
ptg

ptg

Praise for The Official Ubuntu Server Book

Murphy’s Law is never truer than when it comes to administering a Linux
server. You can pretty much count on something happening to your machine
at a time when you need it the most. That’s when a book with some basic
troubleshooting instructions is worth every penny you paid for it. Chap-
ter 11 covers the steps you should take when something goes wrong.

—Paul Ferrill, LinuxPlanet.com reviewer

College-level collections catering to Linux programmers and developers
will find The Official Ubuntu Server Book a top addition to the collection,
covering a complete, free server operating system in a guide to getting
going quickly. From making the most of Ubuntu Server’s latest technolo-
gies to automating installs and protecting the server using Ubuntu’s built-
in security tools, The Official Ubuntu Server Book is packed with keys to
success for any Ubuntu user.

—Jim Cox, Midwest Book Review

This book will get you started on the path of the server admin, both within
the context of Ubuntu server and in the larger realm of managing a server
infrastructure. The desktop and server versions of Ubuntu are continuing
to mature. Read this book if you want to keep up.

—James Pyles, author

ptg

This page intentionally left blank

ptg

The Official
Ubuntu Server Book
Second Edition

ptg

This page intentionally left blank

ptg

The Official
Ubuntu
Server Book
Second Edition

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Kyle Rankin
Benjamin Mako Hill

ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Rankin, Kyle.
The official Ubuntu server book / Kyle Rankin, Benjamin Mako Hill. — 2nd ed.

p. cm.
Includes index.
ISBN 0-13-708133-2 (pbk. : alk. paper)
1. Ubuntu (Electronic resource) 2. Operating systems (Computers) I. Hill,

Benjamin Mako, 1980– II. Title.
QA76.76.O63R3685 2010
005.4'32dc22

2010021855

Copyright © 2010 Canonical, Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

The Introduction and Chapter 3 of this book are published under the Creative Commons
Attribution-ShareAlike 3.0 license, http://creativecommons.org/licenses/by-sa/3.0/.

ISBN-13: 978-0-13-708133-2
ISBN-10: 0-13-708133-2
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, July 2010

http://creativecommons.org/licenses/by-sa/3.0/

ptg

I dedicate this book to my wife, Joy. It is not easy to balance a full-time
job and writing a book while still having time for a family. She has
endured many a book-writing process at this point and has always been
my main source of support and motivation.

—Kyle Rankin

ptg

This page intentionally left blank

ptg

Contents at a Glance

ix

Contents xi

Preface xxi

Acknowledgments xxvii

About the Authors xxix

Introduction xxxi

Chapter 1: Installation 1

Chapter 2: Essential System Administration 17

Chapter 3: Package Management 51

Chapter 4: Automated Ubuntu Installs 83

Chapter 5: Guide to Common Ubuntu Servers 125

Chapter 6: Security 199

Chapter 7: Backups 237

Chapter 8: Monitoring 265

Chapter 9: Virtualization 295

Chapter 10: Fault Tolerance 333

Chapter 11: Troubleshooting 391

Chapter 12: Rescue and Recovery 421

Chapter 13: Help and Resources 441

Chapter 14: Basic Linux Administration 455

Appendix: Cool Tips and Tricks 477

Index 487

ptg

This page intentionally left blank

ptg

Contents

xi

Preface xxi

Acknowledgments xxvii

About the Authors xxix

Introduction xxxi
Welcome to Ubuntu Server xxxi
Free Software, Open Source, and Linux xxxii

Free Software and GNU xxxiii
Linux xxxiv
Open Source xxxv

A Brief History of the Ubuntu Project xxxvi
Mark Shuttleworth xxxvi
The Warthogs xxxviii
What Does Ubuntu Mean? xxxix
Creating Canonical xl
The Ubuntu Community xli

Ubuntu Promises and Goals xliii
Philosophical Goals xliii
Conduct Goals and Code of Conduct xlv
Technical Goals xlvi

Canonical and the Ubuntu Foundation xlviii
Canonical, Ltd. xlviii
Canonical’s Service and Support xlix
The Ubuntu Foundation l

History of Ubuntu Server li
Simple, Secure, Supported liii

CHAPTER 1 Installation 1
Get Ubuntu 2
Boot Screen 3

ptg

xii Contents

Disk Partitioning 5
What Is a Partition? 5
Guided—Use Entire Disk 8
Guided with LVM 8
Manual 8

Server Roles 13
Installer Console 15
Reboot the System 16

CHAPTER 2 Essential System Administration 17
Basic Command-Line Administration 18

Move Around the System 18
File Ownership 21
Check Running Processes 21
Edit Files 23
Become Root 24

Ubuntu Boot Process 24
GRUB 25
The Kernel Boot Process 26
/sbin/init 27
Services 34

File System Hierarchy 39
Networking 45

Network Configuration Files 46
Core Networking Programs 48

CHAPTER 3 Package Management 51
Introduction to Package Management 52

Background on Packages 53
What Are Packages? 53
Basic Functions of Package Management 55
Advanced Functions of Package Management Systems 58

Debian Packages 60
Source Packages 60
Binary Packages 63

Package Management in Ubuntu 63
Staying Up-to-Date 64
Searching and Browsing 65
Installation and Removal 67
Manipulating Installed Packages 69
Manipulating Repositories 71

ptg

Ubuntu Default Repositories 73
Using Other Repositories 74
Upgrading a Whole System 75
Mirroring a System 76

Making Your Own Packages 77
Rebuilding Packages 77
New Upstream Versions 79
Building Packages from Scratch 80
Hosting Your Own Packages 81

CHAPTER 4 Automated Ubuntu Installs 83
Preseeding 84

Basic Preseed Configuration for CD-ROM 85
Networking Options 89
Partitioning 91
Packages and Mirrors 96
User Settings 98
GRUB 99
Miscellaneous 100
Dynamic Preseeding 100

Kickstart 104
Basic Kickstart Configuration for CD-ROM 104
Changes and Limitations in Ubuntu Kickstart 108
Run Custom Commands during the Install 110

PXE Boot Server Deployment 111
DHCP 112
TFTPD 113
Configure Pxelinux 113
Web 116
Test Your PXE Server 116

Customize Automated Installs 118
Multiple Kickstart Files 118
Boot Cheat Codes 119
DHCP Selection 121
DHCP Selection by Subnet 123

CHAPTER 5 Guide to Common Ubuntu Servers 125
DNS Server 126

Install BIND 127
Ubuntu Conventions 127
Caching Name Server 129

Contents xiii

ptg

xiv Contents

DNS Master 129
DNS Slave 132
Manage BIND with rndc 134

Web Server 135
Install a Web Server 135
Ubuntu Apache Conventions 136
apache2ctl 139
Apache Documentation 141
WordPress, a Sample LAMP Environment 141

Mail Server 144
Install Postfix 144
Postfix Configuration Types 145
Ubuntu Postfix Conventions 146
Administering Postfix 148
Default Postfix Example 150
Secondary Mail Server 153
Greylisting Mail Server 154

POP/IMAP Server 156
Enable Maildirs on Postfix 156
Install Dovecot 157
Ubuntu Dovecot Conventions 158

OpenSSH Server 158
Ubuntu OpenSSH Conventions 159

DHCP Server 160
Install DHCP 160
Ubuntu DHCP Conventions 161
Configure DHCP 161

Database Server 163
MySQL 163
PostgreSQL 169

File Server 172
Samba 174
NFS 177

Edubuntu and LTSP 179
What Is LTSP? 180
Technical Details of the LTSP Boot Process 181
The Benefits of LTSP 182
Other Uses 183
LTSP Availability in Ubuntu 183
Installing an LTSP Server 183

ptg

Contents xv

LTSP Server Configurations 184
The Installation Procedure 186
Initial LTSP Server Setup 188
Initial LTSP Client Setup 189
Installing the LTSP Environment in Ubuntu or

on a Desktop Installation 190
Special LTSP Cases 191
Changing Your IP Address 194
Local Devices over LTSP 195
Sound over LTSP 197

CHAPTER 6 Security 199
General Security Principles 200
Sudo 201

Configure sudo 203
sudo Aliases 205

AppArmor 206
AppArmor Profiles 207
Enforce and Complain Modes 209
Ubuntu AppArmor Conventions 210

SSH Security 210
sshd_config 211
Key-Based Authentication 211
SSH Brute-Force Attacks 213

Firewalls 214
ufw Commands 216
ufw Rule Syntax 217
Extended ufw Rules 218
ufw Examples 220
Ubuntu ufw Conventions 224

Intrusion Detection 226
Update Tripwire Policy 227
Initialize the Tripwire Database 228
Update the Tripwire Database 230
Ubuntu Tripwire Conventions 231

Incident Response 232
Do You Prosecute? 233
Pull the Plug 233
Image the Server 233
Server Redeployment 234
Forensics 235

ptg

CHAPTER 7 Backups 237
Backup Principles 238
Drive Imaging 240
Database Backups 242

MySQL 242
PostgreSQL 246

BackupPC 247
BackupPC Storage 248
Default BackupPC Configuration 249
Configure the Client Machine 252
Add the Client to BackupPC 253
Start the First Backup Job 254
rsync Tweaks 256
Restore Files 261
Ubuntu BackupPC Conventions 263

CHAPTER 8 Monitoring 265
Local Monitoring Tools 266

Smartmontools 266
sysstat 267

Ganglia 271
Install ganglia-monitor on All Hosts 272
Configure Ganglia Server 274
Install the Ganglia Web Front End 276

Nagios 278
Install GroundWork 279
GroundWork File Conventions 280
Initial Configuration 281
Configure Nagios 284
Commit Changes to Nagios 287
Configure Contact List 287
Enable Notifications for Nagios 288
Add a Service Check to a Host 289
Add a New Host 289
Advanced Configuration 290
More GroundWork Information 294

CHAPTER 9 Virtualization 295
KVM 296

Install KVM 296
Enable Support in BIOS 297

xvi Contents

ptg

Install KVM Packages 297
Configure KVM Networking 298
Create a New VM 300
Extra vmbuilder Options 304
Manage VMs with virsh 307
KVM Graphical Console and Management Tools 310

VMware Server 313
Install VMware Server 313
Configure VMware Server 315
VMware Server Init Scripts 316
VMware Web Administration 317
Create a New Virtual Machine 318
VM Console Access 320
Snapshots 321
Suspend 322
Local VM Storage 322
Virtual Appliances 324

Ubuntu Enterprise Cloud 324
UEC System Requirements 325
Install UEC Front-End Server 326
Install UEC Node Server 326
Manage Your Cloud 326
Install a New Server Image 328
Start a New Instance 329

CHAPTER 10 Fault Tolerance 333
Fault Tolerance Principles 334
RAID 335

RAID Levels 336
Configure RAID during Installation 337
Configure RAID after Installation 340
Software RAID Management 343
Migrate Non-RAID to Software RAID 346
Migrate from RAID 1 to RAID 5 351
Add a Drive to a RAID 5 Array 358

LVM 361
The Story of the Logical Volume Manager 361
LVM Theory and Jargon 362
Setting Up LVM 363

Ethernet Bonding 364

Contents xvii

ptg

Clusters 369
Heartbeat 371
DRBD 379

CHAPTER 11 Troubleshooting 391
General Troubleshooting Philosophy 392

Divide the Problem Space 392
Favor Quick, Simple Tests over Slow, Complex Tests 393
Favor Past Solutions 393
Good Communication Is Critical When Collaborating 394
Understand How Systems Work 394
Document Your Problems and Solutions 394
Use the Internet, but Carefully 395
Resist Rebooting 395

Localhost Troubleshooting 395
Host Is Sluggish or Unresponsive 396
Out of Disk Space 405

Network Troubleshooting 408
Server A Can’t Talk to Server B 408
Can I Route to the Remote Host? 413
Test the Remote Host Locally 416

Hardware Troubleshooting 417
Network Card Errors 417
Test Hard Drives 418
Test RAM 419

CHAPTER 12 Rescue and Recovery 421
Ubuntu Recovery Mode 422

File Systems Won’t Mount 424
Problem Init Scripts 426
Reset Passwords 427

Ubuntu Server Recovery CD 427
Boot into the Recovery CD 428
Recover GRUB 430
Repair the Root File System 430

Ubuntu Desktop Live CD 431
Boot the Live CD 431
Add the Universe Repository 431
Recover Deleted Files 432
Restore the Partition Table 435
Rescue Dying Drives 436

xviii Contents

ptg

CHAPTER 13 Help and Resources 441
Paid Support from Canonical 442
Forums 443
Internet Relay Chat 444
Mailing Lists 447
Online Documentation 448
Localhost Documentation 449
Local Community Teams 450
Other Languages 451
Tech Answers System (Launchpad) 451
Bug Reporting 451
Summary 453

CHAPTER 14 Basic Linux Administration 455
Shell Globs 456

Regular Expressions 457
Pipes and Redirection 458

Pipes 458
Redirection 462

File Permissions and Ownership 464
chmod 466

Linux File Types 466
Symbolic Links 467
Hard Links 468
Device Files 469

At and Cron 470
At 470
Cron 472

APPENDIX Cool Tips and Tricks 477
Avoid That grep Command in grep Output 477
Shortcut to a Command Path 478
Wipe a Drive in One Line 478
Run a Command Over and Over 479
Make a Noise When the Server Comes Back Up 479
Search and Replace Text in a File 479
find and exec Commands 480
Bash Commands with Too Many Arguments 480
Use Your Bash History 481
Are These Files Identical? 481
Go Back to Your Previous Directory 481

Contents xix

ptg

Find Out Who Is Tying Up a File System You
Want to Unmount 482
Send a Test E-mail Using telnet 482
Easy SSH Key Sharing 483
Get the Most Out of Dig 484

Index 487

xx Contents

ptg

Preface

xxi

WELCOME to The Official Ubuntu Server Book!

When most people talk about Ubuntu these days, they tend to talk about
the Ubuntu Desktop. After all, it’s the easy-to-use “just works” approach to
the desktop that has made Ubuntu one of the most popular desktop Linux
distributions. What has gotten less attention, although even that is starting
to change, is Ubuntu Server. It turns out that desktop Linux users aren’t
the only ones who want their distribution to “just work”—system admin-
istrators appreciate that on their servers as well. In Ubuntu Server you will
find all of the powerful server infrastructure from the Debian project plus
that extra bit of Ubuntu polish, innovation, and focus on ease of use.

About This Book
This book is the result of the collaborative effort of not just the principal
authors, but of the Ubuntu Server team itself. As it is the official, author-
ized book on Ubuntu Server, the focus has been on a server guide based on
our collective experience. Beyond that, the goal is to have something to
offer to both the beginner system administrator and the battle-hardened
senior sysadmin. On the surface it might seem a tough balance to achieve,
but in reality both groups ultimately want the same thing: for their servers
to work. Now it’s true that some administrators revel in doing things the
hard way. Some even treat it as a point of pride. The thing is, all of us who
have administered servers for years can do and have done things the hard
way as well, but ultimately you realize that there’s nothing particularly
impressive in doing everything by hand—in the end you just have too
much to do and any time-saving steps are welcome.

ptg

As you will see, most of this book takes a pragmatic approach to server
management. Where Ubuntu offers new programs or features to ease
administration and save time, you will find them mentioned here. If you
are a beginner administrator, you will find that administering an Ubuntu
server isn’t nearly as difficult as you might think. Experienced administra-
tors, especially those coming from other platforms, will find numerous
time-saving tips and programs, as well as where Ubuntu has updated how
a service is organized (Apache being a good example); you can treat this
book as a map to point you to all of the right directories.

One great thing about Ubuntu as a server is that there are so many great
server packages available for it. Of course, this creates a dilemma for us as
writers: It’s just not possible to feature every available e-mail and
IMAP/POP3 server, for instance. In these cases we’ve tried to pick out pro-
grams that are easy to install, configure, and use under Ubuntu as well as
highlight programs that are preferred by the authors and server team.
While doing that, there’s a good chance that your favorite program for X,
Y, and Z was left out. It’s certainly no slight against any of those pro-
grams—we just had to draw the line somewhere.

How the Book Is Organized
Different people read tech books differently. Some people read them cover
to cover, and others skip right ahead to the topic they need immediate help
with. You will find that the way this book is organized lends itself well to
both approaches. The first few chapters lay the foundation so you can
install Ubuntu and navigate the system even if it’s your first time. After
that the chapters focus on particular server topics, from security to moni-
toring to system rescue.

� Chapter 1—Installation. In the first chapter you will learn how to use
the default Ubuntu Server CD to install Ubuntu on a server. This
guide includes a complete walk-through of the installation process
from the initial boot screen to partitioning to your first login prompt.

� Chapter 2—Essential System Administration. If you are new to
Ubuntu system administration, the amount of learning ahead of you
might seem daunting. In this chapter you will find not only a solid
foundation of instructions on how to navigate the Linux command

xxii Preface

ptg

line, but also an introduction to the Ubuntu boot process and the
standards behind all of the directories on an Ubuntu system. By the
end of the chapter you should have a good basis to continue with the
rest of the book.

� Chapter 3—Package Management. This chapter introduces you to
packages and the packaging system—the way that Ubuntu handles
the installation, removal, and management of software. We provide a
solid foundation in what packages do and how they do it before
drilling down into the details of how an administrator can manage
software the Ubuntu way. In the final pages, we cover the way that
administrators can switch from consumers to producers and begin
making their own packages.

� Chapter 4—Automated Ubuntu Installs. While you can certainly
install Ubuntu step by step from the install CD, that method doesn’t
work so well when you have tens or hundreds of servers to install. This
chapter covers the preseed method for automating Ubuntu installs
along with Kickseed—Ubuntu’s port of Kickstart. In addition to a
description of how to use both of these technologies independently,
you will find out it’s even better when you use them together.

� Chapter 5—Guide to Common Ubuntu Servers. There is an enormous
number of services you can run on an Ubuntu server. In this chapter
we highlight some of the more popular servers, from Web to e-mail to
file services. If you are a new administrator, you will find a simple guide
on how to install and configure these services for the first time. If you
are an experienced administrator coming from another distribution,
you will find this chapter a handy guide to find out how Ubuntu orga-
nizes all of the configuration files for your favorite services.

� Chapter 6—Security. Security is an important topic for any adminis-
trator. Ubuntu Server already is pretty secure by default, and in this
chapter we highlight some of these mechanisms along with steps you
can take to increase your security even further. Some of the security
topics include sudo, firewall configuration, an introduction to foren-
sics, and even Ubuntu’s AppArmor software.

� Chapter 7—Backups. There are two kinds of administrators: those
who back up their servers and those who haven’t lost valuable data
yet. Backup software abounds for Linux as a whole and for Ubuntu

Preface xxiii

ptg

specifically, and in this chapter you will see a few easy-to-set-up
approaches to keeping your data secure.

� Chapter 8—Monitoring. Monitoring is one of the most valuable sys-
tems an administrator can set up while simultaneously being the
most annoying (why do servers always seem to page you in the
middle of the night?). In this chapter we cover some different
approaches to monitoring systems both for trending purposes and
to alert you to any problems. By the end of the chapter you will no
longer lose sleep wondering if a server is up—you’ll lose sleep only
when it goes down.

� Chapter 9—Virtualization. Virtualization is one of the hot topics in
system administration today. With more and more powerful hard-
ware out there, virtualization provides you with a way to squeeze the
most efficiency out of your servers. In this chapter we will cover two
of the most popular server-based virtualization tools out there: KVM
and VMware Server. Cloud computing is a new area where virtualiza-
tion is making a big impact, so this chapter also covers how to set up
your own Ubuntu EC2 Cloud environment.

� Chapter 10—Fault Tolerance. If a lot is riding on your servers and
your downtime is measured in dollars and not minutes, you realize
very quickly that your servers need fault tolerance. The fault tolerance
chapter covers Ubuntu software RAID, including steps to migrate
from one type of RAID to another. Then we will cover how to set up
redundant network connections and finish up with a guide to setting
up your own Linux cluster. We also discuss how to get up and run-
ning with logical volume management (LVM).

� Chapter 11—Troubleshooting. No matter how great an administrator
you are, eventually something on your servers will fail. Over the years
you develop a series of troubleshooting steps you go through whenever
you find a problem on your systems. In this chapter we condense years
of troubleshooting experience into a series of step-by-step guides to
walk you through common server and network problems and how to
use standard Ubuntu tools and techniques to diagnose them.

� Chapter 12—Rescue and Recovery. We’ve often said that we’ve
learned more about Linux from fixing a broken system than in any

xxiv Preface

ptg

other way. In some environments when a system won’t boot, an
administrator might just install a new operating system. Under
Ubuntu, however, you’ll find that most common boot problems also
have a common, easy solution. In this chapter we discuss how to use
different stages of rescue modes both on Ubuntu and the Ubuntu
Server install CD itself to repair your system.

� Chapter 13—Help and Resources. One great thing about Ubuntu is
just how many support avenues there are when you need help.
Whether it’s documentation on the machine itself, guides on the offi-
cial Ubuntu site, forums, or even professional Canonical support,
when you are stuck you aren’t alone. In this chapter we cover all of the
different ways to get support for your Ubuntu server.

� Chapter 14—Basic Linux Administration. This chapter picks up
where Chapter 2, Essential System Administration, left off. Here we
discuss some of the core foundation concepts behind Linux adminis-
tration, including file permissions, different file types, pipes, and
other core Linux information. Beginner administrators will find this
a very useful guide to flesh out any gaps in their command-line
knowledge, and the experienced administrators will find it a good
refresher on core concepts.

� Appendix—Cool Tips and Tricks. Over the years you develop all sorts
of useful tips, one-liners, and other shell commands that make your
life as an administrator easier. Here you will find some of our favorite
time-saving tips and hacks in rapid-fire form.

Media with This Book
This book includes two versions of Ubuntu Server: Ubuntu 10.04 for i386
machines and a 64-bit version so you can pick the version that best
matches your server hardware. Note that the 10.04 DVD includes the com-
plete Ubuntu Linux operating system for installation on PC platforms,
preconfigured with an outstanding desktop environment for both home
and business computing. In addition to the Ubuntu Server, it can be used
to install other complete variants of Ubuntu, including Kubuntu (with the
KDE environment) and Edubuntu (for use in schools).

Preface xxv

ptg

While we have included both a 32-bit and 64-bit release of Ubuntu 10.04
and have written the book for version 10.04, you might decide to try out a
newer Ubuntu release. In that case, just go to http://ubuntu.com and
either download the CD image or request a copy to be sent to you. No
matter which Ubuntu Server CD you pick, it’s relatively easy to use the
CDs. Just insert the version you want to install into your computer and
boot from the CD-ROM. When the CD boots, you will see a number of
options on the screen, but to install Ubuntu Server, just select Install
Ubuntu Server. The installer that launches will ask some fairly straightfor-
ward questions common to most install discs, and if you get stuck, just
turn to Chapter 1 for a more in-depth walk-through of the install process.

xxvi Preface

http://ubuntu.com

ptg

Acknowledgments

xxvii

JORGE, I WOULDN’T HAVE been involved in this book if it weren’t for you. I’m
one in a long list of people using Ubuntu because of Jorge. His enthusiasm
is infectious and I can’t count how many times he’s introduced me to some
cool new program or tool that I write off at first and then somehow find
myself using eventually.

Debra and Mako, it has been great working with both of you on this
project, and thank you for the opportunity and guidance. Also thanks to
Matthew for his help on the support chapter. Robert, thanks so much for
your great attention to detail and tracking down all the areas where I had
made typos and mistakes. Thanks to Bill “the Cloud” Childers for provid-
ing me with equipment for the UEC section.

Extra thanks to Dustin, Nick, Jamie, Kees, Alan, Mathias, Thierry, and the
rest of the Ubuntu Server team for all of your excellent feedback and help
through this process.

—Kyle Rankin

ptg

This page intentionally left blank

ptg

About the Authors

xxix

Kyle Rankin is a systems architect for Quinstreet, Inc., the current presi-
dent of the North Bay Linux Users’ Group, the author of Knoppix Hacks,
Knoppix Pocket Reference, Linux Multimedia Hacks, and Ubuntu Hacks,
and he has contributed to a number of other O’Reilly books. Kyle is also a
columnist for Linux Journal and has had articles featured in PC Magazine,
TechTarget, and other publications.

Benjamin Mako Hill is a Seattle native working out of Boston, Massachu-
setts. Mako is a long-time free software developer and advocate. He was
part of the founding Ubuntu team, one of the first employees of Canonical,
Ltd., and lead author of The Official Ubuntu Book. In addition to some
technical work, his charge at Canonical was to help grow the Ubuntu devel-
opment and user community during the project’s first year. Mako is cur-
rently a fellow at the MIT Center for Future Civic Media and a researcher
and Ph.D. candidate at the MIT Sloan School of Management. Mako has
continued his involvement with Ubuntu as a member of the Community
Council governance board, through development work, and through pro -
jects such as this book.

ptg

This page intentionally left blank

ptg

Introduction

xxxi

THIS INTRODUCTION GIVES AN overview of Ubuntu and Ubuntu Server. After
a quick welcome, it includes a brief history of free software, open source,
and GNU/Linux and of the Ubuntu project itself with a focus on some of
the major players on the Ubuntu scene. This introduction ends where the
rest of this book will continue: with a history of the Ubuntu Server project
and an overview of that project’s goals and accomplishments.

Welcome to Ubuntu Server
In the just over six years of its life, Ubuntu has become one of the most
popular GNU/Linux-based operating systems. In the process, however,
public perception has been disproportionately focused on Ubuntu’s role
as a desktop-based operating system. While all popularity is certainly wel-
come for those of us involved in the project, this success has, at times,
overshadowed the rock-solid server operating system that Ubuntu has
been constructed to be. For those of us who have helped build out
Ubuntu’s server-specific features and who use it daily, this is both unfortu-
nate and undeserved. Designed and used as a server since day one, Ubuntu
has supported a server team that was one of the first active teams in the
Ubuntu community and has been one of the most successful. Although
perceptions have changed in large part, many prospective users—and even
some current Ubuntu users—often continue to think of Ubuntu as some-
thing for desktops.

Perhaps it is just that people are so surprised at the usability of Ubuntu on
the desktop—especially in the early days when expectations for desktop
GNU/Linux distributions were low—that the public focus naturally has
drifted away from Ubuntu’s server offering. Lots of other GNU/Linux dis-
tributions run great on servers, but a solid desktop experience continues

ptg

to be surprising to many users. As a result, when people talk about Ubuntu,
they often tend to talk about desktops. Perhaps, on the other hand, people
just figured that such a well-polished desktop must have come at the cost
of the server-oriented features and support. Of course, no such sacrifices
were made.

To a large extent, times have changed. The Ubuntu Server team has contin-
ued its tireless work both to improve the experience for server users of
Ubuntu and to help promote Ubuntu as a server solution. Documenta-
tion, testimonials, certification of server-based software, support contracts
from a variety of sources, training courses, and more have all contributed
to remaking Ubuntu into a powerful player on the server. Although its
desktop credentials have not been diminished, Ubuntu’s server chops are
increasingly difficult to overlook. Over the past two years, Ubuntu has
begun to become a major player in the GNU/Linux server market.

More than anything else, testimonials have spread and the small group of
early Ubuntu Server users has spread the word. More and more people
choose Ubuntu for their servers every day. In fact, this book is simply the
latest striking example of just how far Ubuntu on servers has come. Not
only do people now know that Ubuntu runs on a server, they know it runs
well. This book is publishable only because there is a market for it. That
market is made up of people who have heard good things about Ubuntu
on the server and who are getting ready to take the plunge themselves.
Welcome. We hope we can help make the process easier. We’ve come a long
way, and we’re still only just beginning.

Free Software, Open Source, and Linux
A history of Ubuntu Server must, in large part, be a history of Ubuntu
itself. A history of Ubuntu must, in large part, be a history of the free soft-
ware movement and of the Linux kernel. While thousands of individuals
have contributed in some form to Ubuntu, the project has succeeded only
through the contributions of many thousands more who have indirectly
laid the technical, social, and economic groundwork for Ubuntu’s success.
While introductions to free software, open source, and GNU/Linux can be
found in many other places, no introduction to Ubuntu is complete with-

xxxii Introduction

ptg

out a brief discussion of these concepts and the people and history behind
them. It is around these concepts and within these communities that
Ubuntu was motivated and born. Ultimately, it is through these ideas that
it is sustained.

Free Software and GNU
In a series of events that have almost become legend through constant rep-
etition, Richard M. Stallman created the concept of free software in 1983.
Stallman grew up with computers in the 1960s and 1970s, when computer
users purchased very large and extremely expensive mainframe comput-
ers, which were then shared among large numbers of programmers. Soft-
ware was, for the most part, seen as an add-on to the hardware, and every
user had the ability and the right to modify or rewrite the software on his
or her computer and to freely share this software. As computers became
cheaper and more numerous in the late 1970s, producers of software
began to see value in the software itself. Producers of computers began to
argue that their software was copyrightable and a form of intellectual
property much like a music recording, a film, or a book’s text. They began
to distribute their software under licenses and in forms that restricted its
users’ abilities to use, redistribute, or modify the code. By the early 1980s,
restrictive software licenses had become the norm.

Stallman, then a programmer at MIT’s Artificial Intelligence Laboratory,
became increasingly concerned with what he saw as a dangerous loss of the
freedoms that software users and developers had up until that point enjoyed.
He was concerned with computer users’ ability to be good neighbors and
members of what he thought was an ethical and efficient computer-user
community. To fight against this negative tide, Stallman articulated a vision
for a community that developed liberated code—in his words, “free soft-
ware.” He defined free software as software that had the following four
characteristics—labeled as freedoms 0 through 3 instead of 1 through 4 as a
computer programmer’s joke:

� The freedom to run the program for any purpose (freedom 0)

� The freedom to study how the program works and adapt it to your
needs (freedom 1)

Introduction xxxiii

ptg

� The freedom to redistribute copies so you can help your neighbor
(freedom 2)

� The freedom to improve the program and release your improvements
to the public so that the whole community benefits (freedom 3)

Access to source code—the human-readable and modifiable blueprints of
any piece of software that can be distinguished from the computer-read-
able version of the code that most software is distributed as—is a prereq-
uisite to freedoms 1 and 3. In addition to releasing this definition of free
software, Stallman began a project with the goal of creating a completely
free OS to replace the then-popular UNIX. In 1984, Stallman announced
this project and called it GNU—another joke in the form of a recursive
acronym for “GNU’s Not UNIX.”

Linux
By the early 1990s, Stallman and a collection of other programmers work-
ing on GNU had developed a near-complete OS that could be freely shared.
They were, however, missing a final essential piece in the form of a kernel—
a complex system command processor that lies at the center of any OS. In
1991, Linus Torvalds wrote an early version of just such a kernel, released it
under a free license, and called it Linux. Linus’s kernel was paired with the
GNU project’s development tools and OS and with the graphical window-
ing system called X. With this pairing, a completely free OS was born—free
both in terms of price and in Stallman’s terms of freedom.

All systems referred to as Linux today are, in fact, built on the work of this
collaboration. Technically, the term Linux refers only to the kernel. Many
programmers and contributors to GNU, including Stallman, argue emphat-
ically that the full OS should be referred to as GNU/Linux in order to give
credit not only to Linux but also to the GNU project and to highlight
GNU’s goals of spreading software freedom—goals not necessarily shared
by Linus Torvalds. Many others find this name cumbersome and prefer
calling the system simply Linux. Yet others, such as those working on the
Ubuntu project, attempt to avoid the controversy altogether by referring to
GNU/Linux only by using their own project’s name.

xxxiv Introduction

ptg

Open Source
Disagreements over labeling did not end with discussions about the nam-
ing of the combination of GNU and Linux. In fact, as the list of contribu-
tors to GNU and Linux grew, a vibrant world of new free software projects
sprouted up, facilitated in part by growing access to the Internet. As this
community grew and diversified, a number of people began to notice an
unintentional side effect of Stallman’s free software. Because free software
was built in an open way, anyone could contribute to software by looking
through the code, finding bugs, and fixing them. Because software ended
up being examined by larger numbers of programmers, free software was
higher in quality, performed better, and offered more features than similar
software developed through proprietary development mechanisms. In
many situations, the development model behind free software led to soft-
ware that was inherently better than proprietary alternatives.

As the computer and information technology industry began to move into
the dot-com boom, one group of free software developers and leaders,
spearheaded by two free software developers and advocates—Eric S. Ray-
mond and Bruce Perens—saw the important business proposition offered
by a model that could harness volunteer labor or interbusiness collabora-
tion and create intrinsically better software. However, they worried that
the term free software was problematic for at least two reasons. First, it was
highly ambiguous—the English word free means both gratis, or at no cost
(e.g., as in “free beer”) and liberated in the sense of freedom (e.g., as in
“free speech”). Second, there was a feeling, articulated most famously by
Raymond, that all this talk of freedom was scaring off the very business
executives and decision makers whom the free software movement needed
to impress in order to succeed.

To tackle both of these problems, this group coined a new phrase—open
source—and created a new organization called the Open Source Initiative.
The group set at its core a definition of open source software that over-
lapped completely and exclusively both with Stallman’s four-part defini-
tion of free software and with other community definitions that were also
based on Stallman’s.

One useful way to understand the split between the free software and open
source movements is to think of it as the opposite of a schism. In religious

Introduction xxxv

ptg

schisms, churches separate and do not work or worship together because
of relatively small differences in belief, interpretation, or motivation. For
example, most contemporary forms of Protestant Christianity agree on
almost everything but have separated over some small but irreconcilable
difference. However, in the case of the free software and open source move-
ments, the two groups have fundamental disagreements about their motiva-
tion and beliefs. One group is focused on freedom, while the other is focused
on pragmatics. Free software is most accurately described as a social move-
ment, whereas open source is a development methodology. However, the
two groups have no trouble working on projects hand in hand.

In terms of the motivations and goals, open source and free software
diverge greatly. Yet in terms of the software, the projects, and the licenses
they use, they are completely synonymous. While people who identify
with either group see the two movements as being at odds, the Ubuntu
project sees no conflict between the two ideologies. People in the Ubuntu
project identify with either group and often with both. In this book, we
may switch back and forth between the terms as different projects and
people in Ubuntu identify more strongly with one term or the other. For
the purposes of this book, though, either term should be read as implying
the other unless it is stated otherwise.

A Brief History of the Ubuntu Project
A history of Ubuntu, born in April 2004, may seem premature. However,
the last six years have been full ones for Ubuntu. With its explosive growth,
it is difficult even for those involved most closely with the project to track
and record some of the high points. Importantly, there are some key fig-
ures whose own history must be given for a full understanding of Ubuntu.
This brief summary outlines the high points of Ubuntu’s history to date
and gives the necessary background knowledge to understand where
Ubuntu comes from.

Mark Shuttleworth
No history of Ubuntu can call itself complete without a history of Mark
Shuttleworth. Shuttleworth is, undeniably, the most visible and important
person in Ubuntu. More important from the point of view of history,

xxxvi Introduction

ptg

Shuttleworth is also the originator and initiator of the project—he made
the snowball that would eventually roll on and grow to become the Ubuntu
project.

Shuttleworth was born in 1973 in Welkom, Free State, in South Africa. He
attended Diocesan College and obtained a business science degree in
finance and information systems at the University of Cape Town. During
this period, he was an avid computer hobbyist and became involved with
the free and open source software community. He was at least marginally
involved in both the Apache project and the Debian project and was the
first person to upload the Apache Web server, perhaps the single most
important piece of server software on GNU/Linux platforms, into the
Debian project’s archives.

Seeing an opportunity in the early days of the Web, Shuttleworth founded
a certificate authority and Internet security company called Thawte in his
garage. Over the course of several years, he built Thawte into the second-
largest certificate authority on the Internet, trailing only the security behe-
moth VeriSign. Throughout this period, Thawte’s products and services
were built and served almost entirely from free and open source software.
In December 1999, Shuttleworth sold Thawte to VeriSign for an undis-
closed amount that reached into the hundreds of millions in U.S. dollars.

With his fortune made at a young age, Shuttleworth might have enjoyed a
life of leisure—and probably considered it. Instead, he decided to pursue
his lifelong dream of space travel. After paying approximately $20 million
to the Russian space program and devoting nearly a year to preparation,
including learning Russian and spending seven months training in Star
City, Russia, Shuttleworth realized his dream as a civilian cosmonaut
aboard the Russian Soyuz TM-34 mission. On this mission, Shuttleworth
spent two days on the Soyuz rocket and eight days on the International
Space Station, where he participated in experiments related to AIDS and
genome research. In early May 2002, Shuttleworth returned to Earth.

In addition to space exploration and a less-impressive jaunt to Antarctica,
Shuttleworth played an active role as both a philanthropist and a venture
capitalist. In 2001, he founded the Shuttleworth Foundation (TSF), a non-
profit organization based in South Africa. The foundation was chartered

Introduction xxxvii

ptg

to fund, develop, and drive social innovation in the field of education. Of
course, the means by which TSF attempts to achieve these goals frequently
involves free software. Through these projects, the organization has been
one of the most visible proponents of free and open source software in
South Africa and even the world. In the venture capital area, Shuttleworth
worked to foster research, development, and entrepreneurship in South
Africa with strategic injections of cash into start-ups through a new ven-
ture capital firm called HBD, an acronym for “Here Be Dragons.” During
this period, Shuttleworth was busy brainstorming his next big project—
the project that would eventually become Ubuntu.

The Warthogs
There has been no lack of projects attempting to wrap GNU, Linux, and
other pieces of free and open source software into a neat, workable, and
user-friendly package. Mark Shuttleworth, like many other people,
believed that the philosophical and pragmatic benefits offered by free
software put it on a course for widespread success. That said, none of the
offerings were particularly impressive. Something was missing from all of
them. Shuttleworth saw this as an opportunity. If someone could build
the great free software distribution that helped push GNU/Linux into the
mainstream, he or she would come to occupy a position of strategic
importance.

Shuttleworth, like many other technically inclined people, was a huge fan of
the Debian project (discussed in depth later). However, many things about
Debian did not fit with Shuttleworth’s vision of an ideal OS. For a period of
time, Shuttleworth considered the possibility of running for Debian project
leader as a means of reforming the Debian project from within. With time,
though, it became clear that the best way to bring GNU/Linux into the
mainstream would not be from within the Debian project—which in many
situations had very good reasons for being the way it was. Instead, Shuttle-
worth would create a new project that worked in symbiosis with Debian to
build a new, better GNU/Linux system.

To kick off this project, Shuttleworth invited a dozen or so free and open
source software developers he knew and respected to his flat in London in
April 2004. It was in this meeting (alluded to in the first paragraphs of this

xxxviii Introduction

ptg

introduction) that the groundwork for the Ubuntu project was laid. By
that point, many of those involved were excited about the possibility of the
project. During this meeting, the members of the team—which would in
time grow into the core Ubuntu team—brainstormed a large list of the
things that they would want to see in their ideal OS. The list is now a famil-
iar list of features to most Ubuntu users. Many of these traits are covered
in more depth later in this chapter. The group wanted

� Predictable and frequent release cycles

� A strong focus on localization and accessibility

� A strong focus on ease of use and user-friendliness on the desktop

� A strong focus on Python as the single programming language
through which the entire system could be built and expanded

� A community-driven approach that worked with existing free soft-
ware projects and a method by which the groups could give back as
they went along—not just at the time of release

� A new set of tools designed around the process of building distribu-
tions that allowed developers to work within an ecosystem of differ-
ent projects and that allowed users to give back in whatever way they
could

There was consensus among the group that actions speak louder than
words, so there were no public announcements or press releases. Instead,
the group set a deadline for itself—six short months in the future. Shuttle-
worth agreed to finance the work and pay the developers full-time salaries
to work on the project. After six months, they would both announce their
project and reveal the first product of their work. They made a list of goals
they wanted to achieve by the deadline, and the individuals present took
on tasks. Collectively, they called themselves the Warthogs.

What Does Ubuntu Mean?
At this point, the Warthogs had a great team, a set of goals, and a decent
idea of how to achieve most of them. The team did not, on the other hand,
have a name for the project. Shuttleworth argued strongly that they should
call the project Ubuntu.

Introduction xxxix

ptg

Ubuntu is a concept and a term from several South African languages,
including Zulu and Xhosa. It refers to a South African ideology or ethic
that, while difficult to express in English, might roughly be translated as
“humanity toward others,” or “I am because we are.” Others have described
ubuntu as “the belief in a universal bond of sharing that connects all
humanity.” The famous South African human rights champion Archbishop
Desmond Tutu explained ubuntu in this way:

A person with ubuntu is open and available to others, affirming of others,
does not feel threatened that others are able and good, for he or she has a
proper self-assurance that comes from knowing that he or she belongs in a
greater whole and is diminished when others are humiliated or dimin-
ished, when others are tortured or oppressed.

Ubuntu played an important role as a founding principle in postapartheid
South Africa and remains a concept familiar to most South Africans today.

Shuttleworth liked the term Ubuntu as a name for the new project for sev-
eral reasons. First, it is a South African concept. While the majority of the
people who work on Ubuntu are not from South Africa, the roots of the
project are, and Shuttleworth wanted to choose a name that represented
this. Second, the project emphasizes the definition of individuality in terms
of relationships with others and provides a profound type of community
and sharing—exactly the attitudes of sharing, community, and collabora-
tion that are at the core of free software. The term represented the side of
free software that the team wanted to share with the world. Third, the idea
of personal relationships built on mutual respect and connections
describes the fundamental ground rules for the highly functional commu-
nity that the Ubuntu team wanted to build. Ubuntu was a term that encap-
sulated where the project came from, where the project was going, and how
the project planned to get there. The name was perfect. It stuck.

Creating Canonical
In order to pay developers to work on Ubuntu full-time, Shuttleworth
needed a company to employ them. He wanted to pick some of the best
people for the jobs from within the global free software and open source
communities. These communities, inconveniently for Shuttleworth, know
no national and geographic boundaries. Rather than move everyone to a

xl Introduction

ptg

single locale and office, Shuttleworth made the decision to employ these
developers through a virtual company. While this had obvious drawbacks
in the form of high-latency and low-bandwidth connections, different
time zones, and much more, it also introduced some major benefits in the
particular context of the project. On one hand, the distributed nature of
employees meant that the new company could hire individuals without
requiring them to pack up their lives and move to a new country. More
important, it meant that everyone in the company was dependent on IRC,
mailing lists, and online communication mechanisms to do their work.
This unintentionally and automatically solved the water-cooler problem
that plagued many other corporately funded free software projects—
namely, that developers would casually speak about their work in person
and cut the community and anyone else who didn’t work in the office out
of the conversation completely. For the first year, the closest thing that
Canonical had to an office was Shuttleworth’s flat in London. While the
company has grown and now has several offices around the world, it
remains distributed, and a large number of the engineers work from
home. The group remains highly dependent on Internet collaboration.

With time, the company was named Canonical. The name was a nod to the
project’s optimistic goals of becoming the canonical place for services and
support for free and open source software and for Ubuntu in particular.
Canonical, of course, refers to something that is accepted as authoritative.
It is a common word in the computer programmer lexicon. It’s important
to note that being canonical is like being standard; it is not coercive. Unlike
holding a monopoly, becoming the canonical location for something
implies a similar sort of success—but never one that cannot be undone
and never one that is exclusive. Other companies will support Ubuntu and
build operating systems based on it, but as long as Canonical is doing a
good job, its role will remain central.

The Ubuntu Community
By now you may have noticed a theme that permeates the Ubuntu project
on several levels. The history of free software and open source is one of a
profoundly effective community. Similarly, in building a GNU/Linux dis-
tribution, the Ubuntu community has tried to focus on an ecosystem
model—an organization of organizations—in other words, a community.

Introduction xli

ptg

Even the definition of the term ubuntu is one that revolves around people
interacting in a community.

It comes as no surprise, then, that an “internal” community plays heavily
into the way that the Ubuntu distribution is created. While the Ubuntu
4.10 version (Warty Warthog) was primarily built by a small number of
people, Ubuntu achieved widespread success only through contributions
by a much larger group that included programmers, documentation writ-
ers, volunteer support staff, and users. While Canonical employs a core
group of several dozen active contributors to Ubuntu, the distribution
has, from day one, encouraged and incorporated contributions from any-
one in the community and rewards and recognizes contributions by all.
Rather than taking center stage, paid contributors are not employed by the
Ubuntu project—instead they are employed by Canonical, Ltd. These
employees are treated simply as another set of community members. They
must apply for membership in the Ubuntu community and have their
contributions recognized in the same way as anyone else. All non-busi-
ness-related communication about the Ubuntu project occurs in public
and in the community. Volunteer community members occupy a majority
of the seats on the two most important governing boards of the Ubuntu
project: the Technical Board, which oversees all technical matters, and the
Community Council, which approves new Ubuntu members and resolves
disputes. Seats on both boards are approved by the relevant community
groups, developers for the Technical Board and Ubuntu members for the
Community Council.

In order to harness and encourage the contributions of its community,
Ubuntu has striven to balance the important role that Canonical plays
with the value of empowering individuals in the community. The Ubuntu
project is based on a fundamental belief that great software is built, sup-
ported, and maintained only in a strong relationship with the individuals
who use the software. In this way, by fostering and supporting a vibrant
community, Ubuntu can achieve much more than it could through paid
development alone. The people on the project believe that while the con-
tributions of Canonical and Mark Shuttleworth have provided an impor-
tant catalyst for the processes that have built Ubuntu, it is the community
that has brought the distribution its success to date. The project members
believe that it is only through increasing reliance on the community that

xlii Introduction

ptg

the project’s success will continue to grow. The Ubuntu community won’t
outspend the proprietary software industry, but it is very much more than
Microsoft and its allies can afford.

Finally, it is worth noting that, while this book is official, neither of the
authors is a Canonical employee. This book, like much of the rest of
Ubuntu, is purely a product of the project’s community.

Ubuntu Promises and Goals
So far, this introduction has been about the prehistory, history, and con-
text of the Ubuntu project. After this chapter, the book focuses on the dis-
tribution itself. Before proceeding, it’s important to understand the goals
that motivated the project.

Philosophical Goals
The most important goals of the Ubuntu project are philosophical in
nature. The Ubuntu project lays out its philosophy in a series of documents
on its Web site. In the most central of these documents, the team summa-
rizes the charter and the major philosophical goals and underpinnings:

Ubuntu is a community-driven project to create an operating system and
a full set of applications using free and Open Source software. At the core
of the Ubuntu Philosophy of Software Freedom are these core philosophi-
cal ideals:

1. Every computer user should have the freedom to run, copy, distribute,
study, share, change, and improve their software for any purpose with-
out paying licensing fees.

2. Every computer user should be able to use their software in the language
of their choice.

3. Every computer user should be given every opportunity to use software,
even if they work under a disability.

The first item should be familiar by now. It is merely a recapitulation of
Stallman’s free software definition quoted earlier in the section on free
software history. In it, the Ubuntu project makes explicit its goal that every
user of software should have the freedoms required by free software. This

Introduction xliii

ptg

is important for a number of reasons. First, it offers users all of the practi-
cal benefits of software that runs better, faster, and more flexibly. More
important, it gives every user the capability to transcend his or her role as a
user and a consumer of software. Ubuntu wants software to be empower-
ing and to work in the ways that users want it to work. Ubuntu wants all
users to have the ability to make sure it works for them. To do this, soft-
ware must be free, so Ubuntu makes this a requirement and a philosophi-
cal promise.

Of course, the core goals of Ubuntu do not end with the free software defi-
nition. Instead, the project articulates two new, but equally important,
goals. The first of these, that all computer users should be able to use their
computers in their chosen languages, is a nod to the fact that the majority
of the world’s population does not speak English while the vast majority of
software interacts only in that language. To be useful, source code com-
ments, programming languages, documentation, and the texts and menus
in computer programs must be written in some language. Arguably, the
world’s most international language is a reasonably good choice. However,
there is no language that everyone speaks, and English is not useful to the
majority of the world’s population that does not speak it. A computer can
be a great tool for empowerment and education, but only if the user can
understand the words in the computer’s interface. As a result, Ubuntu
believes that it is the project’s—and community’s—responsibility to
ensure that every user can easily use Ubuntu to read and write in the lan-
guage with which he or she is most comfortable.

Finally, just as no person should be blocked from using a computer simply
because he or she does not know a particular language, no user should be
blocked from using a computer because of a disability. Ubuntu must be
accessible to users with motor disabilities, vision disabilities, and hearing
disabilities. It should provide input and output in a variety of forms to
account for each of these situations and for others. A significant percent-
age of the world’s most intelligent and creative individuals has disabilities.
Ubuntu’s impact should not be limited to any subset of the world when it
can be fully inclusive. More important, Ubuntu should be able to harness
the ability of these individuals as community members to build a better
and more effective community.

xliv Introduction

ptg

Conduct Goals and Code of Conduct
If Ubuntu’s philosophical commitments describe the why of the Ubuntu
project, the Code of Conduct (CoC) describes Ubuntu’s how. Ubuntu’s
CoC is, arguably, the most important document in the day-to-day opera-
tion of the Ubuntu community and sets the ground rules for work and
cooperation within the project. Explicit agreement to the document is the
only criterion for becoming an officially recognized Ubuntu activist—an
Ubuntero—and is an essential step toward membership in the project.

The CoC covers “behavior as a member of the Ubuntu Community, in any
forum, mailing list, wiki, Web site, IRC channel, install-fest, public meet-
ing, or private correspondence.” The CoC goes into some degree of depth
on a series of points that fall under the following headings:

� Be considerate.

� Be respectful.

� Be collaborative.

� When you disagree, consult others.

� When you are unsure, ask for help.

� Step down considerately.

Many of these headings seem like common sense or common courtesy to
many, and that is by design. Nothing in the CoC is controversial or radical,
and it was never designed to be.

More difficult is that nothing is easy to enforce or decide because acting con-
siderately, respectfully, and collaboratively is often very subjective. There is
room for honest disagreements and hurt feelings. These are accepted short-
comings. The CoC was not designed to be a law with explicit prohibitions
on phrases, language, or actions. Instead, it aims to provide a constitution
and a reminder that considerate and respectful discussion is essential to
the health and vitality of the project. In situations where there is a serious
disagreement on whether a community member has violated or is violat-
ing the code, the Community Council is available to arbitrate disputes and
decide what action, if any, is appropriate.

Introduction xlv

ptg

Nobody involved in the Ubuntu project, including Mark Shuttleworth and
the other members of the Community Council, is above the CoC. The
CoC is never optional and never waived. In fact, the Ubuntu community
recently created a Leadership Code of Conduct (LCoC), which extends
and expands on the CoC and describes additional requirements and expec-
tations for those in leadership positions in the community. Of course, in no
way was either code designed to eliminate conflict or disagreement. Argu-
ments are at least as common in Ubuntu as they are in other projects and
online communities. However, there is a common understanding within
the project that arguments should happen in an environment of collabora-
tion and mutual respect. This allows for better arguments with better
results—and with less hurt feelings and fewer bruised egos.

While they are sometimes incorrectly used as such, the CoC and LCoC are
not sticks to be wielded against an opponent in an argument. Instead, they
are useful points of reference upon which consensus can be assumed
within the Ubuntu community. Frequently, if a group in the community
feels a member is acting in a way that is out of line with the code, the group
will gently remind the community member, often privately, that the CoC
is in effect. In almost all situations, this is enough to avoid any further
action or conflict. Very few CoC violations are ever brought before the
Community Council.

Technical Goals
While a respectful community and adherence to a set of philosophical
goals provide an important frame in which the Ubuntu project works,
Ubuntu is, at the end of the day, a technical project. As a result, it only
makes sense that in addition to philosophical goals and a project constitu-
tion, Ubuntu also has a set of technical goals.

The first technical goal of the project, and perhaps the most important
one, is the coordination of regular and predictable releases—something
particularly important to server users. In April 2004, at the Warthogs
meeting, the project set a goal for its initial proof-of-concept release six
months out. In part due to the resounding success of that project, and in
larger part due to the GNOME release schedule, the team has stuck to a
regular and predictable six-month release cycle and has only once chosen

xlvi Introduction

ptg

to extend the release schedule by six weeks and only after obtaining com-
munity consensus on the decision. The team then doubled its efforts and
made the next release in a mere four and a half months, putting its release
schedule back on track. Frequent releases are important because users can
then use the latest and greatest free software available—something that is
essential in a development environment as vibrant and rapidly changing
and improving as the free software community. Predictable releases are
important, especially to businesses, because predictability means that they
can organize their business plans around Ubuntu. Through consistent
releases, Ubuntu can provide a platform upon which businesses and deriv-
ative distributions can rely to grow and build.

While releasing frequently and reliably is important, the released software
must then be supported. Ubuntu, like all distributions, must deal with the
fact that all software has bugs. Most bugs are minor, but fixing them may
introduce even worse issues. Therefore, fixing bugs after a release must be
done carefully or not at all. The Ubuntu project engages in major changes,
including bug fixes, between releases only when the changes can be exten-
sively tested. However, some bugs risk the loss of users’ information or
pose a serious security vulnerability. These bugs are fixed immediately and
made available as updates for the released distribution. The Ubuntu com-
munity works hard to find and minimize all types of bugs before releases
and is largely successful in squashing the worst. However, because there is
always the possibility that more of these bugs will be found, Ubuntu com-
mits to supporting every release for 18 months after it is released. In the
case of Ubuntu 6.06 LTS (Dapper Drake), released in 2006, the project
went well beyond even this and committed to support the release for three
full years on desktop computers and for five years in a server configuration
(LTS stands for LongTerm Support). This proved so popular with busi-
nesses, institutions, and the users of Ubuntu servers that Ubuntu 8.04
(Hardy Heron) was named as Ubuntu’s second LTS release with similar
three- and five-year desktop and server extended support commitments.
These five-year support commitments are specifically designed for server
users and make Ubuntu a much more attractive option for an important
class of server users.

This bipartite approach to servers and desktops implies the third major
technical commitment of the Ubuntu project and, in a sense, the most

Introduction xlvii

ptg

important for this book: support for both servers and desktop computers
in separate but equally emphasized modes. While Ubuntu continues to be
more well known, and perhaps more popular, in desktop configurations,
there exist teams of Ubuntu developers focused on both server and desk-
top users. The Ubuntu project believes that both desktops and servers are
essential and provides installation methods on every CD for both types of
systems. Ubuntu provides tested and supported software appropriate to
the most common actions in both environments and documentation for
each. LTS releases in particular mark an important step toward catering to
users on the server.

Finally, the Ubuntu project is committed to making it as easy as possible
for users to transcend their roles as consumers and users of software and
to take advantage of each of the freedoms central to the Ubuntu philoso-
phy. As a result, Ubuntu has tried to focus its development around the use
and promotion of a single programming language, Python. The project
has worked to ensure that Python is widely used throughout the system.
By ensuring that many applications and many of the “guts” of the system
are written in or extensible in Python, Ubuntu is working to ensure that
users need to learn only one language in order to take advantage of, auto-
mate, and tweak many parts of their systems.

Canonical and the Ubuntu Foundation
While Ubuntu is driven by a community, several groups play an important
role in its structure and organization. Foremost among these are Canoni-
cal, Ltd., a for-profit company introduced as part of the Ubuntu history
description, and the Ubuntu Foundation, which is introduced later in this
section.

Canonical, Ltd.
As mentioned earlier, Canonical, Ltd., is a company founded by Mark
Shuttleworth with the primary goal of developing and supporting the
Ubuntu distribution. Many of the core developers on Ubuntu—although
no longer a majority of them—work full-time or part-time under contract
for Canonical, Ltd. This funding by Canonical allows Ubuntu to make the
type of support commitments that it does. Ubuntu can claim that it will

xlviii Introduction

ptg

release in six months because releasing, in one form or another, is some-
thing that the paid workers at Canonical can ensure. As an all-volunteer
organization, Debian suffered from an inability to set and meet dead-
lines—volunteers become busy or have other deadlines in their paying
jobs that take precedence. By offering paying jobs to a subset of develop-
ers, Canonical can set support and release deadlines and ensure that they
are met.

In this way, Canonical ensures that Ubuntu’s bottom-line commitments
are kept. Of course, Canonical does not fund all Ubuntu work, nor could
it. Canonical can release a distribution every six months, but that distribu-
tion will be made much better and more usable through contributions
from the community of users. Most features, most new pieces of software,
almost all translations, almost all documentation, and much more are cre-
ated outside of Canonical. Instead, Canonical ensures that deadlines are
met and that the essential work, regardless of whether it’s fun, gets done.

Canonical, Ltd., was incorporated on the Isle of Man—a tiny island nation
between Wales and Ireland that is mostly known as a haven for inter-
national businesses. Since Canonical’s staff is sprinkled across the globe
and no proper office is necessary, the Isle of Man seemed as good a place as
any for the company to hang its sign.

Canonical’s Service and Support
While it is surprising to many users, fewer than half of Canonical’s employ-
ees work on the Ubuntu project. The rest of the employees fall into several
categories: business development, support and administration, and devel-
opment on the Bazaar and Launchpad projects.

Individuals involved in business development help create strategic deals
and certification programs with other companies—primarily around
Ubuntu. In large part, these are things that the community is either ill
suited for or uninterested in as a whole. One example of business develop-
ment work is the process of working with companies to ensure that their
software (usually proprietary) is built and certified to run on Ubuntu. For
example, Canonical worked with IBM to ensure that its popular DB2 data-
base would run on Ubuntu and, when this was achieved, worked to have

Introduction xlix

ptg

Ubuntu certified as a platform that would run DB2. Similarly, Canonical
worked with Dell to ensure that Ubuntu could be installed and supported
on Dell laptops as an option for its customers. A third example is the pro-
duction of this book, which, published by Pearson Education’s Prentice
Hall imprint, was a product of work with Canonical.

Canonical also plays an important support role in the Ubuntu project in
three ways. First, Canonical supports the development of the Ubuntu
project. For example, Canonical system administrators ensure that the
servers that support development and distribution of Ubuntu are running.
Second, Canonical helps Ubuntu users and businesses directly by offering
phone and e-mail support. Additionally, Canonical has helped build a large
commercial Ubuntu support operation by arranging for support contracts
with larger companies and organizations. This support is over and above
the free (i.e., gratis) support offered by the community—this commercial
support is offered at a fee and is either part of a longer-term flat-fee support
contract or is pay-per-instance. By offering commercial support for Ubuntu
in a variety of ways, Canonical aims to make a business for itself and to help
make Ubuntu a more palatable option for the businesses, large and small,
that are looking for an enterprise or enterprise-class GNU/Linux product
with support contracts like those offered by other commercial GNU/Linux
distributions.

Finally, Ubuntu supports other support organizations. Canonical does not
seek or try to enforce a monopoly on Ubuntu support; it proudly lists hun-
dreds of other organizations offering support for Ubuntu on the Ubuntu
Web pages. Instead, Canonical offers what is called second-tier support to
these organizations. Because Canonical employs many of the core Ubuntu
developers, the company is very well suited to taking action on many of
the tougher problems that these support organizations may run into. With
its concentrated expertise, Canonical can offer this type of backup, or sec-
ondary, support to these organizations.

The Ubuntu Foundation
Finally, in addition to Canonical and the full Ubuntu community, the Ubuntu
project is supported by the Ubuntu Foundation, which was announced by
Shuttleworth with an initial funding commitment of $10 million. The foun-

l Introduction

ptg

dation, like Canonical, is based on the Isle of Man. The organization is
advised by the Ubuntu Community Council.

Unlike Canonical, the foundation does not play an active role in the day-
to-day life of Ubuntu. At the moment, the foundation is little more than a
pile of money that exists to endow and ensure Ubuntu’s future. Because
Canonical is a young company, many companies and individuals find it
difficult to trust that Canonical will be able to provide support for Ubuntu
in the time frames (e.g., three to five years) that it claims it will be able to.
The Ubuntu Foundation exists to allay those fears.

If something bad were to happen to Shuttleworth or to Canonical that
caused either to be unable to support Ubuntu development and maintain
the distribution, the Ubuntu Foundation exists to carry on many of
Canonical’s core activities well into the future. Through the existence of
the foundation, the Ubuntu project can make the types of long-term com-
mitments and promises it does.

The one activity in which the foundation can and does engage is receiving
donations on behalf of the Ubuntu project. These donations, and only
these donations, are then put to use on behalf of Ubuntu in accordance
with the wishes of the development team and the Technical Board. For the
most part, these contributions are spent on “bounties” given to commu-
nity members who have achieved important feature goals for the Ubuntu
project.

History of Ubuntu Server
The first “production” machines to run Ubuntu were Canonical’s own
development machines in its data center in London. In this sense, Ubuntu
has been used on servers since day one and Ubuntu has always been a
server operating system. Of course, as we hinted in the welcome at the
beginning of this chapter, this has not always been universally recognized.
After the first release, public perception was tilted so far toward the idea of
Ubuntu as a desktop release that when the developers convened the first
of their biannual developer summits after the first full release cycle, one of
the most important items on the agenda was thinking about Ubuntu on
servers and how to support it.

Introduction li

ptg

The Ubuntu Server project, as a result, was at least as much a marketing
project as it was a technical project. Sure, there were ways that the team
could make Ubuntu better for servers—and they spent plenty of time
working and thinking about that—but the biggest problem they faced was
simply communicating the message that Ubuntu already was great for
servers to all their users and potential users.

Eventually Canonical funded the creation of a graphical installer, but in
the first few releases there was just a single, nongraphical installer based on
Debian’s very descriptively named Debian Installer project. In the initial
Ubuntu release, a user installing Ubuntu was given a choice between two
modes: “Desktop”—which was self-explanatory enough—and “Custom.”
Custom, in the minds of the early developers, was what anyone would
want for a server. Custom installed just the bare minimum set of packages
and then put the users into this base install and prompted them to install
the packages that they wanted on their system. It provided users with the
bare-bones system and encouraged them to customize it. The first action
of the Ubuntu Server project was purely superficial: The “Custom” install
was renamed “Server.” Although no code had changed, Ubuntu Server
almost immediately began getting more recognition. If one had to pick a
single point in time that the Ubuntu Server project was born, it would be
this moment.

Ubuntu Server isn’t actually any different from other flavors of Ubuntu. As
the desktop has moved on to a new graphical installer based on a live CD,
Ubuntu Server has its own installer that gives users access to features like
RAID and LVM that are much more interesting to server users. Certainly,
there are some pieces of software that are likely to end up on servers and
unlikely to end up on desktops—things like Web servers and mail servers.
When we say that the server edition will be supported, we mean these
applications plus the core, so it certainly seems most accurate to refer to
these as being within the purview of Ubuntu Server.

But at the end of the day, the server and desktop packages come out of a
single repository. This fact, plus the integration between the teams of
people working on different parts of the project—most core developers
work on bits and pieces that get used and reused in server, desktop, and
other editions—introduces a fuzziness that makes it hard to pin down just

lii Introduction

ptg

what Ubuntu Server is. Of course, it also means that Ubuntu Server gets to
benefit from the work, bug reporting, and bug fixing in those core parts of
the operating system that every Ubuntu user shares.

Ubuntu Server now can roughly be interpreted to refer to a collection of
resources that are particularly aimed at and used by server users. Most
obviously, it involves the custom install discs that you’ll be using when you
install Ubuntu Server on your machine. It also refers to the collections of
supported software that are installed primarily on servers—most of the
software that the rest of this book will discuss in more detail. It also refers
to a mass of documentation, to which this book represents the latest addi-
tion, that provides answers to questions. In a broader sense, certifications
of software and training programs for administrators occupy another
point in the growing Ubuntu Server constellation.

But most of all, and in the Ubuntu tradition, Ubuntu Server refers to a
community. It’s a community of developers who use Ubuntu on servers,
who care deeply about Ubuntu on servers, and who work tirelessly to
make sure that Ubuntu performs as well as possible on servers everywhere.
Of course, Ubuntu Server also refers to the growing community of people
who are primarily not contributing through code but who are at least as
important. These people spend time in the support of IRC channels, send
e-mail to the mailing lists, and post in the forums. These users help other
users, file bugs, may contribute their own fixes to documentation, and
contribute in myriad ways and in a variety of venues.

When you “graduate” beyond what this book can teach you, Ubuntu rep-
resents those people who will help you take your next steps. They are the
people described in more depth in the server resources chapter (Chap-
ter 13) of this book. This is the group you will join when you participate in
the Ubuntu project. Let us be the first to welcome to you to the Ubuntu
Server community.

Simple, Secure, Supported
Early on, the initial core Ubuntu team—of which one of this book’s
authors was lucky enough to be a part—resisted the idea of the server ver-
sion of Ubuntu. Or rather, they resisted the idea of a server distribution in

Introduction liii

ptg

the way that other GNU/Linux distributions had produced them and the
way in which they were commonly thought of. The team was more than
happy with running Ubuntu on servers, of course, but they resisted the
idea of “server distributions” because of the way that Red Hat, SuSE, and
the other big distributions built their businesses around “enterprise
Linux” distributions that were big, clunky, and expensive. The result was,
in the eyes of many of the early Ubuntu core developers and Canonical
employees, top-heavy monstrosities. That’s not what Ubuntu is about.

The big server-based GNU/Linux distributions seemed to be competing
over who included more services, more features, and more bells and
whistles. Distribution 1 would have a Web server, an FTP server, a DNS
server, several file servers, and a mail server. Distribution 2 would have all
of those plus a DHCP server! A brand-new install of one of these “server
distributions” would be running dozens of daemons—each taking up
many megabytes of memory, loads of disk space, and (most important)
lots of administrator time when they failed or interfered with something
else. But worst of all, most of these daemons lay completely unused on
most installs.

And if that wasn’t enough, the server installs would then run firewalls to
keep people from accessing all these now-open services and to prevent
users from exposing security vulnerabilities from their newly installed
machines. Of course, there would be regular upgrades, security releases,
and the like, to update all these now-firewalled services that nobody was
using. Debian provided one alternative model that focused on custom
installations of just what people needed. Among an elite group of sysad-
mins in the late 1990s and the early 2000s, Debian had become the server
OS of choice. Because nearly everyone on the early Ubuntu team was a
Debian developer, it was to this model and to Debian technology that the
Ubuntu team first turned.

Of course, the commercial GNU/Linux server market was not all horrible.
For example, the early Ubuntu developers liked the idea of commercial
support for its servers. They liked the idea of regular, predictable releases.
As Debian developers, they all knew someone who wanted to install a
simple, custom version of Debian on a server but who, because of the lack
of commercial support and accountability, had been rejected by a higher-

liv Introduction

ptg

up in the company or organization. They liked the idea of a company
using Debian’s technology to offer simple, custom server installs but could
offer a commercial support contract. The Warthogs, and lots of folks like
them, had waited years for this, but nobody had stepped up to the plate.

As we described in the previous section, an Ubuntu server install was sim-
ply a bare-bones installation. We were all administrators—at least of our
own machines—and when we installed servers, we started out with
“naked” machines so that we could choose every application, every dae-
mon, every service that would go onto the machine. As administrators, we
wanted the options of the big enterprise distributions, but we wanted to be
able to choose those options ourselves. Like all administrators, we used
servers to solve problems and to offer services to our users. These prob-
lems and needs are unique and, as a result, the cookie-cutter model of
GNU/Linux servers was always a poor match.

And so that is what the Warthogs built and it is what Ubuntu Server
remains today. At first, some people were confused. Ubuntu’s server offer-
ing was panned in several reviews for not including a firewall by default.
But Ubuntu installed no open ports by default, so there was nothing to fire-
wall! Of course, Ubuntu provided several firewalls for users to install if
they wanted one, but Ubuntu left the decision to install a firewall, just like
the decision to install services that might require one, up to the server’s
administrator. For all installations but for server installations in particular,
Ubuntu’s goal is to make the default installation simple and secure and to
put the user in the driver’s seat. Ubuntu’s job, as distribution producer, is
to make it as close to drop-dead simple for system administrators to do
their jobs. In an Ubuntu Server install, every machine is exactly as compli-
cated as the administrator has requested but never any more than neces-
sary. No extra services or unnecessary features are included—although
they are waiting in the wings for when they become necessary and are eas-
ily installable in ways that are described in Chapter 3.

One important effect of this simplicity is security. When there is less going
on, there is simply less to go wrong. But, of course, the Ubuntu team has
taken this many steps further and pursued proactive security in a number of
other contexts. Ubuntu’s first release was held up for one day because a
single open port was found in the default release. The goal of a machine with

Introduction lv

ptg

no open ports by default was more important than an on-time release.
Ubuntu’s CTO and the chairman of the Ubuntu technical board, Matt Zim-
merman, is a longtime security-focused developer who made nearly all of
Debian’s security updates for more than a year before joining the Warthogs.
As Ubuntu struggles over hard decisions about what to include or to pass up
for inclusion in the distribution, the most important questions continue to
be ones of security and support. “Can we—and we do want to—maintain
security support and provide security releases for this software for the next
18 months?” Every piece of software included by default is subjected to this
question, and many popular pieces of software are kept out because Ubuntu
is reluctant to support them. Inclusion as an officially supported package
means that a server admin can trust the software—both because Canonical
has indicated that it trusts it and because Canonical has promised to clean
up any security messes that occur through fixing important bugs and issu-
ing a fixed package. Canonical’s security guarantee goes beyond security
bugs to other bugs that might result in data loss. While there are no guaran-
tees beyond this, Canonical makes many dozens of new updates per release
that fix other important bugs in the distribution as well. The result is a rock-
solid system with a commitment to continue.

With customizability, security, and support, Ubuntu truly is ready for the
data room. The rest of this book will show you how.

lvi Introduction

ptg

1

C H A P T E R 1

Installation

ptg

I REMEMBER WHEN IT WAS QUITE the ordeal to install Linux. You had to
download a complete set of floppy images and use some strange Linux or
Windows tool to dump those images to floppies. After you had your set of
floppies and started the installation process, you would quickly realize that
the installation program assumed you already knew quite a bit about
Linux and about computers in general. I am actively involved in a Linux
users’ group, and a staple of Linux users’ groups is the install-fest—an
event to which Linux newbies can bring their computers and have an
expert walk them through the installation process.

Well, these days Linux distributions have made great strides to improve
the install process. A desktop Ubuntu install asks very few questions that
might stump a beginning user, and the server install (unlike some other
server installs out there) doesn’t assume you are an experienced Linux sys-
tem administrator either. While the server install is pretty easy to navigate
when you just accept the defaults, you’ll find that it also allows the
advanced administrator a lot of flexibility and control. What’s better, you
can get this control without toggling an “expert mode” that forces you to
answer detailed questions about every aspect of the install. When the
default suits you, you can accept it and move on, and when it doesn’t, you
can easily tweak only those settings you care about.

This chapter walks you through a standard Ubuntu install. Along the way,
it covers each of the major parts of the installation process and also high-
lights areas where the experienced administrator can tweak and tune the
settings for a custom server install.

Get Ubuntu
If you have this book, you should already have the Ubuntu install CD for
Ubuntu 10.04 LTS, but just in case you don’t, or you need an extra copy, it’s
good to know how to get CDs from scratch. With some distributions you
are required to register and log in to a Web site before you have access to CD
images, but Ubuntu makes it relatively easy. At www.ubuntu.com/getubuntu/
download you can access both desktop and server CDs for each of the plat-
forms Ubuntu supports. Once you have downloaded the ISO image, you
can burn it to a CD using your preferred CD-burning tool. Each program is
different, so locate your program’s option to burn a CD image. If you are

2

www.ubuntu.com/getubuntu/

ptg

already running an Ubuntu desktop, you can just double-click the ISO
image after it is downloaded to start the CD/DVD Creator. If you don’t
have the bandwidth to download the ISO image, you can also purchase
CDs or request free CDs from the same page.

Boot Screen
Once you have your CD, insert it into your server’s CD-ROM slot and boot
the server. Server BIOSs can be quite different from each other. In some
cases they are already set up to boot from a CD-ROM if one is present. In
other cases you might have to hit a key such as Esc, Del, F12, or others as
the server boots so that it presents you with a list of devices from which
you can boot. On some systems you might even have to go into the BIOS
configuration page to change the boot order.

After you have convinced your BIOS to boot from the CD, you are greeted
with the Ubuntu boot splash screen. The very first part of the screen asks
you for your language and then presents you with some boot options, as
shown in Figure 1-1. If you just hit Enter and select the default option, you
will start the Ubuntu install program. You can also perform some diagnostics

Boot Screen 3

Figure 1-1 Default Ubuntu boot splash screen

ptg

from this screen. If you downloaded and burned your own CD from an ISO
file, you might want to select the “Check CD for defects” option. You can also
test your system memory from this screen—quite useful even later on if
your server starts crashing at strange times and you suspect bad RAM might
be the cause. This CD also doubles as a basic rescue disk, which is a broad
enough topic that it has gotten its own chapter: Chapter 12, Rescue and
Recovery. Finally, if you left the CD in the drive by mistake, you can select
“Boot from first hard disk” to bypass the CD altogether.

In an ideal world, you could boot the CD, press Enter, and start the instal-
lation process with no problems. Unfortunately, for some machines you
might have to tweak some of the boot options so the installation works for
your system. The Ubuntu developers know this sort of thing happens and
have prepared a rich set of options for you. Along the bottom of the boot
splash screen are a number of different options you can access with func-
tion keys. For instance, if you hit F1 you will see an interactive help screen
with documentation for the rest of the options. If you accidentally chose
the wrong language at boot time, hit F2 to change it. The boot screen will
automatically choose a keyboard mapping based on your language. If you
want a different mapping (for instance, you speak English but are doing an
install in Germany on a German keyboard), hit F3 to choose from a list of
keyboard mappings. The boot screen also has a lot of great accessibility
options. The F5 key brings up an accessibility menu that allows you to
choose a high-contrast screen, a screen magnifier, a screen reader and
Braille terminal, keyboard modifiers, and even an on-screen keyboard.

The F4 and F6 options allow you to actually control aspects of the install.
The F4 key displays a list of install modes from which you can choose: you
may install an OEM install, a minimal system and a minimal virtualization
guest. The OEM install is available for manufacturers. The minimal virtu-
alization guest gives you an easy way to install a virtualized version of
Ubuntu. Other Ubuntu CDs allow you to choose text-only install modes,
but that isn’t necessary here because the Ubuntu server install is already
text-only. The real power and control over the boot process are available
once you hit the F6 key. Here you can see a menu of common arguments
that help the CD to boot on difficult hardware. If you hit the Esc key, you
will move from this menu to the boot prompt and can type any extra ker-
nel boot parameters you might need for your hardware. The F1 help

4 Chapter 1 � Installation

ptg

screen lists a number of common boot parameters, including some kernel
arguments for particular SCSI controllers. If you still can’t seem to get the
Ubuntu CD to boot after trying these arguments, check out some of the
support options in Chapter 13, Help and Resources. Chances are, you
aren’t the first person to try to boot Ubuntu on that hardware, and some-
one else might have already discovered the magic list of options you need
for it to work.

NOTE For Headless Server Installation
One downside to the pretty boot splash screen Ubuntu uses is that if you install Ubuntu on a
headless server (a server without a monitor connected to it that outputs its display over the
serial port), you’ll notice that you can’t see anything over your serial console. There is a
work-around. After your system boots past the BIOS, the serial console screen will go com-
pletely blank. At that point you will have to type without being able to see the output. First hit
Enter to accept the default language. Then hit F6 so you can tweak the boot prompt, and hit
Esc to exit out of the F6 menu into the boot prompt. Finally, type console=ttyS0,9600n8
and hit Enter. If your serial console is on a different port or uses different settings, you will
want to change this argument accordingly. Since you can’t see what you are typing, you will
probably want to pay extra attention to each key. Once you hit Enter, the kernel will boot and
within a few seconds you should start to see output over the serial port. At that point you will
be able to complete the install over the serial console, and the next time you reboot you’ll
notice that the GRUB prompt and the kernel arguments are already set up for you.

Disk Partitioning
Any Linux installer is essentially a series of questions, and the Ubuntu server
install asks pretty simple questions for the most part. The first phase of the
installation prompts you with questions about what language to use for the
install, what hostname to use, and, if you don’t have DHCP on your net-
work, the network settings for the host. There aren’t any real tricky decisions
to be made until you get to the partitioning section of the installer.

What Is a Partition?
If you are relatively new to Linux, you might be wondering what a parti-
tion is, and why Linux is prompting you to partition in the first place.
Think of a hard drive like a house with an open floor plan—no rooms and
only outside walls. While many people do live in lofts that are organized
like this, most people prefer a house that has rooms. With rooms you can
organize your bed and all of your personal things in a bedroom, all of your
cooking supplies in your kitchen, and your bathtub, sink, and toilet in a

Disk Partitioning 5

ptg

bathroom. Even people in lofts often set up bookcases or other structures
to separate, or partition, different sections of the loft into rooms. Disk par-
titions work in much the same way and for the same reason. Linux uses
partitions to separate different parts of its file system that are used for dif-
ferent purposes. One partition might be used for the core of the file system
(also known as the root partition) while a separate partition is set up as
swap space—a place on the disk that Linux can use as RAM if it doesn’t
have enough free memory.

Beyond the basic two partitions, system administrators often like to sepa-
rate out other parts of the file structure into partitions. Chapter 2, Essen-
tial System Administration, covers all of the major directories on an
Ubuntu system along with their purpose, but for now here are a few direc-
tories that administrators often configure as separate partitions:

� /home
The /home directory is a popular partitioning candidate among both
administrators and desktop users alike because it holds all of the per-
sonal files for user accounts on that machine. If you maintain /home
as a separate partition, you can install new versions of a distribution
or even different distributions altogether without wiping out any
user settings.

� /var
The /var directory is designed for storing data that varies in size.
From mail spools to HTML files to system logs, this directory can
often grow pretty quickly. Administrators often separate /var out to
its own partition so that if, for instance, a log file grows rapidly and
fills up the partition, it is much easier to recover from than if the
entire root partition were to be full.

� /opt
A lot of third-party software is known to install under /opt. Depend-
ing on whether you use any of this software, your /opt directory
might be completely empty or might be hundreds of gigabytes in size.
On some systems the overall root partition may need to be only a few
gigabytes with the bulk of the growth in /opt, so an administrator
might put /opt as its own partition.

6 Chapter 1 � Installation

ptg

� /usr
An interesting aspect of the /usr directory is how little it changes after
a system is installed. Generally speaking, it is set up so that it changes
only when you upgrade programs or install new packages. Because of
that, some security-minded administrators put it as its own partition
and mount it read-only during normal operation to prevent attackers
from replacing programs with Trojan horses or other viruses.

� /tmp
Many programs use /tmp to store temporary files that don’t have to
persist after a reboot. A common problem, though, is that a program
might store far too much data in /tmp, and if it is part of the root par-
tition, the entire root partition can fill up. A common culprit is vi.
When you open a file with vi, a temporary copy of the file is placed in
/tmp. I can’t count the number of times I’ve been paged because a
server’s root partition was full, only to find out that a user used vi to
open a 500Mb log file and dumped an equivalently sized temporary
file under /tmp. I then had to kill the vi session and instruct the user
on using a program such as less or more to view large text files.

� /boot
In the past there have been different limitations placed on Linux boot
loaders. For some time Linux couldn’t boot if the kernel was located
past 1024 cylinders on the disk. Even after that issue was resolved,
Linux boot loaders sometimes couldn’t boot if your root partition
used a file system like XFS or if you used LVM or software RAID. A
number of these issues have since been resolved, but some (such as
booting from a RAID5 root partition) still remain. A common work-
around, however, has been to create a small (64–128Mb should be
enough) partition at the beginning of the disk for the /boot directory.
The kernel, along with its initial root directory, lives in this partition,
so if the boot loader can access this partition and load the kernel, the
kernel can generally take care of more exotic partitions or RAID/LVM
configuration as it boots.

The Ubuntu installer has a few different partitioning options for an
administrator. You can choose one of the Guided partitioning methods,
which set up a standard partitioning scheme based on sane defaults, or
you can choose the Manual option and partition your disk step by step.

Disk Partitioning 7

ptg

NOTE If your drive already has partitions, you will also get a Guided option to resize the current
partitions the installer has found to free up space for your new install. This is mostly a desk-
top option for people who would like to dual-boot between OSs. Since dual-booting doesn’t
make sense with most servers, for the most part you will probably want to choose a different
option and overwrite the entire drive. This option exists for those of you who know what you
are doing and do want to resize existing partitions.

Guided—Use Entire Disk
The first partitioning method is probably the best choice for new admin-
istrators who aren’t sure what partitions to create and for seasoned adminis-
trators who don’t need any extra partitions. The installer lets you select
among all detected hard drives and partitions your choice with an ade-
quate swap partition and a root partition that fills up the rest of the drive.
Before anything gets written to disk you will see a list of both partitions
prompted by “Write Changes to Disk.” You still have an opportunity to
back out of your decisions, or you can choose Yes and Ubuntu will parti-
tion the drive and continue with the install.

Guided with LVM
LVM (Logical Volume Management) allows you to group a number of par-
titions or disks (or even RAID arrays) together and treat them like a single
disk that you can grow on the fly later on. An LVM also allows advanced
features like snapshots so that you can create a state of your drive that is
frozen in time and mount it somewhere temporarily—a feature that is
quite useful for backups.

If you would like to use LVM but aren’t too experienced with it, the Guided
LVM partitioner makes it easy to set up your disk with two LVM volume
groups: one for the root partition and one for swap. It will even set up the
small /boot partition for you so that GRUB can easily boot from your LVM
partition. If you choose the Guided LVM partitioner with encryption, you
can even encrypt the entire disk with a key you choose at install time.

Manual
The most flexible option is the manual partitioner. If you would like to
deviate at all from the standard two-partition system, if you would like

8 Chapter 1 � Installation

ptg

to configure software RAID, if you prefer file systems other than ext3, or if
you just like to get your hands dirty and get a clearer view of how your disk
will be partitioned, then the manual partitioner is the tool for you.

Initialize a Blank Drive When you enter the manual partitioner, you will
see all visible disks along with any partitions they currently have. For
instance, if you have only one disk on the system and it doesn’t yet have
any partitions, use the arrow keys to highlight the disk and hit Enter. If the
disk is completely blank, you will be prompted to initialize the disk and
then at that point, as Figure 1-2 shows, you will see free space under that
disk that you can use.

Allocate Free Space Once the drive is initialized or if it already had
partitions, you can then highlight any available partition or free space on
the screen and hit Enter to edit it. When you select free space, you have the
option to create a new partition, automatically partition the free space, or
show cylinder, head, and sector information. Generally speaking, you will
choose the last option only if you plan to create partitions based on
cylinder, head, or sector boundaries. If you aren’t sure what I’m talking
about, that’s OK, as for the most part you don’t have to care about these
values anymore—the partitioning tool takes care of them for you.

Disk Partitioning 9

Figure 1-2 Blank drive ready for manual partitioning

ptg

If you choose to automatically partition free space, the partitioner will act
as though you selected the Guided partitioning option and create a root
drive and swap space in the free space for you. Now normally people
choose the manual option to avoid the default partitions, so if you want to
manually partition, choose the “Create a new partition” option.

For each new partition you choose to create, you are asked a series of ques-
tions, including partition size, whether it is a primary or logical partition,
and the location of the partition on the free space, and finally you are pre-
sented with a list of file system options. For the partition size, you can
specify an actual partition size ending in M for megabytes or G for giga-
bytes, or you can specify a percentage of the free space to use followed by
the % sign or just type max to use the entire free space.

Whether a partition should be a primary or a logical partition depends on
a few factors based on some limitations to disk partitioning. A disk may
have only four primary partitions. If you want more than four partitions
on a disk, you have to use a work-around. If you set up one of the primary
partitions as an extended partition, then you can create up to 24 partitions
within that extended partition (although most people don’t need nearly
that many). The partitions that you create inside an extended partition are
labeled logical partitions. The basic rule of thumb is, if you plan on only
two or three partitions on a drive, you can set them all up as primary par-
titions. If there is a chance that you will have four or more partitions on a
drive, you will want to set up an extended partition to span the space of
those extra partitions and then set up logical partitions within this. Note
that the Ubuntu installer creates the extended partition for you when you
choose to create a logical partition.

Figure 1-3 shows the final screen you will see when you create a partition.
This screen is devoted to file system settings, and a few of the options are
worth extra description. The “Use as” field lets you specify the file system
to use for your partition (if you aren’t sure what file system to use, the
default ext4 or even an ext3 file system is a good choice for all-around use).
If you select that option and hit Enter, you will see that along with file sys-
tem and swap storage choices, this is also where you can set up a partition
as a physical volume either for encryption, RAID, or LVM. In Chapter 10,
Fault Tolerance, I go into detail about how to set up these RAID partitions

10 Chapter 1 � Installation

ptg

from the Ubuntu installer as well as how to use command-line tools to
create RAID volumes on an already-running server.

The manual installer doesn’t hide too many settings from you even for reg-
ular ext4 partitions. Here’s a basic rundown of each of the options and
why you might want to change them:

� Mount point
If you move beyond the standard root and swap partitions, you need
to change this option to point to where you wish to mount this parti-
tion when the system boots.

� Mount options
There are a number of advanced options you can pass to file systems
as they are mounted. When you select this option, the installer shows
you a list of available options to choose from, along with a brief
description of what each option does. I recommend sticking with the
default relatime option unless you have a good reason to disable it.

Disk Partitioning 11

Figure 1-3 File system settings for manual partitioning

ptg

NOTE A Time
A common complaint with Linux file systems is that by default the disk is written to even when
you only read from a file. This is because the file system maintains a set of metadata known as
MAC times—an acronym for Modify, Access, and Change. Modified time is the time the inode
was last modified (for a file this is when it was last written to). Access time is the time the inode
was last accessed (for a file, when it was last read). Change time keeps track of the last time the
file’s metadata (information like the file’s permissions and ownership) was changed. Most
administrators tend to not mind the M and C times, but when a file system gets read heavily,
you can notice a significant performance boost if you disable A time (the noatime option). The
downside, though, is that the A time can be very valuable, especially if you ever need to per-
form forensics on the file system and want to know the last time a file was accessed. The rela-
time option is a good compromise between both extremes in that it updates the A time only
when a file is accessed and its current A time is older than the M or C time. There is still some
overhead to this check, but it is a definite improvement over the default.

� Label
This option lets you assign a name to your partition. You can then ref-
erence this name instead of the device name when you mount the
partition.

� Reserved blocks
A little secret among administrators is that when a user sees a parti-
tion at 100%, it may not actually be 100% full. The reserved blocks
option lets you reserve a percentage of the file system blocks for the
superuser. It can be a very bad situation when a partition fills up
(especially the root partition). This option allows the superuser to go
into a system where a regular user has filled the disk and still have
some room to fix the problem.

� Typical usage
This option is more for advanced administrators. When a file system
is created, it sets the maximum number of total inodes. When you
run out of inodes on the system, you can’t create any new files even if
there is still free space, and you can’t increase the number of available
inodes without reformatting the file system. If you plan on having
only a few large files in the file system, you might choose largefile or
largefile4 and create the file system with fewer total inodes to get a
performance boost. On the other hand, if you plan on storing mil-
lions of small files on the file system, you might choose the news
option to make sure you have plenty of inodes.

12 Chapter 1 � Installation

ptg

� Bootable flag
The default for the Ubuntu server is to install the Linux boot code in
the MBR (Master Boot Record). If your BIOS will boot only from a
partition that has the boot flag set, or if you want to install the boot
code at the beginning of a partition instead, then you will need to set
the boot flag for your root partition (or /boot if you separated it into
its own partition).

Server Roles
The default Ubuntu server install will install only the core system to your
drive. Since there are so many types of servers an Ubuntu server can be,
Ubuntu just installs the essentials so you have plenty of space for any extra
packages or files you need to add. That having been said, unless you have
set up an Ubuntu server before, it can take some research to know exactly
which packages you need to create, for instance, a DNS or a Samba file
server. Ubuntu has streamlined this process for you by choosing a few
common server roles, determining what packages they require, and then
presenting you with a list of server types during the install process. You can
even choose more than one set of software if, for instance, you want to set
up a Samba file server that also runs DNS and an SSH server. After you
have partitioned and installed the base system, Ubuntu presents you with
the following predefined collections of software:

� Cloud computing
The install offers a few different cloud computing options. They are
covered in Chapter 9, Virtualization.

� DNS server
This choice is pretty basic and adds the bind9 and bind9-doc packages
to your system. These packages provide the Bind 9 DNS server and its
documentation, respectively.

� LAMP server
LAMP is an acronym for Linux Apache MySQL PHP (or sometimes
Perl or Python). It refers to a recognition that a very common Web
server deployment is a combination of Apache using Perl, PHP, or
Python for dynamic content with a MySQL database on the back end,
all running on Linux. It has become such a common way to set up a

Server Roles 13

ptg

Web site under Linux that even Ubuntu has grouped all of the neces-
sary packages together. If you choose the LAMP server package
group, Ubuntu will add the apache2, apache2-mpm-prefork, mysql-
server-5.0, mysql-client-5.0, and php5-mysql packages along with
all of their libraries and other dependencies. In addition to the extra
packages, when you choose this group, the installer prompts you to
choose an optional password for the MySQL root user (a good idea
since the default is a blank password).

� Mail server
This selection installs the Postfix mail server package. When you
enable this option, though, the installer starts the initial Postfix con-
figuration script. This is an interactive script that provides you with a
few common mail server configuration types, and depending on what
you choose, it will ask you a few more questions so that when you are
finished, you should at least have a functional mail server. Keep in
mind, though, that even though the mail server will function, you
must perform extra configuration if you want to add spam checking,
greylisting, POP or IMAP servers, or other more advanced options.
See Chapter 5, Guide to Common Ubuntu Servers, for a list of mail
server configuration types.

� OpenSSH server
This option installs the openssh-server package. Choose this if you
would like to remotely manage the server using SSH. Note that even if
you don’t choose this option, you can still ssh from the host; you just
won’t be able to ssh into the host.

� PostgreSQL database
Choose this option if you would like a PostgreSQL database server. It
will install the postgresql package along with its documentation and
any necessary libraries and dependencies.

� Print server
This option selects the cupsys, cupsys-bsd (providing lpr services for
cups), defoma, foomatic-db, foomatic-filters, and a number of other
printer drives and libraries—everything you need to connect a server
to one or more printers (either locally or over the network) and then
share them with the rest of your LAN.

14 Chapter 1 � Installation

ptg

� Samba file server
This choice adds the samba, samba-doc, smbfs, and winbind packages
along with dependencies and libraries. Choose this option if you want
to set up a file server to share files with Windows, Linux, and Mac
hosts but don’t want to use NFS.

� Tomcat Java server
If you plan to install a Tomcat Java server, this selection installs all the
Java packages you need.

� Virtual machine host
If you plan to use this machine as a host for other virtual machines,
this option installs all of the KVM packages you need. For more
information on virtual machines, go to Chapter 9.

If you select any of these options, in some cases the server will be ready to
use but in many cases you will still need to do some configuration on your
side so that the server is ultimately useful to you. In Chapter 5, I discuss
some common Ubuntu servers you might want to configure and provide
some example configurations for each type. By the way, if you complete the
install and realize that you would like to view this list of packages again, just
run sudo tasksel from the terminal. Note, however, that the local version
of tasksel will show you a much larger list of groups, including a number
of options that might be more appropriate for a desktop install. You can
also run sudo tasksel -s so that you get only a list of server tasks.

Installer Console
For the most part you will interface with the default installer screen. Basi-
cally all you can do in this screen is answer questions and choose some
options. Sometimes, though, an install doesn’t go exactly the way you
planned, especially if you use exotic hardware or are trying out a new
Kickstart script. The Ubuntu installer provides a number of avenues for
diagnostics via other consoles you can access. For instance, if you hit Alt-
F4, you will see a running log of what the Ubuntu installer has been
doing. Or if you don’t seem to be getting a DHCP lease on the network,
you could hit Alt-F4 to change to this console and see what error you get
on the host.

Installer Console 15

ptg

In addition to the F4 installer logs, you can hit Alt-F2 or Alt-F3 to access a
limited BusyBox shell. While you won’t have access to the same rich list of
command-line utilities you might be used to, you can perform some basic
diagnostics on the system. You could, for instance, run fdisk on a drive to
see what partitions are on there or even mount a partition to a temporary
location to see what files are there. You could ping a host to test network
connectivity or DNS resolution, or you could run ps to view the current
processes that are running on the installer, and if you have a Kickstart
script that is hanging up, you could potentially kill it from this console.

When you are ready to return to the main installer program, just hit Alt-
F1. You can always return to any of these windows during the rest of the
install process.

Reboot the System
Once you get past the list of package groups, the Ubuntu installer will
complete the initial install process and prompt you to reboot. If you
booted from a CD-ROM, be sure to eject and remove it unless your BIOS
is configured to boot from the hard drive first. Otherwise you could always
choose the “Boot from first hard disk” option from the CD boot menu.

16 Chapter 1 � Installation

ptg

17

2C H A P T E R 2

Essential System Administration

ptg

AFTER YOU HAVE COMPLETED AN Ubuntu server install, you might think to
yourself, “Now what?” If you are new to Linux administration, you might
feel a bit overwhelmed at the steep learning curve you see. For one thing,
there are a large number of command-line tools to learn. For another,
there are all sorts of configuration files scattered in different locations.
Even if you are an experienced Linux administrator but new to Ubuntu,
you will find that configuration files might not be quite where you expect,
and some programs you are used to might not even exist. In many ways
trying a new distribution is like driving a new car. Sure, the car has a steer-
ing wheel, a gas pedal, and a brake, but it still takes you a minute to adjust
the mirrors, find out where all the gauges and controls are, and adjust the
seat until you feel comfortable. Think of this chapter as that minute or two
behind the wheel of a new car. Here I cover some core commands a new
administrator should know, explain the Ubuntu boot process, describe the
main directories that make up an Ubuntu system, and talk a bit about net-
working. By the end of the chapter you should feel pretty much at home
while logged in to your Ubuntu server.

Basic Command-Line Administration
Entire books have been written on command-line tools and how to use
them effectively, so instead of documenting every major Linux command
and process, I’m going to assume you are new to Linux server administra-
tion and need at least a basic set of tools just to move around the system,
edit files, and check processes. If you are an experienced administrator, feel
free to skip ahead to the next section where I document the Ubuntu boot
process.

Move Around the System
When you log in to your server, the first thing you see is a blinking cursor.
By default, when you log in you will be in your user’s home directory. If
you want to confirm this, you can use the pwd command:

$ pwd
/home/kyle

One of the most common commands an administrator runs is the ls com-
mand. If you come from a Windows background, this is a lot like the dir

18

ptg

command. When you type this command by itself, it will list all of the files
in the current directory. If you are in your home directory on a fresh
Ubuntu install, you won’t see any files because that directory is empty, but
if you follow the ls command with a directory name, it will list the files in
that directory. For instance, / is the name of the root directory (the direc-
tory that contains all of the rest of the directories on the system):

$ ls /
bin dev initrd.img media proc selinux tmp vmlinuz
boot etc lib mnt root srv usr
cdrom home lost+found opt sbin sys var

If I wanted to see the contents of the etc directory I saw in that output, I
could type ls /etc. There is a huge number of options for the ls command
(type man ls on the command line to see a list of them), but one of the
most common arguments is -l (for long). If you type ls -l, it will provide
much more information about all of the files and directories it sees. For
instance, here’s what happens when I type ls -l /:

$ ls -l /
total 85
drwxr-xr-x 2 root root 4096 2010-02-26 15:07 bin
drwxr-xr-x 4 root root 1024 2010-02-26 15:10 boot
drwxr-xr-x 2 root root 4096 2010-02-26 14:58 cdrom
drwxr-xr-x 14 root root 3720 2010-02-26 15:12 dev
drwxr-xr-x 83 root root 4096 2010-02-26 15:24 etc
drwxr-xr-x 3 root root 4096 2010-02-26 15:10 home
lrwxrwxrwx 1 root root 37 2010-02-26 14:59 initrd.img ->
boot/initrd.img-2.6.32-14-generic-pae
drwxr-xr-x 17 root root 12288 2010-02-26 15:22 lib
drwx------ 2 root root 16384 2010-02-26 14:56 lost+found
drwxr-xr-x 3 root root 4096 2010-02-26 14:56 media
drwxr-xr-x 2 root root 4096 2009-12-07 16:32 mnt
drwxr-xr-x 2 root root 4096 2010-02-26 14:57 opt
dr-xr-xr-x 80 root root 0 2010-02-26 15:12 proc
drwx------ 4 root root 4096 2010-02-26 15:04 root
drwxr-xr-x 2 root root 4096 2010-02-26 15:10 sbin
drwxr-xr-x 2 root root 4096 2009-12-05 13:55 selinux
drwxr-xr-x 2 root root 4096 2010-02-26 14:57 srv
drwxr-xr-x 13 root root 0 2010-02-26 15:12 sys
drwxrwxrwt 4 root root 4096 2010-02-26 15:22 tmp
drwxr-xr-x 10 root root 4096 2010-02-26 14:57 usr
drwxr-xr-x 14 root root 4096 2010-02-26 15:07 var
lrwxrwxrwx 1 root root 34 2010-02-26 14:59 vmlinuz ->
boot/vmlinuz-2.6.32-14-generic-pae

Basic Command-Line Administration 19

ptg

All of the output is organized into columns. The first column lists the file’s
or directory’s permissions. If that column starts with a-, then it is a direc-
tory; if it starts with a, then it is a regular file; and if it starts with an l, then
it is a symbolic link (more on those later). After that you will see a series of
rs, ws, or xs grouped into threes. The r, w, and x stand for readable,
writable, and executable, respectively. Each group of rwx describes permis-
sions on the file or directory for the owner, group, and everyone else
respectively. So if you look at the permissions on the bin directory in the
output above you will see drwxr-xr-x. That means it is a directory, that the
directory’s owner has read, write, and execute permissions, the directory’s
group has read and execute permissions, and the rest of the users have read
and execute permissions.

Further in the ls -l output you will see a column that shows the number
of links or directories within a directory, and then after that are columns
that list a file or directory’s owner and group. In the output above every-
thing is owned by the root user (the superuser on the system who essen-
tially has unlimited access to all files) and the root group. After those
columns you will see a number that represents the file or directory’s size in
bytes. The next column is the date and time the file was last modified, and
finally you will see the file or directory’s name. Some of the filenames in
this output have arrows that point to another filename. This is a special file
known as a symbolic link (or symlink). Whenever users read or edit a sym-
link, they actually open the file to which the symlink points.

To move around in a Linux system, use the cd (change directory) com-
mand followed by the directory you want to change to. So, for instance, if I
wanted to change to the /etc directory, I would type cd /etc. If I am in a
directory and want to change to a directory within my current directory, I
don’t have to type the full path with all of the / symbols; I can just type the
directory name. So if I were in the /etc directory and wanted to go to the
/etc/default directory, I could type cd default. Linux also provides aliases
to represent the current directory (.) and the directory above your current
directory (..), and you can use these with any command that expects
a directory as an option. So if I wanted to see the contents of the current
directory, I could type ls ., and if I wanted to change to the directory
above my current directory, I could type cd .. —this turns out to be much
faster than typing the full path to the directory above where you are. You

20 Chapter 2 � Essential System Administration

ptg

can even nest these aliases, so if you wanted to go two directories up, type
cd ../../.

File Ownership
As you administer a system, you will find that you often need to change a
file’s owner, group, or permissions. The chown and chgrp commands allow
you to change the owner and group of a file, respectively, provided that
your user has permission to change the ownership to begin with. So if I
wanted to change the group of a file to be the staff group, I would type
sudo chgrp staff filename.

The chmod command allows you to change permissions on a file. There are
a number of different ways to describe permissions for a file (type man
chmod to see a full list), but one common way is to list u, g, or o for user,
group, or everyone else (other) followed by a + or - sign, and then the per-
mission to add or remove. So if I wanted to remove write access for the
user who owns a file, I would type chmod u-w filename. If I wanted to add
read permissions for a file’s group, I would type chmod g+r filename. To add
read permissions on a file for everyone else on the system, type chmod o+r file-

name. There’s even a shortcut, a, that applies the change to the user, group,
and everyone else, so to add read permissions on a file for user, group, and
everyone else, type chmod a+r filename.

Check Running Processes
An administrator will often need to check which programs are currently
running on the system and what resources they are consuming. You might
even need to stop a process on the system. Linux provides a number of tools
to manage processes, but top and ps are among the most common. When
you type top on the command line and press Enter, you will see a lot of sys-
tem information all at once (Figure 2-1). This data will continually update
so that you see live information on the system, including how long the sys-
tem has been up, the load average, how many total processes are running on
the system, how much memory you have—total, used, and free—and finally
a list of processes on the system and how many resources they are using.

You probably won’t be able to see every process that is currently running on
your system with top because they wouldn’t all fit on the screen. By default

Basic Command-Line Administration 21

ptg

top sorts the processes according to how much CPU they use. That way you
can see what processes are consuming CPU at a glance. So what if you do
notice a process consuming all of your CPU and you want to kill it? The very
first column for processes in top is labeled PID and shows a program’s
process ID—a unique number assigned to every process on a system. To kill
a process, press the K key and then type in the PID you wish to kill, then hit
Enter when prompted to kill with signal 15. top is a very powerful and
informative program and I’ve only mentioned a small fraction of what it can
do. If you want to find out more about top, including detailed information
about each field in the output, how to sort by different fields, and much
more, type man top in a terminal to bring up the command’s manual page.

NOTE You may have noticed that I mentioned the man command a few times already. This com-
mand, short for manual, is one of the most useful commands on a Linux system because it
provides you with a manual for all of the major Linux commands. No matter how long you
have used Linux, you never seem to memorize every argument for every command, but you
don’t have to. When you are stumped, just type man command to see a list of all of the argu-
ments for a command and overall instructions for how to use the program. While in the man
program, hit q to exit. For more information about the man program you can type—you
guessed it—man man.

22 Chapter 2 � Essential System Administration

Figure 2-1 Output from the top command

ptg

Another useful command-line program for listing processes is the ps com-
mand. When you run it with no arguments, it is not very useful—it lists
only processes in your current shell. It’s the arguments that make ps so
powerful. When you type ps –ef, you will see volumes of information
about all of the running processes on your system. The very top of the out-
put will show you labels for each of the columns, but in the output you will
see the user who owns a process, the PID, the PID of the parent process
(the process that started this process), the time the process was started, and
even the full command that was run with all of its arguments.

NOTE When you get columns of output that scroll past your terminal, remember you can type Shift
+ PgUp to scroll up the terminal. You can also pipe any command to the less program (such
as ps -ef | less) so you can page through the output more easily.

The ps command is another useful way to find the PID for a particular
process so you can kill it, but unlike top, ps won’t kill a process for you. To
kill a process on the command line, type kill followed by the PID. So if I
wanted to kill a program with a PID of 4023, I would type kill 4023. What
you will find is that some programs are stubborn and don’t go away even
when you kill them. This is because by default the kill command sends a
signal to the process that tells it to shut down—a signal that the process
could possibly ignore. If you tried to kill a process and it doesn’t seem to
cooperate, you can force the process to die by passing the -9 option to
kill. So, if the 4023 process was being stubborn, I could type kill -9 4023.
Just be sure before you use the -9 option that you run the regular kill
command first so the process has a chance to clean itself up.

Edit Files
On a Linux server most programs store their configuration in text files.
When you want to make changes to a program, the most common way is
to locate its configuration file, open it in a text editor, make changes, and
then save those changes to the file. Ubuntu has a number of text editors
available, and even in the default server install there are two popular edi-
tors to choose from, vi and nano. While a number of administrators
(myself included) prefer vi, it does have a steep learning curve, so when
you are starting out, it’s good to have a simpler option with nano.

Basic Command-Line Administration 23

ptg

To edit a file with nano, type nano followed by the file’s name. Once the file
is open, you can use the arrow keys to move the cursor around in the file.
Once you get to a section you want to change, you can use the standard
backspace and delete keys to erase text and type text in its place. You will
also notice a list of actions you can perform along the bottom of the
screen. Each of the actions has a key binding, and each key binding starts
with a ̂ , which represents the Ctrl key. When you are finished editing a file,
you can hit Ctrl-X to exit the program. Nano will prompt you to save the
file before it closes, so if you don’t want to save your changes, you will get a
chance to exit without saving.

Become Root
When you administer a system, it quickly becomes pretty apparent how
little you can do as a regular user. Basically every configuration file
requires extra privileges to edit and every major service does as well. The
root user is much like the Administrator user on a Windows system and
has access to all of the files and services on the machine. On some Linux
systems the root user is like other users and has a password assigned to the
account, but on Ubuntu the root password is disabled. Instead, you can log
in as a regular user and then use the sudo command to gain root privileges.

There are particular access controls you can put in place to control which
users can use the sudo command to become root, and in Chapter 6, Security,
I will cover account security and the sudo command in depth, but to get you
started you will need to know how to gain root privileges. By default the first
user you set up on the system can gain root privileges with sudo. To run any
command as root, type sudo followed by the command. So, for instance, if
you wanted to reboot the system, you would type sudo reboot. When you
are prompted for a password, enter your user password on the system.

Ubuntu Boot Process
As you administer an Ubuntu system, it’s important to understand the
boot process and how each service starts. Unlike some other Linux distri-
butions, Ubuntu actually uses a totally different start-up process for
services called Upstart, although unless you look closely you might not
ever notice, since it has added backward compatibility with the classic Sys-

24 Chapter 2 � Essential System Administration

ptg

tem V init model. I’ll cover both systems below, but first let’s walk through
some important parts of the initial Ubuntu boot process.

GRUB
When you first start an Ubuntu server, you are greeted with a start-up
screen known as the GRUB boot loader. This program sits at least partially
within the boot code on the Master Boot Record (the first 512 bytes of
your hard drive) and is what controls which Linux kernel the system boots
from and which options it uses as it boots.

In the current release of Ubuntu Server (starting with 9.10), the original
GRUB boot loader has been updated to GRUB2. This has introduced
quite a few changes in how GRUB is configured from what you might be
used to if you have used Linux for some time. For instance, the main
GRUB configuration file used to be /boot/grub/menu.lst, but now it is
/boot/grub/grub.cfg. If you look at that file, however, you will notice a
warning that you shouldn't edit it directly. Instead, if you want to change
GRUB settings, you should edit /etc/default/grub and then run sudo
update-grub to update the main config file. On a standard Ubuntu desk-
top install, you shouldn’t generally have to look at or edit this file. On a
server, however, you might run into circumstances that require editing
the file. If you want the complete documentation for GRUB, you can start
by reading the comments in the configuration files, or you can visit http://
www.gnu.org/software/grub/grub.html.

When you look at /boot/grub/grub.cfg or even /etc/default/grub, you will
discover references to a program called update-grub. This is a helper pro-
gram that makes it easier to automate updates to the GRUB configuration
file when new kernels are added. This program reads through and executes
a number of configuration scripts within /etc/grub.d. Generally speaking,
you should stick to /etc/default/grub for any configuration changes you
want to make.

One of the great things about GRUB is that you can make temporary
changes to its settings at the boot prompt. When GRUB loads, you proba-
bly won’t be able to see the menu. Hit the Shift key to see all of the available
kernel options. Highlight the kernel you want to edit and hit the E key. At
that point you can change the particular configuration line you want to

Ubuntu Boot Process 25

http://www.gnu.org/software/grub/grub.html
http://www.gnu.org/software/grub/grub.html

ptg

edit, make the changes you want, and then press Ctrl x to boot based on
those options.

NOTE If you find it difficult to hit the Shift key in time, you might need to edit the /etc/default/grub
file and change the GRUB_HIDDEN_TIMEOUT value to a larger number (say, 10) and then
run sudo update-grub. That should give you more time to hit the Shift key.

The Kernel Boot Process
When you select a kernel to boot through the GRUB menu, GRUB then
loads the kernel into memory along with its initrd file (initial RAM disk).
The initrd file is actually a gzipped cpio archive known as an initramfs file
under Ubuntu. If you are curious about which files were included in a par-
ticular initramfs file, you can perform the following steps to extract it:

$ cp initrd.img-2.6.32-14-generic-pae /tmp/initrd.img-2.6.32-14-
generic-pae.gz
$ cd /tmp
$ gunzip initrd.img-2.6.32-14-generic-pae.gz
$ mkdir initrd
$ cd initrd
$ cpio -idv < /tmp/initrd.img-2.6.32-14-generic-pae

Now within your current directory you should see a set of directories that
look a lot like a regular root directory. The bin, sbin, etc, lib, and other
directories are there but with a limited set of files inside.

When a kernel boots, it needs to be able to at least mount the root file sys-
tem so that it can access basic configuration files, kernel modules, and
 system binaries. A number of years ago it was common to have a kernel with
file system support and SCSI and IDE device drivers built in. Nowadays
there are so many more hardware and file systems to support, along with
features like software RAID, LVM, and encryption on the root file system,
that it makes much more sense to have this support available in modules
that the kernel can load only if it needs them. That keeps the overall kernel
size smaller and more flexible across all sorts of different environments.

The problem with a modular kernel is that it needs to get these modules
from somewhere. If the modules are on the root file system, you have a

26 Chapter 2 � Essential System Administration

ptg

chicken-or-egg problem—it has to mount the root file system to access
the files it needs to mount the root file system. That’s where the initramfs
file comes in. The initramfs file provides the kernel with the essential ker-
nel modules and system binaries it must have so that it can mount the
root file system and complete the boot process. When the Ubuntu kernel
is compiled, part of the build process also builds the initramfs file and
identifies and includes all of the core modules and binaries the kernel
might need to boot.

When the kernel boots, it then extracts the initramfs into RAM and runs a
script called init that sits in the root of the initramfs. If you are more curi-
ous about the kernel boot process, extract the initramfs and look at this
script. There’s honestly not too much magic here—just a standard shell
script that creates some system mount points and mounts the actual root
partition. By the way, if you were wondering how it knows where the root
file system is, GRUB passes that information as an argument to the kernel
with the root= boot argument. Finally, after this init script has mounted
the real root file system, its last task is to run the /sbin/init program on the
root file system, which starts the next phase of the boot process.

/sbin/init
The /sbin/init program is the parent process of every program running on
the system. This process always has a PID of 1 and is responsible for start-
ing the rest of the processes that make up a running Linux system. Those
of you who have been using Linux for a while know that init on Ubuntu
Server is different from what you might be used to. There are a few differ-
ent standards for how to initialize a UNIX operating system, but most
classic Linux distributions have used what is known as the System V init
model (described below) while Ubuntu Server has switched to a system
known as Upstart. Ubuntu has still retained most of the outward structure
of System V init such as runlevels and /etc/rc?.d directories for backward
compatibility; however, Upstart now manages everything under the hood.

Classic System V Init Before I explain Upstart and how it works, it makes
sense to first describe how the classic System V init system works and then
discuss how Upstart manages everything. System V refers to a particular
version of the original UNIX operating system that was developed by

Ubuntu Boot Process 27

ptg

AT&T. In this style of init, the init process reads a configuration file called
/etc/inittab to discover its default runlevel. It then enters that runlevel and
starts processes that have been configured to run at that runlevel.

RUNLEVELS The System V init process is defined by different system states
known as runlevels. Runlevels are labeled by numbers ranging from 0 to 6,
and each number can potentially represent a completely different system
state. For instance, runlevel 0 is reserved for a halted system state. When you
enter runlevel 0, the system shuts down all running processes, unmounts all
file systems, and powers off. Likewise, runlevel 6 is reserved for rebooting the
machine. Runlevel 1 is reserved for single-user mode—a state where only a
single user can log in to the system. Generally, few processes are started in
single-user mode, so it is a very useful runlevel for diagnostics when a
system won’t fully boot. Even in the default GRUB menu you will notice a
recovery mode option that boots you into runlevel 1.

Runlevels 2 through 5 are left for the distribution and finally you to define.
The idea behind having so many runlevels is to allow the user to create dif-
ferent modes the server could enter. Traditionally a number of Linux dis-
tributions have set one runlevel for a graphical desktop (in Red Hat this
was runlevel 5) and another runlevel for a system with no graphics (Red
Hat used runlevel 3 for this). The user could define other runlevels to, for
instance, start up a system without network access. Then when you boot,
you could pass an argument at the boot prompt to override the default
runlevel with the runlevel of your choice. Once the system is booted, you
can also change the current runlevel with the init command followed by
the runlevel. So to change to single-user mode on an Ubuntu server sys-
tem, you would type sudo init 1.

init Scripts In addition to /etc/inittab, there are a number of other
important files and directories for a System V init system that organize
start-up and shutdown scripts, or init scripts, for all of the major services
on the system.

� /etc/init.d
This directory contains all of the start-up scripts for every service at
every runlevel. Typically these are standard shell scripts, and they
conform to a basic standard. Each script accepts at least two argu-

28 Chapter 2 � Essential System Administration

ptg

ments, start and stop, which respectively start up or stop a service
(such as, say, your Web server). In addition, init scripts commonly
accept a few extra options such as restart (stops and then starts the
service), status (to return the current state of a service), reload (tells
the service to reload its settings from its configuration files), and
force-reload (forces the service to reload its settings). When you run
an init script with no arguments, it should generally return a list of
arguments that it accepts.

� /etc/rc0.d through /etc/rc6.d
These directories contain the init scripts for each respective runlevel.
In practice these are generally symlinks into the actual files under
/etc/init.d. What you will notice, however, is that the init scripts in
these directories have special names assigned to them that start with
an S (start), K (kill), or D (disable) and then a number. When init
enters a runlevel, it runs every script that begins with a K in numeri-
cal order and passes the stop argument, but only if the corresponding
init script was started in the previous runlevel. Then init runs every
script that begins with an S in numerical order and passes the start
argument. Any scripts that start with D init ignores—this allows you
to temporarily disable a script in a particular runlevel, or you could
just remove the symlink altogether. So if you had two scripts, S01foo
and S05bar, init would first run S01foo start and then S05bar start
when it entered that particular runlevel.

� /etc/rcS.d
In this directory you will find all of the system init scripts that init
runs at start-up before it changes to a particular runlevel. Be careful
when you tinker with scripts in this directory because if they stall,
they could prevent you from even entering single-user mode.

� /etc/rc.local
Not every distribution uses rc.local, but traditionally this is a shell
script set aside for the user to edit. It’s generally executed at the end of
the init process so you can put extra scripts in here that you want to
run without having to create your own init script.

So here is an example boot process for a standard System V init system.
First init starts and reads /etc/inittab to determine its default runlevel,

Ubuntu Boot Process 29

ptg

which in this example is runlevel 2. Then init goes to /etc/rcS.d and runs
each script that begins with an S in numerical order with start as an argu-
ment. Then init does the same for the /etc/rc2.d directory. Finally init is
finished but stays running in the background, waiting for the runlevel to
change.

Upstart System V init is a good system and has worked well on Linux for
years; however, it is not without some drawbacks. For one, init scripts
don’t automatically have a mechanism to respawn if the service dies. So,
for instance, if the cron daemon crashes for some reason, you would have
to create some other tool to monitor and restart that process.

Another issue with init scripts is that they are generally affected only by
changes in runlevel or when the system starts up but otherwise are not exe-
cuted unless you do so manually. Init scripts that depend on a network con-
nection are a good example. On Ubuntu there is an init script called
networking that establishes the network connection. Any init scripts that
depend on a network connection are named with a higher number than
this init script to ensure they run after the networking script has run. What
if you unplug the network cable from a server and then start it up? Well, the
networking script would run, but all of the init scripts that need a network
connection will time out one by one. Eventually you will get a login prompt
and be able to log in. Now after you logged in, if you plugged in the network
cable and restarted the networking service, you would be on the network,
yet none of the services that need a network connection would automati-
cally restart. You would have to start them manually one by one.

Upstart was designed not only to address some of the shortcomings of the
System V init process, but also to provide a more robust system for manag-
ing services. One main feature of Upstart is that it is event-driven. Upstart
constantly monitors the system for certain events to occur, and when they
do, Upstart can be configured to take action based on those events. Some
sample events might be system start-up, system shutdown, the Ctrl-Alt-Del
sequence being pressed, the runlevel changing, or an Upstart script starting
or stopping. To see how an event-driven system can improve on traditional
init scripts, let’s take the previous example of a system booted with an
unplugged network cable. You could create an Upstart script that is trig-

30 Chapter 2 � Essential System Administration

ptg

gered when a network cable is plugged in. That script could then restart the
networking service for you. You could then configure any services that
require a network connection to be triggered whenever the networking
service starts successfully. Now when the system boots, you could just plug
in the network cable and Upstart scripts would take care of the rest.

Upstart does not yet completely replace System V init, at least when it
comes to services on the system. At the moment, Upstart does replace the
functionality of init and the /etc/inittab file and manages changes to run-
levels, system start-up and shutdown, console ttys, and more and more
core functionality is being ported to Upstart scripts, but you will still find
some of the standard init scripts in /etc/init.d and all of the standard sym-
links in /etc/rc?.d. The difference is that Upstart now starts and stops
services when runlevels change.

UPSTART SCRIPTS Upstart scripts reside in /etc/init and have different
syntax from init scripts since they aren’t actually shell scripts. To help
illustrate the syntax, here’s an example Upstart script (/etc/init/rc.conf)
used to change between runlevels:

rc - System V runlevel compatibility

This task runs the old System V-style rc script when changing
between runlevels.

description "System V runlevel compatibility"
author "Scott James Remnant <scott@netsplit.com>"
start on runlevel [0123456]
stop on runlevel [!$RUNLEVEL]
export RUNLEVEL
export PREVLEVEL
task
exec /etc/init.d/rc $RUNLEVEL

Upstart treats lines that begin with # as comments, like most other scripts
and configuration files. The first two configuration options are start on and
stop on. These lines define what events must occur for the script to start and
stop. In this case the script will start when any runlevel 2 is entered and will
stop when the runlevel is not set.

Ubuntu Boot Process 31

ptg

The next couple of lines export some environment variables, and then the
task option tells init that this script will not be persistent—it will execute
and then stop.

The actual programs that are run from an Upstart script are defined with
either the script or exec options. In the case of the exec option, Upstart
executes the command and all of the arguments that follow the exec
option and keeps track of its PID. With the script option, Upstart treats
the lines that follow as a shell script until it reaches the end script line.

Even though Upstart is designed to be event-driven, it still provides meth-
ods to check the status of Upstart jobs and start and stop them as appro-
priate. You can check the status, start, and stop Upstart scripts with the
appropriately named status, start, and stop commands. One Upstart job
on an Ubuntu server is the tty1 job and it starts the getty program on tty1.
This gives an administrator a console when he or she types Alt-F1. Let’s
say, however, that for some reason you believe that the console was hung.
Here’s how to check the status and then restart the job:

$ sudo status tty1
tty1: start/running, process 789
$ sudo stop tty1
tty1 stop/waiting
$ sudo start tty1
tty1 start/running, process 2251

You can also query the status of all available Upstart jobs with initctl
list:

$ sudo initctl list
mountall-net stop/waiting
rc stop/waiting
rsyslog start/running, process 640
tty4 start/running, process 708
udev start/running, process 299
upstart-udev-bridge start/running, process 297
ureadahead-other stop/waiting
apport start/running
hwclock-save stop/waiting
irqbalance stop/waiting

32 Chapter 2 � Essential System Administration

ptg

plymouth-log stop/waiting
tty5 start/running, process 713
atd start/running, process 727
failsafe-x stop/waiting
plymouth stop/waiting
ssh start/running, process 1210
control-alt-delete stop/waiting
hwclock stop/waiting
module-init-tools stop/waiting
cron start/running, process 728
mountall stop/waiting
rcS stop/waiting
ufw start/running
mounted-varrun stop/waiting
rc-sysinit stop/waiting
tty2 start/running, process 717
udevtrigger stop/waiting
mounted-dev stop/waiting
tty3 start/running, process 718
udev-finish stop/waiting
hostname stop/waiting
mountall-reboot stop/waiting
mountall-shell stop/waiting
mounted-tmp stop/waiting
network-interface (lo) start/running
network-interface (eth0) start/running
plymouth-splash stop/waiting
tty1 start/running, process 2251
udevmonitor stop/waiting
dmesg stop/waiting
network-interface-security start/running
networking stop/waiting
procps stop/waiting
tty6 start/running, process 720
ureadahead stop/waiting

CHANGE THE DEFAULT RUNLEVEL In a way, Upstart seeks ultimately to do
away with multiple runlevels, since if all of your services were started and
stopped via Upstart scripts instead of System V init scripts, you could
simply set up particular events that would cause the system to enter one
state or the other. That having been said, today the system still does have
multiple runlevels, and you might want to set up different runlevels and
even change from the default runlevel of 2, so here’s how to do that.

Ubuntu Boot Process 33

ptg

The default Upstart runlevel is defined in /etc/init/rc-sysinit.conf:

rc-sysinit - System V initialisation compatibility

This task runs the old System V-style system initialisation
scripts,and enters the default runlevel when finished.

description "System V initialisation compatibility"
author "Scott James Remnant <scott@netsplit.com>"
start on filesystem and net-device-up IFACE=lo
stop on runlevel
Default runlevel, this may be overridden on the kernel
command-line or by faking an old /etc/inittab entry
env DEFAULT_RUNLEVEL=2
. . .

One way to change the default runlevel is to create your own /etc/inittab file
and add an initdefault stanza to it such as with classic System V init. The
other, perhaps simpler, way to change it is to edit /etc/init/rc-sysinit.conf
and change the value of DEFAULT_RUNLEVEL to the runlevel you want as your
default.

Services
The kernel and initial boot process are important parts of an Ubuntu
server, but ultimately a server exists (and gets its name) because of services.
A service is some function that your computer provides via software on the
system. That software, and the computer that runs it, is typically referred to
as a server. A computer might run a number of services such as a Web
server, a file server, and DNS, all on the same machine.

There are two main ways that services are managed on Ubuntu: through
either init scripts or a program called xinetd. While Upstart works behind
the scenes to manage runlevels and someday will ultimately also manage
the majority of the services on Ubuntu, today many of the services on a sys-
tem are still started and stopped via init scripts. As I mentioned earlier in
the chapter, init scripts reside in /etc/init.d and have symlinks in /etc/rc?.d
directories, where ? is a number representing a runlevel. Each of these
scripts accepts at least two arguments, start and stop, which start and stop
the service, respectively. Most services support extended options, including

34 Chapter 2 � Essential System Administration

ptg

� restart: runs the stop portion of the script and then the start
� reload: tells the service to reread its configuration file when it can
� force-reload: forcibly reloads the service’s configuration
� status: reports the current status of the service, typically whether it is

running or not

Most well-written init scripts will return a list of supported arguments if
you run the init script with no arguments:

$ /etc/init.d/networking
Usage: /etc/init.d/networking {start|stop|restart|force-reload}

If I wanted to restart the networking service, I could type either

$ sudo /etc/init.d/networking stop
$ sudo /etc/init.d/networking start

or the shorthand form

$ sudo /etc/init.d/networking restart
$

Now I could also have run the networking script from the /etc/rc?.d direc-
tory if I had wanted to, but most administrators I know reference the
/etc/init.d directory just because the name of the script is consistent there
and you can be assured that all available init scripts are there.

In addition to files in /etc/init.d and /etc/rc?.d, services often have special
configuration files in /etc/default. This directory contains configuration
files named after the services they manage and generally contain environ-
ment variables. When an init script executes, it often checks for a file with
its name under /etc/default/, and if one exists, it loads all of its environment
variables and other start-up settings from this file. Settings such as extra
arguments passed to services are often found here, so if you want to change
the default settings of a service on your system, this is a good place to look.

Most init scripts start programs that then run in the background until you
explicitly kill them or the system shuts down. A well-written init script also

Ubuntu Boot Process 35

ptg

keeps track of the PID of the service it starts so that when it needs to stop
the service, it knows the PID to kill. The convention is to keep track of
these PIDs in the /var/run/ directory, and if you look there on your
Ubuntu system, you will see a number of .pid files (or directories that store
.pid files) that contain the PIDs for various system services.

Generally speaking, when you install a new service on your machine, not
only should it set up its init script and appropriate symlinks for each run-
level, it should also typically start the service once the package installation
is complete. Now those of you who come from a Red Hat background are
probably accustomed to using the service and chkconfig command-line
tools to manage services. I have good and bad news for Red Hat adminis-
trators. The bad news is that currently Ubuntu has not ported chkconfig to
Ubuntu. The good news is that it has ported the service command and
there is a discouraged but available alternative to chkconfig as well.

The service tool basically provides a shorthand way to start and stop
services. Instead of typing sudo /etc/init.d/networking restart, you can
type sudo service networking restart. Red Hat has a very handy tool known
as chkconfig that an administrator can use to enable and disable services. On
a Red Hat system if you wanted to disable the named service, for instance,
you could type sudo chkconfig named off and the chkconfig script would
remove all of the relevant symlinks within /etc/rc?.d for you. If you wanted
to enable the service, you could just type sudo chkconfig named on.

Unfortunately, Ubuntu does not yet have a chkconfig-like tool. The closest
thing to it is a program known as update-rc.d. It’s important to know that
this script was designed for use by packages, not by users as its syntax
shows. The original intention was to make it easy for a package to create all
of the symlinks it needed upon installation and remove all of the symlinks
upon package removal. That having been said, there are some basic argu-
ments to update-rc.d you can use to get similar behavior to chkconfig. To
disable an init script from starting up, type sudo update-rc.d -f servicename

remove, and to enable a script type sudo update-rc.d servicename defaults.

Write Your Own Init Script Ultimately when you administer servers, you
may need to run your own custom programs at start-up. The simple way
to do this is to put the script in /etc/rc.local so it is run at the end of the

36 Chapter 2 � Essential System Administration

ptg

boot process. However, if you have a more sophisticated script that needs
to both start at boot time and stop as part of system shutdown, then you
will want to write a custom init script. While you could certainly wing it
and write one from scratch, Ubuntu has made the process much easier for
you with a cheat sheet init script called skeleton on which you can base
your init script. First make a copy of the skeleton init script and name the
file after your service:

$ sudo cp /etc/init.d/skeleton /etc/init.d/myservice
$

Then edit your copy of the skeleton file and replace the generic placehold-
ers you find in the file with custom information for your service:

BEGIN INIT INFO
Provides: skeleton
Required-Start: $remote_fs
Required-Stop: $remote_fs
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Example initscript
Description: This file should be used to construct
scripts to be placed in /etc/init.d.
END INIT INFO

Author: Foo Bar <foobar@baz.org>

Please remove the "Author" lines above and replace them
with your own name if you copy and modify this script.

After you change the generic entries in the comments, what you change in the
rest of the init script really depends on the complexity of your application.
For basic applications you should concern yourself only with the series of
environment variables that follow the initial set of comments:

PATH=/sbin:/usr/sbin:/bin:/usr/bin
DESC="Description of the service"
NAME=daemonexecutablename
DAEMON=/usr/sbin/$NAME
DAEMON_ARGS="--options args"
PIDFILE=/var/run/$NAME.pid
SCRIPTNAME=/etc/init.d/$NAME

Ubuntu Boot Process 37

ptg

The initial set of comments in the skeleton script works for the basic case
that your service is an executable program that exists in /usr/sbin. Change
the DESC and NAME variables so they are equal to the description and the
executable name of your service under /usr/sbin. If your service is installed
elsewhere, such as in /usr/local/sbin/ or /opt/, then be sure to change the
path in the DAEMON variable to reflect that. If your service needs any special
arguments passed to it at runtime, set them in the DAEMON_ARGS variable or
otherwise change it to be empty.

Once you are finished with your init script, you will want to create all of
the appropriate symlinks for various runlevels. While you could create the
symlinks by hand, it’s certainly easier to use the update-rc.d script. First
look at the current init scripts for your default runlevel such as those in
/etc/rc2.d and decide when your init script should start. The lower the
number, the sooner it will start in the boot process, but keep in mind that
if your service depends on other services running, then you will want to
make its sequence number higher. Once you have decided on a number,
let’s say 90, then run

$ sudo update-rc.d myservice defaults 90
$

and replace myservice with the filename you gave your service in /etc/
init.d.

Xinetd There are two main ways to start services. While most services on
the system are started via init scripts, there are some services that are
managed by a program called xinetd. Xinetd is an updated version of the
classic inetd service and was created to be more efficient with resources on
a server. The problem with init scripts is that when a system boots and a
service starts, the service could sit there idly for days or weeks before it gets
accessed, wasting valuable server resources. The idea behind xinetd is to
listen on all of the ports its child services use. If a connection is made on
one of the ports, xinetd will then spawn the service that corresponds to
that port, and once the connection is finished, the service exits until it is
needed again.

38 Chapter 2 � Essential System Administration

ptg

File System Hierarchy 39

Xinetd is popular for a number of classic UNIX services, including echo
(echoes back what you send to it), daytime (returns the system time), and
TFTPD (the Trivial File Transfer Protocol Daemon). Xinetd is no longer
installed by default, but if you want to use it, just type sudo apt-get
install xinetd. You can see all of the available xinetd services configured
for the system within the /etc/xinetd.d directory. By default all of these
services are disabled; however, it’s relatively simple to enable a service. For
instance, to enable the echo service, open /etc/xinetd.d/echo in a text editor
and change disable = yes to disable = no. Then run sudo service xinetd
reload to reload the configuration file. Now you can telnet to port 7 on
your localhost and anything you type gets parroted back:

$ telnet localhost 7
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
hello
hello
echo
echo
^]

telnet> quit
Connection closed.

To quit the telnet session hit Ctrl-] and then press Enter to get to an inter-
active telnet prompt. Then type quit and press Enter to exit telnet.

NOTE I’ve talked a lot about how Ubuntu starts, but you might also want to know how to stop or
reboot it. While you could certainly use a tool like init to change to runlevels 0 or 6, there are
two easy-to-remember commands called halt and reboot that respectively halt and reboot
the system. Just run either of the commands with root privileges and your system will imme-
diately start the shutdown process and either reboot or power off after it completes.

File System Hierarchy
On an Ubuntu desktop system these days the overall file system hierarchy
(the way directories are organized on the system) shouldn’t matter to the
average user. On the desktop you generally interact with your personal

ptg

home directory, your desktop directory, and a few other directories within
the home directory. All of the other directories on the system are some-
what obscured and settings are changed via GUI tools. Well, on an Ubuntu
server you manage things from the trusty old command line, so you
quickly get introduced to a number of directories on the root file system.

The great thing about Linux is that each of these directories has a direct
purpose that has evolved over the years based on Linux (and before it,
UNIX) having been used as a server. The more you understand what these
directories are and why they exist, the faster you can troubleshoot prob-
lems, the more secure you can make the system, and the better you can add
your own packages and other additions. Below are a number of the impor-
tant directories on an Ubuntu server. This list is by no means exhaustive or
complete. The point is to highlight the core directories with which you will
interact as an administrator and explain why they are there. If you do want
an exhaustive explanation, however, check out http://tldp.org/LDP/Linux-
Filesystem-Hierarchy/html/index.html.

� /bin
This directory contains core binaries that might be used by both
administrators and regular users on the system. You will find com-
mands like ps, ls, rm, mv, chmod, df, and other core programs in this
directory.

� /sbin
The /sbin directory has a similar function to /bin. It contains binaries;
however, it is for core binaries used only by administrators. This
directory should contain only system binaries crucial for mounting
the rest of the system and recovering the system if it can’t boot. You
will find programs such as fsck, ifconfig, mkfs, route, and init here.
While a number of the binaries in /sbin can be run by regular users,
they are generally intended to be used by the root user.

� /lib
Under /lib you will find core system libraries the system needs to
complete the boot process and use the binaries under /bin and /sbin.
All of the kernel’s modules are also found here under /lib/modules/.

40 Chapter 2 � Essential System Administration

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/index.html
http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/index.html

ptg

� /usr
The /usr directory (short for UNIX System Resources) is intended to
store all of the noncritical binaries and libraries for the system. Why
the segregation? Well, the idea is that if you keep only the core bina-
ries and libraries in /bin, /sbin, and /lib, you can keep the main root
partition relatively small and throughout the life of the system it
shouldn’t grow too much. The bulk of the disk space can then be
devoted to the /usr partition, which could be mounted on a separate,
larger disk if you wanted. Another useful fact about /usr is that unless
you update packages on the system, /usr stays relatively static. This
means that if you separated /usr onto its own partition, you could
actually add an extra layer of security and mount it read-only and
remount it read-write when performing updates.

� /usr/bin
This directory serves a similar purpose to /bin, only it stores the rest
of the binaries on the system that aren’t considered critical. You will
find commands like man, gzip, nano, and other binaries intended for
use both by administrators and regular users here.

� /usr/sbin
This directory is similar to /sbin, only it stores binaries for adminis-
trator use that aren’t critical to booting. Here you will find tools like
traceroute, chroot, and ntpdate along with a majority of the dae-
mons that are started by init scripts like Web servers, ntp daemons,
and mail servers.

� /usr/lib
As with /lib, you will find program libraries under this directory, only
in this case they are libraries to support the binaries under /usr/bin
and /usr/lib.

� /usr/local
The great thing about Ubuntu as a server is that most of the services
and other programs you want to run are already packaged and ready
to use. In some cases, though, you might want to provide a custom
service or binary or even a custom script of your own to the system.

File System Hierarchy 41

ptg

This is where the /usr/local directory comes in. You will notice that it
provides bin, sbin, and lib directories just as with /usr, only these
directories are intended for any third-party programs you want to
make available to the system that aren’t provided by Ubuntu itself.

� /opt
There is an ongoing war between people who favor /usr/local for
third-party programs and those who favor /opt. I’ll try to not throw
fuel on the fire here, but suffice it to say that /opt and /usr/local share
the same purpose—the storage of third-party programs. The main
difference between the two is organization. Typically programs that
install under /opt install under their own directory (such as, say,
/opt/someprogram) and then create their own bin, sbin, and lib
directories under there. On one hand this means you can remove a
program by removing that directory under /opt, but on the other
hand it means that your PATH environment variable can grow quite
large if you use /opt heavily.

� /boot
I mentioned the /boot directory already when I discussed the /boot
process, but this directory stores kernel images, initramfs files, and
also the GRUB configuration files. The /boot directory exists so that
you can potentially separate it out into its own small mount point.
This can be useful if you want to experiment with LVM or an experi-
mental file system for your root partition. You could format a sepa-
rate /boot partition as ext2 or ext3 with no software RAID or LVM
configured and be sure that your boot loader could read it.

� /etc
This is a directory of great importance to system administrators.
Under /etc you will find all of the configuration files for the system
and services on the system. As I mentioned previously, you will also
find all of the system start-up scripts under /etc/init and /etc/init.d
along with their configuration files under /etc/default. Other core
configuration for cron, your mail server, a Web server, your network
settings, and all other important configuration files are found here.
Some things you won’t (or at least shouldn’t) find here are binaries
and libraries. The great thing about all configuration files being
stored in /etc is that configuration files are text and text compresses

42 Chapter 2 � Essential System Administration

ptg

very well. This makes /etc very easy to back up, and it takes very little
space to do so. I highly recommend that if you don’t back anything
else up on your system you at least back up /etc.

� /var
The /var directory was designed to store files and directories that
could be variable in size and change frequently. The idea is to give the
administrator the ability to mount /var as its own large partition and
potentially as a partition on faster disks than the rest of the system.
Under /var you will find system logs, mail spools, Web server docu-
ments, and other files that could grow or change frequently. While the
/bin, /sbin, and even /usr directories might be pretty consistent across
servers, the /var directory could vary widely across different servers
depending on what the servers do.

� /var/log
All system logs are stored under /var/log. As any seasoned administra-
tor knows, logs not only vary in size, but they have a tendency to grow
out of control when the system is either under load or has a problem.
This is yet another reason why you might want to mount /var as a
separate partition—if your logs do grow out of control (and trust me,
at some point they will), you will fill up /var but won’t fill up / and
crash the system.

� /var/spool
This directory contains subdirectories that store such information as
user crontabs, printer spools, and mail spools. If you run a mail server
in particular, this directory will become very important to you, as it
can grow quite large if the server spools a lot of mail for delivery.

� /var/www
This directory won’t exist on all systems, but if you run a Web server
it will be the default place for the Web server’s docroot and cgi-bin
directories.

� /home
Here you will find the home directories for all of the users you have
added to the system. If you plan on having an active set of users log in
to the server, you might want to mount this as a separate partition as

File System Hierarchy 43

ptg

it could potentially grow quite large. Another advantage to separating
out this directory is that if you decide to change distributions, you
could install the system on the root partition and overwrite what was
there but preserve all user settings here.

� /root
This is a special home directory just for the root user. It is separated
off from /home, among other reasons, so that it can be available for
the root user in case the system needs recovery and wasn’t able to
mount /home.

� /dev
This is a special directory that contains all of the device files on the
system. These files include disk devices, keyboards, mice, and any
other devices the system detects. On classic Linux systems these files
were pretty static, but on a modern Ubuntu server device files are
often created on the fly by the udev program as devices are added or
modules are loaded.

� /mnt
The /mnt directory is intended to be a generic location for an admin-
istrator to mount a disk temporarily. You might, for instance, mount
an NFS share here temporarily so you can copy information to or
from your system. In the past a number of systems have also used
/mnt for removable media, but the /media directory has been created
recently for that purpose.

� /media
In the past there have been a lot of differing standards as to where to
mount removable media such as floppy disks, CD-ROMs, and USB
drives. Some have advocated extra root directories for this purpose,
and others prefer /mnt. Ubuntu uses the /media directory for these
devices so it can keep /mnt for temporary mount points for nonre-
movable media.

� /proc
There are a few virtual file systems under Linux, and /proc is one of
the most useful ones. It is not an actual area on disk but instead exists

44 Chapter 2 � Essential System Administration

ptg

in RAM. Under this directory you will find live system information.
For instance, every process that is created on the system gets a direc-
tory under /proc that corresponds to its PID. Within that directory
are a number of other files and directories that contain live informa-
tion about that process. In addition to information about processes,
/proc also stores virtual files related to the kernel process itself. You
can query such things as the options passed to the kernel at boot
(/proc/cmdline) or view settings for different kernel devices or other
settings. A number of the kernel /proc files can also be used to not
only read settings, but set them by writing to the corresponding file.

� /sys
The /sys directory is a virtual file system much like /proc. The files
within /sys provide information about devices and drivers on your
system, and the file system was created in part so that these sorts of
files would no longer clutter up /proc. As with /proc, not only do many
of the files within /sys provide information about parts of the system,
but you can also write to various files to change settings on the fly.

� /tmp
The /tmp directory is a special directory set aside to store temporary
files. Every user has permission to create files under /tmp, but any files
users create are readable and writable only to their user and group
(and of course root). A number of programs on the system will use
/tmp to store temporary state information. In fact, this use of /tmp
provides a common headache for administrators because user pro-
grams sometimes store too much information in /tmp and fill up the
root partition. It’s important to use /tmp only for storage of tempo-
rary files, as this directory is wiped out every time the system boots.

Networking
Linux networking is a topic that could fill a number of books, so I won’t
attempt to document everything an administrator needs to know about
networking here. Instead I will provide some basic information you will
need to know to change network settings under Ubuntu.

Networking 45

ptg

Network Configuration Files
Ubuntu manages network settings like Debian before it. The primary net-
work configuration file is /etc/network/interfaces and contains the config-
uration for all networking devices on the system. If you come from a Red
Hat system, you are probably used to each interface having its own configu-
ration file under /etc/sysconfig/network-scripts, but under Ubuntu all of
those settings will be in this one file.

The syntax for /etc/network/interfaces can become complicated, as you will
see if you reference its documentation by typing man 5 interfaces, but for
most uses, especially for a server, it is very simple. I’m going to assume that
since this is a server, we generally have to care about only a few interfaces,
loopback, and Ethernet devices. The loopback interface, known as lo,
always has the address 127.0.0.1 and is used when programs on the system
need to establish network connections with the system itself; that way they
don’t have to waste time by going out on the network just to be routed back.
Generally, you don’t have to worry about configuring this interface because
Ubuntu should do it for you, but if you did, here is what it would look like:

auto lo
iface lo inet loopback

The auto line specifies that the lo interface should automatically be
brought up at boot. The iface line defines the lo interface and creates its
settings (in this case defining lo as a loopback device).

Under Linux, Ethernet devices are generally labeled as eth followed by a
number, starting with 0. So if you had two Ethernet ports on your server,
they would be referenced as eth0 and eth1. The configuration for Ethernet
devices is different depending on whether the device will get its address
and settings via DHCP or will have them statically assigned. If your server
gets its network settings for eth0 via DHCP, then the following would be a
valid configuration:

auto eth0
iface eth0 inet dhcp

If, on the other hand, your network settings are static, here is a sample
 configuration:

46 Chapter 2 � Essential System Administration

ptg

iface eth0 inet static
address 10.1.1.10
netmask 255.255.255.0
gateway 10.1.1.1

The fields are pretty self-explanatory. The first defines eth0 as a static
interface instead of one that uses DHCP. Then the address of the interface
is set (10.1.1.10), then the netmask (255.255.255.0), and finally the gate-
way (10.1.1.1) address—the IP for the router the machine will use to
access other networks.

In addition to /etc/network/interfaces, there are two other core files for
network settings. The first is /etc/resolv.conf and the second is /etc/hosts.
The /etc/resolv.conf file has long been used by UNIX systems to define
name servers to use. Now if your server gets its settings via DHCP, this file
will automatically be set, and if you change this file, those settings will be
overwritten the next time the machine gets its DHCP lease. Otherwise, if
you have a static address and set name servers for this machine during the
initial install, they will appear here. If you need to change the settings, the
syntax is pretty simple, as this example shows:

search example.com site1.example.com
nameserver 10.1.1.2
nameserver 10.1.1.3

The first line is optional but configures the DNS search path to use. This
way, if I wanted to access web.example.com, I could just reference web and
the system would first try to get an address for web.example.com and then
web.site1.example.com. The next lines define the IP addresses of name
servers to use.

Before DNS existed, all hosts on the Internet were defined in the /etc/hosts
file. Of course, there are far too many hosts now to list in /etc/hosts, but
you can still use the /etc/hosts file to override or supplement DNS. By
default you will find only localhost and loopback addresses configured
here, but if you wanted to override a DNS address, or make sure that the
system had an IP address for a host even if DNS was down, you could add
addresses and names statically to this file.

Networking 47

ptg

48 Chapter 2 � Essential System Administration

Core Networking Programs
There are a number of important networking programs an administrator
should be aware of on an Ubuntu server. The first of these are ifup and
ifdown. When a system first boots, the /etc/init.d/networking script will
read /etc/network/interfaces and automatically bring up any interfaces
configured to load at start-up, but sometimes you might want to take
down or bring up an interface manually. The ifup and ifdown scripts will
respectively bring up and take down the interface you pass as an argument,
so if I wanted to take down eth0, I would type sudo ifdown eth0.

NOTE Now be careful when you take down an interface. Not only will you potentially disrupt any
services on the system, but if you are connected to the system via SSH and you take down
the main interface on the system, you will disconnect yourself.

Another important networking program is ifconfig. This command was
traditionally the command you used to configure networking interfaces
and can actually still be used this way, although ifup and ifdown were cre-
ated to make the process simpler. Even though you don’t need to run
ifconfig manually to configure your network anymore, it is still a useful
tool to get network information. When run with no arguments, it will
return information on all of the interfaces on your system:

$ sudo ifconfig
eth0 Link encap:Ethernet HWaddr 00:30:48:2a:fb:b0

inet addr:10.1.1.10 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::230:48ff:fe2a:fbb0/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:803 errors:0 dropped:0 overruns:0 frame:0
TX packets:741 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:70230 (68.5 KB) TX bytes:68449 (66.8 KB)
Base address:0x3000 Memory:fc200000-fc220000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

ptg

As you can see, not only will this command tell me the IP address, net-
mask, and broadcast settings for interfaces, but I can also see the MAC
address for my Ethernet card and also how many packets and bytes have
traversed the interface.

NOTE A common problem beginner administrators run into is that on some systems the PATH
environment variable might not contain /sbin or /usr/sbin, so when they run a command like
ifconfig they get “ifconfig: command not found.” If this happens to you, try specify-
ing the full path to the command, for instance, sudo /sbin/ifconfig.

Another important networking program is the route command. As with
ifconfig, this command can be used to both see and set network set-
tings—in this case network routes. On many servers you will have only
one main route on the system—the default route that points to your default
gateway. If you run route without any arguments, it will return the com-
plete routing table for your network, including the default route:

$ sudo route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.1.1.0 * 255.255.255.0 U 0 0 0 eth0
default 10.1.1.1 0.0.0.0 UG 100 0 0 eth0

A final useful networking program is nslookup. While I also recommend
that you ultimately learn the dig program, as it is more full-featured than
nslookup, the nslookup tool is a quick way to test what IP address is asso-
ciated with a name. Type nslookup followed by a name or IP address to
resolve, and nslookup will return the results of the DNS query:

$ nslookup ubuntu.com
Server: 192.168.0.1
Address: 192.168.0.1#53

Non-authoritative answer:
Name: ubuntu.com
Address: 91.189.94.156

Most of these networking tools are also very useful for troubleshooting
network problems. I cover these and more handy network diagnostic tools
in Chapter 11, Troubleshooting.

Networking 49

ptg

This page intentionally left blank

ptg

51

3C H A P T E R 3

Package Management

ptg

THIS CHAPTER BEGINS WITH a discussion of packages in general while focus-
ing on the core features of packages and package management systems
that cross most GNU/Linux distributions. In this discussion, I explain
what packages are and what a package management system does. While I
turn to examples from Ubuntu throughout, this discussion focuses on
building a strong conceptual grounding. After establishing a solid ground-
ing, I introduce Debian packages—the types of packages that Ubuntu
uses—and give a brief view of the very different types of packages: source
packages and binary packages. Most of the rest of the chapter focuses on
package management in Ubuntu using the command-line tools. While
many users of Ubuntu on the desktop are familiar with updating their sys-
tem, this chapter focuses on the way this is done without a desktop system.
It covers the basics and works up to some more advanced uses of a packag-
ing system that many server administrators find useful. Finally, I touch on
the process through which advanced users and administrators can create,
modify, and redistribute their own packages.

Introduction to Package Management
On Ubuntu—and in other GNU/Linux environments—packages are the
primary way that software is built, deployed, and installed. Nearly every
major GNU/Linux operating system distributes software, both binary
software and source code, in packages. These packages are usually either
in the Rpm package format (RPM) or in the Debian package format
(DEB) for binary software or in corresponding “source” RPM and DEB
formats. With its close relationship to the Debian project as a project that
continues to be based on Debian’s work, Ubuntu naturally uses DEB for-
mat packages.

Very simply, packages are an alternative to downloading, building, and
installing software from scratch. They offer a host of advantages in terms
of installation, removal, monitoring, and handling interactions between
pieces of software over the standard “build from source” model. Since
packaging is not common outside of the GNU/Linux world—or at least
not described in the same terms—it is worth going into some background
on packaging before I describe how it is done on Ubuntu systems.

52

ptg

Background on Packages
Nearly every GNU/Linux-based operating system—Fedora, RHEL, open-
SUSE, Slackware, Debian, and others—includes an almost entirely over-
lapping core selection of software. By definition, each of these OSes
includes Linus Torvald’s Linux kernel and a large chunk of the GNU
project’s developer- and user-oriented applications that are necessary to
build and use it. Most also include server-oriented software like OpenSSH
and Apache, either the XFree86 or X.Org implementation of the X Win-
dowing System, and what is often an extremely expansive collection of
both command-line and graphically based applications. Although people
often throw the term around, it is important to establish that this collec-
tion of software is collectively referred to as a distribution. Ubuntu is a dis-
tribution. When people refer to “Linux” as an operating system, they are
usually referring to a Linux or GNU/Linux distribution.

The primary goal of all distributions is the automatic installation, configu-
ration, removal, maintenance, and update of software—both through the
creation of infrastructure for this purpose and in the creation of modified
versions of the preexistent software. The latter customization of existing
software in this specialized way is the act of “packaging,” and it constitutes
the vast proportion of work done by Ubuntu developers. It constitutes, to
a large degree, what Ubuntu is over and above the software that Ubuntu
includes. And while packaging is primarily the work of distribution mak-
ers like Ubuntu, it can also be done by both the users of distributions, for
the clean integration of “unpackaged” pieces of software into their sys-
tems, and by software vendors who wish to allow for easier installation
and maintenance of software by their users.

What Are Packages?
The creation of a package—on Ubuntu or elsewhere—begins with the soft-
ware in need of being packaged. In most, but not all, cases, this involves the
procurement of source code. In all situations, it involves code from an orig-
inal source, usually referred to in the distribution world as an “upstream”

Introduction to Package Managment 53

ptg

source. The packager’s first addition to the code here will be the creation of
extra metadata, which usually includes

� The name of the software

� The name of the upstream author and the person creating the package

� The license of the software

� The upstream location of the software (or a description of where it
was obtained)

� The architecture or architectures on which the software is guaranteed
to run

� Information for classifying the software that often has to do with the
use of the package, primarily to help people who are browsing for
packages

� A description of the software in a computer-parsable format

� Information on the importance or “priority” of the package within
the larger Ubuntu system (e.g., essential, optional)

This information will be used by either a packaging system or a series of
package selection tools to allow users to search, sort, query, or interact
with installed or available software—one of the package system’s jobs.
However, while this type of metadata is important in that it allows users to
find (and find out about) their software, by far the most important group
of metadata added to a package relates to the documentation of the rela-
tionship of the software in the package to software in other packages
within the distribution. While the syntax and semantics of this vary widely
between distributions, they include relationships to

� Other software that the software requires to be built

� Other software that the software requires to be installed or configured

� Other software that the software requires to be run

� Other software with which the software cannot be installed or used
simultaneously

54 Chapter 3 � Package Management

ptg

� Other software for which the software can be used as a drop-in
replacement

� Other software that can enhance or improve the software

Modern package systems record even more information. For example,
configuration files, unlike normal files, cannot always be simply replaced
with a new version when the software is upgraded. As a result, packaging
systems have grown to include several pieces of infrastructure for query-
ing users and for maintaining core configuration information over time
and across upgrades of the package that requires changes to configuration
files. Finally, a more recently realized goal of packages is to provide a struc-
ture around which package metadata—such as descriptions—can be
translated to provide users with an interface to software localized to their
language, script, and culture. Details on accessing and creating all of this
metadata in Ubuntu packages are included in the subsequent sections.

Basic Functions of Package Management
A wide range of functionality can be considered core functions of package
management systems. The functions are usually implemented by a low-
level tool or suite of tools. This script is dpkg and associated scripts in the
case of Ubuntu and Debian. These tools were, until several years ago, the
primary way that most users manipulated packages, but with the creation
of higher-level package management tools that provide “front ends” to
these tools, most users of package-based systems rarely use them, although
they are still highly central for developers or system administrators who
build their own packages. Broadly and somewhat imprecisely, many of
these tools are referred to as APT on Debian and Ubuntu.

The first goal of packaging is automating the compilation of software. DEB-
format packages provide two formats: one for source packages and one for
binary packages. These source packages are an excellent system for the dis-
tribution and compilation of source code. Packages are, in Ubuntu and else-
where, designed to be built noninteractively and—in the case of official
Ubuntu packages—can be built automatically on a range of different archi-
tectures by automatic package-building software called “autobuilders.”

Introduction to Package Managment 55

ptg

Packages provide a simple—usually one command—method for building
that is consistent across all packages. Issues of build configurations and
choices are addressed ahead of time by the packager. The cost is build-time
configurability, but the payoffs, as you will see in the rest of the chapter, are
huge. Necessary build-time dependencies are declared in the packages so
that these can be satisfied automatically. For example, architecture-depen-
dent source packages (i.e., packages that must be rebuilt for each architec-
ture) are uploaded to Ubuntu as source and are, in most cases, automatically
built on all architectures supported by Ubuntu without any changes to the
source package.

Any number of binary packages can be created from a single source pack-
age. The creation of multiple binary packages from a single source package
can be useful for large projects that release large or monolithic source
packages containing a wide variety of different pieces of software—or
even highly related pieces of software and/or documentation that it may
be advantageous to split. An example of the former case is the XFree86
windowing system—now replaced by the already modularized X.Org—
which was contained in one source package but would create upward of
several dozen binary packages. Packaging, in this case, is what allowed
users to distribute, install, and remove the Xserver independently from the
terminal emulator, xlib library package, or window manager.

As can be inferred from the preceding discussion, a key benefit of packag-
ing systems is that they help automate the installation of software. When a
binary package is installed:

� The “contents” of the software can be verified to assure integrity of
the package. The origin of the software can be verified using crypto-
graphic authentication.

� The dependencies of the software can be analyzed and the system can
be queried on the installation state of the software on which the soft-
ware being installed depends. If the dependencies are unsatisfied, the
user is prompted as to the lack and the nature of the required soft-
ware, and the installation is aborted.

� The user installing the package can be queried for configuration
options at some point during the installation process. Answers to

56 Chapter 3 � Package Management

ptg

these queries can be saved on the system and then used in the cus-
tomization of a configuration file for the software being installed.

� The contents of the package are stored on the system.

� Metadata and accounting information of a variety of forms are placed
in a per-system database to include both current information on the
packages installed and their state of installation (e.g., installed but
unconfigured), the list of files and to which package they belong, and
other information.

Perhaps the most central element here is the check against dependencies of
the package being installed and the list of packages already installed on the
system. With information on dependencies, users can, at a glance, deter-
mine which software is required to run the software in the package. As a
result, people writing software that will ultimately be packaged can easily
write for and deploy software built against shared libraries. The success of
package systems is one reason for the wide use of dynamically linked
shared libraries in the GNU/Linux environment.

When a user wants to remove a piece of software, the packaging system, with
its catalog of the files belonging to the package and the actions done during
installation, is well suited to help ensure a clean uninstallation as well.

While similar to installation, the automatic upgrade of software is another
area where the package system can be employed with similarly useful
results: Users of package systems can safely and easily upgrade from one
version of a piece of software to another. The upgrade of the software will
work almost identically to the installation of the software. In most cases,
software is installed on top of the existing package, and files that are no
longer provided by the package are removed. Configuration files that were
customized by the installation and have not since been changed by the
user can be automatically regenerated by the user, or the user can be
prompted to view and merge changes.

Dependency information can play an important role in the upgrade of
packages involving shared libraries. In the case of ABI changes, a packaging
system will alert users that an upgrade of a package cannot be completed
without the installation of a new library, and users can also be alerted to

Introduction to Package Managment 57

ptg

other packages that will break in this upload. As a result, users can structure
uploads—or the system can structure it for them—so that API and ABI
breakage is not unanticipated, and users can ensure that all packages that
depend on a single shared library can be upgraded in tandem.

Finally, at any point, users can use the cryptographic signature on a pack-
age and the list of hashes (usually MD5 sums) of the files included in that
package to verify the integrity of the files on their system against corrup-
tion or compromise by an attacker.

Advanced Functions of Package Management Systems
While these features lead to the powerful potential to manage software on
a system, packaging systems with only these features—essentially, the state
of packaging in the mid-1990s—introduced important limitations. Large-
scale API and ABI transitions required downloading many packages and a
high degree of coordination by the user. Users were forced to figure out the
dependency status of programs during an installation or upgrade and
then find, download, and do simultaneous installations of new pieces of
software. For complex pieces of software with many dependencies, this
process was often exceedingly tedious.

As a result, most system upgrades and ABI/API changes were done with
large upgrade scripts between releases of a distribution. Users would be
expected to install every package involved in a major transition at once
with an upgrade script that would structure the order correctly and handle
dependencies appropriately. While these problems are limitations of a lim-
ited package management system, they are mostly problems that exist out-
side of package management systems. Without a package management
system, shared libraries that undergo API and ABI changes are either never
or rarely approached (with dangerous consistency and security implica-
tions to each) or are subject to the same limitations without the warnings
that a packaging system provides.

Spurred on by the Debian project’s creation of a program called dselect
and its frequently lauded Advanced Package Tools (APT, originally named
deity and implemented primarily in a program called apt-get), the last
half-decade has seen a major evolution in the scope and success of package
managers. Most of these tools are levels of abstraction upon or “front

58 Chapter 3 � Package Management

ptg

ends” to the lower-level package management tools previously described.
Like most other DEB-based distributions, Ubuntu uses apt-get, Aptitude,
dselect, and the graphical front end Synaptic.

As the ability to track and catalog dependencies is perhaps the single most
important aspect of any package management system, the primary func-
tion of these advanced tools has been to add classes of functionality on top
of the extant package tools and to operate on packages in a more-than-
one-at-a-time manner. Each of these tools contains additional databases
that describe not only the packages installed but also the packages that are
available as candidates for installation through package archives stored
locally, on CD, or (in almost all situations today) over a network.

These systems can automatically sort out dependencies and orders, down-
load packages (including dependencies), install the dependencies first, and
then install and configure the package in question using the lower-level
tools detailed in the previous section.

Similarly, the same advanced tools can be used to uninstall packages. If, for
example, a user wants to uninstall a shared library, he or she is prompted
with a screen that describes the consequences as a list of packages that
must be uninstalled because their dependencies will no longer exist on the
system after the uninstallation. Upgrades that involve changing dependen-
cies (e.g., replaced packages) can also be handled through this system.

The real possibilities of such systems are visible when the dependency
aspects of a package change over time or when multiple packages can act
as drop-in replacements. A package that requires the ability to send mail
can depend only on a virtual package “provided” by other packages. New
versions of packages can conflict with and declare that they “replace” other
packages or provide the functionality of the original package. If, for
example, multiple packages are merged into a single package that obso-
letes the three other packages, an advanced package system should be able
to track the changing dependency information and make the correct deci-
sion during upgrade. Along these lines, most advanced package manage-
ment tools give users the ability to do strategic “smart upgrades” of every
package on the system to the newest version of the packages available
using the data declared in the package dependencies.

Introduction to Package Managment 59

ptg

Even more exciting for some users, it is possible to track an in-development
version of a GNU/Linux operating system and upgrade every day to the
latest version of everything. The package manager can figure out safe
upgrade paths and take it from there. During these upgrades, ABI and API
version changes can also be automatically handled because the system will
refuse to do a full upgrade of a library until all of the packages installed on
the system that depend on the package with the shared library can be
upgraded at once. The system will not need to keep or track multiple ver-
sions of a shared library over time.

Debian Packages
As was mentioned earlier in this book, the Ubuntu project is based on the
Debian GNU/Linux distribution. Among many other technological lega-
cies, Ubuntu has inherited the Debian package system. In fact, many core
Ubuntu developers involved early on will credit Debian’s packaging sys-
tem as the reason that Debian proved such an attractive point of departure
and represented its major attraction over other GNU/Linux distributions.
As a result, almost all aspects of package management—from the formats
to the tools—are identical on Ubuntu and Debian. In many situations,
unmodified Debian packages can simply be installed on Ubuntu. In nearly
all situations, unmodified Debian source packages can be built on
Ubuntu. As a result, our first step is to examine an Ubuntu DEB in some
depth to understand the anatomy of the package and the way it imple-
ments the features described in the preceding sections.

Source Packages
DEB source packages are clearly expressed in what is usually a three- or
two-file format but may also include source packages that consist of many
more files as well. This means that the package itself contains multiple files
and downloading “a source package” may in fact involve downloading a
small assortment of different files. Source packages can be broadly classi-
fied as either native DEB packages or nonnative DEB packages. A native
DEB is a piece of software where there is no difference between the
upstream version and the DEB package. In most cases, native packages are
specific to either Ubuntu, Debian, or another Debian-based distribution.
In other words, a native package requires no changes in order to create the
package. A DEB source package will always consist of a “pristine” source

60 Chapter 3 � Package Management

ptg

archive in the form of a gzip-compressed GNU tar file and a DSC file that
will list the contents of the package and can be considered the “core” of a
source package. An example DSC for a program called most that I main-
tain looks like this:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Format: 1.0
Source: most
Binary: most
Architecture: any
Version: 5.0.0a-1
Maintainer: Benjamin Mako Hill <mako@debian.org>
Standards-Version: 3.7.3
Build-Depends: debhelper (>= 4), libslang2-dev
Files:
30f2131b67f61716f6fe1f65205da48b 155233 most_5.0.0a.orig.tar.gz
07e3eb05ad5524fe6d885f5cdc2eb902 20160 most_5.0.0a-1.diff.gz

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.6 (GNU/Linux)

iD8DBQFH4IoAic1LIWB1WeYRAjyOAKCrLCfuZA7b8JcvYTFYeuHrF7r34wCfVTBS
/jGUfIrELNq173sM9CorZA4=
=/Cia
-----END PGP SIGNATURE-----

The file is signed with a GnuPG or PGP key to ensure the integrity of the
file and the identity of the author. If you were to check this signature with
GPG, you would see that it was signed by my GPG key. The DSC file also
contains information on the version of the source format (in this case, it’s
the “old” format, 1.0), the name of the source package, the version of the
package (split into the version of the upstream source and the version of
the package after the final -), the name and e-mail of the maintainer, the
architecture on which the software will run, the version of policy (marked
as “standards”) against which the software was created, the software that
must be present to build the package, and a list of the other files this source
package contains, identified by file size and MD5 hashes.

In a native DEB, there would be only a single compressed tar (tar.gz) file.
In this nonnative package, there would be additional files that represent all
changes to the package. This is so all the changes that the DEB packager

Debian Packages 61

ptg

made are clearly visible. This is sometimes done for license reasons but is
usually done just so that users can see exactly what the packager has done
and what has been changed. This also makes it easy for the package main-
tainer to understand where a problem lies if there is an error. Changes
made to a package are usually expressed in a gzip-compressed diff file that
expresses all the differences between the package source and the pristine
source. In the case on the previous page, it is listed as most 5.0.0a-1.diff.gz.
In newer versions of the DEB source package format, additional tar files
containing additions or changes to the pristine source archive are also per-
mitted, as long as they are listed in the DSC file in the list of files.

When unpacked and with all necessary patches applied, every DEB source
package will unpack into a single directory of the form packagename-version
with a mandatory debian directory as a subdirectory. In the vast majority of
packages, almost all changes to the source are made inside this directory. This
directory contains a number of files—more than I have space to cover here.
Most important among these are the control file and the rules file. The con-
trol file includes most of the information about the source package found in
the DSC file (which is autogenerated using control file data) and additional
information describing each binary package. The control file expresses all
interpackage relationships, including Depends, Conflicts, Provides, Replaces,
Recommends, Suggests, and Enhances. As the “hard” requirements, the first
four are most important. Suggests and Enhances are rarely used by any pro-
gram. The file also includes both a single-line and a multiline description. A
sample control file (the control for most) is shown here:

Source: most
Section: text
Priority: optional
Maintainer: Benjamin Mako Hill <mako@debian.org>
Standards-Version: 3.7.3
Build-Depends: debhelper (>=4), libslang2-dev

Package: most
Architecture: any
Depends: ${shlibs:Depends}
Description: Pager program similar to more and less

The long-form description was removed from the output but in fact fol-
lowed the final description line and includes text that is indented by one
space and where paragraphs are separated by a single “.”. As mentioned

62 Chapter 3 � Package Management

ptg

previously, the control file consists of a series of stanzas. The first stanza
will always begin with Source: and will include information on the source
package. Each following stanza will describe a single binary package. In
this case, there is only one binary package, which, like the source package,
is named most. This situation—a single source package creating a single
binary package of the same name—is a very common case.

The rules file is a GNU Make makefile and contains all of the makefile rules
to create and build a package. Running debian/rules binary from within the
unpacked source package directory results in the creation of a Debian
package in one directory above (../) if your system has all the necessary
dependencies installed. In most cases, the software will build and “install”
into a series of subdirectories within the debian directory; these files in
their temporary location will then be included as the package contents.

Additional files in the debian directory include the copyright file, the
changelog for the package, optional scripts to be run after and before
installation or removal of the package, and extra configuration data plus
anything else the packager would like to include.

Binary Packages
Debian binary packages are very simple in format, so it is unnecessary to
spend much time on them here. More important, they are almost never
manipulated by hand. Binary packages are merely installed and removed.
Changes to a binary package are made first in the source package and then
new, changed binary packages are rebuilt. In Ubuntu and Debian, binary
packages are a single file in an archive in the ar format. In the archive is
debian-binary, which contains a series of lines, separated by newlines. At the
moment, only the format version number is included. The second member
of the archive is named control.tar.gz, and it contains the package control
information (as described previously). The third and last member is called
data.tar.gz, and it contains the file system archive as a gzipped tar archive.

Package Management in Ubuntu
The administrator of every Ubuntu installation—servers and desktops—
must learn the basic mechanics of package management. As administra-
tors need to find new software to solve particular problems, metadata in

Package Management in Ubuntu 63

ptg

the packaging system can be a great place to start. When administrators
want to install new software, the packaging system provides the best way to
do so. The Ubuntu package system will also allow users to install and remove
software, check for updates—and for security updates in particular—and
install these updates. Finally, when a new release of Ubuntu is made, the
packaging system will allow administrators to update their systems.

Ubuntu provides a variety of different tools for package management. On a
desktop Ubuntu system, users’ interaction with the package management
system is primary through a little icon on the desktop that alerts them to
new releases of software and through the graphical Add/Remove Programs
application and a second graphical package management program called
Synaptic that provides functionality to let users browse the package
archives. Since these programs are covered in depth in The Official Ubuntu
Book and because the focus of this book is servers, this section focuses on
the command-line tools for package browsing and management.

Most server administrators primarily use tools in the APT family that
handle high-level package management. The original tool developed for
this purpose was apt-get. Aptitude is a frequently used alternative to apt-
get that provides both an interactive front end and that takes most of the
default apt-get commands. Many of the commands described in the rest of
this chapter that call aptitude can also be used with apt-get with little or
no difference in either output or behavior. The primary differences are in
the ways that the systems resolve complicated dependency situations and
certainly would not affect the reasonably simple operations described here.

Staying Up-to-Date
Each Ubuntu system stores a list of package repositories in /etc/apt/
sources.list. This describes the list of “places” where your package man-
agers—originally just APT but now several other tools—will look for
updated versions of software. These sources may include local repositories
on your file system, a CD in your computer, or—as is common in the vast
majority of situations—a network location. To update the system’s list of
packages, you can run apt-get update or aptitude update.

This command downloads the latest updated package lists for all reposito-
ries listed in your /etc/apt/sources.list files and checks any cryptographic

64 Chapter 3 � Package Management

ptg

signatures on these updates against the keys stored on your machine. On a
new system, it checks only the Ubuntu package repositories that include
the repositories you installed from and the security repositories.

Installing any new version of packages is as simple as running aptitude
safe-upgrade, which is a replacement for the apt-get upgrade command
that may be more familiar to more seasoned users. safe-upgrade simply tries
to upgrade all installed packages to their most recent versions. Installed
packages will not be removed unless they are unused, although additional
packages may also be installed in order to resolve added dependencies.

APT can be configured to automatically download and upgrade packages
with new versions. This is an attractive proposition to administrators who
like the idea of not having to log in to their systems to keep them up-to-date.
However, automatic package upgrades are subject to errors because of the
particular status of software on the system or even particular configuration
changes that have been made, so these automatic package upgrades can
leave systems in unstable or unworkable states. As a result, automatic
upgrades are neither covered in this book nor recommended by the authors.

Searching and Browsing
Historically, the primary way of searching for new packages was using the
program dselect. Users of Ubuntu on the desktop will primarily use the
Add/Remove Programs application and the graphical program Synaptic.
Users on the console have several other options.

First among these is the simple program apt-cache, which can provide sta-
tistics about and information on packages. If, for example, I decide I want
a pager like less, I can search for one in the following way:

$ apt-cache search pager less
less - Pager program similar to more
wdiff - Compares two files word by word
console-log - Puts a logfile pager on virtual consoles
gdesklets-data - Applets for gdesklets
jless - A file pager program, similar to more(1) supporting ISO2022
most - Pager program similar to more and less
nagios-plugins-basic - Plugins for the nagios network monitoring
and management system

Package Management in Ubuntu 65

ptg

As you can see from the previous list, the apt-cache search command
returned eight “hits” for my search on the two keywords pager and less and
returned a list of package names followed by short one-line descriptions.
The keyword search looked through the full list of available packages and
focused on the package names, short descriptions, and full descriptions
that are not shown in the returned list. If I want to know more about a
package, apt-cache can also show me more about the package with the
show subcommand as in the following example:

$ apt-cache show most
Package: most
Priority: optional
Section: universe/text
Installed-Size: 172
Maintainer: Ubuntu MOTU Developers <ubuntu-motu@lists.ubuntu.com>
Original-Maintainer: Benjamin Mako Hill <mako@debian.org>
Architecture: i386
Version: 5.0.0a-1
Depends: libc6 (>= 2.7), libslang2 (>= 2.0.7-1)
Filename: pool/universe/m/most/most_5.0.0a-1_i386.deb
Size: 48092
MD5sum: e089c00005b536e1b8848b7087df2bae
SHA1: 4f4ab395f340be4804732452aa112007916f90cb
SHA256:
ccf50fb49270e7ddf7735da23e699afcd11dcfc8e241973bb17ad03bf49e6f4a

Description: Pager program similar to more and less
Most is a paging program that displays, one windowful at a time, the
contents of a file on a terminal. A status line at the bottom of the
screen displays the file name, the current line number, and the
percentage of the file so far displayed.
.
Unlike other paging programs, most is capable of displaying an
arbitrary number of windows as long as they all fit on the screen,
and different windows could be used to view the same file in
different positions.
.
In addition to displaying ordinary text files, most can also display
binary files as well as files with arbitrary ascii characters.
Bugs: mailto:ubuntu-users@lists.ubuntu.com
Origin: Ubuntu

You may recognize that quite a bit of this information looks like the source
package information and the corresponding stanza referring to this binary

66 Chapter 3 � Package Management

ptg

package in the control file described previously. Sure enough, this is
exactly where this metadata has been extracted.

Of course, the bulk of the output is made up of the long-form description
that was omitted in the previous example. There are some other fields of
potential interest, including the “Original-Maintainer” or the person who
packaged the system in Debian, the “Maintainer” or the person or group to
contact with questions about or issues with the package, and sizes and
hashes (e.g., MD5Sum, SHA1, and SHA256), which describe ways to iden-
tify that a particular version of the package was downloaded correctly and
has not been modified.

Called with no arguments, Aptitude also can provide users with a Curses-
based text-based interface that allows for more interactive browsing of all
the packages available. For users familiar with Synaptic, this can be
thought of as a text-based version of the Synaptic interface. In this mode,
many search results can be navigated through with the arrow keys and dif-
ferent applications can be “marked” for installation.

Before concluding this tour of the options for searching and browsing for
packages, it is worth pointing to the Web site at http://packages.ubuntu
.com. This interface lets users search in ways that are similar to some of the
tools I have shown here but with several additional useful options. In par-
ticular, the Web site lets users search for particular files in any package in
Ubuntu. Normally, users are able to find out only which package “owns” a
file if they have the package on their system. If, for example, you need a
particular header file or shared library and you know only the filename,
you can search on the Web site for that filename throughout all packages
available in the Ubuntu archive.

Installation and Removal
Installing and removing packages is another simple task that you will do
frequently. To install a package, you can invoke apt-get or Aptitude in a
similar way, although, unlike searching, a user must be running with root
privileges to do so. The recommended way to do this would be to use the
sudo command. Since prefixing each command in this section with sudo

Package Management in Ubuntu 67

http://packages.ubuntu.com
http://packages.ubuntu.com

ptg

would be tedious, I have assumed the user is root, although having the user
logged in as root would not be considered the best form. If I want to install
most, I can simply run the following command as root:

aptitude install most
Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Writing extended state information... Done
The following NEW packages will be installed:
libslang2{a} most

0 packages upgraded, 2 newly installed, 0 to remove and 0 not
upgraded.

Need to get 0B/509kB of archives. After unpacking 1323kB will be
used.

Do you want to continue? [Y/n/?] y
Writing extended state information... Done
Selecting previously deselected package libslang2.
(Reading database ... 362131 files and directories currently
installed.)

Unpacking libslang2 (from .../libslang2_2.1.3-3ubuntu1_i386.deb) ...
Setting up libslang2 (2.1.3-3ubuntu1) ...
Selecting previously deselected package most.
(Reading database ... 362143 files and directories currently
installed.)

Unpacking most (from .../most_5.0.0a-1_i386.deb) ...
Processing triggers for man-db ...
Setting up most (5.0.0a-1) ...

Reading package lists... Done
Building dependency tree
Reading state information... Done
Reading extended state information
Initializing package states... Done
Writing extended state information... Done

You can see in the output of the command above that libslang2 was
installed alongside most. In this case, Aptitude saw that most required the
S-Lang library but that it was not installed. Aptitude prompted me for
confirmation about the installation of the additional package (which I
approved), downloaded both packages, and then installed and configured
them on my system.

68 Chapter 3 � Package Management

ptg

Removing a package is similarly simple. If I decide to remove most, I can
do so by running

aptitude remove most

In this case, libslang2 will not be removed (since I have not asked for it to
be removed). If I were instead to try to remove libslang2, Aptitude would
prompt me and explain that removing libslang2 would also require
removing all of the packages that depend on it—on this system, that
would just be most, but for other packages or on other systems there could
be quite a few packages. This type of dependency management means
that, for example, users should not (and cannot easily) remove core or
essential packages. Extra “unused” packages can be removed using the
command apt-get autoremove.

Finally, while these examples both used Aptitude, the installation and
removal of packages can also be done with the lower-level tool dpkg. In
fact, in both cases Aptitude is simply calling dpkg on the downloaded pack-
age files behind the scenes. Aptitude—or apt-get—will always download
packages and work out dependencies before turning to dpkg. If you have
already installed existing dependencies, you can install a DEB directly with
dpkg by using the -i command and passing the package filename as an
argument. For example, if I were given a DEB file for most, I could install it
with a command like this:

$ dpkg -i most_5.0.0a-1_i386.deb

dpkg will check dependencies and produce an error if there are missing
dependencies but will not automatically download or install packages
since it does not contain the functionality to do this. I could uninstall most
with dpkg with the command dpkg -r most.

Manipulating Installed Packages
dpkg provides dozens of methods of querying, searching, and manipulating
installed packages. It contains a database of information about packages

Package Management in Ubuntu 69

ptg

installed on the system. To get a quick overview of what this might look
like, you could run the following command:

$ dpkg -l most
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Cfg-files/Unpacked/Failed-cfg/Half-inst/
trig-aWait/Trig-pend

|/ Err?=(none)/Hold/Reinst-required/X=both-problems
(Status,Err: uppercase=bad)

||/ Name Version Description
+++-===========-============-=============+=======================
ii most 5.0.0a-1 Pager program similar to more and less

Run without any arguments, dpkg -l will show this basic information on
the installation status, name, version, and description of every package on
your system.

Another simple task is to get a list of files contained within the package. If
you have a DEB file that you have not installed, you can get this informa-
tion by running dpkg --contents as in the example below:

$ dpkg --contents /var/cache/apt/archives/most_5.0.0a-1_i386.deb
drwxr-xr-x root/root 0 2008-05-06 12:06 ./
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/bin/
-rwxr-xr-x root/root 59940 2008-05-06 12:06 ./usr/bin/most
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/man/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/man/man1/
-rw-r--r-- root/root 5912 2008-05-06 12:06 ./usr/share/man/
man1/most.1.gz

drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/doc/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/share/doc/most/
-rw-r--r-- root/root 2989 2007-09-09 12:14 ./usr/share/doc/
most/changelog.gz

-rw-r--r-- root/root 5544 2008-05-06 12:06 ./usr/share/doc/
most/copyright

-rw-r--r-- root/root 3335 2007-09-06 10:15 ./usr/share/doc/
most/README

-rw-r--r-- root/root 1386 2006-05-01 13:51 ./usr/share/doc/
most/lesskeys.rc

-rw-r--r-- root/root 492 2006-05-01 13:51 ./usr/share/doc/
most/most-fun.txt

-rw-r--r-- root/root 3086 2006-05-01 13:51 ./usr/share/doc/
most/most.rc

70 Chapter 3 � Package Management

ptg

-rw-r--r-- root/root 2028 2008-05-06 12:06 ./usr/share/doc/most/
changelog.Debian.gz

drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/lib/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/lib/mime/
drwxr-xr-x root/root 0 2008-05-06 12:06 ./usr/lib/mime/
packages/

-rw-r--r-- root/root 94 2008-05-06 12:06 ./usr/lib/mime/
packages/most

Similar information for installed packages can be retrieved with dpkg -L.
Working in the other direction, if you have a particular file and you want
to know which package “owns” it, you can use dpkg -S to query the data-
base for this information. For example:

dpkg -S /usr/bin/most
most: /usr/bin/most

The binary file /usr/bin/most belongs to—no surprise here for anyone
who’s gotten this far—the binary package called most. Since this com-
mand is searching through each of the file lists of every package on your
system, it may take some time to complete.

Manipulating Repositories
The best way to install new software in the “Ubuntu way” is never to simply
download new DEB packages and install them “by hand” with dpkg. But
APT is only kept up-to-date with the packages that it already knows about.
While dpkg works on packages, APT works on repositories of packages that
contain information on different packages, their versions, and their depen -
dencies. As a result, to manage a package through APT, one needs to add to
the system not the package, but rather the repository that contains it. This is
done by adding or editing the list of “sources.” While the Ubuntu desktop
distribution includes a graphical tool for manipulating repositories, it can
be done easily by hand, which will be the default on most systems.

The sources.list file, already mentioned several times in this chapter, is
located at /etc/apt/sources.list on every Ubuntu and Debian system and is
made up of a series of lines like this:

deb http://us.archive.ubuntu.com/ubuntu/ lucid main universe
deb-src http://us.archive.ubuntu.com/ubuntu/ lucid main universe

Package Management in Ubuntu 71

ptg

The first word will be a # symbol marking the line as a comment or else
either deb or deb-src. This specifies whether the repository is a source
package repository or a binary package repository. The second item is the
location in the form of a URI. The third item is the name of the distribu-
tion or, as it might more accurately be described, the distribution version.
In the previous example, this distribution version is lucid, which refers to
the Ubuntu release of the Lucid Lynx. The remaining arguments are the
lists of the components. The components provided in the core Ubuntu
repositories are detailed in the following section.

An example will help illustrate the process of adding a repository. If I want
to install a version of Bazaar that is always the latest released version, I will
need to do this from outside the default Ubuntu repositories, which will
only be updated based on the Ubuntu release cycle. Luckily, the Bazaar
developers provide their own “Personal Package Repository”—a subject
I’ll come back to at the end of this chapter. On their Web site, they provide
the deb and deb-src lines that I can simply drop into my sources.list:

deb http://ppa.launchpad.net/bzr/ubuntu lucid main
deb-src http://ppa.launchpad.net/bzr/ubuntu lucid main

If I update, I am first greeted by an error that claims that I do not have the
correct cryptographic key to verify that the packages in the repository are
really coming from the Bazaar developers:

W: GPG error: http://ppa.launchpad.net lucid Release: The following
signatures couldn't be verified because the public key is not
available: NO_PUBKEY FE8956A73C5EE1C9

I can easily install that by downloading the key from a trusted source like
the PPA providers’ Web site and saving it into a file (called /tmp/keyfile in
the example below), verifying that is correct, and adding to the package
manager’s key database with a command such as

apt-key add - < /tmp/key
OK

72 Chapter 3 � Package Management

ptg

The apt-key manual page gives more details on how keys for repositories
can be managed with this useful command.

Ubuntu Default Repositories
The vast majority of packages that you will need have been packaged for
Ubuntu. This is because, leveraging the work of Debian, Ubuntu provides
access to a large majority of the most popular pieces of free software as
packages in their own repositories.

These tens of thousands of packages are separated into a series of different
sections or components. You can toggle these on and off by including them
in the list of components in your sources.list. Because these have important
consequences for the level of support you will receive for your software, it is
worth understanding these different components so that you can decide
from which areas you want to pull software. Available components on the
Ubuntu server include main, restricted, universe, and multiverse. The fol-
lowing descriptions are adapted from the component descriptions on the
Ubuntu Web site.

� Main
The main distribution component contains applications that are free
software, can freely be redistributed, and are fully supported by the
Ubuntu team. These include the most popular and most reliable open
source applications available, much of which is installed by default
when you install Ubuntu. Software in main includes a hand-selected
list of applications that the Ubuntu developers, community, and users
feel are important and that the Ubuntu security and distribution
teams are willing to support. When you install software from the
main component, you are assured that the software will come with
security updates and technical support.

� Restricted
The restricted component is reserved for software that is very com-
monly used and that is supported by the Ubuntu team even though
it is not available under a completely free license. Please note that it
may not be possible for Ubuntu to provide complete support for this

Package Management in Ubuntu 73

ptg

software since the Ubuntu team is unable to fix the software but can
only forward problem reports to the actual authors.

� Universe
In universe one can find almost every piece of open source software
and software available under a variety of less-open licenses, all built
automatically from a variety of public sources. All of this software is
compiled against the libraries and using the tools that form part of
main, so it should install and work well with the software in main, but
it comes with no guarantee of security fixes and support.

� Multiverse
The multiverse component contains software that is not free, which
means the licensing requirements of this software do not meet the
“main” component license policy. The onus is on you to verify your
rights to use this software and comply with the licensing terms of the
copyright holder. This software is not supported and usually cannot
be fixed or updated. Use it at your own risk.

Using Other Repositories
As you saw when I added the Bazaar repository several sections ago, users
will still sometimes want to make use of a variety of outside repositories
beyond what is provided in Ubuntu. For example, users might want to
install new versions of particular applications or libraries from the devel-
opment release of Ubuntu but might not want to upgrade all of their
packages to the latest version.

The quasi-official “backports” repository in Ubuntu is a useful resource. It
contains versions of software from the development version of Ubuntu
that have been backported to install cleanly on stable versions of Ubuntu.
You can add the backports by installing a DEB package by hand in a one-
by-one with dpkg or by adding an extra line to your sources.list. Informa-
tion on doing both can be found on the Ubuntu Web site at https://
help.ubuntu.com/community/UbuntuBackports.

One reason that many users choose to go the à la carte method—that is, the
method of downloading packages by hand and installing them with dpkg—
as opposed to just adding the repository is because of a limitation in the

74 Chapter 3 � Package Management

https://help.ubuntu.com/community/UbuntuBackports
https://help.ubuntu.com/community/UbuntuBackports

ptg

way that APT works: APT and other tools will always install the newest ver-
sion of any package available by default. This means that if you add the back-
ports repository, or the development repository for that matter, to your
sources.list, the latest version of everything in that repository will be
installed when you try to run an upgrade. For small repositories (like the
Bazaar PPA described several sections ago that contained only Bazaar and
several closely linked packages) this does not present a problem. However,
in situations where you want to add a large repository of many packages
like the backports repository or the development release of Ubuntu but
only want a few packages, the effects will often not be what you want.

The general solution to this problem is called “pinning” or “apt pinning.”
Pinning is extraordinarily powerful but, in its advanced forms, can also be
very complicated. As a result, a full discussion is outside the scope of this
chapter. That said, an example is shown below for the situation where I
have Karmic installed but want APT to prefer packages in Lucid. To change
this, I would need to create a file in /etc/apt/preferences.d that included
something like the following section:

Package: *
Pin: release a=karmic
Pin-Priority: 700

Package: *
Pin: release a=lucid
Pin-Priority: 600

Each stanza describes one release and, as is represented by the wildcard in
the first line, applies to all packages. In the final line of each stanza, the
pin-priority describes both relative position (i.e., in the example above,
Karmic is preferred to Lucid) and weight that will be given to each.
Weights can be tweaked so that packages will be installed, or not, except in
special circumstances. Much more information on pinning is available in
the apt_preferences manual page and in several excellent pieces of docu-
mentation on the Ubuntu and Debian wikis.

Upgrading a Whole System
A final basic task that every system administrator will need to do is to
upgrade a full system. On desktop Ubuntu systems, the default way of

Package Management in Ubuntu 75

ptg

handling an upgrade is by using the update manager software. However,
this software is designed specifically to upgrade graphical systems. Since
the process can just as easily be done from the command line, that will
probably be more appropriate on most servers.

In the past, upgrading most systems was a two-step process. First, the
administrator would update the list of repositories (detailed in the previous
section) so that references to the old release were replaced with the new
release. For example, if I were upgrading from the Hardy Heron to the Gutsy
Gibbon, I would replace every instance of hardy with gutsy in my source.list
file. After doing this, I would run aptitude update exactly as I described in
the section above on staying up-to-date. This would refresh my local pack-
age metadata cache with a list of all the packages in the new distribution.

Finally, I would run aptitude full-upgrade which, unlike safe-upgrade,
described previously, would upgrade all installed packages to their most
recent version and would remove or install additional packages as neces-
sary. full-upgrade is less conservative than safe-upgrade and is much
more likely to perform unwanted actions. However, it is capable of
upgrading packages that safe-upgrade cannot. Because these sorts of situ-
ations are much more common between releases, using full-upgrade
became the recommended course for upgrading between releases. How-
ever, neither method is supported anymore.

In current releases of Ubuntu, the correct way to upgrade systems is with
the do-release-upgrade program. do-release-upgrade is a script that auto-
mates the process described above in addition to handling a number of
corner cases and exceptions intelligently. It is the supported way to
upgrade one’s Ubuntu server.

Mirroring a System
One common task many system administrators want to accomplish is to
mirror the installed software from one machine to another. Because all
software on a default Ubuntu system is installed in packages, the packag-
ing system can make this easy. Using dpkg, one can get a list of all packages
on the machine with the following command:

dpkg --get-selections > package_list

76 Chapter 3 � Package Management

ptg

This command outputs a simple list of packages and then redirects that out-
put into a file called package_list. I can copy this file to another machine and
then use it to set the list of installable packages with the following command:

dpkg --set-selections < package_list

Finally, I can install those selections onto the target system using the fol-
lowing command:

apt-get dselect-upgrade

dselect-upgrade is a reference to APT’s predecessor dselect but will sim-
ply work to upgrade packages on the system and install any new packages
“marked” for upgrade by dpkg --set-selections in the process.

Making Your Own Packages
The power of a package management system is that you can track depen -
dencies and conflicts, do automatic upgrades, and keep track of every file
on the system and which piece of software it belongs to. Installing through
packages is much easier than if one simply downloads and builds from
scratch, but the package management system truly shines when it comes
time to uninstall or upgrade. If you’ve installed from source, files may be
in any number of places on your file system. If you’ve installed from a
package, removing your package will be as simple as apt-get remove.

As a result, many responsible system administrators find it very conve-
nient to ensure that all software on their systems is installed from pack-
ages. That sounds great, but sometimes a piece of software you want—or a
version of a piece of software that you want—isn’t packaged or isn’t built
for the version of Ubuntu that you are running. The result is that you’ll
need to build, in one way or another, your own packages. The rest of this
chapter gives a brief overview of this process and provides a starting spot
for the system administrator who wants to move beyond simply consum-
ing packages and become a producer.

Rebuilding Packages
As I hinted earlier in this chapter, many users want to rebuild existing
packages as part of backporting a version of a piece of software available in

Making Your Own Packages 77

ptg

one version of Ubuntu—or Debian—to a current one. Sometimes, if an
ABI has changed, a piece of software won’t work on a version of Ubuntu
simply because it was compiled against a set of libraries that are no longer
present. This is the easiest possible case to fix because adjusting for it is
simply a matter of downloading the source and rebuilding it against the
new version of the libraries. This section will cover doing exactly this.

Doing so will first require a source package. The source package, as you
may remember from earlier in this chapter, consists of a DSC file and at
least one other file. These can be downloaded as normal files from http://
packages.ubuntu.com and unpacked with dpkg-source -x filename.dsc, or
they can be installed automatically by using the apt-get source package

command.

If one wanted to download and compile a package from a particular distri-
bution—as is often the case—one could specify this explicitly with the -t
option, which, behind the scenes, sets the default PIN for the distribution
at a very high priority (990 in fact) by running (for example)

$ apt-get -t jaunty source --compile most

This would download and unpack the version of most source packages
from Jaunty—assuming, of course, that the necessary deb-src line was
included in /etc/apt/sources.list. The unpacked source code will be in a
subdirectory of the current directory made up of the package name and
version. In this case, the directory would be called most-5.0.0a since
5.0.0.a is the version of most that I’ve downloaded. By adding a --compile
flag to the apt-get invocation above, the binary packages will also be built
automatically—even if the program is in an interpreted language and
there is no actual compiling taking place. If one does not use the compile
flag, it can be invoked afterward in several ways. One of the simplest is by
changing into the directory and then running dpkg-buildpackage like this:

$ cd most-5.0.0a
$ dpkg-buildpackage -us -uc -rfakeroot

This command will create an unsigned package (the -us and the -uc refer
to unsigned source and unsigned changelog files) without needing root
privileges (fakeroot is a program that allows packages to be built without

78 Chapter 3 � Package Management

http://packages.ubuntu.com
http://packages.ubuntu.com

ptg

root). Of course, the package may also require build dependencies that are
not installed by running a command in the following form:

apt-get -t jaunty build-dep most

The build-dep subcommand to apt-get automates the process of
installing all software necessary to build a given package. Running it is a
frequent first step in rebuilding any package for the first time when that
package is from an installed repository.

When the software in question is successfully rebuilt, the directory will
contain a set of binary packages for this source package that end with .deb
in the directory where it is run. In this case, the single binary package cre-
ated was called most 5.0.0a-1 i386.deb. The -1 following the version num-
ber of the software refers to the version of the package and could be
incremented each time we made a new version of the package. The i386 in
this case simply refers to the architecture for which the binary package was
built. In this case, I built it on an Intel machine. For many users, this will
say amd64, which is an increasingly popular architecture. For most inter-
preted programs that will run on any architectures, this will say all.

New Upstream Versions
New upstream versions of packages are slightly more complicated than
simply rebuilding an existing package with no modifications. Installing
the package devscripts provides the user with a program called uupdate
which helps with this process. To use uupdate, a user must first download
the source package with a command like apt-get source most. Leave off
the compile option for the moment, and then download the new upstream
version tarball. There is no reason to unpack it at this point and, option-
ally, rename it into name-version.tar.gz format. Changing into the direc-
tory of the old package’s source and running uupdate with the new
upstream tarball as the argument will usually do the trick:

$ cd most-5.0.0a $ uupdate ../most-5.0.1.tar.gz

Usually, uupdate then deduces the version number from the upstream tar-
ball and applies all the changes made to the old version to the new upstream

Making Your Own Packages 79

ptg

source. If uupdate can’t decode the version number, the new version num-
ber can be specified as a second argument to the command.

The output from uupdate should explain the process that it follows and
will end with a description of the location of the new modified source. In
this case, changing to ../most-5.0.1 will put me in the new “updated”
package directory. It’s a good idea to look around first to make sure that
things worked well. Especially it is worth checking the debian/ subdirec-
tory and paying attention to both the control file and the changelog file in
that directory, the latter of which will have been updated automatically
but will probably need a little bit of tweaking. The stanza at the top will
include information on the new release and can be updated or tweaked to
reflect changes that you made to the file. Once you are satisfied, you can
build the package with dpkg-buildpackage in the way described in the
previous section.

Building Packages from Scratch
Building packages from scratch is much more complicated and involves
getting to know quite a bit about the internals of Debian packages. As a
result, it is outside the scope of this chapter. As a hint, new packages can be
most easily created using the package dh-make, which installs the program
dh_make, which is invoked from inside the unpacked source tarball from
the upstream developer. For many simple packages, dh_make does most of
the hard work of creating workable packages.

Much more information on creating packages for Ubuntu can be found in
the Ubuntu packaging guide, which goes in depth into the process of cre-
ating packages from scratch: https://wiki.ubuntu.com/PackagingGuide.

It is worth noting one important caveat to the Ubuntu documentation:
The packaging guide is focused on creating packages that are designed to
be uploaded to Ubuntu. If you are creating packages that will be installed
only on your own machine, the potential for harm is much less, and many
of the guidelines in the packaging guide can be treated as just that—espe-
cially in the first version of a package. The difference is between workable
packages and policy-compliant packages.

80 Chapter 3 � Package Management

https://wiki.ubuntu.com/PackagingGuide

ptg

If you are going to proceed and create packages to be shared with others or
perhaps even uploaded into the Ubuntu repositories eventually, it is a very
good idea to follow the instructions in the packaging guidelines carefully
and to use programs like lintian, which will check your packages for many
common errors—useful steps in any situation. If you just want things to
work, a brief trip through the guide and use of dh_make will probably put
you in good enough shape to get by.

Hosting Your Own Packages
A final step in the creation of your packages will be hosting them in a place
where others can get them in the simple “add a line to your source.list file”
sort of manner to which I have referred throughout this chapter. There are
several different ways to do this. The easiest one and the one most com-
monly practiced in the Ubuntu world is to use Launchpad—the infra-
structure built by Canonical and used extensively in Ubuntu’s own
development—to host what’s called a Personal Package Archives (PPA).

With a PPA, a developer can simply upload a source package to Launchpad
and the package will then be built on a variety of architectures and posted
into a PPA. PPAs work exactly the same way that developing for Ubuntu
does, so using them is a great preview of what you will experience if you
decide to eventually upload your software in Ubuntu and get involved on
the development side of things. Earlier, when I showed how to add Bazaar
packages to the list of packages, I entered the list of the Bazaar PPAs. More
information on PPAs is available at the following URLs: https://help
.launchpad.net/Packaging/PPA and https://launchpad.net/ubuntu/+ppas.

Alternatively, you can host your own repository on your own server with
any of several different tools. Although the classic tool for running these is
a package called apt-ftparchive, the newer project reprepro is probably a
better fit. Installing the package with that name and looking in the docu-
mentation is a good way to get started.

Making Your Own Packages 81

https://help.launchpad.net/Packaging/PPA
https://help.launchpad.net/Packaging/PPA
https://launchpad.net/ubuntu/+ppas

ptg

This page intentionally left blank

ptg

83

4C H A P T E R 4

Automated Ubuntu Installs

ptg

AFTER YOU HAVE GONE THROUGH the Ubuntu Server install a few times, you
start to realize that you generally pick the same options for a majority of
the install no matter what type of server it is. It might be OK to manually
enter install options when you have a single server to set up, but what if
you have ten or a hundred? At some point you start to wish you could hire
an intern or build a robot to press Next for you. While this might work,
Ubuntu has provided a cheaper (free) option with two automated installa-
tion methods: preseeding and Kickstart. Preseeding is derived from the
Debian Linux distribution, and Kickstart has been ported from Red Hat
and is often referred to as Kickseed under Ubuntu. Both have their advan-
tages and shortcomings, and in fact the recommended method of automat-
ing Ubuntu server installs is a combination of both.

In this chapter I cover both automation methods and how to use them to
supplement a CD-ROM install. Finally, I show how to use Kickstart and
preseeding together for a fully automated installer over the network. By
the end you will be able to set up one or a hundred Ubuntu servers with
about the same amount of effort. Then your robot can focus on more
important tasks like bringing you coffee.

There are two different ways you can read this chapter. I discuss preseeding
first because it is the classic way to automate Debian and Ubuntu installs, and
even if you Kickstart servers, you often need to supplement it with preseed
values. So if you are interested in how the entire process works and fits
together, you should read the chapter straight through. You’ll gain a good
foundation on preseeding so that when you learn about Kickstart, you can
truly see how it eases the process. On the other hand, if you just want to get
started with an automated installer, I recommend skipping ahead to the
Kickstart section in the chapter. There is a lot of useful information in the
preseed section, but preseeding is a pretty vast and complex topic, especially
if you are new to it. If you just want to get things working on a basic auto-
mated install, you will want to use Kickstart. The Kickstart section will get
you up and running, and then if you need to do anything that isn’t yet pos-
sible in Kickstart, you can return to the preseeding section.

Preseeding
The concept behind preseeding is pretty simple. Every possible option in
the Ubuntu install is represented by a variable. Once you discover what

84

ptg

those variables are, you can set them ahead of time in a file and instruct the
Ubuntu installer to load and apply them for you. The key to preseeding, of
course, is to know what those values are. There are a number of good
online guides for preseeding, but I’ve noticed that most of them, even
those for Ubuntu, still seem to provide Debian-based examples.

The main way to discover all of the available preseeding options is to
use debconf-get-selections (included in the debconf-utils package). For
instance, to find out all of the current preseed settings from your current
install, you would run

$ debconf-get-selections --installer > alloptions.cfg

This would dump all of the installation-focused preseeding options into
alloptions.cfg. The great thing about preseeding, though, is that it isn’t
limited to installer options—every package you install that asks you ques-
tions can have its answers preseeded. To dump the entire debconf database
containing these values into the same alloptions.cfg file, run

debconf-get-selections >> alloptions.cfg

Now you might be tempted to simply use this alloptions.cfg file as your
preseed.cfg file. The problem is that this file contains all of the configura-
tion options, including many that should not be preseeded. Use this file
only as a guide when you want to discover a particular preseeding option
that you want to set; instead I recommend that you start with the base pre-
seed.cfg I will provide below and tweak that.

Basic Preseed Configuration for CD-ROM
There are a few different ways to introduce preseeding options to the
installer, but probably the simplest way is to use the default Ubuntu install
CD while specifying options directly at the boot prompt and putting a
preseed.cfg file full of options on a local Web server. It turns out that if you
are going to use preseeding by itself, there are certain options that you
can’t set strictly in a preseed file—either they must go on the boot prompt,
or you will have to answer the questions manually.

Preseeding 85

ptg

The first step is to set up a default preseed.cfg file. Below is a basic preseed
file that describes a default Ubuntu server install for a system in the United
States. Copy these settings into a file named preseed.cfg:

Options to set on the command line
d-i debian-installer/locale string en_US
d-i console-setup/ask_detect boolean false
d-i console-setup/layoutcode string us
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain

d-i netcfg/choose_interface select auto
d-i netcfg/wireless_wep string

d-i base-installer/kernel/override-image string linux-server
d-i clock-setup/utc-auto boolean true
d-i clock-setup/utc boolean true
d-i time/zone string US/Pacific
d-i clock-setup/ntp boolean true

d-i mirror/country string US
d-i mirror/http/proxy string
d-i pkgsel/install-language-support boolean false
d-i pkgsel/update-policy select none
tasksel tasksel/first multiselect standard, ubuntu-server

d-i partman-auto/method string regular
d-i partman-auto/purge_lvm_from_device boolean true
d-i partman-lvm/confirm boolean true
d-i partman-auto/choose_recipe select atomic
d-i partman/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i passwd/user-fullname string Ubuntu User
d-i passwd/username string ubuntu
d-i passwd/user-password password insecure
d-i passwd/user-password-again password insecure
user-setup-udeb user-setup/encrypt-home boolean false

d-i grub-installer/only_debian boolean true
d-i grub-installer/with_other_os boolean true
d-i finish-install/reboot_in_progress note

Keep in mind that with these default settings the installer will find the first
disk it can, format over it, and install the base system on top of it, so make
sure before you try this on a server that you are willing to lose all of the

86 Chapter 4 � Automated Ubuntu Installs

ptg

data on its disks. Otherwise, if you do want to preserve data on a server, be
sure to first check out the Partitioning section in this chapter to find out
how to tweak the default settings.

Once you have set up the preseed.cfg file, put it on a local Web server that
your test server can access. For this example let’s assume the server is at
www.example.net and you put the file in the main document root so it can
be found at www.example.net/preseed.cfg. Now boot the server on which
you wish to install Ubuntu off of the Ubuntu Server install CD. Once you
answer the language prompt, hit F6 and then Esc so you can edit the default
boot arguments, as shown in Figure 4-1. Use the arrow keys to move to the
left past the initrd= argument and backspace over the file=/cdrom/preseed/
ubuntu-server.seed section of the prompt. That is actually Ubuntu’s own
preseed file that it uses for the install, but we will replace it with our own. To
do that we use the url option to point to our Web server, so type

url=http://www.example.net/preseed.cfg

Of course, change that to point to the path to your actual Web server and
preseed file. Unfortunately we will need to specify a few extra options on
the command line so the installer can get past the initial phase of the

Preseeding 87

Figure 4-1 Ubuntu install boot screen with boot arguments

www.example.net
www.example.net/preseed.cfg

ptg

install, get on the network, and retrieve the rest of its settings. If you look
at the top of my example preseed.cfg file, you will see that I set apart a few
options to go on the boot prompt:

d-i debian-installer/locale string en_US
d-i console-setup/ask_detect boolean false
d-i console-setup/layoutcode string us
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain

To add these to the boot prompt, just type the full path to a particular
option (such as debian-installer/locale), an = sign, and then the option
to set it to. After you are finished, your complete boot prompt, including all
the options that were there before that you need to keep, will look like this:

url=http://www.example.net/preseed.cfg
debian-installer/locale=en_US console-setup/ask_detect=false
console-setup/layoutcode=us
netcfg/get_hostname=unassigned-hostname
netcfg/get_domain=unassigned-domain
initrd=/install/initrd.gz quiet --

Now that’s quite a bit of typing, but Ubuntu has provided some short-
hand for some of the options. For instance, debian-installer/locale can
be replaced with just locale, netcfg/get_hostname can be replaced with
hostname, and netcfg/get_domain can be replaced with domain. With all of
the shortcuts in place the command line looks a bit more manageable:

url=http://www.example.net/preseed.cfg locale=en_US
console-setup/ask_detect=false console-setup/layoutcode=us
hostname=unassigned-hostname domain=unassigned-domain
initrd=/install/initrd.gz quiet --

Once you have typed all of these values into the boot prompt, press Enter
and go get a cup of coffee. The installer should get its own IP address over
DHCP, retrieve the preseed.cfg file from your Web server, complete the
install, and then reboot. When you get back, you should be welcomed with a
default Ubuntu login prompt. Of course, if everything didn’t go smoothly,
you might see, for instance, an error retrieving the preseed.cfg file. If that is

88 Chapter 4 � Automated Ubuntu Installs

ptg

the case, try retrieving the same file from a Web browser on the same net-
work and make sure your path is correct and your Web server is configured
correctly.

Other things that might halt the installation process could be the installer
not being able to get a DHCP lease or, as is most often the case, a mistake
in the preseed.cfg file. As you will discover, a good preseed file is something
you get after a lot of trial and error. When you set an option incorrectly,
the installer will simply stop at that point in the install and prompt you for
that particular option. As you create more sophisticated preseed.cfg files,
you might run through the same install multiple times before you get it
exactly right.

The default preseed.cfg will get you started, but where do you go from
there? This chapter digs into each of the main configuration categories
and explains how to customize the default preseed.cfg file for your needs.

Networking Options
In my sample preseed.cfg I introduced the following networking options:

d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain
d-i netcfg/choose_interface select auto
d-i netcfg/wireless_wep string

The first two options I used on the boot prompt with their aliases hostname
and domain to set the hostname and domain, respectively, for this machine.
The choose_interface option allows you to choose which network inter-
face to use on the machine for the install. In my case I chose auto, which
will pick the first interface that has link, if possible. Instead of choosing
auto, you could also set this option to a specific interface, such as eth1.
Now if eth1 were a wireless card and your wireless network uses WEP, you
could use the wireless_wep option to set the WEP key. Even though I
didn’t use a wireless connection in my example, I still set this to a dummy
value so I wouldn’t get prompted for a WEP key during the install.

Preseeding 89

ptg

90 Chapter 4 � Automated Ubuntu Installs

With these default settings the installer will attempt to get all of its net-
work settings via DHCP, which is probably what most administrators
want, especially if they intend to install a machine over PXE. However, you
might want to statically assign an IP for a machine, and in that case there
are a number of preseed options you will need to use. The following is an
example set of preseed options that will set up a network manually:

d-i netcfg/disable_dhcp boolean true
d-i netcfg/get_nameservers string 192.168.1.1
d-i netcfg/get_ipaddress string 192.168.1.50
d-i netcfg/get_netmask string 255.255.255.0
d-i netcfg/get_gateway string 192.168.1.1
d-i netcfg/confirm_static boolean true

Most of these options are pretty self-explanatory, so you can just replace
the IPs listed here with the IPs you want to use for your name server, the IP
of the host itself, gateway, and netmask. The disable_dhcp option is what
tells the installer to skip DHCP and use the static settings, and confirm_
static simply confirms all of the static options you set; otherwise the
installer would prompt you to confirm all of the settings in the middle of
the install.

NOTE One downside to installation with DHCP is that on many installs the machine could potentially
attempt to get a lease multiple times. When this happens, you will often notice that the actual
physical port will also reset. Now, depending on how your networking equipment is config-
ured, it could take longer than 30 seconds (the default DHCP time-out) for the port to come
back up because the switch needs to perform spanning tree calculations. I’ve had installs that
seemed to get a lease only one out of ten or more times because of a race for the port to come
back up before DHCP timed out. A Red Hat install I had got a new lease three or four times,
and it was basically impossible to win the race that many times in a row. If you notice this is
the case, you have a few options. For one, you (or your network administrator) can enable
PortFast on that particular switch port so that it speeds up the spanning tree calculations, or
you can set the netcfg/dhcp_timeout preseed option to a longer value, such as

d-i netcfg/dhcp_timeout string 60,

to set the DHCP time-out to 60 seconds.

There might be some circumstances when you have a preseed file you want
to use both on a network with DHCP and on a network without it. There
is a way to configure that with preseeding. Combine all of the netcfg

ptg

options you would use for a DHCP install with the static settings, except
comment out or remove the disable_dhcp option. Finally, add the follow-
ing options to the preseed:

d-i netcfg/dhcp_failed note
d-i netcfg/dhcp_options select Configure network manually

With these options in place, on networks where DHCP works, the install
will use those settings. In case DHCP fails, the installer will then fall back
to your static settings.

Partitioning
As you saw in the installation chapter (Chapter 1), there are many different
ways to partition an Ubuntu server, and so it should be no surprise that
there are also many preseeding options for partitioning. First, let’s break
down the options I used in my default preseed.cfg:

d-i partman-auto/method string regular
d-i partman-auto/purge_lvm_from_device boolean true
d-i partman-lvm/confirm boolean true
d-i partman-auto/choose_recipe select atomic
d-i partman/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true

With these options, the installer will simply select the first available disk it
can find and then overwrite it with one big / partition and a swap parti-
tion. For something so basic it certainly took quite a few options, so let’s go
through these options one by one and discuss what part they play.

� partman-auto/method
This option defines what partitioning method to use for the auto-
matic partitioning and can accept the options regular, lvm, or crypto.
As the options suggest, the latter two set up partitions as LVM or
encrypted volumes.

� partman-auto/purge_lvm_from_device and partman-lvm/confirm
These options just save you from having to acknowledge warning
prompts in the installer. The former option will purge any old LVM

Preseeding 91

ptg

configuration from the disk if it exists, and the latter confirms writing
any LVM partitions you may have set up.

� partman-auto/choose_recipe
The Ubuntu partition program allows a few different predefined par-
titioning recipes from which the user can choose. The atomic recipe
sets up everything on a single partition. If you set the option to home,
it will separate out a /home partition as well, and if you set it to multi,
you will get separate /home, /usr, /var, and /tmp partitions.

� partman/confirm_write_new_label, partman/choose_partition,
and partman/confirm
These are more options that tell the installer to proceed with parti-
tioning without extra user confirmation. If you did, however, want to
require a user to confirm settings (possibly while debugging your pre-
seed file), you could comment out one of these options.

Expert Partition Recipes The predefined partition recipes that Ubuntu
provides are probably adequate for basic servers, but most administrators
I know have strong feelings about how their systems are partitioned. In
these cases you will likely want to create your own custom partitioning
scheme for your servers. In the preseeding world this is known as an
expert_recipe. Custom partitioning recipes can get rather complex as
there are a lot of options available. The complete documentation is
available at http://d-i.alioth.debian.org/svn/debian-installer/installer/doc/
devel/partman-auto-recipe.txt, but even that can be difficult to follow
without some examples.

First let’s examine a basic partitioning recipe that is provided in a lot of the
example preseed files in official documentation. The following recipe will
set up a small /boot partition and a swap partition and use up the rest of
the disk for /:

d-i partman-auto/expert_recipe string \
boot-root :: \

40 50 100 ext3 \
$primary{ } $bootable{ } \
method{ format } format{ } \
use_filesystem{ } filesystem{ ext3 } \
mountpoint{ /boot } \

. \

92 Chapter 4 � Automated Ubuntu Installs

http://d-i.alioth.debian.org/svn/debian-installer/installer/doc/devel/partman-auto-recipe.txt
http://d-i.alioth.debian.org/svn/debian-installer/installer/doc/devel/partman-auto-recipe.txt

ptg

500 10000 1000000000 ext3 \
method{ format } format{ } \
use_filesystem{ } filesystem{ ext3 } \
mountpoint{ / } \

. \
64 512 300% linux-swap \

method{ swap } format{ } \
.

Note that this entire configuration is intended to appear on a single line, so
to make it more readable you are allowed to use the \ symbol at the end of
the line to extend your options to multiple lines, as with shell scripts.

The first line labels this recipe as boot-root, and all of the rest of the lines
are considered part of the boot-root recipe. The way that the lines are for-
matted separates each of the three partitions from the others. First let’s
take a closer look at the /boot partition:

40 50 100 ext3 \
$primary{ } $bootable{ } \
method{ format } format{ } \
use_filesystem{ } filesystem{ ext3 } \
mountpoint{ /boot } \
.

The first line has four different fields corresponding to the minimal size of
the partition, the priority, the maximal size, and the parted-style file sys-
tem. All disk sizes in this file are in megabytes, so here we would have a
disk that is at least 40Mb but if available could grow up to 100Mb, and it is
a standard Linux partition with an ext3 file system. If you compare this
line with the corresponding line for the swap partition, you will notice that
for its maximal field it uses 300%. When a percentage is used, the size is
determined based on the amount of RAM on the system. What 300%
means in this case is that the swap partition’s maximal size will be 300% of
the amount of RAM on the machine.

The priority field deserves a little extra description. It also represents a
partition size in megabytes and usually is set to some value between the
minimal and maximal values. The installer uses the priority setting of each
partition when it decides how much of the available space to give each par-
tition. The higher the priority compared to that of other partitions, the

Preseeding 93

ptg

more likely it is that a particular partition is going to get the space. In fact, for
some small partitions you might even want to set the priority higher than
the maximal value if you want to make sure it gets enough space (or you
could just increase the minimum value). Ultimately this is another exercise
in trial and error to make sure all of your partitions get enough space.

The next line, $primary{ } $bootable{ }, sets two different options for the
partition. The first makes the partition the primary partition (if that is
possible; it’s worth noting that the partitions will be created in the order in
which they are listed in this file). The second option sets the bootable flag
on this partition.

The third line tells the partition to be formatted. The method{ } setting
takes three different arguments: format (formats the partition), swap (for-
mats the partition as swap space), or keep (keep the current partition as it
is and do not format it). The format{ } argument is also needed to ensure
that this partition is formatted. If the file system you have chosen for a par-
tition supports labels, you can also add the label{ } option here to assign
it a label. So to label a partition boot you could add label{ boot }.

Whereas the third line defines that the partition should be formatted, the
fourth line defines how it should be formatted. The use_filesystem{ }

option tells the installer that this partition will have a partition on it, and
the filesystem{ } option defines which file system to format it with.

The fifth line contains the mountpoint{ } option, which tells the parti-
tioner where to mount this partition on the final installed system. The
installer will take care of the /etc/fstab settings for you, but you can also
add special mounting options for a partition if you wish. For instance, to
mount a partition read-only, you would typically add ro to the list of
mount options in /etc/fstab. In this case you would add a line containing
options/ro{ ro }. If you wanted to add the noatime option as well (stops
the logging of A time on a file system, which can boost its performance),
you would add options/noatime{ noatime }.

Note that each partition uses a single period at the end of the last line to
signify the end of its options and separate it from any other partitions you
might define.

94 Chapter 4 � Automated Ubuntu Installs

ptg

LVM You can also configure LVM partitions in your preseed file with
only a few changes. First, change the partman-auto/method option from
regular to lvm and then add lvmok{ } to each partition you want to use
LVM. However, you will get a warning in your install if you haven’t
configured a non-LVM /boot partition. A simple way to solve this is to be
sure that your expert recipe has a /boot partition configured without
lvmok{ } in it. A simple example uses the expert recipe I listed above and
adds an extra option lvmok{ } to the root and swap partitions. The final
expert recipe will look like the following:

d-i partman-auto/expert_recipe string \
boot-root-lvm :: \
40 50 100 ext3 \

$primary{ } $bootable{ } \
method{ format } format{ } \
use_filesystem{ } filesystem{ ext3 } \
mountpoint{ /boot } \

. \
500 10000 1000000000 ext3 \

method{ format } format{ } \
use_filesystem{ } filesystem{ ext3 } \
mountpoint{ / } \
lvmok{ } \

. \
64 512 300% linux-swap \

method{ swap } format{ } \
lvmok{ } \

.

Finally, you can create your own custom LVM physical volume in your
partition recipe. Here is an example physical volume that will consume the
entire /dev/sda drive and set up a volume group named vg00. Note that the
method{ } option is set to lvm in this case.

100 1000 1000000000 ext3 \
$defaultignore{ } \
$primary{ } \
method{ lvm } \
device{ /dev/sda } \
vg_name{ vg00 } .

When you set up your own volume groups, you might also want to control
which volume groups particular partitions are a part of. Use the in_vg{ }

Preseeding 95

ptg

96 Chapter 4 � Automated Ubuntu Installs

option to specify which volume group a particular partition is a member
of and lv_name{ } to name the logical volume. For instance, if I wanted the
swap partition I created above to be a part of vg00 explicitly and labeled
testswap, I could change it to the following:

64 512 300% linux-swap \
method{ swap } format{ } \
lvmok{ } \
invg{ vg00 } \
lv_name{ testswap } \

.

NOTE Since each line in these partition declarations is a continuation of the previous line, you can
separate each option on its own line or put multiple options on the same line—it’s up to
you. Just make sure to use the \ symbol at the end of each line and use a . at the end of
each partition.

Packages and Mirrors
What differentiates one type of server from another is what services it
runs, and on Ubuntu that ultimately comes down to which packages you
decide to install on the system. While you could certainly use the installer
just to set up a base install image and then go in and add packages yourself
later, if your goal is complete automation you should look into the package
settings built into the preseed process.

The basic package options in the preseed file are pretty straightforward
and self-explanatory. Let’s start with the options I used in my default pre-
seed file:

d-i mirror/country string US
d-i mirror/http/proxy string
d-i pkgsel/install-language-support boolean false
d-i pkgsel/update-policy select none
tasksel tasksel/first multiselect standard, ubuntu-server

The first option defines what Ubuntu mirror to use to retrieve packages
and updates (the default mirror for the United States). I don’t use a proxy,
but I also didn’t want to get prompted for it, so I left this option blank. I
didn’t want to install additional language packages, so I set pkgsel/

ptg

install-language-support to false. The pkgsel/update-policy option lets
you define whether the system will apply updates automatically. We set
this to none so any updates must be applied manually. Finally, you can see
that you can also preseed values for tasksel; in my case I told it to select
the standard packages along with the ubuntu-server task. I could have also
added other tasks that are available via the manual tasksel process such as
lamp-server if I had wanted. Sometimes the extra packages you want to
install aren’t part of specific tasks. In that case you can use the pkgsel/
include option to add a list of specific packages the installer will add for
you. This example adds the openssh-server and build-essential packages:

d-i pkgsel/include string openssh-server build-essential

Custom Package Repositories In addition to the standard settings you
need to define, there are a number of tweaks you can make to the APT
configuration within your preseed file. For instance, you can choose which
repositories to include within APT. The values below include the
restricted, universe, and backports repositories:

d-i apt-setup/restricted boolean true
d-i apt-setup/universe boolean true
d-i apt-setup/backports boolean true

You might also decide you want to specify from which Ubuntu mirror to
retrieve packages, because either you have your own repository or you
know of a repository that is faster for you. In either case, all you need to do
is set the mirror/country option to manual and then specify which mirror
to use. I left the mirror/http/proxy value blank, but if you use an HTTP
proxy you would put its value there.

d-i mirror/country string manual
d-i mirror/http/hostname string us.archive.ubuntu.com
d-i mirror/http/directory string /ubuntu
d-i mirror/http/proxy string

d-i apt-setup/local0/repository string \
http://apt.example.net/ubuntu &releasename; main

d-i apt-setup/local0/comment string local server
d-i apt-setup/local0/source boolean true
d-i apt-setup/local0/key string http://apt.example.net/key

Preseeding 97

ptg

This example adds the local repository stored at apt.example.net and
labels it local server. The apt-setup/local0/source line will also add the
source code repository, and the apt-setup/local0/key points to the GPG
key that your APT repository must have set up to sign packages. If you
don’t have this key set up and available, the install will complain.

User Settings
One thing you will find in just about every Linux install program is a sec-
tion to configure user accounts. As with every other part of the installer, this
section can be preseeded. Here’s what I used in my default preseed.cfg file:

d-i passwd/user-fullname string Ubuntu User
d-i passwd/username string ubuntu
d-i passwd/user-password password insecure
d-i passwd/user-password-again password insecure
user-setup-udeb user-setup/encrypt-home boolean false

Each field is pretty self-explanatory, but note that I had to specify the pass-
word twice. The last option lets you define whether the home directory is
encrypted. Since this is a server and we want the install to be automated, it’s
simplest if we just set that option to false. Now if you don’t want to list the
password in plain text, substitute the following in the user-password lines:

d-i passwd/user-password-crypted password [MD5 hash]

If you are sure how to figure out an MD5 hash for a particular password,
change the password for a user on another system to the password you
want to use and then see what MD5 hash is set for it in the /etc/shadow file.

Ubuntu will set up the default user with a default UID and group mem-
bership. You can also use preseeded values to override that:

d-i passwd/user-uid string 1010
d-i passwd/user-default-groups string audio cdrom video

One thing Ubuntu does to increase security is to disable the root account by
default. Instead of a root account, users use the sudo program to gain super -
user privileges. You can override this with preseeded values, of course. The
following set of options will set up the root user along with the default user:

98 Chapter 4 � Automated Ubuntu Installs

ptg

d-i passwd/root-login boolean true
d-i passwd/root-password password insecure
d-i passwd/root-password-again password insecure
or encrypted using an MD5 hash.
#d-i passwd/root-password-crypted password [MD5 hash]

Finally, if you want, you can disable the default user account altogether
and stick with only root, although I would discourage this:

d-i passwd/make-user boolean false

GRUB
For the most part you will probably want to stick with the default GRUB
setup for your server, in which case the entries in my sample preseed.cfg
would be all that you need:

d-i grub-installer/only_debian boolean true
d-i grub-installer/with_other_os boolean true
d-i finish-install/reboot_in_progress note

The first option will install GRUB to the MBR if no other operating system
is found. The grub-installer/with_other_os option will additionally set
up any other operating systems it finds on the host. You typically don’t
have a dual-boot setup with a server, but this is probably safe to keep as is.
The final option will preseed away the prompt to reboot the machine so
that it automatically reboots to the newly installed OS.

In some situations you might not want GRUB to be installed on the MBR
but instead at the beginning of a particular partition or to multiple disks
(handy for software RAID). In these cases you can specify the boot device
for GRUB to use:

d-i grub-installer/only_debian boolean false
d-i grub-installer/with_other_os boolean false
d-i grub-installer/bootdev string (hd0,0)

The first two lines disable the default behavior of installing to the MBR,
and the final line specifies which boot device GRUB should use. Note that
it uses GRUB’s syntax for boot devices and not /dev entries. Also, if you

Preseeding 99

ptg

want to install GRUB across multiple devices, just list them one after
another, separated by spaces on the grub-installer/bootdev line.

If you want extra security for your server to protect against users tweak-
ing GRUB to boot into single-user mode, for instance, you have the
option of password-protecting GRUB. This option can also be automated
with preseed:

d-i grub-installer/password password insecure
d-i grub-installer/password-again password insecure

As with the user password settings, you can either use a plain-text pass-
word as shown above, or use an MD5 hash as shown below.

d-i grub-installer/password-crypted password [MD5 hash]

Miscellaneous
Finally, there are a few extra options that aren’t critical but could prove
useful, depending on your environment. For instance, by default Ubuntu
will eject the CD after the install has finished. Well, if you are installing
Ubuntu remotely and are thousands of miles away, that means you have
just one shot at getting the install right before you have to get someone to
reinsert the CD. Instead, you can set a preseed option to disable that:

d-i cdrom-detect/eject boolean false

Alternatively, you may not want to immediately reboot into the new sys-
tem but instead halt it. This could be useful, for instance, if you wanted to
build out a cluster of machines ahead of time but won’t be using them
immediately.

d-i debian-installer/exit/halt boolean true

Dynamic Preseeding
There is incredible flexibility in preseeding your install process, but as you
develop your preseed infrastructure, ultimately you will find that one pre-
seed configuration file won’t work for all of the different servers you want
to install. At that point you will probably develop a second, third, or fourth
preseed.cfg file for those circumstances and then manually point to those

100 Chapter 4 � Automated Ubuntu Installs

ptg

files on the command line. That works, but it can be a pain to maintain
over time. A better approach is to take advantage of the installer’s ability to
dynamically load preseed settings at different points of the install. That
way you can maintain a base preseed.cfg file that contains options that
work for all of the installs, and then create custom preseed files that con-
tain only what needs to be changed from the base config. Then you can
load those files, and their changes will ultimately overwrite the settings in
your main preseed.cfg.

Chain Loading Preseed Files One way to manage all of your preseed
settings is to separate the differences into multiple files. You could, for
instance, put all of the partitioning information into a partition.cfg file, or
if you have different network settings for each network, you might have
the same base preseed.cfg file but different network.cfg files. Each of these
networks might have its own preseed server that shares the preseed.cfg but
has a custom network.cfg. Within the preseed.cfg file you would then add
a line like the following:

d-i preseed/include string network.cfg

The installer would then retrieve the network.cfg file from the same loca-
tion where it found the original preseed file. You can specify multiple files
on this line; just separate them with spaces. You can also use relative direc-
tory paths if you wish. The installer will start from the directory where the
main preseed file was retrieved and move from there. So if my preseed.cfg
file was at http://example.com/preseed.cfg but my network file was at
http://example.com/network/network.cfg, my include string would read

d-i preseed/include string network/network.cfg

Using static include files such as this can help with organization, but often
what you’ll find is that you want to include only certain preseed files for
certain situations. In this case there is an include_command preseed option
that allows you to write a short shell script that will output the filename to
include. This allows you to choose custom preseed files based on the envi-
ronment. This simplistic example just echoes a particle filename:

d-i preseed/include_command \
string echo partition.cfg

Preseeding 101

http://example.com/preseed.cfg
http://example.com/network/network.cfg

ptg

This feature actually can open up a lot of options for an administrator. For
instance, let’s say that you manage three data centers in New York, London,
and Tokyo. As a good administrator, you have set up a unique subdomain
for each of these data centers, so the New York, London, and Tokyo servers
use ny.example.net, london.example.net, and tokyo.example.net respec-
tively as their domains. More likely than not you would have custom pre-
seed options you would want to set for each of the different data centers,
so you could then put these custom options in ny.example.net.cfg, lon-
don.example.net.cfg, and tokyo.example.net.cfg on the same server as
your generic preseed.cfg file. Then in your preseed.cfg file you could add

d-i preseed/include_command \
string echo `hostname -d`.cfg

The hostname -d command will output a host’s domain name, so if a host
in New York’s fully qualified domain name is web1.ny.example.net, then
hostname -d would output ny.example.net. Our preseed command would
then echo ny.example.net.cfg.

Run Custom Commands During the Install If you find yourself writing
longer and longer one-liners into the include_command option, you will
definitely want to look into some of the other preseed options that allow
you to run entire scripts. There are three different preseed options that
allow you to execute commands within the installer environment.

The first option I will mention is in a way an extension of the include
options. Where those options allowed you to list an additional preseed file
to download and read in, the preseed/run option will instead download
and execute a script of your choice:

d-i preseed/run string command.sh

This command.sh script could perform all of the shell logic you might have
used before in include_command, only now it’s much easier to organize. You
can even read and set preseed values within your script. Just use the deb-
conf-get and debconf-set commands to get and set different preseed set-
tings for your install. For instance, if I wanted to retrieve the preseeded
hostname, I could run

102 Chapter 4 � Automated Ubuntu Installs

ptg

debconf-get netcfg/get_hostname

If I wanted to set that option to web1 from within my script, I would run

debconf-set netcfg/get_hostname web1

The next preseed option that allows you to run commands within your
install is preseed/early_command. This option allows you to specify a com-
mand that will be run as early as possible in the install—basically as soon
as the preseed file is read. This is similar to the preseed/run command,
except that you don’t have to retrieve a script to execute—you can run
shell commands directly from the install environment. If you want,
though, you can make preseed/early_command behave just like preseed/run
with the use of the preseed_fetch command that will retrieve a file from
your preseed server for you. Its first argument is the file to retrieve, and the
second argument tells the command where to place the file it has down-
loaded. In this example I have re-created the functionality of my preseed/
run example from above.

d-i preseed/early_command string preseed_fetch command.sh \
/tmp/command.sh; sh /tmp/command.sh

Whereas the preseed/early_command is executed as soon as possible in the
install process, the preseed/late_command is executed as late as possible.
The early_command is useful to set dynamic values for the installer before it
has started the bulk of the installation process, but the late_command is
handy for running your own custom programs after you know the base
image has been installed. At this phase in the installer, the server’s root par-
tition is still mounted under the /target directory, so you could potentially
chroot into that directory and run commands as though you were running
them directly from the installed server.

As with the early_command, you can use preseed_fetch to retrieve scripts to
run. Some of the most common things you might want to do have been
automated for you with the in-target and apt-install commands. The
in-target command automates the chroot process for you so that any
command you list after in-target will be executed within the installed
environment. The apt-install command will use APT to install any extra

Preseeding 103

ptg

packages you might want to add. The following example will install the
Mutt e-mail client on your server and then dump the current set of envi-
ronment variables into a file in your /root directory:

d-i preseed/late_command string apt-install mutt; \
in-target set > /root/environment

While you can certainly list extra packages to install in other parts of your
preseed.cfg file, the real power here is that with late_command you could
download a script that dynamically pulls information from the environ-
ment and then decides which packages it wants to install based on that.
Later in the chapter, when I discuss how to deploy servers with PXE boot-
ing using both Kickstart and preseeding, I will go into more detail on how
to leverage dynamic scripting in your automated installs.

Kickstart
The second main method you can use to automate Ubuntu server installs
is with Kickstart. Kickstart is a technology used originally by Red Hat that
has been ported for use by Ubuntu. Like preseeding, Kickstart works via a
configuration file with answers to the installer’s questions that you can
grab over HTTP or FTP or from a local file. Kickstart is arguably easier to
use, and since many administrators already have a Kickstart environment
in place for their Red Hat machines, it makes sense to stick with Kickstart
as your main automation tool for Ubuntu as well. Most of the Kickstart
features, but not all, have been ported, but because of the ease of configu-
ration and the benefit of a graphical configuration management tool, I
advocate starting with Kickstart and supplementing it with a preseed file
where necessary.

Basic Kickstart Configuration for CD-ROM
As in the preseeding section of this chapter, I will start with the simplest
Kickstart scenario: a default Ubuntu server installed from the CD-ROM.
Even though the Kickstart file’s options are pretty self-explanatory, the
great news is that there is a graphical program available for Ubuntu that
will help you generate a Kickstart file. Not only does this save you from
looking up the syntax for every Kickstart option, it saves you time—some-
thing a sysadmin never has enough of. As someone who has created plenty

104 Chapter 4 � Automated Ubuntu Installs

ptg

of Kickstart configuration files by hand, I recommend using the GUI as
much as you can to set up your base template and then tweaking the
resulting configuration file by hand only if you need to.

The Kickstart GUI tool is not installed by default on a typical Ubuntu
desktop system, so use your preferred package management tool to install
the system-config-kickstart package. Once it is installed, you can find the
program in Applications->System Tools->Kickstart. As you launch the
program, you will see that it is broken up into a basic two-pane window, as
shown in Figure 4-2. On the left side is the set of configuration categories
you can change, and as you select one of them, the right pane changes to
list the options you can configure. Go through each of the categories and
make sure the default settings match what you want on your server. Also
be sure to go to the Partition Information category and set up your parti-
tions. Unlike with preseeding, you do have to give the Kickstart file some
sort of guide on how to partition the system. Once you finish your settings
in the GUI, click File->Save and save the file to ks.cfg.

Kickstart 105

Figure 4-2 Kickstart Configurator program

ptg

NOTE A great thing about the GUI program is that it already knows the correct syntax to use for
each option, so it makes a great reference for Ubuntu Kickstart options. Just start the pro-
gram and set the options you want to look up, and then click File->Preview. The tool will then
output a sample ks.cfg to the screen so you can see the syntax.

As I mentioned, I will need to tweak this file so that it will create a default
Ubuntu server. Essentially it needs a few server-specific preseed options
that the Ubuntu Server CD-ROM typically provides, along with the list of
default tasks to install. To add those preseed options to the Kickstart file, I
would just add lines to the main configuration section, starting the lines
with the word preseed followed by the particular preseed option I want to
set. All of the extra tasks and packages you need to install on a server are
defined in a %packages section (the different sections of a Kickstart file
are named with a % at the beginning). The two tasks we need for this server
are standard and ubuntu-server. The following is the combined preseed
options and %packages section I appended to the end of the ks.cfg file the
GUI tool created:

preseed base-installer/kernel/override-image string linux-server
preseed pkgsel/language-pack-patterns string
preseed pkgsel/install-language-support boolean false
%packages
@ standard
@ ubuntu-server

Notice that the tasks begin with an @ sign, so if I wanted to select LAMP
Server during the install I could add @ lamp-server to this list. If you want
a complete list of available tasks, run tasksel --list-tasks. You can also
add individual packages to this list; just put each package name on its own
line without the @ in front of it. Since I just wanted a default Ubuntu install
that mirrored my previous preseed.cfg file, I didn’t add any extra packages.
Here is the resulting ks.cfg file:

#Generated by Kickstart Configurator
#platform=x86

#System language
lang en_US
#Language modules to install
langsupport en_US
#System keyboard

106 Chapter 4 � Automated Ubuntu Installs

ptg

keyboard us
#System mouse
mouse
#System timezone
timezone America/Los_Angeles
#Root password
rootpw --disabled
#Initial user
user ubuntu --fullname "ubuntu" --password insecure
#Reboot after installation
reboot
#Use text mode install
text
#Install OS instead of upgrade
install
#Use CDROM installation media
cdrom
#System bootloader configuration
bootloader --location=mbr
#Clear the Master Boot Record
zerombr yes
#Partition clearing information
clearpart --all --initlabel
#Disk partitioning information
part / --fstype ext3 --size 1 --grow --asprimary
part swap --recommended
#System authorization information
auth --useshadow --enablemd5
#Firewall configuration
firewall --disabled
#Do not configure the X Window System
skipx
This section was added by hand
preseed base-installer/kernel/override-image string linux-server
preseed pkgsel/language-pack-patterns string
preseed pkgsel/install-language-support boolean false
%packages
@ standard
@ ubuntu-server

As I did with the preseed file, I set up a single / partition with the --grow
option so that it filled the entire drive (actually I just toggled that setting
within the GUI). Then I copied this ks.cfg file to the same Web server I
used before. One other great thing about using this Kickstart file is that I
don’t have to manually enter a lot of settings at boot. In fact, all I need to
do is replace the file preseed option that is already there with an option
that points to my Kickstart file. Boot the CD-ROM and then press F6 to

Kickstart 107

ptg

see the full list of boot options as before. This time, though, after you back-
space over the file= option, use the ks= option to point to your Kickstart
file. Your final boot prompt will look like this:

ks=http://example.net/ks.cfg initrd=/install/initrd.gz quiet --

Of course, replace http://example.net/ks.cfg with the URL for your
Kickstart file. As with preseeding, the install should complete without any
interaction from you unless any typos or other mistakes were introduced
to the Kickstart file.

Changes and Limitations in Ubuntu Kickstart
As I mentioned before, Kickstart in Ubuntu is a port of the original Red
Hat system. Since Red Hat and Ubuntu are quite different from each other,
not every feature of Red Hat’s Kickstart currently works the same way with
Ubuntu. Also, some additional options needed to be added for Ubuntu.
Next I will discuss some of the major differences you will find between the
two Kickstart systems.

New Options

� Preseed
I already mentioned the new preseed option in my example ks.cfg file.
The basic syntax is

preseed [--owner pkgowner] package/question type value

Honestly, the main difference you will see here as opposed to the syn-
tax in a standard preseed file is that each line starts with preseed
instead of the typical d-i. I said “typical” because while most of the
preseed options you set are installer options, some preseed options
actually don’t start with d-i in a preseed file because they are
owned by a different package. If you run into a setting like that, use
the --owner option set to the argument that would have gone at the
beginning of a preseed file. For instance, tasks that you select in a pre-
seed file look like the following:

tasksel tasksel/first multiselect standard, ubuntu-server

108 Chapter 4 � Automated Ubuntu Installs

http://example.net/ks.cfg

ptg

These settings already are managed in a Kickstart file in the %packages
section, but if they weren’t you could set this setting with

preseed --owner tasksel tasksel/first multiselect \
standard, ubuntu-server

� Account options
Two other major additions in the Kickstart syntax provide extra
options for account management. Because Ubuntu disables the root
user by default, the rootpw Kickstart command now can take the
--disabled option. This disables the root password and gives the
first user root privileges from sudo.

The Ubuntu Kickstart file has also added a user command to add set-
tings for the initial user. The syntax for this command is

user --disabled | username [--fullname "Firstname Lastname"] \
--password insecure [--iscrypted]

This command either takes the --disabled option to disable an initial
user altogether or takes as options the username, optionally the user’s
full name, and finally the password. By default the password is in
plain text, but you can optionally list the MD5 hash for the password;
just be sure to add the --iscrypted option so that Kickstart knows.

Limitations Currently the Ubuntu Kickstart does not implement the full
range of features of Red Hat’s Kickstart. These limitations are one reason
for advocating a combination of Kickstart and preseeding. The Kickstart
file can take care of the base configuration, and where features aren’t
available, they can be supplemented by preseed options. Here is a list of
major features not yet implemented in Ubuntu’s Kickstart:

� There is no LDAP, Kerberos 5, Hesios, or Samba authentication.

� There are no bootloader --linear, --nolinear, or --lba32 options
for lilo.

� There is no lilocheck command.

� Ubuntu handles system upgrades outside of the Kickstart file.

Kickstart 109

ptg

� Partitioning in Ubuntu’s Kickstart is not yet as full-featured. As a
result, if you have more sophisticated partitioning in mind, I recom-
mend supplementing this with preseed options. Here are the current
partitioning limitations:

� Can partition only the main disk

� No LVM configuration

� No bad sector checks

� No RAID partitions

� You cannot restrict a partition to a particular disk or specify the start-
ing or ending cylinder.

� There is no support for a supplemental driver disk during install.

� The device command is not supported.

� Firewall configuration is not supported.

� There is no automated discovery of Kickstart source via DHCP; you
must specify Kickstart source explicitly.

� NFS and local disk are not supported as installation sources.

� The xconfig --monitor option is not supported (selects a specific
monitor name).

� Package groups in Ubuntu and Red Hat have different names and
under Ubuntu, package groups reference Ubuntu tasks instead.

� You cannot exclude packages in the %packages section.

� You can use shell scripts only in pre- and post-installation sections.

Run Custom Commands during the Install
Like preseeding, Kickstart supports running custom commands during
the install. Also like preseeding, this is done via a pre-install and a post-
install script. In a Kickstart file these are defined in %pre and %post sec-
tions. Any shell commands you place in those sections will be executed
immediately before or after the install process, respectively. A nice feature
of these scripts in Kickstart is that they can span multiple lines as long as
they stay within the %pre or %post section.

110 Chapter 4 � Automated Ubuntu Installs

ptg

NOTE Even though it’s easy to put a large shell script in the %pre and %post sections, once your
scripts get to a certain complexity, you should probably consider putting them into a script
on your Kickstart server that you then retrieve via wget and execute. An extra benefit of
this approach is that you could perform logic within the %pre and %post sections to pull
custom shell scripts based on the type of server you are installing.

Probably the simplest way to start your pre- or post-installation script is
with the Kickstart Configurator tool. Each installation script is set up as a
category in the left pane with a section in the right pane where you can
write your script. You can even specify a custom interpreter for your shell
script via the GUI. Even the GUI provides a warning in these sections that
a mistake in these shell scripts can cause the Kickstart as a whole to fail.

An important distinction to make between the pre- and post-installation
scripts is that the pre-installation script is run within the installer environ-
ment whereas the post-install script by default is run within a chroot envi-
ronment inside the installed system. That means that you can install
additional packages or perform other custom tweaks within the installed
system in the post-install section, while in the pre-install section you would
mostly want to tweak preseed settings.

PXE Boot Server Deployment
While the examples I gave earlier are a good place to start, when you want
to automate server installs, you ultimately need to set up a PXE boot server
to manage the process. After all, do you really want to manually go to each
new server and insert a CD-ROM? What if your server is on another conti-
nent or you have 200 servers to install? With PXE boot deployment, your
new server boots from the network, pulls down its install image from the
PXE server, and then starts the installation process—all over the network.

There are a number of different services you need for PXE boot deploy-
ment to work:

� A DHCP server configured for PXE booting to give each install an IP
address and point it to the TFTP server and boot program to load

� A TFTP server to serve the PXE boot loader program over the network

� A Web server to host any Kickstart and preseed files and any custom
scripts

PXE Boot Server Deployment 111

ptg

While each of these services could reside on totally different hosts, for my
example I will step you through how to set up each of them, starting with
the same default Ubuntu image with the same default settings I have been
using so far in this chapter. In this example I will set up a PXE server with
an IP address of 10.1.1.5. On this network my gateway router is at 10.1.1.1
and my DNS servers are at 10.1.1.2 and 10.1.1.3.

DHCP
The first step is to set up a DHCP server that can hand out IP addresses to
each installation candidate. First install the dhcp3-server package:

$ sudo apt-get install dhcp3-server

By default your DHCP server won’t be configured. All you really need to
get everything started is a short subnet section in the /etc/dhcp3/dhcpd
.conf file. When you open the file with your preferred text editor, you will
notice there is a basic skeleton of a configuration there along with many
commented-out examples. Just go to the bottom of the file and add the
following subnet section:

subnet 10.1.1.1 netmask 255.255.255.0 {
option domain-name-servers 10.1.1.2, 10.1.1.3;
option routers 10.1.1.1;
range dynamic-bootp 10.1.1.50 10.1.1.99;
next-server 10.1.1.5;
filename "pxelinux.0";

}

I will go more into overall DHCP configuration in Chapter 5, but here I
have told DHCP to answer queries on the 10.1.1.0/255.255.255.0 subnet. I
have listed the two DNS servers on that network along with the router to
use. The dynamic-bootp line defines the range of IP addresses this DHCP
server will hand out. In this case I will hand out addresses between
10.1.1.50 and 10.1.1.99. The next-server line configures the IP address for
TFTPD server to use so that any hosts that PXE boots can retrieve their
boot loader (in this case this server) via TFTPD. The filename line tells it
the name of the file to retrieve. More on that in the next section.

112 Chapter 4 � Automated Ubuntu Installs

ptg

Obviously, tweak this sample configuration so that it matches the settings
on your particular network, and then start the DHCP server by typing
sudo service dhcp3-server start. You should see

$ sudo service dhcp3-server start
* Starting DHCP server dhcpd3 [OK]

If the service fails to start because of an error in the configuration file, you
should see a reference to the error in the output on the screen. Track down
that line in the dhcpd.conf file and look for missing semicolons at the end
of lines or any other syntax errors you might have made.

TFTPD
Once the DHCP server is set up, the next step is to install a TFTPD service
on your PXE boot server. Type

$ sudo apt-get install tftpd-hpa

and APT will pull down the TFTPD server and the openbsd-inetd package
it depends on. As this service is managed by inetd, it will be started only
when a user accesses UDP port 69 on this machine. The firewall is disabled
by default in my Kickstart and preseed examples, but if you have enabled
it, be sure to open a port for UDP port 69.

Configure Pxelinux
Now that TFTPD is installed, you are ready to install and configure
pxelinux. Pxelinux is a component of the syslinux package that provides a
boot loader for CD-ROMs (including Ubuntu) called isolinux, a standard
boot loader known as syslinux, and a PXE boot loader called pxelinux.
While you could install the syslinux package and copy the files yourself,
Ubuntu has already provided a netboot configuration ready for you to use
on its mirrors. All you have to do is go to the TFTPD root directory and
then download and extract the netboot tarball for your Ubuntu version.
For instance, here are the steps to grab a netboot tarball for Lucid Lynx:

$ sudo cd /var/lib/tftpboot
$ sudo wget http://us.archive.ubuntu.com/ubuntu/dists/lucid/main/
installer-i386/current/images/netboot/netboot.tar.gz

$ sudo tar -xzvf netboot.tar.gz

PXE Boot Server Deployment 113

ptg

This tarball already contains the pxelinux.0 binary, an excellent sample
pxelinux configuration file in pxelinux.cfg/default, and a series of boot
menus and help documents under the ubuntu-installer directory.

When pxelinux loads, it will search the pxelinux.cfg directory on the TFTP
server for a number of different configuration files. You can take advantage
of this search order to pass custom settings to particular hosts. Pxelinux
will search for files in the following order:

� Files named 01-MACADDRESS with hyphens between each hex pair.
So for a server with a MAC address of 88:99:AA:BB:CC:DD, a configu-
ration file that would target just that machine would be named 01-88-
99-aa-bb-cc-dd (and I’ve noticed that it does matter that it is lowercase).

� Files named after the host’s IP address in hex. Here pxelinux will drop a
digit from the end of the hex IP and try again as each file search fails.
This is often used when an administrator buys a lot of the same brand of
machine, which will often have very similar MAC addresses. The admin-
istrator can then configure DHCP to assign a certain IP range to those
MAC addresses. Then a boot option can be applied to all of that group.

� Finally, if no specific files can be found, pxelinux will look for a file
named default and use it.

For this example we will stick with the pxelinux.cfg/default configuration
file provided by netboot.tar.gz. You can always create a custom configura-
tion file later on for specific servers, and there are a number of different
ways to organize and define separate install options, as I will discuss next.

The great thing about using Ubuntu’s netboot tarball is that it sets up a
nice PXE boot environment out of the box with menus, help, and most of
the hard work already done for you. All you need to do is tweak the default
so that it points to your Kickstart file. Open /var/lib/tftpboot/ubuntu-
installer/i386/boot-screens/text.cfg in your favorite text editor and you
will see the following lines:

default install

label install
menu label ^Install
menu default

114 Chapter 4 � Automated Ubuntu Installs

ptg

kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz --

quiet
label cli

menu label ^Command-line install
kernel ubuntu-installer/i386/linux
append tasks=standard pkgsel/language-pack-patterns=

pkgsel/install-language-support=false vga=normal initrd=ubuntu-
installer/i386/initrd.gz -- quiet

The default line tells pxelinux that the section labeled install is the one
to load by default if a user just presses Enter at the boot prompt. The label
install section defines a particular configuration a user can select. Every
section that begins with label defines another configuration. As you look
through this configuration file, you will see a number of different labels
already set up for you. You can choose between different sections by typing
the specific label at the boot prompt and pressing Enter. So while I could
just hit Enter to select the section above labeled install, since it is set as
the default, I could also type install at the boot prompt and press Enter.
All we need to do to this file is change the default boot options so that they
also point to our Kickstart file. To do this I just add my options to the
append line. The beginning section of the file changed from this:

default install
label install

menu label ^Install
menu default
kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz --

quiet

to this:

default install
label install

menu label ^Install
menu default
kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz

ks=http://10.1.1.5/ks.cfg -- quiet

Save your changes and exit your text editor. Pxelinux is now configured
and you are ready to move on to the final step.

PXE Boot Server Deployment 115

ptg

116 Chapter 4 � Automated Ubuntu Installs

Web
The last step in the process is to set up a Web server to host your Kickstart
and preseed files and any custom scripts you might have. First install the
apache2 package, which will provide your Web server software and all its
necessary dependencies:

$ sudo apt-get install apache2

The apache2 package will automatically set up and start a functioning Web
server for you with a default docroot of /var/www. I won’t cover any more
advanced configuration of Apache here because all we want is a Web server
to host a few text files. At this point all you need to do is move your ks.cfg
file to /var/www on this server. You will need to make only one change to
your ks.cfg file for PXE booting. Since we won’t be pulling down files from
the CD-ROM, we need to tell our Kickstart file to grab files from an
Ubuntu mirror, so find and change the line that reads

cdrom

to

url --url http://us.archive.ubuntu.com/ubuntu

NOTE Since this server will be pulling all of its packages directly from an Ubuntu mirror, the instal-
lation will undoubtedly take longer than it would from the CD-ROM. If you plan to do a lot of
automated Ubuntu installs, you will probably want to consider setting up your own mirror of
the Ubuntu archive.

Before you go any further, try to access your ks.cfg file either from a Web
browser or using a tool like wget and make sure that Apache is serving that
file. If you can’t access the file, check the Apache error logs in /var/log/
apache2/error.log for clues as to what may be wrong, and check the per-
missions on ks.cfg to make sure that it is world-readable. If not, type chmod
a+r ks.cfg to make it so.

Test Your PXE Server
At this point you should be ready to test your PXE server with a new
install. There’s no single instruction on how to set a server to PXE boot.

ptg

On some servers it’s just a matter of hitting a function key to get a list of
boot options and then selecting network boot. On other servers you need
to go into the BIOS and change the boot order. Still other servers provide a
function key that automatically netboots. You will need to research how to
tell your particular server to netboot and also make sure that it is con-
nected to the same subnet as your PXE boot server.

Once you PXE-boot your server, you will be greeted with an Ubuntu menu
as shown in Figure 4-3. Since we set up the default label to boot with our
Kickstart options, all we need to do here is press Enter.

NOTE Even this automated install requires some user interaction since you need to at least hit
Enter at every boot prompt to start the installation process. This is a safety mechanism in a
sense, since what happens if six months from now one of your servers reboots and then
netboots? If everything were completely automated, that server would start the installation
process again and potentially overwrite all of its current files—which could be a very bad
thing. Now for some organizations this is desirable behavior (particularly for large clusters
of identical machines). They have put in appropriate safeguards so that no machine boots on
the network unless they want it to, and if it does, they definitely want it to perform a reinstall.
If you want a 100% automated install that requires no user interaction apart from turning on
the server, then just locate the TIMEOUT value in the pxelinux.cfg/default file. By default it is
set to 0, which means that it will never time out. Just change that to a 1 and any server that
boots and grabs that configuration file will automatically load the default label after a one-
second time-out.

PXE Boot Server Deployment 117

Figure 4-3 Ubuntu PXE boot menu

ptg

Customize Automated Installs
You will quickly realize that one size does not fit all when it comes to auto-
mated server deployments. As you start to expand your base Kickstart file
into multiple offshoots, you will find that there are about as many ways to
organize such a process as there are sysadmins. Instead of covering all of
them, I will discuss some of the more popular ways to organize your Kick-
start server for multiple install types.

Two popular ways to customize your automated installs involve changing
settings to the pxelinux menu, and using DHCP to bypass the menu alto-
gether and automatically install Ubuntu on any server that boots on the
network. Each approach has its advantages and disadvantages. With the
pxelinux menu approach, the administrator can provide one final confir-
mation before a machine starts the installation process. That way you pre-
vent a machine that accidentally boots over the network from overwriting
its settings. Another advantage is that you don’t have to look up a machine’s
MAC address ahead of time and set up a special configuration option for
each server. You get to specify at the boot prompt what sort of server you
wish to install and it goes from there.

The main advantage to the DHCP approach is that it provides you with a
completely unattended install. All you have to do is set up DHCP ahead of
time, and then any time in the future once the server is powered on and
netboots for the first time, it will automatically install itself. Some admin-
istrators even get the list of MAC addresses from their vendor ahead of
time so their DHCP server is ready before the machines even arrive. Once
they arrive and are physically installed, anyone could then power on the
machines when it’s time for them to go live.

Multiple Kickstart Files
Since the default pxelinux configuration file that Ubuntu includes already
sets up a menuing system for you, why not use it to your advantage? You
can set up any number of different boot options and assign them differ-
ent labels. Let’s say, for instance, that you wanted to be able to choose
among three different Kickstart files: the default, one specifically for a
Web server, and one for a MySQL server. We already have the default
Kickstart configured:

118 Chapter 4 � Automated Ubuntu Installs

ptg

default install
label install

menu label ^Install
menu default
kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz

ks=http://10.1.1.5/ks.cfg -- quiet

So all we need to do is clone the label install section twice and tweak
each section to point to our other Kickstart files:

default install
label install

menu label ^Install
menu default
kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz

ks=http://10.1.1.5/ks.cfg -- quiet
label web

menu label ^Install
menu default
kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz

ks=http://10.1.1.5/ks-web.cfg -- quiet
label mysql

menu label ^Install
menu default
kernel ubuntu-installer/i386/linux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz

ks=http://10.1.1.5/ks-mysql.cfg -- quiet

As you can see, the only real change I made in each section was to point to
a different Kickstart file I had created. Now once I boot, I can type web or
mysql and then hit Enter to select those particular options.

Boot Cheat Codes
Another useful way to differentiate between different install types is to use
cheat codes (a name I’m borrowing from Knoppix). A cheat code is an
option you type on the command line that gets passed down to the system.
The interesting thing about the boot prompt is that everything that is on
the boot prompt is accessible during the install via the /proc/cmdline file.
If you want to create custom cheat codes, all you need to do is provide a

Customize Automated Installs 119

ptg

pre- or post-install script that parses /proc/cmdline and stores those set-
tings into environment variables. Then you can refer to those environment
variables in your script and make custom changes to the pre- or post-install
process based on them.

For instance, let’s say we want to define two cheat codes at the boot
prompt: mytype, to label what type of server it is (Web, MySQL, DNS), and
myraid, which tells whether it should use RAID or not. Instead of setting
up three different Kickstart files, I could use a single Kickstart file that then
has logic in its pre-installation script to parse these options and change
settings based on them. Here’s a sample pre-install script that would parse
the /proc/cmdline file, set the environment variables, and then perform
special actions based on them:

%pre
for i in `cat /proc/cmdline` ; do

echo $i | grep -iq MYTYPE=
if [$? -eq 0] ; then

export MYTYPE=`echo $i | awk -F"=" '{ print $2; }'`
fi
echo $i | grep -iq MYRAID=
if [$? -eq 0] ; then

export MYRAID=`echo $i | awk -F"=" '{ print $2; }'`
fi

done

if [$MYTYPE == "web"]; then
Change preseed settings for web servers
elif [$MYTYPE == "mysql"]; then
Change preseed settings for mysql servers
elif [$MYTYPE == "dns"]; then
Change preseed settings for dns servers
fi

if [$MYRAID]; then
Change preseed settings for RAID
fi

Now at the boot prompt if I wanted to set up a MySQL server with RAID, I
could type install mytype=mysql myraid=1. Again, the advantage to this
approach is that it allows you to maintain a single Kickstart file that has the
logic within it to change settings for specific server types. The downside to

120 Chapter 4 � Automated Ubuntu Installs

ptg

this approach is that the resulting Kickstart file can get rather large and
complex over time.

DHCP Selection
This approach works particularly well if your organization uses static
DHCP assignment for your servers. With static DHCP leases, a DHCP
server assigns each host that requests an IP address the same IP address
every time based on that host’s MAC address. Typically in this setup your
server will automatically install a new image whenever it boots off of the
network. You will find this approach popular for large clusters or in envi-
ronments where servers are physically installed sometime before they may
ever get an operating system. Once you change the pxelinux configuration
to automatically install the default image, your DHCP configuration file
controls what each server will ultimately become. All an administrator
needs to do to install Ubuntu on a server is connect it to the network and
turn on the power.

In this scenario you create multiple directories under /var/lib/tftpboot, each
of which contains an extracted copy of the netboot.tar.gz. For instance, if I
wanted to set up three separate configurations for Web, MySQL, and DNS
servers, I could do the following:

$ sudo cd /var/lib/tftpboot
$ sudo wget
http://archive.ubuntu.com/ubuntu/dists/hardy/main/installer-i386/
current/images/netboot/netboot.tar.gz

$ sudo mkdir web mysql dns
$ cd web
$ sudo tar -xzvf netboot.tar.gz
$ cd ../mysql
$ sudo tar -xzvf netboot.tar.gz
$ cd ../dns
$ sudo tar -xzvf netboot.tar.gz

Now I would change the pxelinux.cfg/default files in each of those subdi-
rectories to reflect any special settings I wanted to change. In addition, if I
wanted this installation to require no user interaction at all, I would edit
the pxelinux.cfg/default configuration files and set the TIMEOUT value to 1
so that after one second it will automatically start the installation process.

Customize Automated Installs 121

ptg

Again, if you use this method, put appropriate safeguards in place so that a
machine doesn’t accidentally netboot and overwrite its settings.

Once my TFTP server is set up, the bulk of the configuration occurs on the
DHCP server. I need to modify my /etc/dhcp3/dhcpd.conf file so that,
depending on which MAC address requests a lease, it gets pointed to a par-
ticular pxelinux.0 file under one of those subdirectories. For each MAC
address I would add an individual section. Below I have added three spe-
cific servers, each pointing to a Web, MySQL, or DNS configuration:

host web1 {
hardware ethernet 00:0c:c0:ff:ee:00;
option host-name "web1";
fixed-address 10.1.1.101;
filename "/web/pxelinux.0";

}
host mysql1 {

hardware ethernet 00:0c:c0:ff:ee:01;
option host-name "mysql1";
fixed-address 10.1.1.101;
filename "/mysql/pxelinux.0";

}
host dns1 {

hardware ethernet 00:0c:c0:ff:ee:02;
option host-name "dns1";
fixed-address 10.1.1.101;
filename "/dns/pxelinux.0";

}

The main downside to this approach is that it means you have to maintain
multiple pxelinux configuration files on your TFTP server. Another down-
side is that you have to look up the MAC address for each server before you
can install anything on it. Of course, if you use static DHCP, that is a step
you already have to perform anyway.

One benefit to this method, especially if you set the time-out so that a
machine that PXE boots automatically starts installation, is that once you
set up your environment, when a new host appears you just grab its MAC
address and set up the dhcpd.conf file. Anyone at that point can set up
Ubuntu on the server just by connecting to the network and powering on
the server (provided it is set up to boot from the network by default).

122 Chapter 4 � Automated Ubuntu Installs

ptg

DHCP Selection by Subnet
One variation on this method takes advantage of the fact that many
 networks segregate different server types into their own subnets. If your net-
work is like this, then all you need to do is set up different subnet sections
in your dhcpd.conf file for each type of server. For instance, let’s say that all
of my Web servers are on the 10.1.1.0 subnet and all of my MySQL servers
are on the 10.1.2.0 subnet. Instead of setting up a specific section for each
and every server, I could just point each subnet to a particular file:

subnet 10.1.1.0 netmask 255.255.255.0 {
option domain-name-servers 10.1.1.2, 10.1.1.3;
option routers 10.1.1.1;
range dynamic-bootp 10.1.1.50 10.1.1.99;
next-server 10.1.1.5;
filename "/web/pxelinux.0";

}
subnet 10.1.2.0 netmask 255.255.255.0 {

option domain-name-servers 10.1.1.2, 10.1.1.3;
option routers 10.1.2.1;
range dynamic-bootp 10.1.2.50 10.1.2.99;
next-server 10.1.1.5;
filename "/mysql/pxelinux.0";

}

Notice that the next-server section stayed the same in both subnets since
I’m still using the same TFTP server. I’m also assuming that this single
DHCP server serves leases for both subnets. With this type of install envi-
ronment, I can control what gets installed on a server simply by control-
ling which subnet it is a member of. Depending on your environment, this
might be as simple as changing a setting on a switch.

Customize Automated Installs 123

ptg

This page intentionally left blank

ptg

125

5C H A P T E R 5

Guide to Common Ubuntu Servers

ptg

WHILE LINUX HAS BEEN USED AS a desktop operating system for a long time,
it has arguably been used longer and by many more people as a server.
Over the years Linux has accumulated hundreds of different services
either ported from another operating system or developed primarily on
Linux. This means that when you want to use Ubuntu as a server, there are
literally hundreds of different servers Ubuntu could be, many of which
can be installed by a simple call to a package manager.

It would be extremely difficult, if not impossible, to document all of
Ubuntu’s possible services in a book, much less a chapter. What I realize,
though, is that among the hundreds of services you could install, there are
a handful of common services that most administrators deal with on a
daily basis. This chapter covers some of the most common Ubuntu server
types that an administrator will run into. If you are a beginning adminis-
trator, I will provide you with a step-by-step guide to set up what might be
your first DNS server with some common configuration schemes and best
practices. If you are an advanced administrator, think of this chapter as a
guide to the Ubuntu approach to servers. I show you how Ubuntu orga-
nizes configuration files along with any particular tools or shortcuts it pro-
vides for a service. I also cover major file locations so you’ll know exactly
where to look for the core configuration files, which init scripts are impor-
tant, and where logs are stored.

Entire books have been written about how to administer basically every
service discussed here. I don’t attempt to document all of the major
Apache modules, for instance, nor do I discuss every configuration option
for BIND or Postfix. What I give you is a good departure point with work-
ing example configuration files. A sysadmin is always busy, so where
Ubuntu has provided time-saving shortcuts, I point them out. After all,
you only have to do something the hard, “old-school,” time-consuming
way so many times before it loses its mystique.

DNS Server
The first service I discuss also happens to be one of the oldest. DNS, or
Domain Name System, is one of the fundamental services that keep the
Internet running. In a nutshell, DNS is the service that among other things
translates a hostname, such as www.ubuntu.com, into an IP address, like

126

www.ubuntu.com

ptg

91.189.94.8. DNS servers maintain a local directory of names and IP
addresses for which they are authoritative, so that if you ask a DNS server
for the IP address for a name for which it is authoritative, it should gener-
ally respond with the answer. Many DNS servers can serve recursive
requests as well. With a recursive query, a DNS server might not itself con-
tain the record you are looking for, but it can go out on the Internet and
find the answer for you.

There are many different programs that provide DNS services on Ubuntu,
but the most common has also been around the longest—BIND. BIND,
short for Berkeley Internet Name Domain, has many advanced features,
but with many features often comes a more complicated configuration
file. Honestly, what trips up most administrators is simply building a
BIND server from scratch, but as you will see, under Ubuntu the heavy
lifting has already been done for you.

Install BIND
There are a few ways to install BIND under Ubuntu. During the initial
Ubuntu install you can select DNS Server from the list of server types. If
you have already installed Ubuntu, you can type sudo tasksel to get to the
same menu. Once you select DNS Server and then OK, the bind9 and
bind9-doc packages will automatically be downloaded and installed for
you. Alternatively you can just run

$ sudo apt-get install bind9 bind9-doc

What you will discover (and what I will cover in more detail next) is that
once the Ubuntu BIND package has been installed, you will actually have a
fully configured and functioning name server ready, at least, to act as a
caching name server for recursive queries. Sample configuration files, root
zone files, local zones, and even rndc keys have already been configured for
you.

Ubuntu Conventions
There are a few key file conventions that Ubuntu’s BIND uses that might
be different from what you are accustomed to, depending on what other

DNS Server 127

ptg

Linux distributions you have used. Here are some of the key Ubuntu file
locations:

� /etc/bind/
This directory contains the main BIND configuration file, named.conf,
as well as any individual zone files. Any new master zone files should
also be stored in this directory or, if you have many zone files you
wish to organize, in a subdirectory below /etc/bind.

� /etc/bind/named.conf
This is BIND’s main configuration file and is where you change
BIND’s options and behavior. All of BIND’s individual zone files (files
containing name and IP information) are also referenced here. The
main options that are enabled in BIND are included from a separate
file named /etc/bind/named.conf.options.

� /etc/bind/db.*
As a convention, all zone files start with db. and then some name or
number to identify the particular zone. Names are typically used
when the zone contains traditional forward DNS records (names
mapped to IPs), and numbers are typically used for reverse DNS
records (IPs mapped back to a name). For instance, by default
Ubuntu’s BIND will include a few zone files such as db.root (informa-
tion about the root name servers on the Internet), db.local (localhost
zone information), and db.127 (reverse DNS records for localhost).

� /var/cache/bind
This is BIND’s working directory and where it will store slave zone
files. If your server will act as a slave for a particular zone, configure it
to store its files here.

� /etc/init.d/bind9
This is BIND’s init script. Once you install the bind9 package, it will
automatically be set up to start on system boot, but you can run the
init script manually with /etc/init.d/bind9, or run sudo service bind9.

128 Chapter 5 � Guide to Common Ubuntu Servers

ptg

� /var/log/syslog
This is the default log file for BIND. A number of different services
log to this file, but log entries for BIND will be prefixed by the key-
word named, so if you wanted to see only the BIND log entries you
could run sudo grep named /var/log/syslog.

Caching Name Server
The default Ubuntu BIND configuration is ready out of the box to be a
caching name server. Essentially a caching name server acts as a middle-
man for DNS queries. Once you configure some hosts to point to a
caching name server, when one host requests a particular record, the
caching name server goes out to the Internet, retrieves a record, and stores
that record locally. If a second host requests the same record, and that
record hasn’t expired from the cache, a caching name server will simply
return the cached result. This can dramatically improve the response times
for a network of hosts, especially for Web browsing, since often the same
records (like, say, www.google.com) are requested by multiple hosts.

DNS Master
Caching name servers are very useful, but when most people install BIND,
they intend to host some zone files of their own. When a name server hosts
zone files locally and doesn’t need to retrieve them from any other source,
it is known as a master. When you want to add zones to a DNS server, there
are basically three steps: Create a zone file, add a reference to that zone file
in named.conf, and tell BIND to reload its configuration.

For my example let’s assume that I have a name server inside my network
at 192.168.0.5 and I registered example.net. I want this name server to
have the following entries:

� ns1.example.net points to 192.168.0.5 (the name server itself).

� example.net also points to 192.168.0.7.

� www.example.net points to 192.168.0.7.

� gateway.example.net points to 192.168.0.1.

DNS Server 129

www.google.com
www.example.net

ptg

The simplest way to create a new zone file is to copy one you already have
and change it. In this case the best candidate is the /etc/bind/ db.local file,
so I copy it to db.example.net:

$ sudo cp /etc/bind/db.local /etc/bind/db.example.net

When I open db.example.net in a text editor, I will see the following
 configuration:

;
; BIND data file for local loopback interface
;
$TTL 604800
@ IN SOA localhost. root.localhost. (

2 ; Serial
604800 ; Refresh
86400 ; Retry

2419200 ; Expire
604800) ; Negative Cache TTL

;
@ IN NS localhost.
@ IN A 127.0.0.1
@ IN AAAA ::1

Because this isn’t intended to be a complete guide to BIND I won’t go into
every option in this file, but by default it is configured for a TTL (Time to
Live, the amount of time before a name server that has requested a record
considers it stale) of 604,800 seconds, or seven days. Next it lists localhost
as the SOA (Start of Authority, the server that should be considered the
best source of information), and root@localhost is the contact e-mail
address to use for this host (referenced by root.localhost). Further down,
the file lists localhost as a name server for this zone with an NS record,
then sets localhost’s IP address to be 127.0.0.1 and even adds an IPv6
address for localhost with the AAAA record.

I then changed this record to suit the requirements I set out previously,
and this is the resulting zone file:

;
; BIND data file for example.net
;
$TTL 1d

130 Chapter 5 � Guide to Common Ubuntu Servers

ptg

DNS Server 131

@ IN SOA ns1.example.net. root.example.net. (
2 ; Serial

604800 ; Refresh
86400 ; Retry

2419200 ; Expire
604800) ; Negative Cache TTL

;
@ IN NS ns1.example.net.
@ IN A 192.168.0.6
ns1 IN A 192.168.0.5
www IN A 192.168.0.7
gateway IN A 192.168.0.1

There are a number of things to note in this zone file. For one, I changed
the TTL from seven days to one day. While I could have specified it in sec-
onds, BIND supports shorthand, so I can use 1d to mean one day, or 4h to
mean four hours. I set ns1.example.net as the SOA and root@example.net
as the contact e-mail address. I also set ns1.example.net as the name server
to use for this zone, but notice that the NS record references the name of
the host. Since this name server is in the same domain, example.net, I
needed to make sure I added a record for it here that listed its IP address.
Also note that I didn’t need to add .example.net to any of the A records.

NOTE Be sure once you save your zone file that it has the same permissions and ownership as the
other zone files in the directory—that’s the best way to avoid any permission headaches
later on once you reload BIND.

Now that I have created the zone file, I need to add a reference to it in
named.conf. When I open it with my text editor, I can see a number of
similar zone examples such as the one for the db.local file:

zone "localhost" {
type master;

file "/etc/bind/db.local";
};

So I just add a similar entry to the very bottom of the file:

zone "example.net" {
type master;

file "/etc/bind/db.example.net";
};

ptg

Once I save my changes, I just need to tell BIND to reload its configura-
tion, and then I should be able to query the name server for one of the new
records:

$ sudo service bind9 reload
* Reloading domain name server... bind [OK]
$ nslookup www.example.net localhost
Server: localhost
Address: 127.0.0.1#53

Name: www.example.net
Address: 192.168.0.7

If the BIND reload fails, it will say so on the command line. If that com-
mand-line output doesn’t tell you why BIND refuses to reload, you can
view /var/log/syslog for clues.

DNS Slave
A DNS slave is a DNS server that retrieves its zone information from a dif-
ferent DNS server known as its master. In fact, a BIND server can act as a
master for one zone and a slave for a different zone. Having a master and
one or more slave servers greatly simplifies your DNS administration
because you have to update zone information only on the master and it
automatically propagates to the slaves. When you update a zone on the
master server and increment the serial number inside that zone, once
BIND reloads, all of the slaves get notified that the zone has changed and
will automatically pull down the updates.

Since a slave DNS server retrieves its zone information from the master, its
configuration is much simpler. Provided the master is configured to allow
zone transfers from the slave, on the slave you simply have to add an entry
to /etc/bind/named.conf. For our example, let’s assume I wanted to add a
second name server, ns2.example.net at 192.168.0.10.

Configure the Master Server On my master server, 192.168.0.5, I would
need to edit my db.example.net file and add the references to ns2.example
.net:

;
; BIND data file for example.net

132 Chapter 5 � Guide to Common Ubuntu Servers

ptg

;
$TTL 1d
@ IN SOA ns1.example.net. root.example.net. (

3 ; Serial
604800 ; Refresh
86400 ; Retry

2419200 ; Expire
604800) ; Negative Cache TTL

;
@ IN NS ns1.example.net.
@ IN NS ns2.example.net.
@ IN A 192.168.0.6
ns1 IN A 192.168.0.5
ns2 IN A 192.168.0.10
www IN A 192.168.0.7
gateway IN A 192.168.0.1

Now I need to add a line to the example.net configuration in named.conf
so that it allows zone transfers from 192.168.0.10, so example.net’s entry
in named.conf becomes

zone "example.net" {
type master;
file "/etc/bind/db.example.net";
allow-transfer { 192.168.0.10; };

};

Configure the Slave Server On the slave server I install the bind9 package
either through tasksel or apt-get, and then all I need to do is add a slave
entry for example.net at the bottom of /etc/bind/named.conf:

zone "example.net" {
type slave;
file "/var/cache/bind/db.example.net";
masters { 192.168.0.5; };

};

Reload BIND with sudo service bind9 reload. Once BIND reloads, it will
immediately attempt a zone transfer for example.net from 192.168.0.5.
When it completes the zone transfer, if I check the /var/cache/bind/ direc-
tory I will see that the db.example.net zone file was created there. Now the
next time I want to make a change to db.example.net, I just have to change
the file on the master, update the serial number, and then reload BIND on
the master. The slave will automatically get the updates.

DNS Server 133

ptg

Manage BIND with rndc
So far I have reloaded BIND with the bind9 init script. Ubuntu includes
another tool named rndc that helps you with BIND administration. For
instance, to reload the BIND configuration using rndc, I would type

$ sudo rndc reload

You can pass a number of other arguments to rndc to get more informa-
tion about the BIND service or submit commands to it. One useful aspect
of the rndc command is that if you want an administrator to be able to
update DNS but not have full root privileges, you can give that person sudo
access to the rndc command. If you type rndc with no arguments, you will
get a help page that lists the available commands. Here are some of the
more interesting ones:

� reload—reloads all configuration files and zones. If you specify a spe-
cific zone after the reload command, it will reload only that zone.

� retransfer zone—retransfers the zone whether the serial number has
been incremented or not.

� reconfig—like the reload command, except it only reloads
named.conf and any new zones.

� flush—flushes all of a server’s caches. This is handy on a caching
name server if it is holding on to a stale IP address that is no longer
valid.

� status—outputs some statistics about the current status of the BIND
process, including how many zones it is managing and some statistics
on its current workload.

There are numerous resources available if you want more information
about BIND configuration file syntax or DNS administration in general.
The bind9-doc package includes a series of documentation files under
/usr/share/doc/bind9-doc/ that are a great place to start. For instance, to
view the first chapter of the BIND version 9 HTML manual, type w3m
/usr/share/doc/bind9-doc/arm/Bv9ARM.ch01.html.

134 Chapter 5 � Guide to Common Ubuntu Servers

ptg

Web Server
LAMP is an acronym for Linux Apache MySQL PHP (or sometimes Perl
or Python). It refers to the recognition that a very common Web server
deployment is a combination of the Apache Web server program using
Perl, PHP, or Python for dynamic content and a MySQL database on the
back end, all running on Linux. It has become such a common way to set
up a Web site under Linux that even Ubuntu has grouped all of the neces-
sary packages together.

The fact is, there are many different approaches to LAMP environments.
With high-traffic Web sites often the Web servers run on different hard-
ware from the MySQL database servers. Even if you select the LAMP server
option at install, there might be extra Apache modules or other software
you also need to install. I will cover MySQL servers in the Database Server
section of this chapter, so if you plan to run a full LAMP environment on a
single server, be sure to check out that section as well.

Install a Web Server
There are a few different ways to set up a Web server on a default Ubuntu
server install. Probably the easiest method is to select LAMP Server during
the initial install or afterward with the tasksel tool. This will add the
apache2, apache2-mpm-prefork, mysql-server-5.1, mysql-client-5.1, and
php5-mysql packages along with all of their libraries and other dependen-
cies. Alternatively you could install each of these packages from the com-
mand line with

$ sudo apt-get install apache2 apache2-mpm-prefork \
mysql-server-5.1 mysql-client-5.1 php5-mysql

In either case the package manager will prompt you during the install to
enter a root password for MySQL. This is an optional step, but I highly rec-
ommend you set the password at this point. For one thing, without a pass-
word, anyone on the system can access your databases and change and
delete data. Another less technical reason is that it’s simply easier to specify
it at this stage than to run extra MySQL commands at the command line.
Both the apache2 and mysql init scripts will be configured to start automat-
ically at boot.

Web Server 135

ptg

Now if your Web site does not use a MySQL back end, or you plan to run
MySQL on a separate server, you can skip the mysql-server-5.1 package:

$ sudo apt-get install apache2 apache2-mpm-prefork \
mysql-client-5.1 php5-mysql

Ubuntu Apache Conventions
Like most other distributions, Ubuntu has certain conventions when it
comes to Apache administration. Configuration files are organized in a
particular way, as are administrative tools and logs. If you aren’t used to
the way that Debian and Ubuntu organize Apache, it is quite different
from what you may have seen on other distributions. Here are the major
file conventions for Apache:

� /etc/apache2
All Apache configuration files can be found under this directory. Tra-
ditionally Apache was configured via one large httpd.conf file con-
taining scores of options, settings, and different virtual hosts. Of
course, if you were to simply start with the httpd.conf file here, you
would discover that it is empty. Ubuntu has moved away from the
monolithic httpd.conf model and has split up its configuration across
a number of files and subdirectories.

� /etc/apache2/apache2.conf
This is the main Apache configuration file used by Ubuntu’s apache2
binary. The default apache2.conf is heavily commented, so it works well
as a guide in and of itself to each configuration option and what it does.

� /etc/apache2/envvars
There are a number of environment variables used by different scripts
when Apache starts that define settings like the location of PID files.
Those environment variables are defined here.

� /etc/apache2/ports.conf
This file is used to define which ports Apache listens on when it starts.
The default settings have it listen on the standard port 80 and addi-
tionally port 443 if the SSL module is enabled.

136 Chapter 5 � Guide to Common Ubuntu Servers

ptg

� /etc/apache2/conf.d/
This directory is listed as an included directory in the main
apache2.conf file, which means that when Apache starts it will also
include any configuration files found in this directory and add them
to the overall configuration. Some administrators (such as yours
truly) have in the past used this directory to store all of their virtual
hosts, each separated in its own file, but Ubuntu now has a better
solution, which is mentioned later in the chapter. Instead of contain-
ing virtual host entries, this directory is used for additional Apache
options an administrator (or a package) might want to add separately
from the core apache2.conf.

� /etc/apache2/mods-available/
It always used to be such a pain to add modules to Apache. Once the
module itself was installed, you had to dig through a huge httpd.conf
file and locate a possibly commented-out reference to include the
module and most of the time also had to paste in some sort of IfMod-
ule logic as well just to make it load. Ubuntu offers a simpler, more
modular approach. All of the modules that are available on the system
are represented within this directory by .load and .conf files. The
.load files contain all of the configuration necessary to load the mod-
ules into Apache, and the optional .conf files contain any extra config-
uration Apache may need to use the file after it is loaded. If you are
wondering what modules you have available for your Apache install,
you just need to glance in this directory.

� /etc/apache2/mods-enabled/
This directory operates much like the different runlevel directories in
System V init, so if mods-available is like your init.d directory, this
directory is like rcS.d (if you aren’t sure what I mean by that, check
out my description of System V init in Chapter 2). Basically this direc-
tory contains symlinks to .load and .conf files in the mods-available
directory. When Apache starts, it will scan this directory and load all
of the modules referenced within. So if I wanted to enable the CGI
module, for instance, I could type

$ sudo ln -s /etc/apache2/mod-available/cgi.load \
/etc/apache2/mods-enabled/cgi.load

Web Server 137

ptg

Of course, Ubuntu even provides tools to simplify that. To enable a
module, just run a2enmod followed by the module you want to enable.
To enable the CGI module as I did above, I just run

$ sudo a2enmod cgi

Likewise, there is an a2dismod program that will disable a module for
you. It takes the same syntax as a2enmod, so to disable CGI type

$ sudo a2dismod cgi

� /etc/apache2/sites-available/
Ubuntu organizes Apache virtual hosts similarly to modules. Before
Apache was created, the available Web server software on the market
could host only a single site per physical server. Apache introduced
the concept of virtual hosts, which allowed it to host multiple sites on
the same physical server. Each virtual host could have a completely
different domain name with a completely different document root.
Under Ubuntu, each virtual host, or site, that is available to be served
by Apache on this machine has its configuration in a separate file
under sites-available. By default the only file in there is the aptly
named default file that defines the default virtual host that will show
up if no others are configured, or if no other site’s configuration
matches the hostname that is requested.

� /etc/apache2/sites-enabled/
Like mods-enabled, this directory contains symlinks to configuration
files in sites-available. So when you want to add a new virtual host to
Apache, just create a new configuration file for that host that contains a
complete <VirtualHost> block under sites-available and symlink it here:

$ sudo ln -s /etc/apache2/sites-available/mysite \
/etc/apache2/sites-enabled/mysite

Or you can use the a2ensite script that works just like a2enmod. Just
run a2enmod with the site you wish to enable as an argument. To
enable mysite I would type

$ sudo a2ensite mysite

138 Chapter 5 � Guide to Common Ubuntu Servers

ptg

and to disable it I can use a2dissite:

$ sudo a2dissite mysite

The default site is a special case in that it prepends 000 to its symlink
under sites-enabled to make sure that it loads first and works properly
as the default virtual host.

� /var/www/
This is the default document root for Apache. Any HTML file that is
readable by Apache and placed in this directory will be available once
you point a Web browser at the server. There is already a default
index.html in that directory.

� /usr/lib/cgi-bin/
This is the default location for CGI scripts. Any scripts referenced on
the Web server by /cgi-bin will point here.

� /var/log/apache2/
This is the standard directory where Apache logs are stored. The
access.log file contains information about what files have been
accessed on the Web server, and the error.log file lists any Apache
errors. If, for instance, you have trouble starting Apache, look in
error.log for clues.

apache2ctl
The /usr/sbin/apache2ctl program is the primary command-line pro-
gram you will use to manage Apache under Ubuntu. The syntax for the
command is fairly straightforward. Run apache2ctl from the command
line and pass a single command to it as an argument. The simple com-
mands start, stop, and restart will, as you might imagine, start, stop, and
restart the Apache process respectively. You could also achieve the same
functionality with the apache2 init script, so three commands that do the
same thing are

$ sudo apache2ctl restart
$ sudo /etc/init.d/apache2 restart
$ sudo service apache2 restart

Web Server 139

ptg

140 Chapter 5 � Guide to Common Ubuntu Servers

Stop Apache Gracefully There is a potential risk associated with the
restart and stop commands. When you restart or stop Apache with these
commands, all currently running Apache processes are killed, even if they
are in the middle of serving files to a user. If you issue a restart when a user
is in the middle of loading a page, it will only load as much information as
it currently has and then stall—forcing the user to reload the page. To avoid
this, apache2ctl has provided the graceful and graceful-stop commands.
These commands respectively restart and stop Apache, but when they do,
they wait for each process to finish any outstanding requests first. On an
active site a graceful restart shouldn’t even be noticed by anyone using the
service. In general, unless you know that a site is not actively serving traffic
(or unless you don’t care whether all active connections are closed), you
should use graceful and graceful-stop. The only exception is when you
add new SSL certificates to a site or make other changes that do require a
full Apache restart to take effect.

Diagnostic apache2ctl Commands The other main commands for
apache2ctl provide more diagnostic features. The first, configtest, will
test your current Apache configuration files for errors. This can be very
useful if you decide to automate the deployment of your Apache scripts.
One challenge when you set up a script to deploy configuration files and
restart Apache is that if you have made a mistake in your configuration
files, Apache might not start back up. If you deploy the same file to your
entire Web farm, you could potentially bring the entire farm down with a
single syntax error and a script that blindly deploys and restarts Apache.
With configtest, you can set up logic in your deployment scripts that
restarts Apache only once a server has passed the configtest.

As an Apache server gets traffic, you typically want to get diagnostic infor-
mation from it, such as how many Apache processes are active and what
those processes are doing, and how many open slots you still have available.
The status and fullstatus apache2ctl commands provide you with a lot of
great diagnostic data. The status command outputs a general- purpose
overall status of your Apache server, including how long the server has
been up, how many requests are active, and how many processes are idle,
and in addition outputs an ASCII art map of all available processes with
different letters representing different process states, as shown in Figure 5-1.
The fullstatus command outputs similar information, just more of it
and in more detail.

ptgApache Documentation
While this guide is good enough to get you started, as you develop compli-
cated Web sites of your own, you will need more complete Apache docu-
mentation. Entire books have been written about Apache configuration,
but you can also get great documentation directly from your Ubuntu
server. Just install the apache2-doc package:

$ sudo apt-get install apache2-doc

This package installs the Apache documentation under /usr/share/doc/
apache2-doc/manual in HTML files. You could use w3m on these files
directly, but why not use your desktop’s Web browser instead? The default
Apache virtual host is configured to point to this directory for you. Just
browse to the /manual/ folder on your Web server. For example, if my Web
server were at 192.168.0.5, I could go to http://192.168.0.5/manual/ in a
Web browser and view the complete documentation.

WordPress, a Sample LAMP Environment
There are any number of different Web sites you can set up on an Ubuntu
LAMP stack, but to illustrate how easy it is to set up a new site under

Web Server 141

Figure 5-1 apache2ctl status output

http://192.168.0.5/manual/

ptg

Ubuntu, I walk you step by step through a common LAMP deployment—
a WordPress install. WordPress is popular blogging software that is pack-
aged by Ubuntu and provides a nice, feature-rich platform for one or
multiple blogs.

Install WordPress In this example I run both the Web server and the
MySQL database on the same host, named blog.example.net, so I chose
the LAMP Server task during the install. I’ve also already made sure that
blog.example.net is set up in my DNS server to point to this particular
Web server. Next I use a package manager to install the WordPress pack-
age, which will pull down the WordPress software along with any extra
libraries it needs:

$ sudo apt-get install wordpress

Configure Apache There are a few different ways you can configure Apache
for use with WordPress, and the included example Apache file at /usr/share/
doc/wordpress/example/apache.conf provides the main options you are look-
ing for. The first example in the file provides the best all-around case because
it makes it easy to host multiple WordPress blogs on the same site. Save the
following configuration under /etc/apache2/sites-available/wordpress:

NameVirtualHost *:80

<VirtualHost *:80>
UseCanonicalName Off
VirtualDocumentRoot /var/www/%0
Options All
</VirtualHost>

With the configuration file in place I use a2ensite to enable the site and
a2dissite to disable any default sites that might be there:

$ sudo a2ensite wordpress
$ sudo a2dissite default

Since the configuration uses the VirtualDocumentRoot option, I need to make
sure that the vhost_alias module is enabled, so I use the a2enmod command:

$ sudo a2enmod vhost_alias

142 Chapter 5 � Guide to Common Ubuntu Servers

ptg

Web Server 143

NOTE How did I know that VirtualDocumentRoot needed the vhost_alias module? Well, for
one thing, if you try to reload Apache without the module, Apache will complain about the
unknown configuration option. At that point a quick Web search on VirtualDocument-
Root will point you to the vhost_alias module as the one that provides that feature.

Now I need to create a symlink for my Web site under /var/www and point
it to the root WordPress directory that contains all of the PHP files. If I
wanted to host multiple WordPress sites, I could potentially create mul-
tiple symlinks here.

$ sudo ln -s /usr/share/wordpress /var/www/blog.example.net

Now I can reload Apache:

$ sudo apache2ctl graceful

Configure MySQL WordPress provides a simple script under /usr/share/
doc/wordpress/examples/setup-mysql that will set up a WordPress MySQL
configuration for the specified MySQL user and domain name for the Web
site:

$ sudo bash /usr/share/doc/wordpress/examples/setup-mysql \
-n wordpress blog.example.net

That’s it. The blog is ready to be used. All I need to do at this point is open
http://blog.example.net in a Web browser and I will be greeted with the
WordPress install Web page as shown in Figure 5-2. The final step is to
enter your site name and e-mail address in the fields provided and click
the large button that says Install WordPress. The database will then be set
up for your site and a new page will load that lists your admin username
and temporary password as well as a link to log in to your blog. At this
point the rest of the configuration is up to you. You can change themes,
create a Hello World post, install plug-ins, or, even better, change your
password to something you can remember.

http://blog.example.net

ptg

Mail Server
Along with the Web, e-mail is probably the service most people think of
when they think of the Internet. Like Web servers, mail servers have tradi-
tionally been pretty tricky to set up, and there are many guides and books
on the subject. You will find, though, that mail servers are pretty easy to set
up and use under Ubuntu. Now there are a number of different mail
servers one can choose from, but for this section I am going to discuss
Postfix. For one reason, it is the default mail server Ubuntu uses when you
select “Mail server” in tasksel. Second, it is a good, secure, easy-to-admin-
ister mail server.

Install Postfix
Postfix can be installed with the same methods used by many of the other
services I mention in this chapter. You can choose Mail Server either dur-
ing the initial install or when you run the tasksel program, or alterna-
tively you can type

$ sudo apt-get install postfix

144 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-2 WordPress Web install page

ptg

When you install Postfix, the installer will start the initial Postfix configu-
ration script. This is an interactive script that provides you with a few
common mail server configuration types, and depending on what you
choose, it will ask you a few more questions so that when you are finished,
you should at least have a functional mail server. Keep in mind, though,
that even though the mail server will function, you will have to perform
extra configuration if you want to add spam checking, greylisting, POP or
IMAP servers, or other more advanced options.

Postfix Configuration Types
If this is your first exposure to a Postfix mail server configuration, you
might not be sure exactly which mail server configuration type to choose.
Here are the different configuration types along with why you might want
to choose them:

� No configuration
This option does no Postfix configuration at all. Choose this option if
you already have a Postfix configuration file you want to add, or if you
want to build the configuration file from scratch.

� Internet site
This option creates a basic mail server that can receive incoming mail
directly from the Internet and also can send e-mail directly to other
mail servers on the Internet. Choose this option if you need a basic
mail server, and this server will not be prohibited (by firewall or other
network configuration) from sending and receiving e-mail over the
Internet.

� Internet with smarthost
This option is a lot like the Internet site except that all outgoing e-mail
is sent via a smarthost. A smarthost is another e-mail server that acts
as a sort of proxy for e-mail. Organizations often use a smarthost so
that they have a single e-mail server that has outbound e-mail access.
This way they can centralize outbound spam and virus scans and can
firewall off the rest of the e-mail servers from directly sending e-mail
over the Internet. Don’t forget to confirm that the smarthost is con-
figured to accept e-mail from this new server.

Mail Server 145

ptg

� Satellite system
This configuration option forwards both outgoing and incoming
mail through a smarthost. You might select this option if you want to
provide mail server redundancy. Your smarthost could be the ulti-
mate destination for e-mail and could act to send out all outbound
mail, but your satellite system could be your primary, secondary, or
tertiary mail server that can help offset the load from your smarthost.

� Local only
If you choose this option, this server will deliver only local mail such
as e-mail sent to root from cron processes or other e-mail sent to a
local user from another local user. The server will not accept any mail
from the network. Choose this option if you want to use Postfix as
your local mail server but don’t intend to send or accept any e-mail
from the rest of the network.

Depending on which configuration you choose for Postfix, you will be
prompted to select a hostname the mail server will use for outgoing mail.
This may or may not be the same as your server’s hostname. This is the
hostname that Postfix will use to label outgoing e-mail. So, for instance, if
you named your server zeus internally, but on the Internet the host will be
referred to as mail2.example.com, then you would put mail2.example.com
in this field.

Ubuntu Postfix Conventions
There aren’t too many surprises with Ubuntu’s Postfix conventions, but the
following are the major directories and files used by Postfix under Ubuntu:

� /etc/postfix/
This directory contains all of the major Postfix configurations. Of
course, programs that work with Postfix, like spam filters and greylist-
ing software, will typically store their configuration elsewhere.

� /etc/postfix/main.cf
This is the main Postfix configuration file. The upstream main.cf is
heavily commented and lists all of the major options, their defaults,

146 Chapter 5 � Guide to Common Ubuntu Servers

ptg

and nice descriptions. It’s great when you want to learn about Postfix,
but it can be cumbersome to actually use as a configuration file.
Because of this, the Ubuntu install script for the Postfix package gen-
erates its own smaller main.cf file, although you can still reference the
fully commented version at /usr/share/postfix/main.cf.dist.

� /etc/aliases
This file contains a mapping of user aliases Postfix will reference for
mail delivery. The basic syntax is essentially username1: username2,
which tells Postfix to redirect mail addressed to username1 to user-
name2. You can also redirect mail to piped commands to do more
sophisticated redirection.

� /var/spool/mail/
This directory by default contains the mailboxes for each user on the
system. By default Postfix will use the mbox format, so every e-mail
for a user will be in a single file under this directory named after the
user. This, of course, could change if you install POP or IMAP servers
or store mail in Maildirs instead, but more on that in the POP/IMAP
section of the chapter.

� /var/spool/postfix/
Postfix stores many different subdirectories within this directory and
uses them to organize mail that is being spooled by the system either
for delivery on the server or delivery to a different mail server. Gener-
ally speaking, you won’t want to meddle in this directory. Postfix pro-
vides tools you can use to get information on the current mail spool.

� /var/log/mail.*
Postfix logs are organized into a few different log files under Ubuntu
so you can more easily find the information you need. The mail.log
file stores all mail logs, so if you aren’t sure what other logs to check
(or are going to just use grep to find the information you need any-
way), use this log file. Similarly, the mail.info log contains all of the
informational logs such as new mail that has been queued, log entries
for each transaction with a remote server, and other common log
entries. The mail.err and mail.warn files segregate out errors or

Mail Server 147

ptg

 warnings from the rest of the Postfix logs, respectively, so look here if
you want a quick view of errors or warnings.

� /etc/init.d/postfix
This is Postfix’s init script and should automatically be set up to start
at system start-up.

Administering Postfix
The main tool you will use to administer Postfix is aptly named postfix. It
works much like apache2ctl in that it accepts a few different commands as
arguments and can also be used as a substitute for the init script to start
and stop the service. For instance, to stop Postfix and then start it back up,
you would type

$ sudo postfix stop
$ sudo postfix start

The other commands generally work the same way. Here are the major
commands you can pass to Postfix along with their functions:

� reload
Use this command whenever you have made changes to the Postfix
configuration and want to load it. This operates much like the
apache2ctl graceful function in that it allows each process to termi-
nate and reload when it can, so it is much safer and provides a much
smoother process than if you were to stop and then start Postfix.

� flush
This command tells Postfix to flush its mail queue. Typically Postfix
spaces out its mail delivery so as not to throttle the network, and
when a message gets deferred for some reason, it will be delayed in the
queue for some time before Postfix attempts redelivery. Sometimes
you will have some issue, such as a network outage, that causes a large
number of e-mails to spool on the server, and once the problem is
remedied you would like to deliver them. When you use the flush
command, Postfix forces delivery of all of the deferred messages
immediately. Generally speaking, you should let Postfix spool and

148 Chapter 5 � Guide to Common Ubuntu Servers

ptg

deliver messages on its own schedule, so use this command only if
you really need it.

� status
Returns the current Postfix status. If Postfix is running, this com-
mand also returns the PID of the master process.

� abort
This is a more forceful version of the stop command and immediately
kills all running Postfix processes whether they are finished or not.

� check
This command is much like apache2ctl check. It scans the Postfix
directory structure for bad file or directory permissions and warns
you about and corrects any problems it finds.

In addition to the Postfix command-line tool, Postfix provides a few other
tools to help administration of the service. The postqueue command can
be used by regular users to get information about the current mail queue.
This is useful so that you can keep track of deferred messages and answer
the “I sent this e-mail two hours ago and the recipient said they didn’t get
it. What happened?” questions. For instance, to get a full listing of all mes-
sages currently in the queue, type

$ postqueue -p

Sometimes you want to take action on messages in the queue besides sim-
ply flushing them. Occasionally you might want to delete a message (or
maybe even all messages) in the queue. The postsuper command allows a
superuser to perform privileged operations on the queue. For instance, to
delete a message in the queue with a queue ID of 522, you would type

$ sudo postsuper -d 522

If you actually did want to delete all messages in the queue, you can use the
word ALL in uppercase instead of a particular queue ID. You might also
want to put a message on hold so that Postfix keeps it in the queue but

Mail Server 149

ptg

doesn’t attempt to deliver it. Use the -h option followed by the queue ID to
put a message on hold and then use the -H option with the same queue ID
to put the message back in the queue.

Previously I discussed the /etc/alias file and how it is used to map one user-
name to another for mail delivery. The /etc/alias file is actually just for
humans to edit. Postfix doesn’t directly read it. Instead, it creates a data-
base out of that file that it can reference much more quickly. Whenever
you edit that file, type sudo newaliases to update the /etc/alias.db file. In
addition, for some more advanced Postfix configuration such as canonical
maps, virtual accounts, or other features, you will have a separate file
within /etc/postfix that also needs a database. You can identify these files in
the main.cf file as their paths are preceded by hash:. If you do create or edit
one of these lookup tables, run sudo postmap /path/to/file. If I set up vir-
tual users in /etc/postfix/virtual, I would update the database with

$ sudo postmap /etc/postfix/virtual

Finally, there are occasions when you are tweaking your main.cf file and
want to see what the current and active setting is on the running instance
of Postfix. The postconf command outputs every (and I mean every) Post-
fix setting to the screen along with its value. So if I wanted to see the cur-
rent value of myhostname in the running config, I could type

$ sudo postconf | grep ^myhostname
myhostname = mail1.example.net

Default Postfix Example
One of the great things about the Postfix install script is that once you
have completed it, you should have a functioning mail server. Of course,
depending on how you plan to use the server, there might still be more con-
figuration to do. While there is almost infinite tuning and tweaking you can
perform with Postfix, there are a number of common configuration options
you will want to look into. I cover some of the major options and then pro-
vide a few examples of different mail server configurations.

For all of these examples, I start with a basic main.cf file for an Internet site
set up by the Postfix install script. This configuration accepts mail from the

150 Chapter 5 � Guide to Common Ubuntu Servers

ptg

local network as well as mail sent to example.org and mail1.example.org.
Here is the full main.cf file:

See /usr/share/postfix/main.cf.dist for a commented, more
complete version

Debian specific: Specifying a filename will cause the first
line of that file to be used as the name. The Debian default
is /etc/mailname.
#myorigin = /etc/mailname

smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu)
biff = no

appending .domain is the MUA's job.
append_dot_mydomain = no

Uncomment the next line to generate "delayed mail" warnings
#delay_warning_time = 4h

readme_directory = no

TLS parameters
smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem
smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key
smtpd_use_tls=yes
smtpd_tls_session_cache_database =
btree:${data_directory}/smtpd_scache
smtp_tls_session_cache_database =
btree:${data_directory}/smtp_scache

See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc
package for information on enabling SSL in the smtp client.

myhostname = mail1.example.org
alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases
myorigin = /etc/mailname
mydestination = mail1.example.org, example.org,
localhost.example.org, localhost
relayhost =
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128
mailbox_size_limit = 0
recipient_delimiter = +
inet_interfaces = all

Mail Server 151

ptg

The beginning of the file mostly sets Ubuntu defaults that differ from
standard Postfix defaults. The core configuration for you to tweak starts at
myhostname. To get full documentation on each of these options, type man 5
postconf. That manual contains all of the Postfix configuration options
along with a description of their use. Here are a few of the options in the
sample configuration file that you will use frequently:

� myhostname
This is the Internet hostname of the mail server. If you haven’t set it
explicitly in this file, it will use gethostname() and use that value. A
number of other options, such as myorigin, will use or reference the
myhostname value if it isn’t explicitly set.

� myorigin
The domain name listed here is the domain that mail sent from this
machine appears to come from. If, for instance, your server is named
mail1.example.org but you want e-mail sent from it to appear to
come from example.org, you would set this value to example.org.

� mydestination
This is a list of domain names for which this mail server will accept
mail and consider itself the final destination. If mail arrives on this
server addressed to one of these domains, Postfix will deliver it locally.

� relayhost
In this example this value is blank, but if you did want to route all of
your outbound mail through a different mail server, you would set
this value to the hostname of that server. You might use this value
on all of your servers in a data center so they all point to a single
outbound mail host. You could then more tightly control firewall
access and have a single choke point from which to view all out-
bound messages.

� mynetworks
This value is a comma-separated list of networks (IP addresses and
subnet masks) for which this server will relay mail. Be very careful
with this value! If you were to set this to too broad a value and allow

152 Chapter 5 � Guide to Common Ubuntu Servers

ptg

random hosts on the Internet to relay through your server, you will
have just set up what’s known as an open relay. Open relays are often
used by spammers to relay their spam, and if you mistakenly make
your server an open relay it won’t take long for someone to discover it
and for your server to be put on a spam blackhole list. Generally
speaking, this will be set to localhost and possibly your internal net-
work interface if you want to allow other hosts on your network to
relay mail through you.

� mailbox_size_limit
This option sets the maximum value of any local user’s mailbox. The
default in this example sets it to unlimited.

Secondary Mail Server
The default example I gave will work fine as a default Internet mail server
for a small domain, such as your own personal mail server. Once you set
up a mail server that accepts messages for a domain and you start to rely
on it, you should consider setting up a secondary mail server to act as a
backup. If you have only one mail server and it goes down for some rea-
son, any host that wants to deliver mail to it will ideally queue the mes-
sages for a few days. If the server does not come back up in a set amount of
time, though, the messages will bounce back to the sender as undeliver-
able. Each administrator might set up his or her mail server to bounce
after a different period of time. Postfix by default will set this to five days
via the bounce_queue_lifetime option.

To avoid bounced messages, you will want to set up at least one additional
mail server that can accept and spool mail for your domain. This server
will then deliver the messages to the primary mail server once it is back up.

It’s actually pretty easy to set up a secondary mail server with Ubuntu and
Postfix. First we will start with the Internet site install-time option which
will give you a main.cf much like the one I listed above. At this point the
only other option you really need to add to the main.cf is the relay_
domains option. This option defines the domains for which this machine
will accept and relay mail. So, for instance, if you wanted to set up a

Mail Server 153

ptg

secondary mail server for example.org and example.net, you would set
this value to

relay_domains = example.org, example.net

Once you reload this configuration with postfix reload, all you need to
do to start using the secondary mail server is to add an MX record to your
domain’s DNS zone and be sure that its priority number is larger than the
primary mail server’s. If my primary mail server is mail1.example.org and
the secondary is mail2.example.org, the zone entries might look like the
following:

example.org. IN MX 100 mail1.example.org.
example.org. IN MX 200 mail2.example.org.

Once the DNS changes have propagated, your mail server will start to be
used. One final setting you may want to consider for your secondary mail
server is an increase in the number of days it will queue mail before it
bounces. If you know that a primary mail server will be down for more
than five days, you might want to increase the limit so that the secondary
mail server will still hold mail for you until the primary mail server comes
back online. To increase the queue limit to two weeks, for instance, add the
following settings to your /etc/postfix/main.cf:

bounce_queue_lifetime = 14d
maximal_queue_lifetime = 14d

Once the primary server does come back online, run postfix flush on the
secondary server so that it immediately starts delivering all of the deferred
messages.

Greylisting Mail Server
Spam is a definite problem for just about every mail server administrator.
There are many solutions out there to help cut down on the amount of
spam a server receives, and one such concept is known as greylisting.

Greylisting is based on the notion that since spammers send out millions
of e-mails, they generally don’t set up a deferred queue if an e-mail is not

154 Chapter 5 � Guide to Common Ubuntu Servers

ptg

immediately delivered. There is a special response in the SMTP protocol
called 450 that basically says, “Please come back later.” Most legitimate
mail servers on the Internet will honor that request and come back later.
Most spammers won’t. With greylisting, your mail server will respond to
all new mail servers with a 450 command. Once a server does come back,
the greylisting program makes a note of it in a local database of servers,
To:, and From: addresses. That means (depending on how many successes
you configured before a server is whitelisted) that after a server waits once,
it won’t have to wait anymore in the future.

There are a number of different programs that implement greylisting for
Ubuntu, but one of the simplest to set up with Postfix is called Postgrey. It
implements greylisting as I mentioned above and also includes whitelists
for major mail servers that are known to not work well with greylisting; it
also allows you to whitelist servers so that they never see the initial delay.

Install and Configure Postgrey To install Postgrey, use your package
manager to install the package of the same name:

$ sudo apt-get install postgrey

The Postgrey program is started via an init script at start-up and listens on
the local 10023 port for queries from Postfix. Once it is installed and run-
ning, all you need to do is modify the smtpd_recipient_restrictions
option in Postfix’s main.cf to add the localhost:10023 service. If you
haven’t tweaked your smtpd_recipient_restrictions setting at all, here’s a
sample that should work for you:

smtpd_recipient_restrictions = permit_mynetworks, \
permit_sasl_authenticated, \
reject_unauth_destination, \
check_policy_service inet:127.0.0.1:10023

Once you add that option, reload Postfix and it will start implementing
greylisting immediately. If you aren’t too familiar with greylisting, then this
should work well for you to start. If you do wish to tweak the whitelists, for
instance, the default Postgrey configuration is stored under /etc/postgrey.
The whitelist_clients and whitelist_recipients are provided by the
Postgrey package and have some good defaults set. If you would like to

Mail Server 155

ptg

add additional entries, create a whitelist_clients.local or whitelist_ recipients
.local file so you can keep your settings separated. Then type sudo service
postgrey reload so Postgrey will reload its settings. If you would like more
specific information on configuration file syntax or other Postgrey options,
check out the documentation under /usr/share/doc/postgrey/.

POP/IMAP Server
Most people who set up mail servers no longer actually log in to the mail
server to retrieve the mail. They generally use some sort of mail client that
then connects to some destination mail server and retrieves mail via POP
or IMAP. With POP, the messages are downloaded and removed from the
server as you access them, whereas with IMAP the messages continue to be
stored on the server. Ultimately it’s good to provide both as options, but
these days most people prefer IMAP so they can connect to the mail server
from multiple clients and still see all of their mail.

There are a number of different packages that provide POP and IMAP
support, and choosing one is at least partially a matter of preference. For
this example I cover the Dovecot POP and IMAP servers, as they integrate
well with Postfix, support Maildirs, and have a number of additional pack-
ages available that provide more advanced features such as LDAP, MySQL,
and Postgres support. The steps are pretty simple. They start with enabling
Maildirs on Postfix, then installing Dovecot.

Enable Maildirs on Postfix
There are a number of different ways that mail servers can store e-mails.
For a long time the primary format for mail storage was the mbox format.
With the mbox format, all of a user’s mail is stored in a single large text file.
This method works; however, it’s not without its shortcomings. For one,
with an mbox all of your eggs are in one basket. If that file is corrupted, so
are all of your e-mails.

Nowadays in addition to the mbox format mail is often stored in databases
(Exchange) or in a Maildir. A Maildir basically breaks up each e-mail folder
into its own directory on a host. Within that directory are subdirectories to
store new and read e-mail. Within those subdirectories each e-mail is
stored as its own text file. The nice thing about Maildirs is that there is

156 Chapter 5 � Guide to Common Ubuntu Servers

ptg

already a large number of tools on any Linux system to parse through and
manage files, making it simple to find an individual e-mail on the system
and back it up, delete it, or copy it.

To enable Maildirs under Postfix, you just need to set the home_mailbox
option to specify the directory name you will use for your Maildirs. Open
/etc/postfix/main.cf and add the following option:

home_mailbox = Maildir/

Be sure to remember the trailing / after the directory name, as it is needed
when you use Maildirs. In this example Postfix will use the Maildir direc-
tory in each person’s home directory to store e-mail. Once you have made
the change, type sudo postfix reload to reload the configuration. At this
point all new e-mail will be delivered to the Maildir directory in the local
user’s home directory. If the directory doesn’t exist, Postfix will create it.

Install Dovecot
All of the Dovecot packages you need are available by default in Ubuntu. If
you installed Postfix during the install or afterwards with tasksel, the
Dovecot packages are included. Otherwise, you can just use your package
manager to install them. The packages I will install will enable POP, POP
with SSL, IMAP, and IMAP with SSL:

$ sudo apt-get install dovecot-imapd dovecot-pop3d

By default Dovecot will be set up for POP, POP with SSL, IMAP, and IMAP
with SSL. If for some reason you want to disable any of these options, open
Dovecot’s default configuration file, /etc/dovecot/dovecot.conf, and locate
the line that says

protocols = imap imaps pop3 pop3s

Just remove any of the protocols you don’t want enabled and run sudo
/etc/init.d/dovecot reload to enable the changes. The next step is to tell
Dovecot to use Maildirs and also let it know where it can find them on the
system. To do this, see if there is already an uncommented line that starts
with mail_location (in the default install it’s commented out). If it doesn’t

POP/IMAP Server 157

ptg

158 Chapter 5 � Guide to Common Ubuntu Servers

exist, then add the following line; if it does exist, then modify the mail_
location line so that it looks like the following:

mail_location = maildir:~/Maildir

Then reload Dovecot with sudo /etc/init.d/dovecot reload. Now you
should be able to configure your mail clients to point to the server and
access their local mail.

NOTE By default Dovecot is configured to use the system’s local accounts. Note, however, that it
will allow you to use plain-text authentication only if you do so over a secure protocol like
IMAPS or POP3S. If you want to use IMAP or POP3 with plain-text passwords and don’t
have a problem with user passwords being transmitted over the wire unencrypted, then set
the configuration option disable_plaintext_auth in dovecot.conf to no:

disable_plaintext_auth = no

then reload Dovecot so it takes the new changes.

Ubuntu Dovecot Conventions
� /etc/dovecot/

This is the default configuration directory for Dovecot and contains
all of the configuration files, including dovecot.conf, the main file you
will use to configure the service.

� /etc/init.d/dovecot
This is Dovecot’s init script. The script is set up at install time to auto-
matically start at system start-up.

� /var/log/syslog and /var/log/mail.log
Dovecot sends copies of its logs to both of these files so you can use
either to look for errors or monitor logins.

OpenSSH Server
While I can understand why this service is not installed by default, most
system administrators these days use SSH to remotely manage their
servers. SSH provides you with a secure encrypted channel so that you can
log in and execute commands on a remote machine. In addition to the

ptg

standard remote console uses, SSH also allows a number of interesting
hacks so that you can set up tunnels, run remote X applications, and do all
sorts of other interesting tricks. It seems an article on a new SSH trick
shows up online every few days.

To install OpenSSH, you can either select OpenSSH Server during the task
selection process in the installer, run sudo tasksel after the install and
select it there, or run

$ sudo apt-get install openssh-server

Once the package is installed, the sshd process will start. To log in to the
server from a remote host, type

$ ssh username@hostname

Replace username and hostname with your username on the machine and
the hostname or IP address of the machine, respectively. Once you log in
over SSH, you can run commands on the remote server as though you
were on the machine with a keyboard and mouse. To log out of a current
SSH session, just type exit in the terminal.

Ubuntu OpenSSH Conventions
� /etc/ssh/

This directory contains all of the major configuration files for both
the OpenSSH server and the client.

� /etc/ssh/ssh_config
This file defines the default client settings for SSH clients on this
machine. Local users can override these options with their own
options in ~/.ssh/config.

� /etc/ssh/sshd_config
In this file you will find the default settings for the SSH server. It’s
worth noting that by default root logins over SSH are enabled, even
though Ubuntu doesn’t set up root logins on the system itself by
default. If you want to disable root logins, edit the file and set the
PermitRootLogin value to no.

OpenSSH Server 159

ptg

� /etc/ssh/ssh_host_dsa_key and /etc/ssh/ssh_host_dsa_key.pub
These files provide the private and public DSA keys for the system,
respectively. These keys are used to authenticate the system so that
you can better detect man-in-the-middle attacks.

� /etc/ssh/ssh_host_rsa and /etc/ssh/ssh_host_rsa.pub
These files are like the DSA keys I mentioned above, only they are cre-
ated using the RSA algorithm instead.

� /etc/init.d/ssh
This is the init script for the OpenSSH server and provides the stan-
dard start, stop, and restart commands as well as reload and force-
reload commands for when you change its configuration files.

� /var/log/auth.log
The OpenSSH server will log its information to this log file, including
informational messages, errors, and user logins.

DHCP Server
It’s easy to take DHCP for granted these days. After all, even the most basic
home wireless routers seem to provide a DHCP server as part of the
firmware, and most corporate networks seem to use DHCP, at least for
desktops. If you’ve ever had to administer a large network of desktop
machines without DHCP, though, you probably recall the pain of manu-
ally entering static IP information into Windows desktop after Windows
desktop.

DHCP stands for Dynamic Host Control Protocol, and with this protocol
a new host on the network can issue a request for IP information. The
DHCP server will then provide the host with all of the necessary informa-
tion it needs to communicate on the network, such as its IP address and
netmask and the gateway and DNS servers to use.

Install DHCP
To install a DHCP server under Ubuntu, type

$ sudo apt-get install dhcp3-server

160 Chapter 5 � Guide to Common Ubuntu Servers

ptg

Ubuntu DHCP Conventions
� /etc/dhcp3/dhcpd.conf

This is the configuration file for the DHCP server. By default it is a
heavily commented file that should provide plenty of examples for
you to work from.

� /var/lib/dhcp3/dhcpd.leases
This file contains the current list of DHCP leases your server has
handed out. If you are wondering what MAC address got a particular
IP, or when a particular lease will expire, look in this file.

� /var/log/syslog
DHCP uses the standard syslog file for all of its logs. Here you will be
able to find any requests from the network for a DHCP request along
with the DHCP server’s reply.

Configure DHCP
Ubuntu provides a heavily commented DHCP configuration file that
explains all of the major options and gives a number of different configu-
ration examples. For basic DHCP services you generally want to set up one
or possibly two scenarios: dynamic DHCP and static DHCP. In a dynamic
DHCP configuration new hosts get assigned an IP out of a possible range
of IPs. There’s no guarantee a host will get assigned the same IP every time.
With static DHCP you can bind a particular IP address to a host’s MAC
address and ensure that every time it shows up on the network it will get
the same IP. Dynamic DHCP is good for a simple, easy-to-maintain
DHCP server, and static DHCP gives you a lot of the benefits of static IPs
without nearly as many headaches. Plus with static IPs, if you do want to
change the IP address of a host, you can do so in the dhcpd.conf file and
reload DHCP instead of having to track down and change the host.

For both of my examples I set up DHCP for a local office network,
example.net, on 10.1.1.0, subnet 255.255.255.0. The gateway is at 10.1.1.1
and the name servers are at 10.1.1.2 and 10.1.1.3.

Dynamic DHCP Configuration To set up dynamic DHCP, open the
/etc/dhcp3/dhcpd.conf file and move to the bottom of the file to pass all of
the example options. All you need to add is a single subnet declaration that

DHCP Server 161

ptg

162 Chapter 5 � Guide to Common Ubuntu Servers

provides all of the information about your subnet that DHCP needs to
hand out, along with the range of IP addresses DHCP can use. In my
example I hand out 10.1.1.50 through 10.1.1.99, so I add the following
settings to the bottom of the file:

subnet 10.1.1.0 netmask 255.255.255.0 {
range 10.1.1.50 10.1.1.99;
option routers 10.1.1.1;
option domain-name-servers 10.1.1.2, 10.1.1.3;

}

Now to reload DHCP and enable my settings, I would run sudo service
dhcp3-server restart. If I didn’t make any syntax errors, the DHCP server
will stop and then start back up. If there is an error in the file, it should
output to the screen along with its location. A common error is a missing
semicolon at the end of a particular line.

Static DHCP You can use static DHCP assignments along with a dynamic
DHCP subnet declaration if you want. If a server matches a static assign-
ment, it will get that address; otherwise it will default with an address in the
dynamic range. Each host that gets a static assignment needs its own host
declaration. For instance, here is a host declaration for a host with a MAC
address of 00:0c:c0:ff:ee:00 that will be assigned 10.1.1.10:

host examplehost {
hardware ethernet 00:0c:c0:ff:ee:00;
option host-name "examplehost";
fixed-address 10.1.1.10;

}

You can add as many host declarations as you want; just keep in mind that
each one needs to have a unique MAC address and a unique IP address in
this file. Once you have added all of your host declarations, save your
changes and restart the dhcp3-server init script.

NOTE If you aren’t sure how to tell what MAC address a particular host has, log in to the host and
then run sudo ifconfig:

$ sudo ifconfig
eth0 Link encap:Ethernet HWaddr 00:0c:c0:ff:ee:00

inet addr:10.1.1.10 Bcast:10.1.1.255 Mask:255.255.255.0

ptg

UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
Interrupt:10

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:2741 errors:0 dropped:0 overruns:0 frame:0
TX packets:2741 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:148411 (148.4 KB) TX bytes:148411 (148.4 KB)

Look for the HWaddr section in the output. That section will show that network device’s MAC
address, in my case 00:0c:c0:ff:ee:00.

Database Server
Flat files and spreadsheets can work for data storage for some time, but at
some point you will recognize the need for a real database. Most complex
Web sites these days (including the WordPress example in this chapter)
expect a database at the back end to store account information, blog posts,
forum settings, and any other information about the site. There are a number
of different databases available for Ubuntu, including Oracle, but here I dis-
cuss how to set up the two most common databases: MySQL and Postgres.

MySQL
MySQL has long been a favorite database server, particularly as a back-end
database for Web sites because of its simple setup and fast performance.
It’s so popular for this purpose that an acronym, LAMP (Linux Apache
MySQL Perl/PHP/Python), was created to describe it.

Install MySQL There are a few different ways to install the MySQL server.
If you choose LAMP Server during the Ubuntu install or afterward with
tasksel, MySQL will get installed along with Apache and PHP. Alterna-
tively, you can install the MySQL server package directly:

$ sudo apt-get install mysql-server

Database Server 163

ptg

164 Chapter 5 � Guide to Common Ubuntu Servers

During the package installation you will be prompted to set a password for
the root MySQL account. You can choose to leave it blank; however, I rec-
ommend that you take this opportunity to set the password. It’s certainly
simpler to set it here than to look up the MySQL commands to set it later.
Once the package installs, the MySQL daemon will start and it will be
ready for you to use.

NOTE If you do change the password of the root MySQL user (and you should), you will need to
set up a small configuration file for cron to use so that it can run its MySQL /etc/
cron.daily/ script successfully. To do this, create a /root/.my.cnf file containing the follow-
ing information:

[mysqladmin]
user = root
password = yourpassword

Since this file contains a password in plain text, you will want to secure the permissions to
make sure that no one other than root can read it:

$ sudo chown root:root /root/.my.cnf
$ sudo chmod 0600 /root/.my.cnf

Ubuntu MySQL Conventions
� /etc/mysql/

This directory contains the main configuration files for MySQL.

� /etc/mysql/my.cnf
This is the core MySQL configuration file. Individual users can create
their own custom configurations as well and store them in ~/.my.cnf
(as we did for the root user).

� /etc/mysql/debian-start and /etc/mysql/debian.cnf
These files are a script and configuration file, respectively, that man-
age processes that Ubuntu runs whenever the MySQL init script is
started or restarted. This script checks for crashed tables and corrupt
data, and overall checks to make sure that the database came up
cleanly. You can think of this script almost like the file system check
the system performs at start-up.

ptg

� /etc/mysql/conf.d/
This directory is included by the main my.cnf and allows a better way
to organize configuration files for particular databases or sites. Any
configuration file created here will be included along with the main
settings for MySQL when it starts.

� /etc/init.d/mysql
The main MySQL init script is set to automatically start at boot time
and stop when the system is rebooted or halted. Like many service init
scripts, it supports extra options such as reload and force-reload to
reload configuration files, as well as status to report the current sta-
tus of the service. As you will see below, Ubuntu also includes a better
command-line tool for managing MySQL.

� /var/log/syslog
Ubuntu sets MySQL to log to the standard system log file, instead of
/var/log/mysql.log or files under /var/log/mysql/. So to view only
MySQL-related log entries from your syslog, you can use a simple
grep command:

$ sudo grep mysqld /var/log/syslog

� /var/lib/mysql/
Under this directory you will find all of the database files used by the
active database.

mysqladmin Ubuntu includes the mysqladmin tool to help with MySQL
administration. You can think of it as being like the apache2ctl program in
that it accepts certain commands on the command line and then interacts
with the mysqld process for you. For instance, to get the current status of
your MySQL process, you can run

$ sudo mysqladmin -p status

The program will return information such as the current uptime, how
many threads are active, how many slow queries are running, and the aver-
age queries it processes per second. Note that I used the -p argument in
this command, which will tell mysqladmin to prompt me for the password

Database Server 165

ptg

on the command line. If you set a password for the root user, you will need
to use -p with your commands, or if you plan to run a batch of commands
and don’t want to enter the password every time, you can add the pass-
word to the -p option. So, for instance, if my MySQL password was insecure,
I would type the following:

$ sudo mysqladmin -pinsecure status

The mysqladmin manual page (type man mysqladmin on a console) lists the
full set of commands, but a few of the common ones are highlighted here:

� create and drop
The create and drop commands take a database name as an argument
and respectively create or remove a database from your MySQL
instance.

� flush-*
There are a number of commands that flush caches or other settings
within MySQL. The flush-hosts, flush-threads, and flush-logs
commands flush the host cache, thread cache, and all logs, respec-
tively. The flush-privileges, flush-status, and flush-tables com-
mands reload the grant tables, clear status variables, and flush all
tables, respectively.

� password
If you never set the root password to begin with, or you want to
change it, use this command with the new password as the next argu-
ment. If the password contains any special characters or spaces, be
sure to put them in double quotes.

� status, extended-status, processlist
All of these commands provide you with information about the cur-
rent MySQL instance. I’ve already discussed the status command.
The extended-status command provides a more complete set of sta-
tus information, and the processlist command lists all of the active
server threads along with their IDs. You can use that ID as a reference
if you need to kill a particular process.

166 Chapter 5 � Guide to Common Ubuntu Servers

ptg

Database Server 167

� kill
The mysqladmin processlist command lists all of the processes along
with their IDs, and the kill command kills all of the process IDs you
pass as arguments. If you specify multiple processes, separate them
with commas.

MySQL Web Administration While hard-core database administrators
might scoff at using a Web interface to administer MySQL, it is a popular
way to create and modify databases, particularly among Web designers.
The phpMyAdmin program is a popular Web interface to MySQL, and it is
easy to set up under Ubuntu.

INSTALL PHPMYADMIN To install phpMyAdmin, use your package manager
to install the phpmyadmin package:

$ sudo apt-get install phpmyadmin

This will grab not only the phpmyadmin package but also its dependencies,
including apache2, if you don’t already have a Web server installed. Dur-
ing the package installation you will be presented with some questions to
configure phpMyAdmin. The first question is which Web server to use.
Unless you specifically set up another Web server for this task, select
apache2 here.

Once the package installation completes, phpMyAdmin should be ready to
use. Just open a Web browser and point to the IP address or hostname of
the phpMyAdmin server and append /phpmyadmin to it. So if my server was
at 192.168.1.7, I would browse to http://192.168.1.7/phpmyadmin. The
first screen you will see is a login screen, as shown in Figure 5-3. It’s impor-
tant to remember that phpMyAdmin does not maintain any user accounts
on its own—it simply passes your login and password directly to MySQL—
so type in root and your MySQL password (or if you have set up other users
on MySQL, type that information in here). Once you log in, you will see the
main configuration screen as shown in Figure 5-4, and from there you can
tweak your MySQL settings, create and modify databases and tables, and
access the phpMyAdmin documentation itself.

http://192.168.1.7/phpmyadmin

ptg

168 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-3 phpMyAdmin login screen

Figure 5-4 Main phpMyAdmin configuration screen

ptg

PostgreSQL
PostgreSQL and MySQL are the yin and yang of the open source database
world. Whereas MySQL focused on speed and ease of use early on and
then started to add more advanced database features, PostgreSQL focused
on advanced database features first and then worked on optimization and
ease of use. Both databases have their following, and all of the major open
source database-backed Web software supports both databases. Post-
greSQL moves far beyond Web site databases, though, with an advanced
feature set including full ACID compliance, foreign keys, joins, views, trig-
gers, and stored procedures.

Install PostgreSQL Even though MySQL has the reputation of ease of
use, PostgreSQL under Ubuntu is also simple to install and use. To install
PostgreSQL, you can either select PostgreSQL Server as you install Ubuntu
or afterward with tasksel, or you can use a package manager to install the
postgresql package:

$ sudo apt-get install postgresql

Once the postgresql package has been installed, the database service will
start in the background and you can then set up your superuser account
and create a database. The initial administration will be performed by the
postgres user, so first use sudo to become that user:

$ sudo -u postgres -s

Now from this shell you can create a new user account. You can choose to
maintain the postgres user as the main superuser and then control who
can become that user with sudo, or alternatively you can set up a new data-
base user with superuser privileges. If I wanted to create a new superuser
on my PostgreSQL database with the username kyle, I just need to pass the
right flags to the createuser program:

$ createuser -P -s -e kyle
Enter password for new role:
Enter it again:
CREATE ROLE kyle PASSWORD 'md56966c432c869202883876a8b4f925ccc'
SUPERUSER CREATEDB CREATEROLE INHERIT LOGIN;

Database Server 169

ptg

Alternatively, if I just wanted to create a regular unprivileged user:

$ createuser -P -DRS kyle
Enter password for new role:
Enter it again:

If you make a mistake and want to try again, or if you want to delete a user
in general, just use the dropuser command with the username as an argu-
ment. Now that I have created a user, I can set up a database owned by that
user. The createdb does all of the heavy lifting; I just need to specify the
owner and the name of the database, in this case kyledatabase. So while
I’m still the postgres user:

$ createdb -O kyle kyledatabase

Now I can type exit to exit out of the postgres shell and back to my nor-
mal user. To access the database I can use the psql command as my regular
user:

$ psql --password kyledatabase

Now if my PostgreSQL username is different from the name of my shell
account, this will error out as by default it tries the username of the local
account. In that case I can add the PostgreSQL username at the end of the
command:

$ psql --password kyledatabase kyle

Ubuntu PostgreSQL Conventions
� /etc/postgresql/

Here you will find the main configuration files for all PostgreSQL
instances on the system. Because the configuration files between dif-
ferent PostgreSQL versions can be incompatible, Ubuntu gives each
PostgreSQL version its own subdirectory here. That way you can eas-
ily maintain multiple PostgreSQL versions on the same machine. For
instance, the default postgresql package under Lucid will install Post-
greSQL version 8.4, so all of its configuration will fall under
/etc/postgresql/8.4/.

170 Chapter 5 � Guide to Common Ubuntu Servers

ptg

� /etc/postgresql/8.4/main/postgresql.conf
The /etc/postgresql/8.4/main/ directory contains the main configura-
tion files for PostgreSQL 8.4, with postgresql.conf being the primary
configuration file. This file is heavily commented, so you can use the
file as a reference when you change options.

� /etc/postgresql/8.4/main/pg_hba.conf
This is the configuration file that stores all host authentication infor-
mation. Here you can control which hosts on the network can access
the PostgreSQL database.

� /etc/postgresql/8.4/main/pg_ident.conf
The pg_ident.conf file allows you to map a local username on the
server to a different PostgreSQL username. So if your local username
and PostgreSQL username don’t match, you can add a mapping here
and avoid having to add the PostgreSQL username to the command
line each time you run psql.

� /etc/init.d/postgresql-8.4
This is the init script for PostgreSQL 8.4. As you can see, Ubuntu
labels the init script based on the database version, so you can install
and use multiple PostgreSQL versions on the same host.

� /var/log/postgresql/
Unlike MySQL, which logs to syslog, PostgreSQL separates all of its
logging under /var/log/postgresql. From there each log is labeled
according to its version, so the default PostgreSQL 8.4 database under
Lucid logs to /var/log/postgresql/postgresql-8.4-main.log.

Web-Based PostgreSQL Administration If you think hard-core MySQL
administrators balk at Web-based administration, you should see how
hard-core PostgreSQL administrators react. Even so, if you just want to
create a Web site that is backed on a solid PostgreSQL database, you might
appreciate the simplicity of managing the database from the Web. As with
MySQL, there is a PHP-based administration tool called phpPgAdmin. To
install phpPgAdmin, you simply need to install the phppgadmin package:

$ sudo apt-get install phppgadmin

Database Server 171

ptg

The package will download all of its dependencies, including a Web server
if one is not already installed. Once the package installs, create a symlink to
its Apache configuration file under /etc/apache2/sites-available and then
use a2ensite to enable the site:

$ sudo ln -s /etc/phppgadmin/apache.conf /etc/apache2/
sites-available/phppgadmin

$ sudo a2ensite phppgadmin
$ sudo apache2ctl graceful

By default phpPgAdmin is configured to allow only localhost to access the
site, so to allow access from your local network, open /etc/phppgadmin/
apache.conf and locate the line that says

allow from 127.0.0.0/255.0.0.0

To allow the 192.168.1.0 network to access the tool as well, add

allow from 192.168.1.0/255.255.255.0

below the other allow from line and then run sudo apache2ctl graceful to
reload your changes. Now you can open a Web browser on your network
and browse to the /phppgadmin directory on the phpPgAdmin host. So if
its IP address was 192.168.1.7, you would browse to http://192.168.1.7/
phppgadmin/ and see the default Web page shown in Figure 5-5.

The main page lists all of the available PostgreSQL servers in the left side-
bar. By default you will have just one configured, so click it and then use
your PostgreSQL credentials to log in and manage the server. As Figure 5-6
shows, the interface is different from phpMyAdmin’s, but as with php-
MyAdmin you can modify databases, change tables, and perform all of the
other major database administration you might want.

File Server
I suppose you could think of a Web server as a file server in a way—it does
share files—but generally speaking, when people think of file servers they
think of a machine on the local network with a lot of storage and the abil-
ity for multiple hosts on the network to access and modify files on that

172 Chapter 5 � Guide to Common Ubuntu Servers

http://192.168.1.7/phppgadmin/
http://192.168.1.7/phppgadmin/

ptg

File Server 173

Figure 5-5 phpPgAdmin default page

Figure 5-6 phpPgAdmin database administration

ptg

server. There are two main file servers for Ubuntu that most people favor:
Samba and NFS. While both can work across multiple platforms, most
administrators tend to favor Samba when their clients are mostly Windows,
and NFS when their clients are mostly Linux. Both are relatively simple to
set up on Ubuntu.

Samba
Samba is a program that implements Windows file-sharing protocols, SMB
and CIFS. As such it’s ideal as a platform for file sharing under Windows,
since all of the clients can access the server without additional software.
Over time Samba has grown to support advanced sections of Windows file
sharing to the point that it can operate much like any other Windows file
server or Primary Domain Controller.

Install Samba To install Samba, you can either select the Samba Server
option during the Ubuntu install or after the install with the tasksel pro-
gram, or you can install the samba, samba-doc, smbfs, and winbind packages
separately with the package manager:

$ sudo apt-get install samba samba-doc smbfs winbind

The Samba service will start automatically; of course, by default nothing
too interesting will be shared, so you will need to tweak Samba’s configu-
ration files before any directories are shared.

Ubuntu Samba Conventions
� /etc/samba/

This directory contains all of the main configuration files used by
Samba, including local password files.

� /etc/samba/smb.conf
The smb.conf file is the core configuration file for Samba and is used
to define file shares and global settings for Samba itself. The default
smb.conf file is heavily commented and sets up sane defaults for the
file server such as a default workgroup of Workgroup. The file also
contains a number of different examples of how to set up shares,

174 Chapter 5 � Guide to Common Ubuntu Servers

ptg

including a useful example configuration that shares out all of the
users’ home directories, but by default all of these sample shares are
commented out.

� /etc/init.d/smbd, /etc/init/smbd.conf
Samba’s init script has been converted to an Upstart script, although
there is still an old init script available as a placeholder. This means
that you will use the standard Upstart programs like start, stop, and
status to manage the service. Samba automatically starts at system
boot by default.

� /etc/init.d/nmbd, /etc/init/nmbd.conf
Like the smbd init script, the nmbd init script is also managed by
Upstart now.

� /usr/bin/smbpasswd
This tool is used to create user accounts for Samba. If you want to set
up Samba shares that require authentication, you use this tool to cre-
ate a Samba user database. Samba usernames that you add need to
already exist on the system as well. For example, to add an ubuntu
user to Samba, I would type

$ sudo smbpasswd -a ubuntu

I can also use this command when I want to change the password for
a particular user. To delete a user from Samba, replace the -a option
with -x. You can also temporarily disable Samba users without delet-
ing their accounts. To do this, use the -d and -e options to disable and
enable the user, respectively.

� /usr/share/doc/samba-doc/
If you installed the samba-doc program, you will find Samba docu-
mentation and example configuration files under this directory.

� /var/lib/samba
This directory contains all of the different databases used by Samba,
including the user and password database used by smbpasswd.

File Server 175

ptg

� /var/log/samba/
Samba logs in to its own directory and creates separate log files for
the smbd and nmbd processes (log.nmbd and log.smbd respectively) as
well as a separate log for each host that accesses Samba. This organi-
zation can make it easier to narrow down to the logging information
you need.

Sample Samba Configuration A good way to set up a new Samba share is
to read the comments in the /etc/samba/smb.conf file. There are many
different examples that show you how to share the user home directories
or the CD-ROM drive, for instance. In this example I will show how to
share a directory located at /mnt/share so that everyone on the network
can access and write to it as a general storage location. Open /etc/samba/
smb.conf in your preferred text editor and move to the bottom of the file.
Then add the following:

[general]
path = /mnt/share
comment = General Storage
writeable = Yes
browseable = Yes
guest ok = Yes
force user = ubuntu

In this example I have set up the /mnt/share directory so that anyone on
the network can write to it (writeable = Yes, guest ok = Yes) and use the
force user = ubuntu option so that when a user creates a file on the share,
it will be owned by the local user named ubuntu. Of course you would
want to change this user from ubuntu to a user that exists on your system.
Now I can create the shared directory and make sure that its permissions
are set so that the local ubuntu user can write to it:

$ sudo mkdir /mnt/share
$ sudo chown ubuntu:ubuntu /mnt/share

One nice feature of Samba is that I can add or tweak a share like the one
above without having to restart Samba. This is handy because when you
restart Samba, any user accessing a file on the share will temporarily be
disconnected from the file. Certain programs react very poorly to having

176 Chapter 5 � Guide to Common Ubuntu Servers

ptg

their files pulled out from under them, even temporarily, and I’ve seen
some simply crash when this happens.

Now that Samba is configured, go to another host on the network and
attempt to connect to your Samba server. On an Ubuntu desktop you
would click Places > Connect to Server..., then select “Windows share”
from the “Service type” drop-down menu. Finally you would enter the IP
address or hostname for your Samba server and then enter general for the
name of the share (or otherwise whatever name you put between the
brackets in your smb.conf). Click Connect and Ubuntu will mount and
display the mounted share on your desktop.

NFS
NFS is a file-sharing service that originated on UNIX instead of Windows.
These days both Linux and Windows can mount NFS shares, but you still
tend to see NFS used with a network of Linux or UNIX clients. As you will
see, there isn’t too much involved if you want to share a directory over NFS.

Install NFS To install NFS, select the nfs-kernal-server in your package
manager. This will download and install the service along with any extra
dependencies you need.

$ sudo apt-get install nfs-kernal-server

After the package installs, NFS is ready to be configured. By default no NFS
exports will be configured, so nothing will be shared until you explicitly
configure it.

Ubuntu NFS Conventions
� /etc/exports

This is the core configuration file for NFS and contains a list of all file
systems that NFS will export to users.

� /etc/init.d/nfs-kernel-server
This init script controls the NFS server and accepts the standard list of
init script options, including reload, so that you can reload the con-
figuration without restarting the service.

File Server 177

ptg

� /var/log/syslog
NFS logs to the standard syslog file as the NFSD process. This is the
place to look if a remote host can’t access a share and you want to
track down exactly what is failing. To view only NFS logs from this
file, run sudo grep NFSD /var/log/syslog.

Sample NFS Configuration It is relatively simple to add NFS shares, and
all of your work will be done in the /etc/exports file. The syntax of the file
is covered in detail in the exports man page, which you can access by
typing man 5 exports. Generally, the file will contain one export per line,
and each line has two columns separated by one or more spaces. The first
column is the path to the directory to share, and the second column is the
host or network allowed to access the share along with a set of options
within a pair of parentheses.

I create a sample share much like the example I gave in the Samba section.
I export the /mnt/share directory owned by the ubuntu user to everyone
on the 192.168.1.x network. To do this, I just need to add the following line
to /etc/exports:

/mnt/share 192.168.1.0/255.255.255.0(rw)

Now I set up the /mnt/share directory if it isn’t already there:

$ sudo mkdir /mnt/share
$ sudo chown ubuntu:ubuntu /mnt/share

Finally, I can reload NFS to enable this share:

$ sudo service nfs-kernel-server reload

Once NFS has reloaded, I can go to any host on the 192.168.1.0 network
and mount the share. If the NFS server were at 192.168.1.7 and I wanted to
mount it at /mnt/local, I would type

$ sudo mount -t nfs 192.168.1.7:/mnt/share /mnt/local

178 Chapter 5 � Guide to Common Ubuntu Servers

ptg

If your Ubuntu host gets an error about wrong file system type, you likely
haven’t installed NFS client support on your system. Just run

$ sudo apt-get install nfs-common

and try the mount command again.

NFS User Permissions One interesting and controversial feature of NFS
is how it handles user permissions. When you mount an NFS share, the file
ownership will be based on the user IDs of the users on the NFS server. For
users on a remote system to be able to read and write to the share, their
user IDs need to match up with the NFS server. If you use LDAP or some
other system to keep user IDs consistent across servers, this shouldn’t
present much of a problem, but if, for instance, the ubuntu user on my
NFS server had a user ID of 1000 but the ubuntu user on my client had a
user ID of 1001, the client wouldn’t be able to write to the mount point.

Another matter of interest with NFS permissions is how it handles root. On
Ubuntu by default the root account will be squashed, because NFS blocks
any attempts by a remote root user to access shares with its root privileges.
Otherwise any host on the network with an Ubuntu live CD could boot it,
mount the NFS share, and read and write to any files on that share, regard-
less of the permissions. With this security issue in mind, you still might
want to disable root squashing. To do so, add the no_root_squash option to
your list of export options in /etc/exports. Each option is separated by com-
mas, so if I wanted to disable root squashing on the share I created earlier,
the file would look like the following:

/mnt/share 192.168.1.0/255.255.255.0(rw,no_root_squash)

Edubuntu and LTSP
The community-driven Edubuntu project aims to create an add-on for
Ubuntu specially tailored for use in primary and secondary education.
Edubuntu exists as a platform for tools for teachers and administrators. But
the real thrust, of course, and the real purpose, is to put free and open
source software into the hands of children. In doing so, Edubuntu provides

Edubuntu and LTSP 179

ptg

children with a flexible and powerful technological environment for learn-
ing and experimenting. Based on free software, it offers educational tech-
nologies that are hackable and that can ultimately be used by students and
teachers on their own terms. Distributed freely, its gratis nature serves an
important need for schools where technology programs are always under-
staffed and underfunded. Fluent in Ubuntu and in free software, the chil-
dren who, right now, are growing up using Edubuntu are offering the
Ubuntu community a glimpse of where it might go and the generation of
Ubunteros who may take us there.

While the Ubuntu, Kubuntu, and Xubuntu desktops highlight the prod-
ucts of the GNOME, KDE, and Xfce communities respectively, the
Edubuntu project provides the best of everything in Ubuntu—properly
tailored for use in schools and as easy to use as possible. One thing that
made Edubuntu popular was its amazing ability to integrate thin clients,
allowing the use of one powerful machine (the server) to provide many
very low-powered, often diskless machines (the clients) with their entire
OS. (See the next section for more information.) This model, while unin-
teresting for most workstation and laptop use by home or business users,
is a major feature in classroom settings where it can mitigate configuration
and maintenance headaches and substantially reduce the cost of class-
room deployments.

What Is LTSP?
LTSP stands for Linux Terminal Server Project. It provides the same func-
tionality to current client/server models that was present in the main-
frame/dumb terminal setups prevalent many years ago.

The LTSP model centers on one powerful machine that acts as a server
and several often much lower-powered machines that act as clients. The
machines are all connected on a local area network.

This network allows all data required for booting the client’s computer,
which is normally held on the client’s hard drive, to be served to the client
over the network. If all the data required for booting the computer is pro-
vided over the network, the client machine requires no storage media at
all, which leads to the term diskless clients.

180 Chapter 5 � Guide to Common Ubuntu Servers

ptg

TIP Clients require a network card, which can boot either via PXE or via Etherboot to allow initial
booting for local media before piggyback booting from the network. More information can be
found at http://rom-o-matic.net, where you can create bootable images for your network
hardware. Etherboot is essentially a convenient way to emulate the PXE system on older
hardware. Most newer motherboards and network cards come with PXE software on the chip.

Technical Details of the LTSP Boot Process
A client machine is switched on. After the hardware is initialized, the net-
work card looks for an IP address via the DHCP protocol. The LTSP server
in most cases acts as the DHCP server to the local network and sends the
client machine its IP address. Figure 5-7 shows a diagram of the LTSP
booting process.

Once the network card has bound the IP address to itself, it makes a connec-
tion to the LTSP server and asks for the PXE configuration file. The LTSP
server sends this file back to the client machine, which then makes a request
for the kernel image. This is the base of the OS, which provides the client
with all the hardware drivers required to communicate with the server.

Edubuntu and LTSP 181

Figure 5-7 LTSP booting process

Request for IP address (DHCP)

IP address + boot Info returned (DHCP)

Optional alternative DHCP server

Request for IP address (DHCP)

IP address + boot info returned (DHCP)

PXELinux downloaded (TFTP)

Kernel + filesystem mounted (NFS)

XSession initiated (SSH)

Windows DHCP
Server

Edubuntu
Server

Thin Client
Workstation

http://rom-o-matic.net

ptg

Next, an NFS connection is set up with the server. This is almost like a
standard network share. The NFS share holds a very cut-down installation
of Ubuntu, which consists almost entirely of an X server and an SSH-
based login manager to connect to the server. Once the client machine has
finished booting this small version of Ubuntu, the login screen is displayed
to the user.

When a user logs in, an SSH tunnel is opened to the server, and an X ses-
sion is initiated through this tunnel. All programs are run on the server,
and only the graphical interface is piped back to the client machine. This
allows the user to interact with the session and use a computer as normal.

The whole process is totally transparent to the user, but it is important to
have a basic understanding of the underlying technologies present in LTSP
to assist in the troubleshooting process and to be able to evaluate LTSP for
a given task.

The Benefits of LTSP
Booting computers in this way does have some distinct advantages over the
current preferred model of many powerful desktops, particularly where
only a low budget is available.

� Singular point of administration:: Working with this model means
that only one computer needs to have new software installed on it. By
using the Add/Remove tools, as demonstrated later in this chapter,
you can make applications automatically available to all clients
because they are essentially all using the same machine.

� Low-cost hardware:: Thin client machines are not required to be
incredibly powerful because all processing is done by the server. This
allows people to use much older hardware for their client machines,
often reusing machines that were taken out of service for being slug-
gish several years ago.

� Diskless clients:: Anyone who has spent time administrating a net-
work knows that often a computer used regularly suffers from corrupt
files on the hard disk and needs reinstalling. If a client has no disk,
there is no chance of a user corrupting data on the client’s hard drive.

182 Chapter 5 � Guide to Common Ubuntu Servers

ptg

� Easy replacement:: If one of your thin client machines breaks down,
you still have all your data stored on the server. Just replace the client
hardware and carry on working. It really is as easy as changing a light
bulb.

TIP Thin clients can run on incredibly low-specification machines. People are running thin
clients on recycled computers that are as low-powered as 133MHz Pentiums with 64MB of
RAM. While performance becomes an issue on hardware this slow, simple tweaks to avoid
encryption over SSH can mitigate these. Generally, a machine running at least a 400MHz
processor with 128MB of RAM will make an excellent thin client.

Other Uses
The LTSP system has its uses in many other applications too. Imagine you
are running an Internet cafe, where many people use the computers in
exactly the same way. Each workstation would need the same set of appli-
cations installed. The tasks they are performing are not hugely CPU inten-
sive, so a thin client system is perfectly suited to this type of application.
You will also find LTSP solutions very commonly used in information sys-
tems (e.g., in airports) and in point-of-sale systems.

LTSP Availability in Ubuntu
The ability to install and configure the LTSP system automatically is avail-
able to the user with the Ubuntu alternate CD. Since Edubuntu is no
longer available as a live or alternate CD, the LTSP server installation has
been moved to the Ubuntu alternate CD. If installation of LTSP is required
to an already installed Ubuntu, Kubuntu, or Xubuntu desktop or Ubuntu
server, you should follow the instructions provided in the next section.

Installing an LTSP Server
Starting with Ubuntu 9.04, the LTSP installation process requires one
minor step before proceeding. The first thing you need to do is acquire the
Ubuntu alternate CD. LTSP server installation is no longer provided via an
Edubuntu CD because the status of Edubuntu has changed from a distri-
bution to an add-on. If you would like to add LTSP to an Ubuntu server
you have already installed, skip ahead to the section titled “Installing the
LTSP Environment in Ubuntu or on a Desktop Installation.”

Edubuntu and LTSP 183

ptg

LTSP Server Configurations
The LTSP server install allows a great deal of flexibility and is designed to
allow it to fit into any current network configuration. Essentially these fall
into two categories: those that use the LTSP server as a primary gateway for
all their LTSP clients and those that do not. Let’s take a few minutes to dis-
cuss the relative merits of each system.

Using the recommended configuration requires the LTSP server machine
to have two network interface cards (NICs). One of these cards is con-
nected to the rest of the network, that is, to the Internet or to other servers
on the internal network. The other card is usually connected to a private
subnet of the network where only Edubuntu LTSP clients reside. Figure 5-8
shows this two-NIC setup. No network data is routed from the second net-
work card to the first, so client machines must be authenticated on the
LTSP server before having access to the Internet or the rest of the network.
This makes for a secure network setup.

The benefit to this setup is that client computers cannot connect to the
network unless the LTSP server permits them to. This also reduces net-

184 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-8 Two-NIC setup

InternetRouter/Firewall

Switch/Hub

Edubuntu
Server

Two NICs
Thin Clients

ptg

work traffic on the rest of the network because while the LTSP clients are
booting from the LTSP server, data is being transferred only on the private
subnet and not on the rest of the network. Also, the clients receive their
network addresses from the LTSP server, which frees up addresses on the
rest of the network.

Using LTSP as simply another server on a network allows for a more flex-
ible atmosphere. For a start, you require only one network interface card in
the server to run using this configuration. The LTSP clients are connected
to the normal network and could, assuming they had the capabilities to
boot, access the network without the help of the LTSP server. Figure 5-9
shows this one-NIC setup.

The benefits of this setup are that thin clients can be used with more than
one OS. One establishment, for example, runs dual-booting Microsoft
Windows and Edubuntu clients. This setup also allows users to have their
LTSP thin clients receiving their DHCP network addresses from a single
network server.

LTSP Server Configurations 185

Figure 5-9 One-NIC setup

InternetRouter/Firewall

Switch/Hub

Edubuntu
Server

One NIC
Thin Clients

ptg

Essentially the choice of network design layout will impact the number of
network cards installed in your server. It is primarily this that affects the
difference between the standard Ubuntu install and the LTSP install.

The Installation Procedure
The installation procedure from the Ubuntu alternate CD looks very dif-
ferent from that of the desktop CD, but the questions asked are largely the
same. The alternate CD is all text based, which can be a little daunting at
first, but you will find installing Ubuntu in this way quicker because it
doesn’t require the entire desktop session to be loaded.

TIP Remember that the server CD sets up LTSP for you. If you are planning to run an LTSP
server, the easiest installation method is to use the Ubuntu alternate CD.

After the CD has booted, press F4 and select “Install an LTSP server,” and
then select the “Install to the Hard Disk” option. Confirm by pressing
Enter to begin the installation. Notice also the workstation and command-
line options at this point.

The first question you are asked simply sets up the language used for the
install procedure as well as the language for the final system. You are then
asked to choose your location.

Now you must choose your keyboard layout. The text-based installer has
an auto-detection routine that asks you to press a series of keys on the key-
board. From these keys, the installer can work out which keyboard layout
will best suit you. If there are any keyboard variations, these are now pre-
sented for you to choose from.

The installer now loads various components. If you have more than one
NIC in your computer, you are asked to choose the primary card for the
installation (Figure 5-10). By this, the installer wishes to know which net-
work card is connected to the outside network or the Internet.

If your network has DHCP enabled, this card will be set up with an IP
address from the network. You are then prompted to choose a hostname

186 Chapter 5 � Guide to Common Ubuntu Servers

ptg

for the LTSP server. If your network doesn’t have DHCP enabled, you must
set up the IP address manually.

The next step is to set up the hard disk for installation. By far the easiest
method here is to select the default option of Guided Partitioning. If you
require more in-depth partitioning or already have data on the hard drive
that you do not want to lose, you must plan how you are going to proceed. If
you are installing onto a computer that has partitions Ubuntu can resize, it
will offer you that option. This option allows you to have two OSes installed
on one computer and to switch between them at bootup. Whichever
method you select, you are asked to confirm your partitioning choices.

TIP While the resizing utilities in Ubuntu are excellent, you should always back up your data
before performing an operation such as this.

After this, you must choose whether or not your clock is set to Coordi-
nated Universal Time (UTC). Your system clock should be set to UTC.
Your OS is then responsible for converting the system time into local time.
Unless you have another OS that expects the system time to be the local
time, you should answer yes here.

Now it’s time to set up the first user on the system. Remember that this
user will have full administrative rights. First, enter the user’s full name,

LTSP Server Configurations 187

Figure 5-10 Selecting the primary network interface

ptg

then the desired username, followed by the password twice. After this, the
base system is installed.

After plowing through several steps, you are presented with a question
about screen resolutions. For the type of system you are installing, a very
high screen resolution could result in a slow connection between the server
and the client. The default options are fine.

When this is completed, the installer begins building the LTSP client root
filesystem (Figure 5-11). This is the very small version of Ubuntu men-
tioned earlier in this chapter. Essentially it consists of just a kernel and an
X server.

TIP This step appears to take a long time, and the progress bar isn’t updated often. Be patient,
have a snack—it will finish eventually.

Once the installation is complete, a prompt asks you to remove the CD
and press Enter to reboot the system into your new Edubuntu server.

Initial LTSP Server Setup
The DHCP server installed on your Ubuntu machine should start up auto-
matically, so all that is left to do is to make your thin clients bootable from
the network. If you are using the single–network card setup described ear-
lier and your network already has a DHCP server running, do not start the
Ubuntu DHCP server, because doing so will likely cause both DHCP services
to be unavailable.

188 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-11 Building the LTSP filesystem

ptg

TIP If you are still running the Dapper 6.06 LTS version of Edubuntu, there is a little bit more
work to do. The latest versions of Ubuntu have an automatic DHCP configuration generator.
This means that they do not require manual configuration in usual LTSP environments. The
6.06 LTS release needs manual configuration of the DHCP server; please visit https://
www.edubuntu.org/GettingStarted for further instructions.

Initial LTSP Client Setup
Modifying a client computer to boot from the network is usually done by
altering a setting in the machine’s BIOS. It’s a good idea to look at the
manual for the computer’s motherboard to find out how to alter these set-
tings. For most machines it is simply a case of entering the BIOS by press-
ing the Delete key at bootup and changing the boot device priority.

Once you’ve set up your client machines to boot from the network card,
you should see a screen similar to the one Figure 5-12 shows on each of the
clients. This means that the client machine has been issued with a DHCP
address and that the PXELinux file has been loaded from the network.

LTSP Server Configurations 189

Figure 5-12 DHCP boot

https://www.edubuntu.org/GettingStarted
https://www.edubuntu.org/GettingStarted

ptg

If your client boots up to the graphical login and the screen looks similar
to the one shown in Figure 5-13, congratulations—you have successfully
set up your LTSP thin client system.

Installing the LTSP Environment in Ubuntu or on
a Desktop Installation
Perhaps you already have an Ubuntu machine and wish to make it available
in an LTSP setup. To do this is a simple procedure and requires very little
configuration. To begin, you must decide whether you require a DHCP
server. If so, install the ltsp-server-standalone package. If you already have a
DHCP server and are going to configure it to point to the LTSP server, by
modifying the filename, next-server, and root-path options, you should
install the ltsp-server package. Along with this, you will need the openssh-
server package.

The easiest way to do this is to log in to your server and type the following
commands to install the LTSP server and the SSH server. In our example, a
DHCP server was not required.

sudo apt-get install ltsp-server openssh-server

190 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-13 LDM login screen

ptg

TIP If you require a DHCP server, modify the line above from ltsp-server to ltsp-server-
standalone. You will also need to configure a second network device to an IP address of
192.168.0.1 before running the procedures described in this subsection.

All that is left to do now is to install the client chroot by running the fol-
lowing command:

sudo ltsp-build-client

After this, you should be able to boot your first thin client.

Special LTSP Cases
Setting Up LTSP to Coexist with an Existing DHCP Server Sometimes you
might not want your machines to be on a totally separate subnetwork.
However, the problem then becomes that the current DHCP server will
not be set up to serve the correct options to enable the clients to boot from
the network. Modifying a Linux-based DHCP server is well documented;
however, some establishments will require the modification of a Microsoft
Windows DHCP server to allow network clients to boot from the network.

The following setup assumes that there are currently no thin client systems
running on the Windows network. Opening up the Windows DHCP
administration tool will allow you to create reservations for your machines.
A reservation is an IP address tied to a specific MAC address. In this way,
each time a machine requests an IP address from the DHCP server, it is
always given the same IP address. This has its benefits because you can then
set advanced options for the client as well.

For each client, you must create a reservation and then add the following
options to each one (Figure 5-14).

� 017 Root Path: /opt/ltsp/i386

� 066 Boot Server Host Name: <server ip>

� 067 Bootfile Name: /ltsp/i386/pxelinux.0

LTSP Server Configurations 191

ptg
It is recommended that you restart the DHCP server. After this, the clients
should be able to correctly pick up their IP address from the server and
then boot from the LTSP server via NFS.

TIP You can also set these options as global parameters to be rolled out over the entire network.
However, it is often advisable, at least in the beginning, to keep track of which machines are
booting from the LTSP server.

Dual-Booting with Another Operating System on the Hard Disk Perhaps
you have a suite of computers that are already happily running another
OS, and you would prefer to keep both systems running for a while.
Hopefully, after using Edubuntu for any length of time, you will eventually
make the switch permanent. In these situations, it is easy to set up the
server to allow the client to boot from either the network or the first hard
disk in the computer.

The bulk of the editing takes place in the pxelinux.cfg/default configura-
tion file in the directory /var/lib/tftpboot/ltsp/<arch>/. The format of this
file is very similar to the old LILO configuration syntax (for those of you
familiar with that bootloader). The following sample configuration will
present a message to the client, which is explained later. The user can then

192 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-14 Windows DHCP Reservations

ptg

choose to either allow the system to boot its default configuration, which
in this example would be the local hard disk, or to type in the word linux
and press Enter, which would load the LTSP thin client.

DEFAULT localboot
TIMEOUT 50
PROMPT 1
DISPLAY display.msg

LABEL linux
KERNEL vmlinuz
APPEND ro initrd=initrd.img quiet splash

LABEL localboot
LOCALBOOT 0

Let’s take a look at the configuration file and break it down so that you can
create your own to suit your environment. (If this sample file fits the bill
for you, you can skip down to the part about creating the display.msg file.)

The DEFAULT keyword specifies which boot option will be chosen once the
timeout expires. The TIMEOUT option specifies how long to wait before boot-
ing the default option. This timeout is measured in one-tenth of a second;
thus a value of 50 sets it for 5 seconds. The PROMPT option specifies whether
the PXE software displays the boot: prompt to enable users to choose an
operating system. The DISPLAY option displays a text file on the screen as an
introduction. In this case, the file is called display.msg and must be placed
in the root LTSP directory alongside the pxelinux.0 file. An example of this
file is proposed a little later.

The three lines starting with LABEL linux define the linux option for booting.
This is configured by the KERNEL and APPEND options, which you will notice
are extracted from the original default file, as shown here:

DEFAULT vmlinuz ro initrd=initrd.img quiet splash

All that is needed now is the option for booting from the local hard drive,
shown by the two lines starting LABEL localboot. These lines define the
localboot option as used with the DEFAULT keyword earlier in the file. The
only definition included in this option is the LOCALBOOT option, with a

LTSP Server Configurations 193

ptg

parameter of 0. This provides normal hard disk booting. Other parame-
ters are available, as you can see by visiting the Syslinux home page, http://
syslinux.zytor.com.

The display.msg file should contain some information that tells the user
what to do to choose an operating system. Following is an example file
that is suitable for the configuration above. When creating this file, it is
helpful to use a number of blank lines before the text actually begins. This
has the effect of clearing the screen so that users don’t get confused by the
PXELinux start-up text.

==

Welcome to the Multiboot System

The system will start in 5 seconds...

for Linux users type : linux
at the boot: prompt and press <enter>

==

After rebooting the client, you should see the text from the display mes-
sage file. It should look similar to that shown in Figure 5-15.

Changing Your IP Address
At some point it may become necessary to change the IP address of the
server. Changing the IP address of a normal machine would not usually
have much consequence on the client machine. However, in an LTSP envi-
ronment, changing the IP address will result in clients being unable to log
in. This is because when the LTSP root is built, it is populated with SSH
authorization keys, which allow authentication between the client and the
server without a password.

The procedure for solving this issue is fairly simple. First, log in to your
server and then run the LTSP SSH key update script by typing the follow-
ing command into the terminal and pressing Enter. You will be prompted
for your password.

sudo ltsp-update-sshkeys

194 Chapter 5 � Guide to Common Ubuntu Servers

http://syslinux.zytor.com
http://syslinux.zytor.com

ptgTIP When entering your password, nothing is displayed on the screen, although your password
is still being read by the computer. The password is not displayed for security reasons, but it
is also not obfuscated. This prevents people who may be looking over your shoulder from
seeing how many characters your password has.

TIP It is possible here to update the SSH keys by simply restarting the network interface, using a
command similar to the following one. You will need to replace <iface> with the interface
identifier, usually something like eth0 or eth1.

sudo ifdown <iface> && sudo ifup <iface>

Once completed, your SSH keys will be updated, and after the clients reboot, they should be
able to log in again.

Local Devices over LTSP
Since Ubuntu Edgy 6.10, Edubuntu has included the update to LTSP to
allow what are called local devices. Plugging a USB storage device into a
thin client machine, for example, will trigger the local devices mechanism,
and the device will be correctly mounted and shown on the desktop of the
client machine.

LTSP Server Configurations 195

Figure 5-15 Multiboot system in action

ptg

When using USB sticks with Ubuntu, you would normally have to unmount
the device before removing it physically. This is so that Ubuntu has time to
write all the data it needs to the USB stick and can safely unmount it. In
the LTSP environment, using a USB stick is a little different. There is no
unmount option because the data is written to the USB stick on a very regu-
lar basis. Hence you do not need to unmount it and can just remove it once
the computer has finished writing information to it.

Local device support is set up by default in Edubuntu; however, to use it
you must add to the fuse group the users who require access to such sup-
port. You can do this from the user manager. Start by going to System >
Administration > Users and Groups option. From here, select the user to
whom you wish to give local device access and click on the User Properties
button. Click on the User Privileges tab, and from here tick the checkbox
for allowing use of fuse filesystems, as shown in Figure 5-16.

196 Chapter 5 � Guide to Common Ubuntu Servers

Figure 5-16 Setting fuse preferences

ptg

Sound over LTSP
Since Ubuntu Dapper 6.06, Edubuntu has the ability to play sound through
the speakers of the client machine. For versions of Edubuntu prior to 6.10
and LTSP setups installed on top of Ubuntu, you must add an entry to the
/opt/ltsp/i386/etc/lts.conf file to enable sound for client machines.

The easiest way to edit this file is to hold down Alt-F2, which will bring up
the run command dialog box. Type in the following command:

gksudo “gedit /opt/ltsp/i386/etc/lts.conf”

Clicking OK will bring up an editing window. Make sure to have at least a
[default] section in the lts.conf file where you will add the following line:

SOUND=True

NOTE Dapper 6.06 LTS is very particular about the SOUND=True statement. You must type it
exactly as shown, taking extreme care with capital letters and so on.

For all versions after 6.10 of Edubuntu, this is already done for you, and
sound should work on client machines out of the box.

LTSP Server Configurations 197

ptg

This page intentionally left blank

ptg

199

6C H A P T E R 6

Security

ptg

SECURITY IS DEFINITELY A HOT TOPIC both inside and outside the computer
world. It can be difficult to distinguish legitimate threats from basic para-
noia, but as anyone who has connected to a high-speed connection and
monitored the logs knows, these days there are armies of servers out there
trying to attack you.

Even though other operating systems and products seem to get the majority
of the press for their security breaches, Ubuntu users aren’t completely in
the clear. Even though Ubuntu has good security out of the box, the moment
you set up new services you risk opening holes to attack. This chapter dis-
cusses some common security practices and simple steps you can take to
keep your Ubuntu server secure. Just in case you still get attacked, I also
include a section at the end on how to respond to a security breach.

General Security Principles
There is a saying in security circles: “Security is a process, not a product.”
What that means is that despite what your vendor might tell you, you can’t
solve all your security problems with some appliance or software. Instead,
you find real security when you follow sound security principles and
develop sound security procedures. While I cover some specific tools and
options you can use to increase your system’s security later in the chapter,
there’s no way I can discuss how to lock down every major service under
Ubuntu. These principles, though, are something that you can apply no
matter what software you might run:

� Keep it simple.
Another saying you will hear in security circles is “Complexity is the
enemy of security.” The more complex a system, the more difficult it
is to understand every part of it and the greater the likelihood that the
security of some aspect of the system was overlooked. Whenever you
design a system, try to keep the number of interoperating pieces as
small as you can. Not only will it help with security, it will help with
troubleshooting and overall administration as well.

� Follow the principle of least privilege.
The principle of least privilege is the idea that programs and people
should operate with the lowest possible level of power. This is the

200

ptg

concept behind the separation of root and the regular users. Since
most daily tasks don’t require full system privileges, give users fewer
privileges. Programs like Apache and Postfix follow this principle;
they use the root privileges only when they are absolutely necessary,
and then the bulk of the work is done via child processes owned by a
different user. When these practices are in place, and you do get
attacked, the amount of damage an attacker can do is limited.

� Provide layers of protection.
Some refer to this as “defense in depth.” The best security occurs in
layers. Slapping a firewall in front of your servers won’t automatically
make them secure, but it will help increase their security. Instead, you
want multiple layers of defense, such as a firewall between you and
the outside world, a local software firewall, strong passwords, and
sudo roles.

� Avoid security by obscurity.
On the surface it might seem as if moving the SSH server from port
22 to port 257 would add extra security. After all, no one will think to
look for it there. Unfortunately, steps like this slow down, but don’t
stop, an attacker. The real danger of these sorts of security methods is
that they create a false sense of security. This isn’t to say that moving
ports around and using other means of obscurity are completely bad,
just that they should be recognized for what they are—things that
only slow down attackers and that must be combined with other
security procedures.

� Keep on top of security patches.
You can have all sorts of security procedures in place and still be
attacked if a vulnerability is found in a service and you fail to patch it.
It’s important to monitor security updates and use Ubuntu’s package
management to keep your systems up to date.

Sudo
Out of the box Ubuntu implements a number of practices to make the
default install more secure. One of these is the disabling of the root account
and the use of sudo for superuser privileges. The sudo program provides a

Sudo 201

ptg

much more robust set of features to increase user privileges compared to
the traditional su program. Here is a list of some of the more interesting
features of sudo:

� Uses the user’s password for authentication
When the sudo command is run and the user is prompted for a pass-
word, each user enters his or her own password instead of the pass-
word for the user he or she wants to become. This helps with security
because it means that you can give people superuser privileges with-
out having to tell them the root password (if it is enabled) or the pass-
word for any other users on the system. It also means that a user can’t
directly log in to the system as the root user since there is no pass-
word—since all Linux machines have a root user, it’s the most com-
mon account someone will try to brute force.

� Limitation on superuser access
With sudo a user doesn’t have to have complete root access. Instead,
you can define a list of programs a user can execute with superuser
privileges. With this feature you can better follow the principle of
least privilege. If a user really needs root privileges only to run
apache2ctl, why give the user root access over the entire system? With
sudo you can easily limit the user’s access strictly to apache2ctl.

� Support for group-based and host-based access
The sudo configuration file allows you to put users into groups and
then assign access to that group. If you find that you have a number of
different sudo rules for the same set of users, this makes it much easier
to organize the file and add or remove users from the group. You can
also define rules based on the host. With this feature you can main-
tain a single sudoers file (sudo configuration file) that can be copied
to all hosts on your network (or even shared via LDAP).

� Auto-expiration of sudo access
Once you pass the password check once, you can continue to run sudo
commands and sudo won’t prompt you for a password for a config-
urable amount of time. This certainly saves time when you need to
run multiple sudo commands in a row and provides extra protection
in case you forget to lock your terminal and leave your desk.

202 Chapter 6 � Security

ptg

� Logging of all sudo access
Every time users run sudo they generate a new log entry in
/var/log/auth.log that lists the time, the users who ran sudo, and what
commands they ran. This gives an administrator a nice forensics trail.
Also, sudo can send the administrator an e-mail whenever a user fails
the password check.

� Can configure passwordless access to rules
While you wouldn’t necessarily want to enable this for every sudo
rule, there is sometimes a need for a script (particularly cron scripts)
to gain root access to run a particular command. Since it’s a cron
script, it’s much easier if it can run without your having to code sup-
port for the interactive password prompt. It might be tempting to
give complete passwordless sudo access to a user, but I recommend
you limit rules like this to individual commands.

Configure sudo
sudo’s configuration file can be found at /etc/sudoers. Ubuntu provides a
basic file by default that allows the root user to do anything as any other
user and allows members of the admin group to become root (the user
you create at install time is automatically added to this group). Your natu-
ral inclination might be to open the file with your favorite text editor;
however, this is not recommended. The sudo package provides a tool called
visudo that you should use whenever you want to make changes to the file,
so to view and edit the /etc/sudoers file, type

$ sudo visudo

The reason you want to use visudo is that it automatically checks your
sudoers file for mistakes. Since a mistake in the sudoers file could poten-
tially lock you out of root access, this syntax check is pretty important. If
you do make a mistake, visudo will tell you about it after you save and exit.
You will have the option to go back and fix your mistake, exit without sav-
ing, or ignore its warnings and save anyway (which is not recommended).

While the basics of sudoers syntax are pretty straightforward, the full set
of features and syntax for things like user or command groups can get

Sudo 203

ptg

complicated rather quickly, especially without an example to work from.
Luckily you can access the sudoers manual by typing man sudoers. This
manual defines this file’s syntax and gives a number of examples you can
use for your own sudoers file. Instead of documenting that manual again
here, to start let’s look at two lines from the default /etc/sudoers file and
break down each of the fields:

root ALL=(ALL) ALL
%admin ALL=(ALL) ALL

The first column defines which user or group this rule applies to. To refer
to a user, you can just list the user, or you can list multiple users separated
by commas. To reference a group add the % sign in front of the group’s
name. The second column before the = sign defines which hosts this rule
applies to. In this case it is set to ALL, which means it applies to all hosts.
The value within the parentheses sets which user this sudo rule will be run
as. In this case it is also set to ALL so it can be run as any user. The final col-
umn defines which commands the user can run. In this example it is set to
ALL so any command can be run.

It’s easier to see how all of these options fit in when you see an example
that isn’t set to ALL. Let’s assume I have a Web server named web1. I have an
administrator with a username of jorge who manages only this Web
server. I don’t want to give him full root access to the machine because he
has a history of accidents with the rm -rf command. All I really want to
give him is the ability to use apache2ctl so he can reload and restart
Apache on this one server. I copy my sudoers file to all of the servers on my
network, so I need to restrict the rule to web1 only. The resulting rule
would look like this:

jorge web1 = (root) /usr/sbin/apache2ctl

Notice that I specified the full path to apache2ctl. If I had just listed
apache2ctl without the path, I would have opened up a way to full root
access on the system. The user could have created a bash script in his home
directory named apache2ctl and run whatever he wanted as root.

Now let’s say that the jorge user never really used apache2ctl except to
reload changes he made to configuration files. He wanted to automate this

204 Chapter 6 � Security

ptg

process and wrote a script to deploy his configuration files, but he still has
to manually log in to run apache2ctl because it asks for a password. To
remove the password requirement for this rule, add the NOPASSWD: state-
ment before the command:

jorge web1 = (root) NOPASSWD: /usr/sbin/apache2ctl

Keep in mind that you want to restrict how often you use NOPASSWD since it
bypasses one of sudo’s main security measures. You also want to avoid
using it if the command is set to ALL if you can help it. Even in this case I
may not want the full apache2ctl command available without a password.
If I wanted to restrict this further, I could create my own shell script that
ran /usr/sbin/apache2ctl graceful and then give the jorge user NOPASSWD
access to that script instead.

sudo Aliases
As your sudoers file gets larger and more complicated, or as you deploy it
to a larger number of servers, you will see that it easily becomes disorgan-
ized and difficult to manage. A new developer gets hired and needs sudo
access to a machine, and you find yourself poring over line after line in the
sudoers file looking for all of the different rules that might apply. Aliases
save you from that trouble and allow you to define groups for each of the
columns in an entry. The basic syntax for each of these aliases is as follows:

User_Alias ALIASNAME = user1,user2,user3
Host_Alias ALIASNAME = host1,host2,host3
Runas_Alias ALIASNAME = user4,user5,user6
Cmnd_Alias ALIASNAME = /bin/command1,/sbin/command2

There are some restrictions given to the alias name. You can use only
uppercase letters, 0–9, and the _ symbol for them. That not only helps you
distinguish them from regular users, it helps sudo distinguish them as well.

So let’s extend our previous scenario to incorporate groups. Instead of just
the jorge user, I have a number of users, jorge, allan, and ben, who work on
our Web cluster, web1, web2, and web3. I want to grant them access both
to apache2ctl and also some of the other useful Apache commands Ubuntu
includes, such as a2enmod, a2dismod, a2ensite, and a2dissite, so they can

Sudo 205

ptg

enable and disable modules and sites. Finally, I want them to be able to run
any command as the webadmin and apache users—two special users we
set up just for Web administrators. Here are the resulting rules I would add
to /etc/sudoers:

User_Alias WEB_ADMIN = jorge,allan,ben
Host_Alias WEB_CLUSTER1 = web1,web2,web3
Cmnd_Alias WEB_COMMANDS = /usr/sbin/apache2ctl, \

/usr/sbin/a2enmod, \
/usr/sbin/a2dismod, \
/usr/sbin/a2ensite, \
/usr/sbin/a2edissite

RunAs_Alias WEB_ACCOUNTS = webadmin,apache

WEB_ADMIN WEB_CLUSTER1 = (root) WEB_COMMANDS
WEB_ADMIN WEB_CLUSTER1 = (WEB_ACCOUNTS) ALL

Notice with the WEB_COMMANDS alias I can span multiple lines as long as I use
a \ at the end of the line. With these aliases in place, if we hire new users, all
I have to do is add them to the WEB_ADMIN alias. If we add a fourth Web
server to the cluster, I need to update only the WEB_CLUSTER1 alias.

AppArmor
The UNIX permissions model has long been used to lock down access to
users and programs. Even though it works well, there are still areas where
extra access control can come in handy. For instance, many services still run
as the root user, and therefore if they are exploited, the attacker potentially
can run commands throughout the rest of the system as the root user.
There are a number of ways to combat this problem, including sandboxes,
chroot jails, and so on, but Ubuntu has included a system called AppArmor,
installed by default, that adds access control to specific system services.

AppArmor is based on the security principle of least privilege; that is, it
attempts to restrict programs to the minimal set of permissions they need
to function. It works through a series of rules assigned to particular pro-
grams. These rules define, for instance, which files or directories a pro-
gram is allowed to read and write to or only read from. When an
application that is being managed by AppArmor violates these access con-
trols, AppArmor steps in and prevents it and logs the event. A number of
services include AppArmor profiles that are enforced by default, and more

206 Chapter 6 � Security

ptg

are being added in each Ubuntu release. In addition to the default profiles,
the universe repository has an apparmor-profiles package you can install
to add more profiles for other services. Once you learn the syntax for
AppArmor rules, you can even add your own profiles.

Probably the simplest way to see how AppArmor works is to use an example
program. The BIND DNS server is one program that is automatically man-
aged by AppArmor under Ubuntu, so first I install the BIND package with
sudo apt-get install bind9. Once the package is installed, I can use the aa-
status program to see that AppArmor is already managing it:

$ sudo aa-status
apparmor module is loaded.
5 profiles are loaded.
5 profiles are in enforce mode.

/sbin/dhclient3
/usr/lib/NetworkManager/nm-dhcp-client.action
/usr/lib/connman/scripts/dhclient-script
/usr/sbin/named
/usr/sbin/tcpdump

0 profiles are in complain mode.
2 processes have profiles defined.
1 processes are in enforce mode :

/usr/sbin/named (5020)
0 processes are in complain mode.
1 processes are unconfined but have a profile defined.

/sbin/dhclient3 (607)

Here you can see that the /usr/sbin/named profile is loaded and in enforce
mode, and that my currently running /usr/sbin/named process (PID
5020) is being managed by AppArmor.

AppArmor Profiles
The AppArmor profiles are stored within /etc/apparmor.d/ and are named
after the binary they manage. For instance, the profile for /usr/sbin/named
is located at /etc/apparmor.d/usr.sbin.named. If you look at the contents
of the file, you can get an idea of how AppArmor profiles work and what
sort of protection they provide:

vim:syntax=apparmor
Last Modified: Fri Jun 1 16:43:22 2007
#include <tunables/global>

AppArmor 207

ptg

/usr/sbin/named {
#include <abstractions/base>
#include <abstractions/nameservice>

capability net_bind_service,
capability setgid,
capability setuid,
capability sys_chroot,

/etc/bind should be read-only for bind
/var/lib/bind is for dynamically updated zone (and journal) files.
/var/cache/bind is for slave/stub data, since we're not the origin
#of it.
See /usr/share/doc/bind9/README.Debian.gz
/etc/bind/** r,
/var/lib/bind/** rw,
/var/lib/bind/ rw,
/var/cache/bind/** rw,
/var/cache/bind/ rw,

some people like to put logs in /var/log/named/
/var/log/named/** rw,

dnscvsutil package
/var/lib/dnscvsutil/compiled/** rw,

/proc/net/if_inet6 r,
/usr/sbin/named mr,
/var/run/bind/run/named.pid w,
support for resolvconf
/var/run/bind/named.options r,

}

For instance, take a look at the following excerpt from that file:

/etc/bind/** r,
/var/lib/bind/** rw,
/var/lib/bind/ rw,
/var/cache/bind/** rw,
/var/cache/bind/ rw,

The syntax is pretty straightforward for these files. First there is a file or
directory path, followed by the permissions that are allowed. Globs are also
allowed, so, for instance, /etc/bind/** applies to all of the files below the
/etc/bind directory recursively. A single * would apply only to files within
the current directory. In the case of that rule you can see that /usr/sbin/

208 Chapter 6 � Security

ptg

named is allowed only to read files in that directory and not write there.
This makes sense, since that directory contains only BIND configuration
files—the named program shouldn’t ever need to write there. The second
line in the excerpt allows named to read and write to files or directories
under /var/lib/bind/. This also makes sense because BIND might (among
other things) store slave zone files here, and since those files are written to
every time the zone changes, named needs permission to write there.

Enforce and Complain Modes
You might have noticed that the aa-status output mentions two modes:
enforce and complain modes. In enforce mode, AppArmor actively blocks
any attempts by a program to violate its profile. In complain mode, AppAr-
mor simply logs the attempt but allows it to happen. The aa-enforce and
aa-complain programs allow you to change a profile to be in enforce or
complain mode, respectively. So if my /usr/sbin/named program did need
to write to a file in /etc/bind or some other directory that wasn’t allowed, I
could either modify the AppArmor profile to allow it or I could set it to
complain mode:

$ sudo aa-complain /usr/sbin/named
Setting /usr/sbin/named to complain mode

If later on I decided that I wanted the rule to be enforced again, I would
use the aa-enforce command in the same way:

$ sudo aa-enforce /usr/sbin/named
Setting /usr/sbin/named to enforce mode

If I had decided to modify the default rule set at /etc/apparmor.d/usr
.sbin.named, I would need to be sure to reload AppArmor so it would see
the changes. You can run AppArmor’s init script and pass it the reload
option to accomplish this:

$ sudo /etc/init.d/apparmor reload

Be careful when you modify AppArmor rules. When you first start to
modify rules, you might want to set that particular rule into complain
mode and then monitor /var/log/syslog for any violations. For instance, if

AppArmor 209

ptg

/usr/sbin/named were in enforce mode and I had commented out the line
in the /usr/sbin/named profile that granted read access to /etc/bind/**,
then reloaded AppArmor and restarted BIND, not only would BIND not
start (since it couldn’t read its config files), I would get a nice log entry in
/var/log/syslog from the kernel to report the denied attempt:

Jan 7 19:03:02 kickseed kernel: [2311.120236]
audit(1231383782.081:3): type=1503 operation="inode_permission"
requested_mask="::r" denied_mask="::r" name="/etc/bind/named.conf"
pid=5225 profile="/usr/sbin/named" namespace="default"

Ubuntu AppArmor Conventions
� /etc/apparmor/

This directory contains the main configuration files for the
AppArmor program, but note that it does not contain AppArmor
rules.

� /etc/apparmor.d/
You will find all of the AppArmor rules under this directory along
with subdirectories that contain different sets of include files to which
certain rule sets refer.

� /etc/init.d/apparmor
This is the AppArmor init script. By default AppArmor is enabled.

� /var/log/apparmor/
AppArmor stores its logs under this directory.

� /var/log/syslog
When an AppArmor rule is violated in either enforce or complain
mode, the kernel generates a log entry under the standard system log.

SSH Security
If you are going to run services on your servers, these days it’s a safe bet
that one of them will be SSH. SSH provides a secure, encrypted channel
between your desktop and a server so that you can run commands and
manage the machine without having to physically be there with a keyboard

210 Chapter 6 � Security

ptg

and mouse. Even though SSH was designed with security at the forefront,
poor management of the service can open you up to attack. In fact, one of
the most common ways that Linux servers are attacked at the moment is
via SSH brute-force attacks. I cover how to manage those attacks, but first I
discuss a few other methods to enhance the security of SSH.

sshd_config
The /etc/ssh/sshd_config file is where you will find all of the settings for
the SSH server. The default Ubuntu sshd_config file is pretty secure out of
the box, as it allows only SSH protocol 2, uses privilege separation, and
allows authentication keys to be used. The only questionable setting is
PermitRootLogin yes. This option allows the root user to log in via SSH. In
a way this setting is useless on a default Ubuntu install, since the root
account is disabled, but if you decide to enable the root account, you
might want to set this option to no and run sudo service ssh reload to save
the settings. This way you force users to log in with their regular accounts
and sudo up to root, and you also prevent a user from being able to guess
the root password and gain access.

Key-Based Authentication
If there is a weak link in SSH security, password authentication would
probably be it. I know plenty of people who have been hacked simply
because of a weak user password. There are many brute-force SSH scripts
active in the wild that constantly scan for new machines and run through a
dictionary full of passwords until one works. I know of a honeypot server
intentionally set with weak passwords that was hacked and used as part of
a botnet within hours of showing up online.

The good news is that you don’t need password authentication to log in to
an SSH server. SSH supports key-based authentication. In this approach
the user generates a public and private key. The public key is then placed in
a special file on the remote server. When the user logs in, these keys are
used to authenticate the user instead of a password. It’s certainly more
convenient to be able to log in to a machine without typing a password
every time, although if you want an extra layer of security, you can set a
passphrase on your keys as well.

SSH Security 211

ptg

It is relatively simple to set up key-based authentication. In this example we
have a user named ubuntu on desktop1 who wants to set up key authenti-
cation on server1. The first step is to use the ssh-keygen program to create
an RSA public and private key on desktop1. At each prompt you can press
Enter to accept the defaults.

ubuntu@desktop1:~$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):
Created directory '/home/ubuntu/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/ubuntu/.ssh/id_rsa.
Your public key has been saved in /home/ubuntu/.ssh/id_rsa.pub.
The key fingerprint is:
91:ae:0c:ff:16:a2:67:98:19:34:71:5b:71:e3:d2:2c ubuntu@ubuntu

The script creates the keys in the .ssh directory under your home directory,
in this case /home/ubuntu/.ssh. The private key and public key are named
id_rsa and id_rsa.pub respectively. It’s very important (especially if you
chose an empty passphrase) to keep the private key (id_rsa) safe! If anyone
else gets access to this file, he or she can copy it and will be able to log in to
any machines you have set up with this key.

Once you have created the keys, the next step is to copy the id_rsa.pub key
to the server and then append it to the ~/.ssh/authorized_keys file. There
are a number of ways you can do this. You could SSH into the remote
machine, open ~/.ssh/authorized_keys with a text editor, and paste in the
contents of id_rsa.pub, for instance. Here are two other ways to do this.
The first way is simple to understand but takes multiple steps. The second
method does the entire operation in one command. In method one I use
the scp command to copy the id_rsa.pub file to the home directory on the
remote server, then I append it to the ~/.ssh/authorized_keys file:

ubuntu@desktop1:~$ scp ~/.ssh/id_rsa.pub
ubuntu@server1:/home/ubuntu/id_rsa-desktop1.pub
ubuntu@desktop1:~$ ssh ubuntu@server1
ubuntu@server1:~$ mkdir ~/.ssh
ubuntu@server1:~$ chmod 700 ~/.ssh
ubuntu@server1:~$ cat ~/id_rsa-desktop1.pub >>
~/.ssh/authorized_keys

212 Chapter 6 � Security

ptg

If you already have the ~/.ssh directory on the remote host, you can skip
most of those steps. Also, if you already have a ~/.ssh directory, you can
add your public key in a single one-liner that takes advantage of file
 redirection:

ubuntu@desktop1:~$ ssh ubuntu@server1 "cat >>
~/.ssh/authorized_keys" < ~/.ssh/id_rsa.pub

Once you have keys set up on a machine, you should be able to log in with-
out a password prompt, unless you set a passphrase for your key, in which
case you will need to type it. After your keys work, you might want to dis-
able SSH password authentication altogether. Just make sure that your
SSH keys work first or you could lock yourself out! To disable password
authentication, edit /etc/ssh/sshd_config and locate the line that says

#PasswordAuthentication yes

Uncomment that line and set it to no:

PasswordAuthentication no

Finally, run sudo service sshd reload to load the new change.

SSH Brute-Force Attacks
As mentioned earlier in this chapter, SSH brute-force attacks have become
a very common threat to Linux servers. Even if your password is hard to
guess, unless you impose strong password restrictions on the server, there’s
no way of knowing that every other user has a strong password. The best
way to combat SSH brute-force attacks is to simply disable password
authentication and use SSH keys. Unfortunately, that isn’t an option for
every administrator. If you must use password authentication, there is
another way to protect against these attacks: a package named denyhosts.

The way that denyhosts works is to monitor for failed SSH logins. When a
host attempts to log in either as a user that doesn’t exist or too many times,
that host is added to /etc/hosts.deny and blocked from future SSH access.

SSH Security 213

ptg

Also, if a host tries to log in as a valid user but fails too many times, the
host is blocked.

A number of administrators use this tool or tools like it to protect against
brute-force attacks and like the results, but I find it hard to recommend. I
mention it so that you know it is available, since you might disagree with
my opinion. In case you do decide to deploy it, here are some things to
watch out for:

� Any program that automatically modifies firewall (or TCP wrappers)
rules is dangerous. If an attacker can detect that such a tool exists, he
or she can remotely modify your firewall rules. What happens if the
attacker can appear to come from a different host, such as your desk-
top, and lock you out?

� Set your thresholds carefully. Even with reasonably large thresholds,
such as ten failed attempts for a valid user, you might still lock out
valid users who forgot their password. I’ve even seen this happen with
a user who set up keys and had a cron script log in and perform vari-
ous tasks. When the server got overloaded and the SSH connections
timed out, the failed SSH connections crossed the threshold and
locked out the script.

� Set whitelists for trusted hosts. Be sure to add any hosts or networks
that you can’t risk being blocked into /etc/hosts.allow. Be sure to keep
your whitelists up-to-date with new hosts or networks. Just keep in
mind that if attackers do manage to hack into another machine on
any of these networks, they will be able to attack these machines.

� Botnets know about denyhosts and can work around it. It’s true that
denyhosts makes a brute-force attack more difficult, but a large-
enough botnet can work around this problem by having a particular
host attack only a few times, or shift to a different host once the first is
locked out.

Firewalls
One of the most common ways to protect machines on a network is with a
firewall. Essentially a firewall gives you the ability to restrict access to
services over the network. With a firewall you could limit access to SSH,

214 Chapter 6 � Security

ptg

for instance, to hosts only within your internal network, while allowing
HTTP access to everyone. There are two major types of firewalls used in an
organization: so-called hardware and software firewalls. A hardware fire-
wall is generally a stand-alone machine that sits between your hosts and
another network (often the Internet). This machine is then configured
with a set of rules to control what access is allowed. A software firewall is a
program that is run on a host itself and has a similar ability to restrict
access, except in this case it applies only to that specific host.

Many organizations deploy both hardware and software firewalls, which is
in line with the “Provide layers of protection” security principle. The hard-
ware firewalls often double as the gateways for a particular network and
help restrict access in and out of the network, while software firewalls on
each host help reinforce the rules from the hardware firewall and can pro-
vide additional protection from hosts inside their own network—some-
thing a separate hardware firewall can’t do. Honestly, many “hardware
firewalls” out there are simply stand-alone machines that run Linux and
use the same software firewall tools. In this chapter I discuss how to use
Ubuntu’s tools to set up a secure software firewall on your server.

Traditionally, firewall rules under Linux required that one delve deeply
into the dark arts of the iptables program. iptables (and before that,
ipchains) is a program included with Linux distributions that works with
the Linux kernel to evaluate and potentially block packets based on rules
that you define. In addition to standard port and host blocking, iptables
supports stateful packet matching, which means it monitors and can iden-
tify traffic as belonging to a particular pair of hosts and can keep track of
the state of that connection. You can then define rules that activate based
on these states.

You can (and I have done so) create very complicated iptables rule sets,
but honestly, the way that the iptables syntax is constructed, even the
most basic rules can seem complex at times. This complexity fights against
the “Keep it simple” security principle so that the beginner administrator
either ends up disabling the firewall altogether or relies on some long set of
iptables rules found on the Internet—rules the admin doesn’t under-
stand and therefore can’t easily debug. The advanced administrator sol-
diers on and either develops a minimal set of rules or learns the dark art of

Firewalls 215

ptg

216 Chapter 6 � Security

stateful packet matching and develops a long rule set that is bound to have
mistakes.

At some point the initial pride of writing heavy-duty, complicated iptables
rules wears off and you just wish it were simpler. Eventually your common
iptables administrator discovers the OpenBSD pf firewall tool and fills
with envy. In pf you have simple, easy-to-understand syntax that is still
secure. Luckily for Ubuntu administrators, there is now a similar tool, ufw,
that aims to simplify firewall administration by providing a front end to
iptables commands.

The ufw program will be installed by default on your server but will be dis-
abled. Since a default Ubuntu install has no external network services
enabled, there really isn’t anything for a firewall to protect. As you start to
add services, however, you will want to enable the firewall and add rules.

ufw Commands
The basic set of ufw commands is pretty straightforward. If you run ufw -h,
you will get a help page that describes the main ufw commands, but if you
want full syntax information, you should type man ufw to read the full
manual page. First I identify the main commands and then provide some
examples.

� enable and disable
These commands enable and disable ufw, respectively. By default ufw
is disabled, so if you wanted to enable it, you would type sudo ufw
enable.

� status
If you aren’t sure whether or not your firewall is enabled, type sudo
ufw status to check. If ufw is enabled and you have any rules defined
with ufw, the status command will also output all of your rules.

� default
A very important command to consider is the default command.
This command defines the default policy of your firewall, as in
whether by default all packets are allowed or denied. The general

ptg

consensus is that a firewall is more secure if you deny all packets by
default, and then enable services as you need to. That way, if you start
a new service (or worse, a user starts a service) and you forget to set
firewall rules for it, by default it will be blocked. So to deny by default,
you would type sudo ufw default deny. To allow by default, type sudo
ufw default allow. Note that ufw will deny by default unless you
change it.

� logging
This command toggles whether or not you want your firewall to
dump logs of anything it blocks along with anything against your
default policy. To enable logging, type sudo ufw logging on. To dis-
able it, type sudo ufw logging off.

� allow and deny
These are the commands that you will run more often than not, as
they define your firewall rules. The arguments they accept are more
involved because they can define complex firewall rules, so I discuss
their syntax below.

� delete allow and delete deny
These commands will undo a particular firewall rule you have cre-
ated. Whenever you want to remove a rule, you copy the same com-
mand you used to create the rule and then add delete to the very
beginning.

NOTE For all of my examples, I’m going to assume your firewall denies by default. When you deny
by default (sudo ufw default deny), you construct your rules so that they are focused
on what access to allow. If instead you decide to allow by default, your set of rules has to be
focused on what access to deny. Generally speaking, you will find that denying by default
results in a shorter list of rules for a secure firewall.

ufw Rule Syntax
A basic ufw rule takes a port or service as an argument. To open port 53
(used for DNS servers), you would type

$ sudo ufw allow 53

Firewalls 217

ptg

ufw also accepts service names that are defined in the /etc/services file
instead of specific ports. If you look in the /etc/services file, you can see
that port 53 TCP and UDP is set to the domain service. So another way to
state this rule is

$ sudo ufw allow domain

This name-based access makes it really simple to define rules because you
don’t need to concern yourself as much with ports as with service names.
For instance, to open up access to a mail server, you could type

$ sudo ufw allow smtp

The SMTP service operates only over TCP, not UDP, and ufw will see this
in the /etc/services file and allow only port 25 TCP traffic through. You can
specify TCP or UDP on the command line as well, so the equivalent to the
command above would be

$ sudo ufw allow 25/tcp

Once you have created some rules, you can view them with the status
command:

$ sudo ufw status
Status: active

To Action From
__ ______ ____
53 ALLOW Anywhere
25/tcp ALLOW Anywhere

Extended ufw Rules
When you view the ufw status after you have set some basic rules, you will
notice that by default these ports are open to any IP address. This may be
exactly what you want. You may, however, want to lock down specific
services further so that only certain hosts can access them. To do this, you
need to extend the basic ufw rules.

218 Chapter 6 � Security

ptg

A good example of why you might want to limit based on IP address is an
intranet site, like an internal wiki. If you use a wiki for your internal docu-
mentation, you probably don’t want the entire world to read it. You might
even host a wiki just for a particular group of users and want to restrict
access so that only their network can see it. When you define more advanced
ufw rules, you must use the extended ufw syntax. This syntax requires you to
specify the protocol and port number explicitly, so you can’t use the same
shortcuts as in the simpler commands. Here’s an example command to limit
Web access (port 80) to just the 10.1.1.0 network:

$ sudo ufw allow proto tcp from 10.1.1.0/24 to any port 80

Let’s break this command down. The proto tcp section defines whether
this rule applies to TCP or UDP. I limit what networks this rule applies to
with from 10.1.1.0/24. The to any port 80 section of the command says
that this rule applies to port 80 on any destination address on the machine.

Even if you deny by default, there might be circumstances when you also
add a deny rule. For instance, let’s say that you are running an external
SMTP (mail) server and you notice that a host inside your network at
10.1.1.75 appears to be infected with a virus and is flooding your mail
server with invalid messages. To block just that IP address, you would type

$ sudo ufw deny proto tcp from 10.1.1.75 to any port 25

If you wanted to block all packets from that host, not just SMTP, you
wouldn’t need to define the proto or to arguments:

$ sudo ufw deny from 10.1.1.75

Later on, once the virus has been removed and the host is back to normal,
you can remove the rule with

$ sudo ufw delete deny proto tcp from 10.1.1.75 to any port 25

or, if you dropped all packets from the host, this command would remove it:

$ sudo ufw delete deny from 10.1.1.75

Firewalls 219

ptg

220 Chapter 6 � Security

NOTE Notice that when I wanted to undo a rule, I used the delete command. At first you might
logically conclude that you just need to write an allow command so the host can connect
again. This works, but when you do this, ufw just changes your existing rule, so you will
have an unnecessary rule in your list. When you want to undo a rule, just delete it.

ufw Examples
The following is a list of start-to-finish ufw commands to set up a firewall
for a particular service. I assume you are starting from the default state,
that is, ufw is disabled. Also, I assume you will probably want to manage
your server remotely with SSH even if it’s a Web, mail, or DNS server, so I
add rules to enable SSH in each example.

NOTE About Remote Firewall Management
If this is the first time you have enabled ufw, and you plan to set this up remotely over the
network, you should be careful about your steps. It’s very easy to make a mistake and lock
yourself out. Specifically, when ufw is enabled, it flushes all connection data, so if you man-
age the server over SSH, your connection will be closed, and if you deny by default and
haven’t set up an SSH rule yet, when ufw is enabled, you will be locked out. One simple safe-
guard you can put in place is a cron job that disables ufw every 15 minutes or so. That way,
if you make a mistake and lock yourself out, you just have to wait at most 15 minutes for the
firewall to be reset. To do this, add the following line to your /etc/crontab file:

*/15 * * * * root ufw disable

Of course, the downside to this is that every 15 minutes while you are tweaking your firewall,
ufw will be disabled and you will have to remember to enable it. Still, it’s better than being
locked out of the system completely. Just remember to delete the crontab rule once you
are finished tweaking. On Ubuntu 8.10 and later, ufw actually warns you if you enable ufw
while using SSH and prompts you before it enables.

SSH I’m assuming you will probably want to have SSH enabled on just
about any server you manage. Note the order in which I run the commands
here, as I enable ufw at the very end. That way I don’t risk locking myself out
because the SSH rule is defined before ufw is enabled:

$ sudo ufw allow ssh
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

ptg

To Action From
__ ______ ____
22 ALLOW Anywhere

DNS
$ sudo ufw allow ssh
$ sudo ufw allow domain
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
53 ALLOW Anywhere

Web Here I open up ports for both HTTP (80) and HTTPS (443), but if
you don’t use HTTPS, you can remove that particular rule from the list:

$ sudo ufw allow ssh
$ sudo ufw allow www
$ sudo ufw allow https
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
80 ALLOW Anywhere
443 ALLOW Anywhere

SMTP
$ sudo ufw allow ssh
$ sudo ufw allow smtp
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
25/tcp ALLOW Anywhere

Firewalls 221

ptg

POP/IMAP To simplify things, I list rules to enable POP2, POP3, and POP3
with SSL, IMAP2, IMAP3, and IMAP with SSL, since many administrators
end up supporting all of them on the same server.

$ sudo ufw allow ssh
$ sudo ufw allow pop2
$ sudo ufw allow pop3
$ sudo ufw allow pop3s
$ sudo ufw allow imap2
$ sudo ufw allow imap3
$ sudo ufw allow imaps
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
109 ALLOW Anywhere
110 ALLOW Anywhere
995 ALLOW Anywhere
143 ALLOW Anywhere
220 ALLOW Anywhere
993 ALLOW Anywhere

MySQL This example uses the default MySQL ports. Of course, if you
have moved MySQL to listen on a different port, you will have to manually
specify the port to open.

$ sudo ufw allow ssh
$ sudo ufw allow mysql
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
3306 ALLOW Anywhere

PostgreSQL This example uses the default PostgreSQL ports. Of course,
if you have moved PostgreSQL to listen on a different port, you will have
to manually specify the port to open.

222 Chapter 6 � Security

ptg

$ sudo ufw allow ssh
$ sudo ufw allow postgresql
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
5432 ALLOW Anywhere

Samba Samba is a little trickier to open because it listens on a set of
ports and none of them are labeled in /etc/services with “Samba.”

$ sudo ufw allow ssh
$ sudo ufw allow netbios-ns
$ sudo ufw allow netbios-dgm
$ sudo ufw allow netbios-ssn
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
137 ALLOW Anywhere
138 ALLOW Anywhere
139 ALLOW Anywhere

NFS NFS is a little trickier to firewall off than most other services because
the connections don’t necessarily use a defined set of ports. As a result, it
can be difficult to open up a range of ports for NFS that will work long-
term. The simplest solution, if you want to enable a firewall on an NFS
server, is to deny by default and then allow access to all ports from specific
NFS clients. If you don’t want to add a firewall rule for each individual host
because there are many, you might consider putting all NFS clients on their
own subnet and then allowing that subnet. I show two examples. The first
allows all access from the 10.1.1.7, 10.1.1.8, and 10.1.1.9 hosts. The second
example opens up access for the entire 10.1.2.0/24 subnet:

$ sudo ufw allow ssh
$ sudo ufw allow from 10.1.1.7
$ sudo ufw allow from 10.1.1.8

Firewalls 223

ptg

$ sudo ufw allow from 10.1.1.9
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
Anywhere ALLOW 10.1.1.7
Anywhere ALLOW 10.1.1.8
Anywhere ALLOW 10.1.1.9

Here are the steps to allow all of 10.1.2.0/24 access to NFS:

$ sudo ufw allow ssh
$ sudo ufw allow from 10.1.2.0/24
$ sudo ufw default deny
$ sudo ufw enable
$ sudo ufw status
Status: active

To Action From
__ ______ ____
22 ALLOW Anywhere
Anywhere ALLOW 10.1.2.0/24

Ubuntu ufw Conventions
For the most part you should be able to set up a firewall using ufw without
worrying about configuration files. The ufw program will update its configu-
ration files for you, so that if you set it to be enabled from the command line,
you won’t have to tweak anything else. That being said, you might be inter-
ested in how ufw works behind the scenes, so I list ufw’s file conventions here:

� /etc/ufw/
This directory contains all of the configuration files for ufw, including
/etc/ufw/ufw.conf, the main configuration file. The only default set-
ting in that file, though, defines whether the firewall is enabled at
boot—something you can set with ufw itself.

� /etc/ufw/before.rules and /etc/ufw/before6.rules
These files contain a set of IPv4 and IPv6 iptables rules, respectively,
that ufw will set before any ufw rules are enabled. Advanced iptables

224 Chapter 6 � Security

ptg

users can refer to these files if they are curious about ufw’s behavior.
If you really know what you are doing and want to modify this
behavior with your own iptables rules, you can add them to the
ufw-before-input, ufw-before-output, or ufw-before-forward chains,
depending on which chain they belong to. If you don’t know what
I’m talking about, then don’t worry; the average user shouldn’t need
to edit these files.

� /etc/ufw/after.rules and /etc/ufw/after6.rules
These files are like the before.rules and before6.rules files, except
they are loaded after ufw rules are enabled. Again, if you really know
iptables, you might want to set up specific iptables rules in this file
to be started after ufw.

� /etc/init.d/ufw
This is the init script for ufw. Generally speaking, you shouldn’t need
to touch this script because you can add and delete rules and enable
and disable ufw from the command line.

� /etc/defaults/ufw
Like other init scripts, ufw has a file under /etc/defaults that defines
the environment variables it uses when it starts. There are some set-
tings in this file that are of interest to more advanced administrators;
for example, you would come here to enable IPv6 support or add or
delete extra connection tracking modules for iptables.

� /lib/ufw/user.rules and /lib/ufw/user6.rules
When you define your own ufw rules, they end up in the user.rules
file, or user6.rules file for IPv6 rules. If you want to know exactly what
iptables command a particular ufw rule creates, you can look here.
Generally speaking, you do not want to edit these files directly.

� /var/log/syslog
If you have enabled logging, ufw will dump its logs to the standard
/var/log/syslog file. If logging is enabled, each connection attempt
that is against your ufw policy will be logged here, so you can see the
source host and port, the protocol, and the destination host and port
for each connection attempt.

Firewalls 225

ptg

Intrusion Detection
Once you have set up a firewall and locked down your system, how can you
tell whether the system has been compromised? One way is to set up an
intrusion detection system (IDS). If you think of your computer system
like a house, your firewall and file permissions could be thought of as locks
on the windows and doors. Think of an intrusion detection system as a
burglar alarm—its job is not to prevent someone from breaking in, but
instead to alert you when it happens.

There are a number of different intrusion detection systems out there, and
most of the time you hear about network intrusion detection systems that
sniff network traffic and look for suspicious activity. In this case I’m not
talking about that sort of IDS, but instead a system to detect that an
attacker has intruded into a particular server. One of the oldest and most
common of these types of systems is Tripwire. Tripwire maintains a data-
base of information about core files on the system. Once the database has
been created, Tripwire scans the system once per day and e-mails you a
report. If any of the files in the database has been altered, Tripwire alerts
you in its report. Most of the files in Tripwire’s database are files that are
common to replace with Trojan horse programs. Others, such as the
/etc/passwd file, are files that only root can change. This means that if any
of the files change, and you know you and your staff didn’t change it, you
can be pretty confident of some sort of system breach.

Because Tripwire detects a breach based on files being different from the
version in its database, Tripwire can’t detect if your system was attacked
before Tripwire was installed. In addition, the effectiveness of Tripwire is
based on the integrity of its database. If attackers can write to that database,
they can update it with signatures for hacked versions of system files and
continue undetected. Because of all of this, it’s important to install Tripwire
as soon as possible on the system, preferably at install time. Also, if possible,
you might consider switching to single-user mode beforehand (type sudo
init 1 in a console). Note that single-user mode works only if you are phys-
ically logged in to the machine (no SSH). In single-user mode you can be
sure that no other users can interfere with the initial Tripwire install.

Tripwire is packaged by Ubuntu; however, it is not ready to use out of the
box. You must tweak its policy database and think about how you will

226 Chapter 6 � Security

ptg

store the signature database securely before the install is complete. First,
install the Tripwire package:

$ sudo apt-get install tripwire

If you don’t have an MTA (Mail Transport Agent) installed, the Tripwire
package will add one as a dependency. As the Tripwire package installs,
you will be asked a number of questions about keys. Tripwire uses two dif-
ferent keys to sign files and ensure that they have not been altered. The first
key is a site-wide key that you might use for all of the servers on a particu-
lar network. The second key is a local key that is unique for this particular
machine. If you do not yet have a site key or you aren’t sure what this
means, answer Yes to create a site key. Next you get a similar prompt about
a local key. Unless you already have a local Tripwire key, answer Yes here as
well so the installer can create one. At the next prompt, answer Yes to
rebuild the Tripwire configuration file, and Yes one final time to re-create
the policy file. Finally, enter passphrases to use for the site and local keys.
Be sure to note what passphrases you selected, because there’s no method
to retrieve or reset them if you forget.

Update Tripwire Policy
The Tripwire policy file is located at /etc/tripwire/twpol.txt and defines all
of the files and directories Tripwire will monitor along with what informa-
tion to monitor and how to respond to changes in each file. The default
twpol.txt file is a good starting place, but it contains a few files and directo-
ries that you will want to remove to avoid a lot of false positives every time
you run a Tripwire check. Open the file in a text editor and remove the
lines as indicated for each file below:

� /etc/rc.boot
Ubuntu doesn’t have this file, so remove the line that says

/etc/rc.boot -> $(SEC_BIN) ;

� /proc
Files in the /proc directory change constantly, so you will get tons of
false alarms if this is scanned. Delete the following line from the file:

/proc -> $(Device) ;

Intrusion Detection 227

ptg

� /root
There is a large section of the twpol.txt file that lists files under the
/root directory. The problem is that by default these files don’t exist,
so they will generate false positives. Locate the section of the file that
looks like this:

These files change the behavior of the root account
(
rulename = "Root config files",
severity = 100

)
{

/root -> $(SEC_CRIT) ; # Catch all additions to /root

Delete the references to all of the files under the /root directory except
for /root/.bashrc. The resulting segment of the twpol.txt file looks like
this:

These files change the behavior of the root account
(
rulename = "Root config files",
severity = 100

)
{

/root -> $(SEC_CRIT) ; # Catch all additions to /root
/root/.bashrc -> $(SEC_CONFIG) ;

}

Save all of your changes, and then use the twadmin tool to update the
policy file:

$ sudo twadmin -m P /etc/tripwire/twpol.txt

Initialize the Tripwire Database
Once the policy file has been changed, you are ready to initialize the data-
base. Note that the system’s state at this point in time is what Tripwire con-
siders the gold standard, so you want to initialize the database as soon after
the system has been created as possible. Here is the command to initialize
Tripwire’s database:

$ sudo tripwire -m i

228 Chapter 6 � Security

ptg

Don’t worry about any errors you see about the /var/lib/tripwire/foo.twd
file not existing—this is the database you are creating now. Once the
database has been initialized, you should store it somewhere safe,
because if attackers get root privileges they could update the database
and hide their tracks. There are a few ways to secure the database. One,
you could store the database on a floppy disk with the physical write-
protect bit set and change the /etc/tripwire/twcfg.txt file to point to that
new location. Alternatively, you could set up an NFS server that you con-
sider secure to host all of the Tripwire database files and set all of the
databases as read-only.

Since floppies are getting hard to come by, I describe how to set this up
with NFS. Let’s assume that your Tripwire database is at /var/lib/tripwire/
host1.twd. You have an NFS server at 10.1.1.7 and have copied the host1
.twd file at /mnt/tripwire/host1/. Then you would use sudo chmod 400
/mnt/tripwire/host1/host1.twd to ensure that the file could not be
changed. Since Tripwire checks are run as the root user, you will probably
have to disable root squashing on the NFS server, at least whenever you
need to update the database. If you wanted additional security, you could
also modify the /etc/exports file so that this share could be mounted only
as read-only. NFS server administration is out of the scope of this chapter,
but for more information on NFS server configuration, check the NFS sec-
tion of Chapter 5. With NFS configured, create a directory called /mnt/
tripwire on your local machine and mount the NFS share:

$ sudo mkdir /mnt/tripwire
$ sudo mount -o ro 10.1.1.7:/mnt/tripwire/host1/ /mnt/tripwire

If you get an error that this is an unknown file system type, be sure that
you have the nfs-common package installed. Once the share mounts suc-
cessfully, add a new line to /etc/fstab to make sure that it mounts automat-
ically each time the system boots:

10.1.1.7:/mnt/tripwire/host1 /mnt/tripwire nfs defaults,ro 0 0

Now if you run sudo ls -l /mnt/tripwire/, you should be able to see the
/mnt/tripwire/host1.twd file (the filename will be named after your host’s

Intrusion Detection 229

ptg

name, of course). Edit the /etc/tripwire/twcfg.txt file as root and change
the part of the file that reads

DBFILE =/var/lib/tripwire/$(HOSTNAME).twd

to

DBFILE =/mnt/tripwire/$(HOSTNAME).twd

Finally, you need to re-create the encrypted Tripwire configuration file:

$ sudo twadmin -m F -S /etc/tripwire/site.key /etc/tripwire/
twcfg.txt

Once the Tripwire database is in a safe location, your base Tripwire configu-
ration is complete. Now any time you want to check the system, you can run

$ sudo tripwire --check

and Tripwire will output a report that lists any files that have changed. In
addition to the output on the screen, Tripwire stores all of its reports in
date-stamped files under /var/lib/tripwire/reports/. By default, Tripwire
runs a system check every night and e-mails you a report.

Update the Tripwire Database
The very first time that you run a sudo tripwire --check you will probably
notice that it complains because you modified /etc/tripwire/ twcfg.txt and a
few other Tripwire files. Now and then, such as when you update major
packages on the system, you will end up legitimately updating files that Trip-
wire scans, and unless you update the Tripwire database to note these
changes, you will get false positives at every nightly scan. In fact, you might
want to run a Tripwire check after you do major package updates to make
sure that you catch any changes and update them immediately.

To update the Tripwire database, first you must set it so that you can write
to the .twd file. If you set this up on an NFS share as in the example, you
will need to go to the NFS server and run sudo chmod a+w /mnt/tripwire/
host1/host1.twd (replace that path with the path to the file you are export-

230 Chapter 6 � Security

ptg

ing). In addition, you need to disable root squashing and set the share to rw
during the short time the database is updated. You will also need to
remount the NFS share as rw. Once the NFS server is ready, go to the host
itself and locate the report that contains the errors you want to override.
This will probably be the newest file in /var/lib/tripwire/report. Then run
the following Tripwire command to update the database:

$ sudo tripwire -m u -r /var/lib/tripwire/report/
hostname-20090107-190736.twr

Replace the filename under here with the name of your report. The update
tool outputs the report to the screen in the root user’s default text editor
(probably vi, unless you set the EDITOR environment variable to some-
thing else). If this is the default vi editor, you should be able to use the
arrow keys (or the standard H, J, K, and L keys) to move throughout the
report. Each item slated to be updated in the database will be on a line with
[x] at the beginning. As long as that x is inside the box, that file will be
updated. If you do not want to update a particular file, move the cursor
over that x and type r and then the spacebar to remove it. When you are
finished editing the file, hit :wq. You will be prompted for the local key, and
then the database will be updated.

Once this command is finished and the database is updated, you must go
back to the NFS server and reinstate all of the permissions and other pro-
tections you put in place to make this file read-only.

Ubuntu Tripwire Conventions
� /etc/tripwire/

This directory contains all of the main configuration files used by
Tripwire.

� /etc/tripwire/*-local.key and /etc/tripwire/site.key
These files are your local and site keys, respectively. The local key will
be named after the localhost.

� /etc/tripwire/tw.cfg and /etc/tripwire/twcfg.txt
The tw.cfg is the encrypted database of Tripwire settings, and the
twcfg.txt is the plain-text version. Whenever you want to change

Intrusion Detection 231

ptg

 Tripwire settings, such as the location of the database file, you will
make the changes in twcfg.txt and then use twadmin to update the
encrypted database.

� /etc/tripwire/tw.pol and /etc/tripwire/twpol.txt
These files define the policy that Tripwire uses when it scans the file
system. This policy includes which files to scan, what attributes of
those files to pay attention to, and with what severity to rate any
changes to those files. The tw.pol file is the encrypted database, and
the twpol.txt file is the plain-text file you edit to make changes. Once
you have made changes to twpol.txt, you must run twadmin to update
the tw.pol file.

� /var/lib/tripwire/
This directory is the default location for the Tripwire database. Gen-
erally, you will end up moving the database file to another, more
secure, read-only location.

� /var/lib/tripwire/reports
When you run sudo tripwire --check (or when it runs automatically
every night), a new report file is generated and stored in this direc-
tory. This provides a good history of how core files have changed on
the system.

� /var/log/syslog
Tripwire logs to the standard system log. To see only Tripwire logs,
you could run sudo grep tripwire /var/log/syslog.

Incident Response
Most of this chapter focuses on how to protect your systems so that they
can’t be breached by an attacker, but what do you do when an attacker suc-
ceeds? Here I provide an overview of how to prepare for and respond to a
successful attack.

Preparation before an attack occurs is just as important as the actions you
take when it occurs. Even if you are naturally cool and calm during a crisis,

232 Chapter 6 � Security

ptg

there’s a good chance other members of your team won’t be, so a plan you
have thought through when you are calm will be better than a plan you
have thought up at the last minute with upper management breathing
down your neck.

Do You Prosecute?
Before you develop any other responses, the first thing you should decide is
under what circumstances you will wish to prosecute an attacker. If you are
running a home office, that answer might be never. If you are part of a large
organization, your company’s legal department might have to answer the
question for you. In either case it’s important to have an idea of what cir-
cumstances will prompt prosecution, because it will define the rest of the
steps you can take. Generally, investigators want to collect untainted evi-
dence, and if you and your team have been touching a bunch of files on the
system, their job will be that much harder. How you respond (and how you
set up a system) so you can prosecute effectively will vary depending on
your location, so if at all possible, consult an attorney.

Pull the Plug
Another question you should answer before an attack occurs is what you
do the moment you have confirmed that a host has been attacked. There
are different schools of thought on this, but I believe that the moment
you detect an attack, you should immediately pull the power from the
server. If the host is a virtual machine that supports snapshots, take a
snapshot, then power off the VM. The reason I advocate this approach is
that while there can be valuable data in RAM on the system, every com-
mand you run and every file you touch on the system potentially erases
forensic clues you could use later. Plus, if the attacker has installed a root
kit, you can’t even trust any output from the running machine—you
could have Trojan versions of ps, bash, and lsmod, for instance, that mask
the attacker’s existence.

Image the Server
Once the power has been pulled, do whatever you can to ensure that the
machine doesn’t boot back up until you have been able to image all of the

Incident Response 233

ptg

partitions on the system from a rescue disc. That way you can then per-
form forensic analysis on the image without overwriting the original evi-
dence. Plus, once you have an image to work from, you can consider
redeploying the server. If the host is a VM and you were able to take a
snapshot, you have even more data to work from. Create a copy of the
entire VM, snapshot and all. Then you can potentially replay the time you
discovered the attack over and over and run tools on the running snapshot
image without fear of corrupting data. If you have the space, consider cre-
ating two images. One is a gold image that you put away and don’t touch,
and the other is an image that you use for any forensic analysis you might
perform. When you have multiple images, if you make a mistake and acci-
dentally write to one during your analysis, you will at least have the gold
image to copy from.

Server Redeployment
Another thing to consider before a crisis occurs is whether and when you
should rebuild a server. The best practice is to rebuild a server whenever
there has been a breach. It can be easy, at least if the attacker was sloppy, to
prove he or she did install a root kit if you see the software out in the open,
but unless you are skilled at forensic analysis it can be difficult to prove an
attacker didn’t install a root kit or some sort of Trojan horse on the system.
A root kit can hide all sorts of things from the administrator, so unless you
are absolutely sure there is no root kit, rebuild the machine.

How you go about rebuilding the server might be decided on a case-by-case
basis. Some servers (particularly those in a cluster) often can be rebuilt
from scratch without a thought. Other servers, such as large database or
e-mail servers that aren’t in a cluster, can be more difficult because they
hold data you need to transfer to the new host. These types of machines
might have to go into quarantine until you can make sure that the data can
be trusted. To be safe, you might even have to try to track down when the
attack occurred and roll back the files on the system from a previous
backup. Also, you might need to keep the machine in quarantine until you
can track down how the attacker got in and patch the hole before risking
another intrusion.

234 Chapter 6 � Security

ptg

Forensics
Once you have a valid image of the system’s partitions, you might want to
perform some sort of forensic analysis on it. Computer forensics is a vast
topic and it can take years of work for you to become proficient. That hav-
ing been said, even if you aren’t a skilled forensics expert, you might want
to try your hand at identifying how the attacker got in.

One basic method of forensic analysis is simply to take the image of your
attacked server to another host, mount it loopback and read-only, and
then look around the mounted system for clues. For instance, if I had an
image of a partition on an external USB drive mounted at /media/disk1/
and the image itself was at /media/disk1/web1-sda1.img, I could use the
following command to mount the disk at /mnt/temp:

$ sudo mkdir /mnt/temp
$ sudo mount -o loop,ro /media/disk1/web1-sda1.img /mnt/temp

If you are ready for more advanced forensic analysis, I recommend you
check out Sleuth Kit (http://sleuthkit.org). Sleuth Kit is a complete set of
forensics tools including a Web-based front end called Autopsy. These
tools are packaged in Ubuntu as sleuthkit and autopsy, so you can install
them on an Ubuntu desktop with your preferred package manager. Once
both tools are installed, type autopsy in a terminal to start the program
and then follow the instructions on the screen to see where Autopsy stores
its files (/var/lib/autopsy by default) and what URL to open on a Web
browser to use Autopsy (http://localhost:9999/autopsy by default). That
URL will display the default Autopsy page as shown in Figure 6-1, and
from there you can navigate through the tool, start a new investigation,
and add images to scan. For more information on how to use Autopsy,
read the official Autopsy user’s guide at http://wiki.sleuthkit.org/index
.php?title=Autopsy_User’s_Guide.

Another useful forensics tool is chkrootkit. This program can check a file
system for common root kits and then output a report. This tool is also
packaged for Ubuntu with the package name chkrootkit. Note that you
generally don’t want to run this on a live system because you will poten-
tially overwrite evidence. Instead, mount an image somewhere on your

Incident Response 235

http://sleuthkit.org
http://localhost:9999/autopsy
http://wiki.sleuthkit.org/index.php?title=Autopsy_User%E2%80%99s_Guide
http://wiki.sleuthkit.org/index.php?title=Autopsy_User%E2%80%99s_Guide

ptg

236 Chapter 6 � Security

system (for instance, in this example I mount the root file system image
under /mnt/temp), and then point chkrootkit to it:

$ sudo chkrootkit -r /mnt/temp

Ultimately, complete forensics on a host could take days, weeks, or even
months to complete, depending on your experience, the nature of the
attack, and how thorough you want to be. Even if you decide to just rebuild
the host and already know how the attacker got in, it’s worth experimenting
with these forensics tools as they will provide you with greater insight into
how your system works long term.

Figure 6-1 Default Autopsy page

ptg

237

7C H A P T E R 7

Backups

ptg

THERE ARE SO MANY ENEMIES of your data. When it comes to disks, it’s
not a question of whether your hard drives will fail, it’s a question of
when. Beyond hard drive failure you find rm, dd, and a number of other
Linux commands that are incredibly efficient at destroying your data.
Just ask a good friend of mine who was trying to clean up his MP3
directory. A number of us were helping him perfect a find script that
would delete all of the files in his MP3 directory that did not end in
.mp3. Despite our warnings to test the script with echo first, he ran the
full command: find . -type f ! -name '*.mp3' -exec rm -f {} \;. At first it
appeared to be working, until he discovered he hadn’t run the com-
mand in his MP3 directory—he ran it in ~, his home directory. True, he
had cleaned up his MP3 directory, along with the rest of his files. The
bottom line is that the only real way to ensure that your data is safe is to
back it up.

There are any number of ways to back up data under Ubuntu, and in this
chapter I cover a graphical tool called BackupPC. I also discuss some com-
monsense backup tips and describe how to create a full image of a drive or
partition. I include some special considerations for when you’re backing
up a database. By the end of the chapter, if you haven’t set up a backup sys-
tem yet, I hope you will be encouraged by how easy it is under Ubuntu.

Backup Principles
There are a number of principles that should guide you when you set up
your backup strategy. Most of these are common sense but bear repeating:

� Back up data to a separate system.
That separate system might be a separate drive, a tape, or ideally a
completely separate host. The point is not to back up data on a
drive to the same drive. You really want your backups to be as far
removed from the system as possible—even for my personal data at
home I have a backup system in place to copy my most important
files to a server out of state. That way, if my house burned down or
serious file system corruption hit my server, my important data
would still exist.

238

ptg

� Test your backups.
If you haven’t successfully restored from backup, you haven’t truly
backed anything up. After you set up a backup system, you must make
sure that you can restore from it. It’s a good practice to follow up with
tests of your restore process periodically afterward. The worst time to
find out a backup didn’t work is when you really need a file.

� RAID is not a substitute for backups.
A common mistake among beginner administrators is to mistake
RAID for backups. RAID provides you with redundancy for hard
disks so that if a particular disk fails, your data still remains safe on
the other disks. RAID does not protect you from a user deleting a file
or, worse, complete file system corruption. In the case of a RAID mir-
ror, if you write bad data to one drive, that bad data will simply be
replicated to the second. On top of this, it’s not unheard of for a RAID
controller to die and write bad data to the disks as it goes down. In
any of these cases if you did not keep a backup that is separate from
your RAID, your data would be gone.

� Create full and incremental backup schedules.
The majority of files on a server tend to stay the same, particularly
when you are talking about the core OS files. For this reason most
administrators opt for a combination of full backups (a complete
copy of every file) over a longer period of time, such as every week,
and incremental backups (only files that have changed since the last
backup) over a shorter period of time, usually daily. Since incremen-
tal backups generally involved fewer files, they take up less space and
are faster to complete. Just keep in mind that if you restore multiple
files, there’s a chance that some of the files aren’t included in the latest
incremental backup. The safe approach is to restore from the full
backup and then all subsequent incrementals if you aren’t sure every
file made it into the last backup.

� Decide how often to back up.
A common question one might ask is “How often should I back up?”
The basic answer is “How much work can you afford to lose?” Many
organizations can stand losing up to a day’s work, so they back up

Backup Principles 239

ptg

240 Chapter 7 � Backups

nightly. If you can afford to lose only a few hours of work, then you
need to back your data up every few hours.

� Archive your backups.
While it would be nice to save backups forever, the reality is that back-
ups can consume an incredible amount of space. You may be able to
keep only a month’s worth of backups on your system before you run
out of space. Even if that is the case, consider archiving old backups to
separate storage like a tape, a USB drive, or even DVDs that you label
and store in a vault. Many organizations maintain a month’s worth of
backups, and then archive off a full backup every month, every quar-
ter, or every year. That way they have a snapshot of their data at that
point so even if the backup server itself were to catch fire, there’s still a
version of the data available.

Drive Imaging
An image is a complete bit-for-bit copy of a drive. Once you image a drive,
its image should be indistinguishable from the original drive. One of the
most guaranteed, if wasteful, methods for backing up a system is to take an
image of its drives. Even if you don’t use drive imaging as your backup
strategy, you will find a number of other circumstances where drive images
come in handy, from cloning a system to file system recovery to forensics.

NOTE When imaging a drive, it’s important that the drive not be in use. If the drive changes while
you image it, you will not be able to guarantee that the image is consistent, so be sure that any
file systems on a drive are unmounted. The requirement that a drive you image not be in use
is yet another reason why most people don’t use imaging as their primary backup strategy.

The classic UNIX imaging tool is dd, and you will find it on just about any
Linux system and definitely on any Ubuntu server. This straightforward
and blunt tool in its most basic form reads an input file bit by bit and
copies it to an output file bit by bit. If you had two drives of identical size,
/dev/sda and /dev/sdb, here is the command to image sda to sdb:

$ sudo dd if=/dev/sda of=/dev/sdb

ptg

Of course, dd can use any file as its input and output file, so instead of
imaging to another drive, you could image to a file. This is particularly
handy for forensics, when you might have a number of file system images
stored on a single large USB drive. Assuming you have mounted your
USB drive at /media/disk1, here is how you could image /dev/sda to a file
on that drive:

$ sudo dd if=/dev/sda of=/media/disk1/sda-image.img

To restore from this image, you would just reverse the two arguments.
Here are the commands to restore the two previous examples:

$ sudo dd if=/dev/sdb of=/dev/sda
$ sudo dd if=/media/disk1/sda-image.img of=/dev/sda

You can also image individual partitions. This can be useful since you can
easily mount the images loopback and read through them. First let’s image
a partition on /dev/sda:

$ sudo dd if=/dev/sda1 of=/media/disk1/sda1-image.img

Now you can create a directory, /mnt/temp, and use the loop mount
option to mount this image:

$ sudo mkdir /mnt/temp
$ sudo mount -o loop /media/disk1/sda1-image.img /mnt/temp

This is handy when you need to recover only a few files from an image. You
can browse /mnt/temp like any other file system and copy individual files
or entire directories from it. To copy this image back to the original drive,
reverse the arguments once again:

$ sudo dd if=/media/disk1/sda1-image.img of=/dev/sda1

Another useful trick is imaging over the network. The fact is that with
some servers you might not have a separate disk attached that can hold an
image. One method might be to set up a remote NFS server with plenty of
storage. Then you could mount the NFS share on the local system and

Drive Imaging 241

ptg

 create an image file that way. Of course, that requires that you have an NFS
server set up. Another method is to pipe dd’s output to SSH. Since most
servers will probably have SSH, you won’t have to set up anything special
to create this image, and all of the data will be transferred over an
encrypted channel.

To transfer /dev/sda from the local machine over the network to 10.1.1.5
and dump the image at /media/disk1/sda-image.img, you would type

$ sudo dd if=/dev/sda | ssh username@10.1.1.5 \
"cat > /media/disk1/sda-image.img"

To restore this image:

$ ssh username@10.1.1.5 "cat /media/disk1/sda-image.img" |
sudo dd of=/dev/sda

Database Backups
For the most part, backing up a system is as easy as making a copy of its
files. On a database system, however, things aren’t quite so simple. A data-
base often won’t commit changes to disk immediately, so if you simply
make a copy of the database files, the database itself might be in an incon-
sistent state. When you restore it, you can’t necessarily guarantee that it is
an uncorrupted copy.

The solution to this problem is to use tools included with the database to
provide a consistent dump of the complete database to a file that you can
back up. Below I describe how to use the tools provided for MySQL and
PostgreSQL databases under Ubuntu.

MySQL
The tool MySQL uses to create a backup of its database is called mysqldump.
This tool dumps an entire database or databases to the screen. Most people
then redirect the output to a file or pipe it to a tool like gzip to compress it
first. For instance, if your user had a database called wordpress, here is how
you would back it up:

242 Chapter 7 � Backups

ptg

$ mysqldump wordpress > wordpress_backup.sql

If you wanted to compress the database as it was dumped, you would put a
pipe to gzip in the middle:

$ mysqldump wordpress | gzip > wordpress_backup.sql.gz

Now if you wanted to back up more than one database, there are two main
ways to do it. The first way is to use the --databases argument followed by
a space-separated list of databases to back up. The other method is to use
the --all-databases argument, which backs up everything:

$ mysqldump --all-databases > all_databases_backup.sql

Of course, I assume you have set passwords for your database users so
these commands won’t work for any of those users. This especially won’t
work if you want to back up all databases, because at least some are owned
by the root user. The solution is to use the -u and -p options to specify the
user and password to use:

$ mysqldump --all-databases -u root -pinsecure >
all_databases_backup.sql

The command above would back up all of the databases as the root user
using the password insecure. I list this example only to say that while this
option works, it is insecure. The reason is that the full list of arguments,
including the password, will be visible to all users on the system who run
the ps command. A better method is to use -p without specifying a pass-
word:

$ mysqldump --all-databases -u root -p >
all_databases_backup.sql

When you specify -p without a password, mysqldump behaves like the mysql
command and will prompt you to enter one. This provides good security,
but of course it also means that you have to enter the password manually.
Most people who back up their MySQL databases set up a cron job to do it
at night. The way that MySQL recommends you solve this problem is to

Database Backups 243

ptg

add the password to the client section in the ~/.my.cnf file for the user per-
forming the backups. If you don’t already have a ~/.my.cnf file, create a
new one and add the following text:

[client]
password=moresecure

Replace moresecure with the password your user will use to log in. Once
you set up this file, you don’t need to specify the -p option anymore
because mysqldump will pick up the password from this file. Of course, the
downside here is that this password is in a plain-text file on the system, so
you will want to set its permissions so that only your user can see it:

$ chmod 400 ~/.my.cnf

Restore MySQL Backups A backup isn’t much use if you can’t restore
from it. To restore a backup on MySQL, use the mysql command-line tool
and point it at your backup. For instance, to back up the test database to
test_backup.sql, you would type

$ mysql test < test_backup.sql

If instead you were backing up a number of databases, just type

$ mysql < multiple_database_backup.sql

To restore all databases, you need to log in as the root user. Of course, you
are a secure MySQL administrator and have set a root password, so you
must use the -p option (unless you set up a .my.cnf file, in which case you
can leave out -p):

$ mysql -u root -p < all_databases.sql

MySQL Backup Cron Job Since most people generally want to provide a
MySQL backup at least once a day, here’s a quick and simple way to set up
the cron job. First choose the location where you will store your backups.
In this example I still store the backups in /root because I know only root
can read that directory, but you will probably want to store them somewhere
else with more space.

244 Chapter 7 � Backups

ptg

The main thing to consider is how many backups you want to keep. If you
have some sort of other backup system in place to back up all of your files,
you may need to keep only one database backup file on the system, since
older versions will be stored on your remote backup server. If you want to
store, say, a week’s worth of backups, you can use a simple shell trick. The
date command with no arguments can be used to output the current date,
but you can add some arguments to it so that it outputs, for instance, only
the current day of the week:

$ date +%A
Friday

When you run mysqldump, you can enclose that entire command in back-
ticks, and the shell will replace that section of your script with the output
of the command. So if you were to write

$ mysqldump -u root --all-databases >
/root/all_databases_backup-`date +%A`.sql

the shell would actually save the database to /root/all_databases_backup-
Friday.sql. That means the next day it runs the command it will name it
Saturday, and so on. After a week, the new backup will automatically over-
write the one from the previous week without your having to write in any
extra shell logic. To make this command run every night, you just have to
create a file as root called /etc/cron.daily/mysqlbackup containing the fol-
lowing script:

#!/bin/sh

mysqldump -u root --all-databases >
/root/all_databases_backup-`date +%A`.sql

Then you would type chmod a+x /etc/cron.daily/mysqlbackup so that the
script is executable.

Finally, if you set up a root password for MySQL, you must create a
/root/.my.cnf file with the password in it, as discussed earlier. Now every
night when the cron.daily scripts run, this script will run as well. If you
want to change how many backups you keep, it’s as easy as changing the
date command within the backticks. If you want only one backup, you can

Database Backups 245

ptg

just save to an ordinary file. If you want to keep a month’s worth of back-
ups, for instance, just replace %A with %d, which lists the day of the month
starting with 01.

PostgreSQL
PostgreSQL uses a backup mechanism similar to MySQL’s in that it pro-
vides a command-line dump tool called pg_dump that dumps one or more
databases to the command line. In its simplest form it behaves a lot like the
mysqldump command. To back up a database named test, created by your
user, you could type

$ pg_dump test > test_backup.sql

The main database user for PostgreSQL is the postgres user, so you are
more likely to do backups as that user:

$ sudo -u postgres pg_dump test > test_backup.sql

To back up all PostgreSQL databases, use the pg_dumpall command
instead:

$ sudo -u postgres pg_dumpall > all_databases_backup.sql

Restoring PostgreSQL databases works much like MySQL except you use the
psql tool. Here is how you would restore each of the backups I did previously:

$ psql test < test.sql
$ sudo -u postgres psql test < test.sql
$ sudo -u postgres psql < all_databases_backup.sql

PostgreSQL Backup Cron Job The cron job to back up PostgreSQL is very
similar to the one for MySQL, except in this case there’s no need to set up
any /root/my.cnf files. You just need to create a new file called /etc/cron
.daily/postgresqlbackup containing the following:

#!/bin/sh

/usr/bin/sudo -u postgres /usr/bin/pg_dumpall >
/root/all_databases_backup-`date +%A`.sql

246 Chapter 7 � Backups

ptg

BackupPC 247

Then you would make the script executable with chmod a+x /etc/cron
.daily/postgresqlbackup. Now every night when the cron.daily scripts
run, this script will run as well. Changing how many backups you keep is
as easy as changing the date command within the backticks. If you wanted
only one backup, you can just remove the backticks and everything
between them. If you wanted to keep a month’s worth of backups, for
instance, just replace %A with %d, which will output the day of the month
starting with 01.

BackupPC
One of the simpler but still powerful backup programs for Ubuntu is
called BackupPC. BackupPC is written in Perl and can make use of tar
and rsync to back up Linux and UNIX hosts, and it can mount and back
up SMB shares. Unlike many other backup programs, BackupPC does not
necessarily back up a particular machine at the same time every day. This
software was designed with networks of desktops that power off at the end
of the day in mind, so as you add hosts, it probes them to see if they are up.
If BackupPC is able to back them up during the evening backup window it
will, but if it can’t, it will attempt to back up the host during the day.

A nice feature of BackupPC is that it not only compresses files it has
backed up, it also scans through all of the files daily and, where it sees
duplicates, creates a hard link. Since a lot of servers tend to have the same
system files, this method means that you can squeeze a lot more data on a
lot less disk. BackupPC is packaged for Ubuntu, so you can use your pack-
age manager to install it:

$ sudo apt-get install backuppc

BackupPC includes a Web-based interface you can use to manage backup
jobs, view logs, and restore files, so it will include the Apache packages it
needs if they aren’t already installed. During the install process you will be
prompted to select a Web server for BackupPC. Unless you set up your own
Web server ahead of time and know what you are doing, select apache2
here. BackupPC uses Apache htpasswd accounts to password-protect the
page, and the installer creates a backuppc user and outputs a random
password to the screen, so be sure to jot it down. If you forget to do that or

ptg

forget the password later on, you can use the htpasswd command against
the /etc/backuppc/htpasswd file.

After the installer completes, open a Web browser and point it to the
/backuppc directory on that host, so if your host was 10.1.1.7, you would
point it to http://10.1.1.7/backuppc/. You will be prompted for login cre-
dentials, so use the login and password you were given during the install.
Once you are logged in, you will see the default BackupPC admin page as
shown in Figure 7-1.

BackupPC Storage
As with any other backup server, BackupPC needs a lot of storage. All of
the backups are ultimately stored under /var/lib/backuppc, so if you have a
separate disk (or set of disks in a RAID) for BackupPC, this is a good place
to mount it. Let’s assume you have a second SCSI partition at /dev/sdb1
that you want to use for BackupPC. First move the old directory out of the
way, mount the new drive, and copy over the current /var/lib/backuppc

248 Chapter 7 � Backups

Figure 7-1 Default BackupPC Web interface

http://10.1.1.7/backuppc/

ptg

files. BackupPC must be stopped while you do this so that it doesn’t write
to that directory while you’re changing it:

$ sudo service backuppc stop
$ sudo mv /var/lib/backuppc /var/lib/backuppc.orig
$ sudo mkdir /var/lib/backuppc
$ sudo chown backuppc:backuppc /var/lib/backuppc
$ sudo mount /dev/sdb1 /var/lib/backuppc
$ sudo rsync -av /var/lib/backuppc.orig/ /var/lib/backuppc/
$ sudo service backuppc start

Finally don’t forget to add the new /dev/sdb1 mount point into /etc/fstab
so it will mount automatically the next time the system boots.

Default BackupPC Configuration
Of course, the default Web interface isn’t very useful until you add a host.
BackupPC’s default behavior is defined in /etc/backuppc/config.pl, its core
configuration file. If you are unfamiliar with Perl, this file may seem a bit
daunting at first as all of the options are configured in Perl data structures.
I walk you through adding an Ubuntu host that you will back up with
rsync, and as you will see, once you get the core configuration file set, it is
relatively simple to add hosts.

The config.pl file defines the default settings for all hosts BackupPC backs
up, such as how often to back up, what directories to back up, whether to
use smb, rsync, or tar to back up, and even what arguments to pass to those
commands. What you want to do is generate a config.pl that works for the
majority of your hosts and then create host-specific configuration files
when a host needs special options. Any host-specific configuration goes
into a .pl file under /etc/backuppc/ named after the host. So if you had a
host named web1 and wanted to change some settings just for it, you
would copy those specific options from /etc/backuppc/config.pl to /etc/
backuppc/web1.pl. Any options you set in web1.pl will override anything
in config.pl when web1 is being backed up.

In this example I assume a network mostly made up of other Ubuntu
servers and use rsync for the backup. This is all-important because by
default BackupPC logs in over SSH as root. On a network of Ubuntu
servers this wouldn’t work, because root is disabled by default, so we need
to change some settings.

BackupPC 249

ptg

There are two different ways to edit the BackupPC configuration. The first
(and easier) is through the Web interface; with the second you just open
/etc/backuppc/config.pl with a text editor and locate and tweak settings
directly.

Web-Based Configuration You can actually change all of the options you
need directly from the Web interface. From the BackupPC home page
click the Edit Config link in the left pane and then click the Xfer link
along the top of the right pane. You will then see a configuration screen
like the one in Figure 7-2. On the XferMethod drop-down menu change
from smb to rsync. Then scroll down until you see the RsyncClientCmd and
RsyncClientRestoreCmd options. Change both of them from

$sshPath -q -x -l root $host $rsyncPath $argList+

to

$sshPath -q -x -l backuppc $host sudo $rsyncPath $argList+

250 Chapter 7 � Backups

Figure 7-2 BackupPC Xfer configuration options

ptg

Then scroll back up to the top of the page and click the Save button. Once
you are done with all of your changes, click the Admin Options link in the
left sidebar and then click Reload so BackupPC can read your new settings.

Command-Line Configuration While the Web interface provides an easy
way to configure BackupPC, some people prefer doing it all through the
command line. If you are one of those people, open the /etc/backuppc/
config.pl file in your preferred text editor and then search for the line that
matches this one:

$Conf{XferMethod} = 'smb';

This option defines the default method BackupPC uses to transfer files.
SMB might work well for a network of Windows machines, but since we
have Ubuntu hosts, we change this to rsync:

$Conf{XferMethod} = 'rsync';

Next, we need to set BackupPC so that it logs in to each machine as a regu-
lar user and then uses sudo to become root. We create a backuppc user on
each host along with a secure sudo role so that BackupPC can log in and
back up the machine. First locate the following line:

$Conf{RsyncClientCmd} = '$sshPath -q -x -l root $host $rsyncPath
$argList+';

This defines what command BackupPC uses when it backs up with rsync.
Change it to

$Conf{RsyncClientCmd} = '$sshPath -q -x -l backuppc $host sudo
$rsyncPath $argList+';

We need to do the same thing for the command BackupPC uses when it
restores to a host, so find the line that matches

$Conf{RsyncClientRestoreCmd} = '$sshPath -q -x -l root $host
$rsyncPath $argList+';

BackupPC 251

ptg

252 Chapter 7 � Backups

and change that along the same lines as the previous option:

$Conf{RsyncClientRestoreCmd} = '$sshPath -q -x -l backuppc $host
sudo $rsyncPath $argList+';

By default, BackupPC backs up the entire root file system along with all
mounted file systems. I’m leaving this setting alone for now because I do
want to back up all of the files on the host, but I discuss how to change it
later in the chapter.

Configure the Client Machine
Now that you have changed the config.pl option, you are ready to set up
BackupPC so that it can log in and back up your client. In this example we
call our client web1, so where you see web1 listed in the example, replace it
with your client’s hostname.

Configure SSH Keys Since BackupPC needs to be able to log in to hosts
without interaction, you must set up passwordless SSH keys for the backuppc
user. On the BackupPC server type

$ sudo -u backuppc ssh-keygen -t rsa

Hit Enter at each of the prompts to accept the defaults. The public and pri-
vate keys will be stored at /var/lib/backuppc/.ssh/.

Set Up the Client Now log in to your client and create a backuppc user
(hit Enter when prompted for the name and room number and other
information about the user) and create a .ssh directory for the same user:

$ sudo adduser backuppc --disabled-password
$ sudo mkdir /home/backuppc/.ssh
$ sudo chown backuppc /home/backuppc/.ssh

NOTE If your client does not yet have an SSH server running, then run sudo apt-get install
openssh-server.

Now you need to copy the contents of the /var/lib/backuppc/.ssh/id_
rsa.pub file from your BackupPC server to the /home/backuppc/.ssh/

ptg

authorized_keys file. One way to do this is to log in to both machines on
separate terminals, open both files, and then use your mouse to copy and
paste between them. Another method is to use scp on the server to copy
the file to the /tmp directory on the client and then log in to the client and
copy it from there.

On the server:

$ sudo scp /var/lib/backuppc/.ssh/id_rsa.pub user@web1:/tmp/

Replace user@web1 with the username and hostname on the client. Then
on the client:

$ sudo sh -c "cat /tmp/id_rsa.pub >>
/home/backuppc/.ssh/authorized_keys"

Now you should be able to go to the BackupPC server and log in to the
client as the backuppc user without a password:

$ sudo -u backuppc ssh web1

Configure sudo Now we need to configure sudo on the client machine so
that the backuppc user can run rsync as root without a password. To do
this, run sudo visudo on the client and add the following line to the
/etc/sudoers file:

backuppc ALL=(root) NOPASSWD:/usr/bin/rsync

Add the Client to BackupPC
Now that BackupPC can log in to the client and run rsync as root, we are
ready to add it to the list of hosts BackupPC backs up. All of the hosts are
defined in /etc/backuppc/hosts, and you can add hosts either by editing
the file directly or via the Web interface.

Web Interface To add a host in the Web interface, click Edit Config in the
left sidebar and then click the Hosts link on the top of the right pane. Click
the Add button to add a new host, and once you are finished, click the Save

BackupPC 253

ptg

254 Chapter 7 � Backups

button. Finally, click Admin Options in the left sidebar and then the
Reload button so BackupPC will reload the changes.

Command Line To add a host via the command line, open /etc/backuppc/
hosts in a text editor and add the following line at the bottom:

web1 0 backuppc

Change web1 to the hostname of the server you want to back up. The 0 tells
BackupPC that this host has a static IP address, and the backuppc at the end
sets what user can manage this host on the Web interface. I just used a
single space in this example, but you can separate the columns with mul-
tiple spaces so everything lines up and looks nicer. If you wanted other
users to also be able to back up and restore this host from the Web inter-
face, you could add a fourth column to this line and list those users sepa-
rated by commas. So if I had two users, allan and jorge, that I wanted to be
able to manage web1, the line would read

web1 0 backuppc allan,jorge

Once you save the changes to /etc/backuppc/hosts, tell BackupPC to
reload its configuration with sudo service backuppc reload or sudo /etc/
init.d/backuppc reload.

Start the First Backup Job
Once the BackupPC program reloads its configuration, go back to the Back-
upPC Web interface and reload the page. You should be able to see your host
in the “Select a host...” drop-down menu on the left side of the page. Select
that option and you will see the default host page as shown in Figure 7-3. To
test that everything is set up correctly, click Start Full Backup to initiate the
first backup for the host. Then you can click Status in the left sidebar to go to
the main status page and see that your backup job has started. It should look
something like Figure 7-4. To stop a job for a particular host, go to that host’s
page and then click the Stop/Dequeue Backup button.

ptg

BackupPC 255

Figure 7-3 BackupPC host management Web page

Figure 7-4 BackupPC full backup running

ptg

rsync Tweaks
While most of the default rsync options should be fine for the average
user, there are a few extra options you might want to enable depending on
your environment.

Checksum Seed If your host is relatively new, it should have a version of
rsync greater than or equal to 2.6.3 (if you aren’t sure what version you have,
type rsync --version). If so, you can take advantage of the --checksum-seed
option, which can cache rsync’s checksums and overall speed up the rsync
process. To do this you need to add that option to the RsyncArgs and
RsyncRestoreArgs option in your BackupPC configuration.

To add this setting from the Web, click Web Config in the sidebar, then the
Xfer link. Then scroll down to the RsyncArgs option where you can see
each individual option on its own line. At the end of these options is an
Add button. Click that and add --checksum-seed=32761. Then scroll down
and add the same option to the RsyncRestoreArgs section.

To make the same change on the command line, open /etc/backuppc/config
.pl in a text editor and find the line that starts with $Conf{RsyncArgs}. Each
rsync option is on its own line, but if you are still using the config.pl that
came with the package, you will see this option commented out:

#'--checksum-seed=32761',

Just remove the # from the beginning of that option. If you don’t see the
commented-out option, just add a line below the last RsyncArgs option
that reads

'--checksum-seed=32761',

Then move down to the RsyncRestoreArgs section (generally it’s the next
option) and do the same thing for this option.

One File System By default, BackupPC traverses all of the file systems on
the host and backs up absolutely everything. There are circumstances
when you might not want that to be the default behavior, especially in a
cluster when you can easily replace the main system files by rebuilding the

256 Chapter 7 � Backups

ptg

host. In these circumstances what you want to do instead is tell rsync to
stick to one file system at a time, and then specify which mount points
BackupPC should back up.

The first step is relatively simple because this option goes in the same place
as the --checksum-seed option. Follow the steps I described above to add
the --checksum-seed option to RsyncArgs and RsyncRestoreArgs, in either
the Web interface or the command line. This time, though, the option you
add is

--one-file-system

Once you set that option, you must define each file system that BackupPC
will back up. In this example, let’s assume that you have /home and /var on
separate partitions and want to back up only them. The option you will
change is called RsyncShareName. In the Web interface return to the Xfer con-
figuration screen you used to add --one-file-system to RsyncArgs. Above
that section you will see the section named RsyncShareName. Each share is on
its own line, as with RsyncArgs. First you change the first option from / to
/home. Then you click the Add button and add a new share named /var.

To change the same option on the command line, open config.pl, find the
line that looks like

$Conf{RsyncShareName} = '/';

and change that to

$Conf{RsyncShareName} = ['/home', '/var'];

Exclude Directories You might find that you typically want to back up all
of the files on the host apart from a few different directories. For instance,
in the example above, you might want to back up /home and /var, but
perhaps you want to skip /var/spool/mail and /var/tmp. To do this you go
back to the Xfer configuration screen on the Web interface and scroll
down to the BackupFilesExclude option. Then you type in /var/tmp under
the New Key field and click Add. Once the screen refreshes, you can scroll
down and add /var/spool/mail the same way.

BackupPC 257

ptg

If you want to change this on the command line instead, you search
through the file until you see a line that looks like this:

$Conf{BackupFilesExclude} = undef;

By default no files are excluded. To add the two directories you change that
option to

$Conf{BackupFilesExclude} = ['/var/tmp', '/var/spool/mail'];

As with any configuration changes, once you have changed everything,
don’t forget to save and then reload BackupPC so the changes take effect.

Host-Specific Tweaks While you can set up a default BackupPC config
that works for most of your hosts, you will likely run into a few machines
that need something slightly different from the default. With BackupPC
it’s particularly easy to branch off from the default config and customize
options. For instance, you might want to apply the --one-file-system
option or exclude directories only on one host.

Basically, to add custom options for a particular host, copy those options
from the /etc/backuppc/config.pl file into /etc/backuppc/hostname.pl,
where hostname is the name of the host you want to change. So if, for
instance, you wanted to back up only /home and /var on your BackupPC
host and not traverse file systems on the host called web1, you would copy
the entire RsyncArgs and RsyncRestoreArgs in a file named /etc/backuppc/
web1.pl along with the RsyncShareName option. The result would look
something like this:

$Conf{RsyncShareName} = ['/home', '/var'];
$Conf{RsyncArgs} = [

Do not edit these!

'--numeric-ids',
'--perms',
'--owner',
'--group',
'-D',
'--links',
'--hard-links',

258 Chapter 7 � Backups

ptg

'--times',
'--block-size=2048',
'--recursive',

my custom options
'--one-file-system',

];
$Conf{RsyncRestoreArgs} = [

Do not edit these!

'--numeric-ids',
'--perms',
'--owner',
'--group',
'-D',
'--links',
'--hard-links',
'--times',
'--block-size=2048',
'--recursive',

my custom options
'--one-file-system',

];

Change the Backup Schedule By default, BackupPC takes one full backup
per week and in between takes an incremental backup of every host.
BackupPC keeps one full backup and six incremental backups before it
deletes anything. Finally, BackupPC will not start up new jobs for hosts that
are always on the network between 7:00 a.m. and 7:30 p.m. during the
week. These defaults are not suitable for everyone. For instance, you might
be required to keep a month’s worth of full backups, or everyone might be
out of the office by 6:00 p.m. so you can start backups then. All of these
options are easy to change in the BackupPC Web interface.

To start, click the Edit Config link in the left sidebar and then click the
Schedule link on the top right-hand side of the screen. You will see a
schedule-editing screen as shown in Figure 7-5. The first set of options lets
you schedule your full backups. Each of the options is hyperlinked to a
manual page so you can read about what they change.

The FullPeriod option defines how much time should pass (in days)
before a new full backup should be scheduled. This option is always set

BackupPC 259

ptg

slightly below a full number. In the case of the default, 6.97, a full backup
will be scheduled every seven days. The FullKeepCnt and FullKeepCntMin
options configure how many full backups to keep and the minimum num-
ber to keep, respectively, and FullAgeMax defines the maximum number of
days before an old full backup is deleted. Incremental backups can save
backup resources as they back up only what has changed since the last full
backup. They take most of the same options as the full backups, and by
default they are run every day and the last six are saved.

The Blackouts section of this page lets you define BackupPC’s blackout
period. The blackout period is the range of time during which BackupPC
will not attempt to back up hosts that are always on the network. This way,
if you have desktops that might be powered off in the evening, BackupPC
will back them up during the day, but for servers that are always on, Back-
upPC knows it can wait until the evening when they are presumably under
less load. When you add a new host to BackupPC, it will try to ping it peri-
odically to determine whether it is always on the network. If it is, BackupPC
will back it up only during the blackout period. The hourBegin option

260 Chapter 7 � Backups

Figure 7-5 BackupPC schedule configuration screen

ptg

defines what hour or fraction of an hour the blackout period begins, and
the hourEnd option sets when it ends. The weekDays option sets which days
of the week the blackout period is in effect. By default the blackout period is
between 7:00 a.m. and 7:30 p.m. Monday through Friday.

To demonstrate how you would change these options, I define a different
backup policy that might be used in an organization. In this organization
we want weekly full backups and daily incremental backups, but we want
to save the full backups up to a month before discarding them. We also
want to keep the last two weeks of incremental backups. Finally, everyone
in the office leaves by 6:00 p.m., so we want to start backups then. To make
these changes I need to change only the following values:

FullKeepCnt = 4
IncrKeepCnt = 12
hourEnd = 18

Restore Files
Backing up files is all well and good, but it isn’t too useful unless you can
restore them. One of the best features of BackupPC in my opinion is its
easy-to-use Web-based restore. If you set up additional Web accounts for
backuppc (use htpasswd -c /etc/backuppc/htpasswd username), you can
add those accounts to specific hosts in the /etc/backuppc/hosts.conf (or on
the Web interface) and those users can log in to BackupPC and restore
their own files.

To restore a file or directories for a host, first go to the host’s home page
on BackupPC (select the host in the drop-down menu in the left sidebar).
On the host’s main page you will see a list of completed backups in a table
that lists whether the backup was full or incremental, when the backup
started, how long it took, and where those files are stored on the file sys-
tem. Click the hyperlinked backup number at the beginning of a particu-
lar row to restore from that backup. You will then see the entire directory
structure of your host on the page with checkboxes next to files and direc-
tories (Figure 7-6). The interface is like that of most file managers, and
you can click on an individual directory to expand it. Once you have
selected all of the files you wish to restore, click the “Restore selected files”
button at the top or bottom of the page.

BackupPC 261

ptg

BackupPC provides you with three different restore options:

� Direct restore
In a direct restore, BackupPC restores the files or directories directly
to a host. You can actually choose which host to restore to, as Back-
upPC lets you choose any host it has configured. By default Back-
upPC restores to the share and directory below the share that the files
originally came from, so if you want to overwrite or replace what is
currently there, you can just click the Start Restore button. You can
even completely overwrite the entire / directory on the remote host
with the full backup if you need to. Instead of restoring the files to
their original directory, you could also restore to a different directory
if you wanted to compare the two files.

� Download zip archive
This option is very useful when you back up Windows desktops and
allow your users to restore their own files. Instead of restoring a file
directly to a host, you can instead generate a .zip file that contains all

262 Chapter 7 � Backups

Figure 7-6 BackupPC restore file browser

ptg

of your restored files and directories and download it to your current
computer.

� Download tar archive
This and the zip archive option are essentially the same, except in this
case you get a tar archive instead, which is more useful for Linux
desktops.

Ubuntu BackupPC Conventions
� /etc/backuppc

This directory contains all of the configuration files for BackupPC,
including its Apache config and any host-specific configuration files.

� /etc/backuppc/config.pl
All of the default BackupPC options are set in the config.pl file. The
version of config.pl that comes with the package by default is full of
documentation that explains each option and gives examples. Any
host-specific configuration goes into a separate file named after the
host and ending in .pl.

� /etc/backuppc/hosts
All of the hosts that BackupPC will back up are defined here.

� /etc/backuppc/htpasswd
Web users along with their passwords are set in this file by default.
This is a standard Apache password file, so you can use the htpasswd
command to make changes (type man htpasswd for details on how to
use the program).

� /etc/backuppc/apache.conf
This file defines all of the virtual host settings for the BackupPC Web
administration page. BackupPC creates a symlink from
/etc/apache2/conf.d/backuppc.conf to this file, although these days it
would fit better under /etc/apache2/sites-available.

� /etc/init.d/backuppc
Here is BackupPC’s init script. BackupPC starts the service by default
once it is installed and automatically starts at boot time.

BackupPC 263

ptg

� /var/lib/backuppc
This directory contains all of the files that BackupPC backs up, so you
should consider putting this directory on a separate large mount
point or at least make sure it has plenty of free space.

� /var/lib/backuppc/log
All of the logs for each backup can be found under this directory. You
can also access the logs from the Web interface.

� /var/lib/backuppc/pc
Each host has its own directory here that contains its latest set of files.
BackupPC pools together identical files from multiple hosts with
hard links, but if you have removed a host from BackupPC and want
to delete its files as well, delete the host’s directory under here first.

264 Chapter 7 � Backups

ptg

265

8C H A P T E R 8

Monitoring

ptg

A SERVER IS NOT VERY USEFUL if it’s down. If you have skipped ahead and
read Chapter 10, Fault Tolerance, you are well aware of the lengths to
which some administrators go to ensure that a service stays up. No matter
how much work you put into your environment, though, eventually a
service or server will go down. When that happens, you want to make sure
you are alerted. If it’s your job to maintain a server, it’s embarrassing if
someone else has to come to you with the news that it’s down—that’s
something you should be the first to know. Getting alerts is only one
aspect of monitoring, though. In addition to getting alerts whenever a
service goes down, you should also monitor the overall health of your
environment. With the proper monitoring in place you can often see a
problem before it causes an outage. Good monitoring also provides you
with the health statistics you need after an outage so you can piece
together what happened.

In this chapter I discuss how to set up monitoring for your network so that
you will be alerted to any problems. In addition I discuss a few different
monitoring tools you can use to keep track of a system’s health that even
provide manager-friendly graphs of system statistics. While there are many
different monitoring tools available for Ubuntu, I have picked a few that are
easy to set up and use that should provide you with a good foundation for
any additional monitoring you want to add.

Local Monitoring Tools
A good place to start your monitoring is on the machine itself. Network-
based monitoring is great, but it’s even better to have some monitoring on
each host that will give you statistics even when the network goes down. I
describe a few monitoring tools you can easily add to a server.

Smartmontools
I have mentioned Smartmontools elsewhere in this book because it pro-
vides an excellent way to diagnose hard drive problems. This tool works
via the SMART features most modern hard drives include. The SMART
features give you information on a drive’s overall health, including its
firmware revisions and drive temperature, as well as any hardware errors
or pending drive failures. One of the more useful features of Smartmon-

266

ptg

tools, however, is its ability to scan your hard drives for failures and warn
you before a failure actually happens.

The first step is to install the smartmontools package:

$ sudo apt-get install smartmontools

The package includes a daemon called smartd that can launch at system
start-up and start monitoring your drives. By default smartd will not start,
so you need to edit /etc/default/smartmontools and uncomment the line
that reads

start_smartd=yes

Now smartd will start at boot, but you will also want to start it up manually
so it’s available right now:

$ sudo /etc/init.d/smartmontools start

By default smartd scans through all of your drives for any that are SMART-
enabled and monitors them, so you don’t need to perform any special con-
figuration at this point. When smartd detects an error, it runs any scripts it
finds under /etc/smartmontools/run.d/. By default there is only one script
under that directory, named 10mail, that e-mails the root user so he or she
knows of the problem, but you can add any number of custom scripts to
this directory as well, and they will be run in alphabetical order. When
smartd finds a problem, it executes your script and passes the full path to
the error file as an argument, so within your script you can access it via the
$1 variable, for instance. Check the /etc/smartmontools/run.d/10mail
script for a simple example on which you can base your scripts.

sysstat
Let’s face it, you probably don’t have terminals logged in to every system you
manage with some tool like top running. Even if you did, you still won’t
know your system load or RAM statistics while you are asleep. Now some
administrators solve this problem by running top via a cron job, but Ubuntu
has a better system in place via sysstat. The sysstat package provides a

Local Monitoring Tools 267

ptg

number of useful system-monitoring tools, including iostat, which I cover
in Chapter 11, Troubleshooting. These tools are useful for troubleshooting,
but what makes them even more useful is that the sysstat package provides
a simple mechanism to log system statistics like CPU load, RAM, and I/O
stats. With these statistics, when someone complains that a system was slow
around noon yesterday, you can play back these logs and see what could
have caused the problem.

The first step is to install the sysstat package:

$ sudo apt-get install sysstat

Once the package is installed, you want to enable the data collection tool,
so type

$ sudo dpkg-reconfigure sysstat

and answer Yes when prompted to activate sysstat’s cron job. Alternatively,
you can also enable this in /etc/default/sysstat. Once enabled, sysstat gath-
ers system stats every ten minutes and stores them under /var/log/sysstat. In
addition, it will rotate out the statistics file every night before midnight.
Both of these actions are run in the /etc/cron.d/sysstat script, so if you
want to change how frequently sysstat gathers information, you can
modify it from that file.

As sysstat gathers statistics, it stores them under /var/log/sysstat in files
named sa and then the current day of the month. This means that you can
go back up to a month from the current date and retrieve old statistics. Use
the sar tool to view these statistics. By default sar outputs the CPU statis-
tics for the current day:

$ sar

Linux 2.6.24-22-server (kickseed) 01/07/2009

. . .

07:44:20 PM CPU %user %nice %system %iowait %steal %idle

07:45:01 PM all 0.00 0.00 0.54 0.51 0.00 98.95

07:55:01 PM all 0.54 0.00 1.66 1.26 0.00 96.54

08:05:01 PM all 0.20 0.00 0.72 1.08 0.00 98.00

08:15:01 PM all 0.49 0.00 1.12 0.62 0.00 97.77

08:25:01 PM all 0.49 0.00 2.15 1.21 0.00 96.16

268 Chapter 8 � Monitoring

ptg

08:35:01 PM all 0.22 0.00 0.98 0.58 0.00 98.23

08:45:01 PM all 0.23 0.00 0.75 0.54 0.00 98.47

08:55:01 PM all 0.20 0.00 0.78 0.50 0.00 98.52

09:01:18 PM all 0.19 0.00 0.72 0.37 0.00 98.71

09:05:01 PM all 0.24 0.00 1.10 0.54 0.00 98.12

Average: all 0.32 0.00 1.12 0.78 0.00 97.78

From the output you can see many of the same CPU statistics you would
view in top output. At the bottom sar provides an overall average as well.
The sysstat cron job collects much more information than CPU load,
though. For instance, to gather RAM statistics instead, use the -r option:

$ sar -r

Linux 2.6.24-22-server (kickseed) 01/07/2009

07:44:20 PM kbmemfree kbmemused %memused kbbuffers kbcached kbswpfree

kbswpused %swpused kbswpcad

07:45:01 PM 322064 193384 37.52 16056 142900 88316

0 0.00 0

07:55:01 PM 318484 196964 38.21 17152 144672 88316

0 0.00 0

08:05:01 PM 318228 197220 38.26 17648 144700 88316

0 0.00 0

08:15:01 PM 297669 217780 42.25 18384 154408 88316

0 0.00 0

08:25:01 PM 284152 231296 44.87 20072 173724 88316

0 0.00 0

08:35:01 PM 283096 232352 45.08 20612 173756 88316

0 0.00 0

08:45:01 PM 283284 232164 45.04 21116 173780 88316

0 0.00 0

08:55:01 PM 282556 232892 45.18 21624 173804 88316

0 0.00 0

09:01:18 PM 276632 238816 46.33 21964 173896 88316

0 0.00 0

09:05:01 PM 281876 233572 45.31 22188 173900 88316

0 0.00 0

Average: 294804 220644 42.81 19682 162954 88316

0 0.00 0

Here I can see how much free and used memory I have as well as view sta-
tistics about swap and the file cache similar to what you would see in either
top or free output. If you aren’t sure how to read or use these statistics,
check out the Localhost Troubleshooting section of Chapter 11.

Local Monitoring Tools 269

ptg

Another useful metric to pull from sar is disk statistics. The -b option
gives you a basic list of disk I/O information:

$ sar -b
Linux 2.6.24-22-server (kickseed) 01/07/2009

07:44:20 PM tps rtps wtps bread/s bwrtn/s
07:45:01 PM 8.03 0.00 8.03 0.00 106.61
07:55:01 PM 8.78 0.14 8.64 3.35 127.59
08:05:01 PM 7.16 0.00 7.16 0.00 61.14
08:15:01 PM 8.17 0.14 8.03 5.82 139.02
08:25:01 PM 9.50 0.06 9.44 4.09 212.62
08:35:01 PM 8.27 0.00 8.27 0.01 74.66
08:45:01 PM 8.04 0.00 8.04 0.00 71.51
08:55:01 PM 7.64 0.00 7.64 0.00 66.46
09:01:18 PM 7.11 0.00 7.11 0.36 63.73
09:05:01 PM 7.61 0.00 7.61 0.00 72.11
Average: 8.11 0.04 8.06 1.67 102.52

Here you can see the number of total transactions per second (tps) plus
how many of those transactions were reads and writes (rtps and wtps
respectively). The bread/s column doesn’t measure bread I/O but instead
tells you the average number of bytes read per second. The bwrtn/s simi-
larly tells you average bytes written per second.

There are tons of individual arguments you can pass sar to pull out spe-
cific sets of data, but sometimes you just want to see everything all at once.
For that just use the -A option. That will output all of the statistics from
load average, CPU load, RAM, disk I/O, network I/O, and all sorts of other
interesting statistics. This can give you a good idea of what sorts of statis-
tics sar can output, so you can then read the sar manual (type man sar) to
see what flags to pass sar to see particular statistics.

Of course, so far I’ve just listed how to pull all of the statistics for the cur-
rent day. Often you want data from only a portion of the day. To pull out
data for a certain time range, use the -s and -e arguments to specify the
starting time and ending time you are interested in, respectively. For
instance, if I wanted to pull CPU data just from 8:00 p.m. to 8:30 p.m., I
would type

$ sar -s 20:00:00 -e 20:30:00

270 Chapter 8 � Monitoring

ptg

Below is the output from the sar command:

Linux 2.6.24-22-server (kickseed) 01/07/2009

08:05:01 PM CPU %user %nice %system %iowait %steal %idle

08:15:01 PM all 0.49 0.00 1.12 0.62 0.00 97.77

08:25:01 PM all 0.49 0.00 2.15 1.21 0.00 96.16

Average: all 0.49 0.00 1.63 0.91 0.00 96.96

If you want to pull data from a day other than today, just use the -f option
followed by the full path to the particular statistics file stored under
/var/log/sysstat. For instance, to pull data from the statistics on the sixth of
the month I would type

$ sar -f /var/log/sysstat/sa06

You can use any of the other sar options as normal to pull out specific
types of statistics.

Ganglia
Local monitoring is quite useful when you want a picture of the system
from hours or days before, but the downside is that you have to log in to
each host and pull those statistics. Also, sometimes it’s easier to gauge a sys-
tem’s health when you have graphs or other visualization. There are a num-
ber of tools that can aggregate statistics for a network full of servers, but
one of the simplest and most lightweight tools for this is called Ganglia.

Ganglia (http://ganglia.info) was designed to monitor clusters and provides
a nice lightweight daemon called gmond that runs on each host and broad-
casts its statistics to other hosts in the same cluster using a multicast IP
address. I say “cluster” here, but you aren’t required to have clustered servers
to use Ganglia. For the rest of the chapter you can think of clusters simply as
logical ways to group servers that provide the same kind of service. Since all
of the hosts in a particular cluster listen and communicate with the same
multicast address, all of them can be aware of each other’s health.

In addition to the monitoring daemon gmond, Ganglia provides a server
called gmetad that can be pointed at different clusters and can aggregate

Ganglia 271

http://ganglia.info

ptg

their data into local RRD files. RRD is a common format for small statis-
tics databases, and a number of tools can use those files to generate
graphs. Ganglia itself provides a nice PHP-based Web front end you can
install on your gmetad host that will provide you with access to graphs of
all sorts of statistics aggregated for an entire cluster or drilled down to
individual hosts.

Install ganglia-monitor on All Hosts
The first step is to install the ganglia-monitor package, which provides
gmond, on all machines you want Ganglia to monitor:

$ sudo apt-get install ganglia-monitor

The gmond program expects different clusters to communicate either on
different multicast IPs or at least on different ports. All gmond configura-
tion is done via the /etc/ganglia/gmond.conf file. By default /etc/ganglia/
gmond.conf is already set up to communicate on multicast IP 239.2.11.71
and port 8649. If you just want to have one large cluster for all of your
hosts, the only configuration changes you need to make are to add name =
"clustername" in the cluster section of the /etc/ganglia/gmond.conf file.
For my example I will name the cluster Ubuntu Cluster, so my section
looks like:

cluster {
name = "Ubuntu Cluster"
owner = “unspecified”
latlong = “unspecified”
url = “unspecified”

}

to the bottom of gmond.conf and restart the ganglia-monitor service
(sudo /etc/init.d/ganglia-monitor restart). The default gmond.conf is
full of comments and example options you can set. Most of the options
allow you to label a particular cluster with its location, latitude and longi-
tude, and other such optional information. If you do decide to run mul-
tiple clusters, however, you need to change either the multicast channel or
the multicast port on which gmond will communicate. You can change

272 Chapter 8 � Monitoring

ptg

either or both for each cluster, depending on what is simpler for your net-
work. Some administrators might want to keep the port the same and
change the IP so that their local firewall configuration is simpler. Others
might want to keep the IP the same and just change the port so they can
keep all Ganglia traffic on one multicast IP. In either case, the options to
change are mcast_join and port in the udp_send_channel section. Here is
an example of both options set to their defaults:

udp_send_channel {
mcast_join = 239.2.11.71
port = 8649
ttl = 1

}

Once you have a gmond.conf configured for a cluster the way that you
want it, deploy to all of the remaining servers in that cluster and restart
the ganglia-monitor init script on all of them. If you do have any fire-
walls enabled, be sure that they allow traffic from the multicast IP and
also that they allow traffic on TCP and UDP port 8649 (or the specific
port you set up). Once gmond is set up properly, you can log in to a partic-
ular host and telnet to port 8649 on localhost and you should get a
bunch of XML output:

$ telnet localhost 8649
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<!DOCTYPE GANGLIA_XML [

<!ELEMENT GANGLIA_XML (GRID)*>
<!ATTLIST GANGLIA_XML VERSION CDATA #REQUIRED>

. . .
<METRIC NAME="swap_free" VAL="88316" TYPE="uint32" UNITS="KB"
TN="77" TMAX="180" DMAX="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="os_name" VAL="Linux" TYPE="string" UNITS=""
TN="612" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"/>

<METRIC NAME="pkts_out" VAL="0.19" TYPE="float" UNITS="packets/
sec" TN="93" TMAX="300" DMAX="0" SLOPE="both" SOURCE="gmond"/>

</HOST>
</CLUSTER>
</GANGLIA_XML>

Ganglia 273

ptg

You can also use the tcpdump tool to confirm that a host can see traffic on
the multicast IP:

$ sudo tcpdump dst host 239.2.11.71
21:54:49.963993 IP 172.16.245.221.60305 > 239.2.11.71.8649: UDP,
length 8

21:54:50.893289 IP 172.16.245.220.37462 > 239.2.11.71.8649: UDP,
length 8

21:54:53.923391 IP 172.16.245.220.37462 > 239.2.11.71.8649: UDP,
length 8

21:54:54.933453 IP 172.16.245.220.37462 > 239.2.11.71.8649: UDP,
length 8

21:54:55.943464 IP 172.16.245.220.37462 > 239.2.11.71.8649: UDP,
length 8

If you changed the multicast IP that you use for gmond, be sure to replace
the default I used here with that. Here you can see that my host sees multi-
cast packets from two hosts I have configured on 172.16.245.221 and
172.16.245.220.

Configure Ganglia Server
Once your Ganglia hosts are configured and communicating, the next step
is to set up a Ganglia server that runs gmetad and the Web interface so you
can store and view all of your statistics. In my example the Ganglia server
will be called ganglia.example.org. First, install the gmetad package:

$ sudo apt-get install gmetad

All gmetad configuration is located at /etc/ganglia/gmetad.conf, and the
gmetad package will provide a nice commented sample gmetad.conf file
you can work from. Open /etc/ganglia/gmetad.conf in a text editor and
locate the line in the file labeled

data_source "my cluster" localhost

The data_source line is used to define different clusters that gmetad will
monitor. The syntax is to list the cluster name to monitor followed by a
sample host or group of hosts that gmetad can query for statistics. Since I

274 Chapter 8 � Monitoring

ptg

installed ganglia-monitor on this host and set it up to be on Ubuntu Clus-
ter, I can just probe localhost, so I replace the line above with

data_source "Ubuntu Cluster" localhost

I listed localhost here because the machine that runs gmetad is also part of
Ubuntu Cluster, but if you have multiple clusters configured, you will want
to add data_source lines with IP addresses and gmond ports for a representa-
tive host or hosts from each cluster. So if I had set up a separate gmond clus-
ter for my Web servers called Web Cluster and two of the hosts ran gmond on
192.168.10.5:8650 and 192.168.10.6:8650, I would add an additional line
for that cluster, so the final configuration would look like this:

data_source "Ubuntu Cluster" localhost
data_source "Web Cluster" 192.168.10.5:8650 192.168.10.6:8650

Note that I didn’t have to specify the port for localhost because it was con-
figured to use the default port 8849. You will want to add multiple IP
addresses for each cluster for redundancy so in case one host goes off-line
you can still get statistics.

The preceding step is the only real setting that you must set in gmetad.conf
for it to work. As you can see in the file, there are many other optional set-
tings you can make either to add labels to your cluster or otherwise orga-
nize it. I will list a few of these options below.

Ganglia organizes systems into clusters and grids. A cluster is a group of
machines and a grid is a group of clusters. The grid is the overarching
name you want to apply to all of the different clusters this gmetad service
monitors. If, for instance, you have one gmetad process for each data center,
you might name the grid after the data center. Locate the section in the file
that mentions the grid name:

gridname "MyGrid"

and add a new line below it that names your grid:

gridname "London Datacenter"

Ganglia 275

ptg

276 Chapter 8 � Monitoring

The next optional setting allows you to configure gmetad so it points to
your Ganglia Web service. Locate the section that references authority:

authority "http://mycluster.org/newprefix/"

and add a line below it that points to your server. In my case I called my
server ganglia.example.org:

authority "http://ganglia.example.org/ganglia/"

Now save your changes and restart the gmetad service:

$ sudo /etc/init.d/gmetad restart

If your gmetad host can access the hosts you set up under data_source,
directories will be created for each cluster under /var/lib/ganglia/rrds.
Under each cluster directory are directories for each host that contain
RRD files for their various statistics.

Install the Ganglia Web Front End
Ganglia includes a Web front end written in PHP that lets you view all of
the Ganglia graphs from an easy-to-use Web interface. This is an optional
step, but the Web front end definitely makes it easier to view all the statis-
tics. First install the ganglia-webfrontend package on your gmetad server:

$ sudo apt-get install ganglia-webfrontend

This will pull down all necessary programs and libraries you will need for
the Ganglia Web front end to function. If you have a firewall enabled on
the host, be sure to open up access to port 80. Finally, symlink Ganglia’s
Apache configuration into the standard Apache site directory and enable
the site:

$ sudo ln -s /etc/ganglia-webfrontend/apache.conf
/etc/apache2/sites-available/ganglia
$ sudo a2ensite ganglia

Now go to any client on the network with a Web browser and browse to
the Ganglia directory on the gmetad host. In my case I would go to http://

http://ganglia.example.org/ganglia/

ptg

ganglia.example.org/ganglia/. You should see the main screen for your
grid as shown in Figure 8-1. The nice thing about Ganglia is that it not
only shows you statistics for individual hosts, it will combine statistics for
the entire grid as well as each cluster you define. This can be useful if, for
instance, you want to tell how much CPU load, RAM, or network traffic an
entire Web cluster consumes or even how much load the entire data center
(or grid) consumes.

You can use the drop-down menus on the main page to change the length
of time you want to monitor as well as drill down into individual clusters
or hosts within a cluster. Scroll down each page to see the full list of statis-
tics Ganglia captures. All of the graphs are hyperlinked as well, so you can
click on any of them to see a larger version of the graph.

Now your Ganglia monitoring system is complete. To add new hosts to a
cluster, just be sure they have the ganglia-monitor package installed and
that their /etc/ganglia/gmond.conf file is the same as you have on other
members of the cluster. Once the ganglia-monitor init script restarts with
the proper configuration, gmetad will automatically start logging that host’s
statistics and provide them via the Web interface.

Ganglia 277

Figure 8-1 Default Ganglia grid page

http://ganglia.example.org/ganglia/

ptg

Nagios
Trending is an important part of any system monitoring, but collecting
statistics is only one side of monitoring. The other side is getting alerts
when a host or service goes down. There is a large number of great com-
mercial and open source monitoring tools, but Nagios is the tool that
seems to come up over and over. Nagios is an open source monitoring tool
that has become popular among other reasons for its plug-in architecture.
Not only is it relatively easy to write your own plug-ins to monitor specific
things, but many of the common items you would want to monitor already
have plug-ins written.

Nagios is a great tool, but if you talk to enough sysadmins who use it, you
will find a common theme: It’s great but it can be a pain to configure.
Nagios uses a series of different configuration files to configure hosts to
monitor, services to check on those hosts, groups of hosts, and the rest of its
settings. The syntax for any particular file isn’t too daunting in and of itself,
but it does provide quite a learning curve for the uninitiated. If you have to
monitor a large number of systems with Nagios, you end up doing one of
two things: writing your own scripts to dump out Nagios configuration
files, or using a Nagios front end for configuration. I tend to be on the side
of not reinventing the wheel, so while I’ve written plenty of Nagios configu-
ration files and scripts in my day, now I prefer the Web-based front ends.

Because of the power of Nagios a number of different individuals and com-
panies have created monitoring software based on it. There are many excel-
lent Nagios front ends to choose from, and choosing one to feature in this
chapter is a tricky (and potentially controversial) task. In the end I settled on
GroundWork Monitor Community Edition (http://groundworkopensource
.com) for a few reasons:

� It’s an open source project.
Even though GroundWork is created and supported by a company
that also has a commercial version of the product, the Community
Edition is a completely open source project that is also free of charge.

� Professional support is available.
Even though many Linux sysadmins are fine with not having commer-
cial support for their software, often the people they work for aren’t.
The GroundWork company doesn’t just offer support for its commer-

278 Chapter 8 � Monitoring

http://groundworkopensource.com
http://groundworkopensource.com

ptg

cial product but also has paid per-incident support for the Commu-
nity Edition. This allows you to strike a nice middle ground between
using software with an open license and having support if you need it.

� There’s a good balance between Nagios features and simplicity.
Nagios can be complicated to set up, especially at the outset, but
GroundWork has a decent balance between offering you the full set of
Nagios options and providing the beginner with a basic interface to
get started.

� There’s an option for a fully commercial product.
Even though the Community Edition is great, it’s nice to have the option
to buy a different edition with more features if your enterprise needs it.

Install GroundWork
Nagios is a complicated piece of software, and while GroundWork simpli-
fies administration of it, it still allows you access to all of that complexity if
you want to tweak it. It also adds a large number of options on its own. You
could really write an entire book about ways to configure host groups,
tweak the available service checks and write your own, and configure esca-
lation schedules for notifications, along with all of the other advanced
options in this software. For the purposes of this example I will walk you
through a basic configuration to monitor a few hosts with ping, show you
how to add a service check, and describe how to configure GroundWork to
e-mail you if a host goes down.

Unfortunately, GroundWork is not available for Ubuntu via the package
manager, but it still is relatively simple to install. Unfortunately at the time
of this writing, the Community Edition download link was rather difficult
to find on the http://groundworkopensource.com page, but you should be
able to find the latest version on http://sourceforge.net/projects/gwmos/
files/. My example is based on version 6.0.1. GroundWork includes its own
Apache, Nagios, MySQL, and the rest of its software as one big package,
and the download comes in the form of a large .bin file that you then run
to extract and install:

$ sudo chmod a+x groundwork-6.0.1-br124-linux-32-installer.bin
$ sudo ./groundwork-6.0.1-br124-linux-32-installer.bin

Nagios 279

http://groundworkopensource.com
http://sourceforge.net/projects/gwmos/files/
http://sourceforge.net/projects/gwmos/files/

ptg

280 Chapter 8 � Monitoring

The binary includes both a graphical and a text-based installer, so if you
do have an X server installed on your machine, you could potentially use
the graphical installer. I will assume that you don’t on this particular
server, so when you run the program, the installer prompts you to con-
tinue in text mode. The installer starts by checking the specs of your sys-
tem to make sure you have enough RAM and storage. If you don’t meet the
minimum requirements, the installer will exit out, but if you are above the
minimum but below the recommended specs, it will just give you a warn-
ing and allow you to continue.

The installer is basically noninteractive at this point other than an initial
prompt for a MySQL root password and an option to get software update
notifications for GroundWork. After those options you will just see a
progress bar as the software unpacks.

GroundWork File Conventions
It’s good to know how GroundWork organizes all of its files, as it’s a bit dif-
ferent from most other native Ubuntu software. Below I discuss the core
file and directory locations in which the average administrator will be
interested.

� /usr/local/groundwork
This is the core GroundWork directory. Here you will find all of the
included scripts and integrated programs like Nagios, Apache, and
MySQL.

� /usr/local/groundwork/apache2
Here you will find the complete GroundWork Apache installation,
including all of the binaries and the Apache configuration.

� /usr/local/groundwork/nagios
All of the Nagios configuration and supporting files are located in this
directory. When you commit a new GroundWork configuration, it
will convert the settings in its database to raw Nagios files within this
directory. In this directory you will also find the Nagios log file under
the var directory as well as all of the included Nagios checks within
the libexec directory.

ptg

� /etc/init.d/groundwork
This is the init script that starts GroundWork at boot time and is the
script you can use to start, stop, and restart the service manually. This
script will then go on to start or stop individual daemons like the Web
interface, MySQL, and Nagios behind the scenes.

Initial Configuration
Once the GroundWork install completes, go to a Web browser and enter
your GroundWork host’s hostname. In my example that is groundwork
.example.org. At the login screen, log in as admin with the password of
admin and you will see the default GroundWork page. GroundWork
divides different configuration and monitoring pages into tabs along the
top of the screen. In Figure 8-2 you can see the default dashboard page.
First, select the Administration tab. This screen allows you to configure the
users, groups, and roles on this machine. With roles you can select which
of the menu options a particular user can see, so if you don’t want a user to
be able to configure GroundWork, you can limit that user to the display
options in the menu. Right now all we want to do, though, is change the
admin password. Click the My Preferences link at the top right of the
screen, select Edit Profile, and finally click Change Password.

Nagios 281

Figure 8-2 Groundwork default dashboard

ptg

NOTE If you are in the Administration window, you could add your own user if you wanted. Click
the User Management tab, then the Create new user account link in the right pane. Fill out
your user information, and be sure to select the Administrators role when you get to the
Assign Roles screen. Now when you log in as your user, you will have the same level of
access as the administrator.

Initial Host Scan One of the more annoying parts about a monitoring
system is the initial configuration of every host. If you have a lot of hosts to
monitor, it can be a pain to add them one by one to the system. Ground -
Work provides a wizard that makes the initial configuration substantially
simpler. Select Auto Discovery from the main row of tabs. There are a few
different scanning modes to choose from: Interactive, Auto, and Auto
Commit. The Interactive mode will prompt you at each phase of the
process. The Auto mode will automatically add each host it detects to the
Ground Work configuration but it won’t commit the changes. The Auto
Commit option is like Auto, but it will automatically commit the changes
to Nagios as well. Start with the Interactive mode until you get a good grasp
of how it works, then try out the other modes if you notice you always tend
to add hosts GroundWork detects.

At the bottom of the screen you will see the option to define IP ranges to
scan. You can define not only IPs to include here but also IPs you don’t
want to scan. Generally speaking, you at least want to scan the same subnet
your monitoring server is on, so add that here. Once you add your subnets,
uncheck the localhost subnet (127.0.1.*) so it won’t add a lot of entries for
your localhost interface, and then click the Go button at the top of the
screen to proceed. After you confirm that you want to continue in the next
screen, GroundWork will scan every IP in the subnets you defined. When
it finds a particular host, it then scans it for open ports and attempts to
detect services on the machine. For each service it detects that has an avail-
able Nagios check, GroundWork will automatically add that service check
to that host.

Once the scan is complete, if you chose Interactive mode, click Next at the
bottom of the screen and you will see a full list of hosts that GroundWork
detected, as shown in Figure 8-3. If you chose Auto or Auto Commit mode,

282 Chapter 8 � Monitoring

ptg

it will bypass this screen. At a bare minimum each host will have ping
monitoring enabled, but if other services are detected, appropriate Nagios
checks will be added as well. Click the check box on the right-hand side of
each host if you want to add it to your configuration. When you are fin-
ished selecting hosts, click Process Records to add the selected hosts to
your configuration.

Check Host Status Once you add the initial set of hosts and commit the
changes, select the Status tab from the top of the screen. The status screen
provides you with an overall view of the health of your network. Here you
can see how many hosts and services are up or down at a glance. Each host
group is listed in the left pane, and you can click any host groups you
configure to gather statistics just for that group. Figure 8-4 shows a sample
status page. The data updates in real time so as hosts recover, the status will
change.

Nagios 283

Figure 8-3 Auto scan results

ptg

Configure Nagios
All Nagios configuration is done via the Configuration tab. GroundWork
actually maintains its own configuration in a MySQL database. When you
make changes here, it actually changes them in the database first. It isn’t
until you commit changes that GroundWork converts the configuration
into the individual Nagios configuration files and reloads Nagios.

The configuration page is divided into a number of different categories via
a smaller row of tabs at the top of the page:

� Services
This category lets you configure all of the service checks available for
Nagios. Here you can change the options used by service checks, such
as their warning and critical thresholds, and you can add new service
checks.

284 Chapter 8 � Monitoring

Figure 8-4 GroundWork status page

ptg

� Profiles
Profiles allow you to define different templates you can use for differ-
ent types of hosts. You can set up service profiles that group certain
service checks together, so, for instance, a default service profile might
include checks for the services you know all of your servers have, such
as SSH. A service profile for your Web servers might include a num-
ber of different Apache checks.

The host profiles let you create templates for host settings such as how
often to check if the host is up and whether to monitor the host 24x7.
You can also add service profiles to a host profile. This way you could
set up a host profile for your production Web servers that makes sure
they are monitored 24x7, includes a default service profile for SSH
and other default services, and adds your Web service profile.

� Hosts
The hosts configuration contains all of the hosts you have added to
GroundWork. Here you can select individual hosts and tweak their
settings; add, remove, or change settings for their services; and config-
ure what group they are in. This page also contains host group config-
urations so you can group different sets of servers together to make it
easier to monitor their status.

� Contacts
The contacts page lets you add contact information for people who
will receive notifications when services go down. You can also set up
contact groups that contain multiple individual contacts, then assign
those contact groups to hosts so that the entire group will get noti-
fied. Within these contacts you can also configure what sorts of
 notifications a particular contact should receive, how to contact the
person, and even at what times of day.

� Escalations
Escalations are very useful if you rotate on-call duties or have on-call
staff in different parts of the globe. You can set up escalations so that
the first three alerts, for instance, go to your on-call person, and if
that person doesn’t respond by the third alert, the rest will go to the
secondary contact. You can also define time periods to go with the

Nagios 285

ptg

escalations so that if you have nighttime on-call staff and daytime on-
call staff, you can contact one or the other based on the time of day.

� Commands
It’s easy to confuse commands and services. Commands are the
Nagios check scripts that typically live in /usr/local/groundwork/
nagios/libexec. These are usually generic commands that accept a
whole host of options. Services will then point to one of these com-
mands and run them with a particular set of options. For instance,
there is a generic command called check_tcp that will test a TCP con-
nection on a particular port. If you wanted to test port 80, for
instance, you could set up a service you call check_port80 that calls
the check_tcp command to test port 80 only. Use this page if you
wrote your own custom Nagios plug-in and want to make it available
to GroundWork.

� Time periods
As the name indicates, this page lets you configure different time peri-
ods to which Nagios can refer. By default some standard time periods
are already defined, such as 24x7, work hours, and non-work hours.
These can be handy if you want to monitor certain services only dur-
ing certain hours.

� Groups
On this page you can configure particular groups within the Ground-
Work interface. These groups would contain groups of hosts, contact
groups, and other settings. With these groups defined you can easily
change a particular setting (such as add a new service check) and
deploy it to all of the hosts within a particular group. This is really
handy when you manage large numbers of hosts and want to be able
to change entire groups at a time.

� Control
The control page is where you go whenever you want to commit your
changes. Here you can also view the Nagios configuration and test
your current changes before you commit them.

286 Chapter 8 � Monitoring

ptg

Nagios 287

� Tools
The tools page provides a few extra GroundWork tools. Here you can
export your settings to a file and also delete groups of hosts or
services based on a pattern.

� Performance
On the performance page you can configure options for graphs and
other metrics.

Commit Changes to Nagios
Since GroundWork maintains its settings in a separate database, changes
you make in the Web interface don’t directly load into Nagios. Whenever
you make a change in the Web interface, you must commit it. The commit
process translates GroundWork’s configuration into valid Nagios files. To
commit your changes, select Configuration from the main tab, then select
the Control tab at the top of the page. From there select the Commit link
in the left pane. You will have the option to back up your old configuration
if you want; otherwise click the Commit button to update the Nagios con-
fig and restart Nagios.

Configure Contact List
After you set up your initial set of hosts, you will want to configure a contact
to get the alerts. Select the Configuration tab, and then select the Contacts
tab. Click the Contacts link in the left pane to expand it and reveal the New,
Copy, and Modify options. Since we want to add a new contact, click New.
Figure 8-5 gives an example of a contact entry. Fill out your contact’s infor-
mation and either set the notification period and other options manually or
select a contact template from the drop-down menu that suits you. If none
of the available options does suit you, you can also add a new contact tem-
plate from the left pane with the settings you want to use. I chose generic-
contact-2 because it has a good set of defaults for 24x7 monitoring.

GroundWork will set up a default contact group called nagiosadmin. The
default templates that are already set up with GroundWork will use this
contact group for notifications, so if you don’t want to do much tweaking,

ptg

click the “Contact groups” link in the left pane to expand it, click Modify,
select nagiosadmin and change the settings so that you are added to the
group and any default contacts are removed, then click Save. Alternatively,
you could create your own contact group; just be sure to add that group to
the hosts you monitor so you will get alerts. Once you change all of your
contact settings, remember to commit the changes.

Enable Notifications for Nagios
Even if you set up a contact and it is part of the correct contact group, by
default GroundWork will not send out notifications until you explicitly tell
it to start. This is a good default because you can set up all of your hosts first
and tweak service checks so that everything is online before you trigger noti-
fications. That way you won’t get unnecessary e-mails or pages until you are
ready. When you are ready to enable notifications, click the Control tab at
the top of any Configuration page, then select “Nagios main configuration”

288 Chapter 8 � Monitoring

Figure 8-5 Sample contact properties page

ptg

in the left pane of the page that loads. Around the middle of the right pane
you will see an option called “Enable notifications.” Check that option and
then scroll to the bottom and click Save and Next. You will have to click Save
and Next through a few more screens until you see and click Save and Done.
Now click Commit in the left pane and commit your changes to Nagios.
Now you will start to get alerts to any configured contacts.

NOTE If you set up notifications via e-mail, be sure that your host has a functioning local mail
server configured; otherwise notifications will never get to you. For more information on
how to configure a mail server on Ubuntu, check out the Mail Server section of Chapter 5.

Add a Service Check to a Host
For most hosts you should at least do some sort of ping probe to see if the
server is up. Most people, though, want to monitor more than that. Ground -
Work supplies a number of different service checks out of the box along
with a number of commands you can reference to create your own custom
service checks. For starters, I will walk you through adding a new service
check to a host to check whether SSH is alive.

First select the Configuration tab, and then select the Hosts tab. Expand
the Hosts tree in the left pane until you can find the host you want to
change. Once you expand that host, you will see a Detail link that you can
click to configure all of the settings for that host. Each set of options is
organized into different tabs in the right pane, so click the Services tab to
configure the services monitored on this host. The ssh_alive service is
what you can use to test that SSH is available, so I select that service along
with any others I might want to add on this page and then click the Add
Services button to add it to the list. Then click the Host Detail tab, scroll
down to the bottom of that tab, and click Save to save your changes. Now
commit your changes to Nagios so they will take effect.

Add a New Host
To add a new host to GroundWork outside of automatic scanning, select
the Configuration tab and then click the Hosts tab at the top of the page. In
the left pane, locate the link named “Host wizard” and click it. Fill out the
fields in the right pane with the hostname, an alias, the IP address, and a

Nagios 289

ptg

host profile to use for the host. If you haven’t configured any custom host
profiles, the host-profile-service-ping option is a safe default. Once you
are finished, click Next.

The next page lets you choose any host templates you might have config-
ured along with any parents the host has. Choose the generic-host tem-
plate unless you have set up a custom one. The parents field lets you
choose previously configured hosts as the parent of this host. When a host
is another host’s parent, if it goes down Nagios will consider the child host
down as well. This helps you build a dependency tree from your network
equipment to your hosts. If you aren’t sure what parents to configure, it’s
fine to leave this blank.

On the next page you can assign your new host to any host groups you
have defined. If you want to use Nagios’s mapping feature, you can also
enter map coordinates here. This page also is where you would select any
escalation trees if you have defined them. If you are just starting out, you
will probably leave most of these options blank.

The next page is where you configure what services to monitor on this host.
If you have any service profiles configured, you can add them here; other-
wise you can manually select services. Once you click Next, you will be at
the final page of the wizard. You have the option to save all of your settings
as a profile. This can be handy if you know you are going to repeat this wiz-
ard for a group of hosts and they will all have the same sets of options. You
can just save this as a profile and then choose it when you add the next host.
Click Continue to finish adding the host to GroundWork. Don’t forget to
commit your changes once you are finished adding hosts.

Advanced Configuration
While there are far too many options in Nagios to be described here, I dis-
cuss a few principles that will help you as you navigate through the long
list of settings. I start with host settings and then describe how to add a
new custom service check to GroundWork.

When you look at the custom options for a host, you will notice that each
option has a check box on the left; a check box, drop-down menu, or text

290 Chapter 8 � Monitoring

ptg

entry box on the right; and a small question mark. Figure 8-6 shows a
sample host configuration page. The right check box, text entry, or menu
will show the current state of a particular setting.

The left check box tells you whether this particular setting is currently get-
ting its value from a template. If the box is checked, you won’t be able to
change that setting manually. When you change it and save your changes,
you will notice it will revert back to whatever was set in the template. So
uncheck the left check box if you want to override a setting; just realize
that if you do update that option in the template, it will no longer get
passed to this host. Generally speaking, unless you are making an excep-
tion, it’s simpler to make changes with templates than to go host by host.

The question mark accompanies most configuration options in Ground-
Work, and if you roll your mouse over it you will get a more in-depth
explanation of a particular option. With so many options, tips like this
definitely come in handy.

You can also override the default settings for a particular service check on
a host. Just click that service check in the left pane under the host and

Nagios 291

Figure 8-6 GroundWork host configuration options

ptg

make your changes. The Service Check tab here lets you change the default
arguments you will pass to a service check. This comes in handy when
you want to modify the warning and critical thresholds for a particular
server. For instance, if you get alerts for high load, but you know that a
particular server sometimes exceeds your default threshold but for it that
higher load is normal, you can tweak its threshold and leave the rest of the
hosts alone.

Create a New Service Check Even though there are a fair number of
service checks in GroundWork by default, the amount you can create
once you understand how some of the core Nagios commands work is
staggering. For this example I show how to add a custom service check I
call tcp_smtp that checks whether port 25 (the SMTP port) is open on a
host.

First select the Configuration tab. Then click the smaller Services tab on
the top of the page. Click “New service” in the left pane to create a new
service check. On the first page I am prompted for the name of my service
and what service template to use. I name it tcp_smtp , select the generic-
service template, and then click Add.

Once the service is added, I can see all sorts of default options that the
generic-service template sets, such as whether to check the service 24x7,
how often to check it, and how many retries to make before an alert. I’m
going to leave these at the defaults, but depending on how sensitive your
service is, you might want to tweak these options to monitor the service
more or less often.

What I am most interested in is the Service Check tab. It is there I can
define what command to use for this service. I click that tab and then
locate the “Check command” drop-down menu. Now at this point if you
are new to Nagios you might not know what to select. You can get some
hints by the service name, but realistically what you will need to do is
check out what the standard Nagios commands do, either with research
online or by going to /usr/local/groundwork/nagios/libexec and running
the commands manually. Many of the commands are just shell scripts, so
you can even open them and see how they work. From my own experience
I know that I want the command named check_smtp so I select it here.

292 Chapter 8 � Monitoring

ptg

Once you select a command, the “Command line” text entry box will get
loaded with the command and each of its default arguments separated by
exclamation points. In my case I have ARG1 and ARG2. When I look at the
command definition, I can see that it passes ARG1 to check_smtp’s -w argu-
ment and ARG2 to -c. Most standard Nagios commands use -w and -c to set
warning and critical thresholds, respectively, but again you will need to do
some research here. In this case they are looking for the number of seconds
it takes SMTP to respond to my test. Different SMTP servers have different
response times, but I set this to warn me if it takes five seconds to respond,
and to send an alert if it takes ten seconds. So in the “Command line” text
entry box in place of

check_smtp!ARG1!ARG2

I put

check_smtp!5!10

You can see an example of my Service Check tab in Figure 8-7. Now I click
Save to save my changes. From this point I can go to the host configuration
section and add this check to any hosts I want to monitor. Again, remem-
ber to commit your changes to Nagios for them to take effect.

Nagios 293

Figure 8-7 Service Check settings for a new service

ptg

More GroundWork Information
I’ve really only scratched the surface of Nagios and GroundWork configu-
ration. GroundWork includes its own documentation via the Bookshelf
link at the top of the Web interface. Click that and a new window will pop
up with a searchable index and a predefined list of documentation topics
you can browse through. In addition, http://groundworkopensource.com
has a number of different configuration guides as well as a forum you can
join to ask questions and get tips from other GroundWork users.

294 Chapter 8 � Monitoring

http://groundworkopensource.com

ptg

295

9C H A P T E R 9

Virtualization

ptg

ONE OF THE HOTTEST TRENDS in system administration today is virtualiza-
tion. With virtualization you can create multiple instances of Ubuntu that
all run on the same hardware. You can allocate parts of your server’s
resources to each virtual machine. There are incredible amounts of pro-
cessing power in a modern server, and with virtualization you can get
much more out of the hardware you have. I even used virtual machines as
a test lab for this book; it is much faster to set up a new Ubuntu server and
try out a particular package when you can do so within a virtual machine
rather than setting aside multiple hardware machines.

There are a number of different virtualization technologies available under
Ubuntu Server, and in this chapter I cover two of the most popular, VMware
Server and KVM. VMware Server is a free product produced by VMware,
and KVM (Kernel-based Virtual Machine) is free software with support
built into the Linux kernel. Finally I discuss some of the new Cloud features
available to Ubuntu Server.

KVM
KVM is the default virtualization technology supported by Ubuntu. This
software takes advantage of virtualization support built into Intel and
AMD processors and allows you to run a number of different distributions
and operating systems as VMs (virtual machines) on a single host.

Install KVM
The one “gotcha” about KVM is that it doesn’t just take advantage of virtu-
alization support in processors, it requires it. So before you do anything
else, you should confirm that your processor has virtualization extensions.
Run the following command on your host:

$ egrep '(vmx|svm)' /proc/cpuinfo

If you get some output, then your server has the necessary extensions and
you can move on. If not, then you won’t be able to use KVM on this
machine. You aren’t out of luck, though; just move on to the VMware

296

ptg

Server section later in the chapter as that product doesn’t require those
extensions.

Enable Support in BIOS
Once you have confirmed that your server will support KVM, you still will
probably need to enable those extensions in your BIOS. Each BIOS is dif-
ferent, but reboot the machine and look for a section of the BIOS settings
that includes processor settings or perhaps advanced settings and make
sure that virtualization extensions are enabled.

Install KVM Packages
Once the BIOS is all set, boot back into your server and install all of the
packages you will need for KVM:

$ sudo apt-get install gemu-kvm libvirt-bin ubuntu-vm-builder

In addition to the KVM software and necessary libraries, this group of
packages will also provide you with the virsh command-line tool you will
need to manage your VMs. This will also install the ubuntu-vm-builder
script, which makes spinning up new Ubuntu VMs incredibly easy.

Along with the root user you will probably want to set up at least one other
user on the system who can directly manage VMs. To do this you simply
need to add that user to the libvirtd group:

$ sudo adduser username libvirtd

Replace username with the name of your user. Note that you will have to log
out and log back in for the group changes to take effect. Once you log back
in, run the groups command and make sure that libvirtd is among your
user’s list of groups. At this point you are ready to test whether KVM is func-
tioning and your user can manage it, so run the following virsh command:

$ virsh -c qemu:///system list
Connecting to uri: qemu:///system
Id Name State

KVM 297

ptg

You will use this virsh command a lot. In this case it outputs the list of all
VMs currently running on this machine. We haven’t set up any yet, but the
fact that we got valid output and not an error means that we are ready to
proceed. If you got some sort of permissions error, it is likely because your
user is not part of the libvirtd group.

Configure KVM Networking
There are two main ways you can set up networking for your VMs. The
default networking setup provides a private network under 192.168.122.0/24.
A DHCP server will hand out the rest of the IPs; alternatively, you can set
up static IPs for your VM. The KVM host has the IP 192.168.122.1, and
VMs then communicate with the outside world via that gateway using
NAT (Network Address Translation). This works fine, especially for VMs
on a desktop, but since we are talking about servers here, my assumption is
that you want machines outside of the KVM host to be able to communi-
cate with your VMs. While you could certainly set up some sort of iptables
DNAT rules and forward traffic back in, that solution doesn’t scale very
well. The real solution is to set up bridged networking so that your VMs
appear to be on the same network as your host.

It is relatively simple to set up the br0 bridge interface on Ubuntu. Essen-
tially you identify the interface over which you want to bridge traffic
(probably eth0 or possibly bond0 if you set up bonding), transfer all if its
configuration to br0 along with a few extra bridge options, and then
change the original interface to manual mode. It makes more sense when
you see the examples. For instance, if I had DHCP set up for eth0 and my
old configuration in /etc/network/ interfaces looked like this:

auto eth0
iface eth0 inet dhcp

then my new configuration would look like this:

auto eth0
iface eth0 inet manual

auto br0

298 Chapter 9 � Virtualization

ptg

iface br0 inet dhcp
bridge_ports eth0
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

Note that I changed the inet mode for eth0 from dhcp to manual. If eth0
had a static IP configured, I would just transfer all that configuration to
br0 instead, so it would go from this:

auto eth0
iface eth0 inet static

address 192.168.0.5
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1

to this:

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet static

address 192.168.0.5
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1
bridge_ports eth0
bridge_fd 9
bridge_hello 2
bridge_maxage 12
bridge_stp off

Once I have set up /etc/network/interfaces to have the bridge, I then restart
networking:

$ sudo /etc/init.d/networking restart

KVM 299

ptg

300 Chapter 9 � Virtualization

Now my ifconfig output should list my new bridged interface:

$ ifconfig
br0 Link encap:Ethernet HWaddr 00:17:42:1f:18:be

inet addr:192.168.0.5 Bcast:192.168.0.255 Mask:255.255.255.0
inet6 addr: fe80::217:42ff:fe1f:18be/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:17226 errors:0 dropped:0 overruns:0 frame:0
TX packets:13277 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:16519186 (16.5 MB) TX bytes:1455348 (1.4 MB)

NOTE Even though we are talking about servers with physical network connections here, I should
bring up the fact that most wireless adapters don’t support bridging, so if you try to set this
up on your laptop and bridge over your wireless interface, bridged mode won’t work.

Once the bridge interface is set up, the current KVM installation should be
able to take advantage of it by default. Now you are ready to create your
first VM.

Create a New VM
Once KVM and your bridged network are set up, you are ready to create
your first VM. Ubuntu has set up a tool called ubuntu-vm-builder (in newer
releases renamed vmbuilder) that you can use to automate the process of
creating a VM. With vmbuilder you can define the settings for a VM,
including what Ubuntu release you want, and the tool will create the local
virtual disk and perform the base install for you. It will even register the
VM with the system so that it’s ready to go once it completes.

To streamline the process even further, Ubuntu has created a special Ubuntu
installation known as JeOS (pronounced “juice”) for virtual machines. All of
the nonessential kernel modules have been removed, and the OS in gen-
eral is tuned for better performance as a VM. In the examples that follow I
create VMs based on JeOS.

The vmbuilder script can create VMs for a number of different platforms,
including KVM, so when you run the command, the first two options you
pass it are the virtualization technology (hypervisor) to use and what type

ptg

of OS (suite) it will install. Here’s the first segment of the command that
we will build off of (but don’t hit Enter just yet):

$ sudo vmbuilder kvm ubuntu

There are different options you can choose from based on which hypervi-
sor and suite you choose, and you can pass the --help argument after each
one to get a list of specific options:

$ sudo vmbuilder kvm ubuntu --help

The vmbuilder script will create a directory in your current directory and
dump the VM’s disk there, so if you have set aside a special place on the
disk to store VM files, be sure to change to that directory first. Here’s a
sample relatively basic vmbuilder command that will create an Ubuntu
Lucid VM called test1:

$ sudo vmbuilder kvm ubuntu --suite lucid --flavour virtual
--arch i386 --hostname test1 --libvirt qemu:///system --
rootsize=2048 --swapsize=256 --user ubuntu --pass insecure
-d test1-kvm

2010-04-17 12:17:04,193 INFO : Calling hook: preflight_check
2010-04-17 12:17:04,196 INFO : Calling hook: set_defaults
2010-04-17 12:17:04,197 INFO : Calling hook: bootstrap
. . .
2009-02-27 16:52:31,480 INFO Cleaning up

After I run the command, the script will go out and retrieve all of the pack-
ages and files it needs and automatically build the VM for me. Below I
describe each of the options I chose:

� --suite lucid
The --suite option chooses which Ubuntu version to install. I chose
lucid here but you could also choose dapper, feisty, gutsy, hardy,
intrepid, jaunty, or karmic

� --flavour virtual
There are different kernel flavors available for Ubuntu. The virtual
flavor chooses the JeOS kernel that’s optimized for VMs, but there are

KVM 301

ptg

a number of different kernels from which you can choose, depending
on which Ubuntu suite and architecture you choose.

� --arch i386
This is the processor architecture to use for my VM. If I don’t specify
this, it will default to the host architecture. Valid options are i386,
amd64, and lpia.

� --hostname test1
If you don’t specify a hostname, the VM will default to a hostname of
ubuntu. This is fine until you decide you want to create more than
one VM, at which point you will get an error that the domain ubuntu
already exists. Use the --hostname option, so that not only can you
specify the hostname within the OS, you can also specify the unique
name that will be registered with KVM.

� --libvirt qemu:///system
The --libvirt option will automatically add this VM to my local
KVM instance.

� --rootsize 2048 and --swapsize 256
For basic VMs you probably just want a single disk with a root and
swap partition. In that case you can use --rootsize and --swapsize to
specify the root and swap partition sizes in megabytes. There is also
an --optsize option that will set up a separate /opt partition.

� --user ubuntu and --pass insecure
You will want some sort of default user on the system so once it is
built you can log in to it, unless your network uses LDAP or some
other network authentication. The --user and --pass arguments let
me specify the default user and password to use; otherwise both will
default to ubuntu. You can also use the --name option to set the full
name of the user.

� -d test1-kvm
By default, vmbuilder will install the VM’s root disk under the
ubuntu-kvm directory in the user’s home directory. Of course, once
you set up one VM, you won’t be able to reuse the same directory, so
the -d option lets you specify the location of the destination directory.

302 Chapter 9 � Virtualization

ptg

Once the install completes, I will see that a new test1-kvm directory was
created in my current directory and inside is the disk file for that VM:

$ ls test1-kvm/
run.sh tmpHHSJGz.qcow2

In addition, my new VM will be registered with KVM, and its XML file,
which defines its settings, will be installed under /etc/libvirt/qemu/test1
.xml and look something like this:

<domain type='kvm'>
<name>test1</name>
<uuid>907a0091-e31f-e2b2-6181-dc2d1225ed65</uuid>
<memory>131072</memory>
<currentMemory>131072</currentMemory>
<vcpu>1</vcpu>
<os>
<type arch='i686' machine='pc-0.12'>hvm</type>
<boot dev='hd'/>

</os>
<features>
<acpi/>

</features>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/bin/kvm</emulator>
<disk type='file' device='disk'>
<source file='/home/ubuntu/vms/test1-kvm/tmpHHSJGz.qcow2'/>
<target dev='hda' bus='ide'/>

</disk>
<interface type='network'>
<mac address='52:54:00:c6:18:b7'/>
<source network='default'/>
<model type='virtio'/>

</interface>
<input type='mouse' bus='ps2'/>
<graphics type='vnc' port='-1' autoport='yes' listen='127.0.0.1'/>
<video>
<model type='cirrus' vram='9216' heads='1'/>

</video>
</devices>

</domain>

KVM 303

ptg

Extra vmbuilder Options
The example vmbuilder command I gave will certainly work, but the script
supports a large number of additional options that might be useful for your
VMs. For instance, in my example I list the --rootsize and --swapsize
options to set the root and swap partitions in my VM’s disk. You might decide
that you want a more complex partition layout than just a root and swap par-
tition, in which case you can use the --part option. The --part option reads
from a file you create that contains partition information and uses it when it
sets up disks. The file has a very basic syntax. Each line contains a mount
point followed by a partition size in megabytes. You can even set up multiple
disks—just use --- on its own line to separate one disk from another.

For instance, let’s say I wanted to create two disks. The first disk would
have a 100Mb /boot partition, a 2Gb / partition, and a 512Mb swap. The
second disk would have a 5Gb /var partition. I could create a file called
test1.partitions containing the following data:

/boot 100
root 2000
swap 512

/var 5000

Now when I run vm-builder I replace the --root 2000 --swap 256 lines in
my command with --part /path/to/test1.partitions. The final com-
mand would look like this:

$ sudo vmbuilder kvm ubuntu --suite lucid --flavour virtual
--arch i386 --hostname test1 --libvirt qemu:///system
--part /home/ubuntu/vminfo/test1.partitions --user ubuntu
--pass insecure -d test1-kvm

Package Management The vmbuilder script also has a number of handy
preseed-like options for automating your install. Here are some options
specifically aimed at package management:

� --addpkg packagename and --removepkg packagename
The --addpkg and --removepkg commands will respectively add and
remove a package you specify as an argument. You can add multiple

304 Chapter 9 � Virtualization

ptg

--addpkg or --removepkg commands on the command line if you want
to add or remove more than one package. Keep in mind that any
packages that are interactive when they install (i.e., they ask you ques-
tions) won’t work here.

� --mirror URL
Use the --mirror command followed by the URL for a specific
Ubuntu mirror if you want to use something other than the default
Ubuntu servers. This is handy if you have set up a local Ubuntu mir-
ror, as the install will go much faster.

� --components main,universe
If you want to add particular repositories to your Ubuntu VM such as
universe or multiverse, for instance, use the --components argument
followed by a comma-separated list of repositories.

� --ppa PPA
If there is a particular PPA (Personal Package Archive) from
ppa.launchpad.net that you want to add, just specify its name here.

Network Settings By default VMs will be created using DHCP for their
network information. You can optionally specify a static network setting
on the command line. Here is a description of each network option along
with a sample setting:

� --domain example.org
This sets the default domain of the VM; otherwise it is set to the
domain of the host.

� --ip 192.168.0.100
Here you set the static IP address to assign the VM.

� --mask 255.255.255.0
This value is set to the subnet mask.

� --net 192.168.0.0
This value is set to the address for the network of the host.

KVM 305

ptg

� --bcast 192.168.0.255
Here you can specify the broadcast address.

� --gw 192.168.0.1
If you don’t specify a gateway address with this option, the first
address of your network will be chosen.

� --dns 192.168.0.5
Like the gateway address, if you don’t specify an address here, it will
use the first address on your network.

Post-install Scripts There are a number of options you can set with
vmbuilder that can set up post-install scripts and other actions to help
automate your install further. Here is a description of some of the main
options you might use:

� --ssh-key /root/.ssh/authorized_keys and --ssh-user-key
/home/username/.ssh/authorized_keys
These options take the full path to your SSH authorized keys file for
either the root user (--ssh-key) or a regular user (--ssh-user-key)
and copy it to the host. You might set this up so that you can auto-
matically SSH into a VM after it is installed and start without a
password.

� --copy filename
This option reads in a file you specify that contains a list of source
and destination files, such as

/home/ubuntu/vmfiles/filename /etc/filename

It will copy the file from the source file on the host to the destination
file on the VM.

� --execscript script
This argument will run a script you specify on the command line
within the VM using chroot at the end of the install.

306 Chapter 9 � Virtualization

ptg

� --firstboot script
This option is like --execscript except it copies the script you specify
into the VM and executes it the first time the VM boots.

� --firstlogin script
The downside to most of the automated installer options is that they
require that scripts be noninteractive. The --firstlogin option
doesn’t have that limitation. It will take a script you specify and exe-
cute it the first time a user logs in to the VM. Since the first user who
logs in will see the script, you have the option of making it interactive.
You might also want to use this script to install any packages on your
VM that have an interactive installer.

Once you have successfully created a VM with vmbuilder, you are ready to
start your VM for the first time and manage it with virsh.

Manage VMs with virsh
The virsh command is one of the main tools you will use to manage your
VMs. The basic syntax for KVM is virsh -c qemu:///system followed by
some sort of command. For instance, to list all of the running VMs, type

$ virsh -c qemu:///system list
Connecting to uri: qemu:///system
Id Name State

Now that you have created a new VM, you can use the start command to
start it:

$ virsh -c qemu:///system start test1
Connecting to uri: qemu:///system
Domain test1 started

$ virsh -c qemu:///system list
Connecting to uri: qemu:///system
Id Name State

9 test1 running

KVM 307

ptg

Note that the start command is followed by the VM that you want to
start. Similar commands to start are shutdown and destroy, which will
shut down and pull the power from the VM, respectively. If you want the
VM to start at boot time, use the autostart command:

$ virsh -c qemu:///system autostart test1
Connecting to uri: qemu:///system
Domain test1 marked as autostarted

If you want to remove the autostart option, add --disable to the command:

$ virsh -c qemu:///system autostart --disable test1
Connecting to uri: qemu:///system
Domain test1 unmarked as autostarted

KVM also supports snapshotting so you can save the current state of your
VM and roll back to it later. To take a snapshot, use the save command fol-
lowed by the VM and the file in which to save the state:

$ virsh -c qemu:///system save test1 test1-snapshot.state
Connecting to uri: qemu:///system
Domain test1 saved to test1-snapshot.state

Later you can use the restore command followed by the state file you
saved previously to restore the VM to that state:

$ virsh -c qemu:///system restore test1-snapshot.state
Connecting to uri: qemu:///system
Domain restored from test1-snapshot.state

You can also suspend and resume VMs with the suspend and resume com-
mands. Keep in mind that suspended VMs still do consume memory
resources. Suspended VMs will show up in a list with the paused state:

$ virsh -c qemu:///system suspend test1
Connecting to uri: qemu:///system
Domain test1 suspended

$ virsh -c qemu:///system list
Connecting to uri: qemu:///system

308 Chapter 9 � Virtualization

ptg

Id Name State

11 test2 running
12 test1 paused

$ virsh -c qemu:///system resume test1
Connecting to uri: qemu:///system
Domain test1 resumed

$ virsh -c qemu:///system list
Connecting to uri: qemu:///system
Id Name State

11 test2 running
12 test1 running

One particularly nice feature of using VMs is that if a VM needs more
RAM and your host has it available, you can make the change rather easily.
First use the dominfo command to see the amount of RAM currently used
by the VM. Once the VM is shut down, use the setmaxmem command to
change the maximum RAM available to the VM and the setmem command
to change the RAM the VM can currently use (the two can be different val-
ues, provided the maximum memory is larger). Once you restart the VM,
it will come up with the new amount of RAM:

$ virsh -c qemu:///system dominfo test1
Connecting to uri: qemu:///system
Id: -
Name: test1
UUID: e1c9cbd2-a160-bef6-771d-18c762efa098
OS Type: hvm
State: shut off
CPU(s): 1
Max memory: 131072 kB
Used memory: 131072 kB
Autostart: disable
Security model: apparmor
Security DOI: 0

$ virsh -c qemu:///system setmaxmem test1 262144
Connecting to uri: qemu:///system

$ virsh -c qemu:///system dominfo test1
Connecting to uri: qemu:///system

KVM 309

ptg

Id: -
Name: test1
UUID: e1c9cbd2-a160-bef6-771d-18c762efa098
OS Type: hvm
State: shut off
CPU(s): 1
Max memory: 262144 kB
Used memory: 131072 kB
Autostart: disable
Security model: apparmor
Security DOI: 0

$ virsh -c qemu:///system setmem test1 262144
Connecting to uri: qemu:///system

$ virsh -c qemu:///system dominfo test1
Connecting to uri: qemu:///system
Id: -
Name: test1
UUID: e1c9cbd2-a160-bef6-771d-18c762efa098
OS Type: hvm
State: shut off
CPU(s): 1
Max memory: 262144 kB
Used memory: 262144 kB
Autostart: disable
Security model: apparmor
Security DOI: 0

KVM Graphical Console and Management Tools
There are a number of ways that you can get a console into a KVM VM.
Some people simply set up SSH ahead of time and SSH into the machine,
while others set up some sort of remote desktop with VNC. When you first
get started, however, you might not have all of that infrastructure in place,
so it’s nice to have some sort of tool to get a graphical console on your VM.
The virt-manager utility makes this process simple.

First, install the virt-manager packages with sudo apt-get install virt-
manager. If your server has some sort of graphical desktop, you can run it
from there. You will see a display of the potential local KVM instances to
which you can connect. Double-click the localhost (System) entry and it
will connect and expand to show you all of your available VMs, as shown

310 Chapter 9 � Virtualization

ptg

KVM 311

in Figure 9-1. If any VMs are currently running, you will be able to see
their current CPU and memory statistics.

If you select a particular VM from the main screen and click the Open but-
ton, it will open up a graphical console into the machine as shown in Fig-
ure 9-2. From that window you can log in to your VM and run commands
just as if you had a keyboard, mouse, and monitor connected to it. You can
also power off, suspend, and take snapshots from within this interface.

Back at the main menu you can also get more detailed information about a
VM. Select the VM and then click Edit_Machine Details. From here not
only can you see more detailed graphs of its current load, but if you click
the Hardware tab (Figure 9-3), you can view, add, and remove hardware,
although the host will need to be powered off, depending on what you
want to change.

Remote KVM Management This tool isn’t limited to local KVM manage-
ment as there’s a good chance that you don’t have a graphical environment

Figure 9-1 Virtual Machine Manager default screen

ptg

312 Chapter 9 � Virtualization

Figure 9-3 VM hardware details

Figure 9-2 Graphical VM console

ptg

on your server. You can also install the package to a desktop on your net-
work and then connect to your KVM server via an SSH tunnel. Just make
sure that you have SSH set up and then click File->Open Connection from
the main Virtual Machine Manager window. Then select “Remote tunnel
over SSH” in the Connection drop-down menu, make sure the hypervisor
is set to QEMU, and then type in the hostname for your KVM server and
click Connect.

VMware Server
VMware Server is one of many virtualization products created by VMware.
This particular product is not open source software but it is free to down-
load from http://vmware.com after you register with the site. VMware Server
offers nice graphical management of VMs via a Web interface and provides
full virtualization of the x86 hardware so you can run both Linux and even
Windows VMs from the same Ubuntu server.

Install VMware Server
To install VMware Server you need to go to the Products section of http://
vmware.com and select VMware Server. You need to create an account
on the site so you can download the software and get a free license. At the
download page you will see a number of different download options,
including Windows .exe and Linux .rpm and .tar.gz images. Choose the
Linux .tar.gz image.

While the package downloads, install the build-essential package on your
Ubuntu server so that the installer can build its special kernel modules. You
also need to install the Linux kernel headers package for your particular
kernel:

$ sudo apt-get install build-essential linux-headers-'uname -r'

Once the tarball downloads, copy it to your Ubuntu server, extract it, and
go inside the vmware-server-distrib directory.

$ tar xzvf VMware-server-2.0.2-203138.i386.tar.gz
$ cd vmware-server-distrib

VMware Server 313

http://vmware.com
http://vmware.com
http://vmware.com

ptg

Unfortunately the current version of Vmware Server won’t build properly
on the 2.6.32 kernel included with Lucid, so you will have to extract and
patch some files before you run the installer.

$ cd lib/modules/source/
$ sudo tar xf vmci.tar
$ sudo tar xf vmmon.tar
$ sudo tar xf vmnet.tar
$ sudo tar xf vsock.tar

The community has provided different patches you can use to make the
edits. Download and use the patch file in the same directory where you
extracted the tarballs:

$ cd ../../../
$ wget -N http://risesecurity.org/~rcvalle/VMware-server-2.0.2-
203138-update.patch

$ sudo patch -p1 < Vmware-server-2.0.2-203138-update.patch

Next, update the tar files you extracted so they have your changes, go back
to the root vmware-server-distrib directory, and run the vmware-install.pl
script as root:

$ cd lib/modules/source/
$ sudo tar cf vmci.tar vmci-only
$ sudo tar cf vmmon.tar vmmon-only
$ sudo tar cf vmnet.tar vmnet-only
$ sudo tar cf vsock.tar vsock-only
$ cd ../../../
$ sudo ./vmware-install.pl

If you have an old version of VMware Server installed on the machine, the
installer will first remove it. Once the install script begins, you will be
asked a few questions about your system. The defaults work fine; however,
I prefer to install the binary files in /usr/local/bin instead of /usr/bin so
they are separated. It’s fine to answer the rest of the questions in the
installer with the defaults unless you know what some of the settings do
and want to change them. The installer will take care of creating any direc-
tories it needs.

314 Chapter 9 � Virtualization

ptg

Configure VMware Server
At the end of the installation program you will be prompted to run the
vmware-config.pl script, included wherever you installed the VMware
binaries. This script will configure VMware Server to run on your system
and will also set up networking devices, so answer Yes when prompted to
run it. You can also run the script manually any time you want to change
your default answers. VMware Server doesn’t contain Ubuntu Server ker-
nel modules, so the configuration script will prompt you to compile the
vmmod module. It’s possible you will get a warning at this stage because the
kernel was compiled with a different version of gcc than you currently
have on your system. Tell the program to continue anyway. At this point
the program should be able to locate your kernel headers, so you can
accept the defaults as it asks you to compile extra modules.

Once all of the modules compile, vmware-config.pl will prompt you to set
up networking for the virtual machines, so answer Yes here. VMware has a
concept of three different network types:

� Bridged
If a VM is connected to the bridged network, all traffic from it will go
out from the server’s Ethernet interface as though it were a separate
machine. In this mode, if you have DHCP set up on your network,
VMs can potentially grab a regular lease.

� NAT
On the NAT network VMware will create an internal subnet on which
VMs will communicate and set its virtual network interface on that
subnet as a gateway. All VMs on the NAT network can communicate
with each other, and if they want to talk outside of their subnet,
VMware will use NAT so that all of their traffic appears to come from
the host’s IP address instead of the VM’s.

� Host-only
A host-only network is a private network. VMware will probe for an
unused private subnet to use, and all hosts on the host-only network
will be able to communicate with each other but won’t be able to
access the outside network.

VMware Server 315

ptg

316 Chapter 9 � Virtualization

As the configuration script proceeds, unless you know what you are doing
it’s safe to go with VMware’s default settings as they will create a new
VMware network interface for each of the three network types. If you
have multiple Ethernet interfaces on your host, you will be prompted to
choose one for the bridged network. Unless you want to set your own
internal private IPs to use, VMware will probe for unused private subnets
for NAT and host-only networks.

Next the configuration tool will compile the vmnet kernel module and
prompt you for which ports to use for remote connections, HTTP connec-
tions, and HTTPS connections. Accept all of the defaults here. When you are
prompted to specify a VMware Server administrator, choose a user on your
system whom you want to log in to manage VMware over the Web interface.
Accept the default location to store VMs (/var/lib/vmware/Virtual Machines)
unless you have a separate directory set up for them. Finally, enter the serial
number you should have received over e-mail when you downloaded the
.tar.gz image. The very last step will install the VIX software on the system (a
set of APIs so that you can control VMware from outside programs), and
then VMware Server will start up.

All of VMware Server’s configuration files are stored within /etc/vmware
as regular text files, so if you know what you are doing, you could go inside
that directory and edit the configuration by hand. In general, I recom-
mend sticking with the vmware-config.pl script whenever you want to
make a configuration change.

VMware Server Init Scripts
The installation tool will set up init scripts for VMware so it automatically
starts at boot. The /etc/init.d/vmware script is the main one you will use
if you ever want to manually start or stop VMware. Just keep in mind that
when you do stop the service, all of the VMs that it manages will also stop
or suspend (depending on how you configure them).

Once VMware starts, if you look at the output of ifconfig you should
notice that at least two vmnet interfaces have been created for your NAT
and host-only networks:

ptg

VMware Server 317

$ /sbin/ifconfig
. . .
vmnet1 Link encap:Ethernet HWaddr 00:50:56:c0:00:01

inet addr:192.168.170.1 Bcast:192.168.170.255
Mask:255.255.255.0
inet6 addr: fe80::250:56ff:fec0:1/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

vmnet8 Link encap:Ethernet HWaddr 00:50:56:c0:00:08
inet addr:172.16.45.1 Bcast:172.16.45.255
Mask:255.255.255.0
inet6 addr: fe80::250:56ff:fec0:8/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

With these interfaces in place, you can connect to any VMs you have cre-
ated on the same networks via SSH or other network tools on this host.

VMware Web Administration
In the past VMware has offered local applications you could use to manage
VMware, but starting with VMware Server 2.0, all VM management is
done via a Web interface. This interface by default listens on port 8222 for
HTTP and port 8333 for HTTPS, so open a Web browser and browse to
your VMware Server. If the server’s hostname was vmhost.example.org,
you would browse to http://vmhost.example.org:8222 or https://vmhost
.example.org:8333, but in either case you would be redirected to the
HTTPS session. Once you accept the self-signed cert and load the page,
you will be prompted for a username and password, so use the credentials
for the user you told the VMware configuration tool you would use for
administration. Once you log in, you will see the default VMware manage-
ment page as shown in Figure 9-4.

On the default management page you can see the CPU and memory usage
for the machine along with all data stores VMware Server is using. The

http://vmhost.example.org:8222
https://vmhost.example.org:8333
https://vmhost.example.org:8333

ptg

interface is pretty intuitive; use the tabs in the main pane to move between
different displays.

NOTE If you need additional help navigating the Web administration tool, click the Help link along
the top of the page. This will open a new window with complete documentation of VMware
Server, the Web interface, and documentation for running and tuning virtual machines.

Create a New Virtual Machine
To create a new VM, click the Virtual Machine button at the top of the
page and choose Create Virtual Machine. This will start a wizard that will
ask you a number of different questions about your host, such as its name,
what type of operating system you will install on it, and how much RAM
and storage to give it. All of these options will of course vary depending on
what kind of VM you want to create, but it is relatively simple to navigate
through the menu and make your selections.

318 Chapter 9 � Virtualization

Figure 9-4 Default VMware management page

ptg

NOTE Storage Settings
When you create a new disk, be aware of some of the options you have. If you are concerned
about space, you can tell VMware to grow the disk file as needed, so even though you have
set up a 20Gb disk, if the disk is only 20% full, it will take up only that much storage. This
saves on space but it can hurt disk performance. When you create the disk, you will have to
decide between performance and storage. You also have the option to save VMware disks as
2Gb max files. Unless you plan to move your VM to a file system that has a 2Gb maximum
file size limit, leave this option unchecked.

When you get to the Network Adapter section, you will be able to choose
between the bridged, NAT, and host-only networks you have set up previ-
ously. Again, what you choose here will depend largely on whether you
want to isolate this VM from the rest of the network or not. If you want the
VM to appear as though it’s any other machine on the network, choose
Bridged. If you want to give it access to the rest of the network but want it
on its own private network, choose NAT. If you want it completely iso-
lated, choose Host-only.

When you get to the CD/DVD drive section, you will be able to choose
between giving this VM access to a physical CD-ROM drive on your server
or an ISO on your system. The ISO option is handy since you can store
ISOs for multiple install and rescue CDs on the server and boot from them
with a few clicks. I create a directory called isos under /var/lib/vmware/
Virtual Machines that I use to store all of the ISOs I want to use. You can
also add virtual floppy drives and USB controllers if you want.

Once you finish with the wizard, your host will show up in the left pane
along with any other VMs you have created. Click on it to see a screen like
Figure 9-5 that shows the VM’s Summary screen. From this screen you can
monitor the CPU and RAM usage of the VM, check out what hardware it
currently has configured, and add personal notes.

Along the top of the screen you will see shortcut icons shaped like the stan-
dard stop, pause, and play icons along with one for resetting power. The
stop button will remove power from your VM just as though you held
down the power button on a server or unplugged it from the wall. The play
button will power on the machine, and the pause button will suspend its

VMware Server 319

ptg

current state to disk. Finally, the reset button will act as though you hit the
reset button on the front of a server. On the main pane along the right side
you will see a Commands section that has links to perform the same set of
actions along with snapshot options, which I cover next, and options to
add hardware and configure the VM.

VM Console Access
When you power on a VM, it will start the boot process and run in the
background. Of course, if this is the first time you have powered on the
machine, it won’t have an operating system on it, so you will likely want
some sort of console access so you can install the OS. One of the tabs avail-
able for each VM is labeled Console. When you click on this tab the first
time, you will be prompted to install a browser plug-in. After the plug-in is
installed, each time you enter this tab you can click within to launch a sep-
arate window on your screen that gives you console access to your
machine as though you had a remote desktop or KVM session into it. Fig-
ure 9-6 shows an example remote console screen where my VM is at the
Ubuntu Server install CD boot screen.

320 Chapter 9 � Virtualization

Figure 9-5 VM Summary screen

ptg

Click within the screen or hit Ctrl-G for it to intercept your keyboard and
mouse input. If you want the keyboard and mouse to return to your regu-
lar desktop, just hit Ctrl and Alt together. The tricky part about the console
screen is that usually by the time it launches, the BIOS screen is gone. If
you want to reset the VM at that point to see the BIOS screen, hit Ctrl-Alt-
Insert from within the console screen to send a Ctrl-Alt-Del and reset it. At
the BIOS screen you can hit Esc to choose the device from which to boot,
F12 to boot from the network, and F2 to enter a basic BIOS configuration
screen where you can hard-set the boot device order. You can close the
console window at any time to leave the VM running in the background.

Snapshots
A particularly handy feature of VMware Server is the ability to create a
snapshot for a VM. A snapshot freezes a VM’s disk and RAM state in time
so you can revert to it. To take a snapshot, select the VM, and then click
Take a Snapshot from the Commands section in the right pane. At this
point you can change settings, install or remove software, and even add
and remove hardware, and all of the changes will be tracked on separate

VMware Server 321

Figure 9-6 VMware console with Ubuntu CD boot screen

ptg

322 Chapter 9 � Virtualization

storage. If you want to go back to the snapshot state, just select the VM and
click Revert to Snapshot from the Commands section.

Snapshots come in handy when you are about to perform a major upgrade
on the server. Take a snapshot, perform the upgrade, and if there is a prob-
lem you know you can easily roll back and try again. I used snapshots exten-
sively in writing this book. I would spin up one or two VMs and install the
bare-bones default Ubuntu Server install on them. Then I took a snapshot.
Whenever I wanted to demo a particular piece of software, I could then
install and set it up on the VM. When I was done and ready to test entirely
different software, I could revert to the snapshot and be back to a clean state.
It took much less time than it would to reinstall Ubuntu each time.

NOTE Keep an eye on your available storage when you use snapshots. Every change you make to
your system has to be kept along with the original state. This means that depending on how
much data has changed on the system since the last snapshot, you might have much more
storage allocated than you expect.

Suspend
The suspend feature exists outside of any OS-level suspend support. With
VMware suspend, the entire state of the VM is suspended to disk, much
like a snapshot. Once a machine is suspended, you can move its files
around, even to other VMware servers, and then unsuspend it and it will
pick up where it left off.

The suspend feature is particularly useful for forensics after your machine
has been hacked. Once you confirm a VM has been hacked, suspend it to
disk and make a copy of the VM’s entire directory. That way you have a
pristine RAM and disk image that might even have the attacker’s processes
still running in memory. You can then take that VM to other VMware
servers and replay the attacked state over and over again.

Local VM Storage
VMware Server uses /var/lib/vmware/Virtual Machines as the default loca-
tion to store all of the VM files. You typically want as much storage as pos-
sible at this location and want the storage to be as fast as possible, since
potentially multiple VMs will be stored here and will access the storage at

ptg

the same time. Each VM keeps all of its files within its own directory named
after the VM. Here are the sample files that were created for my test VM:

$ ls /var/lib/vmware/Virtual\ Machines/Test/
Test.nvram Test.vmdk Test.vmsd Test.vmx Test.vmxf vmware-0.log
vmware.log

The .nvram file stores the VM’s BIOS and all of the BIOS settings. If you
see a .vmsn or .vmsd file, those are what VMware uses to store snapshot
data and snapshot metadata, respectively. If you see a .vmem file, VMware
has made a copy of the VM’s paging file. Generally, this happens when the
VM is running or if it has crashed. Any .vmdk files are virtual disk files.
These files are likely what will take up the bulk of your storage apart from
potential snapshot files.

All of a VM’s settings, such as how much RAM it has, what hard drives or
CD-ROM drives are attached, and its network settings, are stored in the
.vmx file. While you should generally not modify this file by hand unless
you really know what you are doing, it is just a text file. The contents of a
.vmx file are just key and value pairs and look something like this:

#!/usr/local/bin/vmware
.encoding = "UTF-8"
config.version = "8"
virtualHW.version = "7"
floppy0.present = "FALSE"
mks.enable3d = "TRUE"
. . .
vmci0.present = "TRUE"
nvram = "Test.nvram"

scsi0.present = "TRUE"
scsi0.sharedBus = "none"
scsi0.virtualDev = "lsilogic"
memsize = "512"
scsi0:0.present = "TRUE"
scsi0:0.fileName = "Test.vmdk"
scsi0:0.writeThrough = "TRUE"
ide1:0.present = "TRUE"
ide1:0.fileName = "/var/lib/vmware/Virtual Machines/isos/
ubuntu-8.04.1-server-i386.iso"

ide1:0.deviceType = "cdrom-image"
ide1:0.allowGuestConnectionControl = "FALSE"

VMware Server 323

ptg

The .log files inside each VM’s directory maintain a log of all of the events
that happen to a VM. You can access a subset of these logs from within the
Web interface, but the log files themselves contain much more detailed
information. Look here if a VM crashed for some unexpected reason or if
you just want a lower-level understanding of what VMware does when you
start or stop a VM.

Since everything that makes up a VM is really just a file on the system, pro-
vided that a VM is suspended or powered off, you can move the files
around with regular Linux commands like mv, cp, and rsync. If you want to
migrate or copy a VM from one machine to another, you could just make
sure it is powered off or suspended and then use rsync or scp to transfer it.
Keep in mind that when you do move or copy a VM and start it back up on
a new host, VMware will detect it and prompt you to generate a new UUID
(a universal string that should be unique for each VM).

Virtual Appliances
Another useful aspect of all VM settings and disks residing in one directory
is that a number of people have created what are known as “virtual appli-
ances.” Essentially a virtual appliance is a VM created for a particular pur-
pose such as a spam filtering or a firewall. A number of companies have
even set up virtual appliances that have their software pre-installed so you
can easily demo it. Virtual appliances are generally compressed into a single
.zip file, so once you download them, all you have to do to install them is
extract the .zip file into /var/lib/vmware/Virtual Machines, go to the Web
interface, click Virtual Machine_Add Virtual Machine to Inventory, and
then browse to the new VM’s .vmx file. VMware itself hosts a number of
virtual appliances on its site and even has a link on the Web interface called
Virtual Appliance Marketplace that will take you right there.

Ubuntu Enterprise Cloud
If you have been following the virtualization world at all, you no doubt
have heard the term cloud, probably used in reference to Amazon’s Elastic
Computing Cloud (EC2) service. Amazon has built a large infrastructure
of servers that can run VMs. Amazon then sells time and resources on

324 Chapter 9 � Virtualization

ptg

these machines so that you can deploy your own virtual servers on Ama-
zon’s infrastructure and no longer have to worry about storage, RAM, or
CPU resources or even what physical server your VM runs on. Instead the
server runs somewhere on Amazon’s cloud.

While it is straightforward and simple to deploy your own Ubuntu servers
on EC2, some administrators prefer having full control over their infra-
structure, both physical and virtual. Ubuntu has provided a solution
called Ubuntu Enterprise Cloud (UEC) that allows you to set up your own
“private cloud”—a set of your own servers that can run VMs and behaves
much like EC2. With UEC you can add multiple nodes to your own cloud
and manage it and all of your VMs from an easy-to-use interface.

While you might expect it to be rather difficult to deploy your own private
cloud, Ubuntu has greatly automated the process, and as you’ll find, it only
takes a couple of steps. First though, let’s go over what you will need.

UEC System Requirements
At a minimum you will need two physical servers to run UEC, a front-end
server and one node. The front-end server will manage your private cloud
and provide the following services:

� The Cloud Controller (known as cic)

� The Cluster Controller (known as cc)

� Walrus (the storage service like Amazon’s S3)

� The Storage Controller (known as sc)

Since the front-end server itself will not run any VMs, you can use an older
server that doesn’t support virtualization extensions. The front-end server
will also store all of the different server image types and deploy them to
each node over the network so the more (and faster) storage and network
speed you have for this machine, the better.

The node server is one of potentially many servers that are managed by the
front end and will actually run the VMs themselves with the node con-
troller (nc) service. Your node servers will need support for virtualization

Ubuntu Enterprise Cloud 325

ptg

extensions just like if you set up a regular KVM server. The higher the
resources (RAM, CPU, and disk) the node has, the more VMs it will be
able to host.

Install UEC Front-End Server
The front-end server is as easy to install as any other Ubuntu Server instance.
Just boot the machine off the Ubuntu Server CD, and at the boot menu you
will see that the second option is Install Ubuntu Enterprise Cloud. Select that
option and go through the standard Ubuntu install menus.

In the middle of the install, you will be asked a few questions so you can con-
figure UEC. The installer automatically probes the network to see if a front-
end server exists, and since presumably it won’t (since we are setting it up
right now), the installer defaults to setting up this instance as a front-end
server. You are then asked to name your cluster, and finally you must provide
a range of IP addresses that your front-end server can hand out to instances
you create. Be sure to pick a range of IP addresses that aren’t being used by
any other machines and that your front-end server and nodes will be a
member of. Finally, complete the install and reboot into your new server.

Install UEC Node Server
It is even easier to set up a node server than it is to install the front-end
server. Just boot your node server off the Ubuntu Server install CD and
select Install Ubuntu Enterprise Cloud from the boot menu. The installer
automatically detects your front-end server and defaults to setting this
machine up as a node. Just confirm the defaults and complete the install.
The installer should automatically manage the node’s registration with
the cluster, so once the node has booted, you should be ready to get your
credentials and manage your UEC cluster.

Manage Your Cloud
Once your servers are installed and running, the next step is to retrieve
credentials from the cloud so that you can register and manage it. Every-
one who will user the cloud must follow the same process.

326 Chapter 9 � Virtualization

ptg

Open a Web browser on your own computer or, optionally, on the front-
end server itself, and browse to https://frontendserver:8443. Replace front -
endserver with the hostname or IP address for your front-end server. Sign
the certificate and log in with the username and password set to admin.
The first time you login, you will go through a first-time configuration
screen that will have you change the admin password and set a contact e-mail
address to use. Once you complete this process, you will see the default UEC
management screen (Figure 9-7).

On this screen, you can add other users who will have permission to view
and manage cloud instances, but the first thing you should do is select the
Credentials tab and click on Download Credentials. Then, on your local
machine, create a directory named ~/.euca and unzip the credentials there:

$ mkdir ~/.euca
$ cd ~.euca/
$ unzip ~/Desktop/euca2-admin-x509.zip
Archive: ~/euca2-admin-x509.zip
To setup the environment run: source /path/to/eucarc
inflating: eucarc
inflating: cloud-cert.pem
inflating: jssecacerts
inflating: euca2-admin-9f543bf5-pk.pem
inflating: euca2-admin-9f543bf5-cert.pem

Ubuntu Enterprise Cloud 327

Figure 9-7 Ubuntu Enterprise Cloud management with the User tab selected

https://frontendserver:8443

ptg

Finally, before you can manage your cloud, you need to install the euca2ools
package on the machine where you have downloaded and extracted the cre-
dentials and test that your credentials work:

$ sudo apt-get install euca2ools
$. ~/.euca/eucarc
$ euca-describe-availability-zones verbose
AVAILABILITYZONE cluster1 192.168.0.74
AVAILABILITYZONE |- vm types free / max cpu ram disk
AVAILABILITYZONE |- m1.small 0002 / 0002 1 192 2
AVAILABILITYZONE |- c1.medium 0002 / 0002 1 256 5
AVAILABILITYZONE |- m1.large 0001 / 0001 2 512 10
AVAILABILITYZONE |- m1.xlarge 0001 / 0001 2 1024 20
AVAILABILITYZONE |- c1.xlarge 0000 / 0000 4 2048 20

Install a New Server Image
At long last, you are ready to set up your first server on your cluster. Go
back to the Web interface on https://frontendserver:8443 and select the
Store tab. The Store tab lists a number of server images that have already
been built for you. All you have to do is select Install, and the image will
download to your local cluster. Once the image has downloaded, click the
“How to run?” link that appears under the Install button for instructions
on how to run that image (Figure 9-8).

328 Chapter 9 � Virtualization

Figure 9-8 UEC Store downloading a Karmic i386 image

https://frontendserver:8443

ptg

Start a New Instance
Now that you have at least one image downloaded and ready to install,
you’ll find there are a few different ways to start a new server based on this
image, such as the command line via euca-run-instances or from other
UEC management tools like Landscape or even with your Web browser
using the ElasticFox Firefox extension. Since the graphical tools will likely
be somewhat self-explanatory, I discuss how to use the command-line tool
you should already have installed on your local system.

Create and Enable SSH Keypairs You will need some SSH keypairs set up
before you create a new instance on UEC. Without keypairs, you will have
no way to remotely log into the server after it is created. The following
script will create your keypairs:

if [! -e ~/.euca/mykey.priv]; then
mkdir -p -m 700 ~/.euca
touch ~/.euca/mykey.priv
chmod 0600 ~/.euca/mykey.priv
euca-add-keypair mykey > ~/.euca/mykey.priv

fi

Now run this command to allow port 22 traffic on your instances:

$ euca-authorize default -P tcp -p 22 -s 0.0.0.0/0
GROUP default
PERMISSION default ALLOWS tcp 22 22 FROM CIDR 0.0.0.0/0

View VM Types UEC sets up a number of default VM types with different
resources assigned to them. This way, when you create a new instance, you
don’t have to type in the amount of RAM, number of CPUs, and disk size
for your instance and instead can refer to one of these shortcuts. If you
click on the configuration tab on the UEC Web interface and scroll to the
bottom, you will see the list of predefined VM types (Figure 9-9) and will
have the ability to change them.

By default there are five configured VM types:

� m1.small: 1 CPU, 192MB RAM, 2GB disk

� c1.medium: 1CPU, 256MB RAM, 5GB disk

Ubuntu Enterprise Cloud 329

ptg
� m1.large: 2CPUs, 512MB RAM, 10GB disk

� m1.xlarge: 2CPUs, 1024MB RAM, 20GB disk

� c1.xlarge: 4CPUs, 2048MB RAM, 20GB disk

Select Your Image Now that you know what VM type you want to create,
go back to the UEC Web front end and click on the Images tab. You should
see at least one image ID that begins with emi-. Copy this ID and then, in a
terminal, use the euca-run-instances tool to start your instance:

$ euca-run-instances -k mykey -t c1.medium emi-DE4C106E
RESERVATION r-33F6071A admin admin-default
INSTANCE i-3EFA0858 emi-DE4C106E 0.0.0.0 0.0.0.0 pending

mykey 2010-04-17T22:04:54.647Z eki-F43A10D7
eri-08B41143

Once you run the instance, you will likely want to monitor the output of
euca-describe-instances so you can tell when the instance’s state has
changed from pending to running:

$ euca-describe-instances
RESERVATION r-41DB083A admin default

330 Chapter 9 � Virtualization

Figure 9-9 UEC VM types

ptg

INSTANCE i-48D40805 emi-DE4C106E 192.168.0.235
172.19.1.2 pending mykey 0 c1.medium

2010-04-17T22:50:37.016Z cluster1 eki-F43A10D7
eri-08B41143

If there is some problem creating your instance, you will find that the
instance changes from pending to terminated. If this happens, check the
output of /var/log/eucalyptus/nc.log on your node to get clues for why the
instance will not start.

NOTE When I started my first instance, I tested it out with the m1.small VM type. Unfortunately, the
2GB disk that VM type assigns was not large enough for the image, so the instance would
never start—it went from pending to a terminated state. Finally I saw the error in /var/log/
eucalyptus/nc.log, and when I tried again with a VM type that had more storage, the VM was
created successfully. If your instances go straight to terminated, another thing to check is
that virtualization extensions are enabled in your node’s BIOS.

After the instance has changed to a running state, you can SSH to it and
manage it like any other server. Just pull its IP address from euca-describe-
instances and then SSH to that IP using the SSH key you created earlier. In
this example, the IP address is 192.168.0.235:

$ euca-describe-instances
RESERVATION r-41DB083A admin default
INSTANCE i-48D40805 emi-DE4C106E 192.168.0.235

172.19.1.2 running mykey 0 c1.medium
2010-04-17T22:50:37.016Z cluster1 eki-F43A10D7
eri-08B41143

$ ssh -i ~/.euca/mykey.priv ubuntu@192.168.0.235

When you are ready to terminate your instance, just make note of the
instance ID that begins with the letter i. In my example, the instance ID is
i-48D40805. To terminate the instance, you use euca-terminate-instances:

$ euca-terminate-instances i-48D40805
INSTANCE i-48D40805

NOTE If all of this command-line work is not for you, I recommend checking out ElasticFox or
another graphical front end instead. It is relatively simple to set up and makes managing and
monitoring your instances very easy.

Ubuntu Enterprise Cloud 331

ptg

This page intentionally left blank

ptg

333

10C H A P T E R 1 0

Fault Tolerance

ptg

HARDWARE FAILS. Over the years I have had basically every major hardware
component on a server fail, from CPUs to RAM to SCSI controllers and, of
course, hard drives. In addition to hardware failure, system downtime is
often the result of some other problem such as a bad configuration on a
switch, a power outage, or even a sysadmin accidentally rebooting the wrong
server. If you lose money whenever a service is down, you quickly come up
with methods to keep that service up no matter what component fails.

In this chapter I discuss some of the methods you can use with Ubuntu
servers to make them more fault-tolerant. I start with some general fault
tolerance principles. Then I talk about ways to add fault tolerance to your
storage and network with RAID and Ethernet bonding, respectively. I also
cover Logical Volume Manager (LVM), even though it isn’t technically used
for fault tolerance. Of course, even with those procedures in place your
server could crash or reboot, or you could lose a CPU, so finally I talk about
how to set up a basic two-server cluster.

Fault Tolerance Principles
� Build redundant systems.

The basic idea behind fault tolerance is to set up your systems so that
you can lose any one component without an outage. These days
servers with redundant power supplies and redundant disks are com-
mon. There are even servers that have redundant BIOSs and remote
management ports. The downside with redundancy is that it is often
wasteful. For instance, with RAID you typically lose at least one disk’s
worth of storage for redundancy. When compared to the cost of
downtime, though, for most sysadmins it is worth the extra cost.

� Favor hot-swappable components.
RAID is great because it protects you from losing data and your host
going down because of a disk failure, but if you have to power down
the host to replace the drive, you get little benefit. Where possible,
favor components that are hot-swappable. These days servers are
likely to offer at least hot-swappable drives and power supplies, and
many have hot-swappable fans as well. In some higher-end blade
servers you can even hot-swap integrated network and SAN switches
and remote management cards.

334

ptg

� Test your redundancy.
As with backups, if you haven’t tested your fault tolerance, then you
don’t have fault tolerance. If possible, before you deploy a new redun-
dant system such as Ethernet bonding or server clustering, be sure to
simulate failures and understand both how the system responds to a
failure as well as how it responds once the fault has been repaired.
Systems can behave very differently in both how they handle a fault
and how they resume after the fault is repaired, all based on how you
configure them. This testing phase is also a good time to test any
monitoring you have put in place to detect these failures.

� Eliminate any single points of failure.
While having some redundancy is better than having none, try to go
through the entire server stack and identify and eliminate any single
points of failure. For instance, if you have set up redundant power
sources for your data center and each server has a power supply
hooked into one of the power sources, it is less useful if the servers are
connected to one switch with a single power supply. For larger opera-
tions, even a data center itself is seen as a single point of failure, so in
those cases servers are distributed across multiple data centers in
entirely different geographical locations.

� Respond to failures quickly.
When a component fails, try to identify and repair the problem as
soon as you can. In RAID, for instance, many sysadmins set up a disk
as a hot spare so that the moment a disk fails, a replacement can take
its place. Provided the hot spare syncs before another drive fails, the
data will still be intact. While you can’t do this with every component,
when you do have a fault, try to repair it before you lose the fail-over
side as well.

RAID
The piece of server hardware most likely to fail is your hard drive, so if you
want a fault-tolerant system, hard drive redundancy should be your first
priority. This is generally accomplished using RAID. RAID stands for
Redundant Array of Inexpensive Disks, although some people say it stands

RAID 335

ptg

for Redundant Array of Independent Disks (those people must have
priced out fiber channel drives).

RAID is generally referred to as either hardware or software RAID. With
hardware RAID, your server has a component either built into the mother-
board or available as an add-on card to which your hard drives connect.
This hardware supports various RAID levels and typically has its own
processor and memory to perform any calculations (such as parity calcu-
lations on RAID 5). The card then presents the storage as a single device
(sometimes as a generic SCSI drive and other times as a different block
device, depending on the vendor) that you can partition, format, and use.
Any configuration, recovery, or monitoring typically requires special soft-
ware on the host or work within the BIOS.

With software RAID, the operating system implements the RAID algo-
rithms using the regular CPU with a driver or module. On Linux you can
see both the original drives and partitions as well as a special device that
represents the RAID storage. The advantage of Linux software RAID is
that it doesn’t require any special vendor support under Linux, and it actu-
ally performs surprisingly well, is surprisingly stable, and is free. Also,
unless you invest in high-end RAID cards, Linux software RAID provides
more flexibility in how you can expand a RAID. For the rest of the chapter
I focus on Linux software RAID, and I will discuss how you can migrate a
system from a single drive to RAID and from RAID 1 to RAID 5, as well as
how to add a drive to a RAID 5 array.

NOTE There’s a third type of RAID that falls somewhere between hardware and software RAID. It
can be found in cheap RAID cards that these days are even built into many desktop mother-
boards. Although there is hardware involved, the RAID itself is implemented via a driver that
runs on the host, so it uses the host CPU. In addition, this hybrid RAID requires a vendor-
specific driver so the OS can see the RAID drive.

RAID Levels
There are a number of different ways to implement RAID. Each has advan-
tages and disadvantages, depending on what you want to accomplish. Next
I cover the Linux software RAID types you are most likely to use.

336 Chapter 10 � Fault Tolerance

ptg

RAID 337

RAID 0 You could consider RAID 0, also known as striping, to be a bit
misleading. It is actually not a redundant array at all. With a RAID 0 array
you need at least two disks. Each write to this array is striped across both
disks so that in effect the two drives become one large disk. So if you have
two 100GB hard drives in a RAID 0 array, you will have 200GB of storage.
While RAID 0 offers great speed, the downside is that there is no redun-
dancy. If you lose a drive in a RAID 0 array, all of your data is lost. For the
examples in this chapter I use RAID 1 and 5; I just mention RAID 0 to
illustrate the difference in RAID levels.

RAID 1 RAID 1 is also known as mirroring. In a RAID 1 array every bit
that is written to one disk is copied to the other. As with RAID 0, RAID 1
requires at least two drives; however, in this case a RAID 1 array is only as
big as one of its drives. So if you had two 100GB drives in a RAID 1 array,
you would have 100GB of storage. The upside is that you could lose one of
the drives in the array and still have all of your data.

RAID 5 RAID 5 is also known as striping plus parity. A RAID 5 array
requires at least three drives. Every time the array is written to, the data is
split across the three drives. In addition to the data, parity information is
split among the drives so that any drive in the array can fail and not only
will the remaining drives have all of the data, once the failed drive is
replaced, the other drives can rebuild it. In a RAID 5 array you basically lose
one drive’s worth of storage, so in a RAID 5 array of three 100GB disks you
would have 200GB of storage. A RAID 5 array of four 100GB disks would
have 300GB of storage.

NOTE RAID 5 as a Root Partition
It’s important to note that while GRUB can read a software RAID 1 array, it can’t read soft-
ware RAID 5 arrays. This means that if you choose to have a RAID 5 array for your root par-
tition, you must make a separate partition for the /boot directory that isn’t RAID 5 for GRUB
to use. A common scenario for a three-disk RAID is a three-partition RAID 1 array for /boot
and a three-partition RAID 5 array for the root directory.

Configure RAID during Installation
You can set up a RAID array under Ubuntu either during the initial installa-
tion or afterward. The installer provides a nice graphical interface to create

ptg

arrays that are ready to use after the install completes, so if you are installing
a new machine, it makes sense to set up the RAID from the installer.

RAID configuration is done during the partitioning section of the install
process. Once you see the main partition screen, select “Manual partition-
ing.” In my example I set up RAID on a three-disk machine. I have a three-
partition RAID 1 array for /boot, a three-partition RAID 5 array for /, and
a three-partition RAID 5 array for swap.

The first step is to partition each of the disks so they have a /boot, /, and
swap partition. When you size the partitions, keep in mind that RAID 1
arrays are only as big as one of the partitions, whereas RAID 5 arrays are as
big as all of the partitions combined, minus the size of one partition.
While it’s not required that each partition be equal in size, the arrays base
everything on the smallest partition, so if you can make each partition in
an array the same size, you will have an easier time.

When you get to the partition settings for each new partition, the section
where you can choose the file system and mount point, change the “Use as”
option so that it says “physical volume for RAID,” as shown in Figure 10-1.

338 Chapter 10 � Fault Tolerance

Figure 10-1 Partition settings for software RAID

ptg

RAID 339

Once you are finished partitioning, you will have a number of partitions on
each drive of type K raid, as shown in Figure 10-2. At the top of the screen is
the option “Configure software RAID.” Select that option and at the next
screen say Yes to write the changes to the partitioning tables of each of the
disks, once you are sure each partition is the size you want.

The next step in the process is to create a multidisk (MD) device for each
RAID array. In my case I want to create three MD devices, one for my RAID
1 /boot, one for my RAID 5 swap, and one for my RAID 5 /. For each of these
MD devices, I select Create MD, then select the RAID level I want; then I
choose the number of active and spare devices I want in the array. In my case
I won’t have any spare devices, so I set this option to three active devices for
each array and zero spare devices. Finally, I select which partitions to use in a
particular MD device. If you created each partition in the same order on
your drives, this will be simple since /dev/sda1, /dev/sdb1, and /dev/sdc1 (in
my case) are all part of the same MD device. Repeat this process until you
have created all of the MD devices and then select Finish.

When you are finished, the partition screen will display your RAID devices
as in Figure 10-3. What you will notice is that each of your SCSI drives

Figure 10-2 RAID partitioning completed

ptgappears as before, but above them are the RAID devices. These devices will
be numbered and will display their RAID level as well as the overall size of
the RAID device.

The next step is to tell the partitioner how to use each of these new RAID
devices. Select the unlabeled partition on the line under each RAID device
and hit Enter. From there you can configure the file system, mount point,
and other options as if it were an ordinary partition. See Figure 10-4 for an
example of how my final partition menu looked when I was done. Once
you are finished, select “Finish partitioning” and write the changes to disk.
If you get a prompt asking whether to boot when the array is degraded,
read through the description of the risks of doing so and select Yes or No.
The installation program will then continue the rest of the install process.
Skip ahead to the Software RAID Management section to learn how to use
the features of the mdadm package to manage your software RAID.

Configure RAID after Installation
You may choose to add RAID storage to a server after the initial installation.
Later in the chapter I discuss how to migrate from a single disk to a RAID
array and how to migrate from one RAID type to another, but for now I will

340 Chapter 10 � Fault Tolerance

Figure 10-3 Partition menu with RAID devices created

ptgassume you simply want to add a RAID array to an existing server. For this
example I will assume I have added three new drives, /dev/sdb, /dev/sdc, and
/dev/sdd, and I want to partition the drives and create a RAID 5 array across
all three partitions that I then mount at /mnt/storage.

Software RAID arrays are created and managed under Ubuntu with the
mdadm tool. This tool might not be installed by default; if it isn’t, run sudo
apt-get install mdadm to install the package. The next step is to partition
each of these drives. In my case I just create a single partition that spans
the full drive. Use whichever partitioning tool you prefer (like fdisk or
cfdisk) as though you were creating any other partition. The only differ-
ence here is to change the partition type from the default of 82 to fd. The
fd partition type is set aside for Linux RAID autodetect. If a partition is set
to that type, it tells Linux that it is part of a software RAID array.

Once your partitions are set up, you can use mdadm on the command line to
create the MD device. In the case of a RAID 1 array you would type

$ sudo mdadm --create /dev/md0 --level=1 –raid-devices=2 /dev/sdb1
/dev/sdc1

mdadm: array /dev/md0 started.

RAID 341

Figure 10-4 Completed RAID partitioning

ptg

Most of the arguments here are pretty self-explanatory. The --create
option tells mdadm that I want to create a new MD device at /dev/md0. If I
already had a RAID array at /dev/md0, I would just pick the next number,
such as /dev/md1. The --level option sets which RAID level to use for this
array, --raid-devices sets the number of active devices, and finally you
specify each partition you want to use for the array.

In my case I want to set up a RAID 5 array across /dev/sdb1, /dev/sdc1, and
/dev/sdd1, so I would type

$ sudo mdadm --create /dev/md0 --level=5 --raid-devices=3 /dev/sdb1
/dev/sdc1 /dev/sdd1

mdadm: array /dev/md0 started.

Once I have created the array, I can check out its current health in the
/proc/mdstat file:

$ cat /proc/mdstat
Personalities : [raid6] [raid5] [raid4]
md0 : active raid5 sdd1[2] sdc1[1] sdb1[0]

16771584 blocks level 5, 64k chunk, algorithm 2 [3/3] [UUU]

unused devices: <none>

Now I can treat /dev/md0 like any other partition and format it with a file
system of my choice and then mount it:

$ sudo mkfs -t ext3 /dev/md0
$ sudo mkdir /mnt/storage
$ sudo mount /dev/md0 /mnt/storage

Now this array is up and functioning; however, it is not yet set up to auto-
matically start and mount at boot time. If you don’t set this up, you will
have to run an mdadm command to assemble the array along with a mount
command each time the system boots. To start the array at boot time, you
need to configure /etc/mdadm/mdadm.conf with details about your array.
Now you could certainly do this by hand, but mdadm provides a simpler
way. The mdadm --detail --scan command will output an mdadm.conf-

342 Chapter 10 � Fault Tolerance

ptg

compatible string for each of your arrays, so all you have to do is redirect
that output to the /etc/mdadm/mdadm.conf file:

$ sudo sh -c 'mdadm --detail --scan >> /etc/mdadm/mdadm.conf'

Now edit your /etc/fstab and add an entry for /dev/md0 as though it were
any other mount point. In my case I would add

/dev/md0 /mnt/storage ext3 defaults 0 0

Alternatively, I could specify the UUID for this device in fstab as with the
rest of the partitions. To figure that out I would type

$ sudo blkid | grep /dev/md0

/dev/md0: UUID="99e190a7-dfe7-48ee-bf56-f426ef5343af" type="ext4"

Once /etc/mdadm/mdadm.conf and /etc/fstab are set up, I can reboot and
then check /proc/mdstat to make sure the array comes up and then con-
firm it is mounted.

Software RAID Management
The bulk of the management of your software RAID arrays is done in two
places: /proc/mdstat and mdadm. The /proc/mdstat file provides the current
status of all of your running RAID arrays, including progress bars should
any of them rebuild a disk. A standard /proc/mdstat file for a single RAID
array might look like the following:

$ cat /proc/mdstat
Personalities : [raid6] [raid5] [raid4]
md0 : active raid5 sdd1[2] sdc1[1] sdb1[0]

16771584 blocks level 5, 64k chunk, algorithm 2 [3/3] [UUU]

unused devices: <none>

In the output you can see which array is active (md0), what RAID level it
uses (raid5), and which partitions it is using (sdd1, sdc1, and sdb1). In the

RAID 343

ptg

final line you can see that the RAID is healthy in that it has three out of
three disks all active ([3/3] [UUU]). That section will change if any disks
become faulty, as we see below.

While you can get status from /proc/mdstat, the bulk of the actual RAID
management is done with mdadm. For instance, this tool can report
basic and more complete information about an array with the --query and
--detail arguments respectively:

$ sudo mdadm --query /dev/md0
/dev/md0: 15.99GiB raid5 3 devices, 0 spares. Use mdadm --detail
for more detail.

$ sudo mdadm --detail /dev/md0
/dev/md0:

Version : 00.90.03
Creation Time : Wed Feb 11 21:31:16 2009

Raid Level : raid5
Array Size : 16771584 (15.99 GiB 17.17 GB)

Used Dev Size : 8385792 (8.00 GiB 8.59 GB)
Raid Devices : 3

Total Devices : 3
Preferred Minor : 0

Persistence : Superblock is persistent

Update Time : Wed Feb 11 22:11:49 2009
State : clean

Active Devices : 3
Working Devices : 3
Failed Devices : 0
Spare Devices : 0

Layout : left-symmetric
Chunk Size : 64K

UUID : 37090db5:5fafad78:e368bf24:bd0fce41 (local to
host ubuntu)

Events : 0.4

Number Major Minor RaidDevice State
0 8 17 0 active sync /dev/sdb1
1 8 33 1 active sync /dev/sdc1
2 8 49 2 active sync /dev/sdd1

Replace a Failed Disk While all of the information from mdadm can be
useful, you will find you mostly use mdadm when a drive fails. When a drive

344 Chapter 10 � Fault Tolerance

ptg

fails, the mdadm daemon that runs on the system automatically sends an
e-mail to the root user on the host. To change this, edit /etc/mdadm/
mdadm.conf and locate the MAILADDR option in the file. After you save your
changes, run sudo /etc/init.d/mdadm reload to load the new options. Apart
from the e-mail you can also see that a drive has failed from /proc/mdstat:

$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md0 : active raid5 sdb1[0] sdd1[3](F) sdc1[1]
16771584 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

unused devices: <none>

Here you can see that sdd1 is marked with an (F) stating it has failed, and on
the third line of output the array shows two out of three disks ([3/2]
[UU_]). The next step is to remove the disk from /dev/md0 so that I can swap
it out with a new drive. To do this I run mdadm with the --remove option:

$ sudo mdadm /dev/md0 --remove /dev/sdd1

The drive must be set as a failed drive for you to remove it, so if for some
reason mdadm hasn’t picked up the drive as faulty but you want to swap it
out, you might need to set it as faulty before you remove it:

$ sudo mdadm /dev/md0 --fail /dev/sdd1

The mdadm command supports chaining commands, so you could fail and
remove a drive in the same line:

$ sudo mdadm /dev/md0 --fail /dev/sdd1 --remove /dev/sdd1

Once you remove a drive from an array, it will be missing from /proc/mdstat:

$ cat /prod/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md0 : active raid5 sdb1[0] sdc1[1]
16771584 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

unused devices: <none>

RAID 345

ptg

346 Chapter 10 � Fault Tolerance

Now you can swap out the drive with a fresh one and partition it. Be sure
that when you replace drives you create new partitions to be equal or
greater in size than the rest of the partitions in the RAID array. Once the
new partition is ready, use the --add command to add it to the array:

$ sudo mdadm /dev/md0 --add /dev/sdd1

Now mdadm will start the process of resyncing data. This can take some
time, depending on the speed and size of your disks. You can monitor the
progress from /proc/mdstat:

$ cat /proc/mdstat

Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md0 : active raid5 sdd1[3] sdb1[0] sdc1[1]
16771584 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]
[>.] recovery = 2.0% (170112/8385792)
finish=1.6min speed=85056K/sec

unused devices: <none>

Beyond this basic RAID management there are a number of different
tweaks and customizations you can make to RAID arrays, particularly
when you create them. For a full list of options and settings check out the
mdadm manual (man mdadm).

Migrate Non-RAID to Software RAID
If you didn’t build your system with RAID in mind, you might find your-
self in a situation where you want to move a single-disk system to software
RAID. I’ve even had situations where I had a RAID 1 array that I wanted to
move to a RAID 5 to increase its storage. In this section I discuss how to
perform both of these migrations, along with how to add a disk to a RAID
5 array.

In this example I will assume that I already have an installed system on
/dev/sda. This is a basic Ubuntu install with a root partition at /dev/sda1
and a swap partition on /dev/sda5. I have added a second disk to the sys-
tem at /dev/sdb1, and I’d like to make a RAID 1 array for both the root

ptg

partition and the swap partition. Before I perform any additional steps, I
want to make sure that the mdadm package is installed on my server, so I run

$ sudo apt-get install mdadm

Because I need to be able to copy all of the files from the old system to the
new RAID array, I can’t perform all of these steps from the running sys-
tem. Instead, I need some sort of live CD or rescue disc so that no parti-
tions are being written to. The Ubuntu Server install CD works OK for
this; just boot from it and select the “Rescue a broken system” option. After
you answer the basic keyboard and layout questions, you will get to a
recovery menu with a few different recovery options. Here choose “Exe-
cute a shell in the installer environment.”

Once you are in the installer environment, the first step is to use fdisk to
partition /dev/sdb and at least create a /dev/sdb1 partition that is the same
size as or larger than /dev/sda1. It’s easier if the drives are the same size,
because you can just re-create the partitions that are on /dev/sda, includ-
ing the swap partition. As you create the partitions, remember to set their
partition type to fd.

NOTE This example is for a RAID 1 array, but if you wanted to migrate from a single disk to a RAID
5 array, remember that GRUB can’t read from RAID 5 arrays, so you must create a separate
/boot partition and either leave it with no RAID or create a RAID 1 array for it.

Once the partitions are created, you are ready to create the arrays. Since we
are currently using /dev/sda1 and /dev/sda5 on the system, we create the
arrays in degraded mode, format them, copy all of the data to the new
RAID arrays, boot off of the arrays in degraded mode, then finally hot-add
the original partitions. This way we always have a safe copy of our data at
every step. A degraded array is made much like a regular array, only in
place of the missing drive you use the word missing:

mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/sdb1 missing
mdadm: array /dev/md0 started
mdadm --create /dev/md1 --level=1 --raid-devices=2 /dev/sdb5 missing
mdadm: array /dev/md1 started

RAID 347

ptg

Now I format /dev/md0 with an ext4 file system and /dev/md1 with a swap
file system:

mkfs.ext4 /dev/md0
mkswap /dev/md1

Now you can create a temporary mount point for /dev/md0 and migrate all
of the files from the root partition to this new partition. The Ubuntu recov-
ery mode by default will mount the root partition under /target, but if you
use another rescue disc, or if you need to mount and migrate multiple par-
titions to multiple arrays, you will have to mount those individually.

Unfortunately the Ubuntu Server recovery mode doesn’t include the tools
that I prefer to copy files to a new system, tools like cpio or rsync, and even
the version of find is not full-featured, so instead I use the find and cpio
commands from my server’s root partition:

mkdir /mnt/temp
mount /dev/md0 /mnt/temp
cd /target
./usr/bin/find . -xdev -print0 | ./bin/cpio -pa0V /mnt/temp

Of course, if you mounted your root partition (or the partition you wanted
to migrate) somewhere other than /target, then cd to that directory instead.
This command might take some time to run since it has to copy all of the
files from the system.

Now that the system has been migrated to /dev/md0, you need to set up
the array to automatically load at boot time. First we add the arrays we con-
figured to /etc/mdadm/mdadm.conf inside where /dev/md0 is mounted.
Then update its initramfs so it creates these devices at boot:

mdadm --detail --scan >> /mnt/temp/etc/mdadm/mdadm.conf
chroot /mnt/temp update-initramfs -u 2.6.32-19-generic-pae
update-initramfs: Generating /boot/initrd.img-2.6.32-19-generic-pae

Be sure to change the update-initramfs argument to point to your initrd file
(check /mnt/temp/boot/ for the initramfs files from which you can choose).

348 Chapter 10 � Fault Tolerance

ptg

Next I need to edit the /etc/fstab file on the RAID array so that it points to
the RAID arrays instead of the partitions on /dev/sda. Since we have a lim-
ited set of tools on the rescue disc, this means using the nano text editor.
First edit /mnt/temp/etc/fstab, comment out the current entry for /, and
add a similar line that points to /dev/md0. Then do the same for the swap
file line. You can add either the actual device name or the UUID for these
devices here, but make a note of the UUIDs so you can refer to them later.

Now you are ready to reboot into the new system. Type exit in the shell you
are in, and then select the “Reboot the system” option. When the system
reboots and you see GRUB initially load, hit the Shift key to stop GRUB
from booting so you can edit the boot options. Once you can see the list of
boot choices, make sure the first option, which should be your main ker-
nel, is highlighted, and then hit E to edit it. One of the lines will say set
root='(hd0,1)', or if not, it will point to your old root device, so change it
to point to the new device. In my case I change it to set root='(hd1,1)'.
Next there are two different lines that list the UUID for your original root
partition. Change both of those UUIDs to the UUID of the new RAID
device you jotted down. In my case the final GRUB options read

recordfail
insmod ext2
set root='(hd1,1)'
search –no-floppy –fs-uuid –set 65fc1772-3996-4012-af59-
491d6b2e7e4e

linux /boot/vmlinuz-2.6.32-19-generic-pae
root=UUID=65fc1772-3996-4012-af59-491d6b2e7e4e ro quiet splash

initrd /boot/initrd.img-2.6.32-19-generic-pae

Once you are finished changing these options, hit Ctrl-X boot into the sys-
tem on the RAID array. If you set the boot arguments and the /etc/fstab
correctly, when you boot and type df, you should see your root device is
/dev/md0 (or what you assigned your RAID array):

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md0 8231864 634492 7182500 9% /
. . .

RAID 349

ptg

When you check /proc/mdstat, you will see your active arrays running on a
single disk:

$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md1 : active raid1 sdb5[0]
88256 blocks [2/1] [U_]

md0 : active raid1 sdb1[0]
8297472 blocks [2/1] [U_]

unused devices: <none>

Now you are ready to add the original partitions to each array:

$ sudo mdadm /dev/md0 --add /dev/sda1
$ sudo mdadm /dev/md1 --add /dev/sda5
$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md1 : active raid1 sda5[2] sdb5[0]
88256 blocks [2/1] [U_]

resync=DELAYED

md0 : active raid1 sda1[2] sdb1[0]
8297472 blocks [2/1] [U_]
[=>.] recovery = 5.6% (471936/8297472)
finish=12.3min speed=10550K/sec

unused devices: <none>

The arrays will sync up in the background, but you can use your system in
the meantime. Now you will want to update your GRUB configuration so
that it points to the new UUIDs and devices (otherwise you would have to
edit it by hand each time). In the past you would have to edit things by
hand, but if you just type sudo update-grub, the update program will detect
and change all of the relevant entries for you.

Now the problem you will find when you run a software RAID array is that
GRUB will install only on the first disk. If you lose the first disk, the second
disk won’t automatically be able to boot the system. To fix this you have to
manually install GRUB to the second disk. This is easy enough—just type

350 Chapter 10 � Fault Tolerance

ptg

sudo grub-install /dev/sdb. Change the device from /dev/sdb to your sec-
ond RAID device if it’s different. If you have a third RAID device, just run
grub-install for that device as well.

The final step is to use a partitioning tool on /dev/sda and set both parti-
tions to partition type fd so that they will automatically be detected as
RAID devices. Reboot your system one final time to ensure it will boot to
your RAID array. Now your system is fault-tolerant and ready to use.

Migrate from RAID 1 to RAID 5
At some point you might decide that a particular system needs to expand
from RAID 1 to RAID 5. In most cases this is because your RAID array
needs more storage. If you add an extra drive and migrate to RAID 5, you
can double your available storage while keeping redundancy.

In this example I migrate the RAID 1 system I mentioned above into a
RAID 5 system. Currently it has two RAID 1 arrays, /dev/md0 composed
of /dev/sda1 and /dev/sdb1 for my / partition, and /dev/md1 composed of
/dev/sda5 and /dev/sdb5, which I use for swap space. I add a third drive,
/dev/sdc, and migrate the system to a RAID 5 array.

There are some special considerations when your root partition is on RAID
5 because GRUB can’t directly boot from it. You need to set up a small /boot
partition that is not RAID 5 for GRUB to boot from. You can still have fault
tolerance here; you just have to make your /boot partition RAID 1.

Just as when I migrated from a single drive to a RAID 1 array, to migrate to
a RAID 5 array, I need to use a rescue disc. I use the Ubuntu Server rescue
mode in this case, so boot from your Ubuntu Server install CD and select
“Rescue a broken system” at the boot menu. When you get to the section
that lets you select your root file system, be sure to choose the correct MD
device (in my case /dev/md0). At the main rescue operations menu choose
“Execute a shell in the installer environment.”

The general procedure for this migration is much like migrating from a
single disk to RAID 1. We partition /dev/sdc the way we want the new array
to look, remove /dev/sdb from both RAID 1 arrays, repartition it, then cre-

RAID 351

ptg

ate our new degraded RAID arrays and set them up so the system can boot
from them. Once we successfully boot from the new arrays, we destroy the
old arrays, repartition the final drive, and hot-add it.

So first I partition /dev/sdc. I create a 100MB /boot partition at /dev/sdc1,
then create my root and swap partitions with the remaining space. Since
the RAID 5 arrays will be larger anyway, I don’t have to worry that I’m rob-
bing 100MB from the root partition. Remember to create each of the par-
titions as type fd. My final disk looks like this:

Device Boot Start End Blocks Id System
/dev/sdc1 1 13 104391 fd Linux raid autodetect
/dev/sdc2 14 1033 8193150 fd Linux raid autodetect
/dev/sdc3 1034 1044 88357+ 5 Extended
/dev/sdc5 1034 1044 88326 fd Linux raid autodetect

Now I use mdadm to remove /dev/sdb partitions from both RAID arrays:

mdadm /dev/md0 --fail /dev/sdb1
mdadm: set /dev/sdb1 faulty in /dev/md0
mdadm /dev/md0 --remove /dev/sdb1
mdadm: hot removed /dev/sdb1
mdadm /dev/md1 --fail /dev/sdb5
mdadm: set /dev/sdb5 faulty in /dev/md1
mdadm /dev/md1 --remove /dev/sdb5
mdadm: hot removed /dev/sdb5

Now use fdisk to change the partition table of /dev/sdb to match /dev/sdc.
Once you change the partition table of /dev/sdb and write the changes,
you might get an error that the kernel will use the old partition table until
the system reboots. If that happens, you must reboot back into the rescue
disc before you can continue. If you don’t get that error, proceed to the
next step.

At this point I’m ready to create my three new RAID arrays. My /boot par-
tition will be a RAID 1 /dev/md2, my root partition a RAID 5 /dev/md3,
and my new swap drives will be a RAID 5 /dev/md4. Use mdadm to create all
of these in failed mode:

352 Chapter 10 � Fault Tolerance

ptg

mdadm --create /dev/md2 --level=1 --raid-devices=3 /dev/sdb1
/dev/sdc1 missing

mdadm --create /dev/md3 --level=5 --raid-devices=3 /dev/sdb2
/dev/sdc2 missing

mdadm --create /dev/md4 --level=5 --raid-devices=3 /dev/sdb5
/dev/sdc5 missing

When you create these arrays, you will probably get a warning about the
/dev/sdb partitions containing a file system, but that’s expected, so type Y
so it continues. Once I’m done, if I check /proc/mdstat, I will see all five of
my RAID arrays in degraded mode:

cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md4 : active raid5 sdc5[1] sdb5[0]
176512 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

md3 : active raid5 sdc2[1] sdb1[0]
16386048 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

md2 : active raid1 sdc1[1] sdb1[0]
104320 blocks [3/2] [UU_]

md1 : active raid1 sda5[0]
88256 blocks [2/1] [U_]

md0 : active raid1 sda1[0]
8297472 blocks [2/1] [U_]

unused devices: <none>

Now you can format the new RAID arrays and create mount points for the
new /boot and / partitions so you can transfer files to them:

mkfs.ext4 /dev/md2
mkfs.ext4 /dev/md3
mkswap /dev/md4
mkdir /mnt/boot
mkdir /mnt/root
mount /dev/md2 /mnt/boot
mount /dev/md3 /mnt/root

RAID 353

ptg

Unfortunately, the Ubuntu Server recovery mode doesn’t include the tools
that I prefer to copy files to a new system, tools like cpio or rsync, and even
the version of find is not full-featured, so instead I use the versions from
my server. Finally I copy over the /boot directory to my new /boot RAID
array and remount the drive under /mnt/root:

cd /target
./usr/bin/find . -xdev -print0 | ./bin/cpio -pa0V /mnt/root
mv /mnt/root/boot/* /mnt/boot/
umount /mnt/boot
mount /dev/md2 /mnt/root/boot

Now that the system has been migrated to /dev/md3 and /dev/md2, you
need to set up the array to automatically load at boot time. First we add
the arrays we configured to the /etc/mdadm/mdadm.conf file where we
mounted /dev/md3 and update its initramfs so it creates these devices at
boot:

mdadm --detail --scan >> /mnt/root/etc/mdadm/mdadm.conf
chroot /mnt/root update-initramfs -u 2.6.32-19-generic-pae
update-initramfs: Generating /boot/initrd.img-2.6.32-19-generic-pae

Be sure to change the update-initramfs argument to point to your initrd file
(check /mnt/root/boot/ for the initramfs files from which you can choose).

Next I need to edit the /etc/fstab file on the RAID 5 array so that it points
to the RAID 5 arrays instead of the /dev/md0. I also need to add a refer-
ence to my new /boot partition. First edit /mnt/root/etc/fstab, comment
out the current entry for /, and add a similar line that points to /dev/md2.
Then add a new line for /boot. Finally, do the same for the swap file line.
You can add either the actual device name or the UUID for these devices
here. Here’s an example fstab file using the device names:

/etc/fstab: static file system information.

<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
#/dev/md0 / ext4 errors=remount-ro 0 1
/dev/md3 / ext4 errors=remount-ro 0 1

354 Chapter 10 � Fault Tolerance

ptg

/dev/md2 /boot ext4 defaults 0 0
#/dev/md1 none swap sw 0 0
/dev/md4 none swap sw 0 0
/dev/scd0 /media/cdrom0 udf,iso9660 user,noauto,exec,utf8 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto,exec,utf8 0 0

Even if you don’t use UUIDs in the fstab file, be sure to jot down the new
UUID for md3 and md2. Now you are ready to reboot into the new sys-
tem. Type exit in the shell you are in, and then select the “Reboot the sys-
tem” option. When the system reboots and you see GRUB initially load, hit
the Shift key to stop GRUB from booting so you can edit the boot options.
Once you can see the list of boot choices, make sure the first option, which
should be your main kernel, is highlighted, and then hit E to edit it. One of
the lines will say set root='(md0)', or if not, it will point to your old root
device, so change it to point to the new device. In my case I change it to set
root='(md3)'. Next there are two different lines that list the UUID for your
original root partition. Change the UUID in the line that begins with search
to the UUID of your new /boot partition (/dev/md2 in the example). That
tells grub2 where to search for its files. Change the UUID in the line that
beings with linux to the UUID of the new root device (/dev/md3). Also,
since your boot partition is separate from the root partition, you will need
to remove the /boot from any lines that reference it, because the initrd and
kernel files will be within the main /boot directory. In my case the final
GRUB options read

recordfail
insmod raid
insmod mdraid
insmod ext2
set root='(md2)'
search –no-floppy –fs-uuid –set 5452717c-727c-4ba9-8a75-
4ac362f01ee6

linux /vmlinuz-2.6.32-19-generic-pae
root=UUID=2bfc0697-f109-4986-83a5-117c162e37bf ro quiet splash

initrd /initrd.img-2.6.32-19-generic-pae

Once you are finished changing these options, hit Ctrl-X to boot into the
system on the RAID array. If you set the boot arguments and the /etc/
fstab correctly, when you boot and type df you should see that your root

RAID 355

ptg

partition is /dev/md3 (or what you assigned your RAID array) along with
your /boot partition:

$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md3 16254420 638276 14796844 5% /
. . .
/dev/md2 101018 23974 71828 26% /boot

When you check /proc/mdstat, you will see your active arrays running on a
single disk:

$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md4 : active raid5 sdc5[1] sdb5[0]
176512 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

md3 : active raid5 sdc2[1] sdb1[0]
16386048 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

md2 : active raid1 sdc1[1] sdb1[0]
104320 blocks [3/2] [UU_]

md1 : active raid1 sda5[0]
88256 blocks [2/1] [U_]

md0 : active raid1 sda1[0]
8297472 blocks [2/1] [U_]

unused devices: <none>

It’s possible that md0 and md1 will not show up when you check /proc/
mdstat. In that case, you won’t need to destroy those arrays. Otherwise you
must destroy the original RAID arrays /dev/md0 and /dev/md1 so we can
repartition the drive and assign those new partitions the new arrays:

$ sudo mdadm --stop /dev/md0
mdadm: stopped /dev/md0
$ sudo mdadm --stop /dev/md1
mdadm: stopped /dev/md1

Once you are ready to repartition the original drive, you can check /proc/
mdstat and see that those arrays are no longer available:

356 Chapter 10 � Fault Tolerance

ptg

$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md4 : active raid5 sdc5[1] sdb5[0]
176512 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

md3 : active raid5 sdc2[1] sdb1[0]
16386048 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]

md2 : active raid1 sdc1[1] sdb1[0]
104320 blocks [3/2] [UU_]

unused devices: <none>

Now repartition /dev/sda as you did /dev/sdb so its partitions match the
other two drives. Remember to set the partition types to fd. Once you save
your changes, if fdisk complains that the kernel is going to use the old par-
tition table, you have a small problem. You won’t be able to safely add the
new /dev/sda partitions to your RAID at this point. Instead, boot back into
the rescue disc, select your RAID 5 root file system, then choose “Execute a
shell in /dev/md3” (or the name of your root file system). Once you are at
a prompt, type mount /boot so that the /boot partition is available. Other-
wise, if fdisk doesn’t give that complaint, proceed with the next steps.

Finally, you are ready to add the original partitions to each array:

$ sudo mdadm /dev/md2 --add /dev/sda1
$ sudo mdadm /dev/md3 --add /dev/sda2
$ sudo mdadm /dev/md4 --add /dev/sda5
$ cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md4 : active raid5 sda5[3] sdc5[1] sdb5[0]
176512 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]
resync=DELAYED

md3 : active raid5 sda5[3] sdc2[1] sdb1[0]
16386048 blocks level 5, 64k chunk, algorithm 2 [3/2] [UU_]
[=>.] recovery = 5.6% (471936/8297472)

finish=12.3min speed=10550K/sec

md2 : active raid1 sda1[2] sdc1[1] sdb1[0]
104320 blocks [3/3] [UUU]

unused devices: <none>

RAID 357

ptg

The arrays will sync up in the background, but you can use your system in
the meantime. Now you will want to update your GRUB configuration so
that it points to the new UUIDs and devices (otherwise you would have to
edit it by hand each time). In the past you would have to edit things by
hand, but if you just type sudo update-grub, the update program will detect
and change all of the relevant entries for you. Now run sudo grub-install
/dev/sda so that the GRUB instance on /dev/sda is updated.

Now the problem you will find when you run a software RAID array is that
GRUB will install only on the first disk. If you lose the first disk, the second
disk won’t automatically be able to boot the system. To fix this you will
have to manually install GRUB to the second disk. This is easy enough—
just type sudo grub-install /dev/sdb. Change the device from /dev/sdb to
your second RAID device if it’s different. If you have a third or fourth
RAID device, just run grub-install for that device as well.

The final step, if you haven’t done so already, is to use a partitioning tool
on /dev/sda and set both partitions to partition type fd so that they will
automatically be detected as RAID devices. Reboot your system one final
time to ensure it will boot to your RAID array. Now your system is fault
tolerant and ready to use.

Add a Drive to a RAID 5 Array
It can be difficult to plan storage for a system. Even with the best plans in
place, sometimes a machine’s purpose changes. In any case, when you
need more storage on a RAID 5 array, you have a few options. You could
potentially back up all of the data, create a brand-new RAID 5 array with
an extra drive, and then restore, or you could attempt to grow the RAID 5
array hot. Now growing a RAID 5 array hot isn’t for the faint at heart. I
would recommend you make a backup of your data if possible, just in case.

All warnings aside, let’s assume I have a standard three-disk system using
RAID 5 as in my previous RAID 1 to RAID 5 migration example. I have
added a fourth disk, /dev/sdd, to the server, and I want to extend my RAID
arrays across it. Since we want to grow the file system of our root partition,
we need to do all of these steps from a rescue disc, so boot your Ubuntu
Server install CD into recovery mode. When you are prompted to select a

358 Chapter 10 � Fault Tolerance

ptg

root file system, hit Alt-F2 to switch to a different console. We don’t want
to mount any file systems since we plan to grow them.

Once you are in the rescue mode shell, use fdisk to partition the new drive
so that it matches the other drives. Once that has completed, use mdadm to
add the new partitions to each of the RAID arrays:

mdadm /dev/md2 --add /dev/sdd1
mdadm: added /dev/sdd1
mdadm /dev/md3 --add /dev/sdd2
mdadm: added /dev/sdd2
mdadm /dev/md4 --add /dev/sdd5
mdadm: added /dev/sdd5
cat /proc/mdstat
Personalities : [linear] [multipath] [raid0] [raid1] [raid6]
[raid5] [raid4] [raid10]

md4 : active raid5 sdd5[3](S) sda5[2] sdc5[1] sdb5[0]
176512 blocks level 5, 64k chunk, algorithm 2 [3/3] [UUU]

md3 : active raid5 sdd2[3](S) sda2[2] sdc2[1] sdb1[0]
16386048 blocks level 5, 64k chunk, algorithm 2 [3/3] [UUU]

md2 : active raid1 sdd1[3](S) sda1[2] sdc1[1] sdb1[0]
104320 blocks [3/3] [UUU]

unused devices: <none>

Notice that the new partitions have been added to each array but they have
an (S) after them to denote that they are currently hot spares. To extend
the arrays to incorporate those drives as well, we need an additional mdadm
command:

mdadm --grow --raid-devices=4 /dev/md2
mdadm --grow --raid-devices=4 /dev/md3
mdadm --grow --raid-devices=4 /dev/md4

At this point all of your drives will get very busy as they shift data around
evenly across all four drives. Since RAID 1 arrays just have to mirror and
don’t have to recalculate any parity, they should complete much faster, but
it might take hours to grow the RAID 5 arrays. In the meantime you can
watch /proc/mdstat to gauge the progress.

while [1]; do cat /proc/mdstat; sleep 15; done;

RAID 359

ptg

Hit Ctrl-C to exit out of this script. After the RAID has finally resynced,
you are ready to resize your file system. Different file systems have different
tools they use to resize (if they support growing the file system), but with
the standard case of an ext4 file system you run a file system check first
(e2fsck) and then resize2fs:

e2fsck -f /dev/md3
resize2fs /dev/md3

Notice that I resized only the RAID 5 array and not /dev/md2. Since RAID
1 only mirrors, no matter how many drives you add to it, it will stay the
same size. For the swap partition I just need to reformat it:

mkswap /dev/md4

Now note that this will change the UUID for the swap partition, so if you
reference the UUID in your /etc/fstab file, you must mount /dev/md3 to a
temporary mount point and update your /etc/fstab. Once the file systems
are resized, type Alt-F1 to go back to the rescue menu and select your root
file system (in my case it is /dev/md3). Then select “Execute a shell in /dev/
md3” (instead of /dev/md3 your rescue operations menu will reference
the root partition you selected).

Once I’m in a shell within /dev/md3, I type mount /boot so the /boot parti-
tion is available. Then edit /etc/mdadm/mdadm.conf and update each
ARRAY reference so that the num-devices value is equal to 4 instead of 3 (or if
you updated your array from four disks to five, change this to 5). Save your
changes, and then run update-initramfs so the initramfs file has the new
mdadm.conf:

update-initramfs -u 2.6.32-19-generic-pae
update-initramfs: Generating /boot/initrd.img-2.6.32-19-generic-pae

Replace 2.6.32-19-generic-pae with your kernel version if it’s different.
Now you can type exit to return to the rescue operations menu and select
“Reboot the system” to reboot into your new expanded RAID array.

360 Chapter 10 � Fault Tolerance

ptg

LVM
The Story of the Logical Volume Manager
Let’s take a step back from our RAID adventure and look at the bigger pic-
ture in data storage. The entire situation is unpleasant. Hard drives are
slow and fail often, and though abolished for working memory ages ago,
fixed-size partitions are still the predominant mode of storage space allo-
cation. As if worrying about speed and data loss weren’t enough, you also
have to worry about whether your partition size calculations were just
right when you were installing a server or whether you’ll wind up in the
unenviable position of having a partition run out of space even though
another partition is maybe mostly unused. And if you might have to move
a partition across physical volume boundaries on a running system, well,
woe is you.

RAID helps to some degree. It’ll do wonders for your worries about per-
formance and fault tolerance, but it operates at too low a level to help with
the partition size or fluidity concerns. What we’d really want is a way to
push the partition concept up one level of abstraction, so it doesn’t oper-
ate directly on the underlying physical media. Then we could have parti-
tions that are trivially resizable or that can span multiple drives, we could
easily take some space from one partition and tack it on another, and we
could juggle partitions around on physical drives on a live server. Sounds
cool, right?

Very cool, and very doable via LVM, a system that shifts the fundamental
unit of storage from physical drives to virtual or logical ones (although we
harbor our suspicions that the term logical is a jab at the storage status
quo, which is anything but). LVM has traditionally been a feature of
expensive, enterprise UNIX operating systems or was available for pur-
chase from third-party vendors. Through the magic of free software, a guy
by the name of Heinz Mauelshagen wrote an implementation of a logical
volume manager for Linux in 1998. LVM has undergone tremendous
improvements since then and is widely used in production today, and just
as you expect, the Ubuntu installer makes it easy for you to configure it on
your server during installation.

LVM 361

ptg

LVM Theory and Jargon
Wrapping your head around LVM is a bit more difficult than with RAID
because LVM rethinks the whole way of dealing with storage, which pre-
dictably introduces a bit of jargon that you need to learn. Under LVM,
physical volumes, or PVs, are seen just as providers of disk space without
any inherent organization (such as partitions mapping to a mount point
in the OS). We group PVs into volume groups, or VGs, which are virtual
storage pools that look like good old cookie-cutter hard drives. We carve
those up into logical volumes, or LVs, that act like the normal partitions
we’re used to dealing with. We create filesystems on these LVs and mount
them into our directory tree. And behind the scenes, LVM splits up PVs
into small slabs of bytes (4MB by default), each of which is called a physi-
cal extent, or a PE.

Okay, so that was a mouthful of acronyms, but as long as you understand
the progression, you’re in good shape. You take a physical hard drive and
set up one or more partitions on it that will be used for LVM. These parti-
tions are now PVs, which are split into PEs and then grouped in VGs, on
top of which you finally create LVs. It’s the LVs, these virtual partitions,
and not the ones on the physical hard drive, that carry a filesystem and are
mapped and mounted into the OS. And if you’re really confused about
what possible benefit we get from adding all this complexity only to wind
up with the same fixed-size partitions in the end, hang in there. It’ll make
sense in a second.

The reason LVM splits PVs into small, equally sized PEs is that the defini-
tion of a volume group (the space that’ll be carved into logical volumes)
then becomes “a collection of physical extents” rather than “a physical area
on a physical drive,” as with old-school partitions. Notice that “a collection
of extents” says nothing about where the extents are coming from and cer-
tainly doesn’t impose a fixed limit on the size of a VG. We can take PEs from
a bunch of different drives and toss them into one VG, which addresses our
desire to abstract partitions away from physical drives. We can take a VG
and make it bigger simply by adding a few extents to it, maybe by taking
them from another VG or maybe by tossing in a new PV and using extents
from there. And we can take a VG and move it to different physical storage
simply by telling it to relocate to a different collection of extents. Best of all,
we can do all this on the fly, without any server downtime.

362 Chapter 10 � Fault Tolerance

ptg

Do you smell that? That’s the fresh smell of the storage revolution.

Setting Up LVM
By now, you must be convinced that LVM is the best thing since sliced bread.
Which it is—and, surprisingly enough, setting it up during installation is no
harder than setting up RAID. Create partitions on each physical drive you
want to use for LVM, just as you did with RAID, but tell the installer to use
them as physical space for LVM. Note that in this context, PVs are not actual
physical hard drives; they are the partitions you’re creating.

You don’t have to devote your entire drive to partitions for LVM. If you’d
like, you’re free to create actual filesystem-containing partitions alongside
the storage partitions used for LVM, but make sure you’re satisfied with
your partitioning choice before you proceed. Once you enter the LVM
configurator in the installer, the partition layout on all drives that contain
LVM partitions will be frozen.

Let’s look back to our fictional server, but let’s give it four drives, which are
10GB, 20GB, 80GB, and 120GB in size. Say we want to create an LVM par-
tition, or PV, using all available space on each drive, and then combine the
first two PVs into a 30GB VG and the latter two into a 200GB one. Each VG
will act as a large virtual hard drive on top of which we can create LVs just
as we would normal partitions.

As with RAID, arrowing over to the name of each drive and hitting Enter
lets us erase the partition table. Then hitting Enter on the FREE SPACE
entry lets us create a PV—a partition that we set to be used as a physical
space for LVM. Once all three LVM partitions are in place, we select Con-
figure the Logical Volume Manager on the partitioning menu.

After a warning about the partition layout, we get to a rather spartan LVM
dialog that lets us modify VGs and LVs. According to our plan, we choose
the former option and create the two VGs we want, choosing the appropri-
ate PVs. We then select Modify Logical Volumes and create the LVs corre-
sponding to the normal partitions we want to put on the system—say, one
for each of /, /var, /home, and /tmp.

LVM 363

ptg

You can already see some of the partition fluidity that LVM brings you. If
you decide you want a 25GB logical volume for /var, you can carve it out of
the first VG you created, and /var will magically span the two smaller hard
drives. If you later decide you’ve given /var too much space, you can shrink
the filesystem and then simply move over some of the storage space from
the first VG to the second. The possibilities are endless.

Last but not least, recent Ubuntu versions support encrypting your LVM
volumes right from the installer, which is music to paranoid ears: It means
you can now have full-disk encryption from the moment you install your
machine. Encrypted LVM is offered as one of the “guided” options in the
partitioning menu, but you can also accomplish the same result by hand.

TIP LVM Doesn’t Provide Redundancy
The point of LVM is storage fluidity, not fault tolerance. In our example, the logical volume
containing the /var filesystem is sitting on a volume group that spans two hard drives.
Unfortunately, this means that either drive failing will corrupt the entire filesystem, and LVM
intentionally doesn’t contain functionality to prevent this problem.

Instead, when you need fault tolerance, build your volume groups from physical volumes
that are sitting on RAID! In our example, we could have made a partition spanning the entire
size of the 10GB hard drive and allocated it to physical space for a RAID volume. Then, we
could have made two 10GB partitions on the 20GB hard drive and made the first one also a
physical space for RAID. Entering the RAID configurator, we would create a RAID 1 array
from the 10GB RAID partitions on both drives, but instead of placing a regular filesystem on
the RAID array as before, we’d actually designate the RAID array to be used as a physical
space for LVM. When we get to LVM configuration, the RAID array would show up as any
other physical volume, but we’d know that the physical volume is redundant. If a physical
drive fails beneath it, LVM won’t ever know, and no data loss will occur. Of course, standard
RAID array caveats apply, so if enough drives fail and shut down the array, LVM will still
come down kicking and screaming.

Ethernet Bonding
As you develop fault-tolerant systems, you quickly realize that after disk
failures, network issues are probably the second area that requires redun-
dancy. After all, switches need maintenance from time to time and they do
fail, as do networking cards and even Ethernet cables. If you want to be
able to survive switch failure or maintenance, you need a system with mul-
tiple Ethernet ports connected to redundant switches. Most servers these

364 Chapter 10 � Fault Tolerance

ptg

days come with at least two Ethernet ports if not more, so it makes sense to
set up Ethernet bonding, especially when you see how easy it is.

Ethernet bonding is a feature built into the Linux kernel as a module. With
Ethernet bonding you can have multiple Ethernet ports that answer to the
same IP address. Depending on the bonding mode you choose, you could
have an active/passive scenario where one port activates only if the other
appears off-line, or you could have an active/active scenario where you
accept traffic across all ports.

Full documentation of all of the Ethernet bonding modes is available in
the Documentation/networking/bonding.txt file included with any Linux
kernel source. Following is an excerpt from that documentation that
describes each bond mode:

balance-rr or 0

Round-robin policy: Transmit packets in sequential order from the first
available slave through the last. This mode provides load balancing and
fault tolerance.

active-backup or 1

Active-backup policy: Only one slave in the bond is active. A different
slave becomes active if, and only if, the active slave fails. The bond’s MAC
address is externally visible on only one port (network adapter) to avoid
confusing the switch.

balance-xor or 2

XOR policy: Transmit based on the selected transmit hash policy. The
default policy is a simple [(source MAC address XOR’d with destination
MAC address) modulo slave count]. Alternate transmit policies may be
selected via the xmit_hash_policy option, described below. This mode
provides load balancing and fault tolerance.

broadcast or 3

Broadcast policy: transmits everything on all slave interfaces. This mode
provides fault tolerance.

802.3ad or 4

IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that
share the same speed and duplex settings. Utilizes all slaves in the active
aggregator according to the 802.3ad specification.

Ethernet Bonding 365

ptg

balance-tlb or 5

Adaptive transmit load balancing: channel bonding that does not require
any special switch support. The outgoing traffic is distributed according to
the current load (computed relative to the speed) on each slave. Incoming
traffic is received by the current slave. If the receiving slave fails, another
slave takes over the MAC address of the failed receiving slave.

balance-alb or 6

Adaptive load balancing: includes balance-tlb plus receive load balancing
(rlb) for IPV4 traffic, and does not require any special switch support. The
receive load balancing is achieved by ARP negotiation. The bonding driver
intercepts the ARP Replies sent by the local system on their way out and
overwrites the source hardware address with the unique hardware address
of one of the slaves in the bond such that different peers use different
hardware addresses for the server.

So which bonding mode should you use? This can be a difficult question
to answer as different networks support certain modes better than others.
My recommendation is to try out some of the different bonding modes
and test their fail-over by unplugging a cable while pinging the server.
Different modes handle port failure differently, especially in the case
where a cable is reconnected (or a switch is rebooted) and the port takes
30 seconds or so to come up. On some bonding modes pings will con-
tinue with no interruption, while on others you might have a 30-second
outage while the port comes up. Note that because the bonding mode is
set in the bonding module when it is loaded, if you change the bonding
mode you will likely need to reboot (or at least take down the bond0
interface and unload and reload the module). For this example I choose
bonding mode 1 because it has only one port active at a time, so it is rela-
tively safe on any switch.

The first step to configure bonding is to install the ifenslave package:

$ sudo apt-get install ifenslave

This package includes the ifenslave utility, which the system will use to
bond two interfaces together. The next step is to open /etc/modprobe.d/

366 Chapter 10 � Fault Tolerance

ptg

aliases (or create it if it doesn’t exist), scroll to the bottom of the file, and
add

alias bond0 bonding
options bonding mode=1 miimon=100

The options line is what you can use to change your bonding mode. The
miimon option tells the kernel how often to check the link state of the inter-
face in milliseconds. In this case it is checked every 100 milliseconds.

The next step is to open your /etc/network/interfaces file and comment
out any configuration lines for the network interfaces you will bond (you
will probably have a configuration only for eth0). Also, if you have any ref-
erences to auto eth0, comment those out as well. Then create a new config-
uration for the bond0 interface that mimics the settings you had for eth0.
At the very end of the bond0 configuration you add an extra line called
slaves that lists the different interfaces you want to bond together. Here’s
an example interfaces file for my server:

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
#auto eth0
#iface eth0 inet static
address 192.168.0.5
netmask 255.255.255.0
gateway 192.168.0.1

auto bond0
iface bond0 inet static

address 192.168.0.5
netmask 255.255.255.0
gateway 192.168.0.1
slaves eth0 eth1

Ethernet Bonding 367

ptg

Save your changes and then run sudo service networking restart or sudo
/etc/init.d/networking restart. Once you run ifconfig, you should see
the new bond0 device:

$ sudo ifconfig
bond0 Link encap:Ethernet HWaddr 00:0c:29:28:13:3b

inet addr:192.168.0.5 Bcast:192.168.0.255
Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe28:133b/64 Scope:Link
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
RX packets:38 errors:0 dropped:0 overruns:0 frame:0
TX packets:43 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:16644 (16.2 KB) TX bytes:3282 (3.2 KB)

eth0 Link encap:Ethernet HWaddr 00:0c:29:28:13:3b
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:37 errors:0 dropped:0 overruns:0 frame:0
TX packets:43 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:16584 (16.1 KB) TX bytes:3282 (3.2 KB)
Interrupt:17 Base address:0x1400

eth1 Link encap:Ethernet HWaddr 00:0c:29:28:13:3b
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:1 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:60 (60.0 B) TX bytes:0 (0.0 B)
Interrupt:18 Base address:0x1480

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Now you can test fail-over by unplugging eth0 while pinging the IP. When-
ever a particular interface is down, the kernel will log both to dmesg and to
/var/log/syslog. Here’s an example log entry like one you would see if you
unplugged eth0:

368 Chapter 10 � Fault Tolerance

ptg

Feb 14 16:43:28 kickseed kernel: [2901.700054] eth0: link down
Feb 14 16:43:29 kickseed kernel: [2901.731190] bonding: bond0:
link status definitely down for interface eth0, disabling it

Feb 14 16:43:29 kickseed kernel: [2901.731300] bonding: bond0:
making interface eth1 the new active one.

Clusters
Even with RAID and Ethernet bonding on a host there are plenty of other
components that can fail, from the CPU to the software on the host. If you
need a service to stay up even when a host fails, then you need a cluster.
There are a number of different ways to set up Linux clusters, and there are
many different kinds of clusters as well. In this section I discuss one of the
most common tools used in basic Linux clusters, Heartbeat, and how to
use it to create a basic fault-tolerant service across two servers. Afterward I
discuss how to use a tool called DRBD to replicate data between two
servers over the network. These two tools provide a solid foundation you
can use for any number of fault-tolerant services.

As you work with clusters, you will find that most clustering technologies
use some of the same concepts for cluster management. Following are
some of the basic rules and terminologies people use when they develop a
cluster:

� Floating IPs
In a standard active/passive Heartbeat cluster, each node (server) has
its main IP and there is an additional floating IP that is shared
between the nodes. Only the node that is considered active will use
and answer to the floating IP address. Services are hosted off of the
floating IP address so that when a particular host goes down and the
fail-over node assumes the floating IP, it can take over the service.

� Active/active versus active/passive
In an active/active cluster all nodes are running and accepting load at
all times. In an active/passive cluster one node is considered the mas-
ter and accepts all of the load while any other nodes take load only
when the master goes down. My examples are based on an active/
passive cluster.

Clusters 369

ptg

� Split-brain syndrome
Split-brain syndrome occurs in an active/passive cluster when both
nodes believe they are the master and try to assume the load. This can be
disastrous for a cluster, especially in the case of shared storage and float-
ing IPs, as both nodes will try to write to storage (that may not accept
writes from multiple sources) as well as try to grab the floating IP for
themselves. As you will see, one of the big challenges in clustering is iden-
tifying when a host is truly down and avoiding split-brain syndrome.

� Quorum
Clusters often use the concept of a quorum to determine when a host
is down. The idea behind a quorum is to have a consensus among the
members of your cluster about who can talk to whom. This typically
works only when you have at least three hosts; in a two-node cluster if
node A can’t talk to node B, it can be difficult for node A to know
whether its network is down or node B’s network is down. With a third
node you can set a quorum of two, so that at least two nodes must be
unable to reach another node before that node is considered down.

� Fencing
Fencing is one of the methods used to avoid split-brain syndrome.
The name is derived from the idea of building a fence around a
downed node so that it can’t become the active node again until its
problems have been resolved. There are a number of ways to fence a
machine, from turning off its network ports to rebooting it or trigger-
ing a kernel panic (aka shooting the other node in the head).

� Shooting the other node in the head
This term is used to describe a particularly direct response to fence a
server. When a cluster determines a host is unavailable, it will often
forcibly kill the server by either a reboot, a kernel panic, or even
remotely power cycling the machine. The idea is that once the system
reboots, it should be back to some sort of consistent state and should
be able to rejoin the cluster safely.

� Separate connection for node monitoring
A common practice for clusters is to have a separate connection that
the nodes use to monitor each other. The idea here is to prevent nor-
mal traffic from slowing down or interfering with communications

370 Chapter 10 � Fault Tolerance

ptg

between nodes. Some administrators solve this by monitoring over
each node’s serial port or connecting a crossover network cable
between a second set of Ethernet ports.

Heartbeat
Heartbeat is one of the core Linux clustering tools. The idea behind Heart-
beat is to provide a system to describe a cluster and then monitor each node
to see if it is available. When a node is unavailable, Heartbeat can then take
some sort of action in response. Responses might include moving a float-
ing IP to a fail-over host, starting or stopping particular services, mount-
ing particular file systems, and fencing the unavailable host.

There are two main methods of Heartbeat configuration these days. The
classic Heartbeat configuration is based on a few basic text configuration
files that are relatively easy to configure by hand. The traditional Heartbeat
cluster works with only two nodes. The newer Heartbeat 2 configuration
model relies on XML files and can support clusters of more than two nodes.
These new features and file formats can introduce some complexity, espe-
cially when you are just getting started with clustering, so for the purposes
of this chapter, since my example features only a two-node cluster, I am
going to stick with the traditional Heartbeat configuration. The tradi-
tional Heartbeat configuration relies on three main configuration files:
ha.cf, haresources, and authkeys.

� ha.cf
This file defines all of the settings for a particular clustering, including
the nodes in the cluster, what methods Heartbeat uses to communi-
cate with each node, and also time-outs to use for any fail-over.

� haresources
Here you will configure the responses a node will take as a result of a
fail-over. This might be assuming a floating IP, mounting or
unmounting file systems, or starting or stopping services.

� authkeys
This file contains a secret key that all of the nodes have in common.
This key is used as a method of authentication so that the nodes know
they are speaking to valid members of the cluster.

Clusters 371

ptg

Example Cluster In my example I set up a two-node active/passive Apache
cluster. I will assume that Apache hosts static files (i.e., I don’t need repli-
cated storage at this point). Here is the information about node1 and
node2, the two different servers in my cluster:

node1
eth0: 172.16.245.220/255.255.255.0
eth1: 192.168.10.1/255.255.255.0

node2
eth0: 172.16.245.221/255.255.255.0
eth1: 192.168.10.2/255.255.255.0

I use eth0 to host the service. I use eth1 as a private network between each
host. You could set this up either with a crossover cable between the ports
on both servers or through a separate switch. In addition, I will set up a
floating IP at 172.16.245.222 that any host that wants to access this Web
site will use. I have already installed and configured Apache on each of
these hosts.

Install and Configure Heartbeat The Heartbeat software is packaged and
available for Ubuntu Server as the package heartbeat, so you can use your
preferred package manager to install it:

$ sudo apt-get install heartbeat

The package automatically creates the /etc/ha.d directory and the init
scripts you need for the service, but it won’t set up any of the main three
configuration files, ha.cf, haresources, or authkeys, so I go into how to con-
figure those here.

HA.CF The Heartbeat package provides an annotated sample ha.cf file
under /usr/share/doc/heartbeat, so be sure to use that as a resource if you
want examples or further information. Here is the /etc/ha.d/ha.cf file I
used in my cluster:

autojoin none
bcast eth1
warntime 5
deadtime 10

372 Chapter 10 � Fault Tolerance

ptg

initdead 30
keepalive 2
logfacility local0
node node1.example.org
node node2.example.org
respawn hacluster /usr/lib/heartbeat/ipfail
ping 172.16.245.5 172.16.245.1
auto_failback off

A copy of this file will go on both node1 and node2. Each of these options
is important, so I describe them here:

� autojoin
You can choose to have nodes automatically join a cluster using the
shared secret in the authkey file as authentication. For large clusters
that constantly add or delete nodes this might be a useful option to
enable so that you aren’t constantly rolling out and updating your
ha.cf file to list new nodes. In my case, since I have only two nodes, I
have disabled this option.

� bcast
There are a number of different ways each node can communicate to
the others for Heartbeat and other communications. Each of these
options is documented in /usr/share/doc/heartbeat/ha.cf.gz, but here
is a summary. If you use the serial option, you can check Heartbeat
over a null modem cable connected to each node’s serial port. If you
use mcast, you can define a multicast interface and IP address to use.
In my case I used bcast, which broadcasts over my eth1 interface (the
private network I set up). You can also specify ucast, which allows you
to simply communicate via a unicast IP. That could be useful if you
want to limit broadcast traffic or if you have only one interface (or a
pair of bonded ports) and want to use your standard IP addresses to
communicate. By default Heartbeat uses UDP port 694 for commu-
nication, so if you have a firewall enabled, be sure to add a rule to
allow that access.

� warntime
This is the time in seconds during which a communication can time
out before Heartbeat will add a note in the logs that a node has a
delayed heartbeat. No action will be taken yet.

Clusters 373

ptg

� deadtime
This is the time in seconds during which a communication can time
out before Heartbeat will consider it dead and start the fail-over
process.

� initdead
On some machines it might take some time after Heartbeat starts for
the rest of the services on the host to load. This option allows you to
configure a special time-out setting that takes effect when the system
boots before the node is considered dead.

� keepalive
This is the number of seconds between each heartbeat.

� logfacility
Here I can configure what syslog log facility to use. The local0 value
is a safe one to pick and causes Heartbeat to log in /var/log/syslog.

� node
The node lines are where you manually define each node that is in
your cluster. The syntax is node nodename, where nodename is the host-
name a particular node gives when you run uname -n on that host.
Add node lines for each host in the cluster.

� respawn
Since I have a separate interface for Heartbeat communication and
for the regular service, I want to enable the ipfail script. This script
performs various network checks on each host so it can determine
whether a host has been isolated from the network but can still com-
municate with other nodes. This respawn line tells Heartbeat to start
the ipfail script as the hacluster user, and if it exits out, to respawn it.

� ping
This option goes along with the ipfail script. Here I can define extra
hosts that a node can use to gauge its network connectivity. You want
to choose stable hosts that aren’t nodes in the cluster, so the network
gateway or other network infrastructure hosts are good to add here.

374 Chapter 10 � Fault Tolerance

ptg

� auto_failback
This is an optional setting. Heartbeat defines what it considers a mas-
ter node. This node is the default node from which the service runs.
By default, when the master node goes down and then recovers, the
cluster will fail back to that host. Just to avoid IPs and services flap-
ping back and forth you may choose to disable the automatic failback.

Once the ha.cf file is saved and deployed to both node1 and node2, I can
move on to haresources.

HARESOURCES The /etc/ha.d/haresources file defines what resources the
cluster is managing so it can determine what to do when it needs to fail-
over. In this file you can define the floating IP to use and can also list
services to start or stop, file systems to mount and unmount (which I dis-
cuss in the DRBD section), e-mails to send, and a number of other scripts
that are located under /etc/ha.d/resource.d. In my case the haresources file
is pretty simple:

node1 172.16.245.222 apache2

The first column defines which node is considered the default, in my case
node1. Next I define the floating IP to use for this cluster, 172.16.245.222.
Finally, I can define a list of services to start or stop when this node is
active. Since Apache is started by /etc/init.d/apache2, I choose apache2
here. The example above used some configuration shorthand since I had
some pretty basic needs. The longer form of the same line is

node1 IPaddr::172.16.245.222 apache2

The IPaddr section tells Heartbeat to use the /etc/ha.d/resource.d/IPaddr
script and pass the 172.16.245.222 argument to it. With the default set-
tings of the IPaddr script, the floating IP address will take on the same sub-
net and broadcast settings as the other IP address on the same interface. If
I wanted the subnet mask to be /26, for instance, I could say

node1 IPaddr::172.16.245.222/26 apache2

Clusters 375

ptg

The apache2 section at the end is also shorthand. By default Heartbeat will
run the service with the start argument when a node becomes active and
with the stop argument when a node is disabled. If you created a special
script in /etc/ha.d/resource.d/ or /etc/init.d/ and wanted to pass special
arguments, you would just list the service name, two colons, then the argu-
ment. For instance, if I created a special script called pageme that sent an
SMS to a phone number, my haresources line might read

node1 172.16.245.222 apache2 pageme::650-555-1212

Once you have created your haresources file, copy it to /etc/ha.d/ on both
nodes, and make sure that it stays identical.

AUTHKEYS The final step in the process is the creation of the /etc/ha.d/
authkeys file. This file contains some method Heartbeat can use to authen-
ticate a node with the rest of the cluster. The configuration file contains
one line starting with auth, then a number that defines which line below it
to use. The next line begins with a number and then a type of authentica-
tion method. If you use a secure private network like a crossover cable,
your authkeys might just look like this:

auth 1
1 crc

This option doesn’t require heavy CPU resources because the communica-
tions aren’t signed with any particular key. If you are going to communi-
cate over an open network, you will likely want to use either MD5 or SHA1
keys. In either case the syntax is similar:

auth 2
1 crc
2 sha1 thisisasecretsha1key
3 md5 thisisasecretmd5key

Here you can see I have defined all three potential options. The secret key
you pass after sha1 or md5 is basically any secret you want to make up.
Notice in the example above I set auth 2 at the top line so it will choose to
authenticate with SHA1. If I had wanted to use MD5 in this example, I
would set auth to 3 since the MD5 configuration is on the line that begins

376 Chapter 10 � Fault Tolerance

ptg

with 3. Once you create this file and deploy it on all nodes, be sure to set it
so that only root can read it, since anyone who can read this file can poten-
tially pretend to be a member of the cluster:

$ sudo chmod 600 /etc/ha.d/authkeys

Once these files are in place, you are ready to start the cluster. Start with
the default node you chose in haresources (in my case node1) and type

$ sudo /etc/init.d/heartbeat start

Once it starts, move to the other node in the cluster and run the same
command. You should be able to see Heartbeat start to ping nodes and
confirm the health of the cluster in the /var/log/syslog file. At this point
you are ready to test fail-over. Open a Web browser on a third host and try
to access the Web server on the floating IP (in my case 172.16.245.222) and
make sure it works. Then disconnect the main network interface on the
active host. Depending on the time-outs you configured in /etc/ha.d/ha.cf,
it will take a few seconds, but your fail-over host should start talking about
the failure in the logs and will assume the floating IP and start any services
it needs. Here’s some sample output from a syslog file during a fail-over
from node1 to node2:

Feb 16 17:37:56 node2 ipfail: [4340]: debug: Got asked for num_ping.
Feb 16 17:37:57 node2 ipfail: [4340]: debug: Found ping node
172.16.245.1!

Feb 16 17:37:57 node2 ipfail: [4340]: debug: Found ping node
172.16.245.5!

Feb 16 17:37:58 node2 ipfail: [4340]: info: Telling other node that we
have more visible ping nodes.

Feb 16 17:37:58 node2 ipfail: [4340]: debug: Sending you_are_dead.
Feb 16 17:37:58 node2 ipfail: [4340]: debug: Message [you_are_dead]
sent.

Feb 16 17:37:58 node2 ipfail: [4340]: debug: Got asked for num_ping.
Feb 16 17:37:58 node2 ipfail: [4340]: debug: Found ping node
172.16.245.1!

Feb 16 17:37:59 node2 ipfail: [4340]: debug: Found ping node
172.16.245.5!

Feb 16 17:37:59 node2 ipfail: [4340]: info: Telling other node that we
have more visible ping nodes.

Feb 16 17:37:59 node2 ipfail: [4340]: debug: Sending you_are_dead.

Clusters 377

ptg

Feb 16 17:37:59 node2 ipfail: [4340]: debug: Message [you_are_dead]
sent.

Feb 16 17:38:05 node2 heartbeat: [4255]: info: node1 wants to go
standby [all]

Feb 16 17:38:06 node2 ipfail: [4340]: debug: Other side is unstable.
Feb 16 17:38:06 node2 heartbeat: [4255]: info: standby: acquire [all]
resources from node1

Feb 16 17:38:06 node2 heartbeat: [4443]: info: acquire all HA
resources (standby).

Feb 16 17:38:06 node2 ResourceManager[4457]: info: Acquiring resource
group: node1 172.16.245.222 apache2

Feb 16 17:38:06 node2 IPaddr[4483]: INFO: Resource is stopped
Feb 16 17:38:06 node2 ResourceManager[4457]: info: Running
/etc/ha.d/resource.d/IPaddr 172.16.245.222 start

Feb 16 17:38:06 node2 ResourceManager[4457]: debug: Starting
/etc/ha.d/resource.d/IPaddr 172.16.245.222 start

Feb 16 17:38:07 node2 IPaddr[4554]: INFO: Using calculated nic for
172.16.245.222: eth0

Feb 16 17:38:07 node2 IPaddr[4554]: INFO: Using calculated netmask
for 172.16.245.222: 255.255.255.0

Feb 16 17:38:07 node2 IPaddr[4554]: DEBUG: Using calculated broadcast
for 172.16.245.222: 172.16.245.255

Feb 16 17:38:07 node2 IPaddr[4554]: INFO: eval ifconfig eth0:0
172.16.245.222 netmask 255.255.255.0 broadcast 172.16.245.255

Feb 16 17:38:07 node2 IPaddr[4554]: DEBUG: Sending Gratuitous Arp for
172.16.245.222 on eth0:0 [eth0]

Feb 16 17:38:07 node2 kernel: [7391.316832] NET: Registered protocol
family 17

Feb 16 17:38:07 node2 IPaddr[4539]: INFO: Success
Feb 16 17:38:07 node2 ResourceManager[4457]: debug:
/etc/ha.d/resource.d/IPaddr 172.16.245.222 start done. RC=0

Feb 16 17:38:07 node2 ResourceManager[4457]: info: Running
/etc/init.d/apache2 start

Feb 16 17:38:07 node2 ResourceManager[4457]: debug: Starting
/etc/init.d/apache2 start

Feb 16 17:38:07 node2 ResourceManager[4457]: debug:
/etc/init.d/apache2 start done. RC=0

Feb 16 17:38:07 node2 heartbeat: [4443]: info: all HA resource
acquisition completed (standby).

Feb 16 17:38:07 node2 heartbeat: [4255]: info: Standby resource
acquisition done [all].

Feb 16 17:38:08 node2 heartbeat: [4255]: info: remote resource
transition completed.

Feb 16 17:38:08 node2 ipfail: [4340]: debug: Other side is now stable.
Feb 16 17:38:08 node2 ipfail: [4340]: debug: Other side is now stable.

Now you can plug the interface back in. If you disabled automatic fail-
over, the other node will still hold the floating IP. Otherwise the cluster will

378 Chapter 10 � Fault Tolerance

ptg

fail back. At this point your cluster should be ready for any remaining tests
to tune the time-outs appropriately and then, finally, active use.

The previous example is a good starting place for your own clustered
service but certainly doesn’t cover everything that Heartbeat can do. For
more information about Heartbeat along with more details on configura-
tion options and additional guides, check out www.linux-ha.org.

DRBD
A common need in a cluster is replicated storage. When a host goes down,
the fail-over host needs access to the same data. On a static Web server, or a
Web server with a separate database server, this requirement is easily met
since the data can be deployed to both members of the cluster. In many
cases, though, such as more complex Web sites that allow file uploads, or
with clustered NFS or Samba servers, you need a more sophisticated
method to keep files synchronized across the cluster.

When faced with the need for synchronized storage, many administrators
start with some basic replication method like an rsync command that runs
periodically via cron. When you have a cluster, however, you want some-
thing more sophisticated. With DRBD you can set up a file system so that
every write is replicated over the network to another host. Here I describe
how to add DRBD to our Heartbeat cluster example from above. I have
added a second drive to each node at /dev/sdb and created a partition that
fills up the drive at /dev/sdb1. The goal is to have a replicated disk available
at /mnt/shared on the active node.

The first step is to install the DRBD utilities. These are available in the
drbd8-utils package, so install it with your preferred package manager:

$ sudo apt-get install drbd8-utils

The next step is to create a configuration file for DRBD to use. The pack-
age will automatically install a sample /etc/drbd.conf file that documents
all of the major options. Definitely use this sample as a reference, but I rec-
ommend you move it out of the way and create a clean /etc/drbd.conf file

Clusters 379

www.linux-ha.org

ptg

380 Chapter 10 � Fault Tolerance

for your cluster since, as you will see, the drbd.conf is relatively simple.
Here’s the /etc/drbd.conf I use for my cluster:

global {
usage-count no;

}

common {
protocol C;

}

resource r0 {
on node1 {
device /dev/drbd1;
disk /dev/sdb1;
address 192.168.10.1:7789;
meta-disk internal;
}
on node2 {
device /dev/drbd1;
disk /dev/sdb1;
address 192.168.10.2:7789;
meta-disk internal;
}
net {
after-sb-0pri discard-younger-primary;
after-sb-1pri consensus;
after-sb-2pri disconnect;
}

}

To simplify things, I break up this configuration file into sections and
describe the options:

global {
usage-count no;

}

common {
protocol C;

}

The global section allows you to define certain options that apply outside
of any individual resource. The usage-count option defines whether your

ptg

cluster will participate in DRBD’s usage counter. If you want to partici-
pate, set this to Yes. Set it to No if you want your DRBD usage to be more
private.

The common section allows you to define options that apply to every resource
definition. For instance, the protocol option lets you define which transfer
protocol to use. The different transfer protocols are defined in the sample
drbd.conf included with the package. For protocol, choose C unless you
have a specific reason not to. Since I have a number of options in my
resource section that are the same for each node (like device, disk, and
meta-disk), I could actually put all of these options in the common section.
You just need to be aware that anything you place in the common section will
apply to all resources you define.

Each replicated file system you set up is known as a resource and has its
own resource definition. The resource definition is where you define which
nodes will be in your cluster, what DRBD disk to create, what actual parti-
tion to use on each host, and what network IP and port to use for the repli-
cation. Here is the resource section of my config for a resource called r0:

resource r0 {
on node1 {
device /dev/drbd1;
disk /dev/sdb1;
address 192.168.10.1:7789;
meta-disk internal;
}
on node2 {
device /dev/drbd1;
disk /dev/sdb1;
address 192.168.10.2:7789;
meta-disk internal;
}
net {
after-sb-0pri discard-younger-primary;
after-sb-1pri consensus;
after-sb-2pri disconnect;
}

}

As you can see, I have defined two nodes here, node1 and node2, and within
the node definitions are specific options for that host. I have decided to use

Clusters 381

ptg

/dev/drbd1 as the DRBD virtual device each host will actually mount and
access and to use /dev/sdb1 as the physical partition DRBD will use on
each host. DRBD standardizes on port 7788 on up for each resource, so I
have chosen port 7789 here. If you have enabled a firewall on your hosts,
you will need to make sure that this port is unblocked. Note also that I
have specified the IP addresses for the private network I was using before
for Heartbeat and not the public IP addresses. Since I know this network is
pretty stable (it’s over a crossover cable), I want to use it to replicate the
data. Otherwise you do want to make sure that any network you use for
DRBD is fault-tolerant.

The final option for each node is meta-disk set to internal. DRBD needs
some area to store its metadata. The ideal, simplest way to set this up is to
use an internal metadisk. With an internal metadisk, DRBD will set aside
the last portion of the partition (in this case /dev/sdb1) for its metadata. If
you are setting up DRBD with a new, empty partition, I recommend you
use an internal metadisk as it is much easier to maintain and you are guar-
anteed that the metadisk and the rest of the data are consistent when a disk
fails. If you want to replicate a partition that you are already using, you will
have to use an external metadisk on a separate partition and define it here
in drbd.conf, or you risk having DRBD overwrite some of your data at the
end of the partition. If you do need an external metadisk, visit www.drbd
.org/docs/about/ and check out their formulas and examples of how to
properly set up external metadisks.

The final part of my r0 resource is the following:

net {
after-sb-0pri discard-younger-primary;
after-sb-1pri consensus;
after-sb-2pri disconnect;
}

These are actually the default settings for DRBD, so I didn’t need to explic-
itly list them here. I did so just so I could show how you can change
DRBD’s default split-brain policy. Remember that when a split brain
occurs, neither node can communicate with the other and can’t necessar-
ily determine which node should be active. With DRBD, by default only
one node is listed as the primary and the other is the secondary. In this sec-

382 Chapter 10 � Fault Tolerance

www.drbd.org/docs/about/
www.drbd.org/docs/about/

ptg

tion you can define behavior after different split-brain scenarios. The
after-sb-0pri section defines what to do when both nodes are listed as
secondary after a split brain. The default is to use the data from the node
that was the primary before the split brain occurred. The next option sets
what to do if one of the nodes was the primary after the split brain. The
default is consensus. With consensus, the secondary’s data will be dis-
carded if the after-sb-0pri setting would also destroy it. Otherwise the
nodes will disconnect from each other so you can decide which node will
overwrite the other. The final after-sb-2pri option defines what to do if
both nodes think they are the primary after a split brain. Here DRBD will
disconnect the two nodes from each other so you can decide how to pro-
ceed. Check out the sample drbd.conf file for a full list of other options
you can use for this section.

NOTE I could have condensed the configuration file quite a bit since both nodes will use the same
type of metadisk, disk, and drive settings. Here’s an example of a condensed drbd.conf:

global {
usage-count no;

}

common {
protocol C;

}

resource r0 {
device /dev/drbd1;
disk /dev/sdb1;
meta-disk internal;
on node1 {

address 192.168.10.1:7789;
}
on node2 {

address 192.168.10.2:7789;
}
net {

after-sb-0pri discard-younger-primary;
after-sb-1pri consensus;
after-sb-2pri disconnect;

}
}

Clusters 383

ptg

Initialize the DRBD Resource Now that the /etc/drbd.conf file is set up, I
make sure it exists on both nodes and then run the same set of commands
on both nodes to initialize it. First I load the kernel DRBD module, then I
create the metadata on my resource (r0), and then I bring the device up for
the first time:

$ sudo modprobe drbd
$ sudo drbdadm create-md r0
$ sudo drbdadm up r0

Notice that I reference the r0 resource I have defined in drbd.conf. If you
set up more than one resource in the file, you would need to perform the
drbdadm commands for each of the resources the first time you set them
up. After you run these commands on each node, you can check the
/proc/drbd file on each node for the current status of the disk:

$ cat /proc/drbd
version: 8.0.11 (api:86/proto:86)
GIT-hash: b3fe2bdfd3b9f7c2f923186883eb9e2a0d3a5b1b build by
phil@mescal, 2008-02-12 11:56:43

1: cs:WFConnection st:Secondary/Unknown ds:Inconsistent/DUnknown
C r---
ns:0 nr:0 dw:0 dr:0 al:0 bm:0 lo:0 pe:0 ua:0 ap:0
resync: used:0/31 hits:0 misses:0 starving:0 dirty:0 changed:0
act_log: used:0/127 hits:0 misses:0 starving:0 dirty:0
changed:0

In this output you can see that its current status (cs) is WFConnection,
which means it is Waiting for a Connection. Currently no node has been
assigned as the primary, so each will think that its state (st) is Secondary/
Unknown. Finally, the disk state (ds) will be Inconsistent because both
DRBD resources have not been synced yet. It will also show Inconsistent
here if you suffer a split brain on your cluster and DRBD can’t recover
from it automatically.

Next you are ready to perform the initial synchronization from one node
to the other. This means you have to choose one node to act as the pri-
mary, and both nodes need to be able to communicate with each other

384 Chapter 10 � Fault Tolerance

ptg

over the network. Now if your disk already had data on it, it is crucial that
you choose it as the primary. Otherwise the blank disk on the second node
will overwrite all of your data. If both disks are currently empty, it doesn’t
matter as much. In my case I choose node1 as the primary and run the fol-
lowing command on it:

$ sudo drbdadm -- --overwrite-data-of-peer primary r0

At this point data will start to synchronize from node1 to node2. If I check
the output of /proc/drbd, I can see its progress, much as with /proc/mdstat
and software RAID:

$ cat /proc/drbd
version: 8.0.11 (api:86/proto:86)
GIT-hash: b3fe2bdfd3b9f7c2f923186883eb9e2a0d3a5b1b build by
phil@mescal, 2008-02-12 11:56:43

1: cs:SyncSource st:Primary/Secondary ds:UpToDate/Inconsistent
C r---
ns:9568 nr:0 dw:0 dr:9568 al:0 bm:0 lo:0 pe:0 ua:0 ap:0
[>.] sync'ed: 0.2% (8171/8181)M
finish: 7:15:50 speed: 316 (316) K/sec
resync: used:0/31 hits:597 misses:1 starving:0 dirty:0
changed:1

act_log: used:0/127 hits:0 misses:0 starving:0 dirty:0
changed:0

Now you can see that the current status, state, and disk state have all
changed. Once the synchronization starts, you can go ahead and start
using /dev/drbd1 like a regular partition and put a file system on it and
mount it. In my case the disk was empty, so I needed to do both on node1:

$ sudo mkfs -t ext3 /dev/drbd1
$ sudo mkdir /mnt/shared
$ sudo mount /dev/drbd1 /mnt/shared

Now go to node2 and make sure that the /mnt/shared directory exists
there as well, but don’t mount /dev/drbd1! Since I am using ext3 and not a
clustering file system, I can mount /dev/drbd1 on only one node at a time.
Once the file finishes syncing, the status will change to Connected and the

Clusters 385

ptg

disk state will change to UpToDate. You are then ready to set up Heartbeat
so that it can fail-over DRBD properly.

NOTE Notice that I didn’t say anything about /etc/fstab here. You do not want to add any DRBD
devices to /etc/fstab because they will not necessarily automatically mount at boot time.
Instead, Heartbeat will take care of mounting any DRBD disks on the active member of the
cluster.

Configure Heartbeat Heartbeat includes DRBD support specifically in
the form of a script under /etc/ha.d/resource.d/ called drbddisk. You can
use this script to tell Heartbeat which resources to start or stop. Unless you
use a clustering file system, only one node can mount and write to a DRBD
device at a time, so you need to set up Heartbeat so that it will mount or
unmount the file system based on which node is active. Previously the line
in my /etc/ha.d/haresources file was

node1 172.16.245.222 apache2

Now I will change it to

node1 172.16.245.222 drbddisk::r0
Filesystem::/dev/drbd1::/mnt/shared::ext3 apache2

Make similar changes to the haresources file on node2 as well. Once you
change the /etc/ha.d/haresources file on both hosts, run

$ sudo /etc/init.d/heartbeat reload

Now your cluster is ready to go. You can simulate a failure by, for instance,
rebooting the primary host. If you go to the second node, you should
notice Heartbeat kick in almost immediately and mount /dev/drbd1, start
Apache, and take over the floating IP. The /proc/drbd file will list the status
as WFConnection since it is waiting for the other host to come back up and
should show that the node is now the primary. Because we set up the

386 Chapter 10 � Fault Tolerance

ptg

Clusters 387

Heartbeat cluster previously to not fail back, even when node1 comes
back, node2 will be the active member of the cluster. To test failback just
reboot node2 and watch the disk shift over to node1.

NOTE To create a replicated-disk, fault-tolerant Samba or NFS cluster instead of an Apache cluster,
just install and configure Samba or NFS on both nodes as normal and share out the
/mnt/shared directory. Then replace apache2 in /etc/ha.d/haresources with either samba or
nfs-user-server depending on which service you use so it will start or stop those init
scripts instead of apache2. You could even set up both Samba and NFS on the same
machine and list both samba and nfs-user-server in haresources.

drbdadm Disk Management Once you have a functioning DRBD disk,
drbdadm is the primary tool you will use to manage your disk resources.
The DRBD init script should take care of initializing your resources, but
you can use

$ sudo drbdadm up r0

To bring up a resource, replace r0 with the name of the resource you want
to start. Likewise, you can take down an inactive resource with

$ sudo drbdadm down r0

You can also manually change whether a node is in primary or secondary
mode, although in a Heartbeat cluster I recommend you let Heartbeat take
care of this. If you do decide to change over from primary to secondary
mode, be sure to unmount the disk first. Also, if any node is currently pri-
mary, DRBD won’t let you change it to secondary while the nodes are con-
nected (the cs: value in /proc/drbd), so you will have to disconnect them
from each other first. To set the primary or secondary mode manually for
a particular resource, run

$ sudo drbdadm primary r0
$ sudo drbdadm secondary r0

ptg

CHANGE DRBD.CONF At some point you might want to make changes in
your /etc/drbd.conf file such as changing split-brain recovery modes.
Whenever you make changes, make sure that the same change is added to
/etc/drbd.conf on all of your nodes, and then run

$ sudo drbdadm adjust r0

on both nodes. Replace r0 with the name of the resource you want to
change.

REPLACE A FAILED DISK Ideally you will have any disks you use with DRBD
set up in some sort of RAID so that a disk can fail without taking out the
node. If you do have a DRBD disk set up on a single drive as I do in this
example and the drive fails, you will need to run a few commands to add the
fresh drive. In this example I will assume that /dev/sdb failed on my node1
server. First, by default DRBD should automatically detach and remove a
disk when it has a failure, so unless you knowingly tweaked that default,
DRBD should do that work for you. Once you add and partition the replace-
ment drive (in my case it will be /dev/sdb1), then first you need to re-create
the internal metadata on /dev/sdb1 and then attach the resource:

$ sudo drbdadm create-md r0
$ sudo drbdadm attach r0

MANUALLY SOLVE SPLIT BRAIN DRBD will attempt to resolve split-brain
problems automatically, but sometimes it is unable to determine which
node should overwrite the other. In this case you might have two nodes
that have both mounted their DRBD disk and are writing to it. If this hap-
pens you will have to make a decision as to which node has the version of
data you want to preserve. Let’s say in my case that node1 and node2 have
a split brain and have disconnected from each other. I decide that node2
has the most up-to-date data and should become the primary and over-
write node1. In this case I have to tell node1 to discard its data, so I go to
node1, make sure that any DRBD disk is unmounted, and type

$ sudo drbdadm secondary r0
$ sudo drbdadm -- --discard-my-data connect r0

388 Chapter 10 � Fault Tolerance

ptg

If node2 is already in WFConnection state, it will automatically reconnect to
node1 at this point. Otherwise I need to go to node2, the node that has the
good data, and type

$ sudo drbdadm connect r0

Now node2 will synchronize its data over to node1.

These steps should get you up and running with a solid replicated disk for
your cluster. For more detailed information about DRBD, including more
advanced clustering options than I list here, visit the official site at www
.drbd.org.

Clusters 389

www.drbd.org
www.drbd.org

ptg

This page intentionally left blank

ptg

391

11C H A P T E R 1 1

Troubleshooting

ptg

TROUBLESHOOTING IS A TOPIC that is near and dear to me. While there are
many other areas of system administration that I enjoy, I don’t think any-
thing compares to the excitement of tracking down the root cause of an
obscure problem. Good troubleshooting is a combination of Sherlock
Holmes–style detective work, intuition, and a little luck. You might even
argue that some people have a knack for troubleshooting while others
struggle with it, but in my mind it’s something that all sysadmins get better
at the more problems they run into.

While this chapter discusses troubleshooting, there are a number of com-
mon problems that can cause your Ubuntu system to not boot or to run
in an incomplete state. I have moved all of these topics into their own
chapter on rescue and recovery and have provided specific steps to fix
common problems with the Ubuntu rescue CD. So if you are trying to
solve a problem at the moment, check Chapter 12, Rescue and Recovery,
first to see if I have already outlined a solution. If not, come back here to
get the more general steps to isolate the cause of your problem and work
out its solution.

In this chapter I discuss some aspects of my general philosophy on trou-
bleshooting that could be applied to a wide range of problems. Then I cover
a few common problems that you might run into and introduce some tools
and techniques to help solve them. By the end of the chapter you should
have a head start the next time a problem turns up. After all, in many orga-
nizations downtime is measured in dollars, not minutes, so there is a lot to
be said for someone who can find a root cause quickly.

General Troubleshooting Philosophy
While there are specific steps you can take to address certain computer
problems, most troubleshooting techniques rely on the same set of rules.
Here I discuss some of these rules that will help make you a better
 troubleshooter.

Divide the Problem Space
When I’m faced with an unknown issue, I apply the same techniques as
when I have to pick a number between 1 and 100. If you have ever played

392

ptg

this game, you know that most people fall into one of two categories: the
random guessers and the narrowers. The random guessers might start by
choosing 15, then hear that the number is higher and pick 23, then hear it
is still higher. Eventually they might either luck into the right number or
pick so many numbers that only the right number remains. In either case
they use far more guesses than they need to. Many people approach trou-
bleshooting the same way: They choose solutions randomly until one hap-
pens to work. Such a person might eventually find the problem, but it
takes way longer than it should.

In contrast to the random guessers, the narrowers strategically choose
numbers that narrow the problem in half each time. Let’s say the number
is 80, for instance; their guesses would go as follows: 50, 75, 88, 82, 78, 80.
With each guess, the list of numbers that could contain the answer is
reduced by half. When people like this troubleshoot a computer problem,
their time is spent finding ways to divide the problem space in half as
much as possible. As I go through specific problems in this chapter, you
will see this methodology in practice.

Favor Quick, Simple Tests over Slow, Complex Tests
What I mean here is that as you narrow down the possible causes of a
problem, you will often end up with a few hypotheses that are equally
likely. One hypothesis can be tested quickly but the other takes some time.
For instance, if a machine can’t seem to communicate with the network, a
quick test could be to see if the network cable is plugged in, while a longer
test would involve more elaborate software tests on the host. If the quick
test isolates the problem, you get the solution that much faster. If you still
need to try the longer test, you aren’t out that much extra time.

Favor Past Solutions
Unless you absolutely prevent a problem from ever happening again, it’s
likely that when a symptom that you’ve seen before pops up, it could have
the same solution. Over the years you’ll find that you develop a common
list of things you try first when you see a particular problem to rule out all
of the common causes before you move on to more exotic hypotheses. Of
course, you will have problems you’ve never seen before, too—that’s part

General Troubleshooting Philosophy 393

ptg

of the fun of troubleshooting—but when you test some of your past solu-
tions first, you will find you solve problems faster.

Good Communication Is Critical When Collaborating
If you are part of a team that is troubleshooting a problem, you absolutely
must have good communication among team members. That could be as
simple as yelling across cubicle walls, or it could mean setting up a chat
room. A common problem when a team works an issue is multiple mem-
bers testing the same hypothesis. With good communication each person
can tackle a different hypothesis and report the results. These results can
then lead to new hypotheses that can be divided among the team mem-
bers. One final note: Favor communication methods that allow multiple
people to communicate at the same time. This means that often chat
rooms work much better than phones for problem solving, since over the
phone everyone has to wait for a turn to speak; in a chat room multiple
people can communicate at once.

Understand How Systems Work
The more deeply you understand how a system works, the faster you can
rule out causes of problems. Over the years I’ve noticed that when a problem
occurs, people first tend to blame the technology they understand the least.
At one point in my career, every time a network problem occurred, everyone
immediately blamed DNS, even when it appeared obvious (at least to me)
that not only was DNS functioning correctly, it never had actually been the
cause of any of the problems. One day we decided to hold a lecture to
explain how DNS worked and traced an ordinary DNS request from the
client to every DNS server and back. Afterward everyone who attended the
class stopped jumping to DNS as the first cause of network problems. There
are core technologies with which every sysadmin deals on a daily basis, such
as TCP/IP networking, DNS, Linux processes, programming, and memory
management; it is crucial that you learn about these in as much depth as
possible if you want to find a solution to a problem quickly.

Document Your Problems and Solutions
Many organizations have as part of their standard practice a postmortem
meeting after every production issue. A postmortem allows the team to

394 Chapter 11 � Troubleshooting

ptg

document the troubleshooting steps they took to arrive at a root cause as
well as what solution ultimately fixed the issue. Not only does this help
make sure that there is no disagreement about what the root cause is, but
when everyone is introduced to each troubleshooting step, it helps make all
the team members better problem solvers going forward. When you docu-
ment your problem-solving steps, you have a great guide you can go to the
next time a similar problem crops up so it can be solved that much faster.

Use the Internet, but Carefully
The Internet is an incredibly valuable resource when you troubleshoot a
problem, especially if you are able to articulate it in search terms. After all,
you are rarely the only person to face a particular problem, and in many
cases other people have already come up with the solution. Be careful with
your Internet research, though. Often your results are only as good as your
understanding of the problem. I’ve seen many people go off on completely
wrong paths to solve a problem because of a potential solution they found
on the Internet. After all, a search for “Ubuntu server not on network” will
turn up all sorts of completely different problems irrelevant to your issue.

Resist Rebooting
OK, so those of us who have experience with Windows administration
have learned over the years that when you have a weird problem, a reboot
often fixes it. Resist this “technique” on your Ubuntu servers! I’ve had
servers with uptimes measured in years because most problems found on
a Linux machine can be solved without a reboot. The problem with
rebooting a machine (besides ruining your uptime) is that if the problem
does go away, you may never know what actually caused it. That means
you can’t solve it for good and will ultimately see the problem again. As
attractive as rebooting might be, keep it as your last resort.

Localhost Troubleshooting
While I would say that a majority of problems you will find on a server
have some basis in networking, there is still a class of issues that involves
only the localhost. What makes this tricky is that some local and network-
ing problems often create the same set of symptoms, and in fact local

Localhost Troubleshooting 395

ptg

problems can create network problems and vice versa. In this section I will
cover problems that occur specifically on a host and leave issues that
impact the network to the next section.

Host Is Sluggish or Unresponsive
Probably one of the most common problems you will find on a host is
that it is sluggish or completely unresponsive. Often this can be caused by
network issues, but here I will discuss some local troubleshooting tools
you can use to tell the difference between a loaded network and a loaded
machine.

When a machine is sluggish, it is often because you have consumed all of a
particular resource on the system. The main resources are CPU, RAM, disk
I/O, and network (which I will leave to the next section). Overuse of any of
these resources can cause a system to bog down to the point that often the
only recourse is your last resort—a reboot. If you can log in to the system,
however, there are a number of tools you can use to identify the cause.

System Load System load average is probably the fundamental metric
you start from when troubleshooting a sluggish system. One of the first
commands I run when I’m troubleshooting a slow system is uptime:

$ uptime
13:35:03 up 103 days, 8 min, 5 users, load average: 2.03, 20.17, 15.09

The three numbers after the load average, 2.03, 20.17, and 15.09, represent
the 1-, 5-, and 15-minute load averages on the machine, respectively. A sys-
tem load average is equal to the average number of processes in a runnable
or uninterruptible state. Runnable processes are either currently using the
CPU or waiting to do so, and uninterruptible processes are waiting for I/O.
A single-CPU system with a load average of 1 means the single CPU is
under constant load. If that single-CPU system has a load average of 4,
there is 4 times the load on the system that it can handle, so three out of
four processes are waiting for resources. The load average reported on a
system is not tweaked based on the number of CPUs you have, so if you
have a two-CPU system with a load average of 1, one of your two CPUs is
loaded at all times—i.e., you are 50% loaded. So a load of 1 on a single-

396 Chapter 11 � Troubleshooting

ptg

CPU system is the same as a load of 4 on a four-CPU system in terms of
the amount of available resources used.

The 1-, 5-, and 15-minute load averages describe the average amount of
load over that respective period of time and are valuable when you try to
determine the current state of a system. The 1-minute load average will
give you a good sense of what is currently happening on a system, so in my
previous example you can see that I most recently had a load of 2 over the
last minute, but the load had spiked over the last 5 minutes to an average of
20. Over the last 15 minutes the load was an average of 15. This tells me
that the machine had been under high load for at least 15 minutes and the
load appeared to increase around 5 minutes ago, but it appears to have
subsided. Let’s compare this with a completely different load average:

$ uptime
05:11:52 up 20 days, 55 min, 2 users, load average: 17.29, 0.12, 0.01

In this case both the 5- and 15-minute load averages are low, but the 1-
minute load average is high, so I know that this spike in load is relatively
recent. Often in this circumstance I will run uptime multiple times in a row
(or use a tool like top, which I will discuss in a moment) to see whether the
load is continuing to climb or is on its way back down.

WHAT IS A HIGH LOAD AVERAGE? A fair question to ask is what load average
you consider to be high. The short answer is “It depends on what is causing
it.” Since the load describes the average number of active processes that are
using resources, a spike in load could mean a few things. What is important
to determine is whether the load is CPU-bound (processes waiting on CPU
resources), RAM-bound (specifically, high RAM usage that has moved into
swap), or I/O-bound (processes fighting for disk or network I/O).

For instance, if you run an application that generates a high number of
simultaneous threads at different points, and all of those threads are
launched at once, you might see your load spike to 20, 40, or higher as they
all compete for system resources. As they complete, the load might come
right back down. In my experience systems seem to be more responsive
when under CPU-bound load than when under I/O-bound load. I’ve seen
systems with loads in the hundreds that were CPU-bound, and I could run

Localhost Troubleshooting 397

ptg

diagnostic tools on those systems with pretty good response times. On the
other hand, I’ve seen systems with relatively low I/O-bound loads on
which just logging in took a minute, since the disk I/O was completely satu-
rated. A system that runs out of RAM resources often appears to have I/O-
bound load, since once the system starts using swap storage on the disk, it
can consume disk resources and cause a downward spiral as processes slow
to a halt.

top One of the first tools I turn to when I need to diagnose high load is
top. I have discussed the basics of how to use the top command in Chapter 2,
so here I will focus more on how to use its output to diagnose load. The
basic steps are to examine the top output to identify what resources you
are running out of (CPU, RAM, disk I/O). Once you have figured that out,
you can try to identify what processes are consuming those resources the
most. First let’s examine some standard top output from a system:

top - 14:08:25 up 38 days, 8:02, 1 user, load average: 1.70, 1.77, 1.68

Tasks: 107 total, 3 running, 104 sleeping, 0 stopped, 0 zombie

Cpu(s): 11.4%us, 29.6%sy, 0.0%ni, 58.3%id, .7%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 1024176k total, 997408k used, 26768k free, 85520k buffers

Swap: 1004052k total, 4360k used, 999692k free, 286040k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

9463 mysql 16 0 686m 111m 3328 S 53 5.5 569:17.64 mysqld

18749 nagios 16 0 140m 134m 1868 S 12 6.6 1345:01 nagios2db_status

24636 nagios 17 0 34660 10m 712 S 8 0.5 1195:15 nagios

22442 nagios 24 0 6048 2024 1452 S 8 0.1 0:00.04 check_time.pl

The first line of output is the same as you would see from the uptime com-
mand. As you can see in this case, the machine isn’t too heavily loaded for
a four-CPU machine:

top - 14:08:25 up 38 days, 8:02, 1 user, load average: 1.70, 1.77, 1.68

top provides you with extra metrics beyond standard system load, though.
For instance, the Cpu(s) line gives you information about what the CPUs
are currently doing:

Cpu(s): 11.4%us, 29.6%sy, 0.0%ni, 58.3%id, 0.7%wa, 0.0%hi, 0.0%si, 0.0%st

398 Chapter 11 � Troubleshooting

ptg

These abbreviations may not mean much if you don’t know what they
stand for, so I will break down each of them below.

� us: user CPU time
This is the percentage of CPU time spent running users’ processes
that aren’t niced (nicing a process allows you to change its priority in
relation to other processes).

� sy: system CPU time
This is the percentage of CPU time spent running the kernel and ker-
nel processes.

� ni: nice CPU time
If you have user processes that have been niced, this metric will tell
you the percentage of CPU time spent running them.

� id: CPU idle time
This is one of the metrics that you want to be high. It represents the
percentage of CPU time that is spent idle. If you have a sluggish sys-
tem but this number is high, you know the cause isn’t high CPU load.

� wa: I/O wait
This number represents the percentage of CPU time that is spent
waiting for I/O. It is a particularly valuable metric when you are
tracking down the cause of a sluggish system, because if this value is
low, you can pretty safely rule out disk or network I/O as the cause.

� hi: hardware interrupts
This is the percentage of CPU time spent servicing hardware interrupts.

� si: software interrupts
This is the percentage of CPU time spent servicing software interrupts.

� st: steal time
If you are running virtual machines, this metric will tell you the per-
centage of CPU time that was stolen from you for other tasks.

Localhost Troubleshooting 399

ptg

In my previous example, you can see that the system is over 50% idle,
which matches a load of 1.70 on a four-CPU system. When I diagnose a
slow system, one of the first values I look at is I/O wait so I can rule out
disk I/O. If I/O wait is low, then I can look at the idle percentage. If I/O
wait is high, then the next step is to diagnose what is causing high disk I/O,
which I cover below. If I/O wait and idle times are low, then you will likely
see a high user time percentage, so you must diagnose what is causing high
user time. If the I/O wait is low and the idle percentage is high, you then
know any sluggishness is not because of CPU resources and will have to
start troubleshooting elsewhere. This might mean looking for network
problems, or in the case of a Web server looking at slow queries to MySQL,
for instance.

Diagnose High User Time A common and relatively simple problem to
diagnose is high load due to a high percentage of user CPU time. This is
common since the services on your server are likely to take the bulk of the
system load and they are user processes. If you see high user CPU time but
low I/O wait times, you simply need to identify which processes on the sys-
tem are consuming the most CPU. By default, top will sort all of the
processes by their CPU usage:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

9463 mysql 16 0 686m 111m 3328 S 53 5.5 569:17.64 mysqld

18749 nagios 1 0 140m 134m 1868 S 12 6.6 1345:01 nagios2db_status

24636 nagios 17 0 34660 10m 712 S 8 0.5 1195:15 nagios

22442 nagios 24 0 6048 2024 1452 S 8 0.1 0:00.04 check_time.pl

In this example the mysqld process is consuming 53% of the CPU and the
nagios2db_status process is consuming 12%. Note that this is the percent-
age of a single CPU, so if you have a four-CPU machine you could possibly
see more than one process consuming 99% CPU.

The most common high-CPU-load situations you will see are all of the
CPUs being consumed either by one or two processes or by a large number
of processes. Either case is easy to identify since in the first case the top
process or two will have a very high percentage of CPU and the rest will be
relatively low. In that case, to solve the issue you could simply kill the
process that is using the CPU (hit K and then type in the PID number for
the process).

400 Chapter 11 � Troubleshooting

ptg

In the case of multiple processes, you might simply have a case of one sys-
tem doing too many things. You might, for instance, have a large number
of Apache processes running on a Web server along with some log parsing
scripts that run from cron. All of these processes might be consuming
more or less the same amount of CPU. The solution to problems like this
can be trickier for the long term, as in the Web server example you do need
all of those Apache processes to run, yet you might need the log parsing
programs as well. In the short term you can kill (or possibly postpone)
some processes until the load comes down, but in the long term you might
need to consider increasing the resources on the machine or splitting some
of the functions across more than one server.

Diagnose Out-of-Memory Issues The next two lines in the top output
provide valuable information about RAM usage. Before diagnosing spe-
cific system problems, it’s important to be able to rule out memory issues.

Mem: 1024176k total, 997408k used, 26768k free, 85520k buffers

Swap: 1004052k total, 4360k used, 999692k free, 286040k cached

The first line tells me how much physical RAM is available, used, free, and
buffered. The second line gives me similar information about swap usage,
along with how much RAM is used by the Linux file cache. At first glance it
might look as if the system is almost out of RAM since the system reports
that only 26,768k is free. A number of beginner sysadmins are misled by
the used and free lines in the output because of the Linux file cache. Once
Linux loads a file into RAM, it doesn’t necessarily remove it from RAM
when a program is done with it. If there is RAM available, Linux will cache
the file in RAM so that if a program accesses the file again, it can do so
much more quickly. If the system does need RAM for active processes, it
won’t cache as many files.

To find out how much RAM is really being used by processes, you must
subtract the file cache from the used RAM. In the example above, out of
the 997,408k RAM that is used, 286,040k is being used by the Linux file
cache, so that means that only 711,368k is actually being used.

In my example the system still has plenty of available memory and is
barely using any swap at all. Even if you do see some swap being used, it is

Localhost Troubleshooting 401

ptg

402 Chapter 11 � Troubleshooting

not necessarily an indicator of a problem. If a process becomes idle, Linux
will often page its memory to swap to free up RAM for other processes. A
good way to tell whether you are running out of RAM is to look at the file
cache. If your actual used memory minus the file cache is high, and the
swap usage is also high, you probably do have a memory problem.

If you do find you have a memory problem, the next step is to identify
which processes are consuming RAM. top sorts processes by their CPU
usage by default, so you will want to change this to sort by RAM usage
instead. To do this, keep top open and hit the M key on your keyboard.
This will cause top to sort all of the processes on the page by their RAM
usage:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

18749 nagios 16 0 140m 134m 1868 S 12 6.6 1345:01 nagios2db_status

9463 mysql 16 0 686m 111m 3328 S 53 5.5 569:17 mysqld

24636 nagios 17 0 34660 10m 712 S 8 0.5 1195:15 nagios

22442 nagios 24 0 6048 2024 1452 S 8 0.1 0:00.04 check_time.pl

Look at the %MEM column and see if the top processes are consuming a
majority of the RAM. If you do find the processes that are causing high
RAM usage, you can decide to kill them, or, depending on the program,
you might need to perform specific troubleshooting to find out what is
making that process use so much RAM.

NOTE top can actually sort its output by any of the columns. To change which column top sorts
by, hit the F key to change to a screen where you can choose the sort column. After you hit a
key that corresponds to a particular column (for instance, K for the CPU column), you can
hit Enter to return to the main top screen.

OOM KILLER The Linux kernel also has an out-of-memory (OOM) killer
that can kick in if the system runs dangerously low on RAM. When a sys-
tem is almost out of RAM, the OOM killer will start killing processes. In
some cases this might be the process that is consuming all of the RAM, but
this isn’t guaranteed. I’ve seen the OOM killer end up killing programs like
sshd or other processes instead of the real culprit. In many cases the system
is unstable enough after one of these events that you find you have to
reboot it to ensure that all of the system processes are running. If the

ptg

OOM killer does kick in, you will see lines like the following in your
/var/log/syslog:

1228419127.32453_1704.hostname:2,S:Out of Memory: Killed process
21389 (java).

1228419127.32453_1710.hostname:2,S:Out of Memory: Killed process
21389 (java).

Diagnose High I/O Wait When I see high I/O wait, one of the first things I
check is whether the machine is using a lot of swap. Since a hard drive is
much slower than RAM, when a system runs out of RAM and starts using
swap, the performance of almost any machine suffers. Anything that wants
to access the disk has to compete with swap for disk I/O. So first diagnose
whether you are out of memory and, if so, manage the problem there. If
you do have plenty of RAM, you will need to figure out which program is
consuming the most I/O.

It can sometimes be difficult to figure out exactly which process is using
the I/O, but if you have multiple partitions on your system, you can nar-
row it down by figuring out which partition most of the I/O is on. To do
this you will need the iostat program, which is provided by the sysstat
Ubuntu package, so type

$ sudo apt-get install sysstat

Preferably you will have this program installed before you need to diag-
nose an issue. Once the program is installed, you can run iostat without
any arguments to see an overall glimpse of your system:

$ sudo iostat
Linux 2.6.24-19-server (hostname) 01/31/2009

avg-cpu: %user %nice %system %iowait %steal %idle
5.73 0.07 2.03 0.53 0.00 91.64

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
sda 9.82 417.96 27.53 30227262 1990625
sda1 6.55 219.10 7.12 15845129 515216
sda2 0.04 0.74 3.31 53506 239328
sda3 3.24 198.12 17.09 14328323 1236081

Localhost Troubleshooting 403

ptg

404 Chapter 11 � Troubleshooting

The first bit of output gives CPU information similar to what you would see
in top. Below it are I/O stats on all of the disk devices on the system as well as
their individual partitions. Here is what each of the columns represents:

� tps
This lists the transfers per second to the device. “Transfers” is another
way to say I/O requests sent to the device.

� Blk_read/s
This is the number of blocks read from the device per second.

� Blk_wrtn/s
This is the number of blocks written to the device per second.

� Blk_read
In this column is the total number of blocks read from the device.

� Blk_wrtn
In this column is the total number of blocks written to the device.

When you have a system under heavy I/O load, the first step is to look at
each of the partitions and identify which partition is getting the heaviest
I/O load. Say, for instance, that I have a database server and the database
itself is stored on /dev/sda3. If I see that the bulk of the I/O is coming from
there, I have a good clue that the database is likely consuming the I/O.
Once you figure that out, the next step is to identify whether the I/O is
mostly from reads or writes. Let’s say that I suspect that a backup job is
causing the increase in I/O. Since the backup job is mostly concerned with
reading files from the file system and writing them over the network to the
backup server, I could possibly rule that out if I see that the bulk of the I/O
is due to writes, not reads.

NOTE You will probably have to run iostat more than one time to get an accurate sense of the
current I/O on your system. If you specify a number on the command line as an argument,
iostat will continue to run and give you new output after that many seconds. For instance,
if I wanted to see iostat output every two seconds, I could type sudo iostat 2. Another
useful argument to iostat if you have any NFS shares is -n. When you specify -n, iostat
will give you I/O statistics about all of your NFS shares.

ptg

In addition to iostat, these days we have a much simpler tool available in
Ubuntu called iotop. In effect it is a blend of top and iostat in that it
shows you all of the running processes on the system sorted by their I/O
statistics. The program isn’t installed by default but is provided by the
iotop Ubuntu package, so type

$ sudo apt-get install iotop

Once the package is installed, you can run iotop as root and see output like
the following:

$ sudo iotop
Total DISK READ: 189.52 K/s | Total DISK WRITE: 0.00 B/s

TID PRIO USER DISK READ DISK WRITE SWAPIN IO>
COMMAND

8169 be/4 root 189.52 K/s 0.00 B/s 0.00 % 0.00 %
rsync --server --se

4243 be/4 kyle 0.00 B/s 3.79 K/s 0.00 % 0.00 %
cli /usr/lib/gnome-

4244 be/4 kyle 0.00 B/s 3.79 K/s 0.00 % 0.00 %
cli /usr/lib/gnome-

1 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 %
init

In this case, I can see that there is an rsync process tying up my read I/O.

Out of Disk Space
Another common problem system administrators run into is a system that
has run out of free disk space. If your monitoring is set up to catch such a
thing, you might already know which file system is out of space, but if not,
then you can use the df tool to check:

$ sudo df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sda1 7.9G 541M 7.0G 8% /
varrun 189M 40K 189M 1% /var/run
varlock 189M 0 189M 0% /var/run

Localhost Troubleshooting 405

ptg

udev 189M 44K 189M 1% /dev
devshm 189M 0 189M 0% /dev/shm
/dev/sda3 20G 15G 5.9G 71% /home

The df command lets you know how much space is used by each file sys-
tem, but after you know that, you still need to figure out what is consuming
all of that disk space. The similarly named du command is invaluable for
this purpose. This command with the right arguments can scan through a
file system and report how much disk space is consumed by each directory.
If you pipe it to a sort command, you can then easily see which directories
consume the most disk space. What I like to do is save the results in /tmp (if
there’s enough free space, that is) so I can refer to the output multiple times
and not have to rerun du. I affectionately call this the “duck command”:

$ cd /
$ sudo du -ckx | sort -n > /tmp/duck-root

This command won’t output anything to the screen but instead creates a
sorted list of what directories consume the most space and outputs the list
to /tmp/duck-root. If I then use tail on that file, I can see the top ten
directories that use space:

$ sudo tail /tmp/duck-root
67872 /lib/modules/2.6.24-19-server
67876 /lib/modules
69092 /var/cache/apt
69448 /var/cache
76924 /usr/share
82832 /lib
124164 /usr
404168 /
404168 total

In this case I can see that /usr takes up the most space, followed by /lib,
/usr/share, and then /var/cache. Note that the output separates out
/var/cache/apt and /var/cache so I can tell that /var/cache/apt is the subdi-
rectory that consumes the most space under /var/cache. Of course, I might
have to open the duck-root file with a tool like less or a text editor so I can
see more than the last ten directories.

So what can you do with this output? In some cases the directory that takes
up the most space can’t be touched (as with /usr), but often when the free

406 Chapter 11 � Troubleshooting

ptg

Localhost Troubleshooting 407

space disappears quickly it is because of log files growing out of control. If
you do see /var/log consuming a large percentage of your disk, you could
then go to the directory and type sudo ls -lS to list all of the files sorted by
their size. At that point you could truncate (basically erase the contents of)
a particular file:

$ sudo sh -c "> /var/log/messages"

Alternatively, if one of the large files has already been rotated (it ends in
something like .1 or .2), you could either gzip it if it isn’t already gzipped,
or you could simply delete it if you don’t need the log anymore.

NOTE Full / due to /tmp
I can’t count how many times I’ve been alerted about a full / file system (a dangerous situa-
tion that can often cause the system to freeze up) only to find out that it was caused by large
files in /tmp. Specifically, these were large .swp files. When vim opens a file, it copies the
entire contents into a .swp file. Certain versions of vim store this .swp file in /tmp, others in
/var/tmp, and still others in ~/tmp. In any case, what had happened was that a particular user
on the system decided to view an Apache log file that was gigabytes in size. When the user
opened the file, it created a multigigabyte .swp file in /tmp and filled up the root file system.
To solve the issue I had to locate and kill the offending vim process.

Out of Inodes Another less common but tricky situation in which you
might find yourself is the case of a file system that claims it is full, yet when
you run df you see that there is more than enough space. If this ever happens
to you, the first thing you should check is whether you have run out of
inodes. When you format a file system, the mkfs tool decides at that point the
maximum number of inodes to use as a function of the size of the partition.
Each new file that is created on that file system gets its own unique inode,
and once you run out of inodes, no new files can be created. Generally
speaking, you never get close to that maximum; however, certain servers
store millions of files on a particular file system, and in those cases you
might hit the upper limit. The df -i command will give you information on
your inode usage:

$ df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/sda 520192 17539 502653 4% /

ptg

In this example my root partition has 520,192 total inodes but only 17,539
are used. That means I can create another 502,653 files on that file system.
In the case where 100% of your inodes are used, there are only a few
options at your disposal. Either you can try to identify a large number of
files you can delete or move to another file system, possibly archive a group
of files into a tar archive, or back up the files on your current file system,
reformat it with more inodes, and copy the files back.

Network Troubleshooting
Most servers these days are attached to some sort of network and generally
use the network to provide some sort of service. Many different problems
can creep up on a network, so network troubleshooting skills become cru-
cial for any system administrator. Linux provides a large set of network
troubleshooting tools, and next I discuss a few common network prob-
lems along with how to use some of the tools available for Ubuntu to track
down the root cause.

Server A Can’t Talk to Server B
Probably the most common network troubleshooting scenario involves
one server being unable to communicate with another server on the net-
work. I use an example in which a server named ubuntu1 can’t access the
Web service (port 80) on a second server named web1. There are any num-
ber of different problems that could cause this, so I run step by step through
tests you can perform to isolate the cause of the problem. Normally when
troubleshooting a problem like this, I might skip a few of these initial steps
(such as checking link), since tests further down the line will also rule them
out. For instance, if I test and confirm that DNS works, I’ve proven that my
host can communicate on the local network. For this guide, though, I walk
through each intermediary step to illustrate how you might test each level.

Client or Server Problem One quick test you can perform to narrow down
the cause of your problem is to go to another host on the same network
and try to access the server. In my example, I would find another server on
the same network as ubuntu1, such as ubuntu2, and try to access web1. If
ubuntu2 also can’t access web1, then I know the problem is more likely on
web1, or on the network between ubuntu1 and ubuntu2, and web1. If

408 Chapter 11 � Troubleshooting

ptg

Network Troubleshooting 409

ubuntu2 can access web1, then I know the problem is more likely on
ubuntu1. To start, let’s assume that ubuntu2 can access web1, so we will
focus our troubleshooting on ubuntu1.

Is It Plugged In? The first troubleshooting steps to perform are on the
client. You first want to verify that your client’s connection to the network
is healthy. To do this you can use the ethtool program (installed via the
ethtool package) to verify that your link is up (the Ethernet device is phys-
ically connected to the network), so if your Ethernet device was at eth0:

$ sudo ethtool eth0
Settings for eth0:

Supported ports: [TP]
Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Supports auto-negotiation: Yes
Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Advertised auto-negotiation: Yes
Speed: 100Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 0
Transceiver: internal
Auto-negotiation: on
Supports Wake-on: pg
Wake-on: d
Current message level: 0x000000ff (255)
Link detected: yes

Here on the final line you can see that Link detected is set to yes so
ubuntu1 is physically connected to the network. If this were set to no you
would need to physically inspect ubuntu1’s network connection and make
sure it is connected. Since it is physically connected, I can move on.

NOTE Slow Network Speeds
ethtool has uses beyond simply checking for link. It can also be used to diagnose and cor-
rect duplex issues. When a Linux server connects to a network, typically it autonegotiates
with the network to see what speeds it can use and whether the network supports full
duplex. The Speed and Duplex lines in the example ethtool output illustrate what a
100Mb/s, full duplex network should report. If you notice slow network speeds on a host, its

ptg

speed and duplex settings are a good place to look. Run ethtool as in the example above,
and if you notice Duplex set to Half, then run:

$ sudo ethtool -s eth0 autoneg off duplex full

Replace eth0 with your Ethernet device.

Is My Interface Up? Once you have established that you are physically con-
nected to the network, the next step is to confirm that the network inter-
face is configured correctly on your host. The best way to check this is to
run the ifconfig command with your interface as an argument, so to test
eth0’s settings I would run

$ sudo ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:17:42:1f:18:be

inet addr:10.1.1.7 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::217:42ff:fe1f:18be/64 Scope:Link
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:1 errors:0 dropped:0 overruns:0 frame:0
TX packets:11 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:229 (229.0 B) TX bytes:2178 (2.1 KB)
Interrupt:10

Probably the most important line in this output is the second line,
which tells us our host has an IP address (10.1.1.7) and subnet mask
(255.255.255.0) configured. Now whether these are the right settings for
this host is something you will need to confirm. If the interface is not con-
figured, try running sudo ifup eth0 and then run ifconfig again to see if
the interface comes up. If the settings are wrong or the interface won’t
come up, inspect /etc/network/interfaces. There you can correct any errors
in the network settings. Now if the host gets its IP through DHCP, you
will need to move your troubleshooting to the DHCP host to find out
why you aren’t getting a lease.

Is It on the Local Network? Once you see that the interface is up, the next
step is to see if a default gateway has been set and whether you can access
it. The route command will display your current routing table, including
your default gateway:

410 Chapter 11 � Troubleshooting

ptg

$ sudo route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.1.1.0 * 255.255.255.0 U 0 0 0 eth0

default 10.1.1.1 0.0.0.0 UG 100 0 0 eth0

The line you are interested in is the last line that starts with default. Here
you can see that my host has a gateway of 10.1.1.1. Note that I used the -n
option with route so it wouldn’t try to resolve any of these IP addresses
into hostnames. For one thing, the command runs more quickly, but more
important, I don’t want to cloud my troubleshooting with any potential
DNS errors. Now if you don’t see a default gateway configured here, and
the host you want to reach is on a different subnet (say, web1, which is on
10.1.2.5), that is the likely cause of your problem. Either be sure to set the
gateway in /etc/network/interfaces, or if you get your IP via DHCP, be sure
it is set correctly on the DHCP server and then reset your interface with
sudo service networking restart.

Once you have identified the gateway, use the ping command to confirm
that you can communicate with the gateway:

$ ping -c 5 10.1.1.1
PING 10.1.1.1 (10.1.1.1) 56(84) bytes of data.
64 bytes from 10.1.1.1: icmp_seq=1 ttl=64 time=3.13 ms
64 bytes from 10.1.1.1: icmp_seq=2 ttl=64 time=1.43 ms
64 bytes from 10.1.1.1: icmp_seq=3 ttl=64 time=1.79 ms
64 bytes from 10.1.1.1: icmp_seq=5 ttl=64 time=1.50 ms

--- 10.1.1.1 ping statistics ---
5 packets transmitted, 4 received, 20% packet loss, time 4020ms
rtt min/avg/max/mdev = 1.436/1.966/3.132/0.686 ms

As you can see, I was able to successfully ping the gateway, which means that
I can at least communicate with the 10.1.1.0 network. If you couldn’t ping
the gateway, it could mean a few things. It could mean that your gateway is
blocking ICMP packets. If so, tell your network administrator that blocking
ICMP is an annoying practice with negligible security benefits and then try
to ping another Linux host on the same subnet. If ICMP isn’t being blocked,
then it’s possible that the switch port on your host is set to the wrong VLAN,
so you will need to further inspect the switch to which it is connected.

Network Troubleshooting 411

ptg

Is DNS Working? Once you have confirmed that you can speak to the
gateway, the next thing to test is whether DNS functions. The nslookup and
dig tools both can be used to troubleshoot DNS issues, but since I need to
perform only basic testing at this point, I just use nslookup to see if I can
resolve web1 into an IP:

$ nslookup web1
Server: 10.1.1.3
Address: 10.1.1.3#53

Name: web1.example.net
Address: 10.1.2.5

In this example DNS is working. The web1 host expands into web1
.example.net and resolves to the address 10.1.2.5. Of course, make sure
that this IP matches the IP that web1 is supposed to have! In this case DNS
works, so we can move on to the next section; however, there are also a
number of ways DNS could fail.

NO NAME SERVER CONFIGURED OR INACCESSIBLE NAME SERVER
$ nslookup web1
;; connection timed out; no servers could be reached

If you see this error, it could mean either you have no name servers config-
ured for your host, or they are inaccessible. In either case you will need to
inspect /etc/resolv.conf and see if any name servers are configured there. If
you don’t see any IP addresses configured there, you will need to add a
name server to the file. Otherwise, if you see something like

search example.net
nameserver 10.1.1.3

you now need to start troubleshooting your connection with your name
server, starting off with ping. If you can’t ping the name server and its IP
address is in the same subnet (in this case 10.1.1.3 is within my subnet), the
name server itself could be completely down. If you can’t ping the name
server and its IP address is in a different subnet, then skip ahead to the Can I
Route to the Remote Host? section, only apply those troubleshooting steps

412 Chapter 11 � Troubleshooting

ptg

to the name server’s IP. If you can ping the name server but it isn’t respond-
ing, skip ahead to the Is the Remote Port Open? section.

MISSING SEARCH PATH OR NAME SERVER PROBLEM It is also possible that
you will get the following error for your nslookup command:

$ nslookup web1
Server: 10.1.1.3
Address: 10.1.1.3#53

** server can't find web1: NXDOMAIN

Here you see that the server did respond, since it gave a response server
can't find web1. This could mean two different things. One, it could mean
that web1’s domain name is not in your DNS search path. This is set in
/etc/resolv.conf in the line that begins with search. A good way to test this is
to perform the same nslookup command, only use the fully qualified domain
name (in this case web1.example.net). If it does resolve, then either always
use the fully qualified domain name, or if you want to be able to use just the
hostname, add the domain name to the search path in /etc/resolv.conf.

If even the fully qualified domain name doesn’t resolve, then the problem is
on the name server. The complete method to troubleshoot all DNS issues is
a bit beyond the scope of this chapter, but here are some basic pointers. If
the name server is supposed to have that record, then that zone’s configura-
tion needs to be examined. If it is a recursive name server, then you will
have to test whether recursion is not working on the name server by look-
ing up some other domain. If you can look up other domains, then you
must check whether the problem is on the remote name server that does
contain the zones.

Can I Route to the Remote Host?
After you have ruled out DNS issues and see that web1 is resolved into its IP
10.1.2.5, you must test whether you can route to the remote host. Assuming
ICMP is enabled on your network, one quick test might be to ping web1. If
you can ping the host, you know your packets are being routed there and

Network Troubleshooting 413

ptg

414 Chapter 11 � Troubleshooting

you can move to the next section, Is the Remote Port Open? If you can’t ping
web1, try to identify another host on that network and see if you can ping it.
If you can, then it’s possible web1 is down or blocking your requests, so
move to the next section.

If you can’t ping any hosts on the network, packets aren’t being routed cor-
rectly. One of the best tools to test routing issues is traceroute. Once you
provide traceroute a host, it will test each hop between you and the host.
For example, a successful traceroute between ubuntu1 and web1 would
look like the following:

$ traceroute 10.1.2.5
traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets
1 10.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms
2 web1 (10.1.2.5) 8.039 ms 8.348 ms 8.643 ms

Here you can see that packets go from ubuntu1 to its gateway (10.1.1.1),
and then the next hop is web1. This means it’s likely that 10.1.1.1 is the
gateway for both subnets. On your network you might see a slightly differ-
ent output if there are more routers between you and your host. If you
can’t ping web1, your output would look more like the following:

$ traceroute 10.1.2.5
traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets
1 10.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms
2 * * *
3 * * *

Once you start seeing asterisks in your output, you know that the problem
is on your gateway. You will need to go to that router and investigate why it
can’t route packets between the two networks. If instead you see some-
thing more like

$ traceroute 10.1.2.5
traceroute to 10.1.2.5 (10.1.2.5), 30 hops max, 40 byte packets
1 10.1.1.1 (10.1.1.1) 5.432 ms 5.206 ms 5.472 ms
1 10.1.1.1 (10.1.1.1) 3006.477 ms !H 3006.779 ms !H 3007.072 ms

then you know that the ping timed out at the gateway, so the host is likely
down or inaccessible even from the same subnet. At this point if I hadn’t

ptg

tried to access web1 from a machine on the same subnet as web1, I would
try pings and other tests now.

NOTE If you have one of those annoying networks that block ICMP, don’t worry, you can still trou-
bleshoot routing issues. You will just need to install the tcptraceroute package (sudo
apt-get install tcptraceroute), then run the same commands as for traceroute,
only substitute tcptraceroute for traceroute.

Is the Remote Port Open? So you can route to the machine but you still
can’t access the Web server on port 80. The next test is to see whether the
port is even open. There are a number of different ways to do this. For one,
you could try telnet:

$ telnet 10.1.2.5 80
Trying 10.1.2.5...
telnet: Unable to connect to remote host: Connection refused

If you see Connection refused, then either the port is down (likely Apache
isn’t running on the remote host or isn’t listening on that port) or the fire-
wall is blocking your access. If telnet can connect, then, well, you don’t
have a networking problem at all. If the Web service isn’t working the way
you suspected, you need to investigate your Apache configuration on web1.
Instead of telnet, I prefer to use nmap to test ports because it can often
detect firewalls for me. If nmap isn’t installed, run sudo apt-get install nmap
to install it. To test web1 I would type the following:

$ nmap -p 80 10.1.2.5

Starting Nmap 4.62 (http://nmap.org) at 2009-02-05 18:49 PST
Interesting ports on web1 (10.1.2.5):
PORT STATE SERVICE
80/tcp filtered http

Aha! nmap is smart enough that it can often tell the difference between a
closed port that is truly closed and a closed port behind a firewall. Now
normally when a port is actually down, nmap will report it as closed. Here it
reported it as filtered. What this tells me is that there is some firewall in
the way that is dropping my packets to the floor. This means I need to

Network Troubleshooting 415

ptg

investigate any firewall rules on my gateway (10.1.1.1) and on web1 itself
to see if port 80 is being blocked.

Test the Remote Host Locally
At this point we have either been able to narrow the problem down to a
network issue or we believe the problem is on the host itself. If we think
the problem is on the host itself, there are a few things we can do to test
whether port 80 is available.

Test for Listening Ports One of the first things I would do on web1 is test
whether port 80 is listening. The netstat -lnp command will list all ports
that are listening along with the process that has the port open. I could just
run that and parse through the output for anything that is listening on
port 80, or I could use grep to show me only things listening on port 80:

$ sudo netstat -lnp | grep :80
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 919/apache

The first column tells you what protocol the port is using. The second and
third columns are the receive and send queues (both set to 0 here). The
column you want to pay attention to is the fourth column, as it lists the
local address on which the host is listening. Here the 0.0.0.0:80 tells us
that the host is listening on all of its IPs for port 80 traffic. If Apache were
listening only on web1’s Ethernet address, I would see 10.1.2.5:80 here.
The final column will tell you which process has the port open. Here I can
see that Apache is running and listening. If you do not see this in your net-
stat output, you need to start your Apache server.

Firewall Rules If the process is running and listening on port 80, it’s pos-
sible that web1 has some sort of firewall in place. Use the ufw command to
list all of your firewall rules. If your firewall is disabled, your output would
look like this:

$ sudo ufw status
Status: inactive

If your firewall is enabled but has no rules, it might look like this:

416 Chapter 11 � Troubleshooting

ptg

$ sudo ufw status
Status: inactive

It’s possible, though, that your firewall is set to deny all packets by default
even if it doesn’t list any rules. A good way to test whether a firewall is in
the way is to simply disable ufw temporarily if it is enabled and see if you
can connect:

$ sudo ufw disable

On the other hand, if you had a firewall rule that blocked port 80, it might
look like this:

$ sudo ufw status
Status: inactive

To Action From
-- ------ ----
80:tcp DENY Anywhere

Clearly in the latter case I would need to modify my firewall rules to allow
port 80 traffic from my host. To find out more about firewall rules, review
the Firewalls section of Chapter 6, Security.

Hardware Troubleshooting
For the most part you will probably spend your time troubleshooting host
or network issues. After all, hardware is usually pretty obvious when it fails.
A hard drive will completely crash; a CPU will likely take the entire system
down. There are, however, a few circumstances when hardware doesn’t com-
pletely fail and as a result causes random strange behavior. Here I describe
how to test a few hardware components for errors.

Network Card Errors
When a network card starts to fail, it can be rather unnerving as you will
try all sorts of network troubleshooting steps to no real avail. Often when a
network card or some other network component to which your host is
connected starts to fail, you can see it in packet errors on your system. The

Hardware Troubleshooting 417

ptg

418 Chapter 11 � Troubleshooting

ifconfig command we used for network troubleshooting before can also
tell you about TX (transmit) or RX (receive) errors for a card. Here’s an
example from a healthy card:

$ sudo ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:17:42:1f:18:be

inet addr:10.1.1.7 Bcast:10.1.1.255 Mask:255.255.255.0
inet6 addr: fe80::217:42ff:fe1f:18be/64 Scope:Link
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:1 errors:0 dropped:0 overruns:0 frame:0
TX packets:11 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:229 (229.0 B) TX bytes:2178 (2.1 KB)
Interrupt:10

The lines you are most interested in are

RX packets:1 errors:0 dropped:0 overruns:0 frame:0
TX packets:11 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

These lines will tell you about any errors on the device. If you start to see
lots of errors here, then it’s worth troubleshooting your physical network
components. It’s possible a network card, cable, or switch port is going
bad.

Test Hard Drives
Of all of the hardware on your system, your hard drives are the components
most likely to fail. Most hard drives these days support SMART, a system that
can predict when a hard drive failure is imminent. To test your drives, first
install the smartmontools package (sudo apt-get install smartmontools).
Next, to test a particular drive’s health, pass the smartctl tool the -H option
along with the device to scan. Here’s an example from a healthy drive:

$ sudo smartctl -H /dev/sda

smartctl version 5.37 [i686-pc-linux-gnu] Copyright (C) 2002-6 Bruce Allen

Home page is http://smartmontools.sourceforge.net/

SMART Health Status: OK

ptg

This can be useful when a particular drive is suspect, but generally speak-
ing, it would be nice to constantly monitor your drives’ health and report
to you. The smartmontools package is already set up for this purpose. All
you need to do is open the /etc/default/smartmontools file in a text editor
and uncomment the line that says

#start_smartd=yes

so that it looks like

start_smartd=yes

Then the next time the system reboots, smartd will launch automatically.
Any errors will be e-mailed to the root user on the system. If you want to
manually start the service, you can type sudo service smartmontools start
or sudo /etc/init.d/smartmontools start.

Test RAM
Some of the most irritating types of errors to troubleshoot are those
caused by bad RAM. Often errors in RAM cause random mayhem on your
machine with programs crashing for no good reason, or even random ker-
nel panics. Ubuntu ships with an easy-to-use RAM testing tool called
Memtest86+ that is not only installed by default, it’s ready as a boot
option. At boot time, hit the Esc key to see the full boot menu. One of
the options in the GRUB menu is Memtest86+. Select that option and
Memtest86+ will immediately launch and start scanning your RAM, as
shown in Figure 11-1.

Memtest86+ runs through a number of exhaustive tests that can identify
different types of RAM errors. On the top right-hand side you can see which
test is currently being run along with its progress, and in the Pass field you
can see how far along you are with the complete test. A thorough memory
test can take hours to run, and I know some administrators with question-
able RAM who let the test run overnight or over multiple days if necessary to
get more than one complete test through. If Memtest86+ does find any
errors, they will be reported in the results output at the bottom of the screen.

Hardware Troubleshooting 419

ptg

420 Chapter 11 � Troubleshooting

Figure 11-1 Memtest86+ RAM scan

ptg

421

12C H A P T E R 1 2

Rescue and Recovery

ptg

422

YEARS OF LINUX ADMINISTRATION have convinced me that you learn the
most about a system by repairing it when it is broken. Nothing pushes you
to the limits of find arguments, dd commands, or general shell know-how
like a critical system that no longer boots. I have had my share of broken
systems over the years—some my fault and some not—and in this chapter
I describe some of the recovery techniques I find I use over and over again.

There are three main recovery tools I describe in this chapter. The first is the
recovery boot mode that is included with a default Ubuntu Server install.
This mode provides the most limited set of recovery tools, as it requires a
system that can at least partially boot. The second is the recovery CD mode
that comes with your Ubuntu Server install CD. This option gives you all of
the functionality of the recovery mode but adds extra recovery tools that
you can run directly from the CD. Unfortunately, both of these tools are
somewhat limited in the types of disasters from which they can recover, so
the final section of the chapter will describe some recovery techniques that
require a separate rescue disc. In this case I describe how to use the Ubuntu
Desktop live CD for rescue, but you could use any live CD that allows you
to install packages to the live CD such as Knoppix.

Ubuntu Recovery Mode
The Ubuntu recovery mode is a boot option that is included with your
default server install. As you boot your system, GRUB will provide a basic
prompt before it starts the boot process. After you press Shift, you will see
that each kernel on your server has a recovery mode option beneath it.
When you select the recovery mode, Ubuntu will start the normal boot
process, but instead of launching all of the services on your system, once it
completes you will be greeted with a recovery menu as shown in Figure 12-1.
This menu provides you with six options:

� resume
Choose this option to continue the boot process back to your regular
system. You would pick this option if you accidentally chose the res-
cue mode or if you had successfully completed any fixes in the rescue
mode and were ready to go back to the normal system.

ptg

� clean
The clean option attempts to clear up some free space on your system
in case you have filled up / and can’t access the system.

� dpkg
This option will perform an apt-get update and upgrade and will
attempt to repair any problems you might have with half-installed
packages. You might choose this option if a package did not fully
install or upgrade correctly and its init script is stalling out so the sys-
tem can’t boot fully. This choice could potentially fix the package
problems.

� grub
If you select this option, the rescue mode will update GRUB—handy
if you have accidentally trashed your GRUB configuration.

� netroot
This mode is the most useful of the options in this menu as it just
drops you to a root shell on your booted server. I will spend the rest of
this section focused on what you can recover with this option.

� root
This mode is like the netroot option only without networking
enabled.

Ubuntu Recovery Mode 423

Figure 12-1 Ubuntu recovery mode menu

ptg

In the rest of this section I discuss some potential rescue steps you can take
once you choose the netroot option from the recovery menu. This drops
you to a root-owned shell on the system, brings up your network, and is a
bit further along the boot process. This recovery mode requires that you
can at least partially boot and mount the root file system; depending on
what is broken on your system, this may not be possible. If you can’t boot
into this mode and need to recover a system, move on to the Ubuntu
Server Recovery CD section later in this chapter.

The rescue root shell is both limited and unlimited. It is limited in that
there are no apparent automated tools to recover common problems on
the system; however, it is unlimited in that you have full access to any tools
already on your server. Usually you go into a rescue mode like this because
your system won’t fully boot, so I cover some of the common problems
you might want to fix in this mode.

File Systems Won’t Mount
The file systems in /etc/fstab generally are mounted as the system boots. If
a file system won’t mount at boot, you often need to drop to a rescue shell
so you can either repair the file system or correct problems in /etc/fstab so
it can mount. Of course, if the problem file system is the root file system,
you probably won’t even be able to get to this rescue mode, so skip ahead
to the Ubuntu Server Rescue CD section.

File System Corruption There are a number of scenarios when a file sys-
tem might get corrupted through either a hard reboot or some other error.
In these cases the default fsck that runs at boot might not be sufficient to
repair the file system. Be sure before you run fsck on a file system that it is
unmounted. You can run the mount command in the shell to see all mounted
file systems and type umount <devicename> to unmount any that are mounted
(except the root file system). We are assuming that since this file system is
preventing you from completing the boot process, it isn’t mounted. In this
example let’s assume that your /home directory is mounted on a separate
partition at /dev/sda5. To scan and repair any file system errors on this file
system, type

424 Chapter 12 � Rescue and Recovery

ptg

fsck -y -C /dev/sda5

The -y option will automatically answer Yes to repair file system errors.
Otherwise, if you do have any errors, you will find yourself hitting Y over
and over again. The -C option gives you a nice progress bar so you can see
how far along fsck is. A complete fsck can take some time on a large file
system, so the progress bar can be handy.

Sometimes file systems are so corrupted that the primary superblock can-
not be found. Luckily, file systems create backup superblocks in case this
happens, so you can tell fsck to use this superblock instead. Now I don’t
expect you to automatically know the location of your backup superblock.
You can use the mke2fs tool with the -n option to list all of the superblocks
on a file system.

NOTE Warning
Be sure to use the -n option here! Otherwise mke2fs will simply format your file system
and erase all of your old data.

mke2fs -n /dev/sda5

Once you see the list of superblocks in the output, choose one and pass it
as an argument to the -b option for fsck:

fsck -b 8193 -y -C /dev/sda5

When you specify an alternate superblock, fsck will automatically update
your primary superblock after it completes the file system check.

Fstab Mistakes or UUID Changed Another common problem you might
face is that a file system won’t mount because of a mistake in your
/etc/fstab file. It might be that you migrated a file system from one parti-
tion to another and forgot to update its UUID in /etc/fstab. If this happens
for the root partition, the same steps apply, but you will likely have to
either run the commands from a rescue CD or edit the GRUB prompt at

Ubuntu Recovery Mode 425

ptg

boot time so that the root= option points to the partition’s device name
instead of the UIID.

In any case, to discover the UUID for any file system, type

ls -l /dev/disk/by-uuid

This directory provides symlinks between UUIDs and their partitions, so
it’s easy to see what is assigned where. Just make a note of the correct
UUID, open /etc/fstab in a text editor, and update the UUID reference.

Problem Init Scripts
Sometimes an init script on a server stalls out. It could be that it requires a
network connection that isn’t available, or it could be any sort of other
problem. No matter what the problem is, if an init script isn’t written to
automatically time out, when it stalls it can completely tie up the rest of
the boot process. In these cases you might want to temporarily disable the
init script from starting at boot time so you can fully boot the system and
solve the problem.

The problem init script is likely in one of two locations. If it is a system init
script, it will be located under /etc/rcS.d. Otherwise, since the default run-
level on an Ubuntu server is runlevel 2, it will likely be found under
/etc/rc2.d. In either case, to disable an init script, locate it under one of
these directories and then rename it so that the S at the beginning is now a
D. For instance, if I was having some sort of problem with custom pro-
grams I put in my rc.local script that tied up the boot process, I would
type the following to disable it:

mv /etc/rc2.d/S99rc.local /etc/rc2.d/D99rc.local

Now I could resume the boot process normally and look into the problem
init script. Once I finish, I just rename the file again and replace the D with
an S.

426 Chapter 12 � Rescue and Recovery

ptg

Reset Passwords
A final system problem that might put you in a rescue mode is the situa-
tion where you have forgotten your user’s password or you are taking over
a system from a previous administrator and don’t know the user pass-
word. In either case it is trivial to reset the password in the recovery shell.
Just type passwd along with the name of the user to reset:

passwd ubuntu

Enter new UNIX password:

Retype new UNIX password:
passwd: password updated successfully

If you get an error that the authentication token lock is busy, you likely
forgot to remount the file system read/write, so first type

mount -o remount,rw /

Then run your password command.

Once you are finished with any recovery from the root shell, you can type
exit to return to the rescue menu, where you can choose to resume the
boot process.

Ubuntu Server Recovery CD
While the Ubuntu recovery mode can help you fix certain problems, it
requires that GRUB functions and that you can get through at least the
beginning phase of the boot process. If your root file system is corrupted or
GRUB stops working, you will need some other method to access and
repair your server. The good news is that if you still have an Ubuntu Server
install CD around, it has a built-in recovery mode. This recovery mode
allows you to access the root file system as with the GRUB recovery mode,
but since it boots from its own kernel and provides its own set of Linux
tools, you can also use it to recover from problems with a root file system.

Ubuntu Server Recovery CD 427

ptg

Unfortunately, the Ubuntu Server recovery CD has its own set of limita-
tions. Essentially you will have access to a BusyBox shell prompt with a lim-
ited set of recovery tools. While you can certainly repair file systems and
restore GRUB, if you want to do more sophisticated recovery such as deleted
file recovery or partition table restoration, you will need a more advanced
rescue disc that either includes tools like sleuthkit, gpart, and ddrescue or
allows you to install these packages from the live CD. In this section I will
discuss some of the situations beyond the GRUB recovery mode where you
can use the Ubuntu Server recovery CD to repair your system.

Boot into the Recovery CD
To boot into the recovery CD, set your server to boot from the CD-ROM
drive and insert the Ubuntu Server install CD. After you choose a lan-
guage, you will see the standard installer screen. Instead of choosing the
install option, use the arrow keys to select “Rescue a broken system” and
then hit Enter. This will enter into a special recovery system on the
installer.

After the recovery CD boots, you will be prompted with a lot of the same
questions you might have seen in a standard server install such as lan-
guage, keyboard, and time zone questions. Don’t worry; this won’t install
over the top of the system (note the Rescue mode title in the top left of the
display). Just answer the questions up until you see the prompt to select
the root partition. Ideally you will already know which partition is the root
partition, but if not I suppose at this point you will need to perform some
trial and error until you locate it.

After you choose a root file system, you will see the main recovery operations
menu as shown in Figure 12-2. The options are pretty self-explanatory:

� Execute a shell in /dev/ubuntu/root
This first option will open a shell in your root file system. Here I put
/dev/ubuntu/root, but this menu will point to the partition you
choose. This choice gives you essentially the same recovery options as
in the GRUB recovery mode, as you can run any number of com-
mands from inside the root file system such as package managers or
other system tools.

428 Chapter 12 � Rescue and Recovery

ptg

Ubuntu Server Recovery CD 429

� Execute a shell in the installer environment
The bulk of your recovery work will likely occur from this option.
Choose this and you will drop to a BusyBox shell on the install CD
itself. The root file system will be mounted under /target so you
could potentially edit configuration files from this mode. The
 advantage to this mode is that it exists outside of the actual root
file system, so you can do things such as run fsck on the root parti-
tion—something that wouldn’t be allowed if you had booted into
the system itself.

� Reinstall GRUB boot loader
One of the most common reasons why you might boot into a rescue
CD is that GRUB is broken. Without GRUB you can’t boot into the
system without some serious Linux kung fu. Choose this option and
an automated script will reinstall GRUB onto the disk or partition of
your choice. Most people tend to install GRUB on the master boot
record, so when you are prompted for a location to install GRUB you
will probably choose (hd0). Note that if the rescue CD can’t locate the
grub configuration files under /boot/grub, this won’t appear.

Figure 12-2 Recovery operations menu

ptg

430 Chapter 12 � Rescue and Recovery

� Choose a different root file system
This option is pretty self-explanatory. If you happened to choose the
wrong root file system, this option will let you change it.

� Reboot the system
Here is another self-explanatory option. Once you are finished with
your system recovery, choose this option to reboot.

NOTE When you are within either of the shell environments you can type exit to return to the res-
cue operations menu.

Recover GRUB
I have already mentioned the “Reinstall GRUB boot loader” option from
the rescue operations menu. This will reinstall GRUB to the disk or parti-
tion of your choice, but sometimes GRUB itself is installed but its configu-
ration file is missing or corrupted. When this happens, instead of a GRUB
menu at boot time, you may not see anything at all. To fix this problem,
choose the menu option to execute a shell within your root partition.
Once there, run

update-grub

This option will create a new /boot/grub/grub.cfg file based on your avail-
able kernels. Once it completes, you can type exit to return to the main
menu and reboot the system.

Repair the Root File System
Typically the recovery CD will attempt to mount the root file system if
possible. If it can mount the root file system, then you will not be able to
unmount it and run any tools such as fsck on it. Of course, if the rescue
CD were able to mount the file system, you wouldn’t need to fsck it now,
would you? If the root file system is corrupted and the rescue CD can’t
mount it, then drop to the installer shell and run

fsck -y /dev/sda1

ptg

Replace /dev/sda1 with the path to your root partition. If fsck complains
about a bad superblock, follow the steps in the File System Corruption
section above under Ubuntu Recovery Mode. Otherwise, depending on
how damaged your file system is, you might see fsck output the errors that
it finds as it attempts to repair them.

In addition to the specific rescue steps I listed above, you should be able to
perform all of the recovery steps from the GRUB recovery mode. Just
choose the “Execute a shell in /dev/ubuntu/root” (it will replace /dev/
ubuntu/root with the root partition you selected) from the recovery oper-
ations menu and follow the same steps.

Ubuntu Desktop Live CD
There are certain system rescues you need to perform that require you to
boot outside of the server itself. Any system imaging, root partition fsck
commands, or any other time that / needs to be unmounted you will need
some sort of rescue disc. While I have already mentioned how you can use
the Ubuntu Server install CD as a rescue disc, unfortunately you are lim-
ited by the tools present on that CD. There are a number of different live
CDs available that provide the same set of tools, such as Knoppix and DSL,
but since I assume it’s more likely you will have an Ubuntu Desktop install
CD around and it doubles as a live CD, I discuss some more advanced
recovery techniques you can perform from the CD.

Boot the Live CD
The first step is to boot the live CD into the standard GNOME desktop.
Don’t worry if your server doesn’t have a sophisticated video card since
basically everything I describe can be done from the command line.

Add the Universe Repository
Once the live CD boots into the desktop, you need to add the universe
repository to its list of package repositories. All of the tools I use here come
from packages in the universe repository, so either click System_ Adminis-
tration_Software Sources and make sure that the Community-maintained
Open Source software (universe) option is checked, or open a terminal

Ubuntu Desktop Live CD 431

ptg

(Applications_Accessories_Terminal) and then as root edit /etc/apt/
sources.list in your favorite text editor and change

deb http://us.archive.ubuntu.com/ubuntu lucid main restricted

to

deb http://us.archive.ubuntu.com/ubuntu lucid main restricted universe

Of course, if you are running a newer live CD than Lucid, you might see
some other name here, so change the example to suit your Ubuntu live
CD. Then from the same terminal run

$ sudo apt-get update

to update the list of available packages. Now you can install the tools for
any of the following rescue tips.

Recover Deleted Files
It has happened to the best of us. I think every sysadmin has accidentally
deleted the wrong file at one point in his or her career. For a long time I
thought that once a file was deleted under Linux there was no way it could
be recovered, but it turns out that’s not entirely true. When you delete a file
on Linux, the file system returns those blocks to the available space. Until
another file uses those blocks, the data from the old file is still there and
potentially recoverable. The key is to stop writing to that file system as
soon as you can once you delete a file. That way you reduce the probability
that the data will be overwritten.

In this example I assume you have halted the machine with the deleted file
and have booted the Ubuntu live CD. Once the CD boots and you have
added the universe repository, use the package manager to install the
sleuthkit package or open a terminal and type

$ sudo apt-get install sleuthkit

Sleuth Kit is a set of forensics tools to aid investigation of a break-in on a
system. Recovery of deleted files is a valuable thing for a forensics investi-

432 Chapter 12 � Rescue and Recovery

ptg

gation, and Sleuth Kit has provided a pair of tools, fls (forensics ls) and
icat (inode cat), that have deleted file recovery features.

For this example we assume that you have accidentally deleted the /etc/
shadow file on your root file system /dev/sda1. Because these tools copy
recovered files to another file system, you need to make sure that you have
enough space to store them. Since /etc/shadow is a small file, the RAM disk
used by the live CD is enough to store it, but if you need to restore a large
number of files, or files that take up a lot of space, you will want to attach
some sort of external storage or NFS share. I store everything under /home/
ubuntu/, but if you mounted a USB drive at /media/disk, for instance, just
replace occurrences of /home/ubuntu with /media/disk.

The first step is to create a directory to store the fls output and any files
you recover. In this example I will call the directory recovery and put it
under /home/ubuntu. Once the directory is created, use the fls tool to
scan /dev/sda1 for any deleted files and output the results in a text file:

$ mkdir /home/ubuntu/recovery
$ sudo fls -f ext -d -r -p /dev/sda1 > /home/ubuntu/recovery/
deleted_files.txt

Since the fls command has to scan through the entire /dev/sda1 partition,
it might take some time to complete, depending on the size of the drive. To
get more information about each of the fls arguments, you can type man
fls in a terminal to see the full manual.

Once the command completes, I can open the deleted_files.txt file in a text
editor and I will see a list of files and directories like the following:

d/d * 458: etc/skel
r/r * 2094: etc/shadow
r/r * 5423: etc/wgetrc

The first column tells whether the file in question is a directory (d/d) or a
file (r/r). The numerical column tells which inode this particular file uses,
and finally you can see the full path to the file in the final column. Since we
want to restore the etc/shadow file, we need to locate and copy inode 2094.

Ubuntu Desktop Live CD 433

ptg

Sleuth Kit provides the icat tool for this purpose—it is like the cat com-
mand only it accepts inodes as arguments. To restore this file, I type

$ sudo icat -f ext -r -s /dev/sda1 2094 > /home/ubuntu/recovery/
shadow

If the file is indeed recoverable, once this command completes I will see a
copy of my shadow file under /home/ubuntu/recovery/shadow. Then I
could mount the /dev/sda1 file system from the rescue disk and restore
/etc/shadow from here. Now if you wanted to recover more than one file,
either you could run this command multiple times and restore files one at
a time or you could write a script to do it for you. There are a number of
such scripts online, and the following is based off of a script originally
found at http://forums.gentoo.org/viewtopic-t-365703.html that I then
tidied up and improved:

#!/bin/bash

DISK=/dev/sda1 # disk to scan
RESTOREDIR=/home/ubuntu/recovery # directory to restore to

mkdir -p "$RESTOREDIR"
cat $1 |
while read line; do

filetype=`echo "$line" | awk {'print $1'}`
filenode=`echo "$line" | awk {'print $3'}`
filenode=${filenode%:}
filenode=${filenode%(*}
filename=`echo "$line" | cut -f 2`

echo "$filename"

if [$filetype == "d/d"]; then
mkdir -p "$RESTOREDIR/$filename"

else
mkdir -p "$RESTOREDIR/`dirname $filename`"
icat -f ext -r -s "$DISK" "$filenode" > "$RESTOREDIR/$filename"

fi
done

Save this file to /home/ubuntu/restore and change the DISK and RESTOREDIR
variables to match the partition you want to scan and the directory you

434 Chapter 12 � Rescue and Recovery

http://forums.gentoo.org/viewtopic-t-365703.html

ptg

want to restore into, respectively. Then to use the script, give it execute per-
missions and run it with the path to your complete list of deleted files as an
argument:

$ sudo chmod a+x /home/ubuntu/restore
$ sudo /home/ubuntu/restore /home/ubuntu/recovery/deleted_files.txt

The script will then systematically go through all of the files in the deleted_
files.txt file and attempt to restore them to RESTOREDIR. It will create direc-
tories as necessary as well, so once it is finished you should see a directory
structure matching that of your deleted files within RESTOREDIR.

Restore the Partition Table
The partition table is a 64-byte section of the 512 bytes at the beginning of a
hard drive known as the master boot record. These 64 bytes contain the set-
tings for any primary or extended partitions you have created on the disk.
It’s easy to take the partition table for granted. After all, it does take some
effort to erase or corrupt it. Then again, all it would take is an fdisk com-
mand on the wrong drive to make a hard drive unreadable by your server.

The good news is that even if a partition table is erased, the data for each
partition is still on the disk. All you need to do is figure out where each
partition begins and ends and you can reconstruct the partition table and
restore your data. Of course, this can be rather difficult to do manually, but
Linux has a tool called gpart (short for Guess Partition) that can do the
hard work for you.

The way that gpart works is to scan through the entire disk looking for
sections that match the beginning or end of a certain type of partition.
When it finds these sections, it makes a note of them and moves on. By the
time gpart is finished, it has what it believes is a complete partition table
for your disk.

Before I go into how to restore a partition table with gpart, it’s worth dis-
cussing some of gpart’s limitations. The primary limitation it has is with
extended partitions. While gpart is good at finding primary partitions,
extended partitions are more difficult to identify, so if your disk has extended

Ubuntu Desktop Live CD 435

ptg

partitions you might get incomplete results. Also, gpart sometimes can be
slightly off on where a partition begins (or more often) ends. I’ve seen
gpart miss the end of a partition by a megabyte or two, but since most of us
build partitions back to back, typically these sorts of small errors are easy to
correct manually.

To install gpart on the live CD, either use the graphical package manager
to install the gpart package or open a terminal and type

$ sudo apt-get install gpart

Once gpart is installed, run it in a terminal as root and pass it the drive to
scan as an argument:

$ sudo gpart /dev/sda

Of course, replace /dev/sda with the path to your device. Once gpart is
done, it outputs its results to the screen but does not write anything to
disk. This way you can examine its output and see if it matches what you
expect. Once you approve of the output, run gpart again, only this time
with the -W option so it writes its changes to disk:

$ sudo gpart -W /dev/sda /dev/sda

The -W option takes a disk to write to as an argument, which is why you see
/dev/sda here twice. Once gpart is finished scanning, you will be prompted
to edit its results. In my opinion the gpart editor is a bit more difficult to
use than fdisk or cfdisk, so I typically write the changes to disk and then
do any minor corrections with fdisk or cfdisk. Remember, you can shift
around the partition table and write it to disk without directly impacting
your data, so it’s OK to have gpart write an incorrect table that you then
follow up and correct.

Rescue Dying Drives
If you have read Chapter 11, Troubleshooting, you will be acquainted with
Smartmontools. This package can scan your hard drives and report when

436 Chapter 12 � Rescue and Recovery

ptg

any of them appears unhealthy. Of course, what do you do when a hard
drive is unhealthy or, worse, is so unhealthy that it will no longer mount?
Usually the longer an unhealthy drive runs, the more data is lost, so you
want to react quickly. Ubuntu has an excellent tool called ddrescue that
you can use to create an image of a drive even if it has numerous errors.

The way that ddrescue works is to scan through a drive bit by bit. When it
encounters errors on the drive, it makes a note of them and skips ahead.
Since bad blocks are often in clusters, this means that ddrescue potentially
skips ahead to good data. Once ddrescue finishes scanning the entire drive,
it will divide and conquer the remaining bad block clusters until it has
attempted to recover the entire drive. With this algorithm you have the
best chance of recovering good data instead of spending all of your time
trying to recover a cluster of bad blocks at the beginning of the disk, only
to have the drive ultimately fail.

NOTE Why Not dd?
The traditional tool that one might use to image a drive under Linux is dd. Unfortunately, dd
is not ideally suited for hard drives with errors. By default when dd encounters an error, it
will simply exit out of the program. While you can tell dd to ignore errors, doing so means it
will simply skip that particular block and not write anything, so that you could end up with an
image that is smaller than the original. These reasons, combined with the block cluster skip-
ping algorithm and progress output, make ddrescue the better choice for this task.

To install ddrescue on your Ubuntu live CD, either install the ddrescue
package using the graphical package manager, or open a terminal and type

$ sudo apt-get install ddrescue

Before you image a dying drive, make sure that you can store it somewhere.
The ddrescue tool can image a hard drive or partition to either another
hard drive or a file, but you need to make sure that the other device is equal
to or greater in size than the drive you are imaging. The great thing about
this is that you don’t even necessarily need to connect extra storage to your
server. If you have an NFS server with enough capacity, you can mount the
NFS share on your live CD and have ddrescue image to that. For this
example I assume that you want to image one partition, /dev/sda1, on your

Ubuntu Desktop Live CD 437

ptg

server, you have attached an external USB drive to the server, and the desk-
top has found it and mounted it under /media/disk. To image the drive you
simply run ddrescue and list the drive to image and the location to image to
as arguments:

$ sudo ddrescue /dev/sda1 /media/disk/sda1_image.img /media/disk/
sda1_image_logfile

Replace /dev/sda1 with the partition or complete drive you want to image,
and /media/disk/sda1_image.img with the mount point and file you want
to image to. If you wanted to image from /dev/sda1 to /dev/sdb1, you
would just replace /media/disk/sda1_image.img with /dev/sdb1. Notice
that I added a third argument, /media/disk/sda1_image_logfile. The third
argument tells ddrescue where to store an optional log file of its progress.
With this log file in place you can actually stop ddrescue at any time, and
when you start it again it can resume where it left off.

The great thing about ddrescue is that it provides you with a nice progress
bar so you can keep track of how much longer it has to go. That, combined
with its resume feature, means if you do need to interrupt it for some rea-
son, you know you can go back and complete the job later.

NOTE Image Drives or Partitions?
You may have noticed that in my example I chose to image a single partition instead of the
entire drive. I did this because partition images are much easier to fsck and mount loop-
back when you image to a file. Generally speaking, it’s much simpler if you image each parti-
tion on a disk one at a time, especially if you image to a file. If you plan to image directly to
another drive, then image the entire drive since you can then easily access each partition
individually.

Once ddrescue completes, check the image you have created for any file
system errors by running fsck on it:

$ sudo fsck -y -C /media/disk/sda1_image.img

Once fsck has completed, you can mount the image loopback and recover
any files you need from the disk or, alternatively, you can use a tool like dd

438 Chapter 12 � Rescue and Recovery

ptg

to copy this image to yet another drive. To mount the drive loopback, I
create a temporary mount point at /mnt/temp and mount the drive there:

$ sudo mkdir /mnt/temp
$ sudo mount -o loop /media/disk/sda1_image.img /mnt/temp

From here I can copy particular files from /mnt/temp to some other stor-
age or otherwise just confirm that the data on the drive is intact. Later I
can use a regular imaging tool like dd or even rsync to copy the data from
this file back to a partition.

Ubuntu Desktop Live CD 439

ptg

This page intentionally left blank

ptg

441

13C H A P T E R 1 3

Help and Resources

ptg

442

YOU HAVE UBUNTU SERVER installed, or you are beginning the process of
doing so. The system is new to you, and you have questions or need help.
Where do you turn? What are your options?

That is the whole point of this chapter: You aren’t on your own. Whether
you work for a major corporation in a large industrial setting or you are a
hobbyist setting up your first server in your basement, there are help
options available that are suitable to your needs.

Paid Support from Canonical
Most system administrators prefer to do their own support, at least to the
extent possible. We are a unique breed who usually feel as if we can solve
any problem, and if we can’t, then we can learn how. But occasionally we
are wrong, and we need help.

Corporate managers want to minimize risk. The idea that something could
go wrong, even when the chances are small, is not something they want to
consider without a contingency plan in place. Network and system down-
time equals lost opportunities and possibly lost income. These guys and
gals want to have some assurance of a safety net.

Canonical, the company that stands behind Ubuntu, offers a paid profes-
sional support option that is perfect for these instances. They promise to
give quick and quality assistance with installation and deployment, secu-
rity and performance optimization, protection against IP infringement
claims, and more.

There are paid support options for servers, desktop systems (for when you
convince the powers that be to allow you to migrate the entire corporate
infrastructure after your successful and amazing server migration), and thin
clients/clusters. You can pay for support during business hours, or full 24x7.
(There is no per-incident support option available at this time.) The options
are extensive and easily adapted to the needs of anyone from small busi-
nesses to large corporations. You can find out more at www.ubuntu.com/
support/paid/ or www.canonical.com/services/support. Support assistance
can be requested using the telephone, the Web, or e-mail.

www.ubuntu.com/support/paid/
www.ubuntu.com/support/paid/
www.canonical.com/services/support

ptg

One of the things that makes this support attractive for some is that there is
guaranteed help available for software upgrades. Even with paid support
from Canonical, the software used is the standard Ubuntu releases, either
the most current Long-Term Support (LTS) release or the most current
regular release. There is no difference between what you get with the paid
support option and what would otherwise be used, except that you have the
company that funds and organizes much of the Ubuntu development
process standing behind you in case you encounter problems. As is the case
for everyone using Ubuntu, security updates are guaranteed for a regular
release for 18 months. An LTS release receives security updates for a longer
period of time, three years on the desktop and five years on the server.

Paid support customers will receive a wonderful tool called Landscape free
of charge. This is a system management and monitoring service that
allows you to manage multiple Ubuntu machines at the same time. Land-
scape allows the administrator to perform software updates, manage users
and processes, monitor resource usage on multiple machines, and do far
more just as easily as it would be done on one machine, perhaps more eas-
ily since it uses a simple Web interface. Landscape is also available by sub-
scription for customers who do not need paid support. Find out more at
www.canonical.com/projects/landscape.

Forums
The Ubuntu community offers free, volunteer support via Web forums.
Anyone may sign up for a free account and ask questions that are read and
answered by other Ubuntu users. The main support forum is found at
http://ubuntuforums.org and at the time of this writing has nearly 1 million
registered members.

It is likely that you will find the answer to any common problem you have
by just searching the forum. In most cases, someone has already asked the
same question and received a great answer that will be applicable to your
situation. If not, the community there is friendly and welcoming to new-
comers, as well as filled with knowledgeable and helpful people, so feel free
to register for an account and ask away.

Forums 443

www.canonical.com/projects/landscape
http://ubuntuforums.org

ptg

Internet Relay Chat
In the event that you have an urgent need for help, or just prefer real-time
discussion, you can use Internet Relay Chat (IRC). Set your IRC client to
point to the Freenode network at irc.freenode.net, and pick a channel that
is best suited for your question.

The best place to start for general help with Ubuntu is #ubuntu, but there
is also an excellent channel available dedicated to running an Ubuntu
server at #ubuntu-server. There are helpful and knowledgeable users in
each of these channels and others. You can find a full list of current chan-
nels and help getting started at http://help.ubuntu.com/community/
InternetRelayChat.

To get started using IRC on an Ubuntu desktop machine, you can install a
program called XChat, which is available for installation from the software
repositories. Once you have it installed, you can launch it in Ubuntu from
the menu at Applications Internet XChat IRC.

The first time you start XChat, you will be asked to select the network(s) to
connect to. For our purposes, select Ubuntu Servers from the list and click
Connect, as in Figure 13-1.

Next, if you are running on an Ubuntu desktop computer, you will auto-
matically be logged in to the main Ubuntu support channel, #ubuntu. You
can begin asking questions here by typing something in the box next to
your username at the bottom of the XChat screen and pressing Enter, as
seen in Figure 13-2.

To leave a channel, right-click on the channel name in the list of channels
and select Close (Figure 13-3). Text commands in IRC have been stan-
dardized for years and may be issued from the text entry line, the same
place where you would otherwise type your questions. Commands are
prefaced by /. For example, you can type /part in the bottom box to issue a
command to leave the channel.

You may join a channel using a text command as well, if you know the
channel name, as shown in Figure 13-4.

444 Chapter 13 � Help and Resources

http://help.ubuntu.com/community/InternetRelayChat
http://help.ubuntu.com/community/InternetRelayChat

ptg

Internet Relay Chat 445

Figure 13-1 XChat Network List, the first screen you will see

Figure 13-2 The main XChat screen

ptg

446 Chapter 13 � Help and Resources

Figure 13-3 Leaving a channel in Xchat

Figure 13-4 Joining a channel in XChat using a text command

ptg

You may also join a channel and find a list of available channels via the
XChat menu at Server List of Channels... This brings up a new window,
which starts out mostly empty. To get a list of channels on your current
server, click Download List at the lower right and after a few moments
your window will look like Figure 13-5. You may then scroll up and down
to find a channel that interests you, such as #ubuntu-server. Select it with a
left click, and click the Join Channel button near the lower right.

When you are done, you may quit XChat from the menu at XChat Quit or
by typing /quit and closing the program.

Mailing Lists
Most of the development and other work that goes into creating the
Ubuntu distribution and making it a technical success happens on mailing
lists. These are good places to ask questions in a place that will be seen by
the developer community, and a great place to read continuing technical
discussions or receive notices and announcements, but they are not a great
place for general assistance.

Mailing Lists 447

Figure 13-5 Joining a channel in XChat using the graphical channel list

ptg

The developers welcome useful feedback and interesting contributions to
discussions but are focused on making Ubuntu the best it can be. Other
resources are better and are more highly recommended for immediate
help needs.

More information about mailing lists is available at www.ubuntu.com/
support/community/mailinglists. The first link on that page discusses
mailing list etiquette. Reading, understanding, and conforming to those
guidelines should make any use of the mailing lists a pleasant and benefi-
cial experience.

A full list of available mailing lists can be found at http://lists.ubuntu.com.
User support generally happens in the ubuntu-users support-focused
mailing list at https://lists.ubuntu.com/mailman/listinfo/ubuntu-users.
Be aware that if you sign up for this mailing list, you can expect to receive
at least 200 e-mails a day just from this list.

Online Documentation
There are two sets of documentation available for Ubuntu: official and
community.

The official set comes directly from and is maintained by the Ubuntu Doc-
umentation Project. This is pulled together by members of the Ubuntu
Documentation Team and includes information that is vetted for accuracy
and usefulness. It is shipped with each of the desktop versions of Ubuntu,
made available both in the main desktop menu as well as online for all
users at https://help.ubuntu.com/.

The community documentation is not intended so much for user support
as to provide a way for interested users to discuss ideas and store informa-
tion for various teams (such as the LoCos, discussed next, or the Docu-
mentation Team that was just mentioned). Even so, it often contains very
interesting and useful tidbits that make it worth mentioning. You can
investigate further at https://wiki.ubuntu.com.

448 Chapter 13 � Help and Resources

www.ubuntu.com/support/community/mailinglists
www.ubuntu.com/support/community/mailinglists
http://lists.ubuntu.com
https://lists.ubuntu.com/mailman/listinfo/ubuntu-users
https://help.ubuntu.com/
https://wiki.ubuntu.com

ptg

Localhost Documentation
There are already several pieces of wonderful documentation available on
your server. When a package is installed from the Ubuntu repositories, it
usually includes at least one, and often several, forms of documentation
that you can use. I discuss two of the most common and most important:
man pages and doc files.

Man pages are included with nearly every command and with many pro-
grams when they are installed. They are not intended to be how-to guides
or hold-your-hand-style introductions but are generally concise yet full
guides to the syntax of any command or program usage from the com-
mand line. They are generally the easiest way to find out all of the options
available for anything you might want to try to do and are also a fabulous
way to quickly refresh your memory when you can’t quite remember the
options you wanted to use while doing an rsync backup, as in man rsync. If
you know the command or program you want to use, starting with the
man page is always a good bet.

Man pages use a standard organization that is clear, making it easy to find
the details you need quickly. Not all man pages use every section, but
these are the most common sections you will find. A man page always
begins with the NAME of the command and a quick one-sentence descrip-
tion of what it does. This is followed by a longer SYNOPSIS of the command
that gives standardized examples of how to use it. Following this is a
DESCRIPTION section that chronicles in greater detail what the command
or program is designed to do and outlines its features. You may find a
GENERAL section after this, which gives other details that are interesting
and useful but which may not be vital for understanding what you need
(that doesn’t mean it isn’t worth reading, though). Often this is followed
by a SETUP section, which may either describe installation and configura-
tion or tell you where to get this information. The most important sec-
tion for most needs is USAGE, where the man page will discuss specifically
how to use the program to do a task and may include several good
examples. Some commands and packages include a DOCUMENTATION sec-
tion that explicitly states where to find more information on your local-

Localhost Documentation 449

ptg

host. You may also find sections like ADVANCED USAGE, EXAMPLES, OPTIONS,
and a SUMMARY, each of which is extremely useful when present.

Doc files are a great resource, especially when you have installed a new pack-
age and aren’t sure what to do next. One of the first things that many system
administrators do when installing a new program on an Ubuntu server is
read the README.Debian.gz file at /usr/share/doc/<packagename>. For
example, you could use sudo zless /usr/share/doc/apache2.2-common/
README.Debian.gz to read the Apache 2.2 common documentation, and hit
Q to quit when done. For some programs and packages, there may be only
one or two docs available, but others have many great ones, sometimes in
subdirectories, like the example of an apache2.conf file found at /usr/
share/doc/apache2.2-common/examples/apache2/apache2.conf.gz.

Spend some time digging around any time you have a question and you
may discover the answer without having to ask anyone or even looking for
documentation outside of your server.

Local Community Teams
Some of us prefer face-to-face interaction. This option is one of the more
enjoyable and useful for nonprofessional uses, like the hobby-level enthu-
siast who has a server at home or the university student looking to find
others with whom to learn. The Local Community, or LoCo Teams, oper-
ate all over the world. Much of their planning and coordination is done
online in their own mailing lists, IRC channels, and forums (often as sub-
forums in the main Ubuntu forums discussed earlier). In many places,
LoCo Teams operate in other languages, which may be better for users
whose native language is other than English.

LoCo Teams often arrange gatherings to discuss new developments, to help
one another with technical issues, or just to have fun spending time with
people who share similar interests. Many hold special gatherings around
the time of new Ubuntu version releases called “release parties” or “install-
fests” to celebrate the accomplishment of a completed release cycle, install
or upgrade their operating systems at the same time, and help users install
Ubuntu on their equipment (if needed). More information about LoCo
Teams can be found at https://wiki.ubuntu.com/LoCoTeamList.

450 Chapter 13 � Help and Resources

https://wiki.ubuntu.com/LoCoTeamList

ptg

Other Languages
Several of the resources already mentioned have options in other lan-
guages for people who do not speak English as their native tongue. One of
the initial and continuing focuses of Ubuntu as a distribution is to make
Ubuntu available to as many people as possible worldwide, and this means
translating the interfaces for the software into other languages as well as
providing means for non-English speakers to find quality support in their
native language.

The job is not yet complete, but Ubuntu has support and installation
options available in a very large number of languages. Most of the resources
just listed include other language options on their Web pages. These include
forums, IRC channels, LoCo Teams, and more. For more information look
at www.ubuntu.com/support/community/locallanguage.

Tech Answers System (Launchpad)
Canonical is involved in projects outside of Ubuntu as well, including
their wonderful collaboration and code hosting platform service, Launch-
pad (https://launchpad.net), which is used by a large number of software
projects, including Ubuntu. Launchpad provides a central location for
code development, bug reporting, and even questions and answers. It isn’t
as complete or as user-friendly as a Web forum, for example, but it is an
excellent resource for more advanced users.

Here is the URL for Ubuntu-related questions: https://answers.launchpad
.net/ubuntu.

Bug Reporting
Sometimes you encounter problems that are not covered in any documen-
tation anywhere and for which you cannot seem to find help. It may be
that you have discovered a flaw, or bug, in a program. Congratulations! To
assist the developers in their task and desire to make Ubuntu work as well
as possible, you can file a bug report. This will directly inform the people
who maintain the specific package about a problem. They will then exam-
ine the report, try to reproduce the behavior, and, if it is confirmed as a
problem, get to work on trying to fix it.

Bug Reporting 451

www.ubuntu.com/support/community/locallanguage
https://answers.launchpad.net/ubuntu
https://answers.launchpad.net/ubuntu
https://launchpad.net

ptg

To file a bug report for Ubuntu, you first need a Launchpad account.
Launchpad is the system that is used to track bugs and help with other
areas of development. You can sign up for an account by clicking the Reg-
ister link at https://launchpad.net and following the instructions you are
given. It is a useful and versatile system. I focus here on one small aspect of
how it may be used.

Once you have your Launchpad account, open https://bugs/launchpad
.net/ubuntu to go to the main page for the Ubuntu project. From there,
you can search current bugs to see if there is one that is similar or identical
to what you are experiencing. If so, feel free to add your comments to cur-
rently existing bug reports to help confirm the problem or add informa-
tion that may help the developers understand and fix it.

If you don’t find anything that fits your issue, you can file a new bug report
by clicking the red Report a Bug button in the middle of the page. You will
be given a text box in which to write a short summary of the problem,
preferably something short, clear, and descriptive, but less than a sentence:
for example, would be “LDTP server crashes when running the update-
manager testcase.” Click Continue.

You will be given a list of bugs found by Launchpad that may be similar.
Take a look. If one is the same as what you are experiencing, you can sub-
scribe to receive notifications as the bug report is updated with new infor-
mation, work-arounds, or a solution. If not, check “No, I’d like to report a
new bug” to move to the next step.

You will be asked in which package you found the bug. If you know, you
can enter it to assist the developers. If you don’t, you can click “I don’t
know” and let them try to figure it out from the summary you will write
under “Further Information.”

In the section titled “Further information:” enter a clear description of the
problem, using as much specific information as you can without ram-
bling. You should include things like the steps to take to reproduce the
unexpected behavior, and an outline of what you were doing and trying to
accomplish at the time. You may be asked for further information later.
There is also a nice list of guidelines at the bottom of this page to help you

452 Chapter 13 � Help and Resources

https://launchpad.net
https://bugs/launchpad.net/ubuntu
https://bugs/launchpad.net/ubuntu

ptg

know what information to include to make your bug report as useful, and
as likely to receive assistance, as possible. You can also include an attach-
ment, like a text file copy of a configuration file or error log. When you are
done, click the Submit Bug Report button at the bottom of the page to fin-
ish the process.

Summary
Switching to a new system can be overwhelming. Using an established sys-
tem is not a guarantee that you will never have questions. In each instance,
there are times when support is needed. This chapter described several
wonderful options. For further information, check the official Ubuntu
Web site for the most up-to-date list of support options at www.ubuntu
.com/support.

Summary 453

www.ubuntu.com/support
www.ubuntu.com/support

ptg

This page intentionally left blank

ptg

455

14C H A P T E R 1 4

Basic Linux Administration

ptg

IN CHAPTER 2, Essential System Administration, I discussed some core tools
any administrator should know. In this chapter I expand on that founda-
tion and describe more basic shell concepts and tools. Then I will talk
about some different Linux file types: hard and symbolic links and device
files. Finally I describe how to use cron and at to schedule programs to run
at different times.

Shell Globs
When you work on the command line, you often need to run a command
against more than one file at a time. For instance, you might want to copy
all of the files from one directory to another, or you might want to move
only the files that match a particular pattern. While you could certainly
type each of these filenames one at a time, the bash shell provides a few
different shortcuts to the process with shell globs and other pattern
matching.

A shell glob is a special character that you can think of like a wildcard. For
instance, you can use the ? symbol in place of any single character. Let’s say
that I have a directory with five files, a.txt, b.txt, c.txt, d.doc, and e.tar:

$ ls
a.txt b.txt c.txt d.doc e.tar

If I wanted to see only the .txt files, I could type all of filenames by hand:

$ ls a.txt b.txt c.txt
a.txt b.txt c.txt

or I could use ? as a wildcard:

$ ls ?.txt
a.txt b.txt c.txt

You can use multiple shell globs as well, so if I also wanted to match e.tar, I
could type:

$ ls ?.t??
a.txt b.txt c.txt e.tar

456

ptg

Probably one of the most useful shell globs is the * symbol. This wildcard
matches any number of characters, including zero. In this example, let’s
say I had the following files in my directory:

$ ls
aa.txt ac.txt a.txt b.txt c.txt d.doc e.tar

If I wanted to list only the files that begin with a, I could type

$ ls a*
aa.txt ac.txt a.txt

Note that the * symbol acts as a wildcard for a number of different charac-
ters in the filename. If I wanted to move these files to the /tmp directory,
for instance, I could type

$ mv a* /tmp/

If, instead, I wanted to move all of the .txt files to the /tmp directory, I
would type

$ mv *.txt /tmp/

Unlike with the ? wildcard, when I use * I also match aa.txt and ac.txt.

Regular Expressions
Regular expressions is probably too dense a topic for a chapter like this,
but essentially it is a special language used to describe patterns. The bash
command line supports a basic set of regular expressions you can use to
describe patterns in filenames beyond what you could achieve just with
shell globs. For instance, say I wanted to list all of the files in the example
directory above that began with a or b. One way would be to type

$ ls a* b*
aa.txt ac.txt a.txt b.txt

Shell Globs 457

ptg

Or I could use this regular expression:

$ ls [ab]*
aa.txt ac.txt a.txt b.txt

When I put a set of characters inside brackets, this sets up a character class.
A character class defines a set of characters that will match. It’s important
to note that this character class matches only one character. So why use this
when a shell glob can accomplish the same thing? I find I use it often when
I’m trying to manage a directory full of logs. When logs in /var/log/ rotate,
they end up appending a number to the file and then compressing it. For
instance:

$ ls /var/log/messages*
/var/log/messages /var/log/messages.2.gz
/var/log/messages.5.gz
/var/log/messages.0 /var/log/messages.3.gz
/var/log/messages.6.gz
/var/log/messages.1.gz /var/log/messages.4.gz

Often you will find when you need to free up space on a disk that /var/log
is a good place to start. Let’s say that I wanted to remove only the last three
messages logs. While I could certainly type them all in manually, I could
also type

$ rm /var/log/messages.[456].gz

NOTE As you learn about shell globs and regular expressions, you will find out that often the pat-
tern you match is different from the pattern you thought you’d match. To be safe, always run
ls or echo with your pattern first and see what files match before you do something like mv
or rm, which are difficult or almost impossible to undo.

Pipes and Redirection
Pipes
If there is one tool that I think best illustrates the power of the command
line, it’s the pipe. If you look at a lot of command examples, one of the first
things you will see is the | symbol. This is known as a pipe and is used to

458 Chapter 14 � Basic Linux Administration

ptg

take the output from one program and feed it to another program as
input. You can use pipes to chain multiple commands together so that one
command generates output, and the next command filters through that
output and changes it and then outputs it to some other program.

grep One of the best examples of the use of pipes is also one of the most
useful command-line tools: grep. At its core, the grep command filters its
input for a keyword or pattern that you specify and then outputs anything
that matches that pattern. For instance:

$ ls
anotherfile.txt somedir somefile1.txt somefile2.txt
$ ls | grep some
somedir
somefile1.txt
somefile2.txt

In the second command you can see that I piped the output of the ls com-
mand to grep, and then told grep to filter only text that contained the key-
word some. If I had wanted to see only text that had the word file in it, I
could type

$ ls | grep file
anotherfile.txt
somefile1.txt
somefile2.txt

You can also chain multiple grep commands together using pipes. For
instance, say after I ran the command above I decided that I wanted to fil-
ter the output again, only this time to show only files that contained 1 in
their name:

$ ls | grep file | grep 1
somefile1.txt

You will often see grep used in this way to filter output from one command
and pipe it to another command to act on the new filtered input. grep can
also be used to filter text that is inside a file. Just continue to list your key-
word as the first argument to grep and then follow it with the file to filter

Pipes and Redirection 459

ptg

460 Chapter 14 � Basic Linux Administration

through. For instance, let’s say our somefile1.txt file contained the follow-
ing lines:

1. Line 1
2. Another line
3. Final line
4. Some other text

If I wanted to see any lines that contained the word line, I would type

$ grep line somefile1.txt
2. Another line
3. Final line

Now notice that it didn’t display 1. Line 1. That’s because in that case the
L in Line was capitalized and by default grep is case-sensitive. If you want
to do a case-insensitive match, then use grep with the -i argument:

$ grep -i line somefile1.txt
1. Line 1
2. Another line
3. Final line

You will find you use grep a lot to search through log files for particular
keywords. Sometimes, though, as you filter through certain keywords you
will notice you get extra output that you aren’t interested in. If you pass the
-v argument to grep, it will invert what it does; that is to say, it will show
you only lines that don’t match your keyword. For instance, in the same
somefile1.txt that I listed above, let’s say that I wanted to show all of the
lines that didn’t contain the word Another:

$ grep -v Another somefile1.txt
1. Line 1
3. Final line
4. Some other text

sort Another useful command-line tool is sort. As its name indicates, the
sort command takes input and sorts it. For instance, let’s take two files,
somefile2.txt:

ptg

5. Another example
5. Another example
6. Linux

and our same somefile1.txt:

1. Line 1
2. Another line
3. Final line
4. Some other text

If we run the cat command with both of these files as arguments, it will
output the contents of both files one after the other. Let’s say that I list
somefile2.txt first and then somefile1.txt:

$ cat somefile2.txt somefile1.txt
5. Another example
5. Another example
6. Linux
1. Line 1
2. Another line
3. Final line
4. Some other text

If I pipe this to the sort command, it will sort all of the input for me:

$ cat somefile2.txt somefile1.txt | sort
1. Line 1
2. Another line
3. Final line
4. Some other text
5. Another example
5. Another example
6. Linux

NOTE By default the sort command actually sorts alphabetically. Sometimes, though, you want to
sort output numerically. In that case pass sort the -n option.

uniq If you look at the output from the sort command, you will notice
that there are two identical lines. That might be fine, but often when you

Pipes and Redirection 461

ptg

sort through files you want to remove any lines that are duplicated. This
might be especially true if you are merging the contents of two text files as
I am here. In that case you can use the uniq command. The uniq command
will remove any duplicates it gets from input, but that input must already
be sorted. The beauty of pipes is that you can pipe output to the sort com-
mand first to sort it, then to the uniq command to strip out any duplicates.
For instance, if we wanted to strip out the duplicate 5. Another example
line from the previous output, we would just pipe the sort output to uniq:

$ cat somefile2.txt somefile1.txt | sort | uniq
1. Line 1
2. Another line
3. Final line
4. Some other text
5. Another example
6. Linux

Redirection
As you parse through and filter text files and other output on the command
line, often you will find it useful to put that output in another file. For
instance, you might run grep on a log file to pull out specific log entries that
you then want to save to a file. This is where redirection comes in.

Redirection uses the >, >>, and < symbols on the command line. For
instance, the > character will redirect output to a file and overwrite any-
thing that was previously in the file. If I had the same somefile1.txt and
somefile2.txt files from the previous examples and I wanted to cat some-
file1.txt and then save the output to somefile3.txt, I would type

$ cat somefile1.txt > somefile3.txt
$ cat somefile3.txt
1. Line 1
2. Another line
3. Final line
4. Some other text

Now notice what happens if I run the same command only with some-
file2.txt. It will overwrite what used to be in somefile3.txt with new data:

462 Chapter 14 � Basic Linux Administration

ptg

$ cat somefile2.txt > somefile3.txt
$ cat somefile3.txt
5. Another example
5. Another example
6. Linux

Because > will overwrite the destination file, you should be particularly
careful when you use it so that you don’t accidentally blow away valuable
data. Now what if you had actually wanted the contents of both some-
file2.txt and somefile1.txt in the new file? In that case you can use the >>
operator, which like > will redirect output to a file but will append the new
data to the end of the file:

$ cat somefile1.txt >> somefile3.txt
$ cat somefile3.txt
5. Another example
5. Another example
6. Linux
1. Line 1
2. Another line
3. Final line
4. Some other text

One example of where you might append instead of overwrite redirected
output is when you grep multiple log files for data to store in some other
text file. After you run the grep command on one file, when you run it a
second time on a different log file you don’t want to blow away the first set
of output, so you will use the >> operator.

The < operator is a bit different from the other two in that it redirects
input, not output. For instance, if I wanted to sort the somefile3.txt that I
just created, I could type

$ sort < somefile3.txt
1. Line 1
2. Another line
3. Final line
4. Some other text
5. Another example
5. Another example
6. Linux

Pipes and Redirection 463

ptg

464 Chapter 14 � Basic Linux Administration

You can even chain together input and output redirection, so if I wanted to
sort somefile3.txt and redirect the output to somefile4.txt, I could type

$ sort < somefile3.txt > somefile4.txt

File Permissions and Ownership
Ubuntu (and Linux as a whole) has a file permission model that is based
on UNIX. In this permission model each file or directory essentially has
three different permissions: read (whether you can look at the contents of
a file), write (whether you can modify the contents of a file), and execute
(whether you can run the script or program). In addition to these permis-
sions, the UNIX permission model sets up three categories of people on
the system: users, groups, and other. The user category represents each
login on a system. When you install your Ubuntu server, for instance, you
are prompted to choose a username that you will use to log in to the sys-
tem. That username is your particular user. UNIX (and Linux) was
designed with the expectation that more than one person might use the
same system at the same time. Some users on the system might even need
to share files or directories with each other. With groups, you can add mul-
tiple users to a particular group. Then you can set group permissions on a
particular file so that anyone who is a member of that group can then
access the file with those permissions. Finally, there is the other category.
This category represents the rest of the users on the system. You will see
how all of these categories and permissions come into play below.

In Chapter 2 I briefly mentioned how to read ls output to see the permis-
sions on a file. Use the -l argument with ls to see file ownership and per-
missions on files in a directory:

$ ls -l
total 12
-rw-r--r-- 1 kyle admin 17 2009-04-04 15:13 a.txt
-rw-r--r-- 1 kyle admin 8 2009-04-04 15:13 b.txt
-rwxr-xr-- 1 kyle admin 52 2009-04-04 15:13 c.sh

The first column in the ls -l output shows the permissions on each file.
These permissions are split into three categories: user permissions, group

ptg

permissions, and other permissions. Each of these sections has three dif-
ferent permissions you can enable. Read permissions (represented by r)
give a particular category the right to read the file. Write permissions (rep-
resented by w) allow a category to write to the file. Finally, execute permis-
sions (represented by x) allow a category to execute a file (such as a shell
script or other program). If a particular permission is replaced by a - sym-
bol, it means that permission is disabled. Let’s start with the permissions
of a.txt in the output above. That file’s permissions are rw-r--r--. This
means that the user category has read and write permissions (execute is
disabled), the group category has read permissions (write and execute are
disabled), and the other category also has read permissions (write and exe-
cute are disabled).

After the permissions for a.txt you will notice two columns containing the
words kyle and admin. The first column shows what user on the system
owns the file (in this case the kyle user). The second column shows what
group owns the file (in this case the admin group). You can combine a file’s
permissions with these ownership columns to find out who can do what to
the file. In the case of a.txt, the kyle user can read and write to the file, the
admin group can read the file, and the rest of the users on the system
(other category) can read the file. Contrast this with the c.sh file:

-rwxr-xr-- 1 kyle admin 52 2009-04-04 15:13 c.sh

In this case the kyle user can read, write, and execute the file. The admin
group can read and execute the file, and everyone else can only read the
file.

NOTE As you work with group permissions, you will find it handy to check what groups your user
is a member of. While you could potentially read /etc/group to find this out, you can also just
run the groups command on the command line:

$ groups
kyle adm dialout cdrom floppy audio dip video plugdev scanner
lpadmin admin netdev powerdev polkituser sambashare libvirtd

Because your default user can also become root, you will notice it will probably be a member
of extra groups compared to any other users on the system.

File Permissions and Ownership 465

ptg

chmod
The chmod command allows you to change permissions on a file. There are
a number of different ways to describe permissions for a file (type man
chmod to see a full list), but one common way is to list u, g, or o for user,
group, or other categories followed by a + or - sign, and then the permis-
sion to add or remove. So if I wanted to remove write access for the user
who owns a file, I would type chmod u-w filename. If I wanted to add read
permissions for a file’s group I would type chmod g+r filename. To add read
permissions on a file for other users on the system, I would type chmod o+w
filename. Let’s take our c.sh file as an example:

-rwxr-xr-- 1 kyle admin 52 2009-04-04 15:13 c.sh

If I wanted to allow other users on the system to execute this file, I would
type

$ chmod o+x c.sh
$ ls -l c.sh
-rwxr-xr-x 1 kyle admin 52 2009-04-04 15:13 c.sh

In addition to u (user), g (group), and o (other), the chmod command also
accepts a for all categories. If, for instance, you wanted to remove execute
permissions for user, group, and other, you could type

$ chmod a-x c.sh
$ ls -l c.sh
-rw-r--r-- 1 kyle admin 52 2009-04-04 15:13 c.sh

To undo what I just did, I would just change it to a+x:

$ chmod a+x c.sh
$ ls -l c.sh
-rwxr-xr-x 1 kyle admin 52 2009-04-04 15:13 c.sh

Linux File Types
Most people who have used a computer for some time are familiar with the
two most common types of files, regular files and directories. On a Linux
system, though, everything from hard drives to other physical devices is

466 Chapter 14 � Basic Linux Administration

ptg

represented by a file. While the beginning administrator probably won’t
deal with named pipes or socket files much, there are three file types that
you will run into and use: symbolic links, hard links, and device files.

Symbolic Links
Symbolic links, or symlinks, are a special kind of small file that points to
another file. If you come from a Windows background, symlinks might
remind you of Windows shortcut files. When you perform an operation
on a symlink, such as opening it with another program or writing to it, the
data actually goes to the original file instead.

So why would you want to use a symlink? Often administrators use sym-
links when they need the same set of files in more than one location. This
can be handy if you want to share a system directory or other file with a
new Linux user—you can just create a symlink to the directory in that
user’s home directory. You will also see administrators use a symlink when
the name of a configuration file has changed but they still want the old
filename to appear.

To create a symlink, use the ln command along with the -s argument fol-
lowed by the file you want to link to and the path to the symlink you want
to create. For instance, if I wanted to store my Web site under my home
directory at /home/kyle/example.net/ (possibly because it has more space)
but still show up under /var/www/, since that’s the standard place an
administrator would look, I could create a symlink:

$ sudo ln -s /home/kyle/example.net /var/www/example.net

When you use the ls command with the -l argument against the symlink,
you can easily tell that it is a symlink by the fact that it has an arrow point-
ing to the source file or directory. Note that if you delete the file to which a
symlink points, the symlink file will still exist on the system, but the data
itself will be gone.

$ ls -l /var/www/example.net
lrwxrwxrwx 1 root root 26 2009-04-09 19:11 /var/www/example.net ->
/home/kyle/example.net

Linux File Types 467

ptg

Hard Links
Hard links are similar to symlinks, only where symlinks point to another
file, a hard link actually is the file. If you want to understand hard links, it
helps to understand what an inode is. Each file that you create on a parti-
tion stores its data in an inode. That inode has a unique number compared
to any other inodes on the partition, and within the inode there is infor-
mation such as the permissions on the file, who owns the file, and pointers
to the actual data of the file, among other things. When you create a file in
a directory, the directory actually just contains the file’s name and its inode
number. When you then access the file, you get directed to that inode and
read its data. In the case of a hard link, a second file gets created some-
where on the partition that also points to that same inode.

Since a hard link shares the same exact inode information as the original
file, for all intents and purposes it is that file; it’s just potentially in a differ-
ent directory. Unlike with symlinks, if you create a hard link to a file, you
can delete the original file and the hard link will still work.

When would you use a hard link? Hard links are very useful when you
want to reference the same file in two locations (say, a large DVD image or
other file) on the file system. With a hard link both files have the same per-
missions and the correct file size, and they operate as normal files. You will
find that some backup software will use hard links so that if two servers
have some identical files, the backup server has to store the file only once.
So why would you use one type of link rather than the other? Well, for one
thing, you can’t use a hard link for directories. Second, hard links work
only on the same file system, so if you had a root partition and a separate
/home partition, you couldn’t create a hard link between the two.

To create a hard link, just use the ln command without the -s option. So if
I wanted a copy of my Ubuntu server ISO file from /home/kyle/isos/ on
my desktop without taking up a lot of space, I could type

$ ln /home/kyle/isos/ubuntu-8.04.1-server.i386.iso
/home/kyle/Desktop/ubuntu-8.04.1-server.i386.iso

This hard link looks no different from the original file:

468 Chapter 14 � Basic Linux Administration

ptg

$ ls -l /home/kyle/isos/ubuntu-8.04.1-server-i386.iso
-rw-r--r-- 2 kyle kyle 584722432 2008-10-08 20:26 /home/kyle/isos/
ubuntu-8.04.1-server-i386.iso

$ ls -l /home/kyle/Desktop/ubuntu-8.04.1-server-i386.iso
-rw-r--r-- 2 kyle kyle 584722432 2008-10-08 20:26 /home/kyle/
Desktop/ubuntu-8.04.1-server-i386.iso

Device Files
Eventually as you learn about Linux you will hear someone talk about how
under Linux everything is a file. This can be strange if you are used to
other operating systems, but under Linux everything, including the hard-
ware on your computer, is a file. These device files are mostly stored under
the /dev directory on a Linux system. You will commonly hear about these
device files as you start to work with Linux partitions. For instance, the
first SCSI drive on your system is represented by a file named /dev/sda, and
all of the partitions on that drive are numbered starting with 1, so the first
partition on the drive is /dev/sda1. Even though this is a special device file,
many of the file-based tools on your Linux system will work with it just
like any other file. For instance, a common way to image drives under
Linux is to use a tool called dd that reads from a file one bit at a time to read
from one device file, say, /dev/sda1, and write to another device file, say,
/dev/sdb1.

So how can you tell a device file from a regular file? Well, typically all
device files reside inside the /dev directory. In addition to that, if you run
ls -l on a device file, you will see either a b or a c before the file’s permis-
sions. The b tells you that this is a block (unbuffered) device, and the c
means it is a character (buffered) device:

$ ls -l /dev/sda
brw-rw---- 1 root disk 8, 0 2009-04-03 06:17 /dev/sda
$ ls -l /dev/zero
crw-rw-rw- 1 root root 1, 5 2009-04-03 06:17 /dev/zero

I already mentioned that /dev/sda is the device file for the first SCSI drive
on my system, but /dev/zero is a special device. When you read input from
/dev/zero, you will simply get an unending string of zeros. This can be use-
ful when you want to write over a hard drive with zeros, by the way; just

Linux File Types 469

ptg

use dd to read from /dev/zero and write to the drive you want to erase.
Here are some other interesting device files:

� /dev/mem
This file is actually a complete copy of your system RAM.

� /dev/random and /dev/urandom
These devices operate like /dev/zero only they output random
numbers.

� /dev/ttyS0
This is the first serial port on the system.

� /dev/null
This is the “black hole” on your Ubuntu system. Any data that you
write to this file will essentially disappear without the file growing in
size. Administrators often redirect program output to this file so that
it doesn’t show up on the console.

At and Cron
As you get more comfortable with Linux and running programs from the
command line, eventually you will find that you need a program to run
when you aren’t around. For instance, you might set up a script that backs
up your system, but you would like it to run at 2 AM when no one is using
the system. Linux includes two different services, at and cron, that allow
you to run programs at predefined times. You use at when you want a pro-
gram to be run at a particular time, and generally only once. When you
want to run a program periodically (such as once per day or once every
hour), you use cron.

At
To use at, first type the command at in a terminal followed by the time you
want the command to be run. At can accept times and dates in many dif-
ferent formats, but be sure to not confuse AM and PM. You can even substi-

470 Chapter 14 � Basic Linux Administration

ptg

tute words like “tomorrow” for hard dates. Once you press Enter, you will
be in an interactive shell:

$ at 9pm

warning: commands will be executed using /bin/sh

at>

Inside this shell you can type all of the commands you would like at to run,
just as though you were in a terminal. If you want to run multiple com-
mands, just hit Enter after each command to go to a new at> prompt.
When you have entered all the commands you want to run at that time, hit
Ctrl-D on the empty at> prompt, and the job will be queued.

$ at 9pm

warning: commands will be executed using /bin/sh

at>

at> /usr/local/bin/my_backup_script

at> <EOT>

job 1 at Sat Apr 17 21:00:00 2010

Once a command has been queued, you can use the atq command to see
all of your queued jobs. The output will list the job number, the time it will
be executed, and the user it will be executed as (the same user who origi-
nally ran the at command):

$ atq

1 Sat Apr 17 21:00:00 2010 a kyle

If you want to remote a job from the queue, just use the atrm command
followed by the job to remove:

$ atrm 1
$

At and Cron 471

ptg

Cron
Most of the time, you will find that instead of using at, you will want to
run commands periodically. For that you will use cron. Cron is a daemon
that runs in the background on your Linux system. Each user and the sys-
tem itself has a cron table (called crontab) that lists what jobs they would
like run as well as how frequently they should be run.

The systemwide crontab is located at /etc/crontab and is a good place to
look to get an idea of cron’s syntax:

$ cat /etc/crontab
/etc/crontab: system-wide crontab
Unlike any other crontab, you don’t have to run the ‘crontab’
command to install the new version when you edit this file
and files in /etc/cron.d. These files also have username fields,
that none of the other crontabs do.

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

17 * * * * root cd / && run-parts —report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron ||
(cd / && run-parts —report /etc/cron.daily)

47 6 * * 7 root test -x /usr/sbin/anacron ||
(cd / && run-parts —report /etc/cron.weekly)

52 6 1 * * root test -x /usr/sbin/anacron ||
(cd / && run-parts —report /etc/cron.monthly)

#

Each crontab entry in this file starts with a few fields that tell cron when
that entry should be run. Then the entry states which user will execute the
command (root in these examples), and finally it lists the command to
run. Let’s look at a few of these lines to see how the syntax works:

25 6 * * * root test -x /usr/sbin/anacron ||
(cd / && run-parts —report /etc/cron.daily)

472 Chapter 14 � Basic Linux Administration

ptg

The first field in this line tells cron what minute on the hour to trigger the
command, and the second field sets which hour. In this example the com-
mand will be triggered at 6:25 AM. The next three fields allow you to set the
day of the month, the month, or the day of the week to run the command.
In our case we have * in each of those fields, which acts like a wildcard so
that cron will run the command at 6:25 AM every day.

The next line in the crontab shows you how to have a command run once a
week:

47 6 * * 7 root test -x /usr/sbin/anacron ||
(cd / && run-parts —report /etc/cron.weekly)

In this command the minute field is set to 47, the hour field is set to 6 (so
6:47 AM), the day of month and month fields are wildcards, and the day of
week field is set to 7. The day of week field can accept a number between 0
and 7 with either 0 or 7 representing Sunday, 1 representing Monday, 2
Tuesday, and so on. In this case the command will be run every Sunday at
6:47 AM.

The final line in the file shows you how to have cron execute a command
once per month:

52 6 1 * * root test -x /usr/sbin/anacron ||
(cd / && run-parts —report /etc/cron.monthly)

Here we see that the minute field is set to 52, the hour field is set to 6, and
the day of month field is set to 1, while the rest of the fields are wildcards.
This tells cron to run that command on the first day of the month at 6:52 AM.
If I wanted the command to run on the 20th day of the month, I would
change the 1 to a 20.

In addition to the standard numbers you can put in each field, cron
accepts ranges and multiple numbers separated by commas. You can
define a range by putting a dash between two numbers. For instance, if I
wanted to run a command every 15 minutes, my fields would look like

0,15,30,45 * * * * root mycommand

At and Cron 473

ptg

This way cron will run the command at 0, 15, 30, and 45 minutes after the
hour. If I wanted to run a command at 9 AM only on Monday through Fri-
day I could say

0 9 * * 1-5 root mycommand

Finally, cron also accepts fractions, which saves you from having to type in
all of the comma-separated numbers. For instance, a shorthand form of
the above command that runs every 15 minutes could be

*/15 * * * * root mycommand

While in the past many administrators would put their commands directly
into the /etc/crontab file, over time that caused the file to get quite large
and difficult to manage. Realistically, you usually want to run a command
either every hour, every day, every week, or every month. Instead of putting
those commands directly into /etc/crontab, all you have to do is create a file
that has the shell script you want to run and then place it in either
/etc/cron.hourly/, /etc/cron.daily/, /etc/cron.weekly/, or /etc/cron.monthly/,
and cron will run it at that frequency. If you look in those directories,
you’ll find that a number of other services on your system already have
scripts set up there that you can emulate.

Even if you do have a command you want to run that doesn’t conveniently
fit into one of the above directories, you still don’t want to add it directly to
/etc/crontab. Instead, Ubuntu has set up an /etc/cron.d/ directory. To use
this directory, create your custom /etc/crontab-style file that follows the
proper syntax, and then place it in this directory. For instance, if I wanted
to run my special backup script located at /usr/local/sbin/mybackup at 7
AM every day, I could create a file named /etc/cron.d/mybackup that would
contain the following:

/etc/cron.d/mybackup: run my backup script outside of
regular cron.daily

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

0 7 * * * root /usr/local/sbin/mybackup

474 Chapter 14 � Basic Linux Administration

ptg

User crontabs While you will likely run programs in cron as the root
user, sometimes you’d like to run programs as a regular user. You could
create a system cron entry and specify that user, but what if you didn’t have
root permissions on the system? In that circumstance, you can use the
crontab -e command on the command line as your regular user. The first
time you run the command, it will let you select which text editor to use
and then drop you into that text editor. From there you can define your
own crontab entries.

NOTE Because these commands will be run as your user, the user field does not exist in this
crontab. Just enter the time and date fields followed by your command.

After you add your entries to your user’s crontab, save the file, and that
crontab will go into effect. If you want to see the contents of your crontab,
just type crontab -l.

Finally, if you want to see all of the user crontabs and at jobs, go to the
/var/spool/cron directory on your system as the root user. You will see an
atjobs and atspool directory that contains information for at along with a
crontabs directory that lists every user’s crontab.

At and Cron 475

ptg

This page intentionally left blank

ptg

A P P E N D I X

Cool Tips and Tricks

477

ONE OF THE MOST AMAZING things about Linux is just how flexible the com-
mand line is. Over the years I’ve learned a lot of useful command-line
tricks. Some are time-saving and others are life-saving. No matter how
long you’ve used Linux, it seems as if you learn new tips like this all the
time. In this section I have compiled some of my favorite short command-
line tips and tricks.

Avoid That grep Command in grep Output
One of the main ways I use grep is when I am looking for a particular
process on the system. The problem is that the grep command itself always
seems to match and shows up in the output:

$ ps -ef | grep bash
kyle 982 2077 0 19:50 pts/2 00:00:00 grep bash
kyle 2077 6668 0 Apr06 pts/2 00:00:01 bash
kyle 6859 6668 0 Apr03 pts/1 00:00:00 bash

As you can see here, I have two valid bash processes running, but I get the
grep command in my output as well. That can be annoying if you want to
count the number of Apache processes on the system, for instance, as you
always have to subtract one for the grep command—that is, unless you
surround the first character of your keyword with brackets:

$ ps -ef | grep [b]ash
kyle 2077 6668 0 Apr06 pts/2 00:00:01 bash
kyle 6859 6668 0 Apr03 pts/1 00:00:00 bash

This works because of the power of regular expressions. When I surround
the first character with brackets, I’m telling grep to search within a character
class. Usually you use character classes so you can list a number of different

ptg

characters to match, but in this case, since there is only one character in it, it
acts just as if I were grepping for bash. Of course, since the grep command
itself has brackets in it, it doesn’t show up in the result.

Shortcut to a Command Path
There are times when you want to look at a shell script you have in your
binary path but you can’t quite remember whether it’s in /bin, /sbin,
/usr/bin, /usr/local/bin, or somewhere else. While you could just keep hit-
ting the tab key until you find it, the which command will search through
your path and output the full path to the command you list:

$ which vim
/usr/bin/vim

If I wanted to run ls -l against the vim binary but I wasn’t sure what direc-
tory it was in, I could just type

$ ls -l `which vim`
lrwxrwxrwx 1 root root 21 2008-03-21 22:22 /usr/bin/vim ->
/etc/alternatives/vim

When you surround a command with backticks (`), it will run the com-
mand and the output will appear in its place. I especially like to do this
when I want to edit a custom shell script I’ve written and don’t know
where I saved it.

Wipe a Drive in One Line
Be careful with this command! As a sysadmin you often have systems you
need to get rid of and need to erase the hard drives so no private company
data gets out. A simple way to do this is to use the dd command to read
from the special /dev/zero device and output to the drive you want to
erase. When the command is done, the entire drive will be all zeros. So if I
wanted to completely erase /dev/sdb, I would type

$ sudo dd if=/dev/zero of=/dev/sdb

478 Appendix � Cool Tips and Tricks

ptg

Run a Command Over and Over
Often I will be copying a file from one file system or server to another and
I want to monitor the copy progress. While I could just type ls -l over
and over, a better method is to use the watch command. The watch pro-
gram takes a command as an argument and then runs that command
every two seconds and shows its output on the screen. So, for instance, if I
wanted to monitor the size of ubuntu.iso, I would type watch "ls -l
ubuntu.iso". The watch command accepts a few arguments such as the -n
argument so that you can adjust how many seconds it will wait before it
runs the program again.

Make a Noise When the Server Comes Back Up
When I work I usually have more than one thing going on at a time. When
I’m working on a server and need to reboot it, usually I want to know right
away when it comes back up so I can log in to it and finish whatever work I
was doing. Of course, what usually happens is that I start to reboot a
server, then get distracted by other work while I wait for it to come back up
and completely forget about it until later. A nice solution to this problem is
to use the ping program with the -a argument. The -a argument tells ping
to play an audible bell (the beep you hear when you hit Tab on the key-
board sometimes) for every ping response. When a system is up, this just
means one beep after another. What I like to do is run ping -a against a
particular hostname as I reboot it. Then I can go do some other work and
once the server comes back up on the network, my terminal will beep over
and over until I stop the ping process.

Search and Replace Text in a File
There are many different ways to search and replace text in a file, from sed
and awk scripts to opening the file in a text editor. One of my favorite ways
is with what I like to call my “Perl pie” script. If I wanted to replace all
instances of kyle with Kyle in a file.txt, I would type:

$ perl -pi -e 's/kyle/Kyle/' file.txt

Search and Replace Text in a File 479

ptg

Since this one-liner uses Perl, it also means that you can take advantage of
Perl’s advanced regular expression engine.

find and exec Commands
A very common command-line need is to locate all the files within a direc-
tory and all its subdirectories with a certain attribute and run some com-
mand on them. For instance, let’s say I wanted to move all files that end in
.txt within my current directory and all the directories below it into the
~/Documents directory. If you wanted to just list all of the files, you would
run the following find command:

$ find ./ -name "*.txt"

In your output you would get a list of each file that ended with .txt along
with its path. To then execute some program against these files you would
use the -exec argument to find:

$ find ./ -name "*.txt" -exec mv {} ~/Documents/ \;

The -exec command will replace the {} in each file with the full path to
that file. In this case it would run the mv command against the file and
move it to the ~/Documents directory. Notice that strange \; text at the
end of the command. That is required when you use the -exec argument
so that it knows it is at the end of the command.

Be careful when you run this command. People make mistakes, and often
you’ll find either your find output is different from what you thought it
would be or you have some mistake in your -exec command. I recom-
mend before you run anything risky that you test your -exec command
with echo. That way you see what -exec would run before it actually does
anything. For instance, I would test the command above with

$ find ./ -name "*.txt" -exec echo mv {} ~/Documents/ \;

Bash Commands with Too Many Arguments
As you start to run more and more find -exec commands, you will even-
tually run across a situation when there are too many files in the output

480 Appendix � Cool Tips and Tricks

ptg

and will get some sort of error message like “too many arguments.” There
are a limited number of arguments you can have in your shell, but luckily
if this happens to you, there is a good way around it using the xargs pro-
gram. The xargs program will accept a set of arguments that are piped to it
and will run a command against those arguments one by one. So, for
instance, if I got that error in my find command, I could instead type

$ find ./ -name "*.txt" -print0 | xargs mv ~/Documents

Use Your Bash History
While it’s always advisable to document all of your procedures, especially
when you fix a problem, sometimes you don’t get around to it and have to
figure out what you did the last time to fix a system. It can be easy to forget
that bash logs all of your previous commands to its history file. One of the
first things I do when I can’t remember exactly how I ran a command pre-
viously is type history and look through the output for more details.

Are These Files Identical?
As you troubleshoot problems on a system, you commonly wonder
whether the problem stems from one server having a different configura-
tion file from another working server. While you can definitely open both
files and compare them line by line or run diff against them, both meth-
ods can be tedious. A quick way to test whether two files are identical is to
use the md5sum tool to create a checksum of both. If the output matches,
the files are identical:

$ md5sum bar
d41d8cd98f00b204e9800998ecf8427e bar
$ md5sum foo
d41d8cd98f00b204e9800998ecf8427e foo

Go Back to Your Previous Directory
This is a nice quick tip. When you move around directories on a system,
sometimes it would be nice if you could quickly jump back to the direc-
tory you were previously in. Just type

$ cd -

Go Back to Your Previous Directory 481

ptg

Bash will replace the - symbol with the value of $OLDPWD—an environment
variable bash uses to keep track of your previous directory.

Find Out Who Is Tying Up a File System
You Want to Unmount
Linux won’t let you unmount a file system if a file is opened on that file
system. Often you will see this if you have a shell in a directory on that file
system. In that case you can fix the problem just by changing to a different
directory, and then you can unmount the file system; but sometimes you
aren’t sure what program is tying it up. In that case you can use the lsof
command. The lsof command will list all of the open files on the system.
All you need to do is grep for the file system you want to unmount and you
will see what processes have open files on that file system. Let’s say, for
instance, that I want to unmount /media/cdrom. I would type

$ sudo lsof | grep /media/cdrom

In the lsof output I would see a list of all of the processes with open files
on that file system, their process IDs, and even what files they had opened.
Then I could close that program or kill the process and unmount the file
system.

Send a Test E-mail Using telnet
A mail server listens on port 25 for SMTP connections, and when you con-
nect to that port, if you know what SMTP commands to issue, you can
pretend to be another mail server. A very handy trick is to be able to test a
mail server just by connecting to port 25 on the machine with telnet and
typing a raw e-mail message:

$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 minimus ESMTP Postfix (Ubuntu)
HELO kyle
250 minimus
MAIL FROM: kyle@example.net

482 Appendix � Cool Tips and Tricks

ptg

250 2.1.0 Ok
RCPT TO: kyle@localhost
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
Subject: test
This is just a test
.
250 2.0.0 Ok: queued as 1ADD057CD0
quit
221 2.0.0 Bye
Connection closed by foreign host.

The first command you type is HELO followed by the name you want the sys-
tem to know you as. Next type MAIL FROM: followed by the e-mail address
you want the e-mail to appear to come from. After that type RCPT TO: fol-
lowed by the e-mail address you want to send to. Then type DATA. At that
point everything else you type will be considered the body of the e-mail. In
my example I added a Subject: field but even that is optional. Just continue
to type out your message and then when you are finished, type enter then
type a period, then type enter again. Finally type quit to end the session.

Easy SSH Key Sharing
One of the annoying parts of setting up key authentication on SSH is hav-
ing to move all the public keys around to each system’s authorized_keys
file. For years I would do some fancy shell scripting to copy keys around,
but then I found out that the openssh packages included a tool called ssh-
copy-id just for that purpose. To use the program just type ssh-copy-id
followed by the remote server (and optionally the remote username) you
want the key copied to. For instance, if I wanted to copy my current user’s
key to a server named web1, I could type:

$ ssh-copy-id web1

Or if I wanted to copy the key to the kyle user’s account on a server named
db4, I would type:

$ ssh-copy-id kyle@db4

Easy SSH Key Sharing 483

ptg

Get the Most Out of Dig
A number of people (myself included) still use nslookup for a number of
DNS queries even though it’s been deprecated for years, just because it’s
what we are used to using. Dig, after all, has different syntax, and usually
you get a lot of output you have to pore through to find the info you
wanted. That is true unless you use dig’s +short option. With that option
dig will give you just the output you want:

$ dig www.ubuntu.com +short
91.189.90.40

Another great option for dig is the +trace option. Usually dig will give you
the final result you are searching for, but what you may not realize is that
there are a number of DNS servers between your query and the answer (if
the answers aren’t cached). If you add +trace to a dig query, it will act a lot
like traceroute in that it will trace through the dig query and show you all
the hops your DNS request took.

$ dig www.ubuntu.com +trace
; <<>> DiG 9.6.1-P2 <<>> www.ubuntu.com +trace
;; global options: +cmd
. 163547 IN NS b.root-servers.net.
. 163547 IN NS c.root-servers.net.
. 163547 IN NS d.root-servers.net.
. 163547 IN NS e.root-servers.net.
. 163547 IN NS f.root-servers.net.
. 163547 IN NS g.root-servers.net.
. 163547 IN NS h.root-servers.net.
. 163547 IN NS i.root-servers.net.
. 163547 IN NS j.root-servers.net.
. 163547 IN NS k.root-servers.net.
. 163547 IN NS l.root-servers.net.
. 163547 IN NS m.root-servers.net.
. 163547 IN NS a.root-servers.net.
;; Received 244 bytes from 192.168.0.1#53(192.168.0.1) in 5 ms

com. 172800 IN NS H.GTLD-SERVERS.NET.
com. 172800 IN NS L.GTLD-SERVERS.NET.
com. 172800 IN NS D.GTLD-SERVERS.NET.
com. 172800 IN NS F.GTLD-SERVERS.NET.
com. 172800 IN NS C.GTLD-SERVERS.NET.
com. 172800 IN NS B.GTLD-SERVERS.NET.
com. 172800 IN NS K.GTLD-SERVERS.NET.

484 Appendix � Cool Tips and Tricks

ptg

com. 172800 IN NS J.GTLD-SERVERS.NET.
com. 172800 IN NS A.GTLD-SERVERS.NET.
com. 172800 IN NS M.GTLD-SERVERS.NET.
com. 172800 IN NS G.GTLD-SERVERS.NET.
com. 172800 IN NS E.GTLD-SERVERS.NET.
com. 172800 IN NS I.GTLD-SERVERS.NET.
;; Received 504 bytes from 192.58.128.30#53(j.root-servers.net)

in 110 ms

ubuntu.com. 172800 IN NS ns1.canonical.com.
ubuntu.com. 172800 IN NS ns2.canonical.com.
ubuntu.com. 172800 IN NS ns3.canonical.com.
;; Received 144 bytes from 192.41.162.30#53(L.GTLD-SERVERS.NET)

in 91 ms

www.ubuntu.com. 600 IN A 91.189.90.41
ubuntu.com. 172800 IN NS ns1.canonical.com.
ubuntu.com. 172800 IN NS ns2.canonical.com.
ubuntu.com. 172800 IN NS ns3.canonical.com.
;; Received 160 bytes from 91.189.94.173#53(ns1.canonical.com)

in 151 ms

Get the Most Out of Dig 485

ptg

This page intentionally left blank

ptg

Index

487

\ (backslash)
line continuation character, 93
in sudoer aliases, 206

% (percent sign)
group name indicator, 204
Kickstart section indicator, 106

. (dot)
alias for current directory, 20
package paragraph separator, 62–63
partition separator, 94, 96

.. (dot dot), alias for directory above current, 20
[] (square brackets)

in grep search keywords, 477–478
in regular expressions, 458

@ (at sign), Kickstart task indicator, 106
^ (caret), Ctrl key symbol, 24
(hash mark), comment indicator

source.list file, 72
Upstart, 31

< (left angle bracket), redirection operator,
462–464

? (question mark), wildcard character, 456
> (right angle bracket), redirection operator,

462–464
>> (right angle brackets), redirection operator,

462–464
/ (slash), in IRC commands, 444
| (vertical line), pipe symbol, 458–459
* (asterisk)

in shell globs, 208–209, 457
in traceroute output, 414
wildcard character, 457

** (asterisks), in shell globs, 208–209
1n command

hard links, creating, 468
symlinks, creating, 467

450 command, 155
802.3ad or 4 mode, 366

A
A time, 12
a2dissite script, 139
a2ensite script, 138
aa-complain program, 209
aa-enforce program, 209
abort command, 149
Accessibility options, 4
Account options, Kickstart, 109
Active/active clusters, 369
Active-backup or 1 mode, 365
Active-backup policy, 365
Active/passive clusters, 369
Adaptive load balancing, 366
Adaptive transmit load balancing, 366
--add command, 346
Administrator. See System administrator.
Administrator (Windows). See Root user.
Advanced Package Tools (APT). See APT

(Advanced Package Tools).
Alert escalations, 285–286
Alerts for software upgrades, 64
Aliases

for directories, 20
e-mail users, 147, 150
nesting, 21
newaliases command, 150
sudo command, 205–206
updating, 150

allow command, 217
Apache. See also Web servers.

a2dissite script, 139
a2ensite script, 138

ptg

Apache, continued
apache2ctl program, 139–141
apache2-doc package, 141
CGI scripts directory, 43, 139
configtest command, 140
configuration files, 136, 137
configuration files, checking, 140–141
configuring for WordPress, 142–143
diagnostic commands, 140–141
document root directory, 43, 139
documentation, 141
environment variables for scripts, 136
/etc/apache2, 136
/etc/apache2/apache2.conf, 136
/etc/apache2/conf.d/, 137
/etc/apache2/envvars, 136
/etc/apache2/mods-available/, 137
/etc/apache2/mods-enabled/, 137–138
/etc/apache2/ports.conf, 136
/etc/apache2/sites-available/, 138
/etc/apache2/sites-enabled/, 138–139
file conventions, 136–139
fullstatus command, 140–141
graceful command, 140
graceful-stop command, 140
log files, 139
modules available to Apache, 137
multiple sites on same server, 138
port settings, 136
restart command, 139–140
restarting, 139–140
start command, 139–140
starting/stopping, 139–140
status command, 140–141
stop command, 139–140
symlinks to .load and .conf files, 137–138
symlinks to virtual hosts, 138
/usr/lib/cgi-bin/, 139
/var/log/apache2/, 139
/var/www/, 139
virtual hosts, 138

apache2 package
installing, 116
in the LAMP server package, 14

apache2ctl program, 139–141
apache2-doc package, 141
apache2-mpm-prefork package, 14

AppArmor
aa-complain program, 209
aa-enforce program, 209
complain mode, 209–210
configuration files directory, 210
enforce mode, 209–210
/etc/apparmor/, 210
/etc/apparmor.d/, 210
/etc/init.d/apparmor, 210
file conventions, 210
globs, 208–209
init script directory, 210
log directories, 210
overview, 206–207
principle of least privilege, 206–207
profiles, 207–209
rules directory, 210
/var/log/apparmor/, 210
/var/log/syslog, 210

APT (Advanced Package Tools)
apt-cache program, 65–67
apt-ftparchive package, 81
apt-get program, 58–59, 64
Aptitude program, 64
downloading packages automatically, 65
installing new package versions, 65
overview, 58–59
upgrading packages automatically, 65

apt pinning repositories, 75
apt-cache program, 65–67
apt-ftparchive package, 81
apt-get program, 58–59, 64
apt-install command, 103
Aptitude program

alternative to apt-get, 64
full-upgrade command, 76
installing packages, 67–68
removing packages, 69
safe-upgrade command, 65, 76
upgrade command, 65

--arch option, 302
Archiving backups, 240
Arguments, editing boot defaults, 87–88
Arguments, listing

commands, 22
init scripts, 35
installation, 5

488 Index

ptg

Asterisk (*)
in shell globs, 208–209, 457
in traceroute output, 414
wildcard character, 457

Asterisks (**), in shell globs, 208–209
at command, 470–471. See also cron command.
At sign (@), Kickstart task indicator, 106
Audible alarms, servers, 479
authkeys file

definition, 371
description, 376–377
node authentication, 376–379
syslog file example, 377–378

Autobuilders, 55–56
Autobuilding packages, 55–56
Auto-expiration of sudo access, 202
auto_failback option, 375
autojoin option, 373
Automatic

disk failure notification, 345
failback, 375
GRUB boot loader updates, 25
nodes joining clusters, 373
package building, 55–56
package downloading, 65
package upgrading, 65
software upgrades, 57
source discovery, Kickstart, 110
system upgrades, 76
updates, enabling, 97

Automating
chroot process, 103
Ubuntu Server installation, 118–123
VMs (KVM) creation, 306–307

autopsy package, 235–236
Autopsy tool, 235–236
autostart command, 308

B
Backing up data. See also BackupPC; Rescue and

recovery; Restoring from backups;
Snapshots.

archiving backups, 240
blackout periods, 260–261
--checksum-seed option, 256
dd command, 240–242
drive imaging, 240–242

excluding directories, 257–258
frequency, 239–240
full backup interval, 259–260
full backups, 239
FullAgeMax option, 260
FullKeepCnt option, 260
FullKeepCntMin option, 260
FullPeriod option, 259–260
incremental backups, 239
limiting to one file system, 256–257
pg_dump tool, 246
principles of, 238–239
with RAID, 239
retention options, specifying, 260
scheduling backups, 239, 259–261
to a separate system, 238
testing backups, 239

Backing up data, databases
MySQL, 242–246
mysqldump program, 242–246
number of backup files, specifying, 245
password requirements, 243, 245
pg_dump tool, 246
PostgreSQL, 246–247
scheduling, 244–246, 246–247
to the screen, 242–243

Backport repositories, 74–75
Backporting, 77–79
Backslash (\)

line continuation character, 93
in sudoer aliases, 206

Backup files, location, 264
BackupPC. See also Backing up data; Restoring

from backups.
first backup, starting, 254–255
overview, 247–248
password protection, 247–248
restore file browser, 262
storage requirements, 248–249

BackupPC, client machine
adding to BackupPC, 253–254
command-line interface, 254
configuring, 252–253
Web interface, 253–254

BackupPC, configuration
changing, 250
client machine, 252–253

Index 489

ptg

BackupPC, configuration, continued
command-line based, 251–252
config.pl file, 249–250
default, 249–250
SSH keys, 252
sudo, 253
Web-based, 250–251

BackupPC, rsync tweaks
backup retention, specifying, 260
blackout periods, 260–261
--checksum-seed option, 256
excluding directories, 257–258
full backup interval, 259–260
FullAgeMax option, 260
FullKeepCnt option, 260
FullKeepCntMin option, 260
FullPeriod option, 259–260
host-specific tweaks, 258–259
limiting to one file system, 256–257
scheduling backups, 259–261

balance-alb or 6 mode, 366
balance-rr or 0 mode, 365
balance-tlb or 5 mode, 366
balance-xor or 2 mode, 365
Bash commands, too many arguments,

480–481
Bash history, 481
bcast option, 306, 373
/bin directory, 40
Binaries directories, 40–41
Binary packages

autobuilding, 55–56
creating, 55–56
installing, 56–57
overview, 63

BIND (Berkeley Internet Name Domain).
See DNS servers, BIND.

Bind 9 DNS server, 13
bind9 package, 13
bind9-doc package, 13
Black hole, redirecting files to, 470
Blackout periods, 260–261
Blk_read: total blocks read, 404
Blk_read/s: blocks read per second, 404
Blk_wrtn: total blocks written, 404
Blk_wrtn/s: blocks written per second, 404

Blogging software. See WordPress.
Bond modes, Ethernet bonding, 365–366
Boot arguments, editing, 87–88
Boot cheat codes, 119–121
/boot directory, 7, 42
Boot flag, setting, 13
Boot loader, partitioning, 7. See also GRUB.
Boot parameters, listing, 5
Boot process, GRUB boot loader

automating updates to, 25
changing temporarily, 25–26
configuration file, 25
definition, 25–26
documentation for, 25
internal comments, 25
kernel options, defining, 25–26
menu.lst file, 25
update-grub program, 25

Boot process, kernel
init script, 27
initial RAM disk file, 26
initramfs file, 26–27
initrd file, 26
modular kernels, 26–27
root file system, mounting, 27

Boot process, /sbin/init program (System V init
model). See also Upstart.

description, 27–28
drawbacks, 30–31
/etc/init.d script, 28–29
/etc/rc0.d — /etc/rc06.d scripts, 29
/etc/rc.local script, 29
/etc/rcS.d script, 29
force-reload command, 29
init scripts, 28–29
reload command, 29
reloading settings, 29
restart command, 29
runlevels, 28
start command, 29
starting/stopping, 29
start-up scripts, 28–30
status command, 29
stop command, 29
system states. See Runlevels.
user scripts, 29

490 Index

ptg

Boot process, /sbin/init program (Upstart). See also
System V init model.

(hash mark), comment indicator, 31
advantages of, 30–31
checking job status, 32–33
comments, 31
default runlevel, changing, 33–34
description, 30–31
event-driven actions, 30–31
script location, 31
script syntax, 31
start command, 32
starting/stopping jobs, 32
status command, 32
stop command, 32

Boot process services, definition, 34
Boot process services, managing with init scripts

arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 34–35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
skeleton script, 37
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

Boot process services, managing with xinetd
description, 38–39
echo feature, 39
enabling services, 39
FTP feature, 39
system time, displaying, 39
TFTPD (Trivial File Transfer Protocol Daemon),

39
Boot prompts, responding to, 117
Boot screen, 3–5

“Bootable flag” field, 13
Booting LTSP

boot: prompt, displaying, 193
boot option default, setting, 193
boot option timeout, setting, 193
from the local hard drive, 193–194
from the network, 189–190

Bootloader options, Kickstart, 109
Botnets, 214
Bouncing e-mail messages, 153–154
Braille terminal, enabling, 4
Bridged networking, 298–300, 315
Broadcast address, specifying, 306
broadcast or 3 mode, 365
Broadcast policy, 365
Browsing for packages, 65–67
Brute-force attacks, 213–214
Bug reporting, 451–453
build-essential package, 313
BusyBox shell, 16
Bypassing installation CDs at boot, 4

C
c1.medium VM type, 329
c1.xlarge VM type, 330
Caches, flushing, 166
Canonical, paid support, 442–443
Caret (^), Ctrl key symbol, 24
cc (Cluster Controller), 325
cd command, 20
CD ejection, disabling, 100
CD/DVD drives, VMs (VMware), 319
CDs for installation. See Installation CDs.
CGI scripts directory, Apache Web server,

139
Chaining commands, mdadm tool, 345
Character classes, 458
Cheat codes, 119–121
check command, 149
Checking job status, Upstart, 32–33
Checksums, creating, 481
--checksum-seed option, 256
chgrp command, 21
chkconfig tools, 36
chkrootkit program, 235–236
chmod command, 21, 466

Index 491

ptg

Choose a different root file system, menu option,
430

choose_interface option, 89–91
chown command, 21
chroot process, automating, 103
cic (Cloud Controller), 325
clean option, 423
Client connection, verifying, 408–409
Client machine, BackupPC, 252–254
Client problems vs. server, 408–409
Client root filesystem, 188
Client settings, defaults, 159
Clock (LTSP), setting, 187
Closed ports vs. firewalls, 415–416
Cloud Controller (cic), 325
Cloud management, 326–328
Cluster Controller (cc), 325
Clusters. See also Fault tolerance.

active/active, 369
active/passive, 369
adding hosts to, 277
defining, 274–275
fencing, 370
floating IPs, 369
forcibly killing a server, 370
host status, determining, 370
monitoring nodes. See Heartbeat tool.
overview, 369
quorum, 370
replicated storage. See DRBD.
resource descriptions, 375–376
separate connection for node monitoring, 370–371
shooting the other node in the head, 370
split-brain syndrome, 370

Command-line administration
becoming root, 24
editing files, 23–24
nano editor, 23–24
sudo command, 24
vi editor, 23–24

Command-line administration, directories
. (dot), alias for current, 20
.. (dot dot), alias for directory above current, 20
aliases, 20–21
cd command, 20
changing, 20

current, 19–20
current, listing files in, 18–19
group, displaying, 20
home, confirming, 18
information about, listing, 19–20
last modification time, displaying, 20
links, displaying, 20
ls command, 18–20
moving around the system, 18–21
name, displaying, 20
ownership, displaying, 20
permissions, displaying, 20
pwd command, 18
size, displaying, 20
symlinks, identifying, 20

Command-line administration, files
chgrp command, 21
chmod command, 21
chown command, 21
groups, 20–21
information about, listing, 19–20
last access time, displaying, 20
name, displaying, 20
ownership, 20–21
permissions, 20–21
size, displaying, 20
symlinks, 20

Command-line administration, running processes
killing, 22–23
monitoring in real time, 21–23
PID, finding, 22–23
ps command, 21–23
stopping, 21–23
top command, 21

Commands. See also specific commands.
arguments, listing, 22
bash history, 481
pathname, finding, 478
repeating, 479
vs. services, 286
wildcard characters, 480

Commenting out configuration lines, 367
Comments

(hash mark), comment indicator, 31, 72
GRUB boot loader, 25–26
Upstart, 31

492 Index

ptg

Common section, DRBD configuration file, 380,
381

Communication timeout, setting, 373, 374
Comparing files, 481
Complain mode, AppArmor, 209–210
config.pl file, 249–250
configtest command, 140
Configuration. See specific programs.
Configuration files. See specific programs.
Configurator tool, Kickstart, 111
Contact list, configuring, 287–288
Contacts, configuring, 285
Control file, source packages, 62–63
--copy option, 306
Copying

packages to another system, 77
SSH key files, 306

Copying files
from non-RAID disks to RAID, 348
from RAID 1 to RAID 5, 354

CPU, monitoring
idle time, 399
load, 270
system time, 399
user time, 399

create command, 166
--create option, 342
createdb command, 170
createuser command, 169
Critical thresholds, setting, 284
cron command, 472–475. See also at

command.
crontabs, 475
Cryptographic keys, repositories, 72–73
cupsys package, 14
cupsys-bsd package, 14
Current directory

. (dot), alias for, 20
identifying, 18
listing files in, 19–20

Current load, analyzing, 311–313

D
-d option, 302
Database servers. See MySQL databases;

PostgreSQL databases.

Databases, backing up
MySQL, 242–246
mysqldump program, 242–246
number of backup files, specifying, 245
password requirements, 243, 245
pg_dump tool, 246
pg_dumpall tool, 246
PostgreSQL, 246–247
psql tool, 246
scheduling, 244–246, 246–247
to the screen, 242–243

Databases, Tripwire
default directory, 232
“file does not exist” message, 229
initializing, 228–230
“unknown file system type” message, 229
updating, 230–231

Databases, used by Samba, 175
dd command, 240–242, 437
ddrescue command, 437
deadtime option, 374
DEB (Debian) format. See Package management,

DEB format.
debconf database, dumping, 85
debconf-get-selections, 85
default command, 216–217
DEFAULT keyword, 193
Default runlevel, changing, 33–34
Defense in depth, 201
defoma package, 14
Degraded arrays, 347
deity. See APT (Advanced Package Tools).
delete allow command, 217
delete command, 220
delete deny command, 217
Deleted files, recovering, 433–435
Deleting. See also Removing.

hosts, 287
mail queue messages, 149
services, 287
user accounts, PostgreSQL, 170

deny command, 217
denyhosts program, 213–214
Dependency checking, package management, 57,

59–60
Desktop alerts for software upgrades, 64

Index 493

ptg

Destination directory, specifying, 302
Destination files, list of, 306
destroy command, 308
--detail argument, 344
--detail --scan command, 342–343
/dev directory, 44
device command, 110
Device files, 469–470
Device files directory, 44
Device information directory, 45
/dev/mem, 470
/dev/null, 470
/dev/random, 470
devscripts package, 79
/dev/ttyS0, 470
/dev/urandom, 470
df command, 405–408
DHCP (Dynamic Host Configuration Protocol)

automating Ubuntu Server installation, 118–123
leases, list of, 161
selection by static leases, 121–122
selection by subnet, 123
timeout duration, setting, 90
timing out, 90

DHCP servers
coexisting with LTSP, 191–192
configuration files, 161
DHCP leases, list of, 161
dynamic configuration, 161–162
/etc/dhcp3/dhcpd.conf, 161
file conventions, 161
installing, 160
log files, 161
overview, 160
setting up for PXE boot server, 112–113
static configuration, 162–163
/var/lib/dhcp3/dhcpd.leases, 161
/var/log/syslog, 161

dh-make program, 80–81
Diagnostic commands, 140–141
diff command, 481
dig command, 49
dig tool, 412, 483–484
dir command (Windows). See ls command.
Direct restore, 262

Directories. See also File system hierarchy; specific
directories.

aliases, 20–21
cd command, 20
changing, 20
command-line administration. See Command-

line administration, directories.
excluding from backups, 257–258
group, displaying, 20
information about, listing, 19–20
last access time, 12
last modification time, 20
links, displaying, 20
ls command, 18–20
moving around the system, 18–21, 481–482
moving back to previous, 481–482
name, displaying, 20
noatime option, 12
ownership, displaying, 20
permissions, displaying, 20
pwd command, 18
Samba, sharing, 176–177
size, displaying, 20
symlinks, 20
A time, 12
variable size, directory for, 43

Directories, current
. (dot), alias for, 20
identifying, 18
listing files in, 19–20

disable command, 216
Disabled users. See Accessibility options.
Disk partitioning. See also Installing Ubuntu Server.

administrator options, 7–13
/boot directory, 7
for the boot loader, 7
for dual-boot capability, 8
grouping partitions or disks, 8
Guided, LVM, 8
Guided, with entire disk, 8
/home directory, 6
Kickstart, 110
with Kickstart, 105–108
KVM VMs, 304
for LTSP, 187

494 Index

ptg

MD (multidisk) devices, 342
migrating from RAID 1 to RAID 5, 351–354,

356–357
migrating non-RAID disks to RAID, 347, 350
/opt directory, 6
partitions, definition, 5–6
partitions, maximum per disk, 10
for personal files for user accounts, 6
for RAID devices, 338–340, 341
resizing current partitions, 8
for temporary files, 7
for third-party programs, 6
/tmp directory, 7
/usr directory, 7
/var directory, 6
for variable-size data, 6

Disk partitioning, manual
allocating free space, 9–10
boot flag, setting, 13
“Bootable flag” field, 13
extended partitions, 10
file system, specifying, 10
file system settings, 10–13
initializing a blank drive, 9
inodes, setting number of, 12
inside extended partitions, 10
“Label” field, 12
logical partitions, 10
mount options, 11
“Mount options” field, 11
mount point, specifying, 11
“Mount point” field, 11
naming partitions, 12
partition size, specifying, 10
partitions as physical volumes, 10
primary partitions, 10
“Reserved blocks” field, 12
reserving space for the superuser, 12
“Typical usage” field, 12
“Use as” field, 10–11

Disk partitioning, preseeding
custom schemes, 92–94
expert_recipe for, 92–94
formatting partitions, 94
LVM partitions, 95–96

maximal size, 93
minimal size, specifying, 93
mountpoint, specifying, 94
overview, 91
partman-auto/choose_recipe option, 92
partman-auto/method option, 91
partman-auto/purge_lvm_from_device option,

91–92
partman/choose_partition option, 92
partman/confirm option, 92
partman/confirm_write_new_label option, 92
partman-lvm/confirm option, 91–92
primary partition, 94
priority, specifying, 93–94
warning prompts, disabling, 91

Disk space
allocating, 9–10
freeing, rescue and recovery, 423
reserving for the superuser, 12

Disk space, troubleshooting
df command, 405–407
du command, 406–407
excessive tmp files, 407
full file system, 407
out of inodes, 407–408
usage, by directory, 406–407
usage, by file system, 406–407

Diskless clients, 180
Disks. See also Hard drives.

erasing, 478
failure, automatic notification, 345. See also

Hard drives, rescue and recovery.
images, restoring from, 241
I/O, monitoring, 270
management, drbdadm command, 387–389
snapshots of, 8

DISPLAY option, 193
Distributions

definition, 53
specifying, 78

Dividing the problem space, 392–393
DNS (Domain Name System)

address, specifying, 306
status, checking, 412–413
ufw firewall example, 221

Index 495

ptg

--dns option, 306
DNS queries, dig tool, 483–484
DNS servers

caching name server, 129
definition, 13
DNS master, 129–132
DNS slave, 132–133
host e-mail address, specifying, 130
overview, 126–127
SOA (Start of Authority), specifying, 130
TTL (Time To Live), default setting, 130

DNS servers, BIND
configuration files, 128
configuration files, reloading, 134
current status, checking, 134
default log file, 129
documentation, 134
/etc/bind/, 128
/etc/bind/db.*, 128
/etc/bind/named.conf, 128
/etc/init.d/bind9, 128
file conventions, 127–129
flush command, 134
init script, location, 128
installing, 127
managing with rndc, 134
as name server, 127
named.conf file, 128
reconfig command, 134
reload command, 134
retransfer zone command, 134
server caches, flushing, 134
slave zone files, location, 128
status command, 134
/var/cache/bind, 128
/var/log/syslog, 129
working directory, 128
zones, reloading, 134

DNS servers, BIND zone files
adding, 129–132
location, 128
ownership, 131
permissions, 131
referencing in named.conf, 131–132
reloading, 134
retransferring, 134

DNS slave server
configuring the master server, 132–133
configuring the slave server, 133
overview, 132

Document root directory, 139
Documentation. See also Help and resources.

Apache Web server, 141
DNS servers, BIND, 134
doc files, 450
expert_recipe partitioning, 92–94
GroundWork front end, 294
GRUB boot loader, 25
installation CDs, 4
localhost, 449–450
man command, 22
man pages, 449–450
mdadm tool, 346
online, 448
packages, 54–55
sudoers file, 204
troubleshooting problems and solutions, 394–395

Domain default, specifying, 305
Domain name for sent mail, 152
Domain Name System (DNS). See DNS (Domain

Name System).
--domain option, 305
Domains, accepting mail from, 152
do-release-upgrade program, 76
Dot (.)

alias for current directory, 20
package paragraph separator, 62–63
partition separator, 94, 96

Dot dot (..), alias for directory above current, 20
Dovecot, 157–158
Downloading packages automatically, 65
dpkg option, 423
dpkg program

copying packages to another system, 77
file owner package, identifying, 71
listing installed packages, 76–77
listing package files, 70–71
manipulating installed packages, 69–71
mirroring a system, 76–77
overview, 55, 69
querying installed packages, 69–71
searching installed packages, 69–71

496 Index

ptg

DRBD
configuring Heartbeat, 386–387
drbddisk script, 386
initializing resources, 384–386
installing, 379
for NFS, 387
overview, 379
for Samba, 387

DRBD, drbdadm command
disk management, 387–389
drbd.conf file, changing, 388
initializing resources, 384–386
replacing failed disks, 388
solving split-brain problem, 388–389

DRBD configuration file, creating
common section, 380, 381
example, 379–380
global section, 380
internal metadisk, 382
resource section, 381–382
split-brain policy, changing, 382–383

drbdadm command
disk management, 387–389
drbd.conf file, changing, 388
initializing resources, 384–386
replacing failed disks, 388
solving split-brain problem, 388–389

drbd.conf file, changing, 388
drbddisk script, 386
Driver information directory, 45
Drives. See Disks; Hard drives.
drop command, 166
dropuser command, 170
DSA keys, OpenSSH servers, 160
dselect program, 58–59, 65
du command, 406–407
Dual boot

LTSP servers, 192–194
partitioning for, 8

duck command, 406–407
Duplicate lines, removing from sorted output,

461–462
Dynamic configuration, DHCP servers, 161–162
Dynamic Host Configuration Protocol (DHCP).

See DHCP (Dynamic Host Configuration
Protocol).

Dynamic preseeding
chain loading files, 101–102
overview, 100–101
preseed/early_command option, 103
preseed/late_command option,

103–104
preseed/run option, 102–103
running custom commands, 102–104

E
echo feature, 39
Editing

boot arguments, 87–88
command-line administration, 23–24
nano editor, 23–24
preseed.cfg file, 87–88
Tripwire policies, 227–228
vi editor, 23–24

Edubuntu. See LTSP (Linux Terminal
Server Project).

802.3ad or 4 mode, 365
E-mail. See also Mail.

bounced messages, avoiding, 153–154
mail servers, 14, 144. See also POP/IMAP

servers; Postfix mail server.
sending a test via telnet, 482–483
sending notifications, 289
storing, 156–157

E-mail, example
configuration file, 151–153
domain name for sent mail, 152
domains, accepting mail from, 152
Internet host name, 152
mailbox size limit, setting, 153
mailbox_size_limit option, 153
mydestination option, 152
myhostname option, 152
mynetworks option, 152–153
myorigin option, 152
myrelayhost option, 152
networks, relaying mail, 152–153
open relays, 153
overview, 150
routing outbound mail, 152
spam exposure, 153

enable command, 216

Index 497

ptg

Encryption. See also OpenSSH servers; SSH security.
LVM (Logical Volume Manager), 364
Tripwire settings, 231–232

Enforce mode, AppArmor, 209–210
Environment variables directory, 225
Environment variables for scripts, 136
Erasing disks, 478
Escalations, 285–286
/etc directory, 42–43
/etc/aliases, 147
/etc/apache2, 136
/etc/apache2/apache2.conf, 136
/etc/apache2/conf.d/, 137
/etc/apache2/envvars, 136
/etc/apache2/mods-available/, 137
/etc/apache2/mods-enabled/, 137–138
/etc/apache2/ports.conf, 136
/etc/apache2/sites-available/, 138
/etc/apache2/sites-enabled/, 138–139
/etc/apparmor/, 210
/etc/apparmor.d/, 210
/etc/backuppc, 263
/etc/backuppc/apache.conf, 263
/etc/backuppc/config.pl, 263
/etc/backuppc/hosts, 263
/etc/backuppc/htpasswd, 263
/etc/bind/, 128
/etc/bind/db.*, 128
/etc/bind/named.conf, 128
/etc/defaults/ufw, 225
/etc/dhcp3/dhcpd.conf, 161
/etc/dovecot/, 158
/etc/exports, 177
/etc/fstab file, pointing to arrays, 349, 354
/etc/hosts directory, 47
/etc/init.d script, 28–29
/etc/init.d/apparmor, 210
/etc/init.d/backuppc, 263
/etc/init.d/bind9, 128
/etc/init.d/dovecot, 158
/etc/init.d/mysql, 165
/etc/init.d/nfs-user-server, 177
/etc/init.d/nmdb, 175
/etc/init.d/postfix, 148
/etc/init.d/postgresql-8.4, 171
/etc/init.d/smdb, 175

/etc/init.d/ssh, 160
/etc/init.d/ufw, 225
/etc/init/nmbd.conf, 175
/etc/init/smdb.conf, 175
/etc/mysql/, 164
/etc/mysql/conf.d/, 165
/etc/mysql/debian-cnf, 164
/etc/mysql/debian-start, 164
/etc/mysql/my.cnf, 164
/etc/network/interfaces directory, 46
/etc/postfix/, 146
/etc/postfix/main.cf, 146–147
/etc/postgresql/, 170
/etc/postgresql/8.4/main/pg_hba.conf, 171
/etc/postgresql/8.4/main/pg_ident.conf, 171
/etc/postgresql/8.4/main/postgresql.conf, 171
/etc/rc0.d — /etc/rc06.d scripts, 29
/etc/rc.boot, removing, 227
/etc/rc.local script, 29
/etc/rcS.d script, 29
/etc/resolve.conf directory, 47
/etc/samba/, 174
/etc/samba/smb.conf, 174–175
/etc/ssh/, 159
/etc/ssh/ssh_config, 159
/etc/ssh/sshd_config, 159
/etc/ssh/ssh_host_dsa_key, 160
/etc/ssh/ssh_host_dsa_key.pub, 160
/etc/ssh/ssh_host_rsa, 160
/etc/ssh/ssh_host_rsa.pub, 160
/etc/tripwire/, 231
/etc/tripwire/*-local.key, 231
/etc/tripwire/*-site.key, 231
/etc/tripwire/tw.cfg, 231–232
/etc/tripwire/twcfg.txt, 231–232
/etc/tripwire/tw.pol, 232
/etc/tripwire/twpol.txt, 227, 232
/etc/ufw/, 224
/etc/ufw/after6.rules, 225
/etc/ufw/after.rules, 225
/etc/ufw/before6.rules, 224
/etc/ufw/before.rules, 224
Etherboot booting, 181
Ethernet bonding. See also Fault tolerance.

802.3ad or 4 mode, 365
active-backup or 1 mode, 365

498 Index

ptg

active-backup policy, 365
adaptive load balancing, 366
adaptive transmit load balancing, 366
balance-alb or 6 mode, 366
balance-rr or 0 mode, 365
balance-tlb or 5 mode, 366
balance-xor or 2 mode, 365
bond modes, 365–366
broadcast or 3 mode, 365
broadcast policy, 365
commenting out configuration lines, 367
IEEE 802.3ad Dynamic link aggregation, 365
ifenslave package, installing, 366–367
log entry, example, 368–369
new bond device, example, 368
overview, 364–365
round-robin policy, 365
testing fail-over, 368–369
XOR policy, 365

Ethernet devices, labeling, 46
ethtool program, 409
euca-describe-instances tool, 330
euca-run-instances tool, 330
euca-terminate-instances tool, 331
Event-driven actions, 30–31
-exec command, 480
exec option, 32
--execscript option, 306
Execute a shell in /dev/ubuntu/root, menu option,

428
Execute a shell in the installer environment, menu

option, 429
Execute permission, 464–465
exit command, 170
expert_recipe for preseeding partitioning,

92–94
Extended options, init scripts, 34–35
Extended partitions, 10
extended-status command, 166

F
F1–F6, key functions, 4–5
Failed disks, replacing, 344–346, 388
Failed logins, monitoring, 213–214
Fail-over, testing, 368–369
fakeroot program, 78–79

Fault tolerance
hard drives. See RAID (Redundant Array of

Inexpensive Disks).
hot-swapping components, 334
LVM (Logical Volume Manager), 364
networks. See Ethernet bonding.
principles, 334–335
quick response time, 335
redundancy, 334, 335
single points of failure, eliminating, 335
techniques. See Clusters; Ethernet bonding;

RAID (Redundant Array of Inexpensive
Disks).

Favoring past solutions, 393–394
Fencing, 370
File cache, monitoring, 269
File conventions. See specific programs.
File servers. See also NFS; Samba.

overview, 172, 174
role of, 15

File system hierarchy, core directories. See also
Directories; Files.

/bin, 40
/boot, 42
core binaries, 40
core system libraries, 40
/dev, 44
device and driver information, 45
device files, 44
/etc, 42–43
generic mount location, 44
GRUB configuration files, 42
/home, 43–44
home directories, 43–44
intramfs files, 42
kernel images, 42
/lib, 40
/media, 44
/mnt, 44
non-critical binaries and libraries, 41
/opt, 42
/proc, 44–45
removable media, mount location, 44
/root, 44
root user, home directory, 44
/sbin, 40

Index 499

ptg

File system hierarchy, core directories, continued
spool files, 43
/sys, 45
system configuration files, 42–43
system logs, 43
temporary file storage, 45
third-party programs, 42
/tmp, 45
user home directories, 43–44
/usr, 41
/usr/bin, 41
/usr/lib, 41
/usr/local, 41
/usr/sbin, 41
/var, 43
variable size files and directories, 43
/var/log, 43
/var/spool, 43
/var/www, 43
virtual file systems, 45
Web server’s directories, 43

File systems
formatting, MD (multidisk) devices,

342
root, mounting, 27
settings, 10–13
specifying for disk partitions, 10
unintentionally erasing, 425
will not unmount, 482

File systems, rescue and recovery
corrupted, 424–425
fsck command, 424–425
fsck tool, 424–425
fstab file mistakes, 425–426
mount command, 424
mounted, displaying, 424
primary superblocks missing, 425
unintentionally erasing, 425
unmount command, 424
UUID, discovering, 426
UUID changed, 425–426
won’t mount, 424–426

File types
device files, 469–470
hard links, 468–469

inodes, 468
symlinks, 467

Files. See also specific files.
checksums, creating, 481
chgrp command, 21
chmod command, 21
chown command, 21
command-line administration. See Command-

line administration, files.
comparing, 481
groups, 20–21
information about, listing, 19–20
last access time, 12, 94
last modification time, 20
MAC (Modify, Access, Change) times, 12
name, displaying, 20
noatime option, 12
open, listing, 482
ownership, 20–21, 464–465
permissions, 20–21
redirecting to a null device, 470
search and replace text, 479–480
size, displaying, 20
symlinks, 20
temporary storage, directory for, 45
A time, disabling, 12
for user accounts, partitioning for, 6
variable size, directory for, 43
variable-size data, partitioning for, 6

Files, in packages
integrity verification, 58
listing, 70–71
owned by, identifying, 71
owner package, identifying, 71
source packages, 60–63

Files, permissions
changing, 466
chmod command, 466
execute, 464–465
groups, listing, 465
groups command, 465
read, 464–465
types of, 464–465
write, 464–465

Filtering input to pipes, 459–460

500 Index

ptg

find command, 480
Firewalls

vs. closed ports, 415–416
detecting, 415–416
hardware, 215
Kickstart, 110
layers of protection principle, 215
overview, 214–216
rules, hacking, 214
rules, listing, 416–417
software, 215
ufw command, 416

Firewalls, ufw program
default policy, defining, 216–217
locking yourself out, 220
logs, dumping, 217
remote management, 220
rules, undoing, 217
status, checking, 216

--firstboot option, 307
--firstlogin option, 307
--flavour option, 301–302
Floating IPs, 369
fls tool, 433–435
flush command, 134, 148–149
flush-* commands, 166
Flushing

DNS server caches, 134
mail queues, 148–149
MySQL caches and settings, 166

foomatic-db package, 14
foomatic-filters package, 14
force-reload command, 29, 35
Forensic analysis, 235–236, 322
Forensics tools, 432–435
format option, 94
Formats, packages, 52
Formatting

partitions, preseeding, 94
RAID arrays, 353

450 command, 155
Free software repositories, 73
fsck tool, 424–425
fstab file mistakes, 425–426
FTP feature, 39

Full backups, scheduling, 239, 259–260
Full file system, 407
FullAgeMax option, 260
FullKeepCnt option, 260
FullKeepCntMin option, 260
FullPeriod option, 259–260
fullstatus command, 140–141
full-upgrade command, 76
Full-upgrade command, 76
Fully-supported software repositories, 73

G
Ganglia monitor. See also Monitoring, tools for.

gmond program, 271–274
installing, on all hosts, 272–274
local RRD files, 272
mcast_join option, 273
overview, 271–272
port option, 273

Ganglia server
clusters, adding hosts to, 277
clusters, defining, 274–275
configuring, 274–276
gmetad program, 271–272, 274–276
grids, defining, 275–276

Ganglia Web front end
clusters, adding hosts to, 277
ganglia-webfrontend package, 276–277
installing, 276–277
monitor duration, changing, 277

ganglia-monitor package, 272–274
ganglia-webfrontend package, 276–277
Gateway access, verifying, 410–411
Gateway address, specifying, 306
Global section, DRBD configuration file,

380–381
Globs, AppArmor, 208–209
gmetad program, 271–272, 274–276
gmond program, 271–274
gpart tool, 435–436
graceful command, 140
graceful-stop command, 140
Graphical console, VMs (KVM), 311–312. See also

VMware Server.
Graphical front end, UEC, 331

Index 501

ptg

grep command
[] (square brackets), in search keywords,

477–478
filtering input to pipes, 459–460
in search results, 477–478

Greylisting, 154–156
Grids, defining, 275–276
GroundWork. See Nagios, GroundWork front

end.
Group-based access, 202
Groups

chgrp command, 21
configuring, 286
displaying, 20
files, 20–21
hosts, 286
listing, 465
membership, displaying, 465
membership default, 98
partitions or disks, 8

groups command, 465
GRUB

automating updates to, 25
boot device, specifying, 99
changing temporarily, 25–26
configuration file, 25
configuration files directory, 42
default setup, 99
definition, 25
description, 25–26
documentation for, 25
internal comments, 25
kernel options, defining, 25–26
menu.lst file, 25
migrating from RAID 1 to RAID 5, 351
password protection, 100
rescue and recovery, 429, 430
update-grub program, 25
updating, rescue and recovery, 423

GRUB, manual install
migrating from RAID 1 to RAID 5, 358
migrating non-RAID disks to RAID,

350–351
grub option, 423
GRUB2, 25
Guess Partition tool, 435–436

Guided partitioning, 8
--gw, 306

H
ha.cf file

auto_failback option, 375
autojoin option, 373
bcast option, 373
deadtime option, 374
definition, 371
example, 372–375
initdead option, 374
keepalive option, 374
logfacility option, 374
node option, 374
ping option, 374
respawn option, 374
warntime option, 373

halt command, 39
Handicapped users. See Accessibility options.
Hard drives. See also Disks.

erasing, 478
failed, replacing, 344–346, 388. See also Hard

drives, rescue and recovery.
grouping, 8. See also Disk partitioning.
health, monitoring, 266–267
imaging, 240–242
partitioning. See Disk partitioning.
setting as faulty, 345
statistics monitoring, 270
testing, 418–419

Hard drives, rescue and recovery
dd command, 437
ddrescue tool, 437
drbdadm command, 388
imaging drives, 437–439
imaging partitions, 438
mdadm tool, 344–346
replacing failed disks, 344–346, 388
scanning for problems, 436–439
storing drive images, 437–439

Hard links, 468–469
Hardware. See also specific hardware.

firewalls, 215
interrupts, 399
KVM VMs, 311, 312

502 Index

ptg

RAID, 336
troubleshooting. See Troubleshooting, hardware.

Hardware/software hybrid RAID, 336
haresources file

cluster resource descriptions, 375–376
definition, 371
description, 375–376

Hash mark (#), comment indicator
source.list file, 72
Upstart, 31

Headers package, 313
Headless server, installing Ubuntu Server on, 5
Hearing impaired users. See Accessibility options.
Heartbeat tool

automatic failback, 375
cluster example, 372
communication timeout, setting, 373, 374
configuration files, 371. See also specific files.
configuring, main methods, 371
configuring for DRBD, 386–387
installing, 372
ipfail script, starting, 374
network connectivity, gauging, 374
overview, 371
seconds between heartbeats, setting, 374
service loading timeout, setting, 374
syslog facility, specifying, 374

Heartbeat tool, authkeys file
definition, 371
description, 376–377
node authentication, 376–379
syslog file example, 377–378

Heartbeat tool, ha.cf file
auto_failback option, 375
autojoin option, 373
bcast option, 373
deadtime option, 374
definition, 371
example, 372–375
initdead option, 374
keepalive option, 374
logfacility option, 374
node option, 374
ping option, 374
respawn option, 374
warntime option, 373

Heartbeat tool, haresources file
cluster resource descriptions, 375–376
definition, 371
description, 375–376

Heartbeat tool, nodes
automatically joining clusters, 373
communication, 373
manual definition, 374

Help and resources. See also Rescue and recovery;
Troubleshooting.

bug reporting, 451–453
Canonical, paid support, 442–443
general Ubuntu help, 444
installation CDs, 4–5
IRC (Internet Relay Chat), 444–447
Launchpad project, 451–453
LoCo (Local Community) Teams, 450
mailing lists, 447–448
man command, 22
mouse-over for option help, 291
in other languages, 451
#ubuntu, 444
#ubuntu-server, 444
VMware Server Web administration, 318
Web forums, 443
XChat program, 444–447

Help and resources, documentation
doc files, 450
localhost, 449–450
man pages, 449–450
online, 448

Hesios, 109
hi: hardware interrupts, 399
High I/O wait, troubleshooting, 403–405
high-contrast screen option, 4
history command, 481
Holding mail queue messages, 149–150
/home directory

confirming, 18
description, 43–44
partitioning, 6

Host definitions, BackupPC, 263
Host network address, specifying, 305
Host status, determining, 370
Host-based access, sudo command, 202
Hosting your own packages, 81

Index 503

ptg

Hostname
LTSP, specifying, 186–187
for mail servers, 152
translating to IP address. See DNS servers.
VM, specifying, 302

--hostname option, 302
Host-only networking, 315
Hosts

adding, 289–290
defining, 47
deleting, 287
grouping, 286
MAC address, determining, 162–163
service checks, adding, 289

Hosts, Groundwork
profiles, 285
selecting, 285
settings, specifying, 285

Hot-swapping components, 334

I
icat tool, 433–435
ICMP blocked, 415
id: CPU idle time, 399
IDSs (intrusion detection systems), 226–227. See

also Tripwire.
IEEE 802.3ad Dynamic link aggregation, 366
ifconfig command

configuring network interfaces, 48–49
confirming network configuration, 410
determining MAC addresses, 162–163
network card errors, 418

ifdown command, 48–49
ifenslave package, installing, 366–367
ifup command, 48–49
Imaging

hard drives, 437–439
partitions, 438
servers, 233–234

Immediate reboot, disabling, 100
Incident response

autopsy package, 235–236
Autopsy tool, 235–236
chkrootkit program, 235–236
forensic analysis, 235–236
imaging the server, 233–234
prosecuting the intruder, 233

pulling the plug, 233
redeploying the server, 234
root kits, checking for, 235–236
Sleuth Kit tools, 235–236
sleuthkit package, 235–236

Incremental backups, 239
Init scripts. See also System V init model; Upstart.

drawbacks, 30–31
kernel boot process, 27
networking, 30–31
rescue and recovery, 426
respawning, 30
restarting, 35
VMware Server, 316–317

Init scripts, managing services
arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

initctl command, 32–33
initdead option, 374
Initial RAM disk file, 26
Initializing

blank drives, 9
DRBD resources, 384–386
Tripwire databases, 228–230

initramfs file, 26–27
initrd file, 26
Inodes

hard links, 468
running out of, 407–408
setting number of, 12

Input, redirecting, 463–464

504 Index

ptg

Installation CDs
bypassing at boot, 4
checking for defects, 4
documentation, 4
getting, 2–3
help, 4–5
as rescue disks, 4

Installer console, 15–16
Installing

binary packages, 56–57
DHCP servers, 160
DNS servers, BIND, 127
Dovecot, 157–158
DRBD, 379
Ganglia monitor, 272–274
Ganglia Web front end, 276–277
Heartbeat, 372
KVM. See KVM, installing.
mdadm tool, 341–342
MySQL, 163–164
new packages, 65, 67–68
OpenSSH servers, 159
Postfix, 144–145
PostgreSQL, 14, 169–170
Postgrey, 155–156
Samba, 174
ufw program, 216
VMware Server, 313–314
WordPress, 142

Installing Ubuntu Server. See also Disk partition-
ing.

accessibility options, 4
arguments, listing, 5
Bind 9 DNS server, 13
bind9 package, 13
bind9-doc package, 13
boot parameters, listing, 5
boot screen, 3–5
Braille terminal, enabling, 4
BusyBox shell, 16
cupsys package, 14
cupsys-bsd package, 14
defoma package, 14
F1–F6, key functions, 4–5
foomatic-db package, 14
foomatic-filters package, 14
on a headless server, 5

high-contrast screen option, 4
install mode, selecting, 4
installation log, viewing, 15–16
installation options, 4–5
installer console, 15–16
keyboard mapping, 4
keyboard modifiers, enabling, 4
language, specifying, 3, 4
memory, testing, 4
on-screen keyboard, 4
openssh-server package, 14
Postfix mail server, 14
postgresql package, 14
rebooting the system, 16
samba package, 15
samba-doc package, 15
screen magnifier, enabling, 4
screen reader, enabling, 4
server BIOSs, 3
smbfs package, 15
winbind package, 15
without a monitor, 5

Installing Ubuntu Server, automating. See also
Kickstart; Preseeding; PXE boot server
deployment.

boot cheat codes, 119–121
DHCP approach, benefits of, 118
DHCP selection, by subnet, 123
DHCP selection, static leases, 121–122
multiple Kickstart files, 118–119
overview, 84, 118
pxelinux menu, changing, 118
unattended install, 118

Installing Ubuntu Server, server roles
DNS, 13
LAMP, 13–14
mail server, 14
OpenSSH, 14
PostgreSQL database, 14
print server, 14
Samba file server, 15

in-target command, 103
Internal metadisk, 382
Internet, as troubleshooting reference, 395
Internet host name, for mail servers, 152
Internet Relay Chat (IRC), 444–447
Internet site option, 145

Index 505

ptg

Internet with smarthost option, 145
intramfs files, directory for, 42
Intrusion detection systems (IDSs), 226–227. See

also Tripwire.
I/O wait, 399
iostat program, 403–404
iotop program, 405
IP addresses

changing, LTSP, 194–195
displaying, 49
LTSP, tied to MAC addresses, 191–192
translating hostnames to. See DNS servers.

--ip option, 305
ipchains program, 215
ipfail script, starting, 374
iptables, rules directory, 224–225
iptables program, 215
IRC (Internet Relay Chat), 444–447
ISO option, 319

J
Java, Tomcat server, 15
JeOS, 300
Job status, querying with Upstart, 32–33
Juice. See JeOS.

K
keep option, 94
keepalive option, 374
Keeping it simple

security principle, 200
SSH security, 215–216
troubleshooting principle, 393

Kerberos 5, Kickstart support, 109
Kernel boot process

init script, 27
initial RAM disk file, 26
initramfs file, 26–27
initrd file, 26
modular kernels, 26–27
root file system, mounting, 27

Kernel flavor, specifying, 301–302
Kernel images, directory for, 42
Kernel options, defining with GRUB boot loader,

25–26
Key-based authentication, 211–213

Keyboard
layout, LTSP, 186
mapping at installation, 4
modifiers, enabling, 4
on-screen, 4

Keys, Tripwire, 227, 231
Kickstart. See also Installing Ubuntu Server;

Preseeding; PXE boot server deployment.
@ (at sign), task indicator, 106
% (percent sign), section indicator, 106
account options, 109
automated source discovery, 110
bootloader options, 109
Configurator tool, 111
configuring for a CD-ROM, 104–108
device command, 110
excluding %packages packages, 110
firewalls, 110
Hesios, 109
initial user settings, 109
Kerberos 5, 109
launching, 105
LDAP, 109
lilo options, 109
limitations, 109–110
local disk support, 110
multiple files, 118–119
new options, 108–109
NFS support, 110
overview, 104
package group names, 110
partitioning, 105–108, 110
%post section scripts, 110–111
%pre section scripts, 110–111
preseed option, 108–109
root password, disabling, 109
root privileges, enabling, 109
rootpw command, 109
running custom commands, 110–111
Samba authentication, 109
shell scripts, 110
supplemental driver disk, 110
system-config-kickstart package, installing, 105
user command, 109
xconfig --monitor option, 110

kill command, 167

506 Index

ptg

Killing processes
MySQL, 167
by PID, 22–23
Postfix, 149

KVM, installing. See also VMware Server.
KVM packages, 297–298
prerequisites, 296–297
setting up users, 297
support BIOS, enabling, 297
testing the installation, 297–298
ubuntu-vm-builder script, 297. See also

vmbuilder tool.
virsh command, 297–298
virtualization extensions, confirming,

296–297
KVM, network configuration

bcast option, 306
bridged networking, 298–301
broadcast address, specifying, 306
default setup, 298
defaults, configuring, 298
DNS address, specifying, 306
--dns option, 306
domain default, specifying, 305
--domain option, 305
gateway address, specifying, 306
--gw, 306
host network address, specifying, 305
--ip option, 305
--mask option, 305
--net option, 305
static IP address, assigning, 305
subnet mask, specifying, 305
wireless adapters, bridging support, 300

KVM virtual machines, creating. See VMs
(KVM), creating.

L
“Label” field, 12
LABEL localboot option, 193
LAMP servers, 13–14
Language, specifying, 3, 4, 186
Last access time

directories, 12
files, 12, 94
logging, 94

Launchpad
bug reporting, 451
help and resources, 451
hosting your own packages, 81

Layers of protection principle, 201, 215
LDAP, in Kickstart, 109
Left angle bracket (<), redirection operator,

462–464
less program, 23
--level option, 342
/lib directory, 41
--libvirt option, 302
Licensed software repositories, 74
lilo options, in Kickstart, 109
Links, displaying, 20
Linux kernel headers package, 313
Linux Terminal Server Project (LTSP). See LTSP

(Linux Terminal Server Project).
Listing

boot parameters, 5
directory information, 19–20
files in current directory, 19–20
firewall rules, 416–417
installed packages, 76–77
mail queue messages, 149
open files, 482
package files, 70–71
processes, MySQL, 166

Listing arguments in
commands, 22
init scripts, 35
installation, 5

Local devices for LTSP, 195–196
Local disk support, Kickstart, 110
Local keys directory, Tripwire, 231
Local only option, 146
Localhost

documentation, 449–450. See also Help and
resources.

troubleshooting. See Troubleshooting,
localhost.

LoCo (Local Community) Teams, 450
Log directories

AppArmor, 210
Tripwire, 232

Log entry, example, 368–369

Index 507

ptg

Log files
Apache Web server, 139
BackupPC, 264
DHCP servers, 161
DNS servers, BIND, 129
Dovecot, 158
MySQL, 165
NFS, 178
OpenSSH servers, 160
Postfix, 147–148
PostgreSQL, 171
Samba, 176
syslog facility, 374
syslog file example, 377–378
system logs, directory for, 43

logfacility option, 374
Logging access, sudo command, 203
logging command, 217
Logging last access time, 94
Logical partitions, 10
Logical storage. See LVM (Logical Volume

Manager).
Loopback (lo) interface, 46
ls command, 18–20
lsof command, 482
LTSP (Linux Terminal Server Project)

availability in Ubuntu, 183
benefits of, 182–183
boot process, technical details, 181–182
diskless clients, 180
and Edubuntu, 180
Etherboot booting, 181
initial booting, 181
overview, 180–181
PXE booting, 181
required network cards, 181
thin clients, 183

LTSP servers, configuring
boot: prompt, displaying, 193
boot option default, setting, 193
boot option timeout, setting, 193
booting from the local hard drive, 193–194
booting from the network, 189–190
client root filesystem, 188
clock, 187
DEFAULT keyword, 193
DISPLAY option, 193

first user, creating, 187–188
hostname, 186–187
initial client setup, 189–190
initial server setup, 188–189
IP addresses, changing, 194–195
keyboard layout, 186
LABEL localboot option, 193
language, 186
for local devices, 195–196
NICs (network interface cards), 184–186
partitioning the hard disk, 187
PROMPT option, 193
screen resolution, 187–188
sound, 197
SOUND=True statement, 197
SSH keys, updating, 195
TIMEOUT option, 193
for USB devices, 195–196

LTSP servers, installing
coexisting with a DHCP server, 191–192
on a desktop, 190–191
for dual boot, 192–194
IP addresses, tied to MAC addresses, 191–192
prerequisites, 183
reservations, 191–192
in Ubuntu, 190–191
from the Ubuntu alternate CD, 186–188

LTSP servers, password suppression, 195
LVM (Logical Volume Manager)

encryption, 364
fault tolerance, 364
Guided partitioning, 8
LVs (logical volumes), 362
overview, 361
partitions, preseeding, 95–96
PEs (physical extents), 362
PVs (physical volumes), 362
redundancy, 364
setting up, 363–364
theory of, 362
VGs (volume groups), 362

LVs (logical volumes), 362

M
m1.large VM type, 330
m1.small VM type, 329
m1.xlarge VM type, 330

508 Index

ptg

MAC address, determining, 162–163
MAC (Modify, Access, Change) times, 12
Magnifier (screen), enabling, 4
Mail queues. See also E-mail.

flushing, 148–149
postqueue command, 149
privileged operations on, 149
status, checking, 149

Mail queues, messages
deleting, 149
hold time before bouncing, 154
holding, 149–150
listing, 149

Mail servers, 14, 144. See also POP/IMAP servers;
Postfix mail server.

Mail spool directory, 147
Mailbox size limit, setting, 153
mailbox_size_limit option, 153
Maildirs, enabling, 156–157
mail.err file, 147
mail.info file, 147
Mailing lists, 447–448
mail.log file, 147
mail.warn file, 147
Main repositories, 73
Man pages, 449–450. See also Help and resources.
Managing

DNS servers, BIND, 134
packages. See Package management.
services, with xinetd, 38–39

Managing boot process services, with init scripts
arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 34–35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
status command, 35
symlinks, creating, 38

update-rc.d program, 36
writing your own, 36–38

Managing boot process services, with xinetd
description, 38–39
echo feature, 39
enabling services, 39
FTP feature, 39
system time, displaying, 39
TFTPD (Trivial File Transfer Protocol Daemon),

39
Managing services with init scripts

arguments, listing, 35
chkconfig tools, 36
configuration, checking, 36
configuration files, 35–36
enabling/disabling services, 36
extended options, 34–35
force-reload command, 35
PID, tracking, 36
reload command, 35
reloading configuration files, 35
restart command, 35
restarting scripts, 35
service command, 36
service status, checking, 35
status command, 35
symlinks, creating, 38
update-rc.d program, 36
writing your own, 36–38

Managing VMs (KVM)
autostart command, 308
current load, 311–313
destroy command, 308
graphical console, 311–312. See also VMware

Server.
hardware, 311, 312
power off, 308
RAM, changing, 309–310
remote management, 311–313
restore command, 308
resume command, 308–309
resuming, 308–309
rolling back to snapshots, 308
save command, 308
setmaxmem command, 309
setmem command, 309
shutdown command, 308

Index 509

ptg

Managing VMs (KVM), continued
shutting down, 308
snapshotting, 308, 311
start command, 307–308
starting at boot time, 308
starting the VM, 307–308
suspend command, 308–309
suspending current state, 308–309. See also

Snapshots.
virsh command, 307–310
virt-manager utility, 310–313

Manual partitioning. See also Disk partitioning.
allocating free space, 9–10
boot flag, setting, 13
“Bootable flag” field, 13
extended partitions, 10
file system settings, 10–13
initializing a blank drive, 9
inodes, setting number of, 12
inside extended partitions, 10
“Label” field, 12
logical partitions, 10
mount options, 11
“Mount options” field, 11
mount point, specifying, 11
“Mount point” field, 11
naming partitions, 12
partition size, specifying, 10
primary partitions, 10
“Reserved blocks” field, 12
reserving space for the superuser, 12
“Typical usage” field, 12
“Use as” field, 10–11

Manuals. See Documentation.
--mask option, 305
Mauelshagen, Heinz, 361
mcast_join option, 273
MD (multidisk) devices, creating and using

after installation, 341–342
file system, formatting, 342
during installation, 339–340
mounting, 342
number of active devices, specifying, 342
partitions, specifying, 342
RAID level, specifying, 342

md5sum tool, 481
mdadm tool

chaining commands, 345
--create option, 342
creating MD devices, 342–343
--detail argument, 344
--detail --scan command, 342–343
disk failure, automatic notification, 345
disks, setting as faulty, 345
documentation, 346
installing, 341
--level option, 342
--query argument, 344
--raid-devices option, 342
replacing a failed disk, 344–346
resynching swapped disks, 346
software RAID management, 343–346
swapping disks, 344–346

/media directory, 44
Memory. See RAM.
Memtest86+ tool, 419–420
menu.lst file, 25
Metrics, troubleshooting localhost

hi: hardware interrupts, 399
id: CPU idle time, 399
ni: nice CPU time, 399
si: software interrupts, 399
st: steal time, 399
sy: system CPU time, 399
system load average, 396–398
top command, 398–400, 402
us: user CPU time, 399
wa: I/O wait, 399

Migrating from RAID 1 to RAID 5
booting GRUB, 351
copying files to new system, 354
creating mount points, 353
destroying original, 356
disk partitioning, 351–354, 356–357
/etc/fstab file, pointing to arrays, 354
formatting RAID arrays, 353
general procedure, 352–358
GRUB, manual install, 358
overview, 351
partitions, detecting as RAID devices, 358

510 Index

ptg

“partitions contain a file system” warning, 353
rebooting, 355
rescue disk, 351
starting at boot, 354
synching arrays, 358
update-initramfs argument, changing, 354

Migrating to RAID from non-RAID disks
adding original partitions, 350
changing the UUID, 350
copying files to new system, 348
creating arrays, 347
degraded arrays, 347
disk partitioning, 347
/etc/fstab file, pointing to arrays, 349
GRUB, manual install, 350–351
overview, 346–347
partitions, detecting as RAID devices, 351
rebooting, 349–350
rescue disk, 347
starting at boot time, 348–349
synching arrays, 350
temporary mount points, 348

mirror/country option, 97
Mirroring

preseeding, 96–98
RAID disks, 337
a system, 76–77
the Ubuntu archive, 116

/mnt directory, 44
Modify, Access, Change (MAC) times, 12
Modular kernels, 26–27
Monitor, installing Ubuntu Server without, 5
Monitoring

aggregating statistics. See Ganglia.
alerts. See Nagios.
CPU load, 270–271
disk I/O, 270–271
disk statistics, 270–271
drive health, 266–267
file cache, 269
memory, 269
multicast IP traffic, 274
network I/O, 270
performance, 270
RAM stats, 267–271

running processes, in real time, 21–23
selected time periods, 270–271
swap cache, 269
system load, 267–271
trending. See Nagios.
UEC instances, 330

Monitoring, tools for
alerts. See Nagios.
ganglia-monitor package, 272–274. See also

Ganglia.
sar tool, 268–271
smartd daemon, 267
Smartmontools, 266–267
sysstat tool, 267–268
tcpdump program, 274
trending. See Nagios.

mount command, file system rescue and recovery,
424

Mount location, 44
Mount options, partitions, 11
“Mount options” field, 11
“Mount point” field, 11
Mount points

migrating from RAID 1 to RAID 5, 353
migrating non-RAID disks to RAID, 348
partitions, 11
preseeded partitions, specifying, 94
temporary, 348

Mounted file systems, displaying, 424
Mounting

MD (multidisk) devices, 342
root file system, 27

mountpoint option, 94
Mouse-over for option help, 291
Moving around the system, 18–21
MTA (Mail Transport Agent), 227
Multicast IP traffic, monitoring, 274
Multidisk (MD) devices. See MD (multidisk)

devices.
Multiverse repositories, 74
mydestination option, 152
myhostname option, 152
mynetworks option, 152–153
myorigin option, 152
myrelayhost option, 152

Index 511

ptg

mysql command, 244
MySQL databases. See also PostgreSQL databases.

backing up, 242–246
caches, flushing, 166
configuration files, 164–165
configuring for WordPress, 143
create command, 166
creating/deleting, 166
current status, checking, 165
database files, location, 165
drop command, 166
/etc/init.d/mysql, 165
/etc/mysql/, 164
/etc/mysql/conf.d/, 165
/etc/mysql/debian-cnf, 164
/etc/mysql/debian-start, 164
/etc/mysql/my.cnf, 164
extended-status command, 166
file conventions, 164–165
files, 165
flush-* commands, 166
init script, 165
installing, 163–164
kill command, 167
log files, 165
mysqladmin tool, 165–167
overview, 163
password command, 166
passwords, 14, 164, 166
phpMyAdmin program, installing, 167–168
process management scripts, 164
processes, 166–167
processlist command, 166
removing, 166
restoring from backups, 244
settings, flushing, 166
status, checking, 166
status command, 166
ufw firewall example, 222
/var/lib/mysql/, 165
/var/log/syslog, 165
Web administration, 167–168

mysqladmin tool, 165–167
mysql-client-5.0 package, 14
mysqldump program, 242–246
mysql-server-5.0 package, 14

N
1n command

hard links, creating, 468
symlinks, creating, 467

Nagios, GroundWork front end
administration password, changing, 281
Apache installation, 280
configuration files, 280
configuring, 281–284
core directory, 280
description, 278–279
documentation, 294
/etc/init.d/groundwork, 281
file conventions, 280–281
host status, checking, 283–284
init script, 281
initial host scan, 282–283
installing, 279–280
/usr/local/groundwork, 280
/usr/local/groundwork/apache2, 280
/usr/local/groundwork/nagios, 280

Nagios configuration
advanced, 290–293
alert escalations, 285–286
commands vs. services, 286
committing changes, 286
contact list, 287–288
contacts, 285
control, 286
escalations, 285–286
groups, 286
mouse-over for option help, 291
notifications, enabling, 288–289
notifications, sending via e-mail, 289
overview, 284
performance analysis, 287
services, deleting, 287
services vs. commands, 286
settings, exporting, 287
time periods, 286
tools, 287

Nagios configuration, hosts
adding, 289–290
deleting, 287
grouping, 286
profiles, 285

512 Index

ptg

selecting, 285
service checks, adding, 289
settings, specifying, 285

Nagios configuration, service checks
adding, 284, 289
creating, 292–293
critical thresholds, setting, 284
default settings, overriding, 291
options, changing, 284
warning thresholds, setting, 284

Name servers
defining, 47
DNS servers as, 127
inaccessible, 412–413
not configured, 412–413
problems, troubleshooting, 412–413

named.conf file, 128, 131–132
Names of files and directories, displaying, 20
Naming partitions, 12
NAT networking, 315
Native DEB packages, 60–63
--net option, 305
Netboot tarball, 113–115
netroot option, 423
netstat command, 416
Network card errors, troubleshooting, 417–418
Network interface cards (NICs), 181, 184–186
Networking

configuration, VMware Server, 315–316, 319
connectivity, gauging, 374
core programs, 48–49
dig command, 49
Ethernet devices, labeling, 46
ifconfig command, 48–49
ifdown command, 48–49
ifup command, 48–49
information about, getting, 48–49
interface configuration, verifying, 410
I/O, monitoring, 270
IP address, displaying, 49
under KVM. See KVM, network configuration.
loopback (lo) interface, 46
nslookup command, 49
open relays, 153
relaying mail, 152–153
route command, 49

settings, checking and changing, 48–49
status, checking, 48–49
troubleshooting. See Troubleshooting networks.

Networking, configuration files
for all networking devices, 46–47
/etc/hosts, 47
/etc/network/interfaces, 46
/etc/resolve.conf, 47
hosts, defining, 47
name servers, defining, 47

New bond device, example, 368
newaliases command, 150
NFS. See also Samba.

configuration files, 177
configuration sample, 178–179
DRBD, 387
/etc/exports, 177
/etc/init.d/nfs-user-server, 177
file conventions, 177–178
init script, 177
Kickstart discovery, 110
log files, 178
overview, 177
root squashing, disabling, 179
ufw firewall example, 223–224
user permissions, 179
/var/log/syslog, 178
“Wrong file system type” message, 179

ni: nice CPU time, 399
NICs (network interface cards), 181, 184–186
nmap command, 415–416
No configuration option, 145
noatime option, 12, 94
Node authentication, 376–379
node option, 374
Node server, installing, 326
Nodes, cluster

automatically joining clusters, 373
communication, 373
manual definition, 374

Nonnative DEB packages, 60–63
NOPASSWD statement, 205
Notifications

enabling, 288–289
sending via e-mail, 289

nslookup command, 49, 412–413

Index 513

ptg

O
Online documentation, 448. See also Help and

resources.
On-screen keyboard, 4
OOM (out-of-memory) killer, 402–403
Open relays, 153
Open source software repositories, 74
OpenSSH servers. See also SSH security.

client settings, defaults, 159
configuration files, 159
DSA keys, 160
/etc/init.d/ssh, 160
/etc/ssh/, 159
/etc/ssh/ssh_config, 159
/etc/ssh/sshd_config, 159
/etc/ssh/ssh_host_dsa_key, 160
/etc/ssh/ssh_host_dsa_key.pub, 160
/etc/ssh/ssh_host_rsa, 160
/etc/ssh/ssh_host_rsa.pub, 160
file conventions, 159–160
init script, 160
installing, 14, 159
log files, 160
overview, 158–159
RSA keys, 160
server settings, defaults, 159
/var/log/auth.log, 160

openssh-server package, 14
/opt directory

description, 42
partitioning, 6

Original packager, displaying, 67
Out-of-memory issues troubleshooting, 401–403
Out-of-memory (OOM) killer, 402–403
Output, redirecting, 462–464
Ownership

chown command, 21
directory, displaying, 20
files, 21, 464–465
files, displaying, 20
zone files, 131

P
Package management. See also APT (Advanced

Package Tools); Repositories.
Aptitude program, 64, 67–69
autobuilders, 55–56

automatic software upgrades, 57
basic functions, 55–58
binary packages, 55–57
browsing for packages, 65–67
dependency checking, 57, 59–60
desktop alerts, 64
do-release-upgrade script, 76
dselect program, 58–59, 65
file integrity verification, 58
formats, 52
front end programs, 58–59
full-system upgrades, 75–76
for in-development software, 60
installing new versions, 65, 67–68
mirroring a system, 76–77
original packager, displaying, 67
package information, getting, 65–67
package maintainer, identifying, 67
package statistics, getting, 65–67
repositories, listing, 64–65
RPM format, 52
searching for packages, 65–67
shared library upgrades, 57
show subcommand, 66–67
smart upgrades, 59
staying current, 64–65
Synaptic, 64, 65
tools for, 64, 65–67, 69. See also specific tools.
uninstalling packages, 57, 59, 69
VMs (KVM). See VMs (KVM), package

management.
Package management, DEB format

binary packages, 55–56, 63
introduction, 52
overview, 60

Package management, DEB format source packages
autobuilding, 55–56
control file, 62–63
definition, 55
files contained in, 62–63
native DEB packages, 60–63
nonnative DEB packages, 60–63
rules file, 62–63
unpacking, 61–62

Package management, dpkg program
copying packages to another system, 77
file owner package, identifying, 71

514 Index

ptg

listing installed packages, 76–77
listing package files, 70–71
manipulating installed packages, 69–71
mirroring a system, 76–77
overview, 69
querying installed packages, 69–71
searching installed packages, 69–71

Packages. See also specific packages.
autobuilders, 55–56
background, 53
browsing for, 65–67
building automatically, 55–56
contents, 54
copying to another system, 77
description, 53–55
distributions, 53
documentation, 54–55
downloading automatically, 65
files, 70–71
group names, Kickstart, 110
information, getting, 65–67
installed, 69–71
maintainer, identifying, 67
metadata, 54
original packager, displaying, 67
%packages, excluding, 110
preseeding, 96–98
rebuilding, 77–79
removing, 69
rescue and recovery, 423
for server roles, determining, 13
for server roles, listing, 15
statistics, getting, 65–67
uninstalling, 57, 59, 69
upgrading, 76
upgrading automatically, 65

Packages, making your own
apt-ftparchive package, 81
backporting, 77–79
devscripts package, 79
dh-make program, 80–81
fakeroot program, 78–79
guidelines, 80–81
hosting, 81
Launchpad, 81
new upstream versions, 79–80
overview, 77

PPAs (Personal Package Archives), 81
rebuilding packages, 77–79
reprepro project, 81
from scratch, 80–81
specifying a distribution, 78
Ubuntu packaging guide, 80
uupdate program, 79–80
without root permissions, 78–79

--part option, 304
Partially-supported software repositories, 73–74
Partition tables, restoring, 435–436
Partitions. See also Disk partitioning.

creating for RAID devices, 338–340, 341
definition, 5–6
detecting as RAID devices, 351, 358
imaging for rescue and recovery, 438
maximum per disk, 10

“Partitions contain a file system” warning, 353
partman-auto/choose_recipe option, 92
partman-auto/method option, 91
partman-auto/purge_lvm_from_device option, 91–92
partman/choose_partition option, 92
partman/confirm option, 92
partman/confirm_write_new_label option, 92
partman-lvm/confirm option, 91–92
--pass option, 302
Passphrases, 211–213, 227
password command, 166
Passwordless access to rules, 203
Passwords

authentication, 202, 211–213
backing up databases, 243, 245
BackupPC, 247–248, 263
default, specifying, 302
GroundWork administration, changing, 281
GRUB, 100
MySQL, 14, 164, 166
prompt, bypassing, 213
removing, 205
resetting, 427
Samba, 175
suppressing display of, 195

Patches, security, 201
Pathnames, shortcuts to, 478
Percent sign (%)

group name indicator, 204
Kickstart section indicator, 106

Index 515

ptg

Performance, monitoring, 270
Performance analysis, Nagios, 287
Period (.). See Dot (.).
Permissions

chmod command, 21
directory, displaying, 20
files, 20–21
Postfix, checking, 149
root user, assuming, 24
users, NFS, 179
zone files, 131

Personal Package Archives (PPAs), 81
PEs (physical extents), 362
Pg_dumpall tool, 246
php5-mysql package, 14
phpMyAdmin program, installing, 167–168
phppgadmin package, 171–172
phpPgAdmin tool, 171–172, 173
Physical volumes, partitions as, 10. See also PVs

(physical volumes).
PID

finding, in running processes, 22–23
killing processes by, 22–23
tracking with init scripts, 36

ping command, 411
ping option, 374
Pinning repositories, 75
Pipes

| (vertical line), pipe symbol, 458–459
filtering input to, 459–460
grep command, 459–460
overview, 458–459
removing duplicate lines, 461–462
sort command, 460–461
sorting input to, 460–461
uniq command, 461–462

pkgsel/update-policy option, 97
Policy files, Tripwire, 227–228, 232
POP/IMAP servers. See also E-mail; Mail

servers.
Dovecot, 157–158
e-mail, storing, 156–157
Maildirs, enabling, 156–157
overview, 156
ufw firewall example, 222

port option, 273

Ports
configuring, 136, 316
first serial, 470
listening, testing, 416
remote, testing, 415–416

%post section scripts, 110–111
Postfix mail server

450 command, 155
abort command, 149
administering, 148–150
bounced messages, avoiding, 153–154
check command, 149
configuration files, 146–147
configuration files, reloading, 148
configuration types, 145–146
current status, checking, 149
/etc/aliases, 147
/etc/init.d/postfix, 148
/etc/postfix/, 146
/etc/postfix/main.cf, 146–147
file conventions, 146–148
flush command, 148–149
greylisting, 154–156
init script, 148
installing, 14, 144–145
Internet site option, 145
Internet with smarthost option, 145
killing processes, 149
Local only option, 146
log files, 147–148
mail spool directory, 147
No configuration option, 145
permissions, checking, 149
Postgrey, installing and configuring, 155–156
postsuper command, 149
relay_domains option, 153–154
reload command, 148
Satellite system option, 146
secondary servers, 153–154
spam exposure, 154–156
status command, 149
user alias mappings, 147, 150
user mailbox directory, 147
/var/log/mail.*, 147–148
/var/spool/mail/, 147
/var/spool/postfix/, 147

516 Index

ptg

Postfix mail server, example
configuration file, 151–153
domain name for sent mail, 152
domains, accepting mail from, 152
Internet host name, 152
mailbox size limit, setting, 153
mailbox_size_limit option, 153
mydestination option, 152
myhostname option, 152
mynetworks option, 152–153
myorigin option, 152
myrelayhost option, 152
networks, relaying mail, 152–153
open relays, 153
overview, 150
routing outbound mail, 152
spam exposure, 153

Postfix mail server, mail queue messages
deleting, 149
hold time before bouncing, 154
holding, 149–150
listing, 149

Postfix mail server, mail queues
flushing, 148–149
postqueue command, 149
privileged operations on, 149
status, checking, 149

PostgreSQL databases. See also MySQL.
authentication information, 171
backing up, 246–247
configuration files, 170–171
createdb command, 170
createuser command, 169
databases, setting up, 170
dropuser command, 170
/etc/init.d/postgresql-8.4, 171
/etc/postgresql/, 170
/etc/postgresql/8.4/main/pg_hba.conf, 171
/etc/postgresql/8.4/main/pg_ident.conf, 171
/etc/postgresql/8.4/main/postgresql.conf, 171
exit command, 170
file conventions, 170–171
init script, 171
installing, 14, 169–170
log files, 171
overview, 169

phppgadmin package, 171–172
phpPgAdmin tool, 171–172, 173
restoring from backups, 246
super user account, setting up, 169
ufw firewall example, 222–223
user accounts, creating/deleting, 169–170
usernames, mapping to PostgreSQL

usernames, 171
/var/log/postgresql/, 171
Web-based administration, 171–172

postgresql package, 14
Postgrey

default configuration, 155–156
installing and configuring, 155–156
reloading settings, 156
smtpd_recipient_restrictions option, 155
tweaking the whitelist, 155–156

Post-install scripts, 306–307
postqueue command, 149
postsuper command, 149
Pound sign (#), comment indicator

source.list file, 72
Upstart, 31

Power on/off, 308, 319
PPAs (Personal Package Archives), 81
%pre section scripts, 110–111
preseed option, 108–109
preseed.cfg file

creating, 85–89
default, setting up, 86–87
editing, 87–88
error retrieving, 88–89
example, 86

preseed/early_command option, 103
preseed_fetch command option, 103–104
Preseeding. See also Installing Ubuntu

Server; Kickstart; PXE boot server
deployment.

automatic updates, enabling, 97
CD ejection, disabling, 100
choose_interface option, 89–91
configuring for CD-ROM, 85–89
custom package repositories, 97–98
debconf database, dumping, 85
debconf-get-selections, 85
default boot arguments, editing, 87–88

Index 517

ptg

Preseeding, continued
default user account, disabling, 99
group membership default, 98
immediate reboot, disabling, 100
mirrors, 96–98
networking options, 89–91
options, displaying, 85
options, shorthand for, 88
overview, 84–85
packages, 96–98
preserving server data, 86–87
root account, enabling, 98
UID default, 98
user settings, 98–99

Preseeding, dynamic
apt-install command, 103
chain loading files, 101–102
chroot process, automating, 103
installing extra packages, 103–104
in-target command, 103
overview, 100–101
preseed/early_command, 103
preseed_fetch command option, 103–104
preseed/late_command, 103–104
preseed/run option, 102–103
running custom commands, 102–104
running custom programs, 103
setting dynamic values, 103

Preseeding, GRUB
boot device, specifying, 99
default setup, 99
password protection, 100

Preseeding, partitioning
custom schemes, 92–94
expert_recipe for, 92–94
formatting partitions, 94
LVM partitions, 95–96
maximal size, 93
minimal size, specifying, 93
mountpoint, specifying, 94
overview, 91
partman-auto/choose_recipe option, 92
partman-auto/method option, 91
partman-auto/purge_lvm_from_device option,

91–92
partman/choose_partition option, 92

partman/confirm option, 92
partman/confirm_write_new_label option, 92
partman-lvm/confirm option, 91–92
primary partition, 94
priority, specifying, 93–94
warning prompts, disabling, 91

Preseeding, preseed.cfg file
creating, 85–89
editing, 87–88
error retrieving, 88–89
example, 86

preseed/late_command option, 103–104
preseed/run option, 102–103
Preserving server data, 86–87
Primary partitions, 10, 94
Principle of least privilege, 200–201, 206–207
Print servers, installing, 14
Priority of preseeded partitions, specifying,

93–94
Privileged operations on mail queues, 149
Privileges. See Permissions.
/proc, editing, 227
/proc directory, 44–45
Processes

command-line administration. See Command-
line administration, running processes.

listing, MySQL, 166
monitoring in real time, 21–23
PID, finding, 22–23
ps command, 21–23
stopping, 21–23
top command, 21

Processes, killing
MySQL, 167
by PID, 22–23
Postfix, 149

processlist command, 166
Processor architecture, specifying, 302
/proc/mdstat file, 343–346
Profiles

AppArmor, 207–209
Groundwork hosts, 285

PROMPT option, 193
Prosecuting intruders, 233
ps command, 21–23
psql tool, 246

518 Index

ptg

Pulling the plug, 233
PVs (physical volumes), 362
pwd command, 18
PXE boot server deployment. See also Installing

Ubuntu Server; Kickstart; Preseeding.
apache2 package, installing, 116
boot prompts, responding to, 117
DHCP server, setting up, 112–113
mirroring the Ubuntu archive, 116
netboot tarball, 113–115
overview, 111
Pxelinux, configuring, 113–115
required services, 111–112
required user interaction, 117
server timeout value, setting, 117
testing, 116–117
TFTPD server, setting up, 113
Web server, setting up, 116

PXE booting, 181
Pxelinux, configuring, 113–115
pxelinux menu, 118

Q
--query argument, 344
Querying installed packages, 69–71
Question mark (?), wildcard character, 456
Quorum, 370

R
RAID (Redundant Array of Inexpensive Disks)

as backup device, 239
configuring after installation, 340–343
configuring during installation, 337–340
creating, 341–343
current status, checking, 343–346
hardware, 336
hardware/software hybrid, 336
levels, 336–337
migrating to. See Migrating to RAID.
minimum disk requirements, 337
mirroring, 337
partitioning disks, 338–340, 341
starting at boot time, 342
striping, 337
striping plus parity, 337
UUID, specifying, 343

RAID (Redundant Array of Inexpensive Disks),
software

description, 336
managing, 343–346
migrating non-RAID disks to, 346–352
/proc/mdstat file, 343–346

RAID 0, 337
RAID 1, 337
RAID 5. See also Migrating from RAID 1 to RAID

5.
adding a drive to, 358–360
description, 337
as a root partition, 337

RAID MD (multidisk) devices, creating and using
after installation, 341–342
file system, formatting, 342
during installation, 339–340
mounting, 342
number of active devices, specifying, 342
partitions, specifying, 342
RAID level, specifying, 342

RAID mdadm tool
chaining commands, 345
--create option, 342
creating MD devices, 342–343
--detail argument, 344
--detail --scan command, 342–343
disk failure, automatic notification, 345
disks, setting as faulty, 345
documentation, 346
installing, 341
--level option, 342
--query argument, 344
--raid-devices option, 342
replacing a failed disk, 344–346
resynching swapped disks, 346
software RAID management, 343–346
swapping disks, 344–346

--raid-devices option, 342
RAM

changing, 309–310
copy of, 470
monitoring, 269
statistics, monitoring, 267–271
testing, 4, 419–420
usage, troubleshooting, 401–403

Index 519

ptg

Random number generators, 470
Read permission, 464–465
reboot command, 39
Reboot the system, menu option, 430
Rebooting

immediate, disabling, 100
Ubuntu, 39
when troubleshooting, 395

Rebuilding packages, 77–79
reconfig command, 134
Recovery. See Rescue and recovery.
Redeploying the server, 234
Redirection

< (left angle bracket), redirection operator,
462–464

> (right angle bracket), redirection operator,
462–464

>> (right angle brackets), redirection operator,
462–464

to a black hole, 470
chaining operators, 464
of input, 463–464
to a null device, 470
of output, 462–464
overview, 462–464
overwriting the destination file, 463

Redundancy
disks. See RAID (Redundant Array of

Inexpensive Disks).
fault tolerance, 334, 335
LVM (Logical Volume Manager), 364

Redundant Array of Inexpensive Disks (RAID). See
RAID (Redundant Array of Inexpensive
Disks).

Regular expressions, in shell globs, 457–458
Reinstall GRUB boot loader, menu option, 429
relay_domains option, 153–154
reload command

init scripts, 35
managing BIND, 134
managing Postfix, 148
System V init model, 29

Reloading configuration files
DNS servers, 134
Postfix, 148

services, 35
System V init model, 29

Reloading zone files, 134
Remote management, 311–313
Removable media, mount location, 44
Removing. See also Deleting.

duplicate lines in sorted output, 461–462
/etc/rc.boot, 227
MySQL databases, 166
packages, with Aptitude, 69
packages, with VMs (KVM), 304
passwords, 205
ufw rules, 219

Replacing failed disks, 344–346, 388
Reports directory, Tripwire, 232
Repositories. See also Package management.

adding, 72
apt pinning, 75
backports, 74–75
cryptographic keys, 72–73
free software, 73
fully-supported software, 73
licensed software, 74
limitations, 74–75
listing, 64
main, 73
manipulating, 71–73
multiverse, 74
open source software, 74
partially-supported software, 73–74
pinning, 75
restricted, 73–74
Ubuntu defaults, 73–74
unintended updates, 75
universe, 74

reprepro project, 81
Rescue and recovery

help. See Help and resources.
resources. See Help and resources.
troubleshooting. See Troubleshooting.

Rescue and recovery, Ubuntu desktop live CD
booting from, 431
dd command, 437
ddrescue tool, 437–439
deleted files, recovering, 432–435

520 Index

ptg

fls tool, 433–435
forensic tools, 432–435
forensics tools, 432–435
gpart tool, 435–436
Guess Partition tool, 435–436
hard drive rescue, 437–439
icat tool, 433–435
imaging drives, 437–439
imaging partitions, 438
partition table, restoring, 435–436
Sleuth Kit, 432–435
storing drive images, 437–439
universe repository, adding, 431–432

Rescue and recovery, Ubuntu recovery mode
clean option, 423
corrupted file systems, 424–425
disk space, freeing, 423
dpkg option, 423
file systems, 424–426
fsck tool, 424–425
fstab file mistakes, 425–426
GRUB, updating, 423
grub option, 423
mount command, 424
mounting file systems, 424–426
netroot option, 423
primary superblocks missing, 425
problems with init scripts, 426
recovery menu, 422–424
repairing packages, 423
resetting passwords, 427
resume option, 422
root option, 423
root shell, enabling, 423–424
unintentionally erasing file systems, 425
unmount command, 424
UUID, discovering, 426
UUID changed, 425–426

Rescue and recovery, Ubuntu server recovery CD
bad superblock, 431
booting into the CD, 428
Choose a different root file system, 430
Execute a shell in /dev/ubuntu/root, 428
Execute a shell in the installer environment, 429
GRUB recovery, 429, 430

menu options, 428–430
overview, 427–428
Reboot the system, 430
Reinstall GRUB boot loader, 429
root file system repair, 430–431

Rescue disks, installation CDs as, 4
Reservations, LTSP IP addresses, 191–192
“Reserved blocks” field, 12
Resetting VMs (VMware), 320
Resizing. See Sizing.
Resource section, DRBD configuration file,

381–382
Resources. See Help and resources; Rescue and

recovery; Troubleshooting.
respawn option, 374
Response time, fault tolerance, 335
restart command, 29, 35, 139–140
Restarting

Apache, 139–140
scripts, 35

restore command, 308
Restoring from backups. See also Backing up data;

Rescue and recovery.
BackupPC file browser, 262
direct restore, 262
disk images, 241
download tar archive, 263
download zip archive, 262–263
mysql command, 244
MySQL databases, 244
options, 262–263
overview, 261
PostgreSQL databases, 246

Restoring from backups, file conventions
backup file directories, 264
configuration file directories, 263
/etc/backuppc, 263
/etc/backuppc/apache.conf, 263
/etc/backuppc/config.pl, 263
/etc/backuppc/hosts, 263
/etc/backuppc/htpasswd, 263
/etc/init.d/backuppc, 263
host definitions, 263
init script directory, 263
log file directory, 264

Index 521

ptg

Restoring from backups, file conventions, continued
password directory, 263
/var/lib/backuppc, 264
/var/lib/backuppc/log, 264
/var/lib/backuppc/pc, 264
virtual host settings, 263

Restricted repositories, 73–74
resume command, 308–309
resume option, 422
Resuming KVM VMs, 308–309
Resynching swapped disks, 346
retransfer zone command, 134
Retransferring zone files, 134
Right angle bracket (>), redirection operator,

462–464
Right angle brackets (>>), redirection operator,

462–464
rndc tool, 134
Rolling back to snapshots, 308
/root, editing, 228
Root account, enabling, 98
/root directory, 44
Root file system

mounting, 27
repairing, 430–431

Root kits, checking for, 235–236
root option, 423
Root partition size, specifying, 302
Root shell, enabling, 423–424
Root squashing, disabling, 179
Root user. See also System administrator.

home directory, 44
password, disabling, 109
permissions, assuming, 24
privileges, enabling, 109

rootpw command, 109
--rootsize option, 302
Round-robin policy, 365
route command, 49, 410–411
Routing outbound mail, 152
Routing to the remote host,

troubleshooting
asterisks in the output, 414
closed ports vs. firewalls, 415–416
firewall rules, listing, 416–417
firewalls, detecting, 415–416
ICMP blocked, 415

listening ports, testing, 416
netstat command, 416
nmap command, 415–416
remote port, testing, 415–416
tcptraceroute package, 414–415
testing locally, 416
testing the route, 414–415
traceroute command, 414–415
ufw command, 416–417

RPM package format, 52
RRD files, 272
RSA keys, 160
rsync tweaks

backup retention, specifying, 260
blackout periods, 260–261
--checksum-seed option, 256
excluding directories, 257–258
full backup interval, 259–260
FullAgeMax option, 260
FullKeepCnt option, 260
FullKeepCntMin option, 260
FullPeriod option, 259–260
host-specific tweaks, 258–259
limiting to one file system, 256–257
scheduling backups, 259–261

Rules
AppArmor, directory, 210
firewall, hacking, 214
passwordless access to, 203

Rules, ufw program
delete command, 220
extended, 218–219
firewall, undoing, 217
iptables, rules directory, 224–225
removing, 219
syntax, 217–218
undoing, 220

Rules file, source packages, 62–63
Runlevels

default, changing, 33–34
System V init model, 28

S
safe-upgrade command, 65, 76
Samba file servers. See also NFS.

configuration, 176–177
configuration files, 174–175

522 Index

ptg

databases used by, 175
DRBD, 387
/etc/init.d/nmdb, 175
/etc/init.d/smdb, 175
/etc/init/nmbd.conf, 175
/etc/init/smdb.conf, 175
/etc/samba/, 174
/etc/samba/smb.conf, 174–175
file conventions, 174–176
init script, 175
installing, 15, 174
Kickstart authentication, 109
log files, 176
overview, 174
passwords, setting, 175
sharing directories, 176–177
ufw firewall example, 223
user accounts, creating or disabling,

175
/usr/bin/smbpasswd, 175
/usr/share/doc/samba-doc/, 175
/var/lib/samba, 175
/var/log/samba/, 175

samba package, 15
samba-doc package, 15
sar tool, 268–271
Satellite system option, 146
save command, 308
/sbin directory, 40
/sbin/init program. See Boot process,

/sbin/init program.
sc (Storage Controller), 325
Scanning hard drives for problems,

436–439
Scheduling

database backups, 244–246, 246–247
program execution. See at command;

cron command.
system backups, 239, 259–261

Screen magnifier, enabling, 4
Screen reader, enabling, 4
Screen resolution, LTSP, 187–188
script option, 32
Scripts. See Init scripts.
Scrolling terminal output, 23
Search and replace text, 479–480
Search path missing, 413

Searching for
available packages, 65–67
files. See Grep command.
installed packages, 69–71

Secondary Postfix servers, 153–154
Security

defense in depth, 201
encryption. See SSH security.
general principles, 200–201
greylisting mail servers, 154–156
intrusion detection. See IDSs (intrusion

detection systems); Tripwire.
intrusion response. See Incident response.
keeping it simple, 200
layers of protection, 201
open relays, 153
permissions. See AppArmor; sudo command.
principle of least privilege, 200–201
responding to intrusion. See Incident response.
security by obscurity, 201
security patches, 201
servers. See OpenSSH servers; SSH security.
spam exposure, 153, 154–156

Selected time periods, monitoring, 270–271
Server BIOSs, 3
Server caches, flushing, 134
Server communication, troubleshooting

client connection, verifying, 408–409
client problems vs. server, 408–409
default gateway access, verifying, 410–411
dig tool, 412
DNS status, checking, 412–413
ethtool program, 409
ifconfig command, 410
inaccessible name server, 412–413
name server not configured, 412–413
name server problem, 412–413
network interface configuration, verifying, 410
nslookup command, 412–413
nslookup tool, 412
overview, 408
ping command, 411
route command, 410–411
search path missing, 413

Server roles
DNS, 13
LAMP, 13–14

Index 523

ptg

Server roles, continued
mail server, 14
OpenSSH, 14
packages, determining, 13
packages, listing, 15
PostgreSQL database, 14
print server, 14
Samba file server, 15
Tomcat Java server, 15
virtual machine host, 15

Servers
audible alarms, 479
databases. See MySQL databases; PostgreSQL

databases.
deploying Web sites. See Web servers.
DNS services. See DNS servers.
dynamic host control. See DHCP servers.
Edubuntu. See LTSP (Linux Terminal Server

Project).
for educational use. See LTSP (Linux Terminal

Server Project).
e-mail. See Mail servers; POP/IMAP servers;

Postfix mail server.
file. See File servers; NFS; Samba.
imaging, 233–234
killing, 370
redeploying after attack, 234
remote management. See OpenSSH servers.
SSH security settings, 211

Service checks
adding, 284, 289
creating, 292–293
critical thresholds, setting, 284
default settings, overriding, 291
options, changing, 284
warning thresholds, setting, 284

service command, 36
Service loading timeout, setting, 374
Service status, checking, 35
Services

booting. See Boot process services.
vs. commands, 286
deleting, 287
enabling with xinetd, 39

setmaxmem command, 309
setmem command, 309

Shell globs
* (asterisk), wildcard character, 208–209, 457
** (asterisks), wildcard character, 208–209
? (question mark), wildcard character, 456
[] (square brackets), in regular expressions, 458
character classes, 458
overview, 456
regular expressions, 457–458

Shell globs, pipes
| (vertical line), pipe symbol, 458–459
filtering input to, 459–460
grep command, 459–460
overview, 458–459
removing duplicate lines, 461–462
sort command, 460–461
sorting input to, 460–461
uniq command, 461–462

Shell globs, redirection
< (left angle bracket), redirection operator,

462–464
> (right angle bracket), redirection operator,

462–464
>> (right angle brackets), redirection operator,

462–464
to a black hole, 470
chaining operators, 464
of input, 463–464
of output, 462–464
overview, 462–464
overwriting the destination file, 463

Shell scripts, Kickstart, 110
Shooting the other node in the head, 370
+short option, 483–484
Shortcuts to

files. See Hard links; Symlinks.
pathnames, 478

show subcommand, 66–67
shutdown command, 308
Shutting down KVM VMs, 308
si: software interrupts, 399
Simplicity over complexity, troubleshooting, 393
Single points of failure, eliminating, 335
Site keys directory, 231
Size of files and directories, displaying, 20
Sizing partitions, 8, 10
skeleton script, 37

524 Index

ptg

Slash (/), in IRC commands, 444
Slave server. See DNS slave server.
Slave zone files, location, 128
Sleuth Kit, 235–236, 432–435
sleuthkit package, 235–236
Smart upgrades, 59
smartctl tool, 418–419
smartd daemon, 267
Smartmontools, 266–267
smartmontools package, 418–419
smbfs package, 14
SMTP, 221
smtpd_recipient_restrictions option, 155
Snapshots. See also Backing up data; Suspending

current state.
KVM VMs, 308, 311
restoring from, 322
rolling back to, 308
taking, 308, 321
VMs (VMware), 321–322

Software. See also specific software.
description, 336
firewalls, 215
interrupts, 399
managing, 343–346
migrating non-RAID disks to, 346–352
RAID management, 343–346

sort command, 460–461
Sorting input to pipes, 460–461
Sound in LTSP, 197
SOUND=True statement, 197
Source files, list of, 306
Source packages. See Package management, DEB

format source packages.
source.list file

(hash mark), comment indicator, 72
manipulating repositories, 71–72

Spam exposure, 153, 154–156
Specifying a distribution, 78
Split-brain policy, changing, 382–383
Split-brain problem, solving, 388–389
Split-brain syndrome, 370
Spool files, directory for, 43
Square brackets ([])

in grep search keywords, 477–478
in regular expressions, 458

SSH keypairs, creating and enabling, 329
SSH keys

configuring for BackupPC, 252
copying, 306
sharing, 483
updating in LTSP, 195

SSH security. See also OpenSSH servers; Security;
Ufw program.

botnets, 214
brute-force attacks, 213–214
configuration file, 211
denyhosts program, 213–214
failed logins, monitoring, 213–214
firewalls, 214–216
ipchains program, 215
iptables program, 215
keeping it simple, 215–216
key-based authentication, 211–213
overview, 210–211
passphrases, 211–213
password authentication, 211–213
password prompt, bypassing, 213
server settings, 211
sshd_config file, 211
TCP wrappers, hacking, 214
thresholds, setting, 214
whitelists for trusted hosts, 214

ssh-copy-id tool, 483
sshd_config file, 211
--ssh-key option, 306
--ssh-user-key option, 306
st: steal time, 399
start command, 29, 32, 139–140, 307–308
Starting/stopping

Apache, 139–140
running processes, 21–23
System V init model, 29
Ubuntu, 39
UEC instances, 329–331
Upstart jobs, 32
VMs (virtual machines), 307–308
VMware Server, 316–3317

Start-up scripts. See Init scripts; System V init
model; Upstart.

Static configuration, DHCP servers, 162–163
Static IP address, assigning, 305

Index 525

ptg

Static leases, 121–122
Status checking

Apache, 140–141
DNS servers, BIND, 134
extended-status command, 166
fullstatus command, 140–141
mail queues, 149
MySQL, 165–166, 166
Postfix, 149

Status checking, status command
Apache, 140–141
DNS servers, 134
MySQL, 166
Postfix, 149
service option, 35

status command
Apache, 140–141
service option, 35
System V init model, 29
ufw program, 216
Upstart, 32

Steal time, 399
stop command

Apache, 139–140
System V init model, 29
Upstart, 32

Stopping/starting
Apache, 139–140
running processes, 21–23
System V init model, 29
Ubuntu, 39
UEC instances, 329–331
Upstart jobs, 32
VMs (virtual machines), 307–308
VMware Server, 316–3317

Storage Controller (sc), 325
Storage settings, VMs (VMware), 319, 322–324
Storing drive images, 437–439
Striping plus parity, RAID disk, 337
Striping RAID disks, 337
Subnet mask, specifying, 305
sudo command. See also Security.

aliases, 205–206
assuming root permissions, 24
auto-expiration of access, 202
configuring for BackupPC, 253

features, 202–203
group-based access, 202
host-based access, 202
logging access, 203
password authentication, 202
passwordless access to rules, 203
superuser access, 202

sudo command, configuration file
% (percent sign), group name indicator, 204
changing, 203
checking for mistakes, 203
documentation, 204
location, 203
NOPASSWD statement, 205
passwords, removing, 205
visudo tool, 203

--suite option, 301
Super user account, setting up, 169
Superblock problems, rescue and recovery, 431
Superuser access, sudo command, 202
Supplemental driver disk, Kickstart, 110
Support. See Help and resources; Rescue and

recovery; Troubleshooting.
Support BIOS, enabling, 297
suspend command, 308–309
Suspending current state

KVM VMs, 308–309
VMs (VMware), 319–320

Swap cache, monitoring, 269
swap option, 94
Swap partition size, specifying, 302
Swapping (physical disks), 344–346
Swapping (data in memory), troubleshooting,

403–404
--swapsize option, 302
Symbolic links. See Symlinks.
Symlinks

to Apache .load and .conf files, 137–138
creating, 38, 467
directories, 20
files, 20
identifying, 20, 467
overview, 467
uses for, 467
to virtual hosts, 138

Synaptic, 64, 65

526 Index

ptg

Synching arrays
migrating from RAID 1 to RAID 5, 358
migrating non-RAID disks to RAID, 350

/sys directory, 45
Syslog facility, 374
Syslog file example, 377–378
sysstat tool, 267–268, 403–404
System administration. See Command-line

administration; Managing.
System administrator. See also Root user.

disk partitioning options, 7–13
VMware Server, selecting, 316

System configuration files, directory for, 42–43
System libraries, directory for, 41
System load

average, 396–398
monitoring, 267–271

System logs, directory for, 43
System time, displaying, 39
System V init model. See also Init scripts; Upstart.

description, 27–28
drawbacks, 30–31
/etc/init.d script, 28–29
/etc/rc0.d — /etc/rc06.d scripts, 29
/etc/rc.local script, 29
/etc/rcS.d script, 29
force-reload command, 29
init scripts, 28–29
reload command, 29
reloading settings, 29
restart command, 29
runlevels, 28
start command, 29
starting/stopping, 29
start-up scripts, 28–30
status command, 29
stop command, 29
user scripts, 29

system-config-kickstart package, installing, 105

T
Tar archives, restoring from, 263
tasksel command, 15
TCP wrappers, hacking, 214
tcpdump program, 274
tcptraceroute package, 415

Technical support. See Help and resources; Rescue
and recovery; Troubleshooting.

Telnet, testing e-mail, 482–483
Temporary files, partitions for, 7
Terminating UEC instances, 331
Testing

backups, 239
fail-over, 368–369
fault tolerance, 335
hard drives, 418–419
listening ports, 416
memory, 4
PXE boot server deployment, 116–117
RAM, 4, 419–420
remote ports, 415–416
routing to the remote host, 414–416

Text in files, search and replace, 479–480
TFTPD (Trivial File Transfer Protocol Daemon), 39
TFTPD server, setting up, 113
Thin clients, 183
Third-party programs

directory for, 42
partitions for, 6

Thresholds for SSH security, setting, 214
Time between heartbeats, setting, 374
Timeout

DHCP duration, setting, 90
PXE boot servers, 117
service loading, setting, 374

TIMEOUT option, 193
TIMEOUT value, setting, 117
/tmp directory, 7, 45
tmp files, excessive disk space, 407
Tomcat Java server, 15
Tools for package management, 64, 65–67, 69
top command, 21, 398–400, 402
tps: transfers per second, 404
+trace option, 483–484
traceroute command, 414–415
Tripwire

configuration files directory, 231
encrypted settings, directory for, 231–232
/etc/rc.boot, removing, 227
/etc/tripwire/, 231
/etc/tripwire/*-local.key, 231
/etc/tripwire/*-site.key, 231

Index 527

ptg

Tripwire, continued
/etc/tripwire/tw.cfg, 231–232
/etc/tripwire/twcfg.txt, 231–232
/etc/tripwire/tw.pol, 232
/etc/tripwire/twpol.txt, 227, 232
file conventions, 227–228, 231–232
keys, 227, 231
local keys directory, 231
log directory, 232
MTA (Mail Transport Agent), 227
passphrases, 227
policies, updating, 227–228
policy file, editing, 227–228
policy files directory, 232
/proc, editing, 227
reports directory, 232
/root, editing, 228
site keys directory, 231
/var/lib/tripwire/, 232
/var/lib/tripwire/reports, 232
/var/log/syslog, 232

Tripwire database
default directory, 232
“file does not exist” message, 229
initializing, 228–230
“unknown file system type” message, 229
updating, 230–231

Trivial File Transfer Protocol Daemon (TFTPD), 39
Troubleshooting. See also Help and resources;

Rescue and recovery.
bash commands, too many arguments, 480–481
checking installation CDs for defects, 4
DHCP timing out, 90
error retrieving preseed.cfg file, 88–89
“file does not exist” message, Tripwire, 229
file system will not unmount, 482
“ifconfig: command not found” message, 49
UEC instances, 331
“unknown file system type” message, Tripwire, 229
“Wrong file system type” message, 179

Troubleshooting, general principles
communicating with collaborators, 394
dividing the problem space, 392–393
documenting problems and solutions, 394–395
favoring past solutions, 393–394
Internet as reference, 395

resisting rebooting, 395
simplicity over complexity, 393
understanding the system, 394

Troubleshooting, hardware
hard drives, testing, 418–419
ifconfig command, 49, 417–418
Memtest86+ tool, 419–420
network card errors, 417–418
RAM, testing, 419–420
smartctl tool, 418–419
smartmontools package, 418–419

Troubleshooting, localhost sluggish or
unresponsive

Blk_read: total blocks read, 404
Blk_read/s: blocks read per second, 404
Blk_wrtn: total blocks written, 404
Blk_wrtn/s: blocks written per second, 404
excessive swapping, 403–404
hi: hardware interrupts, 399
high I/O wait, 403–404
high user time, 400–401
id: CPU idle time, 399
iostat program, 403–404
iotop program, 405
metrics, 396–399
ni: nice CPU time, 399
OOM (out-of-memory) killer, 402–403
out-of-memory issues, 401–403
overview, 396
RAM usage, 401–403
si: software interrupts, 399
st: steal time, 399
sy: system CPU time, 399
sysstat tool, 403–404
system load average, 396–398
top command, 398–400
tps: transfers per second, 404
uptime command, 396–397
us: user CPU time, 399
wa: I/O wait, 399

Troubleshooting, out of disk space
df command, 405–407
df command, 407–408
du command, 406–407
duck command, 406–407
excessive tmp files, 407

528 Index

ptg

full file system, 407
out of inodes, 407–408
usage, by directory, 406–407
usage, by file system, 405–407

Troubleshooting networks, routing to the remote
host

asterisks in the output, 414
closed ports vs. firewalls, 415–416
firewall rules, listing, 416–417
firewalls, detecting, 415–416
ICMP blocked, 415
listening ports, testing, 416
netstat command, 416
nmap command, 415–416
remote port, testing, 415–416
tcptraceroute package, 415
testing locally, 416
testing the route, 414–415
traceroute command, 414–415
ufw command, 416–417

Troubleshooting networks, servers can’t communicate
client connection, verifying, 408–409
client problems vs. server, 408–409
default gateway access, verifying, 410–411
dig tool, 412
DNS status, checking, 412–413
ethtool program, 409
inaccessible name server, 412–413
name server not configured, 412–413
name server problem, 412–413
network interface configuration, verifying, 410
nslookup command, 412–413
overview, 408
ping command, 411
route command, 410–411
search path missing, 413

Troubleshooting networks, slow network speeds,
409–410

“Typical usage” field, 12

U
Ubuntu

desktop live CD. See Rescue and recovery,
Ubuntu desktop live CD.

recovery mode. See Rescue and recovery, Ubuntu
recovery mode.

server recovery CD. See Rescue and recovery,
Ubuntu server recovery CD.

version, specifying, 301
#ubuntu chat, 444
#ubuntu-server chat, 444
ubuntu-vm-builder script, installing, 297. See also

vmbuilder tool; VMs (KVM), creating.
UEC (Ubuntu Enterprise Cloud)

c1.medium VM type, 329
c1.xlarge VM type, 330
cc (Cluster Controller), 325
cic (Cloud Controller), 325
cloud management, 326–328
front-end server, installing, 326
graphical front end, 331
images, selecting, 330–331
m1.large VM type, 330
m1.small VM type, 329
m1.xlarge VM type, 330
node server, installing, 326
overview, 324–325
sc (Storage Controller), 325
server image, installing, 328
SSH keypairs, creating and enabling, 329
system requirements, 325
VM types, viewing, 329–330
Walrus, 325

UEC (Ubuntu Enterprise Cloud), instances
euca-describe-instances tool, 330
euca-run-instances tool, 330
euca-terminate-instances tool, 331
monitoring, 330
starting, 329–331
terminating, 331
troubleshooting, 331

ufw command, 416–417
ufw program. See also SSH security.

configuration file directory, 224
environment variables directory, 225
/etc/defaults/ufw, 225
/etc/init.d/ufw, 225
/etc/ufw/, 224
/etc/ufw/after6.rules, 225
/etc/ufw/after.rules, 225
/etc/ufw/before6.rules, 224
/etc/ufw/before.rules, 224

Index 529

ptg

ufw program, continued
file conventions, 224–225
init script directory, 225
iptables, rules directory, 225
/var/lib/ufw/user6.rules, 225
/var/lib/ufw/user.rules, 225
/var/log/syslog, 225

ufw program, firewall examples
DNS, 221
MySQL, 222
NFS, 223–224
POP/IMAP, 222
PostgreSQL, 222–223
Samba, 223–224
SMTP, 221
SSH, 220–221
Web, 221

ufw program, firewalls
allow command, 217
default command, 216–217
delete allow command, 217
delete deny command, 217
deny command, 217
disable command, 216
enable command, 216
enabling/disabling, 216
extended rules, 218–219
installing, 216
locking yourself out, 220
logging command, 217
logs, dumping, 217
periodic disabling, 220
remote management, 220
rule syntax, 217–218
status command, 216
undoing rules, 220

UID default, 98
Understanding the system, troubleshooting, 394
Uninstalling packages, 57, 59, 69
uniq command, 461–462
Universe repositories, 74, 431–432
unmount command

file system rescue and recovery, 424
file system will not unmount, 482

Unpacking source packages, 61–62

update-grub program, 25
Update-initramfs argument, changing, 354
update-rc.d program, 36
Updating aliases, 150
Upgrade command, 65
Upgrading

automating, 76
do-release-upgrade program, 76
full-system, 75–76
packages, automatically, 65
shared libraries, 57
smart, 59
to unintended versions, 75

Upstart. See also System V init model.
(hash mark), comment indicator, 31
checking job status, 32–33
comments, 31
default runlevel, changing, 33–34
description, 30–31
event-driven actions, 30
exec option, 32
initctl command, 32–33
job status, querying, 32–33
script location, 31
script option, 32
script syntax, 31
start command, 32
starting/stopping jobs, 32
status command, 32
stop command, 32

uptime command, 396–397
us: user CPU time, 399
USB devices, LTSP, 195–196
“Use as” field, 10–11
User accounts. See also Root user.

default, disabling, 99
default, specifying, 302
PostgreSQL, creating/deleting, 169–170
Samba, creating/disabling, 175

user command, 109
User CPU time, 399
User mailbox directory, 147
--user option, 302
User scripts, System V init model, 30
User time too high, troubleshooting, 400–401

530 Index

ptg

Usernames, mapping to PostgreSQL usernames,
171

Users
alias mappings, 147, 150
group membership, displaying, 465
KVM, setting up, 297
LTSP, creating first, 187–188

Users, initial settings
Kickstart, 109
preseeding, 98–99

/usr directory, 7, 41
usr/bin directory, 41
/usr/bin/smbpasswd, 175
/usr/lib directory, 41
/usr/lib/cgi-bin/, 139
/usr/local directory, 41
/usr/sbin directory, 41
/usr/share/doc/samba-doc/, 175
UUID

changed, rescue and recovery, 425–426
discovering, 426
migrating non-RAID disks to RAID, 350
specifying for RAID disks, 343

uupdate program, 79–80

V
/var directory, 6, 43
/var/cache/bind, 128
Variable-size data, partitioning for, 6
/var/lib/backuppc, 264
/var/lib/backuppc/log, 264
/var/lib/backuppc/pc, 264
/var/lib/dhcp3/dhcpd.leases, 161
/var/lib/mysql/, 165
/var/lib/samba, 175
/var/lib/tripwire/, 232
/var/lib/tripwire/reports, 232
/var/lib/ufw/user6.rules, 225
/var/lib/ufw/user.rules, 225
/var/log directory, 43
/var/log/apache2/, 139
/var/log/apparmor/, 210
/var/log/auth.log, 160
/var/log/mail.*, 147–148
/var/log/mail.log, 158

/var/log/postgresql/, 171
/var/log/samba/, 176
/var/log/syslog

AppArmor, 210
DHCP servers, 161
DNS servers, BIND, 129
Dovecot, 158
MySQL databases, 165
NFS, 178
SSH security, ufw program, 225
Tripwire, 232

/var/spool directory, 43
/var/spool/mail/, 147
/var/spool/postfix/, 147
/var/www/, 139
/var/www directory, 43
Vertical line (|), pipe symbol, 458–459
VGs (volume groups), 362
vi editor, 23–24
virsh command, 297–298, 307–310
virt-manager utility, 310–313
Virtual appliances, 324
Virtual file systems, directory for, 45
Virtual host settings, BackupPC, 263
Virtual hosts, Apache Web server, 138
Virtual machines. See VMs.
Virtualization. See also VMs.

extensions, confirming, 296–297
overview, 296
technologies. See KVM; VMware Server.
virtual machine host server, 15

Visually impaired users. See Accessibility options.
visudo tool, 203
VM console access, 320–321
VM types (UEC), viewing, 329–330
vmbuilder tool, 301–307
vmnet kernel module, 316
VMs (KVM), creating. See also KVM.

adding new VM to local KVM instance, 302
--arch option, 302
automating, 306–307
--copy option, 306
-d option, 302
destination directory, specifying, 302
destination files, list of, 306

Index 531

ptg

VMs (KVM), creating, continued
--execscript option, 306
--firstboot option, 307
--firstlogin option, 307
--flavour option, 301–302
hostname, specifying, 302
--hostname option, 302
JeOS, 300
kernel flavor, specifying, 301–302
--libvirt option, 302
--part option, 304
--pass option, 302
--rootsize option, 302
--suite option, 301
--swapsize option, 302
--user option, 302

VMs (KVM), managing
autostart command, 308
current load, 311–313
destroy command, 308
graphical console, 311–312. See also VMware

Server.
hardware, 311, 312
power off, 308
RAM, changing, 309–310
remote management, 311–313
restore command, 308
resume command, 308–309
resuming, 308–309
rolling back to snapshots, 308
save command, 308
setmaxmem command, 309
setmem command, 309
shutdown command, 308
shutting down, 308
snapshotting, 308, 311
start command, 307–308
starting at boot time, 308
starting the VM, 307–308
suspend command, 308–309
suspending current state, 308–309. See also

Snapshots.
virsh command, 307–310
virt-manager utility, 310–313

VMs (KVM), networking
bcast option, 306
broadcast address, specifying, 306

creating, 300
DNS address, specifying, 306
--dns option, 306
domain default, specifying, 305
--domain option, 305
gateway address, specifying, 306
--gw, 306
host network address, specifying, 305
--ip option, 305
--mask option, 305
--net option, 305
overview, 298–300
partitioning disks, 304
password default, specifying, 302
post-install scripts, 306–307
processor architecture, specifying, 302
root partition size, specifying, 302
sample command, 301
sample network, 303
source files, list of, 306
SSH key files, copying, 306
--ssh-key option, 306
--ssh-user-key option, 306
static IP address, assigning, 305
subnet mask, specifying, 305
swap partition size, specifying, 302
Ubuntu version, specifying, 301
user default, specifying, 302
vmbuilder tool, 301–307

VMs (KVM), package management
adding packages, 304
--addpkg option, 304–305
--components option, 305
--mirror option, 305
--ppa option, 305
PPAs (Personal Package Archives), 305
--removepkg option, 304–305
removing packages, 304
repositories, adding, 305
Ubuntu mirror, specifying, 305

VMs (KVM), scripts
interactive, 307
running on command, 306
running on first VM boot, 307

VMs (VMware), creating. See also VMware.
CD/DVD drives, 319
ISO option, 319

532 Index

ptg

network configuration, 319
power on/off, 319
resetting, 320
storage settings, 319

VMs (VMware), snapshots, 319–320. See also
Suspending current state.

VMware Server
administrator, selecting, 316
bridged networking, 315
build-essential package, 313
configuration files, location, 316
configuring, 315–316
downloading, 313
host-only networking, 315
init scripts, 316–317
installing, 313–314
Linux kernel headers package, 313
local VM storage, 322–324
NAT networking, 315
networking configuration, 315–316
port configuration, 316
snapshots, 321–322
starting/stopping manually, 316–317
suspending current state, 319–320. See also

Snapshots.
virtual appliances, 324
VM console access, 320–321
vmnet kernel module, 316
VMs, creating. See VMs (VMware), creating.
vmware-config.pl script, 315–316
Web administration, 317–318

vmware-config.pl script, 315–316

W
wa: I/O wait, 399
Walrus, 325
Warning prompts for preseeding partitioning,

disabling, 91
Warning thresholds, setting, 284
warntime option, 373
watch command, 479
Web administration

MySQL, 167–168
VMware Server, 317–318

Web forums, 443

Web servers. See also Apache.
installing, 135–136
LAMP environment, 135, 141–144
setting up for PXE boot server deployment, 116

Web service, ufw firewall example, 221
Web-based administration, PostgreSQL, 171–172
which command, 478
Whitelists

for trusted hosts, 214
tweaking, 155–156

Wildcard characters
* (asterisk), in shell globs, 208–209, 457
** (asterisks), in shell globs, 208–209
? (question mark), wildcard character, 456
in the exec command, 480
in the find command, 480

winbind package, 14
Wireless adapters, bridging support, 300
WordPress, 141–144
Write permission, 464–465

X
xargs program, 481
XChat program, 444–447
xconfig --monitor option, 110
xinetd

description, 38–39
echo feature, 39
enabling services, 39
FTP feature, 39
managing services, 38–39
system time, displaying, 39
TFTPD (Trivial File Transfer Protocol Daemon),39

XOR policy, 365

Z
Zip archives, restoring from, 262–263
Zone files

adding, 129–132
location, 128
ownership, 131
permissions, 131
referencing in named.conf, 131–132
reloading, 134
retransferring, 134

Index 533

	Contents
	Preface
	Acknowledgments
	About the Authors
	Introduction
	Welcome to Ubuntu Server
	Free Software, Open Source, and Linux
	Free Software and GNU
	Linux
	Open Source

	A Brief History of the Ubuntu Project
	Mark Shuttleworth
	The Warthogs
	What Does UbuntuMean?
	Creating Canonical
	The Ubuntu Community

	Ubuntu Promises and Goals
	Philosophical Goals
	Conduct Goals and Code of Conduct
	Technical Goals

	Canonical and the Ubuntu Foundation
	Canonical, Ltd.
	Canonical’s Service and Support
	The Ubuntu Foundation

	History of Ubuntu Server
	Simple, Secure, Supported

	CHAPTER 1 Installation
	Get Ubuntu
	Boot Screen
	Disk Partitioning
	What Is a Partition?
	Guided—Use Entire Disk
	Guided with LVM
	Manual

	Server Roles
	Installer Console
	Reboot the System

	CHAPTER 2 Essential System Administration
	Basic Command-Line Administration
	Move Around the System
	File Ownership
	Check Running Processes
	Edit Files
	Become Root

	Ubuntu Boot Process
	GRUB
	The Kernel Boot Process
	/sbin/init
	Services

	File System Hierarchy
	Networking
	Network Configuration Files
	Core Networking Programs

	CHAPTER 3 Package Management
	Introduction to Package Management
	Background on Packages
	What Are Packages?
	Basic Functions of Package Management
	Advanced Functions of Package Management Systems

	Debian Packages
	Source Packages
	Binary Packages

	Package Management in Ubuntu
	Staying Up-to-Date
	Searching and Browsing
	Installation and Removal
	Manipulating Installed Packages
	Manipulating Repositories
	Ubuntu Default Repositories
	Using Other Repositories
	Upgrading a Whole System
	Mirroring a System

	Making Your Own Packages
	Rebuilding Packages
	New Upstream Versions
	Building Packages from Scratch
	Hosting Your Own Packages

	CHAPTER 4 Automated Ubuntu Installs
	Preseeding
	Basic Preseed Configuration for CD-ROM
	Networking Options
	Partitioning
	Packages and Mirrors
	User Settings
	GRUB
	Miscellaneous
	Dynamic Preseeding

	Kickstart
	Basic Kickstart Configuration for CD-ROM
	Changes and Limitations in Ubuntu Kickstart
	Run Custom Commands during the Install

	PXE Boot Server Deployment
	DHCP
	TFTPD
	Configure Pxelinux
	Web
	Test Your PXE Server

	Customize Automated Installs
	Multiple Kickstart Files
	Boot Cheat Codes
	DHCP Selection
	DHCP Selection by Subnet

	CHAPTER 5 Guide to Common Ubuntu Servers
	DNS Server
	Install BIND
	Ubuntu Conventions
	Caching Name Server
	DNS Master
	DNS Slave
	Manage BIND with rndc

	Web Server
	Install a Web Server
	Ubuntu Apache Conventions
	apache2ctl
	Apache Documentation
	WordPress, a Sample LAMP Environment

	Mail Server
	Install Postfix
	Postfix Configuration Types
	Ubuntu Postfix Conventions
	Administering Postfix
	Default Postfix Example
	Secondary Mail Server
	Greylisting Mail Server

	POP/IMAP Server
	Enable Maildirs on Postfix
	Install Dovecot
	Ubuntu Dovecot Conventions

	OpenSSH Server
	Ubuntu OpenSSH Conventions

	DHCP Server
	Install DHCP
	Ubuntu DHCP Conventions
	Configure DHCP

	Database Server
	MySQL
	PostgreSQL

	File Server
	Samba
	NFS

	Edubuntu and LTSP
	What Is LTSP?
	Technical Details of the LTSP Boot Process
	The Benefits of LTSP
	Other Uses
	LTSP Availability in Ubuntu
	Installing an LTSP Server

	LTSP Server Configurations
	The Installation Procedure
	Initial LTSP Server Setup
	Initial LTSP Client Setup
	Installing the LTSP Environment in Ubuntu or on a Desktop Installation
	Special LTSP Cases
	Changing Your IP Address
	Local Devices over LTSP
	Sound over LTSP

	CHAPTER 6 Security
	General Security Principles
	Sudo
	Configure sudo
	sudo Aliases

	AppArmor
	AppArmor Profiles
	Enforce and Complain Modes
	Ubuntu AppArmor Conventions

	SSH Security
	sshd_config
	Key-Based Authentication
	SSH Brute-Force Attacks

	Firewalls
	ufw Commands
	ufw Rule Syntax
	Extended ufw Rules
	ufw Examples
	Ubuntu ufw Conventions

	Intrusion Detection
	Update Tripwire Policy
	Initialize the Tripwire Database
	Update the Tripwire Database
	Ubuntu Tripwire Conventions

	Incident Response
	Do You Prosecute?
	Pull the Plug
	Image the Server
	Server Redeployment
	Forensics

	CHAPTER 7 Backups
	Backup Principles
	Drive Imaging
	Database Backups
	MySQL
	PostgreSQL

	BackupPC
	BackupPC Storage
	Default BackupPC Configuration
	Configure the Client Machine
	Add the Client to BackupPC
	Start the First Backup Job
	rsync Tweaks
	Restore Files
	Ubuntu BackupPC Conventions

	CHAPTER 8 Monitoring
	Local Monitoring Tools
	Smartmontools
	sysstat

	Ganglia
	Install ganglia-monitor on All Hosts
	Configure Ganglia Server
	Install the Ganglia Web Front End

	Nagios
	Install GroundWork
	GroundWork File Conventions
	Initial Configuration
	Configure Nagios
	Commit Changes to Nagios
	Configure Contact List
	Enable Notifications for Nagios
	Add a Service Check to a Host
	Add a New Host
	Advanced Configuration
	More GroundWork Information

	CHAPTER 9 Virtualization
	KVM
	Install KVM
	Enable Support in BIOS
	Install KVM Packages
	Configure KVM Networking
	Create a New VM
	Extra vmbuilder Options
	Manage VMs with virsh
	KVM Graphical Console and Management Tools

	VMware Server
	Install VMware Server
	Configure VMware Server
	VMware Server Init Scripts
	VMware Web Administration
	Create a New Virtual Machine
	VM Console Access
	Snapshots
	Suspend
	Local VM Storage
	Virtual Appliances

	Ubuntu Enterprise Cloud
	UEC System Requirements
	Install UEC Front-End Server
	Install UEC Node Server
	Manage Your Cloud
	Install a New Server Image
	Start a New Instance

	CHAPTER 10 Fault Tolerance
	Fault Tolerance Principles
	RAID
	RAID Levels
	Configure RAID during Installation
	Configure RAID after Installation
	Software RAID Management
	Migrate Non-RAID to Software RAID
	Migrate from RAID 1 to RAID 5
	Add a Drive to a RAID 5 Array

	LVM
	The Story of the Logical Volume Manager
	LVM Theory and Jargon
	Setting Up LVM

	Ethernet Bonding
	Clusters
	Heartbeat
	DRBD

	CHAPTER 11 Troubleshooting
	General Troubleshooting Philosophy
	Divide the Problem Space
	Favor Quick, Simple Tests over Slow, Complex Tests
	Favor Past Solutions
	Good Communication Is Critical When Collaborating
	Understand How Systems Work
	Document Your Problems and Solutions
	Use the Internet, but Carefully
	Resist Rebooting

	Localhost Troubleshooting
	Host Is Sluggish or Unresponsive
	Out of Disk Space

	Network Troubleshooting
	Server A Can’t Talk to Server B
	Can I Route to the Remote Host?
	Test the Remote Host Locally

	Hardware Troubleshooting
	Network Card Errors
	Test Hard Drives
	Test RAM

	CHAPTER 12 Rescue and Recovery
	Ubuntu Recovery Mode
	File Systems Won’t Mount
	Problem Init Scripts
	Reset Passwords

	Ubuntu Server Recovery CD
	Boot into the Recovery CD
	Recover GRUB
	Repair the Root File System

	Ubuntu Desktop Live CD
	Boot the Live CD
	Add the Universe Repository
	Recover Deleted Files
	Restore the Partition Table
	Rescue Dying Drives

	CHAPTER 13 Help and Resources
	Paid Support from Canonical
	Forums
	Internet Relay Chat
	Mailing Lists
	Online Documentation
	Localhost Documentation
	Local Community Teams
	Other Languages
	Tech Answers System (Launchpad)
	Bug Reporting
	Summary

	CHAPTER 14 Basic Linux Administration
	Shell Globs
	Regular Expressions

	Pipes and Redirection
	Pipes
	Redirection

	File Permissions and Ownership
	chmod

	Linux File Types
	Symbolic Links
	Hard Links
	Device Files

	At and Cron
	At
	Cron

	APPENDIX: Cool Tips and Tricks
	Avoid That grep Command in grep Output
	Shortcut to a Command Path
	Wipe a Drive in One Line
	Run a Command Over and Over
	Make a Noise When the Server Comes Back Up
	Search and Replace Text in a File
	find and exec Commands
	Bash Commands with Too Many Arguments
	Use Your Bash History
	Are These Files Identical?
	Go Back to Your Previous Directory
	Find Out Who Is Tying Up a File System You Want to Unmount
	Send a Test E-mail Using telnet
	Easy SSH Key Sharing
	Get the Most Out of Dig

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

