

Xen Virtualization

A fast and practical guide to supporting multiple
operating systems with the Xen hypervisor

Prabhakar Chaganti

 BIRMINGHAM - MUMBAI

Xen Virtualization

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2007

Production Reference: 1181207

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-48-6

www.packtpub.com

Cover image by Bruno Abarca (bruno.granada@gmail.com)

Credits

Author

Prabhakar Chaganti

Reviewer

Paul Wouters

Stefano Maccaglia

Senior Acquisition Editor

David Barnes

Development Editor

Nikhil Bangera

Technical Editor

Akshara Aware

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Sagara Naik

Indexer

Hemangini Bari

Proofreader

Susan Tase

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Prabhakar Chaganti is the CTO of HelixBrain—a unique startup that provides
technology service consulting and is also an incubator that nurtures some very cool
software as services applications that are being built on the Ruby on Rails platform.

I would like to thank the reviewer for his helpful and incisive
comments, which have helped in making this a better book. The staff
at Packt provided great support as always.

This book is dedicated in the memory of my parents—Karunakar and
Adilakshmi Chaganti. Lots of love to my wife Nitika whose support
and exhortations were the rails upon which this book rolled into the
station. Love to my two precious daughters—Anika and Anya.

About the Reviewers

Paul Wouters has been involved with Linux networking and security since he
co-founded the Dutch ISP 'Xtended Internet' back in 1996, where he started working
with FreeS/WAN IPsec in 1999 and with DNSSEC for the .nl domain in 2001.

He has been writing since 1997, when his first article about network security was
published in Linux Journal in 1997. He still writes on occastion for the Dutch "c't
Magazine", focussing on Linux, networking and the impact of the digital world
on society. He has presented papers at Sans, SecTor, BlackHat, DefCon, CCC, and
several other conferences.

He co-founded Xelerance in 2003, focusing on IPsec, DNSSEC, and virtualization,
where he is responible for the development of enterprise appliances simplifying the
management of these complex security technologies. He is also the release manager
for the Linux Openswan IPsec suite.

Stefano Maccaglia is an Italian, Ethical Hacker and Network professional. In 1997,
he started his career as a technician in Compaq (Italy). He has worked in Australia,
New Zealand, and US and for the past 10 years he has been involved in many
projects. Currently, he is a Consultant and Trainer in Poste Italiane, however, he
continuously supports the BlackSun Factory Tiger team. Stefano is preparing a book
on Network Admission Control framework, which is based on the experience he has
gained in the last two years. He participates actively on the security research field.

I would like to thank my wife Lorena for her love, support, and
patience. I would also like to thank my entire crew at BlackSun
Factory for their friendship, help, and the spirit that they put in the
hacking matter and in everyday life.

Table of Contents
Preface	 1
Chapter 1: Introduction	 5

What is Xen?	 6
How Does it Work?	 7
What Can I Do with It?	 9

Xen Terminologies	 10
Summary	 10

Chapter 2: Running Xen	 11
Installing Xen from Binary Packages	 11

Time for Action—Installing Xen with yum	 12
Installing Xen from Source	 16

Time for Action—Compile Xen	 17
Summary	 26

Chapter 3: Creating Virtual Machines	 27
A Plan for Creating Xen Domains	 27
Physical Address Extension	 28
Compiling a domU Kernel	 30
Xen Domain Memory	 32
Pygrub	 32
Ubuntu Feisty 	 32

Time for Action—Bootstrapping an Ubuntu System	 33
NetBSD	 40

Time for Action—Install NetBSD	 40
CentOS	 44

Time for Action—Using qemu to Create a CentOS Image	 45

Table of Contents

[ii]

Slackware	 49
Time for Action—Utilize Xen Images from jailtime.org	 49

Summary	 51
Chapter 4: Managing Xen	 53

Xen Domain Configuration Files	 53
Xen Management User Interface—xm	 56

Time for Action—Xen Manager	 57
XenMan— Installing and Running	 64

Time for Action—Install and Run XenMan	 65
Virtual Machine Manager	 68

Time for Action—Running virt-manager 	 69
Summary	 72

Chapter 5: Networking	 73
Bridged Networking	 74

Time for Action—Using Bridged Networking	 75
Routed Networking	 79

Time for Action—Using Routed Networking	 80
Virtual Local Network with Network Address Translation	 84

Time for Action—Using VLAN with NAT	 84
Summary	 86

Chapter 6: Storage	 87
Files	 87
NFS	 88

Time for Action—Using NFS	 88
Logical Volume Management	 93

Time for Action—Using LVM	 94
Advanced Storage Options	 98

Redundant Array of Independent/Inexpensive Drives	 98
Global Network Block Device	 99

Summary	 99
Chapter 7: Encryption	 101

Device Mapper-Based Encryption	 101
Time for Action—Encrypting Block Devices	 102

Device Mapper-Based Encryption Using LUKS	 107
Time for Action—by Extending dm-crypt	 107

Summary	 111
Chapter 8: Migration	 113

Migration Requirements	 113
Saving and Restoring a Domain	 114

Table of Contents

[iii]

Time for Action—Migrate Domains on your Xen Server	 114
Live Migration	 116

Time for Action—Relocation of an Active Running domain	 116
Summary	 122

Chapter 9: Xen Future	 123
Index	 129

Preface
This book covers Xen—an open-source paravirtualization technology that provides a
platform for running multiple operating systems on one physical hardware resource,
while providing close to native performance. Xen supports several operating
systems—Linux, FreeBSD, Windows, and NetBSD. It was originally developed
in 2003 at the University of Cambridge Computer Laboratory and now both
commercial and free versions of the Xen hypervisor are available. The commercial
versions are built on top of the open-source version and have additional enterprise
features. In this book we explore and use the open-source version of Xen.

Each chapter in this book is a collection of practical tasks that demonstrates how to
achieve common virtualization tasks—you then learn how it works so that you can
apply this knowledge to your Xen installation and environment.

What This Book Covers
Chapter 1 introduces the world of Xen and virtualization. It discusses the concepts
and advantages of using Xen.

Chapter 2 walks us through the installation of Xen on a Fedora Core system. It
discusses installation using yum and also installation by compiling from source.

Chapter 3 creates virtual machines or Xen guest domains that run on top of our
Fedora Core system. Ubuntu Feisty, NetBSD, CentOS, and Slackware domains
are created.

Chapter 4 explores the management tools available for administering Xen instances. It
shows how to install and use xm, XenMan, and virt-manager.

Preface

[�]

Chapter 5 examines some of the networking options that are available when using
Xen and walks through both bridged and routed networking configurations for
connecting guest domains to each other as well as to the outside world.

Chapter 6 walks us through some of the storage options that can be used for storing
Xen domains. Storage systems such as the file system, Network File System (NFS),
and Logical Volume Management (LVM) are discussed.

Chapter 7 shows how to secure Xen domains by encrypting the root file systems. The
two techniques covered are plain device mapper-based encryption and key-based
encryption using LUKS.

Chapter 8 introduces the options available for the migration of Xen instances. We
will save and restore domains, and explore live migration. We will also look at what
happens behind the scenes when Xen performs a live migration of a domain.

Chapter 9 talks about some of the newer ideas based on Xen such as libvirt—a
virtualization API for interacting with multiple virtualization implementations, and
VMCasting—an RSS based technology that can automate the deployment of Xen
images using the RSS 2.0 format.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Create a
directory named xen-images. We will create all our guest images in this directory."

A block of code will be set as follows:

<?xml version="1.0" ?>
<appliance>
 <name xml:lang="en">

Preface

[�]

Any command-line input and output is written as follows:

~ make linux-2.6-xenU-config

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
Virtualization is a technique of partitioning or dividing the resources of a single
server into multiple segregated execution environments. Each of these environments
runs independently of the other, thus allowing multiple operating systems to run on
the same hardware. This concept has been widely used in the world of mainframe
computers over the years, and is now gaining a lot of traction in the world of
enterprise IT systems. Each execution environment is called a guest and the server on
which they execute is called the host. The software running on the host that acts as
a bridge between the host and the guests, and that enables these multiple execution
environments is commonly referred to as the Virtual Machine Monitor (VMM) or
a Hypervisor.

There are three main methodologies used for providing virtualization:

System emulation: The execution environment is called a virtual machine and
it emulates all the hardware resources. This emulation layer in turn uses the
real hardware resources from the host. This enables the emulator to run a
guest operating system without any modifications, as the guest OS can use
the hardware resources by going through the hardware emulation layer,
instead of the real hardware. The VMM executes the CPU instructions that
need more privileges than are available in the user space. This approach is
followed by products such as VMware (http://vmware.com/), Microsoft
Virtual PC (http://www.microsoft.com/windows/products/winfamily/
virtualpc/default.mspx), and Parallels (http://www.parallels.com/).

•

Introduction

[�]

Paravirtualization: There is no hardware emulation. The operating system
that runs on a guest needs to be a modified version that is aware of the
fact that it is running inside a hypervisor. This cuts down the number of
privileged CPU instructions that need to be executed, and as there is no
hardware emulation involved, the performance is much better and closer
to native speeds. This is the technique used by Xen (http://www.cl.cam.
ac.uk/research/srg/netos/xen/) and User-Mode Linux
(http://user-mode-linux.sourceforge.net/).
Operating System level virtualization: Each guest instance is isolated and
runs in a secure environment. However, you can execute only multiple
instances of guests that run the same operating system as the host. If the
host operating system is FreeBSD, you can run only multiple instances of
FreeBSD. This is the approach used by the FreeBSD jails (http://www.
freebsd.org/) and Solaris10 zones (http://www.sun.com/software/
solaris/).

Hardware emulation introduces some overhead due to the translation of the requests
between the hardware and software. The paravirtualized solutions manage to
get a speed boost by eliminating the emulation steps. The operating system level
virtualization probably has the least overhead among the above three approaches
and is the fastest solution. However, it has a limitation that you can only run the
same operating system as the host. This takes away one of the great benefits of
virtualization, which is to provide users with the ability to run disparate
operating systems.

What is Xen?
Xen is an open-source paravirtualization technology that provides a platform for
running multiple operating systems in parallel on one physical hardware resource,
while providing close to native performance. Xen supports several operating
systems—Linux, FreeBSD and NetBSD. The current version of Xen also supports
the new generation of AMD Pacifica and Intel VT-x chipsets and can run an OS on
these chips without any modifications by using a version of the hypervisor called
the Hardware Virtual Machine (HVM). HVM mediates between the guest operating
system and the hardware and passes on the calls made by the guest to the physical
hardware. So you can run Microsoft Windows on these chips using Xen!

•

•

Chapter 1

[�]

Xen was originally developed in 2003 at the University of Cambridge Computer
Laboratory (http://www.cl.cam.ac.uk/research/srg/netos/xen/). There are
both commercial and free versions of Xen. The commercial versions are built on top
of the open-source version with additional enterprise features, and are developed
and supported by Xensource (http://www.xensource.com). The open-source
version is developed and maintained by the Xen community. Xen is provided as a
part of most of the major Linux distributions including Red Hat Fedora (http://
www.redhat.com) and SuSe Enterprise Linux (http://www.novell.com/linux/). In
this book we are going to explore and use the open‑source version of Xen.

Some of the highlights of the latest version of Xen are as follows:

Support for the x86, x86_64, and ia64 architectures.
Near-native performance in the Xen guests for both CPU and
IO-intensive applications.
Strong isolation between the guests. Isolation provides complete partitioning
between the guests whereby each guest runs in its own world and is not
affected by any other guest.
Ability to save and restore domains.
Live migration from one piece of hardware to another with zero down time.
HVM support to run unmodified OS on Intel VT-x and AMD
Pacifica hardware.
Scalable to a large number of guests.
Support for up to 32-way SMP processors.
A very active open-source community leading the development.
Support from most major vendors such as IBM, Red Hat, and Novell.

How Does it Work?
Xen refers to each virtual machine that runs on a system as a domain. When a Xen
server boots up, it first starts the hypervisor, which is responsible for starting a
domain named Domain0 (dom0) in which the host operating system runs. dom0 is
a privileged domain that can access the hardware resources on the server and also
contains tools for managing all the other domains. We will learn how to run Xen in
the next chapter. The hypervisor also checks the page tables and is responsible for the
allocation of resources for new domains. Each domain interacts with the hypervisor
by giving it a hypercall, which is a software trap from the domain to the hypervisor.
The hypervisor responds to the hypercall by sending an event to the domain.

•

•

•

•

•

•

•

•

•

•

Introduction

[�]

New instances of unprivileged domains or virtual machines are created by using the
tools that are available in dom0. These tools in turn make calls to the control interface
API in the hypervisor to perform the requested operations. These unprivileged
domains are referred to as domU.

For instance, if you are running a Xen server with three guests, you will have dom0,
dom1, and dom2 as the domains on that server. The dom0 is identical to the other
domU’s, except that it has all the hardware access. We will learn how to create and
use new domU instances in Chapter 3.

All requests from the domU instances for hardware access are made to the back-end
device drivers in dom0 that will pass on these requests to the actual hardware. This
is possible because the guest operating systems are all "aware" that they are running
in the Xen hypervisor. The architecture of a Xen system with two guest domains is
as follows:

Chapter 1

[�]

What Can I Do with It?
Here are some of the cool things that you can do with Xen:

Decrease hardware cost: Reduce the physical space and power requirements
by utilizing Xen to decrease the number of maintained physical servers.
Improve security: Protect applications and operating systems by isolating
them into virtual machines. We will discuss security in Chapter 7.
Increase server utilization: Consolidate servers to simplify the server
management and improve server utilization. This will enable you to
use more modular and scalable deployments and centralize the server
management. We will learn about the tools for managing domains in
Chapter 4.
Maintain SLA: Utilize the live relocation of Xen domains to avoid downtime
and maintain your service level agreements. We will explore the migration
and backup capabilities of Xen in Chapter 8.
Lower TCO: Adopt the open-source Xen with its tremendous performance
benefits and low cost to lower the TCO for your data center or
enterprise systems.
Improve QA: Easily test your applications on multiple operating systems
without setting up multiple hardware environments.
Provision systems: Provision applications and systems dynamically,
quickly, and just in time, by moving virtual machines from one server to
another as needed, instead of spending time setting up a new physical server
environments. We will learn about relocation of domains in Chapter 8.
Clone: Easily add servers by cloning an existing virtual server.
Extend Xen: Xen is open source. You can extend it to do anything that you
need for your specific requirements.
Use as Teaching Aid: Use Xen to set up sandbox environments for students
to learn and interact with operating systems, applications or device drivers.
Create Virtual applications: Create domains that encapsulate a specific
application, such as a web server or a load balancer. You can then reuse these
across the enterprise as needed.
Cluster Servers: Cluster servers to unify multiple servers into a
single system.

•

•

•

•

•

•

•

•

•

•

•

•

Introduction

[10]

Xen Terminologies
Following are the definitions for some of the terms used when dealing with
Xen technology:

VM: A virtual machine is the virtualized environment that runs an operating
system so that the user can run their applications on the operating system.
VMM: The software that provides the ability to run virtual machines.
Domain: The term used by Xen to refer to a virtual machine instance.
dom0: The primary domain in a Xen system. This is the operating system
that runs Xen itself.
domU: All the other domains in a Xen system.
Host: The system that provides the environment for running
virtual machines.
Guest: The virtual machine instance that runs on a host system.
PVM: Paravirtualized Virtual machine where the Xen domains can only run
modified operating systems.
HVM: Full virtualization where the Xen domains can run unmodified
operating systems. Xen provides the ability to run Microsoft Windows
utilizing this feature.

Summary
This chapter provided an introduction to virtualization and the world of Xen. We
also looked at the architecture of Xen and some of the cool things you can do with it.
In the next chapter, we will learn how to install and run Xen.

•

•

•

•

•

•

•

•

•

Running Xen
In this chapter we will take our first step towards using Xen—installing and then
running it. In this chapter we will use Fedora Core 6 as the host operating system;
we have chosen Fedora Core 6 as it has good support for Xen. We will first add Xen
support to it so that it can be a Xen Domain0 system. In the next chapter we will
create guest domains on Fedora Core 6 that run different operating systems. We will
assume you have a stock Fedora Core 6 installed and that you are ready to convert it
to a Xen. Please make sure you can boot into it without any problems or errors. You
can either run Xwindow or work from the console. If you have not installed Fedora
Core before and need help with its configuration, the following links could be useful:

Mauriat's Personal Fedora Core 6 Installation Guide
(http://www.mjmwired.net/resources/mjm-fedora-fc6.html)
Softpedia's Install Guide
(http://news.softpedia.com/news/Fedora-Core-6-Installation-
Guide-38689.shtml)
Howto Forge Guide (http://www.howtoforge.com/installing_a_lamp_
system_with_fedora_core_6)

We will explore two different ways of getting Xen installed and running:

Installing Xen from binary packages
Installing Xen from the source

Installing Xen from Binary Packages
All the major Linux distributions such as Red Hat, Debian, Ubuntu, SuSe, and
Gentoo ship some form of support for using Xen virtualization. In most cases they
provide easy to install binary packages in the packaging format used by the specific
distributions. This is the easiest and quickest way to get up and running with Xen. In
this book we will use Fedora Core 6 from Red Hat as our base operating system and

•

•

•

•

•

Running Xen

[12]

will run other operating systems in virtual machines inside it. The package manager
used by Fedora is named yum. If you are new to yum and have not used it before,
please refer to the Fedora yum manual at http://fedora.redhat.com/docs/yum/
en/. We will use yum to install Xen from the pre‑built packages provided by Red Hat.
It will install the Xen kernel used by Domain0, the libraries, Python modules, and
user space tools used for interacting with Xen.

Time for Action—Installing Xen with yum
yum makes installing Xen in your Fedora Core 6 system a breeze. The following
steps are needed to get Xen running:

1.	 Install the Xen kernel and tools by running the following command:
 yum install kernel-xen xen

This will download and install the following packages and
their dependencies:

kernel-xen: Contains the Xen enabled kernel for both the host
and guest operating systems as well as the hypervisor.
xen: Contains the user-space tools for interacting with
the hypervisor.
bridge-utils: Utilities for configuring the Ethernet bridge that
is used for connecting multiple Ethernet devices together.
libvirt: A C library that provides an API to use the
Xen framework.
libvirt-python: Contains a Python module that let’s Python
applications to use the API to the Xen framework provided
by libvirt.
python-virtinst: Contains a Python module that uses libvirt
for starting installations of Fedora/Red Hat Enterprise Linux
related distributions inside virtual machines.
xen-libs: Contains the libraries needed to run applications
to manage Xen.

Fedora Core 6 uses grub as the bootloader. Installation of the Xen packages
from the previous step will add an entry to the /boot/grub/grub.conf file
for booting the Xen kernel. This is what the grub.conf file looks after the
installation.

°

°

°

°

°

°

°

Chapter 2

[13]

2.	 However, Xen kernel is not set as the default boot option. Modify /boot/
grub/grub.conf and change the value default=1 to default=0. This
will change the default kernel used for booting to the Xen kernel instead
of the default Fedora kernel. You will need to be the root or a user with
administrative privileges in order to do this.

3.	 Reboot to start using this kernel.
4.	 Once the machine is up and running, check the version of the running kernel

to ensure that you are running the Xen kernel.

5.	 The management of domains is done by xend—the Xen Controller daemon.
It can be started and stopped using the /etc/rc.d/init.d/xend script and
is started up by Fedora Core 6 automatically on boot. Check to make sure
that xend is running by executing the following command to search the list of
processes running on the system:

 pidof xend

Running Xen

[14]

6.	 Once xend is running, it will start Domain0, which is the privileged domain.
Check to see that Domain0 has been created and is up and running by using
the xm command.

7.	 Check to see that all the network interfaces are up. This will include the
normal network interfaces such as eth0 and lo, and the Xen related interfaces.
The name of the network interface peth0 that we can see in the following
screenshot has changed to eth0 in the newer versions of Fedora 7.0 and above.

8.	 You are now running Xen!

Chapter 2

[15]

What Just Happened?
We used yum to install the following:

Xen hypervisor
dom0 kernel
Xen libraries and Python modules
User space tools for interacting with Xen from dom0

The configuration for grub was modified automatically by the installation to add an
entry for booting the Xen hypervisor and the dom0 kernel. Let us examine each line
that was added as it will give a good insight into the process of what happens when
a Xen system boots up. Here is the section that was added for the Xen kernel in the
/boot/grub/grub.conf (Line numbers have been added and are not actually
present in the file):

1.	 title Fedora Core (2.6.19-1.2911.6.5.fc6xen)
2.	 root (hd0,1)
3.	 kernel /xen.gz-2.6.19-1.2911.6.5.fc6
4.	 module /vmlinuz-2.6.19-1.2911.6.5.fc6xen ro root=/dev/VolGroup00/
 LogVol00 rhgb quiet
5.	 module /initrd-2.6.19-1.2911.6.5.fc6xen.img

Line 1 defines the title for this kernel and is displayed in the grub menu on boot,
which allows you to select a kernel.

Line 2 defines the root partition that will be used for booting up.

Line 3 specifies the kernel that is to be used for booting. In Xen this specifies the Xen
hypervisor and not the dom0 kernel. When a normal Linux is booted, the kernel
option refers to an actual Linux kernel.

Line 4 specifies the kernel that is used for booting up the privileged dom0, the root
option specifies the partition that holds the root file system, and a few other options,
which are not Xen specific but apply to any Linux kernel.

Line 5 defines the file that contains the initial ram disk image that is first loaded by
the kernel on initialization before it switches over to using the root file system. This
initrd image is only suitable for the host and not for any of the guests.

•

•

•

•

Running Xen

[16]

When the machine boots up, it loads the hypervisor that initializes Xen. At this stage
you will see a lot of messages flash by on the screen prepended with the text, [XEN].
The Xen hypervisor then boots using the dom0 kernel. The operating system
that is used by the dom0 kernel contains an init script that starts up the Xen
daemon—xend, which creates and loads dom0.

The dom0 contains the Xen libraries that provide the API that can be used by client
and userland applications to communicate with the Xen framework. The Python
modules wrap this functionality so that it can be used by applications written in
Python, which is the scripting language used for scripting Xen. We used one of these
tools—xm, the Xend Manager—to check whether any Xen domains were running. xm
is the main interface provided for managing the various Xen guest domains. It can
be used to create, pause, and shutdown domains. It can also be used, as we did, to
list current domains. We are going to look in detail at all the things you can do with
xm in Chapter 4. Finally we check to make sure that our network interfaces are up.
The topic of Xen networking will be covered in detail in Chapter 5. We successfully
installed and got Xen running by using the pre-built binary packages provided by
Fedora Core 6.

Installing Xen from Source
In the previous section we installed Xen using binary packages. It was quite simple
and quick, and enabled us to get Xen running easily especially because the hard
job of matching the hypervisor/host/guest kernel options was done by RedHat.
However, this means that you depend on the Xen pre-built packages, keeping up
with the changes taking place in Xen, which is a fast moving target with bug fixes
and features. You cannot take advantage of a brand new feature or a bug fix that
was added recently and which is quite crucial for your use. The binary packages
usually track the release versions of Xen, so there is no way for you to try out the
development versions or the pre-release versions. Here are some reasons why you
should get comfortable building Xen from the source code in the Xen revision control
repository hosted by Xensource (http://xenbits.xensource.com/):

You can access the latest bug fixes or new features immediately.
You can experiment with Xen to learn how it works.
You can extend and build products on top of Xen.
You can share the bug fixes or improvements you made with the
Xen community.
You can create customized versions of Xen to use within your enterprise or
as a commercial product.

•

•

•

•

•

Chapter 2

[17]

In this section we are going to get the latest source code for the next pre-release
version of Xen and build it from scratch. We will then install it on our base Fedora
system and use it.

Time for Action—Compile Xen
We are going to retrieve the source code, install all the required dependencies,
compile the source and, finally, install it on our Fedora Core 6 system.

1.	 Create a directory that will be used to store the Xen source files and change
to this new directory.

 mkdir ~/xen-source

 cd ~/xen-source

2.	 Xen source is stored in a Mercurial revision control repository. You will need
to install the mercurial client that can be used for checking out the source
code. Use yum to install mercurial.

 yum install mercurial

Now we are going to checkout the latest version of the Xen source files. There
are several different versions of Xen in the mercurial repository:

xen-3.0.4-testing.hg: pre-release of the next 3.0.4 version
of Xen
xen-3.0.3-testing.hg: pre-release of the next 3.0.3 version
of Xen
xen-3.0.2-testing.hg: pre-release of the next 3.0.2 version
of Xen
xen-2.0-testing.hg: pre-release of the next 2.0 version
of Xen

We will be using the 3.0.4 version of Xen in this book. Use the mercurial
client (hg) to check out the source:

°

°

°

°

Running Xen

[18]

3.	 This will create a directory named xen-3.0.4-testing.hg under the xen-
source directory and populate it with the source. The following screenshot
shows a listing of the files and directories in it.

We are ready to compile Xen. We need to install the pre-requisite packages
that provide the compiler, libraries, and development headers required for
setting up a Xen development environment. Here are the packages that need
to be installed on a Fedora Core 6 machine. If you have already compiled C
code on your machine, you may have some of these installed.

gcc: Contains the GNU Compiler Collection version 4.0
and is needed for compiling C code.
glibc-devel: Contains the object files necessary for
developing programs, which use the standard C libraries.
libgomp: Contains GCC shared support library, which is
needed for OpenMP 2.5 support.
glibc-headers: Contains the header files necessary for
developing programs, which use the standard C libraries.
ncurses-devel: The header files and libraries for
developing applications that use the ncurses terminal
handling library.

°

°

°

°

°

Chapter 2

[19]

openssl-devel: Contains static libraries and include files
needed to develop applications that support various
cryptographic algorithms and protocols.
zlib-devel: Contains the header files and libraries needed
to develop programs that use the zlib compression and
decompression library.
xorg-X11-proto-devel: Contains all necessary include files
and libraries needed to develop X11 applications.
python-devel: Contains the header files and libraries
needed to develop Python extensions.
tetex-latex: Contains the LaTeX front end for the TeX
text formatting system that is used for producing the
documentation for Xen.
xen-devel: Contains the libraries and header files that are
needed for compiling Xen from source.

Install these packages using yum:
 yum install gcc glibc-devel xen-devel libgomp glibc-headers

 ncurses-devel openssl-devel zlib-devel xorg-X11-proto-devel

 python-devel tetex-latex

4.	 The first step before we compile the kernel is to configure it. The following
command will bring up the familiar Linux kernel configuration dialog.
Accept the defaults unless you need to make changes to add support for
some drivers or other options. Exit the dialog and save the changes
when asked.

 make linux-2.6-xen0-config

5.	 Compile the kernel and the modules.
 make linux-2.6-xen0-build

6.	 The above command will compile and install the various artifacts from the
build into the dist/install directory.

°

°

°

°

°

°

Running Xen

[20]

The boot directory contains the configuration used for this Xen kernel, the
kernel image, and the kernel debugging symbols files.

The lib directory contains all the kernel modules and drivers.

7.	 Install these artifacts on to your system by running the following command
as root. This will install the kernel modules and copy the kernel image and
symbol files to /boot.

 make linux-2.6-xen0-install

Chapter 2

[21]

	Following are the files in the /boot directory after running the
above command.

8.	 Run depmod to create a list of module dependencies by reading each
module under /lib/modules/2.6.16.38-xen0 and to determine what
symbols it exports, and what symbols it needs

 	 depmod -a 2.6.16.38-xen0

Running Xen

[22]

9.	 Create the initrd in the boot dir that will be used by the Xen kernel
while booting.

Compile and install the various Xen tools, libraries and Python modules.
Please make sure that you don't have the Xen tools binary package
installed before doing this.

 	 make install KERNELS="linux-2.6-xen0"

Chapter 2

[23]

10.	 Modify grub to add an entry for booting this new Xen kernel.

11.	 Reboot into your new Xen system!

12.	 Check to make sure that everything started up fine.

Running Xen

[24]

13.	 Check the network interfaces to make sure they are all up and running.

You have successfully compiled and installed the development version of Xen in
your machine and are now running it.

Chapter 2

[25]

What Just Happened?
The source code for Xen is stored in a mercurial repository that is hosted at
http://xenbits.xensource.com. This is a public repository and contains the
source code for the open-source version of Xen. The code is tagged with different
versions for the stable and development versions. The stable released versions are
usually the ones that are available as pre-built packages. In the previous section we
used the pre-built packages for Xen 3.0.4 provided by Fedora Core 6. However, there
is a new pre-release version of Xen that has several bug fixes and enhancements.
It would be nice to use this or any other version of Xen for that matter, without
depending on a pre-built package of Xen. We first installed the mercurial client used
for retrieving the source. We also installed all the pre-requisites for compiling C code
including the gcc compiler collection. You may already have some of these packages
if you have ever compiled C code on your system. Also, there are some libraries such
as openssl and zlib that are needed to compile Xen.

The Makefile provided with the Xen distribution has several pre-defined targets
that we can use for compiling Xen. the following were used in this section:

linux-2.6-xen0-config: This target is used for configuring the dom0 kernel.
The default will configure the linux kernel using the familiar menuconfig
option that brings up a ncurses dialog based configuration utility. You
can configure the various options to fine tune the dom0 kernel to your
specifications. You can also select a different interface for configuration.
Running this target for the first time �������������� will download linux-2.6.16.38 from
http://kernel.org to the current directory. This unmodified kernel is
referred to as a pristine kernel. It is downloaded and stored locally in a
directory called pristine-linux and is also archived to a bzip file. A dom0
directory named linux-2.6.16.38-xen0 is created, Xen patches are then
applied to the pristine kernel in this directory to create the dom0 kernel. This
is the kernel that is configured when we run this target. If you are new to
Linux kernel configuration the following resources will be useful:

Kernel Rebuild Guide (http://www.digitalhermit.com/
linux/Kernel-Build-HOWTO.html)
Nixcraft Guide (http://www.cyberciti.biz/tips/print.
php?p=710&print=1)
Linux focus Guide (http://linuxfocus.org/English/
July2002/article252.shtml)

•

°

°

°

Running Xen

[26]

linux-2.6-xen0-build: This target compiles the kernel and the modules
using the configuration from the previous step. The compiled kernel and
modules are installed into a dist/install directory created within the
current directory.
linux-2.6-xen0-install: This target will take everything from the dist/
install directory and install it on to the local system. The kernel and the
kernel configuration file are copied to the /boot directory along with the
kernel symbols file that is helpful for debugging. In order to do this you must
have administrative privileges. So either use sudo or become the super user
by using su before you execute this target.
install KERNELS="linux-2.6-xen0": This target will compile the Xen libraries
and Python modules and install them on to the system. Once again you will
need administrative privileges in order to do this.

We have installed most of the things needed to run the pre-release version of Xen.
After the compilation, we also created an initrd image that can be used for booting.
This was automatically installed for us when we installed Xen using a pre-built
package. Since we compiled the kernel ourselves in this section, we created the
initrd image by using the mkinitrd command. Finally we added an entry to the
/boot/grub/grub.conf to boot our new pre-release version of Xen.

Summary
In this chapter we took our first steps with Xen and learned two different ways to get
Xen installed and running on our system:

We installed Xen using the pre-built binary packages provided by Red Hat
for the Fedora Core 6 distribution.
We checked out the pre-release version of Xen from the Mercury Revision
Control Repository, and compiled and installed Xen from scratch.

In the next chapter, we will create virtual machines or domUs that will run different
operating systems, inside our base Fedora Core 6 system.

•

•

•

•

•

Creating Virtual Machines
In this chapter we will create new virtual machines, running different operating
systems, which will be hosted by the Xen instance we set up in the previous chapter.
Each of these virtual machines is referred to as a guest domain in Xen parlance. Our
base system that runs dom0 is Fedora Core 6. By the end of this chapter we will
have Fedora Core 6 running four different guest domains under Xen. We will use a
different installation method for each domain, so that by the end of this chapter you
will be familiar with the most common permutations involved in creating domains
using Xen.

We will create the following guest domains:

Ubuntu Feisty
NetBSD
CentOS
Slackware

A Plan for Creating Xen Domains
We will use the following strategy when creating the guest domains in
this chapter:

1.	 Choose the storage medium for the domain—files, partitions, LVM, etc. We
have exclusively used files in this chapter for ease of use.

2.	 Install files for the guest operating system in the chosen storage medium.
The mechanism for installing the files can be a bootstrapping tool such as
debootstrap, an iso image file, a cd-rom, or even a simple file system directory
that contains all the files needed.

•

•

•

•

Creating Virtual Machines

[28]

3.	 Create a configuration file that specifies the parameters that will be used by
Xen when creating the domain. We will examine all the various configuration
options that can be used in the next chapter.

4.	 Create the domain using xm. We will explore the xm tool in detail in the
next chapter.

The above is a workflow that addresses the various aspects essential for generating
a working Xen environment for the guest operating system of your choice. You can
also download ready-to-use Xen images from several sites on the Internet. You may
or may not get the exact image you are looking for, but it's worth checking these
sites out:

Jailtime: http://jailtime.org/
Oszoo: http://www.oszoo.org/wiki/index.php/Category:OS_images

Physical Address Extension
Physical Address Extension (PAE) is a technology that increases the amount of
physical or virtual memory available to user mode applications and thus allows
servers to access physical memory beyond 4 GB. In order to achieve this, PAE
modifies the 32-bit addressing mode to a 64-bit addressing mode, and thus allows
the operating system and user applications to access the additional physical memory.
This can significantly enhance the performance of the operating system, which is
valuable especially when the server is hosting multiple operating systems. Both the
Linux kernel and the Xen hypervisor can benefit from of PAE if it is present. The
three modes that are available for running Xen are as follows:

Pure 32-bit mode.
32-bit mode with PAE.
Pure 64-bit mode.

There are some important things to consider when using these modes:

The Xen hypervisor, dom0, and domU must run in the same mode when
using paravirtualization. This means that when using paravirtualization, if
the hypervisor is running in 32 bit mode, then the dom0 and all the domU
instances must also run in the 32 bit mode, and not in the PAE or 64 bit
modes. You cannot currently mix and match different modes of Xen.
The above restriction does not apply when using full virtualization or
Hardware Virtual Machine (HVM). Currently you can only use HVM with
supported chipsets from Intel and AMD. Here is the current list of HVM
compatible processors:
http://wiki.xensource.com/xenwiki/HVM_Compatible_Processors

•
•

•
•
•

•

•

Chapter 3

[29]

The server that runs my Xen system does not have any of the newer chipsets from
Intel or AMD. It is a 32-bit machine with 1GB of memory. However, most of the
current distributions, including Fedora Core ship a PAE enabled Xen hypervisor,
which will not work on servers such as mine. There are two workarounds for this
issue—recompile the distribution-specific Xen packages to use a non-PAE kernel or
use the current 3.0.4 version source from Xen and build the hypervisor and kernels
yourselves. For Fedora, you can recompile using the source RPM after disabling the
PAE configuration option in the spec file for the SRPM. I used the second option as
it enables the use of the most recent versions of Xen. We have already learnt how
to compile the Xen hypervisor and dom0 kernel in the previous chapter. These will
be the default non-PAE versions. You can check if you have a PAE enabled kernel
installed by running the cpuinfo command:

~ cat /proc/cpuinfo

The machine with an AMD processor shows the following output:

processor : 0
vendor_id : AuthenticAMD
cpu family : 15
model : 47
model name : AMD Sempron(tm) Processor 3400+
stepping : 2
cpu MHz : 1989.897
cache size : 128 KB
fdiv_bug : no
hlt_bug : no
f00f_bug : no
coma_bug : no
fpu : yes
fpu_exception : yes
cpuid level : 1
wp : yes

flags : fpu tsc msr pae mce cx8 apic mtrr mca cmov pat pse36
 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt
 lm 3dnowext 3dnow pni lahf_lm ts fid vid ttp tm stc

bogomips : 3980.93

If the flags section above displays a flag named pae, then you have a processor that
supports PAE, otherwise your processor does not support PAE and you will need to
use a non-PAE kernel.

Creating Virtual Machines

[30]

Compiling a domU Kernel
In this section we are going to compile a domU kernel, an unprivileged kernel and
which will be used by the guest domains or virtual machines. We are going to use
the Xen 3.0.4 source that we downloaded in the previous chapter and build the
domU kernel.

1.	 Change to the directory that contains the source.
 ~ cd /home/pchaganti/xen-source/xen-3.0.4-testing.hg

2.	 Configure the domU kernel.
 ~ make linux-2.6-xenU-config

3.	 Select the options that you want for your domU kernel. If you are not sure,
opt for the default settings. Ensure that PAE is disabled by navigating
through the following screens under the Processor type and features menu
and making sure that the High Memory Support is set either to off or 4GB.
Save your configuration when you exit.

Chapter 3

[31]

4.	 Build the domU kernel and then install it.
 make linux-2.6-xenU-build

 make linux-2.6-xenU-install

5.	 Create an initrd for the domU kernel.
 # mkinitrd -v -f --with=ide-disk --with=sd_mod --with=ide-generic

 --with=ext3 --with=scsi_mod /boot/initrd-2.6.16.38-xenU.img

 2.6.16.38-xenU

6.	 Here is what my /boot directory looked like with the domU kernel related
files after the installation from the previous step was completed.

7.	 Now we have a domU kernel compiled and ready and we will use it to boot
the virtual machines that we will create later in the chapter.

Creating Virtual Machines

[32]

Xen Domain Memory
In our current configuration, the dom0 kernel takes up all the memory available
within the system on start up, and then assigns it out to the domUs as needed. When
we create guest domains in this chapter we need a way to provide memory for
each of the guest domains that we create. Xen provides a simple way to specify the
memory used by the dom0 kernel a parameter to the hypervisor on start up. Modify
the /boot/grub/menu.lst in your base system and add an additional parameter to
the kernel line specifying the amount of maximum memory that you want the dom0
kernel to use:

kernel /xen.gz noreboot dom0_mem=256M

On my system, I assigned a memory size of 256M to my dom0. If you are only going
to manage a Xen host and will not have any guest domains, you can go lower than
256M of memory, and may be able to get by with 96M of memory. However, if you
are using any guest domains, you will need to ensure that you have enough memory
available to be assigned to the guests as they start up. In this case you should set the
memory to at least 512M. When we create new guest domains in this chapter, we
will specify the maximum memory to be used by each of the guest domains in the
configuration file for the domain.

Pygrub
The normal way in Xen is to specify the kernel and initrd from within the config
file in dom0. This means that any time the kernel needs to be modified or changed,
you will need administrative privileges on dom0 host in order to modify it. Redhat
developed a bootloader named pygrub that works in a similar way to grub, and
allows domU users to pick their own kernel using the same user interface as grub.
Xen starts pygrub before the domUs start. The console user can select the kernel to
boot from a menu that reads from the same configuration file as grub—/grub/menu.
lst. Once the user selects a kernel and initrd, control is returned back to Xen and it
starts the selected domU kernel. In this chapter we are using the plain Xen way of
specifying the kernel and initrd in the configuration file, but you need to be aware of
the pygrub option as it can come in handy in several Xen environments.

Ubuntu Feisty
Ubuntu is a community developed Linux based on Debian that has become probably
one of the most popular Linux distributions in the world (http://www.ubuntu.com/).
It has a huge user base that is growing very rapidly and it releases new versions every
six months. We are going to use the beta version of Ubuntu Feisty and create a virtual
machine or guest domain that runs it.

Chapter 3

[33]

Time for Action—Bootstrapping an Ubuntu
System

1.	 Ubuntu uses the Debian tool called debootstrap for creating a system from
scratch. This is not currently available in the Fedora repositories. There
are some much older rpms available on the net. We will download the
latest version of debootstrap from Ubuntu Feisty and install it on our Fedora
Core base system. As this is in a deb format, we will convert it into a
format suitable for installation on a Fedora system. Get the following two
dependencies and install them first.

 ~ wget http://www.hccfl.edu/pollock/AUnix1/alien/deb-1.10.27-
 3.i586.rpm

 ~ wget http://www.hccfl.edu/pollock/AUnix1/alien/html2text-1.3.2a-
 3.i586.rpm

 # rpm –ivh –-nodeps deb-1.10.27-3.i586.rpm

 # rpm –ivh –-nodeps html2text-1.3.2a-3.i586.rpm

2.	 Download and install alien for converting packages from one distribution
format to the other.

 ~ wget http://www.hccfl.edu/pollock/AUnix1/alien/alien_8.64.tar.gz

 ~ tar -zxvf alien_8.64.tar.gz

 ~ perl Makefile.PL

 ~ make PREFIX=/usr

 # make PREFIX=/usr install

3.	 Download debootstrap from Ubuntu, convert it to rpm format and install it.
 ~ wget ��������������������������������������http://librarian.launchpad.net/6615094
 /debootstrap_0.3.3.2ubuntu3_all.deb

 ~ ��� alien --to-rpm debootstrap_0.3.3.2ubuntu3_all.deb

 # rpm -Uvh debootstrap-0.3.3.2-2.noarch.rpm

We now have all the tools needed to bootstrap an Ubuntu Feisty system.

4.	 Create a directory named xen-images. We will create all our guest images in
this directory.

 ~ mkdir /home/pchaganti/xen-images

Creating Virtual Machines

[34]

You can create virtual machines on a local file, a NFS system, a LVM group,
or iSCSI storage. To keep things simple, in this chapter we are going to create
all our virtual machines in files. The performance is slower, but we are going
to focus on the steps needed to create virtual machines without needing to
deal with storage techniques. Chapter 6 covers the different storage options
available to us when creating virtual machines using Xen.

5.	 Create three files, one for holding the root file system,/, one for the /boot,
and the other for the swap.

 ~ dd if=/dev/zero of=/home/pchaganti/xen-images/ubuntu_feisty_domU.
 img bs=1G count=6
 ~ dd if=/dev/zero of=/home/pchaganti/xen-images/ubuntu_feisty_swap_
 domU.img bs=1G count=1
 ~ dd if=/dev/zero of=/home/pchaganti/xen-images/ubuntu_feisty_boot_

 domU.img bs=1k count=1000

6.	 Create an ext3 filesystem on the root file image. This will be the image where
/ will be mounted.

 ~ /sbin/mkfs.ext3 /home/pchaganti/xen-
 images/ubuntu_feisty_domU.img

7.	 Create an ext3 filesystem on the boot image file and create swap on the
swap file.

 ~ /sbin/mkfs.ext3 /home/pchaganti/xen-images/
 ubuntu_feisty_boot_domU.img

 ~ /sbin/mkswap /home/pchaganti/xen-
 images/ubuntu_feisty_swap_domU.img

We need to mount these files in a directory so that we can read and write
in them.

8.	 Create a directory called xen-mounts. We will create directories here for
mounting the various file images.

 ~ mkdir -p /home/pchaganti/xen-mounts/ubuntu_feisty_domU

9.	 Mount the file that will be used to store the root file system using a loop back.
 # mount -o loop /home/pchaganti/xen-images/ubuntu_feisty_domU.img/
 home/pchaganti /xen-mounts/ubuntu_feisty_domU

10.	 Run debootstrap. This will download and extract all the necessary files to the
above mounted directory.

 ~ /usr/sbin/debootstrap --arch i386 feisty /home/pchaganti/
 xen-mount/ubuntu_feisty_domU http://archive.ubuntu.com/ubuntu

Chapter 3

[35]

11.	 We will be using the domU kernel that we created earlier for booting this
domain. So this domain will need the kernel modules compiled for that
kernel. Copy them from the /lib/modules directory.

 ~ mkdir -p xen-mounts/ubuntu_feisty_domU/lib/modules
	 ~ cp -dpR /lib/modules/2.6.16.38-xenU /home/pchaganti/xen-mounts/

 ubuntu_feisty_domU/lib/modules

12.	 Now chroot into this new system and configure it.
 ~ chroot xen-mounts/ubuntu_feisty_domU

13.	 Set the hostname for this system.
 ~ echo "ubuntu_fesity_domU" > /etc/hostname

14.	 Set up the filesystems that will be loaded on boot.
 cat > /etc/fstab << "EOF"

 # file system mount point type options dump pass

 /dev/sda1 / ext3 defaults 0 1

 /dev/sda2 /boot ext3 ro,nosuid,nodev 0 2

 /dev/sda3 none swap sw 0 0

 proc /proc proc defaults 0 0

 sys /sys sysfs defaults 0 0

 EOF

15.	 Set up the network. We will be using the loopback interface and eth0 for the
Ethernet connection. The eth0 interface will be using DHCP to set itself up
automatically.

 cat > /etc/network/interfaces << "EOF"

 # The loopback network interface

 auto lo

 iface lo inet loopback

 # The primary network interface

 auto eth0

 iface eth0 inet dhcp

 EOF

Creating Virtual Machines

[36]

16.	 Add a user, create an admin group, and put the added user in this group.
Also set the root password.

 # adduser pchaganti

 # addgroup --system admin

 # adduser pchaganti admin

 # passwd root

17.	 Ubuntu uses sudo to let users perform administrative functions. Use visudo
to edit the sudoers file.

 visudo

 # Members of the admin group may gain root privileges

 %admin ALL=(ALL) ALL

18.	 We have completed the initial configuration. Exit out of the chroot
environment and unmount the file system.

 #exit

 #umount /xen-mounts/ubuntu_feisty_domU

19.	 Create the configuration file that will be used by dom0 to create this guest
domain. �� The MAC address used below is an offset of the MAC set block that
was allocated to Xen Source, Inc. This is an OUI (Organizationally Unique
Identifier) and you can view the entire list online at http://standards.
ieee.org/regauth/oui/oui.txt.

 cat > /home/pchaganti/xen-images/ubuntu_feisty_domU.cfg << "EOF"

 kernel = "/boot/vmlinuz-2.6.16.38-xenU"

 memory = 256

 name = "ubuntu_feisty_domU"

 disk = ['tap:aio:/home/pchaganti/xen-
 images/ubuntu_feisty_domU.img,sda1,w','tap:aio:/home/pchaganti
 /xen-images/ubuntu_feisty_boot_domU.img,sda2,w','tap:aio:/home
 /pchaganti/xen-images/ubuntu_feisty_swap.img,sda3,w']

 vif = ['mac=00:16:3e:00:00:10, bridge=xenbr0']
 root = "/dev/sda1 ro"

 EOF

20.	 Call xm to create the virtual machine.
 # xm create /home/pchaganti/xen-images/debian_etch_domU.cfg -c

This will start up a console and boot our brand new virtual machine. The usual
Linux start up messages will flash by and then you will be staring at the Ubuntu
Feisty login prompt. Welcome to your first Xen domU!

Chapter 3

[37]

You can see the running domains by using xm.

xm list

You can shut down the domain in two different ways—by using the halt command
inside the domain itself or by calling xm to shutdown.

xm shutdown ubuntu_feisty_domU

You can disconnect a running domainU from the console using the keyboard
shortcut—Ctrl].

You can connect back to this domU by using xm and providing the name of the
domain you want to connect as a parameter:

xm console ubuntu_feisty_domU

You can configure it so that guest domain starts automatically when the server
boots up by creating a symbolic link in the /etc/xen/auto directory pointing to the
configuration file that we created earlier.

What Just Happened?
We created three file images—one for mounting /boot, one for the swap, and one
for the / root directory using the dd command. We also created the ext3 file system
on the boot and root file images. Linux provides the concept of a loop device that
enables you to access a file like a normal device. We used this concept to mount the
file on a normal directory on Linux so that we can manipulate the contents of that
directory using any normal Linux commands.

Creating Virtual Machines

[38]

D���ebootstrap is a great command line tool for creating a Debian base system from
scratch. It does not have any dependencies on the Debian package system. It works
by downloading the .deb files for the specified architecture and distribution from
a mirror site, and then unpacks the .deb files onto the file system into the specified
directory. Once it has finished its magic, you have a minimal Debian root file system
that you can chroot into and finish the configuration. This tool is not usually
available as a part of the Red Hat based systems such as the Fedora Core 6. So in
order to use debootstrap on Fedora Core, we utilized another great tool called alien,
which makes it easy to convert LSB, Red Hat, Stampede and Slackware packages into
Debian packages. Once these packages from various formats have been converted
into the Debian format, we can easily install the package using the Debian package
management tool—dpkg. Since we are running in Fedora, we used alien to convert
the debootstrap deb package into a native format rpm package, which was finally
installed on to our Fedora Core 6 system using dpkg.

In this chapter we are using files for storing the guest domains. This is the quickest
way to get up and running, but is not recommended for production scenarios as
the performance of file backed storage is slower than block based storage using
disk partitions or LVM. We export these file images as file based VBD in the
configuration file for the domain. �� There are two steps involved in mounting a file
on a normal directory:

First the file image is associated with a loop device that is a special
Linux device.
This loop device is then mounted on a directory on the file system.

We mount the ubuntu_feisty_domU.img file on to the specified directory by
specifying the option to use a loop device to the mount command.
mount -o loop /home/pchaganti/xen-images/ubuntu_feisty_domU.img/

 home/pchaganti /xen-mounts/ubuntu_feisty_domU

Now we can read and write in this directory just like any other directory in the file
system. When we are done working with the directory, we just umount th������������ e directory
from the loop device. We execute the debootstrap command, which will download
the files for the specified arch for Ubuntu Feisty and populate the specified directory
with the minimal file system required for a Ubuntu system. We will need a kernel
and kernel modules for booting this minimal Ubuntu system, and for this we will use
the domU kernel that we built earlier in this chapter. We copy the kernel modules to
the /lib/modules directory in the Ubuntu system so that they are available when
the kernel boots up this domain. For the current process, chroot command modifies
the root directory to the specified directory and in effect creates a sandbox. Once you
execute chroot and your root directory has been modified, all the commands that
you execute from that point will operate inside that sandbox environment and you

•

•

Chapter 3

[39]

will not have any access to directories or files outside the root directory. We chroot
into the Ubuntu minimal system that we have just created, and configure the system
by setting up the host name, networking, and security options. Once we are done, we
exit the chroot to get back into our normal environment.

We have an Ubuntu Feisty system all ready to go and now need to tell Xen to create
a guest domain to run it. In order to do this we need to create a Xen configuration file
that is just a Python file containing directives to be used by xm to create the domain.
The minimum information that we need to provide for creating a domain is:

kernel: The path to the kernel that will be used for booting the domain.
memory: The amount of memory in MB that will be allocated to this domain.
name: A unique name for the domain. This is the name that will appear in
the list of running Xen domains when we use the xm command to list the
current Xen environment.
disk: A description of the disk that will be used for the domain. The tap:aio
qualifier for a Virtual Block Device (VBD) indicates that a file system image
will be use for exporting to the VBD. This block device can either be a virtual
disk or a virtual partition.
root: The parameters for the device that contains the root filesystem.
vif: This defines the Virtual Ethernet Interface (VIF). By default xend will
select a random MAC address that will change every time you reboot that
domain. If you always want to use a specific MAC address for the domain,
you can provide the mac option to the vif configuration directive. We will
explore the various networking related options available in Chapter 5.

This information is specified in a configuration file and is provided as a parameter to
the xm command to create the domain.

xm create /home/pchaganti/xen-images/ ubuntu_feisty_domU .cfg -c

This starts up a domain running the Ubuntu Feisty system. xm is a command line tool
that provides a wide variety of options and parameters and can be used to control
and manage most aspects of Xen domains. We are going to look into all the bells and
whistles provided by xm in the next chapter. ������������������������������������� We can use this bootstrapping method
to install any guest domains that are based on Debian. If we want to install Debian,
all the steps will be the same except that when we initially run debootstrap, we modify
the parameters to specify Debian etch.

debootstrap --arch i686 etch /home/pchaganti/xen-
 mounts/debian_etch_domU http://ftp.us.debian.org/debian

•

•

•

•

•

•

Creating Virtual Machines

[40]

NetBSD
NetBSD is a secure and highly portable Unix like operating system that runs
on a wide variety of platforms—from 64 bit servers to embedded devices
(http://netbsd.org/). It provides binary emulation for applications built on other
platforms, and can thus run most binaries built on Linux without any modification
or recompilation. The recent versions of NetBSD starting with version 3.0 provide
native support for Xen. We are going to install the latest released version 3.1 in a
guest domain.

Time for Action—Install NetBSD
Let's get started installing NetBSD 3.1 in a guest domain.

The NetBSD distribution provides two Xen enabled kernels for NetBSD—one
for running the installation, and the other for actually running the NetBSD
operating system.

1.	 Download these files first.
 ~ wget ftp://ftp.netbsd.org/pub/NetBSD/NetBSD-
 3.1/i386/binary/kernel/netbsd-*XEN3_DOMU.gz

 ~ zcat netbsd-INSTALL_XEN3_DOMU.gz > /boot/netbsd-
 INSTALL_XEN3_DOMU

 ~ zcat netbsd-XEN3_DOMU.gz > /boot/netbsd-XEN3_DOMU

2.	 Create a file image that will be used for storing our NetBSD guest domain.
 # dd if=/dev/zero of=/home/pchaganti/xen-images/

 netbsd_domU.img bs=1M count=300

3.	 Create the Xen configuration file that will be used to start up the
NetBSD domU.

 cat > /home/pchaganti/xen-images/netbsd_domU.cfg << "EOF"

 kernel = "/boot/netbsd-INSTALL_XEN3_DOMU"

 memory = 64

 name = "netbsd_domU"

 disk = ['tap:aio:/home/pchaganti/xen-images
 /netbsd_domU.img,sda1,w', 'tap:aio:/home/pchaganti/xen-
 images/netbsd_swap.img,sda2,w']

 vif = ['mac=00:16:3e:00:00:12, bridge=xenbr0']

 EOF

4.	 Create the domU using xm.
	 xm create /home/pchaganti/xen-images/netbsd_domU.cfg -c

Chapter 3

[41]

This will start a console with the NetBSD installation.

5.	 Select the option to install to the hard disk.

6.	 Go through the installation using the instructions provided in the NetBSD
documentation:

http://www.netbsd.org/guide/en/chap-exinst.html

7.	 Select the minimum set of packages for installation because the file image we
are using as the backing store is only 300 MB. If you want to install a bigger
set of packages, please ensure that you increase the size of the file that we
created earlier.

Creating Virtual Machines

[42]

8.	 Once the installation is finished, there are still some configuration
related things to be done. So do not reboot. Select the option to go to the
Utility menu.

9.	 In the utility menu select the option to go the shell.

10.	 Copy the special device files that are used by NetBSD.
 # mount /dev/xbd0a /mnt

 # cp -pR /dev/rxbd* /mnt/dev

 # cp -pR /dev/xbd* /mnt/dev

Chapter 3

[43]

11.	 NetBSD provides access to only one console for the guest. In Edit /etc/
ttys, turn off all the terminals except console.

 console "/usr/libexec/getty Pc" vt100 on secure
 ttyE0 "/usr/libexec/getty Pc" vt220 off secure
 ttyE1 "/usr/libexec/getty Pc" vt220 off secure
 ttyE2 "/usr/libexec/getty Pc" vt220 off secure
 ttyE3 "/usr/libexec/getty Pc" vt220 off secure

12.	 Similarly comment out all the screens in /etc/wscons.conf.
 #screen 0 - vt100
 #screen 1 - vt100
 #screen 2 - vt100
 #screen 3 - vt100
 #screen 4 - -
 #screen 4 80x25bf vt100

13.	 Shut down the install.
 # halt -p

14.	 Modify the domain configuration file in order to use the standard NetBSD
domU kernel������������������������������������ instead of the installation kernel.

 kernel = "/boot/netbsd-XEN3_DOMU"

15.	 Reb�� oot the domain using the domU netbsd kernel:
 # xm create /home/pchaganti/xen-images/netbsd_domU.cfg -c

This will boot you to the NetBSD prompt. Login with the username and password
you set as a part of the install.

Creating Virtual Machines

[44]

What Just Happened?
We installed NetBSD the system to a file image by using the install kernel and
following the NetBSD installation documentation. We then modified and configured
the NetBSD system. Finally we booted the guest domain using the kernel provided.

NetBSD also provides support for creating a Xen dom0. Recent changes in NetBSD
provide the additional tools needed to run unmodified guest domains under a
NetBSD dom0, using Intel VT-x or AMD VMX extensions. So we could potentially
run a NetBSD dom0 and create guest domains under it that run Linux, NetBSD,
and Windows.

The NetBSD release currently provides two xenified kernels:

netbsd-INSTALL_XEN3_DOMU: A kernel that can be used to start the
NetBSD installation. We used this kernel only for the installation.
netbsd-XEN3_DOMU: A kernel that can be used for booting a NetBSD
instance. We used this kernel for booting our guest domain.

CentOS
CentOS is an Enterprise-class Linux Distribution derived from sources provided by
RedHat (http://centos.org/). It tracks the RedHat Enterprise Linux distribution
without any proprietary drivers, is completely free and is hence widely used as a
server platform. The installation media for the CentOS is a cd or dvd. We will install
the CentOS 4.4 server version. The paravirtualised Xen does not support booting
guest domains from a cd-rom or an iso file. So we are going to use another open-
source emulator called QEMU (http://fabrice.bellard.free.fr/qemu/) to boot
the CentOS cd and install into a qemu image. We are then going to take this image
and use Xen to create a CentOS virtual machine that runs off the qemu image. We
could avoid using qemu if we were running Xen on hardware that supports HVM,
such as the Intel VT and AMD Pacifica chipsets. The following chipsets are available
on these processors:

Intel VT
Pentium 4 662 and 672
Pentium 4 Extreme Edition 955 and 965
Xeon MP 7000 series
Xeon 3xxx/5xxx/7xxx
Pentium D 9x0
Intel Core Duo mobile
Intel Core 2 Duo processors (excluding the T5200, T5500,
E4x00, E2xx0)

•

•

•
°
°
°
°
°
°
°

Chapter 3

[45]

AMD Pacifica
Athlon 64
Athlon 64 X2
Athlon 64 FX
Opteron
Sempron
Phenom
Phenom X4
Phenom X3
Phenom X2

Time for Action—Using qemu to Create a
CentOS Image
We will install CentOS by using the iso image for the 4.4 version of the
CentOS server.

1.	 Download the iso image from the mirror closest to you.
http://mirror.linux.duke.edu/pub/centos/4.4/isos/i386/
CentOS-4.4.ServerCD-i386.iso

We are going to use a VNC to connect to the install screen in qemu. If your
system does not have it, please install a VNC viewer first (http://www.
tightvnc.com/). Most distributions provide VNC support out of the box.
Install qemu, which will be used for the actual installation.

 # yum install qemu vnc

2.	 Create a qemu file image that we will use for our installation.
 ~ qemu-img create centos_domU.img 2G

3.	 Start qemu with the following parameters to make it boot the CentOS server
installation cd.

 ~ qemu -no-kqemu -hda /home/pchaganti/xen-images/centos_domU.img�� -

 ���������������������� ��� cdrom /home/pchaganti/CentOS-4.4.ServerCD-i386.iso -boot d -vnc 2

4.	 Use the vncviewer to connect to the display specified in the options
provided to qemu in the above step. In my case the IP address of my Xen
server is 192.168.1.186. This is how I connect to the display with the
qemu screen.

 ~ vncviewer 192.168.1.186:2

•

°

°

°

°

°

°

°

°

°

Creating Virtual Machines

[46]

5.	 The installation screen for CentOS will be displayed as shown in the
following screenshot:

6.	 Go through the CentOS install following the documentation from
the manual.
http://www.centos.org/docs/4/html/rhel-ig-x8664-multi-en-4/
ch-guimode.html

7.	 Once the installation is complete, select the Reboot. This will shutdown your
qemu session and take you back to the command prompt.

Chapter 3

[47]

We have completed the installation of CentOS into a qemu image. Please note
that this process using qemu can be quite slow. Before creating a configura-
tion file for our domU, we need to mount the partitions created inside the
qemu image, so that Xen can have access to them. Mount the qemu image on
a loopback device first.

	 # losetup /dev/loop1 /home/pchaganti/xen-images/centos_domU.img

8.	 List the partitions that are inside the image. We will need this information
later when we try to mount each individual partition inside this image onto a
separate directory so that Xen can access it.

	 # fdisk -lu /dev/loop1

9.	 Disassociate the image from the loopback device.
	 # losetup –d /dev/loop1

10.	 Create the directories that we will use to mount the partitions from the qemu
file image.

	 ~ mkdir –p /home/pchaganti/xen-mounts/centos_domU/boot_partition

	 ~ mkdir –p /home/pchaganti/xen-mounts/centos_domU/root_partition

11.	 Mount the partitions on separate directories.
 # lomount -t ext3 -diskimage /home/pchaganti/xen-
 images/centos_domU.img -partition 1 /home/pchaganti/xen-

 ���������������������������������mounts/centos_domU/boot_partition

12.	 Copy the kernel modules to the domU.
 ~ cp -dpR /lib/modules/2.6.16.38-xenU /home/pchaganti/xen-
 ��mounts/centos_domU/root_partition/lib/modules/

13.	chroot into the domU partition and rename the directory containing the
tls libraries.

	 # chroot /home/pchaganti/xen-mounts/centos_domU/root_partition
 /bin/bash

	 # mv /lib/tls /lib/tls.disabled

Creating Virtual Machines

[48]

14.	 Create the configuration file for starting the CentOS domU.
 	 cat > /home/pchaganti/xen-images/centos_domU.cfg << "EOF"

 	 kernel = "/boot/vmlinuz-2.6.16.38-xenU"

 	 ramdisk = "/boot/initrd-2.6.16.38-xenU.img"

 	 memory = 256

 	 name = "centos-domU"

 	 disk = ['tap:aio:/dev/loop1,hda1,w','tap:aio:/dev/loop2,hda3,w']

 	 vif = ['mac=00:16:3e:00:00:16, bridge=xenbr0']

 	 root = "/dev/hda3 ro"

 	 EOF

15.	 Create the CentOS domU.
	 # xm create /home/pchaganti/xen-images/centos_domU.cfg -c

The following screenshot shows the CentOS server booting up as a domU.

What Just Happened?
In this section we used an iso image that contains the CentOS installer. This presents
some unique challenges when operating in a paravirtualized environment as Xen
cannot boot domains from a cd-rom. If we had been in a Xen HVM environment,
it would have been trivial to boot a domain using a CD or an iso image. The work
around for this in a paravirtualized environment is to use �������������������� QEMU���������������� —an open-source
processor emulator. We created a qemu disk image and then installed CentOS onto
that disk image. Qemu allows us to redirect the output from the VGVA display via a
VNC session. When qemu is used to boot up the CentOS installation CD, the output
from that session is exported via VNC, so that we can connect to the display using
a VNC viewer and go through the installation. Once the installation is complete the
qemu disk image will contain the partitions created in the install process containing
the CentOS 4.4 server. We need access to these partitions inside the qemu image so
that we can export them to Xen as file backed VBDs, which Xen can access while
creating the guest domain. To do this, we use the loop device to mount each partition
inside the qemu image on a separate directory. We then create the configuration file
for the CentOS guest domain and start it up.

Chapter 3

[49]

Slackware
Slackware is the oldest Linux distribution still active and prides itself as being the
most "������������������������������� unix-like���������������������� " Linux distribution (http://www.slackware.com). We are going
to install the latest version of Slackware—11.0 into a guest domain. So far we have
been creating Xen domU images from scratch. Doing this gives us a good overview
of the various steps that are involved in creating a guest domain, so that we can
roll our own when needed. However, you can also download and use ready to go
Xen images from several sites on the Internet. These are great time savers as long
as the images available meet your needs. We are going to take advantage of readily
available Slackware 11.0 Xen images from the jailtime website (http://jailtime.
org/) and use then for our guest domain.

Time for Action—Utilize Xen Images from
jailtime.org
We are going to download and install the complete Slackware Xen image.

1.	 Download the image from jailtime.
 ~ wget
	 http://jailtime.org/lib/exe/fetch.php?cache=cache&media=
 download%3Aslackware%3Aslackware.11-0.20061220.img.tar.bz2

2.	 Untar the file into our xen-images directory.
 ~ tar –C /home/pchaganti/xen-images –jxvf slackware.11-

 0.20061220.ig.tar.bz2

3.	 Create a directory for mounting the image.
	 ~ mkdir -p /home/pchaganti/xen-mounts/slackware_domU

4.	 Mount the image and copy the kernel modules for the domU kernel. Once
the copy is complete, unmount the image.

	�� # mount -o loop /home/pchaganti/xen-images/slackware.11-0.img�
 /home/pchaganti/xen-mounts/slackware_domU

	 # cp -dpR /lib/modules/2.6.16.38-xenU /home/pchaganti/xen-
 mounts/slackware_domU/lib/modules/

	 # umount /home/pchaganti/xen-mounts/slackware_domU/

5.	 Modify the domU configuration file to suit our installation.
 	 kernel = "/boot/vmlinuz-2.6.16.38-xenU"

 	 memory = 128

 	 name = "slackware.11-0"

 	 vif = ['mac=00:16:3e:00:00:14, bridge=xenbr0']

Creating Virtual Machines

[50]

 	 disk = ['tap:aio:/home/pchaganti/xen-images/slackware.11-
 	0.img,sda1,w','tap:aio:/home/pchaganti/xen-
 	images/slackware.swap,sda2,w']

 	 root = "/dev/sda1 ro"

6.	 Create the slackware guest domain.
 # ��� xm create /home/pchaganti/xen-images/slackware.11-0.xen3.cfg –c

The following screenshot shows the slackware domU after start up.

What Just Happened?
Creating Xen guest domains from scratch is time consuming and there are times
when we just need to do some quick testing and really don't want to configure a
whole new domain. There are several sites on the Internet that offer complete Xen
images that can be used out of the box. You can find domains that contain complete
operating systems or Xen images that contain an operating system configured for a
particular application.

Chapter 3

[51]

jailtime.org provides complete Xen images for several operating systems.
The slackware.11-0.21220.img.tar.bz2 file that we have downloaded contains
the following:

Slackware.11-0.img (the slackware root file system image)
Slackware.11-0.xen2.cfg (configuration for Xen 2)
Slackware.11-0.xen3.cfg (configuration for Xen 3)
Slackware.11-0.swap (swap file)

The images contain everything we need, so all we have to do is ensure that the
configuration matches what we want and create the guest domain.

Summary
In this chapter we created several different virtual machines or domUs that run
different operating systems. We installed each of these domUs using different
installation methods, so we could get a feel for the various different ways of creating
guest domains in Xen.

We created an Ubuntu Feisty domU using the debootstrap tool for
bootstrapping an Ubuntu install from scratch.
We created a NetBSD domain using an install image and the kernel image
provided as a part of the NetBSD distribution.
We created a CentOS 4.4 server guest domain using qemu to install to a
disk image, mounted the partitions from that disk image onto file system
directories and used those directories to boot our CentOS 4.4 server
from Xen.
We used a readily available Xen domU image from jailtime to create a
Slackware domain.

In the next chapter, we will explore the Xen management tools, xm and xend.

•

•

•

•

•

•

•

•

Managing Xen
We successfully created several Xen guest domains in the last chapter. In this
chapter, we will explore the different tools that are available to manage Xen and
the Xen domains. The first tool that we will explore is the Xen Manager (xm),
which ships as a part of the Xen distribution. This enables you to perform various
administrative and management tasks through the command line. We will also look
at two other third party tools—XenMan and Virt-Manager—which are graphical
applications for managing Xen.

We will explore the following tools for managing Xen:

xm
XenMan
virt-manager

Xen Domain Configuration Files
The domain configuration file for a Xen domain specifies the various parameters
that govern the behavior of the domain. The various files related to configuring Xen
are located in the /etc/xen directory. The configuration file, which contains various
options in the key=value format is an executable file written in Python. The options
must therefore be in valid Python code. The /etc/xen/xend-config.sxp is a special
configuration file that is used for creating dom0.

The configuration files for the domUs that you are creating can be placed
anywhere as long as you provide the full path to the file when creating the domain.
The /etc/xen/auto is a special directory and any domain configuration files that are
placed in this directory will automatically be started when the xend daemon starts.

•

•

•

Managing Xen

[54]

Here are some of the common options specified in a Xen domain configuration file:

kernel: The kernel image that is used for the domain is provided as the
complete path to the kernel image file.
ramdisk: Specifies the initial ramdisk for the domain. If your kernel has
built-in drivers for your root file system and hard disk, you may not need
to create and specify a ramdisk. This is provided as a complete path to the
location of the initrd file.
memory: Specifies the amount of RAM, in megabytes, that is allocated
for the domain. Insufficient memory allocation will prevent the domain
from starting up. You must also ensure that the total memory taken by
Xen—both dom0 and all the domUs—must be less than or equal to the
amount of physical RAM present in your machine.
name: Provides a unique name to identify the domain. This name will be
be displayed when you list the domains running on the system.
root: Specifies the root device for the domain.
disk: Specifies a list of block devices that is exported to the domain. This
is provided in the following the format:

 disk = ["backend device", "frontend device", "mode"]

The "backend device" specifies the format and name of the device that will
be exported to the guest domain. The format can be a simple file image or
an actual physical disk. A file image is exported to the guest domain as a
file-based VBD by Xen. This is the format that we will use in this chapter as it
is the simplest and quickest way to get started with Xen. In Chapter 6 we will
look at other forms of storage for Xen domains:

file://path_to_the_file_image: The file image is
exported as a loopback device. The setup of the loopback
device is taken care of by Xen.
tap:aio:/path_to_the_file_image: The file image is
exported as a tap device that can be accessed by the Xen
blktap driver. This is specified as the suggested way in the
Xen documentation for exporting file images to the
guest domain.
phy:device:/name_of_the_device: The specified physical
device is exported to the guest domain. The device can be
specified in the usual /dev/sda1 form or using the hex
major/minor number for the device—0x301.

•

•

•

•

•

•

°

°

°

Chapter 4

[55]

The "frontend device" specifies how the exported backend device should
appear to the guest domain. This can be specified in the usual /dev/sda1
form or using the hex major/minor number for the device—0x301.
The "mode" specifies whether the device is to be exported as read-only or
read‑write. The two valid options are:

r—read-only
rw—read and write.

vif: Specifies the virtual network interface configuration for the domain. This
is provided in the following format:

 vif = ["key1 = value1", "key2 = value2"]

The common options used for this configuration directive are:
bridge: Specifies the network bridge that will be used for
this interface.
mac: Specifies the MAC address for this virtual interface. If
you do not provide a MAC address, it is set to a random MAC
address by Xen on boot. The random address is selected from
the range of addresses assigned to Xensource by IEEE in the
XenSource Organizationally Unique Identifier (OUI) range
00-16-3E. You can also use this directive for defining a static
MAC address that will receive a static IP assignment from
your DHCP server.

on_reboot: Specifies the action taken by the domain during a reboot. The
valid states on a reboot are:

destroy: Completely shuts down the domain.
preserve: The domain is not cleaned up. The debugging
information from the domain is available to help
debug crashes.
rename-restart: The old domain is not cleaned up. Instead
it is renamed and a new domain is started in place of the
old domain.

on_crash: Specifies the action taken by the domU if it crashes. The valid
states for this directive are the same as that for on_reboot option.
vcpus: The number of virtual CPUs.

°

°

•

°

°

•

°

°

°

•

•

Managing Xen

[56]

The following figure shows the domain configuration file that we used in the
previous chapter for creating and running the Ubuntu Feisty guest domain:

The above screenshot provides an example of some of the parameters and
configuration directives that we have been discussing in this section.

Xen Management User Interface—xm
xm is a management tool that communicates with the Xen hypervisor through
xend—the Xen daemon. Running xm commands requires administrative privileges
on the system as it uses the privileged communication channel between xend and the
Hypervisor. xm is also designed to perform its functions in an asynchronous way.

Executing an xm command will immediately return to the caller, but the actual
operation may not be complete. Some of the domain commands may actually take
quite a long time to complete. The only way to determine whether the command
is successfully completed is to print out the list periodically and check it. The two
most fundamental operations that we use xm for are to create a domain and to list the
state of all the domains in the current Xen environment. The state field in the list of
domains has one of the five possible states for a domain:

r—running: Lists domains currently active on a CPU.
b—blocked: Lists domains that are blocked. This happens when the vcpu is
waiting for an external event to happen for this domain.
p—paused: Lists domains that are suspended. The paused domain will
still consumes allocated resources such as memory, but is not eligible for
scheduling by the Xen hypervisor.
s—shutdown: Lists domains that are in process of shutting down.
c—crashed: Lists domains that are crashed.

•
•

•

•
•

Chapter 4

[57]

The normal listing of domains is in a table format that is not very easy for other tools
to parse. therefore xm also provides a –long option to list the domain information in
an S‑Expression format that can be easily parsed by other tools.

Time for Action—Xen Manager
You need not install xm separately. On Fedora Core, installing Xen will include the
installation of various Xen tools. We have already used xm in the previous chapter to
create domains and list the domains. We will now demonstrate some of the common
tasks performed with xm.

1.	 Print a list of the running domains in the current Xen environment.
 # xm list

2.	 Print detailed information about the dom0 in the current Xen environment.
 # xm list Domain-0 –long

Managing Xen

[58]

3.	 Print detailed information about a domain in the current Xen environment.
The listing is quite long and is therefore broken up into the following
two screenshots.

 # xm list –-long centos-domU

Chapter 4

[59]

4.	 Pause a running domU in the current Xen environment.
 # xm pause ubuntu_feisty_domU

List the domains to make sure it has paused:
 # xm list

5.	 Unpause the previously paused domU:
 # xm unpause ubuntu_feisty_domU

List the domains to make sure the domain has been unpaused.
 # xm list

6.	 Save the state of a running domU in the current Xen environment to the
specified file. The following will save the state to the disk file and remove it
from the list of running domains.

 # xm save ubuntu_feisty_domU feisty.save

°

°

Managing Xen

[60]

List the domains to make sure the saved domain is no longer
displayed in the list of running domains:

 # xm list

7.	 Restore a domain from the saved state. This will restore the domain from the
file with the state information and put the domain back in a running state.

 # xm restore feisty.save

List the domains to make sure the domain is once again displayed
in the list of running domains:

 # xm list

8.	 Check the Xen kernel buffer messages. ��������������������������������� The following screenshot shows a
partial listing from my machine.

 # xm dmesg

°

°

Chapter 4

[61]

9.	 Print the host information for the current Xen environment.
	 # xm info

10.	 Print the Xen log. �� The following screenshot shows a partial listing from the
Xen log on my machine.

 # xm log

Managing Xen

[62]

11.	 Monitor the Xen domains in real time similar to the Unix top utility.
 # xm top

12.	 List all the block devices used by a domain:
 # xm block-list ubuntu_feisty_domU

13.	 List all the block devices used by a domain in detail:
 # xm block-list ubuntu_feisty_domU --long

Chapter 4

[63]

14.	 List all the network interfaces used by a domain:
 # xm network-list ubuntu_feisty_domU

15.	 List all the network interfaces used by a domain in detail:
 # xm network-list ubuntu_feisty_domU

16.	 Display the uptime for all the domains in your Xen environment.
 # xm uptime

17.	 Reboot a domain. This does not re-read the Xen configuration file for that
domain. If you want to reload the configuration for that domain, you need to
use a halt command followed by a create command.

 # xm reboot ubuntu_feisty_domU

18.	 Suspend a domain:
 # xm suspend ubuntu_feisty_domU

19.	 Resume a suspended domain:
 # xm resume ubuntu_feisty_domU

Managing Xen

[64]

20.	 Rename a running domain:
 # xm rename ubuntu_feisty_domU prabhakar_domU

21.	 Connect to domain console:
 # xm console ubuntu_feisty_domU

22.	 Shut down a domain:
 # xm shutdown ubuntu_feisty_domU

What Just Happened?
xm is a tool that is provided with the Xen installation. It is the main interface for
the management of Xen domains. It is very useful to get comfortable using xm as it
is guaranteed to be available on any system that is running Xen. In this section we
explored the various management tasks that can be performed using xm.

Xm also provides the ability to perform other management functions that we will
cover later in this book:

Virtual devices: Adds and removes virtual devices while the guest domain
is running. You can attach and detach both storage devices and network
devices using xm. We will discuss the network device related commands in
the next chapter and the storage device related options in Chapter 6.
Security: Manages security policies in Xen. We will explore Xen security
in Chapter 7.
Migration: Migrates the guest domain. We will learn about migration
in Chapter 8.

There are also other less common management related operations you can perform
with xm. Please check the latest Xen documentation or the xm manual page for details
on these options.

XenMan—Installing and Running
Console applications are not for everyone and some people prefer to click around
in a GUI to perform tasks. In this section we are going to use XenMan, a graphical
management application for Xen. It is an open-source application and provides a
wide range of administrative capabilities.

•

•

•

Chapter 4

[65]

Time for Action—Install and Run XenMan
XenMan is currently not available in Fedora's yum repositories. We will download it
from the website (http://xenman.sourceforge.net/) and install it.

1.	 Download the rpm for Fedora Core from the project site:
http://downloads.sourceforge.net/xenman/xenman-0.6-1.fedora.
noarch.rpm?modtime=1168052247&big_mirror=0.

2.	 Use yum to install the following dependencies:
python-paramiko: A Python module that implements the
SSH2 protocol for secure connections to remote machines.
gmp: Provides the GNU MP library for arbitrary precision
arithmetic, signed integer operations, rational numbers, and
floating point numbers.
python-crypto: A cryptography library for Python that
provides a collection of both secure hash functions and
encryption algorithms.

 # yum install python-crypto python-paramiko

3.	 Install the downloaded XenMan rpm. It will give information about the
missing Fedora Core Xen package as we are not running the Fedora Core
6 version, but the version of Xen compiled from the Xensource mercurial
repository. Override and install the rpm:

 # rpm –i --nodeps xenman-0.6-1.fedora.noarch.rpm

4.	 Start the application:
 $ xenman

5.	 Here is the application on startup. The initial screen displays a summary.
Select the localhost node to see the summary for the local server:

°

°

°

Managing Xen

[66]

6.	 XenMan provides a right-click context menu that enables you to perform
various management actions.

7.	 Select a domain and choose Show Console from the context menu to display
the console for the chosen domain.

Chapter 4

[67]

8.	 Select the localhost in the tree view to get more options:

9.	 Open the domain configuration file by selecting the Open VM Config
File option from the context menu. This will work only with domain
configuration generated by XenMan as it adds a special header to the file.

10.	 Add a new Xen server to the application by selecting the Server Pool node in
the tree view and selecting Add Server from the context menu.

XenMan provides the ability to provision Virtual Machines. Provisioning �������allows
you to create new virtual machines quickly using predefined parameters. �������� We will
examine Xen domain provisioning in Chapter 8.

Managing Xen

[68]

What Just Happened?
XenMan is a fantastic open-source tool that makes managing your Xen servers a
breeze. It is under active development and already has a lot of useful features.
It is a great way to start getting familiar with using and managing Xen. The
GUI interface is simple enough for novices while providing advanced options
for more advanced users. The roadmap for XenMan details some of the things
that are in the pipeline for future releases (http://xenman.sourceforge.net/
roadmap.html).

Some of the main advantages of using XenMan are:

Consolidated Management: You can manage all your Xen servers and the
guest domains running on them remotely. It provides a dashboard that can
give you a quick overview of your entire Xen environment at a glance.
Easy Administration: You can perform most of your common
administrative, provisioning, and monitoring tasks directly from the
graphical console.
Secure access: XenMan uses the highly secure SSH tunneling for
communicating with the remote Xen servers.
Provisioning: It provides a powerful Image Store provisioning SDK so you
can define and execute your own Virtual Machine images and provisioning
schemes. We will explore the provisioning capabilities of XenMan in
Chapter 8.
Domain Consoles: You can connect to the consoles of your local or remote
domains easily with one click.

Virtual Machine Manager
The Virtual Machine manager (virt-manager) is another graphical management
application for virtual machines. It provides a dashboard view of currently running
domains and their statistics. It also contains an embedded VNC client viewer that
enables you to connect to a guest domain and display its full graphical console.
It also comes with a command line tool called virt-install that can be used for
provisioning new virtual machines. Virt-manager is intended to be used with any
virtualization, not just Xen. However, currently Xen, Qemu, and KVM are the only
supported hypervisors. In this section we will install virt-manager and examine its
capabilities for managing Xen.

•

•

•

•

•

Chapter 4

[69]

Time for Action—Running virt-manager
virt-manager is an application that is well integrated with the Xen support provided
in Fedora Core 6, and is available in the Fedora repositories. Installing Xen in Fedora
Core automatically installs virt-manager for you. This means that you will be using
Fedora Core's Xen packages instead of Xen compiled from the Xensource mercurial
repository. In order to use virt-manager, Fedora Xen packages were installed as the
version compiled from the latest source release had trouble working with the latest
pre-release versions of Xen.

1.	 If you don't already have the virt-manager, install it using yum.
 # yum install virt-manager

2.	 Launch virt-manager to display the connection screen.
 $ virt-manager

3.	 Connect to the local Xen host to view a summary of the domains in the
Xen environment.

Managing Xen

[70]

4.	 Right click a domain and select Details to see its properties:

The details screen for a domain has two tabs—Overview and Hardware. The
following screenshot shows the overview screen:

Chapter 4

[71]

5.	 Click on the Hardware tab to see the hardware details for the
selected domain:

What Just Happened?
virt-manager uses the Python bindings provided by ����������� the libvirt project
(http://libvirt.org) to communicate with the Xen hypervisor. Libvirt provides
an API to interface with various hypervisors such as Xen, Qemu, and KVM in a
hypervisor independent way. So virt-manager can be used not only with the Xen
hypervisor, but also with these other virtualization technologies. It provides a great
way to manage your local Xen domains. The virt-install command line tool provided
by the virt-manager can be used for provisioning systems, and we will use this tool
when will examine the topic of provisioning Xen domains in Chapter 8.

Managing Xen

[72]

Summary
xm provides a great way to quickly run the administrative and management
commands on your Xen server from the command line. It provides a wide variety
of options and is available on any Xen installation. However, it is restricted to
managing the Xen environment on which it is running.

virt-manager provides a simple graphical user interface for managing Xen domains,
but it is restricted to the current server. XenMan provides similar management
capabilities to the other two tools but also gives you the option to manage a remote
Xen instance. This is a killer feature and really helps administrators who are trying to
consolidate their various management responsibilities into a single dashboard.

Both XenMan and Virt-manager provide capabilities for provisioning Xen domains.
We will look at the topic of Xen provisioning in Chapter 8.

In this chapter we explored the following options for managing the Xen environment:

Xen manager (xm): A command line tool that is part of Xen.
XenMan: A graphical administration application that provides the ability to
manage both local and remote domains.
Virt-manager: A graphical application for managing the local
Xen environment.

In the next chapter, we are going to examine the networking options available when
using Xen.

•

•

•

Networking
The guest domains we create need to connect with each other and the outside world.
Xen provides a couple of different networking options, which we will explore in
this chapter:

Bridged networking
Routed networking
Virtual Local Area Network (VLAN) with Network Address Translation
(NAT)

It is possible to do more advanced networking configurations with Xen, but in this
chapter we will address the above three scenarios. We will use a server with a single
Ethernet card running our base Fedora Core 6 system. The default networking on
this box is shown in the following diagram. As we go through the various options
in this chapter, we will modify this diagram to indicate the changes made to the
network interfaces and configuration while using Xen.

•

•

•

Networking

[74]

Bridged Networking
Bridging is a technique used for connecting different network segments. It is the
default option for Xen networking as it simply connects all the virtual machines
to the outside world through virtual network interfaces connected to the bridges
created by Xen. Bridges connect two LANs (local area networks) together and
forward frames using their MAC (media access control) address. They thus operate
at the lowest level of the network layer and are completely unaware of something
like an IP. The following diagram depicts a simple network bridge.

A network bridge is primarily utilized to connect multiple network segments by
using the MAC addresses for addressing. It uses broadcasting to locate devices that
are not known to it. Once the devices have been located, their MAC addresses are
stored in a bridge table, which is the first place checked when a new packet frame
comes in.

The most common form of bridging used on Ethernet networks is transparent
bridging. The systems using the bridge are not aware of its existence as the bridge
transparently passes traffic from one network segment to another based on
specific MAC addresses. Transparent bridging is standardized by IEEE as 802.1D
(http://www.ieee802.org/1/pages/802.1D-2003.html). The MAC address
FF:FF:FF:FF:FF:FF is used as the broadcast address for the both networks. Any
Ethernet frames sent to this address are resent to all the ports on that specific
network segment. Source addresses on a frame are used to record entries in a table,
while destination addresses are used to look up entries and match them to the proper
segment to which they are to be sent.

Chapter 5

[75]

In this section we will look at how Xen actually sets up your network configuration
to use bridging.

Time for Action—Using Bridged Networking
We will configure the domU to use bridged networking, and then create a guest
domain that uses bridged networking.

1.	 The default networking setup in Xen is bridged, which can be confirmed
by looking at the xend configuration file—/etc/xen/xend-config.sxp. It
should have the following two lines uncommented in the file:

 (network-script network-bridge)
 (vif-script vif-bridge)

2.	 Create a new configuration file for the domU. You can use any of the domU
images we have created in the earlier chapters or any custom images that you
have. Replace settings in this file accordingly for the image you choose. We
will use a ttylinux image:

 ��������������������������������������� kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 32
 name = "bridged_domU"
 disk = ['tap:aio:/home/pchaganti/xen-
 images/ttylinux_domU.img,hda,w']
 vif = ['bridge=xenbr0']
 root = "/dev/hda1 ro"

3.	 Start up the domU by using xm:
 # xm create /home/pchaganti/xenimages/ttylinux_domU.cfg –c

4.	 Check to make sure that the domU is up and running:

Networking

[76]

What Just Happened?
The default dom0 configuration file—/etc/xen/xend-config.sxp is set up to use
bridged networking so that all domains appear on the network as individual hosts.
This default bridge created by the dom0 on startup is named xenbr0. On some older
systems it is called xen-br0. On the newer Fedora systems, the bridge is actually
called eth0, and the physical hardware is called peth0. In our domU configuration
file, we specified that we want to connect the network interface for this domU to the
bridge named xenbr0.

When using bridged networking, Xen creates a network bridge and then connects
the actual physical network interface to this bridge. Virtual network interfaces are
then created for dom0 and each of the guest domains; these are all attached to the
network bridge. In this manner, all the domains can connect to any address to which
the physical network interface can connect.

Let us take a detailed look at what all these different terms mean and what actually
happens when your dom0 is set up to use bridged networking and you create a
domU that uses that bridge.

Here is the sequence of events that happen when you boot up your Xen server and
xend starts up (only dom0 is started and no guest domains set to auto start by xend. I
only have one physical network interface on my server and it is named eth0).

1.	 Execute the /etc/xen/scripts/network-bridge script.
2.	 This will create a new network bridge called xenbr0.
3.	 Copy the MAC address and IP address from the physical network

interface eth0.
4.	 Stop the physical network interface eth0.
5.	 Create a new pair of connected virtual ethernet interfaces—veth0 and

vif0.0.
6.	 Assign the previously copied MAC address and IP address to the virtual

interface veth0.
7.	 Rename the physical network interface to peth0 from eth0.
8.	 Rename the virtual network interface veth0 to eth0.
9.	 Attach peth0 and vif0.0 to the bridge xenbr0.
10.	 Bring up the bridge xenbr0, and the network interfaces peth0, eth0, and

vif0.0.

Chapter 5

[77]

Check the network configuration and list details of the various interfaces created by
running the ifconfig command:

The hardware address or MAC address for all the interfaces is set to the broadcast
address FF:FF:FF:FF:FF:FF. Use the bridge utility tools for listing the Ethernet
bridge configuration to examine the topology of the default bridge xenbr0 created by
xend on startup. This will also show the various interfaces or ports attached to each
bridge created. As you can see in the following screenshot, the interfaces peth0 and
vif0.0 are both attached to the bridge xenbr0:

Networking

[78]

The following diagram shows the network configuration with the various interfaces
created and the connections to the bridge when xend is started and only dom0
is running.

When we start up domU with the configuration file created above, the network
configuration looks as follows:

Chapter 5

[79]

As we can see in the previous screenshot, new interfaces were added to the network
configuration. We can examine the bridge configuration to confirm that these new
interfaces were correctly attached to the network bridge by using the bridge utils:

We can see how a new virtual interface vif8.0 was attached to the bridge. This
interface is used by the domU that we created.

The following diagram shows the complete network configuration with all
the created interfaces and the attachments to the bridge, with both dom0 and
domU running.

Routed Networking
Routing is a technique that uses IP forwarding to relay network traffic from one
segment to another. In this case, dom0 in Xen acts as a conduit for the guest domains
to communicate with the outside world. All network traffic sent to and received by
the guest domains goes through and is forwarded by dom0. Routing uses the IP
addresses to figure out where to send the network packets.

Networking

[80]

Routing acts at a higher level than the bridging technique, which only looked at the
MAC address to find out the destination. ��� Routing and bridging accomplish the same
task, but use different methods to move information from source to destination.
IP forwarding relays packets from one network segment to another if the proper
routing entries exist in the routing table. In this case we are using unicast, which
relays a packet from one link to another along a chain that connects the packet from
source to destination.

When we utilized the bridging configuration in the earlier section, we used
broadcasting, which duplicates a packet and sends a copy to each of the multiple
links, thus delivering a copy to every device on the network. Essentially, routing
buffers and forwards network data packets to their destination addresses. When we
use routed networking, dom0 acts as a router to the outside world and a junction
between the outside world and the guest domains, and buffers and transfers data
packets among the domains. dom0 is the only domain that is actually connected to
the physical Ethernet interface, and all the traffic from the various domains to the
outside world go through it. It creates, maintains and uses a routing table in order to
send the network packets to the right destinations.

The routed network configuration work on network packets while the bridged
network configuration works on Ethernet frames. So, while a network bridge
will direct the Ethernet frames by utilizing hardware MAC addresses, a network
router will make routing decisions based on assigned IP Addresses. This enables
network packets to be forwarded by the router from one host to another based on
the addressing scheme, without the need to know or maintain the entire path from
source to destination.

In this section we will look at what happens behind the scenes and how Xen actually
sets up your network configuration to use routing.

Time for Action—Using Routed Networking
We are going to configure the domU to use routed networking, and then create a
guest domain that uses routed networking.

1.	 We need to stop xend first as we will be modifying its configuration file:
 # service xend stop

2.	 Change the xen configuration file - /etc/xen/xend-config.sxp so we can
use routed networking. Comment out the two lines related to the bridged
networking and uncomment the two lines related to routed networking. If
you don't happen to have the routed networking lines in your configuration
file, add them:

 (network-script network-route)
 (vif-script vif-route)

Chapter 5

[81]

3.	 Start xend again so that it starts up with the new settings:
 # xend start

4.	 Modify the configuration file for the domU we used earlier so that it can use
routed networking.

 kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 32
 name = "routed_domU"
 disk = ['tap:aio:/home/pchaganti/xen-
 images/ttylinux_domU.img,hda,w']
 vif = ['ip=192.168.1.165']
 root = "/dev/hda1 ro"

5.	 Start up the domU.

 # xm create /home/pchaganti/xen-images/ttylinux_domU.cfg –c

6.	 Check to make sure the domU is up and running.

What Just Happened?
Here is the sequence of events that happens when xend starts up with a routed
network configuration (only dom0 is started up in this instance. I have only one
physical network interface on my server and it is named eth0);

1.	 Enable IP forwarding within dom0.
2.	 That is essentially all that xend does to get the network configured. Check

the network configuration and list the interfaces created by running the
ifconfig command.

Networking

[82]

3.	 Display the contents of the routing table used by the Xen server by running
the route command. In our case, the contents of the routing table are
as follows:

4.	 The following diagram shows the routed network configuration and the
network interfaces created when only dom0 is running.

5.	 When the domU is started up, the following sequence of events takes place:
Xen copies the IP address from eth0 to the virtual interface
vif<id#>.0. The virtual interface ID is automatically assigned
to each of the guest domain started up by Xen. The assigned
id is never reused in a single session. So if you stop and restart
a domain, a new ID will be assigned to it.
Brings up the virtual interface vif<id#>.0.
Adds a static route for the domU's IP address specified in
domU configuration file that points to the virtual interface
vif<id#>.0.

6.	 Here is the configuration of the network interfaces when both dom0 and
domU are running.

°

°

°

Chapter 5

[83]

7.	 The following screenshot shows the entries in the network routing table
when domU is started up. You can now see an entry was added to it for
routing packets to the virtual network interface for domU.

8.	 The following diagram shows a complete Xen routed network configuration
with a dom0 and one domU running.

Networking

[84]

Virtual Local Network with Network
Address Translation
In this section we are going to set up a Xen networking configuration that has
a dom0 with a public IP address that acts as a router to a VLAN by using NAT.
The VLAN can have any number of virtual machines, all of which will use a new
network interface that is connected to the bridge. In the previous chapter each of our
virtual machines had a separate public IP address assigned to it that made things
easier. However in this section, we will use a single IP address and still provide
the ability to connect to any port on a virtual machine on our VLAN by using
address translation.

We will set up a VLAN with one webserver and one database. Each of these has a
private IP address that is not available on the regular network. The only public IP
address will be that of dom0. When a request comes in to dom0 with its IP address
but a webserver port of 80, we will use NAT to forward the request to the webserver
virtual machine inside the VLAN, and similarly when a request is made for the
database port we will send it on to the database vm.

Time for Action—Using VLAN with NAT
We will create a virtual network with the IP address 192.168.2.0 with one webserver
and a database. All the virtual machines in this network will have IP addresses in
that range. We will create two virtual machines in this network and access them
from a single public IP address. The ports will be forwarded to the respective virtual
machines by dom0.

1.	 The first network interface is being used by dom0. We are going to create a
new network interface that will be used by our VLAN. This interface will be
created using a dummy network driver and named dummy0. Create a new
file named /etc/sysconfig/network-scripts/ifcfg-dummy0:

 A DEVICE=dummy0
 BOOTPROTO=none
 ONBOOT=yes
 USERCTL=no
 IPV6INIT=no
 PEERDNS=yes
 TYPE=Ethernet
 NETMASK=255.255.255.0
 IPADDR=x.x.x.x
 ARP=yes

Chapter 5

[85]

2.	 Assign an IP address to this interface and add it to the network interfaces
file—/etc/network/interfaces:

 auto dummy0
 iface dummy0 inet static
 address 192.168.2.1
 netmask 255.255.255.0

3.	 Modify the xend configuration—/etc/xen/xend-config.sxp so that we can
bind the bridge to the new dummy network interface dummy0 by adding
the following line:

 (network-script 'network-bridge netdev=dummy0')

4.	 Ensure that IP forwarding is enabled.
 # echo "1" > /proc/sys/net/ipv4/ip_forward

5.	 Restart sysctl so that the changes are picked up by the live kernel.
 # /sbin/sysctl –p

6.	 Create the first virtual machine on our VLAN. Use any of the guest domains
that we have been using in this book. Modify its configuration file to look as
follows:

 # assume this is the webserver vm
 kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 32
 name = "vlan_domU_1"
 disk = ['tap:aio:/home/pchaganti/xen-
 images/ttylinux_domU.img,hda,w']
 vif = ['ip=192.168.2.2']
 root = "/dev/hda1 ro"
 gateway="192.168.2.1"

7.	 Create the second virtual machine on our VLAN. Use any of the guest
domains used in this book. Modify its configuration file to look as follows:

 # assume this is the mysql vm
 kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 32
 name = "vlan_domU_2"
 disk = ['tap:aio:/home/pchaganti/xen-

 images/ttylinux_domU.img,hda,w']
 vif = ['ip=192.168.2.3']
 root = "/dev/hda1 ro"
 gateway="192.168.2.1"

Networking

[86]

8.	 Inform dom0 that it should forward requests for certain ports to this VLAN.
In order to do this, first we need to enable NAT on dom0:

 # iptables -t nat -A POSTROUTING -s 192.168.0.0/16 -j MASQUERADE

9.	 We can now set up rules for forwarding the ports to the correct virtual
machine. Let's first forward port 80:

 # iptables -A PREROUTING -t nat -p tcp -i eth0 --dport 80 -j
 DNAT -- to 192.168.2.2:80

10.	 Forward the mysql port 3306 next:
iptables -A PREROUTING -t nat -p tcp -i eth0 --dport 3306 -j
 DNAT --to 192.168.2.3:3306

Restart xend and create the virtual machines. Now we have a simple network
configuration with the dom0 forwarding requests to a guest domain inside a VLAN
based on the port. If the public IP address of dom0 is 10.10.1.176, making a request of
10.10.1.176:80, dom0 will send on the request to 192.168.2.2:80, inside the VLAN.

What Just Happened?
We leveraged a single available IP address and used the technique of NAT to
forward requests to virtual machines inside a VLAN. This is a fairly powerful
technique making it easy to add additional guest domains inside the network and
provide access to them by forwarding requests from dom0. You can add domains
anywhere on the physical network but they will appear as part of the same subnet.

Summary
In this chapter we explored three different ways of configuring networking when
using Xen:

Bridged networking: Connects two network segments by using a network
bridge and utilizes the hardware MAC addresses.
Routed networking: Dom0 becomes the central point that routes all of the
traffic for the guest domains.
VLAN with Network Address Translation: Dom0 uses NAT to send
requests to a Virtual Local Network.

In the next chapter, we are going to examine the various storage options that are
available when creating guest domains with Xen.

•

•

•

Storage
We need some kind of storage for saving the new virtual machines that we create.
With Xen, there is an option to use a wide variety of storage solutions for the guest
domains—from normal disk storage to logical volume managed storage and network
storage. This chapter will show you how to use each of these storage technologies
while creating new virtual machines. We will also discuss a few of the advanced
storage options available for use with Xen.

File storage
Network File System (NFS) storage
Logical Volume Managed (LVM) storage

Files
Simple files can be used as virtual block devices containing Xen domains. This is the
quickest way to get started using Xen. We used them in Chapter 3 when we were
setting up various operating systems to run as Xen guest domains. In Chapter 3 in
the Time for Action—Bootstrapping an Ubuntu system we created the files that hold are
guest domain and then installed Ubuntu on them.

We created the files for holding the guest domain and then installed Ubuntu to them
in Chapter 3.

File-backed virtual block devices are a convenient way to get started with Xen. We
use the venerable dd command to create the file that will be used to store our image.
Doing this ensures that the file will be sparse, and space will be allocated only as
parts of the file are used, not up front when the file is created.

Although files are a simple and quick way of storing VMs, there are some
disadvantages of using files as virtual block devices:

•

•

•

Storage

[88]

They are not suitable for I/O-intensive uses, as they experience some
slowdown under heavy I/O workloads. The loopback block device used to
support file‑backed VBDs in dom0 performs the I/O handling quite poorly.
Linux by default, supports a maximum of eight file-backed VBDs across all
domains. This limit can, however, be increased by utilizing the max_loop
kernel parameter if the CONFIG_BLK_DEV_LOOP command is compiled as a
module in the dom0 kernel.

NFS
Network File System (NFS) ��� is a client/server system that enables users to access files
across a network and treat them as though they are in a local file directory. An NFS
server provides remote clients with access to its files by exporting the files that are
mounted by the remote client and made available to the operating system and
the user.

NFS is a great way to allow a system to share directories and files with other systems
over a network. It enables users to access files on remote systems almost as though
they were local files. Some of the advantages of NFS are as follows:

Disk space usage on local machines is reduced considerably by storing most
of the commonly used and accessed data on a single machine accessible to
others over the network.
Home directories for individual users on a system could be set up and stored
on a remote NFS server and made available throughout the network.
Storage devices can be set up on a remote NFS server. Furthermore, access
provided to the devices through NFS exports reduces the enterprise
hardware requirements.
Remote boot linux machines via a NFS root file system across the network.

Xen enables us to utilize the power of NFS by booting guest domains with a root file
system that is available through NFS. In this section we will examine how we can
boot a guest Xen domain that uses an exported NFS file system as its root file system.

Time for Action—Using NFS
In order to use NFS, we will first need a Xen domU kernel with NFS support.

1.	 Most kernels will support NFS out of the box, but in case yours does not,
you need to compile the kernel with NFS support. Run the linux kernel
configuration for the domU kernel.

 # make linux-2.6-xenU-config CONFIGMODE=menuconfig

•

•

•

•

•

•

Chapter 6

[89]

2.	 Select the File systems option:

3.	 Select Network File systems:

Storage

[90]

4.	 Select the options—NFS File system support and Root file system on NFS.
Select them to be compiled in the kernel. You can also choose to turn them
into modules if you like. If you do turn them into modules, please make sure
that you include them in your initrd image or you will not be able to boot
your guest domain off an NFS root file system.

5.	 Compile the kernel and install it:
 make linux-2.6-xen0-build

 make linux-2.6-xen0-install

6.	 Reboot to pick up your new changes:
7.	 We now need a NFS server we can use. You can use an existing one if you

have access to one. We will set up a new NFS server for this section on a
new server (IP 192.168.1.67). This server is running Ubuntu Feisty Fawn,
and some of the commands for installing packages will be specific to
Debian. Replace them with your distribution-specific package
management commands:

8.	 Install the NFS server and portmap packges. The portmap and NFS server
daemons will be started automatically after the installation. Double check to
make sure that your distribution does the same:

 # apt-get install nfs-user-server portmap

Chapter 6

[91]

9.	 Create a directory that will contain our guest installation. This will be the
directory that we export from this server via NFS:

 # mkdir /mnt/feisty

10.	 Add this directory to the directories that are exported by editing the /etc/
exports file:

 # /mnt/feisty 192.168.1.86(rw,sync,no_root_squash)

11.	 Populate this directory with Ubuntu Feisty by using debootstrap.����������� This will
download and extract all the necessary files to the above mounted directory:

 ~ /usr/sbin/debootstrap --arch i386 feisty /mnt/feisty
 http://archive.ubuntu.com/ubuntu

12.	 We will be using the domU kernel modules from our Xen server system.
Copy them from the /lib/modules directory to this directory:

 scp -r pchaganti@192.168.1.86:/lib/modules/2.6.16.38-xenU
 /mnt/feisty/lib/modules/

13.	 Now chroot into this new system and configure it:
 ~ chroot /mnt/feisty /bin/bash

14.	 Add the packages that we will need:
 # apt-get install nfs-common portmap

15.	 Set the hostname for this system:
 ~ echo "ubuntu_feisty_nfs_domU" > /etc/hostname

16.	 Set up the filesystems that will be loaded on boot:
 cat > /etc/fstab << "EOF"
 # file system mount point type options dump pass
 192.168.1.67:/mnt/feisty nfs rw 0 0
 proc /proc proc defaults 0 0
 sys /sys sysfs defaults 0 0
 EOF

17.	 Set up the network. We will be using the loopback interface and eth0 for the
Ethernet connection. The eth0 interface will be using DHCP to set itself
up automatically:

 cat > /etc/network/interfaces << "EOF"
 # The loopback network interface
 auto lo
 iface lo inet loopback

 # The primary network interface
 auto eth0
 iface eth0 inet dhcp

 EOF

Storage

[92]

18.	 Add a user, create an admin group, put the added user in to this group, and
set the root password:

 # adduser pchaganti

 # addgroup --system admin
 # adduser pchaganti admin

 # passwd root

19.	 Ubuntu uses sudo to let users perform administrative functions. Use visudo
to edit the sudoers file:

 visudo
 # Members of the admin group may gain root privileges
 %admin ALL=(ALL) ALL

20.	 Create the xen config file for this domU:

 cat > /home/pchaganti/xen-images/ubuntu_feisty_nfs_domU.cfg <<
 "EOF"
 kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 256
 name = "ubuntu_feisty_nfs_domU"

 vif = ['ip=192.168.1.111']

 nfs_server = '192.168.1.67'
 nfs_root = '/mnt/feisty'
 root = '/dev/nfs'
 EOF

21.	 Start up the Ubuntu Feisty domain using xm:
 # xm create ubuntu_feisty_nfs_domU.cfg –c

What Just Happened?
In this section we set up a directory to be exported via NFS from a remote server.
We then installed Ubuntu Feisty Fawn into this directory using debootstrap. The
configuration file for the domain specified the various parameters necessary for
Xen to recognize that the guest domain will be using NFS for boot up. This enables
you to consolidate some of your storage requirements. However, keep in mind the
following when using NFS:

The restrictions on the exported directories must be set very carefully to
ensure that access is only provided to the right servers.
NFS is quite fast, but it still has to deal with the overhead of creating and
closing network connections and transferring data over the network. If speed
is of paramount importance to your Xen domains, NFS is not the way to go.

•

•

Chapter 6

[93]

There are a couple of different versions of NFS—NFS v3 and NFS v4. You
will need to examine their features carefully to determine which one will be a
better fit for your needs.

The following links provide more information on NFS:

NFS how to: http://nfs.sourceforge.net/nfs-howto/
Understanding NFS: http://www.onlamp.com/lpt/a/1548

Logical Volume Management
LVM is a partitioning scheme designed to be more flexible than normal physical disk
partitioning. It allows changes in the size of individual volumes without a reboot,
and, in most cases, while the file system on the volume is being actively used. It is the
recommended way to deploy Xen domains in production. LVM can create "virtual"
disk partitions out of one or more physical hard drives and makes it possible to
dynamically group them into a virtual single chunk of storage. You can grow, shrink,
or move those partitions from drive to drive. You can even create larger partitions
than you could with a single drive.

The main components of LVM are as follows:

Physical volume: These are the hard disks or disk partitions that are visible
to the operating system. Each physical volume is in turn split up into smaller
chunks called physical extents (PEs).
Volume group: A volume group is an abstraction representing a collection of
physical volumes from which logical volumes can be created, thus combines
the two into one easy to administer unit of storage.
Logical volume: A logical volume is a virtual device and represents an
addressable consecutive space of block storage.
Physical extent: Each physical volume is divided into physical extents, each
of which is the same size as the logical extents for the volume group.
Logical extent: Each logical volume is split into logical extents.

Some of the main advantages of using LVM are as follows:

Ability to resize the volume groups.
Ability to resize logical volumes without taking down the server.
Ability to create read-only snapshots of logical volumes.
Ability to move logical volumes between physical volumes.
Ability to split or merge volume groups. This is used for migrating logical
volumes to or from offline storage.

•

•
•

•

•

•

•

•

•
•
•
•
•

Storage

[94]

In this section we will create a Ubuntu Feisty Fawn installation on LVM volume.

Time for Action—Using LVM
We will create the volumes needed for our installation first, and then install Ubuntu
onto the volume.

1.	 Create a physical volume on a disk partition:
 # pvcreate /dev/hda6

2.	 Display the details of the various physical volumes present in your system:

3.	 Create a volume group on the physical volume with a name gandalf:
 # vgcreate gandalf /dev/hda6

4.	 You can display the various volume groups present on your server by using
the vgdisplay command.

Chapter 6

[95]

5.	 Create a logical volume for storing our image and name the volume feisty:
 # lvcreate –L 4094M –n feisty gandalf

6.	 The logical volume details can de displayed by using the
lvdisplay command.

7.	 The lvscan command is used to scan all the logical volumes and their
current status. As you can see below, we have two logical volumes and both
are currently active.

Storage

[96]

8.	 Create the ext3 file system on our newly created logical volume.

9.	 Create a directory and mount the logical volume:
 # mkdir /mnt/feisty
 # mount /dev/gandalf/feisty /mnt/feisty

10.	 Run debootstrap. This will download and extract all the necessary files to the
above mounted directory:

 ~ /usr/sbin/debootstrap --arch i386 feisty /mnt/feisty
 http://archive.ubuntu.com/ubuntu

11.	 We will be using the domU kernel that we created earlier for booting this
domain. So this domain will need the kernel modules compiled for that
kernel. Copy them from the /lib/modules directory:

 ~ cp -dpR /lib/modules/2.6.16.38-xenU /mnt/feisty/lib/modules

12.	 Now chroot into this new system and configure it:
 ~ chroot /mnt/feisty /bin/sh

13.	 Set the hostname for this system:
 ~ echo "ubuntu_feisty_domU" > /etc/hostname

14.	 Set up the filesystems that will be loaded on boot:
 cat > /etc/fstab << "EOF"
 # file system mount point type options dump pass
 /dev/sda1 / ext3 defaults 0 1
 proc /proc proc defaults 0 0
 sys /sys sysfs defaults 0 0
 EOF

Chapter 6

[97]

15.	 Setup the network. We will be using the loopback interface and eth0 for the
ethernet connection. The eth0 interface will be using DHCP to set itself
up automatically:

 cat > /etc/network/interfaces << "EOF"
 # The loopback network interface
 auto lo
 iface lo inet loopback

 # The primary network interface
 auto eth0
 iface eth0 inet dhcp

 EOF

16.	 Add a user, create an admin group, put the added user in this group, and set
the root password:

 # adduser pchaganti

 # addgroup --system admin
 # adduser pchaganti admin

 # passwd root

17.	 Ubuntu uses sudo to let users perform administrative functions. Use visudo
to edit the sudoers file:

 visudo
 # Members of the admin group may gain root privileges
 %admin ALL=(ALL) ALL

18.	 We have completed the initial configuration. Exit out of the chroot
environment:

 # exit
 # umount /mnt/feisty

19.	 Create the configuration file that will be used by dom0 to create this
guest domain:

 cat > /home/pchaganti/xen-images/ubuntu_feisty_domU.cfg << "EOF"
 kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 256
 name = "ubuntu_feisty_domU"
 disk = ['phy:gandalf/feisty']
 vif = ['mac=00:16:3e:00:00:10, bridge=xenbr0']

 root = "/dev/sda1 ro"
 EOF

20.	 Call xm to create the virtual machine:
 # xm create /home/pchaganti/xen-images/ubuntu_feisty_domU .cfg -c

Storage

[98]

What Just Happened?
In this section we created a new logical volume named feisty and populated it with
Ubuntu feisty using the debootstrap tool. We exported this logical volume to Xen by
referencing it as a physical device.

The use of LVM storage for Xen domains is encouraged, as it is probably the ideal
way to set up and administer the domains. However, please note that using LVM
in guests with LVM on the host can cause problems as the inside guests can see the
wrong LVM information from the host. However, LVM makes it extremely easy
to manage storage requirements for the enterprise while providing a configurable
and adaptable virtualization environment. Here are some links that provide more
detailed information on LVM:

LVM How to: http://www.tldp.org/HOWTO/html_single/LVM-HOWTO/
Learning Linux LVM:
http://www.ibm.com/developerworks/linux/library/l-lvm/
Managing disk space with LVM:
http://www.linuxdevcenter.com/lpt/a/6553

Advanced Storage Options
Some advanced storage options such as Redundant Array of Independent/
Inexpensive Drives (RAID) and Global Network Block Device (GNBD) are discussed
in this section.

Redundant Array of Independent/Inexpensive
Drives
RAID is a data storage scheme for dividing and replicating data among multiple
hard disk drives. It spreads data among several physical hard drives with enough
redundancy so that should any drive fail, the data will still be intact. Once created,
a RAID array is a device that can be used pretty much like a regular partition.
It provides increased data reliability and greatly improved input and
output performances.

The three key concepts in RAID are as follows:

Mirroring: Copying the data to more than one disk.
Striping: Splitting the data across more than one disk and reading sequences
of data simultaneously off multiple disks.
Fault tolerance: Increasing the reliability of the system by storing some
redundant data, so that problems can be detected and possibly fixed quickly.

•
•

•

•
•

•

Chapter 6

[99]

The biggest advantage of using RAID is that systems can be designed to keep
working when there is failure—hot swapping of disks and automatic data recovery
even while the system keeps running. For this reason RAID is often used in high
availability systems, where it is critical that the system keeps running for as much of
the time as possible. The following resources will help you to get Xen working using
RAID storage:

•	 Setting up Xen with LVM and RAID:
http://www.webhostingtalk.com/archive/index.php/t-563457.html

•	 LVM on a RAID mirror for Xen:
http://www.jukie.net/~bart/blog/20060410220525

Global Network Block Device
GNBD provides storage access over an Ethernet LAN, thus allowing you to share
and access logical block devices across the network. We have done something similar
earlier in this chapter using NFS. A common usage scenario of GNBD is to export
the logical block devices from LVM. It is a simple and inexpensive substitute for a
Storage Area Network (SAN) like configuration. Please be aware that one potential
drawback with using a GNBD is a possible reduction in the speed of your network.
Unless you have a blazing fast network, its speed will not be as fast as the speed of
reading from a disk.

The following resources could be useful for setting up GNBD:

How to build, install, and run GNBD:
http://sources.redhat.com/cluster/gnbd/gnbd_usage.txt

•	 Xen with DRBD, GNBD and OCFS2 Howto:
http://xenamo.sourceforge.net/

Summary
In this chapter we explored three different storage mechanisms that can be utilized
for the guest domains:

Files: These are simple file based virtual block devices that are very easy to
get started with. They are great for testing, but are not recommended for
production environments.
NFS: These are remote file systems that can be exported and used by the
Xen to boot guest domains. These require the setup of a remote NFS server
that can export a file system. They are perform well and are widely used for
setting up Xen domains.

•

•

•

Storage

[100]

LVM: This is an enterprise grade storage mechanism that makes it very
easy to resize, move, and reconfigure the storage to adapt to the changing
needs of an enterprise, and is probably the most recommended production
configuration for a Xen deployment.

We also discussed some advanced storage options that are available for use with
Xen. In the next chapter, we will examine some options for encrypting root file
systems for guest domains when using Xen.

•

Encryption
In this chapter we will secure guest domains by encrypting their root file system.
Security in Xen is very important as improvements are being made to it all the time.
Encrypting the root file system for a domain provides an extra layer of security
over and above restricting physical access to the domain. You can encrypt not only
the partitions that contain the root file system, but also those which are used by the
domains. An encrypted file system prevents any information from being available
to a malicious user who gains physical access to the system while it is not running.
The files and the data in them will appear garbled and will be practically useless. The
algorithms used provide a strong encryption of the file system data.

The key thing to be aware of here is that hackers could access information if they
gain physical access to the system while it is running and the files in use are in a
decrypted form. So it is very important to have controls in place to restrict physical
access to the systems appropriately. However, file system encryption will keep any
unauthorized person from booting up the system.

We will use the following methods of file system encryption:

Plain device mapper-based encryption.
Key based-device mapper encryption using LUKS.

Device Mapper-Based Encryption
A device mapper enables the definition of new partitions or logical volumes by
specifying ranges of sectors on existing block devices. The ranges specified are then
mapped to targets according to a mapping table. dm-crypt is a package that provides
a target that can be used to transparently encrypt block devices using the kernel
cryptoAPI. This is available only in the Linux 2.6 kernel series. The older kernels
used cryptoloop to provide similar support, but that package has been deprecated. In
this section we will learn how to use a simple device mapper-based encryption using
the dm-crypt package.

•

•

Encryption

[102]

Time for Action—Encrypting Block Devices
We will first prepare our kernel with all the needed modules and options to support
the encryption. Then we will create the file backed virtual block device that will hold
our guest domain and install Ubuntu to it.

1.	 Select the kernel options for the Device Drivers.

2.	 Select the Multi-device support (RAID and LVM) option.

Chapter 7

[103]

3.	 Select the options—Device mapper support and Crypt target support. Select
them to be compiled in to the kernel. You can also choose to make them
modules. If you do so, please make sure that you have them included in your
initrd image.

4.	 Select the Cryptographic options node in the kernel configuration:

Encryption

[104]

5.	 Select the AES cipher algorithms option. These algorithms are used for
encryption by dm-crypt:

6.	 Save changes to the configuration, compile the kernel, and install it:
 make linux-2.6-xen0-build

 make linux-2.6-xen0-install

7.	 Reboot to pick up the new changes.

8.	 Check to make sure that you have support for AES:
	 # cat /proc/crypto

9.	 Install the user space tools for using dm-crypt:

 # apt-get install cryptsetup dmsetup

Chapter 7

[105]

10.	 We can display the names of the currently available targets by
using dmsetup:

	 # dmsetup targets

11.	 We will use a loopback file to store our encrypted file system. Create a file
that will contain the root file system for an Ubuntu Feisty installation:

 # dd if=/dev/urandom of=/home/pchaganti/xen-images/
 ubuntu_feisty_domU.img bs=1G count=6

12.	 Set the loopback file created above as a loop device:

 �� # losetup –f /home/pchaganti/xen-images/ubuntu_feisty_domU.img

13.	 Create a logical volume using the loop device. This will ask you for a
passphrase. From this point on, whenever you mount this encrypted file, you
will need to provide the passphrase:

 # cryptsetup -y create encrypted_feisty /dev/loop0

14.	 Check to make sure that the volume was created correctly by using dmsetup:

 # dmsetup ls

Encryption

[106]

15.	 Create an ext3 file system on the encrypted file:

 # mkfs.ext3 /dev/mapper/encrypted_feisty

16.	 Mount the encrypted file system:
 # mount /dev/mapper/encrypted_feisty /mnt/feisty

17.	 Now you can install Ubuntu into this mounted file system by following the
steps that we have used earlier in this book. After you complete installing
Ubuntu, unmount the file system.

18.	 Add the definition of the encrypted filesystem to /etc/crypttab directory:
 encrypted_feisty /dev/mapper/encrypted_feisty none
 check=ext3,retry=5

19.	 Add the device to the file systems that are mounted upon boot in
/etc/fstab:

 /dev/mapper/encrypted-feisty /mnt/feisty ext3 defaults 0 2

20.	 When you reboot, you will be asked for the passphrase before the file
system can be mounted. Provide the passphrase and the file system will be
mounted. Now you can start up your Ubuntu guest domain using a domain
configuration file.

Chapter 7

[107]

What Just Happened?
The device mapper provides a mechanism to create VBDs based on real block
devices. We can put the VBDs through other things before letting the operating
system access it. In case of using dm-crypt, we route it through the cryptographic API
provided by the linux kernel, and apply high-level encryption to everything written
to our filesystem.

Device Mapper-Based Encryption Using
LUKS
Linux Unified Key Setup (LUKS) provides a standard format for encrypted
partitions and enables multiple users/passwords. It also provides effective password
revocation and security against low entropy attacks. In this section we will once
again use a device mapper-based encryption scheme, but enhance it using LUKS.

Time for Action—by Extending dm-crypt
Since we will be using a device mapper-based encyption scheme as in the previous
section, a lot of our initial steps will be same as the previous section, the main
difference being that we will use the LUKS format for the hard disk encryption.

1.	 As described previously, ensure that you compile your kernel to have all the
required modules. Also install the dmsetup and cryptsetup packages. In order
to use LUKS, the kernel will need to support SHA-256 algorithm. Select this
option and compile it as a module or include it in the kernel. You can either
insert the module into the running kernel or reboot if you include it in, to get
the changes.

Encryption

[108]

2.	 We will once again use a loopback file to store our encrypted file system.
Create a file that will contain the root file system for an Ubuntu
Feisty installation:

 # dd if=/dev/urandom of=/home/pchaganti/xen-images/
 ubuntu_feisty_domU.img bs=1G count=6

3.	 Set the loopback file created above as a loop device:

 # losetup –f /home/pchaganti/xen-images/ubuntu_feisty_domU.img

4.	 Create a logical volume using the loop device. This will ask you for a
passphrase. From this point on, whenever you mount this encrypted file, you
will need to provide the passphrase:

 # cryptsetup luksFormat /dev/loop0

5.	 Now create a device mapper for the loopback device:

 # cryptsetup luksOpen /dev/loop0 encrypted_feisty_luks

Chapter 7

[109]

6.	 Create an ext3 file system on the encrypted file:

 # mkfs.ext3 /dev/mapper/encrypted_feisty_luks

7.	 Mount the new virtual device:

 # mount /dev/mapper/Ubuntu_feisty_luks /mnt/feisty_luks

8.	 We have assigned one password for accessing this encrypted file system.
LUKS provides support allowing you to add up to eight different
passwords for access to this file system. This support enables you to provide
multiple users with access. You can add new passwords by using the
luksAddKey option:

 # cryptsetup luksAddKey /dev/loop0

Encryption

[110]

9.	 You can get status information from the LUKS header. This will show you
the open slots, the encryption algorithm used and other status information:

 # cryptsetup luksDump /dev/loop0

10.	 You can delete or revoke keys at any time. We will delete the key from slot 1:

 # cryptsetup luksDelKey /dev/loop0 1

11.	 Now you can install Ubuntu into this mounted file system following the
steps that we have used earlier in this book. After you complete installing
Ubuntu, unmount the filesystem.

Chapter 7

[111]

12.	 Add the definition of the encrypted filesystem to /etc/crypttab. The retry
parameter specifies the maximum number of times that you will be asked to
re-enter password when a wrong or invalid password is provided. The check
parameter specifies the type of the file system that is to be mounted:

 encrypted_feisty /dev/mapper/encrypted_feisty_luks none luks,
 check=ext3,retry=5

13.	 Add the device to the file systems that are mounted upon boot in
/etc/fstab:

 /dev/mapper/encrypted_feisty_luks /mnt/feisty_luks ext3
 defaults 0 2

14.	 When you reboot, you will be asked for the passphrase before the file system
can be mounted. Provide the passphrase and the file system will be mounted.
Now you can start up your Ubuntu guest domain as usual using a domain
configuration file.

What Just Happened?
LUKS is an extension to dm-crypt and allows us to add multiple users/passwords
(up to eight users). LUKS specifies a platform independent standard on-disk
format and facilitates interoperability among different software. It uses a partition
header to store the encryption-setup information and this enables some of the
following options:

Modifying an encrypted volume's passphrase without any re-encryption of
the data present on the volume.
Provide multiple passphrases for the same data on the volume. This enables
multiple users to have access to the volume.
The ability to transport or migrate data to different systems.

Summary
In this chapter we explored two different mechanisms for encrypting the root file
systems used by Xen guest domains:

Device mapper encryption—��� A mechanism for encrypting block devices
using the cryptographic API provided by the Linux kernel.
Device mapper encryption using LUKS—��������������������������������� A standard format for encryption
that extends dm-crypt.

In the next chapter, we will explore the options available for the migration of live
Xen instances and the restoration of saved Xen domains.

•

•

•

•

•

Migration
In this chapter we will discuss the migration of domains from one server to another.
You can use two different techniques to migrate a domain. You can save a copy of
the domain and then restore the domain on a different server, or you can migrate a
domain while it is running, causing minimal service interruption.

We will use the following ways to migrate a domain:

Save and restore a domain
Live migration

Migration Requirements
The following are the setup and network requirements for migration:

Both the source host and destination host must be running Xen and the
xend ��������daemon.
The destination host must have enough disk space, memory capacity, and
resources to run the domain after the migration.
The source host and destination host machines must have the same
architecture and virtualization extensions. For example, if the source host
is running on x86-64 architecture with extensions, then you must ensure that
the destination host does the same. ������������������������������������� This is stipulated so that you don't
run into any mismatches in the instruction sets used by the kernel and the
user libraries.
The source host and destination host machines must be on the same
layer-2 network subnet. When a domain is migrated, the migration will not
be completed successfully if the destination node is on a different subnet, as
the MAC and IP addresses of the domain are moved with it.

•

•

•

•

•

•

Migration

[114]

The process of migration causes the xend daemon to stop the domain
running on the source host, copy it over to the destination host, and then
restart the domain. The xend daemon accepts migration requests from
the localhost by default. To allow the migration target to accept incoming
migration requests from a remote host, you must modify the destination
host's xen-relocation-hosts-allow parameter in the /etc/xend-config.
sxp file. There is no authentication provided, so for security reasons you
must restrict the hosts that are allowed to migrate.
If you are running a firewall, you may need to create explicit iptables rules to
permit incoming migration connections.
Typical migrations result in a downtime of as little as 60-300ms.
You will need to reconnect to the console of the domain on the new Xen
server after the migration. Your existing console connection will not be
carried over along with the migration.

Saving and Restoring a Domain
The current state of a running domain is saved in a file on the disk. Xend restores
the state of the domain by using this file. This is similar in concept to the hibernation
feature of a laptop. During hibernating, a laptop saves an image of the disk state and
shuts itself. To come out of the hibernation, it uses the saved disk image to restore
the running state.

In this section we will learn how to save an active domain to a file that can later be
used to restore the file to the active state either on the same server or on a different
Xen server. You must ensure that you have enough disk space to save the image files
before you try to save a domain to an image file.

Time for Action—Migrate Domains on your
Xen Server
We will create a Debian domain and save its state to a file that will be used to restore
the domain.

1.	 Create the Debian guest domain:
 # xm create debian_etch_domU.cfg –c

2.	 Check to see that the domain is up and running correctly. Since we provided
the –c parameter to the xm command above, the guest domain will start up
in the current console. To check whether the domain has started up, you will
have to use a different console session.

•

•

•

•

Chapter 8

[115]

3.	 We will save the current state of the domain to the /xen-saved-images
directory; you can save to a directory of your choice:

 # xm save 1 /xen-saved-images/etch.save

4.	 Saving a domain will remove it from the list of domains that are currently
running. You can check this by using the xm command to print the
current domains.

5.	 Restore the saved domain from the file:

 # xm restore /xen-saved-images/etch.save

6.	 Run the xm command again; we should see the restored domain back in the
list of current domains.

What Just Happened?
We took an active running Xen domain and saved its running state to a disk file.
Please keep in mind that this file is not encrypted in anyway, so a malicious user
who gets access to the directory with the saved image files can tamper with the
images. It very important to secure all access to the folder that contains these
saved images.

The running state of a domain is a snapshot or image of the domain at the time of
saving. All the running process information and state are saved to this file. You can
examine the file and you will see that it is a rather large binary file. The size of this
file will be equivalent to the memory that was being used by the domain when it was
saved. So on a reasonable Xen domain that is running some enterprise applications,
the size of this file can be very large—in the order of a few gigabytes. Therefore, you

Migration

[116]

must ensure that you have enough storage space where this file is saved. In this
example we saved the state to a disk file but there is no reason why you cannot save
this file to a large enough network folder or even mounted USB key. Saving the
domain to a USB key is a nifty way for you to carry your domain around in your
pocket and restore it on a different server!

A saved domain is restored by using the restore option with the xm command. This
will start up the domain again and restore it to the state the domain was in when it
was saved. There are some things you need to keep in mind when using the save and
restore feature:

The ID of the restored domain will be different from the ID the domain had
when it was saved. So when you use xm to view a restored domain, you will
notice that the ID is different.
The domain is restored to its earlier state (when it was saved) but you will
not be automatically connected to the domain's console. You will need to
explicitly run the xm command to connect to the console.
This is a simple and easy way to migrate your domains, but please note that
as the domain has been removed from the active domains while being saved,
the services running on the domain will no longer be available or accessible.
If this service interruption is unacceptable to you, you should consider the
live migration feature of Xen that we will discuss in the next section.

Live Migration
In the previous section we explored the simplest way to migrate domains on your
Xen server. This simple way will not be an option in cases where you have SLA
on your servers or where you want to minimize the interruption of services. Xen
provides a powerful feature called live migration that lets you migrate running
domains to a different Xen server with minimal disruption to the services. In this
section we will discuss live migration and the process that Xen goes through under
the covers in order to make it happen.

Time for Action—Relocation of an Active
Running domain
The server configuration that we will use for live migration consists of the following:

palantir: A Xen host server that will run a Ubuntu Feisty guest domain,
which uses a NFS exported directory.
boromir:��� A Xen host server that serves as the destination for the migration of
the Ubuntu Feisty guest domain from the ���������������� palantir�������� server.

•

•

•

•

•

Chapter 8

[117]

•	 frodo: A linux NFS server that will provide the storage for the Xen
domains over the network.

The following diagram shows the configuration.

1.	 Live migration needs shared storage. A practical minimum network
requirement would be a 100 MB network. The other setup related
requirements for migration are mentioned earlier in the chapter. So let us set
up a NFS server on our first Xen host for sharing storage. The domain that
we will be migrating will run off the shared storage space on the NFS server.
Chapter 6 shows you the steps needed for getting the NFS server installed
and working.

2.	 Edit /etc/exports and add the following line to export the storage directory:

 # /xen-storage *(r,sync,no_root_squash)

3.	 Save the file and restart the NFS server. Add the NFS server to the services
on the server and set it up to start on reboot:

 # service nfs startchkconfig nfs on

4.	 We need to set up the two Xen servers so they can use the NFS server exports
for storage. Add mount points on each of the two Xen servers to mount the
exported directory:

 # mount palantir:/xen-storage

 # mount boromir:/xen-storage

Migration

[118]

5.	 Modify the xend configuration file to allow live migration. Edit the /etc/
xen/xend-config.sxp file and ensure that the following two lines are not
commented out:

 (xend-relocation-port 8002)
 (xend-relocation-address '')

	 This will enable the Xen daemon to listen to and respond to requests for
live migration:

6.	 Follow the steps that we used in Chapter 6 for getting a Xen domain running
on a NFS server storage. Start up the guest domain on palantir. Use the
following configuration for the guest domain:

 cat > /home/pchaganti/xen-images/ubuntu_feisty_nfs_domU.cfg <<
 "EOF"
 kernel = "/boot/vmlinuz-2.6.16.38-xenU"
 memory = 256
 name = "ubuntu_feisty_nfs_domU"
 vif = ['ip=192.168.1.111']
 nfs_server = '192.168.1.67'
 nfs_root = '/xen-storage'
 root = '/dev/nfs'
 EOF

7.	 Now we have a guest domain running on palantir that is using the NFS
exported directory for storage. You can check whether the domains are
running correctly by using the xm command on palantir.

8.	 We will live migrate this guest domain to the boromir server. This will
take several minutes before completion. If the migration fails to complete
successfully, a message indicating the failure on the console will be shown.

 # xm migrate --live ubuntu_feisty_nfs_domU boromir

9.	 That's all it takes to migrate a live running domain to another Xen server! If
you use the xm command to list the running domains on both palantir and
boromir servers, you will see that the migrated domain now only appears on
the boromir server and is no longer displayed in the list of running domains
on the palantir server.

Chapter 8

[119]

What Just Happened?
Live migration is the movement of a virtual machine from one physical host to
another while continuously powered-up. This process takes place without any
noticeable effect by the end user and allows an administrator to take the physical
server offline for maintenance or upgrading without subjecting the users that are
using the virtual machines to downtime.

We modified the default xend configuration file in order to enable relocation of
domains. Keep in mind that you need to reboot the host for the Xen server to make
the host accept your changes. We changed the following settings:

xend-relocation-server : This is a flag for enabling/disabling the relocation
server. By default, this is set to no to keep the relocation server deactivated.
During the process of migration, the domain virtual memory is exchanged in
raw format without any encryption. Make a note of this before enabling this
in an untrusted network.
xend-relocation-port : The port used by the xend daemon for relocation. The
default value for this port is 8002.

There are a couple of other parameters that we did not modify, but which you
should be aware of in an enterprise deployment environment:

xend-relocation-address: This is a flag for restricting the migration of the
domain only to a specific interface. The address specified is the one that
listens for connections coming into the relocation socket. This flag will only
be used if you also enable the xend-relocation-server parameter.
xend-relocation-hosts-allow: This is a flag that defines the hosts that are
allowed to communicate with the relocation port. The value is a sequence
of regular expressions separated by spaces. If the value is empty, then all
incoming connections are allowed. The values can match either an IP address
or a fully qualified domain name.

•

•

•

•

Migration

[120]

The discussion and diagram in this section of how Xen's live migration feature works
is based on the excellent research papers by the Xen team, which are available at
http://www.cl.cam.ac.uk/research/srg/netos/papers/2005-migration-
nsdi-pre. The migration from palantir to boromir can be broken down into a series
of steps or interactions between the two Xen servers:

1.	 Pre-Migration: The Feisty domain is running on palantir and is an
active domain.

2.	 Reservation: A request for migration is issued to the on palantir, which then
checks and confirms that resources are available on boromir. Xend then
reserves a VM container of the required size on boromir. If xend is unable to
get the resources it needs on boromir, then nothing will be done further, and
the domain will continue to run as is without any changes on palantir and
the relocation effort will be abandoned.

3.	 Iterative Pre-Copy: Memory pages are transferred from palantir to boromir
starting with all the pages and only then with the pages that were changed
during the initial transfer. Eventually all of the pages will be copied to
boromir.

4.	 Stop-and-Copy: The running domain on palantir is suspended and all its
network traffic is redirected to boromir. At the end of this stage, there is a
suspended copy of the domain on boromir in addition to the one suspended
on palantir. The suspended domain on palantir is still the primary copy and
in case of any failure at this stage, it will be resumed on palantir.

5.	 Commitment: At this stage if there are no errors or failures, boromir will
send an indication to palantir that it has a consistent image of
the domain. Palantir will now discard the domain in its Xen server and from
this point on, boromir will become the primary host for
this domain.

6.	 Activation: The migrated domain is activated on boromir. All the device
drivers inside the domain are now reattached to the new machine.

Chapter 8

[121]

The following diagram shows this whole interaction. As you can see there is a lot of
stuff happening under the covers to make this operation so smooth and seamless!

Migration

[122]

Some of the significant advantages of using Xen live migration are as follows:

It enables the maintenance of the physical servers that host the virtual
machines in a proactive manner. You can monitor the servers and resolve
potential and suspected problems by relocating the systems very quickly.
You can use live migration of Xen along with a high-availability solution
such as heartbeat to provide a failover system. The latest versions of
Enterprise SuSe Linux Server and Red Hat Enterprise Linux provide high
availability solutions using Xen.
You can meet your Service Level Agreements for services easily and you can
avoid any disruption of business critical services.
It makes the balancing of load across multiple servers possible. This will
let you optimize and better utilize the computing resources across the
enterprise. There is no support currently in the open source version of xen for
automating the migration upon sensing failures in dom0.
It makes it simple to add more computing power to your system
configuration as you need it.
You can replace hardware as needed without interruption to the services
being provided.

Summary
In this chapter we explored two different ways of migrating Xen guest domains:

Save and restore—�� A mechanism similar to laptop hibernation where the
running domain state is captured in an image on the disk and is later used
for restoring that domain.
Live Migration—��� Live relocation of an active running domain with minimal
disruption and downtime.

In the next chapter, we will look at some future trends in Xen.

•

•

•

•

•

•

•

•

Xen Future
In this chapter we will discuss some of the recent enhancements and ideas based on
Xen. Most of these are still evolving or are fairly new and will likely change over
time. We will discuss the following technologies in this chapter:

Libvirt
VMcasting

Libvirt
Libvirt is a virtualization API for interacting with the various virtualization
implementations (http://libvirt.org/index.html). It is essentially a C API, but
provides bindings for a variety of languages, Python being the best supported. It
is very actively maintained and supported by the open-source community. In its
present form it provides support for accessing Xen virtualization, KVM, and QEMU.
However, it is built to be framework independent and provide support for accessing
other virtual instances as they become available.

In order to provide the decoupling of the virtualization technology from the API,
libvirt defines the following abstract notions of a virtual instance:

Node: A single physical machine.
Hypervisor: Provides the ability to virtualize a node within a set of
virtual machines.
Domain: An instance of an OS that runs on a virtual machine. The machine
itself is provided by the hypervisor defined above.

Libvirt provides the capability to manage the domains running on a node in a
hypervisor instance. To do this in a manner that is independent of the hypervisor
technology used, libvirt will need to provide the lowest common denominator
of the virtualization support. In this way the API can provide a generic way to

•

•

•

•

•

Xen Future

[124]

manage the domains on the nodes in a hypervisor for any supported virtualization
framework. By focusing on the smallest common subset of the operations needed for
the management of a virtual domain, libvirt provides the ability and the opportunity
to layer new functionality on top of the existing API. This functionality allows it to
build applications that can provide a higher level of management tools. This will also
enable libvirt to focus on stability in the functions that it provides.

In a Xen environment, user space applications that use libvirt will need to operate in
the dom0 environment. These applications can be run in two ways to connect to Xen:

1.	 Root access:
A read/write connection to the Xen store.
Use the HTTP RPC layer to connect to xend.
Use the hypervisor call mechanism.

2.	 Normal access:
This is mainly used for providing read only functions. The
user application will need to connect to a proxy that is
running as root and request information.

Libvirt provides the ability to connect to Xen using any of the following languages:

C: This is the main language supported by libvirt.
Python: Bindings are generated from the C API. So they tend to stay up to
date longer than other languages.
Ocaml: A recent addition to the list of supported languages.
Perl: A recent addition to the list of supported languages.

We used virt-manager earlier in this book. Virt-manager is a desktop application
that displays the currently running domains and their statistics. It uses the
libvirt-python bindings (http://virt-manager.et.redhat.com/). Xen itself
provides an API in its recent versions for accessing Xen virtual instances but it falls
short of the capabilities provided by libvirt in many ways:

1.	 Xen API is not very stable and there is a lot of breakage with every released
version of Xen. Things seem to be stabilizing slowly but we are not
completely there yet. This can be very frustrating when changing versions
of Xen. Libvirt API is much more stable and provides a solid foundation for
interacting with Xen as you move or change versions.

°

°

°

°

•

•

•

•

Chapter 9

[125]

2.	 If you use Xen API, you are restricted to using just the Xen hypervisor. This
may be OK in certain cases, but the vendor neutral and vendor independent
API provided by libvirt is a lot more attractive and it enables you to keep
some of your virtualization options open.

3.	 Xen API being less stable and still evolving has an API that is fairly difficult
to discern and is not very intuitive. Libvirt is easy to use and its design is
simple. This is one of the key factors for the adoption of libvirt.

In future, we will see more vendors and application developers using libvirt as
the standard API for all of their interaction with any virtualization instances as it
provides the most stable and easy to use abstraction currently available.

Vmcasting
Vmcasting is a cool new technology that can automate the deployment of virtual
machine images using the popular RSS 2.0 format (http://www.vmcasting.org/).
The machine image itself is transferred to a client as a .xvm archive, which is nothing
but a simple tarfile that contains the following items:

xvm.xml: An xml file describing the image archive.
manifest.txt: The contents of the archive along with sha1 sums.
mf-signature.asc: gpg signature for the manifest.txt file.
signature.asc: gpg signature for the xvm.xml file.
imagefiles: Any number of gzip compressed hard disk partition images.

The Vmcasting website provides a download for a Debian image in the above
format. The following screenshot shows the contents of the Debian .xvm archive.

•

•

•

•

•

Xen Future

[126]

The following is a sample xvm file from the archive:

<?xml version="1.0" ?>
<appliance>
 <name xml:lang="en">
 <label>Debian 3.1</label>
 <shortdesc>Debian 3.1</shortdesc>
 <longdesc>
 Debian 3.1 minimal install optimized for XEN
 </longdesc>
 <detail>
 Debian 3.1 minimal install optimized for XEN
 </detail>
 </name>
 <version>1.0</version>
 <vm name="debian 3.1">
 <name xml:lang="en">
 <label>debian 3.1</label>
 <shortdesc>debian 3.1</shortdesc>
 <longdesc>
 debian 3.1
 </longdesc>
 <detail>
 debian 3.1
 </detail>
 </name>
 <memory static_min="128 MiB" />
 <vbd name="sda1" vdi="sda1" mode="RW" />
 </vm>
 <vdi name="sda1" src="file:///sda1.img.gz" variety="system"
 compression=’gzip’>
 <name>
 <label>debian 3.1 scsi disk 1</label>
 </name>
 </vdi>
</appliance>

This provides a simple and easily readable description of the resources, including
the disk partitions, that are available within the archive. The RSS feed containing the
above archive as a link looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<rss version="2.0">

<channel>
<title>Enomalism VMCasting Test Feed</title>

Chapter 9

[127]

<link>http://jamaica/files/test.rss</link>
<description>Enomalism VMCasting Test Feed</description>
<language>en-us</language>

<item>

<title>Debian 3.1 Base Image</title>
<link>http://www.vmcasting.org/</link>
<enclosure url="http://www.vmcasting.org/fileadmin/

 vmimages/debian_3.1.xvm" length="1" type=
 “application/octet-stream"/>

<description>
<![CDATA[Debian 3.1 Base Image with minimal components

 required for growing to a more complete solution.]]>
</description>
<pubDate>Fri, 16 Feb 2007 14:43:18 -0800</pubDate>

</item>
</channel>

</rss>

The enclosure tag is a key item that defines an URL attribute that specifies the
archive containing the Virtual Machine Image to be downloaded. This is still a
fairly new sharing mechanism. It has the potential to provide easy installation and
configuration of large blocks of virtual machines at the same time by using a standard
definition of a virtual machine. The virtualization management system that you
are using will need support; currently only the Enomalism Virtualization Console
(http://www.enomalism.com/) supports this feature. It will be interesting to see
whether it will be supported by any other management applications going forward.

Summary
In this chapter we discussed some of the newer ideas that are gaining ground
around Xen.

libvirt: A great API that simplifies access to virtualization instances in a
vendor/hypervisor independent way.
VMcasting��: A new and innovative way of transferring virtual machine
images from the server to the client using the RSS 2.0 format.

•

•

Index
A
advanced storage options, Xen

GNBD 98
RAID 98

B
bridged networking, Xen

about 74
dom0, seting up 76
domU configuration file , creating 75
hardware MAC address 77
network bridge 74
transparent bridging 74
Xen server, booting up 76

C
CentOS system

about 44
installing, qemu using 45, 47

chipsets
AMD Pacifica 45
Intel VT 44

components, LVM
logical extent 93
logical volume 93
physical extent 93
physical volume 93
volume group 93

D
Debian package management tools

debootstrap 38
dpkg 38

debootstrap 38
device mapper encryption, cryptographic

API using
about 101
root file system, encrypting 101
Ubuntu, installing 106
virtual block devices, creating 102-104

device mapper encryption, LUKS using
about 107
root file system, encrypting 107
Ubuntu, installing 110
virtual block device, creating 108-110

dom0 7, 10
domain 10
domain configuration files

about 53
disk, options 54, 55
kernel, options 54
memory, options 54
name, options 54
on crash, options 55
on reboot, options 55
options 54
ramdisk, options 54
root, options 54
vcpus, options 55
vif, options 55

domU 8, 10
domU kernel

compiling 30, 31

F
Fedora Core

installing guide 11

[130]

files
about 87
disadvantages 88

forthcoming technologies, Xen
libvirt 123
Vmcasting 125

G
Global Network Block Devices. See GNBD
GNBD

about 98
uses 99

guest 5, 10
guest domain

migration 113
guest domains, Xen

CentOS 44
CentOS, creating 48
creating, necessary information 39
creating, strategy using 27
creating, xm used 39
NetBSD 40
NetBSD, creating 44
Slackware 49
Slackware, creating 50
Ubuntu Feisty 32
Ubuntu Feisty, creating 37

H
hardware emalution. See also system

emalution
Hardware Virtual Machine 10
host 5
HVM. See Hardware Virtual Machine
Hypervisor. See also Virtual Machine

Monitor
hypervisor

loading 16

L
libvirt

about 123
goals 124
 supported languages 124

virtual instance, abstract notions 123
Linux Unified key Setup. See LUKS
live migration 120

about 116, 119
advantages 122
parameters 119
server configuration 116-118
working 120
xend configuration file, modifying 119

Logical Volume Management. See LVM
LUKS 107-111
LVM

about 93
directory, creating 96
logical volume , creating 95
physical volume , creating on disk partition

94
Ubuntu, installing 94-97
uses 98

M
management tools, Xen

virt-manager 68
XenMan 64
xm 56

Mercurial repository 25
methodologies, virtualization

operating system level virttualization 6
paravirttualization 6
system emalution 5

migrating ways, guest domain
domain, restoring 115
domain, saving 115
live migration 116

migration, guest domain
prerequisites 113, 114

N
NetBSD system

about 40
installing 40-43
xenified kernels 44

network configuration, bridged networking
setting up to use bridging 75

[131]

network configuration, routed networking
network interfaces, creating 82

Network File System. See NFS
NFS

about 88
advantages 88
directory, setting up from a remote server

91, 92
guidelines, for using 92, 93
Xen domU kernel, compiling 88, 90

O
operation system level virtualization 6

P
PAE

about 28
modes, considerations 28, 29
modes, for running Xen 28

paravirtualization 6
Paravirtualized Virtual Machine 10
Physical Address Extension. See PAE
pre-defined targets, Xen 25

install KERNELS=linux-2.6-xen0 26
linux-2.6-xen0-build 26
linux-2.6-xen0-config 25
linux-2.6-xen0-install 26

pygrub, bootloader 32
Python modules 16

R
RAID

about 98
advantages 99
key concepts 98

Redundant Array of Independent Drives.
See RAID

root file system, Xen
encrypting 101
encrypting methods 101

routed networking, Xen
about 79, 80
domU, configuring 80, 81
domU, starting 82
xend, starting 81, 82

S
save and restore, domain

guidelines 116
Slackware

about 49
installing, Xen images used 49, 50

storage technologies, Xen
file storage 87
LVM 93
NFS 88

system emalution 5, 6

U
Ubuntu Feisty system

about 32
bootstrapping, debootstrap using 33-37

V
virt-manager

about 68
running 69-71
uses 71

virtualization
about 5
methodologies 5

virtual local area network. See VLAN
virtual machine 5, 10
Virtual Machine manager. See virt-manager
Virtual Machine Monitor 5, 10
virtual machines. See also guest domain
VLAN

about 84
dom0, forwarding request 86
first virtual machine, creating 85
second virtual machine, creating 85
virtual network, creating 84

VM. See virtual machine
Vmcasting 125, 126
VMM. See Virtual Machine Monitor

X
Xen

about 6
advanced storage options 98

[132]

advantages 9
architecture 8
booting 15
bridged networking 74
building, features 16
compiling 18-25
domain configuration files 53
domain migration 113
domU kernel, compiling 30, 31
features 9
features, latest version 7
forthcoming technologies 123
history 7
installing 18-25
installing, binary packages using 11
installing, from source 16
installing, ways 11
installing with yum 12-15
management tools 53
network configuration, setting up to use

routing 80
networking 73
networking options 73
packages, installing 12
PAE modes, for running 28
pre-defined targets 25
pre-requisite packages, installing 18, 19
routed networking 79
running, necessary steps 12-15
security 101

source files 17
storage technologies 87
terminologies 10
user space applications, libvirt using 124
versions 17
VLAN with NAT 84
working 7
Xen domain memory 32

Xen Domain. See also guest domain
Xen domain

migrating ways 113
Xen domain memory 32
xenified kernels, NetBSD system

netbsd-INSTALL_XEN3_DOMU 44
netbsd-XEN3_DOMU 44

Xen libraries
about 16
openssl 25
zlib 25

XenMan
about 64, 68
advantages 68
installing 65-67
installing, yum using 65

Xen Manager. See xm
xm

about 56, 64
installing 57-63
management functions 64

	Xen Virtualization
	Table of Contents
	Preface
	Chapter 1: Introduction
	What is Xen?
	How Does it Work?
	What Can I Do with It?

	Xen Terminologies
	Summary

	Chapter 2: Running Xen
	Installing Xen from Binary Packages
	Time for Action—Installing Xen with yum

	Installing Xen from Source
	Time for Action—Compile Xen

	Summary

	Chapter 3: Creating Virtual Machines
	A Plan for Creating Xen Domains
	Physical Address Extension
	Compiling a domU Kernel
	Xen Domain Memory
	Pygrub
	Ubuntu Feisty
	Time for Action—Bootstrapping an Ubuntu System

	NetBSD
	Time for Action—Install NetBSD

	CentOS
	Time for Action—Using qemu to Create a CentOS Image

	Slackware
	Time for Action—Utilize Xen Images from jailtime.org

	Summary

	Chapter 4: Managing Xen
	Xen Domain Configuration Files
	Xen Management User Interface—xm
	Time for Action—Xen Manager

	XenMan
	Time for Action—Install and Run XenMan

	Virtual Machine Manager
	Time for Action—Running virt-manager

	Summary

	Chapter 5: Networking
	Bridged Networking
	Time for Action

	Routed Networking
	Time for Action

	Virtual Local Network with Network Address Translation
	Time for Action

	Summary

	Chapter 6: Storage
	Files
	NFS
	Time for Action

	Logical Volume Management
	Time for Action

	Advanced Storage Options
	Redundant Array of Independent/Inexpensive Drives
	Global Network Block Device

	Summary

	Chapter 7: Encryption
	Device Mapper-Based Encryption
	Time for Action

	Device Mapper-Based Encryption Using LUKS
	Time for Action

	Summary

	Chapter 8: Migration
	Migration Requirements
	Saving and Restoring a Domain
	Time for Action

	Live Migration
	Time for Action

	Summary

	Chapter 9: Xen Future
	Libvirt
	Vmcasting
	Summary

	Index

