
A Modular Calculus for the

Average Cost of Data Structuring

A Modular Calculus for the
Average Cost of Data Structuring

by

Michel Schellekens
University College Cork-National University of Ireland

Ireland

1 3

Michel Schellekens
University College Cork (UCC)
National University of Ireland, Cork
Department of Computer Science
Centre for Efficiency-Oriented Languages
Western Road
Cork, Ireland
Email: m.schellekens@cs.ucc.ie

Library of Congress Control Number: 2008925540

ISBN-13: 978-0-387-73383-8

e-ISBN-13: 978-0-387-73384-5

Cover art:
Title of art work: This little light of mine

Tapestry artist: Pascale De Coninck
www.pascaledeconinck.com

Photographer: Dori O'Connell
www.dorioconnell.com

Tutorial CD:
CALVIN AND HOBBES ©1986 Watterson.
Dist. By UNIVERSAL PRESS SYNDICATE.
Reprinted with permission. All rights reserved.

© 2008 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

To my wife, Pascale De Coninck, and parents,
Yvan and Yvonne Schellekens.

Foreword

As of June 2008 it will have been 50 years since the award of my Princeton Ph.D.
During that academic year, aside from my research in symbolic logic, I worked on
the von Neumann computer at the Institute for Advanced Study to program a small
combinatorial puzzle. It took some collaboration, a little special coding, many hours
of trial and error, and the use of punched cards to get the correct sequence of com-
putations done on that machine. Today the problem is an exercise for undergraduate
classes.

The IAS computer was the prototype of machines built by IBM that were expensive
and very power hungry. They were as big as dinosaurs — and nearly as slow! The
progress in computer architecture over that half century since 57/58 (and even over
the last 25 years) has been truly astonishing. Now, for a fairly modest price, I have
sitting here on my desk an Intel Core Duo laptop running at a processor speed of
2.16 GHz, with an L2 cache of 2 MB, an on-chip memory of 1 GB, and a bus speed
of 667 MHz. The hard disk has a capacity of over 93 GB, and the external back-up
disk can store nearly 300 GB. The laptop itself has wireless I can use at the coffee
house down the street, a CD and DVD player, video output for lectures (or movies I
can show at home), and an internet connection via a high-speed cable modem here
on my desk. At the moment as I write I am listening to classical baroque music over
internet radio, but I can get literally hundreds of sound connections for all kinds of
music and talk radio. People would have killed for such personal computing power
only 20 years ago. And as the clerk at the computer store reminded me last week, my
laptop is even now somewhat outdated! By comparison the old IAS machine — now
standing as a sad, dead fossil at the Smithsonian Institution Museum in Washington,
D.C. — seems a rather small, baby dinosaur.

Let us also note that in less than a decade another dinosaur, the supercomputer,
has had a remarkable reincarnation. Genetic research, cryptography, and astronomy
— to name only a few areas — today would be all but unthinkable without the use
of supercomputers. A widely circulated news report this week told us:

A recent IBM research project that aims to replace electricity with pulses of light to make
data transfer between processor cores up to 100 times faster could lead to laptop-sized
supercomputers and drastically improved power consumption. The technology, called silicon

viii Foreword

nanophotonics, replaces electronic wires with pulses of light in optical fibers for faster and
more efficient data transfers between cores on a chip.

Not only are the reports of the death of Moore’s Law from 1965 much exaggerated,
as the alternatives to the older silicon technology are coming forward, but the multi-
core design will require a complete rethinking of algorithm development to take
advantage of on-chip parallelism.

And here is another news report that just came to me this hour via an e-mail list:

Intel has announced one of the smallest flash-memory drives that could give handheld devices
the power of desktop computers. The chip will compete with similar chips from Samsung,
which are used in gadgets such as Apple’s iPod and iPhone, but Intel’s chip comes with
a built-in standard electronics controller, which makes it easy and inexpensive to combine
multiple chips into a single, high-capacity hard drive. Since being introduced in the late
1990s, flash memory has revolutionized consumer electronics due to flash-memory chips
being smaller, more durable, and more energy efficient than magnetic hard disks, making
them the ideal replacement for hard drives in handheld devices such as MP3 players, mobile
phones, and even some high-end laptops.

Clearly we live in very exciting (computer) times!
I do not know whether I will still be alive to see the practical realization of quantum

computing, but I do know that I myself cannot even begin to take advantage of the
computing power sitting right here before me today. Of course, experts are indeed
putting the new machines through their paces and doing great new science; but I also
believe we have very, very much to learn still about crafting efficient algorithms. No
matter what new machine is produced, it is always possible to invent a nasty problem
beyond its capacity in memory and/or speed. But that does not mean that the new
facilities cannot produce excellent and improved results on older problems – if we
know how to take advantage of the new architectures and improved capabilities.

This brings us to the question of algorithm analysis, the topic of the present mono-
graph. Let us note first that worst-case analysis need not hold back good algorithm
development. An early success was Linear Programming: though there can be very
tough problems, current algorithms work very, very well in practical applications. A
somewhat related example is the problem of solving Boolean equations. The general
question is NP-complete, but recent implementations are having remarkable success.
Here is a quotation from the Wikipedia entry for the “Boolean satisfiability problem”:

Modern SAT solvers (developed in the last ten years) come in two flavours: “conflict-driven”
and “look-ahead”. Conflict-driven solvers augment the basic DPLL search algorithm with
efficient conflict analysis, clause learning, non-chronological backtracking (aka backjump-
ing), as well as “two-watched-literals” unit propagation, adaptive branching, and random
restarts. These “extras” to the basic systematic search have been empirically shown to be
essential for handling the large SAT instances that arise in Electronic Design Automation
(EDA). Look-ahead solvers have especially strengthened reductions (going beyond unit-
clause propagation) and the heuristics, and they are generally stronger than conflict-driven
solvers on hard instances (while conflict-driven solvers can be much better on large instances
which have inside actually an easy instance).

Modern SAT solvers are also having significant impact on the fields of software verifi-
cation, constraint solving in artificial intelligence, and operations research, among others.
Powerful solvers are readily available in the public domain, and are remarkably easy to use.
In particular, MiniSAT, which was relatively successful at the 2005 SAT competition, only

Foreword ix

has about 600 lines of code. Minisat is an example of a conflict driven solver, and an example
for look-ahead solvers is march dl, which won a prize at the 2007 SAT competition.

The point here, it seems to me, is that clever heuristics can have huge pay-offs. The
rub is that the finding of good heuristics is an art: past success may yield clues and
inspiration for attacking future problems, but continuing success is by no means
assured.

In the book before us, Michel Schellekens reports on work by him and with his
collaborators on a systematic method for doing the average-case analyses of a wide
class of algorithms.

He explains how the new approach builds on traditional methods, while solving
new problems in a new way. He makes a strong case for the effectiveness of the sci-
entific and mathematical foundations introduced for giving greater analysis accuracy
and re-use adaptability to the algorithm designer.

As the author outlines in the concluding Chapter 11, exploiting features assuring
modularity always seems to be good design advice. The language MOQA offers
both serious examples of how to achieve modularity as well as some interesting the-
oretical problems to be explored. The parallel facilities of the language also open up
other possible areas for study which could impact both future software and hardware
design.

The basics set out here so clearly should lead to many new investigations and
results.

Berkeley, California, December 2007 Dana S. Scott

Foreword

Every human on the planet routinely, daily, grapples with estimating the relationship
between best-case, average-case, and worst-case times for a myriad of issues. How
long will the drive to the airport take? How long will I be in labor? How long will
the monsoons last? When will I get through the checkout line? Will this professor
ever stop talking? Typically, we humans deal with these estimates with aplomb,
easily exploring the space of probabilities and consequences to come up with a daily
schedule that is mostly right. However, some of us, maybe as a group, scientists and
engineers, but certainly myself, often look too deep. It is of no end of annoyance to
my spouse that I normally arrive at an airport very early. Typically, early enough to
get a meal and get some work done. Traffic on Hwy 101 along the San Francisco Bay
Peninsula, which I take to get to the San Francisco airport from my home in PaloAlto,
is notorious for having a very wide distribution of transit times. And, not wanting
to be rushed, I estimate near-worst-case and arrive, really, too early. What is the
actual worst-cast travel time from Palo Alto to San Francisco? Well, if an earthquake
struck nearby it could be days or weeks. So, my estimate of travel time doesn’t really
consider the actual worst-case but incorporates some level of probabilistic analysis
to come up with a typical worst-case. My spouse, on the other hand, likely estimates
toward best-case and really isn’t too often too late. She just ignores more outliers
than I do and things generally work out. Most humans, I assume, proceed similarly.

When we move into the realm of real-time scheduling, ignoring outliers is no
longer possible. Definitive mechanisms have to be in place to accommodate all out-
comes (except those of complete system failure). For systems in which computation
must occur before a specified deadline the analysis must include a value for what
is typically called worst-case execution time (WCET). The literature contains much
work on WCET, how to measure it and how to constrain it, for every conceivable
programming language, runtime, and environment. It is a very difficult problem.
And, a miscalculation can cause system-wide failures.

In my role as specification lead of the expert group for Java Specification Request
001, The Real-Time Specification for Java (RTSJ), one of the most important areas,
to me, was to provide the RTSJ platform with fundamental semantics and interfaces
which would allow developers to manage WCET miscalculations with more ease

xii Foreword

that in typical real-time development environments. The RTSJ includes a subsystem
called, ‘cost enforcement’. ‘Cost’ is the term used in real-time scheduling analysis
to mean the amount of time a task needs to use the processor. WCET is often used as
the value for cost. Cost enforcement in the RTSJ looks at the cost parameter not only
as information for the real-time scheduling analysis but also as a contract with the
system. The system will not allow a task to use more processor time than the value
given in the cost parameter. If a task does attempt to exceed this value it is stopped.
In systems without such a mechanism what may happen is that an errant task, or a
task for which WCET was miscalculated, can cause a cascade of deadline misses
often resulting in a system-wide failure. With cost enforcement the errant task is
stopped and the system has the opportunity to dynamically correct the situation. It is
my belief, and also of the JSR-001 expert group, that any modern, serious real-time
system requires a mechanism like cost enforcement. The point I wish to make here
is that because WCET is so difficult to predict yet crucial to correct system function
designers must often go to great lengths to accommodate the inherent inaccuracies.

So we come to the work of Michel Schellekens, the subject of this book. I first
interacted with Michel on the advice of the Director of University Relations at Sun
Microsystems, Inc., where I am a Distinguished Engineer and lead the Real-Time
Java effort. Michel’s work immediately interested me because he was attempting to
shed new light onto an area previously thought to be, by the best minds in computer
science and computational theory, essentially opaque. Michel and I have kept in
touch over the years. I strongly supported him with the founding of the Center for
Efficiency Oriented Languages (CEOL), including a donation of the RTSJ platform
on Sun servers, and attended the opening in Cork on November 10, 2003.

Michel’s work attacks, head on, the problem: Is there a way to obtain a theo-
retical upper bound on the average time complexity of an algorithm given average
inputs. This is not trivial.Algorithmic time complexity, although difficult, often yields
concrete results for best and worst case situations. One inspects the algorithm and
imagines an input set which will cause the algorithm to do the least or most work,
respectively. However, even thinking about what is an average case set of inputs,
how to identify such a set in a general way and to track such sets throughout the
computation to derive an upper bound on average time complexity is truly amazing
in scope.

The work in this book clearly shows that the full story on best-, average-, and
worst-case execution time is not yet fully written. I fully expect Michel’s work
to move from the algorithmic domain into the execution domain and thence into
useful commercial products. It’s only a matter of time. When this happens it will be
interesting to note that the computer scientists, computational theorists and computer
system practitioners have taken over five decades to produce systems which deal with
the relationship between best-, average-, and worst-case times as easily as my spouse
does on every trip to the airport.

Palo Alto, California, November 2007 Greg Bollella

Preface

The Analysis of Algorithms is a core Computer Science area which provides in-
formation on the expected, i.e. the average-case, performance of algorithms. Such
information is useful in a variety of applications, including power estimation and
resource budgetting in a real-time context. The Analysis of Algorithms also provides
fundamental insights in the design of efficient software. Hence, both from an applied
and a theoretical perspective, the investigation of improved methods and tools for
static average-case analysis is a worthwhile goal.

Average-Case Analysis involves a variety of techniques which, typically, do not
allow for automation. Currently algorithms must be analyzed on a case-by-case basis
and it is not feasible in general to statically derive the average number of basic steps
carried out by an algorithm during its execution. Various bottle-neck problems have
been high-lighted in the literature and some well-known algorithms escape analysis.

In view of the status of the field, the ultimate aim to provide a unified foundation
for average-case analysis motivated the work of many authors including [Knu73,
FS95, Ram96, Vui80]. As pointed out in [Vui80]:

A progress in our understanding of these questions should drastically affect the way in which
we discover and explain the fundamental algorithms, as catalogued by Knuth [Knu73] and
Aho et al [AHU87].

The aim of this work is to present a new approach to the Average-Case Analysis
of Algorithms, based on the novel notion of random bags and their preservation. The
view presented here is that the notion of a random bag may serve as a unifying model
for abstract data structures and their data distribution, while random bag preserva-
tion enables the constructive tracking of the distribution during computations. The
approach inspired novel algorithms and considerably simplified their average-case
analysis.

The work presents a modular calculus for static average-case analysis which dras-
tically simplifies the analysis and opens up the way for novel explorations on static
timing tools. Random bags also contribute a visual way to represent data and their dis-
tributions, which, in addition to facilitating average-case analysis, provides a useful
teaching aid.

xiv Preface

A parallel between the role of Static Analysis in Software Engineering and the
role of Calculus in “real” Engineering may be helpful to illustrate the motivation
behind the research. Engineering offers the capacity to analyse the strength of a
construction, such as a bridge, by analyzing its blue prints, rather than subjecting it
to heavy loads to test its limits. This approach should ideally find a natural parallel in
Software Engineering via Static Program Analysis. Rather than executing a program
on a large selection of inputs to experimentally derive information on its average-
case behaviour, the goal is to derive this information statically via an analysis of the
program’s source code. Calculus supports the analysis of blue-prints in Engineering.
Similarly, the aim of this work is to provide a foundation for a Calculus supporting
Static Average-Case Analysis of a program’s source code. This is a major challenge
and our aim is not to provide an all-encompassing answer. Instead, we focus on
the introduction of new advances in this area as a basis for a simplified and unified
theory of average-case analysis and as a potential platform on which to build future
improved modular static analysis tools.

A central aspect of the novel approach, which distinguishes it from prior ap-
proaches to Average-Case Analysis, is the use of randomness preservation to ensure
the compositionality property, well-known from the Semantics and the Real-Time
Language areas, in the context of the Analysis of Algorithms. Compositionality can
rightfully be referred to as the “golden key” to static analysis, witnessed by its central
role in static worst-case time analysis. A main theme of this work is that composi-
tionality, combined with the capacity for tracking data distributions, unlocks a novel
technique for modular average-case analysis. This approach provides the inspiration
for theMOQA1 “language”. The language essentially consists of a suite of random
bag preserving data-structuring operations together with conditionals, for-loops and
recursion and hence can be incorporated in any traditional programming language,
importing all of its benefits in a familiar context2.

A key feature of MOQA is that its operations have been purpose designed to
ensure the capacity for a compositional static average-case analysis ofMOQA code.
The guaranteed compositionality property of MOQA programs brings a strong
advantage for the programmer. The capacity to combine parts of code, where the
average-time is simply the sum of the times of the parts, is a helpful advantage in
static analysis. Moreover, re-use is a key factor in our approach: once the average
time is determined for a piece of code, then this time will hold in any context. Hence
it can be re-used and the timing impact is always the same. Compositionality also
improves precision of static average-case analysis, supporting the determination of
accurate estimates on the average number of basic operations of programs.

It is a main theme of the current work to introduce the new foundation for average-
case analysis and to illustrate its applicability, as well as to motivate and specify the
MOQA language and discuss its associated static average-case timing tool Distri-
Track.

1 MOdular Quantitative Analysis.
2 MOQA is implemented at CEOL in Java 5.0 as MOQA -Java.

Preface xv

The work is carried out at the intersection of several areas: Analysis of Algorithms
and Random Structures, Semantics, Real-Time Languages, Static Program Analysis,
Modular Design and the mathematical theories of Finite Partial Orders, Linear Ex-
tensions, Multi-Sets and Probability Theory. Hence the material may be useful for
a variety of researchers and students, with interests in Computer Science, Electrical
Engineering or Mathematics.

We provide an overview of the chapters in this work.
Chapter 1 provides an introduction to the new techniques for average-case anal-

ysis and focuses on a motivation of the central notions involved. This includes a
motivation of compositionality as the “golden key” to static timing and the need for
novel language design to reach compositionality, including the related concept of an
Efficiency-Oriented Language.

The chapter provides a brief introduction to the MOQA language, for which
static average-case timing can be achieved in a modular way through the tracking of
distributions. Random bags are introduced as concise ways to capture data and their
distribution and distribution tracking is incorporated via the concept of random bag
preservation. The split operation, well-known from algorithms such as Quicksort and
Quickselect, is provided as an example of a random bag preserving operation. This
example also serves to illustrate the tracking of distributions inMOQA and the use
of the notion of a separative function to establish random bag preservation.

The chapter also discusses the central Linear-Compositionality Theorem, which
forms the basis for the static derivation of the average-case time of MOQA pro-
grams. Advantages of theMOQA approach are outlined and the chapter concludes
with a discussion of the related area of bridging Semantics and Complexity and the
area of Real-Time Languages.

Chapter 2 presents introductory notions, including partial orders, series-parallel
orders, trees, heaps and bags. A brief overview of some basic sorting algorithms is
provided as well as an introduction to standard timing measures, including exact
time, total time, worst-case, best-case and average-case time.

Chapter 3 introduces the central notion of compositionality, including IO-compo-
sitionality.Worst-case time is shown to be semi-IO-compositional while average-case
time is shown to be IO-compositional. The Average-Case Time Paradox is discussed
in this context. This paradox regards the fact that even though average-case time is
shown to have better compositionality properties than worst-case time, in practice
the derivation of average-case time is known to be much more difficult than worst-
case time. The paradox is shown to be linked to the potential lack of randomness
preservation of standard algorithms, including well-known examples such as Bub-
blesort and Heapsort. Moreover, the chapter motivates how IO-compositionality of
the average-case time measure can be used, in combination with randomness preser-
vation, to obtain linear-compositionality. This greatly facilitates average-case time
analysis and overcomes the Average-Case Time Paradox.

Chapter 4 revisits in a slightly more general context, the fundamental notions of
random structures, random bags and their preservation, which have been introduced
in Chapter 1. The State Theorem is presented which enables an interpretation of

xvi Preface

states in random structures as “generalized permutations”. Chapter 4 also introduces
the central notion of an isolated subset. An isolated subset forms a subset of a partial
order such that the restriction of the random structure over this partial order to the
isolated subset is guaranteed to yield a new random structure. A simplified definition
of an isolated subset is obtained for the case of series-parallel orders. The chapter
concludes with the Extension Theorem, which demonstrates that it is sufficient to
define random bag preserving operations locally on an isolated subset, where the
extension of the operation to the entire random structure is obtained in a natural way.

Chapter 5 introduces the basicMOQA operations, including the Random Prod-
uct, the Random Deletion and Percolation, the Random Projection, the Random
Split and the Top and Bot operations. Each of these MOQA operations is shown
to be random bag preserving. Deletion operations typically are not included in the
context of automated average-case analysis, since the analysis of deletions with re-
spect to average-case time is well-known to be problematic, even in the context of
traditional average-case analysis. Hence the Random Deletion opens up the way
for the inclusion of novel algorithms, such as Percolating Heapsort and Treapsort,
which are analyzed in Chapter 9. The Extension Theorem of Chapter 4 is applied to
extend these operations from local applications on isolated subsets to applications
over the entire random structure. Uniformly random bag preserving operations are
singled out as of particular interest, since this type of operations enables simplifi-
cations of probability computations in later chapters. The MOQA operations are
shown to preserve series-parallel data structures which yields a characterization of
the so-calledMOQA atomic-constructible data structures as series-parallel orders.
Finally, some simplifications for the series-parallel case are obtained in the context
of the computation of cardinalities of random structures. Such simplifications for
series-parallel orders will also be useful in the context of Chapter 6, which regards
the average-case analysis of the basicMOQA operations.

Chapter 6, joint with D. Early, presents the detailed average-case analysis of the
basicMOQA operations, resulting in the formulas obtained by D. Early. As shown
in Chapter 7, MOQA programs are Linearly-Compositional with respect to the
average-case time, i.e. their average-case time can be expressed as linear combi-
nations of the average-case times of more basic components. Hence, ultimately, a
successful average-case time derivation yields the average-case time of MOQA
programs, expressed in terms of the average-case times of the basicMOQA opera-
tions. Formulas for the average-case times of basicMOQA operations are obtained
in Chapter 6 and simplified formulas are derived for the case of series-parallel orders.
These formulas are systematically applied in Chapter 9, which presents examples
of compositional average-case time derivations of MOQA programs. Finally, the
formulas of this chapter are illustrated via basic applications involving inductively
defined data structures, such as linear orders and complete binary trees. Chapter 6
concludes with a demonstration of combinatorial identities used in the derivation of
the average-case time formulas.

Chapter 7 provides the specifications for the MOQA language, with special
attention given to conditionals and recursion, which typically form a challenge for
static timing analysis. The random bag preservation ofMOQA programs is demon-

Preface xvii

strated and the method for the linear-compositional derivation of the average-time
ofMOQA programs is outlined.

Chapter 8 provides examples of well-known sorting and search algorithms imple-
mented inMOQA. It also includes examples of two novel algorithms, Percolating
Heapsort, the first randomness preserving version of the Heapsort algorithm, and
Treapsort, a sorting algorithm over treaps; both of which are essentially based on the
Random Deletion operation of Chapter 5.

Chapter 9 provides the compositional average-case time derivation of the pro-
grams discussed in Chapter 8, with a main focus on illustrating the use of random
bags in this context. The chapter in particular presents the first exact average-case
time analysis of a heapsort variant via an analysis of Percolating Heapsort. Compo-
sitional average-case time derivations, whenever appropriate, rely on the formulas
obtained in Chapter 6. The derivations obtained in this chapter illustrate the basic
techniques involved in the static timing tool Distri-Track.

Chapter 10, joint with D. Hickey and M. Boubekeur, discusses in more detail
the static timing tool Distri-Track, developed by D. Hickey. Distri-Track analyses
MOQA algorithms programmed in Java, using an implementation ofMOQA by
J. Townley. Distri-Track enables the automated static derivation of average-case time
of most of the MOQA programs presented in Chapter 8. Experiments, including
comparisons with time derivations relying on a Java profiler, are discussed, as well
as potential implications for Real-Time Languages. Finally, Chapter 11 presents the
conclusion and some potential future work.

The book is accompanied by a software tutorial “Static average-case analysis of
programs: a beginner’s guide to successful tracking”. The tutorial requires Adobe
Flash Player, which is freely available online at http://www.adobe.com/. The tutorial
provides an introduction to the main concepts used in this work as well as videos
illustrating the basic MOQA operations and a selection of MOQA programs.
The reader is advised to read Chapters 1 and 3, followed by a viewing of the tutorial,
before proceeding with later chapters in this work.

Cork, Ireland, December 2007 Michel Schellekens

Acknowledgements

Sincere thanks to the CEOL-team for helpful comments on the presentation of the
work and countless hours of interesting discussions. It has been a pleasure to work
with excellent, critical and inquisitive students. Warm thanks to colleagues Joseph
Manning and Emanuel Popovici for their friendship and support. Special thanks to
Chantal Berline who reviewed some of the earlier drafts and provided several PPS
students “on loan” to CEOL. Steve Brookes suggested the relation with pomsets.
Schloß Dagstuhl and DAAD supported a research stay during which some early
ideas were explored. Science Foundation Ireland’s strong support3 enabled the full
exploration of the approach, the implementation of the MOQA language and the
associated static timing tool Distri-Track, as well as the Flash implementation of the
MOQA tutorial. My thanks to the following researchers, both from academia and in-
dustry, who were supportive from the start and whose kind words made a difference in
challenging times: Chantal Berline, Greg Bollella, Steve Brookes, Roberto di Cosmo,
Gordon Plotkin, Dana Scott and Dave Vernon. Also thanks to Rob Esser, Philippe
Flajolet, Don Knuth and Peter Puschner for encouraging comments on the nature
of the work. The following researchers co-authored chapters in this work: Diarmuid
Early co-authored Chapter 6, “Average-Case Time of Basic MOQA Operations”
and Dave Hickey and Menouer Boubekeur co-authored Chapter 10, “Distri-Track”.
David Devlin and Yin Jie Chen developed the Flash implementation of theMOQA
tutorial, which accompanies this work.

3 SFI Investigator Award 02/IN.1/181.

Contents

1 Introduction . 1
1.1 Static Average-Case Analysis . 2

1.1.1 The Need for Static Average-Case Analysis Tools 2
1.1.2 Compositionality: the Golden Key to Static Analysis 2
1.1.3 The Main Bottleneck for Static Average-Case Analysis 3

1.2 Removing the Bottleneck for Static Average-Case Analysis 4
1.2.1 The Need for Novel Language Design 4
1.2.2 Efficiency-Oriented Languages . 4
1.2.3 The Meaning of Static Timing in our Context 5

1.3 TheMOQA Language . 6
1.3.1 General Description . 6

1.4 Tracking Distributions . 12
1.4.1 The Uniform Distribution . 12
1.4.2 S-Distributions . 13

1.5 Random Bag Preservation . 14
1.6 The Necessity of Guaranteeing Random Bag Preservation 17
1.7 A Sufficient Condition for Random Bag Preservation 20

1.7.1 Split: an Illustration of Random Bag Preservation 21
1.7.2 Split: the General Case . 26
1.7.3 Tracking S-Distributions inMOQA 26

1.8 MOQA Operations . 27
1.8.1 An Overview of the BasicMOQA Operations 27
1.8.2 Conditionals, Loops, Recursion . 28

1.9 Compositionality . 28
1.9.1 Average-Case Time is IO-Compositional 29
1.9.2 Linear-Compositionality Theorem . 29

1.10 Related work and advantages ofMOQA . 30
1.11 Related Areas . 32

1.11.1 Bridging Semantics and Complexity . 33
1.11.2 Implications for Real-Time Languages 36

xxii Contents

2 Introductory Notions . 39
2.1 Partial Orders & Hasse Diagrams . 40
2.2 Series-Parallel Orders . 41
2.3 Trees & Heaps . 43
2.4 Basic Sorting Algorithms . 44
2.5 Uniform Distribution and Bags . 47
2.6 Timing Measures . 49

3 Compositionality . 51
3.1 Compositionality as a Key to Software Timing 51
3.2 IO-Compositionality . 52
3.3 Strict Semi IO-Compositionality for Worst-Case and Best-Case Time 54
3.4 Average-Case Time is IO-Compositional . 56
3.5 From IO-Compositionality to Linear-Compositionality 57

4 Random Bag Preservation and Isolated Subsets 65
4.1 Random Structures . 65
4.2 Floor and Ceiling Functions . 70
4.3 Free Sets of Labels . 71
4.4 Free Swaps on Random Structures . 73
4.5 Random Bag Preserving Functions . 74
4.6 Isolated Subsets . 79

4.6.1 Strictly Isolated Subsets . 82
4.6.2 Simplified Definitions for SP-Orders . 90
4.6.3 Extension Theorem . 90

5 Basic MOQA Operations . 95
5.1 The Fundamental Data Structuring Problem . 96
5.2 The Random Product . 96

5.2.1 The Product of two Finite Partial Orders 97
5.2.2 The Product of Two Data-Labelings . 98
5.2.3 The Binary Random Product . 106
5.2.4 The Unary Random Product . 106

5.3 Random Deletion and Percolation . 108
5.3.1 Deleting an Extremal Label . 108
5.3.2 Percolation and Deletion of Arbitrary Labels 110

5.4 The Random Projection . 118
5.5 The Random Split . 120

5.5.1 The Random Split of a Discrete Partial Order 120
5.5.2 Random Split of a Random Structure . 121

5.6 Top and Bot Operations . 125
5.7 Contractive Operations Revisited . 127
5.8 Uniformly RB-preserving Functions Revisited 127
5.9 MOQA -Constructible Random Bags . 128
5.10 MOQA -Constructible Random Bags are Series-Parallel 129

Contents xxiii

5.11 Simplifications for SP-Orders . 129
5.12 Partitions and separative functions . 130

6 Average-Case Time of Basic MOQA Operations
Joint with D. Early . 133
6.1 Definitions . 133
6.2 Average-Case Time . 134

6.2.1 The While Condition . 134
6.2.2 Push-Up and Push-Down . 135

6.3 Series-Parallel Partial Orders . 137
6.3.1 Series-Parallel Composition Laws for the τ Function 137
6.3.2 Series-Parallel Composition Laws for Delete 141

6.4 Examples . 144
6.4.1 Calculating the τ Function . 144
6.4.2 Inductively Defined Structures . 145
6.4.3 Combinatorial Identities . 147

7 The MOQA Language . 149
7.1 Conventions . 150
7.2 Variables . 151
7.3 Types . 151
7.4 Arithmetical Expressions . 153
7.5 Boolean Expressions . 154
7.6 Boolean Statements . 157

7.6.1 Probabilities of Boolean Statements . 157
7.6.2 Computing Probabilities of Boolean Statements 159
7.6.3 Reduction to Prime DNF’s . 160
7.6.4 Probabilities for Prime Conjunctions . 161

7.7 Random Structure Expressions . 164
7.8 Random Conditional Statements . 165
7.9 Recursion . 167
7.10 MOQA Programs . 171
7.11 Randomness Preservation . 172
7.12 Compositional Determination of Average-Case Time 173
7.13 Linear-Compositionality forMOQA Programs 174

8 Examples of MOQA Programs . 179
8.1 Insertionsort . 179
8.2 Merge . 179
8.3 Mergesort . 180
8.4 Quicksort . 180
8.5 Percolating Heapsort . 182

8.5.1 Historical Background . 182
8.5.2 Pseudo-Code for Percolating Heapsort 184

8.6 Treap-gen . 185

xxiv Contents

8.6.1 Oriented Binary Trees . 185
8.6.2 Treaps inMOQA . 186
8.6.3 Treap-Generation . 189

8.7 Treapsort . 190
8.8 Quickselect . 190

9 Average-Case Analysis of MOQA programs . 193
9.1 Insertionsort . 193
9.2 Mergesort . 195
9.3 Quicksort . 195
9.4 Percolating Heapsort . 197
9.5 Treap-gen . 200
9.6 Treapsort . 201
9.7 Quickselect . 206

10 Distri-Track
Joint with D. Hickey and M. Boubekeur . 209
10.1 Analysable Code . 209
10.2 Distri-Track Architecture . 211

10.2.1 Pre-Analysis . 211
10.2.2 The Analyser . 213

10.3 Random Bag Trackers . 215
10.3.1 Condensed Representations . 215
10.3.2 Collective Representations . 216

10.4 Calculating the ACET . 218
10.5 Preliminary Evaluation Study . 219

10.5.1 Real-TimeMOQA . 219
10.5.2 Evaluation Study Description . 220

11 Conclusion and Future Work . 225

A Appendix: Proof of the State Theorem . 229
A.1 Depth-Levels . 229
A.2 Canonical State . 230
A.3 Canonical State Algorithm . 234

References . 237

Index . 243

Chapter 1
Introduction

Modularity is a crucial property in Computer Science, as clarified succinctly by
T. Maibaum in [Mai00]:

The only effective method for dealing with the complexity of software based systems is
decomposition. Modularity is a property of systems, which reflects the extent to which it is
decomposable into parts, from the properties of which we are able to predict the properties of
the whole. Languages that do not have sufficiently strong modularity properties are doomed
to failure, in so far as predictable design is concerned.

Achieving modularity is a main challenge in the context of the static derivation of
quantitative information from software code, such as execution time or power-use.
Quantitative information in practice typically is captured via two types of measures:
the worst-case and the average-case measure. While we will refer to the worst-case
measure on occasion, a main theme of this work is to propose a novel foundation for
modular static average-case analysis.

Modularity in this context can be captured in a natural way via the notion of
compositionality. This property brings a strong advantage for the programmer. The
capacity to combine parts of code, where the average-time is simply the sum of the
times of the parts, is a very helpful advantage in static analysis, something which is
not available in current languages, and moreover brings the possibility of re-use of
code.

Compositionality for average-case is however subtle and one may easily be tempted
to conclude that the average-case summation property “comes for free”. For gen-
uine compositional reasoning one needs to be able to track data and their distri-
bution throughout computations; a non-trivial problem. Indeed, the lack of an ef-
ficient method to track distributions affected all prior static average-case analysis
approaches. The core ideas presented in the monograph enable the finitary represen-
tation and tracking of the distribution of data states throughout computations. This in
turn enables one to unlock the potential of compositional reasoning and in particular
supports the design of the programming language MOQA. A key feature of this
language is that the average-case time complexity is “Linearly-Compositional” for
MOQA programs. In other words, the average-case time of MOQA -programs

2 1 Introduction

can be expressed as linear combinations of the average-case time of their basic
components [Sch09]. This considerably simplifies the average-case time analysis of
MOQA -programs and opens the way for (semi-)automation via modular timing.
The visual aspect of the distribution representation in this approach has a pedagogical
advantage, providing students with useful insights in the nature of algorithms and
their analysis.

Before proceeding with a general overview of the language, we clarify some
fundamental issues which have motivated its development.

1.1 Static Average-Case Analysis

1.1.1 The Need for Static Average-Case Analysis Tools

Static average-case analysis merits independent exploration in view of its core Com-
puter Science nature [Knu73, CLR96]. From a practical point of view, static average-
case analysis tools have the potential to contribute to a variety of areas. Average-
case execution time (ACET) is a key measure in estimating heat-dissipation/power
consumption, since it provides information on “typical” input behaviour [UK03,
QND04]. Static average-case analysis also provides crucial information comple-
menting worst-case execution time (WCET) information. Such complementary in-
formation can potentially aid better budgeting of resources in a Real-Time context
[MP97]. However, at this stage there are no widely applicable static average-case
analysis tools available. Industry needs to rely on simulation, i.e. the execution of
code on a (sufficiently large) selection of data to experimentally derive information
on the average-case behaviour. This entails imprecision as sample spaces are not
necessarily representative and implies an extra cost factor as simulation is time con-
suming. The simulation problems affect both software and hardware analysis. Our
aim is to present a new approach which potentially can provide a basis for novel mod-
ular static analysis tools to address this need. The focus of this monograph however
will be on the presentation of this new method for modular average-case analysis,
where the exploration of applications in the above mentioned areas is regarded as a
separate matter.

1.1.2 Compositionality: the Golden Key to Static Analysis

To understand why the compositionality principle is a crucial static timing principle, a
comparison with static worst-case timing is useful. It is well-known that static worst-
case timing techniques have been successfully developed and a variety of tools have
been developed as a result. There are a multitude of these of which we only report
a limited selection, ranging from academic approaches, e.g. [KFG93, HBW02], to
commercial ones such as Absint’s WCET analyzers. The principle which enables the
development of static worst-case timing tools is a partial compositionality principle

1.1 Static Average-Case Analysis 3

which lies at the heart of all current static worst-case timing tools. This principle
essentially states that the worst-case time of the sequential execution of two programs
is bounded by the sum of the worst-case times of these programs, which enables
WCET estimation. This allows real-time engineers for instance to estimate the worst-
case time of a for-loop in terms of a summation over the worst-case times of the
executions of the for-loop body. Note that the worst-case measure is only partially
compositional, in that we cannot get the exact determination of the worst-case time,
only an upper bound of this time. For a tentative framework developed to address
full compositionality for WCET, we refer the interested reader to [BP02].

Similar to the usefulness of a (partial) compositionality principle in a WCET
context, the availability of a compositionality principle for average-case time can
pave the way for static average-case timing tools.

For this one needs to address the following central question: given the average-
case time of two programs P1 and P2, how can this information be used to determine
the average-case time of the sequential execution of P1;P2?

Unless this sequential compositionality question is resolved, static average-case
tools remain beyond reach.

1.1.3 The Main Bottleneck for Static Average-Case Analysis

It is easy to see why the above compositionality question proves problematic to
answer: the average-case time of P2, in the context of the sequential execution P1; P2,
depends on the distribution of the input data for P2. This distribution however in
practice is typically not known since it will depend on the computation determined
by P1. Assume for instance that we know the distribution of the input data for P1 and
say we denote these input data by the collection I1. The actual computation of P1
over these input data I1 will produce the new input data for P2, say I2. However, one
typically cannot track the distribution throughout the computation, i.e. one cannot,
in general, compute the distribution over I2 from the distribution over I1. Results
have appeared on distribution transformations [Koz81], but these methods remain
purely mathematical and do not lend themselves to a concrete method for effectively
computing new distributions from prior ones. Probabilistic attribute grammars have
been proposed as one remedy to represent standard distributions in an effective
(computable) way [HC88], but again, no systematic method for efficiently tracking
these grammars throughout the computations is offered. Attribute grammars give
rise to useful ways to determine additional quantitative information such as standard
deviation [Mis03].

The compositionality problem for average-case analysis has been overcome via the
MOQA approach, as outlined below. In a nutshell, the static average-case analysis
tool Distri-Track statically tracks the distribution of the data during the computation
ofMOQA programs. This tracking is achieved through a finitary representation of
the distribution, referred to as a “random bag”, and through a careful design of the
basic operations to ensure that such finitary distribution representations are preserved
throughout the computation.

4 1 Introduction

1.2 Removing the Bottleneck for Static Average-Case Analysis

1.2.1 The Need for Novel Language Design

Automated average-case analysis is concerned with the design of domain specific
languages for which the average-case time can be statically derived from program
code. This field, and the general field of theAnalysis ofAlgorithms, has been plagued
by problems related to the fact that a lack of randomness preservation of standard op-
erations prevented the analysis of well-known algorithms. Randomness preservation
as we will see is tightly linked to the capacity to track data distributions.

The concrete problems facing (automated) average-case analysis been concisely
summarized in “Automatic Average-Case Analysis of Algorithms”, by P. Flajolet, B.
Salvy and P. Zimmerman [FSZ91]:

“Judging from the entirety of the analyses contained in Knuth’s volume on sorting
and searching, the only algorithms that we know how to analyse are those whose
complexity is equivalent to a parameter of a static structure. No general method is
known in order to analyse intrinsically “dynamic” algorithms.” As reported on page
64 of [FSZ91]: “examples that typically leave us helpless are heapsort and balanced
trees that modify either an ordered array structure or a tree structure.”.

The impasse to progress is directly related, as pointed out above, to the current
state of knowledge in the analysis of algorithms.

The core obstacle to extend static average-case timing tools is that certain well-
known classical data structuring operations, such as the delete operation, fail to
exhibit compositional behaviour w.r.t. the average-case time measure. This led to
the consideration of the redesign of standard data structuring operations and more
generally novel language design to address the problem. This aim is captured by the
notion of an “Efficiency-Oriented Language”.

1.2.2 Efficiency-Oriented Languages

Efficiency-Oriented Languages1 (EO-languages) are languages which have purpose
designed operations to enable the modular (i.e. compositional) static extraction of
quantitative information, such as time or power use. In case traditional language
constructs fail to be modular, novel language constructs are used to replace the
original language constructs to ensure modularity. This allows Efficiency-Oriented
“languages” to be naturally embedded in traditional programming languages. The
design of EO-languages is a major challenge. Yet two examples of such languages
currently exist which illustrate that there is scope for further development in this
area.

1 A terminology coined by CEOL.

1.2 Removing the Bottleneck for Static Average-Case Analysis 5

A first example is provided by the Burns-Puschner approach which achieves com-
positionality, as opposed to partial compositionality, for the worst-case measure. This
approach involves a purpose designed conditional statement [BP02].

The programming language MOQA is a new language to enable the composi-
tional determination of the average-case number of basic instructions of its programs
based on the notion of randomness preservation. We remark that its constructs have
been designed to incorporate the traditional data structuring operations, replacing
non-compositional standard data structuring operations whenever needed.MOQA
has been specified and implemented in Java at CEOL2.

It is important to distinguish EO-languages from standard Real-Time languages.
Both languages share a similar goal, namely to enable the derivation of quantitative
information on programs written in the language. Standard Real-Time languages
are typically obtained from existing programming languages by restrictions which
guarantee termination, such as exclusions of while-loops and by placing restrictions,
e.g. on nested conditionals, to make worst-case analysis practical. Real-Time Lan-
guages typically do not significantly alter existing language constructs. This has
the advantage that RT-languages remain close in spirit to traditional programming
languages3.

The disadvantage of this approach is that compositionality can not be certified for
traditional RT-languages. This has two significant implications: a loss of precision,
clear from the fact that worst-case estimates typically overshoot the real worst-case
time through upper bounds, and lack of re-use of prior estimates in case of a change
in code. Hence traceability is typically lost in this context. EO-languages address
this problem through novel language construct design, according to need, in order
to guarantee compositionality.

In designing EO-languages, it is important that novel constructs do not drastically
increase the complexity of standard constructs which they replace. The novel condi-
tional statement introduced in [BP02], does tend to increase time. The RT-language
area accepts moderate slow-downs if increased predictability results. For the case
of [BP02] care needs to be taken since the slow-down can be drastic and methods
are discussed on how to potentially avoid this problem. For MOQA , constructs
typically have equal or improved speed when compared to traditional counter parts,
when one ignores the book keeping involved to enable the tracking of distributions,
while an increase by a constant factor is typically involved in the book keeping.

1.2.3 The Meaning of Static Timing in our Context

Before continuing with a discussion of theMOQA language we clarify the meaning
of static timing. Static timing as usual refers to the capacity to estimate the time which
a program would take upon execution, directly from an analysis of the program’s

2 Implementation by J. Manning, J. Townley.
3 With some exceptions to this rule in the context of RT-Java which also needs to account for time
involved in garbage collection.

6 1 Introduction

code, as opposed to deriving information on the time from an actual running of the
program (simulation).

To clarify the meaning of “time” in our context, we remark that we will focus on
data structuring algorithms which are comparison-based, i.e. for which each action
(data-reorganization) is based on a prior comparison between data. The average-case
time TA(n) of an algorithm A is then defined as the average number of comparisons
carried out over inputs of size n. This is in line with the standard approach in the
average-case analysis area [Knu73, FSZ91]. To fine-tune the static analysis further,
other primitive operations (such as swaps and assignments) can be accounted for as
discussed in [BHS06].

A few issues need to be clarified in this context. As observed, the definition of
“time” in terms of the number of primitive operations is consistent with the standard
definition of average-case “time” for algorithms [AHU87]. In practice of course, in
order to obtain an appropriate estimate of the execution time of an algorithm for
a given processor one needs to take into account (an upper bound of) the actual
time it takes to execute a primitive operation on the processor. Preliminary tests have
indicated that this approach can yield results which are quite close to results obtained
on the average-case execution time using a Java profiler [BHS06]. This is discussed
in more detail in Chapter 10.

Rather than referring to the number of primitive operations as “time” in our
context, perhaps it might better be to refer to this number as “cost”. Indeed, the
number of primitive operations can be used to help estimating various quantitative
cost aspects of the code, such as execution time, but also possibly power consumption.
Again, one needs to take into account the actual execution time or power consumption
of the primitive operations on a particular processor. Since it is customary to refer
to the number of primitive operations as “time” rather than “cost”, we will continue
to use the terminology “time” in the following. The reader should however keep the
intended meaning of this terminology firmly in mind.

The MOQA language will involve high-level basic operations, which can in-
volve a number of primitive operations. In the context of this work, these primitive
operations typically will be comparisons. The “time” of a basic operation is the
number of primitive operations executed in the basic operation. The “time” of a pro-
gram will typically be expressed via linear combinations over the times of the basic
operations.

1.3 The MOQA Language

1.3.1 General Description

We will provide a general overview, focusing on an intuitive introduction which
minimizes formality, where key notions will be revisited later in this work.

1.3 The MOQA Language 7

MOQA nature and scope

TheMOQA language is a special-purpose high-level language. TheMOQA data
structuring operations were originally designed to incorporate the standard operations
over abstract data types [MR95]. MOQA has extensive programming capacity in
the sense that it incorporates for-loops, (terminating) recursion, and conditionals.
This approach enables the programming of a variety of data structuring algorithms,
including most sorting and searching algorithms.

We remark thatMOQA can be viewed as a suite of data structuring operations,
which can be implemented in any existing general purpose programming language.
Note that we do not propose MOQA as a stand alone novel language. Instead we
advocate its use in a variety of contexts through appropriate implementation of the
basic operations in accordance withMOQA principles.

A first example of such an implementation isMOQA -Java, implemented in Java
5.0 at CEOL. Currently, MOQA ’s applicability is restricted to data structuring
contexts. Investigations are ongoing at CEOL to extend the scope to include modulo
computations and more general graph based applications.

MOQA data structures and data-labelings

The MOQA data structures consist of a finite number of finite partial orders,
represented by Hasse diagrams. A Hasse diagram represents the immediate directed
links between elements, omitting transitive and reflexive links [DP90]. Hence a wide
variety of standard data structures can be incorporated in this context. The nodes in
these graphs are interpreted as variables storing data.

TheMOQA data are labelings of the partial orders in the data structures.
A data-labeling is simply an assignment of a finite number of values, one value

per node of the data structure. These labels can be any value, e.g. natural numbers,
real numbers or words, or even paired data or other data structures containing data,
etc. Two conditions need to be satisfied in this context:

1. Label-comparability: Any two labels need to be comparable with respect to a
given order on labels4. For instance, natural numbers are always comparable and
so are real numbers, words,...

2. Order-consistency: In assigning labels as values to the nodes of a data structure,
the directed links of the data structure need to be respected. In other words, if
there is a directed link from a node x to a node y, then the label assigned to x
must be less than or equal to the label assigned to y.

We refer to any assignment of labels to all nodes of the data structure, respecting
the above order-consistency condition, as a data-labeling.

We remark that MOQA programs compute over data-labelings and transform
data-labelings to new data-labelings at each stage of the computation.

4 Labels are totally ordered.

8 1 Introduction

We briefly discuss the treatment of repeated labels in our context. At this stage we
remark that one approach to deal with repeated labels is to assume that each label,
repeated or not, comes equipped with a special tie-breaker value. During computa-
tions this index value is used as a tie-breaker to decide an outcome of a comparison
between identical labels. This of course amounts to considering all labels distinct
and hence our analysis, which is carried out on states and under the assumption of
distinct labels, will yield the correct result.

Hence from here on we will modify the definition of a data-labeling to be an
increasing bijection or in other words, an increasing function where label values are
pairwise distinct.

Definition 1.1. A data-labeling F is a function from a finite partial order (X,�) to
a countable totally ordered set of labels L∗ such that F is an increasing bijection.

Definition 1.2. Consider a data structure determined by a finite partial order (X,�)
and a linearly ordered collection of labels L∗. DL∗(X,�) denotes the collection of
all data-labelings over the partial order (X,�).

Example 1.1. We consider the example of the discrete partial order of size 3, denoted
by Δ3 and the collection of natural number labels L∗ = N . DN (Δ3) consists of all
lists of size 3 which take distinct natural number values.

Example 1.2. We consider an example of a data structure which is a tree T4 of size
4, where the tree T4 is determined by the Hasse diagram displayed on the left below.

Three examples of data-labelings of the tree T4 are displayed: the data-labeling F1
with the labels {1, 4, 6, 10}, a second data-labeling F2 with the labels {2, 4, 6, 9} and
a third data-labeling F3 with the labels {5, 9, 22, 35}. Note that the data-labelings of
the collection DL(T4) are “heaps” in the traditional meaning of this data structure
[AHU87].

64

10

2

6 4

9

5

22

35

9z

u

y

x
F1 F2 F3

1

MOQA states

To enable the timing of computations it is important to identify the states that data-
labelings can be in. Essentially, states reflect the relative order that the labels can be

1.3 The MOQA Language 9

in on any given data structure. The values of the labels are irrelevant in this context,
only their relative order is captured.

Consider for instance data-labelings F1 and F2 of Example 1.2. These data-
labelings are in different states since the order between the labels of y and z differs,
i.e. for data-labeling F1 the label for y is smaller than the label for z, while for data-
labeling F2 the opposite holds. Note that data-labelings F2 and F3 are considered
to be in the same state since the relative order between labels is the same for both
data-labelings.

In the context of so-called comparison-based algorithms, i.e. algorithms for which
each action is based on a prior comparison, the computation time can be reliably
estimated by the number of comparisons performed during a computation. This
number can then be multiplied by the expected time it takes to carry out actions
following a comparison, to produce a reasonable estimate of the execution time. In
this context data-labelings which are in the same state will lead to the same number
of comparisons during a computation. Hence, for the purpose of the analysis and
under the assumption that data are equally likely to occur in any of the states, it
suffices to carry out the analysis on states as opposed to on general data-labelings.
This reduces the data to be considered from a potentially infinite space to a finite
space, which enables the average-case analysis.

This type of reduction is a natural approach consistent with standard algorithms
analysis [AHU87] and will be formalized and generalized in our context via the
notion of a “random structure”, which essentially captures the finite state space. We
will provide further examples and a formalization of this notion below.

As usual in the analysis of algorithms, to simplify the analysis, we will assume
that there are no repeated labels involved in the states. Since, as observed earlier on,
data-labelings are assumed not to have repeated labels, the approach is a reasonable
one in our context.

To further illustrate the notion of a state, consider a simple example of unordered
lists of size 3. These can be represented in MOQA as data-labelings of a discrete
partial order of size 3. We recall from Example 1.1 that this order is denoted by
Δ3. Note that there can be infinitely many data-labelings. Consider for instance the
infinite sub-collection of lists of size 3, consisting of a particular selection of sorted
lists, say:

(1, 2, 3), (2, 3, 4), (3, 4, 5), . . . (n, n + 1, n + 2), . . .

Despite the possibility of infinitely many data-labelings, in practice each data-labeling
will occur in a unique state. Moreover, there will only be finitely many such states.
For instance, each of the above data-labelings is sorted, and hence occurs in the
unique sorted state. Similarly there are infinitely many reverse sorted lists, all of
which are in the reverse sorted state. To represent all states a list of size 3 can be in,
we fix three labels. Any three labels will do for this purpose, say the labels 1,2,3.

The six possible states for a list of size 3 can hence be represented by the 3!
possible data-labelings using only the 3 fixed labels 1,2 and 3:

{(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

10 1 Introduction

We illustrate this further with the data-labelings for the tree T4 in Example 1.2. We
recall that these data-labelings are heaps of size 4. If we use four distinct values, say
1,2,3,4, to represent the states then we have only three possible states as displayed.

4

2 3

1

23

2

3

1

1

4 4

H4[1] H4[2] H4[3]

Returning to Example 1.2, note that the first heap, data-labeling F1, is in state
H4[1]. The second and third heap, i.e. data-labelings F2 and F3, are in state H4[2].

Random structures to capture states

States are obtained by identifying data-labelings in case their relative order is the
same. This can be formally captured by the notion of a labeling-isomorphism.

Definition 1.3. Consider two partial orders (X1,�1) and (X2,�2).
A function Ψ : X1 → X2 is increasing if ∀x, y ∈ X1. x �1 y ⇒ Ψ(x) �2 Ψ(y).

Consider data-labelings F1 ∈ DL∗
1
(X1,�1) and F2 ∈ DL∗

2
(X2,�2). Let ≤1 and

≤2 represent the linear orders on the label sets L∗
1 and L∗

2 respectively.
Data-labelings F1 : X1 → L∗

1 and F2 : X2 → L∗
2 are labeling-isomorphic iff

1. the underlying orders are isomorphic; there exists an increasing bijection Ψ from
X1 to X2 which has an increasing inverse.

2. the bijection Ψ respects the ordering on labels, i.e.

(∗) ∀x, y ∈ X1. F1(x) ≤1 F1(y) ⇔ F2(Ψ(x)) ≤2 F2(Ψ(y)).

In case F1 and F2 are labeling-isomorphic, we denote this by F1 ≈ F2.

To simplify the presentation, we assume that we only consider data-labelings over
a single data structure, i.e. over a single partial order. We revisit the case of multiple
data structures in Section 1.4.2.

In case the finite partial orders (X1,�1) and (X2,�2) coincide, it suffices to
consider the bijection in the definition of labeling-isomorphic to be the identity
function, while (∗) reduces to:

(∗∗) ∀x, y ∈ X1. F1(x) ≤1 F1(y) ⇔ F2(x) ≤2 F2(y).

To distinguish this case from the general one, we define the following equivalence
relation on data-labelings F1 ∈ DL∗

1
(X1,�1) and F2 ∈ DL∗

2
(X2,�2):

1.3 The MOQA Language 11

F1 ≈∗ F2 ⇔ (X1,�1) and (X2,�2) coincide and (∗∗) holds.

The collection of states over a single data structure can be captured via the notion
of a random structure.

Definition 1.4. A random structure R(X,�) for a given set of data-labelings, say
DL∗(X,�), is defined to be the quotient of this set by the labeling-equivalence
relation ≈, i.e.

R(X,�) = DL∗(X,�)/ ≈ .

Remark 1.1. Representatives of the equivalence classes (i.e. “states”) can be picked
by fixing a fixed set of labels L ⊆ L∗ with same cardinality as the finite partial order
(X,�). Any such choice of labels L will do. Representatives, i.e. states, are then
obtained by considering the collection of data-labelings which only have pairwise-
distinct labels from the selected subset of labels5. We will continue to work in the
following with the collection of representatives (states) as opposed to the collection
of equivalence classes, where we denote this collection of representatives chosen
w.r.t to a set of labels L by RL(X,�). We will refer to this collection, with some
abuse of terminology, as a random structure.

Random structures capture the states over a given data structure and represent the
fact that each data-labeling is assumed to occur with equal probability in any of the
states of the random structure.

In summary:

InMOQA , the data-labelings of a given data structure occur in finitely many states.
Each data-labeling will occur in one of these finitely many unique states at any given
time. Moreover, data-labelings have equal chance to occur in one of these states.
The finite collection of data states is referred to as a random structure.

For data structures, such as lists and heaps, we use the following notation, where
we work modulo identification up to labeling-isomorphic copies:An denotes the set
of n! non-isomorphic lists of size n with pairwise distinct elements,Hn denotes the
set of non-isomorphic heaps of size n with pairwise distinct elements. Also, we let
Sn denote the set consisting of the single sorted list of size n.

We discuss probability distributions in more detail below.

5 Labelings of a partial order using labels from finite linearly ordered set of same cardinality as the
partial order correspond to the well-known mathematical notion of linear extensions of a partial
order. In Computer Science, this notion is also referred to as a topological sort.

12 1 Introduction

1.4 Tracking Distributions

InMOQA , we will make the implicit assumption thatMOQA data are produced
from random list inputs viaMOQA operations. I.e. each data-labeling is assumed
to be priorly constructed viaMOQA operations from a random input list.

The MOQA operations however will in general not preserve the uniform dis-
tribution, but will, as discussed in Section 1.4.2, lead to a more general type of
distribution.

In the context of MOQA , we will typically work under one of following two
assumptions on the random input lists from which other data are generated. In the first
case, based on a prior analysis of input data, the input data can be considered to be
random, i.e. of uniform distribution. In the second case, where there is no guarantee
of random inputs, data are randomized prior to processing, reducing the analysis to
the first case.

At this stage we briefly revisit the issue of repeated labels, before continuing with
a discussion of the two types of distributions.

Though repeated labels are allowed in MOQA , for the purpose of the time
analysis labels can be assumed to be distinct. This is due to the following approach.

Consider the case of random input lists, produced by case 2) above, i.e. via ran-
domization. In that case, for each list of size n, say with elements x1, . . . , xn, a
data-labeling which assigns the labels a1, . . . , an (possibly with repetitions) to these
elements, is transformed to a new data-labeling, determined by the application of
a random permutation σ applied to a1, . . . , an. I.e. the new values assigned to
x1, . . . , xn are aσ(1), . . . , aσ(n). In subsequent processing, when a comparison is
made between two identical labels, say aσ(i) and aσ(j), a tie-breaker can be applied
as follows. If aσ(i) = ak and aσ(j) = al, where ak = al, then the comparison
between aσ(i) and aσ(j) is decided based on the comparison between the indices k
and l. This implies that the list inputs, following randomization, can be viewed as
copies of the random lists of same size, which have pairwise distinct labels.

In case 1), the input lists (with repeated labels) are random from the start and a
similar method can be applied, where tie-breaker indices are randomly assigned to all
elements of the list. The random assignment is applied to all elements of the list (as
in case 2) above) as opposed to only the identical ones, since pre-processing to iden-
tify identical labels would involve e.g. a sorting algorithm which would drastically
increase the computation time.

1.4.1 The Uniform Distribution

Static analysis techniques for average-case analysis have focused on random data
to provide information on “typical”, i.e. average running time. This is for instance
the case for sorting algorithms such as Quicksort, for which the overall performance
on average, with respect to the uniform distribution on input lists, is determined

1.4 Tracking Distributions 13

to be optimal. The performance will of course depend on the actual collection of
inputs provided for a particular application. The performance under the assumption
of uniform data distributions is used as an indicator of the typical time the algorithm
will take on arbitrary data. The analysis under the assumption of uniform input data
distribution is of course also reasonable in the context of randomized input data.

The assumption of random data amounts to considering inputs equally likely to
occur in any of a given number of finite states. Though our method transcends this
assumption through the use of “random bags”, we note at this stage that random data
can be concisely captured via the notion of a random structure. The intuition behind
a random structure is that it determines a uniform distribution.

Consider for instance the random structure over Δ3 corresponding to Example 1.1:

R(Δ3) = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

The random structure R(Δ3) represents the fact that all data-labelings over Δ3 are
assumed to be equally likely to occur, i.e. each list of size 3 has equal probability of
1
6 to occur in each of these 6 states. In other words, the distribution is uniform.

Another example of a random structure is the collection of the three states for the
tree partial order discussed in Example 1.2, i.e.

R(T4) = {H4[1], H4[2], H4[3]}.

All data-labelings (heaps) of size 4 are equally likely to occur, with probability 1
3 , in

one of these three states.
Finally, we discuss the extreme case of the “random” structure over the linear

partial order of size 3. This linear partial order is denoted by S3, where “S” is used
for “Sorted”. This random structure only has one possible state. It is “random” in
the sense that it contains all states allowed by the partial order. Its unique state is the
sorted list of size 3, which for the label collection {1, 2, 3} yields:

R(S3) = {(1, 2, 3)}.

All data-labelings for the linear partial order are equally likely, with probability 1, to
occur in the single sorted state.

1.4.2 S-Distributions

In practice of course there may be several data structures corresponding to a given
collection of inputs. To represent this, the notion of a random bag6 is introduced. A
random bag represents the data structures involved as well as the distribution of the
data-labelings via the relative distribution of the random structures in the random
bag.

6 The concept of a bag (also called multi-set) is recalled in Chapter 2.

14 1 Introduction

Definition 1.5. A random bag consists of finitely many random structures, say R1,
. . . , Rn, each of which has a multiplicity. A multiplicity Ki is a natural number
indicating the frequency with which data states occur for a particular random struc-
ture Ri, relative to the other random structures. This enables a representation of
distributions via a random bag {(R1, K1), . . . , (Rn, Kn)}. A strict random bag
{(R1, K1), . . . , (Rn, Kn)} is a random bag in which all data structures (i.e. par-
tial orders) are distinct.

Note that for a strict random bag, a data-labeling F has the following probability
to be in one of the states of the random structure Ri:

Prob[F ∈ Ri] =
Ki|Ri|∑n
i=1 Ki|Ri|

=
Ki|Ri|
|R| ,

where F ∈ Ri indicates that the data-labeling F has a state belonging to Ri.
We denote this probability in the following by Probi.
In case the random structures in the random bag are not distinct, a similar formula

can be obtained where one groups identical random structures together and sums up
their multiplicities.

Note that the above distribution is more general than the uniform one, since the
probability for the uniform case, per data-labeling F , would be 1

|R| . We refer to such
distributions in the following as S-distributions and the associated probability as the
S-probability.

A random bag captures the above concepts in a concise way. The diagram below
illustrates the S-distribution corresponding to the random bag

{(R1, 2), (R2, 1), (R3, 5), (R4, 3)}.

1.5 Random Bag Preservation

We introduce the central notion of random bag preservation, which implies the ca-
pacity for the tracking of S-distributions during the computations. Though the study
of randomness preservation was pioneered earlier in the literature [Knu77], the for-
malization of the notion of random bag preservation is new.

The reference to “randomness” preservation may lead one to believe that the aim
is to preserve “chaos”. Quite to the contrary, the aim is to preserve a specific distri-

6

5

4

3

2

1

0

R1

R2

Random Structures

M
u

lt
ip

lic
it

ie
s

R3

R4

1.5 Random Bag Preservation 15

bution of the original inputs and hence to impose a very particular structure on the
outcomes of each computational step. As opposed to being chaotic, the type of ran-
domness preservation which we will formalize is very much controlled, and aimed
at preserving and tracking S-distributions.

Initially, we will simply viewMOQA operations as transforming data-labelings
to new data-labelings. The collection of all possible data-labelings is defined in the
following.

Definition 1.6. We use the following notation: U , referred to as the universe, is a
countable list of variables, say U = {xn|n ∈ N}. These variables are referred to as
universal variables. We denote the set of all finite partial orders over U by

POfin(U) = {(X,�)|X ⊆ U and (X,�) is a finite partial order.}.

The set of all data-labelings over partial orders from POfin(U) is denoted by F ,
i.e.:

F = {F |F : (X,�) → L∗, (X,�) ∈ POfin(U) and F is a data-labeling}.

We make the following assumption on data-labelings:

Two data-labelings F1 and F2 are distinct in case they differ when interpreted as pairs
(F1, (X1,�1)) and (F2, (X2,�2)), for which the underlying order is explicitely
taken into account. I.e. two data-labelings differ in case

1) their underlying partial orders are distinct (i.e. set or binary order differ), or
2) in case the underlying partial orders are identical to a partial order (X,�) and
∃x ∈ X. F (x) = G(x).

We call the partial order (X2,�2) a refinement of the partial order (X1,�1) in
case X2 ⊆ X1 and ∀x, y ∈ X2. x �1 y ⇒ x �2 y. In other words a new partial
order refines a first one, in case its underlying set is included in the underlying set
of the first one and all order relations of the first partial order are still satisfied in the
new partial order.
MOQA computations will involve operations which systematically refine orders

under consideration. For instance, a sorting algorithm will gradually introduce more
order and hence will refine the ordering under consideration. Other operations may
simply leave the original order intact, which is interpreted as a trivial refinement.

Next, we introduce the notion of a refining function and of a labeling-invariant
function. The concept of a labeling-invariant function reflects the fact that compari-
son-based algorithms involve operations which behave in exactly the same way on
data-labelings for which the relative order between the labels is identical.

16 1 Introduction

Definition 1.7. Consider a collection of data-labelings DL∗(X,�).
A function Ψ : DL∗(X,�) → F is a refining function in case there exist finitely
many partial orders (X1,�1), . . . , (Xn,�n), each of which refines the partial order
(X,�), such that Ψ : DL∗(X,�) → DL∗(X1,�1) ∪ . . . ∪ DL∗(Xn,�n).

A function Ψ : D∗
L∗(X,�) → DL∗(X1,�1) ∪ . . . ∪ DL∗(Xn,�n) is labeling-

invariant iff

∀F1, F2 ∈ DL∗(X,�). F1 ≈ F2 ⇒ Ψ(F1) ≈∗ Ψ(F2).

Definition 1.8. A function Ψ : DL∗(X,�) → F is random structure preserving
(RS-preserving) iff there exist finitely many partial orders (X1,�1), . . . , (Xn,�n)
of (X,�) such that Ψ : DL(X,�) → DL(X1,�1) ∪ . . . ∪ DL(Xn,�n) and the
following holds:

1. Ψ is refining.
2. Ψ is labeling-invariant.
3. If the input data-labelings, after identification up to labeling-isomorphism form a

random structure R = RL(X,�), where L ⊆ L∗ and |L| = |X|, then the bag
of data-labelings produced from R by application of Ψ yields, after identification
up to labeling-isomorphism, a random bag R′ of the form

R′ = {(RL1(X1,�1), K1), . . . , (RLn
(Xn,�n), Kn)},

where ∀i ∈ {1, . . . , n}.Li ⊆ L∗ and |Li| = |Xi|.

If Ψ is random structure preserving as above, then we denote this by:

Ψ : R �−→ R′.

Remark 1.2. Note that condition 3) of Definition 1.8 implies that the random bag R′

is strict, which suffices for our present purposes. In chapter 4 this condition will be
relaxed to general random bags.

Lemma 1.1. If Ψ : DL(X,�) → DL(X1,�1) ∪ . . . ∪ DL(Xn,�n) and Ψ : R �−→
R′ then the bag consisting of the images of Ψ over the elements ofDL(X,�) yields,
after identification up to labeling-isomorphism, the random bag R′.

Proof. Note that DL(X,�) = ∪DL′(X,�), where this disjoint union ranges over
the subsets L′ of L which have the same cardinality as |X|. The result follows from
the fact that Ψ is labeling-invariant and Ψ : R �−→ R′.

Remark 1.3. Random structure preserving functions can be defined over several data
structures as opposed to over a single data structure, simply by requiring the function

1.6 The Necessity of Guaranteeing Random Bag Preservation 17

to be random structure preserving over each data structure. Hence in practice we will
refer to this more general interpretation as random bag preserving (RB-preserving)
functions Ψ which transform a random bag R into a random bag R′, denoted by
Ψ : R �−→ R′.

For our present purposes it will suffice to work with a sufficient condition which
ensures random bag preservation as outlined in Section 1.7.

It is important to point out that random bag preservation does not necessarily hold
in practice. The reader may safely omit the following counter example on first reading
and revisit at a later stage. It is included to illustrate the necessity of guaranteeing
random bag preservation.

1.6 The Necessity of Guaranteeing Random Bag Preservation

To illustrate the need of guaranteeing random bag preservation, we consider the
example of traditional Heapsort, which involves a non-randomness preserving “se-
lection” part. The reader may, prior to reading this section, benefit from a brief look
at the traditional Heapsort algorithm discussed in [AHU87, Knu73] or from the def-
inition of this algorithm in Chapter 2. Heapsort consists of a Heapify phase and a
Selection phase. The Heapify phase forms a heap out of any given list as specified in
[Knu73]. The Selection phase essentially amounts to a “delete”-style operation, even
though elements are not actually removed, only ignored during the computation. The
Selection phase proceeds as follows: it swaps a label at a specific leaf of the heap
with the root label. It subsequently ignores the new leaf label, which is the maximum
label, in the remainder of the program execution. The rest of the tree may no longer
form a heap due to the swap operation. Hence Heapify is called again to create a
heap out of the remaining tree and the Selection process is repeated over the newly
created heap.

Counter-Example 1.1 (Heapsort)
Consider lists of size 4 where we assume that list elements are pairwise distinct.
After the Heapify part, viewed over all twenty-four input states of size 4, a total of
3 non-label-isomorphic heap states are created which arise with equal probability of
1
3 . We display these heaps of size 4, which we denote, as in the states obtained for
Example 1.2, by H4[1], H4[2] and H4[3], for labels 1, 2, 3, 4:

4

2 3

1

23

2

3

1

1

4 4

H4[1] H4[2] H4[3]

18 1 Introduction

However, this uniform distribution is violated by the Selection phase, which swaps
the root label, i.e. the maximum label, with the left-most leaf label. After this phase,
the algorithm focuses on the newly created heaps of size 3, obtained by ignoring
the left-most leaf. Since the resulting heaps are of size 3, consisting of a root and
two leafs, there are 2 possible states. We display these states for labels 1, 2, 3 in
the figure below, where the state displayed first is referred to as H3[1] and the state
displayed below is referred to as H3[2]. It is clearly impossible that these 2 states are
created from the 3 states of size 4 with equal probability. Hence the random structure
consisting of the two states, which represents uniform distribution, is not an adequate
representation of the true distribution. With the notion of random structure at our
disposal, we remark that the states produced during this phase of the computation do
not correspond to the two states of the underlying partial order. The two necessary
states are produced, but an extra copy of one of these states is also produced. Hence
the resulting bag of states does not form a random structure, nor of course a random
bag. In fact, one can verify that H4[1] and H4[3] both are transformed to H3[2], while
H4[2] is transformed to H3[1] during the execution of Heapsort, as displayed in the
picture below.

H4[1] −→
H4[3] −→

3

21

3

2 1

H4[2] −→

H3[1]

H3[2]

The argument to show that Heapsort does not preserve the uniform distribution
of its data is based on an example discussed in [Ede96], which makes an attempt to
solve the open problem of designing a “randomness preserving” version of Heapsort.
Edelkamp observes in this context that: “Diese Betrachtung hat eine exakte average-
case Analyse von allen Heapsort-Varianten bis dato unmöglich gemacht”.7

To clarify the problem further, and minimizing formality, we remark that in order
to obtain a compositional derivation of the average-time of Heapsort for arbitrary
size n, one needs in particular to express this time for the case of size 4 as:

(1) the average-time over all 4! list states of size 4
(used by the Heapify procedure to create the heaps of size 4) +

7 “This fact (i.e. the non-preservation of the uniform distribution for size 4) has made an exact
average-case analysis of all Heapsort-variants impossible to date.” [Ede96] did not resolve the
problem of producing a randomness preserving version of Heapsort. Such a version, called Perco-
lating Heapsort, has been obtained in [SHB04].

1.6 The Necessity of Guaranteeing Random Bag Preservation 19

(2) the average-time over the 3 heap states of size 4
(used by the first call to the Selection phase) +

(3) the average time over the 2 hat-shaped heap states of size 3
(used by an iterated call to the Heapify and Selection phase).

It is part (3) which can not be used in practice to compute the average-time of the
iterated call to the Heapify and Selection phase. In the standard average-case time
approach of [Knu73], the Selection phase operates on heaps and its average-case time
needs to be computed over the possibly states of the heaps of a given size, where
heaps are assumed to occur equally likely in any of the two given states.

We recall that the the two states produced for the hat-shaped partial order are not
equally distributed. The first state H3[1] occurs once, while the second state H3[2]
occurs twice, indicating that heaps are twice more likely to occur in the second state
than in the first. Hence we can no longer express the average-time of the Selection
phase in terms of the states of the heaps under consideration and one effectively loses
the capacity to track the distribution of the data in question.

This prevents the generation of a recurrence equation (in terms of size) which
expresses the average-case time. It is clear that the average-case analysis of Heapsort
is notoriously hard due to the fact that Heapsort’s Selection process does not preserve
randomness (cf. [Knu73], [SS93], [LV93] and [Ede96]) and similar problems arise
for deletions and insertions in binary search trees. The lack of “randomness preser-
vation” is also cited in [FSZ91] as preventing an automated average-case analysis
of Heapsort. As pointed out by Knuth in [Knu73], regarding the analysis of Heap-
sort: “But the selection phase is another story, which yet remains to be written!”
The optimality of Heapsort’s average comparison time was demonstrated relatively
recently by Schaffer and Sedgewick [SS93] via an argument by contradiction (cf.
also [LV93]). This does not lend itself for static average-case analysis. The exact
average comparison time for the (selection phase of this) algorithm and for any of its
current variants, remained unknown [Ede96]. The problematic nature of determining
Heapsort’s average-case time has also been pointed out in [FSZ91]. In [SHB04] a
new variant of Heapsort is presented, Percolating Heapsort, which does preserve ran-
domness. This new algorithm allows for an elegant and straightforward analysis of
its exact average-case time; which constitutes a radical simplification, in comparison
with prior average-case analysis methods for Heapsort and its variants, as discussed
in Chapter 9.

We remark that the analysis of Percolating Heapsort is achieved via a backward
analysis a la Knuth [Knu73], which is based on a combination of a compositionality
argument with a constant-time argument as presented in Chapter 9, Section 9.4.
This still does not give a fully automated derivation of the algorithm’s average-case
time, but does resolve the open problem on the exact average-case analysis. Other
algorithms will be considered in Chapter 8, such as Treapsort, for which a fully-
automated derivation is achievable.

20 1 Introduction

1.7 A Sufficient Condition for Random Bag Preservation

We now return to a sufficient condition for random bag preservation and an illustration
of such an operation via the traditional Split operation.

We formulate the notion of a separative function.

Definition 1.9. Consider a collection of data-labelings DL∗(X,�) and a function
Ψ : DL∗(X,�) → F . Then Ψ is separative iff there exist finitely many partial
orders (X1,�1), . . . , (Xn,�n) such that Ψ : DL∗(X,�) → DL∗(X1,�1) ∪ . . . ∪
DL∗(Xn,�n) and:

1. Ψ is refining.
2. Ψ is labeling-invariant.
3. Ψ �RL(X,�) : RL(X,�) → RL1(X1,�1)∪ . . .∪RLn(Xn,�n) is a bijection.

Remark 1.4. Separative functions can be defined over several data structures as op-
posed to over a single data structure, simply by requiring the function to be separative
over each data structure.

Finally, we remark that if a function Ψ is separative over DL∗(X,�), then Ψ
is guaranteed to give rise to a bag of output data-labelings which correspond to a
finite collection of random structures R(X1,�1), . . . , Rn(X,�n). This determines
a strict random bag {(R(X1,�1), 1) . . . ((Rn(X,�n), 1)}, in which each random
structure has multiplicity one. In the present context, for random bag preserving
functions, we perform an extra identification, i.e. the output random bag is subjected
to identification up to labeling-isomorphism, which includes an identification up to
order-isomorphism.

Hence, for separative functions, the random bag which has multiplicities constant
one, gives rise to a random bag {(R(Xi1 ,�i1), K1) . . . ((Rik

(X,�ik
), Kk)}, where

of course
∑k

j=1 Kij
= n and where multiplicities are not necessarily one.

Hence we have the following result.

Proposition 1.1. Separative functions are random bag preserving.

We illustrate this via the Split example below. Note that all operations are stored
in aMOQA library, joint with information on the data structures (i.e. partial orders)
they produce (for arbitrary size n) as well as with the multiplicities in question, which
for each operation have been determined in terms of n in advance. This information
is then used by Distri-Track to extract the average-case information statically.

Note that not all random bag preserving functions are separative. For instance the
product operation as defined in Chapter 5 is RB-preserving, yet the function is only
“locally” one-to-one.

1.7 A Sufficient Condition for Random Bag Preservation 21

We give sufficient conditions for random bag preserving functions to be separative.

Proposition 1.2. A random bag preserving function Ψ with domain DL(X,�) and
corresponding random structure R is separative in case the bag of images of Ψ over
R is a set. Equivalently, a random bag preserving function is separative in case Ψ �R
is a bijection.

1.7.1 Split: an Illustration of Random Bag Preservation

S-distributions arise naturally, even if one starts with uniformly distributed data at the
outset. One well-known operation which illustrates this effect is the Split operation
used in algorithms such as Quicksort and Quickselect.

Rather than developing this in general, i.e. for lists of arbitrary size n, we first
show that Split is random bag preserving for lists of size 3 and 4. The general case is
treated in Section 1.7.2. We consider a simple version of the Split operation. Other
versions of Split, such as those using two pointers starting at beginning and end of a
list [AHU87], result in a similar random bag. We use the simpler version to reduce
the technicalities. The pivot for Split is chosen to be the first element of the list. This
particular choice is irrelevant, since other choices will result in similar random bags
with minor technical modifications.

Split proceeds on a list of size n by comparing, in left to right order and starting
at the second element, each label of the i-th element, i ∈ {2, . . . , n}, with the pivot
label. In case the label of the i-th element is greater than the pivot label, this element
and its label is placed above the pivot. Otherwise it is placed below the pivot.

Example 1.3. We illustrate the effect of executing Split on lists of size 3 in the illus-
tration at the top of the following page.

It is clear from this illustration that when Split is executed on the random structure
over the discrete partial order of size 3, i.e. R(Δ3), where Split is executed over the
3! = 6 random lists, the result is a random bag consisting of three new random struc-
tures. The first random structure is the random structure over the 3 element V-shaped
partial order, denoted in the following by ∨3. The second random structure and the
third random structure are both the random structure over the linear order of size 3,
denoted by S3. Though the elements of the two linear orders displayed above differ,
we will identify these orders in our analysis up to order isomorphism. This means
that we have 2 copies of the random structure over S3 in the random bag. Finally, we
obtain the random structure over the 3 element wedge-shaped partial order, denoted
by ∧3. In conclusion, Split transforms data-labelings over Δ3 into a data-labeling
over ∨3, S3 or ∧3. Moreover, it is clear from our example above that the inputs
have 6 states corresponding to R(Δ3), while the output data-labelings correspond
exactly to the 6 states in the random bag {(R(∨3), 1), (R(S3), 2), (R(∧3), 1)}. We
remark that the function corresponding to Split is labeling-invariant and refining.
Moreover, this function is a bijection between the random structure Δ3 and the set

22 1 Introduction

x2 : 2 x3 : 3

x1 : 1

x2 : 3 x3 : 2

x1 : 1
x1 : 2

x3 : 3

x2 : 1

s
p
l

t
i

s
p
l

t
i

s
p
l

t
i

s
p
l

t
i

s
p
l

t
i

s
p
l

t
i

x1 : 1, x2 : 3, x3 : 2 x1 : 2, x2 : 1, x3 : 3x1 : 1, x2 : 2, x3 : 3

x1 : 2, x2 : 3, x3 : 1

x1 : 2

x2 : 3

x3 : 1

x2 : 1 x3 : 2

x1 : 3

x1 : 3, x2 : 1, x3 : 2 x1 : 3, x2 : 2, x3 : 1

x1 : 3

x3 : 1x2 : 2

R(∨3) ∪ R(S3) ∪ R(S′
3) ∪ R(∧3), where S3 and S′

3 denote the two distinct linear
orders displayed in Example 1.3 above. Hence the Split operation is separative and
thus determines a random bag preserving operation over the random structure R(Δ3).

We remark at this stage that there is a clear visual nature to the partial orders
associated with the random bag. Indeed, “star”-like objects are being created, with
a center element, the pivot, and with in each case a collection of elements above the
pivot and below the pivot.

For the case of ∨3 there are two elements above the pivot and zero below the
pivot. For the case of S3 there is one element above the pivot and one element below
the pivot. For the case of ∧3 there are zero elements above the pivot and 2 elements
below. This can be generalized to n elements as follows. The partial order P [i, j]
over i+j+1 elements is defined to be the order which has one central pivot element,
i elements below the pivot and j elements above the pivot, as illustrated below.

1.7 A Sufficient Condition for Random Bag Preservation 23

j elements

i elements

The partial order P [i, j]

In general, the partial orders created by the Split operation, after identification up
to order-isomorphism, are given by: P [0, n−1], P [1, n−2], P [2, n−3], . . . , P [n−
3, 2], P [n− 2, 1], P [n− 1, 0] as displayed below.

n − 1

0

P [0, n − 1]

1

n − 2

P [1, n − 2]

n − 3

2

P [2, n − 3]

2

P [n − 3, 2]

n − 3

P [n − 2, 1]

n − 2

1

P [n − 1, 0]

n − 1

0

Hence for lists of size 3 it is clear that Split transforms the random structure
R(Δ3) into the random bag {(R[P [0, 2], 1), (R(P [1, 1]), 2), (R(P [2, 0], 1)}.

Example 1.4. We illustrate that a similar result arises when Split is executed on lists
of size 4. We record the effect of executing Split on the 6! = 24 states of size 4.
First we remark that for the 6 states which have the pivot labeled with1, Split will
transform these 6 states exactly in to the 6 states of the partial order P [0, 3] displayed
below.

Secondly we remark that the 6 states which have the pivot labeled with 4, Split will
transform these 6 states exactly in the 6 states of the partial order P [3, 0] displayed
below.

Hence it remains to look in the situation where the pivot is labeled with 2 or 3.
The results for the pivot labeled with 2 are displayed below.

24 1 Introduction

p

i
t

s

l

x3 : 3 x4 : 4

x1 : 2

x2 : 1

x1 : 2, x2 : 1, x3 : 3, x4 : 4

p

i
t

s

l
p

i
t

s

l

p

i
t

s

l
p

i
t

s

l
p

i
t

s

l

x3 : 4 x4 : 3

x1 : 2

x2 : 1

x1 : 2, x2 : 1, x3 : 4, x4 : 3

x2 : 3 x4 : 4

x1 : 2

x3 : 1

x1 : 2, x2 : 3, x3 : 1, x4 : 4

x2 : 3 x3 : 4

x1 : 2

x4 : 1

x1 : 2, x2 : 3, x3 : 4, x4 : 1

x2 : 4 x4 : 3

x1 : 2

x3 : 1

x1 : 2, x2 : 4, x3 : 1, x4 : 3

x2 : 4 x3 : 3

x1 : 2

x4 : 1

x1 : 2, x2 : 4, x3 : 3, x4 : 1

We remark that the first two states in the top row form a random structure. The
same holds for the third state in the top row and the second state in the bottom row.
Finally, the first and third state in the bottom row form again a random structure.

Clearly the partial orders of these three random structures are order-isomorphic.
Hence we obtain three copies of the random structure over the partial order P [1, 2]
displayed below.

The result for the pivot labeled with 3 are displayed below.

1.7 A Sufficient Condition for Random Bag Preservation 25

p

i
t

s

l
p

i
t

s

l
p

i
t

s

l

p

i
t

s

l
p

i
t

s

l
p

i
t

s

l

x1 : 3, x2 : 1, x3 : 4, x4 : 2 x1 : 3, x2 : 2, x3 : 1, x4 : 4x1 : 3, x2 : 1, x3 : 2, x4 : 4

x4 : 4

x1 : 3

x2 : 1 x3 : 2

x1 : 3

x2 : 1 x4 : 2

x3 : 4 x4 : 4

x1 : 3

x2 : 2 x3 : 1

x1 : 3, x2 : 2, x3 : 4, x4 : 1 x1 : 3, x2 : 4, x3 : 1, x4 : 2 x1 : 3, x2 : 4, x3 : 2, x4 : 1

x3 : 4

x1 : 3

x2 : 2 x4 : 1

x2 : 4

x1 : 3

x4 : 2x3 : 1

x1 : 3

x4 : 1x3 : 2

x2 : 4

We remark that the first and the third state in the top row together with the under-
lying partial order form a random structure. The same holds for the second state in
the top row and the first state in the bottom row. Finally, the second and third state
in the bottom row form again a random structure.

Clearly the partial orders of these three random structures are order-isomorphic.
Hence we obtain three copies of the random structure over the partial order P [2, 1]
displayed below.

Hence Split transforms R(L4) in the random bag

{(R(P [0, 3]), 1), (R(P [1, 2]), 3), (R(P [2, 1]), 3), (R(P [3, 0]), 1)}.

Again, we remark that Split is a separative function from R(L4) to the random
structures over the 8 different partial orders as displayed above.

The multiplicities for Split can be directly computed in terms of input size n as
outlined below.

26 1 Introduction

1.7.2 Split: the General Case

The random split of a discrete partial order
To determine the multiplicities one needs to simply remark that the general split
operation, for input lists of size n, will produce, after identification up to order
isomorphism, the partial orders P [0, n − 1], P [1, n − 2], P [2, n − 3], . . . , P [n −
3, 2], P [n− 2, 1], P [n− 1, 0].

Prior to identification up to order isomorphism, one can easily determine that
the number of partial orders which are (non-identically) order isomorphic to P [i, j],
where i, j ∈ {0, 1, . . . , n − 1} and i + j = n − 1, is Ki =

(
n−1

i

)
=

(
n−1

j

)
. For

instance, consider Example 5. There are
(3−1

1

)
= 2 copies of the (linear) partial order

P [1, 1].
Hence Split is a random bag preserving operation which maps the random structure

R(Δn) to the random bag {(R(P [n− 1, 0]), Kn−1), . . . , (R(P [0, n− 1], K0)}. I.e.
we have the following result.

Lemma 1.2. Split determines a random bag preserving function, where

Split : R(Δn) �−→ {(R(P [n− 1, 0]), Kn−1), . . . , (R(P [0, n− 1]), K0)},

and where Ki =
(
n−1

i

)
for i ∈ {0, . . . , n− 1}.

Remark 1.5. The Split operation is an example of an operation, which is uniformly
random bag preserving, i.e. the cardinality of a random structure in the output random
bag multiplied by its multiplicity is a constant. This notion will discussed in Chapter
4. For Split it is easy to verify that:

∀i ∈ {0, . . . , n− 1}.Ki|R(P [i, n− 1− i])| = (n− 1)!

Indeed, note that Ki|R(P [i, n− 1− i])| =
(
n−1

i

)
i!(n− 1− i)! = (n− 1)!

This information on the random bag produced by a Split operation will be used
in Chapter 9 to derive the average-case time of Quicksort and Quickselect in a
compositional way.

1.7.3 Tracking S-Distributions in MOQA

In our programming languageMOQA the tracking of distributions is achieved by
keeping track of the finite partial orders8 underlying the random structures (random
bags), where each operation transforms a collection of partial orders (paired with their
multiplicities) into a new collection of partial orders (paired with their multiplicities).

8 Via a suitable representation.

1.8 MOQA Operations 27

Each operation is formally guaranteed to preserve random bags.As a result the partial
orders and the multiplicities of the data can be tracked during the entire computation.

This approach means that we do not need to determine the resulting random bags
by computing all output states in a computation from all possible input states. It
suffices to identify the operation in question and our operation rules supply, from the
given partial orders and multiplicities for input data, directly the new partial orders
and multiplicities of the output data. This is feasible since MOQA operations are
verified to be random bag preserving, where, for each such operation, a constructive
definition is given of the transformation of the partial orders as well as formulas for
computing the multiplicities.

Multiplicities are crucial since they enable the book-keeping of output copies
during the computation in a modular way; which in turn is directly linked with the
capacity to generate recurrence equations expressing the average-case number of
basic operations in a compositional way. This last aspect is clarified via the Linear-
Compositionality Theorem below. The static analysis tool Distri-Track, developed
at CEOL, statically extracts the average number of basic operations from MOQA
code, based on this result.

We outline the basicMOQA operations below.

1.8 MOQA Operations

1.8.1 An Overview of the Basic MOQA Operations

We discuss the main random bag preserving basicMOQA operations below to il-
lustrate the nature of the language. The first two operations, the random product and
the random delete, are core operations for creating and destroying data. AllMOQA
operations operate over data-labelings. Each of them can be shown to be random bag
preserving.

The random product operation:
⊗

This operation can play the role of an insertion of a single element into a data structure,
in case one of the data structures provided consists of a single element. This operation
also plays a crucial role whenever data structures are merged into a larger whole.

Given two data-labelings, the binary product operation places the first data struc-
ture below a second, where all elements of the first order are strictly below all elements
of the second. The operation proceeds as follows:

• create a new partial order consisting of the union of the elements of the original
two orders,

• create all possible directed links from the maximal elements of the first order to
the minimal elements of the second order,

• respect the new order by reorganizing labels via traditional Push-Downs and
Push-Ups.

28 1 Introduction

A unary version of this operation will be introduced, which, when carried out on two
parts of the partial order of a single data-labeling, results in a new data-labeling.

The random delete operation: Del(k)
This operation plays a crucial role in removing labels from a data-labeling.

This unary operation removes a label from a data-labeling by:

• redefining it to be the smallest label present,
• pushing down the label to restore order,
• removing the label together with the minimal element to which it has been pushed-

down.

The MOQA language supports other random bag preserving operations which
constitute variants and generalizations of the random deletion. The operations also
include the random projection operation Proj(I), which permits acting locally on part
of a data-labeling. In this context, an “isolation” property is verified on the suborder
in question to ensure random bag preservation. Another basic MOQA operation,
encountered earlier, is the random split operation Split. MOQA incorporates a
number of other operations, such as Top and Bot to determine minimum and maxi-
mum labels, all of which are random bag preserving. Other random bag preserving
basic operations could be added according to need.

All MOQA operations can be applied locally to a data structure as determined
by the notion of an “isolated suborder”. The timing tool Distri-Track statically ex-
presses the average-case number of comparisons of MOQA programs in terms of
the average-case number of comparisons of the basic operations, exploiting compo-
sitionality.

1.8.2 Conditionals, Loops, Recursion

TheMOQA language is equipped with conditionals, for-loops and a restricted type
of recursion (guaranteed to terminate), all of which have been purpose designed to
ensure random bag preservation.

Remark 1.6. (Termination ofMOQA programs)
Termination is a typical and necessary requirement in a static timing context due to
the halting problem. As will be observed in chapter 7, all MOQA programs are
guaranteed to terminate. Hence, unless stated to the contrary, all results obtained in
the following chapters are derived under the assumption that the programs under
consideration terminate on all inputs.

1.9 Compositionality

As outlined at the start of the introduction, one may easily be tempted to conclude
that average-case time is automatically compositional. This stems from the fact that

1.9 Compositionality 29

average-case time satisfies a simple type of compositionality, namely that of IO-
compositionality as outlined below. We discuss this first type of compositionality
and will return to it in more detail Chapter 3 in relation to various timing measures.

1.9.1 Average-Case Time is IO-Compositional

Theorem 1.2. The average-time measure T is universal IO-compositional, i.e. the
following equality holds for any programming language PL and for any two pro-
grams P1, P2 of PL, where P1 operates on an input bag I and produces the output
bag OP1(I):

TP1;P2(I) = TP1(I) + TP2(OP1(I)).

As discussed in Section 1.1.3, it is crucial to have the capacity to track the data
distributions in order to fully exploit compositionality, which is the topic of the
following section. This will be further clarified in Chapter 3.

1.9.2 Linear-Compositionality Theorem

The Linear-Compositionality Theorem states two facts. First, the average time of the
sequential composition of two random bag preserving programs can be expressed as
the sum of the average times of the programs. Secondly, the average time of a random
bag preserving program on a random bag is a linear combination of the average times
over the random structures of the random bag. The linear coefficients correspond to
the probabilities involved. For completeness, we include the technical definition and
the theorem.

Definition 1.10. A random bag preserving program P is a program for which the
collection of input data-labelings, after identification up to labeling-isomorphism,
forms a random bag. Moreover, the input-output function of the program, denoted
by [[P]], is random bag preserving over the input random bag.

Theorem 1.3. (Linear-Compositionality):

1. Consider a random bag preserving program P such that [[P]] : R → R′. Then:

TP ;Q(R) = TP (R) + TQ(R′).

2. Consider a random bag R = {(−→Rp,
−→
Kp)}; then

a) TP (R) =
i=p∑
i=1

Probi × TP (Ri),

30 1 Introduction

where Probi = Prob[F ∈ Ri] is the S-probability.

For the particular case where R = {(R1, K1)}, the previous equality reduces to:

b) TP (R) = TP (R1).

The systematic application of this result on the sequential parts ofMOQA code
enables one to express the exact average-case number of comparisons of the computa-
tion over the original random bag in terms of the average-case number of comparisons
of more basic parts of the code over new random bags. Ultimately this enables an
expression of the average-case time of the code in terms of a linear combination of
the average-case times of the basic operations involved in the code. This in turn can
give rise to a recurrence in terms input size, when operating over inductive types.
Note that such sequential parts are determined not only by sequential composition,
but occur of course due to for-loops and (terminating) recursion. We will discuss
conditionals at a later stage.

Note that this result enables a determination of the exact average-case time as
opposed to only asymptotic information.

The MOQA approach allows one to statically extract recurrence equations for
the average-case time from MOQA source code in a modular fashion, via the
timing tool Distri-Track [Hic07]. After this generation, standard approaches can
be followed to either completely solve the recurrence equation through generating
functions and a mathematical software package such as Maple or Mathematica, or
to obtain information on the ACET for inputs within a given size bound through
computing the recurrence via dynamic programming in a fast and effective way.
Of course one can also derive asymptotic time information from the recurrence
equations.

1.10 Related work and advantages of MOQA

We provide a brief non-exhaustive overview of various approaches to automated
average-case analysis and a discussion of randomness preservation in the literature.

Automated Average-Case Analysis has undergone active research. The program-
ming language LUO, developed by Flajolet [FSZ91, FV90], enables the automatic
derivation of the average-case complexity of large classes of algorithms by estab-
lishing a link between recurrence equations and singularities of associated complex
functions. The approach involves generating functions as discussed in [GKP94]. The
average-case time is obtained through the use of the mathematical software package
Maple which has been partly incorporated in the LUO code. A related and gener-
alized approach involves the use of attribute grammars [Mis03]. Yet another type
of approach uses a “chromatic plumbing” metaphor to mimic the execution of a
program expressed as a flowchart [Ram96, HC88].

Our work, though related in the aim to automate average-case time analysis,
differs from prior approaches in that we achieve compositionality for the average

1.10 Related work and advantages of MOQA 31

time measure based on the notion of random bag preservation, where distributions
are tracked throughout the computations.

The first attempt at a study of randomness preservation was made by Knuth. The
papers [Knu77, JK78] on Knott’s paradox, that is the loss of randomness preser-
vation when deleting and reinserting an element of a random binary search tree,
were forerunners of [MR98] and raised the question of the analysis of randomness
preservation. Another paper which brings up the notion of randomness conservation
is [Lev84], which treats the issue in the non-constructive context of Kolmogorov
complexity.

Despite the usefulness of randomness preservation, which allows one to deter-
mine the average-case time analysis in a straightforward linear-compositional way,
no systematic study is available of randomness preservation in a (constructive) pro-
gramming language context.

Finally, we remark that randomized algorithms [MR95] regard the design of algo-
rithms that make probabilistic selections on inputs. Hence the expectation depends
only on the random choices made by the algorithm and not on any assumptions about
the distribution of the input. The running time becomes a random variable and the
analysis involves an understanding of the distribution of this random variable. In
contrast, we will focus on algorithms that preserve a random bag representation of
the data and their distribution.

The MOQA language incorporates random bag preserving versions of stan-
dard data structuring operations, which enables the natural incorporation of standard
sorting and searching algorithms. TheMOQA language, in contrast with prior ap-
proaches, such as LUO, provides a deletion operation. The lack of such operations
in the past complicated the analysis of algorithms such as Heapsort [SHB04]. As
pointed out in [Ede96], the exact average-case time of all Heapsort variants is un-
known to date. This is directly linked to the fact that standard Heapsort [AHU87]
does not “preserve randomness”. [SHB04] reports on a new version of Heapsort,
Percolating Heapsort, which is faster (both in average number of comparisons and in
“real-time” as measured by a Java profiler) than all standard Heapsort variants. The
algorithm has been directly designed based on theMOQA delete operation.

Though the full automation of the Analysis of Heapsort remains elusive, for rea-
sons discussed in Chapters 9, theMOQA program Percolating Heapsort, does allow
for an exact average-case analysis “by hand” as provided in Chapter 9. This solves
the long standing open problem on the determination of the exact average-case of
Heapsort variants [Knu73, Ede96]. The argument is based on the randomness preser-
vation of Percolating Heapsort, which enables a backwards analysis à la Knuth. An
alternative MOQA sorting algorithm Treapsort, based on manipulation of Heap
Ordered Trees via theMOQA deletion, is also presented in this chapter, where this
algorithm allows for a fully automated analysis.

The MOQA analysis has another distinctive feature: the compositional deriva-
tion of recursive algorithms is very similar in nature to standard denotational style
derivations of the semantic meaning of recursive programs. The language has been
designed with this purpose in mind and implications for bridging Semantics and
Complexity are discussed in Section 1.11.1.

32 1 Introduction

Finally, the language is distinct from prior approaches in that it enables the local
applications of operations to so-called isolated subsets, where random bag preser-
vation remains guaranteed. Moreover, its series-parallel data structures drastically
simplify the computation of the average-case time as illustrated in Chapter 6 and
Chapter 9.

In summary, theMOQA language has the following unique features:

1. (Random bag preservation) TheMOQA programs are guaranteed to be random
bag preserving, where the approach incorporates a new formal development of
the notion of randomness preservation.

2. (Modularity) The MOQA language enables distribution tracking, which com-
bined with the use of inductive types, supports a compositional determination
of the recurrence equations expressing the average-case time. In particular, the
average-case time is reduced to a linear combination of the average-case times of
the basicMOQA operations.

3. (Random substructures) TheMOQA language incorporates a natural notion of
an isolated substructure, over which operations can be naturally applied, lead-
ing to randomness preserving operations over the entire data structure. Isolated
substructures further support modular analysis ofMOQA code.

4. (SP-data structures) TheMOQA series parallel data structures support the effi-
cient computation of average-case time of the basic operations.

5. (Deletion operation) The MOQA language, unlike previous languages for au-
tomated average-case timing, incorporates a randomness preserving deletion.

6. (Semantics-style nature) TheMOQA language incorporates a typical semantic
style flavour via the compositional derivation of average-time information, in
particular of recursive programs. This opens up possibilities for bridging the areas
of Semantics and Complexity.

1.11 Related Areas

We briefly discuss two related areas which regard the design of languages aimed at
static timing and which are distinct from the approaches to language design con-
sidered in the context of Automated Average-Case Analysis. The first area broadly
can be referred to as “Bridging Semantics and Complexity”, while the second is the
Real-Time Language area. Each has overlapping interests with the general aim of
the current work and an overview of the areas as well as some comparisons with the
MOQA approach are given. These sections are introduced for the reader with a
background in either of these areas, but can be omitted by other readers since they
are largely independent from the other parts of the book.

1.11 Related Areas 33

1.11.1 Bridging Semantics and Complexity

The central areas of Semantics of Programming Languages and of Complexity The-
ory have traditionally undergone separate development. The division of the Elsevier
journal Theoretical Computer Science in Volumes A and B, that typically include
complexity related research and semantics related research respectively, further il-
lustrates this fact.

The theoretical interest of bridging Semantics and Complexity stems from the dif-
ficulty in designing models that can simultaneously reflect computational behaviour
and complexity in a compositional way. The problem has practical relevance because
of its ramifications for Real-Time Languages [Gur91]. Indeed, the ability to deter-
mine the complexity of programs directly from the complexity of their components,
i.e. compositionality at a complexity level, is crucial to guarantee precision in time
estimates.

The need to achieving a better understanding of the relationships between Seman-
tics and Complexity has been a concern of the two communities. Several conferences
have focused of this topic, such as the 1996 DIMACS workshop on Computation,
Complexity and Programming Languages, the 1998 Dagstuhl seminar on Programs:
Improvements, Complexity, and Meanings (9823), as well as the 2000 Second inter-
national workshop on Implicit Computational Complexity, and the IFIP (TCS) con-
ferences. The means by which the fields should be bridged are far from clear, where
opinions range from a potentially “orthogonal” situation in which both approaches
would only have an insignificantly small overlap, if any, to the hope of establishing
a substantial connection.

There is a clear need to unify techniques from Complexity Theory, that allow one
to analyse individual algorithms or classes of algorithms, with techniques from the
Programming Language area, that allow one to obtain results about all programs of a
given language. The reported research in this area has led to a variety of approaches,
including category theoretic approaches [Gun92, MA], game theoretic approaches
[MR95] for which the semantic aspects have been actively explored [AJM02], ap-
proaches based on Quantitative Domain Theory [Sch95, Sch03, Sch04], as well as
contributions to Implicit Complexity [Hof98, Hof99], Proof Theory and Complexity
at Higher Types [BNS, Coo91, IKR01].

The field of Implicit Complexity has led to a typed language for which first
order functions capture exactly the polytime computable functions [Hof00], hence
providing an example of a language for which the complexity of the programs is
controlled.

Some approaches aimed directly at bridging Semantics and Complexity focused
on Operational Semantics [Gre94]. Two pioneering attempts to deal with Denota-
tional Semantics in a complexity context are available at this time: the PhD thesis
by Douglas Gurr [Gur91] and the author’s PhD thesis [Sch95]. In his thesis, Gurr
developed a compositional approach for exact running time, based on an extensive
Category Theory framework, and pointed out difficulties with worst-case time re-
garding compositionality. The approach involves the use of monads and has been
followed up by Moggi and Archieri [MA]. Our thesis [Sch95] followed a different

34 1 Introduction

approach, related to the Dutch style metric semantics school [BR92] and the work on
reconciling the metric and order theoretic approach to Semantics [Smy87, Smy91].
This has led to the development of the theory of Complexity Spaces [Sch95, Sch95a],
which has been followed up extensively by the Valencia based research group led by
Salvador Romaguera and resulted in an in-depth study of the dual complexity space
model, introduced in [RS99] as a mathematically more stable approach. Further work
in this area is reported in [RS98, Sch99, RS03]. Other types of models which may
be suitable for capturing complexity information have been discussed in the context
of quantitative domains [Sch03, Sch04].

Game theoretic approaches have undergone extensive development in the context
of Semantics [AJM02]. We remark that Game Theory is relevant to the complexity
analysis of algorithms [MR95] but the approach thus far did not lead to a bridge
between Semantics and Complexity.

Each of these approaches has its own merit, yet there is not sufficient evidence of
their applicability to everyday programming practice, nor do these approaches shed
sufficient light on the fundamental issues involved in bridging the two fields.

Key problems preventing progress in bridging Semantics & Complexity include
the historic division between the fields and the related differences in approach, as
well as the deep issues that quickly arise in the area of Complexity Theory. As we
will argue below, a main stumbling block to progress in this area, in particular to test
the various models proposed in the literature, is the lack of a programming language
for which a non-trivial time measure is compositional.

As a first step to a study of the relationships between Semantics and Complexity
we will focus on a central property of Denotational Semantics, namely that of com-
positionality. In Semantics this property guarantees that the meaning of a program
can be specified in terms of the meaning of its basic components. Similar to a seman-
tics approach, we will regard a complexity measure to be compositional for a given
language in case the complexity of programs can be determined from the complexity
of their components. The crucial nature of compositionality cannot be over-stressed:
in determining the speed of the program to a reasonable degree of precision, it is a
computational necessity to determine this speed directly from the accurate speeds
of the components. Compositionality remains the main stumbling block to bridging
Denotational Semantics and Complexity. We illustrate this with the current state of
the research.

The analysis of exact running time is supported in [Gur91] by a compositional
categorical framework relying on monads. Compositionality is a straightforward
property of this complexity measure but it is clear that exact time analysis, for inputs
of arbitrary size, is infeasible in practice. Thus far no alternatives to standard com-
plexity theoretic techniques for average or worst-case analysis have been provided
in a Denotational Semantics context. Worst and average-case extensions of the cat-
egorical framework have been discussed in [Gur91] but did not yield compositional
models. The complexity space approach of [Sch95, Sch95a] allows one to carry out
the average-case analysis of the class of Divide & Conquer algorithms. Again, the
models are not guaranteed to be compositional for a general language. Nor is this
the case for any of the other approaches mentioned above.

1.11 Related Areas 35

It is easy to see, an issue first raised in [Gur91], that worst-case analysis is es-
sentially non-compositional in nature, hence squashing hope of obtaining a general
compositional approach based on this measure. One exception is the new, but po-
tentially costly, Real-Time paradigm for worst-case analysis discussed in [BP02]
which amounts to a compositional approach to worst-case analysis in a restricted
context. The non-compositionality of worst-case time is reflected by the fact that for
Real-Time Languages, worst-case time is approached typically in a non-exact way,
i.e. by relying on upper bounds [PK93]. One may be tempted to conclude from this
fact that the study of compositionality for the average-case time measure holds little
promise, in particular since average-case analysis in general is considerably harder
to carry out than worst-case analysis. Moreover, no single unifying theory is avail-
able to support this type of analysis and hence the standard average-case analysis
techniques incorporate a variety of approaches. Algorithms are analyzed typically
on a case-by-case basis, with techniques including the so-called “backward analy-
sis” [Knu73], the “incompressibility method” [SS93, LV93], generating functions
[FSZ91, GKP94] as well as related work on randomized algorithms [MR95]. Yet,
the conclusion that a compositional approach for average-case analysis is hopeless
turns out to be non-founded. We will show that, contrary to the worst-case time
measure, the average-case time measure satisfies a special type of “Input-Output
compositionality”. Also, quite a few interesting algorithms in the literature allow for
a compositional average-case analysis. Hence the analysis of compositionality for
the average-case time measure is a worthwhile goal.

We believe that the lack of compositional models for basic complexity measures is
related to the fact that current language operations are not suited to achieving compo-
sitionality at a complexity level. We will illustrate this with examples in Section 3. We
argue that a first main and necessary step to developing a bridge between Denotational
Semantics andAverage-Case Complexity is the design of a “randomness-preserving”
programming language.

Indeed, it is well-known that the notion of randomness preservation, though not
formulated in a precise framework thus far, is a main factor in the determination of
the average-case running time of algorithms. It plays for instance a crucial role in the
possibility of carrying out so called “backwards analysis of algorithms” [Knu73].

The issue of randomness preservation, despite involving the simple notion of
uniform distribution, has led to complicated problems (e.g. [Ede96], [JK78] and
[Knu77]). Several well-known algorithms turn out to be non-randomness-preserving
in nature; a case in point being Heapsort for which thus far no randomness-preserving
version has been obtained [Ede96] and for which the average-case analysis requires
a surprising amount of theoretical machinery [Ede96, SS93, LV93] compared to the
average-case analysis of comparable size algorithms such as Quicksort [AHU87].

The complications are due to the fact that the preservation of a distribution depends
on the type of computational steps that occur. Hence semantics involving transfor-
mations of distributions are available in the literature [Koz81], but in practice it is
infeasible in general to track the distributions during the transformations.

While examples of randomness-preserving algorithms have been studied [Knu73]
and the subject has been explored to some extent in [Knu77], to the authors knowl-

36 1 Introduction

edge no systematic study of this notion has been carried out in a programming
language context. Randomized algorithms form a well-studied field [MR95], but the
development has been separate from the issue of randomness preservation.

The formalization of the notion of random structure preservation sheds new light
on the field of Algorithms, which is one of the most well-established and notoriously
intricate areas of Computer Science (e.g. [Knu73]). As we will see, algorithms can be
divided in two classes, namely the class of Random Structure preserving algorithms
and its complement.

Currently, when one compares algorithms for which the pseudo-code has compa-
rable size, such as e.g. Quicksort and Heapsort, it is unclear why some algorithms,
such as Quicksort, allow for a relatively straight forward average-time analysis and
other algorithms, such as Heapsort, require much more complicated techniques such
as the incompressibility method ([LV93]).Yet such algorithms are typically indistin-
guishable by their code, i.e. they use exactly the same type of operations: compar-
isons, swaps, assignments, loops, etc. A formalization of random structure preserva-
tion allows one to distinguish between algorithms in a novel way and inspires new
designs of classical algorithms leading to a considerably simplified time analysis.

The MOQA language presented in his work has the property that its programs
are guaranteed to preserve random bags. In this context the computations induce a
natural order on the random bags via the notion of a “refinement”. The semantics
oriented reader may benefit from a glance at the MOQA pseudo-code for well-
known algorithms based on series/parallel recursion in Chapter 8. The corresponding
derivations of the average-case time are distinctly semantic style in nature, where the
reasoning remains close in spirit to traditional functional fixed point derivations of
denotational meanings of programs. A case in point is the analysis of the Treapsort
algorithm. It is our view that this approach can give rise to novel semantic models
capturing both input-output behaviour of programs and information on average-case
complexity. One of the aims of the current presentation is to provide a foundation
which may serve as a bridge between Semantics and Complexity. Existing models,
discussed at the outset of this section, including game theoretic approaches, monads
and quantitative domains, could be explored in this context.

1.11.2 Implications for Real-Time Languages

A central parameter in the design and implementation of real-time applications is the
determination of (a bound on) the execution time of the tasks involved. Estimates of
the execution time are used to determine the required hardware resources, to plan
the timing of interactions between tasks and to allocate tasks to processing units.
Real-Time systems are referred to as either hard or soft.

In hard real-time systems one or more activities must never miss their deadline.
An example is the flight control system of an aircraft. In soft real-time systems, the
meeting of deadlines is preferable, but the occasional miss of a deadline is tolerated
without serious consequences. Examples are the cruise-control application in a car,
multimedia and video [Erm03]. Current real-time languages rely on the arguably

1.11 Related Areas 37

crude measure of estimating worst-case execution time (WCET). WCET has been
extensively studied (e.g. [PK93, Erm03]) and is particularly relevant in a hard real
time context (e.g. [KS97, PK93]).

Average case execution time (ACET) can provide useful additional information
complementing WCET. Indeed, it has been argued in [MP97], that real-time systems
ought to focus on algorithms that minimise the difference between worst and average-
case asymptotic behaviour. Using worst-case estimates loses precision and can lead
to a waste of resources when one budgets resource allocation based on this measure.
Consider for instance the case where a program on average performs much better than
in the worst-case. In this situation, worst-case estimates could result in budgeting for
an excessive resource allocation. We quote the following from [Ram96] which also
illustrates this point: “We mentioned earlier that the variance between the worst-case
computational needs and actual needs must not be very large. We can see why. Since
the schedulability analysis is done with respect to worst-case needs, if the variance is
large, many transactions that may be doable in the average-case will be considered
infeasible in the worst-case”.

We remarkACET analysis also has relevance for soft real time languages since the
average time provides an indication on how well a deadline is respected in general.
Yet real-time languages typically do not incorporate ACET analysis. An evaluation
of resource allocation based on average and worst-case time is currently out of range
since a general average-case analysis tool is not available in a real-time language
context.

In contrast, the language that we propose can allow for worst-case analysis, via
an adaptation of traditional real-time language techniques (e.g. [PK93]), but also
allows for exact average-case analysis in a compositional way. Hence one can take
into account the difference between worst-case and average-case time which could
potentially allow for a better judgement on whether resources have been allocated in a
frugal way. The design ofMOQA may open up the way for novel investigations on
ACET analysis for real-time languages. An interesting direction in WCET research
is the development of programming language paradigms specifically designed for
WCET analysis [BP02, Pus03]. This may not be so surprising from a semantics
point of view, but from a real-time language point of view the approach can be
considered to be a more radical one. Traditionally, existing languages have been
adapted to allow for real-time analysis by restricting loops to bounded loops, for
instance by restricting recursion to for-loops since such loops have a definite bound
and hence it becomes feasible to derive the worst-case time. In [BP02] the proposition
is made to significantly alter language constructs in order to facilitate the worst-case
analysis. This results in a stronger focus on language design than was traditionally
the case. The new approach has been strongly motivated by the shortcomings of
traditional approaches [BP02]. As remarked above, one can interprete the approach
of [BP02] as the design of a restricted language that is compositional with respect to
the worst-case execution time.MOQA ’s language constructs are directly aimed at
facilitating the average case analysis ofMOQA programs and hence the approach
complements current real-time language research on new paradigms for worst-case
analysis ([BP02]).

38 1 Introduction

Finally, we remark that recent work on Compositional Timing in a Real-Time
context focuses for instance on the development of Compositional Real-Time Sche-
duling Frameworks [SL04]. However this regards combining the time of components
which are not functionally dependent. In other words, the components are fully
independent of one another: a component does not wait for/depend on outputs of
another component. Our context is different since “functional dependency” (input-
output dependency) is very much at the heart of MOQA . Hence this work also
provides a first step towards introducing functional dependencies in a Real-Time
context.

We will focus however in the book on presenting MOQA as an alternative
new approach to average-case analysis and will leave Real-Time considerations as a
separate matter, with the exception of Chapter 10.

Chapter 2
Introductory Notions

We denote the set of real numbers byR and the natural numbers by N .
We use the following notation for the combinatorial choice of k integers out of

l, without repetitions:
(

l
k

)
. We denote the number of choices of k1 integers out of l,

followed by k2 integers out of l−k1, . . . , followed by kn integers out of l−
∑n−1

i=1 ki

by
(

l
k1,...,kn

)
, where

(
l

k1, . . . , kn

)
=

(
l

k1

)(
l − k1

k2

)
. . .

(
l −

∑n−1
i=1 ki

kn

)
.

The cardinality of a set X is denoted by |X|. The range of a function f : X → Y
is the set {f(x)|x ∈ X}, denoted by Ra(f). The result of restricting a function to a
subset A of X is denoted by f �A. Similarly, the restriction of a partial order (X,�)
to a subset A of X is denoted by (A,�� A) or often, when no confusion can arise,
by (A,�).

For any finite collection of sets, these sets are said to be pairwise disjoint in case
any two distinct sets in the collection are disjoint, i.e. a collection of sets A1, . . . , An

is pairwise disjoint in case ∀i, j ∈ {1, . . . , n}. i = j ⇒ Ai ∩Aj = ∅.
The result of concatenating two sequences, say A = (a1, . . . , am) and B =

(b1, . . . ,
bn) is the sequence Conc(A, B) = (a1, . . . , am, b1, . . . , bn). Concatenation of more
than two sequences, Conc(A1, . . . , An), is defined in a similar way.

An affine combination of a sequence of real-valued functions f1, . . . , fn is an
expression of the form α1f1 + . . . + αnfn where α1, . . . , αn are real numbers and∑n

i=1 αi = 1.

40 2 Introductory Notions

2.1 Partial Orders & Hasse Diagrams

A partial order is a pair (X,�) consisting of a set X and a binary relation� between
elements of X such that the relation is:

1) Reflexive: x � x
2) Transitive: x � y, y � z ⇒ x � z.
3) Anti-symmetric: x � y, y � x⇒ x = y.

Unless stated otherwise, we will only consider finite partial orders in the following.
For x ∈ X , we let x↓= {y| y ∈ X and y � x} and x↑= {y| y ∈ X and x � y}. If
A ⊆ X then A↑= ∪x∈Ax↑ and A↓= ∪x∈Ax↓.

If (X1,�1) and (X2,�2) are partial orders then a function f : X1 → X2 is
increasing iff ∀x, y ∈ X1. x �1 y ⇒ f(x) �2 f(y). In case the function f is an
increasing bijection and f−1 is increasing, we refer to f as an order-isomorphism
between the given partial orders.

If (X,�) is a partial order then x � y ⇔ (x � y and x = y). The binary relation
�1 is defined to be the set of all pairs (x, y) such that x � y and �z. x � z � y.

We assume that the reader is familiar with Hasse diagrams [DP90] which will
be used to represent partial orders in the examples. The transitive reduction of a
partial order (X, �) is obtained by omitting from � all its reflexive pairs and
pairs that can be inferred by transitivity. The Hasse diagram of a partial order is
a digraph representation of its transitive reduction, where one requires that in the
representation, related elements x, y where x � y are displayed such that x is below
y in the Hasse diagram. In other words, Hasse diagrams represent directed acyclic
graphs for which the transitive reflexive closure is the given partial order. In Hasse
diagrams one only displays the relation �1. When specifying a finite partial order
we typically list a set of pairs specifying the Hasse diagram for the partial order.

A linear order (X,�) is a partial order such that every pair of elements x, y ∈ X
is related with respect to this order, i.e. ∀x, y ∈ X. x � y or y � x. For any set X ,
the discrete partial order on X is the partial order consisting only of the reflexive
pairs {(x, x)|x ∈ X}.

For any subset Y of a partial order (X,�) we say that Y is a discrete subset of
the partial order in case the restriction of the order � to Y is the discrete order.

An element x of a partial order (X,�) is maximal (minimal) iff �y ∈ X. x �
y (y � x). An extremal element of a partial order is an element which is maximal
or minimal. A maximum (minimum) of a partial order (X,�) is an element x ∈ X
such that ∀y ∈ X. y � x (x � y).

For any two points x, y ∈ X , a sequence (x1, . . . , xn) is a path from x to y when
x1, . . . , xn ∈ X, x1 = x, xn = y and ∀i ∈ {1, . . . n− 1}. xi � xi+1 or xi � xi+1.
A connected partial order (X,�) is a partial order such that for every two points x, y
of X there exists a path from x to y. A component of a partial order is a non-empty
connected subset of maximal size. Any partial order can be partitioned (as a graph)
into a set of components. The length of a path of a finite partial order is the number

2.2 Series-Parallel Orders 41

of elements on the path. A chain in a partial order (X,�) is a path which forms a
linear order under the restriction of �.

2.2 Series-Parallel Orders

We recall some main results regarding series-parallel partial orders [VTL79, Gra81,
Gis88, Fin03].

Definition 2.1. Given two disjoint partial orders (P,�1) and (Q,�2).
The sequential composition, denoted via a semi-column “;” is the partial order P ; Q
on P ∪Q such that x � y in P ;Q⇔

[x, y ∈ P and x �1 y] or [x, y ∈ Q and x �2 y], or [x ∈ P and y ∈ Q].

The parallel composition || is the partial order P ||Q on P ∪Q such that x � y in
P ||Q⇔

[x, y ∈ P and x �1 y] or [x, y ∈ Q and x �2 y].

A series-parallel partial order (SP-order) is a partial order that can be recursively
constructed by applying the operations of sequential and parallel composition starting
with a single point [Stan99].

Note that trees form an example of SP-orders as illustrated in Example 2.1 below.

Remark 2.1. For reasons which will become apparent later on, we will refer in the
remainder of this work to the sequential composition as the product operation. Hence
we will use the notation

⊗
for sequential composition in the following. The par-

allel composition of two partial orders in our context will amount to a reference to
components of partial orders.

From the definition of an SP-order it is clear that each SP-order over a finite set,
say {x1, . . . , xn}, can be represented through a formula from the following induc-
tively defined collection SP , where SP = ∪n≥0SPn and:

SP0 = {x1, . . . , xn}
∀n ≥ 1.SPn = {[y

⊗
z] | y, z ∈ SPn} ∪ {[y || z] | y, z ∈ SPn}.

Example 2.1. Consider the following SP-order, which corresponds to the formula
[x1

⊗
[x2|| [x3

⊗
[x4||x5]]]].

42 2 Introductory Notions

�� ��

�� ��

��

Remark 2.2. Note that in the above approach, there is a unique parsing of each SP
formula from SP . However, through associativity, one can drop brackets and focus
on the “parallel components” and the “series components” as discussed below.

An SP-order (P,�), after removing unnecessary brackets, is of one of the follow-
ing forms:

1) P = P1|| . . . ||Pn or

2) P = P1
⊗

. . .
⊗

Pn.

Definition 2.2. We refer to an SP-order in Remark 2.2 of the first kind as a parallel
SP-order and to an SP-order of the second kind as a product SP-order. Moreover,
we refer to the suborders P1, . . . , Pn of the parallel SP-order P = P1|| . . . ||Pn as
parallel components and to the suborders P1, . . . , Pn of P = P1

⊗
. . .

⊗
Pn as

product components.

Remark 2.3. It is clear that, by removing unnecessary brackets, we can express a
parallel SP-order as an SP-order for which all parallel components are product SP-
orders. Similarly we can express a product SP-order as an SP-order for which all
product components are parallel SP-orders. We refer to such expressions as canonical
representations of the SP-order in question.

Example 2.2. Consider the product SP-order [[x
⊗

[y || z]]
⊗

[z || [u ||v]], which can
be expressed as the product of parallel components x

⊗
[y || z]

⊗
[z ||u ||v].

We discuss the following interesting characterization of SP orders as so-called
N-free orders.

Definition 2.3. A partial order is N-free if there is no quadruple of elements{x, y, u, v}
whose non-trivial relations are given by x � u, y � u, y � v, i.e. there is no suborder
determined by a Hasse diagram corresponding to an “N-shape”:

2.3 Trees & Heaps 43

u v

x y

The following proposition provides a characterization of SP-orders as N-free
partial orders.

Proposition 2.1. [Fin03, Gis88, Gra81, VTL79] For finite partial orders, the notions
of SP and N-free are equivalent.

2.3 Trees & Heaps

A tree is a partial order with a maximum element, referred to as the root of a tree, for
which the Hasse diagram representation has no cycles [HJ99, AHU87]. The elements
of this order are referred to as the nodes of the tree. We follow here the Computer
Science convention in considering the root as the largest element in the tree, rather
than the standard mathematical approach of defining the root as the least element.
The leaves are the minimal nodes, internal nodes are nodes that are not leaves, a
child of a node, provided the given node has elements strictly below it, is a node
immediately below the given node in the ordering. Similarly, a parent of a node,
provided the given node has a node strictly above it, is a node immediately above the
given node in the ordering [AHU87]. The depth of a node in a tree is the number of
nodes (not including the given node) on the unique path from the node to the root.
The size of a finite tree is the number of nodes in the tree.

A binary tree is a tree in which every node has at most two children. A full binary
tree is a binary tree in which every internal node has two children. A complete binary
tree is a full binary tree in which all leaves occur at the same depth.

In the following we will only consider finite binary trees and will simply refer to
these as tree.

A near-heap is obtained from a complete binary tree as follows:

1) Some leaves are allowed to be omitted in right to left order.
2) All nodes of the tree obtained via 1) are labeled with a natural number

such that each parent which is not the root has a label which is greater
than those of its children.

A heap is a near-heap for which the root has a label which is larger than the labels
of its children. The set of all heaps of size n, identified up to labeling-isomorphism,
is denoted byHn and the cardinality of this set is denoted by h(n).

We display the recurrence for the number h(n) of heaps of size n with labelings
from a fixed set of n distinct labels [Ede96], where H1 and H2 are the two heaps
obtained by removing the root of the original heap of size n:

44 2 Introductory Notions

h(n) =
(

n− 1
|H1|

)
× h(|H1|)× h(|H2|).

Remark 2.4. For future reference we remark that: h(1) = h(2) = 1, h(3) = 2, h(4)
= 3, h(5) = 8 and h(6) = 20 and thus h(3) does not divide h(4), h(4) does not
divide h(5) and h(5) does not divide h(6).

Treaps were introduced independently by several authors [Vui80, SA96], where
the first introduction of these structures is due to [Vui80], which used the terminology
of Cartesian Trees .

A key is a value stored at a node x of a tree, denoted by x.key. Keys stem from
a totally ordered universe and are pairwise distinct. A Binary Search Tree consists
of a binary tree with a set X of n items stored at the nodes: some item y ∈ X
is chosen to be stored at the root of the tree, and the left and the right children of
the root are binary search trees for the sets X< = {x ∈ X|x.key < y.key} and
X> = {x ∈ X| y.key > x.key}. Binary Search trees satisfy the in-order property.
This means that for any node x in the tree y.key < x.key for all y in the left subtree
of x and x.keq < y.key for all y in the right subtree of x. Let X be a set of items
each of which has an associated key and a priority. The priorities, as are the keys, are
drawn from a totally ordered universe and are assumed to be pairwise distinct. The
two ordered universes need not be the same. A treap for X is a binary tree with node
set X that is arranged in in-order with respect to the keys and in heap-order with
respect to the priorities. Pairwise distinctness of keys and of priorities guarantees
that there is a unique treap for X [SA96].

2.4 Basic Sorting Algorithms

We give details of the pseudo-code for several algorithms of which the average-case
time will be discussed. For further information we refer the reader to [AHU87] and
[Knu73].

We will discuss two standard variants of Heapsort in the work, William’s version
and Floyd’s version. We recall some basic background material, to formulate the
Heapsort variants, and for simplicity consider heaps labeled with natural numbers.

The traditional Heapsort algorithm relies on a procedure “Push-Down”, which
transforms a near-heap to a heap. Two versions of Push-Down are available:Williams’
original version [Wil64] which we refer to as “W-Push-Down” and the more eco-
nomic version used by Floyd [Flo64], which we refer to as “F-Push-Down”. We
sketch these alternative versions below. For a precise formulation we refer the reader
to [AHU87], [Wil64],[Flo64] and [LV93]. In the description given below, “larger”
(“smaller”) refers to the order≥ (≤), while “strictly larger” (“strictly smaller”) refers
to the order > (<).

2.4 Basic Sorting Algorithms 45

W-Push-Down
Given a near-heap of size n, say with root label l, then W-Push-Down proceeds as
follows:

Start at the root of the near-heap and compare the labels of the two children. If m is
the larger label of these two, then compare the root label l with m. If m < l, then the
algorithm halts since the near-heap is a heap. Otherwise these labels are swapped.
Consider the sub near-heap which has as root the child which was originally labeled
with m. Recursively repeat this procedure on this sub near-heap until the children of
the root under consideration have labels which are both less than the root label or a
leaf is reached.

F-Push-Down
Given a near-heap of size n, say with root label l, then F-Push-Down proceeds as
follows:

Keep track separately of the root label l. Start at the root of the near-heap and compare
the labels of the two children. Select the child which has the larger of the two labels.
Repeat the procedure on the sub near-heap which has this child as root until a leaf
is reached. This determines a chain from the root of the near-heap to the leaf. Move
systematically up the chain (if necessary) until a particular node N is found which
has a label greater than the root label l.

At that point, assign the label of this particular node N and of each of its ancestor
nodes on the chain, to each of their respective parent nodes. That is, move the labels
of each node one node upwards along this chain. Finally, change the label of N to
the original root label l.

The main difference, regarding comparisons, is the following: W-Push-Down pro-
ceeds from the root down the near-heap, making two comparisons per step. F-Push-
Down proceeds from the root down the near-heap to a leaf, making one comparison
per step. Then it backtracks upwards along the chain to the root, making one extra
comparison per step until a particular node is reached for which the label is larger
than the label of the root.

We recall the Heapify procedure which uses Push-Down (where either of the
above versions of Push-Down can be selected) to create a heap from a given list.
Push-Down(i, j), where i ≤ j, comes equipped with two parameters which indicate
the boundaries i and j of the sub-list being operated on. I.e. i indicates the index
of the label to be “pushed down” and j indicates that we only operate on labels of
elements with indices ranging from i up to and including j.

A list (L[1], . . . , L[n]) is interpreted by Heapify as a binary tree, with root node
labeled with L[1] and such that each node labeled with L[j], with j ≤ �n

2 � has either
two children labeled with L[2j], L[2j + 1], when 2j + 1 ≤ n, or one child labeled
with L[2j] when 2j = n [AHU87]. Push-Down is called recursively in the Heapify

46 2 Introductory Notions

procedure defined below. Since Push-Down will initially be called on a binary tree
with at most 3 elements, this binary tree is automatically a near-heap and hence the
recursive calls to Push-Down are well defined.

Heapify
For i = �n

2 � downto 1 do Push-Down(i,n);

The Heapsort algorithm relies on a Selection process, in which the largest label
of the heap, i.e. the label at the root, is swapped with the label of the rightmost leaf,
after which Push-Down is called once more on the newly created near-heap and the
process is repeated.

The pseudo-code for Selection is given by:

Selection
For i = n downto 2 do

swap(L[1],L[i]);
Push-Down(1,i-1)

Finally, traditional Heapsort can be formulated as follows, again using either ver-
sion of the procedure Push-Down:

Heapsort
Heapify; Selection

We recall the pseudo-code of the version of Bubblesort discussed in [AHU87],
which we refer to as “Bubblesort-I”.

Bubblesort-I
For i = n-1 downto 1 do

For j = 1 to i do
if L[j] > L[j+1] then swap(L[j],L[j+1])

The inner for-loop of Bubblesort-I is denoted by JI
i where i ∈ {1, . . . , n− 1}.

We recall the pseudo-code of the Bubblesort version from [Knu73], which we
refer to as Bubblesort-II“”. This version keeps track of the number of swaps per-
formed during a run of the inner for-loop; i.e. of the number of comparisons for
which L[j] > L[j + 1] is true. In case no swaps occur during this run, the sublist
under consideration is sorted and the algorithm terminates.

Bubblesort-II
For i = n-1 downto 1 do

k := 0;
For j = 1 to i do

if L[j] > L[j+1] then k := k+1; swap(L[j],L[j+1]);

2.5 Uniform Distribution and Bags 47

If k=0 then return L

The inner for-loop of Bubblesort-II is denoted by JII
i where i ∈ {1, . . . , n− 1}

and n = |L|.

2.5 Uniform Distribution and Bags

A bag1 is a finite set-like object in which order is ignored but multiplicity is explicitly
significant. Thus, contrary to sets, bags allow for the repetition of elements. There-
fore, bags {1, 2, 3} and {3, 1, 2} are considered to be equivalent, but {1, 2, 2, 3} and
{1, 2, 3} differ. We refer to the number of times an element occurs in a bag as the
multiplicity of the element. The cardinality of a bag is the sum of the multiplicities
of its elements. Each bag A of n elements has an associated set B = {b1, . . . , bk}
such that ∪A = ∪B and where each element bi of B is repeated Ki times where
1 ≤ Ki ≤ n and

∑k
i=1 Ki = n. It is clear that a bag A can be represented in this

way as a - set of pairs {(b1, K1), . . . , (bk, Kk)}.
In fact it will be convenient to adopt a slight generalization of this type of rep-

resentation as our formal definition of a bag in the following. I.e. a bag is formally
defined in this context as a finite set of pairs {(b1, K1), . . . , (bk, Kk)}, where each
Ki is a natural number, referred to as the multiplicity of the element bi and where
we do not require that the elements bi are pairwise disjoint. In case (∗) ∀i, j. bi = bj ,
we refer to the finite set of pairs {(b1, K1), . . . , (bk, Kk)} as a strict bag. We allow a
more flexible approach in which we do not require (∗) to hold since in practice some
repetitions of an element b may occur in different contexts, e.g. as K repetitions in
one context and L in another, in which case we chose to keep track of these repeti-
tions separately as pairs (b, K) and (b, L) in the same bag rather than as a single pair
(b, K + L) in the bag.

To keep track of the number of times that a particular output is produced, we will
represent the range of the input-output function of a program as a bag. MOQA -
programs are guaranteed to terminate, so there are no undefined outputs to be taken
into account.

Notation 2.1 (Input and Output Bag)
For any program P we indicate the bag of its inputs by IP , referred to as the “input
bag”. The bag of inputs of size n is denoted by IP (n).A bag of inputs I for a program
P is a sub bag of the input bag IP . Typically we will require that I ⊆ IP (n) for
some n.

OP (I) denotes the bag of outputs, referred to as “the output bag”, of the compu-
tations of a program P on a bag of inputs I.

1 Also referred to as multi-set in the literature.

48 2 Introductory Notions

If IP (n) = In for a particular data structure under consideration then we denote
the output bag OP (In) by OP (n).

We recall (cf. Remark 1.6) that all programs under consideration are assumed to
terminate. Hence it is clear that in case I is an input bag for a program P , the bags
I and OP (I) have the same cardinality where the input-output relation forms the
corresponding bijection.

Example 2.3. 1) Consider a sorting algorithm P . The bag of outputs OP (An) is
{(Sn, n!)}, consisting of n! copies of the sorted list Sn.

2) Consider Bubblesort-I of Section 2.2 and its inner for-loop JI
n−1 for n = 3, i.e.

JI
2 .

LetA3 = {(1, 2, 3),(1, 3, 2),(2, 1, 3),(2, 3, 1),(3, 1, 2),(3, 2, 1)}. The bag of outputs
is OJI

2
(A3) = {((1, 2, 3), 4), ((2, 1, 3), 2)}.

Bags are useful to represent sets of data that are uniformly distributed. A bag A =
{(b1, K1), . . . , (bk, Kk)} is called uniformly distributed iff∀i, j ∈ {1, . . . , n}. Ki =
Kj . It is clear that if A = {(b1, K1), . . . , (bk, Kk)} is a uniform bag then we can
simply use the simplified notation A = {(B, K)}, which indicates that the bag A
consists of K copies of the set B. In particular: |A| = K|B|. Each element of a
uniform bag A with associated set B arises with equal probability of K

|A| = 1
|B| .

Example 2.4. Note that Example 2.3, 1) yields a uniform bag, while this is not the
case for Example 2.3, 2).

We recall the main rules for computing probabilities for statements involving∧,∨
and ¬. These will be applied to determine the probabilities of boolean expressions
occuring inMOQA programs.

Prob[¬A] = 1− Prob[A].

For pairwise disjoint event sets A1, . . . , An:

Prob[∪n
i=1Ai] =

∑n
i=1 Prob[Ai].

The Modularity Law for probabilities two event sets A1 and A2:

Prob[A1 ∪A2] = Prob[A1] + Prob[A2]− Prob[A1 ∩A2],

The Modularity Law for three event sets A1, A2 and A3 :

Prob[A1 ∪A2 ∪A3] = Prob[A1] + Prob[A2] + Prob[A3]−Prob[A1 ∩A2]−
Prob[A1 ∩A3]− Prob[A2 ∩A3] + Prob[A1 ∩A2 ∩A3].

The General Modularity Law for event sets A1, . . . , An (n ≥ 2) :

2.6 Timing Measures 49

Prob[∪n
i=1Ai] =

n∑
i=1

Prob[Ai]−
∑
i<j

Prob[Ai∩Aj]+. . .+(−1)n−1Prob[∩n
i=1Ai].

2.6 Timing Measures

We recall the standard definitions of comparison-based algorithms and of worst-case
time and average-case time for comparison-based algorithms. We recall from Chapter
1 that a comparison-based algorithm is an algorithm for which every action during
the code execution is determined by a comparison between two elements of the
input data structure (e.g. [AHU87]). In particular, every assignment and every swap
during the execution of the code is a direct consequence of a comparison between
two elements. Most sorting and search algorithms fall into this class and traditional
lower bound estimates apply in this context.

As indicated in Chapter 1, static timing in our context regards the counting of
comparisons during the execution of comparison-based algorithms.

For a comparison-based algorithm P we define the exact time TP (I) on an input
I to be the number of comparisons made by the program P during the computation
of the output P (I). The notation TP (n) indicates the restriction of the function TP

to the set In. We will consider subsets I of In and consider the following time
measures with respect to I:

The total time of P for inputs from I, denoted by T t
P (I) is defined by:

T t
P (I) =

∑
I∈I

TP (I).

The worst-case time of P for inputs from I, denoted by TW
P (I) is defined by:

TW
P (I) = max{TP (I)| I ∈ I}.

The best-case time of P for inputs from I, denoted by TB
P (I) is defined by:

TB
P (I) = min{TP (I)| I ∈ I}.

The average-case time of P for inputs from I, denoted by TP (I) is defined by:

TP (I) =
T t(I)
|I| =

∑
I∈I TP (I)
|I| .

In order to denote an arbitrary measure, which can include any of the above, we
use the notation TP and the usual corresponding notations TP (I) and TP (n).

We observe that:
∀I. TB

P (I) ≤ TP (I) ≤ TW
P (I).

50 2 Introductory Notions

If the exact time of P is a constant C on the inputs from I then:

TP (I) = TB
P (I) = TW

P (I) = C.

For a given data structure, we let the finite set In denote the set of input states of
size n for this particular data structure.

Of course, in case I = In, we will for the total, worst-case, best-case and average-
case time respectively use the following standard notation based on size indication
only: T t

P (n), TW
P (n), TB

P (n) and TP (n).
We assume familiarity with the asymptotic classification of running times and the

notion of a decision tree (e.g. [AHU87]). Given two functions f, g : N → R+. Then

f ∈ O(g) ⇐⇒ ∃c > 0 ∃n0 ∀n ≥ n0. f(n) ≤ cg(n).

f ∈ Ω(g) ⇐⇒ ∃c > 0 ∃n0 ∀n ≥ n0. f(n) ≥ cg(n).

For comparison-based algorithms one can show that in the asymptotic hierarchy
(e.g. [CLR96]) the worst-case time and the average-case time satisfy the following
lower bound: TW

P (n) ∈ Ω(log(Nn)) and TP (n) ∈ Ω(log(Nn)) where Nn is the
number of leaves in the decision tree of the algorithm P for inputs of size n.

Chapter 3
Compositionality

The aim is to design a novel type of languageMOQA for which programs induce
recurrence equations for the average-case time in a compositional way and based
on the notion of randomness preservation. The capacity to generate recurrences is
particularly important for the average-case time measure since, in general, the di-

rect determination of the average-case time via the formula TP (n) =
∑

I∈In
TP (I)

|In|
is not feasible. For instance, for the case of sorting algorithms where |In| = n!,

a direct computation of

∑
I∈In

TP (I)

|n!| would require an excessive time in order to
add the n! comparison times TP (I) for the inputs I of size n. This is clear by Stir-
ling’s approximation n! ≈

√
2πn(n

e)n. The computation time would be too great,
even for the relatively small input size of n = 20. If on the other hand one has a
recurrence expressing the average-case time, this time can be determined for very
large values of n. The problem does not arise in the same way for the worst-case
time measure since for this measure only a single worst-case input needs to be found.

The usefulness of compositionality for static timing has been indicated in Chapter
1.We discuss compositionality for various practical timing measures in the following.

3.1 Compositionality as a Key to Software Timing

We recall (cf. Remark 1.6) that all programs under consideration are assumed to
terminate on all inputs.

We illustrate how compositionality can facilitate timing via the basic time measure
of exact time. It is easy to see that the Exact Time TP is (trivially) compositional,
i.e. for any two programs P1 and P2, where the output of P1 on input I is denoted
by P1(I), we have the following Exact Time Compositionality:

TP1;P2(I) = TP1(I) + TP2(P1(I)),

52 3 Compositionality

where, as usual, we let P1;P2 indicate the sequential execution of program P1 fol-
lowed by the program P2.

Compositionality of this nature guarantees that for any given input I the exact
time TP of for-loops

P = [For i = 1 to k do Q]

can be specified via a recurrence equation of the type:

TP (I) =
k∑

i=1

TQ(Ii−1),

where I0 = I and ∀i ∈ {1, . . . , k − 1}. Ii = [Q; . . . ;Q](I), where the program
Q is composed i times in the expression [Q; . . . ; Q].

Hence it is clear that compositionality can simplify the time determination of
programs by reducing the time of the original program P to a summation in terms
of the times of the basic for-loop component Q. This straightforward treatment of
for-loops is of particular interest for real-time language design since, in order to
enable timing, real-time languages are typically restricted to for-loops or for-loops
together with bounded while-loops.

However, the exact time determination for inputs of arbitrary size is infeasible in
practice. In the following we focus on the main measures used in practice, namely
worst-case time, best-case time and average-case time, and we introduce the novel
notion of IO-compositionality as a complexity theoretic interpretation of the classical
semantic notion of compositionality for these time measures.

3.2 IO-Compositionality

The compositional treatment for time measures that are defined with respect to sets of
inputs of a given size, needs a more refined type of bookkeeping via output multi-sets.
This is captured by the notion of “IO-compositionality”.

Definition 3.1. Given a time measure T . LetPL denote a programming language for
which programs are guaranteed to terminate on inputs. Let P1, P2 denote arbitrary
programs of the languagePL and let I denote an input multi-set for P1. We say that:

T is lower IO-compositional w.r.t. PL iff ∀P1, P2 ∈ PL ∀I.

TP1;P2(I) ≤ TP1(I) + TP2(OP1(I)).

T is upper IO-compositional w.r.t. PL iff ∀P1, P2 ∈ PL ∀I.

TP1;P2(I) ≥ TP1(I) + TP2(OP1(I)).

3.2 IO-Compositionality 53

T is semi IO-compositional w.r.t. PL iff

T is lower or upper IO-compositional w.r.t. PL.

T is IO-compositional w.r.t. PL iff

T is lower and upper IO-compositional w.r.t. PL, i.e. :

∀P1, P2 ∈ PL ∀I. TP1;P2(I) = TP1(I) + TP2(OP1(I)).

Finally, in case one of these properties V holds for a given time measure T with
respect to any programming language, we say that T is universal V , as e.g. “universal
IO-compositional”.

Lemma 3.1. The Total Time T t
P is universal IO-compositional. The worst-case time

TW
P and the best-case time TB

P are respectively universal lower and upper IO-
compositional.

Proof. Consider two programs P1, P2 of the language PL and I an input multi-set
for P1. We first verify the universal IO-compositionality of the Total Time:

T t
P1;P2

(I) =
∑
I∈I

TP1;P2(I)

=
∑
I∈I

TP1(I) +
∑

J∈OP1 (I)

TP2(J)

= T t
P1

(I) + T t
P2

(OP1(I)).

For the best-case time and the worst-case time, we observe that for any input I ∈ I
the following holds:

T B
P1

(I) + T B
P2

(OP1(I)) ≤ TP1;P2(I) = TP1(I) + TP2(P1(I)) ≤ T W
P1

(I) + T W
P2

(OP1(I)),

from which the universal lower and upper IO-compositionality for worst-case and
best-case time follows.

Remark 3.1. The right hand-side of the lower IO-compositionality inequality for the
worst-case time, TW

P1
(I)+TW

P2
(OP1(I)), is typically used in real-time languages as

an upper bound approximation for the worst-case time of a sequential composition
TW

P1;P2
(I). This provides an example of how compositionality, even in this weak

form, aids Software Timing.

We will show that the worst-case time TW
P and the best-case Time TB

P are in general
not universal IO-compositional, i.e. the semi IO-compositionality inequalities can be
strict in general. Secondly, we will verify that the average-case time TP is universal
IO-compositional.

54 3 Compositionality

3.3 Strict Semi IO-Compositionality for Worst-Case and
Best-Case Time

We show that IO-compositionality for worst-case time and best-case time can not
be achieved in general, i.e. their semi IO-compositionality inequalities are strict
in general. Hence the worst-case bounds in a Real-Time context are not exact in
general. This is illustrated by the counter-example given below. A similar example
can be constructed for the best-case time.

The counter-example is clearly an artificial one.Yet it illustrates nicely the lack of
control one has in guaranteeing IO-compositionality for the worst-case time and (via
a similar example) for the best-case time. It is easy to see that this problem arises in
many cases, where no apparent pattern seems available to obtain some compositional
subclass of sufficient generality.

Counter-Example 3.1 (Worst-case time)

Recent work by Burns-Puschner [BP02] does explore a “compositional”1 ap-
proach to worst-case time in a real-time context by forcing conditional statements
to execute both branches which in turn forces the time to be constant. Hence they
essentially describe a restricted real-time language with respect to which the worst-

1 [BP02] does not use this terminology, but the underlying concept is the same.

PROGRAM P1

PROGRAM P1;P2

PROGRAM P2

EXECUTION TIME EXECUTION TIME

INPUTS I

EXECUTION TIME

WORST–CASE
TIME Tw

P1;P2
(I))

INPUTS I

Tw
P1

(I)+Tw
P2

(OP1
(I))

INPUTS OP1(I)

WORST–CASE
TIME Tw

P1
(I) WORST–CASE

TIME Tw
P2

(OP1
(I))

3.3 Strict Semi IO-Compositionality for Worst-Case and Best-Case Time 55

case time is IO-compositional. We refer to this language in the following as BP2.
However, as the authors of [BP02] point out, their approach can lead to a drastic
increase in the execution time of BP-programs.

The counter-example illustrates that in this case strict semi IO-compositionality
holds, i.e. TW

P1;P2
(I) < TW

P1
(I) + TW

P2
(OP1(I)). The problem is that in order to

guarantee IO-compositionality, a worst-case input I of P1 needs to give rise to an
output P1(I) which constitutes a worst-case input for P2. Clearly, this will not be
guaranteed in general.

We provide a simple toy-program which illustrates that the above counter-example
can arise in practice. Consider the “Conditional Frog-Leap” algorithm. It systemat-
ically compares two consecutive elements of a list L and, in case the first is smaller
than the second, “frog-leaps” the first element over the others, where it lands in final
position.

The operation Frog-Leap (FL), has the following pseudo-code:

FL
[L:=Append(Tail(L),Head(L))]

In the pseudo-code, Head(L) denotes the list containing the first element of L,
while Tail(L) denotes the list obtained from L by removing the first element of
this list.

Note that the operation FL implicitly involves re-indexing of the elements. For
example if L[1] is frog-leaped to the end of the list L = (L[1], L[2], . . . , L[n]) then
the resulting list, which would be L′ = (L[2], . . . , L[n], L[1]), is assumed to be
re-indexed to L′ = (L′[1], . . . , L′[n]).

The pseudo-code for Conditional-Frog-Leap (CFL) is:

CFL
while (L[1] < L[2]) do FL(L)

Consider the algorithm CFL∗ obtained from CFL by inverting the < sign to the >
sign. We display the execution of CFL;CFL∗ on all inputs of size 3, where each arrow
indicates a comparison carried out in the while-loops of CFL and CFL∗.

123 →CFL 231 →CFL 312 →CFL 312 →CFL∗ 123 →CFL∗ 123
132 →CFL 321 →CFL 321 →CFL∗ 213 →CFL∗ 132 →CFL∗ 132
213 →CFL 213 →CFL∗ 132 →CFL∗ 132
231 →CFL 312 →CFL 312 →CFL∗ 123 →CFL∗ 123
312 →CFL 312 →CFL∗ 123 →CFL∗ 123
321 →CFL 321 →CFL∗ 213 →CFL∗ 132 →CFL∗ 132

2 Burns-Puschner.

56 3 Compositionality

Clearly TW
CFL;CFL∗(3) = 5, while TW

CFL(3) = 3. Note that OCFL(A3) =
{(3, 1, 2), (3, 2, 1),
(2, 1, 3)}.From the above displayed execution, it is clear that:T W

CFL∗(OCFL(A3)) =
3 and hence

TW
CFL;CFL∗(3) = 5 < TW

CFL(3) + TW
CFL∗(OCFL(A3)) = 6.

3.4 Average-Case Time is IO-Compositional

Proposition 3.1. The average-time measure is universal IO-compositional. Consider
a languagePL for which programs terminate on all inputs and two programs P1, P2
of PL, where P1 operates on an input multi-set I and produces the output multi-set
OP1(I). Then the following equality holds:

TP1;P2(I) = TP1(I) + TP2(OP1(I)).

Proof:

TP1;P2(I) =
∑

I∈I TP1;P2(I)
|I|

=

∑
I∈I TP1(I) +

∑
J∈OP1 (I) TP2(J)

|I|
= TP1(I) + TP2(OP1(I)),

where the last equality follows from the fact that |I| = |OP1(I)|.

Remark 3.2. (Average-Case Time Paradox)
The IO-compositionality of average-case time is rather surprising since it is well
known that average-case time analysis is much harder to determine in practice than
worst-case time due to the fact that the first measure needs to take into account the
computation times for all inputs, while for the second measure it suffices to focus
on determining the time for a specific extreme input-case. On the other hand, the
IO-compositionality of the average-case time, as opposed to the worst-case time,
opens the way to a compositional, and hence simplified, determination of average-
time recurrences. We will return to the reasons for this apparent paradox in the next
section.

3.5 From IO-Compositionality to Linear-Compositionality 57

3.5 From IO-Compositionality to Linear-Compositionality

Our aim is to treat the average-case time measure in a “linear-compositional” way. :

Informally stated, we aim to specify the average time of programs as a linear
combination of the average times of their basic building blocks. We will from now on,
informally, refer to a time measure T , which satisfies the above property with respect
to a given programming language PL, as a linearly-compositional time measure
with respect to PL. Again, if this property holds with respect to any programming
language, we refer to it as “universal linear-compositionality”.

Remark 3.3. Note that for the particular case of linear-compositionality for the aver-
age-case time measure, we do not insist that the average-case time is expressed in
terms of size. Instead, for the case of random bag preserving programs, the average-
case time of a program is expressed over the input random bag. In other words, linear-
compositionality guarantees the expression of the average-case time of a random bag
preserving program in terms of the average-case times of its basic building blocks,
where these average-case times in turn are expressed over simpler random bags. As
we, will see for recursive algorithms this type of linear-compositionality typically
yields recurrences in terms of size.

Counter-Example 3.1 shows that the worst-case time measure is not universal IO-
compositional.We recall that in [BP02] it is shown that the worst-case time measure is
IO-compositional with respect to a restricted real-time language BP . As we will see,
the average-case time measure is not universal linearly-compositional. However, we
will introduce a natural data structuring language MOQA with respect to which
the average-case time measure is linearly-compositional and which is expressive
enough to include the standard data structure manipulations.

In the following we will analyze to what extent IO-compositionality is sufficient
to reach linear-compositionality for the average-case time measure.

As mentioned above, IO-compositionality paves the way for simplifications of the
determination of recurrences for average-case time analysis. We illustrate this on the
following example.

Consider the sorting algorithms Quicksort and Mergesort, denoted by Q and
M . We consider a version of Quicksort for which the worst-case time is O(n2)
for input lists of size n and occurs on the sorted input list. It is well-known that:
TQ(n) ∈ O(nlogn) and TM (n) ∈ O(nlogn).

ForAn, the lists of size n, and Sn, the single sorted list of size n, we observe that
by IO-compositionality:

(∗) TM ;Q(An) = TM (An) + TQ(OM (An)).

Hence:
(∗∗) TM ;Q(An) = TM (An) + TQ({(Sn, n!)}).

Continuing this computation, we obtain:

58 3 Compositionality

TQ({(Sn, n!)}) =
∑n!

i=1 TQ(Sn)
n!

= TQ(Sn) = TW
Q (Sn) ∈ O(n2).

So (∗∗) yields the equality:

TM ;Q(An) = O(nlogn) + O(n2).

Hence:
TM ;Q(An) ∈ O(n2).

This argument illustrates how the use of output multi-sets, based on IO-composi-
tionality simplifies the determination of the average-case time.

Moreover, IO-compositionality, enables one to express the average-case time of
the composition M ; Q in terms of the basic components M and Q. Indeed, it is easy
to see that since the average time over an output multi-set containing a single list Sn

is of course simply the time on this list, i.e. TQ(Sn) = TQ(Sn), the above argument
yields that:

TQ({(Sn, n!)}) = TQ(Sn).

Hence we obtain the compositional expression of TM ;Q(An) as a linear combi-
nation of TM (An) and TQ(Sn) :

TM ;Q(An) = TM (An) + TQ(Sn).

Of course the linear combination is a rather trivial one in this case, since the
two scalars involved are 1, yielding an ordinary summation. This will be the case in
general for the composition of twoMOQA programs, P1; P2. Indeed, Theorem 1.3
implies that for any program P1 that transforms a random structure R1 to a random
bag R2 and for any program P2 that operates on R2, the average-case time of the
composition of two programs P1; P2 is given by the following linear combination:

TP1;P2(R1) = TP1(R1) + TP2(R2).

Of course, in general, non-trivial linear combinations will be produced for
MOQA programs (cf. Theorem 1.3, 2).

We remark at this stage that, for the above example of the composition of Mergesort
with Quicksort, the fact that a single structure Sn is produced, and hence a fixed
number of copies of Sn is obtained, is a crucial aspect of the argument. Guaranteeing
this in general, i.e. achieving a general control over the number of copies of structures
produced in the output multi-set, is a non-trivial problem.

In order to achieve this goal, we introduce the notion of a random structure and
we require that programs will be “random structure preserving”. Random structure
preserving programs will in general transform a random structure to a new collection
of random structures each of which is copied a given number of times.

3.5 From IO-Compositionality to Linear-Compositionality 59

The number of copies produced will be computable in practice due to our choice
to define a random structure as a collection of states fully determined by a given finite
partial order. We will illustrate the basic principles involved regarding the control
over the number of copies produced during a computation on another simple example
below.

First we clarify the notion of random structure preservation in relation to the
previous example. We remark that this example relies heavily on priorly established
information. Namely the knowledge of the average times of both Quicksort and
Mergesort as well as the fact that sorting algorithms always produce the sorted list
as output and the fact that our version of Quicksort has this sorted list as worst-case
input. In general, we can not rely on priorly established information and in order for
arguments of the above type to succeed, we need to guarantee that a “random structure
preserving property” holds for every program construct under consideration. In fact,
as is clear from the discussion in Chapter 1, we will require the more general condition
of random bag preservation. Hence we will require that the property of random bag
preservation holds for every basic building block of the programs we consider.

As we will see, not all algorithms are random bag preserving. This fact lies at
the root of deep problems with average-case time analysis and divides algorithms in
two distinct classes: the classRB of algorithms that are random bag preserving, i.e.
for which each part of the code is random bag preserving, and the complement of
this class,RBc which contains the algorithms for which some part of the code is not
random structure preserving.

We continue to illustrate informally on some basic examples that the preservation
of random structures is crucial for average-case time analysis. We first present an
example of a toy program “PROJ” which we refer to as “the projection program” and
which nicely illustrates how control over the number of copies of random structures
produced in the output multi-set is crucial in average-case time analysis. Its pseudo-
code is described as follows: PROJ takes lists of size 3 and returns the tail of the
input list, i.e. the input list without the first element, as output. One aim of the work
is to interpret MOQA programs as transformation from random bags to random
bags, where random structures are interpreted as strict random bags of size 1. PROJ
illustrates a transformation of this nature.

For the input-output relation forPROJ , displayed on the previous page,x1, x2, x3
represent the elements of the input list of size 3 and x2, x3 are the elements of the
output list of size 2.

It is clear that the program PROJ transforms the random structure A3 to three
copies of the random structure A2, after identification up to order-isomorphism. In-
deed, the first two output lists form the set {(2, 3), (3, 2)}, the second two output lists
form the set {(1, 3), (3, 1)} and the final two form the set {(1, 2), (2, 1)}. Hence after
identification up to order-isomorphism we obtain 3 copies of the random structure
A2.

Identification up to order-isomorphism is typically required to make the average-
case time analysis feasible. To ensure that this identification is possible, we need to
guarantee that the resulting output multi-set once again amounts to a random bag,
in which each random structure is copied a finite number of times. The multiplicity

60 3 Compositionality

2

1

3 2

3

3 1

1 2

2 3

x2 x3

1

3 2

3

3 1

1 2

2 3

x2 x3

1

2

2

3

123

1

x1

1

A3 −→ (A2, 3)

of the random structure plays a crucial role in carrying out the average-case time
analysis. We illustrate this on our example PROJ under the assumption that PROJ
is composed with another program, say P . Through IO-compositionality combined
with the fact that PROJ is random structure preserving, the average time of PROJ ; P
can be specified via the linear combination:

TPROJ;P (A3) = TPROJ(A3) + TP (A2).

Indeed, by IO-compositionality and the fact that PROJ is random structure pre-
serving we know that:

TPROJ;P (A3) = TPROJ(A3) + TP (OPROJ(A3))
= TPROJ(A3) + TP ({(A2, 3)})

However

TP ({(A2, 3)}) =

∑
I∈{(A2,3)} TP (I)

|{(A2, 3)}|

=
3

∑
I∈A2

TP (I)
3× 2

= TP (A2).

Of course, this result could be derived directly via Theorem 1.3, 2 b). Hence we
obtain the linear expression: TPROJ;P (A3) = TPROJ(A3) + TP (A2).

3.5 From IO-Compositionality to Linear-Compositionality 61

So it is clear that, for the case of the above given basic examples, IO-compositio-
nality and random structure preservation implies linear-compositionality. Since IO-
compositionality is guaranteed to hold for the average-case time measure, we can
state more concisely, for the case of the above examples, that random structure
preservation implies linear-compositionality.

We will illustrate in Counter-Example 3.2 and by revisiting Counter-Example 1.1
that for well known algorithms, such as Bubblesort and Heapsort, the property of
random structure preservation is not guaranteed and that as a result it is not possible
to express their average-case time in a linearly-compositional way.

The fact that the classRBc is non empty, motivates the need to guarantee random
bag preservation in order to achieve a linearly-compositional average-case time anal-
ysis. This explains the apparent Average-Case Time Paradox mentioned in Remark
3.2: IO-compositionality in itself is not sufficient to simplify the average-case time
analysis.

We will illustrate that the violation of random bag preservation can make the
analysis hard or even impossible for well-known algorithms. We aim to provide a
suitable framework in which random bag preservation is guaranteed.

We verify below that Bubblesort (versions I and II) and Heapsort (including
Williams’ and Floyd’s version), as discussed in Section 2, are not random struc-
ture preserving. We will illustrate that the lack of random structure preservation is a
fundamental stumbling block in achieving linear-compositionality for the average-
case time. In particular, we will show that Heapsort does not allow one to remedy
the situation via an equation such as the one of type (∗∗).

Counter-Example 3.2 (Bubblesort)
We will consider the compositionality of the individual passes of the outer for-loop
of the Bubblesort algorithm. We assume as usual in the analysis [AHU87] that lists
have pairwise distinct elements. Consider the 3! lists of size 3. Both versions of
Bubblesort will run in the same way during the first pass of their outer for-loop.
After the first pass of the loop, where i = |L| − 1 = 2, the 6 resulting lists all have
the element 3 “bubbled up” to the final position. It is easy to verify that these 6 lists
consist of 4 copies of the list (1, 2, 3) and 2 copies of the list (2, 1, 3). The outcomes
are displayed below:

(1, 2, 3) → (1, 2, 3) (2, 3, 1) → (2, 1, 3)
(1, 3, 2) → (1, 2, 3) (3, 1, 2) → (1, 2, 3)
(2, 1, 3) → (1, 2, 3) (3, 2, 1) → (2, 1, 3)

Bubblesort-I will continue on the initial segments of size 2, i.e. 4 copies of (1, 2)
and 2 copies of (2, 1) which is no longer uniformly distributed. In other words, the
algorithm is not random structure preserving. Bubblesort-II will at that stage ignore
the initial segment (1, 2) of the original sorted input list (1, 2, 3) and will hence only
be executed on the limited selection consisting of 3 copies of the list (1, 2) and 2
copies of the list (2, 1). This is once again not a uniform distribution.

We remark that for every fixed input size, the comparison time of Bubblesort-I is
constant on lists of this size. Hence, it is still possible to determine the average-case

62 3 Compositionality

time of Bubblesort-I. Indeed, for every list L of size n we have TB-I(L) = (n−1)n
2 .

Hence its average time is TB-I(An) = (n−1)n
2 .

Bubblesort-I illustrates the existence of non-random structure preserving algo-
rithms for which the average-case time still can be determined in a straightforward
way due to constant-time behaviour. In general however, algorithms which do not
have the constant-time property and which do not preserve randomness will be prob-
lematic to analyze and a linearly compositional derivation of the time is not guar-
anteed. As observed by Knuth, the average-case analysis of the comparison time
for Bubblesort-II, which is not randomness preserving nor exhibits constant time
behaviour, is hard to handle and involves the number of inversion tables [Knu73].
The situation grows worse for Heapsort. We illustrate for this algorithm that the lack
of random structure preservation implies that the average-case time measure is not
compositional and discuss the deep implications for its average-case time analysis.

Counter-Example 1.1 (Revisited) (Heapsort)
We recall that the argument to show that Heapsort does not preserve the uniform
distribution of its data is based on a counter-example discussed in [Ede96], which
makes an attempt to solve the open problem of designing a “randomness preserving”
version of Heapsort. Consider lists of size 4 where we assume that list elements are
pairwise distinct.After the heapification phase, viewed over all twenty-four input lists
of size 4, a total of 3 non-label-isomorphic heaps are created which arise with equal
probability of 1

3 . We display these heaps of size 4, which we denote by H4[1], H4[2]
and H4[3], below for labels 1, 2, 3, 4:

4

2 3

1

23

2

3

1

1

4 4

H4[1] H4[2] H4[3]

However, this uniform distribution is violated by the selection of the maximal
root element which is stored in position 4 for a heap of size 4. After this phase, the
algorithm focuses on the heaps obtained by pruning the 4-th element, in this case the
leaf of greatest depth, from the heap. Since the resulting heaps are of size 3, we know
there are 2 non-label-isomorphic versions of this size. We display these heaps for
labels 1, 2, 3 in the figure below, where the heap of size 3 displayed first is referred
to as H3[1] and the heap of size 3 displayed below this heap is referred to as H3[2].
It is clearly impossible that these 2 heaps are created from the 3 heaps of size 4 with
equal probability. In fact, one can verify that H4[1] and H4[3] both are transformed
to H3[2], while H4[2] is transformed to H3[1], as displayed in the picture below.

3.5 From IO-Compositionality to Linear-Compositionality 63

H4[1] −→
H4[3] −→

3

21

3

2 1

H4[2] −→

H3[1]

H3[2]

Edelkamp observes in this context: “Diese Betrachtung hat eine exakte average-
case Analyse von allen Heapsort-Varianten bis dato unmöglich gemacht”.3 The lack
of “randomness preservation” is also cited in [FSZ91] as preventing an automated
average-case analysis of Heapsort.

We remark that it is truly the break-down of linear-compositionality which pre-
vents a standard average-case analysis. This break-down however only becomes ap-
parent as of size 6, since constant-time behaviour for parts of the algorithm will cause
a linear-compositional behaviour despite the absence of random structure preserva-
tion.

To illustrate this we focus on the moment at which random structures are no longer
preserved, i.e. immediately after the application of the Heapify procedure followed
by a single run of the Selection phase consisting of a single swap and Push-Down.
We indicate this single run by Select[1] and the remainder of the Selection process
by Select[R]. Hence

Heapsort = Heapify;Select[1];Select[R].

As shown above, the uniform distribution will break down in the Selection phase
for heaps of size 4. Via a similar argument and using Remark 2.4, we show that, for
inputs of at sizes 4, 5 and 6 the uniform distribution must break down following the
execution of Heapify;Select[1]. Indeed, following Remark 2.4, there are h(5) = 8
heaps of size 5 and h(6) = 20 heaps of size 6. The Selection phase transforms
heaps of size 5 to size 4, where h(4) = 3 does not divide h(5) = 8. Similarly,
the Selection phase transforms heaps of size 6 to size 5, where h(5) = 8 does not
divide h(6) = 20. Hence uniform distribution can not be preserved. As it happens,
for heaps of size 4, and similarly for heaps of size 5, the number of comparisons
made by the Selection phase is constant (2 and 3 comparisons respectively). This
occurs since the heaps produced by Heapify;Select[1], from lists of size 4 and 5,
are of size 3 and 4 respectively, for which it is easy to check that the Select[R]
procedure takes constant time. However this is no longer the case as of size 6 and
we obtain4 that THeapsort(A6) = 10896

6! , while THeapify;Select[1](A6) = 6864
6! and

TSelect[R](H5) = 46
8 . Hence:

3 “This fact (i.e. the non-preservation of the uniform distribution for size 4) has made an exact
average-case analysis of all Heapsort-variants impossible to date.”
4 Using a program to calculate the number of comparisons for the 6! input lists.

64 3 Compositionality

THeapsort(A6) = THeapify;Select[1](A6) + TSelect[R](H5).

The problem is that the swaps in the Selection phase destroy random struc-
ture preservation which when combined with the non-constant time behaviour as
of size 6 causes the linear-compositionality to fail. As a result, the average-case
analysis of Heapsort requires a surprising amount of theoretical machinery com-
pared to the average-case analysis of comparable sized algorithms such as Quick-
sort ([Ede96], [SS93], [LV93]). One approach involves a Kolmogorov complexity
analysis of the Heapsort algorithm using the incompressibility method [LV93], ex-
tending Sedgewick’s and Schaffer’s original approach [SS93]. The determination of
a randomness-preserving version of Heapsort is an open problem discussed at length
in [Ede96].

It is clear that the absence of randomness preservation can form a main stumbling
block in carrying out the average-case time analysis of algorithms.

As remarked above, the lack of random structure preservation can be the cause
of non-linear-compositionality, though it is not a sufficient condition. A main theme
of this work will be to establish the following central result (Theorem 7.8) for the
average-case time measure, which can be informally stated as:

RANDOM BAG PRESERVATION⇒ LINEAR-COMPOSITIONALITY

Chapter 4
Random Bag Preservation and Isolated Subsets

4.1 Random Structures

We revisit the notion of a random structure, which has been defined Definition 1.4 as
a quotient consisting of data-labelings (Definition 1.1). Relationships with pomsets
are discussed. We recall that the partial orders underlying random structures allow
one to incorporate well-known data structures (cf. Example 4.1). One example, from
Chapter 1, regards the data structure of lists, determined by the discrete partial order.
For lists of size n the identification of data-labelings up to labeling-isomorphism
yields as usual the n! permutations over n elements. These can be incorporated as
a random structure An over the discrete partial order which, when labeled in all
possible ways from a finite set of labels, say from the set {1, . . . , n}, results in the
n! permutations.

Other examples of data structures can be incorporated such as Heap-Ordered-
Trees [FS95] and Heaps [AHU87]. A trivial and degenerate example of a random
structure is the random structure over the linear order which allows for a single state.
This is interpreted as a data structure consisting of the sorted list. We revisit such
random structures in detail in Example 4.1 below.

The chapter also introduces the State Theorem (Theorem A.1, Section 4.4). This
theorem enables one to interpret states of a random structure as a “generalized per-
mutation”. To motivate this, we return to the basic example of the n! permutations
over a set L of n natural numbers. This collection possesses a fundamental “Ran-
domness Property”:

If one selects an arbitrary permutation from the n! possible permutations over
a set of size n then the entire collection of permutations can be generated from the
given permutation by carrying out all possible swaps on pairs of elements of the
chosen permutation.

66 4 Random Bag Preservation and Isolated Subsets

As remarked above, we can interpret the collection of permutations as the random
structure An over the discrete n-element partial order and hence the randomness
property holds for this particular random structure.

The State Theorem provides a generalization of the randomness property of per-
mutations to the context of arbitrary Random Structures. Since, in general, random
structures are defined over a non discrete partial order, the notion of a swap on pairs
of elements needs to be carefully defined. We introduce the notion of “free pairs of
labels” for a state from a given random structure, as pairs of labels a and b of incom-
parable elements x and y for which a swap on the labels a and b will be consistent
with the underlying partial order (Definition 4.4), in other words, the newly obtained
function is guaranteed to form a new state of the underlying partial order. The State
Theorem states that all states of a random structure can be obtained from any arbi-
trary chosen state of the random structure by carrying out all possible sequences of
swaps on free pairs of labels of the chosen state.

Hence we interpret states in random structures as “generalized permutations” for
which a “generalized randomness property” holds. We remark that the State Theorem
is not a new result and corresponds to the well-known result that the “graph of linear
extensions” is connected [Naa00]. We will present a proof which is quite different
from standard proofs of this result in Appendix A.

We proceed with formal definitions. We recall the concept of a state, which has
been introduced in Chapter 1 as a representative for the equivalence classes obtained
by identifying data-labelings by equivalence up to relative order.

We consider a linearly ordered countable collection of labels, say (L, <L), where
in the examples we typically consider L to be a subset of the natural numbers N .

Definition 4.1. A state of a finite partial order (X,�) from a set of labels L, where
|X| = |L|, is an increasing injection F : X → L.

Of course, it follows from the above definition that states are bijections.
Omitting the order in the following notations consists of a slight abuse of notation,

which will not cause ambiguities in the work. Let (X,�) be a finite partial order.
We let m(Y) denote the set of minimal elements of (Y,�) and M(Y) denote the set
of maximal elements of (Y,�). Let F be a data-labeling of this partial order. We let
m(F) denote the labels for F of minimal elements of (X,�), i.e. F (m(X)), and we
let M(F) denote the labels for F of maximal elements of (X,�), i.e. F (M(X)).
For any subset L′ of the set of labels L, we let m(L′) denote the labels in L′ of
minimal elements of (F−1(L′),�), i.e. F (m(F−1(L′))), and we let M(L′) denote
the labels for F of maximal elements of (F−1(L′),�), i.e. F (M(F−1(L′))).

Finally we use the following notation: ∨L′ denotes the maximum label of the set
L′ while ∧L′ denotes the minimum label of L′.

Remark 4.1. It is quite evident that the greatest (least) label must occur at a maximal
(minimal) element.

Random structures have been defined in Definition 1.4 as a quotient. Here we
define such structures directly as collections of states, where we continue to work on
representatives.

4.1 Random Structures 67

Definition 4.2. The random structure on a finite partial order (X,�), with respect
to a set of labels L where |X| = |L|, is the set of all states from L of the partial
order. We denote this random structure by:RL(X,�).

Remark 4.2. It is obvious that the cardinality of random structures over partial orders
with n elements lies between 1 and n! included, determined by the extreme cases of
the linear partial order and the discrete partial order.

Notation: We frequently denote a random structureRL(X,�) by R and in that case
refer to the underlying set X and set of labels L as XR and LR.

We remark that the definition of a random structure does not require the underlying
partial order to be connected.

Remark 4.3. Random structures,RL1(X,�) andRL2(X,�), of a given partial order
(X,�) and obtained for two different sets of labels, L1 and L2, can easily be seen
to be labeling-isomorphic, i.e. there exists an order preserving bijection Ψ(L1,L2)
from the linear order (L1,≤1) to the linear order (L2,≤2), such that RL2(X,�
) = {Ψ(L1,L2) ◦ F |F ∈ RL1(X,�)}. Clearly, if L1 = {a1, . . . , an} and L2 =
{b1, . . . , bn} where ∀i ∈ {1, . . . , n − 1}. ai <1 ai+1 and bi <2 bi+1 then ∀i ∈
{1, . . . , n}. Ψ(L1,L2)(ai) = bi. We refer to the unique equivalence class for the
equivalence relation “labeling-isomorphic” as the random structure R(X,�) of a
partial order (X,�), which motivated Definition 4.2.

Random structures and pomsets
The reader familiar with “pomsets” may notice that a random structure forms a
special type of a pomset. Since pomsets are extensively used in Computer Science,
and concurrency in particular, we explain the relation as well as difference with
random structures below. We also motivate why we chose not to use the terminology
of pomsets in the present work.

Partially ordered bags or pomsets have been used in the context of concurrency
([Pra86]). A pomset is defined as the equivalence class of a partial order (X,�)
equipped with an alphabet Σ and labeled via a function μ : X → Σ. Two pomsets
(X1,�1, Σ1, μ1) and (X2,�2, Σ2, μ2) are equivalent iff there exists an order pre-
serving bijection Ψ : X1 → X2 which preserves labels, i.e. ∀x, y ∈ X1. x �1 y ⇒
Ψ(x1) �2 Ψ(x2) and ∀x ∈ X1. μ1(x) = μ2(Ψ(x)).

The data structures of our language will be special types of pomsets since we
require the alphabet Σ to be equipped with a linear order and we require the labeling
function μ : X → Σ to be order-preserving with respect to the given orders.

Moreover, for the purpose of time analysis, we will focus on data structures,
referred to as random structures, for which the labels are pairwise distinct. We chose
not to use the terminology of partial order bag (pomset) since “bag” in this context
refers to the fact that labels can be repeated. Hence, to be consistent, for the case
where we require labels to be pairwise distinct we should refer to partial order sets
(posets). The terminology “poset” is standard however for partially ordered sets.

68 4 Random Bag Preservation and Isolated Subsets

Moreover we will use bags in a different way in our setting and a double use of the
terminology would lead to confusion.

As remarked earlier, random structures allow one to incorporate traditional la-
beled data structures, including heaps, unordered lists, sorted lists, ... , as long as the
labelings respect the underlying order. We illustrate this in the next example.

Example 4.1. In each part of the example, we display the Hasse diagram of the given
partial order on the left and the states on the right. In each case the underlying set
consists of elements {x1, . . . , xn}, while the labels are the set of indices {1, . . . , n}.
Parts c), d) and f) illustrate that random structures can incorporate examples such as
unordered lists, the sorted list and heaps, in a natural way.

a)

��

�� �� � �

� �

� �

The random structureRL(X,�), where X = {x1, x2, x3, x4}, consists of the states
F1 and F2, where:
F1 = {(x1, 1), (x2, 2), (x3, 3)} and F2 = {(x1, 1), (x2, 3), (x3, 2)}.

b)

��

��

��

��

�

�

�

�

�

� � �

The random structureRL(X,�), where X = {x1, x2, x3, x4}, consists of the states
F1 and F2, where:
F1 = {(x1, 1), (x2, 2), (x3, 3), (x4, 4)} and F2 = {(x1, 1), (x2, 3), (x3, 2), (x4, 4)}.

c) Consider the partial order (X,�), where X = {x1, x2, . . . , xn}, equipped with
the discrete order. The random structure RL(X,�) consists of all n! permutations
of labels on the elements of X and can be interpreted as the set of lists of size n.
We will denote in the following such a random structure by An where A stands for
“Atomic”.

x3x2x1 xnxn−1

. . .

4.1 Random Structures 69

d) Consider the partial order (X,�), where X = {x1, x2, . . . , xn}, equipped with a
linear order. The random structure RL(X,�) consists of a single state, denoted by
Sn, which can be interpreted as the sorted list.

n

1

2

3

n-1

xn

xn−1

x3

x2

x1

e) We denote the following four-element random structure by N .

��

��

��

�� �

��

�

� �

� �

� �

� � �

� �

� �

� �

�

The random structure N consists of the states F1, . . . , F5, where

F1 = {(x1, 1), (x2, 2), (x3, 3), (x4, 4)},
F2 = {(x1, 1), (x2, 2), (x3, 4), (x4, 3)},
F3 = {(x1, 2), (x2, 1), (x3, 3), (x4, 4)},
F4 = {(x1, 2), (x2, 1), (x3, 4), (x4, 3)},
F5 = {(x1, 3), (x2, 1), (x3, 4), (x4, 2)}.

f) Finally, we remark that heaps over a fixed tree structure can be represented as
random structures over a partial order which has a tree as Hasse diagram. Heaps
of size n are denoted by Hn. For instance, the random structure H3 determined by
the following Hasse diagram and label set {1, 2, 3, 4} consists exactly of the states
H4[1], H4[2] and H4[3] displayed in Counter-Example 1.1.

x4

x2 x3

x1

Similarly, Heap Ordered Trees in general can be represented in this way.

70 4 Random Bag Preservation and Isolated Subsets

4.2 Floor and Ceiling Functions

We introduce “floor” and “ceiling” functions for elements of partial orders. For a
partial order (X,�) and an element x ∈ X , we define �x� to be the set of all
elements immediately and strictly above x, i.e.

�x� = {y| y �1 x}.

Similarly, we define:
�x� = {y| y �1 x}.

For a discrete subset Y of X , we define:

�Y � = ∪y∈Y �y�

�Y � = ∪y∈Y �y�.

Given a data-labeling F with range L, the floor and ceiling of a label a ∈ L is
defined as follows:

�a� = F (�F−1(a)�)

�a� = F (�F−1(a)�).

For a subset A of L we define:

�A� = F (�F−1(A)�)

�A� = F (�F−1(A)�).

Of course, we have:

a ∈ �b� ⇒ a > b

a ∈ �b� ⇒ a < b.

Example 4.2. For the data-labelings displayed in the example, we have that:
�2� = {3, 5}, �2� = {1}, �4� = {5}, �4� = {1}, �5� = ∅ and �5� = {2, 4}.

�

�

�

��

4.3 Free Sets of Labels 71

4.3 Free Sets of Labels

We introduce the notion of free sets of labels for a data-labeling F . Intuitively two
labels are free if they can be interchanged (“swapped”) in the given data-labeling
without violating the fact that the data-labeling is increasing. We define a swap
operation on pairs of labels.

Definition 4.3. Given a set of labels L and a pair of labels (a, b) from L, we define
σa,b as the permutation of L which swaps a and b and acts as the identity on all
other labels. We define Swap(a, b)(F) = σa,b ◦ F for all functions F whose range
is included in L.

Remark 4.4. The operation Swap(a, b) can be applied to any data-labeling F with
range in L but this does not necessarily yield a new data-labeling.

Definition 4.4. A pair (a, b) of labels of L is free for a data-labeling F ∈ RL(X,�)
in case Swap(a, b)(F) ∈ RL(X,�), or in other words, when Swap(a, b)(F) is still
a data-labeling. In this case we refer to the application of Swap(a, b) to F as a “free
swap”. A subset A of L is free for F in case its elements are pairwise free for F .

We leave the verification of the following lemma to the reader.

Lemma 4.1. IfA ⊆ L is free for F , where F ∈ RL(X,�) then F−1(A) is a discrete
subset of (X,�).

Proposition 4.1. If A ⊆ L, where |L| ≥ 2 and F ∈ RL(X,�) then the following
are equivalent:

1) A is free for F

2) i) if �A� = ∅ then ∨ A < ∧�A�
ii) if �A� = ∅ then ∧ A > ∨�A�

Proof. Let a = ∧A, b = ∨A and Y = F−1(A).
We show that 1) ⇒ 2). We prove (i). The proof of (ii) is similar. Suppose that

∨A = b < ∧�A�. Then there exist z ∈ Y and z′ ∈ �Y � such that z �1 z′ and
(∗) F (z′) ≤ b. Let c = F (z). By hypothesis (b, c) is free for F and thus F ′ =
Swap(b, c)(F) is a data-labeling. It follows that F ′(z) < F ′(z′). Now, F ′(z) = b
by definition of F ′. Furthermore F ′(z′) = F (z′). Thus we have b = F ′(z) <
F ′(z′) = F (z′) ≤ b, by (*), which is a contradiction.

We show that 2) ⇒ 1). We suppose that ∨�A� < a < b < ∧�A�.
First we note that the hypothesis implies that Y is discrete. Indeed, if x, y ∈ Y

and x � y then there is x′ ∈ �Y � such that x �1 x′ � y. Thus a ≤ F (x) < F (x′) ≤
F (y) ≤ b and thus b < ∧�A�; a contradiction.

72 4 Random Bag Preservation and Isolated Subsets

We note that since �A� = F (�Y �) and �A� = F (�Y �) and since F is a data-
labeling, we have (by definition of a and b) that:

(∗) ∀x ∈ (Y ↓ −Y). F (x) < a.
(∗∗)∀x ∈ (Y ↑ −Y). F (x) > b.

Let c, d ∈ A and F ′ = Swap(c, d)(F). Let u = F−1(c) and v = F−1(d), where
u, v ∈ Y . Suppose now that x, y ∈ X and x � y. Since F is a data-labeling and
F ′ coincides with F outside of {u, v}, we necessarily have that F ′(x) < F ′(y) if
x, y ∈ {u, v}. Otherwise,

If x ∈ {u, v} ⊆ Y then y ∈ Y ↑ −Y since Y is discrete and thus, using (∗∗), we
have: F ′(y) = F (y) > b. Since F ′(x) ∈ {c, d}we have F ′(x) < F ′(y) as required.
Similarly: if y ∈ {u, v} ⊆ Y then x ∈ Y ↓ −Y since Y is discrete and thus, using
(∗), we have: F ′(x) = F (x) < a. Since F ′(y) ∈ {c, d} we have F ′(x) < F ′(y).

Corollary 4.1. If a < b then
A = {a, b} is a free pair of labels for F ⇐⇒

1) if �a� = ∅ then b < ∧�a�
2) if �b� = ∅ then a > ∨�b�

Example 4.3. We illustrate free pairs of labels for the following data-labelings.

�

�

� �

�

�

�

�

� �

The data-labelings in the above example, displayed in left to right order, are referred
to as F1 and F2 respectively. F1 only has one free pair of labels, namely {3, 4}. Data-
Labeling F1 illustrates that it is not sufficient for two labels to label incomparable
elements in order for the labels to form a free pair. Indeed, this is for instance the
case for the pairs {3, 5} and {2, 4}. The data-labeling F2 has two free pairs of labels,
namely {4, 5} and {2, 3}.

Comment: We remark that a swap on a free pair of labels preserves the data-labeling
property but does not guarantee that the new data-labeling has the same pairs of el-
ements labeled with free labels, as the following counter-example shows.

4.4 Free Swaps on Random Structures 73

Counter-Example 4.1 We reconsider the data-labelings F1 and F2 of Example
4.3. For F1 displayed on the left below, we note that the free pairs of labels are
{2, 3},{3, 4} and {4, 5}. After a swap on the free pair {2, 3}, we obtain the data-
labeling F2 displayed on the right hand side. F2 still has {2, 3} and {4, 5} as free
pairs of labels, but {2, 4} is no longer a free pair for the elements originally labeled
with 3 and 4.

�

�

�

�

��

�

� � �

4.4 Free Swaps on Random Structures

We discuss the State Theorem which establishes that states in random structures can
be interpreted as generalized permutations. The proof of the State Theorem is of a
technical nature, requiring concepts which are not used elsewhere in the monograph.
Hence we include this proof as an appendix (Section A).

In order to derive the State Theorem of Chapter A, we will show the following
result (Corollary A.4):

For every pair of states F1, F2 over a connected partial order there exists a sequence
of permutations σ1, . . . , σn on free pairs of labels such that F2 = σn◦σn−1◦ . . . σ2◦
σ1 ◦ F1.

We illustrate Corollary A.4 with the following example.

Example 4.4. We verify for two given states F1, F2 that the first can be transformed
into the second.

�

� �

� �

� �

� �

� �

�

�

� �

� �

� �

�

�

� �

�

�� ��

�� �
�

�
�

��

�
��

� �� ���

74 4 Random Bag Preservation and Isolated Subsets

We remark that the sets of free pairs are given by: FP (F1) = FP (F ′
1) = {{3, 4},

{1, 2}}, FP (F ′′
1) = {{3, 4}, {1, 2}, {2, 3}}, FP (F2) = {{2, 3}}.

Remark 4.5. Each permutation of a free pair in a given state, may cause other pairs
to change their status: some pairs which originally were not free may become free
after a given swap, while some free pairs may cease to be free after a swap on a given
free pair. This fact is illustrated in Example 4.4 by steps II and III respectively.

From the above corollary, we will obtain the following immediate State Theorem,
Theorem A.1:

Each random structure on a finite connected partial order can be generated from any
given state, by exhaustively carrying out all possible swap sequences on free pairs
of labels, where a sequence terminates when a state is repeated.

Example 4.5. Consider the state F1 of the previous example. Transforming F1 to F2
generates four of the five possible states, simply by carrying out the following swap
sequences: (I), (I,II) and (I,II,III) . To generate the fifth state one can for instance
make a swap on the labels 1 and 2 of F1.

4.5 Random Bag Preserving Functions

We will define operations for MOQA that transform a random structure R into a
bag of random structures

{(RL1(X1,�1), K1), . . . , (RLn
(Xn,�n), Kn)}.

The notion of random structure preserving function and more generally, random
bag preserving function, has been defined in Chapter 1. In Chapter 1, the resulting
random bags were strict, as an identification up to labeling-isomorphism was carried
out. Here, we loosen the requirement on the output bag, such that general random
bags can be considered. This essentially amounts to relaxing the requirement of a
complete identification up to labeling-isomorphism in condition 3 of Definition 1.8.

In Chapter 1, general data-labelings were considered in defining random struc-
ture/bag preserving functions. We will still consider operations which transform
data-labelings to data-labelings, but, to simplify the presentation, we will define RB-
preservation in the present chapter directly on random bags. The implicit assumption
is made that this approach suffices due to labeling-invariance of the operations. The
adaptations to definitions of RB-preservation for general data-labelings are of a tech-
nical nature and would needlessly complicate the presentation.

We recall the notion of a refinement from Chapter 1. Operations “refine” the
original partial order in that the newly created partial orders of the resulting bag have
underlying sets Xi that are subsets of the original set X and have orders �i that are

4.5 Random Bag Preserving Functions 75

finer than, i.e. include, the restriction of the original partial order � to the new set
Xi under consideration. The sets Xi can be strict subsets of the original set X since
the operations ofMOQA include for instance a deletion operation which removes
an element and its labels. We further formalize the notion of refinement below.

Definition 4.5. LetR = RL(X,�) and∀i ∈ {1, . . . , n}. Ri = RLi(Xi,�i), where
∀i ∈ {1, . . . , n}.Li ⊆ L and ∀i ∈ {1, . . . , n}. Xi ⊆ X and ∀x, y ∈ Xi. x � y ⇒
x �i y. We call a bag of random structures {R1, . . . , Rn} satisfying this condition
a refinement of the random structure R. We also refer to Li as a refinement of the
label set L and to each (Xi,�i) as a refinement of the partial order (X,�).

Definition 4.6. A function φ : R → F is refining on R if there exists a refinement
{R1, . . . , Rn} of R such that φ : R → R1 ∪ . . . ∪Rn is surjective.

Definition 4.7. In case we have determined a refinement {R1, . . . , Rn} of R, based
on which we can establish that the function φ is refining on R, then we refer to φ in
combination with this particular selection of a refinement as a representation for φ.
Such a representation is denoted as follows: φ : R �−→ {R1, . . . , Rn}.

The following definition formalizes the notion of random structure preservation,
in such a way that the range is allowed to be a general random bag as opposed to a
strict random bag. This is achieved through the notion of a partition, which allows for
the incorporation of output random bags which may contain two identical random
structures. Of course, one could always guarantee that the random bag {R1, . . . , Rn}
is such that the underlying partial orders are pairwise distinct by identifying random
structures with the same, i.e. order-isomorphic, underlying partial orders and by
adjusting the multiplicities accordingly. We prefer to keep the more general version
of RS-preservation at this time, since identification of order-isomorphic partial orders
in practice may be costly. For instance, it is clear from Example 5.13, that the random
delete operation Delm introduced in Section 5.3, when called more than once on a
given random structure, can produce several copies of the same random structure.
These copies are typically not grouped together in the random bag in order to avoid
the costly identification of identical copies. This reproduction of identical copies,
without necessarily identifying them in the random bag, necessitates a slightly more
technical definition of RS-preservation as given in Definition 4.8, as opposed to the
simplified definition of Remark 4.6 2), where this last simplification corresponds to
the definition considered in Chapter 1 for which the output random bag was assumed
to be strict. We revisit the simplification in Remark 5.10, where the potential to make
MOQA operations separative is considered.

Definition 4.8. A function μ : F → F is random structure preserving on a random
structure R (RS-preserving on a random structure R) iff there exists a partition
F1, . . . ,Fn of R, a refinement {R1, . . . , Rn} of R and non-zero natural numbers
K1, . . . , Kn such that

76 4 Random Bag Preservation and Isolated Subsets

∀F ∈ Ri.|μ−1(F) ∩ Fi| = Ki.

The function μ is called strongly RS-preserving if and only if n = 1.

Remark 4.6. 1) Note that since multiplicities are required to be non-zero, we obtain,
following the notation of Definition 4.8, that: ∀i ∈ {1, . . . , n}. μ(Fi) = Ri.
2) The definition of RS-preservation is more general than the informal use of ran-
domness preservation in the literature. The informal use of randomness preservation
only regards the preservation of the uniform distribution, where a random structure
is mapped to a single random structure, as is the case for the Backwards Analysis
of [Knu73] and for the cases discussed in [Ede96], and no non-trivial multiplicity
is involved (i.e. K = 1). This is captured in our context by the notion of a strongly
RS-preserving function with multiplicity 1. RS-preserving functions in our context,
map a random structure to a bag of random structures.

Remark 4.7. It is clear that the definition of RS-preservation could be simplified
in case the random structures R1, . . . , Rn have pairwise distinct underlying partial
orders. In that case the definition is equivalent to the following:

∀F ∈ Ri. |μ−1(F)| = Ki.

The generalization of the intuitive notion of randomness preservation in the litera-
ture, i.e. the generalization of the notion of strong RS-preservation with multiplicity
1, to RS-preservation on a random structure (and later on to RB-preservation on
a random bag) is important since it allows one to lift the applications from rather
straightforward reasonings on preservation of uniform distribution in the context of
strong random structure preservation, to more intricate applications of a wider scope.

Definition 4.9. In case we have determined a refinement {R1, . . . , Rn} of R with
multiplicities K1, . . . , Kn with respect to some partitionF1, . . . ,Fn, based on which
we can establish that the function μ is RS-preserving on R, then we refer to μ in
combination with this particular selection of a refinement, partition and multiplicities
as an RS-representation for μ. Such an RS-representation for μ is denoted as follows:

μ{F1,...,Fn} : R �−→ {(R1, K1), . . . , (Rn, Kn)}.

We remark that the same operation can have two representations. One example is
again the Delm operation, which when composed with itself as in Delm ◦Delm, can
yield multiple copies of a random structure in the output random bag. This allows
for two representations: one representation in which the copies are not identified, i.e.
occur with multiplicity one in the random bag, and one representation for which the
random structures in the random bag are identified and displayed only once, paired
with a multiplicity which is greater than one.

4.5 Random Bag Preserving Functions 77

Definition 4.10. A partition {F1, . . . ,Fn} is uniform iff all members of the partition
have the same cardinality, i.e. |F1| = |F2| = . . . = |Fn|. The function μ is called
uniformly RS-preserving iff it has an RS-presentation

μ{F1,...,Fn} : R �−→ {(R1, K1), . . . , (Rn, Kn)}

for which the partition {F1, . . . ,Fn} is uniform.

Remark 4.8. Strongly RS-preserving functions are (trivially) uniformly RS-preserving
since their representations have partitions of cardinality one.

Notation 4.2 Typically, and with some abuse of notation, we will not mention the
partition involved for RS-representations:

μ : R �−→ {(R1, K1), . . . , (Rn, Kn)}.

The motivation behind this shorter notation is that once our choice for the refining
bag, the partition and the corresponding multiplicities have been determined, we only
need the resulting random bag in order to determine the average-case time.

Definition 4.11. A random bag is a finite bag of pairs, {(R1, K1), . . . , (Rn, Kn)},
each of which consists of a random structure R paired with a multiplicity K.

We extend RS-preserving functions from random structures to random bags as
follows:

Definition 4.12. (RB-preservation on a random bag)
If {(R1, K1), . . . , (Rn, Kn)} is a random bag and μ is RB-preserving on each of the
random structures R1, . . . , Rn, where

∀i ∈ {1, . . . , n}. μ : Ri �−→ {(R1
i , K

1
i), . . . , (Rni

i , Kni
i)},

then we denote this by:

μ : {(R1, K1), . . . , (Rn, Kn)} �−→
{(R1

1, K
1
1 ×K1), . . . , (Rn1

1 , Kn1
1 ×K1), . . . , (R1

n, K1
n ×Kn), . . . , (Rnn

n , Knn
n ×

Kn)}.

We say in that case that:

μ is RB-preserving on the random bag {(R1, K1), . . . , (Rn, Kn)}.

Remark 4.9. Note that the notion of RS-representation of Definition 4.9 can be gen-
eralized to that of RB-representation in the obvious way.

78 4 Random Bag Preservation and Isolated Subsets

We omit the straightforward verification of the following two results.

Proposition 4.2. If μ : {(R1, K1), . . . , (Rn, Kn)} �−→
{(R1

1, K
1
1 × K1), . . . , (Rn1

1 , Kn1
1 × K1), . . . , (R1

n, K1
n × Kn), . . . , (Rnn

n , Knn
n ×

Kn)} then:
n∑

i=1

Ki × |Ri| =
n∑

i=1

ni∑
j=1

Ki ×Kj
i × |R

j
i |.

Lemma 4.2. The composition of RB-preserving functions on random bags is RB-
preserving.

For strongly RB-preserving functions, Proposition 4.2 yields the following im-
mediate corollary.

Corollary 4.2. If μ : R1 �−→ R2 is a strongly RB-preserving function then |R2|
divides |R1|.

Remark 4.10. Note that no zero-value problem arises, in case one caries out the above
division, since for every random structure R one has |R| ≥ 1. Indeed, if R is the
random structure over the empty set, then |R| = 1 where R consists of the “empty
function”.

Definition 4.13. Random bags (random structures) that are the image of some dis-
crete random structure Ak for a RB-preserving function are called A-constructible
(Atomic-constructible) random bags (random structures).

Remark 4.11. We state the following open questions in decreasing generality:

[1] “Characterise the existence of RB-preserving functions between random
bags.”

[2] “Characterise the existence of strongly RB-preserving functions between
random structures.”

[3] “Characterize the random bags that are A-constructible.”

We leave these questions to future research since their exploration would go
beyond the scope of the present work. Note that, by Proposition 4.2, a necessary
condition for a random bag [(R1, K1), . . . , (Rn, Kn)] to be A-constructible from
some discrete random structure Ak is that

∑n
i=1 Ki × |Ri| = k!.

4.6 Isolated Subsets 79

Example 4.6. To illustrate a basic application of Corollary 4.2, we remark that the
random structure N of Example 4.1, part (e), is not A-constructible. Indeed, the
cardinality of N is 5 which does not divide the cardinality 24 of the discrete four-
element random structure.

We remark that a partial solution for the question, related to open question [3], on
the constructibility of MOQA data structures from the discrete random structure,
is obtained in Section 5.9.

4.6 Isolated Subsets

We introduce the notion of an isolated subset of a partial order. Isolated subsets have
the following important property:

For any random structureR(X,�), the bag consisting of the restriction of the states
of this random structure to an isolated subset I of X forms, after identification up to
label-isomorphism, a number of copies of the random structureR(I,�).

We continue to use the notation in the above property and remark that the notion
of an isolated subset will be useful in the following two contexts:

Defining the projection operation
It is clear from the above key property of isolated sets that isolated subsets enable the
definition a notion of projection of a given random structureR(X,�) on the random
structureR(I,�). This is the subject of Section 5.4.

Extending theMOQA operations
Isolated subsets allow, under appropriate conditions, the extension of the definition
of an operation on the random structure R(I,�) to the entire random structure
R(X,�). This extension ofMOQA operations is discussed in Section 4.6.3.

An informal definition of an isolated subset I of X , for a given random structure
R(X,�), is that the extremal1 elements of I are the only “exit and entrance points”
of the set I to and from “related points” in the complement X − I . This motivates
the choice of the adjective isolated and is captured by condition 1 of Definition
4.14. Moreover, we require that every point of X − I that is immediately below a
minimal element of I must be immediately below every minimal element of I , which
is captured by condition 2 of Definition 4.14. Similarly, we require that every point
of X − I that is immediately above a maximal element of I must be immediately
above every maximal element of I , which is captured by condition 3 of Definition
4.14.

1 Extremal with respect to the restriction of the order � to the set I .

80 4 Random Bag Preservation and Isolated Subsets

Definition 4.14. Given a finite partial order (X,�). A subset I of X is isolated iff
it satisfies the following three conditions:

1) �I−m(I)� ⊆ I and �I−M(I)� ⊆ I
2) ∀x, y ∈ m(I). �x� = �y�
3) ∀x, y ∈M(I). �x� = �y�

An atomic isolated subset, or A-isolated subset, is an isolated subset of a partial
order for which the restriction of the order to the isolated subset is the discrete order.

An isolated subset is trivially isolated in case �m(I)� = �M(I)� = ∅. In that
case conditions 2) and 3) are trivially satisfied.

Example 4.7. a) The empty set is trivially isolated.
b) The union of components of a partial order is trivially isolated.
c) Consider a partial order with Hasse diagram as displayed below. The subset I ,
determined by the elements contained in the ellipse on the diagram, is isolated.

I

Exercise 4.1. Show that the relation “isolated subset” is transitive. I.e. if I is an
isolated subset of the partial order (X,�) and J is an isolated subset of the restricted
partial order (I,�) then J is an isolated subset of the partial order (X,�).

Example 4.8. The Hasse diagram below provides an example where the set {x3, x4}
does not form an atomic isolated set, while {x4, x5} forms an atomic isolated set.

��

�� �� ��

��

��

4.6 Isolated Subsets 81

The first part of the following lemma generalizes the observation in Example 4.7 b).
The proof of the lemma is left as an exercise.

Lemma 4.3. 1) If I is an isolated subset of (X,�) then the union of finitely many
components of I is also an isolated subset of (X,�).
2) Every trivially isolated subset I of (X,�) is a finite union of components of X .
3) Every isolated subset I of (X,�) which is not trivially isolated is a subset of a
component of X, where this component is denoted by C(I).

Example 4.9. We illustrate Lemma 4.3 1) via Example 4.7, where the set I consists
of three isolated components displayed below. For this example it is clear that every
union of a finite selection of these components forms again an isolated subset of the
original set.

��

��

��

We define the useful notion of a pair of perfectly connected subsets of a partial order
and proceed to give an alternative characterization of an isolated subset.

Definition 4.15. Given a partial order (X,�) and a pair of non-empty subsets A and
B of X . The set A is said to be perfectly below B and B is said to be perfectly above
A iff

{(x, y)|x ∈ A, y ∈ B, x ∈ �y�} = A×B.

Two non-empty sets A and B are said to be perfectly connected ⇔ A is perfectly
below B or A is perfectly above B.

The following lemma shows that perfectly connected sets are always disjoint
discrete subsets.

Lemma 4.4. 1) If A is perfectly below B then A ∩B = ∅.
2) If A and B are non empty subsets and A is perfectly below B then A and B
determine discrete suborders.

Proof. 1) Assume by way of contradiction that A is perfectly below B and that
A ∩ B = ∅, where say x ∈ A ∩ B. Note that (x, x) ∈ A × B but (x, x) ∈
{(x, y)|x ∈ A, y ∈ B, x ∈ �y�}. Hence we obtain a contradiction.

2) Consider two non empty subsets A and B such that {(x, y)|x ∈ A, y ∈ B, x ∈
�y�} = A × B. Assume, by way of contradiction, that the restricted order on A or
on B is not discrete. Say the order restricted to B is not discrete. The proof for the
case where the order restricted to A is non discrete is similar. In case the restricted

82 4 Random Bag Preservation and Isolated Subsets

order on B is not discrete, we must have that |B| ≥ 2, hence there exist x, y ∈ B
such that x � y. Since A is not empty, consider z ∈ A. Since A×B = {(x, y)|x ∈
A, y ∈ B, x ∈ �y�} and since (z, x) ∈ A×B, we obtain that z ∈ �x�. Hence, since
x � y, we have z ∈ �y�. This contradicts the fact that (z, y) ∈ A×B.

Example 4.10. We consider the isolated subset I of Example 4.7 c). Note that the
sets A = M(I) and B = �M(I)� are perfectly connected. Also note that the sets
C = �m(I)� and D = m(I) are perfectly connected. The sets A, B, C and D are
discrete non empty subsets, where A and B are disjoint and where C and D are
disjoint.

C

D

B

A

Lemma 4.5. Given a finite partial order (X,�). A subset I of X is isolated iff it
satisfies the following three conditions:

1) �I−m(I)� ⊆ I and �I−M(I)� ⊆ I
2) if �m(I)� = ∅ then �m(I)� is perfectly below m(I)
3) if �M(I)� = ∅ then M(I) is perfectly below �M(I)�.

Proof. Exercise.

4.6.1 Strictly Isolated Subsets

We define the notion of a strictly isolated subset of a partial order. This notion will be
useful in extending so-called “contractive operations” defined on a random structure
determined by a (strictly) isolated subset of a given random structure, to the entire
random structure. Contractive operations are operations which reduce the size of the
partial orders, where typical examples of such operations are deletions and projec-
tions. Contractive operations are discussed in Section 4.6.3.

The notion of a strictly isolated subset relies on the technical concept of a seam.

4.6 Isolated Subsets 83

Definition 4.16. A seam of a subset C of a partial order (X,�) is a pair (A, B) of
subsets A, B of C such that:

a) A is perfectly below B
b) (A↓) ∪ (B ↑) = C

Example 4.11. In the example below the pair (A, B) forms a seam of the given partial
order.

A

B

We leave the proofs of Lemma 4.6, Lemma 4.7 and Corollary 4.3 as an exercise.

Lemma 4.6. If (A, B) is a seam of a component C of (X,�) then for all collections
of labels L where |L| = |C| and for all states F ∈ RL(C,�), the label sets F (A↓)
and F (B ↑) do not vary with F . In other words:

∀F1, F2 ∈ RL(C,�). F1(A↓) = F2(A↓) and F1(B ↑) = F2(B ↑).

Lemma 4.6 ensures that the following notation is sound.

Notation 4.3 If (A, B) is a seam of a component C of (X,�) and F ∈ RL(C,�)
then LA = F (A↓) and LB = F (B ↑).

Lemma 4.7. If (A, B) is a seam of the component C of (X,�) then RL(C,�) =
{F1 ∪ F2|F1 ∈ RLA

(A↓,�), F2 ∈ RLB
(B ↑,�)}.

Corollary 4.3. If (A, B) is a seam of a component C of (X,�) then |RL(C,�)| =
|RLA

(A↓,�)| × |RLB
(B ↑,�)|.

Definition 4.17. A strictly isolated subset J of a partial order (X,�) is an isolated
subset of X which:

84 4 Random Bag Preservation and Isolated Subsets

a) is trivially isolated or

b) satisfies the following conditions, using the notation of Lemma 4.3 3):

�m(J)� = ∅ ⇒ (�m(J)�, m(J)) forms a seam of C(J).
�M(J)� = ∅ ⇒ (M(J), �M(J)�) forms a seam of C(J).

An atomic strictly isolated subset of a partial order is a strictly isolated subset for
which the restriction of the order to this subset is the discrete order.

A strictly isolated subset is trivially strictly isolated in case it is trivially isolated.

Notation 4.4 If (X,�) is a partial order and A ⊆ X then

A = �M(A)�↑ and A = �m(A)�↓ .

Lemma 4.8. Every strictly isolated subset of a partial order is isolated.

Proof. Consider a partial order (X,�) and a strictly isolated subset I of this partial
order. If I is trivially isolated then it is isolated. Otherwise, following the notation
of Lemma 4.3 3), consider the component C(I) containing I . Note that since C(I)
is a component of X , by transitivity (Exercise 4.1), it suffices to verify that I is an
isolated subset of C(I). By the definition of a seam, we have C(I) − I = I ∪ I .
The result follows by an application of Lemma 4.5. Condition 1) of Lemma 4.5 is
satisfied since C(I)− I = I ∪ I . Conditions 2) and 3) of Lemma 4.5 follow from
condition b) of Definition 4.17.

Example 4.12. The empty set ∅, the set X , and unions of components of X are strictly
isolated since each such set is trivially isolated.

Example 4.13. Consider the partial order displayed below. We remark that the subset
I = {x1, x2, x3, x4} is a strictly isolated subset, where the relations of the restriction
of the partial order to I are indicated via dotted lines.

x1 x2

x4x3

4.6 Isolated Subsets 85

Definition 4.18. Given a partial order (X,�), we define the following sets:

I(X,�) = {I| I is an isolated subset of (X,�)}
I∗(X,�) = {I| I is a non-trivially isolated subset of (X,�)}
AI(X,�) = {I| I is an atomic isolated subset of (X,�)}

SI(X,�) = {I| I is a strictly isolated subset of (X,�)}
SI∗(X,�) = {I| I is a non-trivially strictly isolated subset of (X,�)}
ASI(X,�) = {I| I is an atomic strictly isolated subset of (X,�)}

Clearly we have that

SI(X,�) ⊆ I(X,�)

AI(X,�) ⊆ I(X,�)

ASI(X,�) = SI(X,�) ∩ AI(X,�).

Moreover, the notions of trivially isolated and trivially strictly isolated coincide:

I(X,�)− I∗(X,�) = SI(X,�)− SI∗(X,�).

As mentioned in the introduction to this section, isolated subsets possess an impor-
tant property: the bag consisting of the restriction of all states of a random structure to
an isolated subset, after identification up to label-isomorphism, forms multiple copies
of the random structure over this isolated subset. This is captured by Proposition 4.3
below. We first need the following technical lemmas.

Lemma 4.9. We recall that every component C of a partial order (X,�) is a (triv-
ially) isolated subset. If X consists of the pairwise distinct components C1, . . . , Cn

then the bag obtained by the restriction of all states fromR(X,�) to Ck consists of
K copies ofR(C,�), where K =

(|X|
|C1|...|Cn|

) ∏n
i �=k |R(Ci)| .

Lemma 4.10. In case I is an isolated subset of X we have that:

1)RL(X,�) = ∪F∈RL(X,�){F �(X − I) ∪G|G ∈ RL−F (X−I)(I,�)} and
2) |RL(X,�)| = |{F �(X − I)|F ∈ RL(X,�)}| × |R(I,�)|

In case I is non-trivially strictly isolated 2 we also have that:

3) |RL(C(I),�)| = |R(�M(I)�↑,�)| × |R(I,�)}| × |R(�m(I)�↓,�)|

2 The trivially strictly isolated case can be dealt with via a slight generalization of Lemma 4.9.

86 4 Random Bag Preservation and Isolated Subsets

Proof. We leave 1) and 3) as an exercise and sketch the proof for 2). To show 2),
we consider the set consisting of the restrictions of the states of RL(X,�) to the
set X − I , i.e. the set {F � (X − I)|F ∈ R(X,�)}. We refer to a data-labeling
G in this set as an “outer labeling”. We define an equivalence relation on the set
of states RL(X,�) as follows: two states are equivalent iff they give rise to the
same outer data-labelings. Clearly two states are equivalent iff they differ only on
I . Using 1), we obtain that the resulting quotient consists of equivalence classes of
size KI = |R(I,�)|. In other words, |RL(X,�)| = M × KI , where M is the
cardinality of the quotient, i.e. M = |{F �(X − I)|F ∈ R(X,�)}|.

Notation 4.5 Consider a random structure R = RL(X,�) and Y ⊆ X . We use the

following notation: (R�Y)bag is the bag consisting of all restrictions of states from

R to the subset Y , in other words: (R�Y)bag = {(F�Y, k)| k = Card({G ∈ R |G�
Y = F�Y })}.

We continue to use the notation ≈ for the equivalence up to label-isomorphism.

Proposition 4.3. (Multiplicities for (strictly) isolated sets)

Let R = R(X,�), Y ⊆ X and K = |R(X,�)|
|R(Y,�)| .

1) Y ∈ I(X,�) ⇒ (R�Y)bag ≈ (R(Y,�), K).

We discuss the case of a non-trivially strictly isolated subset3.

2) Y ∈ SI∗(X,�) ⇒ (R�Y)bag ≈ (R(Y,�), L).

To compute L, let L∗ = |R(C(Y),�)|
|R(Y,�)| .

We have:
L∗ = |R(�M(Y)�↑,�)| × |R(�m(Y)�↓,�)|

and

L = L∗
(
|X|
|C(Y)|

)(
|X| − |C(Y)|
|C2| . . . |Cn|

) n∏
i=2

|R(Ci)|,

where C2, . . . , Cn are the components of X other than C(Y).

Proof. 1) and 2) follow from Lemma 4.10 2) and 3).

Remark 4.12. The multiplicities in Proposition 4.3 are particularly easy to determine
for the case of SP-orders, through the formulas for cardinalities of SP-orders as given
in Lemma 5.5.

We illustrate these results on some basic examples below.

3 Again, the case of trivially strictly isolated subsets can be addressed relying on Lemma 4.9.

4.6 Isolated Subsets 87

Example 4.14. The isolated subset Y in the four element binary tree underlying the
three states displayed below, consists of the right-most leaf of the tree, indicated via
the ellipse. We refer to the underlying partial order as (X,�).

4 4 4

1 1

1

2

3
3 32 2

The restriction of the above three states to the right-most leaf yields the following
labels for the leaf: 1, 1 and 2. The restriction to the isolated subset consisting of this
leaf yields K = 3 copies of the random structure A1. Note that |R(X,�)| = 3 and
|R(Y,�)| = 1 and K = 3

1 , consistent with Proposition 4.3 1).
In the following example the non-trivially strictly isolated subset is indicated by

the two elements contained in the ellipse.

4 5 5 4 5 4

2 223 3 3

1 1 1

4 5

2 3

1

The restriction of the above states to the strictly isolated subset indicated by the
ellipse, consists of K = 2 copies of the random structure A2. Note that |R(X,�
)| = 4 and |R(Y,�)| = 2 and K = 4

2 , i.e. K = 2, consistent with Proposition
4.3 1). Alternatively, via an application of Proposition 4.3 2), we have L = L∗ =
|R(�M(Y)�↑,�)| × |R(�m(Y)�↓,�)| = 2× 1.

Finally, we present an example of a non-isolated subset Y of which the elements
again are contained in the ellipse below. The restriction of the states to this subset
do not form a number of copies of a random structure. Indeed, the restriction of the
final state to Y , with labels 4 and 2 on Y , only represents one state of the newly
created restricted discrete two-element partial order (Y,�), while the second state
of (Y,�), with the labels 2 and 4, assigned to the elements of Y in left to right order
on the Hasse diagram below, is missing.

1 1 1 1 1

4 4 4 4 55555

2222 3 3

3

3 2 3 4

88 4 Random Bag Preservation and Isolated Subsets

Remark 4.13. To compute a number of states of a finite partial order or in other
words the cardinality of a random structure, e.g. in order to determine the number K
of Proposition 4.3, state counting results are available from the literature. Relatively
fast state counting algorithms have been developed at CEOL, e.g. [Don04]. Counting
states is also referred to in the literature as counting the linear extensions of a partial
order, for which there exists an extensive literature (e.g. [BPS96]).

The notion of an atomic isolated subset introduced in Definition 4.14 will be
useful in defining theMOQA operation “random split”.

An atomic isolated subset intuitively forms a discrete subset in a random structure
for which any state, when restricted to this set, forms a set of pairwise free labels.
i.e. the labels simply can be permuted on this set without violating the data-labeling
condition. The following Lemma captures this idea. The proof of the Lemma is a
trivial exercise. One can show that the two conditions stated in Lemma 4.11 are
equivalent. The verifications are of a technical nature and we omit them at this stage
since we will only avail of the implication in Lemma 4.11.

In fact, Lemma 4.11 is a consequence of a Theorem of Reconstruction presented
by T. Vallee and J. Manning [VM07]. We state the Theorem below.

Theorem 4.6. (T. Vallee, J. Manning) Let (X,�) be a partially ordered set and L a
set of labels. Then ∀x, y ∈ X. x � y ⇔ ∀F ∈ RL(X,�). F (x) < F (y).

The following Equivalence Theorem is a corollary.

Corollary 4.4. (T. Vallee, J. Manning) For any set of labels L and partial orders�1
and �2: �1=�2⇔ RL(X,�1) = RL(X,�2).

Lemma 4.11. Given a random structureR(X,�). If I is an atomic isolated subset
I of X then ∀F ∈ R(X,�). F (I) is a free set of labels for F.

Remark 4.14. This fact enables one to easily determine, for two given elements of an
isolated atomic set, what the probability is that the label of the first element is smaller
than the label of the second element. Indeed, it is easy to see that these events are
independent and that the probability is 1

2 . For atomic strictly isolated subsets I of a
given random structureR(X,�), the probability that an element x has a given label
a is again easy to determine. The probability that an element x has a given label a is
1

|I| whenever a ∈ ∪{F (I)|F ∈ R(X,�)} and 0 otherwise. Such results are of use
in the time verification of conditional statements.

The following proposition states that if I is a non-trivially strictly isolated subset,
then so are I and I .

Proposition 4.4. (Characterization of non-trivially strictly isolated set)
1) I ∈ SI∗(X,�) ⇔ [I ∈ SI∗(X,�) and I ∈ SI∗(X,�) and C(I)− I = I ∪ I].
2) I = ∅ or I = ∅ ⇒ [I ∈ SI∗(X,�) ⇔ (C(I)− I) ∈ SI∗(X,�)].

4.6 Isolated Subsets 89

Proof. To verify 1), we show that in case I is strictly isolated, both I and I are strictly
isolated. The converse is left as an exercise.

Assume that I is strictly isolated. Then:

a) �m(I)� = ∅ ⇒ (�m(I)�, m(I)) forms a seam.
b) �M(I)� = ∅ ⇒ (M(I), �M(I)�) forms a seam.

If �m(I)� = ∅ then we know that I = (�m(I)� = ∅)↓= ∅ and hence I is strictly
isolated. Similarly I is strictly isolated in case �M(I)� = ∅. Thus we can assume
that �m(I)� = ∅ and �M(I)� = ∅. We remark that in particular (∗) I = ∅.

By a) and b) we obtain that: (�m(I)�, m(I)) and (M(I), �M(I)�) each form a
seam.

We verify that I is strictly isolated. The proof for I is similar.
Note �M(I)� = �M(�M(I)�↑)� = �M(X)� = ∅.
However �m(I)� = �m(�M(I)�↑)� = ��M(I)�� = M(I) where the last two

equalities follow from the fact that (M(I), �M(I)�) forms a seam.
Since by (∗)we know that I = ∅, we obtain thatM(I) = ∅ and hence �m(I)� = ∅.
Hence, in order to verify that I is strictly isolated, it suffices to verify that

(�m(I)�, m(I)) forms a seam. But this follows since we have verified above that
�m(I)� = M(I) and m(I) = �M(I)� and since (M(I), �M(I)�) is a seam.

We proceed to verify 2) under the assumption that I is a subset which satisfies
I = ∅. The case where I = ∅ is similar.

We show that I strictly isolated implies that X−I is strictly isolated. The converse
is shown in a similar way.

Since I = ∅, we obtain that �M(I)�↑= ∅ and hence, since I is strictly isolated,
we know that X − I = I . By 1) we know that I is strictly isolated and hence X − I
is strictly isolated.

Finally we state the following Lemma, leaving the proof as an exercise, which
sheds some light on the relations between the notions of a seam, an isolated subset
and a strictly isolated subset.

Lemma 4.12. Consider a component C of a partial order (X,�). The following
statements are equivalent:

1) (C,�) has a seam.

2) ∃I. ∅ ⊂ I ⊂ C, I = ∅ and I is strictly isolated.

3) ∃I. ∅ ⊂ I ⊂ C, I = ∅ and I is strictly isolated.

4) ∃I. ∅ ⊂ I ⊂ C, I and C − I are isolated.

90 4 Random Bag Preservation and Isolated Subsets

4.6.2 Simplified Definitions for SP-Orders

The theory of random structure preservation and the notions of isolated and strictly
isolated subsets have been developed for general partial orders. Some of the structures
considered earlier were not SP-orders. E.g. the partial order of Example 4.13 is not an
SP-order since it contains an N -shape in the upper left corner (cf. Proposition 2.1).
We will see however in Chapter 2.2 thatMOQA data structures can be assumed to
be SP-orders. This will entail useful simplifications in the average-case analysis of
basic operations (Chapter 6).

Moreover, the definitions of an isolated subset and a strictly isolated subset can
be simplified for SP-orders, as illustrated in the following.

Using the terminology of Chapter 2, we remark that the product components of a
product SP-order correspond to strictly isolated subsets of this order. Similarly, the
parallel components of a parallel SP-order correspond to strictly isolated subsets of
the order.

Proposition 4.5. (Characterizations for the case of SP-orders)
Consider an SP-order α. We regard product SP-orders in the definition below as par-
allel SP-orders with a single parallel component. This enables the use of canonical
representations for SP-orders α as a parallel SP-order, where α = α1|| . . . ||αn and
where each of the parallel components αi is a product SP-order.

μ is an isolated subset of α iff one of the following holds inductively:

1) μ is trivially isolated, i.e. μ is a union of parallel components of α or
2) μ is an isolated subset of a product component of some αi in the canonical

representation of α, where α = α1|| . . . ||αn.

μ is a strictly isolated subset of α iff one of the following holds:

1) μ is trivially isolated, i.e. μ is a union of parallel components of α or
2) μ is a product component of some αi in the canonical representation of α,

where α = α1|| . . . ||αn.

4.6.3 Extension Theorem

We will distinguish two types of RB-representations for RB-preserving functions on
a random structure. These are the contractive RB-preserving functions on a random
structure R which reduce the underlying set of the random structure R to a strict
subset of this set, and the non-contractive ones, which leave the underlying set of the
random structure unchanged.

4.6 Isolated Subsets 91

Definition 4.19. An RB-representation

μ : RL(X,�) �−→ {(RL1(X1,�1), K1), . . . , (RLn(Xn,�n), Kn)}

is contractive iff ∃i ∈ {1, . . . , n}. Xi ⊂ X and is non-contractive otherwise.

The Extension Theorem states that it suffices to define non-contractive RB-repre-
sentations on an isolated subset of the partial order of a given random structure and
subsequently to extend these to RB-representations on the entire random structure,
where multiplicities are not affected. For contractive RB-representations the Exten-
sion Theorem holds on condition that the extension occurs on a strictly isolated
subset.

The reader may wish to postpone reading this part and continue with Section 5
which introduces the RB-representations for the MOQA operations and return to
the Extension Theorem at that stage.

The Extension Theorem will be used to extend the definitions of the basicMOQA
operations in case these are applied locally to an isolated subset.

As usual, with some abuse of notation, we will denote the restriction of the partial
order� to a subset A of X by the partial order (A,�). We will refer to the notion of
labeling-isomorphism in the following and use the corresponding notation introduced
in Remark 4.3.

Notation 4.7 Ref(RL(X,�)) = {φ|φ is a refining function onRL(X,�)}.

The following definition extends the labeling-isomorphism ΨL,L′ : L → L′, in-
troduced in Remark 4.3 for random structures, to an operation on refining functions.

Definition 4.20. Given L,L′ and (X,�) such that |X| = |L| = |L′|. We define a
relabeling operator Ψ̂LL′ : Ref(RL(X,�))→ Ref(RL′(X,�)) as follows:

∀φ ∈ Ref(RL(X,�)),∀F ′ ∈ RL′(X,�).

Ψ̂LL′(φ)(F ′) = ΨLL′ ◦ [φ(ΨL′L ◦ F ′)].

Lemma 4.13. Definition 4.20 is sound, i.e., using the notation of Definition 4.20,
ΨLL′ is composable with φ(ΨL′L ◦ F ′) and Ψ̂LL′(φ) ∈ Ref(RL′(X,�)).

Proof. Let φ ∈ Ref(RL(X,�)) and consider a representation

φ : RL(X,�) �−→ {RL1(X1,�1), . . . ,RLn(Xn,�n)}.

We remark that since refining functions are surjective, ∀F ′ ∈ RL′(X,�)∃i ∈
{1, . . . , n} such that φ(ΨL′L ◦ F ′) ∈ RLi(Xi,�i). Thus the composition ΨLL′ ◦
[φ(ΨL′L ◦ F ′)] is defined since φ is refining and hence Li ⊆ L.

To show that Ψ̂LL′(φ) ∈ Ref(RL′(X,�)), we remark that

Ψ̂LL′(φ) : RL′(X,�) �−→ {RL′
1
(X1,�1), . . . ,RL′

n
(Xn,�n)},

92 4 Random Bag Preservation and Isolated Subsets

where ∀i ∈ {1, . . . , n}.L′
i = ΨLL′(Li). Since ΨLL′ is a labeling-isomorphism we

have Li ⊆ L ⇒ L′
i = ΨLL′(Li) ⊆ ΨLL′(L) = L′. We leave the verification that

Ψ̂LL′(φ) is surjective as an exercise.

The following lemma, which uses the notation of Definition 4.20, illustrates that
the relabeling operator Ψ̂ preserves RB-representations.

Lemma 4.14. If

μ{F1,...,Fn} : RL(X,�) �−→ {(RL1(X1,�1), K1), . . . , (RLn(Xn,�n), Kn)}

then [Ψ̂LL′(μ)](F ′
1,...,F ′

n) : RL′(X,�) �−→ {(RL′
1
(X1,�1), K1), . . . , (RL′

n
(Xn,

�n), Kn)}, where F ′
i = ΨLL′(Fi) and ∀i ∈ {1, . . . , n}.L′

i = ΨLL′(Li).

Proof. Let

μ{F1,...,Fn} : RL(X,�) �−→ {(RL1(X1,�1), K1), . . . , (RLn
(Xn,�n), Kn)}.

The partition F1, . . . ,Fn of RL(X,�) is such that ∀i ∈ {1, . . . , n}. μ(Fi) = Ri

and ∀F ∈ Ri. |μ−1(F) ∩ Fi| = Ki. In order to show that:

Ψ̂LL′(μ) : RL′(X,�) �−→ {(RL′
1
(X1,�1), K1), . . . , (RL′

n
(Xn,�n), Kn)},

it suffices to remark that since ΨLL′ is a labeling-isomorphism and since for each
i ∈ {1, . . . , n}, F ′

i = ΨLL′(Fi), we immediately obtain that F ′
1, . . . ,F ′

n forms a
partition ofRL′(X,�).

It is easy to verify that ∀F ′ ∈ RL′
i
(Xi,�i). |(Ψ̂LL′(μ))−1(F ′) ∩ F ′

i | = Ki.

We now introduce an Extension Operator which extends a refining function de-
fined on a random structure S, determined by an isolated subset of a given random
structure R, to the entire random structure R.

Definition 4.21. Suppose that I is an isolated subset of (X,�) and G ∈ RL(X,�).
The Extension Operator Ext(G, I) : Ref(RG(I)(I,�� I)) → Ref(RL(X,�)) is
defined as follows: ∀φ ∈ Ref(RG(I)(I,��I)), ∀F ∈ RL(X,�).

Ext(G, I)(φ)(F) = F�(X − I) ∪ [Ψ̂G(I),F (I)(φ)(F�I))].

The following lemma shows that Definition 4.21 is sound.

Lemma 4.15. Let G ∈ RL(X,�) and φ ∈ Ref(RG(I)(I,�� I)) and consider a
representation of φ:

φ : RG(I)(I,��I) �−→ {RM1(I1,�1), . . . ,RMn
(In,�n)}.

We show that Ext(G, I)(φ) is refining.
If:

Li is the set: {F (X − I) ∪ [Ψ̂G(I),F (I)(φ)(F�I)](Ii)|F ∈ RL(X,�),
φ(ΨF (I)G(I)(F�I)) ∈ RMi(Ii,�i)}

4.6 Isolated Subsets 93

Xi is the set:
(X − I) ∪ Ii

�∗
i is the least partial order containing the following sets of pairs: [� � (X − Ii)],

�i, {(a, b)| a ∈M(Ii), b ∈ �M(I)�},
{(a, b)| a ∈ �m(I)�, b ∈ m(Ii)}.
Then: ∀i ∈ {1, . . . , n}.

RLi
(Xi,�∗

i) =
{F�(X − I) ∪ [Ψ̂G(I),F (I)(φ)(F�I)]|φ(ΨF (I)G(I)(F�I)) ∈ RMi

(Ii,�i)}

and Ext(G, I)(φ) is refining with representation:

Ext(G, I)(φ) : RL(X,�) �−→ {RL1(X1,�∗
1), . . . ,RLn(Xn,�∗

n)}.

Proof. We show that ∀i ∈ {1, . . . , n}.

RLi(Xi,�∗
i) =

{F�(X − I) ∪ [Ψ̂G(I),F (I)(φ)(F�I)]|φ(ΨF (I)G(I)(F�I)) ∈ RMi
(Ii,�i)}.

Note that Ii is an isolated subset of (X,�) and hence, by the definition of Xi and
�∗

i , Ii is also an isolated subset of (Xi,�∗
i). Hence, by Lemma 4.10 1), we know

that:

RLi
(Xi,�∗

i) =
{H �(Xi − Ii) ∪H ′|H ∈ RLi(Xi,�∗

i) and H ′ ∈ RLi−H(Xi−Ii)(Ii,�∗
i)}.

We remark that {F �(X − I) ∪ [Ψ̂G(I),F (I)(φ)(F �I)]|φ(ΨF (I)G(I)(F �I)) ∈
RMi(Ii,�i)} = {H � (Xi − Ii) ∪H ′|H ∈ RLi(Xi,�i) and H ′ ∈ RH(Ii)(Ii,�i

)} since X − I = Xi − Ii and since {[Ψ̂G(I),F (I)(φ)(F � I)]|φ(ΨF (I)G(I)(F �
I)) ∈ RMi

(Ii,�i)} = {H ′|H ∈ RLi
(Xi,�i) and H ′ ∈ RH(Ii)(Ii,�i)}, by the

surjectivity of φ and by the definition of a labeling-isomorphism.
We verify that the function Ext(G, I)(φ) is refining. Note that Li ⊆ L, Xi ⊆ X

and the ∀x, y ∈ Xi. x � y ⇒ x �∗
i y. The last claim follows from the fact that�i re-

fines� and from the definition of�∗
i . We leave the fact that Ext(G, I)(φ) : RL(X,�

) → RL1(X1,�∗
1) ∪ . . . ∪RLn(Xn,�∗

n) is surjective, as an exercise.

We use the notations of Definition 4.21 and of Lemma 4.15 in Theorem 4.8.

Theorem 4.8. (Extension Theorem) Consider a random structure RL(X,�) and
an isolated subset I of X and G ∈ RL(X,�). Consider a refining function

μ : RG(I)(I,��I) �−→ {RM1(I1,�1), . . . ,RMn
(In,�n)}.

94 4 Random Bag Preservation and Isolated Subsets

If a) μ is non-contractive or b) (μ is contractive and I is strictly isolated) and if

μ : RG(I)(I,� �I) �−→ {(RM1(I1,�1), K1) . . . , (RMn(In,�n), Kn)}

is RB-preserving then

Ext(G, I)(μ) : RL(X,�) �−→ {(RL1(X1,�∗
1), K1), . . . , (RLn

(Xn,�∗
n), Kn)}

is RB-preserving.

Chapter 5
Basic MOQA Operations

The present chapter introduces the basicMOQA operations, including the Random
Product, the Random Deletion and Percolation, the Random Projection, the Random
Split and the Top and Bot operations. These are sufficient to implement many well-
known algorithms as illustrated in Chapter 8. We recall that the operationsMOQA
product operation and the MOQA deletion operation have been described in an
informal way in Section 1.8.1, while theMOQAsplit operation has been described
in Section 1.7.1.

Each of theMOQA operations is shown to be random bag preserving. Deletion
operations typically are not included in the context of automated average-case anal-
ysis, since the analysis of deletions with respect to average-case time is well-known
to be problematic, even in the context of traditional average-case analysis. Hence the
Random Deletion opens up the way for the inclusion of novel algorithms, such as
Percolating Heapsort and Treapsort, which are analyzed in Chapter 9. The Extension
Theorem of Chapter 4 is applied to extend these operations from local applications on
isolated subsets to applications over the entire random structure. Uniformly random
bag preserving operations are singled out as of particular interest, since this type
of operations enables simplifications of probability computations in later chapters.
TheMOQA operations are shown to preserve series-parallel data structures which
yields a characterization of the so-called MOQA atomic-constructible data struc-
tures as series-parallel orders. Finally, some simplifications for the series-parallel case
are obtained in the context of the computation of cardinalities of random structures.
Such simplifications for series-parallel orders will also be useful in the context of
Chapter 6, which regards the average-case analysis of the basicMOQA operations.
Finally, separative functions as a sufficient condition for random bag preservation
are discussed in relation to the basicMOQA operations.

96 5 BasicMOQA Operations

5.1 The Fundamental Data Structuring Problem

Most results on worst and average-case analysis have been obtained for the general
class of data structure manipulation algorithms [Knu73, MR95], which include of
course sorting and searching algorithms. Hence we initiated our exploration of mod-
ular static average-case timing in the data structuring context. This has to a great
extent influenced the design of the prototype languageMOQA to which we return
below. We remark in this context that theMOQA basic operations incorporate the
main operations listed in the basic data structuring problem discussed in [MR95].
For the fundamental data structuring problem one is required to maintain a collection
of sets of items so as to efficiently support certain types of queries and operations.
These operations include the capacity to insert an element in a data structure, delete
an element from a data structure, merge data structures into a larger whole, split a
data structure according to data being larger or smaller than a given value and find a
value in a data structure. Such operations are included inMOQA as follows: insert-
ing an element is achieved by applications of theMOQA product operation to two
components of a data structure, one of which consists of a single element. Deletion is
incorporated via theMOQA deletion operation. Merging of data structures again is
achieved via theMOQA product. AMOQA split operation is included and some
search capacity is incorporated via theMOQA implementation of Quickselect. In
contrast with [MR95], MOQA operations operate over general partial order data
structures as opposed to trees andMOQA operations are guaranteed to be random
bag preserving, facilitating modular static average-case analysis.

Comment: The operations introduced below can be extended to take more arguments
than specified in their definition. The details are of a technical nature and have been
omitted. We will restrict the definitions to the minimum number of arguments in each
case.

Remark 5.1. We will typically first define the operations on partial orders, then define
the operation on data-labelings and finally define the operation on a random structure.
To generalize the operations we will use two extension results. We will use the
Extension Theorem (Theorem 4.8) to allow the operations to be applied to isolated
subsets of the partial order corresponding to a random structure. Finally, though
we will not state this explicitely for each operation, we define the randomness-
preserving extension of each operation, from random structures to random bags, via
Definition 4.12.

5.2 The Random Product

In order to define the random product, we first define the product of two finite partial
orders. The definition is similar to the one given in [DP90]. Then we define the
product of two data-labelings. Finally, we define the random product on a random

5.2 The Random Product 97

structure as a unary operation, which performs an operation on two sub structures
of the given random structure and reproduces a new random structure. A high level
description of general product type operations is provided in [FV90]. We provide a
random bag preserving product operation for theMOQA language.

5.2.1 The Product of two Finite Partial Orders

Definition 5.1. Given two finite disjoint partial orders (X1,�1) and (X2,�2), i.e.
partial orders for which X1 ∩X2 = ∅.

The set X1
⊗

X2 is defined to be the union of the disjoint sets X1 and X2. The
relation �1

⊗
�2 is defined to be the least partial order on X1

⊗
X2 containing

�1 and �2 and X1 ×X2.

It is easy to verify that the partial order �1
⊗
�2 is the transitive closure of the

binary relations �1, �2 and the set of pairs {(M, m)|M is a maximal element of
(X1,�1), m is a minimal element of (X2,�2).

Example 5.1. If we consider the sets X1 = {x1, x2, x3} and X2 = {x4, x5, x6, x7}
then X1

⊗
X2 = {x1, x2, x3, x4, x5, x6, x7}. We indicate the new pairs added in

the Hasse diagram via the operation
⊗

via dashed lines.

��

��

��

��

���

�
�����

�
���

��

��

��

��

��

��

�������

��

�������

�� ��

��

Note that the sets X1 and X2 form a pair of completely connected subsets (cf.
Definition 4.15) of the product partial order (X1

⊗
X2,�1

⊗
�2).

We define the product of two data-labelings as a first step towards the definition
of the random product of two random structures.

98 5 BasicMOQA Operations

5.2.2 The Product of Two Data-Labelings

Let F1,F2 be data-labelings on finite partial orders (X1,�1) and (X2,�2) respec-
tively. We call F1 and F2 disjoint when their domains X1 and X2 are disjoint and
their ranges F1(X1) and F2(X2) are disjoint.

Pseudo-code for the product
⊗

on data-labelings
Let F1, F2 be disjoint data-labelings which are provided as inputs.

We define the product of the two data-labelings. To avoid technicalities, we assume
in the following pseudo-code that the data-labelings F1 and F2 of which the product
is taken are (implicitly) processed first to retrieve a new function F , consisting of
the union of the data-labelings F1 and F2. The creation of F will be indicated in the
pseudo-code for the random product by the initial code line: F = F1 ∪ F2, where
we consider the graph union of these functions.

We will also assume the implicit generation of the restrictions of this function F ,
i.e. F �X1 and F �X2, to the sets X1 and X2 respectively and hence won’t specify
the detailed implementation of these restrictions in the pseudo code. The function F
and its restrictions F �X1 and F �X2 will freely be referred to in the pseudo-code.

The pseudo-code to generate a data-labeling from F = F1 ∪ F2 is based on a
generalization of the procedures Push-Down in the pseudo-code of the Heapsort Al-
gorithm in Section 2 and the related Push-Up operation. We will provide pseudo-code
for Williams versions of the Push operations and remark that it is straightforward
to specify Floyd versions of these procedures. We omit the details but will refer to
these generalizations as F-Push-Down and F-Push-Up in the following. We provide
pseudo-code for generalized versions of Williams’ Push operations:

W-Push-Down(b, F)
while �b� = ∅ and b < ∨�b�

swap(b,∨�b�, F)

W-Push-Up(a, F)
while �a� = ∅ and a > ∧�a�

swap(a,∧�a�, F)

As before, we will use Push-Down and Push-Up freely in the pseudo-code, without
specifying which version we use since this is a matter of choice of implementation.

We will define the operations on isolated subsets of a given random structure
and use the Extension Theorem (Theorem 4.8) to extend the operation to the entire
random structure.

We provide the pseudo-code for the Data-Labeling-Product Algorithm where the
inputs for the algorithm are the disjoint data-labelings F1 and F2. We denote the
function F returned by the Data-Labeling-Product algorithm by F1

⊗
F2.

5.2 The Random Product 99

Pseudo-code for the Data-Labeling-Product Algorithm

F := F1 ∪ F2;
while ∨M(F �X1) > ∧m(F �X2) do

a := ∨M(F �X1); b := ∧m(F �X2);
swap (a, b, F);
Push-Down(b, F);
Push-Up(a, F)

Return F

This proof of the following lemma follows via straightforward technical verifica-
tions from the pseudo-code of the random product algorithm. We omit the details.

Lemma 5.1. If F1 and F2 are disjoint data-labelings then F1
⊗

F2 is a data-
labeling.

Example 5.2. In the example given below, we consider two data-labelings F1 and F2
for the partial orders displayed below and illustrate the steps involved in executing
the Data-Labeling-Product Algorithm.

100 5 BasicMOQA Operations

We indicate the selection of labels of extremal elements on the previous picture
by full circles, where these elements are swapped in the next phase of the picture.
For each while loop execution, initiated by a first swap of labels of two extremal
elements, the other pairs of labels to be swapped are linked in the picture via a
double arrow (in dashed line display). These labels are swapped in the next phase of
the picture. The final illustration displays the end result of the computation, namely
the data-labeling F1

⊗
F2.

Definition 5.2. Let L1 and L2 be disjoint sets of labels. The data-labeling-product
function

⊗
: RL1(X1,�1)×RL2(X2,�2) → RL1∪L2

(X1 ⊗X2,�1 ⊗ �2)

is defined by:
⊗

(F1, F2) = F1
⊗

F2.

The following result is important to obtain that the random product is a RB-
preserving operation.

Theorem 5.1. The data-labeling-product function is a bijection.

Proof. Consider two disjoint partial orders (X1,�1) and (X2,�2).
We present a proof for Williams’s versions of the Push operations. The proof for

Floyd’s version is similar.
We view the execution of the data-labeling product algorithm as a series of swaps

along chains of X1
⊗

X2. For a given pair of disjoint labelings, F1 and F2, each
such chain is determined by a single run of the two push operations in the code of
the random product. We recall that at the start of the while loops, labels a and b
are involved in the swaps, where in terms of the pseudo-code, a = ∨M(F � X1)
and b = ∧m(F �X2). We refer to these labels as the extremal labels. The label b is
swapped downwards along a unique chain in the partial order (X1,�1) labeled by F1
and a is swapped upwards along a unique chain in the partial order (X2,�2) labeled
by F2. The result of appending these two paths forms a chain in the product partial
order (X1

⊗
X2,�1

⊗
�2).We will show that each such swap sequence along

such a unique chain is injective. It follows that the data-labeling-product function
⊗

is injective.

In order to show the result, we assume that we have two data-labelings F1, F
′
1 of

the partial order (X1,�1) and two data-labelings F2, F
′
2 of the partial order (X2,�2)

such that F1 and F2 are disjoint, F ′
1 and F ′

2 are disjoint and F1
⊗

F2 = F ′
1
⊗

F ′
2.

We show that F1 = F ′
1 and F2 = F ′

2.
We will display the labels on the chain determined by the swap sequence arising

from the call to F1
⊗

F2, by:

[a1, a2, . . . , am], [b1, b2, . . . , bk],

where (a, b) is the first pair which is swapped by the algorithm, am = a, b1 = b.

5.2 The Random Product 101

The sequence [a1, a2, . . . , am] consists of the labels in the labeled partial order
(X1,�1, F1) which are respectively swapped with b and the sequence [b1, b2, . . . , bk]
consists of the labels in the labeled partial order (X2,�2, F2) which are respectively
swapped with a.

In the above, we allow the case where m = 0 and k = 0, i.e. no swap occurs.
Similarly,we display the labels on the chain determined by the swap sequence

arising from the call to F ′
1
⊗

F ′
2, by:

[a′
1, a

′
2, . . . , a

′
n], [b

′
1, b

′
2, . . . , b

′
l],

where (a′, b′) is the first pair which is swapped by the algorithm, a′
n = a′, b′

1 = b′, the
sequence [a′

1, a
′
2, . . . , a

′
m] consists of the labels in the labeled partial order (X1,�1

, F ′
1) which are respectively swapped with b′ and the sequence [b

′
1, b

′
2, . . . , b

′
k] con-

sists of the labels in the labeled partial order (X2,�2, F
′
2) which are respectively

swapped with a′.
In the above, we again allow the case were n = 0 and l = 0, i.e. no swap occurs.
We remark that Ra(F1) = Ra(F ′

1) = L1 and that Ra(F2) = Ra(F ′
2) = L2.

This implies that a = a′ and b = b′.
We show that a = a′. The case b = b′ is similar. The algorithm selects the maximal

label a at depth 0 in the labeled partial order (X1,�1, F1) and the maximal label
a′ in the labeled partial order (X1,�1, F

′
1). Since Ra(F1) = Ra(F ′

1) = L1 and
data-labelings are increasing, we know that the maximum label of L1 must occur as
a label of a maximal element and thus a = a′ = maximum(L1).

We remark that this fact does not alter, even after the first two push operations in
the algorithm have been run through a number of times. Inductively one can show
that Ra(F1) = Ra(F ′

1) remains true. Indeed, in case a < b no swaps will occur
and the result holds trivially. Otherwise, after the first series of swaps has happened
for the first two while loops, we obtain that in Ra(F1), the label a simply has been
replaced by the label b and in F ′

1 the same has taken place. Hence we preserve the
fact that the ranges of the respective data-labelings coincide, which suffices to yield
the desired property.

It follows by the fact that a = a′ and b = b′ at the start of each swap sequence,
the number of non-trivial swap sequences induced by F1

⊗
F2 is identical to the

number of non-trivial swap sequences induced by F ′
1
⊗

F ′
2.

Hence we can focus on the last swap sequences induced by F1
⊗

F2 and F ′
1
⊗

F ′
2

respectively and assume that both swap sequences, by the above, must start with a
swap on the same pair of elements, a and b. Since the data-labelings of course have
changed during the previous swap sequences, we denote the data-labelings at the
start of the final swap sequences by G1, G2 and G′

1, G′
2 respectively.

Consider these final chains along which the labels are swapped, i.e. the chain

[G−1
1 (a1), G−1

1 (a2), . . . , G−1
1 (am)], [G−1

2 (b1), G−1
2 (b2), . . . , G−1

2 (bk)]

and the chain

102 5 BasicMOQA Operations

[(G′
1)

−1(a′
1), (G

′
1)

−1(a′
2), . . . , (G

′
1)

−1(a′
n)],

[(G′
2)

−1(b
′
1), (G

′
2)

−1(b
′
2), . . . , (G

′
2)

−1(b′
l)].

To show injectivity for the final swap sequences, it suffices that these chains must be
identical.

Indeed, assume that these paths are the same, say a path denoted by P . Since
F1

⊗
F2 = F ′

1
⊗

F ′
2 and the swap sequence on P does of course not affect labels of

X1 −P , the data-labelings G1 and G′
1 must coincide on the set X1 −P . Moreover,

since the net result of the Push-Down operation is to move the label of the maximal
element of P to the element originally labeled with b in F2 and to move every other
label of an element of P to the element immediately above it on P , we obtain that
G1 must be identical to G′

1.
We claim that it is always the case that the swap sequences corresponding to b

must be the same for G1 and G′
1 and hence, by the above, the final swap operations

form an injective operation.
We recall that since F1

⊗
F2 = F ′

1
⊗

F ′
2, we must have that at the end of both

Push-Down operations the label b is a label of the same element in the partial order.
We assume by way of contradiction that the paths are not identical and hence

diverge at one point. Because b must end up at the end of the final swap sequences in
the same position, we know there is a first time, after the sequences diverge, that the
label b ends up as a label of the same element z of X . Say that prior to these swaps
we had: H−1

1 (x) = b and H ′−1
1 (y) = b where x = y and where H1 and H ′

1 are the
data-labelings obtained from G1 and G′

1 by carrying out the swaps on G1 and G′
1

up to the point prior to the first convergence of the paths.
We clarify the situation for both data-labelings H1 and H ′

1 in the following figure.
In H1 the label b will be swapped with a label α while in H ′

1 the label b will be swapped
with a label β.

Since after these swaps the labels of x and y will not be changed again, the labels
as displayed in the figure below, are the only ones possible in order to guarantee that
the final results of the Push-Down calls are identical.

x

G1 G′
1

z

y β

α

α

β

a− a−

We now obtain a contradiction since from data-labeling H1 it is clear that α < β
while from data-labeling H ′

1 we obtain that β < α.
Hence we cannot have divergence of the path and the result follows.
Since the same argument holds for a, we obtain that both swap paths must be

identical.
The proof can now be concluded by an inductive argument remarking that the

same must hold for every pair of swap sequences, when run through in reverse order
of their occurrence. Since on elements outside the swap paths, no labels are ever
swapped, we obtain that F1 = F ′

1 and F2 = F ′
2.

5.2 The Random Product 103

Finally we need to verify that the data-labeling-product function is surjective. It
suffices to verify that |RL1(X1,�1)| × |RL2(X2,�2)| = |RL1∪L2

(X1
⊗

X2,�1⊗
�2)|.

We remark that |RL1∪L2
(X1

⊗
X2,�1

⊗
�2)| = |RL′

1
(X1,�1)|×|RL′

2
(X2,�2

)|, where L
′
1 consists of the first |X1| elements in the sorted version of L while L

′
2

consists of the last |X2| elements in the sorted version of L. This follows by the fact
that the sets X1 and X2 are completely connected in the partial order (X1

⊗
X2,�1⊗

�2). Since we can identify data-labelings up to labeling-isomorphism, it is clear
that |RL1(X1,�1)| = |RL′

1
(X1,�1)| and that |RL2(X2,�2)| = |RL′

2
(X2,�2)|.

Hence the result follows.

We obtain the following immediate corollary, which motivates the choice of ter-
minology random “product”.

Corollary 5.1. It L1 and L2 form a partition of the set of labels L then

|RL(X1 ⊗X2,�1 ⊗ �2)| = |RL1(X1,�1)| × |RL2(X2,�2).|

In the example given below, we illustrate that the random product is an injective
process.

Example 5.3. We do not display all cases, but restrict our attention to the case of a
fixed set of labels which can be used on the first partial order, say {1, 2, 3, 4}, and a
fixed set of labels which can be used on the second partial order, say {5, 6, 7}.

It is easy to verify that the number of possible combinations of data-labelings for
the given partial orders from the set of labels {1, 2, 3, 4, 5, 6, 7} is

(7
4

)
×5×2 = 350,

preventing a complete illustration of all cases.
The first five combinations of pairs of data-labelings are displayed at the top of the

following page, followed by the computation steps involved in the random product.
The next five combinations are displayed again on the next page, followed by the

computation steps involved in the random product.
Following this example, we define the binary random product below, which may be

a product which comes to mind first. We indicate some problems with this approach,
motivate a restricted use of the operation and introduce the unary random product,
which is the one that will be used in the applications.

104 5 BasicMOQA Operations

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � �

� � � � �

� �

��

� � � � � � � �

� � � � � � ��

� �

�

� �

�

� �

�

� �

�

� �

�

�

� � �

� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

�

� �

�

�

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

5.2 The Random Product 105

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

� � � � �

� �

��

� � � � � � � �

� � � � � � ��

� �

� � � � �

�

� � �

� �

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

�

� �

�

�

�

� � � � �

� � � � �

�

��

��

� �

��

��

��

� �

��

� �

��

� �

��

��

��

� �

��

��

� �

106 5 BasicMOQA Operations

5.2.3 The Binary Random Product

Definition 5.3. Let RL1(X1,�1) and RL2(X2,�2) be two disjoint random struc-
tures. We define the binary random product, RL1(X1,�1)

⊗
RL2(X2,�2), by

RL1∪L2(X1
⊗

X2,�1
⊗
�2).

Lemma 5.2. The binary random product is RS-preserving.

Proof. This follows from Theorem 5.1.

Remark 5.2. The binary random product leads to complications regarding the de-
termination of average-time. Indeed, the binary random product has an average
time which is a function of the label sets L1 and L2. Consider the case where
the largest label of the set L1 happens to be less than the least label of L2. In
this case the binary random product will require no Push-Downs nor Push-Ups.
At the other extreme, consider label sets L′

1 and L′
2 for which the labels of L′

2 all
are less than the least label of L′

1. In that case clearly the binary random prod-
uct RL′

1
(X1,�1)

⊗
RL′

2
(X2,�2) will require a large amount of Push-Down and

Push-Up operations. Hence its average time will be strictly greater in general than
the average time of RL1(X1,�1)

⊗
RL2(X2,�2). The dependency of the binary

product operation on the label sets involved leads to complications regarding the
determination of its average time.

The MOQA language operations include the unary random product, defined
below. This avoids the above problem with determining the average-time of the
general binary random product, where formulas have been derived expressing the
average-case time of the unary random product.

5.2.4 The Unary Random Product

Definition 5.4. Consider a random structure R(X,�) and distinct components I1
and I2 of an isolated subset I of X . We define the unary random product of the partial
order (X,�) with respect to I1, I2 and I to be the partial order (X,�I1

⊗
I2

) where

�I1

⊗
I2

is the least partial order containing � ∪ ((��I1)
⊗

(��I2)).
We define the unary random product to be the function:

μI1

⊗
I2

(X, I) : R(X,�) → R(X,�I1

⊗
I2

)

where ∀F ∈ R(X,�). μI1

⊗
I2

(X, I)(F)�(I1
⊗

I2) = (F �I1)
⊗

(F �I2) and

μ(F)� (X − (I1 ∪ I2)) = F �(X − (I1 ∪ I2)).

5.2 The Random Product 107

Theorem 5.2. Consider a random structure R(X,�) and distinct components I1
and I2 of an isolated subset I of X . The unary random product μI1

⊗
I2

(X, I) is

RB-preserving with multiplicity
(|I1|+|I2|

|I1|
)
.

Proof. By the Extension Theorem it suffices to verify that the random product
μI1

⊗
I2

(I1 ∪ I2, I1 ∪ I2) is RB-preserving. Let L be a set of labels for I1 ∪ I2.

From Corollary 5.1 we obtain that for any partition (L1,L2) of L: |RL(I1
⊗

I2,�1⊗
�2)| = |RL1(I1,�1)| × |RL2(I2,�2)|. The result follows from Theorem 5.1

and from the observation that there are
(|I1|+|I2|

|I1|
)

such partitions.

We provide an example of the unary random product.

Example 5.4. Consider the Hasse diagram of the following tree:

x1 x2

x3

x5

x4

I

We display the eight states of the tree, where we selected the two leaves at the
deepest level, i.e. x1 and x2, to form the atomic isolated subset I and labels for this
set have been indicated as below.

�

�

�

�

� �

���

�

�

� � �� � �

� � �� ���

�� � � � � � �

� � � ��� � �

�� �� ����

�� �� ��

��

We apply the unary random product to the isolated subset I = {x1, x2} and we
use the components I1 = {x1} and I2 = {x2}. The result is displayed below. The

108 5 BasicMOQA Operations

multiplicity involved is
(|I1+I2|

|I1|
)

=
(2
1

)
= 2. Two copies of a random structure are

obtained, a first copy consisting of the data-labelings marked by (I), i.e. the data-
labelings F ′

i with odd indices i, and a second copy consisting of the data-labelings
marked by (II), i.e. the data-labelings F ′

i with even indices i.

�

� �

� �

���

�

�

� � �� � �

� � � ��� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

����

�������� ���

����������

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�
�

�

�
�

�

�

�
�

�

5.3 Random Deletion and Percolation

In this subsection we introduce two important data structure operations Del, Del of
deleting a label from a random structure. These operations allow one to incorporate
a Heapsort style algorithms, which as we will see removes a main obstacle in the
determination of average-case time of this type of algorithms. They are generaliza-
tions of two operations DelM and Delm which are introduced below.

Remark 5.3. We chose to implement the Deletion operations such that the element
and its label a, to be deleted, will be returned by the operation. The element x labeled
by a is removed from the partial order under consideration. It is easy to see that the
operations could be defined in an alternative way such that the element x is actually
kept after deletion as an extremal element of the partial order, where a is kept as the
label of this new extremal element, which now becomes a minimum or a maximum.
These variants are captured via the Percolation operations.

5.3.1 Deleting an Extremal Label

Definition 5.5. Consider (X,�) a finite partial order. For any extremal element e of
the partial order, we define (X,�) − {e} = (X − {e},�e), where �e is obtained
from the binary relation � by removing all pairs of � which contain the element e.

5.3 Random Deletion and Percolation 109

We leave the straightforward proof of the following lemma to the reader.

Lemma 5.3. Let (X,�) be a finite partial order and let e be an extremal element of
the partial order. (X,�)−{e} = (X−{e},�e) is a partial order which we refer to
as the result of deleting the extremal element e from the given partial order (X,�).

We define the Random Deletion operations on a partial order.

Definition 5.6. Given a finite partial order (X,�). Del(X,�) is defined to be the
sequence of partial orders (X − {x},�x)x∈m(X) while Del(X,�) is defined to be
the sequence of partial orders (X − {x},�x)x∈M(X).

We recall that the greatest (least) label must occur at a maximal (minimal) element
(cf. Remark 4.1).

Definition 5.7. We define the operation of deleting the largest label a from a given
data-labeling F as follows: DelM (F) = F � (X − x) where x is the element
labeled with a. We define the operation of deleting the largest label a from a given
random structure R to be the result of applying this operation to each state of R,
i.e. DelM (R) = {DelM (F)|F ∈ R}. We will informally refer to DelM (R) as
the result of deleting the maximum element of the random structureRL(X,�). In a
similar way one can define Delm in two stages, first as an operation on data-labelings
and subsequently as an operation on random structures.

We state the following RB-preservation result for the operation DelM which
returns a bag of random structures, each of which has multiplicity 1. Similar results
hold for the operation Delm.

Proposition 5.1. If RL(X,�) is a random structure and a the largest label of
L then:

1)RL−a(X − x,�x) = {F �(X − x)|F ∈ R(X,�), F (x) = a}.

2) DelM (RL(X,�)) = {(RL−{a}(X − {x},�x), 1)}x∈M(X)

Proof. Exercise.

We illustrate the deletion of the minimum label via Delm on the following exam-
ple.

Example 5.5. We circle the label 1 to be deleted.
�

��

�

��

��

��

��

� �

� �

� �

� � �

� �

� �

� �

�

The effect of deleting the label 1 is given by:

110 5 BasicMOQA Operations

��

��

��

��

�

� �

�

� � �

�

� �

�

��

�

�

Hence we obtain two random structures, consisting of the states from the label
set {2, 3, 4} of a connected V -shaped partial order and of a partial order consisting
of a two element linear component and a single element component.

A straightforward deletion of a label which is not a label of an extremal element
on the other hand does not necessarily yield a random bag. For instance, a direct
deletion of the label 2 from each of the five states, would result in the following set
of data-labelings, which do not form a random bag:

��

��

��

��

�

� �

�

� � �

�

� �

� �

�

�

�

The problem is resolved in Section 5.3.2 via a generalized deletion.
In the MOQA language the operations of deleting an extremal label will take

as inputs the data-labelings corresponding to states from a random structure, where
these data-labelings are stored in a variable X . Hence the operations will be denoted
as: DelM (X) and Delm(X) for the deletion of a maximum label and a minimum
label respectively.

5.3.2 Percolation and Deletion of Arbitrary Labels

We consider here the case of labels for elements which are not necessarily extremal.
It is clear that the deletion of an internal label cannot simply occur by removing
a label from all possible data-labelings where connections with other elements are
deleted in a similar way as for the deletion of an extremal label. The same problem
arises as for the deletion of the label 2 in Example 5.5.

In order to delete an arbitrary label a from a random structure, for a given data-
labeling F , we proceed as follows in two steps. First we percolate an internal label
to a position where it becomes a label of an extremal element. Then we carry out the
deletion of the newly created extremal label as described in the previous section.

In the following we will assume that the label a to be deleted actually occurs as
a label in the random structure.

Percolation
Percolation of a label a is carried out as follows:

We sketch two methods to remove the label, via downwards or upwards percola-
tion, each of which can be applied inMOQA .

5.3 Random Deletion and Percolation 111

We describe the process of percolating a label downwards.

Perc
Here we replace the value of a by a value less than any label from the data-labeling
F under consideration. This value is only a technical aid and is indicated by a−. The
label a−, which will become a part of the given data-labeling, is then pushed down
in the usual way, i.e. the process is exactly the opposite as in the definition of

⊗
where we insert one element into a random structure.

The label a− is systematically swapped with the largest label among the elements
which are immediately below the element labeled with a−, in case there are at least
two elements immediately below the given element, or with the label of the single
element immediately below the element labeled with a− (depending on which is the
case) until label a− becomes the label of a minimal element. Of course, in case a−

was already a label of a minimal element, no swaps are necessary.

Remark 5.4. The above distinction between more than one element and a single
element immediately below a given element means that in practice the algorithm
will need n− 1 comparisons in case there are n ≥ 2 children below the node under
consideration (in order to determine the maximum label of the children) and, at first
glance, it would appear that no comparisons need to be made in case of a single
child below the node under consideration. Indeed, in case of a single child, we can
immediately perform a swap since the parent node is labeled with a− which by
definition is smaller than the label of the unique child. However, in practice one
also needs to determine whether a parent has one or more children, which inherently
involves a comparison. In order to obtain a better representation of cost, we will
assume in the following that heaps are full binary trees, i.e. every parent has exactly
two children, some of which may be the empty tree. A leaf then is a node for which
both children are empty. In case of a single child, one comparison will be counted
to determine this situation. We will return to this issue in the analysis of Percolating
Heapsort.

Next we describe the process of percolating a label upwards.

Perc
Here we replace the label of a by a value which is larger than all labels from F ,
denoted by a+ and push up the label in a similar way.

Two related operations can be derived from this process, in a similar spirit as the
approach to DelM and Delm, which are referred to as PercM and Perc

m
and which

re-insert the “percolated” element and its label in the correct order determined by
the label value. We sketch the definition of the PercM operation. PercM , similar
to the Del operation, pushes down a label from a data-labeling to a minimal element
position, after which it is deleted and subsequently the element (and its label) are re-
introduced as a maximum element with the given label. Of course, a similar Perc

m

operation, creating a minimum element, can be defined. PercM will proceed in two

112 5 BasicMOQA Operations

steps. First it consists of an execution of the Perc operation called on the greatest label
a of the original data-labeling. Following the Push-Down of the relabeled element
a−, the operation will remove the corresponding minimal element labeled with a−

and re-introduce this element as the maximum of the partial order. Moreover, it will
relabel the resulting maximum element with a. It is easy to verify that the result is a
new data-labeling. The effect of PercM is to reset the input data-labeling to this new
data-labeling restricted to the elements excluding the new maximum element. For a
given data-labeling stored in a variable X , this restriction is indicated by X; i.e. X
is the data-labeling stored in X , restricted to the part below its maximum element.

We leave it to the reader to verify that the PercM operation is RB-preserving,
yielding a similar Random Bag as for the delete operation (with appropriate maximum
elements created by PercM) for which the random structures have multiplicities one.

Example 5.6. We illustrate the effect of PercM on the following data-labeling:

−→

6

5 4

3 1

5
4

3 1

6− 5

4

3 1

5

4

3 1

6−

6

−→−→

Theorem 5.3. The operations PercM and Perc
m

are RB-preserving. PercM has
the same average-case comparison time as the Del operation executed on the largest
label and Perc

m
has the same average-case comparison time as the Del operation

executed on the least label.

Deletions of arbitrary labels
Finally, the operations Del and Del are again first defined on data-labelings and
then extended to random structures. To define the operations on data-labelings, we
consider two inputs: an index k and a data-labeling F . We define the deletion of an
arbitrary label of a given data-labeling, which generalizes the deletion of extremal
labels.

Del(k,F) is defined to be the operation of percolating the k-th smallest label a
downwards as a label a− followed by the deletion of the extremal element labeled
by a−. The output returned is the deleted label and the random structure is updated
to be the newly obtained random bag, i.e. a bag of partial orders all labeled from
the same set of labels to form the random structures. The definition of Del(k,F) is
similar.

We note that in contrast with the deletion operation which generates a random
bag, the percolation operation only generates a single random structure. The Delete
operations return the deleted element and label and updates the random structure to

5.3 Random Deletion and Percolation 113

a new random bag as described above.

We illustrate both deletion processes in the following example.

Example 5.7. Consider the partial order (X,�) given by the Hasse diagram:

�� ��

�� ��

��

For a given set of labels L = {1, 2, 3, 4, 5} we obtain the following states:

�

� � �

�

�

�

�

�

� � � � �

� ��

�

�

� � �

�

�

� � �

� � �

� � � �

�

�

�

�

��

We illustrate removing the label 2 via the Del method:

We only illustrate the end result which involves a partial order with a singleton
component and a three element V-shaped component.

� � �

�

�

�

�

�

� � � � �

� ��

�

�

� � �

�

�

� � �

�

�

�

�

��

114 5 BasicMOQA Operations

Full details are given for the Del method which is illustrated next.
We illustrate the result of removing the second smallest label, which for the case

of the example is the label 2, from the above random structure via the Del method
and display the change of the label 2 to 2+, the subsequent end result of calling
Push-Up on this new label and finally we display the resulting sequence of random
structures.

We first illustrate the effect of removing the second smallest label via the Del
method on the first four states.

�

� � �

�

�

��

�

�� ���

�

�

�

� � �

��

�

�

�

� � � � ��� �� �

�� � � �

� � � �

� ���

�

� � � �� �

� � �

� � � �

� �

��� ���� ��� �����

5.3 Random Deletion and Percolation 115

We illustrate the effect on the next four states.

�

� � �

��

�

��

�

� ���

�

��

�

� � �

�

�

�

�

�� � �� �� �� �� �

� � � �

� � � �

� ��

�

�� �

� � �

� � � �

� �

����� ���� ����� ����

� �

�

Hence we obtain a sequence of three new random structures, identified by (I),(II)
and (III), each of which is labeled from the set of labels {1, 3, 4, 5}. Of course, one
can see that (II) and (III) are identical. Hence they can be identified during an analysis
of the deletion process. Since however the copies created in this way depend on the
structure of the original partial order, we will not identify the copies at this stage
and treat each as a new random structure. The problem is that the verification of
identical copies for arbitrary partial orders would require too much time in general.
Later on, in a complexity analysis of an algorithm involving a deletion process, if
needed, we can make the necessary identifications during the set up of the recurrence
equations depending on the partial order under consideration. The need for such
an identification can be eliminated via an elegant representation of partial orders
introduced in [Hic08].

116 5 BasicMOQA Operations

The following result states that the Deletion operation is RB-preserving.

Theorem 5.4. Let R = RL(X,�)) be a random structure and k ∈ {1, . . . , |X|}.
The operation Del(k) is a bijection over R, where Del(k) : R → {RL−{a}(X −
{x},�x)}x∈m(X) and where a is the k-th smallest label of L.

Proof. Consider the random structure R. We will show that the Del(k) function is
injective on R. Consider the partial order (X,�) of R and the label set L, where
a ∈ L is the k-th smallest label. In order to show the result, we assume that we have
two states F, F

′
of the partial order (X,�) from the same set of labels L such that

Del(k, F) = Del(k, F ′). We show that F = F ′.
Note that the label a will be replaced by the label a−, following the notation of

the pseudo-code. We view the execution of the delete algorithm for a given state F
as a chain of swaps involving the element a− along the partial order (X,�). For a
state F such a swap-chain is determined by a single run of the Push-Down operation
in the code of the delete. The label a− is swapped downwards along a unique chain
in the partial order (X,�).

We will display the labels on the chain determined by the swap sequence arising
from the call to Del(k, F) by [a1, a2, . . . , am], where a1 = a− and the sequence
[a2, . . . , am] consists of the labels in the labeled partial order (X,�, F) which are
respectively swapped with a−. We allow the case where m = 1, i.e. no swap occur.

Similarly,we display the labels on the chain determined by the swap sequence
arising from the call to Del(k, F ′), by [a′

1, a
′
2, . . . , a

′
n] where a′

1 = a− and the
sequence [a′

2, . . . , a
′
m] consists of the labels in the labeled partial order (X,�, F ′)

which are respectively swapped with a−. We again allow the case were n = 1, i.e.
no swap occurs.

Consider the two chains along which the label a− is swapped, i.e. the chain

[F−1(a1), F−1(a2), . . . , F−1(am)]

and the chain
[(F ′)−1(a′

1), (F
′)−1(a′

2), . . . , (F
′)−1(a′

n)].

To show injectivity for the swap sequences, it suffices to show that these chains
must be identical. Indeed, assume that these paths are the same, say a path denoted
by P . Since Del(k, F) = Del(k, F ′) and the swap sequence on P does of course
not affect labels of X − P , the states F and F ′ must coincide on the set X − P .
Moreover, since the net result of the Push-Down operation is to move the label a−

of a given fixed element in P to a minimal element of the partial order (the same
minimal element for both states F and F ′ since the swap chain is assumed to be
the same for both) and to move every other label of an element of P to the element
immediately above it on P , we obtain that F must be identical to F ′. The fact that
the final position of a− is a minimal element is clear since a− by definition is the
smallest element of the label set L′ = (L − {a}) ∪ {a−}.

We claim that, under the assumption that Del(k, F) = Del(k, F ′), it is always
the case that the swap sequences corresponding to a− must be the same for F

5.3 Random Deletion and Percolation 117

and F ′ and hence, by the above, we obtain that F = F ′. We recall that since
Del(k, F) = Del(k, F ′) we must have that at the end of both Push-Down operations
the label a− is a label of the same (minimal) element in the partial order. We assume
by way of contradiction that the paths are not identical and hence diverge at one point.
The argument is similar to the one presented in the proof of Theorem 5.1. Because
a− must end up at the end of the final swap sequences in the same position, we know
there is a first time, after the sequences diverge, that the label a− ends up as a label
of the same element z of X . Say that prior to these swaps we had: G−1(x) = a−

and G′−1(y) = a− where x = y and where G and G′ are the states obtained from
F and F ′ by carrying out the swaps on F and F ′ up to the point prior to the first
convergence of the paths. We display the situation for both data-labelings G and G′

in the following figure. In G the label a− will be swapped with a label α while in G′

the label a− will be swapped with a label β. Since after these swaps the labels of x
and y will not be changed again, the labels as displayed in the figure below, are the
only ones possible in order to guarantee that the final results of the Push-Down calls
are identical.

x

G1 G′
1

z

y β

α

α

β

a− a−

We now obtain a contradiction since from data-labeling G it is clear that α < β
while from data-labeling G′ we obtain that β < α. Hence we cannot have divergence
of the path and the result follows.

Finally we need to verify that the Del function is bijective. For this it suffices to
note that the domain of this function and its range have same cardinality. Indeed,
note that for every minimal element mi ∈ M(X), where say i ∈ {1, . . . , k}, the
following holds: |RL−{a}(X − {mi},�)| = |RL′(X,�) � {F |F ∈ RL′(X,�
) and F (mi) = a−}|, where L′ = (L − {a}) ∪ {a−}.

Theorem 5.5. Let R = RL(X,�)) be a random structure and k ∈ {1, . . . , |X|}.
The operation Del(k, R) is RB-preserving,

Del(k) : R �−→ {(RL−{a}(X − {x},�x), 1)}x∈m(X),

where a is the k-th smallest label of L. A similar result holds for Del(k). Both
operations lead to random bags for which the multiplicities are constant 1.

Remark 5.5. We remark that both deletion operations transform the empty Random
Structure ∅ to ∅.

As for the previous operations, all versions of the random deletion can be extended
via the Extension Theorem (Theorem 4.8) on strictly isolated subsets and finally
extended to arbitrary random bags via Definition 4.12.

118 5 BasicMOQA Operations

5.4 The Random Projection

We first define a contractive version of the random projection, referred to as the
strong random projection which takes data-labelings from a given partial order and
an isolated subset of this order as arguments and restricts the data-labelings to this
isolated subset, destroying the complement of this isolated subset in the process.

Definition 5.8. Let (X,�) be a partial order with an isolated subset I . The strong
random projection SProj((X,�), I) of (X,�) on I is defined to be the restricted
partial order (I,�).

Rather than

Definition 5.9. The strong random projection on an isolated subset I of the order of
a data-labeling F is defined to be the restriction F�I . The strong random projection
on an isolated subset I of a random structure R = RL(X,�) is defined as follows:
SProj(I, R) is the bag R�I resulting from the restriction of all states ofRL(X,�)
to the subset I .

Next we consider the random projection which produces a copy of the restriction
of a data-labeling to an isolated subset.

Definition 5.10. Let (X,�) be a partial order with an isolated subset I . The random
projection Proj((X,�), I) of (X,�) on I obtained as follows: let J be a newly
created set, disjoint from X and such that J is equipped with a partial order �J

where (J,�J) is order-isomorphic to the restricted partial order (I,�).

Definition 5.11. The random projection on an isolated subset I of a data-labelingF is
defined as follows: consider the random projection (J,�J) of the partial order (X,�)
with respect to I and Ψ : (I,�) → (J,�J) an order-isomorphism. Proj(I, F) is
the data-labeling FJ resulting from the transposition of F to the subset J as follows:
∀j ∈ J. FJ(j) = F (Ψ−1(j)).

The random projection on an isolated subset I of a random structure R =
RL(X,�) is defined as follows: consider the random projection (J,�J) of the par-
tial order (X,�) with respect to I and Ψ : (I,�) → (J,�J) an order-isomorphism.
Proj(I, R) is the bag {FJ |F ∈ R} resulting from the transposition of all states
from R to the subset J as follows: ∀F ∈ R ∀j ∈ J. FJ(j) = F (Ψ−1(j)).

Theorem 5.6. Consider an isolated subset I of a random structure R = R(X,�).
a) The strong random projection is RB-preserving, where

SProj(I, R) : R(X,�) → {(R(I,�), K)} and K =
|R(X,�)|
|R(I,�)| .

5.4 The Random Projection 119

In case I is strictly isolated, we have: K = |R(�M(I)�↑,�)| × |R(�m(I)�↓,�)|.

b) The random projection is RB-preserving, where

Proj(I, R) : R(X,�) → {(R(J,�J), K)} and K =
|R(X,�)|
|R(J,�J)| .

The above includes a slight abuse of notation in that the resulting random structure
is produced in addition to the original random structure, which is unchanged and
which is not displayed in the above notation.
In case I is strictly isolated, we have: K = |R(�M(I)�↑,�)| × |R(�m(I)�↓,�)|.

Proof. These results follow from Proposition 4.3.

We consider the example of a strong random projection on an isolated subset of
the random structure A3.

Example 5.8. We illustrate the effect of a strong random projection on the atomic
random structure A3 = R{1,2,3}({x1, x2, x3},�). In the picture below, the first
column indicates the possible labels for x1, the second column indicates the labels
for x2, while the third column indicates the labels for x3. Let I = {x1, x3}. We
display the result of Proj(I,R(X,�)), which results in K = 3!

2! = 3 copies ofA2.
Indeed, we obtain a copy consisting of the data-labelings {(1, 3), (3, 1)}, indicated by
(I) on the picture, a copy consisting of the data-labelings {(1, 2), (2, 1)}, indicated
by (II) on the picture, and a copy consisting of the data-labelings {(2, 3), (3, 2)},
indicated by (III) on the picture.

2 3

1 3

1

2

2 3

2

2

2

1

1

3

3

3

1

1

(III)

(II)
(I)

Pr(I,R(X,�))

The MOQA language implementation currently comes equipped with the ran-
dom projection, as opposed to a strong random projection, but could of course be
extended to include both types of projections.

120 5 BasicMOQA Operations

5.5 The Random Split

We define the random split operation first on an atomic random structure An and
then use the Extension Theorem (Theorem 4.8) to allow applications of the random
split operation to atomic isolated subsets. Note that the random split already has
been defined in Chapter 1. We discuss in the current section the split operation as it is
typically defined, e.g. [AHU87], where two pointers are kept, one moving from the
start of the list to the right, a second one moving from the end of the list to the left.
The material illustrates, as pointed out in Chapter 1, that for the case of this more
traditional split version, the same type of random bag is created. The reader may
wish to omit this material on first reading and proceed with other basic operations
first. Contrary to the split operation presented in Chapter 1, we will not explicitely
track the element indices in the output data-labeling produced in the split operation
from a given input data-labeling, though the material below could be extended to do
so. Instead, we will take a more abstract view and focus on identifying the random
bag which will be created after identifying the partial orders of the produced data-
labelings up to order isomorphism, in order to demonstrate RB-preservation.

5.5.1 The Random Split of a Discrete Partial Order

Definition 5.12. We define the random split operation on a discrete partial order
(X,�) where say X = {x1, . . . , xn}. The enumeration of the elements of X is
irrelevant. Different enumerations will yield order- and label-isomorphic end results
for the split operation.

For every m ∈ {1, . . . , n} we define Ξxm to be the partial order obtained on
X via the transitive reflexive closure of the relation Xxm

∪ Xxm , where Xxm
=

{(xk, xm)| 1 ≤ k < m}, Xxm = {(xm, xl)|m < l ≤ n} and where the first set is
defined to be empty in case m = 1 and the second set is defined to be empty in case
m = n.

The random split of the discrete partial order (X,�) is defined to be the sequence

((X, Ξx1), . . . , (X, Ξxn
)).

The partial order Ξxm
is illustrated via the following diagram:

xm+2xm+1

. . .

xm

. . .

. . . xm−2

. . . xn−1 xn

xm−1x2x1

5.5 The Random Split 121

Example 5.9. We illustrate the resulting sequence of partial orders obtained via a
random split on the discrete four-element partial order (X,�), where say X =
{x1, x2, x3, x4}.

x1 x2 x3 x4

x1

x3

x2

x4x2

x1

x3 x4

x2

x4 x4

x3

x3

x1 x2x1

5.5.2 Random Split of a Random Structure

Since a split involves an operation on an atomic isolated subset, we first discuss
the result of carrying out a split operation on an atomic random structure, An =
RL(X,�).

The first part of the definition involves the random split operation on a single state
of an atomic random structureAn = RL(X,�) and then define the random split of
An to be the result of applying this operation to each state ofAn. Let {x1, . . . , xn} be
an enumeration of X and let x ∈ X . The reader will remark that the pseudo-code for
the random split is similar to the one used in traditional Quicksort [AHU87]. Indeed,
Quicksort is an example of an algorithm which uses a partitioning of elements based
on a random split operation. The “pivot” around which the elements are partitioned
is indicated by “x” in the pseudo-code below.

Pseudo-code for random split Splitx(F) on a state F of An

u := 1; v := n; a := F [x];
while u < v do

while F [xu] < a do u := u + 1;
while F [xv] > a do v := v − 1;
if u < v then swap(F [xu], F [xv], F)

Remark 5.6. Let L′ = (a1, . . . , an) be the sorted list obtained from the set of labels
L. If m is the position of the label F (x) in the sorted list L′, i.e. F (x) = am, then
Splitx(F)(xm) = am. Moreover the labels to the left of am form the set of labels
smaller than am, i.e. {a1, . . . , am−1}, and the labels to the right of am form the set
of labels larger than am, i.e {am+1, . . . , an}.

We defineSplitx(An) to be the set of functions obtained by applying the preceding
algorithm to each of the n! states F of An.

122 5 BasicMOQA Operations

In the following we will identify (for each m ∈ {1, . . . , n});

- data-labelings G from (X, Ξxm), and
- data-labelings G from Splitx(An), where G = Splitx(F) for some F ∈ An,

which
satisfy:

G(xk) < G(xm) if k < m, G(xm) = am and G(xl) > G(xm) if l > m.

It is easy to verify that any choice of x will produce the same set of functions,
i.e. ∀x, x′ ∈ X. Splitx(An) = Splitx′(An). Hence the choice of x does not need
to be specified in this context, but of course will be specified in particular MOQA
programs that are based on the Split Operation since the choice of x will affect the
way subsequent computations proceed.

For every choice of x ∈ X , we let An
x,m denote the set of states of An for

which the label F (x) is the m-th element, i.e. am, in the sorted list L′. We let
Splitx(An

x,m) denote the set of functions obtained by applying random split to all
states F of An

x,m.

Remark 5.7. We remark that |An
x,m| = (n−1)! and |RL(X, Ξm)| = (m−1)!(n−

m)!

Lemma 5.4. For all L, X, x ∈ X, m ≤ |X| = |L| = n, we have:

1) ∀m ∈ {1, . . . , n}. Splitx(Ax,m
n) = RL(X, Ξm).

2) |Split−1
x (G) ∩ Ax,m

n | is independent of G, when G ∈ RL(X, Ξm).

Proof. To show 1), we remark that the inclusion from left to right follows from
the definition of the pseudo-code of the Split operation. To show the converse, let
G ∈ R = RL(X, Ξm), then, still from the definition of the pseudo-code, it is clear
that G = Splitx(F), when F ∈ An is obtained from G by swapping only the labels
G(x) and G(xm) of x and xm respectively. Hence we obtain the local surjectivity
of Splitx with respect to Ax,m

n , i.e. Splitx(Ax,m
n) = RL(X, Ξm).

To show 2), we remark that for every G, G′ ∈ RL(X, Ξm), we have G(x) =
G′(x). Let a = G(x). Because of the structure of the partial order (X, Ξm), it is
clear that there is a permutation σ of the labels of G which satisfies σ(a) = a,∀b. b <
a⇒ σ(b) < a and b > a ⇒ σ(b) > a and which is such that G′ = σ◦G. But then, it
is clear that for any F ∈ Ax,m

n we have: Splitx(F) = G ⇔ Splitx(σ ◦F) = σ ◦G,
from which 2) follows immediately.

Proposition 5.2. For all L, X, x ∈ X, m ≤ |X| = |L| = n, we have:

5.5 The Random Split 123

Splitx : An �−→ {(RL(X, Ξ1), K1), . . . , (RL(X, Ξn), Kn)},

where ∀m ∈ {1, . . . , n}. Km =
(

n− 1
m− 1

)
.

Proof. We remark thatAx,m
n forms a partition ofAn. Combining 1) and 2) of Lemma

5.4, we obtain that |Split−1
x (G) ∩ Ax,m

n | = Km for some non-zero constant Km.
Finally, we remark that ∀m ∈ {1, . . . , n}. Km =

(
n−1
m−1

)
by Remark 5.7.

From Proposition 5.2 and the Extension Theorem (Theorem 4.8), we obtain (using
the notation of Theorem 4.8):

Theorem 5.7. Let R = RL(X,�) be a random structure and let I be an atomic
isolated subset of (X,�). Then, using the notion related to Theorem 4.8,

Ext(I)(Splitx) : R �−→ {(RL(X,�∗
1), K1), . . . , (RL(X,�∗

n), Kn)},

where ∀i ∈ {1, . . . , n}. Km =
(

n− 1
m− 1

)
.

The following example illustrates the effect of a split on an atomic strictly isolated
subset I . This subset has no degree of freedom on the labels for the set X−I . Indeed,
X − I consists of the maximum and the minimum of the underlying partial order
and hence there is a unique label assigned to each of these elements. For such an
atomic strictly isolated subset, the effect of a split is essentially the same as the effect
of a split on atomic random structures An as discussed in Lemma 5.4. The example
nevertheless provides a good illustration of the type of random structures generated
via a split operation. Example 5.11 illustrates how a split operates on a more general
type of atomic isolated subset I .

Example 5.10. We illustrate the effect of a split on the following partial order (X,�)
for which the elements of a strictly isolated subset I have been indicated via the
ellipse:

x4x2 x3 x5

x6

x1

I

After performing the split on I = {x2, . . . , x5}, we obtain the bag:

{(X,�x2), . . . , (X,�x5)}

124 5 BasicMOQA Operations

x2 x3

x3

x3

x4

x2

x4

x5

x2 x3

x5

x1x1 x1x1 x1

x5x4

x2

x5x4

x6x6 x6 x6 x6

x5

x2 x3

x4

(X,�x5)(X,�x4)(X,�x3)(X,�x2)(X,�)

We continue the example and consider the set of labels L = {1, 2, 3, 4, 5, 6},
where the number of possible states for the partial order (X,�) is 24. We consider
the atomic strictly isolated subset I of RL(X,�) determined by the four element
subset {x2, x3, x4, x5}. We consider the set of states F , consisting of the six states
that label the element x4, with the label 4 as displayed in the following picture.

�

�

� � �

�

�

� � �

�

�

� � � �

�

�

� � � ��

�

�

� � � �

�

�

� � � ��

The split of the partial order (X,�) results in the partial order with Hasse diagram:

Finally, we display the result of the operation Ext(I)(Split)(RL(X,�)) on the
subset of states F .

� � �� � �

��� ���

� � � �����

�

� �

�

�

�

�

� �

� �

�

����

Clearly n = 4 and m = 3. Thus
(

n−1
m−1

)
=

(3
2

)
= 3 copies of the random structure

RL(X,�y4) have been produced.

The following example illustrates the effect of a split on an atomic isolated subset
I of a given random structureR(X,�) for which the labels on X − I can vary.

We obtain two copies of a random structure indicated by (I) and (II), where the
split operation, as defined, does not automatically identify these random structures.
Of course this identification can be achieved via a simple adaptation of the definition
of the split operation if desired or during the time analysis later if this turns out to be
useful.

5.6 Top and Bot Operations 125

Example 5.11. We consider the same tree and random structure over this tree as in
Example 5.4. After performing a split, Ext(I)(Split)(R) determined by the atomic
isolated subset I enumerated by x1, x2, and by the Extension Theorem, Theorem
4.8, we obtain a set of data-labelings for a new partial order as displayed below.

�

� �

� �

���

�

�

� � �� � �

� � � ��� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

����

�������� ���

����������

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�
�

�

�
�

�

�

�
�

�

5.6 Top and Bot Operations

The operation Top will be useful to create heap-ordered treaps in MOQA . Since
the reader is by now familiar with the notion of an RB-preserving operation and its
definition on partial orders and on data-labelings, we sketch Top’s definition below
and omit the details of the verification of RB-preservation.

A similar operation1, for the case of lists, is discussed in [FS08] to generate
increasing binary trees. TheMOQA Top operation2, which we denoted by Top, is
close in spirit to the DelM operation. In the last case the element with maximum label
is removed, while in the first case the status of the underlying element is changed to
that of a maximum. The proofs of the random bag preservation of these operations are
similar. In the presence of a strong projection, one can show that the DelM operation
over a random structure can be obtained via the sequential composition of the Top
operation with a strong random projection SProj, where one projects each random
structure in the random bag (obtained by Top) on the strictly isolated part below the
maximum.

Definition 5.13. Consider a partial order (X,�) with say m maximal elements
M(X) = {xi1 , . . . , xim

}. For each j ∈ {1, . . . , m}, we define the partial or-
der �j to be the least partial order (X,�j) containing (X,�) and the relation

1 In fact an operation similar to the Bot operation discussed further on.
2 Introduced by J. Townley.

126 5 BasicMOQA Operations

{(xik
, xij)| k ∈ {1, . . . , m}, k = j}. In other words this is the partial order obtained

from (X,�) by making the maximal element xij
the maximum element.

The operation Top transforms each data-labeling F from a random structure
R(X,�) into a new data-labeling F ′ as follows: Top determines the largest la-
bel a among the labels obtained by restricting F to the maximal elements of X
(via m− 1 comparisons). Say the label a labels the maximal element xik

for some
k ∈ {1, . . . , m}. Then the partial order over which F ′ is defined is (X,�k) and the
function F ′ is defined to be the function F over the set X . i.e. the operation Top acts
on data-labelings F as the identity function in the sense that each element retains its
original label. Of course, the resulting data-labeling F ′ is different from the original
data-labeling F , since the associated partial order has changed as described above.
We recall that a data-labeling consists of a pair consisting of the function and the
partial order.

Remark 5.8. A similar operation Bot is introduced which determines the least label
of a data-labeling among the minimal elements of the partial order and alters the
ordering such that the least label labels a minimum.

We leave the verification of the following result to the reader.

Theorem 5.8. Let R = RL(X,�) where (X,�) has m maximal elements. The
operation Top is RB-preserving on R, where

Top : RL(X,�) �−→ {(RL(X,�1), 1), . . . , (RL(X,�m), 1)}.

This concludes the discussion of the current main MOQA operations. Obvi-
ously the list can be extended further as long as the operations in question are
RB-preserving. In Section 5.7 we revisit the basic MOQA operations which are
contractive, since such operations form a special case in the Extension Theorem,
Theorem 4.8. In Section 5.8 we classify the basic MOQA operations which cor-
respond to uniformly RB-preserving functions. Finally, in Section 2.2 we discuss
the classification of the data structures which can be generated from the atomic ran-
dom structure via the basic MOQA operations. We demonstrate that all such data
structures correspond to random bags for which the underlying partial orders are
series-parallel3 and we show that the data structures corresponding to a (number of
copies of a) single random structure, correspond exactly to the random structures
for which the underlying partial order is series-parallel. Finally, in Section 5.11, we
show that the fact that data structures can be assumed to be series-parallel in our
context, drastically simplifies various aspects of theMOQA approach.

3 Chapter 2 introduces the notion of a series-parallel order.

5.8 Uniformly RB-preserving Functions Revisited 127

5.7 Contractive Operations Revisited

We provide two counter-examples demonstrating that the Extension Theorem can not
be generalized to isolated subsets for the case of contractive operations. As discussed
in this theorem, contractive operations can be applied to strictly isolated subsets.

Counter-Example 5.9 (Deletion) We illustrate that the deletion operation, when
applied to isolated subsets, does not in general allow for an extension as in Theorem
4.8. Consider the partial order given in Example 4.1 f) and the corresponding random
structure H4 of heaps of size 4 displayed in Counter-Example 1.1. We consider the
isolated subset I = {x1, x2} (cf. Example 4.1 f)). If we apply the deletion operation
Del to data-labelings of the four copies of the random structure S2 determined by
this isolated subset, then we obtain the following heaps, which do not form a random
structure.

2 3

4 4

3 1

4

3 2

Counter-Example 5.10 (Strong projection) Consider the random structureH4 dis-
cussed in the previous counter-example and the isolated subset I = {x1, x2}. Con-
sider a strong projection on the isolated subset J = {x1} of the set I . The result is
displayed below. Once again, we do not obtain a random structure.

4

23

4 4

1211

5.8 Uniformly RB-preserving Functions Revisited

Uniformly RB-preserving functions have been introduced in Definition 4.10. By Re-
mark 4.8 and the fact that the random product and the random projection are strongly
RB-Preserving, it follows that these operations are uniformly RB-preserving. We re-
call from Chapter 1, Remark 1.5, that the random split is uniformly RB-preserving.
However the random deletion is not uniformly RB-preserving. This can be readily
verified from Example 5.7. If one applies the random deletion operation DelM to
each of the eight data-labelings displayed in Example 5.7, a partition yielding an
RB-representation of this operation necessarily constitutes of three components: one
component of cardinality 2 and two components of cardinality 3. This follows from
an inspection of the three partial orders corresponding to the random bag which has
been obtained as the result of the deletion. By bijectivity of the deletion operation, the
partition consists of one part of size 2 and two parts of size 3 and hence the operation

128 5 BasicMOQA Operations

is not uniformly RB-preserving. Similarly, the operations PercM and Perc
m

, Top
and Bot are not uniformly RB-preserving. However, when restricted to applications
to atomic random structures, these operations are uniformly RB-preserving.

5.9 MOQA -Constructible Random Bags

We recall that Problem [3] of Section 4.5 raises the characterization ofA-construct-
ible random bags was raised. In other words, Problem [3] regards the characterization
of the random bags that are the image of a random structure preserving function on
a discrete random structure. Here we address the related problem of characterizing
the random bags that are constructible via MOQA operations from the discrete
random structure.

Definition 5.14. A random bag is MOQA -constructible iff it is produced through
a sequential composition of basicMOQA from a discrete random structure

We address the following restricted problem (cf. also the open problems listed in
Section 4.5):

[4] “Characterize the random structures that areMOQA -constructible.”

We will show that all random bags, which are produced through basic MOQA
operations from discrete random structures, consist of random structures for which
the partial order is a series-parallel partial order (cf. Section 2.2). In this sense, all
MOQA data structures are series-parallel in nature. This opens up possibilities for
parallellization of MOQA constructs, such as the MOQA parallel recursion in-
troduced in Chapter 7. More speculatively, the SP-nature ofMOQA data structures
potentially lends itself to software-hardware co-design for improved quantitative
static analysis, in view of the well-known series-parallel graph approach of electrical
engineering [Fin03].

Remark 5.9. It is important to recall that MOQA operations of course perfectly
apply to random bags for which the underlying partial orders are general partial
orders, as opposed to SP-orders. Moreover, some constructs, in particular first order
random conditionals discussed in Chapter 7, if incorporated inMOQA , could create
non-SP orders when not properly controlled. At this stage we require that MOQA
programs operate over series-parallel data structures. We recall that in the current
context, we require that all data structures are generated byMOQA programs from
input data corresponding to atomic random structures. Due to the fact that SP orders
are preserved byMOQA programs, the data structures are guaranteed to correspond
to random bags for which all partial orders are SP. As we will see in Section 5.11,
this considerably simplifies various aspects of theMOQA approach. But again, if
needed,MOQA programs could operate on data structures which are non-SP, e.g.

5.11 Simplifications for SP-Orders 129

for inputs of a random structure over a non SP-order, since the crucial property of
RB-preservation holds in this more general context.

A solution to Problem [4] will be obtained through the characterization of the
MOQA -constructible random structures in Proposition 5.3.

5.10 MOQA -Constructible Random Bags are Series-Parallel

Proposition 5.3. 1) All partial orders underlying the random structures inMOQA -
constructible random bags are SP.
2) TheMOQA -constructible random structures are exactly the random structures
for which the underlying partial order is series-parallel.

Proof. We sketch the argument. To show 1), note that the discrete partial order is an
SP-order and, as is easily verified, all basicMOQA -operations preserve SP-orders.

To show 2), note that by 1) each MOQA -constructible random structure must
have an underlying SP-order.

Consider a random structure for which the underlying partial order is SP. We need
to show that the SP order is constructible via basicMOQA -operations. For this, it
suffices to remark thatMOQA incorporates the two basic construction operators for
SP-orders: the sequential composition (random product) and the parallel composition
(via components of a partial order). The result follows from the definition of an
SP-order as a recursively generated order from single elements through these two
fundamental operations introduced in Definition 2.1 of Chapter 2.

Example 5.12. An immediate corollary of Proposition 5.3 and Proposition 2.1, which
characterizes SP-orders as N-free orders, is that the random structureN of Example
4.1, part (e), is notMOQA -A-constructible. This can also be< demonstrated, as in
Example 4.6, using a cardinality argument and the fact thatMOQA operations are
RB-preserving.

5.11 Simplifications for SP-Orders

The trivial observation of Remark 2.2 has considerable repercussions for the theory
of randomness preservation. It opens the way to potential parallellization of the
language, facilitates programming in the MOQA language, as will be apparent
from the recursive MOQA constructs introduced in Chapter 7, and simplifies the
computation of the average-case time of basic MOQA constructs as discussed in
Chapter 6.

As a first illustration we remark that labeling-counting is well-known to be a
polynomial time operation for partial orders over an SP-order. The cardinality of the

130 5 BasicMOQA Operations

random structure over an SP-order can be determined as follows by induction:

Lemma 5.5. a) For any atomic discrete SP-order D, |R(D)| = |D|!
b) For any parallel SP-order P = P1|| . . . ||Pn and i, j ∈ {1, . . . , n}.

|R(P)| =
(

|P |
|P1| . . . |Pn|

)
×

n∏
i=1

|R(Pi)|

c) For any product SP-order P = P1
⊗

. . .
⊗

Pn and i, j ∈ {1, . . . , n}.

|R(P))| =
n∏

i=1

|R(Pi)|

5.12 Partitions and separative functions

We recall that Chapter 4 introduced a more general notion of random bag preservation,
which enables the inclusion of operations which transform random structures to
random bags which are not necessarily strict. Example 5.13 below illustrates that
MOQA operations in general can give rise to non-strict random bags.

Example 5.13. Consider the three heaps of Counter-Example 1.1. Applying the dele-
tion operation Delm twice to the three heaps in this random structure, yields a
non-strict random bag containing three copies of a linear partial order of size 2, with
labels 3 and 4.

Remark 5.10. (Separative functions revisited) In case of separative random functions
the creation of non-strict random bags does not arise. For instance for the Split
operation discussed in Chapter 1, the tracking of indices during the computation
makes sure that all partial orders created are distinct. If this property is guaranteed
at all times, one would obtain a strict random bag in Example 5.13, where the three
linear orders of size 2 would be distinct from one another, since the elements involved
would have distinct indices. It is interesting to note that the non-contractiveMOQA
operations in general will yield separative functions. This is clear for operations other
than the product operation. To make the product operation correspond to a separative
function, one could insist that each swap of the operation on labels also involves a
swap on the indices of the elements at which these labels reside. One can verify that
the product operation, carried out over an atomic random structure and adapted to
incorporate swaps on indices, will yield data-labelings for which all partial orders
are distinct. I.e. the corresponding function is separative. Following this approach,
as in Chapter 1, it is clear that an identification up to order-isomorphism can be
carried out which will introduce multiplicities which are not necessarily constant 1.

5.12 Partitions and separative functions 131

The approach of tracking indices in addition to labels during a computation is not
novel and is well-understood from history based approaches in Computer Science
as well as decision tree reasoning. Its incorporation in this context could lead to an
approach involving separative functions which would simplify the notion of random
bag preservation from Definition 4.8 to the definition given in Remark 4.7, with the
additional overhead of tracking indices.We remark that, viewingMOQA operations
as computations starting from atomic random structures, the above approach amounts
to simply keep the index i of each element xi, in the original discrete partial order
of the atomic random structure, paired with the label a originally assigned to the
element xi. I.e. at each point in the computation, the original input data-labeling
(permutation), giving rise to this computation would be known.

Chapter 6
Average-Case Time of Basic MOQA
Operations
Joint with D. Early

In this chapter, we outline formulas for computing the average running time of basic
MOQA operations, obtained by D. Early. First, we outline a simplification of the
average running time of the product function in terms of a more elementary function.
In the second part, we show how this function can be further simplified in the special
case of partial orders which can be constructed by series-parallel operations alone.
We also show how the average running time for the delete operation can be simplified
in these cases. Finally, we show how the simplifications derived in the second part
can be applied to certain inductively defined structures.

6.1 Definitions

Let A and B be two disjoint components of a finite partial order, where the partial
order has an underlying set consisting of A ∪ B. Generalizations to applications of
the random product to components of an isolated subset of a partial order can be
obtained based on the Extension Theorem. The average-case time is typically not
affected by such generalizations.

We let A and B denote the random structures on A and B respectively, and |A| and
|B| denote the number of states in A and B respectively. We let Amax be the set of
maximal elements in A, and Bmin be the set of minimal elements in B.

We let S(A, B) be the set of all valid data-labelings of A and B from a single set of
labels {a1, a2, · · · , a|A|+|B|} which satisfies ai < aj for all i < j. It is easy to see

that |S(A, B)| =
(|A|+|B|

|A|
)
|A||B|.

We let Sk(A, B) be the subset of S(A, B) containing all those data-labelings which
have precisely k elements of {a1, a2, · · · , a|A|} as labels on the partial order B (or

134 Average-Case Time of Basic MOQA Operations

equivalently, precisely k elements of {a|A|+1, · · · , a|A|+|B|} as labels on the partial

order A). It is easy to see that |Sk(A, B)| =
(|A|

k

)(|B|
k

)
|A||B|.

All references to the “running time” of an operation refer to the number of compar-
isons made in carrying out that operation.All references to the “average running time”
of an operation, unless otherwise stated, refer to the average number of comparisons
made when the operation is called on every element of S(A, B).

In particular, we investigate the average running time of the product operation as the
average number of comparisons made in performing the product operation A ⊗ B
on each data-labeling of A and B in S(A, B). We denote this average running time
by T [A⊗B].

We refer to the number of elements in a set that a particular element is greater than
or equal to as the ‘rank’ of that element in that set.

Consider the effect of replacing the minimum label in a data-labeling of A with a
new label, of rank k in the new set of labels on A. We define xk(A) to be the average
running time of a Push-Up operation on this label, where the average is taken over
every state in the random structure A.

Finally, we define τup(A) = x(A) =
∑|A|

i=1
xi(A)

|A| . So, τup(A) is the average time
taken by a Push-Up from the node with minimum label. We define τdown(A) in an
equivalent manner, as the average time taken by a Push-Down operation starting
from the node with maximum label.

6.2 Average-Case Time

6.2.1 The While Condition

The condition for the loop of the product operation to execute is

∨M(F |A) > ∧m(F |B).

We know that finding the minimum or maximum element of a set of n independent
elements requires n−1 comparisons, and therefore finding the maximum element of
M(F |A) and the minimum element of m(F |B) must require |Amax|+ |Bmin| − 2
comparisons.
Having found the relevant elements, an additional comparison is made to evaluate
the ‘>’ boolean, giving a total of |Amax| + |Bmin| − 1 comparisons in evaluating
the while condition.

6.2 Average-Case Time 135

Lemma 6.1. The product operation runs through the while loop an average of
|A||B|

|A|+|B| times.

Proof. Firstly, we observe that whenever a label is swapped from A to B, it must
be (i) bigger than all of the other labels on A and (ii) bigger than the label that it
is swapping with. In other words, it is bigger than at least |A| labels. Similarly, any
element being swapped down to A must be smaller than at least |B| labels. Since
these two sets form a partition of the full set of labels, we know that swaps can only
go in one direction. Further, since the operation does not stop until the smallest label
on B is greater than the biggest label on A, it follows that the total number of swaps
made in the operation must be exactly the number of labels initially out of place.
So the average number of swaps made (and hence the average number of executions
of the while loop) must be

min(|A|,|B|)∑
k=1

k|Sk(A, B)|
|S(A, B)| =

1(|A|+|B|
|A|

)
min(|A|,|B|)∑

k=1

k

(
|A|
k

)(
|B|
k

)
.

But now, using the combinatorial identity

∑
k

k

(
|A|
k

)(
|B|
k

)
=

(|A|+ |B| − 1)!
(|A| − 1)!(|B| − 1)!

(Lemma 6.4 of Section 6.4.3) this reduces to
|A||B|
|A|+ |B| .

Now since we know that each evaluation of the boolean requires the same number
of comparisons, and that the average number of evaluations of the boolean is simply
|A||B|

|A|+|B| + 1 (once at the start of each loop, and once after the last loop to confirm
that the operation is complete), it follows that the average number of comparisons
made in evaluating the boolean is:

(
|A||B|
|A|+ |B| + 1

)
(|Amin|+ |Bmax| − 1)

6.2.2 Push-Up and Push-Down

Lemma 6.2. When the label ak is swapped onto the partial order B by the product
operation, it’s rank in the set of labels on B is k − |B|.

Proof. The label ak is greater than or equal to exactly k labels in the set of labels on
both A and B. But in order to be swapped up, ak must be greater than all the other
labels previously on A, and greater than the label which was swapped down, and so

136 Average-Case Time of Basic MOQA Operations

ak is greater than every label then on A. This means that there are exactly k − |A|
labels on B which ak is greater than or equal to, and hence the rank of ak in the set
of labels on B is k − |A|.

Lemma 6.3. Swapping any label with the minimum label in each state of the ran-
dom structure A and then calling Push-Up on that label is a bijective random bag
preserving operation.

Proof. This is a direct consequence of the data-labeling product function being a
bijection — we simply consider the random product of A with a partial order with
a single element.

Remark 6.1. Because the data-labelings on B initially form
(|A|+|B|

|A|
)
|A| copies of

the random structure on B, and because of Lemma 6.3, the data-labelings on B

after each execution of the while loop must form
(|A|+|B|

|A|
)
|A| copies of the random

structure on B.

Theorem 6.1. The average running time of each call to the Push-Up operation on
the label ak is xk−|A|(B).

Proof. From the previous two lemmas, we know that the set of data-labelings on
B always forms some number of copies of the complete random structure on B,
and the rank of the label ak in the set of labels on B is always k − |A|, whenever
it is swapped up. But since the average running time of a Push-Up operation on a
complete random structure is simply xr(A) where r is the rank of the label being
pushed up, the result follows.

Theorem 6.2. The average running time of the random product operation on the
partial orders A and B is

T [A⊗B] =
|A||B|
|A|+ |B| (τdown(A) + τup(B)) +

(
|A||B|
|A|+ |B| + 1

)
(|Amax|+ |Bmin| − 1).

Proof. If we pick a certain label am with m > |A|, the total number of data-labelings
in the set S(A, B) in which that label is on A must be

(|A|+|B|−1
|B|

)
|A||B|. The

average number of comparisons made in pushing this label up into place when product

in called on all of the data-labelings in S(A, B) is xm−|A|(B)
(|A|+|B|−1

|B|)|A||B|
|S(A,B)| =

xm−|A|(B) |A|
|A|+|B| .

6.3 Series-Parallel Partial Orders 137

Summing this over all the labels greater than a|A| gives the average total number
of comparisons made in pushing up each label, and hence the overall average total
number of comparisons made by the Push-Up operation:

|A|+|B|∑
i=|A|+1

xi−|A|
|A|

|A|+ |B| =
|A|

|A|+ |B|

|B|∑
i=1

xi(B)

=
|A||B|
|A|+ |B|

∑|B|
i=1 xi(B)
|B| =

|A||B|
|A|+ |B|τup(B)

By the symmetry of the Push-Up and Push-Down operations, it is easy that a
similar result will hold for the average running time of the Push-Down operation —
namely, that average will be |A||B|

|A|+|B|τdown(A).
Combining all three results, we obtain that the average running time of the random

product operation on the partial orders A and B is

T [A⊗B] = |A||B|
|A|+|B| (τdown(A) +τup(B))+(

|A||B|
|A|+|B| + 1

)
(|Amax|+ |Bmin| − 1).

6.3 Series-Parallel Partial Orders

We recall that an introduction to series-parallel orders (SP-orders) is included in
Chapter 2. Series-parallel partial orders are inductively defined in terms of two func-
tions — series (S) and parallel (P). If L is the set of all partial orders, then both
series and parallel map from L × L to L.

A⊗B is the result of applying the series operation to (A, B), which is the same
as the partial order created by applying the product operation to (A, B).

A‖B is the result of applying the parallel function to A and B (the parallel function
is commutative). It contains all the elements of the sets A and B, and all of the links
of the two partial orders, with no additional links.

Effectively, the series operation puts the partial order B ‘above’ the partial order
A (i.e. after the operation, we have a � b ∀ a ∈ A, b ∈ B), whereas the parallel
operation puts A ‘beside’ B (i.e. all of the nodes in A remain independent of the
nodes in B).

6.3.1 Series-Parallel Composition Laws for the τ Function

Series-parallel composition enables us to define a large set of partial orders induc-
tively in terms of smaller ones. In a similar way, we show in this section how the

138 Average-Case Time of Basic MOQA Operations

value of the τ function for a particular series-parallel partial order can be derived in
terms of its value for the constituent parts.

In order to do this, it is necessary to introduce some secondary functions. We
define σup(A) = x|A|(A) (that is, the average time taken to push a label from the
node with minimum label of A all the way through the partial order). We define
κup(A) to be the average (over all data-labelings) over all ranks of the number of
labels pushed up as far as a maximal node in A. We define σdown and κdown similarly.

Also, we observe that the trivial composition laws for |A|, |Amin| and |Amax| are
as follows:

1. |(A⊗B)| = |(A‖B)| = |A|+ |B|
2. |(A⊗B)min| = |Amin|
3. |(A⊗B)max| = |Bmax|
4. |(A‖B)min| = |Amin|+ |Bmin|
5. |(A‖B)max| = |Amax|+ |Bmax|

Using only the values of these functions applied to A and B, it is possible to
determine each of their values for both A⊗B and A‖B as follows:

1. τup(A⊗B) =
|A|τup(A) + κup(A)|Bmin|+ |B|(τup(B) + |Bmin|+ σup(A))

|A|+ |B|
2. σup(A⊗B) = σup(A) + σup(B) + |Bmin|
3. κup(A⊗B) = κup(B)

4. τ(A||B) =
|A|τ(A) + |B|τ(B)

|A|+ |B|
5. σ(A||B) =

|A|σ(A) + |B|σ(B)
|A|+ |B|

6. κ(A||B) = κ(A) + κ(B)

The first three rules are stated only for the ‘up’ cases, but the ‘down’ ones are
similarly obtained. The last three rules are symmetrical for the ‘up’ and ‘down’
versions, and the subscripts have been omitted. In each case, the proof is given only
for the ‘up’ case, but the ‘down’ can be proven in a similar manner.

Proof. 1. If a label is of rank r ≤ |A|, then after its Push-Up is complete, it will be on
A, and the number of comparisons involved will be exactly the same as if B were
not there — i.e. the average number will be τup(A). For each of the κup(A) ranks
which are pushed up as far as the maximal nodes of A, there will be an additional
|Bmin| comparisons to ensure that the label should not be pushed any further.
Therefore, summing over all ranks r ≤ |A|, and averaging over all valid data-
labelings, we get a total number of comparisons of |A|τup(A) + κup(A)|Bmin|.
For each label of rank r > |A|, the label will be on B after its Push-Up. Each
such label must therefore pass all the way through A (an average of σup(A)
comparisons) and be swapped onto B (which requires |Bmin| comparisons). But
now the label has a rank from 1 to |B| in the set of labels on B, and therefore
the average number of comparisons in pushing it up must be τup(B). Summing
over all ranks and averaging over all valid data-labelings therefore gives a total
number of comparisons of |B|(σup(A) + |Bmin|+ τup(B)).

6.3 Series-Parallel Partial Orders 139

Adding the two totals and dividing by |A|+ |B| to get the average over all ranks
gives the desired result, that

τup(A⊗B) =
|A|τup(A) + κup(A)|Bmin|+ |B|(τup(B) + |Bmin|+ σup(A))

|A|+ |B| .

2. Pushing a label up through A ⊗ B consists of (i) pushing the label up through
A, (ii) swapping it on to B, and (iii) pushing it up through B. But since the
data-labelings of A and B are independent of one another, and the number of
comparisons in swapping from a maximal node of A to a minimal node of B is
|Bmin| regardless of the data-labeling, the desired average is simply the sum of
the averages of the three separate parts:

σup(A⊗B) = σup(A) + |Bmin|+ σup(B).

3. Any label with rank r ≤ |A| will end up on A, which is mutually exclusive from
the set of maximal nodes of A ⊗ B (which must be a subset of the nodes in B).
Any label with rank r > |A| will be pushed through A and swapped on to B.
But now it has a rank between 1 and |B| in the set of labels on B, and so the
average number of ranks between 1 and |A|+ |B| to get to the top of A⊗B will
be precisely the average number of ranks between 1 and |B| to get to the top of
B:

κup(A⊗B) = κup(B).

4. For any given simultaneous data-labeling of A and B with labels from the first
|A|+ |B| positive integers, there is a |A|

|A|+|B| probability that the 1 will be placed
on A, and hence that the Push-Up operation used to evaluate the τ function will
take place on the partial order A, and a |B|

|A|+|B| probability that it will be placed
on B and that the Push-Up operation will take place on B.
We consider a particular data-labeling of A with the first |A| positive integers.
The labels on the path followed by a label being pushed up through A, will be
some subsequence of the first |A| positive integers. We let ai be one less than the
i + 1th label on the Push-Up path, and bi be the number of predecessors the node
with that label has. Then the average (over all ranks from 1 to |A|) number of

comparisons made in pushing up a label in this data-labeling is
∑

(|A|−ai)bi

|A| . The
average of this over all data-labelings is simply τ(A).
Now suppose that A and B are simultaneously labelled using the first |A|+ |B|
natural numbers, and that the 1 is placed on A (so that the label being pushed
up is on the partial order A). We consider the average value of the label on the
ith node in the Push-Up path when all the labels except one are chosen from the
positive integers between 2 and |A| + |B|. By the Lemma 6.5 of Section 6.4.3,
and since the order of the label relative to the others is fixed by the data-labeling,
this average will be the average value of the (ai)th element in an |A| − 1 element
subset of the natural numbers in the range [2, |A|+ |B|], which will be one more
than the same average for a subset of the first |A| + |B| − 1 natural numbers,

140 Average-Case Time of Basic MOQA Operations

i.e. 1 + |A|+|B|
|A| ai. This means that, averaged over all the possible sets of labels,

|A|+ |B| − |A|+|B|
|A| ai of the |A|+ |B| possible ranks will be pushed up past the

ith node.
This gives an average number of comparisons over all |A|+ |B| ranks of

∑(
|A|+ |B| − |A|+|B|

|A| ai

)
bi

|A|+ |B| .

But, cancelling above and below, this is simply
∑

(|A|−ai)bi

|A| , the average number
of comparisons with the original label set. Averaging this over all data-labelings,
we once again get τ(A) — in other words, the average number of comparisons
made in a Push-Up through A||B when the 1 is on A is exactly the same as
the number of comparisons made in a push up through A, and hence τ(A + B)
is simply an average weighted by the probabilities of the 1 being on A and B
respectively — that is

τ(A||B) =
|A|τ(A) + |B|τ(B)

|A|+ |B| .

5. Since the number of comparisons made in pushing up a label which is greater
than any of the labels on a given structure depends only on the data-labeling, and
not on the label set, the average number of comparisons required to push a label
up through A||B is simply σ(A) if the element is pushed through A (i.e. if the 1
is on A) and σ(B) if it is pushed through B (i.e. if the 1 is on B). As with the τ
function, this allows us to write σ(A||B) as a simple weighted average of σ(A)
and σ(B):

σ(A||B) =
|A|σ(A) + |B|σ(B)

|A|+ |B| .

6. We consider the average value of the largest label in the Push-Up path of A over all
data-labelings with the first |A| positive integers, which we shall denote by m(A).
For any given data-labeling, the number of ranks which are pushed up as far as the
maximal node is |A|+1−t, where t is the value of the largest label in the Push-Up
path. Averaging this over all data-labelings, we get κ(A) = |A|+ 1−m(A).
Now we consider also the function m(A\(A||B)), which is the same function,
but averaged over all sets of labels including 1 chosen from the first |A| + |B|
positive integers (i.e. all possible label sets of |A| from a data-labeling of A||B
which place the 1 on A).
For any given data-labeling, let the largest label in the Push-Up path be s. Then
the average value of the largest label when each of the different label sets are
applied to the same data-labeling will be (by the lemma in 4) 1 + |A|+|B|

|A| (s− 1).

So m(A\(A||B)) = 1 + |A|+|B|
|A| (m(A)− 1).

But now, m(A||B) is the average value of the largest element in the Push-Up
path of A||B, which must be the average (weighted by the probability of the 1

6.3 Series-Parallel Partial Orders 141

being on each structure) of m(A\(A||B)) and m(B\(A||B) — i.e. m(A||B) =
|A|m(A\(A||B)) + |B|m(B\(A||B))

|A|+ |B| = m(A) + m(B)− 1.

So finally, combining all these relationships, we can write:
κ(A||B) = |A|+ |B|+ 1−m(A||B)

= (|A|+ 1−m(A)) + (|B|+ 1−m(B))
= κ(A) + κ(B).

Using these rules, it is possible to determine the τ function for a series-parallel partial
order using only its series-parallel composition, and the values of the given functions
in the base cases, which we can easily observe to be:

1. τup(•) = τdown(•) = 0
2. σup(•) = σdown(•) = 0
3. κup(•) = κdown(•) = 1
4. | • | = | •min | = | •max | = 1

Finally, we observe that, since they have the same initial values and composition
rules, we must have κup(A) = |Amax| (and similarly κdown(A) = |Amin|) for any
series-parallel partial order A.

6.3.2 Series-Parallel Composition Laws for Delete

We consider the average running time of two different delete operations inMOQA ;
the average time taken to delete a label of a particular rank (i.e. where the average
is taken over all data-labelings for a fixed rank) and the average time to delete any
given label (i.e. where the average is taken over all ranks and all data-labelings).

Let Δ(A, k) be the average number of comparisons made when Del is called on
the kth smallest label in A, averaged over all data-labelings of A. We also define
Δ(A, k) = 0 for k < 0 and k > |A| (this allows us to dispense with bounds of
summation).

Let Δ(A) be the average number of comparisons per node when Del is called on
each node of each data-labeling of A (where each call is independent — that is, each
node is deleted from the same data-labeling, rather than from the data-labeling left
after some previous node or nodes have been deleted). It is easy to see that

Δ(A) =
∑

Δ(A, k)
|A| .

Although we do not explicitly consider the case of Del, it is easy to derive and
prove similar results for that operation in the same manner.

The following formulae give the relationship between the running times of delete
on two partial orders A and B and the running time on A⊗B and A‖B:

1. Δ(A⊗B, k) =
{

Δ(A, k) for k ≤ |A|
Δ(B, k − |A|) + |Amax| − 1 + Δ(A, |A|) for k > |A| .

142 Average-Case Time of Basic MOQA Operations

2. Δ(A⊗B) =
|A|Δ(A) + |B|(Δ(B) + |Amax| − 1 + Δ(A, |A|))

|A|+ |B| .

3. Δ(A‖B, k) =

∑
i

(
k−1
i−1

)(|A|+|B|−k
|A|−i

)
Δ(A, i) +

∑
i

(
k−1
i−1

)(|A|+|B|−k
|B|−i

)
Δ(B, i)(|A|+|B|

|A|
) .

4. Δ(A‖B) =
|A|Δ(A) + |B|Δ(B)

|A|+ |B| .

Proof. 1. Obviously k < 0 or k > |A| + |B| gives Δ(A ⊗ B) = 0, which is
consistent with the definition. But now, we know that all of the labels on B are
greater than all of the labels on A, so that a label has rank k in the set of labels on
A if and only if it has rank k in the set of labels on both A and B, and similarly
and label has rank k in the set of labels on B if and only if it has rank k + |A| in
the set of labels on both A and B.
So, to delete the kth smallest label from A⊗ B, for 1 ≤ k ≤ |A|, we need only
delete the kth smallest label from A, which obviously takes an average of Δ(A, k)
comparisons.
On the other hand, for |A|+ 1 ≤ k ≤ |A|+ |B|, we need to delete the k − |A|th
label from B, then swap the label down to A and push it all the way to a minimal
node of A so that it can be deleted. Now, the number of comparisons made in
deleting the label through B is independent of the data-labeling of A, so that
the average over all data-labelings must be simply Δ(B, k − |A|). Moreover,
the number of comparisons made in swapping the label down to A is always
|Amax|−1, independent of either data-labeling (note that this is one less than the
corresponding number of comparisons for a Push-Down, since in this context, we
do not need to compare the largest label on A to the label being deleted, since it
will always be smaller). Finally, the average number of comparisons for deleting
the label down through A is independent of the data-labeling on B, and so the
average over all data-labelings must simply be Δ(A, |A|) (since we are deleting
from the node with maximum label).
So, in each of the two cases, the result is proven.

2. To prove the second result, we use the fact that Δ(A⊗B) =
∑

Δ(A⊗B,k)
|A|+|B| . Taking

account of the zero values for k ∈ [1, |A|+ |B|] and of the two cases for the values
of Δ(A⊗B, k), we get

Δ(A⊗B) = (
∑

Δ(A,k))+(
∑

Δ(B,k))+|B|(|Amax|−1+Δ(A,|A|))
|A|+|B|

= |A|Δ(A)+|B|(Δ(B)+|Amax|−1+Δ(A,|A|))
|A|+|B| ,

exactly as required.

3. For each i between 1 and |A|, we consider the number of ways to split the set of
labels on A and B such that the kth smallest label in the entire set becomes the
ith smallest on A.

6.3 Series-Parallel Partial Orders 143

For such a split to take place, we must choose i−1 labels from the set of the k−1
smallest labels to put on A, and also |A|− i labels from the set of the |A|+ |B|−k
largest labels (so that we have i−1 labels smaller than the label of rank k, and the
remaining labels larger). Since these choices are independent, there are exactly(
k−1
i−1

)(|A|+|B|−k
|A|−i

)
different splits of the set of labels in which the kth label in the

full set becomes the ith label in the set of labels on A.
Similarly, there are exactly

(
k−1
i−1

)(|A|+|B|−k
|B|−i

)
splits in which the kth label in the

full set becomes the ith label in the set of labels on B.
But the average number of comparisons for deleting the ith label on A and B are
simply Δ(A, i) and Δ(B, i) respectively, so taking an average over all different
possible splits of the set of labels, we get an average number of comparisons of

Δ(A‖B, k) =

∑
i

(
k−1
i−1

)(|A|+|B|−k
|A|−i

)
Δ(A, i) +

∑
i

(
k−1
i−1

)(|A|+|B|−k
|B|−i

)
Δ(B, i)(|A|+|B|

|A|
) ,

exactly as required.

4. Again, we prove the second result using the first result and the fact that Δ(A‖B) =∑
Δ(A‖B,k)
|A|+|B| .

We first simplify the sum
∑

k

∑
i

(
k−1
i−1

)(|A|+|B|−k
|A|−i

)
Δ(A, i). Reversing the order

of summation, we get
∑

i Δ(A, i)
(∑

k

(
k−1
i−1

)(|A|+|B|−k
|A|−i

))
. Now we make use

of the combinatorial identity
∑

k

(
k−1
i−1

)(|A|+|B|−k
|A|−i

)
=

(|A|+|B|
|A|

)
(Lemma 6.6 of

Section 6.4.3) to get
∑

k

∑
i

(
k−1
i−1

)(|A|+|B|−k
|A|−i

)
Δ(A, i) =

(|A|+|B|
|A|

) ∑
i Δ(A, i).

Now inserting the above derived values ofΔ(A‖B, k) into the equationΔ(A‖B) =∑
Δ(A‖B,k)
|A|+|B| and using the above simplification, we get simply

Δ(A‖B) =
∑

i Δ(A, i) +
∑

k Δ(B, k)
|A|+ |B|

=
|A|Δ(A) + |B|Δ(B)

|A|+ |B| ,

which is exactly what we wanted.

Remark 6.2. The determination of the k-th smallest/k-th largest label during a dele-
tion operation, in general will involve the determination of this label via aMOQA
search program. For the case of atomic structures, theMOQA program Quicksel-
ect can be applied to determine this label, for which the average-case comparison
time is determined in Section 8.8.

144 Average-Case Time of Basic MOQA Operations

Remark 6.3. TheMOQA basic operations Perc
m

and PercM discussed in Chapter
5, involve the same number of comparisons as the operations Del applied to the
smallest label and Del applied to the largest label respectively. Hence the formulas
discussed above for the deletion operation can be applied to determine the average-
case time of the operations Perc

m
and PercM .

Exercise 6.1. Determine the average-case time of the Top and Bot operations (cf.
Section 5.6).

6.4 Examples

6.4.1 Calculating the τ Function

As a simple application, we calculate the tau function for the partial order given by
(•||(• ⊗ (•||•)⊗ •))⊗ •, or by the following Hasse diagram:

The following diagram shows the results of the calculations, where the five num-
bers in each box are τ(A), σ(A), |A|, |Amax| and |Amin| (in that order), for A the
partial order in the box.

0 0 2 2 2

23
4 3 4 1 1

222
30 32

5 6 1 2

2 2 3 2 1

21
5 22

5 5 2 2

This result for τ can be confirmed by averaging the number of comparisons made
in pushing up a label of each rank into each of the ten data-labelings of the partial
order:

6.4 Examples 145

a4

a6

a2

a1

a5

a3

a6 a6

a5 a5

a3 a4

a2 a1

a1 a2

a1 a1 a1

a2 a3 a3

a4 a3 a4 a2

a5 a5 a5

a6 a6 a6

a4 a3

a4a2

a3

a6

a1

a4

a5

a2

a6 a6

a5 a4

a2 a3

a1 a1

a4 a5

a1

a5
a2

a4

a6

a3 a2

a3

6.4.2 Inductively Defined Structures

Certain types of structures can be defined inductively using only the series and parallel
operations — for instance, discrete and linear orders and complete binary trees. If we
apply the above-derived composition laws for τ or Δ to these inductive definitions,

146 Average-Case Time of Basic MOQA Operations

we get recurrence equations which can often be solved in closed form. We present
some examples here.

6.4.2.1 Linear Orders The linear order of size n, which we denote by Υn, can be
defined in terms of the series operation as Υn = • ⊗ Υn−1 for n > 1, with the base
case Υ1 = •.

Clearly |Υn| = n, |Υn|min = 1 and |Υn|max = 1 for all n, so all that we need to
get a recurrence for τup(Υn) is σup(Υn). Applying the series composition law for σ
to the definition of Υn, we get

σup(Υn) = σup(Υn−1) + σup(•) + |Υn−1|min = σup(Υn−1) + 1.

Combining this with the base case of σup(Υ1) = σup(•) = 0, we get

σup(Υn) = n− 1.

Finally, applying the series composition law for τ to the definition of Υn and replacing
for the know values of the various functions on Υn−1 and •, we get

τup(Υn) =
(n− 1)τup(Υn−1)

n
+ 1.

Letting f(n) = nτup(Υn), we get f(n) = f(n − 1) + n =
n∑

i=2

i + ���f(1)1 =

n(n + 1)
2

− 1. Finally, substituting back in for f(n), we get

τup(Υn) =
n + 1

2
− 1

n
.

6.4.2.2 Complete Binary Trees The complete binary tree of depth n, which
we denote by βn, can be defined in terms of the series and parallel operations as
βn = [βn−1‖βn−1]⊗ • for n > 1 and β1 = •.

It is easy to see that |βn| = 2n − 1, |βn|min = 2n−1 and |βn|max = 1 for all n,
so that all we need to get a recurrence for τup(βn) is σup(βn). Applying the series
and parallel composition laws for σ to the definition of βn (and using the fact that
σup(A‖A) = σup(A) for any partial order A), we get

σup(βn) = σup(•) + σup(βn−1) + | • |min = σup(βn−1) + 1.

Combining this with the base case of σup(β1) = σup(•) = 0, we get

σup(βn) = n− 1.

1 f(1) = 1.τup(Υ1) = τup(•) = 0.

6.4 Examples 147

Finally, applying the series and parallel composition law for τ to the definition of βn

and replacing for the know values of the various functions on βn−1 and •, we get

τup(βn) =
n + 1 + (2n − 2)τup(βn−1)

2n − 1
.

Letting g(n) = (1− 2−n)τup(βn), we get

g(n) = g(n− 1) +
n + 1
2n

=
n∑

i=2

i + 1
2i

+��g(1)2.

We can evaluate the given sum3 to get g(n) = 2n+1−n−3
2n , and hence

τup(βn) =
2n+1 − n− 3

2n − 1
.

Note that this value tends asymptotically towards two — although the partial order
grows to arbitrarily large depths, most of the elements are always clustered towards
the bottom, so that on average a label is not pushed up very far.

6.4.3 Combinatorial Identities

We provide the proofs to the combinatorial identities used in this chapter here.

Lemma 6.4.
∑

k

k

(
|A|
k

)(
|B|
k

)
=

(|A|+ |B| − 1)!
(|A| − 1)!(|B| − 1)!

Proof. First, we note that k
(|A|

k

)
= k.|A|!

k!(|A|−k)! = |A|.(|A|−1)!
(k−1)!(|A|−k)! = |A|

(|A|−1
|A|−k

)
, so

substituting this in and dividing across by |A|, we see that it is sufficient to prove
that ∑

k

(
|A| − 1
|A| − k

)(
|B|
k

)
=

(|A|+ |B| − 1)!
|A|!(|B| − 1)!

=
(
|A|+ |B| − 1

|A|

)
.

Suppose that we want to choose an |A| element subset of the first |A| + |B| − 1
positive integers, with exactly k elements greater than |A| − 1. The total number of
ways to do this is

(|A|−1
|A|−k

)(|A|
k

)
.

But now, summing this over all k, we get the total number of ways to choose an
|A| element subset of the first |A| + |B| − 1 positive integers with 0, 1, 2, · · · , |B|
elements greater than |A| − 1. But since every |A|-element subset must have some

2 g(1) = 1
2τup(β1) = 1

2τup(•) = 0

3 g(n) = 2g(n) − g(n) =
n−1∑
i=1

i + 2
2i

−
n∑

i=2

i + 1
2i

=
3
2

− n + 1
2n

+
n−1∑
i=2

1
2i

=
3
2

− n + 1
2n

+

1
2

− 1
2n−1

.

148 Average-Case Time of Basic MOQA Operations

number of elements, every subset is counted once (and, clearly, only once), so that
the total must be the total number of ways to choose an |A|-element subset from a
set with |A|+ |B| − 1 elements, which is simply

(|A|+|B|−1
|A|

)
as required.

Lemma 6.5. The average value of the mth smallest element in an r element subset
of the first n positive integers is mn+1

r+1 .

Proof. The number of sets with i as the mth smallest element is simply
(

i−1
m−1

)(
n−i
r−m

)
,

so since the total number of r element subsets of the first n positive integers is
(
n
r

)
,

the average value required is

∑
i
(

i−1
m−1

)(
n−i
r−m

)
(
n
r

) = m

∑(
i
m

)(
n−i
r−m

)
(
n
r

) .

Now consider all r + 1 element subsets of the first n + 1 positive integers. For
each i, there are

(
i
m

)(
n−i
r−m

)
of these whose m + 1th element is i + 1, and hence the

total number is
(
n+1
r+1

)
=

∑(
i
m

)(
n−i
r−m

)
.

Using this substitution, the desired average simplifies to m

(
n+1
r+1

)
(
n
r

) = m
n + 1
r + 1

.

Lemma 6.6.
∑

k

(
k − 1
i− 1

)(
|A|+ |B| − k

|A| − i

)
=

(
|A|+ |B|
|A|

)

Proof. Suppose that we want to choose an |A| element subset of the first |A|+ |B|
positive integers, such that the ith element in the set is k. Then we must choose i− 1
of the k− 1 numbers smaller than k and |A|− i of the |A|+ |B|−k numbers bigger
than k, along with k itself. The total number of ways to do this is

(
k−1
i−1

)(|A|+|B−k
|A|−i

)
.

But now, summing this over all values of k, we get the total number of ways to
choose an |A| element subset whoseith element is 1, 2, 3, · · · , |A|+ |B|. But since
every |A|-element subset has some ith element in this range, every such subset is
counted once (and, clearly, only once), so that the total must be the total number of
ways to choose an |A|-element subset from a set with |A|+ |B| elements, which is
simply

(|A|+|B|
|A|

)
as required.

Chapter 7
The MOQA Language

In this chapter we provide the specifications for theMOQA language. The intention
is to sketch in sufficient detail the main concepts of the language as opposed to a strict
and exhaustive formal development. The language specifications suffice to develop
the examples considered in Chapters 8 and 9.

Note that MOQA is a domain specific language. It shares its restrictive nature
with current languages aimed at automating average-case timing, including [Coh74,
Weg 75, Ram96, FSZ89, FSZ91].MOQA’s distinctive feature is that it enables one
to implement algorithms built from randomness preserving operations over abstract
data types, which supports its modularity. MOQA can be interpreted as a suite of
purposely designed operations aimed at facilitating average time analysis.

Most languages for automated average-case analysis can not incorporate tradi-
tional data structures, such as lists, binary search trees and heaps, in a natural way
and hence stay quite removed from traditional programming practice. TheMOQA
language, though still restricted in nature, aims at incorporating traditional data struc-
tures and provides a new basis to support the development of static average-case
analysis tools, where its main distinctive feature is the incorporation of the notion of
randomness preserving operations to support compositionality.

In specifying MOQA we stay close in spirit to the basic imperative languages
discussed in semantics text books (e.g. [Gun92]). These languages are kept to a min-
imum to facilitate subsequent model constructions and can be extended with more
syntactic constructs according to need. For our purposes it will suffice to work with
a basic language of this nature with recursive call capacity and for-loops, which we
refer to as MOQA . Its extension by while-loops will be referred to as MOQA∗.
All programs in MOQA are guaranteed to terminate. Termination is a typical re-
quirement in a static timing context due to the halting problem.

In the context of (real-)time analysis, the termination of programs is typically
achieved by requiring that while-loops are restricted in order to guarantee termination
or by excluding while-loops entirely. Exclusion of while-loops is the most common
approach taken in this context. In this sense, MOQA can be interpreted, in a very
broad sense, as a “real-time variant” of MOQA∗. The language will be used to

150 7 TheMOQA Language

specify programs for which the average-case time can be determined in a linear-
compositional way.

The MOQA language includes for-loops and two restricted types of recursion.
For-loops specify a bound on the number of executions via the for-loop parameters
and hence, due to the predictability of number of executions of the for-loop body,
are a preferred type of loop in a static timing context.

A restricted use of recursion is allowed. If recursion were not allowed, the pseudo-
code for standard algorithms such as Mergesort and Quicksort would be substantially
different, e.g. using stacks in order to avoid the recursive function call. As a result,
the average-case analysis of non-recursive versions of algorithms would differ sub-
stantially from the standard analysis for the typical recursive style pseudo-code of
these algorithms provided in most textbooks [AHU87]. In order to include standard
algorithms we chose to allow a basic form of recursive calls which is guaranteed to
terminate.

7.1 Conventions

We will proceed under the assumption that all data structures of theMOQA langu-
age are constructed from atomic random structures. This is not an essential require-
ment, but will facilitate the presentation. Clearly, since MOQA operations are
random bag preserving, the programs could be allowed to take inputs which have
states belonging to a random bag, without requiring that the data have first been con-
structed through another MOQA program from an atomic random structure. Our
approach will be however that random bags are not created by the user “out of the
blue”, but need to be constructed at some stage. Hence the requirement is made that
each program operates on data structures which have at one point been constructed
from an atomic random structure via aMOQA program.

The data on which programs operate will be data-labelings. Due to random bag
preservation, programs can be interpreted in our context as state transformations.
Programs will induce transformations on states, i.e. transformations over states from
a random bag. The net effect, viewed over all states of a given random bag, is the
transformation of this random bag into a new random bag. This allows one to track
the data structures and their distribution throughout the computations. To achieve
such tracking, we work in a “typed” context. Typing will remain informal in this
work and is used to indicated the scope of so-called “structural variables”. Since
each random structure is determined by its underlying finite partial order, random
bags will simply be tracked as bags of partial orders. HenceMOQA types are bags
of partial orders, occurring in the random bags, where each partial order is paired
with a multiplicity. In practice these partial orders will be SP-orders and efficient
representations have been worked out for these in the MOQA implementation as
discussed in Chapter 10.

7.3 Types 151

7.2 Variables

Universal variables
Each partial order (X,�) of a random structure in a random bag has an associated
underlying finite set X . To specify such finite sets and following Definition 1.6, we
fix a universe consisting of a countable list of variables U = {xn|n ∈ N}, where
these variables store labels. As usual we require the labels to stem from a countable
linear ordered set and in particular will assume, w.l.o.g. that our labels distinct (cf.
Chapter 1).

Numeric variables
Natural numbers used during a computation can be stored in variables, referred to as
N -variables (Numeric variables) . The collection of N -variables is denoted by V .
N -variables are denoted in the following by lower case letters i, j, k, . . . , excluding
the letter x which is reserved for universal variables.

Structural variables
In the following, upper case letters U, V, W, X, Y, Z, which can be equipped with
indices i, j, k,. . ., to denote structural variables or S-variables. Structural variables
come equipped with a type and store data-labelings over the partial orders of the
given type. We let W denote the countable set of S-variables. Typing will remain
informal in this work and will be restricted to indicate the scope of S-variables.

In some cases, anS-variable will, for each given size n, contain only data-labelings
on a single partial order of this size, such as for the case of lists (the discrete order),
sorted lists (the linear order) or heaps (over a single tree order). Hence the type of
the S-variable will be a bag of cardinality one, consisting of a single partial order,
paired with a multiplicity.

This does not need to be the case in general of course. Consider the result of a
RB-preserving operation which is not strongly RB-preserving, such as the random
split and the random deletion. In that case, the result is a random bag of at least size
2. The bag of partial orders corresponding to this random bag forms the type of the
output data-labelings.

7.3 Types

Again following Definition 1.6, we consider the set of all finite partial orders, denoted
by POfin(U).

POfin(U) = {(U,�)|U ⊆ U , U is finite,� is a partial order over U}.

The set of finite bags, consisting of elements from POfin(U) paired with multi-
plicities, is denoted by Bfin(POfin(U)), will serve as the set of MOQA types,
denoted by T .

152 7 TheMOQA Language

To simplify the presentation, we will assume that each MOQA program P has
a single input variable, given by an S-variable, which is referred to as the input
S-variable for P . Similarly, every MOQA program is assumed to have a single
output S-variable of some type τ .

Certain types can be naturally equipped with a size. Such types include types for
which the partial orders are inductively defined structures (Section 6.4.2) and types
involving partial order bags such as the star-shaped structures generated by the split
operation. In each such case, it is possible to refer to the type of size n, where the
structure of the partial orders in the type can be completely determined once the size
is given. In this context, we denote discrete orders and linear orders for a given size
n, by Δn and Υn respectively. If we wish to make the choice of the underlying set,
say Un, explicit, we will use the notation (Un, Δn) and (Un, Υn) respectively.

To guarantee the soundness of the application of certain MOQA operations,
such as the split operation and the projection operation, it is necessary to verify
that certain subsets of partial orders are atomic isolated or isolated. The verification
that certain subsets of partial orders are isolated or strictly isolated is necessary
in the context of an application of the Extension Theorem (Theorem 4.8) in order
to generalize MOQA operations. The properties “isolated subset, atomic isolated
subset” and “atomic strictly isolated subset” are computable. This is incorporated in
the current Java 5.0 implementation ofMOQA at CEOL. In fact, the determination
of these properties can be simplified, since, as shown in Chapter 5, the partial orders
underlyingMOQA data structures are series-parallel.

In order to determine whether the various isolation-properties hold, it is necessary
at each stage of the computation to have knowledge of the partial order underlying
a data-labeling. InMOQA this is resolved by the fact that each data-labeling con-
sists of a function paired with its corresponding partial order. After each step of the
computation it is possible to determine the newly created data-labeling and its cor-
responding partial order.

Isolated types, corresponding to isolated subsets of the input partial order(s) play
an important role in MOQA . At this stage, we note that for a given program
P [X : τ], structural variables occurring in the program will hold data-labelings of an
isolated subset of one of the partial orders of τ . We remark that this is automatically
guaranteed for the input S-variable X since it has the entire partial order as type. The
fact that this holds in general can be formally deduced by induction on the structure
of MOQA programs provided their initial assignments hold data-labelings over
isolated subsets, which will be the case in practice. The result follows from the fact
thatMOQA programs can be shown to be RB-preserving, combined with the fact
that the RB-preserving operations we consider are refining.

In the present context we will focus on the following isolatedMOQA -types for
S-variables: [Y : I(X)], [Y : AI(X)] and [Y : SI(X)]. For example, the notation
[Y : AI(X)] indicates that Y must contain data-labelings over an atomic isolated
subset of one of the partial orders corresponding to the type of X . I.e., in case there
is a single partial order in the type, we require that the data-labelings stored in Y
are data-labelings over a fixed atomic isolated subset of the input partial order. In

7.4 Arithmetical Expressions 153

case the type of X is a bag of partial orders, the notation indicates that Y must at
all times contain a data-labeling from an atomic isolated subset of one of the input
partial orders, where the atomic subset is fixed per choice of input partial order.
Some approaches as to how Distri-Track deals with representations of such isolated
subsets are provided in [Hic08].

Notation 7.1 For S-variables Y , where [Y : AI(X)], we know that Y at all times
will store a data-labeling of some atomic isolated subset U of one of the input partial
orders corresponding to X . For a given data-labeling F over a partial order (U,�), we
will use the enumeration of the elements of U determined by the fixed enumeration of
the universe U . For instance, in case X stores a data-labeling over (U,�), we know
that Y : ({xi1 , . . . , xi|Y |},�) for some atomic isolated subset {xi1 , . . . , xi|Y |} of U .
This allows for a reference to the “j-th element” of an atomic isolated subset Y ,
indicated by (X, Y [j]). I.e., following the above notation, (X, Y [j]) corresponds to
xij . The notation Y [j] is close to common practice, e.g. as in [AHU87] where the
j-th element of a list L is denoted by L[j]. So, in case the input S-variable is clear
from the context, we will simply refer to Y [j]. Continuing Notation 7.1, we refer to
Y [1], . . . , Y [|Y |] as the atomic variables (derived from Y).

We remark that we do not allow direct reference to a label Y [j] for the case where
Y refers to data-labelings of non-discrete partial orders.

Remark 7.1. In the following we will indicate the semantic meaning of expressions
and statements via the double-bracket notations, following the standard notation of
[Gun92]. For instance, the semantic meaning of an arithmetical expressions A is
denoted by [[A]].

7.4 Arithmetical Expressions

In the next inductive definition, x represents a numeric variable while X is a struc-
tural variable.

A = |n |x |Size(X) | [A1 + A2] | [A1 ×A2] |�A
2 � | �

A
2 � |

In the following we will represent the size of a structural variable X by |X|. The
semantic interpretation is that for any data-labeling stored in X , the size of X is the
size of the partial order corresponding to the data-labeling stored in X . The notation
Size(X) is only used in the previous definition to avoid confusion with the vertical
separation bars which form part of the inductive definition.

We consider the collection A∗ of closed arithmetical expressions, which is the
subset of the previous collection consisting of expressions without numeric variables.

A∗ = |n | [A∗
1 + A∗

2] | [A∗
1 ×A∗

2] |�A∗
2 � | �

A∗
2 � |

154 7 TheMOQA Language

7.5 Boolean Expressions

Static time analysis is complicated due to branching and while-loops. Both types
of statements are complicated to analyze due to their dependence on boolean state-
ments. While-loops are not analyzable in full generality due to non-decidability of
termination, i.e. the halting problem. Even when a while-loop is guaranteed to termi-
nate, the problem remains that in order to determine the running time it is necessary
to determine when the loop exits, which depends on the boolean condition. Similarly,
for a conditional statement, it is necessary for average-case analysis to determine the
probability of executing the first branch and the probability of executing the second
branch, which again is related to the boolean condition involved. Investigations are
under way for Distri-Track to provide the probability for the boolean condition of
a conditional statement as a user-input, e.g. after experimental determination of the
probability or following a separate user-analysis of the probability.

Here we are interested in the determination of specific classes of boolean state-
ments for which it can be guaranteed that the probability can be statically derived.
Such classes are necessarily restricted in nature.Yet they are of obvious interest since,
whenever available, they provide an aid to the (semi-)automatization of average-case
analysis.

We introduce a special kind of boolean expression which is referred to as a “struc-
tural (boolean) expression”, or boolean S-expression. Each boolean S-expression
involves one or more structural variables. We distinguish in the following between
“first-order” boolean S-expressions and “second-order” boolean S-expressions.

The first type of boolean expression regards comparisons between labels of el-
ements of an isolated subset of the type under consideration. This regards a “first-
order” property of labels as opposed to a “second-order” property regarding the entire
data-labelings, such as comparisons involving the size of a data-labeling.At any given
stage of the computation, where a variable X holds data-labelings with states from a
random bag R, the first type of boolean expression regards a property on labels of a
fixed data-labeling with a state from R under consideration in the computation. The
second type of expression regards a property on data-labelings with a state from the
random bag R and as such is a “second-order” statement.

We define the two kinds of boolean expression below. Certain equational boolean
S-expressions are singled out as “prime” expressions. We will show that the other
boolean S-expressions reduce to these prime cases; a useful technical fact which will
aid the determination of probabilities.

We note at this stage that the results for second-order boolean expressions indicate
that this type of expression is particularly suited for analysis in our context. As
we will see, first-order boolean expressions are more complicated to deal with and
require further investigation. We still treat this particular case to illustrate some of
the complications involved and to shed some light on potential future approaches
which may overcome these issues. Our formulation of theMOQA language, at this
stage, is restricted to second-order boolean expressions.

7.5 Boolean Expressions 155

Notation 7.2 We add some syntactic sugar and will denote the negation of an equality
expression ¬[E1 = E2] as [E1 = E2]. Size-based expressions, [|X| = k] will
include an “empty-test” [|X| = 0], for which we allow the notation: [X = ∅].

Convention 7.3 In the following, in case we do not indicate the type of anS-variable,
it is assumed that this type forms a bag of isolated subsets of the partial orders in the
input-partial order bag. This assumption is consistent with the fact that the orders of
input random bags are refined during computations and by the fact that operations
are carried out on isolated subsets.

1) First-order boolean S-expressions We recall that it suffices in our context to fo-
cus on SP-types, though of course theMOQA approach holds in the more general
context of arbitrary finite partial orders. Since probabilities over atomic types typi-
cally allow for a straightforward computation and since SP orders essentially can be
viewed as products and parallel composition over discrete partial orders, we choose
to express the conditionals in this section in terms of expressions over discrete partial
orders. I.e. the types of the structural variables involved will be atomic. Second-order
boolean statements will not have this condition and their structural variables can have
arbitrary type.

Definition 7.1. Let Y be an S-variable of type Δn. We let mk(Y), where k ∈
{1, . . . , n}, denote the k-th smallest label of the data-labeling stored in Y . Similarly,
we let Mk(Y) denote the k-th largest label of the data-labeling stored in Y . These
can be computed in MOQA by Quickselect, which has O(n) average-case time
(cf. Section 8.8).

Definition 7.2. A first-prime boolean S-expression is a boolean expression of the
form:

[Y [i] = mk(Y)|Y : AI(X)], where |Y | = n, i, k ∈ {1, . . . , n}.

Definition 7.3. A first-order boolean S-expression is a boolean expression which is
first-prime or of one of the following forms, where @ represents an inequality from
{<,≤, >,≥}:

[Y [i] @ mk(Y)|Y : AI(X)], |Y | = n, i, k ∈ {1, . . . , n}

[Y [i] = Mk(Y)|Y : AI(X)] or [Y [i] @Mk(Y)|Y : AI(X)], |Y | = n, i, k ∈
{1, . . . , n}

i = j.

The collection of first-order boolean S-expressions is denoted by BSE1.

[Y [i] = Y [j]|Y : AI(X)], or [Y [i] @ Y [j]|Y : AI(X)], |Y | = n, i, j ∈ {1, . . . , n}
and

156 7 TheMOQA Language

The intended semantic interpretation of the expressions is indicated by the fol-
lowing examples, where the other cases are similar: [Y : AI(X)] indicates that the
variable Y will store data-labelings over an atomic isolated subset of the type of X ,
say of size n. The boolean expression [Y [i] = mk(Y)|Y : AI(X)] is true when the
label of the i-th element of the data-labeling of the atomic random structureAn under
consideration coincides with the k-th smallest element of the corresponding label set,
and false otherwise. Similarly, the boolean expression [Y [i] =Mk(Y)|Y : AI(X)]
is true when the label of the i-th element of the data-labeling from atomic ran-
dom structure An under consideration coincides with the k-th largest element of
the corresponding label set, and false otherwise. The boolean expression [Y [i] <
Y [j]|Y : AI(X)] is true when the label of the i-th element of the data-labeling from
An under consideration is strictly less than the label of the j-th element of this data-
labeling and false otherwise.

We remark that during the analysis of MOQA programs, we assume that data-
labelings have pairwise distinct labels. Hence in the analysis expressions of the type
[Y [i] = Y [j]] where i = j will not come into play. Moreover it is clear that, during
the analysis, it suffices to consider the cases where [Y [i] < Y [j]] and [Y [i] > Y [j]]
and not the inequalities involving≤ or≥, though these could of course occur as part
of a MOQA program. Finally, it is clear that it suffices to consider expressions of
the form [Y [i] < Y [j]] only, since these are, by symmetry, equivalent to expressions
of the form [Y [j] > Y [i]].

Notation 7.4 The prime boolean S-expression: [X[i] = mk(X) |X : AI(X)] is
typically abbreviated to [X[i] = mk(X)] and similarly for the other boolean S-
expressions.

2) Second-order boolean S-expressions
We introduce second-order S-expressions which involve comparisons based on size.
Note that, in order to simplify the discussion, we do not allow sizes to occur as part of
an arithmetical expression. I.e. sizes will occur on one side of an inequality, without
occurring embedded as part of an arithmetic expression. Further generalizations can
be obtained to deal with sizes embedded within arithmetical expressions, e.g. not
containing numeric variables, in which case sizes could be included as part of the
inductive definition of closed arithmetical expressions via the addition of an extra
base case |X|.

Definition 7.4. A second-prime boolean S-expression is a boolean expression of the
form [Size(Y) = A∗], for someS-variable Y and closed arithmetical expression A∗.

Definition 7.5. A second-order boolean S-expression is a boolean expression which
is second-prime or an expression of the form [Size(Y) = A∗], [Size(Y) > A∗],
[Size(Y) < A∗], [Size(Y) ≤ A∗] or [Size(Y) ≥ A∗].

The collection of second-order boolean S-expressions is denoted by BSE2.

7.6 Boolean Statements 157

Remark 7.2. It is possible to generalize the definitions of the boolean expressions to
include arithmetical boolean expressions. However, this would entail the tracking of
numeric variables during the course of the computation. Under certain restrictions
this will be possible, but the general case defies static analysis. We hence will focus in
what follows on the simpler case of boolean expressions for which the only variables
are S-variables or closed arithmetical expressions.

Convention 7.5 In the following when we refer to a “boolean statement” it is im-
plicitly assumed to mean either a first-order or a second-order boolean statement.
Similarly if we refer to a “(boolean) S-expression, it refers to either a first-order or
a second-order (boolean) S-expression.

7.6 Boolean Statements

We define first-order and second-order boolean statements.

Definition 7.6. The collection of first-order boolean statements is defined inductively
by:

B1 = |BSE1 | [B1 orB2] | [B1 andB2] | ¬B |

Definition 7.7. The collection of second-order boolean statements is defined induc-
tively by:

B2 = |BSE2 | [B1 orB2] | [B1 andB2] | ¬B |

7.6.1 Probabilities of Boolean Statements

We define the probability of a boolean statement and show how computations of
such probabilities, for the case of data-labelings restricted to isolated subsets, can be
reduced to computations directly over the isolated subsets.

Definition 7.8. A boolean statement B is said to be a boolean statement over the
S-variable Y in case B contains at least one occurrence of Y and no variable other
than Y . In that case we denote B by B(Y).

Remark 7.3. Note that boolean statements B(Y) are independent from the relative
label-order of the data-labeling assigned to Y , i.e. we assume if two data-labelings
F1 and F2 over Y are label-isomorphic then the truth values of B(F1) and B(F2)
are the same.

158 7 TheMOQA Language

During computations it is useful to determine the probability of boolean state-
ments for the case of data-labelings which have been obtained as restrictions of
data-labelings of a given type to an isolated subset. This case arises frequently since
MOQA operations are typically applied on isolated subsets of types. This type of
probability is captured by the following definition.

Definition 7.9. We consider the case of a boolean statement B over a structural
variable Y , where Y is assigned data-labelings which arise from the restriction of
data-labelings stored in an S-variable X of the program. The data-labelings stored in
Y are assumed to be obtained as restrictions of data-labelings over X to an isolated
subset of the type of X , i.e. Y : I(X). In this case the boolean statement B is
indicated by B(X|Y).

Definition 7.10. The cardinality |B(Y)| of a boolean statement B(Y) is the number
of states over the type σ of Y that satisfy B. The probability of B(Y), indicated by
Prob(B(Y)), is defined by:

Prob(B(Y)) =
|B(Y)|
|R(σ)| .

Since probabilities only depend on the types involved, we will also on occasion use
the notation B(σ) instead of B(Y) when Y : σ.

The cardinality |B(X|Y)| of a boolean statement B(X|Y), where Y is an S-
variable such that [Y : I(X)] and where say X : τ , is defined to be the number of
states over the type of X that, when restricted to the type of Y , satisfy B(X|Y). The
probability of B(X|Y), indicated by Prob(B(X|Y)), is defined by:

Prob(B(X|Y)) =
|B(X|Y)|
|R(τ)| .

In case Y is identical to X , it is clear that |B(X|X)| = |B(X)|. Since probabilities
only depend on the types involved, we will also on occasion use the notation B(τ |σ)
instead of B(X|Y) when X : τ, Y : σ.

Lemma 7.1. Consider a boolean statement B(X|Y). Assume that X : τ , Y : I(X)
and Y : σ. Let α = |{F �(τ − σ)|F ∈ RL(τ)}|. We have that

|B(X|Y)| = α|B(Y)|

|R(τ)| = α|R(σ)|

Prob(B(X|Y)) = Prob(B(Y)).

Proof. Note that Y : I(X). Let α = |{F �(τ − σ)|F ∈ RL(τ)}|. Then, by Lemma
4.10 2), we obtain: |R(τ)| = α|R(σ)|. Moreover, by Lemma 4.10 1), any data-
labeling over τ which when restricted to σ satisfies B, corresponds uniquely to the

7.6 Boolean Statements 159

union of a data-labeling over τ − σ and a data-labeling over σ. Hence the truth
of B(X|Y) only depends on whether this second part of the data-labeling, i.e. the
data-labeling over σ, satisfies B. It follows that |B(X|Y)| = α|B(Y)|. Hence:

Prob(B(X|Y)) =
α|B(Y)|
α|R(σ)| = Prob(B(Y)).

By Lemma 7.1, it is clear that when data-labelings are restricted to atomic isolated
subsets, it suffices to compute the probabilities over these atomic isolated subsets.
These probabilities are computed as below for the first-order S-expressions.

Lemma 7.2. (Probability of first-order S-expressions)

Prob[Y [i] = mk(Y)|Y : AI(X)] = Prob[Y [i] =Mk(Y)|Y : AI(X)] = 1
n .

Prob[Y [i] > Y [j]|Y : AI(X)] = 1
2 .

Proof. It is easy to verify that if X is an S-variable which takes data-labelings with
states from An then:

Prob[X[i] = mk(X)] = Prob[X[i] =Mk(X)] = 1
n .

Prob[X[i] > X[j]] = 1
2 .

The general result now follows by a straightforward application of Lemma 7.1
applied to a boolean expression over a single structural variable Y .

In general when boolean S-expressions occur combined in boolean statements,
the determination of probabilities becomes more involved. In particular in the “mixed
case” where one element is compared to several others, e.g. as in [Y [1] < Y [2]] ∧
[Y [2] < Y [3]].

In the following we will illustrate how to compute probabilities for general boolean
statements through a reduction of the statement to Disjunctive Normal Form. For
short statements, typically, a DNF is easy to obtain. In general, the computation time
to reach a DNF can grow drastically.

7.6.2 Computing Probabilities of Boolean Statements

We assume that the reader has some familiarity with the notion of a Disjunctive
Normal Form (DNF) and the fact that every propositional statement is equivalent to
a DNF [Ham88]. We recall the definition of some relevant concepts.

Definition 7.11. A literal is a propositional variable or the negation thereof. In the
first case, a literal is referred to as a positive literal, in the second case as a negative
literal . A positive conjunction is a conjunction in which each literal is positive.

160 7 TheMOQA Language

A Disjunctive Normal Form is a disjunction C1 ∨ . . . ∨ Cn, where each Ci is a
conjunction of literals.

Definition 7.12. A DNF is first-prime/second-prime iff its boolean expressions are
first-prime/second-prime and it does not contain negative literals. A DNF is a prime
DNF in case it is first-prime or second-prime. A first-prime/second-prime conjunc-
tion is a conjunction of first-prime/second-prime boolean S-expressions. A boolean
expression is a prime boolean S-expression in case it is first-prime or second-prime
boolean S-expression. In case the prime DNF/prime conjunction is a boolean state-
ment over a structural variable Y , we refer to this prime DNF/prime conjunction as
a prime DNF/prime conjunction over Y .

We discuss how to determine the probability for arbitrary boolean statements.
We will show in the Section 7.6.3 that each first-order boolean statement can be
transformed to an equivalent first-prime DNF, i.e. a DNF C1 ∨ . . .∨Ck, where each
Ci, i ∈ {1, . . . , k}, is a first-prime conjunction. Similarly, we will show that each
second-order boolean statement can be transformed to an equivalent second-prime
DNF.

The probability of a prime DNF can be computed via the General Modularity Law
of Section 2.5. Clearly, after applying the General Modularity Law to Prob(C1 ∨
. . . ∨ Ck), the resulting expression only requires the determination of probabilities
of boolean expressions which are prime conjunctions, each over a finite collection of
structural variables. We discuss in the Section 7.6.4 the determination of probabilities
of prime conjunctions.

7.6.3 Reduction to Prime DNF’s

We show how every first-order boolean statement can be replaced by an equivalent
first-prime DNF. Since all boolean statements can be reduced to equivalent DNF’s,
it suffices to show how negative literals can be eliminated.

Lemma 7.3. Every first-order boolean statement over a collection of structural vari-
ables is equivalent to a first-prime DNF over this collection of structural variables.

Proof. We show that two of the non-first-prime boolean expressions are definable in
terms of first-prime boolean expressions only. The other cases are treated in a similar
way. We remark that for i, k ∈ {1, . . . , n}:

[Y [i] =Mk(Y)|Y : AI(X)]⇔ [Y [i] = mn−k+1(Y)|Y : AI(X)].

Moreover, note that:

[Y [i] < Y [j]|Y : AI(X)]⇔
[Y [i] = m1(Y)|Y : AI(X)]∨

7.6 Boolean Statements 161

[[Y [i] = m2(Y)|Y : AI(X)] ∧ [Y [j] = m1(Y)|Y : AI(X)]]∨
[[Y [i] = m3(Y)|Y : AI(X)] ∧ [Y [j] = m1(Y)|Y : AI(X)] ∧
[Y [j] = m2(Y)|Y : AI(X)]]∨
. . .
[[Y [i] = mn−1(Y)|Y : AI(X)] ∧ [Y [j] = m1(Y)|Y : AI(X)] ∧ . . .

∧[Y [j] = mn−2(Y)|Y : AI(X)]].

The negations of the boolean S-expressions, i.e.:

[Y [j] = mk(Y)|Y : AI(X)], [Y [j] = Mk(Y)|Y : AI(X)], [Y [i] < Y [j]|Y :
AI(X)],

can also be defined solely in terms of first-prime boolean expressions. We illustrate
this for the case of [Y [j] = mk(Y)|Y : AI(X)]. The other cases are similar.

[Y [j] = mk(Y)|Y : AI(X)]⇔

[[Y [j] = m1(Y)|Y : AI(X)] ∨ [Y [j] = m2(Y)|Y : AI(X)] ∨ . . .∨
[Y [j] = mk−1(Y)|Y : AI(X)] ∨ [Y [j] = mk+1(Y)|Y : AI(X)] ∨ . . .∨
[Y [j] = mn(Y)|Y : AI(X)]].

Next, we observe that every second-order boolean statement can be replaced by
a second-prime DNF.

Lemma 7.4. Every second-order boolean statement over a collection of structural
variables with pairwise disjoint types is equivalent to a second-prime DNF over this
collection of structural variables.

Proof. Similar reasoning as in the proof of Lemma 7.3.

7.6.4 Probabilities for Prime Conjunctions

From Lemmas 7.3 and 7.4 it follows that for boolean statements we can focus on
determining the probabilities of their prime DNF’s.

The probability of a prime DNF can be computed via the General Modular-
ity Law of Section 2.5. Clearly, after applying the General Modularity Law to
Prob(C1 ∨ . . . ∨ Ck), the resulting expression only requires the determination of
probabilities of boolean expressions which are prime conjunctions. Lemmas 7.6 and
7.7 regard the computation of probabilities of prime conjunctions.

Probabilities of first-prime conjunctions
As usual, in the context of average-case analysis, we consider labels which are pair-
wise distinct. This enables one to filter out “inconsistent” pairs of expressions which
have probability zero.

162 7 TheMOQA Language

Definition 7.13. A first-prime conjunction is consistent iff

1) It does not contain two expressions of the form:

[Y [i] = mk(Y)|Y : AI(X)] and [Y [j] = mk(Y)|Y : AI(X)], where i = j.

2) It does not contain two expressions of the form:

[Y [i] = mk(Y)|Y : AI(X)] and [Y [i] = ml(Y)|Y : AI(X)], where k = l.

We refer to any such pair of expressions occurring in one of the first-prime con-
junctions of a first-prime DNF, identified in 1) and 2), as an inconsistent pair of the
DNF.

For the sake of illustration, in the examples of first-prime DNF’s we will not refer
to the k-th smallest element of a data-labeling, but will assume that for an underlying
set of size n, we consider labels which take values in {1, . . . , n} and we will assume
that the k-th smallest element has been determined in the collection of labels, e.g.
through Quickselect. For the particular set of labels {1, . . . , n} the k-th smallest
element is represented as k.

Example 7.1. Consider the following first-prime Disjunctive Normal Form:

[X[2] = 3] ∨ {[X[4] = 3] ∧ [X[1] = 1]} ∨ {[X[1] = 3] ∧ {[X[2] = 1]}∨
{[X[1] = 3] ∧ [X[3] = 1] ∧ [X[2] = 3]}.

The last conjunction, {[X[1] = 3] ∧ [X[3] = 1] ∧ [X[2] = 3]} is inconsistent
since it contains the inconsistent pair [X[1] = 3] and [X[2] = 3] which violates
condition 1) of Definition 7.13.

Lemma 7.5. If C is an inconsistent first-prime conjunction then Prob(C) = 0.

Proof. Note that no data-labeling will satisfy an inconsistent pair.

By Lemma 7.5 we can eliminate all inconsistent first-prime conjunctions from the
first-prime DNF of a boolean expression, without changing the probability. Hence
we focus in the following Lemma on first-prime DNF’s which only have consistent
first-prime conjunctions.

Lemma 7.6. Consider a consistent first-prime conjunction C over Y , where Y :
AI(X) and where C occurs in the first-prime DNF of a boolean statement. Then
Prob(C) = (n−l)!

n! where l is the number of conjuncts of the consistent first-prime
conjunction C.

7.6 Boolean Statements 163

Proof. It suffices to remark that every component [Y [i] = mk(Y)|Y : AI(X)]
of a consistent first-prime conjunction reduces the degree of freedom of the data-
labelings satisfying this conjunction by one, i.e. the label of the element Y [i] is
fixed to have value mk(Y). Moreover, by consistency, each pair of components, say
[Y [i] = mk(Y)|Y : AI(X)] and [Y [j] = ml(Y)|Y : AI(X)] is such that i, j and
k, l are pairwise distinct. So each component of the conjunction determines a genuine,
i.e. non-duplicate, reduction in the degree of freedom of the original data-labelings
and hence the result follows.

Example 7.2. Consider the first-prime DNF of Example 7.1, i.e. [X[2] = 3] ∨
{[X[4] = 3] ∧ [X[1] = 1]} ∨ {[X[1] = 3] ∧ {[X[2] = 1]}. The states of A4 satis-
fying the conjunction C = [X[4] = 3] ∧ [X[1] = 1] are: (1, 2, 4, 3) and (1, 4, 2, 3).
Among the 24 states ofA4 this subset has probability 2

24 , which corresponds indeed

to Prob(C) = (4−2)!
4! = 2

24 .

Probabilities of second-prime conjunctions
Second-order boolean statements are useful since they can achieve a selection of
random structures from a given random bag, as discussed below.

We discuss how to determine the probability of [|Y | = k] for a program with
S-variable Y where [Y : I(X)] for the input S-variable X .

Definition 7.14. Consider a program with input S-variable X where [Y : I(X)].
Assume that [Y : τ] where τ is the bag {(α1, K1), . . . , (αn, Kn)} and where Y
stores data-labelings with states from the random bag corresponding to τ , say R =
{(R1, K1), . . . ,
(Rn, Kn)}, where for each i ∈ {1, . . . , n}, Ri = R(αi). Let {αi1 , . . . , αim} be the,
possibly empty, bag of partial orders which have size k.

In case the bag is empty, we conclude that Prob[|Y | = k] = 0.
Otherwise, we remark that the condition [|Y | = k], for each data-labeling F will

return true in case F ∈ Ri1 ∪ . . . ∪ Rim and false otherwise. In other words, the
condition when applied to all data-labelings with states from R will determine the
collection Ri1 ∪ . . . ∪Rim and hence amounts to an RB-preserving operation.

We refer to the random bag {(Ri1 , Ki1), . . . , (Rik
, Kim)} as the selection deter-

mined by [|Y | = k], indicated by Selection([|Y | = k], R).
The selection determined by a second-order boolean statement B is defined in

the obvious way through appropriate intersections and unions corresponding to the
logical connections ∧ and ∨ in B.

We obtain the following immediate result.

Lemma 7.7. Using the notion of Definition 7.14, we note that

Prob[|Y | = k] =

∑m
j=1 Kij |Rij |
|R| .

164 7 TheMOQA Language

In case (∗) ∀j, l ∈ {1, . . . , m}. Kij |Rij | = Kil
|Ril

|, the probability simplifies:

Prob[|Y | = k] =

∑m
j=1 Kij

|Rij
|

|R| =
mKi1 |Ri1 |

n|Ri1 |
=

m

n
.

Remark 7.4. We will show that MOQA programs correspond to RB-preserving
functions. It is easy to see in this context that MOQA programs only involving
product, split and projection operations correspond to uniformly RB-preserving pro-
grams (cf. Definition 4.10). In case the variable Y is an output variable of a program
which determines a uniformly RB-preserving function, we obtain that condition (∗)
holds. Hence the probability of [|Y | = k] is easy to obtain in case Y is the output
variable of a uniformly RB-preservingMOQA program.

7.7 Random Structure Expressions

In the following we define random structure expressions. Some of the random struc-
ture operations are required to operate on data-labelings of atomic isolated subsets.
This will be indicated in the definition with a vertical bar separating the operation
from the type declaration of its S-variables, as in [Spliti(X, Y) |Y : AI(X)]. This
particular notation indicates that the random split needs to be carried out on a data-
labeling restricted to an atomic isolated subset of a partial order in the type of the
input S-variable X .

We use ∅ to indicate the constant, which denotes the empty random structure with
a single empty state.

In case of an S -variable X of type τ , where τ involves only a single partial order
(V,�), C(X) indicates the component set of (V,�).

We recall from the discussion on the Extension Theorem, that the contractive
operations random deletion and the strong random projection require subsets to be
strictly isolated (cf. Section 5.7). For our purposes it will be sufficient to consider a
version of MOQA which only provides for the random projection as described in
Section 5.4, which produces a copy of the restrictions of data-labelings to an isolated
subset.

Here we implicitly assume that in creating a partial order for this copy, new
variables from U are introduced which do not occur in the program nor have been
introduced by any prior operation of the program.

We define random structure expressions in the following.

RS = | ∅ |X | [Y [j]|Y : AI(X)] |
[(X, U, Y)

⊗
(X, U, Z) |U : I(X), Y, Z : C(U), Y = Z]|

[Del(A, X, Y)|Y : SI(X)] | [Del(A, X, Y)|Y : SI(X)] |
[PercM (X, Y)|Y : I(X)] | [Perc

m
(X, Y)|Y : I(X)] |

[Top(X, Y)|Y : I(X)] | [Bot(X, Y)|Y : I(X)] |
[Proj(X, Y)|Y : I(X)]] | [Splitj(X, Y) |Y : AI(X)]

7.8 Random Conditional Statements 165

Remark 7.5. For the deletion Del(A, X, Y) we require that the range for the semantic
interpretation of A is between 1 and |Y |. In case the semantic interpretation of A
is 1, we use the notation Delm(X, Y) and similarly, we denote Del(A, X, Y) by
DelM (X, Y) in case A evaluates to |Y |.

We will occasionally omit the type notation and the S-variables which are not the
input S-variable in the random structure expressions when the context is clear. E.g.
in case X and Y coincide.

In order to discuss MOQA programs, we first consider the case of conditional
statements and of recursive calls.

7.8 Random Conditional Statements

Conditional statements inMOQA are statements of the form [If B then P1 else P2].
Regarding the boolean expression B involved in this conditional statement, we

remark that second-order boolean expressions allow for a straightforward treatment,
while first-order boolean expressions, as we will illustrate, can lead to complica-
tions. Hence, we will require in the current specifications of theMOQA programs,
that conditional statements involve second-order boolean conditions only, i.e. B is
assumed to be a second-order boolean expression. First-order conditionals will be
the subject of future investigation, while some potential approaches to first-order
conditionals are indicated in the following.

Note that a random conditional statement will transform a given random bag into
two new random bags, the first of which consists of the data-labelings which satisfy
the boolean statement and the second random bag consisting of the data-labelings
which do not satisfy the boolean statement. For the case of MOQA conditional
statements, data-labelings satisfying a second-order boolean expression automati-
cally form a random bag, as is clear from the definition of the selection procedure
corresponding to a second-order boolean expression, Definition 7.14. From this selec-
tion, it is also clear that the data-labelings which do not satisfy the boolean statement,
again form a random bag. Hence such MOQA conditional statement is automati-
cally random bag preserving.

This is not the case for conditional statements involving first-order boolean expres-
sions. We illustrate via counter-example 7.6 that the use of conditionals can violate
RB-preservation, even for the case where the input S-variable stores data-labelings
with states from an atomic random structure.

Counter-Example 7.6 Consider the S-variable X which stores labelings from the
atomic random structure A3 and consider the following pseudo-code:

If X[1] < X[3] then X[1]
⊗

(X[2], X[3]) else skip.

We display the result of executing this program on A3 below:

166 7 TheMOQA Language

1 2 3
1

2 1 3

2 3 1 2 3 1

3 1 2 3 1 2

3 2 1 3 2 1

1

2 3

III

IV

V

VI

1 3 2
1

23

II

2 3

I

It is clear that the program specified by the above pseudo-code when executed on
A3 is not RB-Preserving: the data-labelings I, II, III over the V-shaped partial order
do not form (multiple copies) of a random structure and the data-labelings IV,V,VI
over the discrete three element partial order again do not form a random structure.

In order to guarantee RB-preservation for conditional statements, one possible
approach could be to represent the collection of data-labelings selected as part of
the “if”-branch of a statement, as a random bag and similarly for the complement
collection of data-labelings, corresponding to the selection made as part of the “else”-
branch1. This is similar to the approach of the “selection” as already described for
second-order boolean statements.

For instance, for the above example, it is clear that the condition X[1] < X[3] is
satisfied exactly by the states from the random structure R1 over the partial order P1
displayed below. Similarly, the labelings which do not satisfy the condition X[1] <
X[3], i.e. the labelings for which X[1] > X[3], correspond exactly to the states from
the random structure R2 over the partial order P2 displayed below.

z

x

y

x

z

P1

y

P2

1 C. Gosset advocated this approach, to avoid the above problem and following the general MOQA
approach of tracking data distributions.

7.9 Recursion 167

Clearly, in case we identify a random bag which consists of the data-labelings
which satisfy the condition B in a conditional statement [if B then P1 else P2], then
the problem in counter-example 7.6 will not occur if we insist that the conditions
governing the applicability of a product operation are checked in the first place on
the random bag determined by the condition B. This would prevent the execution
of the random product in conditional of the counter example as it would not satisfy
the rules governing the application of the random product. Further investigation is
needed in this area, in particular the use of the random bag representing the data-
labelings which satisfy B, to guide computations.

As outlined earlier,MOQA basic operations preserve SP-orders and such struc-
tures considerably facilitate computing the average-case time. Hence it is useful in
general to aim for the preservation of such structures. Again, conditional statements
based on second-order boolean expressions preserve SP-orders since they involve a
simple selection process among the given random structures of a random bag. How-
ever, for conditionals involving a first-order boolean expression, there is no guarantee
that the random bag representing the data-labelings which satisfy the boolean ex-
pression, will involve SP-orders only. Moreover, even if these data-labelings happen
to form a random bag involving SP-orders only, there is no guarantee that the com-
plement, i.e. the collection of data-labelings not satisfying the boolean expression,
will form an SP-order. Aside from negations, disjunctions also can cause problems
for first-order conditionals, since overlap can occur between disjunctive parts, which
complicates representation as a random bag. This can be resolved by transforming
disjunctive statements into equivalent statements involving exclusive or connectives
only. This last problem with disjunctive statements, again does not arise for second-
order conditionals, which either completely overlap or are mutually exclusive, due
to their size-based nature.

7.9 Recursion

We will consider two types of recursion: parallel recursion, executed on inductively
defined parallel SP-orders, and product recursion, executed on inductively defined
product SP-orders2

The Extension Theorem will enable recursive calls on (strictly) isolated subsets
of a random bag consisting of a single random structure3. We recall that when the
recursive call on a subset amounts to the application of a non-contractive operation,
the subset is required to be isolated. In case the recursive call on a subset amounts to
the application of a contractive operation, the subset is required to be strictly isolated.

2 A more general scheme including both cases and referred to as “series-parallel recursion” is
presented in [Hic08]. This generalized version works on inductively defined structures.
3 General random bags bags are dealt with via a “padding” approach as discussed further on in this
section in the context of product recursion.

168 7 TheMOQA Language

Recursive calls in each case will occur on strictly isolated subsets.

Note that both types of recursion are guaranteed to terminate since the size of
each of the partial orders on which the recursion is called is, in each case, strictly
less than the size of the subset on which recursion is originally called.

Parallel Recursion
To store data-labelings over an inductively defined parallel subtype, we consider an
S-variable X of this parallel type, say αn of size n. Moreover, we represent the
parallel type of X as follows: X : αs1 || . . . ||αsk0

, for some fixed value k0 ≤ n.
In addition to the variable X , we consider k0 variables, X1, . . . , Xk0 of types

αs1 , . . . , αsk0
respectively.

A typical example of parallel recursion is the recursion used by Divide and
Conquer style algorithms such as Mergesort [AHU87]. Mergesort takes input data-
labelings over the discrete partial order of size n and is recursively called on the two
halves of the list. I.e. the algorithm is called on lists of size �n

2 � and n − �n
2 � + 1

respectively. The discrete type of size n will be represented in this case by two
parallel components Δs1 and Δs2 , as in Δn = Δs1 ||Δs2 where s1 = �n

2 � and
s2 = n − �n

2 � + 1. The types Δs1 and Δs2 determine the types which will be in-
volved in the recursive call.

Definition by Parallel Recursion
Consider a program Q of type (αn)n → (βn)n, where each αn is expressed as a
parallel SP-order αs1 || . . . ||αsk0

. Here k0, with some abuse of notation, depends
on n. The selection of these types can be determined in a computable way. Returning
to the Mergesort example, the computation is provided by the “division” bound-
ary �n

2 �. Consider a program P : βs1 || . . . ||βsk0
→ β where β is a refinement of

βs1 || . . . ||βsk0
.

The program Q can be defined by parallel recursion as follows:

Q(X) = P [Q(X1) || . . . ||Q(Xk0)].

Here X1, . . . , Xk0 contain the restrictions of the data-labeling stored in X to
the components αs1 , . . . , αsk0

respectively. The program P takes an input vari-
able Y of type βs1 || . . . ||βsk0

, storing the data-labeling (recursively) computed by
Q(X1) || . . . ||Q(Xk0).

Remark 7.6. Note that even though we use the parallel notation in the definition
of the program Q, in practice the computation will proceed sequentially, as in
Q(X1); . . . ;Q(Xk0). For instance, the execution of Mergesort when implemented
in MOQA will involve a sequential execution as is traditionally the case. The po-
tential for a truly parallel execution of parallel recursion is present of course and
could be exploited.

7.9 Recursion 169

Product Recursion
We consider an S-variable X of type Δ.

A product-recursive program Q will be defined below. The definition of Q involves
a program P which transforms an inductive SP type of size n, say αn into a type
consisting of a random bag with k(n) product SP orders, denoted by β1, . . . , βk(n).
Thus

P : αn → {(β1, K1), . . . , (βk(n), Kk(n))},

where, for i : 1, . . . , k(n), βi = αsi(1)
⊗

. . .
⊗

αsi(l(i)).

A typical example of such an operation is split. Consider for instance the result
of executing split on an atomic random structure of size n. The resulting random
bag consists of n “star-shaped” product SP-orders. Hence in this particular case
k(n) = n. Note that the number of product components l(i) in βi varies with i. For
instance, consider the result of the split operation on the discrete four-element partial
order (X,�), where say X = {x1, x2, x3, x4}.

Note that this diagram displays the partial orders obtained after identification up to
order isomorphism and hence indices no longer reflect the actual tracking of indices
during the computation. In this context, indices are simply are used, via an arbitrary
assignment, to refer to the elements of the partial orders.

x1 x2 x3 x4

x1

x3

x2

x4x2

x1

x3 x4

x2

x4 x4

x3

x3

x1 x2x1

The first and last partial orders, i.e. (x1
⊗

(x2||x3||x4)) and (x1||x2||x3)
⊗

x4),
each have 2 product components, while the second and third partial orders, i.e.
(x1

⊗
x2

⊗
(x3||x4)) and ((x1||x2)

⊗
x3

⊗
x4), each have three product compo-

nents.
It is clear that one can regard the products as having a constant amount of compo-

nents through “padding” with the empty set. Indeed, consider again the case of the
result of split for n = 4. One can obtain the padded result as follows:

(∅
⊗

x1
⊗

(x2||x3||x4)) and ((x1||x2||x3)
⊗

x4
⊗
∅), now each have 3 product

components, as do (x1
⊗

x2
⊗

(x3||x4)) and ((x1||x2)
⊗

x3
⊗

x4).

170 7 TheMOQA Language

For the sake of simplicity, we assume that padding will be implicitly arranged for
in every operation which produces a random bag consisting of product SP-orders.
Hence from here on we assume that l(i) is a constant which we denote by l. Thus

P : αn → {(β1, K1), . . . , (βk(n), Kk(n))},

where, for i ∈ {1, . . . , k(n)}, βi = αsi(1)
⊗

. . .
⊗

αsi(l).

Finally, in addition to the variable X we introduce S-variables Yj , where j ∈
{1 . . . l}. Each Yj stores data-labelings with states from the random bag deter-
mined by the j-th components of the products βi = αsi(1)

⊗
. . .

⊗
αsi(l), where

i ∈ {1, . . . , k(n)}. I.e. Yj stores data-labelings with states from the random bag
{(αs1(j), K1 × Lj

1), . . . , (αsk(n)(j), Kk(n) × Lj
k(n))}, where for i = 1, . . . , k(n),

Lj
i = Πk �=jsi(k).

Remark 7.7. Note that, by construction, any two S-variables Yj and Yk where j = k,
have partial orders αi

j and αi
k which are pairwise disjoint, where i ∈ {1, . . . , k(n)}.

Definition by Product Recursion
We will allow recursion on a fixed selection of the variables Yj , where j ∈ {1, . . . , l}.
Say this selection is Yj1 , . . . , Yjs , where the selection of indices is required to be pair-
wise distinct. In that case, Q is recursively defined by product recursion (version I):

I) Q(X) = P (X); Q(Yj1); Q(Yj2); . . . ; Q(Yjs
).

Remark 7.8. Note that the recursive calls to Q on the product components could
be replaced by several recursive calls on the parallel components of such product
components. This approach will be used in the definition of the Treap-gen algorithm
of Section 8.6.Also note that sequential execution Q(Yj1); Q(Yj2); . . . ; Q(Yjs) could
be replaced by a parallel execution.

We will discuss below how to make a further selection among the random struc-
tures in the random bag, through a second-order conditional.

Second-order selection
Consider a sequence of second-order boolean statements, say B1, . . . , Bm, where
for each j ∈ {1, . . . , m}, the statement Bj has all variables included in the collection
{Y1, . . . , Yl}, such that :

(*) the selections determined by these second-order boolean statements from the
random bag {(R(α1), K1), . . . , (R(αk(n)), Kk(n))} are pairwise disjoint.

To define the second-order conditional statement, for every j ∈ {1, . . . , m},
a selection of S-variables occurring in Bj is determined, say Yj1 , . . . , Yjs(j) . The
corresponding second-order conditional statement is defined by:

7.10 MOQA Programs 171

Cj = [if Bj then Q(Yj1);Q(Yj2); . . . ; Q(Yjs(j)) else skip]

We remark that the recursive calls Q(Yj1), Q(Yj2), . . . , Q(Yjs(j)) are independent
from one another, since the types of the S-variables Y1, . . . , Yl are pairwise disjoint
(cf. Remark 7.7).

The program Q[X : α] is defined by product recursion (version II) as follows:

II) Q(X) = P (X);C1; . . . ;Cm.

We remark that by condition (*) the calls to C1, . . . , Cm are independent from
one another.

Product recursion version II) generalizes version I) defined above. This is clear
when one simply allows the statements Ci to be Q(Yji) for m = s and i ∈ {1, . . . , s}.

7.10 MOQA Programs

We include a regular type of for-loop and a “downto”-version. As usual, the first
version requires that the loop-parameters A1 and A2 are such that A1 corresponds
to a number less than or equal to the number determined by A2, while the downto-
version requires that the number determined by A1 is greater than or equal to the
number determined by A2.

TheMOQA programs are defined by:

P = | [X := RS] | skip | (1)

[P1;P2] | (2)

[if B then P1 else P2] | (3)

[for i = A1 to A2 do P] | (4)

[for i = A1 downto A2 do P] | (5)

[Q(X) = P [Q(X1) || . . . , ||Q(Xk(0))] | (6)

[Q(X) = P (X);C1; . . . ; Cm]|. (7)

Remark 7.9. The conditional (3) as well as the program defined by parallel recursion
(6) and by product recursion (7) are required to satisfy the conditions outlined in the
previous discussions of these particular program constructs. In particular we only
consider second-order conditionals in this context.

172 7 TheMOQA Language

TheMOQA ∗ programs are defined by:

P = |P ∈MOQA | [while B do P] |

Remark 7.10. We note that we could formulate the conditional and the two types
of recursion such that these programs can be applied to isolated subsets. However,
one would need to distinguish between contractive and non-contractive applications.
This would lead to additional technical overload, which we avoid in the current
presentation. The Linear-Compositionality Theorem forMOQA , Theorem 7.8, can
be adapted to incorporate these cases via an application of the Extension Theorem
(Theorem 4.8).

Since we will show thatMOQA programs are RB-preserving, we will interpret
programs as transformations from random bags to random bags. Single element
random bags will simply be referred to as “random structures”. Hence for the basic
operations, such as the random product, when we refer to “a random structure” as an
argument, this random structure is regarded as a random bag with a pair consisting
of the random structure and the multiplicity one.

7.11 Randomness Preservation

We verify that MOQA Programs are random bag preserving. This follows by a
straightforward induction on the structure of programs.

Theorem 7.7. TheMOQA programs are RB-preserving. Moreover,MOQA pro-
grams solely constructed from product, split an projection operations are uniformly
RB-preserving.

Proof. We sketch the proof. We have shown that the basic MOQA operations
are RB-preserving and that the composition of RB-preserving functions is RB-
preserving. The fact that the basic MOQA operations are RB-preserving follows
from Theorems 5.2, 5.3, 5.5, 5.6, 5.7 and 5.8. It is easy to verify that these results
extend inductively on the structure ofMOQA programs to allMOQA programs.
Indeed, we remark that conditional statements are RB-preserving, as is clear from the
selection procedure for second-order conditionals in Section 7.6.4. Since for-loops
as well as parallel recursion and product recursion are guaranteed to terminate, they
amount to finite compositions of RB-preserving programs, which by Lemma 4.2
yields RB-preservation of these loops.

The fact that MOQA programs solely constructed from product, split and pro-
jection operations are uniformly RB-preserving follows by a similar argument and
the discussion in Section 5.8.

We recall from Chapter 3 that Heapsort and Bubblesort-I are not RB-preserving,
hence these algorithms are not implementable in MOQA . It is useful to illustrate

7.12 Compositional Determination of Average-Case Time 173

in an informal way at a syntactic level why these algorithms are not implementable
in the language.

For the case of Heapsort, one can implement the Heapify procedure, as will
be illustrated for Percolating Heapsort. However the Selection phase can not be
implemented. Indeed, the subsequent swap between the top element of the heap and
the final list element is not permissible inMOQA since this swap cannot be obtained
by performing any of the operations on random structures. Access to the final list
element in the heap is invalid since the heap, as a random structure, is an indivisible
unit which can only be involved in operations with other (disjoint) random structures
or can only be accessed through operations on isolated subsets.

For the case of Bubblesort-I we remark that this algorithm has an input S-
variable of type Δ. For size n, there are n! possible states for the input lists. For
any fixed data-labeling that corresponds to an input list, the first pass of the out-
ermost while loop compares the labels of the first two elements. To implement
Bubblesort-I in MOQA the next step should be an application of

⊗
in order

to create a new random structure on X[1], X[2] with as underlying partial order the
set {(X[1], X[1]), (X[2], X[2]), (X[1], X[2])}. Again, to incorporate Bubblesort-I
in MOQA , the next step once more should be a call to

⊗
on the labels of X[2]

and X[3]. However at this stage X[2] and X[3] no longer form components of an
isolated set of the random structure under consideration, since X[1] is immediately
below X[2] but not immediately below X[3].

7.12 Compositional Determination of Average-Case Time

In the following we discuss the compositional average-case time derivation for
MOQA programs. The results remain true for any programs which can be given
an interpretation [[P]] which is a RB-preserving function. We recall the Linear-
Compositionality Theorem, Theorem 1.3.

Theorem 1.3 (Linear-Compositionality)

1. Consider a random bag preserving program P such that [[P]] : R → R′. Then:

TP ;Q(R) = TP (R) + TQ(R′).

2. Consider a random bag R = {(−→Rp,
−→
Kp)}; then

a) TP (R) =
i=p∑
i=1

Probi × TP (Ri),

where Probi = Prob[F ∈ Ri] = Ki|Ri|
|R| , is the S-probability.

For the particular case where R = {(R1, K1)}, the previous equality reduces to:

b) TP (R) = TP (R1).

174 7 TheMOQA Language

The systematic application of this result to the sequential parts ofMOQA code
enables one to express the exact average-case number of comparisons of the computa-
tion over the original random bag in terms of the average-case number of comparisons
of more basic parts of the code over new random bags. Ultimately this enables an
expression of the average-case time of the code in terms of a linear combination of
the average-case times of the basic operations involved in the code. This is captured
by Theorem 7.8 below.

7.13 Linear-Compositionality for MOQA Programs

The following theorem, Theorem 7.8, states that the average-case comparison time
ofMOQA programs can be obtained in a linear-compositional way. This involves
the reduction of the average-case time of programs in terms of the average-case time
of the basicMOQA operations.

The average-case times of the basicMOQA operations random product, random
deletion and percolation can be computed via the formulas obtained in Chapter 6. The
average-case times of the Split operation as well as the Top or Bot operations applied
to an atomic random structure of size n is n − 1. Though we have not explicitely
included these, formulas similar to the one obtained in Chapter 6, can be obtained to
express the average-case time of the general version of Top and Bot. The Projection
and Skip operation take 0 comparisons on average. The following theorem illustrates
how the average-case time ofMOQA statements reduces to the average-case time
of basicMOQA operations.

Theorem 7.8. Linear-Compositionality forMOQA
In the following, R represents a random bag, say R = {((R1, K1), . . . , (Rn, Kn))}.
Random bags R = (R1, 1) of length one with multiplicity 1 are interpreted as Ran-
dom Structures R1. If P is aMOQA program then we represent the RB-preserving
function corresponding to P as usual by [[P]]. The average-case comparison time of
MOQA statements can be reduced in the following way:

1) For second-order boolean statements:

a) If B = [|Y | = A] (or one of its alternative versions with ≤,≥, < or >)
then TB(R) = 1

b) If B is build up via logical connectors ∨,∧,¬ from the boolean
expressions B1, . . . , Bk then TB(R) =

∑k
i=1 TBi(R).

2) T [P1;P2](R) = TP1(R) + TP2(R
′) in case [[P]] : R → R′.

3) TP (R) =
∑n

i=1 αiTP [Ri], when R = {(R1, K1), . . . , (Rn, Kn)} and

7.13 Linear-Compositionality for MOQA Programs 175

∀i ∈ {1, . . . , n}. αi = Ki×|Ri|∑n

i=1
Ki×|Ri|

.

4) T [if B then P1 else P2](R) =

TB(R) + Prob(B)TP1(R
B) + (1− Prob(B))TP2(R

¬B),

where RB = {F |F ∈ R and [[B]] (F) = True}
and R¬B = {F |F ∈ R and [[B]] (F) = False}

5) T [for i = A1 to A2 do P (i)](R) =
∑[[A2]]−[[A1]]+1

i=1 TP ([[P]]i−1 (R)),

where [[P]]0 (R) = R

and [[P]]i−1 = [[P ([[A1]] + i− 2)]] ◦ . . . ◦ [[P ([[A1]])]].

6) T [for i = A1 downto A2 do P (i)](R) =
∑[[A1]]−[[A2]]+1

i=1 TP ([[P]]i−1 (R)).

[[P]]0 (R) = R

and [[P]]i−1 = [[P ([[A1]]− i + 2)]] ◦ . . . ◦ [[P ([[A1]])]].

7) To treat the case of parallel recursion, we recall briefly the notation involved
in this case. To store data-labelings over an inductively defined parallel subtype, we
consider an S-variable X of this type, say αn of size n. Moreover, we represent the
parallel type of X as follows: X : α1 || . . . ||αk0 , for some fixed value k0 ≤ n. In ad-
dition to the variable X , we consider k0 variables, X1, . . . , Xk0 of types α1, . . . , αk0

respectively.

Consider a program Q of type (αn)n → (βn)n, where each αn is expressed as
a parallel SP-order α1 || . . . ||αk0 , where this selection of types can be determined
in a computable way. Consider a program P : β1 || . . . ||βk0 → βm where βm is a
refinement of β1 || . . . ||βk0 and m ≤ n.

The program Q can be defined by parallel recursion as follows:

Q(X) = P [Q(X1) || . . . ||Q(Xk0)].

Here X1, . . . , Xk0 contain the restrictions of the data-labeling stored in X to the
components α1, . . . , αk0 respectively.

The program P takes an input variable Y of type β1 || . . . ||βk0 , where Y stores
the data-labeling (recursively) computed by Q(X1) || . . . ||Q(Xk0).

T [Q(X)=P [Q(Y1) || ... || Q(Yk(0))]](αn) =
k0∑

i=1

TQ(R(αi)) + TP (R(βm))4.

4 Following Remark 7.6, if the execution where truly in parallel as opposed to sequential, the formula
obtained in 7) ought to be adjusted accordingly.

176 7 TheMOQA Language

8) In the case of product recursion, we deal only with the case which does not
involve selections through second-order boolean statements. The case where such
selections are involved can easily be dealt with via a generalization using case 4).

We recall that for product recursion, a program Q is defined in terms of a program
P which transforms the type inductive type αn into a type corresponding to a random
bag with k(n) product SP orders, denoted by β1, . . . , βk(n). Thus

P : αn → {(β1, K1), . . . , (βk(n), Kk(n))},

where, for i : 1, . . . , k(n), βi = αsi(1)
⊗

. . .
⊗

αsi(l). We recall that Q is defined by
product recursion via Q(X) = P (X); Q(Yj1);Q(yj2); . . . ; Q(Yjs), where Yj stores
data-labelings with states from the random bag

{(R(αs1(j)), K1 × Lj
1), . . . , (R(αsk(n)(j)), Kk(n) × Lj

k(n))},

where for i = 1, . . . , k(n), Lj
i = Πk �=jsi(k). Finally, we determine a fixed selection

of the variables Yj , via Yj1 , . . . , Yjs
, where {j1, . . . , js} ⊆ {1, . . . , l}.

T [Q(X)=P (X);Q(Yj1);...;Q(Yjs)](R(αn)) = TP (R(αn))+

∑s
m=1 TQ({(R(αs1(jm)), K1×Ljm

1), . . . , (R(αsk(n)(jm)), Kk(n)×Ljm

k(n))})5.

Proof. Case 1) is immediate. Cases 2) and 3) follow from Theorem 1.3. To show
Case 4), we note that for a given conditional statement [if B then P1 else P2](R),
we know (cf. Section 7.5) that the sets of data-labelings RB = {F |B(F) = True}
and R¬B = {F |B(F) = False} will form new random structures.

We remark thatProb(B) = |RB |
|R| and of courseProb(¬B) = |R¬B |

|R| = 1−Prob(B).

T [if B then P1 else P2]
(R)

=
∑
F∈R

T[if B then P1 else P2]
(F)

|R|

=
∑

F∈R TB(F)
|R| +

∑
F∈RT rue TP1(F)

|R| +
∑

F∈RF alse TP1(F)
|R|

= TB(R) +
∑

F∈RB TP1(F)
|RB |

|RB |
|R| +

∑
F∈R¬B TP1(F)
|R¬B |

|R¬B |
|R|

= TB(R) + Prob(B)TP1(R
B) + (1− Prob(B))TP2(R

¬B).

Finally, cases 5) and 6) follow by Theorem 1.3, while cases 7) and 8) follow from
a combination of Theorems 1.3 and 4.8.

5 Following Remark 7.8, if the execution where truly in parallel as opposed to sequential, the formula
obtained in 8) ought to be adjusted accordingly.

7.13 Linear-Compositionality for MOQA Programs 177

Remark 7.11. As indicated at the outset of the chapter, the language specifications
provided here serve the purpose of providing a basis on which to develop the examples
of Chapters 8 and 9. Clearly, to develop the static timing tool Distri-Track , further
aspects need to be taken into account. One of these is the representation of random
bags of arbitrary size n. This is addressed in more detail in Chapter 10, e.g. in relation
to the Split operation, and an approach involving inductive data structures is outlined
in [Hic08]. Another issue is the automated derivation of the time in the presence of
nested for-loops. Theorem 7.8 presents in cases 5) and 6) a method to compute the
average time of for-loops. Clearly the treatment of dependent parameters of nested
for-loops needs special care. This is a topic beyond the scope of the present book.
An approach to deal with nested for-loops is presented in [Hic08]. Finally, it is clear
that further extensions ofMOQA could be explored, some of which are discussed
in Chapter 11.

Chapter 8
Examples of MOQA Programs

We provide several examples of well-known algorithms for sorting and searching,
programmed in MOQA . Two new sorting algorithms are introduced, Percolat-
ing Heapsort and Treapsort, based on the MOQA deletion operation. Percolating
Heapsort provides the first randomness preserving version of Heapsort.

In the following examples X denotes the input S-variable while Z denotes the
output S-variable.

We adopt the convention in the presentation thatMOQA algorithms when called
on orders of size 0 or 1 act as the identity operation, i.e. will simply return the data-
labeling of a partial order of size 0 or 1.

Moreover, when referring to a call to a basic operation on an S-variable X , we
assume implicitly that the data-labeling stored in the variable X is reset to the output
data-labeling computed by the basic operation. For instance, we will refer to Top(X)
as opposed to [X := Top(X)] in the pseudo-code.

8.1 Insertionsort

The MOQA code for Insertionsort captures the traditional insertion operation, of
inserting a single element into a sorted list, via theMOQA product operation.

Insertionsort[X : Δ]
Z : = X[1]
for i = 2 to |X| do Z : = Z

⊗
X[i]

8.2 Merge

The merge algorithm is a traditional “pop-the-top” style merge operation, where
systematically the least element of two sorted lists is removed and stored in a new
list to create the sorted list as output.

180 8 Examples ofMOQA Programs

We consider an inputS-variable X of a parallel type, denoted by σ, which consists
of the union of two disjoint linear orders, say [X : (I1, Υ)∪(I2, Υ), I1∩I2 = ∅]. The
merge algorithm is defined by product recursion, where the operation Bot is called
on the data-labelings stored in X . The result is a data-labeling over a new partial
order with a minimum. We denote the restriction of this data-labeling to partial order
with the minimum removed, by X .

Merge[X : (I1, Υ) ∪ (I2, Υ), I1 ∩ I2 = ∅]
Merge(X) = Bot(X); Merge(X)

8.3 Mergesort

We define theMOQA pseudo-code for Mergesort by parallel recursion. We use the
following notation for the type Δ: if Δ has underlying set U = {xi1 , . . . , xin} then
Δ1 indicates the discrete order with underlying set U1 = {xi1 , . . . , xi� n

2 �} and Δ2

indicates the discrete order with underlying setU2 = U−U1. In the following pseudo-
code we consider three variables, [Y1 : Δ1], [Y2 : Δ2] and [Y : (U1, Υ) ∪ (U2, Υ)].

MS[X : Δ]
[MS(X) = Merge(MS(Y1); MS(Y2))].

8.4 Quicksort

We discuss Quicksort based on the Split operation introduced in Chapter 1. The
treatment of Quicksort based on the standard Split operation defined in Chapter 5
is the same since both Split operations require the same average-case number of
comparisons.

We recall some notation regarding Split. As pointed out in Chapter 1, the Split
operation when executed on data-labelings over the discrete order of size n, produces
a random bag for which each partial order is order-isomorphic to one of the orders
P [0, n− 1], P [1, n− 2], P [2, n− 3], . . . , P [n− 3, 2], P [n− 2, 1], P [n− 1, 0]. We
recall that each of these orders has a “star-shape” as displayed below.

n − 1

0

P [0, n − 1]

1

n − 2

P [1, n − 2]

n − 3

2

P [2, n − 3]

2

P [n − 3, 2]

n − 3

P [n − 2, 1]

n − 2

1

P [n − 1, 0]

n − 1

0

8.4 Quicksort 181

We recall that star-shaped orders are defined to be partial orders which are order-
isomorphic to some P [i, j]. Star-shaped partial orders have the following form: a
central element (the pivot element), an “upper part”, IUPPER, which forms a strictly
isolated subset consisting of the j elements above the pivot and a “lower part”,
ILOWER, which forms a strictly isolated subset and consisting of the i elements
below the pivot. Note that for the star-shaped orders which are order-isomorphic to
P [0, n− 1] and P [n− 1, 0], ILOWER and IUPPER respectively are empty.

Finally, we recall that, by Lemma 1.2, Split determines a random bag preserving
function, where

Split : An �−→ {(R(P [0, n− 1]), Kn−1), . . . , (R(P [n− 1, 0]), K0)},

and where Ki =
(
n−1

i

)
for i ∈ {0, . . . , n− 1}.

Quicksort is defined by product recursion, case I). Using the notation for product
recursion (Section 7.9), we remark that program P in product recursion corresponds
to the Split operation in this case where we select the first element X[1] of X as
pivot.

Quicksort will, following a call to Split recursively call itself on the restriction
of the data-labelings to the IUPPER and the ILOWER part of the star-shaped partial
orders.

This is an example of an application of an operation to data-labelings which are
restricted to a strictly isolated subset of the partial order.

The part IUPPER, viewed over the random bag

{(R(P [0, n− 1]), Kn−1), . . . , (R(P [n− 1, 0]), K0)},

determines a type {(Δn−1, Kn−1), . . . , (Δ0, K0)}, while the strictly isolated subset
ILOWER determines the same type.

We consider, in a manner consistent with the definition of the variables Y1, Y2, Y3
in product recursion (for l = 3), a selection of variables Y1 : {Δ0, . . . , Δn−1} and
Y3 : {Δn−1, . . . , Δ0}.

The definition by product recursion for Quicksort inMOQA is the following:

Qsort[X : Δ]
Qsort(X) = Split1(X,X); Qsort(Y1); Qsort(Y3)

The previous examples are known to be randomness preserving, in the informal
meaning of this concept (e.g. [Knu73]). We consider the Heapsort algorithm which,
as shown in Section 3.5, is not RB-preserving.

182 8 Examples ofMOQA Programs

8.5 Percolating Heapsort

The problem with Heapsort’s average-case analysis has been extensively studied in
the literature. As an application we re-program Heapsort in MOQA and obtain
the first RB-preserving variant of the algorithm, Percolating Heapsort. First, we
present the historic context of the difficulties encountered with Heapsort’s average-
case analysis.

8.5.1 Historical Background

The average-case analysis of Heapsort is notoriously hard due to the fact that Heap-
sort’s selection process does not preserve randomness (cf. [Knu73], [SS93], [LV93]
and [Ede96]). The sorting algorithm Heapsort was introduced by Williams in 1964,
motivated by the fact that heaps are ideally suited for large priority queue Applica-
tions [Wil64]. An improved version of the algorithm has been discussed by Floyd in
[Flo64]. The pseudo-code for both versions is given in Chapter 1. Heapsort’s running
time for either variant is guaranteed to be of order nlogn. Indeed, it is easy to estab-
lish that Heapsort is O(nlogn) in the worst case (e.g. [Knu73]) and hence it is also
O(nlogn) in the average-case. This last fact however only provides partial informa-
tion on the average-case, since the constant factor involved remains unknown. Knuth
undertook one of the earliest attempts to obtain a more precise average-case analy-
sis of Heapsort [Knu73] and showed that the heap creation phase of the algorithm
preserves randomness. In other words, after heapification of all lists of a given size,
we obtain a uniform distribution on the resulting heaps of that size (cf. Theorem H,
Section 5.2.3 of [Knu73]). The proof of the theorem involves a “backward analysis”
argument, which essentially establishes that the number of the lists giving rise to a
given heap after heapification, is constant. As discussed in [Knu73]: “... the selection
phase is another story, which remains to be written”. This remained a crucial stum-
bling block until an analysis of the average case was obtained in [SS93]. I. Munro
suggested a solution involving Kolmogorov complexity and the related incompress-
ibility method, as discussed in [LV93] (Section 6.3). The method proceeds by con-
tradiction and is based on extensive theoretical machinery involving probabilistic as
well as recursion-theoretic results. As such, the incompressibility method provides a
beautiful but inherently complex solution to the problem. Since the method proceeds
by contradiction (as does Sedgewick’s and Schaffer’s), it results in estimates and
does not allow one to provide the exact average-case comparison time for the selec-
tion phase of Heapsort or of Heapsort variants such as bottom-up-Heapsort [Weg90].
This problem is discussed in [Ede96], where Dutton’s weak-Heapsort [Dut92] is an-
alyzed. We recall (cf. Section 2) that the selection phase of Heapsort (or any of its
existing variants) does not preserve randomness of heaps (e.g. [Ede96]).

Edelkamp observes in this context: “Diese Betrachtung hat eine exakte average-
case Analyse von allen Heapsort-Varianten bis dato unmöglich gemacht1”. A similar

1 “This fact has made an exact average-case analysis of all Heapsort-variants impossible to date.”

8.5 Percolating Heapsort 183

remark is made in [Weg90], where the average-case for the variant Bottom-Up-
Heapsort is analyzed: “... for the heap creation phase exact results are obtained.
For the selection phase, we run into the same problems as those encountered in the
analysis of the average-case behaviour of Heapsort. Deleting the root of a random
heap and applying the heapify procedure (after replacing the root by another heap-
element) does not lead to a random heap. The analysis is possible only under certain
assumptions. The results are justified by experiments.” Because of this problem,
straight forward techniques, such as backward analysis, cannot be applied. Edelkamp
discusses Dutton’s weak-Heapsort [Dut92] which provides an interesting example
of a Heapsort variant which almost (!) allows for a backward analysis. Edelkamp
shows that a backward analysis is possible provided one accepts the use of a model
which approximates the true behaviour of weak-Heapsort. One needs to assume that
the “weak-heaps” of size n are, during all steps of the selection phase, of uniform
distribution. As pointed out in [Ede96], this model does not represent reality, but it
can be assumed that for large values of n, a uniform distribution is “approximated”.
Again, the computations are rather involved.

The problematic nature of determining Heapsort’s Average-Case Time has also
been pointed out in the context of automatic average-case analysis of algorithms
[FSZ91]. The programming Language LUO, developed by P. Flajolet, enables the
automatic derivation of the average-case complexity of classes of algorithms by es-
tablishing a link between recurrence equations and singularities of associated com-
plex functions. The Average-Case Time is obtained in this way through the use of
the mathematical software package Maple which has been partly incorporated in the
LUO code. However LUO is limited to so called “static” data structures. As reported
in “Automatic Average-Case Analysis of Algorithms”, by P. Flajolet, B. Salvy and P.
Zimmerman:

“Observe that (for LUO) there are no explicit variable assignments, and in a deep
sense, one cannot modify structures nor create new structures. Judging from the
entirety of the analyses contained in Knuth’s volume on sorting and searching, the
only algorithms that we know how to analyse are those whose complexity is equivalent
to a parameter of a static structure. No general method is known in order to analyse
intrinsically “dynamic” algorithms.” As reported on page 64 of [FSZ91]: “examples
that typically leave us helpless are heapsort and balanced trees that modify either
an ordered array structure or a tree structure.”.

We present Percolating Heapsort which does preserve uniform distribution, as
opposed to (current variants of) Heapsort, which leads to a determination of its
exact average comparison time. We remark that for technical purposes, we relax the
definition of a heap somewhat in that we replace condition 1) in the definition of a
near-heap by the weaker condition: “Some leaves are allowed to be omitted”. i.e. we
no longer require the omissions to take place in right to left order. This is needed
in order for Percolating Heapsort to perform deletions in a more flexible way. In
essence we will work with Heap-Ordered Binary Trees.

184 8 Examples ofMOQA Programs

8.5.2 Pseudo-Code for Percolating Heapsort

The formulation and the analysis of the algorithm are surprisingly simple. Hence
the worst-case as well as the average-case analysis of Percolating Heapsort can be
included as part of standard algorithm courses. This can be contrasted with standard
Heapsort and its current variants, for which the average-case analysis typically is post-
poned to a specialized graduate course (if covered at all), since its precise formulation
involves complex arguments such as the incompressibility method [LV93, Weg90].

The new Heapsort variant is easy to implement and is competitive with existing
Heapsort variants.

We first show how to implement the Heapify procedure in MOQA. We recall
that for a data-labeling stored in X and represented as a binary tree (cf. Section 2) the
element with greatest index which has children is the element X[� |X|

2 �]. Moreover,

in case this element only has one child, i.e. in case 2� |X|
2 � = |X|, then in addition to

this child X[|X|], we interpret the “second child” to be the child X[|X|+ 1], which
is defined to be ∅.

Heapify[X : Δ]
for j : = � |X|

2 � downto 1 do X[j] := (X[2j],X[2j+1])
⊗

X[j]

TheMOQA pseudo-code for Percolating Heapsort is defined below via product
recursion. We consider an S -variable X of type Δ. Data-Labelings stored in X are
transformed by PercM into new data-labelings over a partial order with a maximum.
The restriction of these data-labelings to the partial order without the maximum is
denoted in the following pseudo-code by X .

PH[X : Δ]
Heapify(X);
PH(X) = PercM (X); PH(X)

We illustrate Percolating Heapsort for lists of size 4. After the heapification phase,
three heaps of size 4 are produced (as is the case for traditional versions of Heapsort).

Example 8.1. Percolating Heapsort creates, after the first run of the percolation pro-
cess, one copy of the random structures R1 and R2 on the following page.

Percolating Heapsort’s effect on the random heaps of size 4 can be contrasted with
traditional Heapsort which does not produce a random structure after the first cycle
of the Selection phase (cf. Example 1.1).

8.6 Treap-gen 185

4 4 4

R1 R2

3

1 1

2
1

3 2 3

2

4− 4− 4−

3

2

1

2

33

1 2

4− 4−

14−

2

1

21 12

3 3 3

8.6 Treap-gen

8.6.1 Oriented Binary Trees

We follow the approach of [MR95] of considering endogenous binary trees, i.e.
binary trees for which all key values are stored at internal nodes and all leaf nodes
are empty. As remarked in [MR95], this assumption simplifies presentations, but is
in general not an essential requirement. Alternative code and technical adaptations
in order to ignore leafs labeled with the empty set can be provided if needed.

We recall the inductive data type of an oriented binary tree.

Definition 8.1. An oriented (endogenous) binary tree is a tree obtained by the fol-
lowing inductive process:

186 8 Examples ofMOQA Programs

T0 = ∅ (the empty tree) and T1 is the three-node tree, consisting of a root node
and two children labeled with the empty set. Let τ0 = {T0} and τ1 = {T1}. Then we
define the collection τn of trees by induction as follows: ∀n ≥ 2 the set τn obtained
via the construction displayed in the diagram below, where Ti indicates a tree from
τi and Tn−1−i indicates a tree from τn−1−i.

L R

Tn−1−i

where i ∈ {0, 1, . . . , n − 1}
Ti

We refer to the trees from the set Ti as the left-subtrees and to the trees from the
set Tn−1−i as the right-subtrees.

Remark 8.1. We will follow the convention of counting comparisons for algorithms
operating on binary trees as indicated earlier in Remark 5.4. Note that in this con-
vention we will not count testing for a leaf since in practice this test is typically
not counted for Heapsort variants. Again, counting such tests can be obtained via
technical adaptations if needed.

Rather than labeling the branches with L and R in order to display the orientation
we will assume this orientation is implicitly given by the display of the branches on
the page, drawn as “directed to the left” and “directed to the right”, when emerging
from the parent node.

We remark that Oriented (Endogenous) Binary Trees are full trees, a notion defined
in Chapter 2. The following is a well-known fact regarding full binary trees.

Lemma 8.1. A full binary tree of size 2n− 1 has n− 1 internal nodes and n leaves.

8.6.2 Treaps in MOQA

Oriented binary trees are incorporated via a random structure inMOQA relying on
an encoding of the orientations. This is achieved by the requirement that the indices
of the elements of the partial order must be “consistent with the orientation”.

Definition 8.2. Given an oriented binary tree determined by a finite partial order
over the set {x1, . . . , xn}. We say that the ordering is consistent with the orientation
provided the following holds for every parent node xi in the tree:

a) if xi has a left child xj then i > j
b) if xi has a right child xk then k > i.

8.6 Treap-gen 187

Definition 8.3. A Heap-Ordered (Binary) Tree, is an ordered binary tree which is
equipped with a data-labeling. A Treap is a Heap-Ordered Binary Tree for which
the underlying partial order is consistent with the orientation. If L is a label set of
cardinality n then T REAPL(n) denotes the random bag consisting of the random
structures with label set L, over the Oriented Binary Trees of size n for which the
order is consistent with the orientation.

Note that Heap-Ordered Treaps correspond to treaps as defined in Chapter 2. The
labels of a Treap correspond to the priorities, while the indices of the elements in the
finite partial order correspond to the keys.

Lemma 8.2. If the index set is fixed and of size n for a given partial order of size
n, then each oriented binary tree has exactly one indexing of the elements for which
the partial order is consistent with the orientation.

Proof. We remark that the partial order consistent with the orientation has an order on
indices which is equivalent to the standard binary search tree order and hence there is
a unique indexing for each oriented binary tree such that the associated partial order
is consistent with the orientation.

We discuss a Heap-Ordered Treap Generation algorithm, Treap-gen, which is
guaranteed to produce all Heap-Ordered Treaps of a given size from the states of the
discrete random structure of that size. Hence the issue of orientation consistency will
not arise explicitely since the algorithm is guaranteed to produce outputs respecting
this property (cf. Remark 8.4).

Remark 8.2. In the following lemma we use a Delete operation on a full binary tree
which consists of pruning one of the “leaves”. We recall that we consider endogenous
trees for which a leaf consist of a full binary trees of size 3 which has an internal
node and two leafs indicated by ∅. This type of deletion reflects the outcome of the
MOQA -Delete operation at the level of the partial order.

Lemma 8.3. The Delete operation, introduced in Remark 8.2, when executed in all
possible ways at the partial order level, i.e. at all leaves and on all trees from
OBT (2n− 1), produces n− 1 copies of OBT (2(n− 1)− 1).

Proof. Consider a tree from OBT (2(n − 1) − 1). If one extends a leaf of such
a tree, by removing its designation as ∅ and replacing it with a full binary tree of
size 3 with one internal node (at the original leaf) and two new leaves, each labeled
with ∅, the resulting tree belongs to OBT (2n − 1). By Lemma 8.1 each tree from
OBT (2(n − 1) − 1) has n − 1 leaves, hence this process of extending the leaves
can be carried out in n− 1 different ways. One can verify that conversely, each tree
from OBT (2(n− 1)− 1) is the result of removing a single full binary tree of size
3 of the above kind from exactly n− 1 trees from OBT (2n− 1).

188 8 Examples ofMOQA Programs

Example 8.2. We illustrate Lemma 8.3 for n = 4, Del(OBT (7)) = 3 × OBT (5).
This result is obtained via the Delete operation which at the partial order level will
result in removing the oriented binary trees of size 3 indicated in “dash-dotted”-form,
where the effect of each such pruning on a tree from OBT (7) produces a copy of
the tree from OBT (5) indicated in solid lines on the diagram below.

Finally, we conclude with a similar result for Treaps.

Proposition 8.1. The MOQA Delete operation when executed on all trees from
T REAP(n− 1) produces n− 1 copies of T REAP(n− 2).

Proof. We sketch the proof. Note that OBT (2n− 1) after the removal of its nodes
labeled with the empty set corresponds to T REAP(n− 1) and a similar process on
OBT (2(n− 1)− 1) yields T REAP(n− 2). From Theorem 5.4 we know that the
Del(k) operation is a bijection on Treaps. During the application of the operation,
the k-th smallest label a has become the least label a− of the resulting Treaps and is
then removed. Hence the application of the operation is equivalent to the removal,
at the partial order level, of the minimal elements of the Treaps produced after the
Push-Down operation on a−. The result is obtained as a corollary of this observation
in combination with Lemma 8.3.

The following Proposition is an immediate Corollary of Proposition 8.1 and the
fact that PercM acts in a similar way as the Del operation.

8.6 Treap-gen 189

Proposition 8.2. TheMOQA PercM operation when executed on all treaps from
T REAP(n− 1) returns n− 1 copies of T REAP(n− 2).

Note that we do not insist for the PercM operation, when it resets an input data-
labeling to a new data-labeling, to preserve an orientation from the root of the new tree
to its child, i.e. the operation will create a new root for which the index in general no
longer respects the orientation. However, the algorithm to be considered will operate
on the data-labeling returned by the PercM operation, restricted to the partial order
without the newly introduced maximum at the root, which is the Treap-part of the
new data-labeling.

8.6.3 Treap-Generation

To present the pseudo-code for Treap-gen, defined by product recursion, we introduce
some notation. In the following, we focus on the actions of Top on the atomic random
structure An. If F ∈ An and if Top(F) = F ′, then F ′ is a data-labeling over the
following partial order in which one of the originally maximal elements, namely
the maximal element xi labeled with the largest label, has become the maximum
element:

xi

x1 xi−1. . . xi+1 . . . xn

Consider the discrete random structure An, with underlying set {x1, . . . , xn}.
For i ∈ {1, . . . , n},An[i] is defined to be the random structure for which the partial
order has a Hasse diagram consisting of the pairs {(xj , xi)| j ∈ {1, . . . , n}, j = i},
as displayed above. Moreover, we define the following isolated subsets on the partial
order of An[i]: for each data-labeling F of An[i]: I1 = {x1, . . . , xi−1} and I2 =
{xi+1, . . . , xn}.

Whenever X stores a data-labeling F in the pseudo-code below, X1 stores the re-
striction of the data-labeling F to I1 and X2 stores the restriction of the data-labeling
F to I2.

We present the recursive pseudo-code for the generation of Treaps via Treap-gen.

Treap-gen[X : Δ]
[Treap-gen(X) = [Top(X)];Treap-gen(X1);Treap-gen(X2)]

Remark 8.3. We remark that Treap-Gen produces a random bag, where each random
structure has multiplicity one and forms a collection of treaps over a fixed tree.
Treap-Gen determines a bijection from An to T REAP(n).

190 8 Examples ofMOQA Programs

Example 8.3. We illustrate the effect of Treap-gen on two states from A3 over the
label set {1, 2, 3}.

x1x2x3

1 3 2 →

3

1

2 1 3 →

x1

x1 2

3

1

2

x2

x3

x3

x2

Remark 8.4. It is easy to verify that the Treaps created by Treap-gen from the discrete
random structure An satisfy, as required, that the ordering is consistent with the
orientation (cf. Definition 8.3).

8.7 Treapsort

Treapsort is a new sorting algorithm which creates Heap Ordered Treaps (Treaps) via
the Treap-gen algorithm and systematically uses the root label, i.e. the largest label in
the treap, to form a sorted list. In this sense it is similar in spirit to Heapsort variants.
Treapsort differs however from traditional Heapsort variants in that its worst-case
time, like Quicksort, is O(n2) while its average-case time is O(nlogn).

Pseudo-code for Treapsort on T REAP(n):

Treapsort[X : Δ]
[Treap-gen(X)];
[Treapsort(X) = PercM (X);Treapsort(X)].

8.8 Quickselect

Finally, we present an example of a search algorithm, Quickselect, which finds the
k-th smallest (alternatively the k-th largest) element in a given list. Quickselect is
defined by product recursion inMOQA , case II), involving a second-order condi-
tional.

This example will be revisited in Chapter 10 as an illustration of an application of
the static average-case timing tool Distri-Track. Moreover, an analysis is provided
comparing the theoretical prediction of the average-case time obtained for Quick-
select by Distri-Trackwith the average-case analysis obtained in the context of the
RTSJ through profiling and sample input spaces.

8.8 Quickselect 191

Using the notation for product recursion (Section 7.9), we remark that program P
in product recursion corresponds in this case to the Split operation, where we select
the first element X[1] of X as pivot.

Following the notation of product recursion, we consider variables Y1, Y2, Y3
where for all j ∈ {1, 2, 3} we have [Yj : {I1

j , . . . , In
j }]. Here, following similar

notation as for the case of the Quicksort algorithm, Y1 corresponds to the lower part
of the star shaped partial orders P [i, j] and Y3 corresponds to their upper part, while
Y2 refers to the strictly isolated subset consisting of the middle element.

For j ∈ {1, 2, 3}, let pi
j = |Ii

j |. Note that pi
2 = 1 and ∀i ∈ {1, . . . , n}. pi

1 = n− i

and pi
3 = i− 1.

We provide the pseudo-code for Quickselect via product recursion, case II), i.e.
relying on the selection procedure. Note that Quickselect on the base case of size
one is the identity function.

Qselect[X : Δ, k]
Split1(X,X);
If |Y1| ≥ k then Qselect(Y1, k)

else if |Y1| = k − 1 then Qselect(Y2, 1)
else Qselect(Y3, k − |Y1| − 1)

Chapter 9
Average-Case Analysis of MOQA programs

We illustrate in this section the determination, in a compositional way, of the average-
case time of some MOQA programs. The examples focus on sorting and search
algorithms. Note that some of the resulting average-case times will differ slightly
from those presented in the literature. For instance for the case of Insertionsort, some
additional comparisons are counted due to the definition of the MOQA product
operation which includes an outer while loop, involving a single comparison. In
traditional Insertionsort, a single insertion process is called, based on a Push-Down
operation of the i-th label of a list into a priorly sorted list of size i − 1. No extra
comparison is made to determine whether this process needs to be repeated. Due to the
generality of the product operation, included in the pseudo-code of the Insertionsort
algorithm presented below, an additional comparison will be made. This could be
avoided via fine-tuning of theMOQA product operation adapted to this special case,
which can be done without losing RB-preservation. However, rather than adapting
MOQA operations to specific algorithms, it is acceptable to have a slight increase
in running time, using the standardMOQA operations, since slight time increases
are in general accepted to facilitate static timing.

9.1 Insertionsort

We recall theMOQA code for Insertionsort.

Insertionsort[X : Δ]
Z : = X[1]
for i = 2 to |X| do Z : = Z

⊗
X[i]

We letJ(i)denote the bodyZ : = Z
⊗

X[i]of the for-loop, for i ∈ {2, . . . , |X|}.
The program Insertionsort, which we will denote by I , has an average-case time

which by Linear Compositionality (Theorem 7.8 13)) reduces for a given size n to:

194 9 Average-Case Analysis ofMOQA programs

TI(An) =
n∑

i=2

T J(i)(J i−1(An)),

where J0(An) = An and ∀i ≥ 2. J i−1 = J(i); . . . ; J(2).
Let |X| = n, [X : (U, Δ)], U = {uj1 , . . . , ujn

} and Ui = {uj1 , . . . , uji
}.

Let τ1 = (U, Δn), and thus R(τ1) = An, and let τi for i ≥ 2 denote the
partial order on U consisting of the linear order (Ui, Υi) and the discrete order
(U−Ui, Δn−i). Hence ∀i ≥ 2. J(i) : τi−1 → τi and J(i)(R(τi−1)) = (R(τi), Ki)
where Ki is the multiplicity corresponding to the random product as defined in
Theorem 5.21:

T I(R(τ1)) =
n∑

i=2

T J(i)(R(τi), Ki).

By Theorem 1.3 2), the multiplicity Ki can be eliminated for the average time for
a random bag of size one:

(1)T I (R(τ1)) =
n∑

i=2

T J(i) (R(τi))

But now, T J(i) (R(τi)) can be evaluated using the formula derived in 6.2 for the
average running time of a product. The average time for the product operation A⊗B
is

|A||B|
|A|+ |B| (τdown(A) + τup(B)) +

(
|A||B|
|A|+ |B| + 1

)
(|Amax|+ |Bmin| − 1) .

In this context, A is a linear order of size i−1, and B is a singleton element. Inserting
the trivial values for B, and the values for A derived in 6.4.2.1, we get

T J(i) (R(τi)) =
(

(i− 1).1
(i− 1) + 1

)
τ(L(i− 1)) +

(
(i− 1).1

(i− 1) + 1
+ 1

)

=
(

i− 1
i

) (
i

2
− 1

i− 1

)
+

i− 1
i

+ 1

=
i + 3

2
− i

2
.

Inserting this into (1) above, we get the average running time for Insertionsort:

T I(n) = T I(R(τ1)) =
n∑

i=2

[
i + 3

2
− i

2

]
=

n2 + 7n− 8Hn

4
,

and hence the algorithm has O(n2) average-case time as expected.

1 For the sake of completeness we remark that: Ki =
((i−2)+1

1

)
= i − 1.

9.3 Quicksort 195

9.2 Mergesort

We leave the analysis of the Merge algorithm as an exercise (cf. also Exercise 6.1).
We recall theMOQA pseudo-code for Mergesort by parallel recursion. We use

the following notation for the type Δ: if Δ has underlying set U = {xi1 , . . . , xin
}

then Δ1 indicates the discrete order with underlying set U1 = {xi1 , . . . , xi� n
2 �} and

Δ2 indicates the discrete order with underlying set U2 = U − U1. In the follow-
ing pseudo-code we consider three variables, [Y1 : Δ1], [Y2 : Δ2] and [Y : (U1, Υ)∪
(U2, Υ)].

MS[X : Δ]
[MS(X) = Merge(MS(Y1); MS(Y2))].

By Theorem 7.8 2) and 7), the average time of Mergesort is given by:

TMS(An) = TMS(A� n
2 �) + TMS(An−� n

2 �+1) + TMerge(R(σn)), where we
recall that σn consists of two components, i.e. two linearly ordered sets of size �n

2 �
and n − �n

2 � + 1 respectively. When formulated in terms of sizes, this amounts to
the standard Mergesort recurrence which can be solved in the classical way:

TMS(n) = TMS(�n
2
�) + TMS(n− �n

2
�+ 1) + TMerge(�

n

2
�, n− �n

2
�+ 1).

9.3 Quicksort

We recall the pseudo-code by product recursion for Quicksort inMOQA :

Qsort[X : Δ]
Qsort(X) = Split1(X,X); Qsort(Y1); Qsort(Y3)

We recall that, by Lemma 1.2, Split determines a random bag preserving function,
where

Split : An �−→ {(R(P [0, n− 1]), Kn−1), . . . , (R(P [n− 1, 0]), K0)},

and where Ki =
(
n−1

i

)
for i ∈ {0, . . . , n − 1}. By Theorem 7.8 8), we obtain the

equality (*):

TQsort(An) = TSplit1(X,X)(An) +

TQsort({(A0, K1 × L1
1), . . . , (An−1, Kn × L1

n)}) +

TQsort({(An−1, K1 × L3
1), . . . , (A0, Kn × L3

n)}).

196 9 Average-Case Analysis ofMOQA programs

Where in the notation of Theorem 7.8 8), we note that: Lj
i = Πk �=jsi(k) and thus:

L1
i = (n− i)! and L3

i = (i− 1)!
Note that since A0 corresponds to the random structure over the empty set, the

average-time of Qsort in that case is zero and the terms over A0 can be dropped.
We recall that TSplit1(X,X)(An) = |X|−1 = n−1. Theorem 7.8 3) then yields:

TQsort(An) = n− 1 +
n−1∑
i=1

α3
i TQsort(Ai−1) +

n−1∑
i=1

α1
i TQsort(An−i),

where

α1
i =

Ki × L1
i × |An−i|∑n

i=1 Ki × L3
i × |An−i|

=
Ki × |R(P [i− 1, n− 1])|∑n
i=1 Ki × |R(P [i− 1, n− 1)]| =

1
n

.

The last equality is obtained from the fact that the split operation is uniformly
RB-preserving, with as fixed partition size (n − 1)! (cf. Remark 1.5 and Definition
4.10). Similarly, we obtain that α3

i = 1
n . Hence the standard recurrence equation for

Quicksort is obtained, i.e.

TQsort(n) = n− 1 +
1
n

n−1∑
i=1

TQsort(n− i) +
1
n

n−1∑
i=1

TQsort(i− 1),

which can be solved in the usual way [FV90], where the solution is TQ(n) =
2(n + 1)Hn − 4n, where H(n) =

∑n
i=1

1
i . It is well-known that H(n) ≈ ln(n) +

γ+ 1
2n−

1
12n2 +O(n−4) where γ = 0.577216 . . . is Euler’s constant. Hence TQ(n) ≈

2(n+1)ln(n)+(2γ−4)n+(1+2γ)+ 5
6n −

1
6n2 O(n−3) or TQ(n) ∈ O(nln(n)).

Note that we stayed close in spirit to an automated derivation of the average-case
time of this algorithm, but could have simplified the argument by observing that
L1

i = L3
n−i+1, which allows for a simplification of (*) to:

TQsort(An) = TSplit1(X,X)(An) +

2TQsort({(A0, K1 × L1
1), . . . , (An−1, Kn × L1

n)}).

And hence the familiar simplified recurrence is obtained:

TQsort(n) = n− 1 +
2
n

n−1∑
i=1

TQsort(n− i).

9.4 Percolating Heapsort 197

9.4 Percolating Heapsort

We carry out an analysis of the average time of Percolating Heapsort.

Remark 9.1. We recall (cf. Remark 5.4) that we interpreted a node with a single child
as a node with two children, where the artificially introduced node is the empty tree.
In that case a comparison will be carried out leading to a swap with the correct
label, i.e. the label for the non-empty node.

In analysing Percolating Heapsort, it suffices to focus on heaps of size 2k − 1,
where k is a natural number such that k ≥ 1. This is standard practice in algorithmic
analysis. For a formal justification of this approach we refer the reader to [Lev03].

By Theorem 1.3 we can express the recurrence for Percolating Heapsort’s com-
parison time as follows:

TPH(An) = TH(An) + TP (Hn).

The average time required for the heapification procedure, implemented in the
standard way [AHU87], is of course well-known (e.g. [Knu73],[Weg90] or [Ede96]).
For the sake of completeness, we recall (cf. [Ede96]) that for αi =

∑∞
j=1

1
2j−1 and

β =
∑∞

k=2
1

2k(2k−1) , the average comparison time for Williams’ version of the
Push-Down operation [LV93]is: (α1 +α2−2)n+O(logn), while the average com-
parison time for Floyd’s bottom up version of the Push-Down operation [LV93] is:
(9
2 − α1 − α2 − β)n + O(logn).

We recall theMOQA pseudo-code for the heapification procedure.

Heapify[X : Δ]
for j : = � |X|

2 � downto 1 do X[j] := (X[2j],X[2j+1])
⊗

X[j]

We leave the analysis of theMOQA code for the Heapification case as an exer-
cise. The reader may wish to compare this with the average-case time of the traditional
implementation.

We recall the pseudo-code for Percolating Heapsort.

PH[X : Δ]
Heapify(X);
PH(X) = PercM (X); PH(X)

In order to determine the average-time for the percolation phase we will carry
out a backwards analysis a la Knuth. This should be contrasted with the situation
of the Selection phase for traditional Heapsort, which, due to its non-randomness
preservation, does not allow for a backward analysis. Hence the analysis we provide
below constitutes progress on the state of the art in Algorithmic Analysis, since as

198 9 Average-Case Analysis ofMOQA programs

pointed out earlier, the exact average-case analysis of all Heapsort variants remained
unknown.

One should take into account in this context that the analysis we provide below
can not be automated at this stage. Indeed, the analysis will proceed via a backwards
argument, without explicitly setting up the recurrence equation for the average-case
time of the algorithm. This is due to the fact that the recursive call on the percolation
operation PercM does not proceed from the collection of Heaps of size n to the
collection of heaps of size n−1. Instead, a sub collection of the Heap-Ordered Trees
of size n− 1 is created.

The algorithm Treapsort, which will be discussed next, as well as the other al-
gorithms outlined in this chapter, do allow for an automated average-case analysis.
Note that Treapsort operates over Treaps of size n, which are reduced to Treaps
of size n − 1, which enables the derivation of the recurrence equation. As we will
see, Treapsort does not share Heapsort’s typical O(nlogn) average and worst-case
time behaviour. Instead, while it has O(nlogn) average time, the worst-case time
is O(n2). Hence it remains an interesting problem to determine a Heapsort variant
which shares the typical O(nlogn) average-case and worst-case time of Heapsort
and which allows for a fully automated derivation of the average-case time. The
algorithm Percolating Heapsort however has excellent average-case time behaviour,
which can be derived via a formal analysis, as discussed below.

We recall that theMOQA -deletion is a bijective operation as discussed in Theo-
rem 5.4. Similarly, the percolation operation PercM establishes a one to one corre-
spondence between inputs and outputs since the computation chains leading from an
input to an output are unique. In fact one can reverse both versions of the Push-Down
operation via a corresponding “Push-Up” operation. Hence we can “run” Percolate
“backwards” starting with all possible outputs; that is the setHn of all heaps of size
n. We note that at each stage of the reverse unwinding of the Deletion operation, i.e.
for i ranging from 1 to n, the i-th largest element is percolated upwards in all heaps
ofHn until it reaches the top.

Viewed over all heaps ofHn, we can see that the comparison time of Percolate is
exactly the number of comparisons made in pushing up each individual element of
each individual heap to the top; in other words the lengths of the chains leading from
the root to each node of the heap. Hence the number of a comparisons for Percolate is
constant per heap. This follows from remark 9.1 above. In fact the constant is exactly
the total number of internal path lengths, i.e. the sum of the path-lengths from the
root to each node in the tree. It is easy to compute this constant via the formula below.
This is verified by induction, e.g. [Par95]:

k−1∑
i=1

i2i = (k − 1)2k+1 − k2k + 2.

Since the comparison time of Percolate is a constant value for all heaps of size
n = 2k − 1, we immediately obtain that:

9.4 Percolating Heapsort 199

T PercM (Hn) =
k−1∑
i=1

i2i.

We compute the outcome:

k−1∑
i=1

i2i = (k − 1)2k+1 − k2k + 2 = k2k − 2k+1 + 2

= k(2k − 1) + k − 2k+1 + 2 = kn + k − 2(n + 1) + 2
= (k − 2)n + k.

Remark 9.2. It is easy to verify that the number of swaps coincides with the number
of comparisons.

The reader may contrast this with the traditional version of Williams’ Push-Down
nor Floyd’s pushdown [LV93], which would could take as much as twice the number
of comparisons (for Williams’ version). Percolation is still cheaper than Floyd’s
version since we proceed from the root to a leaf, carrying out single comparison (at
most) per step. Floyd’s version would need to proceed from the leaf upwards again
to reach the correct position to insert the element involved in the Push-Down. Hence
Percolation is faster than the traditional Push-Down versions. This is supported by a
more detailed analysis of the various versions of Heapsort made in [SHB04], where
it is experimentally shown that Percolating Heapsort is up to 17% faster on average
than Floyd’s traditional Heapsort version.

So in order to determine the average comparison time for Percolating Heapsort,
it suffices to determine T PercM (n). From the above calculations and the fact that
the comparison time needed by P is constant over all heaps of size n = 2k − 1, it
follows that TP (n) = (k − 2)n + k. Since k = �log2n�, we obtain that: TP (n) =
(�log2n� − 2)n + �log2n�.

Hence the average time of Percolating Heapsort has been precisely determined,
including the constant factors for the terms n�log2n� as well as for the linear terms.
This may be contrasted with prior average-case analysis of Heapsort, for which the
constant factors for the linear terms remain unknown.

Performance of the algorithm
The average-case analysis of Heapsort has been discussed in [SS93] where it was
shown that Heapsort’s average time, TH satisfies the following bound: nlgn −
nlglgn − 4n ≤ TH(n). In [LV93] it is shown that the average comparison time of
Heapsort, for Williams’and Floyd’s version respectively, is given by: 2nlogn−O(n)
and nlogn+O(n), where the exact value for the linear terms is unknown. As pointed
out, experiments made in [SHB04] indicate that in practice Percolating Heapsort
beats Floyd’s version of standard Heapsort. Since the constants involved for Floyd’s

200 9 Average-Case Analysis ofMOQA programs

version are not known, experimentation is the only way to obtain a sound compari-
son. We have shown that the same constants are involved for Percolating Heapsort
as for Floyd’s version of standard Heapsort and have carried out an analysis of the
exact comparison time for the selection phase. We obtain in particular that Percolat-
ing Heapsort, with the standard Heapify algorithm, beats clever Quicksort in average
comparison time, for large values of n (cf. [Weg90]).

9.5 Treap-gen

We recall the pseudo-code for Treap-gen:

Treap-gen[X : Δ]
[Treap-gen(X) = [Top(X)];Treap-gen(X1);Treap-gen(X2)]

The following result is immediate since Top carries out n−1 comparisons on any
data-labeling with a state from An in order to determine the maximum label.

Lemma 9.1. TTop(An) = n− 1.

We remark that Treap-gen is defined via a generalized form of product recursion
discussed in Remark 7.8. We compute the multiplicities involved in this generalized
approach.

Since Top is RB-preserving we obtain, using the notation of Section 8.6.3:

Top : An �−→ {(An[1], 1), . . . , (An[n], 1)}.

We recall from Section 8.6.3 that the variables X1 and X2 store restrictions of
data-labelings with states fromAi[n] to the isolated subset I1 = {x1, . . . , xi−1} and
the isolated subset I2 = {xi+1, . . . , xn}.

This leads to multiple copies of the random structuresAi−1 andAn−i, where we
denote these numbers by Ki−1 and Kn−i respectively. We determine Ki−1 where
the determination of Kn−i is similar. The multiplicity Ki−1 is obtained by observing
that the restriction to I1 will single out the first i − 1 elements of the partial order
underlyingAn[i]. The label for the i-th element of this partial order is the maximum
label. Hence the labels for the remaining n − 1 elements of the partial order are
obtained by the (n − 1)! possible permutations of the remaining labels, i.e. the
labels excluding the largest one. Note that when we restrict these states to the first
i− 1 elements of the partial order, there are

(
n−1
i−1

)
choices for a fixed set of labels of

cardinality i−1. Moreover, each of the states of the first i−1 elements obtained in this
way, will occur (n− i)! times, i.e. once for each state of the remaining n− i elements
of the partial order. Hence Ki−1 =

(
n−1
i−1

)
× (n− i)! =

(
n−1
i−1

)
× (n− (i− 1)− 1)!

Hence an application similar to the one of Theorem 7.8 8) yields:

TTreap-gen(An) = TTop(n) + TTreap-gen({(A0, K0), . . . , (An−1, Kn−1)})

9.6 Treapsort 201

+TTreap-gen({(An−1, Kn−1), . . . , (A0, K0)}).

Via Lemma 9.1 and Theorem 1.3 we obtain:

TTreap-gen(An) = (n− 1) + 2
n−1∑
i=0

αi × TTreap-gen(Ai),

where ∀i ∈ {0, . . . , n − 1}. αi = Ki×|Ai|
|An| . Note that Ki =

(
n−1

i

)
× (n − i −

1)! = |An|
n×|Ai| . Hence ∀i ∈ {0, . . . , n− 1}. αi = 1

n
2 and thus, replacing the random

structures Ai by their size i:

TTreap-gen(n) = (n− 1) +
2
n
×

n−1∑
i=0

TTreap-gen(i).

This recurrence equation happens to be identical to the recurrence equation ex-
pressing the comparison time for Quicksort and can be solved via traditional means.
We sketch the approach: we let g(n) = TTreap-gen(n). Then:

g(n) = (n− 1) +
2
n

n−1∑
i=0

g(i).

To solve this recurrence, one can show that ng(n) − (n + 1)g(n − 1) = 2(n − 1)
and, dividing by n(n + 1) yields:

g(n)
n + 1

− g(n− 1)
n

=
2(n− 1)
n(n + 1)

.

Finally, let Ψ(n) = g(n)
n+1 . Then

Ψ(n) = Ψ(n− 1) +
2n− 2

n(n + 1)

and thus Ψ(n) =
∑n

i=1
2i−2

i(i+1) ≈
∑

i=1 n 2
i ≈ 2lnn3 Hence g(n) ≈ 2(lnn)(n + 1),

i.e.
(∗) TTreap-gen(n) ≈ 2(n + 1)ln(n).

9.6 Treapsort

Pseudo-code for Treapsort on T REAP(n), where F ∈ An:

2 Which, following Section 5.8, could be obtained through a uniform RB-preservation argument
for the special case of the Top operation over the discrete random structure An.
3 Where we use the harmonic numbers approximation:

∑
i=1 n1

i
≈ lnn.

202 9 Average-Case Analysis ofMOQA programs

Treapsort[X : Δ]
[Treap-gen(X)];
[Treapsort(X) = PercM (X);Treapsort(X)].

In the following we let (PercM)n denote the n-fold composition of the PercM

operation with itself, i.e. (PercM)n = PercM ◦ . . . ◦ PercM , with PercM re-
peated n times in case n ≥ 1. In case n = 0 we let (PercM)0 be the identify
function on data-labelings.

From the pseudo-code of Treapsort, Remark 8.3, approximation (∗) above and
the Linear-Compositionality Theorem one obtains:

TTreap-sort(An) = TTreap-gen(An) +
n∑

i=1

T PercM ((PercM)i−1(T REAP(n))

≈ 2(n + 1)ln(n) +
n∑

i=1

T PercM ((PercM)i−1(T REAP(n))

Applying Proposition 8.2 we obtain:

n∑
i=1

T PercM ((PercM)i−1(T REAP(n)) =

T PercM (T REAP(n)) +
n∑

i=2

T PercM ((PercM)i−1((T REAP(n− 1), n))

Repeated application of Proposition 8.2 yields:

(PercM)i−1((T REAP(n− 1), n)) =
(PercM)(i−1)−1(PercM ((T REAP(n− 1), n))) =

(PercM)(i−1)−2((T REAP(n− 2), n(n− 1))) =
(PercM)(i−1)−3((T REAP(n− 3), n(n− 1)(n− 2))) = . . .

(PercM)(i−1)−(i−2)((T REAP(n− (i− 2)), n(n− 1) . . . (n− (i− 3)))) =
PercM ((T REAP(n− (i− 2)), n(n− 1) . . . (n− (i− 3)))) =

(T REAP(n− (i− 1)), n(n− 1) . . . (n− (i− 2))) =

(T REAP(n− (i− 1)),
n!

(n− (i− 1))!
)

Note T PercM (T REAP(n)) = TDelM (n, T REAP(n)) where we delete the n-
th smallest label, i.e. the largest label, of the label set L for T REAP(n), since
PercM acts similarly to DelM when taking into account the comparisons carried

9.6 Treapsort 203

out by both operations. Hence:

TTreap-sort(n) = 2(n + 1)ln(n) + TDelM (n, T REAP(n)) +

∑n
i=2 TDelM (n− (i−1), ((T REAP(n− (i−1)), n!

(n−i)!))).

However, by Theorem 1.3:

TTreap-sort(n) = 2(n + 1)ln(n) + TDelM (n, T REAP(n)) +

∑n
i=2 TDelM (n− (i− 1), (T REAP(n− (i− 1)))

Conclusion:

TTreap-sort(n) = 2(n + 1)ln(n) +
n∑

i=1

TDelM (i, T REAP(i)).

We show the following result below:TDelM (n, T REAP(n)) ∈ O(ln(n)). Hence

we conclude that TTreap-sort(n) ∈ O(nln(n)).

9.6.0.1 Average-Case Analysis of DelM on T REAP(n) It remains to deter-
mine the actual average time of the DelM operation on Heap-Ordered Treaps of a
given size where the deletion is carried out on the largest label a placed at the root
note of the Treap.

We recall that the average-case time for the basic MOQA operations on SP-
orders has been analyzed in Chapter 6. Here we apply these formulas to analyze the
average-case time of the delete operation for the particular case of Treaps, where we
show that this operation, as one would hope, runs in logarithmic time.

Proposition 9.1. TDelM (n, T REAP(n)) ∈ O(ln(n)).

Proof. Since Treaps form an inductively defined data type, preserved under the DelM

operation (cf. Proposition 8.1), the analysis is quite straightforward.
We consider the set of trees T REAP(n), where n ≥ 2 and where we pruned as

usual all branches leading from an internal node directly to a leaf labeled with ∅. The
set of all trees fromT REAP(n)with a left subtree of size i, where i ∈ {0, . . . , n−1},
is denoted by T REAP(n)[i]. Also, the set of all binary trees of size n is denoted by
T (n).

By uniqueness of treaps, Section 2.3, it is clear that |T REAP(n)| = n! Moreover,
a formula similar to the one for computing the number of heaps given in Section 2.3,
yields that for i ∈ {0, . . . , n− 1},

204 9 Average-Case Analysis ofMOQA programs

|T REAP(n)[i]| =
(

n− 1
i

)
× |T REAP(i)||T REAP(n− 1− i)|

=
(

n− 1
i

)
i!(n− 1− i)!

Hence the probability of encountering a Treap of size n with a left sub tree of size i,

and thus with a right sub tree of size n−1− i, is |T REAP(n)[i]|
|T REAP(n)| = (n−1

i)i!(n−1−i)!
n! =

1
n .

Now, the average time taken to delete a label from a maximal node in a structure
A all the way to the bottom is simply Δ(A, |A|), as defined in 6.3.1. In the following,
whenever A and B are partial orders, A and B are the respective associated random
structures.

We use the following notation: i∗ = n − i − 1, so that the left subtree of size i
corresponds to the right subtree of size i∗.

T
M

Del(T REAP(n)) =
1
n

n−1∑
i=0

TDelM (T REAP(n)[i])

T DelM (T REAP(n)[i]) =

∑
A∈T (i)

∑
B∈T (i∗) |A||B|Δ(• ⊗ (A‖B), |A| + |B| + 1)∑

A∈T (i)

∑
B∈T (i∗) |A||B|

Here, the weighting is necessary because we want an average over all data-labelings,
whilst Δ is a function of the underlying partial orders, not all of which have the
same number of data-labelings. But now, the denominator can be simplified as
(
∑

A∈T (i) |A|)(
∑

B∈T (i∗) |B|) = |T REAP(i))||T REAP(i∗))| = i!(i∗)!, and we

can apply the series-parallel formulae for Δ4 to the numerator to get

1
i!(i∗)!

∑
A∈T (i)

∑
B∈T (i∗)

[
|A||B|

(
|A‖Bmax| − 1 +

|A|Δ(A, |A|) + |B|Δ(B, |B|)
|A| + |B|

)]
,

where we have dropped the Δ(•, 1) = 0 term. Now, |A| = i, |B| = i∗ and
|A‖Bmax| = |Amax| + |Bmax|. Each of A and B will have exactly one maxi-
mal element unless they are empty orders (since they are both trees), so we have
|A‖Bmax| = 2 − δi,0 − δi∗,0, where δm,n is the Kronecker delta function, whose
value is one when its arguments are equal and zero otherwise. Inserting all of these,
and separating the A and B dependent terms in the sum, we get

1− δi,0 − δi∗,0 +
i

n− 1

∑
A∈T (i)

|A|Δ(A, |A|)
i!

+
i∗

n− 1

∑
B∈T (i∗)

|B|Δ(B, |B|)
(i∗)!

= 1− δi,0 − δi∗,0 +
i

n− 1
TDelM (T REAP(i)) +

i∗

n− 1
TDelM (T REAP(i∗)),

4 In the special case of deleting the largest label, the series parallel composition rules for Δ can be
simplified to Δ(A⊗B, |A|+ |B|) = Δ(A, |A|)+Δ(B, |B|)+ |Amax|−1 and Δ(A‖B, |A|+
|B|) = |A|Δ(A,|A|)+|B|Δ(B,|B|)

|A|+|B| respectively.

9.6 Treapsort 205

since TDelM (T REAP(i)) =
∑

A∈T (i)
|A|Δ(A,|A|)∑

A∈T (i)
|A| =

∑
A∈T (i)

|A|Δ(A,|A|)
i! .

Inserting this back into the equation for TDelM (T REAP(n)), we get (writing

h(n) = TDelM (T REAP(n)) for concision)

h(n) = 1 − 2
n

+
1

n(n − 1)

(
n−1∑
i=0

ih(i) +
n−1∑
i=0

i∗h(i∗)

)
= 1 − 2

n
+

2
n(n − 1)

n−1∑
i=0

ih(i).

Rearranging, we get

n(n− 1)h(n)− (n− 1)(n− 2) = 2
n−1∑
i=0

ih(i) = 2(n− 1)h(n− 1) +
n−2∑
i=0

ih(i).

But now,

n−2∑
i=0

ih(i) = (n− 1)(n− 2)h(n− 1)− (n− 2)(n− 3).

Inserting this and simplifying, we get

n(n− 1)h(n)− (n− 1)(n− 2) = n(n− 1)h(n− 1)− (n− 2)(n− 3),

or

h(n) = h(n− 1) +
2n− 4

n(n− 1)
= h(n− 1) +

4
n
− 2

n− 1
.

Developing this sum, and using the fact that h(1) = 0, we get

h(n) = 2
n∑

i=1

1
i
− 4 +

2
n

= 2Hn − 4 +
2
n

,

where Hn is the n-th Harmonic number. Hence TDelM (T REAP(n)) ∈ O(ln(n)).

Remark 9.3. The formulae used to evaluate this time do not take into account the
convention, mentioned above, that where one of the sub-trees is empty, one compar-
ison is still assumed to be made in order to discover this. In order to correct for this,
we would have to remove the two Kronecker delta functions (which each remove
one comparison for the cases when each subtree is empty). If we then continue the
analysis as before, we end up with

h(n) = h(n− 1) +
2
n

= 2Hn − 2.

So the difference in running time between following the convention and not is 2− 2
n =

O(1), which is clearly dominated by the order of growth of Hn.

206 9 Average-Case Analysis ofMOQA programs

9.7 Quickselect

We recall the pseudo-code and continue to use the notation of Section 8.8. The def-
inition by product recursion, Case II), relying on a second-order conditional, for
Quicksort inMOQA is the following:

Qselect[X : Δ, k]
Split1(X,X);
If |Y1| ≥ k then Qselect(Y1, k)

else if |Y1| = k − 1 then Qselect(Y2, 1)
else Qselect(Y3, k − |Y1| − 1)

Here, the Split operation takes a pivot, and sorts the nodes in X into three cate-
gories: the pivot becomes Y2, whilst those nodes with labels greater than the pivot
become Y3, and those with labels less than the pivot become Y1. We assume that,
when called on a list of length one, Qselect returns with no comparisons.

The average running time of Qselect on a discrete random structure of sizen, where
we seek the kth element is denoted by TQselect(n, k). We also let Hn =

∑n
i=1

1
i be

the nth harmonic number.
We show that

T Qselect(n, k) = n+
k

n
+

1
n

⎛
⎝ ∑

1≤j<k

T Qselect(n − j, k − j) +
∑

k≤j<n

T Qselect(j, k)

⎞
⎠ .

We know that the initial Split will take n − 1 comparisons on a list of length n,
and for each integer j ∈ [0, n − 1], there is a 1

n chance that we will have |Y1| = j
(since the operation is uniformly random bag preserving).

Now, let B1 be the part of the pseudo-code starting from the first Boolean (|Y1| ≥
k) and B2 be the part starting from the second Boolean (|Y1| = k − 1). Also, let
p1 be the probability that the first Boolean is true, and p2 be the probability that the
second Boolean evaluates as true (given that it is called). We can apply Theorem 7.8
(4) to B1 and B2 to get

TB1 = 1 + p1TQselect(|Y1|, k) + (1− p1)TB2 ,

TB2 = 1 + p2TQselect(|Y2|, 1) + (1− p2)TQselect(n− |Y1| − 1, k − |Y1| − 1).

Now, since Split is uniformly random bag preserving, it is easy to see that p1 =
Prob(|Y1| ≥ k) = n−k

n , and hence 1− p1 = k
n .

We can evaluate p2 in a similar manner as a conditional probability:

p2 = Prob(|Y1| = k − 1| |Y1| ≥ k) =
1
k

,

and hence 1− p2 = k−1
k . So, if we let j = |Y1|, we have

9.7 Quickselect 207

TB1 = 1 +
k

n
+

n− k

n
TQselect(j, k) + �k

n
.
k − 1

�k
TQselect(n− j − 1, k − j − 1).

So, to get the overall average running time, we simply need to add on the n − 1
comparisons from Split and express the values of TQselect(n, k) as averages over all
possible cases:

TQselect(n, k) =

n + k
n + ��n−k

n

(∑n−1

j=k
T Qselect(j,k)

��n−k

)
+ ��k−1

n

(∑k−2

j=0
T Qselect(n−j−1,k−j−1)

��k−1

)
.

Changing the index of summation on the second sum, this tidies up to the desired
result:

T Qselect(n, k) = n+
k

n
+

1
n

⎛
⎝ ∑

k≤j<n

T Qselect(j, k) +
∑

1≤j<k

T Qselect(n − j, k − j)

⎞
⎠ .

Applying standard techniques from [Knu71], yields:

T Qselect(n, k) = n+
k

n
+

1
n

⎛
⎝ ∑

1≤j<k

T Qselect(n − j, k − j) +
∑

k≤j<n

T Qselect(j, k)

⎞
⎠ .

Contrast this to the result obtained in [Knu71] for a similar recurrence: if we have
T ′(1, 1) = 0 and

T ′(n, k) = n − 1 +
1
n

⎛
⎝ ∑

1≤j<k

T ′(n − j, k − j) +
∑

k≤j<n

T ′(j, k)

⎞
⎠ ,

then we get

T ′(n, k) = 2n + 6 + 2(n + 1)Hn − 2(k + 2)Hk − (2n + 6− 2k)Hn+1−k.

(This is the recurrence which we would obtain for Qselect if we did not count the
comparisons made in evaluating the two booleans).

The difference between the two is

Δ(n, k) = TQselect(n, k)− T ′(n, k) = 2Hk + Hn+1−k − 3.

It is known that the average running time of Quickselect (without counting the
comparisons in the booleans, and over all values of k for a give value of n) is O(n).
Now, it is easy to derive directly from this that the same result holds for this variant,
since

Δ(n, k) ∈ O (ln k + ln(n + 1− k)) ⊆ O (ln n) ,

and so the order of growth of the difference between the two is dominated by the
linear order of growth of the average running time.

Chapter 10
Distri-Track
Joint with D. Hickey and M. Boubekeur

The objective of the software tool Distri-Track is to automate the derivation of the
average-case execution time (ACET) ofMOQA programs. It is required to follow
exactly the rules as set out inMOQA theory. It is also an evaluation ofMOQA in
that it explores how the language can be used in practice. In this chapter an overview
of the design of Distri-Track is given and some preliminary evaluation results are
reported.

A complete overview of Distri-Track and the MOQA language specifications
in Java would exceed the scope of the current book. The overview sketched below
is given to provide the main ideas underlying the approach to the implementation
of the timing tool Distri-Track. MOQA code is provided on occasion as well as
code used in the context of Distri-Track. Again, this is only for illustration purposes,
without providing in every case full details on the codes meaning.

10.1 Analysable Code

Distri-Track analyses MOQA1 algorithms programmed in Java. The analysable
code must obey the MOQA rules, as outlined in Chapters 5 and 7. This allows
Distri-Track to accurately track data structures and generate ACET values.

As an example of such code and to aid our discussion in the remainder of this
chapter, Listing 10.1 gives a simple example ofMOQA code that implements the
Quickselect algorithm. Quickselect is one of the simplest and most efficient algo-
rithms in practice for finding specified order statistics (i.e. the k-th smallest/biggest
element) in a given sequence. It was invented by Hoare [Hoa61] and uses the usual
partitioning procedure of Quicksort: first choose a partitioning key, say x; regroup
the given sequence into two parts corresponding to elements whose values are less
than and greater than x, respectively; then decide, according to the size of the smaller
part, which part to continue recursively on, or to stop if x is the desired order statistics.

1 Beta Version 3.0 developed by J. Townley.

210 Distri-Track

1 p u b l i c c l a s s Q u i c k s e l e c t T e s t {
2
3 @TimeDependsOn ({0 ,1})
4 p u b l i c <L ex tends Comparable , G> NodeInfo<L , G> method (
5 O r d e r e d C o l l e c t i o n<L , G> lpo , i n t k) {
6 re turn q u i c k s e l e c t (lpo , k) ;
7 }
8
9 @TimeDependsOn ({0 , 1})

10 @Transform (param =0 , r e p =IDTBuild . DR, name=" QSel ")
11 p r i v a t e <L ex tends Comparable , G> NodeInfo<L , G> q u i c k s e l e c t (
12 O r d e r e d C o l l e c t i o n<L , G> lpo , i n t k) {
13 NodeInfo<L , G> p i v o t = l p o . g e t D i r e c t N o d e I n f o I t e r () . n e x t () ;
14 O r d e r e d C o l l e c t i o n<L , G> p a r t i t i o n = l p o . s p l i t (p i v o t) ;
15 I t e r a t o r <O r d e r e d C o l l e c t i o n S u b s e t <L , G>> aboveAndBelow =
16 p a r t i t i o n . g e t D i r e c t S u b s e t I t e r () ;
17
18 O r d e r e d C o l l e c t i o n S u b s e t <L , G> t o p = aboveAndBelow . n e x t () ;
19 O r d e r e d C o l l e c t i o n S u b s e t <L , G> b o t = aboveAndBelow . n e x t () ;
20
21 i n t bs = b o t . s i z e () ;
22 NodeInfo<L , G> r e s u l t ;
23
24 i f (bs == k − 1)
25 r e s u l t = p a r t i t i o n N I ;
26 e l s e i f (bs >= k)
27 r e s u l t = q u i c k s e l e c t (bot , k) ;
28 e l s e
29 r e s u l t = q u i c k s e l e c t (top , k − bs − 1) ;
30
31 re turn r e s u l t ;
32 }
33 }

Listing 10.1 Quickselect in MOQA .

AllMOQA variables, represented by OrderedCollection, Ordered-
CollectionSubset and NodeInfo types in this code, are tracked by Distri-
Track as random bags.

If the user chooses to begin the analysis at method, Distri-Track assumes the in-
put parameterlpo, which is aMOQA variable with typeOrderedCollection,
is a random bag with a single random structure represented as a discrete partial order,
i.e. an unsorted list, and assigns it a size, say n. For demonstration purposes n has a
value of 4, in which case lpo will be as shown in Figure 10.1.

Fig. 10.1 The random bag for the variable lpo containing an discrete random structure.

The parameter k, which is the order of the element being searched for, is also
assigned a value. Both lpo and k are passed to the method quickselect. Line
13 in the code stores a single node from lpo’s discrete order and this is used in
MOQA ’ssplit operation, the result of which is shown in Figure 10.2. We remark

10.2 Distri-Track Architecture 211

that pivot becomes the single node in the middle level with all nodes above having
greater labels, which are referenced by top in Line 18, and all nodes below having
lesser labels, which are referenced by bot in Line 19. The conditions in the if
statements, which depend on the value of k, then determine if the algorithm recurses
on top or bot or terminates with the desired result, i.e. the node containing the k-th
smallest (in this case) label.

Fig. 10.2 The random bag for the variable lpo after split. The node associated with the variable
pivot is circled in each random structure.

Note that when we depict the random bags and their random structures, the data-
labelings are not shown. Distri-Track bases its analysis on the fact that a random
structure will form all possible states, where we recall that the number of states can be
derived directly from the underlying partial orders. In fact at no stage of the analysis
does Distri-Track consider label values.

In the Quickselect code there are annotations attached to each of the methods.
These are used to guide the analysis performed by Distri-Track. In the sections that
follow, the function of these particular annotations will become clear.

10.2 Distri-Track Architecture

Figure 10.3 gives an overview of the design of Distri-Track.

10.2.1 Pre-Analysis

TheMOQA code is pre-processed using a Java optimisation tool called Soot [Soo].
This transforms the Java code into an intermediate representation called Jimple which
is a 3-address stackless language with 15 statements. Its features facilitate an analysis
such as that performed by Distri-Track. Soot also builds a call graph, which reflects
the invocations of methods, for the application being analysed and control flow graphs
for each method. Figure 10.4 shows the control flow graph (CFG) for the body of
method (left) and quickselect (right). As usual, the nodes in the CFG represent
the basic blocks of code in a program that do not contain any jump statements. The
edges correspond to jumps caused by Jimple statements such as if and goto.
In the code for the method quickselect there are six blocks, approximately

212 Distri-Track

Fig. 10.3 Distri-Trackarchitecture.

corresponding to the following - B0: Lines 13 to 24, B1: Line 25, B2: Line 26, B3:
Line 27, B4: Line 29 and B5: Line 31.

Fig. 10.4 CFG for method (left) and quickselect (right). The broken lines represent the edges
of the call graph caused by Line 6.

Soot Options

Jimple

Soot

Call Graph CFG

MOQA code

Operation
DefinitionsFunctions

Mathematica Handlers

Trackers Stmt Timers

BTSG

Method Time

Analyser

XML Engine

B0

B1

B4

B2

B3

B5

B0

10.2 Distri-Track Architecture 213

10.2.2 The Analyser

The analyser traverses the call graph and CFGs to derive the ACET equations for
the code. Its main processing engine incorporates Handlers which deal with the
different Jimple statements and expressions which can be encountered in the nodes
of the CFGs. Each handler contains a method called handle which takes a Jimple
statement as input. Trackers track information on variable values, e.g. random bags,
and other important aspects of the program, e.g. the number of times a loop will
iterate. Thehandlemethod either creates new trackers or transforms a set of existing
trackers according to the behaviour of the Jimple code.

When the handler for invoke expressions identifies a MOQA operation, the
XML engine obtains a definition of the operation’s behaviour. A simplified example
of the XML definition ofMOQA ’s product operation is shown in Listing 10.2.
As can be seen, each input is assigned an alias which is used in processing the output,
time, etc. The XML schema allows quite a lot of flexibility in the operation defini-
tions. For example there can be overloaded definitions for the same operation name.
Analogous to the way overloaded methods/functions are handled in programming
languages, Distri-Track uses inputs to determine the appropriate definition. In the
output definition of the product operation it can be seen how a random bag and its
random structures are represented. Along with each random structure a multiplicity
function can also be provided if the multiplicity is greater than 1. The final XML
tag supplies the operation’s ACET function. Currently Distri-Track incorporates
definitions for all the MOQA operations. However it is likely that in the future
other operations will be developed and their XML definitions can be included. This
is why XML is used rather than hard coding the behaviour of the operations into
Distri-Track’s Java code.

1 <o p e r a t i o n>
2 <name>p r o d u c t</ name>
3 <i n p u t s>
4 <i n p u t>
5 <t y p e> . . . </ t y p e>
6 <a l i a s>$ a 3</ a l i a s>
7 </ i n p u t>
8 <i n p u t>
9 <t y p e> . . . </ t y p e>

10 <a l i a s>$ a 4</ a l i a s>
11 </ i n p u t>
12 </ i n p u t s>
13 <o u t p u t>
14 <r e t u r n>
15 <rb>
16 <r s r e p>
17 <s t r u c t u r e>
18 <s e r i e s>
19 <component>$ a 3</ component>
20 <component>$ a 4</ component>
21 </ s e r i e s>
22 </ s t r u c t u r e>
23 <m u l t i p l i c i t y>
24 <f u n c t i o n>p r o d u c t M u l t i p l i c i t y</ f u n c t i o n>
25 <applyTo> . . . </ applyTo>
26 </ m u l t i p l i c i t y>
27 </ r s r e p>
28 </ r b>

214 Distri-Track

29 </ r e t u r n>
30 </ o u t p u t>
31 <t ime>
32 <f u n c t i o n>produc tT ime</ f u n c t i o n>
33 <applyTo> . . . </ applyTo>
34 </ t ime>
35 </ o p e r a t i o n>

Listing 10.2 Product XML definition.

As the handlers manipulate trackers, they also interact with the Mathematica
kernel [Mat] through J/Link [JLi] where necessary. As mentioned in the description
of the XML definition of the product operation multiplicity and ACET functions are
specified. These are found in a Mathematica package. Another package contains all
the formulas used in calculating the ACETs over the series-parallel structures, as
introduced in Chapter 6.

Behind the analysis a Branched Time State Graph (BTSG) is built for each method
from its CFG. Like the CFG, the BTSG is a directed graph. Each path in a BTSG
corresponds to one branch of execution in a method and must have its own set of
trackers. A branch splits into two branches when a branching statement such as an
if statement is encountered. Unlike a CFG however, paths do not merge. Attached
to each statement is the set of branches which it affects. When a statement is being
handled, the trackers which it modifies must be updated in each one of those branches.
For example take Line 31 of the code in Listing 10.1. The return statement has three
predecessors as can be seen in the CFG in Figure 10.4. The statement therefore has
the union of its predecessor’s branches associated with it. A graphical representation
of the BTSG of the example code is shown in Figure 10.5.

B0

B1

B4

B2

B3

B5B5

B5

Fig. 10.5 BTSG for quickselect method.

Inevitably Distri-Track is affected by the state explosion that is a common prob-
lem in the static analysis of branching code. To offset this somewhat, Distri-Track
efficiently manages how trackers for the different branches are stored in memory.
For example after a path branches in the BTSG, only trackers for variables that are
modified are copied into each of the new branches. However it is still possible that
very large programs may become untraceable because of excessively large BTSGs.

Other information that needs to be tracked with each branch includes the condition
that led to the branch, the probability of it executing (if possible to calculate) and

10.3 Random Bag Trackers 215

the summation of the ACET of each of the statements in the branch reflecting the
compositionality ofMOQA programs.

Along with the control statements shown above Distri-Track can also handle for
loops. while loops however are not supported because of the difficulty involved
in potential non-termination and in determining the number of iterations in case of
termination.

10.3 Random Bag Trackers

The most important tracker in Distri-Track tracks the random bags associated with
MOQA variables. In this section an overview of the challenges involved in repre-
senting random bags and their random structures is presented.

It is assumed that all data structures inMOQA are series-parallel partial orders
as discussed in Section 5.10. As shown in Listing 10.2 the output from a product
operation produces a random bag with one random structure with two components in
series. This gives a basic view of how Distri-Track represents structures: it lists the
components and their relationship, i.e. series or parallel. With components allowed to
be nested structure definitions, we get an inductive way of representing SP-structures
and this means any random structure can be tracked.

10.3.1 Condensed Representations

Distri-Track represents the collection of random structures in a random bag in a much
more concise way than specified in the theory. Firstly, as already noted, Distri-Track
does not explicitly track data-labelings. Secondly, the fact thatMOQA operations
are only executed on isolated subsets is exploited to reduce the amount of repetition
in the structure representations. Take the random bag in Figure 10.6a for example.

Fig. 10.6 a is the random bag before an operation on the circled isolated subset. b is the is the
random bag after the operation.

Some operation on the circled isolated subset could give the random bag with
two random structures in Figure 10.6b. In MOQA theory this is the usual way
of depicting the output of an operation. However to store multiple structure rep-
resentations for entire random structures after an operation in Distri-Track would

216 Distri-Track

be wasteful given that operations may only modify sub-structures. An example of
the structure representation, called a condensed representation, Distri-Track uses to
overcome this problem is shown in Figure 10.7. This greatly reduces the overhead
on the trackers and simplifies the analysis.

Fig. 10.7 Distri-Track’s condensed representation of random structures.

10.3.2 Collective Representations

The main issue representing random bags occurs when the number of random struc-
tures in a random bag is a function of a variable size, n. This in fact prevents a distinct
representation of each random structure. Therefore a way to collectively represent
the random structures is required. There are a number of methods of doing this. Two
are discussed here.

Firstly, the output from MOQA ’s split operation needs such a collective
representation when the atomic order it is executed on has variable size. This is
achieved by specifying the number of times a structure occurs over a range of values.
This generally leads to summations in the ACET functions output from Distri-Track.
Figure 10.8 encapsulates the way in which this kind of structure is represented.

Fig. 10.8 Distri-Track’s collective representation of random structures using size ranges.

The top level equates to a discrete structure of size r, where r can range from 0
to n− 1. The bottom level is similar except its size will range from n− 1 to 0. This
will work for example in defining the random bag in Figure 10.2 where n = 4.

Secondly, recursive algorithms can also produce random bags where distinct rep-
resentations are not possible. In this case the idea of inductively defined types (IDT)
is employed to alleviate the problem.

10.3 Random Bag Trackers 217

IDTs can be defined using a set of base cases and constructors. For example a list
of integers is defined as follows:

< list− of − integers >::= ()|(< integer > . < list− of − integers >)

This defines a list of integers as being empty (base case) or an integer combined with
a list of integers (constructor).

In MOQA the constructors are used to give an implicit representation of the
random structures in a random bag and allow recurrence equations to be derived for
the ACET based on the series-parallel formulas of Chapter 6. For example if the
random bag contained Heap-Ordered Trees (HOTs) the following constructor would
provide the necessary information:

< HOT >::= φ| < x > ⊗(< HOT > || < HOT >)

This defines a HOT as being empty or a single node x in series with two HOTs in
parallel. If the random bag contains all possible HOTs of size n then the size of the
left and right HOT can be treated in a similar fashion to the value ranges discussed
for the output from split.

For the Quickselect example shown in Listing 10.1 the annotation @Transform,
used in line 10, instructs Distri-Track to generate an IDT definition called QSel to
represent all possible outputs from the quickselect method. This process is
completely automated and allows further operations on the output of Quickselect to
be timed. Distri-Track outputs the IDT definitions it generates. Listing 10.3 shows
the IDT definition generated for QSel.

1 IDT : QSel
2 −−−−−−−−−−
3 c o n d i t i o n : Equal [r0 , P l u s [n2 , Times [−1 , n3]]] ; case :
4 Group (s e r i e s) :
5 Group (p a r a l l e l) :
6 −
7 r e p e a t e d P l u s [n2 , Times [−1 , n3]]
8 −
9 Group (p a r a l l e l) :

10 −
11 r e p e a t e d P l u s [−1 ,n2 , Times [−1 , P l u s [n2 , Times [−1 , n3]]]]
12 −−−−−−−−−−
13 c o n d i t i o n : And [LessEqua l [r0 , P l u s [−1 ,n2 , Times [−1 , n3]]] ,
14 Unequal [r0 , P l u s [n2 , Times [−1 , n3]]]] ; case :
15 Group (s e r i e s) :
16 Group (p a r a l l e l) :
17 −
18 r e p e a t e d r0 , s t a r t : 0 , end : P l u s [−1 ,n2 , Times [−1 , n3]]
19 −
20 QSel [P l u s [−1 ,n2 , Times [−1 , r0]]]
21 −−−−−−−−−−
22 c o n d i t i o n : And [G r e a t e r [r0 , P l u s [−1 ,n2 , Times [−1 , n3]]] ,
23 Unequal [r0 , P l u s [n2 , Times [−1 , n3]]]] ; case :
24 Group (s e r i e s) :
25 QSel [r0]
26 −
27 Group (p a r a l l e l) :
28 −
29 r e p e a t e d P l u s [−1 ,n2 , Times [−1 , r0]]
30 −−−−−−−−−−

Listing 10.3 Quickselect IDT definitions.

218 Distri-Track

We do not give all the details of the definition here. The base case, as represented
by the first case in the IDT definition, is the output of a single application of the
split operation. This occurs when the k-th smallest label is found. Each of the
remaining two cases correspond to one of the recursive calls being executed on the
bottom or top levels of the output of split.

10.4 Calculating the ACET

When an operation is encountered Distri-Track retrieves the random bag trackers for
the variables involved. Based on these it can calculate anACET for the operation. First
it calculates the ACETs for the operation on each random structure. It does this by
processing the structure representations in the random bag tracker and then applying
the series-parallel ACET formulas of Chapter 6. Also each random structure has a
probability calculated as specified in Theorem 1.3 of Chapter 7. To do this Distri-
Track uses the multiplicities which are attached to random structures as shown
in Listing 10.2 and calculates the number of states based again on series-parallel
functions. With this information the ACET for an operation on a random bag can
then be obtained.

As each branch in the BTSG is analysed theACET for the branch is stored adhering
to the compositionality property ofMOQA . To obtain the ACET for the execution
of a method there are two possibilities. If probabilities can be calculated for the
conditions in the branching statements then the ACET for the method is the sum of
the branch ACETs multiplied by their probabilities. There are a number of conditions
which can have their probabilities calculated based on rules specified in MOQA
theory as specified in Chapter 7. If probabilities cannot be calculated then the ACET
for the method will be broken into cases depending on the branching statement
conditions.

Recurrence equations for the ACETs are passed to Mathematica’s RSolve func-
tion in an attempt to obtain a closed form. Taking the Quickselect code in Listing
10.1 and assigning size n2 to lpo and the value n3 to k, an ACET equation like the
following is obtained:

qs[n2, n3] = (n2− 1) +
1
n2

n2−n3∑
r0=0

qs[n2− r0− 1, n3]+

1
n2

n2−1∑
r0=n2−n3+1

qs[r0, n3− n2 + r0] (10.1)

We remark that the recurrence matches the standard Quickselect recurrence. We
recall that n2− 1 is the ACET for split. The ACET for both recursive calls is multi-
plied by 1

n2 . This value represents the result of multiplying together the probabilities
for the conditions with the probabilities for the random structures. Based on the
condition bs >= k, qs[n3...n2 − 1, n3] represents all possible invocations of the first

10.5 Preliminary Evaluation Study 219

recursive call which takes the bottom component of the star produced by the split
(n2−1 being the maximum size of the top and the bottom component.) In the recur-
rence equation, applying the sum bounds 0...n2 − n3, qs[n2 − r0 − 1, n3] can be
viewed as qs[n2− 0− 1...n2− n2 + n3− 1, n3] = qs[n2− 1...n3, n3]. A similar
argument can be applied to show that the ACET for the second recursive call is also
correct.

The actual Mathematica package for the recurrence is shown in Listing 10.4.

1 BeginPackage [" d tExUni t s ‘ "]
2
3 q u i c k s e l e c t : : u sage = " "
4 method : : usage = " "
5
6 Begin [" ‘ P r i v a t e ‘ "]
7
8 q u i c k s e l e c t [n2 , n3] := Plus [−1 ,n2 ,
9 Times [Plus [−1 , n2] , Power [n2 , −1] ,

10 Plus [Times [Plus [1 , Times [−1 ,Power [n2 , −1] , n3]] ,
11 Sum[Times [Power [Plus [n2 , Times [−1 , n3]] , −1] ,
12 q u i c k s e l e c t [Plus [−1 ,n2 , Times [−1 , r0]] , n3]] ,
13 {r0 , 0 , Plus [n2 , Times [−1 , n3]] }]] ,
14 Times [Power [n2 , −1] , n3 ,
15 Sum[Times [Power [n3 , −1] ,
16 q u i c k s e l e c t [r0 , Plus [Times [−1 , n2] , n3 , r0]]] ,
17 {r0 , Plus [n2 , Times [−1 , n3] , 1] , Plus [−1 , n2] }]]]]] ;
18
19 method [n0] := q u i c k s e l e c t [n0 , n1] ;
20
21 End []
22 EndPackage [] ;

Listing 10.4 Quickselect ACET Mathematica package.

10.5 Preliminary Evaluation Study

In this section we present a preliminary evaluation study of the RT-MOQA theo-
retical results for average-case timing by an experimental analysis of Quickselect.
We give a description of how the evaluation study is performed and we conclude by
giving the results.

10.5.1 Real-Time MOQA

We incorporate the theoretical research in terms of modular quantitative analysis,
in particular timing analysis, into an RT environment by implementingMOQA as
an API in RT Java (RTJ) provided by Sun Microsystems. We call this RT-MOQA .
RTJ is an implementation of the RTSJ [RTS] and is designed to allow programmers
to engineer large scale real-time systems in a modern, type-safe programming en-
vironment. Features such as memory safety, checked exceptions, and a rigorously
specified memory model, make Java a good programming language for developing

220 Distri-Track

mission critical applications. In spite of these benefits, predictable ACET analysis
tools are not available in RTJ.

We based the implementation of RT-MOQA on the original version ofMOQA
[TMS06]. As MOQA is implemented in Java 5 a number of changes had to be
made. Features such as variable arguments and the use of generics are not supported
in RTJ which is based on Java 1.4. Therefore these cannot be used in RT-MOQA
programs.

The advantage of implementing RT-MOQA as an API is that we are not creating
a new language. Programmers in general and in particular those in the real-time area
are reluctant to add a new language to the large number that already exist. Also in
RT-MOQA code all the features of RTJ are allowed.

An obvious concern for meeting hard real-time constraints in Java is the interaction
of automatic memory management with real-time tasks. The strategy used in memory
is also a key point for efficiently predictable real-time programs. In RTJ there is a
strict memory model which offers memory areas called scoped and immortal memory
which are free of the unpredictability associated with garbage collection.

We note thatMOQA ’s features impose limitations and rules on the programmer.
These guarantee a program executes in a very predictable way. Statically it can be
determined at every stage of the execution what state the program’s data structures
are in. In turn we can determine the exact ACET of each operation.

Along withMOQA features, the predictability in terms of worst-case and aver-
age-case time also needs good control of the language structures, for instance iterative
control statements (loops and recursion) should be managed. This is common in many
RT languages. Distri-Track ensures that rules for control statements are not violated.

10.5.2 Evaluation Study Description

The experiments are undertaken using the RTJ JVM on a Sunfire V240 running
Solaris 10. We measure the average, worst and best-case execution times of the
algorithm executed on a sample of 10,000 randomly generated lists. The experiments
are undertaken with lists of varying sizes. We compare the resulting average-case
times with the number of comparisons calculated from the recurrence equations
obtained by the RT-MOQA analysis tool.

10.5.2.1 Input Samples Generation The generation of the inputs is a key issue.
Indeed the quality of the experimental average-case time results is highly dependant
on the distribution of the input data. For our study we used Jakarta Commons Math
[Jak07] which is a library of lightweight, self-contained mathematics and statistics
components addressing the most common problems not available in the Java pro-
gramming language.

In Figure 10.9 we can see the timing results of the execution of RT-MOQA
Quickselect on a sample of 10,000 lists of size 20482. Figure 10.9 clearly reflects

2 In the experiments, sizes have been selected which are powers of two, 211 = 2048.

10.5 Preliminary Evaluation Study 221

Fig. 10.9 Input data distribution

how well the sample input lists are distributed using the uniform random generation.
We discuss the results for the Quickselect algorithm in the last section.

Since MOQA programs are RB-preserving, the ACET can be analysed in a
modular manner. In such a situation, we can evaluate modular tasks separately within
a program. Then combining the results we obtain the timing analysis of the entire
program. In that case, the input could be different than a simple discrete list as in
the Quickselect example. The samples need to be constructed with S-distributions,
discussed in Chapter 1 in the context of random bags, and the output constraints of the
previous modules. It is necessary for an efficient measurement based ACET analysis
to have an automatic or semi-automatic method for the generation of well distributed
random input samples. In the basic case, when the input is a simple discrete list, the
probability to choose a list of n labels over a range of size m is

1/

(
m
n

)
.

We recall that a discrete list determines a single random structure with multiplicity
1 inMOQA . In the general case however, where a module produces a random bag
with more than one random structure with different multiplicities, the probability is
more complex and depends on the shape of the random structure. The generation of
such inputs and the calculation of the corresponding probabilities will be investigated
for future experiments.

10.5.2.2 Measurements and Predictions The recurrences representing the aver-
age number of comparisons executed in a program are generated using Distri-Track.
The recurrence for quickselect is shown in Equation 10.1. In effect this corresponds
to the average number of times the bodies of control statements are executed, i.e. if
statements and loops. Of course this in general on its own will not give a sufficiently
accurate running time. To achieve a more refined result, we need also to consider
the number and nature of statements executed within each body. Therefore in order

6e+007

5e+007

4c+007

3e+007

T
im
es
(n
s)

2e+007

1c+007

0
0 2000 4000

Test

times
average

6000 8000 10000

222 Distri-Track

to effectively compare the experimentally derived results with those obtained using
MOQA principles we use a work-coefficient in conjunction with the number of
comparisons to reflect the amount of time to execute a body of code associated with
a control statement.

Currently Distri-Track does not automatically generate information on the work-
coefficient. However this capability will be added as the tool develops so that, for
example, the average number of assignments per control-statement body will also
be counted.

Here, for the purposes of the current experimental evaluation, we calculate the
work-coefficient by taking the experimentally obtained ACET and dividing this by
the average number of comparisons over many lists of different sizes. The final value
of the coefficient is the average of the values obtained for each sample. For the
algorithm discussed here this was not difficult given that there are not many control
statements involved.

Then for an arbitrary list size we calculate the ACET of Quickselect in two ways:

• multiply the work-coefficient by the number of comparisons obtained by Distri-
Track,

• experimentally obtain the ACET as explained above.

Comparing the consistency of these values for different list sizes validates the ap-
proach.

Note that this approach is similar to that taken in [Sar89] where ACET estimates
are obtained through experimentation and control-flow analysis. Our method can
yield more accuracy statically using the tight control offered byMOQA .

Fig. 10.10 RT-MOQA results in terms of number of comparisons

10.5.2.3 Results Figure 10.10 shows the number of comparisons required by
the Quickselect program corresponding to the size of each list as obtained by the

10.5 Preliminary Evaluation Study 223

Fig. 10.11 Experimental results vs. RT-MOQA results

RT-MOQA tool. In Figure 10.11 the number of comparisons multiplied by the
work-coefficient is plotted together with the experimentally obtained ACET.

The results of the evaluation study we have performed confirm the theoretical
contributions ofMOQA . The graph shows that the results obtained by Distri-Track
give good estimations of the actual ACET obtained experimentally. This can mainly
be attributed to the exact ACET analysis achieved in MOQA . Other contributing
factors are the algorithm being comparison-based, the samples being well uniformly
distributed and the RT-Java timing being very accurate.

Chapter 11
Conclusion and Future Work

Modular approaches to static analysis in general constitute a holy grail for Software
Engineering. Approaches which allow one to exploit modularity for static timing are
currently scarce and generally considered to be problematic. As pointed out in the
preface to this work, a compositional calculus is needed to provide a foundation for
modular static timing, the basis for which has been provided in the current work for
the case of the average-case time measure.

The basic principles underlying the MOQA language have been outlined, pro-
viding a unified foundation for Average-Case Analysis. Our hope for this approach
is that it will facilitate the discovery, design and analysis of new algorithms, the
potential of which has been indicated to some extent in this work.

The unique features which ensure the modularity ofMOQA , include the use of
random bag preservation and isolated subsets, where reliance on SP-orders greatly
facilitates the average-case analysis. This framework may serve as a basis on which
future modular static timing tools can be explored.

The formalization of randomness preservation, via the novel notion of a random
bag, which was required to develop the modular approach, provides a foundation for
the abstract study of randomness preservation in general.

An interesting problem which remains to be explored in this context is the classi-
fication of the random bag preserving functions computable viaMOQA programs,
as well as an investigation into MOQA extensions which might be complete, i.e.
for which all random bag preserving functions are computable.

A related issue is the characterization of random bag preserving functions as
formulated in the open problems in Chapter 4.

A functional language version of MOQA could be explored. Obviously, the
language opens doors for a further exploration of semantic models which can in-
corporate complexity analysis. Existing models including those relying on monads,
game theory and quantitative domains, as well as new models, could be explored in
this context.

Further investigations are needed into relations with existing approaches to au-
tomated average-case analysis, such as the LUO language, to explore the use and
incorporation of generating functions in the MOQA context. A somewhat related

226 11 Conclusion and Future Work

problem is to provide a characterization of recurrence equations obtained from
MOQA programs.

The parallel aspect of MOQA ’s series-parallel data structures could be further
exploited to include parallel constructs in the language. A case in point is the parallel
recursion of the language, thus far incorporated in a sequential fashion. A similar
approach could be explored for the product recursion.

The series-parallel nature of the MOQA data structures, typically a property
arising at hardware level, raises the interesting question whether the underlying
random bag preserving nature ofMOQA can be consistently carried through from
software to hardware level, to yield improved quantitative analysis of embedded
systems.

Indeed, the effect of software on hardware is a crucial issue in the area of soft-
ware/hardware co-design. This effect is currently quite elusive and clearly directly
affects predictability of embedded systems, in particular regarding speed and power.
The MOQA software enables the modular derivation of the average-case number
of basic steps carried out during the execution of the program, which contributes
useful information that can be related to speed and power use. Hence a consistent
exploration of theMOQA approach in a software/hardware co-design context may
open up new avenues for increased predictability.

In this context recent investigations, in collaboration with R. Agarwal and E.
Popovici have yielded improved ways to estimate power by appropriate logic gate
design, inspired by the approach to random bag preservation outlined in this work.

Moreover, links with cryptography have been obtained in a similar collaboration,
which show that modulo operations can be interpreted as random bag preserving.
Again, modulo operations are quite pervasive in Computer Science and Electrical
Engineering and progress in this area has the potential to affect a variety of applica-
tions.

Obviously much work can be undertaken to expand theMOQA language further
and investigate new applications. Some avenues being explored at CEOL are the
potential extension of the data structures from partial orders to a more general graph
based context and the potential inclusion of different basic operations and program
constructs such as alternative approaches to conditionals and recursion.

Finally, we discuss some future work regarding the Distri-Track tool for the static
average-case time analysis ofMOQA programs. Constrained by the normal static
analysis problems, Distri-Track manages to track MOQA data structures quite
tightly allowing theACET of the language operations to be calculated. To achieve this
the system design is quite complex and a number of challenges in the representation
of the random bags had to be tackled. The ultimate goal of this research is to produce
a tool which can provide a programmer with accurate information on a MOQA
program’s ACET in order to complement WCET in scheduling tasks in a real-time
system. In parallel with the development ofMOQA there is also work being done
on new ways of using ACET in this way [BHMS07a].

As MOQA develops further so must Distri-Track. More operations will be in-
cluded and even new data structures which are more general than partial orders could
be incorporated.

11 Conclusion and Future Work 227

Currently Distri-Track relies on Mathematica’s RSolve function to solve recur-
rence equations representing times, which, for very complicated recurrences, may
not be sufficient. Other recurrence solving software could be used, e.g. PURRS: The
Parma University’s Recurrence Relation Solver [Pur], or recurrences could be solved
using dynamic programming.

A technique developed in [BP02] overcomes the problems associated with analy-
sing branched code, which could be explored in theMOQA context.

Following on from the evaluation study new measurement techniques will be
incorporated in Distri-Track in order to bring the statically derived ACET results
closer to the actual “real” average time values.

Appendix A
Appendix: Proof of the State Theorem

A.1 Depth-Levels

Given a finite partial order (X,�), then for any element x ∈ X , we define the depth
of x, depth(x), to be the number of elements strictly above x on a longest chain from
x to a maximal element. Such a chain is referred to as a maximal chain from x to a
maximal element.

Note that:
x � y ⇒ depth(x) > depth(y)

Given a finite partial order (X,�), we let L denote the length of a longest chain
in (X,�). Such a path of course connects a minimal to a maximal element. Let D
denote the maximal possible depth of any element of (X,�), i.e. D = L− 1.

Given a state F of the partial order with range L. For any label a ∈ L, we define
the depth of a, depth(a) = depth(F−1(a)). Similarly, one can define the dual notion
of height of an element and of a label.

We group the elements of X and their labels, for a given state F , by depth-
level as follows: ∀i : 0, 1, . . . , D.DX

i = {x| depth(x) = i} and DF
i = F (DX

i) =
{F (x)|x ∈ DX

i }. We refer to DX
i as the i-th depth-level of the partial order (X,�)

and to DF
i as the set of labels at depth i for a state F .

It is easy to see that the collection of all depth levels (DX
i)i∈{0,1,...,D} forms a

partition of the set X . We denote the cardinality of each depth level DX
i by di.

It is easy to see that in general DX
0 = M(X) and DX

D ⊆ m(X).

Moreover, we use the following notation:

DX
< i = ∪0≤j<iDX

j and DX
> i = ∪D≥j>iDX

j

DX
≤ i = X −DX

> i and DX
≥ i = X −DX

< i

230 A Appendix: Proof of the State Theorem

We adopt the convention that DX
−1 = ∅. This situation arises on occasion when

i = 0 is chosen in DX
i−1. A similar convention is adopted for the other cases where

the index is out of bounds, e.g. DX
<i = ∅ in case i = 0. Note that DX

< i = DX
≤ i−1

and DX
> i = DX

≥ i+1. We denote the cardinality of DX
< i by d< i and similarly for the

other cases. Clearly: d< i + d≥ i = |X| = d≤ i + d> i. For a state F of the partial
order (X,�) we define: DF

< i = F (DX
< i) and similarly for the other cases.

Example A.1. We consider the labeled partial order represented by the Hasse dia-
gram given below.

�

�

�

� �

�

�
�

�	

For the above state we obtain that D0 = {7, 8, 9, 10}, D1 = {4, 5, 6}, D2 = {2, 3}
and D3 = {1}.

We remark that a maximal chain from (x0, x1, . . . , xn) from x0 to xn, where
of course depth(x0) = n, is such that for each i ≤ n we have that (xi, . . . , xn)
from xi to xn is again a maximal chain. We remark that for i < n, depth(xi+1) =
depth(xi)− 1. In particular depth(xi) = n− i.

A.2 Canonical State

We define the important notion of a canonical state and will show the existence of
canonical states among the states of a given random structureRL(X,�).

Definition A.1. Given a state. A pair of labels a, b such that b > a is called depth-
consistent iff depth(b) ≤ depth(a). Otherwise the pair is depth-inconsistent. A state
is canonical iff all its free pairs are depth-consistent.

We will provide alternative characterizations of canonical states. In order to
achieve this, the technical notion of a segment and a segmented state is useful.

A.2 Canonical State 231

A segment is intuitively a depth-level for which labels have maximal possible value
and, when ordered in decreasing order form a “consecutive list”.

A consecutive subsequence of a decreasing sequence (a1, . . . , an) is a subse-
quence of the form (ak, ak+1, . . . , al−1, al), where 1 ≤ k ≤ l ≤ n. A subsequence
(ak, . . . , al) which is not consecutive must have a gap, i.e. a pair (am, ap) for which
there is at least one element ai which occurs strictly between am and ap in the orig-
inal sequence (a1, . . . , an) but no elements occur strictly between am and ap in the
subsequence . The following sequences form consecutive sublists of the decreasing
list (22, 18, 7, 4, 2, 1): (7, 4, 2), (22, 18, 7, 4) and (22, 18, 7, 4, 2, 1), while (22, 7, 4)
and (22, 7, 4, 1) do not. We remark that (22, 7, 4) has one gap, while (22, 7, 4, 1) has
two gaps.

Since the random structureR(X,�) is an equivalence class (cf. Remark 4.3), we
will simplify the presentation somewhat by focusing on states from the set of labels
n = {1, 2, 3, . . . , n}. In this case a consecutive subsequence, when ordered in de-
creasing order, consists of a sequence of labels of the form: k, k−1, k−2, . . . , l, l−1,
while a gap consists simply of a pair of natural numbers for which the difference is
greater than one.

For any sequence A = (a1, . . . , an) and 0 ≤ k ≤ n, we define the k-initial
segment A[k] to be the sequence (a1, . . . , ak) where, by convention, A[0] = ∅.

We recall that D is the maximal depth of the partial order under consideration.

Given a state F then DF

i is defined to be DF
i sorted in decreasing order. Then we

defineDF
to be the sequence Conc(DF

0 ,DF

1 , . . . ,DF

D). In other words the sequence

DF
is ordered as follows: a "F b ⇐⇒ (depth(a) = depth(b) and a > b) or

depth(a) < depth(b).
We extend the order on pairs of labels by (a, b) "F (c, d) ⇐⇒ a "F c and b "F

d.
Note that by the preceding notation DF

[k] denotes the k-initial segment of DF
.

Definition A.2. Given a finite partial order (X,�), where say X has cardinality
n ≥ 2, L = n and F is a state from RL(X,�). For k ∈ {1, . . . , n}, we say that F

induces a k-segment if and only if k = 1 or DF
[k] = (n, n− 1, . . . , n− k + 1) for

the case where k ≥ 2.
When F induces a k-segment we define the set RF

k to be the complement of the

k-segment in DF
, i.e. RF

k = {1, . . . , n− k} when 1 ≤ k ≤ n− 1 and RF
k = ∅ in

case k = n.

Remark A.1. If F induces a k-segment then F induces an l-segment for every l ≤ k.

We introduce the following useful notion of the degree of segmentation.

Definition A.3. The degree of segmentation of F , deg(F), is the maximum value k
for which F induces a k-segment. We say that F is i-segmented in case deg(F) ≥

232 A Appendix: Proof of the State Theorem

∑
j∈{0,1,...,i} dj and we say that F is segmented in case F is D-segmented, i.e.

deg(F) = n and D = {n, n− 1, . . . , 1}.

The element k referred to in the definition exists since F always induces a 1-
segment.

Remark A.2. Let deg(F) = k and let b be the k + 1-th label of DF
. Of course there

must be a gap between the k-th label and b and no prior gap occurs. Hence we refer
to b as the label of F which creates the first gap. The element a = n− k would be
the k + 1-th element in case we would have that deg(F) = k + 1. Hence we refer
to the element a as the canonical replacement of b. Note that a > b. If depth(b) = i
then it is clear that a must occur at a level j greater than i. Indeed, a can not belong

to DF
[k] and in particular a ∈ DF

[k] ∩ DF

i . We note that a cannot occur at level i

on the right of b in DF

i since we assume this list to be decreasing. Hence a does not

belong to DF

i and thus a does not belong to DF
i .

Lemma A.1. The following statements for a state F are equivalent:

1) F is segmented
2) ∀i : 0, 1, . . . , D − 1. ∧ DF

≤ i > ∨DF
> i

3) ∀i, j ∈ {0, 1, . . . , D − 1}. i < j ⇒ ∧DF
i > ∨DF

j

Proof. We verify the following sequence of results: 1 ⇒ 2, 2 ⇒ 3 and 3 ⇒ 1.

The fact that 1 ⇒ 2 follows directly from the definition of a segmented state. We
remark that since DF

i ⊆ DF
≤ i and since i < j implies that DF

j ⊆ DF
> i, it is easy to

verify that 2 ⇒ 3.
Finally, we proceed to verify that F is not segmented implies that F does not

satisfy 3. Assume that F is not segmented. Consider k = deg(F) and let b be the

k + 1-th element of DF
and let a = n − k be the canonical replacement of b (cf.

Remark A.2). We recall that a > b and that j = depth(a) > depth(b) = i. We
know that a = n− k is greater than every label in DF

j . We conclude that ∨DF
j = a.

Of course, since b < a and b ∈ DF
i , we have that ∧DF

i < a. Hence ∧DF
i < ∨DF

j

where j > i, and thus F does not satisfy 3.

It is useful to state the following technical lemma that establishes the existence
of a first depth-inconsistent pair for any state which is not canonical.

Lemma A.2. A state F which is not segmented, where say b is the label creating
the first gap and a is its canonical replacement, has a depth-inconsistent free pair
{a′, b}, such that a′ ∈ a ↓, which is the first depth-inconsistent (b, a′) free pair of F
in the order "F for which b creates the first gap. In particular, we know that a′ is
the largest label in a ↓ with this property.

A.2 Canonical State 233

Proof. When F is not segmented we consider k = deg(F), b be the k + 1-th label

ofDF
that creates the first gap and a = n− k the canonical replacement of b, where

a > b and j = depth(a) > depth(b) = i. We first show that there exists a label a′

such that b < a′ ≤ a and �a′� = ∅ ⇒ b > ∨�a′�. We consider three cases.

1) When �a� = ∅, we obtain the result by choosing a′ = a.

2) When �a� = ∅ and b > ∨�a�, we obtain the result by choosing a′ = a.

3) When �a� = ∅ and b < ∨�a�, we consider any a1 ∈ �a� such that b < a1.

In that case, we repeat the above three cases, with a1 instead of a. Either this
produces a suitable a′ via 1 or 2, or the process returns to case 3). Hence we create
a strictly decreasing sequence a0, a1, a2, . . . , an, where n ≥ 0 and a0 = a. This
process has to terminate, since we obtain that∀n. depth(an+1) > depth(an). Hence,
in cases the process did not terminate earlier at case 1 or case 2, at one point we must
arrive at a situation where �an� = ∅ and the process terminates via 1. In that case,
we select a′ = an.

So we can assume that there is a label a′ such that b < a′ and �a′� = ∅ ⇒ b >
∨�a′�. Say this level occurs at depth j′ ≥ j. Note that since the state F is increasing,
we know that a′ ≤ a.

We verify that {a′, b} is a depth-inconsistent free pair of labels. Clearly the pair is
depth-inconsistent since a′ > b and by choice of a′ we have depth(a′) ≥ depth(a) >
depth(b). Moreover, by construction, we have �a′� = ∅ ⇒ b > ∨�a′�. Since a′ > b,
in order to prove the freeness, it remains to verify:

if �b� = ∅ then a′ < ∧�b�.

We assume that �b� = ∅. Since the depth function is strictly decreasing we know
that �b� ⊆ DF

< i.
We remark that F is (i − 1)-segmented since F induces a k-segment. Hence

we know that every element of DF
≤ i−1 is greater than every element in RF

k . Since
a′ ∈ RF

k we have in particular that a′ < ∧�b�.

Lemma A.3. F is canonical⇐⇒ F is segmented.

Proof. It is clear that if F is segmented then F is canonical. We show that when F
is not segmented, F is not canonical. By the previous lemma we know that when F
is not segmented we can always find a label a′ such that b < a′ ≤ a such that the
pair {a′, b} is a free pair which is depth-inconsistent. Hence we obtain that F is not
canonical.

Note that Example A.1 of Section 4.1 displays a segmented state which is also
a canonical state. This is no coincidence since the notions are equivalent as the fol-
lowing corollary shows.

234 A Appendix: Proof of the State Theorem

Corollary A.1. Levels of canonical states consist of pairwise free elements. Any
permutation of labels on a same level yields a new canonical state.

Proof. The two statements follow from 3) of Lemma A.1 and the definition of a free
pair.

Corollary A.2. A canonical state is “unique” up to permutations of labels at equal
depth. In other words, all canonical states can be generated from a given canonical
state by carrying out all possible permutations on its pairs of labels occurring at
equal depth. The cardinality of the set of all canonical states is:

ΠD
i=0di!

Proof. Combining Corollary A.1 with the fact that by the definition of segmented
states, all levels are segments and hence consist of fixed sets of labels, we obtain the
result.

Definition A.4. For a given finite connected partial order (X,�) and its chosen Hasse
diagram representation. Then for any set of statesRL(X,�), we define the canonical

state FC to be the canonical state determined by DF
, where F is any canonical

state, and where the labels of FC are assigned to the Hasse diagram representation
consistently with the state order "F . I.e. on the Hasse diagram representation, we

systematically assign the labels of DF
in left to right order in this sequence (i.e.

consistent with the way they occur with respect to the order "F) to the elements of
the Hasse diagram as they occur on the chosen Hasse diagram representation: first
in left to right order at level 0, then in left to right order at the next level, if there is
one, and so on.

Example A.2. If we swap the labels 1 and 2 in the state of the Hasse diagram repre-
sentation of Example A.1, we obtain a canonical state of this Hasse diagram repre-
sentation.

We show in the following that every state can be transformed to a canonical state
via suitable permutations on depth-inconsistent free pairs.

A.3 Canonical State Algorithm

We will show that Random Structures on a finite connected partial order can be gen-
erated from a single canonical state on this finite connected partial order.. First, we
discuss the following algorithm, which allows one to generate a canonical state from
any given state.

A.3 Canonical State Algorithm 235

Canonical State Algorithm
The proof of LemmaA.2 provides an algorithm for detecting the first depth-inconsistent
free pair of a non-canonical state. It is easy to see that one can design an algorithm
from this which produces for any given state F a canonical state associated with
F , via a sequence of swaps on depth-inconsistent free pairs, which systematically
closes all gaps.

The algorithm proceeds as follows: given a state F . If F is canonical, then return
F . Otherwise, we can always select the first depth-inconsistent free pair {a′, b} in
F , where b is the first element creating a gap, a is its canonical replacement and
a′ ∈ a ↓. We recall that a′ is the largest label in a ↓ forming a depth-inconsistent
free pair with b. Swap b with a′.

In case a′ = a, we have closed the gap. This creates a new state F ′ on which
we recall the canonical state algorithm in order to systematically close all remaining
gaps.

In case a′ = a, we rename a′ to b′ and repeat the above, i.e. we locate the first
depth-inconsistent free pair {a′, b′}, where a′ ∈ a ↓. Either we obtain a′ = a, in
which case we can close the gap as above. Otherwise, we note that b < b′ since prior
to renaming of a′ to b′, we had b < a′. This creates a sequence b < b′ < b′′ <
The process hence must stop since the sequence consists of elements from the finite
set a↓. Hence the process must terminate with some a = a′, where we can close the
gap.

Finally, this creates a new state F ′ on which we recall the canonical state algo-
rithm in order to systematically close all remaining gaps.

We obtain the following immediate corollary.

Corollary A.3. For a chosen Hasse diagram representation, every state can be trans-
formed to the unique canonical state FC via a sequence of permutations on free pairs
of labels.

We illustrate the Canonical State Algorithm in the Example displayed on the next
page.

Corollary A.4. For every pair of states F1, F2 there exists a sequence of permutations
σ1, . . . , σn on free pairs of labels such that F2 = σn ◦ σn−1 ◦ ...σ2 ◦ σ1 ◦ F1.

Proof. We remark that for every pair of states, F1, F2, we can find a sequence of
swaps on depth-inconsistent free pairs which reduce each of the given states to the
canonical state FC . We remark that it is easy to see that a sequence of swaps on
depth-inconsistent free pairs of F2 leading to FC can be reversed into a sequence of
swaps on free pairs leading from FC to F2. Hence, in order to obtain the result, one
simply has to carry out the sequence of swaps leading from F1 to FC followed by
the reversed sequence leading from FC to F2 in order to transform F1 into F2.

236 A Appendix: Proof of the State Theorem

Example A.3. The following example illustrates the Canonical State Algorithm

�

�

� �

�

�

�

�

�

�

��

�

�� ��� �� �� 	
� ���

������	� �� �	 ��

���� �� ���� �

��� ��� ��� �� 	
� ���

������	� ��� �	 ��

���� ��� ���� ��

���� ���� ���

�������	� �	 ��

�������	� �	 �� �	 �� �������	� �	 ��� �	 ���

�� ����� � �� � � �

����� �
��	� ��� �� � � �

���� ��� ���� �� ��� ��� !��� ����� ����	� ���

�

�

���

"

�

���

�

��

�

�

�

��

�

!���� ���

!���� �

!���� ���

!���� � !���� ��

!���� ��

!���� ��

�� ��� �� �� 	
� ���

������	� �� �	 ��

���� �� ���� �

�������	� �	 �� �	 ��

#

�

#

�

� �

#

�

�

�

��

��� ��� ��� �� ���

���� ���� ���
�������	� �	 ���

�

�

#

���� ��� �� �� � ��� ���

���� � ���� �

�������	� �	 ����
#

��

!���� ����

$

"

�

$

"

�

$

"

�

#

"

$$

#

"

$

#

�

$

"

�

��

�

"

�

$

%

%

%

%%

%

%

%

�

�

�

� �

�

�

�

��

�

�

From the above corollary, we obtain the following immediate result.

Theorem A.1. (State Theorem) Each random structure on a finite connected partial
order can be generated from any given state, by exhaustively carrying out all possible
swap sequences on free pairs of labels, where a sequence terminates when a state is
repeated.

References

[AJM02] S. Abramsky, R. Jagadeesan, and P. Malacaria, Full abstraction for PCF, Information and
Computation 163, 409-470, 2000.

[AHU87] A. Aho, J. Hopcroft and J. Ullman, Data Structures and Algorithms, Addison-Wesley
Series in Computer Science and Information Processing, Addison-Wesley, 1987.

[BR92] J. de Bakker, J. Rutten (editors, CWI, Amsterdam), Ten Years of Concurrency Semantics,
Selected Papers of the Amsterdam Concurrency Group, World Scientific, 1992.

[Bar84] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North Holland, Ams-
terdam, 1984.

[BNS] S.J. Bellantoni, K.-H Niggl, H. Schwichtenberg, Higher type recursion, ramification and
polynomial time, Annals of Pure and Applied Logic, 104(1), 17-30, 2000.

[BHS06] M. Boubekeur, D. Hickey and M. Schellekens, Evaluation of MOQA Average-Case
Timing Results on a Real Time Platform, Proc. of the conference Information-MFCSIT’06,
Electronic Notes in Computer Science, Cork, August 2006, to appear.

[BHMS07a] M. Boubekeur, D. Hickey, J. McEnery and M. Schellekens,A newApproach for Mod-
ularAverage-Case Timing of Real-Time Java Programs, inWSEAS Transactions on Computers,
3(5), 361-368, 2006.

[BHMS07b] M. Boubekeur, D. Hickey and J. McEnery, M. Schellekens, Towards Modular
Average-Case Timing in Real-Time Languages: An Application to Real-Time Java, in Proceed-
ings of the 6th WSEAS International Conference on Applied Computer Science (ACS’06),
Tenerife, December, 2006.

[BPS96] G. Brightwell, H.-J. Promel and A. Steger, The average number of linear extensions of a
partial order, J. Combinatorial Theory (A) 73, 193-206, 1996.

[BW90] A. Burns, A. Wellings, Real-time systems and their programming languages, Addison
Wesley, 1990.

[BP02] A. Burns, P. Puschner, Writing Temporally Predictable Code, 7th IEEE International Work-
shop on Object-Oriented Real-Time Dependable Systems WORDS02, 85-94, 2002.

[Coh74] J. Cohen, C. Zuckerman, Two Languages for Estimating Program Efficiency, Communi-
cations of the ACM, 17(6), 301-308, 1974.

[Coo91] S. Cook, Computability and complexity of higher type functions, in Logic from Computer
Science (Y.N. Moschovakis, ed.), Springer-Verlag, 51-72, 1991.

[CLR96] T.H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press, 1996.
[DP90] B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University

Press, 1990.
[Don04] M.R.C. van Dongen, Computing the Frequency of Partial Orders, in Proceedings

CP’2004, LNCS 3258, Toronto, Canada, 772- 776, 2004.
[Dut92] R.D. Dutton, Weak-Heapsort, BIT 33, 372-381, 1993.
[Ede96] S. Edelkamp, Weak-Heapsort, ein schnelles sortierverfahren, Diplomarbeit Universität

Dortmund, 1996.

238 References

[Erm03] A. Ermedahl, A Modular Tool Architecture for Worst-Case Execution Time Analysis, PhD
thesis, Uppsala University, 2003.

[Fin03] S. Finch, Mathematical Constants, Cambridge University Presss, 2003 (Or: Series-Parallel
Networks, http://pauillac.inria.fr/algo/bsolve/).

[FSZ89] P. Flajolet, B. Salvy and P. Zimmermann, Lambda-Upsilon-Omega the 1989 cookbook
(RR 1073), 1989.

[FSZ91] P. Flajolet, B. Salvy, P. Zimmerman, Automatic average-case analysis of algorithms,
Theoretical Computer Science 79, 37-109, 1991.

[FS95] P. Flajolet, R. Sedgewick, An Introduction to the Analysis of Algorithms, Addison Wesley,
1995.

[FS08] P. Flajolet, R. Sedgewick, Analytic Combinatorics, to be published by Cambridge Univer-
sity Press, 2008.

[FV90] P. Flajolet, J. S. Vitter, Average-Case Analysis of Algorithms and Data Structures, Hand-
book of Theoretical Computer Science, Volume A: Algorithms and Complexity, Elsevier, 431-
524, 1990.

[Flo64] R.W. Floyd, Algorithm 245, treesort 3. Commun. ACM 701, 1964.
[Gis88] J.L. Gischer, The equational theory of pomsets, Theor. Comput. Sci. 61, 199-224, 1988.
[Gra81] J. Grabowski, On partial languages, Fundamenta Informaticae 4, 427-498, 1981.
[Gre97] J. Greiner, Semantics-based parallel cost models and their use in provably efficient im-

plementations, CMU PhD thesis, 1997.
[Gun92] C. A. Gunter, Semantics of Programming Languages, MIT Press, Cambridge, MA, 1992.
[Gur91] D. Gurr, Semantic frameworks for complexity, Ph.D. thesis, University of Edinburgh, 1991.
[GKP94] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for

Computer Science, 2/E, Addison Wesley Professional, 1994.
[Ham88] A. G. Hamilton, Logic for Mathematicians, Cambridge University Press, 1988.
[HC88] T. Hickey, J. Cohen, Automating Program Analysis, Journal of the ACM, 35(1), 185-220,

1988.
[Hey05] M. Heyer, Randomness Preserving Deletions on Special Binary Search Trees, MSc Thesis,

2005.
[Hic07] D. Hickey, Distritrack: Automated Average-Case Analysis, Proceedings of the Fourth

International Conference on the Quantitative Evaluation of SysTems, QEST2007, Edinburgh,
Scotland, UK, IEEE Computer Society Press, 213-214, 2007.

[Hic08] D. Hickey, Tracking Data Structures for Automated Average Time Analysis, PhD thesis,
National University of Ireland, Cork, June 2008 (in preparation).

[Hof98] M. Hofmann, A mixed modal/linear lambda calculus with applications to Bellantoni-Cook
safe recursion, in: Proc. CSL’97. LNCS 1414. Springer-Verlag, Berlin, 275-294, 1998.

[Hof99] M. Hofmann, Linear types and non-size-increasing polynomial time computation, Infor-
mation and Computation 183(1), 57-85, 2003.

[Hof00] M. Hofmann, Type systems for polynomial-time computation, Habilitation thesis, Darm-
stadt, 1999. Appears as LFCS Technical Report ECS-LFCS-99-406.

[HJ99] K. Hrbacek, T. Jech, Introduction to Set Theory, Marcel Dekker, Inc., 1999.
[Hoa61] C. A. Hoare, Commun. ACM, 4(7), 321-322, 1961.
[HBW02] E. Yu-Shing Hu, G. Bernat, A. Wellings, A Static Timing Analysis Environment Using

Java Architecture for Safety Critical Real-Time Systems, Seventh IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS’02), 77-84, 2002.

[IKR01] On Characterizations of the Basic Feasible Functionals, Part I, R. Irwin, B. Kapron and
J. Royer, Journal of Functional Programming 11, 117-153, 2001.

[Jak07] The Apache Software Foundation, The Apache Commons Project,
http://jakarta.apache.org/commons/math/

[JK78] A. T. Jonassen, D. E. Knuth, A trivial algorithm whose analysis is not, J. Comput. System
Sci. 16, 301-322, 1978.

[JLi] J/Link, Wolfram Research Inc, www.wolfram.com/solutions/mathlink/jlink
[JP89] C. Jones, G. Plotkin, A probabilistic powerdomain of evaluations, in LICS ’89, IEEE Com-

puter Society Press, 186-195, 1989.

References 239

[Jon97] N. Jones, Computability and Complexity from a Programming Perspective, MIT Press,
1997.

[Kno75] G. D. Knott, Deletions in Binary Storage Trees, PhD Thesis, Computer Science Depart-
ment, Stanford University, 1975.

[Koz81] D. Kozen. Semantics of probabilistic programs, Journal of Computer and Systems Sci-
ences, 22, 328-350, 1981.

[KC96] B. Kapron, S. Cook, A new characterization of type 2 feasibility, SIAM Journal on Com-
puting 25, 117-132, 1996.

[Knu71] D. Knuth, Mathematical Analysis of Algorithms, in Information Processing ’71, Proc. of
the 1971 IFIP Congress, North-Holland, Amsterdam, 19-27, 1971.

[Knu73] D. Knuth, The art of computer programming vol.3, Addison-Wesley, 1973.
[Knu77] D. Knuth, Deletions That Preserve Randomness, IEEE Transactions on Software Engi-

neering, Vol SE-3, No. 5, 351-359, 1977.
[KFG93] H. Kopetz, G. Fohler, G. Grunsteidl et al., Real-Time Systems Development: The Pro-

gramming Model of MARS, in Proceedings of the International Symposium on Autonomous
Decentralized Systems, Kawasaki, Japan, March, 190-199, 1993.

[KS97] C. M. Krishna, K. G. Shin, Real-time systems, McGraw-Hill International Series, Computer
Science Series, 1997.

[Lev84] L. A. Levin, Randomness Conservation Inequalities, Information and Control 61(1), 15-
37, 1984.

[Lev03] A. Levitin, Introduction to the Design & Analysis of Algorithms, Addison Wesley, 2003.
[LV93] M. Li and P. Vitanyi. An introduction to Kolmogorov Complexity and its applications, Texts

and Monographs in Computer Science, Springer Verlag, 1993.
[Mai00] T. Maibaum, Mathematical foundations of software engineering: a roadmap, Interna-

tional Conference on Software Engineering, Proceedings of the Conference on The Future of
Software Engineering, Limerick, Ireland, 161-172, 2000.

[MR98] C. Martínez, S. Roura, Randomized binary search trees, Journal of the Association for
Computing Machinery, 45(2), 288-323, March 1998.

[Mat] Mathematica, Wolfram Research Inc, Www.wolfram.com.
[Mis03] M. Mishna, Attribute grammars and automatic algorithm analysis, Advances in Applied

Mathematics 30, 189-207, 2003.
[MA] E. Moggi, D. Archieri, Monadic approach and complexity, preprint.
[MP97] D. Mittermair and P. Puschner, Which Sorting Algorithms to Choose for Hard Real-Time

Applications, in Proc. Euromicro Workshop on Real-Time Systems, Toledo, Spain, 250-257,
1997.

[MR95] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995.
[Naa00] M. Naatz, The Graph of Linear Extensions Revisited, SIAM Journal on Discrete Mathe-

matics 13 (3), 354 - 369, 2000.
[Nie84] H. Nielson, Hoare Logics for Run-time Analysis of Programs, Ph.D. thesis, CST-30-84,

Edinburgh University, 1984.
[Par95] I. Parberry. Problems on Algorithms, Prentice Hall, 1995.
[Plo97] G. Plotkin, LCF considered as a programming language, Theoretical Computer Science 5,

223-255, 1977.
[Pra86] V. Pratt, Modelling Concurrency with Partial Orders, International Journal of Parallel

Programming 15(1), 33-71, 1986.
[Pur] Purrs: The Parma University’s Recurrence Relation Solver, Parma University,

www.cs.unipr.it/purrs
[PK93] P. Puschner and C. Koza. Calculating the Maximum Execution Time of Real-Time Pro-

grams, Reprint in IEEE tutorial: Advances in Real-Time Systems, IEEE Computer Society
Press, 322-339, 1993.

[Pus03] P. Puschner, Hard Real-Time Programming is Different, 17th IEEE Int’l Parallel and Dis-
tributed Processing Symposium, 11th Int’l Workshop on Parallel and Distributed Real-Time
Systems, 117-118, 2003.

[QND04] G. Quan, L. Niu, P. Davis, Power Aware Scheduling for Real-Time Systems with (m,k)-
Guarantee, CNDS, 18-21, 2004.

240 References

[Ram96] K. Ramamritham, Real-Time Databases, International Journal of Distributed and Par-
allel Databases, 28(2-3), 179-215, 1996.

[Ram 79] L. Ramshaw, Formalizing the Analysis of Algorithms, Ph.D. Thesis, Stanford Univer-
sity, 1979. (Also available as Report SL-79-5, Xerox Palo Alto Research Center, Palo Alto,
California, 1979).

[RTS] Real-Time Specification for Java, http://www.rtsj.org/
[RS98] S. Romaguera, M. P. Schellekens, On the structure of complexity spaces: the general case,

Extracta Mathematicae 13, 249-253, 1998.
[RS99] S. Romaguera, M. P. Schellekens, Quasi-metric properties of Complexity Spaces, Topology

and its Applications 98, 311-322, 1999.
[RS03] S. Romaguera, M. P. Schellekens, Norm-weightable Riesz spaces and the dual complexity

space, ENTCS 74, Elsevier, Proceedings MFCSIT2002, 2003.
[Sar89] V. Sarkar, Determining average program execution times and their variance, SIGPLAN

Not. 24(7), 298-312, 1989.
[SS93] R. Schaffer and R. Sedgewick, The analysis of Heapsort, Journal of Algorithms 15(1),

76-100, 1993.
[Sch95] M. P. Schellekens, The Smyth-completion: a common topological foundation for Denota-

tional Semantics and Complexity Analysis, PhD thesis, Carnegie Mellon University, 1995.
[Sch95a] M. P. Schellekens, The Smyth-completion: a common foundation for Denotational Se-

mantics and Complexity Analysis, Electronic Notes in Theoretical Computer Science I, Proc.
11th Conf. on the Mathematical Foundations of Programming Semantics, Elsevier, 211-232,
1995.

[Sch99] M. P. Schellekens, Complexity Spaces: Lifting and Directedness, Topology Proceedings
22, 403-425, 1999.

[Sch03] M. P. Schellekens, A characterization of partial metrizability, Domains are quantifiable,
Theoretical Computer Science 305, 409-432, 2003.

[Sch04] M. P. Schellekens, The correspondence between partial metrics and semivaluations, The-
oretical Computer Science 315, 135-149, 2004.

[Sch08] M.P. Schellekens, A randomness preserving product operation, Proc. of the conference
Information-MFCSIT’06, Elsevier series Electronic Notes in Theoretical Computer Science,
2008, to appear.

[Sch09] M. Schellekens, MOQA; unlocking the potential of compositional static average-case
analysis, Journal of Logic and Algebraic Programming, accepted for publication, to appear,
2009.

[SHB04] M. P. Schellekens, D. Hickey, G. Bollella, MOQA , a Linearly-Compositional Pro-
gramming Language for (semi-)automated Average-Case Analysis, WIP Proceedings, 25th
IEEE International Real-Time Systems Symposium (RTSS 2004), Lisbon, Portugal, 2004.

[SS71] D. S. Scott and C. Strachey, Toward a mathematical semantics for computer languages,
Proc. Symp. on Computers and Automata, 1971.

[Sco72] D. S. Scott, Continuous Lattices, Toposes, Algebraic Geometry and Logic, Lecture Notes
in Mathematics 274, Springer Verlag, Berlin, 97-136, 1972.

[SA96] R. Seidel, C. Aragon, Randomized search trees, Algorithmica 16, 464-497, 1996.
[SL04] I. Shin and I. Lee, Compositional Real-Time Scheduling Framework, Proceedings 25th

IEEE International Real-Time Systems Symposium (RTSS 2004), Lisbon, Portugal, 57-67,
2004.

[Smy87] M.B. Smyth, Quasi-uniformities: Reconciling domains with metric spaces, LNCS 298,
Springer Verlag, 236-253, 1987.

[Smy91] M.B. Smyth, Totally bounded spaces and compact ordered spaces as domains of compu-
tation, in G. M. Reed, A. W. Roscoe and R. F. Wachter, editors, Topology and Category Theory
in Computer Science, Oxford University Press, 207-229, 1991.

[Soo] Soot, A Java Optimization Framework, Sable McGill university, www.sable.mcgill.ca/soot.
[Stan99] R.P. Stanley, Enumerative Combinatorics, v 2., Cambridge University Press, 1999.
[Sto77] J. Stoy, Denotational Semantics: the Scott-Strachey approach to Programming Language

Theory, MIT Press, 1977.

References 241

[TMS06] J. Townley, J. Manning, M. Schellekens, Sorting Algorithms in MOQA, Proc. of
the conference Information-MFCSIT’06, accepted for publication, Elsevier series, Electronic
Notes in Theoretical Computer Science, 2008, to appear.

[UK03] O. Unsal, I. Koren, System-Level Power-Aware Design Techniques in Real Time Systems,
Proceedings of the IEEE 91(7), 1055-1069, 2003.

[VM07] T. Vallee, J. Manning, Reconstruction of Partial Orders, preprint.
[VTL79] E.L. Lawler, R.E. Tarjan and J. Valdes, The recognition of series parallel digraphs, SIAM

Journ. Comput. 11, 298-313, 1982.
[Vui80] J. Vuillemin, A Unifying Look at Data Structures, Commun. ACM 23, 229-239, 1980.
[Weg 75] B. Wegbreit, Mechanical Program Analysis, Commun. ACM, 18(9), 528-538, 1975.
[Weg90] I. Wegener, BOTTOM-UP-HEAPSORT, a new variant of HEAP SORT, beating on an

average QUICKSORT (if n is not very small), Theoretical Computer Science 118, 81-98,
1993.

[Wil64] J.W.J. Williams. Algorithm 232. Commun. ACM 7(6), 347-348, 1964.

Index

�Y 	, 70
�x	, 70

Y �, 70

x�, 70
A↓, 40
A↑, 40
B1, 157
B2, 157
Conc(A1, . . . , An), 39
DelM , 109
Delm, 109
Ext(G, I), 91
F1
⊗

F2, 98
M(F), 66
M(Y), 66
M(L′), 66
Prob(B(Y)), 158
R, 67
Ra(f), 39
S(A, B), 133
Sk(A, B), 133
Swap(a, b)(F), 71
T B

P (I), 49
T B

P (n), 50
T W

P (I), 49
T W

P (n), 50
T t

P (I), 49
T t

P (n), 50
TP (I), 49
X1
⊗

X2, 97
XR, 67
Δ(A), 141
Δn, 152
Υn, 152
Ψ̂LL′ , 90
κdown, 137
κup, 137

A-constructible, 78
A-isolated sub set, 79
AI(X, �), 84
ASI(X, �), 84
F , 15
I(X, �), 84
LR, 67
Mk(Y), 155
N , 39
N -variables), 151
POfin(U), 15
R, 39
SI(X, �), 84
TP , 49
TP (I), 49
TP (n), 49
U , 15, 151
V , 151
W , 151
DF

< i, 226
DX

≥ i, 225

DX
−1, 226

DX
< i, 225

DX
> i, 225

DX
≤ i, 225

DF
i , 225

DX
i , 225

RL(X, �), 67
R(X, �), 67
RF

k , 227
Perc

m
, 111

T [A ⊗ B], 134
T P (I), 49
T P (n), 50

DF
, 227

DF [k], 227

244 Index

DF
i , 227

σa,b, 71
σdown, 137
σup, 137
�1, 40
�1
⊗

�2, 97
τdown, 134
τup, 134
PercM , 111
∨L′, 66
∧L′, 66
d< i, 226
di, 225
deg(F), 227
f ∈ O(g), 50
f ∈ Ω(g), 50
h(n), 43
i-th depth level, 225
k-initial segment, 227
m(F), 66
m(Y), 66
m(L′), 66
mk(Y), 155
x↓, 40
x↑, 40
xk(A), 134

A-constructible, 78
ACET, 37
affine combination, 39
analyser, 208
asymptotic classification, 50
atomic variable, 153
atomic-constructible, 78
Average-Case Time Paradox, 57

bag, 47
bag

multiplicity of element, 47
of inputs, 47
set associated with, 47
uniformly distributed, 48
of outputs, 47

boolean statement
cardinality of, 158
over S-variable, 157
probability of, 158

Bot, 126
Bubblesort-I, 46
Bubblesort-II, 46

canonical, 226
canonical replacement of a label, 228
ceiling, 70

comparison-based algorithm, 8
composition

parallel, 41
sequential , 41

concatenation of sequences, 39
conjunction

second-prime over Y , 160
first-prime, 160
first-prime

consistent, 162
first-prime over Y , 160
positive, 160
second-prime, 160

consecutive subsequence, 227

data-labeling, 8
degree of segmentation, 227
deletion

of extremal label, 108
depth-consistent, 226
discrete subset, 40
Disjunctive Normal Form (see DNF), 160
DNF, 160
DNF

first-prime , 160
first-prime over Y , 160
inconsistent pair of, 162
prime, 160
second prime over Y , 160
second-prime, 160

Exact Time Compositionality, 51
Extension Theorem, 93

F-Push-Down, 44
floor, 70
function

data-labeling-product, 100
increasing, 10, 40
range of, 39
refining, 15
refining

representation for, 75
refining on R, 75
separative, 19

gap, 227
General Modularity Law, 48

Hasse diagram, 40
heap, 43
Heap-Ordered Binary Tree, 185
Heapify, 46
Heapsort, 46
Heapsort

Index 245

Selection process, 46

inductively defined structure, 145
input bag, 47
Insertionsort, 177
IO-compositional, 29, 53, 56
IO-compositional

lower, 52
semi, 53
universal, 53
upper, 52

isolated subset, 79
isolated subset

trivially, 79
atomic, 79
atomic strictly, 83
strictly, 83
trivially strictly , 83

labeling-invariant, 16
labeling-isomorphic, 10
labels

free pair of, 71
free set of, 71
repeated, 7

labels at depth i, 225
Linear-Compositionality Theorem, 29, 173
Linear-Compositionality Theorem

for MOQA, 174
linearly-compositional time measure, 57
literal, 160
literal

negative, 160
positive, 160

Merge, 177
Mergesort, 178
MOQA-constructible, 128

near-heap, 43

operation
basic, 95
contractive, 82
refining, 74

operator
extension, 91
relabeling, 90

order-isomorphism, 40
oriented binary tree, 184
oriented binary tree

left subtree of, 184
right subtree of, 184

output bag, 47

pairwise disjoint, 39
partial order, 39
partial order

series-parallel
canonical representation of, 42

component, 40
chain, 40
connected, 40
consistent with orientation, 184
discrete, 40
element

ceiling, 70
depth, 225
extremal, 40
floor, 70
height, 225
maximal, 40
minimal, 40

input, 152
linear, 40
maximal chain, 225
maximum, 40
minimum, 40
N-free, 42
parallel SP, 42
parallel SP

parallel component, 42
product SP, 42
product SP

product component, 42
restriction of, 39
series-parallel, 41
SP, 41
state, 66

partial orders
output, 152

path, 40
path

length of, 40
Percolating Heapsort, 182
perfectly

above, 81
below, 81
connected, 81

pomset, 67
Push-Down, 44
Push-Down

Floyd, 44
Williams, 44

Push-Up, 98

Quickselect, 188
Quicksort, 178

246 Index

random
deletion, 108
product

binary, 106
unary, 106

projection, 118
projection

strong, 118
split, 28

random bag, 13
random bag

preserving, 16
preserving program, 29
strict, 13

random structure, 67
random structure

preserving, 16
refinement, 75

Randomness Property, 65
RB-preserving, 16
RB-representation, 77
RB-representation

non-contractive, 90
contractive, 90

real-time systems
hard, 37
soft, 37

representation
collective, 212
condensed, 211

RS-preserving, 16
RS-preserving

strongly, 75
uniformly, 76

RS-representation, 76
RT-MOQA, 216

S-distribution, 14
S-expression

boolean
first-order, 155
first-prime, 155
prime, 160
second-order, 157
second-prime, 157

S-probability, 14
seam, 82
segmented, 227
State Theorem, 74, 232
Stirling approximation, 51

time
average-case, 49
best-case, 49
exact, 49
total, 49
worst-case, 49

Top, 125
treap, 44, 185
Treap-gen, 187
Treapsort, 188
tree, 43
tree

binary, 43
binary

complete, 43
finite, 43
full, 43
oriented, 184

binary search, 44
binary search

in-order, 44
priority, 44

Cartesian, 44
leaves, 43
node, 43
node

child, 43
depth, 43
internal, 43
parent, 43

root, 43
size, 43

uniform partition, 76
universal property, 53
universe, 15

variable
atomic, 153
numeric, 151
structural, 151
structural

input, 152
output, 152

universal, 15

W-Push-Down, 44
WCET, 37

	front-matter
	fulltext01
	fulltext02
	fulltext03
	fulltext04
	fulltext05
	fulltext06
	fulltext07
	fulltext08
	fulltext09
	fulltext10
	fulltext11
	fulltext12

