver my email
./Maildir/

Although .qmail-based fi ltering can be very useful, it can be somewhat awkward for
complex fi ltering. It is often desirable to use a program with a more concise fi ltering
language to fi lter and deliver mail. The two most common programs that serve this
purpose are procmail and maildrop. A basic .qmail fi le for using procmail would
look like the following:

| preline procmail ./.procmailrc

Using maildrop would be very similar.

Supporting .forward Files
 The Sendmail email server has a feature similar to the .qmail fi le, whereby users
can specify that messages addressed to them are forwarded elsewhere. In particular,
users can create a fi le named .forward in their home directory containing a
forwarding email address. There is a program that provides some compatibility with
this Sendmail feature called dot-forward (http://cr.yp.to/dot-forward.html).
The dot-forward program is used in .qmail fi les or, more usefully, in the default
delivery instructions given to qmail-start. The dot-forward program does not
support the full range of syntax that a modern Sendmail installation allows in the
.forward fi les, but does support the most basic syntax. A .qmail-style syntax that
uses the dot-forward command is very simple.

| dot-forward

Chapter 3

[47]

Users
 Qmail uses a very fl exible defi nition of a user. Like most other mail servers, one
defi nition of user is operating-system-defi ned users. In other words, the users
specifi ed in the /etc/passwd fi le (or wherever the operating system stores user
information). These users are used by default for the local domains. However, the
operating-system-defi ned users are easily overridden.

A user, in the most general sense, is a unique delivery script associated with a unique
email address. For example, fred@example.com, fran@example.com, and
pat@example.com are all different addresses, and probably refer to different
accounts (users): fred, fran, and pat. The simplest case uses the operating system to
defi ne all these accounts.

As a category, virtual users are all users that are not defi ned by the host operating
system, but are instead defi ned either by qmail or by some other program. Qmail has
several different forms of virtual users:

Aliases
Qmail-defi ned, or mapped, users
Users specifi ed in the control/virtualdomains fi le
Extensions to existing users

When attempting to deliver a message, qmail decides how to deliver the message by
performing the following operations in the order listed:

1. Check control/virtualdomains
2. Check for qmail-defi ned users
3. Check for operating-system users
4. Check for aliases

During delivery, qmail handles any address extensions.

The virtualdomains File
 The fi rst location that can defi ne a user is the control/virtualdomains fi le.
This fi le is explained in greater detail in Chapter 5, however, to explain it in short,
email addresses defi ned in this fi le are rewritten to map to another user. The email
then continues through the sequence of user lookups to be delivered with this
new destination.

•

•

•

•

Getting Email Out of the Queue

[48]

Defined Users: The users/assign File
 The users/assign fi le is a very powerful tool for controlling delivery rules. It is
used to defi ne users specifi c to qmail, to map these users to other users, and even to
change the rules defi ning extension addresses. This fi le is compiled into a CDB fi le
to make it extremely quick to look up delivery instructions. For this reason, systems
with large numbers of operating-system-defi ned users frequently put them here
to increase the speed of the delivery process by locating the user's home directory
and UID/GID faster. Qmail provides a tool for copying users from /etc/passwd to
users/assign, to make this process easy. The tool, qmail-pw2u, reads a SysV7-style
/etc/passwd fi le from standard input and prints users/assign entries for each user
to its standard output.

Aliases
 After checking the operating-system-defi ned user list (/etc/passwd), if no matching
user is found, the aliases are consulted. Aliases are defi ned by .qmail fi les in the alias
user's home directory. For example, creating a fi le in the alias user's home directory
named .qmail-someuser defi nes an alias for the address someuser@yourdomain.com.
Another example is the root alias that was defi ned in Chapter 1. A fi le named
.qmail-root in ~alias/ establishes the address root@yourdomain.com. When
attempting to deliver messages addressed to root@yourdomain.com, qmail fi rst
checks the list of users (in /etc/passwd). Because it ignores all users whose UID is
zero—namely, root—it doesn't fi nd a match. Next qmail consults the aliases defi ned
in the home directory of the alias user. Upon fi nding the ~alias/.qmail-root fi le, it
delivers the message according to the instructions contained therein.

Extensions
 One of the more unusual features of qmail email delivery is the address extension
feature. In a default qmail confi guration, the local part of an email address
(considering that email addresses are in the form local@host) can contain, in
addition to an account name, extra information called an extension separated from the
account name by a hyphen. Extensions are defi ned by the recipient user with .qmail
fi les in that user's home directory.

For example, messages addressed to user@example.com will be delivered to the
user named user. A message addressed to user-extension@example.com will be
delivered according to the extensions that user has defi ned (presuming there is no
user named user-extension). What extensions the user permits are defi ned by .qmail
fi les in the user's home directory. Delivery instructions for messages addressed to
user@example.com are listed in a .qmail fi le in user's home directory, specifi cally
~user/.qmail. Extensions are defi ned by adding the extension to the name of the

Chapter 3

[49]

.qmail fi le. For example, the fi le .qmail-foo will defi ne the foo extension, enabling
delivery of messages addressed to user-foo@example.com. It is also possible to have
wildcard matching, on a prefi x-match-only basis. Specifi cally, the ending -default
in a .qmail fi le name will match anything matching the existing prefi x. Using the
example of a message addressed to user-foo@example.com, qmail will look for the
following fi les, in the order given:

1. ~user/.qmail-foo

2. ~user/.qmail-default

3. ~alias/.qmail-user-foo

4. ~alias/.qmail-user-default

5. ~alias/.qmail-default

The fi rst one that exists is read by qmail-local to get the delivery instructions.
Extension resolution can be more complicated. For example, if a message is
addressed to user-foo-bar-baz@example.com, qmail looks for the following fi les,
in the order given:

1. ~user/.qmail-foo-bar-baz

2. ~user/.qmail-foo-bar-default

3. ~user/.qmail-foo-default

4. ~user/.qmail-default

5. ~alias/.qmail-user-foo-bar-baz

6. ~alias/.qmail-user-foo-bar-default

7. ~alias/.qmail-user-foo-default

8. ~alias/.qmail-user-default

9. ~alias/.qmail-default

The fi rst of these fi les that exists is used to deliver the message. If none of them exists,
the message is rejected and the original sender is sent a bounce message saying that
the message could not be delivered because the specifi ed recipient does not exist.
The user identifi cation process—where the local part of the address,
user-foo-bar-baz, is resolved to the user named user—is performed by
qmail-lspawn. When qmail-local runs, the choice of which user will receive the
message has already been made. It is qmail-local's task to identify the correct
.qmail fi le for the address, given the recipient user identifi ed by qmail-lspawn.

There are several environment variables that may be defi ned (listed in the Pipes and
Programs section), depending on which .qmail fi le is used to deliver the message.
For each of the above cases, if RECIPIENT is user-foo-bar-baz@example.com,

Getting Email Out of the Queue

[50]

LOCAL is user-foo-bar-baz, and USER is user, the relevant environment variables
will be defi ned during delivery as follows:

Matching .qmail fi le EXT EXT2 EXT3 EXT4 DEFAULT
.qmail-foo-bar-baz foo-bar-baz bar-baz baz

.qmail-foo-bar-default foo-bar-baz bar-baz baz baz

.qmail-foo-default foo-bar-baz bar-baz baz bar-baz

.qmail-default foo-bar-baz bar-baz baz foo-bar-baz

A common misconception is that emails sent to user@example.com will be delivered
according to the .qmail-default fi le in user's home directory. Keep in mind that the
-default only matches extensions, not lack of extensions. For the same reason, when
delivering a message addressed to user-foo-bar-baz@example.com, qmail-local
does not check for the fi le .qmail-foo-bar-baz-default.

Delivering Email Remotely
 The qmail-rspawn program, similar to qmail-lspawn, is given commands to deliver
messages. The difference is that the messages qmail-rspawn must deliver must be
delivered remotely. The qmail-rspawn program merely hands the message to
qmail-remote along with the host to be contacted, the envelope sender, and the
envelope recipient. The qmail-remote instances are spawned asynchronously, so
deliveries can happen in any order. Unlike qmail-lspawn, which performs user
identifi cation and sets up the environment for qmail-local, qmail-rspawn functions
merely as a launcher for qmail-remote that reads messages from the queue.

While qmail-rspawn and qmail-remote both run as a user (qmailr) with
permission to read mail out of the qmail queue, they behave similarly to
qmail-lspawn and qmail-local. The qmail-rspawn program reads the message
from the queue and feeds it to qmail-remote.

How It Normally Works
The delivery commands from qmail-send consist of only a message number,
a sender address, and a recipient address. The qmail-rspawn program extracts
the destination domain from the recipient address and gives all that information,
unmodifi ed, to qmail-remote. The qmail-remote program performs all of the
necessary SMTP-defi ned behavior to deliver a message: it looks up the DNS MX
records for the destination hostname (and if there are none, the DNS A records)
to determine what IP address to contact, contacts that IP address, negotiates the
delivery, and transmits the message.

Chapter 3

[51]

Because qmail-send limits the number of concurrent deliveries, offl ine destinations
can cause problems. When a given IP address cannot be contacted (for example,
because it is offl ine), qmail-remote is required to wait for the usual timeout
(confi gurable via control/timeoutconnect) before giving up. Similarly, if a
destination goes offl ine while qmail-remote is communicating with it, qmail is
required to wait for a different timeout (confi gurable via control/timeoutremote)
before giving up. Because of this waiting process, it's possible that all of the
allowable concurrency in remote deliveries could be used by qmail-remote
instances attempting to contact the same offl ine server. In some cases (such as when
the server fi rst goes offl ine) this is unavoidable. After several failed attempts to
contact a server such a situation is avoidable. qmail-remote keeps track of servers
that it could not contact even after trying twice in two minutes (without intervening
successful connections) and prevents further attempts for an hour. This record of
offl ine servers can be cleared manually to force immediate retries by running the
qmail-tcpok program as root.

Static Routes
 It is sometimes necessary or desirable to avoid performing DNS lookups to determine
which host to contact for a given destination domain. There are several reasons for
this like speed (if DNS lookups are slow and the target IP will virtually never change),
DNS information for that domain being unavailable, cases where messages must be
relayed but where the public DNS information should not be used by this mail server,
and so on. For example, if a qmail server is serving as a backup MX server for a
given domain, obeying the DNS MX records is likely to produce bad behavior. These
records might list additional backup servers, which would cause qmail to send these
mails to the other backup servers causing the messages to loop until the primary MX
becomes available. Instead, these messages should be sent only to the primary mail
server, whenever it comes back online. By specifying the primary mail server for that
domain in the control/smtproutes fi le, the correct behavior is achieved.

Static routes are specifi ed in the fi le control/smtproutes, which is read by
qmail-remote before doing DNS lookups. The format of this fi le is a series of entries,
one per line, in one of the following two forms: domain:relay or domain:relay:
port. In this form, domain is the domain that is being redirected and relay is the
hostname (or square bracketed IP address) to deliver that domain's mail to. The port
allows the specifi cation of a port number to use other than the SMTP default port of
25. For example, if the fi le contains:

example.com:realdomain.com
example2.com:[1.2.3.4]
example3.com:anotherdomain.com:26

Getting Email Out of the Queue

[52]

This means that if a message is addressed to user@example.com, it is delivered to
realdomain.com, as if example.com's only MX record specifi ed realdomain.com.
If a message is addressed to user@example2.com, it is delivered to the IP address
1.2.3.4, and if a message is addressed to user@example3.com, qmail-remote
delivers the message to anotherdomain.com, but will contact that server on port 26
rather than the usual port 25.

It is possible to use prefi x wildcards in this fi le by using a line that begins with a
period. The longest match in the fi le will be used. For example:

.example.com:[1.2.3.4]

.com:[1.2.3.5]

This specifi es that all domains ending in .example.com, such as foo.example.com
and bar.example.com (but not badexample.com, or example.com) must be delivered
to the IP address 1.2.3.4. Other messages whose destination ends in .com will
be delivered to the IP address 1.2.3.5. Also, a catch-all entry may be specifi ed by
omitting the matching domain entirely. For example:

:mail.isp.com

This tells qmail-remote to deliver all messages, regardless of their destination, to the
mail server of mail.isp.com. Additionally, the relay part of a line can be omitted,
specifying that matching destinations should be delivered normally. This is useful
for specifying exceptions, for example:

example.com:
:mail.isp.com

This specifi es that all mail destined for example.com should be delivered according
to the example.com DNS records, while all other mail should be relayed through the
mail.isp.com email server. The routes listed in the fi le can have only one match.
In other words, to direct example.com email somewhere, only one line (the fi rst
one found) may be used. Each route can only list a single hostname or IP address.
If multiple potential destinations are required, keep in mind that hostnames may
resolve to multiple IP addresses.

Authentication
 When relaying messages through another server, in some circumstances it is useful
to authenticate oneself to that other server. There are many ways of authenticating
to a remote server, including authenticating with SSL certifi cates and authenticating
with a username and password. Unfortunately, qmail does not support any such
behavior natively.

Chapter 3

[53]

This functionality can be added to qmail either with a patch written by Bjoern
Kalkbrenner:
(http://www.cyberphoria.org/?display=projects_qmail_smtp_auth_send_patch)
or with a patch based on that written by Dr. Erwin Hoffmann
(http://www.fehcom.de/qmail/auth/qmail-authentication-067_tgz.bin).
Both patches introduce a new control fi le, control/smtproutes_users, whose
syntax is similar to that of control/smtproutes. Entries are lines in the fi le of
the form:

user@domain:relay|username|password

The most common use of this fi le is in relaying all messages to a server that requires
authentication, such as a service provider's server. Similar to control/smtproutes,
omitting the part before the fi rst colon creates an entry that matches all messages.
If all messages must be relayed through the mail.isp.com server, with the
username myaccount and the password bigsecret, the control/smtproutes_users
entry would be:

:mail.isp.com|myaccount|bigsecret

Summary
This chapter has explained both primary ways in which email exits qmail's queue
and is delivered. All of the major facets of delivery were covered, including what
happens when delivery fails, how delivery can be fi ltered with .qmail fi les, how
users are defi ned, and how to control remote delivery. The next chapter will cover
local delivery in greater detail, focusing on storage formats and popular methods of
accessing email.

Storing and Retrieving Email
 Along with sending and reading email, one of the most popular things to do
with email is to store it. The requirements for storing email tend to change over
time; sometimes on-disk effi ciency is extremely important, sometimes access time,
sometimes reliability in a particular environment, or the ability to search through
all messages quickly, or something else entirely. There are multiple ways of
storing email, each with strengths and weaknesses that make them appropriate for
different situations.

Popular Storage Formats
 In addressing these different requirements, several ways of storing email (storage
formats) have become popular. One of the oldest and least well defi ned is known
as mbox. An mbox-formatted mailbox is a single fi le containing several messages
concatenated together. There are several varieties of mbox formats, and the
distinctions between them are primarily in the way each email is distinguished from
the next, though there are other differences. One of the biggest drawbacks of this
approach is that modifying or deleting messages that are stored in the middle (or
at the beginning) of a large mailbox requires rewriting the entire mbox fi le. If the
mailbox is large, this can take a signifi cant amount of time. Another drawback of
the mbox format is that the mailbox fi le must be locked before it can be modifi ed.
In some circumstances, like when the mbox is stored on an NFS drive, locking can
be unreliable. In other circumstances, such as high-volume mailboxes, forcing all
deliveries to be done serially slows delivery speed dramatically.

 The storage format used by the MH Message Handling System, known as MH
folders, attempts to address some of mbox's problems. Unlike an mbox, where all
messages are stored in a single fi le, MH stores each message in a separate fi le in a
single directory. This improves upon one of the most signifi cant mbox problems
by allowing any message to be deleted or modifi ed without touching the rest of the
messages. Thus, even very large collections of messages can be modifi ed quickly.

Storing and Retrieving Email

[56]

This, of course, relies on the effi ciency of the underlying fi lesystem for storing
directory information and handling many open/close operations. However, like
mbox, deliveries to an MH folder must use a lock to prevent multiple messages from
being delivered to new fi les with the same name.

 Another storage format, Maildir, was invented by Dr. Bernstein and has gained both
popularity and acceptance by virtually all other major mail-server software. Like
an MH folder, Maildir stores each message in a unique fi le. Unlike an MH folder,
the name of each new fi le must be formatted in a way that avoids having multiple
Maildir-compliant delivery agents attempting to deliver to the same fi le (though
they must still check for the destination fi le's existence to guard against error).
Additionally, the Maildir format specifi es that each Maildir folder consists of three
sub-folders, one for temporary storage of messages while they are being delivered
(tmp), one for completely delivered new message fi les (new), and one for everything
else (cur). This allows operations like checking for new messages to be very quick,
and prevents half-delivered emails from being treated as readable, delivered
messages if the delivering system crashes during delivery.

 One of the other ways in which mail is commonly stored is in a custom database.
This method offers the possibility of much more effi cient storage and retrieval than
is usually experienced on a standard fi lesystem. However, it generally becomes
equivalent to a custom fi lesystem with special mail-based metadata. Using a custom
database usually involves custom indexing that can make searching through
the collection of mails very fast. On the other hand, storing mail in a database is
extremely easy to do badly (such as by using an unmodifi ed SQL database).

There are many more storage formats, as many mail software packages have
either invented their own or modifi ed one of the more mainstream formats to suit
the purposes of their mail client. Some mail software packages even combine the
storage formats for one reason or another. No single storage format is universally
better than all other solutions for all situations. To evaluate these formats for a given
situation, or to evaluate some new storage mechanism, one must understand the
basic requirements of the mail storage for that situation and the features each storage
solution provides. While there are many more things that may be required of a
mail-storage technique, the basics are explained here.

Qmail supports only the mbox and Maildir formats natively. The MH format is
included in this discussion for context and to help illustrate the benefi t and intent of
various details of the design of the Maildir format. There is a backwards-compatible
extension to the original Maildir specifi cation: Maildir++. This, among other things,
provides greater fi lename collision avoidance on systems that can re-use Process
Identifi ers (PIDs) multiple times in the same second. There is a patch to qmail
(http://www.shupp.org/patches/qmail-maildir++.patch) written by Bill Shupp
that makes qmail use the Maildir++ specifi cation.

Chapter 4

[57]

Reliability
 Perhaps the most important feature that a mail storage system must provide is
reliability. Ordinary operations, even at high speed, should not corrupt mailboxes.
Additionally, it is usually desirable for the format to survive even unexpected
problems, such as power outages or a software crash. Poor crash survival is one of the
problems faced by many forms of mail storage: if the power goes out in the middle of
delivering a message, that message may be only partially delivered. While a
crash-resistant fi lesystem might prove helpful by preventing unfi nished fi le operations
from being committed to disk, it does not help when one is restricted to certain
environments. For example, one may need to store emails on a network fi lesystem like
NFS or Samba/CIFS. If the delivering agent crashes mid-delivery, the message is only
partially delivered, and the network fi lesystem cannot tell the difference.

Most mbox-based storage formats have, among other problems, the problem of
reliability. If the fi rst message in an mbox has been removed, the full mbox must be
rewritten to disk. During this process it is extremely vulnerable to crashes: a crash
while rewriting the whole mbox will essentially delete every message that hasn't
yet been rewritten. The larger the mbox, the more vulnerable it becomes. This,
however, isn't the biggest vulnerability of mbox mailboxes, and can be avoided by
using temporary fi les. More worrying is the problem of partial delivery. If delivery
fails and leaves a partial message at the end of the mailbox, the next message
to be delivered is considered to be part of the partial message. However, if the
circumstances of using the mail collection require read-only access, these problems
are entirely mitigated and some of mbox's strengths (such as extremely effi cient
storage of email) may make it the best tool for the job.

The entire mbox fi le is vulnerable to a crash or power outage while it is being
modifi ed; simply splitting the messages as an MH folder does, only limits the problem.
MH folders being modifi ed during a crash are vulnerable to partial or corrupted
messages, rather than partial or corrupted mailboxes, because there is no visible
distinction between a partially delivered message and a completely delivered message.
If the power goes out while a message is being delivered or modifi ed, all unwritten
portions of the message may be destroyed (rather than all unwritten portions of the
entire mailbox). If the mail system recognizes that the message wasn't successfully
delivered and retries delivery later, there will be duplicate messages in the MH folder
where one version of the message is only partial and the other is complete.

Both these problems may also be mitigated by the underlying fi lesystem to some
extent. Saving a fi le to disk generally involves three to four steps:

1. Opening and/or creating the fi le
2. Writing the contents of the fi le
3. Running fsync() on the fi le (optional)
4. Closing the fi le

Storing and Retrieving Email

[58]

The fundamental problem arises because, to improve speed, fi les are frequently
not actually written to the disk when programs expect them to be. Instead, they are
cached, and written to the disk whenever it is convenient for the operating system. If
the system crashes before the fi le is actually written to disk, all unwritten portions of
the fi le will vanish. The fsync() call tells the operating system to fl ush all unwritten
portions of the fi le to the disk, though the disk itself may not actually write that fi le
to permanent storage immediately. Journaling fi lesystems prevent fi le operations
that were not fl ushed to disk before a crash from appearing once the system has
recovered; thus, messages will either be fully delivered or will not appear. Some
network fi lesystems like AFS only consider fi les to be truly saved to disk once they
have been closed (i.e. fi nished), which achieves roughly the same behavior.

The Maildir format attempts to address the problem of unexpected crashes and
power outages without relying on unusual fi lesystem behavior by making a basic
assumption. It relies on the safety (i.e. atomicity) of directory operations; and on
most UNIX fi lesystems, this is a valid assumption to make. Directory operations
are typically fl ushed to disk immediately. When a message is delivered to a
Maildir, it is fi rst written into the temporary directory (tmp), then once it has been
fully written, closed, and sync'd, it is moved into the new mail directory (new). As
long as renaming fi les can be done safely, as on many fi lesystems, this prevents
partial messages from appearing in the new directory. Similarly, the most common
modifi cations to messages that mail readers make are modifi cations to the fl ags of
messages: read, forwarded, replied, etc. Rather than modifying the content of the
message to refl ect changes in fl ags (as mbox and MH folders require), the message
fi les are merely renamed to refl ect these changes—which is safe as long as renaming
is safe. Renaming is safe as long as it is essentially atomic: it either did not happen, or
did (in other words, a fi le cannot be partially renamed). On many fi lesystems, this is
indeed true. Some fi lesystems, however, do not guarantee that renaming is atomic,
(for example, by caching the change to write to disk later) which can make Maildir
vulnerable to losing messages that had been marked as fully delivered.

Speed
 Another major consideration for mail storage formats is the speed with which the
necessary operations can be performed on them. The basic operations that tend to be
performed on a collection of email are as follows:

Reading
Marking (as read/forwarded/replied/fl agged/etc.)
Deleting
Delivering
Searching

•

•

•

•

•

Chapter 4

[59]

Reading
 Each mail storage format has different speed strengths. For example, mbox fi les are
easy to read linearly, starting at the beginning and going to the end, without jumping
back and forth within the fi le. This makes reading out all the messages from an mbox
extremely fast. Comparatively, reading multiple messages from both MH folder
and Maildir storage formats requires opening, reading, and closing many fi les in
quick succession. On most operating systems, opening a fi le is more time-consuming
than simply reading the next block in an already-open fi le. So both MH folders and
Maildirs can take signifi cantly longer than mbox fi les to read in full. There is a slight
difference if one already knows which message one needs: if only one fi le needs to
be opened, MH and Maildir are just as fast as mbox. In fact, in some cases, MH and
Maildir can be even faster. For example, if one already knows the fi lename of the
message in the Maildir or MH folder, one can merely open that message. Finding the
same message in an mbox fi le requires either the knowledge of the message's offset
within the fi le, or requires starting at the beginning of the fi le and reading through it
sequentially to fi nd the desired message. For this reason, random access to messages
in MH and Maildir formats is essentially at the same speed as linear access, while
random access in an mbox fi le typically has a speed penalty.

Marking
 Mbox and MH folders store message status information (read, forwarded, replied,
fl agged, etc.) in a header within the content of the stored message. Modifying this
header requires modifying the content of the fi le containing the message, and thus
generally requires the fi le to be rewritten. On single-message mail collections, this
takes the same amount of time for both mbox and MH formats. As the number
of messages in the mailbox increases, the amount of time required to alter a fl ag
of a message in an mbox also increases. The amount of time required to modify a
message in an mbox may vary greatly, depending on the position of the message
to be modifi ed within the fi le. Maildir, on the other hand, stores most marking
information in the name of the fi le containing the message rather than within the
fi le itself, and so does not need to rewrite the entire fi le, but merely rename it.
Depending on the fi lesystem, this can be extremely fast. Some fi lesystems (such as
FFS and EXT2) store the contents of a directory as merely a list, and modifi cations
require iterating through the list sequentially: the larger the number of messages in
the directory, the longer it might take (much like an mbox, the time to fi nd an entry
depends on its position in the directory list). Other fi lesystems store the contents
of a directory as a hash (such as EXT3 with the dir_index feature enabled), or as a
binary search tree (such as ReiserFS), which makes the process of fi nding the correct
directory entry very quick even in directories containing an extremely large number
of fi les.

Storing and Retrieving Email

[60]

Deleting
 Deleting messages in mbox fi les, much like marking a message, requires rewriting
of the entire mailbox fi le to disk, and so can take a long time. In an MH folder and a
Maildir, deleting a message is as quick as deleting a fi le, which is usually very fast.

Delivery
 Delivering messages to a mail collection can be much faster than other mailbox
modifi cations. In an mbox, adding a message merely requires appending to the
mbox fi le, which is usually very quick. In MH folders and Maildirs, a new fi le must
be created and then written to, which may take a little longer than appending to
an mbox fi le. The Maildir and MH designs stand out primarily under high-load
situations. Mbox fi les cannot have multiple messages in the process of delivery at
the same time: they must be fully written one at a time. Mail delivery programs
generally use a locking mechanism of some kind to prevent multiple processes from
modifying the mbox fi le at the same time. MH folders do not suffer from the same
problem: multiple processes may deliver and modify messages at the same time, but
may not add or delete fi lenames at the same time. Each fi le in an MH folder must
be named with a sequence number. Mail delivery requires fi rst selecting a sequence
number, then checking if it exists already, then exclusively creating it, and possibly
repeating the process if a fi le with the selected name already exists. To prevent
confl icts, there is usually a lock involved that allows a sequence number to be safely
selected in a single attempt. Maildir removes even this restriction, and allows as
much parallelism as the underlying fi lesystem can support. New messages are
placed in fi les that have names with a specifi c format that makes naming collisions
exceedingly unlikely, and if there is a collision, waiting and trying again a single
time is usually all that is necessary to resolve the confl ict. While on most fi lesystems
fi le creation is still a serial action, the benefi t of Maildir is that no lock must be used,
which makes Maildir safe to use in situations where fi le locking is unreliable or
unavailable (such as on some NFS implementations).

Searching
 Searching through messages has become one of the most focused-on areas for
improving mail storage performance. In large collections of messages, identifying
the ones from a particular sender or referencing a particular topic is frequently very
useful. Unfortunately, these fi le storage formats do not include specifi cations of quick
indexing methods. At its most basic, searching for a given sender or subject or word
in the content of a message requires reading sequentially through each message and
parsing the headers and body in search of the desired data. Mbox fi les, MH folders,
and Maildirs offer no inherent advantage beyond the already explored variations in
the speed of reading through the entire mail collection. It is this problem that

Chapter 4

[61]

frequently makes mail storage in an SQL database seem attractive, as SQL databases
are known for their indexing and rapid searching. The same techniques, however,
can be applied to mbox, MH folder, and Maildir storage formats. Creating similar
indexes of the features of the messages in each can drastically accelerate searching
through them, as long as each feature (sender, subject, etc.) can be associated with a
method of quickly fi nding the related message. Each mailbox format has a method
of uniquely identifying and quickly locating the messages within it. A message in
an MH folder or Maildir can be identifi ed and quickly located by its fi lename within
the folder. Messages within mbox fi les can be identifi ed by their offset within the fi le.
Perhaps the only major drawback of adding indexing features to these formats is the
overhead of maintaining the indexes as the folders are modifi ed.

On-Disk Efficiency
 Mail storage formats are also generally compared by their storage requirements. It
is easy to assume that the storage requirements of a given set of emails will be
roughly the same regardless of the format in which they are stored, but this is
usually a poor assumption.

When messages are stored one-per-fi le as in an MH folder or a Maildir, they can
require much more space on disk than they would if stored in a single fi le. For
example, many simple fi lesystems have a basic block size of 4 KB (4096 bytes). In
other words, disk space is allocated in chunks of 4096 bytes, so an email message
that is 200 bytes long will require just as much disk space as email messages 4000
bytes long. A message that is 4097 bytes long requires twice as much space as a
message that is 4096 bytes long, if they are stored one per fi le. More than that, there
is overhead in the organization of the fi les on disk. Multiple fi les in a directory take
more space than a single fi le because they require multiple entries in the directory's
index (though this overhead is frequently minuscule). Additionally, on most modern
fi lesystems each fi le is associated with some invisible metadata referred to as
its inode, which takes up at least an extra block on disk. Thus, the impact of a
200-byte message stored in its own fi le is one 4 KB block for its own data and another
4 KB block for its inode: 8192 bytes must be allocated just to store a single 200-byte
message. Some fi lesystems mitigate this problem somewhat by allowing basic
blocks to be fragmented into smaller sizes, (1 KB or 500 bytes or similar). The extent
to which this overhead affects a given Maildir or MH folder depends on the size
of the messages, the block size of the underlying fi lesystem, and the ability of the
underlying fi lesystem to fragment blocks.

In contrast to the one-fi le-per-message storage, mbox fi les do not suffer from such
overhead. Each message is appended directly to the end of the preceding message,
requiring less than a block of wasted space per mailbox fi le (plus the space of the
fi le's inode). The per-message overhead is merely a few bytes to distinguish one
message from another.

Storing and Retrieving Email

[62]

The POP3 and IMAP Protocols
 Email was fi rst introduced long before personal computers became popular, and
most email was read from the same central computer on which it was stored. With
the advent of the Internet and the widespread use of personal computers, it became
much more common for email to be fetched from a central server and read by a client
on a personal computer. As SMTP is a sending-based protocol, new communication
protocols were devised for fetching mail from the central servers. The most popular
are known as the Post Offi ce Protocol 3 (POP3) and the Internet Mail Access
Protocol (IMAP).

 POP3 is a very simple protocol with limited capabilities. With it, a client can request
messages, delete messages, and detect new messages. However, that is essentially
the extent of its feature set. Most POP3 mail clients use POP3 to retrieve the messages
and store them locally, then either delete them from the central server or leave them
there as a backup copy. Because the protocol is so simple, POP3 servers tend to be
extremely lightweight and are frequently used on heavily loaded mail servers that
do not have the resources to support more complex protocols. Qmail comes with an
example POP3 server, qmail-pop3d.

 IMAP is a far more complex protocol that makes it easy to manipulate mail messages
that are stored on the server. IMAP servers understand standard mail fl ags (replied,
forwarded, read, etc.), folders, searching, out-of-order simultaneous commands,
simultaneous connections, MIME decomposition, message headers, message tagging,
and more. IMAP clients generally leave mail messages on the server, though they
frequently also keep local copies as a cache of the state of the server. Because the
protocol is so comprehensive and the server can be commanded by users to perform
complex tasks, IMAP servers are frequently rather large and resource-intensive. For
this reason, extremely busy mail servers often do not support IMAP.

Protocol and Server Selection
 Selecting a protocol to support is not always possible: which to support is frequently
a requirement rather than a choice. When it is a choice, the usual deciding factor is
the predicted load that the decision will place on the server. IMAP clients typically
stay connected for hours at a time; one must predict how many users will be
connected at the same time, and whether the server hardware and operating system
can handle that number of concurrent clients. An important detail of that answer
is how many users are likely to be actively manipulating their email at any one
time: the more activity, the more will be required of the CPU and storage system.
Additionally, the system must not only be able to support the IMAP server load, but
also the load from any other services the system is expected to provide as well, such
as SMTP support, spam analysis, and other services both related and unrelated

Chapter 4

[63]

to email. Much of the work in estimating the load depends on the choice of server
software and supported features as well as the choice of protocol, making it diffi cult
to estimate in the general case. As server hardware gets more and more capable,
however, support for large volumes of IMAP users becomes easier to provide. If the
server hardware cannot support an IMAP server at acceptable performance levels,
POP3 is the obvious alternative.

Once a protocol has been selected, server software to support that protocol must
be selected. The choice of software must necessarily be a balance of many factors
such as security, ease of setup and maintenance, compatibility with the mail system
back end, speed, hardware requirements, software requirements, and so forth,
all depending on the needs and requirements of the system being constructed. If
the server will need to support POP3, the qmail POP3 server is probably the most
appropriate, as it is simple, secure, fast, and integrates well with anything that
can integrate with the rest of qmail. If the server will need to support IMAP, the
choice becomes slightly murkier, and frequently involves some degree of personal
preference on the part of the administrator. The most popular options include:

UW-IMAP (http://www.washington.edu/imap/)
Pro: It is the canonical IMAP server.
Con: It does not support Maildir mailboxes without a patch,
and can be diffi cult to integrate into a qmail-centric system.

Courier-IMAP (http://www.courier-mta.org/)
Pro: Supports Maildir, Maildir++, and a suffi ciently large
number of authentication mechanisms to be able to integrate
with most qmail-based systems.
Con: Complex to set up and administer. Resource intensive.

Dovecot (http://www.dovecot.org/)
Pro: Similar feature set to Courier-IMAP, but is simpler to
confi gure and integrate with qmail. Very fast.
Con: Young project undergoing rapid development.

Cyrus IMAP (http://cyrusimap.web.cmu.edu/)
Pro: Large array of speed enhancements for fast text searching,
many features for extremely large segmented user space and
storage, easy virtual domains, and more.
Con: Extremely complex. Diffi cult to integrate with qmail;
relies on unique storage format.

BincIMAP (http://www.bincimap.org/)
Pro: Designed to work just like qmail-pop3d, extremely
simple to integrate with qmail.
Con: Has far fewer and more basic features than other servers.

•
°
°

•
°

°

•
°

°

•
°

°

•
°

°

Storing and Retrieving Email

[64]

In general, choose a server that provides the required features, and learn how it
works. Starting with something simple, like BincIMAP, is a good fi rst step. Keep in
mind that if requirements change, the software can always be swapped out.

qmail-pop3d Server Setup
 Presuming that qmail is already installed, installing qmail-pop3d is a relatively
simple task. qmail-pop3d requires checkpassword-compliant authentication.
The standard SMTP-AUTH patches to qmail also use checkpassword-compliant
authentication, so you may have set it up already. The qmail-popup program uses
the checkpassword interface, which uses pipes to communicate authentication
information (username and password) to a small authentication program. This
auxiliary program decides whether to accept the user's credentials or not. Once
a checkpassword-compatible authentication program is installed and working,
qmail-pop3d can be run similarly to qmail-smtpd. Like qmail-smtpd,
qmail-pop3d can be run from anything that will handle the network connections
for it, such as inetd or tcpserver.

The Checkpassword Interface
 Checkpassword is a generic authentication interface (http://cr.yp.to/checkpwd/
interface.html) designed by Dr. Bernstein. The essential idea is to separate the
program performing authentication from the program requesting authentication.
This allows the authentication program (which needs to be audited very thoroughly)
to be small and entirely separate from the—possibly less trustworthy—program
being authenticated. The design also allows the simplest of programs, including
shell scripts, to use the authentication program. A checkpassword-compliant
authentication program receives credentials (username, password, and a time stamp)
in a standard format via fi le descriptor three and uses its return value to indicate
whether the authentication succeeded. A return value of zero indicates success and
non-zero indicates failure. Additionally, a checkpassword-compliant authentication
program takes as arguments the name and arguments of a program to be run. If
authentication succeeds, the specifi ed program is run as the authenticated user, in
that user's home directory. In concept, this feature is akin to the program su - -c.

Credentials are passed to the checkpassword-compliant authentication program
as three null-terminated strings via fi le descriptor three: fi rst the username, then
the password, and then a timestamp (which is usually ignored). For example, the
following string could authenticate a user named user with the password
password: user\0password\0Y123456\0.

Chapter 4

[65]

Note that the \0 indicates a null character, and Y123456 is a generic timestamp.
Using a basic checkpassword program (such as checkpassword), the following shell
command would print out the authenticated user's home directory when run as root:

printf "user\0password\0Y123456\0" | checkpassword pwd 3<&0

And the following shell command would print out the user's group memberships:

printf "user\0password\0Y123456\0" | checkpassword groups 3<&0

Installing the checkpassword Program
 There are many checkpassword-compatible programs available, supporting a
wide variety of authentication mechanisms, all of which are simple and tend to
be very easy to compile. Links to many of these programs can be found at
http://qmail.org. The most basic, which authenticates standard UNIX users,
is the reference implementation, available at:
http://cr.yp.to/checkpwd/checkpassword-0.90.tar.gz

Once the tarball has been downloaded, decompress it as follows:

gunzip checkpassword-0.90.tar.gz

tar -xf checkpassword-0.90.tar

Then go into the newly created directory and compile the software:

cd checkpassword-0.90

make

Finally, install it. Suffi cient permissions to install it will be required, so this may need
to be performed as the root user:

make setup check

Running with tcpserver
 Just like qmail-smtpd, qmail-pop3d can be run from tcpserver and monitored by
daemontools. As such, it will need a directory (e.g. /var/qmail/supervise/pop3d)
and run fi le for the daemontools' supervise process to run. An example run fi le
looks like this:

#!/bin/sh
exec tcpserver -R -l 0 -H 0 pop3 \
 /var/qmail/bin/qmail-popup FQDN \
 /bin/checkpassword \
 /var/qmail/bin/qmail-pop3d mail 2>&1

Storing and Retrieving Email

[66]

In this example, the FQDN in the third line must be replaced with the fully qualifi ed
domain name of the computer hosting the POP3 server. What this does is tell
tcpserver to run the qmail-popup program, which does two things:

1. Retrieves authentication information from the client using part of the
POP3 protocol.

2. Feeds that information to the checkpassword program.

The checkpassword program:

1. Checks the authentication credentials.
2. If the credentials are valid, changes to the authenticated user's home

directory.
3. Sets the correct environment variables for that user (namely, HOME and USER).
4. Runs qmail-pop3d as that user.

The qmail-pop3d server:

1. Looks for a Maildir-formatted directory named mail in the current directory
(the authenticated user's home directory).

2. If it is found, it provides the client access to that mailbox via the POP3
protocol commands.

After the primary run fi le is set up, set up the logging for the qmail-pop3d server.
In order to do this fi rst create a directory for storing the log fi les (e.g.
/var/log/qmail/pop3d), owned by the qmaill user. Create a directory named log in
the same directory as the above run fi le, and inside that log directory, create another
fi le named run that looks like the following:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill \
 /usr/local/bin/multilog t \
 /var/log/qmail/pop3d

Once all these fi les and directories are created, make sure the run fi les are executable:

chmod +x /var/qmail/supervise/pop3d/run

chmod +x /var/qmail/supervise/pop3d/log/run

Finally, tell svscan to use this new set of directories to start the qmail-pop3d service:

ln -s /var/qmail/supervise/pop3d /service/qmail-pop3d

The qmail-pop3d server can now be controlled and monitored in the same way that
the qmail-smtpd server is.

Chapter 4

[67]

Webmail
 One of the most popular methods for providing portable access to email is through
a web-based email client, commonly referred to as webmail. Typical webmail
programs are email clients that run on, and are only accessible via, a web server.
Their basic functionality is the same as that of an email client running on the user's
personal machine. As such, they usually use either IMAP or, less commonly, POP3
protocols to fetch the user's email. This not only provides the ability to put the web
server (and webmail software) on a computer without direct access to the mail
storage (and makes it possible to change the back end without changing the webmail
software), but also standardizes the authentication mechanism. The webmail
software will simply authenticate via IMAP or POP3 rather than needing to perform
user authentication itself. In some cases, webmail software can be packaged with
other mail software to give it direct access to the mail storage. This is often done in
the name of improved speed, but is not, however, typical.

The most common complaints about webmail are those regarding its speed and its
interface. Unlike common mail client programs, webmail is typically restricted to
the standard interface components available to most web pages such as clickable
links, checkboxes, pop-up menus, radio-buttons, and so forth. Unfortunately, this
frequently feels awkward to users accustomed to desktop-based mail-reading
 software. The advent of Asynchronous JavaScript and XML (AJAX) programming
has enabled web-based applications, including webmail, to emulate the interface of
desktop applications. While generic AJAX webmail applications have not yet become
as widespread as the more traditional webmail applications, this is likely to happen
within the next several years, and should largely address most complaints about
webmail interfaces compared to desktop mail clients. Even AJAX, however, cannot
do everything that desktop-based mail programs can, such as integration with other
desktop applications.

The other major complaint about webmail—namely, about its speed—can have
many causes, only some of which can be mitigated. One reason webmail may be
slow, particularly compared to desktop programs, is that it typically cannot take
advantage of some of the optimizations that a desktop application can, such as
caching messages, and communicating with the IMAP server only when something
changes. Web-based applications can typically maintain only a small amount of
temporary state information, which means that they cannot cache messages and
cannot maintain long-term connections to the mail server. Indeed, many webmail
applications must re-authenticate themselves to the mail server for every new web
page that the client visits; and usually every operation a user wishes to perform
involves loading a new page. This performance can be improved in some cases
through the use of a caching IMAP proxy (obviously, only applicable when the
webmail application is using IMAP) that maintains long connections and as such can
improve the speed of re-authentication.

Storing and Retrieving Email

[68]

Because webmail applications usually cannot cache large amounts of data, they rely
heavily on the behavior and speed of the underlying IMAP or POP3 mail server.
For example, when listing the folders available for storing mail, a client application
running on the user's own machine can store the list of mailboxes from the last time
it was run, and can thus provide that list instantly and update it later as the server
responds with more recent information. Webmail applications, however, cannot
store that information from instance to instance, and must always re-request that
information from the server. Finally, webmail operations are bound by the capacity
of the central server and are subject to the load that the server experiences from
multiple users accessing it at the same time. Every webmail action, be it as simple as
listing mailboxes or as complex as searching for a pattern in the body of every email,
must be performed on the server itself, which is a resource that must be shared by all
of the users of the server. Improving the effi ciency of either the webmail application
or the IMAP or POP3 server upon which it relies can improve webmail speed to
some degree, but cannot address the basic problem of sharing a resource among
many users.

Summary
This chapter has covered, in depth, the ideas behind storage and retrieval of email.
Rather than delving into as much qmail-specifi c detail as other chapters, this chapter
covered many generally important storage topics, including mailbox formats and the
two retrieval protocols, POP3 and IMAP. Next up, virtualization!

Virtualization
 One of the most interesting extensions to the standard mail setup discussed in earlier
chapters is that of virtualization. There are many reasons for wanting to virtualize
email services, from hosting multiple domains with different users to simply
extending the ability to apply policies to different sets of email. There are three basic
techniques that are used with a standard qmail system for attaining different forms
of virtualization: qmail's control/virtualdomains fi le, user-defi nable address
extensions, and running multiple qmail instances on the same system.

Generic Virtualization Framework
 The most straightforward mail handling in qmail is used for what are known as the
local domains: those listed in the control/locals fi le. The users for these domains
are all the same, and are typically the users defi ned in /etc/passwd, though they
can be defi ned in users/assign as well (discussed in the Non-Virtual Non-System
Users section). Qmail, however, has another sense in which an email can be local,
which is to assign a domain to a user (or, more accurately, to a prefi x). This feature is
confi gured with the control/virtualdomains fi le.

Power of the virtualdomains File
 The virtualdomains fi le is one of the most powerful, useful, and stunningly
simple mechanisms for confi guring qmail. Virtual domains and even virtual users
can be created, independently of one another, and assigned to controlling users.
Virtual domains are fully independent, and as they are assigned to users (or, more
accurately, prefi xes) they can be in different UNIX protection domains if desired.
This fi le can also defi ne virtual users and similarly assign them to controlling users.
This fi le thus makes it both possible and easy to intercept specifi c addresses and do
something special with them.

Virtualization

[70]

Perhaps surprisingly for the power this fi le wields, the control/virtualdomains
fi le is only slightly more complicated than similar control fi les, such as
control/locals. Rather than a list of domains, the virtualdomains fi le is a list
of patterns and their associated prefi xes. The entries are of the form:

matching-pattern: prefi x

Only one prefi x is associated with each pattern. The matching pattern can be one of
the following three things: a domain (that follows the same wildcarding semantics
used in the control/rcpthosts fi le), an email address, or an empty string. The
empty string is considered to match anything. An email address matches any
message addressed to that email address, and a domain matches any message
addressed to a user in that domain. If there are multiple possible matches, the longest
match is used.

Emails that match patterns listed in the control/virtualdomains fi le are
considered to be local emails, similar to those addressed to domains in the
control/locals fi le. Messages that match patterns in the virtualdomains fi le must
fi rst undergo a simple modifi cation before delivery. While messages are prepared
for delivery, if they have an envelope destination address that matches a pattern in
the virtualdomains fi le, that destination address is prepended with the matching
pattern's associated prefi x. This turns the original local part of the address into an
extension of the prepended user. In this way a domain can be mapped to a user,
giving that user full control over the mailboxes (or users) within that domain. The
virtualdomains fi le can also be used to defi ne exceptions to the matching rules, if
the prefi x is blank.

It is important to note that the control/virtualdomains fi le is considered after the
control/locals fi le, which means that if an email is addressed to a domain listed
in locals, the virtualdomains fi le will not apply. Also, virtualdomains rewriting
occurs before the mail is given to qmail-lspawn for delivery.

This sounds complex, but is easy to understand with an example.

Basic Virtual Domains
 An example virtualdomains fi le that demonstrates most of the fi le's features is
as follows:

example.com:foo
.example.com:foo-bar
two.example.com:baz
waldo@domain.com:qux
domain.com:
:garply

Chapter 5

[71]

Presuming that the users mentioned i.e. foo, baz, qux, and garply are the only local
users on this system; these lines cause the following results:

1. The fi rst line matches any address ending in @example.com, such as
user@example.com. Such a destination address will be rewritten as
foo-user@example.com, ensuring that the email's delivery will be controlled
by the local user named foo.

2. Messages addressed to user@something.example.com do not match the fi rst
line but do match the second line, and so will be delivered as if they had been
addressed to foo-bar-user@something.example.com.

3. Because the virtualdomains fi le is used in a longest match wins manner,
the third line (not the second) will match messages addressed to
user@two.example.com. This destination will be rewritten as
baz-user@two.example.com and baz will control the delivery of
such messages.

4. The fourth line specifi es that email addressed to waldo@domain.com will be
instead delivered as if it had been addressed to qux-waldo@domain.com. The
qux user will control that delivery.

5. The fi fth line specifi es that any domain.com email—other than
waldo@domain.com—should be treated as if domain.com had been listed
in the control/locals fi le.

6. Finally, the sixth line specifi es that all other email will be rewritten and
delivered to the local garply user. For example, email addressed to
someone@somewhere.org will be rewritten as garply-someone@somewhere.
org and delivery will be attempted locally.

In this example, the foo user is essentially in charge of the entirety of the
example.com domains. Users that are specifi c to example.com are defi ned by
creating appropriately named .qmail fi les in foo's home directory.

For example, to establish the standard postmaster@example.com address, foo
would create a fi le named .qmail-postmaster in its home directory, containing the
instructions for delivering postmaster's email. The foo user could also establish a
foo@example.com address by creating a fi le named .qmail-foo in his or her home
directory. In this way, once the example.com mapping has been established, the foo
user can set up and maintain the users in the example.com domain without ever
requiring further permission from or contact with the system administrator.

It is worth pointing out that precisely who controls what can get more complex if
real usernames have extension separator characters (a hyphen, by default) in them.
For example, if the address postmaster@example.com is rewritten to be
foo-postmaster@example.com, it is typically delivered according to the instructions
in ~foo/.qmail-postmaster or, if that fi le does not exist, ~foo/.qmail-default.

Virtualization

[72]

However, if there is a user named foo-postmaster, that user will receive email
addressed to postmaster@example.com.

If a .qmail fi le (such as ~foo/.qmail-postmaster) cannot be located for a
given extension address (such as foo-postmaster@example.com), the alias user's
directory is checked for .qmail fi les. Specifi cally, .qmail-foo-postmaster,
.qmail-foo-default, and .qmail-default. If none of these fi les exist, the message
is considered undeliverable and is bounced.

Note that during delivery of such an email, the standard environment variables
are defi ned per the rewritten destination rather than per the original address. For
example, if a message addressed to postmaster@example.com is delivered using the
example confi guration, the affected environment variables will be defi ned as follows
(assuming foo's home directory is /home/foo):

Environment
Variable

Content for virtual domain
delivery

Content for normal
delivery

RECIPIENT foo-postmaster@example.com postmaster@example.com

LOCAL foo-postmaster postmaster

USER foo postmaster

HOME /home/foo /home/postmaster

HOST example.com example.com

HOST2 example example

HOST3 example example

HOST4 example example

EXT postmaster

The Path of an Email
 To better understand how qmail's virtual domain mechanism works, let's attempt to
understand it visually. The following chart roughly illustrates the decision-making
process that qmail performs when delivering a message (the process starts at the
top left):

Chapter 5

[73]

Deliver
using default
instructions

Try again
later Bounce

Deliver
according
to .qmail
contents

yes

no

yes

yes
yes

yes

yes

yes yes

yes yes

no

no

no

no

no

no no

no
no

Is the domain in
control/locals?

Does the address
match an entry in

control/virtualdomains?

What is the local name?

Where is the user’s
home directory

and does it exist?

Is there a user with
this name?

Strip an extension
from the local name,

if possible

Is there a matching
.qmail-local file in the alias

user’s home directory?

Does the local part
of the address

include an extension?

Is there a matching
.qmail file in that

user’s home directory?

Is there a matching
.qmail-ext file in that

user’s home directory?

Are the permissions
on this file correct?

 Non-Virtual Non-System Users
T o new qmail administrators, the users/assign fi le is probably the most
mysterious fi le in qmail's confi guration. Its purpose is to allow the administrator
to defi ne mailboxes (or users) that qmail will treat as potential delivery targets.
With this purpose comes the ability to defi ne the name of the .qmail fi le that will
be used to confi gure the defi ned user and the way in which that user's extensions
will be separated (qmail extensions are typically separated by a hyphen unless
changed at compile time in conf-break).

Virtualization

[74]

Being able to defi ne mailboxes independent of the underlying operating-system users
can be very useful for many purposes. One reason this fi le is often used is for speed;
it is compiled into a CDB-formatted database fi le, which is faster to read than text,
and thus can make the process of looking up users fast. This is particularly valuable
in cases when looking up users the usual way (i.e. via getpwent()) is slow—such
as when there are very large numbers of users. Being able to create mailboxes
independent of the underling operating system can also be used for many creative
purposes and organizational schemes. The most popular use of this fi le, though, is
to assist in organizing virtual domains. Each domain can be given its own directory,
which may or may not have a unique system user assigned to it.

While this may sound complicated, and the fi le format is more detailed than any
other qmail confi guration fi le, the underlying concept is very simple. For any
mailbox, two things are obviously required: a name (i.e. the part of the associated
email address to the left of the at @ symbol) and a directory associated with the name.
When dealing with users defi ned by the operating system, this is the username and
the user's home directory. Because all fi les must be owned by a system user of some
kind, qmail must know a UID, GID, and username to be used when delivering to this
mailbox. For a user (mailbox) d efi ned by the operating system, these are the UID,
GID, and username of the user in question, and this same information is defi ned in
the users/assign fi le. Finally, qmail also allows both the defi nition of alternative
extension separators and an extension to specify the default .qmail fi le in the defi ned
user's home directory. These defi nitions are compiled into a CDB fi le—users/cdb—
for qmail's use by running the qmail-newu program, which must be run whenever
the users/assign fi le is changed.

The /etc/passwd fi le, which defi nes UNIX users, generally has a format as follows:

username:password:UID:GID:groupname:homedirectory:shell

For example:

john:x:100:101:doe:/home/john:/bin/sh

The users/assign fi le has most of this same information, but comes in two forms:
simple assignments and wildcard assignments. Simple assignments are the easiest,
and begin with an equals (=) sign:

=mailboxname:username:uid:gid:homedir:dash:ext:

The dash and ext parts are concatenated to defi ne a .qmail fi le for delivery. A
simple translation of the above example /etc/passwd user would be something like
the following:

=john:john:100:101:/home/john:::

Chapter 5

[75]

Note that this provides an alternative method of defi ning aliases. For example:

=zeke:john:100:101:/home/john:::

This line will deliver mail sent to zeke as if it had been sent to john. If zeke mail must
be sent to the john user but must be delivered according to a different .qmail fi le, a
line like this could be used:

=zeke:john:100:101:/home/john:-:zeke:

This would tell qmail to deliver mail addressed to zeke according to the instructions in

/home/john/.qmail-zeke.

The above example lines are all simple assignments, and do not support extensions.
In other words, it will direct email addressed to john@here.com, but not
john-test@here.com. That's what wildcard assignments, which begin with a plus
(+) sign, are for. Wildcard assignments have the following form:

+mailboxprefix:username:uid:gid:homedir:dash:pre:

This is essentially equivalent to having an entry for every possible string that could
replace EXT:

=mailboxnameEXT:username:uid:gid:homedir:dash:extEXT:

For example, the following entry will handle john-test@here.com and all similar
john-anything@here.com extensions:

+john-:john:100:101:/home/john:-::

One of the places where this ability to create arbitrary mailboxes can be very useful
is in organizing virtual domains. For example, imagine that you are confi guring
example.com to be a virtual domain. The control/virtualdomains fi le would have
an entry like the following:

 example.com:example

Now that all example.com email will be directed to the example mailbox, the
example mailbox must be defi ned. One way to do this is to have a UNIX user named
example. Unfortunately, this means that the system will also accept mail addressed
to example@yourserver.com (because if example is a full UNIX user, it is also a valid
recipient). A more restrictive method is to create a wildcard entry in the
users/assign fi le, as follows:

+example-:john:100:101:/home/example.com:-::

This will make sure that all example.com users are handled by .qmail fi les in
the folder /home/example.com, and that all such messages will be owned by the
john UNIX user. This also prevents example@yourserver.com from being a valid
recipient address.

Virtualization

[76]

User-Management Problem in Assisted
Virtual Domains
T he convenience of having a single user able to confi gure and manage all of the users
for a given virtual domain without the intervention of the system administrator is
signifi cant. Unfortunately, managing virtual users even within a single domain is a
chore that qmail does not address. Frequently, for example, the users of the domain
are defi ned in a central database containing credentials (passwords), full names, and
other associated information, such as is queried by the checkpassword program
discussed in Chapter 4. It is sometimes possible to change the user creation, deletion,
and modifi cation mechanisms to keep the set of .qmail fi les for that domain up to
date, but such machinations are rarely convenient.

A common method for addressing this problem is simply to create a
.qmail-default fi le in the domain's home directory. This fi le is then used for the
delivery instructions of all users in that domain, and can use a script to decide
what to do with each message rather than relying on the existence of .qmail fi les
to defi ne that information. The primary benefi t of this approach is that users can be
defi ned by virtually any system that can be queried—from an LDAP server to an
IMAP server to an SQL database to a fl at fi le to a fi lesystem—without needing to
modify the delivery environment for every change in user information and without
needing qmail to support that mechanism.

Popular Solutions: vpopmail and VMailMgr
A s managing virtual domains and virtual users is a common frustration, several
programs that provide assistance are available. Two of the most popular
qmail-compatible ways of managing virtual domains are vpopmail by Inter7
(http://www.inter7.com/index.php?page=vpopmail), and VMailMgr by
Bruce Guenter (http://www.vmailmgr.org/). The two are very similar in what
they provide.

The way vpopmail works is straightforward. At the basic level, it maintains a
database of users (it can use Oracle, Sybase, MySQL, or LDAP databases, or use
its own domain-specifi c CDB fi les), provides a checkpassword-compliant interface
for authenticating against that database, and automatically modifi es qmail's
confi guration fi les as necessary when domains are added. Each domain has an entry
in the control/rcpthosts and control/virtualdomains fi les, as well as an entry
in the users/assign fi le. The users/assign fi le is used to give each domain its own
home directory without creating a UNIX user for each domain. It can, of course, be
told to use different UNIX users for each domain. There is a .qmail-default fi le in
each domain's home directory that feeds email messages to a vpopmail-specifi c

Chapter 5

[77]

delivery program that verifi es the recipient and delivers the email. Additionally,
.qmail fi les in each domain's home directory defi ne aliases or forwards. Each
virtual user has a unique home directory within its domain's home directory that
can contain user-specifi c confi guration information, such as delivery instructions
and spam detection preferences. vpopmail emulates .qmail fi le handling for these
virtual users, so a .qmail fi le within the virtual user's home directory controls the
email delivery for that user. By default, mail is delivered to a Maildir-formatted
mailbox named Maildir inside each virtual user's home directory.

For clarity's sake, imagine an email addressed to a vpopmail-managed domain:
user@example.com. Imagine that vpopmail has been confi gured to keep domains
in /var/lib/vpopmail/domains/. Here's how delivery would work, from network
to disk:

1. First, a remote host contacts the tcpserver program listening on
port 25—which spawns qmail-smtpd—with a message addressed to
user@example.com.

2. The qmail-smtpd program checks rcpthosts and morercpthosts.cdb
and sees example.com listed.

3. The mail is passed to qmail-queue by qmail-smtpd to be queued on disk.
4. The qmail-send program notices the new message in the queue, reads its

destination address, and looks for example.com in locals.
5. Not fi nding it, qmail-send next checks in virtualdomains.
6. The virtualdomains entry is:

 example.com:example.com

So qmail-send rewrites the destination address as
example.com-user@example.com.

7. The qmail-send program commands qmail-lspawn to deliver
the message.

8. The qmail-lspawn program checks the users/cdb fi le (which was built
from users/assign using qmail-newu) to see if the example.com user is
listed. The relevant entry in users/assign is:

 +example.com-example.com:XXX:YYY:/var/lib/vpopmail/domains/
 example.com:-::

9. The qmail-lspawn program spawns a qmail-local instance with the
information from the users/cdb fi le.

10. The qmail-local program changes to the vpopmail user (user ID
number XXX, from the users/cdb fi le) and enters the
/var/lib/vpopmail/domains/example.com/ directory.

Virtualization

[78]

11. qmail-local sees the .qmail-default fi le in that directory, and reads it.
12. qmail-local feeds the message to the only program listed in the

.qmail-default fi le: vdelivermail.
13. vdelivermail checks to make sure that user is a registered user of the

example.com domain.
14. vdelivermail checks for a fi le named .qmail in the virtual user's home

directory, /var/lib/vpopmail/domains/example.com/user/.
15. As there is no .qmail fi le in that directory, vdelivermail delivers

the message to the Maildir-formatted mailbox,
/var/lib/vpopmail/domains/example.com/user/Maildir/.

As you can see, it's a complex process.

VMailMgr works very similarly to vpopmail. It also maintains a database of
users and passwords in CDB fi les, and provides both a checkpassword-compliant
authentication program and a CourierIMAP module for accessing these fi les
(CourierIMAP supports vpopmail's interface natively). When new domains are
added, qmail's confi guration fi les—rcpthosts and virtualdomains—must be
modifi ed manually. Each domain is required to have its own UNIX user and UID,
which negates the need to modify the users/assign fi le (though it can be used
if desired, to speed looking up user information). The virtual users are organized
similarly to vpopmail within each virtual domain's home directory, though there is
no emulation of a per-user .qmail fi le. The difference in delivery operations from
vpopmail is that Step 8 becomes a lookup of the example.com user in /etc/passwd,
Step 10 uses the example.com user, Steps 12 through 15 involve a program called
vdeliver instead of vdelivermail, and Step 14 doesn't happen.

Consequences for Other Services
V irtual domains are almost always a part of a larger system of storing and retrieving
email. Because each virtual user does not have a corresponding UNIX user account,
other mail operations must use an abstracted interface such as IMAP or POP3 to
securely access a virtual user's mail storage. Additionally, a virtual email domain
system also needs to cooperate frequently with other virtual domain systems, such as
a virtual web domain system or database system.

There are two facets to cooperating with other virtual domain systems and other
related and dependent services. The fi rst is fi le organization and layout, and
the second is user authentication. File organization and layout is the primary
consideration during the set up of a new domain: frequently all support fi les for new
domains, regardless of service (email or web or whichever) are collected into a single
location or fi le hierarchy. Though this is usually unnecessary, it has a certain

Chapter 5

[79]

aesthetic appeal, and lends itself to some administrative tasks such as implementing
cross-service per-domain disk quotas. On the other hand, it is also sometimes more
convenient to separate fi les by service. For example, mail fi les tend to be small and
may be better served by a different fi lesystem than web or database fi les. The home
directory qmail will use for each domain can be easily confi gured using the
users/assign fi le or, for management systems like VMailMgr, using /etc/passwd.
This setup is suffi ciently fl exible to deal with most rational organization schemes.

Authentication is frequently the most diffi cult facet of virtual domains to confi gure
because so many different software packages must use it. For example, if virtual
domain and virtual user information is stored in a vpopmail- or VMailMgr-specifi c
set of CDB fi les, getting an IMAP server to authenticate users from these fi les may
be very diffi cult. The IMAP server must use the checkpassword-style authentication
program provided by both packages and be able to understand the user databases
without help, or use an intermediary such as the CourierIMAP authentication service
that does understand them. If these users are then going to be used by the web server
for authentication purposes, the web server must support one of these authentication
methods as well. This problem of having multiple services, possibly on different
physical computers that need to authenticate from the same set of user data is one of
the attractions of service-based authentication mechanisms like LDAP.

Good Reasons to Use Multiple
Installations
I n some cases, qmail's built-in virtualization support is insuffi cient to achieve the
desired separation between virtual domains. For example, when using the built-in
virtualization features the central queue is shared among all of the virtual domains,
as is the qmail-send process. Because the qmail-send process is shared, each of the
virtual domains will send outbound email from the same IP address and will have to
share remote delivery slots. Because the queue is shared among the virtual domains,
all domains must use the same queue management policies, such as the queue
lifetime setting, the bounce settings, the double-bounce settings, and so forth.

Virtual domains using the built-in virtualization schemes also frequently share an
external IP address and thus share a qmail-smtpd server. This forces all the virtual
domains to use the same receiving policies as well, such as which (if any) blacklists
to use or whether to do SMTP tarpitting or spam- or virus-fi ltering. Depending on
the installation, some of these restrictions can be worked around through creative
use of environment variables and wrapper scripts, but it is something that must be
worked around in any case. Perhaps the easiest way of giving each domain separate
SMTP-server settings—needing a separate SMTP server—is to give each domain a
separate IP address and a separate run script for each IP address. Thus, settings such

Virtualization

[80]

as blacklisted IP addresses, fi ltering, virus scanning, or other SMTP-time activities
can be set up on a per-domain basis. Providing each virtual domain with a separate
qmail-smtpd instance does not, of course, address the limitations of a shared queue
and a shared qmail-send instance.

In addition to the basic problems associated with virtualization, maintaining
multiple qmail installations is useful in any situation where different queue or
qmail-send settings are desired for some subsection of email. For example, large
domains sometimes maintain a separate queue for bounce messages, so that they can
be sent out more slowly (i.e. with a lower concurrencyremote setting) or can have a
shorter queue lifetime.

Virtualization is not the only reason to use multiple qmail installations, but just
one of the most common reasons. Multiple qmail installations are useful in any
circumstance where multiple queue policies are necessary, or where central
confi guration fi les need to be applied differently in different cases. For example,
in order to have two qmail-smtpd instances where one behaves as if rcpthosts is
empty (i.e. only authenticated users or authorized IP addresses may submit mail)
and the other behaves as if rcpthosts has several domains in it, the best solution is
to have two qmail installations. The two installations need not have separate queues,
though they can.

How to Set Up Multiple Qmail Installations
T he crucial detail to setting up and maintaining multiple qmail installations is to
alter the conf-qmail fi le in the qmail source. This fi le is what defi nes both where
qmail will install its binaries and where those binaries will expect to fi nd each other
and their queue. The location of the queue is compiled into the binaries directly, so
maintaining a separate queue requires a separate set of binaries.

Assuming that one instance of qmail has already been successfully installed in
/var/qmail (the default), a second qmail instance can be installed in (for example)
/var/qmail2 by performing the following commands from within the qmail
source directory:

echo /var/qmail2 > ./conf-qmail

make setup check

Once this is done, a new installation of qmail will reside in /var/qmail2. To
complete the setup, the appropriate confi guration fi les from /var/qmail/control,
such as me, should be copied to /var/qmail2/control. Also, the new qmail-send
process should be started, (if the new queue will be used) usually with a script nearly
identical to that of the original installation.

Chapter 5

[81]

For example, if the original qmail-send process was started with a daemontools run
script, another supervise directory and run script for the new qmail-send process
should be prepared. The second qmail-send process is not necessary, if the second
qmail installation will share a queue with the fi rst. In that case, all that is necessary
is to symlink the qmail-queue binary from the fi rst installation into the second (and
delete the second's qmail-queue binary).

If desired, another supervise directory and run script may be created to run the
new qmail-smtpd as well. The trick to get both qmail-smtpd instances (the original
and this new one) to run together is to specify different IP addresses for them
to listen to. The original example script in Chapter 1 specifi ed the arguments to
tcpserver as follows:

tcpserver -R -l "$LOCAL" -H \

 -x /etc/tcp.smtp.cdb \

 -u "$QUID" -g "$QGID" \

 0 smtp \

 /var/qmail/bin/qmail-smtpd 2>&1

This—or more specifi cally, the 0 in the fourth line—specifi es that tcpserver will
listen for SMTP connections on all network interfaces. This prevents other programs,
including other tcpserver instances, from listening for SMTP connections on any
network interface. If, for example, the original qmail installation only needs to listen
to the single publicly accessible IP address (for example, 192.168.1.1), then the
original setup should be changed to specify that address rather than simply 0. Thus,
it would look as follows:

tcpserver -R -l "$LOCAL" -H \

 -x /etc/tcp.smtp.cdb \

 -u "$QUID" -g "$QGID" \

 192.168.1.1 smtp \

 /var/qmail/bin/qmail-smtpd 2>&1

With the original confi guration more specifi c, the second qmail installation is free to
listen to a different address. For example, it could listen to the loopback interface via
IP address 127.0.0.1, as follows:

tcpserver -R -l "$LOCAL" -H \

 -x /etc/tcp.smtp.cdb \

 -u "$QUID" -g "$QGID" \

 127.0.0.1 smtp \

 /var/qmail2/bin/qmail-smtpd 2>&1

Virtualization

[82]

 To what address the second qmail-send instance should listen depends very much
on what its purpose is. If the purpose is to provide different connection policies
(e.g. different DNS blacklists) for different domains, the server computer will need
to manage multiple publicly accessible IP addresses, each with its own tcpserver
and qmail-smtpd. The reason different connection policies cannot be implemented
for different domains on a single shared IP address is that a connection policy, by
defi nition, takes effect before data is sent. Thus, which domain's policy should be
used is unknown until qmail-smtpd is run, which is too late.

Hiding Multiple Queues from the User
 When a given computer has multiple qmail installations, it is sometimes desirable
to hide the details of the different qmail queues from the users. For example, if a
single computer is hosting several domains, each with different queue lifetimes,
each mail that is sent must be fed to the correct queue, depending on which domain
sent it. Most webmail applications will either use a single binary (usually
/usr/sbin/sendmail) or a single address (usually 127.0.0.1, port 25) to send
mail, regardless of which user is sending the mail. Unless this situation is handled
specially, all mail sent from that webmail application will go through a single queue,
rather than a different queue for each domain, and so they will all use the same
queue settings (which invalidates the whole point of setting up separate queues in
the fi rst place).

There are multiple ways of handling this problem. A labor-intensive way is to
install several versions of the webmail application, one for each domain. While
conceptually simple, this quickly becomes an administrative nightmare, particularly
when upgrading or reconfi guring the webmail software. A more transparent and
maintainable technique is to create a wrapper script around the qmail-queue
binary to deliver the message to the correct queue depending on its return address.
As a simple example, imagine a computer responsible for both the 192.168.1.1
and 192.168.1.2 IP addresses. The 192.168.1.1 address is used for the example.com
domain, and the 192.168.1.2 address is used for the somewhere.net domain. Each
domain has its own queue—example.com's queue is in /var/qmail/queue and
somewhere.net's queue is in /var/qmail2/queue—but the /usr/sbin/sendmail
fi le (used by their shared webmail installation) can only be a symbolic link to one
of them. In this case, it is a link to the example.com qmail installation's sendmail
binary. To ensure that mail is delivered by the correct domain's qmail installation, a
wrapper script around example.com's qmail-queue binary can be used.

Chapter 5

[83]

Here is a simple example:
#!/bin/bash
Read envelope data (from file descriptor 1)
read -u 1 -d $'\0' sender
i=0
while read -u 1 -d $'\0' recipient ; do
 [-z "$recipient"] && break
 recipients[$i]="$recipient"
 i=$(($i+1))
done
Build the envelope data back up
TMPFILE="$(mktemp -t qmailqueue.XXXXXXXXXXXXXXXXXX)"
printf '%s\0' "$sender" > "$TMPFILE"
for ((i=0;$i<${#recipients[*]};i=$i+1)) ; do
 printf '%s\0' "${recipients[$i]}" >> "$TMPFILE"
done
printf '\0' >> $tmpfile
Extract the domain from the sender's address
FROMDOMAIN=${sender##*@}
turn on case-insensitive matching
shopt -s -q nocasematch
Invoke the domain-specific qmail-queue binary
case "$FROMDOMAIN" in
 example.com)
 /var/qmail/bin/qmail-queue-real 1<"$TMPFILE"
 exitvalue=$? ;;
*)
 /var/qmail2/bin/qmail-queue 1<"$TMPFILE"
 exitvalue=$? ;;
esac
cleanup
rm $TMPFILE
exit $exitvalue

To use this script most transparently, one must fi rst rename the real qmail-queue
binary for the example.com domain from /var/qmail/bin/qmail-queue to
/var/qmail/bin/qmail-queue-real. Then, save this script as /var/qmail/bin/
qmail-queue and make sure that it is both executable and readable. Thereafter,
whenever mail is queued with example.com's sendmail binary, (or qmail-smtpd,
qmail-queue, qmail-inject, qmail-qmtpd, or any other component that uses
qmail-queue) this script will be invoked instead of the real qmail-queue binary.
The script will make sure that the mail gets added to the queue corresponding to
the sender's domain. The upside is that this works for any standard method of
sending mail. Of course, the sender address this script relies upon can be forged (or
mistyped) and may not refl ect the domain of the actual sender.

Virtualization

[84]

In most cases, this is not a severe problem, but can expose the fact that there are
multiple queues. The problem of message headers and envelope information
potentially being forged is a diffi cult one. It is possible to be more thorough, and
attempt making decisions about which queue to use based on other, more reliable
information (such as the user name provided during SMTP-AUTH) but this is more
involved and does not typically address every possible way of queueing mail.
However, getting the mail into the right queue is only a problem when attempting to
hide either the virtual nature of the server or the separation of its queues. By exposing
the separation, such as by providing different IP addresses or port numbers to use for
sending mail from each domain, the system's behavior becomes far more predictable.
Not because the headers are restricted, but because which domain's queue is used
becomes an explicit choice the user makes by submitting messages to a specifi c IP
address or port number.

 Virtualization is usually an attempt to share limited resources, such as servers, IP
addresses, or system administrator's time. At some level, there is almost always a way
to break the veil and discover the virtualization because some detail of the sharing is
visible. In general, few people mind it, as long as mail gets where it needs to go.

Summary
This chapter has covered the set up of virtual domains and users within the qmail
architecture, both how to use qmail's formidable virtualization features to achieve
separate domain namespaces, and also how to further virtualize even the qmail queue
itself to use different confi guration settings. The next chapter will push the envelope
of what the qmail architecture can do much further than virtualization. Filters around
each architectural component, akin to the qmail-queue wrapper presented in this
chapter, allow the administrator to radically change the system's behavior.

Filtering
 It's been said before, and it's worth repeating: qmail is a very modular email
architecture. Because of this modularity, it is relatively easy to alter the behavior
of the overall system by wrapping the basic components or by inserting a script
or program between them. Filtering email is a perfect example of the power of
this design. This is done by fi ltering the communication between architectural
components; so while fi ltering email is the primary operation discussed in this
chapter, fi ltering architectural interfaces is the method by which this expansion or
modifi cation of the architecture is achieved.

Basic Filtering Architecture
 The basic qmail architecture, trimmed down to just the parts relevant to delivery
(and thus fi ltering) of email, is shown in the following fi gure:

qmail-queue

on-disk
queue

qmail-send

qmail-local qmail-remote

tcpserver

qmail-smtpd

qmail-inject

qmail-lspawn qmail-rspawn

Filtering

[86]

Almost any of qmail's components can be wrapped and used for fi ltering purposes.
Which components to wrap depends on the specifi c behavior desired. In many cases
there are multiple ways of achieving the same thing and choosing which method to
use requires p lanning. For example, if some email needs to be blocked or rejected, it is
better to catch that email earlier in its path through the system rather than later. This
reduces the amount of time and resources spent on email that is not delivered. Thus,
the most common place to block mail is before it is queued for delivery. Filtering mail
(i.e. modifying it) is often done in multiple places, depending on what kind of fi ltering
is desired. For example, fi ltering for spam is sometimes done before mail is queued,
though this makes it harder to implement user-specifi c fi ltering rules completely. If
user-specifi c fi lters are desired, fi ltering at the delivery stage is often preferable.

Exactly where a component is inserted affects what fi ltering options are available.
For example, a wrapper around qmail-queue can examine the full content of an
email, but does not know precisely where the email came from. A wrapper around
qmail-smtpd knows exactly where the email originated, but in order to inspect the
content of the email the wrapper must process SMTP itself, making the wrapper
far more complicated and prone to security vulnerabilities. The following fi gure
describes typical fi lters for each location in the architecture.

qmail-smtpd Connection
Decisions

qmail-injectContent Gateways
and Modifiers

tcpserver
Connection Decisions

on-disk
queue

qmail-send

Content Gateways
and Modifiers

qmail-local Content
Modifiers

qmail-remote

qmail-lspawn qmail-rspawn

Content Gateways
and Modifiers

Content Gateways
and Modifiers

qmail-queue

Chapter 6

[87]

Co nnection decisions determine whether to allow a connection or not, and are
based solely on information about the connection (such as the client's IP address and
port number). A basic example of this is provided by the tcprules fi les discussed
in Chapter 1. A content ga teway is a fi lter that decides whether to allow a given
email to continue to the next stage of delivery based on the content of that email. A
 content modifi er, on the other hand, is a fi lter that always allows the email through
to the next stage, but usually alters the email's content as it does so. In practice, the
distinctions between these types of fi lters are often blurred, as some fi lters can both
block and modify. Examples are given throughout the rest of this chapter.

Th e reasons for wrapping each component are relatively straightforward.

 qmail-inject: A wrapper around qmail-inject can make decisions about
which users are allowed to send email, can prevent users from sending spam
or viruses, can help fi ll out form-letter emails, or something similar.
qmail-smtpd: A wrapper around qmail-smtpd can set useful environment
variables (such as RELAYCLIENT), check for protocol conformance, or check
the client against DNS blacklists, among other things.
qmail-queue: A wrapper around qmail-queue can check messages for
viruses, spam, valid DomainKeys signatures and similar tricks, and can even
feed modifi ed versions of the email to qmail-queue instead of the original.
qmail-remote: A wrapper around qmail-remote is useful for making sure
that all outbound email is properly signed with a DomainKeys signature or
similar email modifi cations.
qmail-local: A wrapper around qmail-local is similar in purpose to a
qmail-queue wrapper. The difference is that by the time the message gets
to this point in the delivery process, it is a copy of the message for a single
recipient. This is a useful thing to know if different recipients have different
fi ltering preferences. And, of course, qmail-local can deliver to programs
like procmail and maildrop that both fi lter and discard mail according to
recipient preferences.

I n addition to wrapping each component, of course, the components themselves
can be modifi ed to perform a task, though this usually requires more programming
experience. However, if speed is a consideration, modifying components is often
faster than wrapping them.

The most commonly wrapped components are qmail-queue and qmail-smtpd,
because the most common fi lters intercept spam and viruses. In addition to
hand-written wrapper scripts, there are several popular qmail-queue wrappers
available that provide an array of fi ltering options, including:

 Inter7's simscan (http://www.inter7.com/?page=simscan)
Qscanq (http://www.qscanq.org)

•

•

•

•

•

•

•

Filtering

[88]

Bruce Guenter's qmail-qfilter (http://untroubled.org/qmail-qfilter)
qmail-scanner (http://qmail-scanner.sourceforge.net)

These wrapper programs generally save incoming email to a fi le; feed it to other
fi ltering or scanning programs (e.g. to detect viruses); and, depending on the result
of these external programs, either delete, quarantine, or reject the email or feed
it back to qmail-queue for delivery. They also can extract any MIME-encoded
attachments from the email for separate scanning. Qscanq is the simplest of the three,
supporting few virus scanners and no inherent spam scanning. It either silently
destroys virus-laden email or rejects it. Inter7's simscan is more complex, supporting
several virus scanners as well as the SpamAssassin's spamc scanner. simscan either
rejects or destroys virus-infected messages and conditionally rejects, deletes, or
passes-through messages based on their SpamAssassin score. The qmail-scanner
wrapper is more complex, and because it is written in Perl rather than C, has more
per-message overhead than the other wrappers. However, this wrapper supports
almost all popular virus scanners, message quarantining, SpamAssassin analysis,
internal pattern matching, and many other features. The most versatile wrapper is
qmail-qfilter. It provides a mechanism to run arbitrary programs or scripts on
each message and rejects, deletes, or passes through messages based on the result of
each program.

T he qmail-smtpd program is, unlike qmail-queue, more often wrapped with
simple scripts and small, single-purpose programs instead of multi-purpose utility
programs. As an example, included in the ucspi-tcp software package is a program
called rblsmtpd. This program relies on the environment variable TCPREMOTEIP,
as defi ned by tcpserver. It will look up that IP address in a DNS-based blacklist
(specifi ed on the command line) and, depending on whether the IP is listed in the
blacklist or not, will either print an SMTP rejection message or execute the program
specifi ed in its arguments—usually, qmail-smtpd. For example, rblsmtpd can be
used as follows:

tcpserver -u `id -u qmaild` -g `id -g qmaild` \

 0 smtp rblsmtpd -r some.blacklist.domain qmail-smtpd

In addition to wrappers, there are also several drop-in replacements for
qmail-smtpd. For example, mailfront (http://untroubled.org/mailfront) by
Bruce Guenter, supports SMTP-AUTH, virus scanning, sender/recipient fi ltering, and
many other features. Linux Magic's magic-smtpd (http://www.linuxmagic.com/
opensource/magicmail/magic-smtpd) is similar and includes features like SMTP
tarpitting, user validation, TLS, SMTP-AUTH, and many others. These programs
would be used as follows (using mailfront as an example):

tcpserver -u `id -u qmaild` -g `id -g qmaild` \

 0 smtp mailfront

•

•

Chapter 6

[89]

The structure of these commands can be a bit confusing. The tcpserver program
sets up the network connection and then runs a single program. tcpserver's view of
its arguments is that they are in four ordered categories:

tcpserver tcpserverArguments aProgramToRun argumentsToThatProgram

The way it identifi es what program to run is, by simply assuming that the fi rst
argument that it doesn't understand (and doesn't start with a hyphen) is the name
of a program and all subsequent text blocks are arguments to that program. For
example, when using rblsmtpd with qmail-smtpd, tcpserver views it in the
following manner:

tcpserver tcpserverArguments rblsmtpd argumentsToRblsmtpd

tcpserver knows nothing of qmail-smtpd or any other program; but because
it cannot identify rblsmtpd it must therefore be the name of a program. Once
the program runs, tcpserver has no further control over it. rblsmtpd, behaves
similarly. When it runs, it views its arguments in four ordered categories:

rblsmtpd rblsmtpdArguments aProgramToRun argumentsToThatProgramIfAny

When it's used with qmail-smtpd, it sees this:

rblsmtpd rblsmtpdArguments qmail-smtpd argumentsToQmailSmtpdIfAny

Once rblsmtpd runs and makes its decision, it then executes whatever program
the text qmail-smtpd identifi es. Like tcpserver, when rblsmtpd runs a program,
it has no control over it; unlike tcpserver, which spawns a child to run (exec) the
program, rblsmtpd runs (execs) the named program itself, and the new program
completely replaces rblsmtpd in memory.

This telescoping, cascading, or chaining behavior—where the wrapper does
some action and then runs (execs) the next program in the chain—is a common
wrapping technique.

S ending Mail Without a Queue
On e of the nice things about having such a modular architecture is that pieces of
the architecture can be rearranged or removed. A good example of doing this is
removing the queue from the picture, so that messages are sent immediately to
another email server. There are several ways of achieving this end depending on the
specifi c behavior required. The two primary methods are described here.

Filtering

[90]

Dr. Bernstein's website has simple directions (http://cr.yp.to/qmail/mini.html)
for se tting up a queue-less qmail installation that uses the Quick Mail Queueing
Protocol (QMQP) to transmit email messages to another qmail server (or any
server that understands QMQP). He calls this setup mini-qmail. QMQP (similar to
QMTP) avoids some of the latency of SMTP, and optimizes message transmission.
However, only qmail currently supports QMQP, and so it may not be the best option
in a mixed environment. These instructions direct that the qmail-queue binary be
replaced with the qmail-qmqpc binary. This program uses the same interface as
qmail-queue but rather than queuing messages, it transmits them to another server
via the QMQP protocol, as directed by the control/qmqpservers fi le (details are in
the qmail-qmqpc man page).

Creating a queue-less qmail installation that uses SMTP is a little more work than
the QMQP-only setup but it can cooperate with servers that do not support QMQP.
The easiest way to do it is, similar to mini-qmail, to replace qmail-queue with a
program that will instead transmit messages to a remote server. Such a program,
akin to qmail-qmqpc, must support the qmail-queue interface. The qmail-queue
replacement program does not, however, need to interact with the network; it
can simply use qmail-remote to transmit messages via SMTP. For example, the
following script could work:

#!/bin/bash
read the envelope information first (from file descriptor 1)
read -u 1 -d $'\0' sender
i=0
while read -u 1 -d $'\0' recipient ; do
 [-z "$recipient"] && break
 recipients[$i]="$recipient"
 i=$(($i+1))
done
Now, generate the Received header,
feed the message to qmail-remote, and capture the output
printf 'Received: (qmail %i invoked by uid %i); %s\n%s\n' \
 "$$" "$UID" "$(date '+%d %b %Y %k:%M:%S %z')" "$(cat -)" | \
 /var/qmail/bin/qmail-remote \
 $SMARTHOST "$sender" "${recipients[@]}" | \
 while read -d $'\0' result ; do
 case "$result" in
 K*) # success
 exit 0;;
 Z*) # temporary failure
 exit 71;;
 D*) # permanent failure
 exit 31;;
 esac
 done

Chapter 6

[91]

For this script to work, the SMARTHOST environment variable must be defi ned or
$SMARTHOST must be replaced by the correct host (either a hostname or a square
bracketed IP address) to send mails to.

Blocking Viruses
Th e most common means of transferring viruses to new vulnerable computers is
through email. Originally, viruses preferred to invisibly infect innocuous fi les that
were later transferred from computer to computer at the behest of a person sharing
fi les for legitimate purposes. While this can still happen, the overwhelming majority
of virus-laden email is sent by autonomous viruses that either have randomly
generated recipients or have found recipient addresses on the infected computer.
More to the point, these emails generally contain nothing of value. With that change
in behavior, the best way to handle emails containing viruses has also changed. In
the past, the expectation was that email containing a virus should be modifi ed, the
virus stripped out, and the sanitized message delivered to its original destination.
These days, infected emails are so rarely legitimate that rather than delivering them,
the most common response is simply to delete the infected messages entirely.

Both policies, however, rely upon detecting infected emails, for which there are
many options.

Heavyweight Filtering
He avyweight fi ltering is the fi ltering that most often comes to mind for virus
eradication. Each email is decoded, attachments if any are separated, and all of
the component parts of the email are scanned with virus scanning software to
determine if they contain a virus. Such scanning is considered heavyweight because
of the sheer enormity of the task. Virus scanners maintain large databases of every
known computer virus and how to detect it. There are millions of different species
of computer viruses, and new viruses are discovered almost hourly. A good virus
scanning installation must maintain this large database, test for every single virus
in that database, and also keep this database updated. Usually these tasks are
automated, but this scanning method is time-consuming for every message. In
high-load situations, such virus detection might not be feasible.

Some of the most common virus scanners are:

 AVG Anti-Virus
 Trend InterScan VirusWall
F-Prot Antivirus scanner
NAI/McAfee scanner

•

•

•

•

Filtering

[92]

H+BEDV's AntiVir scanner
Kaspersky's AVPLinux scanner
Command's virus scanner
the F-Secure Anti-Virus scanner
the InocuLAN Anti-Virus scanner
BitDefender Linux Edition
Central Command's Vexira anti-virus scanner
the ESET NOD32 Anti-Virus scanner
the open-source Clam Anti-Virus (ClamAV) scanner

T hese scanners must be hooked into the qmail architecture to scan each email. The
most common way of doing this is with a wrapper around qmail-queue. Some
virus scanners come with a qmail-queue wrapper; however, most require a separate
wrapper, such as those discussed previously.

Lightweight Filtering
Th ere are other options for protecting email users from viruses that do not require a
heavyweight approach or can reduce the load on a heavyweight virus scanner.
The simplest options st art with policy decisions, such as banning certain types of
fi les. For example, most viruses are Microsoft Windows executable fi les—a fact that
has made banning executable fi les from email a popular policy. Simple fi lters that
reject email containing attachments whose names end in .exe (fi lters such as
qmail-scanner) can be effective, however, not all Microsoft Windows executable
fi le names end in .exe. Indeed, they can actually use almost any suffi x and still be
recognized as executable by Windows. However, all Microsoft Windows executable
fi les begin with information that tells Windows how to load the program. This
information is the same in all Windows programs and is required in order to run the
fi le. It is small, always at the beginning of the fi le, and thus easily detected. There is
a small patch for qmail-smtpd, written by Russ Nelson (http://www.qmail.org/
qmail-smtpd-viruscan-1.3.patch) that makes it easy to enforce a policy banning
Windows executable fi les from email. This patch requires very little overhead and is
effective even in high-load situations. To hide from such fi lters, some viruses send
themselves as zip-compressed archives and rely on the recipient to uncompress the
virus and run it. ZIP fi les, like executable fi les, all begin with a similar pattern and
can be identifi ed and banned with Russ Nelson's patch. Be warned, however, that
some fi le formats—such as some OpenOffi ce fi les—are, unbeknownst to the user,
really zip-compressed collections of several components, and banning all ZIP fi les
also bans these fi les.

•

•

•

•

•

•

•

•

•

Chapter 6

[93]

Not all viruses are executable fi les so Russ Nelson's patch is not a complete solution.
For example, scripts (like Visual Basic .vbs fi les) and Microsoft Offi ce
macro-viruses are not technically executable fi les, and so cannot be blocked by this
patch. Additionally, it might not be feasible to ban executable fi les and/or ZIP fi les
from email. However, when such measures are possible, simple fi lters such as
Russ Nelson's patch or a suffi x-detector provide an effective fi rst line of defense
against viruses.

Stopping Spam from Getting In
El iminating spam is one of the most important tasks of today's email administrators.
There are two equally important facets to eliminating spam: preventing it from being
sent by your server and preventing it from being delivered to your users. Of the two,
preventing it from being delivered is often the hardest.

Sender Validation
St rictly speaking, sender validation is not an anti-spam technique, though it is often
regarded as such. One of the interesting details of the SMTP protocol is that the
sender of a given message is not restricted to the address of the actual sender. A
person sending a message can specify any return address, just as they can specify
any destination address. In a trustworthy environment, where no one has a reason to
hide his or her identity, this is not a problem. However, on today's networks, viruses,
scammers, spammers, and so-called phishers all wish to hide their identity when
sending email.

T he reason sender validation is usually considered an anti-spam technique is the
belief that if spammers could not hide their identity, spam would be easier to block.
However, it is important to recognize that a spammer can send spam that correctly
identifi es himself or herself as the sender. Accurate sender addresses do not make
the mail any less spammy, but makes messages from known spammers easy to
refuse and messages from known non-spammers impossible to mistake for spam.
Unfortunately, qmail-compatible software for blocking specifi c validated senders
does not exist.

There have been many ideas for reliably verifying email senders. The two most
popular are the Sender Policy Framework (SPF) and DomainKeys. DomainKeys is
an earlier version of DomainKey Identifi ed Mail (DKIM), which is not as widely
deployed or supported as DomainKeys. However, given that it will shortly (as of this
writing) be approved by the IETF, DKIM will eventually be widely implemented.

Filtering

[94]

SPF
 The basic idea behind SPF is that a domain should specify (in DNS) precisely
which servers are authorized to send its email. Thus, an email claiming to be from a
particular domain (such as ebay.com) but not originating from one of that domain's
approved servers is considered a forgery. This works well in most circumstances, but
its drawback is it breaks a widely used feature of email called forwarding, and not
just for SPF users, but for anyone contacting an SPF-using domain.

People often have email addresses that are merely forwarding addresses such that
all mail sent to that address is resent to another address. On virtually every email
server prior to the invention of SPF, forwarded email was delivered unmodifi ed. The
problem with this approach has been illustrated with the help of the following fi gure:

From: user@example.com
To: foo@example2.net

From: user@example.com
To: baz@example3.org

Without SPF Rewriting

Bounce-to: user@example.com

From: user@example.com
To: foo@example2.net

From: foo-user=example.com@example2.net
To: baz@example3.org

With SPF Rewriting

Bounce-to: foo-user=example.com@example2.netBounce-to: user@example.com

example.com’s server example2.net’s server example3.org’s server

foo@ baz@

example.com’s server example2.net’s server example3.org’s server

user@

user@ baz@foo@

I magine that the address foo@example2.net is a forwarding address that
forwards to baz@example3.org. If a message is sent from user@example.com to
foo@example2.net, the example2.net server then sends the message to
the example3.org server. From the example3.org server's perspective, the
example2.net server is sending email claiming to be from example.com. If
example.com happens to publish an SPF record asserting that its email only
originates from its own servers (which it did), and if example3.org blocks
messages based on SPF information, it will refuse the user@example.com message
forwarded by the example2.net server. This thwarts a viable (and popular) method
of m anaging email accounts. The SPF workaround is to re-encode email return
addresses so that each server only sends

Chapter 6

[95]

from its own domain. For example, example2.net could re-encode the return
address to look like foo-user=example.com@example2.net, so the message does
not appear to be claiming to be from example.com. If the message bounced back
from example3.org for some reason, example2.net would receive it and could
then decode the return address and bounce it back to the original sender,
user@example.com. The problem with this solution is that a spammer could
convince the example2.net server to relay spam by sending spam to
foo-anyuser=anydomain.com@example2.net or a similar address. To prevent such
abuse, each server will need to remember every email it forwarded for every user,
so that it can refuse to relay bounces (or spam that looks like a bounce) that are for
messages it didn't send. To be more to the point, each server will have to remember
all of these messages until it can be certain that these emails will not bounce, which
is an unpredictable amount of time. For example, the example2.net server cannot
know whether the example3.org server is the message's fi nal stop or whether it
will be forwarded again and then bounce—keep in mind that a message can sit in a
server's queue for a long time (typically up to seven days) before it is bounced.

 DomainKeys
T he DomainKeys concept is to cryptographically sign all messages with a public key
encryption system, where the signature asserts that a server approved by the domain
has sent the email. The information necessary to verify the validity of the signature
is published in DNS, so that any server may validate the signature and prove that
the message was signed by a server approved by that domain to send email. Thus,
for a domain that asserts (in a DomainKeys policy record stored in DNS) that it signs
all of its email, a message missing a signature or containing an incorrect signature is
considered a forgery. Unlike SPF, this allows emails to be forwarded without being
modifi ed. The caveat is that DomainKeys requires that messages not be modifi ed
(between the DomainKeys signature and the end of the message). Thus, while
Received headers and any other headers prepended to the message are acceptable,
other modifi cations—such as spam-fi lter headers or signatures appended to either
the end of the message or the end of the headers—can invalidate the DomainKeys
signature. The DomainKeys specifi cation includes the ability to name, in the signature
(in an h= tag), what headers were originally included in the signature. This makes the
signature much more tolerant of header modifi cation, as additional headers (such as
spam-fi lter headers) inserted in the wrong place in the message can be excluded from
the signature. However, the body of the message and the headers that were included
in the signature cannot change without invalidating the signature.

Russ Nelson has contributed signifi cantly to qmail's ability to verify and sign
messages with DomainKeys. Most signifi cantly, he is the original author of the
libdomainkeys library (http://domainkeys.sourceforge.net), which provides
many ways of creating and validating DomainKeys signatures.

Filtering

[96]

Russ Nelson also wrote a patch to the qmail source that creates a new component,
qmail-dk (http://www.qmail.org/qmail-1.03-dk-0.53.patch), that can be
used as a wrapper around qmail-queue for signing and verifying DomainKeys
signatures. This program is convenient, but not always necessary. The libdomainkeys
package includes a utility called dktest that can, with the appropriate shell-script
glue, provide some of the basic features that qmail-dk provides. For example, to
verify DomainKeys signatures in incoming email and add a header proclaiming the
result, a script like the following will work:

#!/bin/sh
["$DKQUEUE"] || DKQUEUE=/var/qmail/bin/qmail-queue
if printenv | grep -q '^DKVERIFY=' ; then
 tmp=`mktemp -t dk.verify.XXXXXXXXXXX`
 cat - >"$tmp"
 (dktest -v <"$tmp" 2>/dev/null | awk 'NR>1' ; \
 cat "$tmp") | "$DKQUEUE"
 retval=$?
 rm "$tmp"
 exit $retval
else
 exec "$DKQUEUE"
fi

This script can, in conjunction with the QMAILQUEUE patch (or as a qmail-queue
replacement, provided that the real qmail-queue can still be used with a different
name) tag each incoming email with a "DomainKey-Status" header, recording the
results of checking the DomainKeys signature. The DKQUEUE environment variable is
consulted for the location of the qmail-queue binary, and the DKVERIFY environment
variable is used to enable verifi cation.

The qmail-dk program serves two purposes: it verifi es signatures (like the above
script), and it creates signatures. Because qmail-dk is a qmail-queue wrapper, it
must decide whether to sign a message when the message is queued. In order to
sign all messages, every part of the system that queues messages must use it—from
qmail-smtpd to qmail-inject to qmail-local (which queues messages in response
to delivery instructions). Unfortunately, qmail-dk does not support the inclusion of
an h= tag in the signature.

An alternative to wrapping qmail-queue with something like qmail-dk is to wrap
qmail-remote. This signs all remotely delivered messages, no matter how they were
enqueued. While qmail-dk does not serve easily as a qmail-remote wrapper, the
following script (using dktest) is a suitable option.

Chapter 6

[97]

This script, which supports the h= tag, presumes that its name is qmail-remote and
that the original qmail-remote was renamed qmail-remote.orig:

#!/bin/bash
["$DKSIGN"] || DKSIGN="/etc/domainkeys/%/default"
["$DKREMOTE"] || DKREMOTE=/var/qmail/bin/qmail-remote.orig
if [[$DKSIGN == *%*]] ; then
 DOMAIN="${DOMAIN:-${2##*@}}"
 DKSIGN="${DKSIGN%%%*}${DOMAIN}${DKSIGN#*%}"
fi
if [-f "$DKSIGN"] ; then
 tmp=$(mktemp -t dk.sign.XXXXXXXXXXX)
 cat - >"$tmp"
 (dktest -s "$DKSIGN" -c nofws -h <"$tmp" 2>/dev/null | \
 sed 's/; d=.*;/; d='"$DOMAIN"';/'; \
 cat "$tmp") | \
 "$DKREMOTE" "$@"
 retval=$?
 rm "$tmp"
 exit $retval
else
 exec "$DKREMOTE" "$@"
fi

With this script, the environment variable DKSIGN specifi es the location of the
private key for the signing process, DKREMOTE specifi es the location of the original
qmail-remote program, and fi nally, DOMAIN specifi es the sending domain (if it
is unspecifi ed, the script will assume the domain is the sender's domain). More
conveniently, just like qmail-dk, DKSIGN can contain a percent sign (%) that is
replaced by the signing domain name, thus making signing for multiple domains
with separate keys more convenient.

Identifying Spam
I dentifying spam is a complex task relying on one fundamental assumption: spam
is not normal email and is not sent in the normal way. Now, at one level, this
assumption seems obvious: of course spam is abnormal, and of course spam is sent
by bulk mailers or virus bots or other unusual software. Nearly all of the effective
anti-spam tactics rely on one or both of these details. For that reason, the distinction
between real email (or ham) and spam email is precisely what spammers attempt to
blur. Once spam is identifi ed, it can either be tagged or blocked.

Filtering

[98]

Lightweight
L ightweight methods for identifying spam are considered lightweight because they
do not rely on complex analysis of email in order to make decisions, and the decisions
are almost always binary: each email is accepted or rejected, with no gray area in
between. How this decision is reached generally depends on how much information
is available when the decision is made. In some cases, email is considered spam before
the sender has sent even a single character of the email. If it is blocked at that point,
bandwidth is not wasted in receiving the message. The methods described here are
not an exhaustive list, but merely a set of popular examples.

Domain Name System Black-Lists
T he technology known as Domain Name System Black-List (DNSBL) is a method
for quickly deciding which messages are not acceptable. Essentially, the idea is
this: spammers have a limited number of computers, and once these are identifi ed,
no messages from them need to be accepted. This of course makes the underlying
assumption that messages from spammer-owned computers are always spam, and
messages from other computers are never spam. The lists of computers known or
suspected to be under spammer control are stored in a public database (namely,
the DNS database). When a computer attempts to contact an email server using a
DNSBL, it is checked on in the public database. If the connecting computer is listed
as a spammer, the attempt is rejected.

Unfortunately, these public databases are far from perfect—some people who
are listed are not spammers, and many spammers are not listed at all. As a
result, DNSBLs are rather blunt instruments, to be used with care. Because of the
proliferation of spam, however, many feel that the use of such blacklists is absolutely
essential. Before using a blacklist, however, make sure that its policies regarding
what senders get listed make sense for your server.

 Checking for SMTP Violations
A nother technique for quickly identifying spam is to categorize a given computer
as a spammer based on its disregard for SMTP protocol details. For example,
SMTP clients are required to wait until the server greets them to begin sending
data. Spammers, however, are frequently in a hurry, and most servers do not
object to receiving incoming email all at once. For this reason, spammers often
begin transmitting data as quickly as possible without waiting for the server's
participation. It is easy for a server to wait a second before greeting the client, just
to see if the client will wait to be greeted. Not waiting for a greeting is an easily
detected violation of the SMTP protocol common to many spammers.

Chapter 6

[99]

Spammers often attempt to gain anonymity by sending email through someone else's
computer, often exploiting unusual software in the process. For example, unsecured
HTTP proxies can hide the spammer's identity, but send HTTP commands in
addition to SMTP commands. In order for such subterfuge to work, the spammer
relies on most servers ignoring the HTTP commands and accepting the SMTP
commands. However, the presence of both types of commands is an easy way to
identify a sender who is doing something improper and, therefore, is a spammer.

The popular greylisting technique also fi ts into this spammer-identifying category.
Greylisting is a technique of validating sending clients by temporarily refusing to
accept messages from unrecognized clients. Once an initial attempt is made and fails
with a temporary error code, that sender is added to the list of recognized senders.
Further delivery attempts are accepted. When this happens to a typical email, the
sending server waits and re-attempts delivery later. Spammers, however, often do
not care whether their messages are delivered and do not re-attempt later, identifying
themselves as spammers. This technique can be altered to require specifi c messages to
be retried rather than specifi c clients, but the fundamental concept is the same.

Monitoring protocol violations, however, is obviously not a full solution; spammers
only need to use software that fully implements SMTP and they will get through.
The reason this is still a successful method of detecting spammers is that spammers
fi nd it inconvenient to obey all of the SMTP requirements, and most recipient servers
are not picky about protocol violations.

Pattern Matching
O nce a message is transmitted, heavyweight scanners can analyze it in depth.
Looking for simple patterns in an email's text is often surprisingly effective. For
example, emails naming obscure pharmaceuticals or beginning with the phrase
"Dear friend", or those obfuscating English words with misspellings and numbers
(for example, "pr0n") are often spam. On the other hand, these patterns are also in
messages that discuss spam, and can mistakenly identify a message as spam when it
is not.

Heavyweight
W hile lightweight spam identifi cation techniques are often effective, their simplicity
leaves them vulnerable to avoidance or compensation techniques implemented by
spammers. Heavyweight spam identifi cation, on the other hand, is designed to be
more robust and to adapt as spammers change their tactics.

Filtering

[100]

Bayesian and other Machine-Learning Techniques
A relatively recent development in spam fi ghting has been the popularization of
Bayesian networks to identify spam, beginning in 2002 (fi rst proposed in 1998).
Bayesian networks work in terms of probability: each word or phrase in a message
has a certain probability of identifying the message as spam. The more "probably
spam" words in a message, the more likely the message is spam. Similarly, the more
"probably not spam" words in a message; the less likely the message is spam. What
makes this technique particularly interesting is its ability to use email examples
provided by the user to discover important words and phrases and to fi ne-tune its
identifying power (probability) over time. In this way, the fi lter learns what spam
looks like and adapts as spam changes. Messages from family members, for example,
can be analyzed by the Bayesian classifi er to discover what specifi c names, words,
and/or phrases are less likely to be used in spam, and what rarely used words or
nonsensical word pairs are more likely to be used in spam. There are many examples
of scanners that work this way, including:

SpamProbe (http://spamprobe.sourceforge.net)
SpamBayes (http://spambayes.sourceforge.net)
Bogofi lter (http://bogofilter.sourceforge.net)

Bayesian classifi cation is a simple method of machine learning, and is susceptible
to obfuscation of the content of the email. However, the idea of applying
machine-learning techniques to the problem of spam identifi cation is a powerful
one. Several software projects are available that use more advanced mathematical
models than the basic Bayesian model. For example, the CRM114
(http://crm114.sourceforge.net/) fi lter organizes words and phrases into
hidden Markov models rather than Bayesian networks, and the DSPAM
(http://dspam.nuclearelephant.com/) software adds neural networks
and several advanced enhancements to standard Bayesian learning and classifi cation
techniques.

Ensemble Identification
O ne of the most popular forms of heavyweight analysis is the ensemble analysis;
also referred to as the toolkit or arsenal approach. Rather than analyzing messages
using a particular method, messages are examined with multiple methods, and the
outputs of these methods are considered recommendations rather than authoritative
decisions. These recommendations are combined with a weighted scoring system
that allows techniques with low effectiveness to be taken into consideration.
Messages with scores over a certain threshold are then considered spam,
while messages under that threshold are not. One of the most popular examples
of this type of spam identifi cation technique is SpamAssassin
(http://spamassassin.apache.org/).

•

•

•

Chapter 6

[101]

SpamAssassin uses a large library of pattern-based fi lters, consults DNSBLs and
several online spam databases, and also includes a Bayesian analyzer. The benefi t
of this approach is that new ideas in identifying spam can be added to the arsenal
as they are developed. The catch, however, is that the software is very complicated,
and has more overhead than simpler or more straightforward classifi cation
techniques because it uses all of the identifi cation techniques rather than just one of
them. Additionally, the expected level of accuracy must weigh the infl uence of the
techniques used. Getting the right balance between rules is diffi cult to gauge in the
general case. SpamAssassin, for example, carefully tailors the relative weights of
rules in its collection to be accurate over a large set of unrelated emails.

Quarantines and Challenges
P erhaps the most involved fi lters are the kind that hold email messages hostage
while a human decides whether they are spam (and should be deleted) or are ham
(and should be delivered). These types of fi lters fall into two categories: quarantines
and challenges. With a quarantine the recipient decides whether a message is spam
or not, while with a challenge, the sender must certify a message is not spam. The
more common of the two is quarantine, usually combined with heavyweight scoring.
Because heavyweight identifi cation typically places email somewhere on a continuum
between spam and ham, messages not considered ham are often delivered to a special
folder for holding spam. This folder is a quarantine where messages are examined by
the recipient, and mistaken categorizations can be identifi ed.

Challenge-based spam identifi cation is less popular, but also effective. One of the
most p opular forms of challenge-based spam i dentifi cation is called Tagged Message
Delivery Agent (TMDA). W hen a message is received, it is stored in a holding area
while a challenge message is sent back to the sender. The challenge message
contains instructions to be followed by the sender so as to identify himself or herself
as a non-spammer, such as visiting a message-specifi c URL or replying to a
message-specifi c email address. When the sender's validating action is performed,
the original message is delivered, and in some cases the sender is then added to a list
of known good senders so that no challenges are made in the future. This technique
is effective against spam, because it requires a valid return address in addition to
some of the spammer's precious time. On a usual spammer scale, where millions of
messages are sent in an average hour, responding to the TMDA message is not worth
the effort. On the other hand, TMDA challenges are frequently effective against
ordinary busy people as well. Some people consider challenges to prove that they
are not spammers rude or, at the very least, a waste of time. Consider, for example,
a person asking an expert a question. The expert might wish to respond, but balk
at spending time verifying his non-spammer status. Of course, such situations are
easily avoided through judicious use of white lists, but TMDA and other challenge-
based methods make such problems easy to overlook.

Filtering

[102]

 Mistakes
 One of the most critical things to consider when evaluating any anti-spam technique
is the problem of mistakes. No technique is perfect, and the questions to answer
when evaluating a technique include:

1. Can false positives (incorrectly tagged or blocked email) be detected?
2. Can false positives be fi xed?
3. Can false negatives (spam that was not blocked or tagged) be corrected?
4. Can user errors be fi xed?

In the lightweight categories, detecting false positives is problematic because
messages identifi ed as spam are often prevented from being delivered. For example,
if a domain is mistakenly listed in a DNSBL, all email communication with that
domain is cut off, making it diffi cult for users of that domain to complain that
their messages are not being delivered. Often, the only way for domains using the
DNSBL to discover the error is for someone from the blocked domain to inform their
intended recipient of the problem via a non-email method. This is, of course, only
possible if all affected parties have both the desire and ability to use a non-email
method of contact. Rather than blocking email that is considered spam,
the alternative is to tag it with an identifying header. Email so tagged is delivered
to a special spam folder, quarantine area, or something similar. This allows
spam-like email to be reviewed for mistakes, but does not take advantage of the
primary purpose of lightweight fi lters: to make quick, fi nal decisions and avoid
spending time and resources analyzing each email in depth. Thus tagging email only
makes sense when using a heavyweight fi lter.

Whether mistakes can be fi xed is another issue. With learning fi lters, such as
Bayesian classifi ers, correcting mistakes and thus improving accuracy is fundamental
to the fi lter's design. On the other hand, informing the fi lter of its mistakes is
frequently inconvenient, particularly with a large group of users who use different
mail clients. Some fi lters, like DSPAM, provide a full web interface for submitting
incorrectly tagged email messages, while others rely on command-line access to the
mail server or some concoction by the system administrator. A good way to handle
such tools in an IMAP-based environment is by creating magic folders that
will—either by some server-based hook, cron, or some other method—cause the
spam identifi cation system to re-interpret messages placed in them.

On the other hand, correcting errors in a DNSBL or a spam database ranges
anywhere from impossible to diffi cult, depending on the philosophy of those
who maintain it. It is often necessary to use a local hand-written white list to
avoid or countermand known misidentifi cations in such lightweight spam
prevention techniques.

Chapter 6

[103]

Stopping Spam from Getting Out
 Preventing users from receiving spam is only half of the spam battle. The other half
is to avoid sending spam. This may seem like a simple task on a user-by-user basis,
but preventing users and your email system from sending spam on a wide-scale
basis is more diffi cult. How to accomplish this depends upon the environment (i.e.
how users send email), the resources devoted to the task, and the level of trust and
convenience afforded to each user.

An obvious way to address to the problem is to treat outbound email similarly to
inbound email. For example, software such as SpamAssassin can scan each email
before it is sent, and prevent messages identifi ed as spam from being sent. This,
however, is frequently overkill, and is particularly unnecessary if one's users are
unlikely to be spammers.

Sender Restrictions
 A simplistic approach is to perform basic checks on outbound email, such as
ensuring the sender of every email is a valid recipient, limiting the amount of
email a sender sends per hour, prohibiting the use of BCC: headers, or something
similar. These restrictions, of course, can be onerous, depending on the users being
supported, so limits should be chosen carefully.

Bounce-Back Spam
 Qmail is often criticized for its default policy of accepting all email destined for
domains it considers local and then generating bounce messages for any email whose
recipient does not exist. While this is a legitimate practice according to the SMTP
protocol, it creates the problem of bounce-back spam (also known as blow-back or
back-scatter). The problem stems from the fact that the sender's address might be
inaccurate or invalid. When a spammer sends several million messages to random
usernames at one of the confi gured local domains, qmail accepts them all and then
generates bounces for all of the non-existent addresses (likely, all of them). Since the
sender's address for these emails is probably inaccurate, either qmail is left with a
large number of undeliverable bounce messages in its queue or qmail sends bounce
messages to whatever legitimate email addresses the spammer chose to use as the
return addresses. For example, a spammer can send a message with a return address
of you@yourdomain.com to lasdkfkjhqw@example.com. The lasdkfkjhqw user likely
does not exist at example.com, and if example.com is using an unmodifi ed qmail
installation, it will send a bounce message to you@yourdomain.com to inform you
that the spammer's message could not be delivered.

Filtering

[104]

Recipient Validation
 A partial solution to the problem of bounce-back spam is to modify qmail so that it
will only accept messages addressed to valid recipients. For example, a modifi ed
(or wrapped) qmail can check whether a given user exists in the recipient domain
rather than simply checking whether the recipient domain is listed in the
control/rcpthosts fi le. Checking whether a user exists can be a complicated task.
For example, mailing lists often use temporary addresses for administrative tasks
(like handling user subscription requests) and virtual domains can have external
user databases that qmail cannot access easily (such as vpopmail or GNU
Mailman domains). As such, there are many different patches to qmail that use
different methods of determining whether a user exists or not. Some of the most
popular are:

Oliver Neubauer's validrcptto patch (http://www3.sympatico.ca/
humungusfungus/code/validrcptto.html) considers a user valid if it is
listed in the fi le control/validrcptto. This introduces two complications:
fi rst, the user list must be kept up to date, and second, no wild-card
addresses are allowed (such as those used by many mailing list software
packages, like ezmlm and GNU Mailman).
Dr. Erwin Hoffmann wrote, as part of his SPAMCONTROL collection
of patches, the RECIPIENTS extension patch (http://www.fehcom.de/
qmail/recipients/recipients-044_tgz.bin). This is similar to the
validrcptto patch, but relies on a CDB fi le rather than a text fi le to list all the
valid recipients (making lookups faster, particularly when the list of valid
recipients is long). It also accepts all wildcard extension addresses of the
addresses listed in its CDB fi le. In other words, if the address you@example.
com is listed, it accepts you-anything@example.com as well. Like the
validrcptto patch, the centralized list of users must be kept up to date.
Paul Jarc wrote the realrcptto patch (http://multivac.cwru.edu/qmail/)
to use the same tests that qmail-send uses to choose a delivery location.
This works well when users are defi ned entirely within qmail's confi guration
fi les, or when all delivery locations are accessible by the qmaild user (i.e. the
user that runs qmail-smtpd) but does not work well otherwise. For example,
this patch accepts all messages for virtual domains controlled entirely by a
single .qmail-default fi le (such as vpopmail domains and GNU Mailman
domains) and does not correctly reject messages addressed to recipients that
do not exist for those domains (because qmail-send would not reject those
messages either; the bounce message normally comes from the vpopmail or
Mailman software).

•

•

•

Chapter 6

[105]

Jay Soffi an's RCPTCHECK patch (http://www.soffian.org/downloads/
qmail/qmail-smtpd-doc.html) relies on a sysadmin-provided external
script or program to determine whether a recipient is acceptable or not. In a
sense, this is the most fl exible approach. It can be made to use any method
necessary to validate a user, and allows the script to run as whatever user
is necessary to perform the verifi cation without requiring qmail-smtpd to
have suffi cient privileges to do so itself. However, this fl exibility requires the
sysadmin to write the script or program to perform the validation, which is
more work.

This task does not absolutely require patching qmail; a qmail-queue wrapper can
also perform it. Using a wrapper rather than a patch in this case has the drawback
that the entire message must be received before the qmail-queue wrapper is
triggered. A patch can check the recipients' validity as the sender lists them. If the
recipients are invalid, rejecting them earlier saves bandwidth.

None of these methods is a full solution to the problem of bounce-back spam,
because none of them can guarantee that a given message is deliverable.

Recipient Validation is Insufficient
 User validation is suffi cient to prevent bounces in many cases, but some common
examples where bounce-back spam cannot be prevented include:

The recipient does not have enough room in his or her mailbox to deliver
the message. Normally, qmail simply leaves such messages in its queue and
keeps retrying delivery until the message is either delivered or it is older
than the allowable queue lifetime (defi ned in control/queuelifetime),
normally seven days.

The recipient forwards the message elsewhere. If the user's email is
forwarded to a non-local account, it might not be deliverable right away, for
a variety of reasons that depend on the destination server—the destination
might be offl ine, might have temporary problems, the user might have
run out of quota on that system, or any of a number of other problems
may occur.

The recipient refuses the message in his or her .qmail fi le. If the user's
.qmail fi le contains something like: |bouncesaying 'go away', then
incoming messages are bounced to their return address.

The recipient set a vacation message. If the user's .qmail fi le contains
something like: |autorespond 'I am on vacation.', then a message is
sent to the return address of any message sent to that user.

•

•

•

•

•

Filtering

[106]

The recipient may be a mailing list. Messages to mailing lists often generate
automated response emails, such as warnings that only subscribers can
post or instructions for how to subscribe to the list. Generally accepted best
practice for mailing lists allowing anyone to self-subscribe is to require
address confi rmation. In other words, when someone attempts to subscribe,
the list sends a message to the subscribing address with instructions for
completing the subscription (this prevents people from subscribing others
to lists without their knowledge). Thus, if a spammer sends a message to a
mailing list's subscription address, a confi rmation email is sent to the return
address of the spammer's email.

Though bounce-back spam can never be fully eliminated, validating recipients still
dramatically reduces the problem.

One of the downsides of validating recipients, however, is it allows spammers to
quickly discover (via the guess-and-check method) what users are valid on such a
system, and in future the spammer can direct spam to only those recipients. While
this is technically possible, in practice, it is uncommon that spammers spend the time
necessary to track the success of each address, because obtaining valid addresses to
spam can be achieved with much less time-consuming methods.

Summary
This chapter covered the general topic of expanding the qmail architecture, with
particular focus on the details of spam and virus prevention. Many different
techniques for addressing the many facets of spam and viruses in today's world
were discussed. Armed with this knowledge, a system administrator can harden an
email system against spam in ways that are effective, effi cient, and appropriate for
a system's particular needs, limitations, and available resources. The next chapter
covers more advanced topics—SSL support and mailing list support—that rely in
different ways upon the understanding of the architecture presented in this chapter.

•

Advanced Features
 The foundation of knowledge presented so far in this book is enough to provide
some intuition about how to get started with implementing most desired email
server features. To provide some examples for building upon this foundation, this
chapter explores SSL encryption (also known as TLS) and effi cient mailing list
implementations. There is, of course, a nearly unlimited set of further topics and
features that could be discussed, but these two are a good start.

SSL Encryption
 The Internet is extremely powerful and fl exible because of the way it works,
although people are frequently surprised by how it works. When information
(like a bit of text, a picture, or an email) is sent across the network, the sending
computer puts the information into a packet, or series of packets, and hands them
to a computer closer to the destination computer. In the end, this process resembles
taking a postcard and handing it to someone else to be delivered. The person
receiving the postcard looks at the address and hands it to someone else who is a
little bit closer to the addressee. Computer networks are somewhat more formal and
have a better sense (usually) of who the next-closest computer is, but the process is
essentially the same. It is common for seventeen or so computers to handle a packet
before it reaches its destination. The text of the postcard, or content of the packet, is
available for anyone to read, if they so choose. Most computers do not examine the
contents of the packets they relay, because they have other things to do, but there is
nothing preventing them from doing so.

The entire scope of email content transmitted over the Internet this way—everything
from stock tips to love letters to bank passwords—is exposed to unauthorized
interception as it crosses networks, from machine to machine. In other words, things
not everyone should read are transmitted in a way that anyone in the middle is able
to intercept. In the case of regular mail, the solution is to forgo the use of postcards
for anything private and instead write a letter secured in an envelope. In the world of
computers, the solution is to use encryption.

Advanced Features

[108]

There are many forms of encryption available for different purposes, but the basic
concept is common to all of them: encryption is designed to guarantee only those
who should read something can read it. For email, there are many ways to use
encryption. When discussing email servers, encryption usually involves encrypting
communication between SMTP servers using Secure Sockets Layer (SSL) encryption
or Transport Layer Security (TLS) encryption. The SSL acronym is a reference to
network connections in UNIX, which are called sockets. The difference between SSL
and TLS is somewhat blurry because they both use the same encryption technology
and are occasionally used interchangeably. To be more precise, however, the two
terms are used to distinguish between encryption that starts at the same time as
the network connection (SSL) and encryption that begins after the connection is
established (TLS). Because the encryption must begin as the network connection
is established, SSL encryption generally requires a distinct network port but does
not change the underlying communication protocol. For example, SMTPS (the
SSL version of SMTP) uses port 465 rather than the SMTP-standard port 25. TLS
encryption, on the other hand, is an extension to the protocol implemented in a
backwards-compatible way. In the case of SMTP, TLS encryption adds a single
command, STARTTLS, to the protocol that directs the server to begin encrypting the
network conversation. As such, it can be added to an SMTP server without requiring
the server's clients to be aware of the change.

Qmail does not support SSL or TLS by default but this feature can be added to qmail
in several ways, depending on when and where encryption is used. There are two
primary opportunities for using encryption: when receiving email and when sending
email. As is usually the case with the qmail architecture, there are two ways of
implementing encryption: with a patch and with a wrapper.

Patch vs. Wrapper
 The difference between using a patch and using a wrapper is based on their
fundamental design difference: one modifi es qmail (a patch), one uses qmail (a
wrapper). Because a wrapper is a separate program, it creates an additional need for
communication between different programs on the server: the wrapper and the qmail
component it wraps. This leads to an increased overhead and latency. On the other
hand, using a wrapper does not require modifi cation to qmail itself, so it is less likely
to cause security problems and can be easily removed if there is a problem with it.

The primary SSL/TLS patch was written by Frederick Vermeulen
(http://inoa.net/qmail-tls/). There are several options for providing
SSL service by means of a wrapper, but the most popular include André
Oppermann's patch to tcpserver (http://www.nrg4u.com/), and stunnel
(http://www.stunnel.org/). Another valid option, of course, is to replace
qmail-smtpd with a program that understands SSL and TLS itself, such as Bruce
Guenter's mailfront (http://untroubled.org/mailfront/).

Chapter 7

[109]

When Receiving Email
 The reasons to use encryption when receiving email are numerous. The standard
reason is for privacy—i.e. keeping the content of email away from prying eyes.
However, another common reason for needing the security and cryptographic privacy
that encryption affords is SMTP-AUTH. When submitting email via SMTP and using
the SMTP-AUTH extension to authorize the submission, usually both a username
and password are sent over the network to the mail server. This information makes
protecting this communication from interception especially important.

The most basic operational difference between handling the encryption within
qmail-smtpd (i.e. with Vermeulen's patch or a replacement like mailfront) and
handling the encryption in a wrapper around qmail-smtpd (i.e. Oppermann's patch
or stunnel) is that changing the SMTP server makes it easier to support TLS (as it is
an extension to the SMTP protocol). Oppermann's patch, for example, only supports
SMTPS, (SSL encryption) not the STARTTLS extension to the SMTP protocol.
stunnel can support the STARTTLS extension, but currently this requires patching
the stunnel source code.

When evaluating the options, it is important to consider the security ramifi cations of
the choice. Bruce Guenter's mailfront is a powerful tool (see Chapters 2 and 6); it is
essentially a replacement for qmail-smtpd that adds many useful features, including
support for SSL, TLS, and SMTP-AUTH. The fact that these additional features are
bundled together adds a level of convenience to this option, if the other features
of mailfront are used. Because mailfront, Vermeulen's patch, and the stunnel
program all operate within the same security region as qmail-smtpd—i.e. as a
user with restricted permissions—they are subject to essentially the same caveats:
a security breach in one has the same impact as a breach within qmail-smtpd. But
by operating with the same security restrictions as qmail-smtpd, they all benefi t
from qmail's privilege-separation architecture in the same way that qmail-smtpd
does: if exploited, they run as a user with insuffi cient permissions to do very much.
Capitalizing on such an exploit is much more diffi cult. This is not to say that any of
them has a history of security fl aws, but merely that their history of security is not as
long (Vermeulen's patch and mailfront both have fl awless security track records).

Using a patch to add SSL support to tcpserver is an interesting idea because it has
the potential to undermine the security design of the qmail architecture on most UNIX
systems. Since listening to the network requires root permissions, tcpserver normally
runs briefl y as the root user, and thus has suffi cient permissions to do virtually
anything. (Some UNIX variants, such as SELinux, allow permissions to be highly
customized, and so tcpserver can technically be run as a user with permission to
listen to the network but without suffi cient permissions to do anything else.) This
is usually acceptable for two reasons: tcpserver drops the root power quickly, and
its task is extremely simple. Because tcpserver does not attempt to understand or
interpret any of the network traffi c, it is virtually impossible to exploit.

Advanced Features

[110]

However, implementing SSL within tcpserver means that tcpserver performs
a more complex job and interprets untrusted user (or attacker) input. This is risky,
which is precisely why qmail-smtpd runs with restricted permissions. Oppermann's
patch is very careful to only use OpenSSL after tcpserver has dropped its root
privileges. If Oppermann was not as careful, the patch could have become a severe
liability. Other patches that perform a similar task may not be as careful.

When Sending Email
 It is important to note that mailfront, Oppermann's patch to tcpserver, and
stunnel enable qmail to receive encrypted connections but not to make encrypted
connections to other SMTP servers. These options only enable clients to send mail
to the qmail server in an encrypted form. If the goal, however, is to make qmail use
encryption for its outbound connections, then none of these three solutions is up to
the task. Frederick Vermeulen's patch, on the other hand, is the only mainstream
addition to qmail that provides this ability. With Vermeulen's patch, qmail-remote
uses and understands the extended SMTP EHLO semantics: it tests recipient servers
to determine whether they support TLS and uses TLS encryption if they do. With this
patch, qmail-remote also automatically uses encryption when connecting to port
465 (the SMTPS port) on any server; this behavior is specifi ed by the smtproutes fi le.

The primary drawback to Frederick Vermeulen's patch is its size—it patches both
qmail-smtpd and qmail-remote and alters and adds a signifi cant amount of code to
both. Although it has been tested in many places for a long time, it might still contain
bugs. In addition, these extensive code additions have more potential to confl ict with
other qmail patches. For example, one of the most common situations for encryption is
when using SMTP-AUTH, to protect the passwords transmitted during authentication.
Most of the SMTP-AUTH patches, however, confl ict with Vermeulen's patch. Because
this is so common, a small segment at the beginning of the patch can be removed to
allow it to cooperate with the popular SMTP-AUTH patches. Despite this concession
to compatibility, the patch still confl icts with, or confuses, many other unrelated
patches to qmail-smtpd, and these confl icts usually require manual resolution.

Mailing Lists
 One of the most important and most common tasks that mail servers do is the
distribution of email via mailing lists. Many organizations rely on mailing lists
not only to reach their customers or constituents, but also to provide a means of
communication within the organization or a group within that organization. The
complexity and diffi culty of this task varies depending on the number of recipients
on a given list, and the level of automatic maintenance required. Choosing a mailing
list management strategy or software package requires careful consideration of the
needs and goals of the mailing list or lists.

Chapter 7

[111]

Lightweight vs. Heavyweight
The most basic form of sending an email to a mailing list is simply sending an email
with multiple addresses in the To header. This technique is easy, simple, and for
a small number of recipients, it makes perfect sense. The intermediate level is the
alias-based mailing list. This is akin to having a group in an address book that the
email server accesses. With this, one sends an email to all of the addresses listed in the
alias by simply sending an email to a special email address representing that group.
For example, in qmail, creating the fi le ~alias/.qmail-mylist creates the address
mylist@yourdomain.com (assuming the qmail server's name is yourdomain.com).
This fi le is fi lled with addresses (one per line), each of which receives a copy of every
message sent to mylist@yourdomain.com. This is a lightweight mailing list, because it
is so simple: it is defi ned in a single fi le and maintained by manually editing that fi le.

The problem with such a list is someone (who has permissions to edit
~alias/.qmail fi les) must maintain the list's membership. For small mailing lists
or lists whose membership does not change often, this is not usually a problem.
However, once the membership of a list gets large (over a hundred people, for
example), maintenance of this fi le becomes a signifi cant chore. It is often desirable to
establish a mailing list where people can join or leave without involving the
mailing-list administrator. This self-serve option requires software and that
capability distinguishes a heavyweight list from a lightweight list.

Heavyweight list management software, of course, frequently includes other
convenient features, including the abilities to easily archive all list messages, to
prevent non-subscribers from posting, to allow message moderation, to provide
some users with daily digests of all list messages, and many others. Examples of
popular heavyweight list management software packages that work with qmail
include ezmlm (http://cr.yp.to/ezmlm.html) by qmail's author, Dr. Bernstein;
ezmlm-idx (http://www.ezmlm.org/) by Bruce Guenter (based on ezmlm); and
GNU Mailman (http://www.gnu.org/software/mailman/).

Speed vs. Size
 When comparing mailing-list manager software, important details to evaluate include:

How many messages can the mailing-list manager handle per day or
at a time?
How does the mailing-list manager perform under load?
How does the manager store its recipient list, and how quickly can it fi nd a
particular recipient?

•

•

•

Advanced Features

[112]

The most fundamental question regarding mailing lists is: what are the speed
limitations of posting to the list? In many cases, the real limitation is the outbound
network bandwidth from the mail server: only a limited number of messages can
be transmitted over the same wires at one time. This is not always the case. Poor
software design can cause mismanagement or ineffi cient use of bandwidth. For
example, the email server may use too much bandwidth retrying undeliverable
messages or the mailing list management software may spend too much time
managing itself and not spend enough time queuing messages for delivery.

Member Management
 One of the tasks mailing list management software often performs is automatic
handling of email bounces to detect and remove undeliverable email addresses
from its membership list. In a list with tens of thousands of members, the likelihood
of some being undeliverable is rather high. When a bounce message comes back
informing the list of a delivery failure, it must locate that recipient in its internal
records and record the bounce. In a list of tens of thousands of names, simply
searching through the list linearly takes too much time. And, of course, every
undeliverable message causes a recipient lookup. If the mailing list is restricted such
that only subscribers can post, every single message sent also requires a search of
the membership rolls to verify that the sender of the message is indeed subscribed.
At the same time, every posting requires that all of the addresses be collected and
fed to the email server. For very large, very busy mailing lists or mailing-list servers,
allowing a subscription request, a bounce, or a membership check to take more than
a second of CPU time is too much.

The most popular list management software packages used with qmail store
their subscriber lists differently. ezmlm and ezmlm-idx store user lists in hashed
directories of fi les, while GNU Mailman stores its user lists in binary database fi les.
The database fi les are faster than hashed fi les if they're kept in memory, while the
hashed fi les are often (but not always) faster than database fi les if the database fi les
cannot be kept in memory. Hashed fi les, however, are editable by hand if necessary,
while GNU Mailman's binary database format cannot be reconstructed or
hand-edited easily.

Efficiency under Load
 The number of processes that handle each posting to each list is a common way
of comparing mailing-list effi ciency. The idea is the more processes required, the
greater the load placed on the server for each message. For email servers with
minimal amounts of mailing-list traffi c, this is essentially irrelevant, but in high-
load situations, this is much more important. ezmlm and ezmlm-idx invoke multiple
programs (typically, three or four) every time a message is sent to the list. Different

Chapter 7

[113]

numbers of programs are used depending on the enabled options for that particular
list. Handing the posted messages to the email server for delivery requires another
two processes (qmail-inject and qmail-queue). GNU Mailman, on the other hand,
invokes only two programs (preline and mailman) to receive every message, and
another three (sendmail, qmail-inject, and qmail-queue) to queue messages for
delivery. Thus, if large volumes of email are sent, ezmlm and ezmlm-idx spawn more
programs than GNU Mailman and impose more program-loading overhead on the
server. On the other hand, the programs spawned by ezmlm and ezmlm-idx are all
small and simple. GNU Mailman's mailman program is a wrapper around a Python
program. Because Python is an interpreted language and its interpreter is large and
must parse the entire input program before doing any useful work, starting up a
Python program takes longer than a simpler, compiled program. To mitigate the
overhead of starting multiple large Python programs, GNU Mailman has a daemon
(qrunner) to handle most of the operations of the mailing lists, allowing the mailman
program to be simpler and merely submit job requests to qrunner. In any case, the
effi ciency differences between the ezmlm/ezmlm-idx and GNU Mailman cannot be
treated as simply a case of one starting more programs than the other. Not only is the
overhead per process different depending on the process, but on many servers, the
cost of invoking processes is greatly overshadowed by other costs, such as the cost of
bounce message handling.

Variable Envelope Return Path
 Not all recipients can be contacted every time mailing list messages are distributed.
It is ordinarily desirable to track which members of a list have not received
messages, and for what reason. For example, if a given address no longer exists, the
mailing-list manager could warn the list administrator and temporarily remove that
address from the distribution list. This procedure is complicated by the fact that
mailing-list software cannot know whether mail was delivered immediately. If the
software is to automatically monitor delivery success, it must receive and interpret
bounce messages.

While receiving bounce messages is relatively easy by simply setting the envelope
sender address of each outbound list message to a special list-specifi c email address,
reliably interpreting those bounce messages is diffi cult. Because the format and
language of bounce messages varies, reliably extracting the reason for the bounce
and even the recipient responsible is challenging.

To address this problem, a technique exists to encode the recipient of a list message
in the return address. There are many ways of doing it, but the formalized technique
is known as Variable Envelope Return Path (VERP). Messages are normally fed
to a mail server (such as qmail) with a single sender and one or more recipients.
In order to give every recipient a unique sender, a new copy of the message body

Advanced Features

[114]

normally must be given to the mail server for each recipient. For small lists this is not
a problem, but for large lists, this presents a storage and effi ciency dilemma, as the
queue must track and store each message separately.

The solution, in this case, is VERP and transferring the responsibility of changing the
sender of each message from the mailing-list software to the email-server software.
By standardizing the method of encoding a recipient into the sending address, the
encoding can occur at any location, including within the email server. In this case,
qmail-remote is either patched or wrapped so messages from mailing lists (with
a special return address to indicate that VERP encoding should be employed) are
rewritten as they exit the queue, rather than as they enter the queue. This drastically
reduces the overhead of VERP while maintaining its functionality. Both ezmlm and
GNU Mailman support VERP. ezmlm uses it by default; and GNU Mailman can be
confi gured to do so. Neither one relies on an implementation in the email server
(qmail), though Frederik Lindberg has written a patch (http://www.ezmlm.org/
archive/patches/qmail-verh-0.06.tar.gz) to both qmail and ezmlm that allows
them to cooperate this way. GNU Mailman usually restricts its use of VERP to probe
messages. This avoids using extra resources for each normal mailing list message
without relying on the email server to implement particular support for VERP.
However, this can lead to a failure to detect some failed deliveries.

Integration with Qmail
 Not all mailing-list software works optimally with the qmail architecture because
mailing-list software frequently is tightly bound to specifi c email-server software
to take best advantage of its features. For example, the popular mailing list
management software Majordomo was originally designed specifi cally for the
Sendmail email server, and relies on the details of the Sendmail aliasing system.
Since qmail can be made to interpret Sendmail alias fi les, and since Majordomo
can be altered to create qmail aliases, they can be made to work together, though
not generally as effi ciently and/or conveniently as software designed for use with
qmail. (It is expected that Majordomo 2.0 will support qmail directly, but work on
Majordomo 2.0 has been in progress since even before qmail was written and as
of this writing does not have a set release date.) Of the three software packages
recommended here—ezmlm, ezmlm-idx, and GNU Mailman—the fi rst two are
designed explicitly for qmail (though they can work with servers like Postfi x).
Because of this, ezmlm and ezmlm-idx are easy to install and get running with qmail.
GNU Mailman, on the other hand, is designed to work with a broad range of email
servers and therefore requires glue between itself and the email server.

Chapter 7

[115]

For example, GNU Mailman establishes several standard email addresses for each of
its mailing lists (similar to ezmlm and ezmlm-idx) to handle administrative requests,
bounces, and other specifi c tasks. Enabling delivery of mailing-list addresses with
these software packages requires either several .qmail fi les (one per address) or a
way to deliver all of the mailing list messages to a single address prefi x and a script
that delivers messages to their intended destinations. ezmlm and ezmlm-idx handle
.qmail fi le creation themselves. A common approach with GNU Mailman is to
create a virtual domain for all GNU Mailman mailing lists (e.g. lists.example.
com) and put a .qmail-default fi le in that domain's home directory that directs
qmail-local to feed messages to a script (a Python version is provided with GNU
Mailman). This script determines the original destination address and then calls
mailman with the correct arguments. While this script (glue) makes management of
GNU Mailman mailing lists less involved, it also increases the overhead required to
process every message posted to GNU Mailman lists.

Web Interface
 One of the most popular and visible features of mailing lists is their ability to keep
an archive of messages distributed on the list, and make this archive available
from a web browser. GNU Mailman makes this relatively easy because its entire
management system is based around a web-browser interface. Making list archives
available via the Web requires only enabling the archives and properly confi guring
the web server. Providing a web interface for ezmlm archives requires more work
because it does not come with such an interface. The easiest option is the ezmlm-
www software (http://ezmlm-www.sourceforge.net/), a Perl-based CGI script.
ezmlm-idx adds more extensive web support to ezmlm. ezmlm-idx comes with a
program called ezmlm-cgi that—when properly confi gured—allows web-based
browsing of list archives. However, its interface is not particularly user friendly.
A more attractive alternative is ezmlm-browse (http://untroubled.org/
ezmlm-browse/) written by Bruce Guenter. Because Guenter wrote both
ezmlm-browse and ezmlm-idx, they work well together.

It is often convenient to administer, not just browse, mailing lists from a web
browser, executing administrative tasks such as moderation and changing settings.
ezmlm and ezmlm-idx make it possible to do advanced administrative tasks entirely
via email, but a web browser is typically more convenient. The GNU Mailman
software is controlled entirely from its built-in web interface—many confi guration
details can be set only from its web interface. ezmlm and ezmlm-idx, however,
are both oriented primarily towards command-line-based confi guration, though they
can be confi gured via email. The ezmlm-web software package
(https://systemausfall.org/toolforge/ezmlm-web/), however, provides a
web-based interface for confi guring both ezmlm and ezmlm-idx.

Advanced Features

[116]

Summary
This chapter has covered two common needs of qmail administrators: encryption
and mailing-list management. This discussion has built upon the knowledge of qmail
architecture presented in the preceding chapters, as examples of how to approach
important features with qmail's architecture in mind. The next chapter will cover
how to optimize a qmail server for particular environments, and how to maintain a
qmail server over time.

Administration, Optimization,
and Monitoring

 This chapter covers the two most important tools an administrator needs when
maintaining a qmail server over the long term: analyzing the log fi les to locate
problems, and on that basis fi nding ways to improve qmail's performance.

The Log Files
 When analyzing qmail's operation for almost any purpose, the fi rst place to begin
looking is in qmail's log fi les. In a standard qmail setup, there are two sources of log
fi les: one for qmail-send and one for qmail-smtpd. By default, these contain both
useful information for tracking down individual messages and useful information
for analyzing qmail's performance.

The log output of both qmail-send and qmail-smtpd is organized in a simple way,
though it can easily become confusing.

The Basic qmail-smtpd Log
 The qmail-smtpd log fi le is the simpler of the two because qmail-smtpd does
not generate log output. The qmail-smtpd log records the output of tcpserver.
tcpserver generates fi ve log entries for every connection:

1. When the connection opens, it logs the current number of connections and
the maximum number of connections.

2. When the connection opens, it logs the client and the process-identifi er (PID)
of the child process handling that connection.

3. After all the necessary client information is collected, it logs the information
and the decision whether to allow the connection.

Administration, Optimization, and Monitoring

[118]

4. After the child process (e.g. qmail-smtpd) exits, it records the child process's
return value.

5. When the connection closes, it records the current and the maximum number
of connections.

The following is an example of the fi ve log entries:

tcpserver: status: 1/20
tcpserver: pid 13609 from 1.2.3.4
tcpserver: ok 13609 example.com:1.2.3.5:25 example2.net:1.2.3.4:joe:2985
tcpserver: end 13609 status 0
tcpserver: status: 0/20

The fi rst and last entries indicate that a maximum of twenty connections are
available at one time. In the fi rst entry tcpserver reports that one of these twenty is
in use, and in the last entry tcpserver reports no active connections.

The second log entry reports that the PID of the child process handling the new
connection is 13609 and the IP address of the connected client is 1.2.3.4.

 The third log entry is of the form:

decision pid localname:localIP:localport remotename:remoteIP:remoteuser:remoteport

The "decision" string indicates whether the connection attempt will be allowed
to continue (ok) or will be closed immediately (deny). Much of the remaining
information is stored in environment variables accessible by the child process. In
terms of these environment variables, this log entry is in the form:

decision pid $TCPLOCALHOST:$TCPLOCALIP:$TCPLOCALPORT $TCPREMOTEHOST:
$TCPREMOTEIP:$TCPREMOTEINFO:$TCPREMOTEPORT

Thus, the decision by the child process 13609 is to allow (ok) the connection from
the user joe on the computer example2.net with IP address 1.2.3.4 connecting
from port 2985 to the local machine example.com listening on IP address 1.2.3.5
on port 25 (the standard SMTP port). Not all of this information about the remote
host is necessarily available. For example, if tcpserver was told not to look up the
remote host's DNS name (with the -H fl ag) or could not fi nd that information, the
TCPREMOTEHOST will be missing. And if tcpserver was told not to use the ident
protocol to ask the remote host for the username responsible for the connection
(with the -R fl ag, which is currently the standard practice since many servers drop
ident connections, which slows down connection attempts) or could not retrieve that
information, the TCPREMOTEINFO will be missing.

Chapter 8

[119]

Without that information, the above example would look like:

tcpserver: ok 13609 example.com:1.2.3.5:25 :1.2.3.4::2985

The fourth log entry is deceptively simple. The end tag signifi es it is reporting the
return value of the child, but the status it reports is the result of the waitpid() (or
wait3()) system call, not the literal return value of the application. To extract useful
information from this value, if it is non-zero, the system administrator must process
it according to the particulars of the operating system in use. The man page(s) for the
waitpid() and wait3() system calls contain information about how to do this. In
any case, a status of 0 means the child exited successfully and did not report an error.

Expanding the qmail-smtpd Log
 While the tcpserver log messages are suffi cient for most purposes, it can be useful
to record more information about each connection. As is usually the case with
qmail, there are two ways of doing this: patching qmail-smtpd, and wrapping
qmail-smtpd. The choice depends on the user's needs.

The typical wrapper around qmail-smtpd for logging purposes is the recordio
program, part of the ucspi-tcp package. This program serves as a tap: it pipes
information between the client and qmail-smtpd, and writes a copy of the
communication back and forth to standard error (fi le descriptor 2). In most
tcpserver scripts, this is then re-directed to standard output (fi le descriptor 1) so
it ends up in the log fi les. recordio records everything and is useful for advanced
debugging of network connections. When combined with multilog's ability to fi lter
log messages, recordio is a convenient way of logging SMTP errors. For example, a
technique to invoke multilog (such as in the /service/qmail-smtpd/log/run fi le)
to fi lter out most of recordio's output but still log any error messages that
qmail-smtpd generates is:

#!/bin/sh
exec setuidgid qmaill multilog \
 '-* * > *' \
 '-* * < *' \
 '+* * > 5*' \
 '+* * > 4*' \
 t /var/log/qmail/smtpd

The extra lines in this example are multilog fi lter commands. The fi rst two instruct
multilog not to log any recordio output lines. The third directs multilog to log
the recordio output lines involving permanent SMTP errors (all beginning with an
error code 5xx), and the fourth directs multilog to log the recordio output lines
involving temporary SMTP errors (all beginning with an error code 4xx).

Administration, Optimization, and Monitoring

[120]

While recordio or similar software is very useful, it is not always succinct or
particularly effi cient. Another common method of expanding the qmail-smtpd
log fi les is patching qmail-smtpd. There are several patches available for that. One
of the simplest, written by Kyle Wheeler (http://www.memoryhole.net/qmail/
logging.patch), reports every decision qmail-smtpd makes as well as some of the
information about the incoming email and the client. Log entries generated by this
patch are in the following form:

qmail-smtpd: decision (reason): mailfrom from remoteIP to fi rstrecipient helo
helostring

If there is no relevant reason, the "(reason):" is left out of the log entry. The following
log entries are two examples generated by this patch:

qmail-smtpd: message rejected (mail server permanently
rejected message (#5.3.0)): spammer@somewhere.com from 1.2.3.4 to
me@mydomain.com helo spammersayshi

qmail-smtpd: message accepted: friend@example.com from 1.2.3.9 to
me@mydomain.com helo example.com

Dr. Erwin Hoffman's SPAMCONTROL patch (http://www.fehcom.de/qmail/
spamcontrol.html) provides more fl exible, extensible logging from qmail-smtpd.
The format of log messages from this patch is:

action::type::condition: information

It is extensible in that future changes to qmail-smtpd's behavior are all categorized
and succinctly summarized by this format.

The Basic qmail-send Log
 The log output generated by qmail-send is complicated because each message
generates a different number of log entries and tracking a single message through a
busy server's log easily becomes confusing. Each log entry, by itself, is simple and
straightforward. A full description of every possible qmail-send log message is
available in the qmail-log man page, but it is generally simpler than as described.
Every message generates a minimum of seven log entries:

1. When a new message is injected into the queue for delivery, it logs the
discovery of the message and the inode number of the message body in the
queue. Every fi le in a UNIX system has a unique number, called the inode
number. qmail-send renames messages to have the same name as the
message's inode number.

Chapter 8

[121]

2. When a new message is injected into the queue for delivery, it logs the size,
sender, long-term message identifi er (aka "qp"), and the UID of the process
that called qmail-queue to enqueue the message.

3. When a delivery attempt begins, it logs the delivery attempt number, the
message inode number, whether the attempt is local or remote, and the email
address of the recipient.

4. When a delivery attempt begins, it logs the number of ongoing local delivery
attempts, the maximum number of concurrent local delivery attempts
allowed, the number of ongoing remote delivery attempts, and the maximum
number of concurrent remote delivery attempts allowed.

5. When a delivery attempt fi nishes, it logs whether the delivery was successful,
and any status messages generated by the attempt. If the messages have
multiple lines, the lines are concatenated and separated by a slash (/). Any
whitespace in the messages is replaced with an underscore (_).

6. When a delivery attempt fi nishes, it logs the number of ongoing local
delivery attempts, the maximum number of concurrent local delivery
attempts allowed, the number of ongoing remote delivery attempts, and the
maximum number of concurrent remote delivery attempts allowed.

7. When all delivery attempts for a message are completed successfully (or the
message has been in the queue too long), it logs the message's inode number.

Here is an example of these seven log entries:

new msg 96025
info msg 96025: bytes 9956 from <user@example.com> qp 16296 uid 101
starting delivery 1461: msg 96025 to local me@mydomain.com
status: local 1/10 remote 0/20
delivery 1461: success: did_1+0+2
status: local 0/10 remote 0/20
end msg 96025

The fi rst entry records that a new message, stored in a fi le with the inode number
96025, was discovered in the queue. The second entry records that the message using
inode 96025 is 9956 bytes long, has a return address of user@example.com, has a
long-term queue identifi er of 16296, and was queued by a process with the UID
of 101 (probably the UID used by qmail-smtpd, qmaild). The third entry declares
delivery attempt 1461 has begun, qmail will attempt to deliver the message stored in
the fi le whose inode number is 96025, and the delivery attempt is to the local address
me@mydomain.com. The fourth entry reports one local attempt is currently happening
and a maximum of ten local attempts and twenty remote attempts are permissible.

Administration, Optimization, and Monitoring

[122]

The fi fth entry reports the delivery succeeded, and the delivery agent (qmail-local)
printed out information indicating it delivered the message to one local mailbox,
requeued the message for zero other addresses, and piped the message to two
programs. The sixth entry reports there are no ongoing delivery attempts. Finally,
the seventh entry reports qmail-send is done with that message and the message
has been removed from the queue.

Many things can complicate these logs. Obviously when there are multiple deliveries
occurring simultaneously and new messages are injected frequently, these log entries
are interleaved. Emails with multiple recipients have their recipients listed with
each delivery attempt, rather than as a collection together. Failed delivery attempts
leave the message in the queue so qmail will attempt additional deliveries later.
Connecting delivery attempts to their related message initially is a confusing task.

The three key pieces of information connecting these log entries together are the
message inode number, the delivery attempt number, and the long-lived message
identifi er (qp). In the previous example these are, respectively, 96025, 1461, and
16296. The inode number (96025) is determined by the fi lesystem on which qmail's
queue is stored. It is important to recognize that while only one message has a
given inode number at one time these numbers are reused very quickly on most
UNIX fi lesystems. It is not unusual to see sequential messages using the same inode
number. Because of inode reuse, searching for a specifi c message with just that is
diffi cult. To assist with this, qmail also has a "long-lived" message identifi er: the
process identifi er (PID) of the qmail-queue instance that enqueued the message.
Note that PIDs are also reused periodically, and the reuse rate depends both on
the operating system and how busy it is. Most UNIX operating systems assign
PIDs in a cycle of approximately 65,536 processes. Thus, the "long-lived" identifi er
theoretically can be reused immediately, just as the inode number can be, but it is
just less likely. More to the point, it is also possible for two messages in the queue
to share a "long-lived" identifi er, though that is also unlikely. Finally, a sequential
counter in qmail-send determines the delivery number. This counter is initialized
to zero whenever qmail-send starts and can count as high as 4,294,967,296 on most
32-bit systems or 18,446,744,073,709,551,616 on most 64-bit systems before resetting
back to zero. Although this counter can and will reset if qmail processes enough
mail, the most common reason for duplicate delivery numbers is qmail-send being
restarted. (On a 32-bit system, even if qmail attempted 100 deliveries every second, it
would take more than a year for a delivery number to be reused. On a 64-bit system,
it would take more than fi ve billion years to reuse the same delivery number.)

Chapter 8

[123]

Basic Analysis
 The qmail-send and qmail-smtpd logs easily demonstrate how busy the system
is. Both logs provide a status indication of how many messages are handled
concurrently at any given time and the limit on this concurrency. These status
log entries combined with their timestamp give a picture of the load over time.
Tracing a message through the system is relatively easy to do by hand: fi rst, fi nd
the point where the message is injected into the queue, use its inode number to fi nd
the message's delivery attempts then use the delivery numbers of these attempts
to locate the results of these attempts. When using a script to determine the same
information, the potential reuse of the various identifi cation numbers makes correct
analysis rather tricky.

qmailanalog
 To assist with analyzing the qmail-send logs, Dr. Bernstein wrote the qmailanalog
software package (http://cr.yp.to/qmailanalog.html). This package excels
in generating summaries of the qmail-send logs and has some limited ability to
locate specifi c messages in the logs. Unfortunately, qmailanalog relies on having
the timestamps in qmail-send's logs encoded in a rarely-used format known as
Temps Atomique International, or International Atomic Time (TAI). Syslog uses
a human-readable format, and multilog generates timestamps in tai64n format—a
more recent variation of the TAI format. There are two ways to address the problem:
either patch qmailanalog to understand multilog's tai64n timestamps—such as
with the patch written by Charles Cazabon (http://pyropus.ca/software/misc/
qmailanalog-date-patch)—or feed the log fi les through a program that converts
tai64n timestamps into TAI timestamps. One such conversion program is the
tai64n2tai program in the qlogtools package written by Bruce Guenter
(http://untroubled.org/qlogtools/).

qmailanalog fi rst transforms the qmail-send logs into a succinct format with the
matchup program from the package. This more compact, machine-readable format
is input to the rest of the qmailanalog programs to generate human-readable
summaries of that data.

The matchup program was designed to be particularly useful when used periodically
to process logs and has a feature to track messages whose log entries are split
between log fi les. Specifi cally, it prints partial delivery data to fi le descriptor 5. This
can be somewhat annoying when the program is used alone, as it complains and
refuses to run if that fi le descriptor is not already open. It is important to be aware,
however, that when used alone, matchup will ignore deliveries starting before the
analyzed log fi le begins and that have not fi nished before the log fi le ends.

Administration, Optimization, and Monitoring

[124]

A common way to use matchup to process all the current logs is:

cat /var/log/qmail/send/@* /var/log/qmail/send/current | \
 tai64n2tai | \
 matchup 5>/dev/null >matchup_output

In this example, the fi le matchup_output can subsequently be used as input to the
other programs in the qmailanalog package. qmailanalog and matchup may also be
used periodically to process newly rotated log fi les. For example:

touch /tmp/matchup-prev
cat /tmp/matchup-prev /var/log/qmail/send/@* | \
 tai64n2tai | \
 matchup 5>/tmp/matchup-next >matchup_output
mv /tmp/matchup-next /tmp/matchup-prev

This shell script isn't completely suffi cient because it doesn't keep track of which
rotated logs have been processed and which have not. multilog has the ability to
process logs through an external program as they are rotated, which is ideal for
qmailanalog's design. An example script to use is:

#!/bin/sh
touch /tmp/matchup-prev
cat /tmp/matchup-prev - | tai64n2tai | \
 matchup 5>/tmp/matchup-next >matchup_output
mv /tmp/matchup-next /tmp/matchup-prev

An example multilog run fi le, based on qmail-send's logging run fi le, that uses
such a script (assuming that script is saved in /usr/bin/matchup.sh) is:

#!/bin/sh
exec /usr/bin/setuidgid qmaill /usr/bin/multilog t \
 '!/usr/bin/matchup.sh' /var/log/qmail/send

In the previous examples, the fi le matchup_output can subsequently be used as
input to the other programs in the qmailanalog package. The summary programs
have names beginning with the letter z, and they behave as follows:

zddist prints a histogram of delivery delay time by percentage of messages.
This demonstrates, for example, what percentage of messages were delivered
in less than a second, what percentage were delivered in less than a minute,
and so forth.
zdeferrals prints a list of the reasons for which messages were deferred,
how many were deferred for that reason, and how long those messages took
to be deferred.
zfailures prints a list of all the reasons due to which message delivery
failed, how many failed for that reason, and how long those messages took
to fail.

•

•

•

Chapter 8

[125]

zoverall prints a summary of the logs, including how many messages were
delivered, how many attempts failed, how many attempts were deferred,
average time messages spent in the queue, how many bytes were processed,
and several other statistics.
zrecipients prints a list of all the recipients of qmail's delivery attempts,
how many messages were addressed to each, how many tries it took to
deliver those messages, how long those attempts took, and how many bytes
were delivered successfully to each recipient.
zrhosts prints a list of all the hosts receiving qmail's delivery attempts, how
many messages were attempted, how many attempts it took to deliver those
messages, and how many bytes were delivered to each host.
zrxdelay prints a list of all the recipients of qmail's delivery attempts,
sorted by how long on an average it took to deliver to that recipient
(successfully or not).
zsenders prints a list of the sender addresses for the email qmail attempted
to deliver along with the number of messages, bytes sent, bytes successfully
received, number of recipients, number of delivery attempts, and amount of
time each sender's mail took to deliver.
zsendmail prints a version of the log in a format very similar to that used
by sendmail.
zsuccesses prints a list of all messages given by successful delivery
attempts (note that many successful deliveries either have no message or
have a unique message).
zsuids prints a list of UIDs that sent messages along with the number of
messages, bytes, successfully-delivered bytes, number of recipients, number
of delivery attempts, and amount of time used for those delivery attempts for
each UID.

The qmailanalog package also provides some programs for selecting only certain
messages. The output of these selection programs uses the same format as the output
of the matchup program, and is fed to one of the summary programs listed above. The
selection programs have names beginning with the letter x, and function as follows:

xsender selects all messages sent by the address given on the command line.
For example, this program could be used like this:

 cat matchup_output | xsender user@domain.com | zoverall

xrecipient selects all messages delivered to the address given on the
command line. This recipient must be both the fi nal address (i.e. after
any transformations specifi ed by the control/virtualdomains fi le), and
prepended by the type of delivery that would be made to it (either remote or
local). For example, this program would be used like this:

 cat matchup_output | xrecipient local.user@domain.com | zoverall

•

•

•

•

•

•

•

•

•

•

Administration, Optimization, and Monitoring

[126]

If domain.com is a virtual domain, then it would be used like this:
 cat matchup_output |\

 xrecipient local.domainvirtualuser-user@domain.com | zoverall

xqp selects messages with the long-lived identifi er given on the command
line. Remember, this identifi er is reused and so is a convenience, not a
guarantee of selecting only a single message. This program would be used
like this:

 cat matchup_output | xqp 16296 | zoverall

The other programs in the qmailanalog package are used by the summary programs
to generate their output and can be safely ignored.

Identifying Problems
 There are two cases where the qmail administrator uses the logs to look for
problems: to search for the cause of a specifi c manifested problem or to monitor the
logs for potential problems.

Finding the cause of a problem generally depends on the problem's specifi cs. For
example, "mail is slow" can be caused by many things—an overloaded server, a full
fi lesystem, unnecessary DNS or ident lookups by tcpserver, a corrupted queue
trigger fi le, and so forth. The cause of the problem may not be listed in the logs, but
reviewing the logs for anything out of the ordinary is advised.

However, the logs are the best place to start looking when a message was not
delivered or was delivered multiple times, or something similar. From the date the
message was queued, the sender, and the recipients, one can accurately isolate the
relevant qmail-send log messages and determine what happened to that message.

Monitoring the logs to automatically detect problems is a more complex task, and
there are many approaches. Looking through the logs for anything that starts with
the strings "alert:", "internal error:", "qmail-clean", "trouble", "unable", or "unknown"
is a good start. Unless something is seriously wrong with the system, these error
messages should never occur. Delivery errors of some kind are a more common
problem. Periodically checking the most common causes of error—such as with the
qmailanalog package—is a good preventative measure. Most of the time, the failures
are innocuous, such as non-existent recipients and poorly confi gured destination
hosts, but if messages begin failing with unusually high frequency, they deserve a
closer examination. The following is an example script that emails the top ten most
common recent (recent enough to still be in /var/log/qmail/send/current) causes
of delivery failure to the address me@mydomain.com:

•

Chapter 8

[127]

#!/bin/sh
cat /var/log/qmail/send/current | \
 tai64n2tai | \
 matchup 5>/dev/null | \
 zfailures | \
 awk 'NR>8' | sort -n -r | awk 'NR<11' | \
 mail -s 'Mail Failures' me@mydomain.com

It seems odd to monitor an email system with email, but if the system administrator
cannot receive email, notifi cation that something is wrong is probably redundant.

Making It Faster
 While qmail is generally fast at processing, routing, and delivering email, in some
circumstances its speed can be improved. This involves either tailoring qmail to
take full advantage of the available hardware or improving the hardware. The best
strategy depends on the situation.

Calculating Your Limits
 It is important to fi rst determine what speed is theoretically possible before
analyzing qmail to fi nd problems and improve speed. Qmail's ability to deliver email
quickly is limited by several physical realities, including:

Network bandwidth
Disk-drive bandwidth
Server memory

For example, if an email server is connected to the Internet by a 320kbps link (or 40
kilobytes per second) and if the average email is ten kilobytes, then only 4 emails
can be transmitted per second. That means 240 messages per minute, and 14,400
messages per hour, as long as there are no other forms of traffi c on the network
and (inaccurately) assuming there is no SMTP-protocol overhead. Thus, delivering
a mailing-list post to 100,000 recipients takes approximately seven hours, and
delivering a mailing-list post to 2,400 recipients takes nothing less than ten minutes,
no matter how effi cient qmail is.

Accounting for disk-drive bandwidth is harder because a lot of it depends on the
fi lesystem in use and the queue split factor. However, in order to be robust, qmail
tries to ensure that fi les in the queue are written to disk (and not simply cached),
circumventing many of the shortcuts that disk drives take to appear fast.

•

•

•

Administration, Optimization, and Monitoring

[128]

Server memory is an important factor because it infl uences the confi guration of
qmail. For example, when receiving email from the network, there is an instance
of qmail-smtpd for each connection. When qmail-smtpd queues a message, it
runs qmail-queue (or qmail-queue's wrapper) and waits for them to fi nish. Thus,
the amount of memory each instance of qmail-smtpd consumes plus the amount
of memory each instance of qmail-queue (or its wrappers) consumes constitutes
a natural limit on the number of instances that can run concurrently. This is
particularly important when adding features to qmail-smtpd (i.e. with a patch) and
wrapping qmail-queue. While qmail-smtpd and qmail-queue are normally very
lightweight, many of their wrappers or patches increase their memory footprint
signifi cantly. For example, Perl is often used by qmail-queue wrappers, and can
use around 20MB of memory per instance. On a server with a gigabyte of RAM,
this places a natural limit of approximately 50 concurrent instances of a Perl-based
wrapper, leaving little memory for qmail-smtpd, qmail-queue, and any other
processes on the server (such as qmail-send or the operating system). Of course,
swap space increases the available memory and allows more processes to run
concurrently, but severely degrades the performance of the system.

In addition to the physical limits, qmail's confi guration imposes limits on
performance as well. The most important of these are:

The queue "split" factor
Remote and local delivery parallelism
qmail-smtpd parallelism
The use of an external qmail-todo program

These limits are useful, but can be too limiting in some circumstances. For example,
limiting the number of concurrent qmail-smtpd instances allows an administrator
to prevent the system from using swap space and limits the potential impact of a
denial-of-service attack on the system. Limitations, obviously, prevent qmail from
overusing (or abusing) the system's resources, but can also prevent it from benefi ting
from all the available resources.

Finding Bottlenecks
 When attempting to speed up a system as complex as qmail, the basic task is to fi rst
locate the part of the system responsible for limiting the speed. This bottleneck can
be any of the limits mentioned previously, but identifying which one can require
serious investigating skills.

•

•

•

•

Chapter 8

[129]

Beyond qmail's confi guration and the natural limitations of the system itself, qmail
is limited also by the other systems it uses. The most common example of this is the
DNS system. Qmail, like all email servers, relies heavily on DNS for routing email.
Without a local DNS cache, or with an overloaded or poorly performing local DNS
cache, qmail's speed of routing email is drastically reduced.

Concurrency
 The fi rst thing to examine if qmail is behaving unacceptably is the log fi les. Both
qmail-smtpd's and qmail-send's log output include indications of the system's
concurrency along with the currently confi gured limitation on that concurrency. The
relevant qmail-smtpd log entries look like this:

tcpserver: status: 0/20

The status number's format is "number currently running"/"number allowed to
run"; in this case 20 instances are allowed, and 0 are currently running. If the log had
many entries as shown below, tcpserver is consequently running up against its
current limits, resulting in a performance bottleneck:

tcpserver: status: 20/20

It also means that many people are unable to contact the server when they desire,
meaning mail is being delayed. To fi x this, increase the limit on the number of
qmail-smtpd instances (with the -c fl ag) within tcpserver. In addition, make sure
the machine has enough RAM to support a larger number of concurrent connections.

The qmail-send logs reporting a similar limitation appear as follows. A server that is
not busy has many log entries such as:

status: local 0/10 remote 0/20

On the other hand, a busier server will report higher concurrency levels. These log
entries mean the same as the status entries in the qmail-smtpd logs, though they
record two different limits. The fi rst number pair refers to limits on the number of
concurrent instances of qmail-local, and the second refers to limits on concurrent
instances of qmail-remote. As explained while examining the qmail-smtpd logs,
if the numbers on either side of the slash are frequently the same, then either local
deliveries or remote deliveries are restricted, and increasing the corresponding
limit would positively impact performance. Also, as with qmail-smtpd, before
increasing the limits (via control/concurrencylocal for local deliveries and
control/concurrencyremote for remote deliveries) make certain that the system
has enough memory for the increased concurrency. The worst case peak-use scenario
is for all programs to run with their maximum allowed concurrency.

Administration, Optimization, and Monitoring

[130]

Resource Starvation
 Beyond the logs, potential bottlenecks are found using other tools. For example,
if the system's load average is high (i.e. greater than 2.0), qmail is spending a long
time waiting for the disk, and either a faster disk or a better queue layout (or both)
will improve qmail's performance. The top utility can determine the load. If the
system uses a lot of memory, especially if it is using swap space, the high load may
be a result of insuffi cient RAM, and this can be determined using top. To alleviate
insuffi cient RAM problems, either add more RAM or lower the limits on how many
concurrent instances of qmail-smtpd, qmail-remote, and qmail-local can be
run. While lowering the concurrency limits prevents the system from exploiting
concurrency, imposing limits prevents the system from using swap space, and so can
increase the system's throughput. On the other hand, if the network bandwidth is
saturated, improving qmail's speed is unlikely to improve throughput of messages.

DNS
 A commonly overlooked source of bottlenecks is within systems that qmail relies
upon to perform its duties. Qmail is most dependent on the DNS system for routing
every outbound email. The typical method of accessing the DNS system is via a
caching DNS resolver. It performs the necessary recursive queries and stores that
information to accelerate future queries. In many cases, this cache is shared between
several computers to exploit the overlap in their queries as much as possible. For
example, most ISPs provide one or two DNS resolvers for all of their customers.
However, widely shared caches have a limitation on the amount of data they can
cache. The more computers using a resolver, and the more unique queries made to
that resolver, the harder it is for the resolver to cache all of that information. DNS
resolvers can only cache a fi nite amount of information at one time.

It is important to note that email typically results in different DNS lookup patterns
than web browsing and other general-purpose network activity. For example, in a
company, most email is directed primarily to clients and customers, but receiving
email and doing spam-fi ltering uses DNS-based blacklists or other DNS-based
information like DomainKeys or SPF policies—mail frequently uses CNAME, SOA,
TXT, NS, PTR, MX, and A records, among others. At the same time, web browsing
and other general network activities access a wider variety of DNS names—from
news agencies to search engines to advertising hosting companies—but usually use
a smaller range of DNS record types: CNAME, SOA, NS, and A records. Funneling
all of this activity through a single DNS resolver can force the resolver to remove
information from its cache unnecessarily because it does not have enough memory
to hold it. Consequently, it is often useful to have a separate DNS cache for a busy
email server, allowing it to operate without confl icting with non-email DNS activity.

Chapter 8

[131]

SMTP specifi es that email servers must rely on CNAME, MX, and A records to
determine where email messages are sent. Unfortunately, a bug in early, widespread
versions of the BIND DNS server (all versions earlier than version 4.9.4) made it
impossible to request CNAME records specifi cally on lame DNS servers, which
prevented qmail from delivering mail to such domains. To work around this
problem, qmail uses ANY queries, which fi nds the information necessary for mail
delivery, but includes a lot of unnecessary data as well. This unnecessary data is
cached by the DNS resolver, and subsequently uses more of the resolver's cache
than necessary. Storing this useless information makes the resolver less effi cient,
and pushes useful data out of the resolver's cache. This bug in BIND was fi xed
in 1996. Jonathan DeBoyne Pollard has written a patch to qmail
(http://homepages.tesco.net/J.deBoynePollard/Softwares/qmail/
#any-to-cname) that removes this workaround and improves the effi ciency of the
DNS resolver. However, any domains still using the old version of BIND cannot be
contacted by qmail once this patch is applied.

There is something else to consider regarding qmail's use of DNS. The BIND DNS
client library, the default on many systems, uses a lot of memory—it represents a
substantial chunk of the memory required for each qmail-remote instance. This is
improved by linking qmail against a different DNS client library. There are a wide
variety of options, but the one commonly used with qmail, after BIND, is the djbdns
library (http://cr.yp.to/djbdns.html), also written by Dr. Bernstein. A package,
written by Nikola Vladov (http://riemann.fmi.uni-sofia.bg/programs/
qmail+djbdns.tar.gz) makes this procedure relatively simple.

Filesystem
 A commonly overlooked system that seriously affects qmail's performance is the
fi lesystem. The organization of the fi lesystem is critical to qmail's performance
in two key places: mail storage and queue storage. The effect of the fi lesystem on
general-purpose mail storage depends on the format used to store mail. Briefl y, if
mail is going to be stored in Maildir format, each message is a separate fi le. Thus, the
fi lesystem needs to handle directories containing lots of small fi les effi ciently. If mail
is stored in a format such as mbox, the fi lesystem needs to handle random access
within large fi les effi ciently.

The most direct effect the fi lesystem has on qmail's performance is through
the queue. Qmail's queue is considered "crash-safe"; if the computer crashes
unexpectedly (for example, if the power goes out) no messages are lost. To do that,
qmail writes all information about messages in the queue to disk as it is generated,
which generates a large amount of disk traffi c.

Administration, Optimization, and Monitoring

[132]

In addition, the queue behaves similarly to a Maildir mailbox—each message is a
separate fi le in the queue. More accurately, each message is represented by several
small fi les. Just as Maildir mail storage performance is improved if the underlying
fi lesystem effi ciently handles large volumes of small fi les, it also improves qmail's
queue performance. Unfortunately, many simple fi lesystems do not handle large
numbers of fi les in a single folder effi ciently. On such fi lesystems, the names and
on-disk locations of fi les in a folder are stored in a long list, which means the average
amount of time necessary to fi nd and open an arbitrary fi le in such a folder increases
linearly with the number of other fi les in that folder. Ordinarily, this is not a problem.
When the queue starts to fi ll up—if it is unable to deliver mail for a certain period
of time, or if the system is under attack by a spammer, or if the system is being used
for large mailing lists—the time to fi nd and open fi les in the queue degrades qmail's
ability to deliver mail. If the queue cannot handle large number of fi les, delivery can
quickly slow down. To prevent this problem, qmail splits the queue into several
sub-directories (by default, 23). Messages are hashed and stored in the
sub-directories according to that hash. If the queue frequently gets very large (greater
than approximately 10,000 fi les per sub-directory), it is wise to increase this split.
Some fi lesystems—such as ReiserFS or EXT3 with directory hashing turned on—are
optimized for handling large number of fi les in a single directory, and on such
fi lesystems qmail's performance can be improved by removing the queue hashing.

It is worth noting, however, that changing the queue hashing-factor (or "split")
is a complex task. Charles Cazabon has written a script, queue-repair
(http://pyropus.ca/software/queue-repair/) that alters the queue split, among
other useful features. The specifi c split used by qmail is a compile-time option, and
thus changing the split requires recompiling qmail and either trashing or rebuilding
the queue.

Silly Qmail Syndrome
 The "silly qmail" syndrome is a problem that sometimes crops up in heavily
loaded qmail systems. The symptom indicating "silly qmail" syndrome is both
processed and unprocessed messages accumulating in the queue and mail not being
delivered. This is the result of a minor oversight in qmail's design for high-load
environments—specifi cally, the way qmail-send manages the queue.

Whenever it is processing mail in the queue, qmail-send performs three tasks, in the
following order:

1. Process new messages: determine whether they are for remote or local
delivery, and move them from the todo section of the queue into the rest of
the queue for processing by qmail-lspawn and qmail-rspawn.

Chapter 8

[133]

2. Schedule deliveries: search for messages to deliver in the local and
remote directories, and command either qmail-lspawn or qmail-rspawn to
attempt delivery.

3. Handle errors: fi nd error messages generated by delivery, and schedule
bounce messages as necessary.

When qmail-send completes these steps, it either waits for new messages or begins
processing newly queued messages.

Unfortunately, preprocessing new messages is a complex and relatively expensive
task, as the message must be safely written to multiple parts of the queue. When
messages are injected into the queue quickly qmail-send can lag behind in
processing new messages. Because it is still processing newly queued messages, it
cannot progress to scheduling deliveries, and none of the processed messages are
delivered and the unprocessed messages stack up as well. A variant of this problem
occurs as qmail-send waits for current delivery attempts to fi nish. While it waits, the
unprocessed messages stack up, such that when qmail-send fi nally does get to them
there is a large backlog, which prevents it from scheduling new deliveries. Unlike the
rest of the queue, the todo folder that holds unprocessed messages is not hashed (i.e.
"split"), and is consequently more susceptible to fi lesystem-related slowdowns as the
number of unprocessed messages grows.

The solution to the problem is to split qmail-send's functionality by having new
message processing and delivery scheduling operate independently. Claudio
Jeker and André Oppermann wrote a patch to do that, called the EXTTODO patch
(http://www.nrg4u.com/qmail/ext_todo-20030105.patch). This patch creates
a new qmail component called qmail-todo to preprocess all new messages injected
into the queue. It sets up a communication channel (a pipe) with qmail-send
to awaken it after new messages are processed. qmail-send then only needs to
schedule deliveries and handle error messages. Because qmail-todo operates
independently of delivery scheduling it is less likely to fall behind in processing new
messages, even when they come in quickly. However, if the underlying fi lesystem
cannot effi ciently handle large numbers of fi les in a single directory, the EXTTODO
patch may not be enough. To use a hashing mechanism in the todo folder similar
to that used in the rest of the queue, Russ Nelson has written the BIG-TODO
patch (http://www.qmail.org/big-todo.103.patch). Since these two patches
often go together, a fellow named Feizhou constructed a combined patch
(http://home.graffiti.net/feizhou:graffiti.net/big-ext-todo-20030101).
This modifi cation has proven successful in even the most heavily loaded
qmail servers.

Administration, Optimization, and Monitoring

[134]

Summary
This chapter has discussed two primary topics: monitoring qmail, primarily via
its logs, and improving qmail's mail-handling speed. Unlike previous chapters,
this chapter dealt more with maintaining the qmail architecture than extending it.
This brings the narrative full-circle. As emphasized throughout this book, qmail
is primarily an architecture for delivering mail. This book examined the qmail
architecture from many angles, explaining its components, how to expand it, and
fi nally how to maintain it. With this base of knowledge and approach to qmail, you
are well on your way to being a highly effective administrator of a powerful mail
transfer agent.

Good luck!

Index
Symbols
.forward fi les 46
.qmail fi les

about 41
forwards 42
maildirs 42
mboxes 42
pipes 43
programs 43

A
address extensions 48
administrative conveniences

daemontools 16
logging 19
patches 15
svscan, using 19
ucspi-tcp 16

advanced features
mailing lists 110
SSL encryption 107

AJAX 67
alias based mailing list 111
analysis. See basic log analysis

B
basic confi guration

about 10
mini-qmail 10

basic log analysis
about 123
problems, identifying 126
qmailanalog 123-125

bounce-back spam
about 103
recipient validation 104
recipient validation is insuffi cient 105, 106

C
challenge-based identifying

TMDA 101
components wrapping

need for 87
wrappers 87

confi guration. See basic confi guration
content gateway 87
content modifi er 87
custom database

for mail storing 56

D
daemontools

about 16
installing 17

DNSBL 98
DomainKeys 95
Domain Name System Black-List 98

[136]

E
email

.forward fi les 46

.qmail fi les 41
authenticating 52
default 41
delivering locally 41
delivering remotely 50
protocols 62
queue, getting out of 39
retrieving 55
sending, without queue 89
static routes 51, 52
storage formats 55
storing 55
webmail 67

extensions 48

F
features. See advanced features
fi ltering

about 85
fi ltering architecture 85
mail, sending without queue 89, 90
QMQP 90
spam, stopping 93
viruses, blocking 91
fi ltering architecture

about 85
components wrapping, need for 87
component wrappers 87
content gateway 87
content modifi er 87
working 86-89

FQDN 7
Fully Qualifi ed Domain Name 7

H
heavyweight fi ltering

about 91
virus scanners 91, 92

heavyweight mailing list 111
heavyweight spam identifying

about 99
Bayesian 100

ensemble identifi cation 100
machine learning techniques 100

I
inode 61
installation

account aliases, creating 8
basic confi guration fi les, creating 7, 8
binaries, compiling 7
binaries, installing 7
default mail delivery 9
system, preparing 6, 7

International Atomic Time 123
Internet Mail Access Protocol. See IMAP

L
lightweight fi ltering

about 92
policy decisions 92

lightweight mailing list 111
lightweight spam identifying

about 98
DNSBL 98
pattern matching 99
SMTP violations, checking for 98

log fi les
about 117
basic log 117
qmail-send log 120-122
qmail-smtpd log 117-119
qmail-smtpd log, expanding 119, 120

logging
about 19
mechanism 19

M
Maildir 56
mailing lists

about 110
alias based 111
effi ciency 112
heavyweight mailing list 111
lightweight mailing list 111

[137]

member management 112
qmail, integrating with 114
speed versus size 111
variable envelope return path 113, 114
web interface 115

mail protocols
about 36
OFMIP 37, 38
QMTP 36, 37

mbox
about 55
disadvantages 55

MH folders
about 55
advantages 55

MH Message Handling System. See MH
folders

mini-qmail 10, 90
multiple installations

about 79
multiple queues, hiding 82-84
setting up 80-82

O
OFMIP 37
Old-Fashioned Mail Injection Protocol 37
on-disk effi ciency

about 61
fi le space, allocating 61
inode 61

P
patches 15
PID 56
POP 32
Post Offi ce Protocol 3 62
process identifi ers 56
protocols

about 36, 62
IMAP 62
POP3 62
qmail-pop3d 64
selecting 62-64
server, selecting 62

Q
qmail

.qmail fi les 41
about 5
administrating 117
administrative conveniences 15
advanced features 107
basic confi guration 10
compiling 6
confi guration 10
email, delivering locally 41
email, getting out of queue 39
email, retrieving 55
email, storing 55
environment variables 44
fi ltering 85
installing 6
mailing lists, integrating 114
minimum system 5
monitoring 117
multiple installations 79
multiple installations, setting up 80
optimizing 117
protocols 62
qmail-inject 28
qmail-queue 27, 40
qmail-send 40
qmail-smtpd 14, 15, 30
qmail-start 12, 13
QMAILQUEUE 30
sendmail 28
simple execution 12
speed of operation, increasing 127
storage formats 55
structure 21
users 47
virtualization 69

qmail-inject 28
qmail-pop3d server

checkpassword, installing 65
checkpassword interface 64, 65
setting up 64
tcpserver, running with 65, 66

qmail-queue 27
qmail-send

about 40
log fi le 120-122

[138]

qmail-smtpd
about 30
authenticating 31
email, accepting 30
email, rejecting 30
log fi le 117-119
log fi le, expanding 119, 120
RELAYCLIENT 31

qmailanalog
about 123
TAI 123

QMAILQUEUE 35
QMQP

about 90
mini-qmail 90

QMTP 36
Quick Mail Queueing Protocol. See QMQP
Quick Mail Transfer Protocol 36

R
RELAYCLIENT

POP 32
SMTP 32
SMTP-AUTH 34, 35
tcprules 31, 32

S
Secure Sockets Layer. See SSL encryption
senders, validating

about 93
DomainKeys 95
SPF 94, 95

sendmail 28
silly qmail syndrome 132
SMTP 32
SMTP-AUTH 34
spams

challenge-based identifying 101
heavyweight identifying 99
identifying 97
lightweight identifying 98
mistakes 102
quarantines 101, 102
senders, validating 93

stopping 93
stopping from getting out 103

spams, stopping from getting out
bounce-back spam 103
sender restrictions 103

speed, storage formats
deleting 60
delivery 60
marking 59
reading 59
searching 60, 61

speed of operation, increasing
bottlenecks, fi nding 128
concurrency 129
DNS 130, 131
fi lesystem 131
limits, calculating 127, 128
resource starvation 130
silly qmail syndrome 132

SPF
about 94
concept 94
disadvantage 94
graphical representation 94

SSL encryption
about 107
for receiving email 109
for receiving mail 110
for sending email 110
frontend 108
patch 108
working of 107
wrapper 108

static routes 51
storage formats

about 55
custom database 56
features 57
Maildir 56
mbox 55
MH folders 55
on-disk effi ciency 61
PID 56
process identifi ers 56
reliability 57
speed 58

[139]

structure, qmail
about 21
advantages 22
graphical representation 24
modular structure 22

svscan
using 19

T
Tagged Message Delivery Agent. See

TMDA
TAI 123
tcpserver

using 17, 18
Temps Atomique International 123
TMDA

about 101
working 101

U
ucspi-tcp

about 16
installing 17

user management problems, virtual domains
about 76
other services 78
solutions 76
VMailMgr 76
vpopmail 76

users
about 47
aliases 48
defi ned users 48
extensions 48, 50
multiple queues, hiding from 82-84
users/assign fi le 48
virtualdomains fi le 47

V
variable envelope retuen path 113
VERP 113
virtual domains

basic example 70
multiple installations 79
user management problems 76

virtualdomains fi le 47, 69
virtualization

about 69
basic virtual domains 70-72
email path 72, 73
framework 69
generic framework 69
non-virtual non-system users 73-75
virtualdomains fi le 69

viruses
blocking 91
heavyweight fi ltering 91
lightweight fi ltering 92
virus scanners 91, 92

W
web interface 115
webmail

about 67
AJAX 67

Thank you for buying
Qmail Quickstarter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for
Effective MySQL Management" in April 2004 and subsequently continued to specialize
in publishing highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals
in adapting and customizing today's systems, applications, and frameworks. Our
solution based books give you the knowledge and power to customize the software
and technologies you're using to get the job done. Packt books are more specific and
less general than the IT books you have seen in the past. Our unique business model
allows us to bring you more focused information, giving you more of what you need
to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing
quality, cutting-edge books for communities of developers, administrators, and
newbies alike. For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book
proposals should be sent to authors@packtpub.com. If your book idea is still at
an early stage and you would like to discuss it first before writing a formal book
proposal, contact us; one of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills
but no writing experience, our experienced editors can help you develop a writing
career, or simply get some additional reward for your expertise.

[141]

Designing and Implementing Linux
Firewalls and QoS using netfilter,
iproute2, NAT and l7-filter
ISBN: 1-904811-65-5 Paperback: 288 pages

Learn how to secure your system and implement QoS
using real-world scenarios for networks of all sizes

Implementing Packet filtering, NAT, bandwidth
shaping, packet prioritization using netfilter/
iptables, iproute2, Class Based Queuing (CBQ)
and Hierarchical Token Bucket (HTB)

Designing and implementing 5 real-world
firewalls and QoS scenarios ranging from small
SOHO offices to a large scale ISP network that
spans many cities

Building intelligent networks by marking,
queuing, and prioritizing different types of traffic

1.

2.

3.

OpenVPN: Building and Integrating
Virtual Private Networks
ISBN: 1-904811-85-X�������������� Paperback: 2�2 pages Paperback: 2�2 pagesPaperback: 2�2 pages

Learn how to build secure VPNs using this
powerful Open Source application

Learn how to install, configure, and create
tunnels with OpenVPN on Linux, Windows,
and MacOSX��������������

Use OpenVPN with DHCP, routers, firewall,
and HTTP proxy servers

Advanced management of security certificates

1.

2.

3.

Please check www.PacktPub.com for information on our titles

	Qmail Quickstarter
	Table of Contents
	Preface
	Chapter 1: Basic Qmail
	The Minimum Qmail System
	Compiling and Installing
	Preparing the System
	Compiling and Installing the Necessary Binaries
	Creating the Basic Configuration Files
	Creating the Necessary Minimum Account Aliases
	Default Mail Delivery

	Basic Configuration
	Simple Execution
	qmail-start
	qmail-smtpd

	Administrative Conveniences
	About Patches
	ucspi-tcp and daemontools
	Installation

	Using tcpserver
	Using svscan
	Logging

	The Overall Structure of Qmail
	Summary

	Chapter 2: Getting Email into the Queue
	qmail-queue and the Qmail Queue
	The qmail-inject and sendmail Interfaces
	qmail-smtpd and the QMAILQUEUE Patch
	Accepting or Rejecting Email
	RELAYCLIENT and Authentication
	tcprules
	POP-before-SMTP
	SMTP-AUTH

	The QMAILQUEUE Patch

	Other Mail Protocols
	Quick Mail Transfer Protocol (QMTP)
	Old-Fashioned Mail Injection Protocol (OFMIP)

	Summary

	Chapter 3: Getting Email Out ofthe Queue
	qmail-send and the Qmail Queue
	Delivering Email Locally
	The Default
	.qmail Files
	Forwards
	Maildirs and mboxes
	Pipes and Programs

	Supporting .forward Files

	Users
	The virtualdomains File
	Defined Users: The users/assign File
	Aliases
	Extensions

	Delivering Email Remotely
	How It Normally Works
	Static Routes
	Authentication

	Summary

	Chapter 4: Storing and Retrieving Email
	Popular Storage Formats
	Reliability
	Speed
	Reading
	Marking
	Deleting
	Delivery
	Searching

	On-Disk Efficiency

	The POP3 and IMAP Protocols
	Protocol and Server Selection
	qmail-pop3d Server Setup
	The Checkpassword Interface
	Installing the checkpassword Program
	Running with tcpserver

	Webmail
	Summary

	Chapter 5: Virtualization
	Generic Virtualization Framework
	Power of the virtualdomains File
	Basic Virtual Domains
	The Path of an Email
	Non-Virtual Non-System Users

	User-Management Problem in Assisted Virtual Domains
	Popular Solutions: vpopmail and VMailMgr
	Consequences for Other Services

	Good Reasons to Use Multiple Installations
	How to Set Up Multiple Qmail Installations
	Hiding Multiple Queues from the User

	Summary

	Chapter 6: Filtering
	Basic Filtering Architecture
	Sending Mail Without a Queue
	Blocking Viruses
	Heavyweight Filtering
	Lightweight Filtering

	Stopping Spam from Getting In
	Sender Validation
	SPF
	DomainKeys

	Identifying Spam
	Lightweight
	Heavyweight
	Quarantines and Challenges
	Mistakes

	Stopping Spam from Getting Out
	Sender Restrictions
	Bounce-Back Spam
	Recipient Validation
	Recipient Validation is Insufficient

	Summary

	Chapter 7: Advanced Features
	SSL Encryption
	Patch vs. Wrapper
	When Receiving Email
	When Sending Email

	Mailing Lists
	Lightweight vs. Heavyweight
	Speed vs. Size
	Member Management
	Efficiency under Load

	Variable Envelope Return Path
	Integration with Qmail
	Web Interface

	Summary

	Chapter 8: Administration, Optimization, and Monitoring
	The Log Files
	The Basic qmail-smtpd Log
	Expanding the qmail-smtpd Log
	The Basic qmail-send Log

	Basic Analysis
	qmailanalog
	Identifying Problems

	Making It Faster
	Calculating Your Limits
	Finding Bottlenecks
	Concurrency
	Resource Starvation
	DNS
	Filesystem

	Silly Qmail Syndrome

	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

