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PREFACE

The Introduction explains the scope and motivation for the title subject.
My association with the Engineering Department of Collins Radio Co.,
later Rockwell Collins, in Cedar Rapids, Iowa, and my education at the
University of Iowa have been helpful background for the topics covered.

The CD accompanying the book includes the Mathcad V.14 Aca-
demic Edition, which is reproduced by permission. This software is fully
functional, with no time limitation for its use, but cannot be upgraded.
For technical support, more information about purchasing Mathcad, or
upgrading from previous editions, see http://www.ptc.com.

Mathcad is a registered trademark of Parametric Technology Corpora-
tion (PTC), http://www.ptc.com. PTC owns both the Mathcad software
program and its documentation. Both the program and documentation are
copyrighted with all rights reserved. No part of the program or its docu-
mentation may be produced, transmitted, transcribed, stored in a retrieval
system, or translated into any language in any form without the written
permission of PTC.

William E. Sabin

xi
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Introduction
Joseph Fourier 1768-1830

Electronic circuit analysis and design projects often involve time-domain
and frequency-domain characteristics that are difÞcult to work with using
the traditional and laborious mathematical pencil-and-paper methods of
former eras. This is especially true of certain nonlinear circuits and sys-
tems that engineering students and experimenters may not yet be com-
fortable with.

These difÞculties limit the extent to which many kinds of problems can
be explored in the depth and as quantitatively as we would like. SpeciÞc
programs for speciÞc purposes often do not provide a good tie-in with
basic principles. In other words, the very important mathematical back-
ground and understanding are unclear. Before we can design something
we have to look beyond the diagrams, parts lists, and formula handbooks.
The reliance on intuitive methods, especially, is becoming increasingly
error prone and wasteful.

We can never become too well educated about fundamentals and about
our ability to view them from a mathematical perspective. The modern
emphasis on math literacy is right on target.

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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2 DISCRETE-SIGNAL ANALYSIS AND DESIGN

In this book, we will get a better understanding of discrete-time and
discrete-frequency signal processing, which is rapidly becoming an impor-
tant modern way to design and analyze electronics projects of just about
every kind. If we understand the basic mathematics of discrete-signal pro-
cessing sequences, we are off to a good start. We will do all of this at
an introductory level. The limited goal is to set the stage for the more
advanced literature and software, which provide much greater depth. One
outstanding example of this is [Oppenheim and Schafer].

What is needed is an easy way to set up a complex problem on a
personal computer screen: that is, a straightforward method that provides
visual output that is easy to understand and appreciate and illuminates
the basic principles involved. Special-purpose personal computer analy-
sis programs exist that are helpful in some of these situations, but they
are usually not as useful, ßexible, interactive, or easy to modify as the
methods that we will explore. In particular, the ability to evaluate eas-
ily certain changes in parameter and component values in a problem
is a valuable design aid. We do this by interacting with the equations
involved. Our approach in this introductory book is almost entirely math-
ematical, but the level of math is suitable for an undergraduate electrical
engineering curriculum and for independent study. Several examples of
problems solved in this way are in each of the eight main chapters and
Appendix.

By discrete signals we mean signals that are in the discrete-time x(n)
and discrete-frequency X(k) domains. Amplitude values are continuous.
This differs from digital signal processing (DSP), which is also discrete
(quantized) in amplitude. With personal computers as tools, the persons
who use them for various activities, especially electronic engineering
activities, are especially comfortable with this approach, which has become
highly developed. The math is especially practical. Discrete signals are a
valuable middle ground between classical-continuous and DSP.

In an electronics lab, data points are almost always obtained (very
often automatically) at discrete values and discrete intervals of time and
frequency. The discrete methods of this book are therefore very practical
ways to analyze and process discrete data.

The Discrete Fourier Transform (DFT) and its inverse (IDFT) are
the simple tools that convert the information back and forth between
the discrete-time and discrete-frequency domains. The Fast Fourier
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Transform and its in inverse (IFFT) are the high-speed tools that can
expedite these operations. Convolution, correlation, smoothing, window-
ing, spectral leakage, aliasing, power spectrum, Hilbert transform, and
other kinds of sequence manipulations and processing will be studied.
We also look for legitimate simpliÞcations and assumptions that make the
process easier, and we practice the �art� of approximation. The simplicity
of this discrete approach is also the source of its elegance.

Keep in mind that this book deals only with non-real-time analysis and
is not involved with high-speed real-time processing. This helps to deÞne
our limited tutorial objective.

Be aware also that this book cannot get into the multitude of advanced
analytical or experimental methods of lumped or distributed circuits and
systems that tell us how a particular signal sequence is obtained: for
example, by solutions of differential equations or system analysis. One
brief exception to this is in the Appendix. The vast array of literature
does all of this much better in speciÞc situations. We assume that the
waveforms have been measured or calculated in discrete sequence form as
a function of time or frequency. Sampling methods and computer add-on
modules are available that do this quite well in the lab at modest cost.

Another important point is that a discrete sequence does not always
have some particular deÞning equation that we can recognize. It can
very easily be experimental data taken from lab measurements, from
published graphs or tables, from a set of interconnected segments, or
just simply something that is imagined or �what if we try this?� It
can be random or pseudorandom data that we want to analyze or pro-
cess. The data can be in time domain or frequency domain, and we
can easily move the data and the results back and forth between those
domains. For example, a noise-contaminated spectrum can be Þltered in
various ways, and the results can be seen in the time domain. The noisy
time domain-to-frequency domain conversion results can also be seen
easily.

A basic assumption for this book is that a discrete signal sequence
from 0 to N -1 in the time or frequency domain is just one segment of an
inÞnitely repeating steady-state sequence. Each sequence range contains
all of the signiÞcant time and frequency content that we need in order
to get a �reasonable� approximation that can stand alone. We design and
process the segment and its length N so that this condition is sufÞciently
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satisÞed. A further assumption is that a sequence contains a positive time
or frequency part and an equal-length negative time or frequency part.

MATHCAD

I have thought a great deal about the best way to perform the math-
ematical operations that are to be discussed. In these modern times, an
easy-to-use and highly regarded math program such as my personal prefer-
ence, Mathcad (Parametric Technology Corporation, www.ptc.com), that
can perform complex and nonlinear math operations of just about any kind,
has become very popular. The equations and functions are typed directly
onto the computer screen �writing tablet� or �blackboard� (a.k.a �white-
board�) in math-book format [Barry Simon]. A relatively easy learning
process gets us started; however, familiarity with Mathcad�s rules and
regulations does need some time, just like any new software that we
encounter. The simplicity and user friendliness are easy to appreciate.
Mathcad is very sophisticated, but in this book we will only need to
scratch the surface.

A special one-purpose program written in a tedious programming lan-
guage that works only with a single project does not make nearly as much
sense as a more versatile software that quickly and easily serves a wide
variety of projects and purposes for many years. Mathcad does that very
well, and the results can be archived �forever.� A dedicated special pro-
gram just doesn�t have the same versatility to handle easily the special
situations which, for most of us, happen very often. Mathcad is excellent
for persons who do not want to become deeply involved with structured
languages.

A signiÞcant advantage of Mathcad is the ease and speed with which
the equations, parameters, data, and graphs can be modiÞed in an experi-
mental mode. Also, having all of this basic information in front of our eyes
is a powerful connection to the mathematics. With structured languages
we are always creating programming language linkages, with all of their
syntax baggage, between the problem and the result. We are always pars-
ing the lines of code to Þgure out what is going on. Working directly with
the math, in math format, greatly reduces all of that. In short, Mathcad


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is a relatively pleasant interactive calculation program for applied math
projects.

However, it is important to point out also that this book is not an
instruction manual for Mathcad. The Mathcad User Guide and the very
complete and illustrated Help (F1) section do that much better than I
can. We will use Mathcad at its introductory level to help us understand
the basic principles of discrete-signal processing, which is our only goal.
Learning experience will lead to greater proÞciency. One of Mathcad�s
useful tools is the �Ctrl Z�, which can �undo� one or many incorrect
keystrokes.

Classroom versions of Mathcad are available but ordinarily require a
Student Authorization. The only limitation to the special Student Version
is that it cannot be upgraded at low cost to later standard versions of
Mathcad.

The latest standard version, purchased new, although a signiÞcant initial
expense, is an excellent long-term resource and a career investment for
the technically oriented individual with mathematical interests, and the
occasional future version upgrades are inexpensive. The up-front cost of
the Mathcad standard version compares quite favorably with competitive
systems, and is comparable in terms of features and functionality. The
standard version of Mathcad is preferable, in my opinion.

There is embedded in Mathcad a �Programming Language� capabil-
ity that is very useful for many applications. The Help (F1) guide has
some very useful instructions for �Programming� that help us to get
started. These programs perform branching, logical operations, and condi-
tional loops, with embedded complex-valued math functions and Mathcad
calculations of just about any type. This capability greatly enhances Math-
cad�s usefulness. This book will show very simple examples in several
chapters.

A complete, full-featured copy of Mathcad, with unlimited time usage,
accompanies this book. It should ethically not be distributed beyond the
initial owner.

It is also important to point out that another software approach, such as
MATLAB , is an excellent alternate when available. In fact, Mathcad inter-
acts with MATLAB in ways that the Mathcad User Guide illustrates. My
experience has been that with a little extra effort, many MATLAB func-
tions revert to Mathcad methods, especially if the powerful symbolic math


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capabilities of Mathcad are used. MATLAB users will have no trouble trans-
lating everything in this book directly to their system. Keep printouts and
notes for future reference. Mathcad also has an excellent relationship with
an EXCEL program that has been conÞgured for complex algebra. EXCEL
is an excellent partner to Mathcad for many purposes.

An excellent, high-quality linear and nonlinear analog and digital cir-
cuit simulator such as Multisim (Electronics Work Bench, a division of
world-famous National Instruments Co., www.ni.com), which uses accu-
rate models for a wide range of electronic components, linear and nonlin-
ear, is another long-term investment for the serious electronics engineer
and experimenter. And similar to Mathcad, your circuit diagram, with
component values and many kinds of virtual test instruments, appears
on the screen. A sophisticated embedded graphing capability is included.
Less expensive (or even free) but fairly elementary alternatives are avail-
able from many other sources. For example, the beginner may want to
start with the various forms of SPICE. However, Multisim, although the
up-front cost is signiÞcant, is a valuable long-term investment that should
be considered. Multisim offers various learning editions at reduced cost. I
recommend this software, especially the complete versions, very highly as
a long-term tool for linear and nonlinear analysis and simulation. An added
RF Design package is available for more sophisticated RF modelling.

Mathcad is also interactive with LabVIEW, another product of National
Instruments Co., which is widely used for laboratory data gathering and
analysis. See http://www.ni.com/analysis/mathcad.htm for more informa-
tion on this interesting topic.

Another approach that is much less expensive, but also much less pow-
erful, involves structured programming languages such as BASIC, Fortran,
C++, Pascal, EXCEL, and others with which many readers have previous
experience. However, my suggestion is to get involved early with a more
sophisticated and long-enduring approach, especially with an excellent
program such as Mathcad.

For the website-friendly personal computer, the online search engines
put us in touch very quickly with a vast world of speciÞc technical refer-
ence and cross-referenced material that would often be laborious to Þnd
using traditional library retrieval methods.
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MathType, an Equation Editor for the word processor (http://www.
dessci.com/en/), is another valuable tool that is ideal for document and
report preparation. This book was written using that program.

And of course these programs are all available for many other uses
for many years to come. The time devoted to learning these programs,
even at the introductory level, is well spent. These materials are not free,
but in my opinion, a personal at-home modest long-term investment in
productivity software should be a part of every electronics engineer�s
and experimenter�s career (just like his education), as a supplement to
that which is at a school or company location (which, as we know, can
change occasionally).

Keep in mind that although the computer is a valuable tool, it does
not relieve the operator of the responsibility for understanding the core
technology and math that are being utilized. Nevertheless, some pleasant
and unexpected insights will occur very often.

Remember also that the introductory treatment in this book is not meant
to compete with the more scholarly literature that provides much more
advanced coverage, but hopefully, it will be a good and quite useful initial
contact with the more advanced topics.

REFERENCES

Oppenheim, A. V., and R. W., Schafer, 1999, Discrete-Time Signal Processing ,
2nd ed., Prentice Hall, Upper Saddle River, NJ.

Simon, B., Various Mathcad reviews, Department of Mathematics, California
Institute of Technology.





1
First Principles

This Þrst chapter presents an overview of some basic ideas. Later chapters
will expand on these ideas and clarify the subtleties that are frequently
encountered. Practical examples will be emphasized. The data to be pro-
cessed is presented in a sampled-time or sampled-frequency format, using
a number of samples that is usually not more than 211 = 2048. The fol-
lowing �shopping list� of operations is summarized as follows:

1. The user inputs, from a tabulated or calculated sequence, a set of
numerical values, or possibly two sets, each with N = 2M(M = 3, 4,
5, . . . ,11) values. The sets can be real or complex in the �time�
or �frequency� domains, which are related by the Discrete Fourier
Transform (DFT) and its companion, the Inverse Discrete Fourier
Transform (IDFT). This book will emphasize time and frequency
domains as used in electronic engineering, especially communica-
tions. The reader will become more comfortable and proÞcient in
both domains and learn to think simultaneously in both.

2. The sequences selected are assumed to span one period of an eternal
steady-state repetitive sequence and to be highly separated from

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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10 DISCRETE-SIGNAL ANALYSIS AND DESIGN

adjacent sequences. The DFT (discrete Fourier transform), and DFS
(discrete Fourier series) are interchangeable in these situations.

3. The following topics are emphasized:
a. Forward transformation and inverse transformation to convert

between �frequency� and �time�.

b. Spectral leakage and aliasing.

c. Smoothing and windowing operations in time and frequency.

d. Time and frequency scaling operations.

e. Power spectrum and cross-spectrum.

f. Multiplication and convolution using the DFT and IDFT.

g. Relationship between convolution and multiplication.

h. Autocorrelation and cross-correlation.

i. Relations between correlation and power spectrum using the
Wiener-Khintchine theorem.

j. Filtering or other signal-processing operations in the time domain
or frequency domain.

k. Hilbert transform and its applications in communications.

l. Gaussian (normal) random noise.

m. The discrete differential (difference) equation.

The sequences to be analyzed can be created by internal algorithms
or imported from data Þles that are generated by the user. A library of
such Þles, and also their computed results, can be named and stored in a
special hard disk folder.

The DFT and IDFT, and especially the FFT and IFFT, are not only very
fast but also very easy to learn and use. Discrete Signal Processing using
the computer, especially the personal computer, is advancing steadily into
the mainstream of modern electrical engineering, and that is the main
focus of this book.

SEQUENCE STRUCTURE IN THE TIME
AND FREQUENCY DOMAINS

A time-domain sequence x (n) of inÞnite duration −∞ ≤ n ≤ + ∞ that
repeats at multiples of N is shown in Fig. 1-1a, where each x (n) is uniquely
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0
N−1

NN/2

0

N/2

N−1

N

(a)

(b)

−4 −3 −2 −1 0 +1 +2 +3

0 +1 +2 +3 +4 +5
−4 −3 −2 −1

+6 +7

N/2

0

(c)

(d )

1 2 3 4 5 6 7

N/2 − 1 N/2 + 1 N − 1

N = 8

Figure 1-1 InÞnite sequence operations for wave analysis. (a) The
segment of inÞnite periodic sequence from 0 to N − 1. The next sequence
starts at N . (b) The Segment of inÞnite sequence from 0 to N − 1 is not
periodic with respect to the rest of the inÞnite sequence. (c) The two-sided
sequence starts at− 4 or 0. (d) The sequence starts at 0.
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identiÞed in both time and amplitude. If the sequence is nonrepeating
(random), or if it is inÞnite in length, or if it is periodic but the sequence
is not chosen to be exactly one period, then this segment is not one
period of a truly periodic process, as shown in Fig. 1-1b. However, the
wave analysis math assumes that the part of the wave that is selected is
actually periodic within an inÞnite sequence, similar to Fig. 1-1a. The
selected sequence can then perhaps be referred to as �pseudo-periodic�,
and the analysis results are correct for that sequence. For example, the
entire sequence of Fig. 1-1b, or any segment of it, can be analyzed exactly
as though the selected segment is one period of an inÞnite periodic wave.
The results of the analysis are usually different for each different segment
that is chosen. If the 0 to N − 1 sequence in Fig. 1-1b is chosen, the
analysis results are identical to the results for 0 to N − 1 in Fig. 1-1a.

When selecting a segment of the data, for instance experimentally
acquired values, it is important to be sure that the selected data contains
the amount of information that is needed to get a sufÞciently accurate
analysis. If amplitude values change signiÞcantly between samples, we
must use samples that are more closely spaced. There is more about this
later in this chapter.

It is important to point out a fact about the time sequences x (n) in
Fig. 1-1. Although the samples are shown as thin lines that have very
little area, each line does represent a deÞnite amount of energy. The sum
of these energies, within a unit time interval, and if there are enough of
them so that the waveform is adequately represented (the Nyquist and
Shannon requirements) [Stanley, 1984, p. 49], contains very nearly the
same energy per unit time interval; in other words very nearly the same
average power (theoretically, exactly the same), as the continuous line
that is drawn through the tips of the samples [Carlson, 1986, pp. 351 and
624]. Another way to look at it is to consider a single sample at time (n)
and the distance from that sample to the next sample, at time (n + 1). The
area of that rectangle (or trapezoid) represents a certain value of energy.
The value of this energy is proportional to the length (amplitude) of the
sample. We can also think of each line as a Dirac �impulse� that has zero
width but a deÞnite area and an amplitude x (n) that is a measure of its
energy. Its Laplace transform is equal to 1.0 times x (n).

If the signal has some randomness (nearly all real-world signals do),
the conclusion of adequate sampling has to be qualiÞed. We will see in
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later chapters, especially Chapter 6, that one record length (N ) of such a
signal may not be adequate, and we must do an averaging operation, or
other more elaborate operations, on many such records.

Discrete sequences can also represent samples in the frequency domain,
and the same rules apply. The power in the adequate set of individual
frequencies over some speciÞed bandwidth is almost (or exactly) the same
as the power in the continuous spectrum within the same bandwidth, again
assuming adequate samples.

In some cases it will be more desirable, from a visual standpoint, to
work with the continuous curves, with this background information in
mind. Figure 1-6 is an example, and the discrete methods just mentioned
are assumed to be still valid.

TWO-SIDED TIME AND FREQUENCY

An important aspect of a periodic time sequence concerns the relative
time of occurrence. In Fig. 1-1a and b, the �present� item is located
at n = 0. This is the reference point for the sequence. Items to the left
are �previous� and items to the right are �future�. Figure 1-1c shows an
8-point sequence that occurs between−4 and +3. The �present� symbol
is at n = 0, previous symbols are from −4 to −1, and future symbols are
from + 1 to + 3. In Fig. 1-1d the same sequence is shown labeled from 0
to + 7. But the + 4 to + 7 values are observed to have the same amplitudes
as the −4 to −1 values in Fig. 1-1c. Therefore, the + 4 to + 7 values of
Fig. 1-1d should be thought of as �previous� and they may be relabeled as
shown in Fig. 1-1d. We will use this convention consistently throughout
the book. Note that one location, N /2, is labeled both as+ 4 and −4. This
location is special and will be important in later work. In computerized
waveform analysis and design, it is a good practice to use n = 0 as a
starting point for the sequence(s) to be processed, as in Fig. 1-1d, because
a possible source of confusion is eliminated.

A similar but slightly different idea occurs in the frequency-domain
sequence, which is usually a two-sided spectrum consisting of positive-
and negative-frequency harmonics, to be discussed in detail later. For
example, if Fig. 1-1c and d are frequency values X (k ), then − 4 to − 1 in
Fig. 1-1c and + 4 to + 7 in Fig. 1-1d are negative frequencies. The value at
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k = 0 is the dc component, k = ± 1 is the ± fundamental frequency, and
other ± k values are ± harmonics of the k = ± 1 value. The frequency
k = ± N /2 is special, as discussed later. Because of the assumed steady-
state periodicity of the sequences, the Discrete Fourier Transform, often
correctly referred to in this book as the Discrete Fourier Series, and its
inverse transform are used to travel very easily between the time and
frequency domains.

An important thing to keep in mind is that in all cases, in this chapter or
any other where we perform a summation (�) from 0 to N − 1, we assume
that all of the signiÞcant signal and noise energy that we are concerned
with lies within those boundaries. We are thus relieved of the integrations
from −∞ to +∞ that we Þnd in many textbooks, and life becomes sim-
pler in the discrete 0 to N − 1 world. It also validates our assumptions
about the steady-state repetition of sequences. In Chapters 3 and 4 we look
at aliasing, spectral leakage, smoothing, and windowing, and these help to
assure our reliance on 0 to N − 1. We can also increase N by 2M(M = 2,
3, 4, . . .) as needed to encompass more time or more spectrum.

DISCRETE FOURIER TRANSFORM (SERIES)

A typical example of discrete-time x (n) values is shown in Fig. 1-2a. It
consists of 64 equally spaced real-valued samples 0 ≤ n ≤ 63 of a sine
wave, peak amplitude A = 1.0 V, to which a dc bias of Vdc = + 1.0 V
has been added. Point n = N = 64 is the beginning of the next sine wave
plus dc bias. The sequence x (n), including the dc component, is

x(n) = A sin

(
2π

n

N
Kx

)
+ Vdc volts (1-1)

where K x is the number of cycles per sequence length: in this example,
1.0. To Þnd the frequency spectrum X (k ) for this x (n) sequence (Fig.
1-2b), we use the DFT of Eq. (1-2) [Oppenheim et al., 1983, p. 321]:

X(k) = 1

N

N−1∑
n=0

x(n) e−j2π n
N ·k volts, k = 0 to N − 1 (1-2)
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−j 0.5

+j 0.5

k = 1

dc = +1.0

k = 0

k = 63

0 63

0
(a)

(b)

(c)

63

0 to N/2 − 1 = 32 freqs N/2 to N − 1 = 32 freqs

N = 64

0 to N = 64 freq intervals

0 to N −1 = 64 freq values, including dc

N/2 − 1 N/2

Figure 1-2 Sequence (a) is converted to a spectrum (b) and recon-
verted to a sequence (c). (a) 64-point sequence, sine wave plus dc bias.
(b) Two-sided spectrum of w to count freq part (a) showing ho values
and frequency intervals. (c) The spectrum of part (b) is reconverted to the
time sequence of part (a).

In this equation, for each discrete value of (k ) from 0 to N − 1, the func-
tion x (n) is multiplied by the complex exponential, whose magnitude =
1.0. Also, at each (n) a constant negative (clockwise) phase lag incre-
ment (−2πnk /N ) radians is added to the exponential. Figure 1-2b shows
that the spectrum has just two lines of amplitude ± j 0.5 at k = 1 and 63,
which is correct for a sine wave of frequency 1.0, plus the dc at k = 0.

These two lines combine coherently to produce a real sine wave of
amplitude A = 1.0. The peak power in a 1.0 ohm resistor is not the sum of
the peak powers of the two components, which is (0.52 + 0.52) = 0.5 W;
instead, the peak power is the square of the sum of the two components,
which is (0.5 + 0.5)2 = 1.0 W. If the spectrum component X (k ) has a real
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part and an imaginary part, the real parts add coherently and the imaginary
parts add coherently, and the power is complex (real watts and imaginary
vars). There is much more about this later.

If K x = 1.2 in Eq. (1-1), then 1.2 cycles would be visible, the spectrum
would contain many frequencies, and the Þnal phase would change to
(0.2 · 2π) radians. The value of the phase angle in degrees for each
complex X (k ) is

φ(k) = arctan

(
Im

(
X(k)

)
Re

(
X(k)

)) · 180

π
degrees (1-3)

For an example of this type of sequence, look ahead to Fig. 1-6. A later
section of this chapter gives more details on complex frequency-domain
sequences.

At this point, notice that the complex term exp(jωt) is calculated by
Mathcad using its powerful and efÞcient algorithms, eliminating the need
for an elaborate complex Taylor series expansion by the user at each value
of (n) or (ω). This is good common sense and does not derail us from
our discrete time/frequency objectives.

At each (k ) stop, the sum is performed at 0 to N − 1 values of time (n),
for a total of N values. It may be possible to evaluate accurately enough
the sum at each (k ) value with a smaller number of time steps, say N /2
or N /4. For simplicity and best accuracy, N will be used for both (k )
and (n). Using Mathcad to Þnd the spectrum without assigning discrete
(k ) values from 0 to N − 1, a very large number of frequency values are
evaluated and a continuous graph plot is created. We will do this from
time to time, and the summation (�) becomes more like an integral

(∫ )
,

but this is not always a good idea, for reasons to be seen later.
Note also that in Eq. (1-2) the factor 1/N ahead of the sum and the

minus sign in the exponent are used but are not used in Eq. (1-8) (look
ahead). This notation is common in engineering applications as described
by [Ronald Bracewell, 1986] and is also an option in Mathcad (functions
FFT and IFFT). See also [Oppenheim and Willsky et al., 1983, p. 321].
This agrees with the practical engineering emphasis of this book. It also
agrees with our assumption that each record, 0 to N − 1, is one replication
of an inÞnite steady-state signal. These two equations, used together and
consistently, produce correct results.
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Each (k ) is a harmonic number for the frequency sequence X (k ). To
repeat a few previous statements for emphasis, k = 1 is the fundamen-
tal frequency, k = 2 is second harmonic, etc. A two-sided (positive and
negative) phasor spectrum is produced by this equation (we will learn to
appreciate the two-sided spectrum concept). N , an integral power of 2,
is chosen large enough to provide adequate resolution of the spectrum
(sufÞcient harmonics of k = 1). The dc component is at k = 0 [where the
exp(0) term = 1.0] and

X(0) = 1

N

N−1∑
n=0

x(n) = 〈x(n)〉 volts (1-4)

which is the time average over the entire sequence, 1.0, in Fig. 1-2.
Equation (1-2) can be used directly to get the spectrum, but as a matter

of considerable interest later it can be separated into two regions having
an equal number of data points, from 0 to N /2 − 1 and from N /2 to N − 1
as shown in Eq. (1-5). If N = 8, then k (positive frequencies) = 1, 2, 3 and
k (negative frequencies) = 7, 6, 5. Point N is the beginning of the next
periodic continuation. Dc is at k = 0, and N /2 is not used, for reasons to
be explained later in this chapter.

Consider the following manipulations of Eq. (1-2):

X(k) = 1

N

⎡
⎣N/2−1∑

n=0

x(n)e−jk2π( n
N ) +

N−1∑
n=N/2

x(n)e−jk2π( n
N )

⎤
⎦ (1-5)

The last exponential can be modiÞed as follows without changing its
value:

e−jk2π n
N = ej (2πn)︸ ︷︷ ︸

360◦
e−jk2π n

N = e
j2πn

(
1− k

N

)
= ej2π (N−k) n

N (1-6)

and Eq. (1-2) becomes

X(k) = 1

N

⎡
⎣N/2−1∑

n=0

x(n)e−jk2π n
N +

N−1∑
n=N/2

x(n)ej2π(N−k) n
N

⎤
⎦ (1-7)
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The second exponential is the phase conjugate (e−jθ→e+jθ) of the Þrst
and is positioned as shown in Fig. 1-2b for k = N /2 to N − 1. At k = 0
we see the dc. The two imaginary components − j0.5 and + j0.5, are at
k = 1 and k = 63 (same as k =− 1), typical for a sine wave of length
64. We use this method quite often to convert two-sided sequences into
one-sided (positive-time or positive-frequency) sequences (see Chapter 2
for more details).

INVERSE DISCRETE FOURIER TRANSFORM

The inverse transformation (IDFT) in Eq. (1-8) [Oppenheim et al., 1983,
p. 321] takes the two-sided spectrum X (k ) in Fig. 1-2b and exactly recre-
ates the original two-sided time sequence x (n) shown in Fig. 1-2c:

x(n) =
N−1∑
k=0

X(k)ejk2π( n
N ) (1-8)

At each value of (n) the spectrum values X (k ) are summed from k = 0 to
k = N − 1. In Eq. (1-8) the phase increments are in the counter-clockwise
(positive) direction. This reverses the negative phase increments that were
introduced into the DFT [Eq. (1-2)]. This step helps to return each complex
X (k ) in the frequency domain to a real x (n) in the time domain. See further
discussion later in the chapter.

It is interesting to focus our attention on Eqs. (1-2) and (1-8) and to
observe that in both cases we are simultaneously in the time and frequency
domains. We must have data from both domains to travel back and forth.
This conÞrms that we are learning to be comfortable in both domains at
once, which is exactly what we need to do.

So far, Eqs. (1-2) and (1-8) have been used directly, without any need
for a faster method, the FFT (the Fast Fourier Transform), described later.
Modern personal computers are usually fast enough for simple problems
using just these two equations. Also, Eqs. (1-2) and (1-8) are quite accurate
and very easy to use in computerized analysis (however, Mathcad also
has very excellent tools for numerical and symbolic integration that we
will use frequently). We do not have to worry about those two discrete
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equations in our applications because they have been thoroughly tested.
It is a good idea to use Eqs. (1-2) and (1-8) together as a pair. To narrow
the time or frequency resolution, multiply the value of N by 2M(m = 1,
2, 3, . . .), as shown in the next section.

FREQUENCY AND TIME SCALING

Suppose a signal spectrum extends from 0 Hz to 30 MHz (Fig. 1-3) and we
want to display it as a 32-point (=25) two-sided spectrum. The positive
side of the spectrum has 15 X (k ) values from 1 to N /2 − 1 (not count-
ing 0 and N /2), and the negative side of the spectrum also has 15 X (k )
values from N /2 + 1 to N − 1 (not counting N /2 and N ). The frequency
range 0 to 30 MHz consists of a fundamental frequency k1 and 24 − 1 = 15
harmonics of k1. The fundamental frequency k1 is determined by

k1·15 = 3·107 ∴ k1 = 3·107

15
= 2 MHz (1-9)

and this is the best resolution of frequency that can be achieved with
15 points (positive or negative frequencies) of a 30-MHz signal using
a 32-point two-sided spectrum. If we use 2048 data points, we can get
29.31551-kHz resolution using Eq. (1-9).

+/− 30 MHz
00

2.0 MHz resolution

K=
+1

K = −1

−2 MHz

Figure 1-3 A 30-MHz two-sided spectrum with 32 frequency samples,
including 0.
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An excellent way to improve this example is to frequency-convert the
signal band to a much lower frequency, for example 3 MHz, using a very
stable local oscillator, which would give us a 2931.55-Hz resolution for
this example. Increasing the samples to 214 at 3 MHz provides a resolution
of 366.26 Hz, and so forth for higher sample numbers. This is basically
what spectrum analyzers do.

The good news for this problem is that a hardware frequency translator
may not be necessary. If the signal is narrowband, such as speech or
low-speed data or some other bandlimited process, the original 30-MHz
problem might be restated at 3 MHz, or maybe even at 0.3 MHz, with the
same signal bandwidth and with no loss of correct results, but with greatly
improved resolution. With programs for personal computer analysis, very
large numbers of samples are not desirable; therefore, we do not try to
push the limits too much. The waveform analysis routines usually tell
us what we want to know, using more reasonable numbers of samples.
Designing the frequency and time scales is very helpful.

Consider a time scaling example, a sequence (record length) that is
10 μsec long from start of one sequence to the start of the next sequence,
as shown in Fig. 1-4. For N = 4 there are 4 time values (0, 1, 2, 3) and
4 time intervals (1, 2, 3, 4) to the beginning of the next sequence, which
is 10−5/4 = 2.5 μsec per interval. In the Þrst half there are 2 intervals
for a total of 5.0 μsec. For the second half there are also 2 intervals, for
a total of 5.0 μsec. Each interval is a �band� of possibly smaller time
increments. The total time is 10.0 μsec.

0 1 2 3

1 2 3 4

0 2.5 +5.0

− 5.0 −2.5 0

N = 4

msec

10 msec

Figure 1-4 A 10-μsec time sequence with positive and negative time
values.
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For N = 2M points there are N values , including 0, and N intervals
to the beginning of the next sequence. For a two-sided time sequence
the special midpoint term N /2 can be labeled as+5.0 μsec and also
−5.0 μsec, as shown in Fig. 1-4. It is important to do this time scaling
correctly.

Figure 1-2b shows an identical way to label frequency values and fre-
quency intervals. Each value is a speciÞc frequency and each interval is
a frequency �band�. This approach helps us to keep the spectrum more
clearly in mind. If amplitude values change too much within an interval,
we will use a higher value of N to improve frequency resolution, as dis-
cussed previously. The same idea applies in the time domain. The term
picket fence effect describes the situation where the selected number of
integer values of frequency or time does not give enough detail. It�s like
watching a ball game through a picket fence.

NUMBER OF SAMPLES

The sampling theorem [Carlson, 1986, p. 351] says that a single sine
wave needs more than two, preferably at least three, samples per cycle. A
frequency of 10,000 Hz requires 1/(10,000·3) = 3.33·10−5seconds for each
sample. A signal at 100 Hz needs 1/(100·3) = 3.33·10−3seconds for each
sample. If both components are present in the same composite signal, the
minimum required total number of samples is (3.33·10−3)/(3.33·10−5) =
102 = 100. In other words, 100 cycles of the 10,000-Hz component occupy
the same time as 1 cycle of the 100-Hz component. Because the time
sequence is two-sided, positive time and negative time, 200 samples would
be a better choice. The nearest preferred value of N is 28 = 256, and the
sequence is from 0 ≤ n ≤ N − 1. The plot of the DFT phasor spectrum
X (k ) is also two-sided with 256 positions. N = 256 is a good choice for
both time and frequency for this example.

If a particular waveform has a well-deÞned time limit but insufÞcient
nonzero data values, we can improve the time resolution and therefore
the frequency resolution by adding augmenting zeros to the time-domain
data. Zeros can be added before and after the limited-duration time signal.
The total number of points should be 2M(M = 2, 3, 4, . . .), as mentioned
before. Using Eq. (1-8) and recalling that a time record N produces N /2
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positive-frequency phasors and N /2 negative-frequency phasors, the fre-
quency resolution improves by the factor (total points)/(initial points). The
spectrum can sometimes be distorted by this procedure, and windowing
methods (see Chapter 4) can often reduce the distortion.

COMPLEX FREQUENCY DOMAIN SEQUENCES

We discuss further the complex frequency domain X (k ) and the phasor
concept. This material is very important throughout this book.

The complex plane in Fig. 1-5 shows the locus of imaginary values on
the vertical axis and the locus of real values on the horizontal axis. The
directed line segment Aeje, also known as a phasor , especially in electron-
ics, has a horizontal (real) component Acos θ and a vertical (imaginary)
component jAsin θ. The phasor rotates counter-clockwise at a positive
angular rate (radians per second) = 2πf . At the frozen instant of time
in the diagram the phase lead of phasor 1 relative to phasor 2 becomes
θ =ω�t = 2πf �t . That is, phasor 1 will reach its maximum amplitude
(in the vertical direction) sooner than phasor 2 therefore, phasor 1 leads
phasor 2 in phase and also in time. A time-domain sine-wave diagram of
phasor 1 and 2 veriÞes this logic. We will see this again in Chapter 5.

Re(x)

j Im(x)

Ae−j q

Ae j q

Acos q

jAsin q

q + p/2

− q
q

Positive
rotation

Negative
rotation

1

2

Figure 1-5 Complex plane and phasor example.
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The letter j has dual meanings: (1) it is a mathematical operator ,

ejπ/2 = cos

(
π

2

)
+ j sin

(
π

2

)
= 0 + j1 = j (1-10)

that performs a 90◦ (quadrature) counter-clockwise leading phase shift
on any phasor in the complex plane, for example from 45◦ to 135◦, and
(2) it is used as a label to tell us that the quantity following it is on
the imaginary axis: for example, R + jX , where R and X are both real
numbers. The conjugate of the phase-leading phasor at angle (θ) is the
phase-lagging clockwise-rotating phasor at angle (−θ). The quadrature
angle is θ± 90◦.

TIME x(n) VERSUS FREQUENCY X(k)

It is very important to keep in mind the concepts of two-sided time and
two-sided frequency and also the idea of complex-valued sequences x (n)
in the time domain and complex-valued samples X (k ) in the frequency
domain, as we now explain.

There is a distinction between a sample in time and a sample in fre-
quency. An individual time sample x(n), where we deÞne x to be a real
number, has two attributes, an amplitude value x and a time value (n).
There is no �phase� or �frequency� associated with this x (n), if viewed
by itself . A special clariÞcation to this idea follows in the next para-
graph. Think of the x (n) sequence as an oscilloscope screen display. This
sequence of time samples may have some combination of frequencies and
phases that are deÞned by the variations in the amplitude and phase of
the sequence. The DFT in Eq. (1-2) is explicitly designed to give us that
information by examining the time sequence. For example, a phase change
of the entire sequence slides the entire sequence left or right. A sine wave
sequence in phase with a 0◦ reference phase is called an (I ) wave and a
sine wave sequence that is at 90◦ with respect to the (I) wave sequence
is called a (Q or jQ) quadrature wave. Also, an individual time sample
x(n) can have a �phase identiÞer� by virtue of its position in the time
sequence. So we may speak in this manner of the phase and frequency
of an x (n) time sequence, but we must avoid confusion on this issue. In
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this book, each x (n) in the time domain is assumed to be a �real� signal,
but the �wave� may be complex in the sense that we have described.

A special circumstance can clarify the conclusions in the previous para-
graph. Suppose that instead of x (n) we look at x (n)exp(jθ), where θ is a
constant angle as suggested in Fig. 1-5. Then (see also p. 46)

x(n) exp(jθ) = x(n) cos(θ) + jx(n) sin θ = I (n) + jQ(n) (1-11)

and we now have two sequences that are in phase quadrature, and each
sequence has real values of x(n). Finally, suppose that the constant θ is
replaced by the time-varying θ(n) from n = 0 to N − 1. Equation (1-11)
becomes x (n)exp[jθ(n)], which is a phase modulation of x (n). If we plug
this into the DFT in Eq. (1-2) we get the spectrum

X(k) = 1

N

N−1∑
n=0

[
x(n) exp

[
jθ(n)

]]
exp

(
−j2π

n

N
k

)

= 1

N

N−1∑
n=0

x(n) exp

{
− j

[
2π

n

N
k − θ(n)

]} (1-12)

where k can be any value from 0 to N − 1 and the time variations in
θ(n) become part of the spectrum of a phase-modulated signal, along
with the part of the spectrum that is due to the peak amplitude varia-
tions (if any) of x (n). Equation (1-12) can be used in some interesting
experiments. Note the ease with which Eq. (1-12) can be calculated in the
discrete-time/frequency domains. In this book, in the interest of simplic-
ity, we will assume that the x(n) values are real, as stated at the outset,
and we will complete the discussion.

A frequency sample X (k ), which we often call a phasor , is also a volt-
age or current value X , but it also has phase θ(k ) relative to some reference
θR, and frequency k as shown on an X (k ) graph such as Fig. 1-2b, k = + 1
and k =+ 63 (same as− 1). The phase angle θ(k ) of each phasor can
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Figure 1-6 Example of time to frequency and phase and return to time.
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be shown, if we like, on a separate phase-angle graph (Fig. 1-6). Finally,
to reconstruct the time plot in Fig. 1-2c, the two rotating X (k ) phasors
in Fig. 1-2b re-create the sinusoidal time sequence x (n), using the IDFT
of Eq. (1-8). Figure 1-6 should be studied as an example of converting
exp(−n/20) from time to frequency and phase and back to time. Note that
parts (a) and (d) show only the positive-time part of the x (n) waveform.
The negative-time part is a mirror image and is occasionally not shown,
but it is never ignored.

There is one other thing about sequences. Because in this book they
are steady-state signals in which all transients have disappeared, it does
not matter where they came from. They can be solutions to differential
equations, or signal generator output at the end of a long nonlinear trans-
mission line, etc., etc. The DFT and IDFT do not identify the source of the
sequences, only tell the relationship between the steady-state time domain
and the steady-state frequency domain. We should avoid trying to make
anything more than that out of them. Other methods do a much better job
of tracing the origins of sequences in time and frequency. The Appendix
shows a simple example of this interesting and very important activity.
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2
Sine, Cosine, and θ

In the spectrum X (k ) where (k ), in this chapter, is conÞned to integer
values, the Þrst N /2 − 1 are a collection of positive-frequency phasors.
It is sometimes sufÞcient to work with just this information. Another
approach is usually more desirable and is easy to accomplish. Figure 2-1
illustrates a problem that occurs frequently when we use only one-half
(Þrst or second) of the phasors of an X (k ) sequence. Part (a) is a sine
wave. Part (b) is its two-sided phasor spectrum using the DFT. Next (c) is
the attempt to reconstruct the sine wave using only one-half (positive or
negative) of the spectrum. The result is two sine waves in phase quadrature
and half-amplitude values. Part (d) is the correct restoration using the
two-sided phasor spectrum.

Incorrect usage of sequences can lead to mysterious difÞculties, espe-
cially in more complicated situations, that can be difÞcult to unravel. We
can also see that in part (c), where only the Þrst (positive) half of the spec-
trum was used for reconstruction, the real part has the correct waveform
but the wrong amplitude (in this case, 0.5), which may not be important.
But this idea must be used carefully because it is often not reliable and can
lead to false conclusions (a common problem). Also, the average power

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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Figure 2-1 Illustrating differences in the use of one-sided sequences and
two-sided sequences.
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in Fig. 2-1 is zero because the two waves are 90◦ apart, which is not true
for the actual sine wave.

ONE-SIDED SEQUENCES

Since an X (k ) phasor can be complex (Chapter 1), with a real (Re)
part and an imaginary (j Im) part, and in practical electronic design we
are usually interested in positive-frequency rather than two-sided, it is
easy to convert a two-sided phasor sequence X (k ) to a sum of positive-
frequency sine and cosine time-domain signals, each at some amplitude
and phase angle.

All of the samples of x (n) are used to Þnd each phasor X (k ) using the
DFT of Eq. (1-2). A pair of complex-conjugate phasors then creates a sine
or cosine signal with some phase and amplitude at a positive (k ) between
1 and (N /2) − 1. We can then write an equation in the time domain that
uses the sum of these sine and cosine signals and their phase angles at
the positive frequencies.

Also, the entire sequence of X (k ) phasors Þnds positive-time (Þrst half)
x (n) and negative-time (second half) x (n) values using the IDFT, as in
Eq. (1-8).

TIME AND SPECTRUM TRANSFORMATIONS

The basic idea is to use the DFT to transform a two-sided time sequence
(Fig. 1-1d) into a two-sided phasor sequence. We then use a pair of these
phasors, one from a positive-side location (for example, k = 3) and the
other from the corresponding negative-side location (k =N − 3), to deÞne
a positive-frequency sine or cosine signal (at k = 3) at phase angle θ(3).
The pairs are taken from two regions of equal length, 1 to (N /2) − 1 and
(N /2) + 1 to N − 1.

If the frequency phasors are known, the IDFT [Eq. (1-8)] returns the
correct two-sided time sequence x (n). We want the one-sided signal sine�
cosine�θ spectrum that is derived from the two-sided phasor spectrum. To
get the correct two-sided phasor spectrum from x (n), we need the entire
two-sided x (n) sequence.
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There are two types of phasor X (k ) sequences: those that have even
symmetry about N /2 and those that have odd symmetry about N /2.
Figure 2-2c, d, g, and h have odd symmetry. In either case we can add
the magnitudes of the two phasors, which tells us that we have a true
signal of some kind if both phasors are greater than zero. We then Þnd
the frequency, amplitude, and phase of each phasor. Mathcad then looks
at each pair of phasors and determines their real and imaginary parts and
calculates the sine- or cosine-wave time sequence, its amplitude, and its
phase angle. Several different frequency components of a single wave can
be determined in this manner.

Equations (1-5) to (1-7) showed how to organize the two sides of
the (k ) spectrum to get pairs. A simple Mathcad Program (subroutine)
performs these operations automatically. Figures 2-3, 2-4, 4-1, 6-4, 6-5,
8-1, 8-2, and 8-3 illustrate the methods for a few of these very useful
little �programs� that are difÞcult to implement without their logical and
Boolean functions. The Mathcad Help (F1) �programming� informs us
about these procedures.

The special frequency k = N/2 is not a member of a complex-conjugate
pair and delivers only a real or complex number which is not used here
but should not be discarded because it may contain signiÞcant power.
We recall also that k = 1 is the fundamental frequency of the wave and
(k ) values up to (N /2) − 1 are harmonics (integer multiples) of the k = 1
frequency, so we choose the value of N and the frequency scaling factors
discussed in Chapter 1 to assure that we are using all of the important
harmonics. We can then ignore k = N /2 with no signiÞcant loss of data.
Verify by testing that N is large enough to assure that all important pairs
are used. We can then prepare a sine�cosine�θ table, including dc bias
(k = 0) using Eq. (1-4) and perform graphics plots.

Figure 2-2 shows the various combinations of the two-sided spectrum
for the eight possible types of sine and cosine, both positive or negative
and real or imaginary. Real values are solid lines and imaginary values
are dashed lines. For any complex spectrum, deÞned at integer values of
(k ), the complex time-domain sine and cosine amplitudes and their phase
angles are constructed using these eight combinations. Mathcad evaluates
the combinations in Fig. 2-2 and plots the correct waveforms.

The example in Eq. (2-1) is deÞned for our purposes as the sum of
a real cosine wave at k = 2, amplitude 5, and a real sine wave at k = 6,
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Figure 2-2 Phasor polarity and type for all possible sine�cosine waves.
Solid lines: real; dashed lines: imaginary.

amplitude 8. The spectrum is positive-sided at 2 and 6.

x(n) = 5 cos

(
2π

n

N
2

)
− j 8 cos

(
2π

n

N
6

)
(2-1)
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In Fig. 2-3 the (n) step size 0.1 from 0 to N − 1 provides smooth curves
in the real and imaginary x (n) graphs. Figure 2-3 shows the following:

• The real cosine spectrum at k = 2 and 14, amplitude 2.5 + 2.5 =
+ 5.0 (see Fig. 2-2a).

• The − j cosine spectrum at k = 6 and 10, amplitude − 4 − 4 = − 8
(see Fig. 2-2f).

• The phase at k = 2 and 14 ( = 0◦).
• The phase at k = 6 and 10 ( = − 90◦).

Observe that Mathcad provides the correct two-sided phasors (Fig. 2-2)
that the subsequent two-sided IDFT restores to the input x (n). If x (n) is
viewed from 0 to N − 1, the positive frequencies 2 and 6 (number of
cycles per record length) are visible.

In more complicated situations it is a good idea to avoid possible con-
fusion by making sure that all of the Re[X (k )] and Im[X (k )] phasor pairs
are combined into the correct one-sided real and imaginary sine and cosine
positive-frequency constituents, as deÞned in Fig. 2-2. For the example in
Fig. 2-3, the one-sided output is+ 5 cosine at f = 2 at 0◦ and − j8 cosine
at f = 6 at − 90◦.

Note the use of the Mathcad function [atan2 (Re(x), Im(x))]·180/π◦,
which covers the range ± 180◦, as compared with atan(x) · 180/π

◦, which
only covers ± 90◦.

There are some possibilities for �de-cluttering� the results:

• If Im(X (k )) < 0.0001, set φ(k ) = 0 to avoid clutter in the phase data.
• If Re(X (k )) < 0.0001, set Re(X (k )) = 0.0001.
• If j Im(X (k )) > j1000, set j Im(X (k )) = j1000.
• If j Im(X (k )) < − j1000, set j Im(X (k )) =− j1000.
• Scale the problem to avoid values of X (k ) < 0.001 or > 1000.

In the next example we use just the cosine wave with a phase advance
of + 60◦ = (π/3 radians):

X(k) = 1

N

N−1∑
n=0

{
7 cos

[
2π

n

N
4 +

(
60 · π

180

)]}
exp

(
− j2π

n

N
k

)
(2-2)
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N

⎛⎛ ⎛⎛ ⎛⎛⎛⎛ ⎛⎛⎛⎛ 2⋅π⋅ ⋅6n
N

⎛⎛ ⎛⎛ −j⋅2⋅π⋅ ⋅kn
N

5⋅cos − j⋅8 ⋅cos2⋅π⋅ ⋅2n
N

⎛⎛ ⎛⎛ 2⋅π⋅ ⋅6n
N

⎛⎛ ⎛⎛

⋅

N := 16 k := 0, 1.. N − 1 n := 0, 0.1.. N − 1

Figure 2-3 Example of two-tone signal and its spectrum components
and phase (deg).

Figure 2-4 shows that a + 60◦ component has been added to the cosine
component, as Fig. 2-2d conÞrms. The amplitude of the cosine seg-
ment is 1.75 + 1.75 = 3.5V. The amplitude of the− sin θ component is
3.03 + 3.03 = 6.06V. The phase is shown as+ 60◦.

In these two examples we started with the equations for the signal, then
by examining the phasors in Fig. 2-2 we veriÞed that they coincided with



34 DISCRETE-SIGNAL ANALYSIS AND DESIGN
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Figure 2-4 Sine wave with 60 phase advance.
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the given signal. In practice we might not know the waveform ahead of
time and we would be asked to examine the phasor amplitudes and phases
and use Fig. 2-2 to determine the signal.

We will Þnd uses for the positive-side techniques described in this
chapter and others. Because of the simplicity and the familiarity with
positive-domain frequency usage in many practical engineering situations,
the sine�cosine�θ approach described here is encouraged.

When setting up a problem to get the line spectrum, be sure that (k ),
the frequency index, is deÞned as an integer array. In Mathcad the assig-
ment statement k : = 0, 1 . . . N − 1 works. Otherwise, the DFT generates
a lot of complex answers for noninteger values of k and the spectrum
becomes �smeared,� which obscures the desired line spectrum answers.
This general rule is a good idea in discrete wave analysis problems. Oper-
ate at integral values of (n) (time domain) and (k ) (frequency domain) if
possible. Procedures for dealing with noninteger values will be covered
in later chapters, especially Chapters 3 and 4.

The calculations in Example 2-1 demonstrate how the two-sided DFT
X (k ) of the two-sided x (n), converted to positive-frequency X (k ) only,
can be an excellent spectrum amplitude and phase analyzer for a nonlinear
device, circuit, or system in the real-world positive frequency domain.
Adjustments to signal level(s) of two or more signals and device biasing
parameters can very quickly present a picture of the spectrum response
of the circuit. This is an almost-free Spectrum Analyzer that can be very
accurate and versatile over a very wide frequency range if (a big �if�)
the nonlinear devices used are deÞned correctly. The main requirement is
that we have either an equation or an example data Þle for the device.

One interesting experiment is to look at nonlinear reactions to a two-
tone signal, then vary the amplitude of a strong third signal that is on a
third out-of-band frequency to see the degradation of the in-band two-tone
signal. This can be very illuminating and very practical.

Example 2-1: Nonlinear AmpliÞer Distortion and Square
Law Modulator

To get some hands-on experience, this example will look at the intermodu-
lation (mixing) products of an ampliÞer circuit that is not perfectly linear.
We will use the DFT [Eq. (1-2)] to get the spectrum and IDFT (Eq. 1-8)
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to return to the time domain with the conÞdence that these two equations,
especially in discrete sequences, do not require linearity or superposition.
We will use this idea frequently in this book.

A two-tone input signal of adjustable peak amplitude will be processed
by a circuit that has a certain transfer characteristic which is similar to
the Child-Langmuir equation [Seely, 1956, pp. 24 and 28, Eq. (2-14)] as
derived in the early 1920s from Poisson�s equation for the electric Þeld in
space-charge-limited diodes and also many common triode vacuum tubes:

Iout(n) ≈ KVg(n)1.5 (2-3)

The input (base-to-emitter or grid-to-cathode) two-tone signal at fre-
quencies f 1 and f 2 is

Vg(n) = Vs

[
cos

(
2π

n

N
f1

)
+ cos

(
2π

n

N
f2

)]
+ Vdc (2-4)

V s is the peak amplitude (1/2 of pk-to-pk) of each of the two input sig-
nals. V dc is a bias voltage that determines the dc operating point for the
particular device. This and a reasonable V s value are found from Hand-
book V-I curves (the maximum peak-to-peak signal is four times V s). The
peak-to-peak ac signal should not drive the device into cutoff or saturation
or into an excessively nonlinear region. Figure 2-5 is a typical approxi-
mate spectrum for the two-tone output signal. The input frequencies are
f 1 and f 2, and the various intermodulation products are labeled. Adjusting
V s and V dc for a constant value of peak desired per-tone output shows
how distortion products vary. Note also the addition of 70 dB to the ver-
tical axis. This brings up the levels of weak products so that they show
prominently above the zero dB baseline (we are usually interested in the
dB differences in the spectrum lines). Note also that the vertical scale for
the spectrum values is the magnitude in dB because the actual values are
in many cases complex, and we want the magnitude and not just the real
part (we neglect for now the phase angles).

Note that in this example we let Mathcad calculate V sig(n)1.5 directly
(the easy way), not by using discrete math (the hard way), just as we do
with the exp(·), sin(·), cos(·) and the other functions. We are especially
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n := 0, 1.. 63
k := 0, 1.. 63 Vin(n) := .25⋅n

cos + cos2⋅p⋅ ⋅4n
N

2⋅p⋅ ⋅5n
N

1
N

Fip(k) := ⋅ Vout(n)⋅exp −j ⋅2 ⋅p⋅ n
N

⋅k∑
N−1

n = 0

Figure 2-5 Intermodulation measurements on an ampliÞer circuit.

interested in discrete sequences and discrete ways to process them, but
we also use Mathcad�s numerical abilities when it is sensible to do so. In
embedded signal-processing circuitry, machine language subroutines do
all of this �grunt� work. In this book we let Mathcad do it in an elegant
fashion.
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Figure 2-6 Square-law ampliÞer, mixer, and frequency doubler.

In Fig. 2-6 the exponent in Eq. (2-3) is changed from 1.5 to 2.0. This
is the well-known square-law device that is widely used as a modulator
(mixer) or frequency doubler [Terman, 1943, p. 565]. Note the absence
of dc bias (optional). We see that frequencies f 1 and f 2 have disappeared
from the output, the sum and difference of f 1 and f 2 are prominent and
the second harmonics of f 1 and f 2 are strong also. Higher-order IMD
products have also vanished.

The nonlinearity in Eq. (2-3) can be customized for a wide variety
of devices, based on their transfer characteristics, to explore ac circuit
performance. For example, Eq. (2-3) can be in the form of an N -point
Handbook lookup table for transistor or tube V�I curves. Pick 16 equally
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spaced values of V in(n) for n = 0 to 15 and estimate as accurately as pos-
sible the corresponding values of I out(n). Then get the positive frequency
spectrum for low-order (2nd or 3rd) intermodulation products. Nonlinear
circuit simulation programs such as Multisim can explore these problems
in greater detail, using the correct dc and RCL components and accurate
slightly nonlinear device models.

Example 2-2: Analysis of the Ramp Function

This chapter concludes with an analysis of the �ramp� function in
Fig. 2-7a. It is shown in many references such as [Zwillinger, 1996, p. 49].
Its Fourier series equation in the Reference is

f (x) = 1

2
−

∞∑
k=1

1

πk
sin

2πxk

L
(2-5)

where x is the distance along the x -axis. The term 1/2 is the average
height of the ramp, and x always lies between 0 and + L. The sine-wave
harmonics (k ) extend from 1 to ∞, each with peak amplitude 1/πk . For
each value of (k ), f (x ) creates (k ) sine waves within the length L. The
minus sign means that the sine waves are inverted with respect to the
x axis.

In Fig. 2-7 the discrete form of the ramp is shown very simply in part
(a) as x (n) = n/N from 0 ≤ n ≤ N −1. We then apply the DFT (Eq. 1-2)
to get the two-sided phasor spectrum X (k ) from 0 to N − 1 in part (b).
The following comments help to interpret part (b):

• The real part has the value X (0) = 0.5 at k = 0, the dc value of the
ramp. The actual value shown is 0.484, not 0.5, because the value
0.5 is approached only when the number of samples is very large.
For N = 29 = 512, X (0) is 0.499. This is an example of the approxi-
mations in discrete signal processing. For very accurate answers that
we probably will never need, we could use 212and the FFT.

• The real part of X (k ) from k = 1 to N − 1 is negative, and part (c)
shows that the sum of these real parts is −0.484, the negative of
X (0). In part (c) the average of the real part from 0 to N − 1 is zero,
which is correct for a spectrum of sine waves with no dc bias.
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Figure 2-7 Analysis of a ramp function.

• The imaginary part of the plot is positive-going in the Þrst half,
negative-going in the second half, and zero at N /2. Referring to
Fig. 2-2, this arrangement of polarity agrees with the− sin diagram,
as it should.

• Applying the �Mathcad X-Y Trace� tool to the imaginary part of the
spectrum plot in part (b), we Þnd that the two sides are odd-symmetric
(Hermitian) about N /2. For this reason, the relative phase is zero for
these sine waves (they all begin and end at zero phase).
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• To get the one-sided spectrum, we combine k = 1 with k = N − 1
and so on from 1 ≤ k ≤ (N /2 − 1). For k = 1 to 5, using the Mathcad
X-Y Trace tool, we get 0.3173, 0.1571, 0.1030, 0.0754, and 0.0585.
The Trace tool is a very useful asset.
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3
Spectral Leakage
and Aliasing

SPECTRAL LEAKAGE

The topics in the title of this chapter are concerned with major difÞculties
that are encountered in discrete signal waveform analysis and design.
We will discuss how they occur and how we can deal with them. The
discussion still involves eternal, steady-state discrete signals.

Figure 3-1a shows the �leaky� spectrum of a complex phasor using
the DFT [Eq. (1-2)] at k = 7.0 (Hz, kHz, MHz, or just 7.0) whose input
signal frequency (k ) may be different than 7.0 by the very small frac-
tional offset |ε| shown on the diagram. For |ε| values of 10−15 to 10−6,
the spectrum is essentially a �pure� tone for most practical purposes. The
dots in Fig. 3-1a represent the maximum spectrum attenuation at integer
values of (k ) for each of the offsets indicated. A signal at 7.0 with the off-
set indicated produces these outputs at the other exact integer (k ) values.
Figure 3-1b repeats the example with k = 15.0, and the discrete spectrum
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Figure 3-1 (a) Spectrum errors due to fractional error in frequency
speciÞcation. (b) Line spectrum errors due to 10−3 fractional error in fre-
quency. (c) Continuous spectrum at 38 and at minor spectral leakage loops.
(d) Continuous spectrum of real, imaginary, and magnitude over a nar-
row frequency range. (e) Time domain plot of the u(t) signal, real sine
wave plus dc component. Imaginary part of sequence = 0. (f) Real and
imaginary components of the spectrum U(k) of time domain signal u(t).
(g) Incorrect way to reconstruct a sine wave that uses fractional values of
time and frequency increments.



SPECTRAL LEAKAGE AND ALIASING 45

0 20 40 60 80 100 120
−1

0

1

2

Re(u(t))

Im(u(t))

t

0 20 40 60 80 100 120
−1

−0.5

0

0.5

Im(U(k))

Re(U(k))

k

z := 0, 0.5 .. N−1

Q := 0, 0.5 .. N−1
v(z) :=

0 20 40 60 80 100 120−1

0

1

2

Re(v(z))

Im(v(z))

z

U(k) : = ∑
N−1

t = 0

1
N

t
N

u(t)⋅exp −j⋅2⋅π⋅k⋅

u(t) : = 0.5 + sin
t
N

2⋅π⋅2⋅

N : = 27 t : = 0,1.. N−1 k : = 0,1.. N−1

⋅

∑
N−1

Q = 0
(U(Q)) ⋅ exp j⋅2⋅π⋅Q⋅  z

N

(d )

(e)

(f )

(g)

−40

−32

−24

−16

−8

0

dB ImagReal

Mag

37 3837.5 38.5 39

Figure 3-1 (continued )



46 DISCRETE-SIGNAL ANALYSIS AND DESIGN

lines are drawn for an |ε| value of 10−3. Again, the spectrum of the signal
is shown at integer values of (k ). If we are able to conÞne our interest
to these integer values of (k ), these Þgures characterize the performance
of the DFT for an input that is very close in frequency to an integer (k )
value. Exact values of (k ) give optimum frequency resolution between
adjacent values of (k ), which is why they are preferred when possible. It
is not always possible, as we will see in Chapter 4.

Figure 3-1a and b do not tell the entire story. Assume the following
x (n) complex input voltage sequence at frequency k0 = 38.0 in Eq. (3-1)

x(n) = exp

(
j2π

n

N
k0

)
, k0 = 38.0 (3-1)

Using Eq. (1-2) for the DFT, N = 128, and k = 30 to 46 in steps of 0.01,
the phasor frequency response X (k ) is (review p. 24)

X(k) = 1

N

N−1∑
n=0

x(n) exp
(
−j2π

n

N
k
)

= 1

N

N−1∑
n=0

exp
(
j2π

n

N
k0

)
exp

(
−j2π

n

N
k
)

= 1

N

N−1∑
n=0

exp
[
j2π

n

N
(k0 − k)

]
(3-2)

Mathcad Þnds the real part, the imaginary part and the magnitude of the
complex exponential (phasor) at each non integer value of (k ).

Figure 3-1c shows the magnitude in dB on a 0 to −40 dB scale. This is
a �selectivity� curve (ratio in dB below the peak) for the DFT. At 37.5 or
38.5, for example, the response is down 3.92 dB. An input signal at either
of these frequencies will show a reduced output at 38.0 (the scalloping
effect). At any other input signal frequency k0 that lies between adjacent
integer-k values, we can repeat Eq. (3-2) to Þnd the spectrum for that k0,
and we suggest that the reader experiment with this for additional insight.

The last term in Eq. (3-2) is a virtual scalar spectrum analyzer. At
each 0.01 increment of frequency, it calculates and then sums, for each
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of 128 time values in Fig. 3-1c, the magnitude of X (k ) in dB below the
reference level (0 dB). Note that the loop width at 38 is 2.0 and other loop
widths are 1.0, but the response is zero at 37 and 39. If we calculate the
real and imaginary parts of the spectrum, we could have a vector network
analyzer. In other words, the Mathcad Worksheet can be taught how to
measure forward and reßected complex waves by using the mathematical
equivalent of an ideal wideband four-port directional coupler [Sabin, 1995,
p. 3]. S -parameters can be derived from these complex waves.

Figure 3-1d is a close-up of the spectrum between 37 and 39, showing
the magnitude, real part, and imaginary part, all in dB. It is obvious that
the spectrum becomes very complex, although the magnitude decreases
smoothly. At 38.5 the phase is −90◦, and at 37.5 the phase is +90◦, (the
graph shows only magnitudes in dB). At 37.0, 38.0 and 39.0 the phase is
0.0◦. The magnitude plot is the same as that in Fig. 3-1c over the same
frequency range.

Further mathematical discussion of these waveforms involves the sinc
function (see, for example, [Carlson, 1986, p. 25]).

Methods of reducing the leakage by windowing will be covered in
Chapter 4, but it is always desirable, when feasible, to stay as close as
possible to integer values of (n) and (k ). This can often be arranged using
the scaling methods for time and frequency described in Chapter 1. For
example, let each (k ) represent a smaller signal frequency band, say 1 kHz
instead of 10 kHz, and reduce the frequency sweep range by a factor of
10. Also reduce the amplitude scale. This is what a spectrum analyzer
does, and Fig. 3-1d is an example of how this works (see Fig. 3-2).

One common problem with leakage is that it can obscure spectrum
amplitudes on closely adjacent frequencies, making frequency resolution
uncertain. For example, in Fig. 3-1c and d the very small slope at the
spectrum peak (38.0) makes it difÞcult to distinguish closely adjacent
frequencies. Zooming in on the peak, both horizontally and vertically, can
be helpful but there is always some uncertainty about the true frequency. A
familiar example of this problem is the ordinary digital frequency counter.
No matter how many digits are displayed, the uncertainty is at least ±1

2
the least signiÞcant digit. The scaling procedure is a good way to improve
this problem.

At this point we bring up another example, similar to Fig. 2-1, of a
common problem that occurs in sequence analysis. Figure 3-1e shows a
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sine wave with an added dc bias. The DFT (see Fig. 3-1f) shows the
correct line spectrum. When we try to reconstruct the sine wave using
fractional instead of integer values of time and frequency in order to
improve the resolution the result is not very good (see Fig. 3-1g). The
second attempt, using integer values of time x (n) and frequency X (k ), is
successful (see Fig. 3-1e).

When we design a problem on the computer we usually have the option
of specifying the exact frequency to within a very small error as shown
in Fig. 3-1a. If the data is from a less exact source, we may be able
to assign an exact frequency that is equal to 2M (M = integer) using
the scaling methods in Chapter 1. If the computer program is trying to
determine the true frequency, the problem is the same as the frequency
counter problem. However, phase noise (related to frequency jitter) and
other random or pseudo random problems can often be improved by using
statistical methods such as record averaging , which will be described in
later chapters. It is also possible to insert experimentally a small frequency
offset into the problem that puts a deep notch at some integer frequency,
as shown in the following Example (3-1).

Finally, Chapter 4 discusses the subject of windowing , which can relax
somewhat the requirements for close alignment with integer values of (n)
and (k ).

Example 3-1: Frequency Scaling to Reduce Leakage

Frequency scaling can improve spectral leakage. Figure 3-2 illustrates
how two signals on adjacent frequencies (24 and 25) interact when their
frequency values are not aligned with integer-valued frequencies. Two
values of percentage frequency offset are shown, 1.0% (24.24 and 25.25)
and 0.1% (24.024 and 25.025). The improvement in dB isolation between
the two can be signiÞcant in many applications.

ALIASING IN THE FREQUENCY DOMAIN

This is another important subject that occurs very often and requires care-
ful attention. Figure 3-3 shows the amplitude of a discrete two-sided com-
plex phasor spectrum that is centered at zero with frequency range −16
to +16. For a steady-state inÞnite sequence, duplicate two-sided spectra
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Figure 3-2 Spectral leakage versus frequency offset.

are centered at, ±32, ±64, and so on. We see that the two phasor spectra
overlap considerably at ±16, and also at 0 and ±32 to a lesser extent.

Figure 3-3 is a set of discrete-frequency Fourier transformations of an
eternal steady-state discrete-time process. Each line is the amplitude X (k )
of a rotating phasor at frequency (k ) (review Fig. 1-5). The discrete phasor
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0−16 +16−32 +32
NEG FREQPOS FREQ NEG FREQPOS FREQ

Figure 3-3 Phasor aliasing in the frequency domain.

spectrum is a collection of these individual rotating phasors. The value at
each (k ) is determined by the �(0 ≤ n ≤ N − 1) indicated in Eq. (1-2).
Also indicated at k = 0 is a dc value.

There are two common explanations for this overlap at k = 0. One is
that they are created by conditions that exist in the x (n) time-domain
sequence for values of n < 0. This is time-domain aliasing, which is
discussed at greater length later in this chapter. These values of x (n)
can often transform into values of X (k ) that are in the phasor negative-
frequency range. For example, a capacitor or inductor that has a changing
energy storage before n = 0 can lead to this overlap from k < 0 to k = 0 to
k > 0. This situation also replicates at ±32, ±64 and so on. These (n < 0)
conditions are parts of the eternal x (n) sequence that repeats over and
over in time and therefore also in frequency. If the value of X(k ) at k = 0
is not zero, there is a permanent dc component in the spectrum. The entire
patterns of x (n) and X(k ) repeat endlessly.

The second explanation is considered next. When a phasor spectrum
is created by frequency translation from radio (RF) or intermediate (IF)
frequencies to baseband, phasors that overlap into negative frequencies
can be created. We will learn how to deal with this problem.

The overlap condition illustrated in Fig. 3-3 is aliasing , meaning that
parts of one spectrum segment invade its two neighbors and become
associated, often inextricably, with them. At 0, ±16, and ±32, etc., a
negative-frequency phasor region collides with a positive-frequency pha-
sor region. Note that the spectra in Fig. 3-3 are symmetrical with respect to
0, ±16, and ±32, but very often they are not symmetrical, as illustrated
in Fig. 1-3. The overlap regions produce interactions between the two
spectra that can be very difÞcult to deal with and to separate. Because the
phase relationships in the overlapping negative- and positive-frequency
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regions may not be well known, it is usually difÞcult to predict the exact
behavior in the alias region. We will look at ways to deal with these over-
laps so that aliasing is reduced, if not to zero, then at least to sufÞciently
low levels that it becomes unimportant. In many cases a small amount of
aliasing can be tolerated.

We emphasize that Fig. 3-3 deals with phasors . Mathematically, phys-
ical sine and cosine waves as deÞned explicitly in Eq. (2-1) do not exist
as separate entities at negative frequencies, despite occasional rumors to
the contrary. (Instruments such as spectrum analyzers, oscilloscopes, etc.
can be used to create certain visual illusions; the Wells-Fargo stage coach
wheels in old-time Westerns often appear to be turning in the wrong direc-
tion.) For example, as compared to phasors that can rotate at positive or
negative angular frequencies,

cos(−ωt) = cos(+ωt) (3-3)

sin(−ωt) = − sin(+ωt) = sin(+ωt)∠ ± 180◦ (3-4)

We note also that the average power in any single phasor of any constant
amplitude is zero ± the resolution of the computer. So the phasor at
frequency (k ) must never be thought of as a true signal that can light a
light bulb or communicate.

The sine or cosine wave requires two phasors, one at positive frequency
and one at negative frequency, and the result is at positive frequency. As
an electrical signal the individual phasor is a mathematical concept only
and not a physical entity (we often lose sight of this). Therefore, aliasing
for sine and cosine spectra requires special attention, which we consider
in this chapter.

Adjacent segments of the eternal steady-state positive-frequency sine�
cosine spectrum can overlap at frequencies greater than zero, and it is a
common problem. In Fig. 3-4a the positive-frequency eternal steady-state
spectrum is centered at 5, 15, 25, 35, 45, and so on. Each side of each spec-
trum segment collides with an adjacent segment, producing alias regions.
This spectrum pattern repeats every 10 frequency units. The plots are
shown in Fig. 3-1 as continuous lines rather than discrete lines. We do
this often for convenience, with the understanding that a discrete spectrum
is what is intended.
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Figure 3-4 Removing overlaps (a) in adjacent spectra. (b) The separa-
tions of the BPF center frequencies are increased. (c) The BPF transition
regions are made steeper. The 3-dB bandwidth is held constant.

Any one of these frequency patterns, for example, at 45, can be demod-
ulated (mixed or converted) to baseband, and the original message, 0 to
approximately 10, is recovered completely (if it is sampled adequately),
along with any aliasing �baggage� that exists. The plot in Fig. 3-4b
is similar to what the uncorrupted baseband spectrum might look like
originally.

The baseline for Fig. 3-4 is 60 dB below the peak value. This choice
represents good but not state-of-the-art performance in most communica-
tions equipment design. The desired RF band and the baseband can both
be ampliÞed. In communications equipment design this is a very common
practice that produces the optimum gain and noise Þgure distribution in
the signal path. In this regard, digital signal processors (DSP) require
careful attention to signal and noise levels. The least few signiÞcant bits
need to be functioning for weak signals or noise (noise dithered) and the
maximum levels must not be exceeded too often.

The frequency conversion can also be, and very often is, upward from
baseband to 45, etc. in a transmitter, and gain distribution is important
there also.
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The level of aliasing that is permitted is an important speciÞcation. For
many typical radio systems this number can be between 30 dB (medium
performance) and 60 dB (high performance), as shown in Fig. 3-4b and
3-4c. One satisfactory approach is shown in Fig. 3-4b, where the passband
center frequencies are increased sufÞciently. In some systems this method
may have some economic or technical problems; it can sometimes be dif-
Þcult and/or expensive to increase the 5 frequency (Fig. 3-4b) sufÞciently.
Improving the bandpass Þltering of the signal before or after modulation
(transmitter) or before or after demodulation (receiver) using improved
Þlters with a constant value of passband width is very common and very
desirable. This excellent approach is illustrated in Fig. 3-4c, where the
60 dB-bandwidth is reduced by appropriate Þlter design improvements.
The distance at −60 dB between the frequency segments is a �guard
band�, which makes it easier to isolate any segment using a practical
bandpass Þlter.

The plots of Fig. 3-4 can also be a set of independent signals whose
spectra overlap. This is a very important design consideration. The result
is not aliasing, but adjacent channel crosstalk (interference). The methods
of reducing this interference are the same as those that we use to reduce
aliasing.

We often (usually) prefer to think in terms of positive-frequency sine�
cosine waves as described in Chapter 2. This gives us an additional �clas-
sical� insight into aliasing. The situation is shown in Fig. 3-5a, where a
spectrum centered at 600 kHz is translated to baseband by a local oscil-
lator (L.O.). Because the lower frequencies of the signal spectrum appear
to be less than zero, the output signal �bounces� off the zero-frequency
axis and reßects upward in frequency. That is, the output frequency of
a down-converting mixer is the magnitude of the difference between the
input L.O. and the RF. Also implied are a coupling dc block and an
internal short circuit to ground at zero frequency. Figure 3-5b shows the
output of the mixer, including a zero-frequency notch, for each side of the
input spectrum. The alias segment is moved to a high-frequency where
it can interfere, perhaps nonlinearly, with the high-frequency region of
the other part of the output. Additional improvement in the Þlter design
at low frequencies is often needed to reduce this aliasing problem sufÞ-
ciently. In Fig. 3-5b the two components of the output cannot be combined
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mathematically unless the nature of the signal and the phase properties of
the Þlter over the entire frequency range are well known.

This example reminds us that some problems are better approached
in the frequency domain. A time-domain analysis of a typical bandpass
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Figure 3-5 After conversion to baseband, the effect of aliasing is visible
after being moved to a high frequency.
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Þlter would answer some important questions. Imagine an input sig-
nal whose frequency changes too quickly as it traverses the frequency
range of the Þlter, producing a spectrum distortion that is often seen in a
spectrum analyzer. Time-domain analysis, followed by time-to-frequency
conversion, might not inform us as easily regarding steady-state frequency
aliasing.

An important task is to Þnd the power that resides in the overlap
(aliasing) region. We can do this by integrating the signal that resides
in this region, whose spectral content is known (or estimated). The design
goal is to assure that the power, usually the peak envelope power (PEP)
that leaks into the alias (adjacent channel) region is an acceptable num-
ber of dB below the PEP that resides in the �desired� region. For radio
communications equipment, 60 dB (commercial) or 50 dB (amateur) are
readily achievable and quite satisfactory numbers. Some degradations of
these numbers in transmitters and receivers are due to imperfections
in circuit or system design: for example in a transmitter Þnal ampli-
Þer and in a receiver RF �front-end�. Example 3-2 illustrates this
problem.

Example 3-2: Analysis of Frequency-Domain Aliasing

Figure 3-6 is a simpliÞed example of (a) aliasing between two channels of
a repetitive bandpass Þlter for a repetitive signal spectrum or (b) adjacent
channel interference between two independent adjacent channel signals.
The input signal for this example is Gaussian white noise with a spec-
tral density of 0 dBm (1.0 mW) in a 1.0-Hz band, which is 10.0 W in
the 10-kHz passband. The scanning instrument has a noise bandwidth of
300 Hz, so the passband noise power in that bandwidth is

watts in 300 Hz = 10.0

(
300

10,000

)
= 0.3 W = 24.77 dBm

where dBm = 10 log
0.3

0.001
(3-5)

The Þlter response is rectangular down to the −40 , dBm (in a 1-Hz
bandwidth) level and then slopes according to the dB-scale straight line
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over the region 0 to 6000 Hz between adjacent channels. In a 1.0-Hz
bandwidth,

P(f )1Hz BW dBm = −40 dBm − 20

(
f

6000

)
dB (3-6)

We convert dBm per Hz to watts per Hz, integrate from 0 to 6000 Hz,
and adjust to the 300-Hz instrument bandwidth:

Pout of band(W) = 300

6000

∫ 6000

0
P(f ) df = 6.45 × 10−6 W in 300 Hz

(3-7)
The average Pout of band in dBm in a 300-Hz band is −21.90 dBm.
The ratio of in-band to out-of-band power for a 300-Hz bandwidth is
24.77 dBm − (−21.90 dBm) = 46.7 dB. Note the method of employing
dBm and dB in an equation. If both sides of the Þlter are considered
(which they are not at this time), the ratio becomes 3 dB smaller.

We want the power in the alias zone shown in Fig. 3-6. To get this, inte-
grate the out-of-band spectrum P (f ) from 3000 to 6000 Hz, multiply by 2
to get both halves of the alias zone, and adjust for the 300-Hz instrument
bandwidth:

Palias = 2

(
300

3000

)∫ 6000

3000
P(f ) df

= 2.345 × 10−6 W = −26.3 dBm
(3-8)

The ratio of in-band power to alias band power between the two bands
shown is 24.77 dBm − (−26.3 dBm) = 51.07 dB. Subtract 3 dB for an addi-
tional alias band on the left side of the diagram.

The instrument for this measurement can be a calibrated spectrum
analyzer. Since the noise signal is the same kind at every frequency
and amplitude of interest in this example, we do not worry about the
fact that the amplitude reading for noise on a spectrum analyzer is not
quite the same as for a sine wave. The relative dB readings are cor-
rect. Also, in Eqs. (3-7) and (3-8) we are Þnding the average power
over the speciÞed band and then normalizing that average power to a
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Figure 3-6 Power in the aliasing zone.

300 Hz bandwidth. It is important to not change any analyzer settings
that might affect the internal adjustments or calibrations of the instru-
ment. Finally, if the spectrum analyzer contains a high-quality tracking
generator, it can be used as a sine-wave signal source instead of a noise
generator. Figure 3-7 is the Mathcad worksheet used to perform the cal-
culations for this example which could be a template reference for the
procedure.

In more complicated (irregular) examples it may be necessary to divide
the various frequency ranges into narrow non-overlapping frequency
strips, to analyze each strip individually, and to combine the results in
a manner similar to that suggested here. In wideband measurements it is
often necessary to verify the instrument calibrations across the measure-
ment frequency range and to eliminate spurious system responses that can
invalidate the results.
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Ppb :=
300

10000 0

10000
.001df

 
× Ppb = 0.3 watts in 300 Hz pass band

PdBm = 24.7712 dBm in 300 Hz pass band

out-of-band frequency index

PdBm := 10 × log
Ppb

.001
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6000
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Figure 3-7 Calculation of power in the alias zone of Fig. 3-6.
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ALIASING IN THE TIME DOMAIN

Aliasing has been considered primarily in the X (k ) frequency domain,
where bandlimited spectra overlap. But aliasing also occurs in the time
domain, where periodic x (n) time sequences similar in appearance to
Figs. 3-3 and 3-4 overlap or are truncated or interrupted prematurely
before the sample values become insigniÞcant. An oscilloscope can easily
show the overlap between two separate and independent time-sequence
generators that are triggered alternately; the two could be triangular waves.
After the DFT transformation the result is often an unacceptable modiÞ-
cation of the spectrum. It is important that all of the signiÞcant data in
the time-domain data record be obtained and utilized and that this record
has sufÞcient resolution to include both high-frequency and low-frequency
elements. Some smoothing or windowing of the time-domain waveform
prior to the Fourier transformation may be desirable to reduce spurious
high-frequency irregularities that might mask important results. These sub-
jects are described in greater detail in Chapter 4.
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4
Smoothing and Windowing

In this chapter we consider ways to improve discrete sequences, including
the reduction of data contamination and the improvement of certain time
and frequency properties. Smoothing and windowing are useful tools for
signal waveform processing in both domains. SimpliÞcations with limited
goals will be a desirable approach. The References in this chapter can be
consulted for more advanced studies. Our suggested approaches are quite
useful, where great sophistication is not required, for the processing of
many commonly occurring discrete-signal waveforms.

SMOOTHING

Consider Fig. 4-1a and the rectangular discrete sequence W (i ) for (i ) from
0 to 63 with amplitude 1.0 and drawn in continuous form for visual clarity.
The simple Mathcad Program shown creates this sequence. Observe that
the rectangle is delayed at the beginning and terminated early (�pedestal�
would be a good name). This sequence is a particular kind of simple win-
dow that is useful in many situations because of the zero-value segments

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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Y1 (i) := .25 ⋅W (i − 1) + .5 ⋅W (i) + .25 ⋅W  (i + 1) 
Y2 (i) := .25 ⋅Y1 (i − 1) + .5 ⋅Y1 (i) + .25 ⋅Y1  (i + 1)

Y3 (i) := .25 ⋅Y2 (i − 1) + .5 ⋅Y2 (i) + .25 ⋅Y2 (i + 1)

Y8 (i) := .25 ⋅Y7 (i − 1) + .5 ⋅Y7 (i) + .25 ⋅Y7  (i + 1) 

(a)

no smoothing3 smoothings

8 smoothingsW(i) := 0

W(i) := 0

1 if i ≥ 8

1 + rnd(1) if i  ≥ 8
0 if i > 56

0 if i > 56

i := 0,1.. 63

i := 0,1.. 63

(b)

3 smoothings

8 smoothings

No smoothing

Rectangular

Figure 4-1 Smoothing operation on a discrete signal waveform: (a) with-
out added random noise; (b) with added random noise.

at each end that are known as guardbands that greatly reduce spillover
(aliasing, Chapter 3) into adjacent regions.

Figure 4-1 then shows how, at each value of (i ), the three-point smooth-
ing sequence 0.25, 0.5, 0.25 is applied to the data points W (i − 1), W (i ),
and W (i + 1), respectively, to get Y 1(i ). We then repeat the operation,
using the Y 1(i ) values to get the Y 2(i ) values, then the Y 2(i ) values to
get the Y 3(i ) values, and so on. We pause at Y 3 to view the intermedi-
ate results, and see that the edges of the rectangle have been �softened�
and the pattern is extended away from the boundaries of the rectangle.
We then continue on to Y 8, and the pattern becomes pretty well stabi-
lized. In other words, where the Y values become small, the smoothing
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sequences produce less and less effect, so that further spreading becomes
�negligible�. Observe also that the maximum amplitude of the smoothed
sequence is essentially 1.0. The choice of smoothing sequence values with
the sum �[0.25 + 0.5 + 0.25] = 1.0 is responsible for this result.

In Fig. 4-1b some noise, the random number function rnd(1.0) with
values from (0 to +1), has been added to the rectangular region as shown
in the Mathcad program. After eight smoothing operations the noise has
been greatly reduced and the maximum amplitude is nearly the 1.0 of the
rectangle plus the average of the noise component, which is 0.5.

The value of root-mean-square (RMS) noise and the ratio in dB of
RMS noise to the highly smoothed signal within the rectangular region
are matters of practical interest. The procedure is to:

1. Find the partially smoothed sequence Y 3(i ) for example.

2. Find the more highly smoothed sequence Y 8(i ) and use it as a
reference.

3. At each point (i), Þnd the square of the difference between sequences
Y 3(i ) and Y 8(i ).

4. Divide the result of step 3 by the square of the Y 8(i ) values.

5. Get the sum of the squares and divide the sum by the number of
values in the rectangular region.

6. Find the positive square root of step 5 that produces an RMS noise
voltage.

7. The result is a single estimate of the RMS signal in the partially
smoothed sequence. Each repetition of steps 1 to 6 is an additional
estimate that can be averaged with the others.

The regions outside the rectangle are not included because the noise
signal in this example is gated on only within the rectangle; however, the
smoothing of rectangle-plus-noise spreads the rectangle itself almost as
in Fig. 4-1a. All of this can be combined into a single equation for the
noise ratio (NR) within the rectangle region in Fig 4-1b:

NRdB = 10 log

[
1

49

56∑
i=8

(
Y3(i) − Y8(i)

Y8(i)

)2
]

dB (4-1)
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The result is the ratio, in dB, between a three-sweep and an eight-sweep
record.

Another sequence that was evaluated has seven values: �[0.015625+
0.09375 + 0.23438 + 0.31250 + 0.23438 + 0.09375 + 0.015625] = 1.0.

This sequence was found to give about the same results for Þve passes as
the three-point sequence with eight passes. The spectrum plot in Fig. 4-2a
compares the two methods. Mathcad Þnds the three-point method to be
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Figure 4-2 (a) Comparing a three-point sequence with a seven-point
sequence in spectrum decibels. (b) Comparing the spectrum of the rectan-
gular pulse of Fig. 4-1 before (A) and after (B) eight 3-point smoothings.
(c) (1) Time domain of triangular waveform; (2) spectrum before (gray
line) and after (black line) three-point smoothing of the spectrum.
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consistently better at the higher frequencies. Also, the smoothing of the
sequences can be in the time domain (Fig. 4-1) or the frequency domain
(Fig. 4-2). For further study of smoothing methods, see, for example,
[Oppenheim and Schafer 1975] and [Jenkins and Watts 1968].

We see a potential problem in Fig. 4-1a. A smoothed record that exists
from 0 to N − 1 calls for a value of (i ) in the Þrst step that is less than
zero (in a negative-time region). The Þnal step calls for an (i ) value that
is greater than N − 1 (in a positive-time region). An excellent way to
handle this is to use circular smoothing . When i = − 1 is called for, use
i = N − 1, and when i = N is called for, use i = 0. This keeps us within
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Figure 4-2 (continued )
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the 0 to N − 1 region. Some additional programming steps can accom-
plish this, but for this example, because of the two almost zero-valued
end regions, we assign the value 0.0, which is very nearly correct. Math-
cad assigns 0 to unused locations, for example at i = − 1 and i =N . If
necessary, the two guardbands can be lengthened a little.

We see also that the sequence can be a modiÞed time sequence, in which
case the smoothing is Þltering certain regions of the time domain, or it
can be a modiÞed frequency sequence, in which case certain frequency
ranges can be modiÞed. For example, the sharp edges of a band Þlter are
softened and rounded to obtain beneÞts such as improved group delay
near the band edges. This method is also known as transition sampling
[Oppenheim and Schafer, 1975, pp. 250�254]. In this case the IDFT is
the time domain of the modiÞed frequency response that can be used to
improve an analog Þlter or digital Þlter.

Analog mechanical and crystal Þlters often use the transitional design,
which is the Bessel response to the −6-dB level for improved phase
linearity, and Chebyshev beyond that, for a good shape factor. All-pass
networks further improve group delay variations, at the cost of additional
time delay. When networks with too much time delay are used inside
an automatic gain control (AGC) loop, transient response and stability
become much more difÞcult. We almost always avoid putting these types
of Þlters within a fast-responding gain-control feedback loop.

The smoothing should focus on undesired rapid changes without degrad-
ing excessively the desired slower-changing signal. A good way to imple-
ment this is to use many closely spaced samples and use the three-point
method no more times than necessary for adequate results. A further
consideration is the rounding off at the corners, where smoothing has
reduced the 3-dB width of the time or frequency response. This can often
be compensated by modifying the time and frequency scaling factors
described in Chapter 1 in a way that retains the low-amplitude guardbands
at the edges of the time or frequency range. Finally, Fig. 4-2b shows the
spectrum (the DFT) of the pulse of Fig. 4-1b before and after eight
three-point smoothing operations. The lowpass Þltering that the smoothing
performs is apparent.

The smoothing algorithm is therefore a valuable addition to the toolbox.
We have emphasized that if the signal pattern is too close to the edges
it can alias into adjacent time or frequency regions. To prevent this and
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retain a causal (n and k from 0 to N − 1) result, we must delay and
terminate the sequence and use smoothing and windowing sufÞciently
that aliasing overßows are small. A positive-only time or positive-only
frequency display would show the aliasing reßecting off of the zero or
maximum boundary, just as in the aliasing considered in Chapter 3. Other
types of very useful windows will be studied in this chapter.

As a Þnal example, Fig. 4-2c shows a triangular time-domain signal. Its
spectrum is also shown, to which a window with 100-dB attenuation from
0 to 1 and from 15 to 16 has been added. A single 3-point smoothing is
then performed on the spectrum. The spreading created by the smoothing
is visible from 0 to 1 and from 15 to 16. The end zones of the smoothed
response have large drop-offs at 0 and 16. Aliasing below 0 and above 16
is extremely small. This type of operation can be useful where response
variations need to be smoothed out by operating directly on the spectrum.
Scaling methods can establish the correct time and frequency parameters.
The modiÞed time-domain response can be found from the IDFT applied
to the smoothed spectrum.

SMOOTHING REFERENCES

Jenkins, G.M., and D.G. Watts, 1968, Spectral Analysis and Its Applications ,
Holden-Day, San Francisco, CA.

Oppenheim, A.V., and R.W. Schafer, 1975, Digital Signal Processing ,
McGraw-Hill, New York.

WINDOWING

A window is a function that multiplies a time or frequency sequence,
thereby modifying certain properties of the sequence. An example was
shown in Fig. 4-1, where a rectangular two-sided time window with unity
amplitude provided zero-amplitude guardbands at beginning and end seg-
ments of the sequence. The general form for a window operation w (n) on
a time sequence x (n) of length N is

y(n) = w(n)x(n) 0 ≤ n ≤ N − 1 (4-2)
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Note that the sequences y(n), w (n), and x (n) are positive-time in the
Þrst half and negative-time in the second half, in agreement with our
previously established protocol.

There are a large number of window functions that accomplish vari-
ous goals. We will look at three time-domain windows that are widely
used and quite useful: the rectangular window, the Hamming window,
and the Hanning (also called the Hann) window. These windows, their
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Figure 4-3 Three types of window: (a) rectangular; (b) Hanning;
(c) Hamming.
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spectral magnitudes in dB and their equations for a sequence of N posi-
tions are shown in Fig. 4-3. The spectrum magnitudes are shown for the
positive-frequency halves. The negative-frequency magnitudes are mirror
images of the positive-frequency magnitudes.

Comparing the spectra of the three, we see that the rectangular window
has the sharpest selectivity at zero frequency, with a very deep notch at
k = 1. This window is ideal when time x (n) and frequency X (k ) values
can be kept very close to exact integer values of (n) and (k ), as we
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discussed in connection with Fig. 3-1. In mathematical constructions we
can often manage this, using scaling procedures. But if not, we see that this
window has side lobe peaks that attenuate very slowly. In many practical
situations, especially in digital processing of actual signal sequences with
imprecise alignment or with noise contamination, this slow attenuation
cannot be tolerated.

We now look at the other two windows and see that the selectivity is
widened in the k = 0 region, and the Þrst notch is at k = 2. This widening
is a fundamental property of all non-rectangular windows and is the �cost�



SMOOTHING AND WINDOWING 71

for the improved attenuation of the side lobes. For the Hann the value of
the peak response is −38 dB at k ≈ 2.4, for the Hammimg it is −53 dB at
k ≈ 2.2, and for the rectangular it is only −18 dB at k ≈ 2.5. Comparing
the main lobe widths in the vicinity of X (k ) = 1, the Hann is 1.46 at
−20 dB and the Hamming is 1.36 at −20 dB, which can perhaps be a
worthwhile improvement.

Comparing the Hamming and the Hann, the Hamming provides deeper
attenuation of the Þrst side-lobe (which is one of its main goals) and
limits in the neighborhood of 45 to 60 dB at the higher-frequency lobe
peaks (another goal). For many applications this is quite satisfactory. On
the other hand, the Hann is not quite as good up close but is much better
at higher frequencies, and this is often preferred. In many introductory
references, these two windows seem to meet the majority of practical
requirements for non-integer frequency (k ) values.

In the equations for the Hamming and Hann windows we see the sum
of a constant term and a cosine term. There are other window types, such
as the Kaiser window and its variations, that have additional cosine terms.
These may be found in the references at the end of the chapter and are
not pursued further in this book. These other window types are useful in
certain applications, as discussed in the references.

We noted that the time-domain window sequence multiplies a time-
domain signal sequence. In the frequency domain the spectrum of the
window convolves with the spectrum of the signal. These interesting sub-
jects will be explored in Chapter 5.

Figure 4-4 is a modiÞcation of Fig. 4-3 that illustrates the use of con-
volution in the frequency domain. Equation (4-3) contains formulas for
the spectra of the windows, including frequency translation to 38.0.
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N
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{(
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Hann: X3(k) = 1

N
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×
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N
(38.0 − k)

))}

The two-sided baseband signal is translated up to a center frequency of
+38.0, where it shows up as a lower sideband and an upper sideband. The
way that the Hamming dominates from 38.0 to 41.0 and the Hanning takes
over starting at 42 is quite noticeable. The performance of the Hamming
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Figure 4-4 (a) Rectangular, Hanning, and Hamming windows translated
to k = 38.0. (b) Close-up of part (a) showing window behavior between
integer k values.
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from 40 to 41 is also interesting. Chapter 8 shows how a single-sideband
spectrum (USSB or LSSB) for these windows can be generated.

Referring again to Fig. 4-3, it is apparent that if we can stay away from
k < 2, the Hann and Hamming are more tolerant of frequency departures
from integer values. This should be considered when designing an exper-
iment or when processing experimental data or a communication signal.
If the number of n and k values can be doubled, the resolution can be
improved so that after adjusting the frequency scaling factor, k = 2 repre-
sents a smaller actual frequency difference. If a certain positive frequency
range 0 to 10 kHz is needed and an N value of 256, or 128 positive fre-
quencies, is chosen, the resolution is 78 Hz per bin, and k = 2 corresponds
to 156 Hz, which may not be good enough. For N = 1024 (512 positive),
the resolution is 19.5 Hz and k = 2 corresponds to 39 Hz, which is a lot
better.

Increasing N would also seem to make the close alignment with integer
values more desirable. But in the Hamming example the sidelobe peaks
are better than 43 dB below the k = 0 level, which is often good enough,
and means that alignment with integer (k ) values may be completely
unnecessary (compare this with the rectangular window). This reduction
of lobe peaks and the reduced need for integer (k ) values is the major
goal of window �carpentry.� Note also that the k = 0 value is about 5 dB
below the 0-dB reference level, and a gain factor of 5 dB can be included
in the design to compensate.

The operations just concluded can be extended to multiple input signals.
Equation (4-2) can be restated as follows:

y(n) = w(n)(x1(n) + x2(n) + · · ·)
= w(n)x1(n) + w(n)x2(n) + · · ·

Y(k) = W(k) ∗ (X1(k) + X2(k) · · ·)
= W(k) ∗ X1(k) + W(k) ∗ X2(k) · · ·

(4-4)

where ∗ is the convolution operator. This means that multiplication of
a window time sequence and the sum of several signal time sequences
is a distributive operation, and the convolution of their spectra is also a
distributive operation. Any window function performs the same operation
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Figure 4-5 Two-tone input signal: (a) with 2 units of frequency separa-
tion; (b) with 3 units of frequency separation.

on each of the signal functions in the time domain and also in the fre-
quency domain. This is mentioned because it may not be immediately
obvious.

An illustration of this is shown in Fig. 4-5a for two signals at 38.0
and 40.0 (poor separation) and in Fig. 4-5b for 37.5 and 40.5 (better
separation), for each of the three window functions. Using the frequency
scaling factors as described previously, the resolution can be adjusted as
required. At certain other non-integer close separations it will be noticed
that adjacent lobe peaks interact and deform each other slightly (the reader
is encouraged to try this).
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The frequency conversions in Figs. 4-4 and 4-5 are exactly identi-
cal to the idealized �mixer circuit� found in radio textbooks, where a
positive-frequency baseband signal and a positive-frequency local
oscillator (L.O.) are multiplied together to produce upper and lower side-
bands about the L.O. frequency with a suppressed L.O. frequency content.
The frequency conversion itself is a second-order nonlinear process, as
Eq. (4-3) conÞrms, but the two mixer sideband output amplitudes are
each linearly related to the baseband input amplitude if the L.O. level
is assumed to be constant, hence the colloquial term �linear mixer.�
Actual mixer circuits are not exactly linear in this manner. We also men-
tioned previously the two-sided baseband spectrum being translated to
produce a double-sideband output. Both concepts do the same thing in the
same way.

There are situations where the signal data extend over a long time
period. The analysis can be performed over a set of smaller windowed
time periods that intersect coherently so that the overall analysis is cor-
rect. The article by Harris [1978] is especially excellent for this topic
and for the subject of windows in general; see also [Oppenheim and
Schafer, 1975].

A frequent problem involves sudden transitions in the amplitude values
between the end (or beginning) of one time sequence and the beginning
(or end) of the next. This causes a degradation of the spectrum due to
the introduction of excessive undesired components and also signiÞcant
aliasing problems. The methods described in the smoothing section of
the chapter can take care of this problem using the following guidelines:
(1) create a nearly-zero amplitude guardband at each end of the sequence;
(2) perform one or more three-point smoothing operations on the time
and/or frequency data; (3) use scaling techniques to get the required time
and frequency coverage and resolution; and (4) use a window of the type
discussed in this segment to reduce the need for exact integer values of
time and frequency.

We see also that the Hamming and Hanning time-domain windows
are zero or almost zero at the edges, which improves protection against
aliasing in the time domain. Frequency-domain aliasing is also improved,
especially with the Hanning window, as the spectrum plots show.
Other window types, such as the Kaiser, can be compared for these
properties.
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WINDOWING REFERENCES
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5
Multiplication
and Convolution

Multiplication and convolution are very important operations in discrete
sequence operations in the time domain and the frequency domain. We
will Þnd that there is an interesting and elegant relationship between mul-
tiplication and convolution that is useful in problem solving.

MULTIPLICATION

For the kinds of discrete time x (n) or frequencies X (k ) of interest in this
book, there are two types of multiplication. The (n) and (k ) values are
integers from 0 to N − 1. The X (k ) values to be multiplied are phasors that
have amplitude, frequency, and phase attributes, and the x (n) values have
amplitude and time attributes. The Mathcad program sorts it all out. Each
sequence is assumed by the software to be one realization of an inÞnite,
steady-state repetition, with all of the signiÞcant information available
in a single two-sided (n) or (k ) sequence, as explained previously and
mentioned here again for emphasis.

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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Sequence Multiplication

One type of multiplication is the distributed sequence multiplication seen
in Eq. (4-2) and repeated here:

z(n) = x(n) y(n), 0 ≤ n < N − 1 (5-1)

Each element of z (n) is the product of each element of x (n) and the
corresponding element of y(n). Frequently, x (n) is a �weighting factor� for
the y(n) value. For example, x (n) can be a window function that modiÞes
a signal waveform y(n). Chapter 4 showed some examples that will not
be repeated here. The values x (n) and y(n) may in turn be functions of
one or more parameters of (n) at each value of (n), which is �grunt
work� for the computer. We are often interested in the sum z (n) over
the range 0 to N − 1 as the sum of the product of each x (n) and each
y(n). Also, the time average or mean-square value of the sum or other
statistics is important. And of course, we are especially interested in Z (k ),
the spectrum of z (n), Y (k ), the spectrum of y(n), and X (k ), the spectrum
of x (n).

Figure 5-1 is another example of frequency conversion by using this
kind of multiplication. A time sequence x (n) at a frequency k = 4 and
a time sequence y(n) at frequency k = 24 are multiplied term-by-term to
get the time sequence for the product.

The DFT then Þnds the two-sided phasor spectrum. The one-sided
spectrum is found by adding the phasors at 108 and 20 to get the positive
cosine at 20, and adding the 100 and 28 phasors to get the negative
cosine term at 28. See Fig. 2-2a to conÞrm these results, and note the
agreement with the equation for z (i ) in Fig. 5-1. As we said before, the
input frequencies 24 and 4 disappear, but if one input amplitude is held
constant, the product is linear with respect to variations in the other input
amplitude.

Polynomial Multiplication

The other kind of sequence multiplication is polynomial multiplication,
which uses the distributive and associative properties of algebra. An
example is shown in Eq. (5-2).
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Figure 5-1 Frequency conversion through term-by-term multiplication
of two time sequences.
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z(x,y) = (x1 + x2 + · · · + xα) (y1 + y2 + y3 + · · · + yβ)

=
∑

y

(∑
x

z(x)

)
z(y)

z(i) = x(i)(y1 + y2 + y3 + · · · + yβ)

= x(i)
∑

j

y(j)

(5-2)

Each term of the x sequence is multiplied by the sum of the terms in
the (y) sequence to produce each term in the (z ) sequence, which then
has α terms. Or, each term of the (y) sequence is multiplied by the sum
of the terms in the (x ) sequence to get β terms. Or, each term in the Þrst
sequence is multiplied by each term in the second sequence and the partial
products are added. In all of these ways, the (z ) sequence is the polyno-
mial product of the (x ) and (y) sequences. The sum of z (i ) is the �energy�
in (z ). This, divided by the �time� duration, is the �average power� in
z (i ). If the sum of (x ) or the sum of (y) equals zero, the product is zero,
as Eq. (5-2) clearly indicates. For certain parts of the range of x (i ) and
y(j ) the product can usually be nonzero. In the familiar arithmetic multi-
plication, the (x ) and (y) terms are �weighted� in descending powers of
10 to get the correct answer: for example,

8734 · 4356 = (8000 + 700 + 30 + 4) · (4000 + 300 + 50 + 6)

= 8000 · 4000 + 8000 · 300 + 8000 · 50 + 8000 · 6
+ 700 · 4000 + 700 · 300 + 700 · 50 + 700 · 6
+ 30 · 4000 + 30 · 300 + 30 · 50 + 30 · 6
+ 4 · 4000 + 4 · 300 + 4 · 50 + 4 · 6

= 38, 045, 304

(5-3)

Polynomial multiplication A(x ) B (y) is widely used, including in topics
in this and later chapters. It shows how each item in sequence A(x ) affects
a set of items in sequence B (y). It is equivalent to a double integration
or double summation such as we might use to calculate the area of a
two-dimensional Þgure. Figure 5-2 is a simple example. More complicated
geometries require that the operation be performed in segments and the
partial results combined.
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Figure 5-2 Example of polynomial multiplication using double summa-
tion to Þnd the area of a Þgure.

CONVOLUTION

Convolution is a valuable tool for the analysis and design of communi-
cations systems and in many other engineering and scientiÞc activities.
Equation (5-4) is the basic equation for discrete-time convolution.

y(n) = x(m) ∗ h(m) =
+∞∑

m=−∞
[x(m) h(n − m)] (5-4)

where ∗ is the convolution operator and y(n), x (m), and h(m) can all be
the complex-valued discrete-time sequences I and jQ that we considered
carefully in Chapter 1. Note that x (m), h(m), and y(n) are in the time
domain, but they can also be complex Y (k ), X (k ), and H (k ) in the fre-
quency domain with magnitude and phase attributes. Also, all three can
have different amplitude scale factors, on the same graph or on separate
graphs. We focus initially on the time domain.

Equation (5-4) appears to be simple enough, but actually needs some
careful study and practice to develop insight and to assure correct answers.
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Sequence x (m) is a �signal� input time-domain sequence that extends in
�time� from m = − ∞ to m = + ∞. In practical problems this sequence
is assumed to have �useful� amplitude only between two speciÞc limits,
m(min) and m(max). Sequence h(m) refers to a �system function,� also a
time-domain sequence that is assumed to have useful limits from m(min) to
m(max), which may not be the same limits as the limits for x (m). Sequence
h(n − m) is h(m) that has had two operations imposed: 1: h(m) has been
�ßipped� in time and becomes h( −m), and 2: h( − m) has been shifted to
the right (n) places, starting from an initial value of (n) determined by the
nature of the problem, whose value is now h(n −m). The expression �fold
and slide� is widely used to describe this two-part operation.

One reason for the fold and slide of h(m) to h(n − m) is that we want
the leading edge in time of h(m) (the response) to encounter the leading
edge in time of x (m) (the excitation) as we start the sliding operation
(increasing n) from starting (n) to Þnal (n). This retains the time coordi-
nation between the two sequences. Another reason is that this procedure
leads to a valuable concept that we will demonstrate later in this chapter.

The term h(n −m) is often referred to as an impulse response. Each
impulse x (m) applied to a network is processed by some impulse response
function h(n −m) to produce an output impulse y(n), which is the �value�
of the convolution for that (n). Note the summation sign in Eq. (5-4).

Refer to Fig. 5-3. In part (a), h(m) and x (m) are at Þrst located side by
side. This is a convenient starting point. In part (b), h(m) is ßipped and piv-
oted about the m = 0 point and becomes h( − m). At each positive increment
of (n), h(n − m) is advanced one position to the right. We now calculate the
product of x (m) and h(n − m) at each value of (m), and add these products
from x (min) to x (max) to get y(n), the convolution value of x (m) and h(m)
at that value of (n). We continue this shift�multiply�add procedure until the
value of the sum of products (the convolution value) becomes negligible.

Make sure that the data space (0 to N − 1) is enough that the total
convolution sum can be completed with no signiÞcant loss of data. If the
x (m) sequence has Lx values and the side-by-side h(m) sequence has Lh
values, the y(n) sequence should have at least Lx + Lh + 1 values prior to
the beginning of overlap. The convolution operation creates a smoothing
and stretching operation on the data y(n) which is not obvious in Figs.
5-3 and 5-4 but is more visible if we look ahead to Fig. 5-7.

The convolution sequence that has been generated has properties that
will be discussed subsequently. This procedure should be compared to the
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Figure 5-3 Various stages of discrete convolution.
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convolution of continuous functions, in which certain discontinuities in the
functions and their overlaps require integrations over adjacent areas which
are then tacked together end-to-end to get the Þnal result. Our example
sequences will not have this problem because of their discrete nature,
although this may not always be true.

This process is an example of the polynomial multiplication shown in
Eq. (5-2). That is, at a particular value of (n), the product of each x (m) and
the corresponding h(n − m) is formed. These partial products are summed
over the range m(min) to m(max) to get the convolution value y(n). This
process is repeated for each value of (n).

To illustrate this discussion more numerically, we see again in Fig. 5-3
the convolution procedure for the two discrete sequences shown in part
(a). The m = 0 location is chosen arbitrarily as shown, but in principle
it can be anywhere between − ∞ and + ∞. In agreement with our previ-
ous assumptions, the process shown is signiÞcant between 0 ≤ n ≤ N − 1,
where N is chosen to suit the problem. A convenient approach is to start
the h(m) sequence at a point labeled �0�.

In Fig. 5-3b the h(m) sequence is reversed (or folded) and pivoted
around the zero location, shown at the left end of h(m), and becomes
h( − m). That is, each m (positive location) becomes m (negative loca-
tion). After pivoting, h( − m) can be moved three places to the right,
where it becomes h(3 − m), just one �bin� away from x (m).

In part (c) the h(3 − m) sequence slides to the right two places (n = 5)
and overlaps the Þrst two positions of the x (m) sequence. The value of
the convolution for n = 5 is 6·2 + 7·0 = 12.

In part (d) the value of (n) is 8 and the convolution sum is 7·6 + 8·4 +
9·2 = 92. At n = 11 the overlap of h(n − m) and x (m) is zero and the
convolution sum for n = 11 is zero.

In Fig. 5-4 x (m) and h(m) are interchanged; x (m) is response and
h(m) is the signal, with no differences in the convolution values, which
is an interesting facet of convolution that is the �commutative� property.
We see also that convolution involves two time-domain sequences or two
frequency-domain sequences and the convolution value (sum of products)
has the dimension of energy.

Discrete Circular Convolution

In the sequences used in convolution, any empty integer locations are Þlled
with zeros by Mathcad. The combined length L of the two sequences x (m)
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and h(m) must provide an initial separation of at least one (m). If we need
to reduce L in order to reduce the sequence length, the method of circular
convolution can be used, as illustrated in Fig. 5-5. Note that the amplitude
scales and the number of samples for x (m) and h(m) can be different. The
following steps are executed.

(a) x (m) is plotted.

(b) h(m) is plotted.

(c) h(m) is ßipped about the m = 0 point on the m-axis. The h(m) line
at m =+ 2 (length equals zero) now appears at m = − 2, which is
the same as m =− 2 + 16 =+ 14. The line that was at m =+ 11
(length 9) now appears at m = − 11, which is the same as m =− 11
+ 16 = + 5.

(d) We do not start the sum of products (convolution) of overlapping
x (m) and h( − m) at this time.

(e) The h( − m) sequence advances 2 places to h(2 −m). The line at
m = 14 (length zero) moves to m = 16, which is identical to m = 0.
The h(n −m) and x (m) sequences are now starting to intersect at
m = 0.

(f) The process of multiply, add, and shift begins. The result for
(11 − m) is shown for which the convolution value is 224. For
values greater than (18 − m) the convolution value is 0 because x
and h no longer intersect.

As we can see, this procedure is confusing when done manually (we
do not automate it in this book), and it is suggested that the side-by-side
method of Figs. 5-3 and 5-4 be used instead. Adjust the length L =[x (m) +
h(m) + 1] as needed by increasing N ( = 2M), and let the computer perform
Eq. (5-4), the simple sum of products of the overlapping x (m) and h(m)
amplitudes. The lines of zero amplitude are taken care of automatically.
Design the problem to simplify the process within a reasonable length L.

Time and Phase Shift

In Fig. 5-6 a sequence x (m) is shown. A single h(3) is also shown and

h(−3) is the ßip from +3 to −3. The amplitude of h(m) is 2.0. If we
now suddenly move h(−3) forward six places to become h(6 − 3) for an
n = 6, we get y(3), which is a copy of x (6 − 3), shifted to the right three
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Figure 5-6 Time-shift property of a discrete sequence.

places and ampliÞed by a gain factor of 2. The x (m) sequence has been
suddenly moved forward (advanced ) in time by three units, to become
y(3) = x (m + 3). If x (m) is 360◦ of a periodic sequence, its phase has
been advanced (forwarded) by 360·3/5 = 216◦. If y(n) is the un-shifted
sequence, the shifted sequence y(n + u) is

y(n + u) = y(n) ej2π(u/N)

= y(n)

[
cos

(
2π u

N

)
+ j sin

(
2π u

N

)]
(5-5)

where the positive sign of the exponential indicates a positive (counter-
clockwise) phase rotation and also a positive time advance as deÞned in
Chapter 1 and Fig. 1-5. In other words, y(n) has suddenly been advanced
forward three time units.

We can more easily go directly from x (m) to y(n) by just advanc-
ing x (m) three places to the right, which according to Eq. (5-5) is the
time-advance principle (or property) applied to a discrete sequence.
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DFT and IDFT of Discrete Convolution

If we take the discrete convolution of Eq. (5-4) and apply the DFT of Eq.
(1-2), we can get two useful results. The Þrst is that the discrete convo-
lution y(m) = x (m) ∗ h(m) in the time-domain transforms via the DFT
to the discrete multiplication Y (k ) = X (k )H (k ) in the frequency domain
in the manner of the sequence multiplication of Eq. (5-1). That is, Y (k )
is the �output� of X (k )H (k ) at each k . If X (k ) is the voltage or current
spectrum of an input signal and H (k ) is the voltage or current frequency
response of a linear Þlter or linear ampliÞer, for example, then Y (k ) is
the voltage or current spectrum of the output of the linear system.

The second result is that the IDFT [see Eq. (1-8)] of the discrete convo-
lution Y (k ) = X (k ) ∗ H (k ) produces the discrete product y(n) = x (n)h(n).
This type of convolution is often used, and one common example is fre-
quency translation, where a baseband signal with a certain spectrum is
convolved with an RF signal that has a certain RF spectrum to produce
an output RF spectrum Y (k ). The IDFT of Y (k ) is y(n), the time-domain
output of the system, which is often of great interest.

It is interesting to see how the DFT of convolution in the time domain
leads to the product in the frequency domain. We start with the double
summation in Eq. (5-6), which is the DFT [Eq. (1-2)] of the discrete
convolution [Eq. (5-4)].

Y(k) = 1

N

N−1∑
n=0

+∞∑
m=−∞

[
x(m)h(n − m)

]
︸ ︷︷ ︸

convolution

e−j2πk(n/N)

︸ ︷︷ ︸
DFT

(5-6)

We will modify this, with no resulting error, so that the limits on
both summations extend over an inÞnite region of n and m , with unused
locations set equal to 0, and with n and m interchanged in the summation
symbols.

Y(k) = 1

N

m=+∞∑
m=−∞

n=+∞∑
n=−∞

[
x(m)h(n − m)

]
e−j2πk(n/N) (5-7)
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Since x (m) is not a function of n, it can be associated with the Þrst
summation (again with no error) and the exponential term is associated
only with n.

Y(k) = 1

N

m=+∞∑
m=−∞

x(m)

[ n=+∞∑
n=−∞

h(n − m)e−j2πk(n/N)

]
(5-8)

We now apply the well-known time delay theorem of the Fourier
transform to the second summation in brackets [Carlson, 1986, pp. 52
and 655; Schwartz, 1980, pp.72� 73]. The DFT of this expression is

DFT of h(n − m) = H(k)e−j2πk(m/N) (5-9)

and Eq. (5-8) can be rewritten as

Y(k) = 1

N

m=+∞∑
m=−∞

x(m)H(k)e−j2πk(m/N)

= 1

N

m=+∞∑
m=−∞

x(m) e−j2πk(m/N)

︸ ︷︷ ︸
=X(k)

H(k) (5-10)

=X(k)H(k)

The same kind of reasoning veriÞes that the IDFT of Y (k ) = X (k ) ∗
H (k ) and leads to y(n) = x (n)h(n). These kinds of manipulations of sums
(and integrals) are often used and must be done correctly. The references
at the end of this chapter accomplish this for this application.

Figure 5-7 illustrates the general ideas for this topic, which we discuss
as a set of steps (a) to (h), and also conÞrms Eq. (5-10):

(a) This is x (m), a nine point rectangular time-domain sequence.

(b) This is h(m), a 32-point time-domain sequence with an exponential
decay.
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(c) The convolution of (a) and (b) using the basic convolution equation
(5-4), y(n) = x (m) ∗ y(m). We see the familiar smoothing and
stretching operation that the convolution performs on x (m) and
h(m). Convolution needs the additional time region for correct
results, as noted in the equation in part (c) and in Eq. (5-6).

(d) This step gets the convolution of x (m) and h(m) and also the
spectrum (DFT) of the convolution in one step using the double
summation of Eq. (5-6).

(e) See step (f).

(f) Steps (e) and (f). These steps get the DFT spectrum X (k ) of x (m)
and spectrum H (k ) of h(m) using the DFT in Eq. (1-2).

(g) The product X (k )H (k ) is the spectrum Z (k ) of the �output�. This
product is the sequence multiplication described in Eq. (5-1). The
additional factor N will be explained below. Note that the spectrum
of the output in part (g) is identical to the spectrum of the output
found in part (d). That is, X (k )H (k ) = DFT of x (m) ∗ h(m), and
the IDFT of X (k ) ∗ H (k ) = x (m)h(m), not shown here.

(h) The IDFT in Eq. (1-8) produces the sequence z (n), which is iden-
tical to the convolution x (m) ∗ h(m) that we found in part (c).

In part (g) we introduced the factor N . If we look at the equation in
part (d) we see a single factor 1/N . But the product of X (k )H (k ) in part
(g) produces the factor (1/N )2. A review of parts (e) and (f) verify this.
This produces an incorrect scale factor in part (h), so we correct part (g)
to Þx this problem. There are different conventions used for the scale
factors for the various forms of the DFT and IDFT. The correction used
here takes this problem into account for the Bracewell (see Chapter 1)
conventions that we are using. This action does not produce an error. it
makes the �bookkeeping� correct, and the Mathcad worksheet takes the
correct action as needed. These mild �discrepancies� can show up, and
need not create concern.

In Fig. 5-7 the convolution in parts (c) and (h) has a sharp peak at
location n = 8. When the signal is mildly contaminated with noise, this
is a good location to place a detector circuit that creates a synchronizing
pulse. Convolution is frequently employed in this manner: for example,
in radar receivers [Blinchikoff and Zverev, 1971, Chap. 7].
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DECONVOLUTION

The inverse of convolution is deconvolution, where we try to separate the
elements that are convolved into their constituent parts. There are some
interesting uses for this, including de-reverberation, estimation of speech
parameters, restoration of acoustic recordings, echo removal, video anal-
ysis, and nonlinear systems. This introductory book cannot get involved
in this advanced subject, but the references, in particular [Oppenheim and
Schafer, 1999, Chap. 10] and [Wikipedia] provide readable introductions.
In the example of Fig. 5-7, the results in parts (c) and (h) are related to the
inputs x (m) and h(m) in parts (a) and (b), but it may be difÞcult or impos-
sible to say that these particular x (m) and h(m) are the only two functions
that can produce the results in parts (c) and (h). When the input functions
include random properties, the difÞculty is compounded, and this is a
major problem with deconvolution. An effort is made to Þnd something
that is not random that can be a basis for deconvolution. One example
is the dynamics of an antique phonograph recording machine. Advanced
statistical methods try to perform deconvolution in a noise-contaminated
environment [Wikipedia].
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6
Probability
and Correlation

The ideas to be described and illustrated in this chapter are introduced
initially in terms of deterministic, discrete, eternal steady-state sequences,
conforming to the limited goals of this introductory book. Then small
amounts of additive noise (as we saw in Chapter 4) are added for further
analysis. Some interesting and useful techniques will be introduced, and
these ideas are used in communication systems analysis and design. This
material, plus the References, will help the reader to get started on more
advanced topics, but Þrst we want to review (once more) brießy an item
from Chapter 1 that we will need.

Where we perform a summation � from 0 to N − 1, we assume that
all of the signiÞcant signal and noise energy that we are concerned with
lies within, or has been conÞned to, those boundaries. This also validates
our assumptions about the steady-state repetition of sequences. For this
reason we stipulate that all signals are �power signals� (repetitive) and not
�energy signals� (nonrepetitive). In Chapter 3 we looked at aliasing and
spectral leakage and ways to deal with them, and that helps to assure our
reliance on 0 to N −1. We can increase N by 2M (M = 2, 3, 4, · · ·) and

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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adjust scaling factors (Chapter 1) as needed to assure �adequate� cover-
age and resolution of time and frequency. The smoothing and windowing
methods in Chapter 4 are helpful in reducing time and frequency require-
ments without deleting important data. This is where the �art� of approx-
imation and �practical� engineering get involved, and we delay the more
advanced mathematical considerations for consideration �down the road.�

Also, small quantities of noise can very quickly take us into the com-
plexities of statistical analysis. We are for the most part going to avoid
this arena because it is does not suit the limited purposes of this book.
For this reason we are going to be somewhat less than rigorous in some
of the embedded-noise topics to be covered. However, we will have brief
contacts that will give us a �feel� for these topics.

PROPERTIES OF A DISCRETE SEQUENCE

Expected Value of x (n)

In Fig. 6-1a, a discrete time sequence (256 points) is shown from n = 0
to N −1. The Þrst (positive) half is from 0 to N /2−1, and the second
(negative) half is from N /2 to N − 1, as we saw in Figs. 1-1d and 1-2b.
For an inÞnite x (n) sequence, the quantity E [x (n)], the statistical expected
value, also known as the Þrst moment [Meyer, 1970, Chap. 7], is

E[x(n)] =
∞∑

n=−∞
x(n)p(x(n)) (6-1)

where p(x (n) is the probability , from 0.0 to +1.0, of occurrence of a
particular x (n) of an inÞnite sequence. In deterministic sequences from
0 to N − 1 such as Fig. 6-1a each x (n) is assumed to have an equal
probability 1/N from 0 to N − 1 of occurrence, the amplitudes of x (n)
can all be different, and Eq. (6-1) reverts to the time-average value 〈x(n)〉
from 0 to N − 1, which we have been calling the time-domain dc value,
and which is also identical to the zero frequency X (0) value for the X (k )
frequency-domain sequence. Note that the angular brackets in 〈x(n)〉 refer
to a time average. We have reasonably assumed that expected value and
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Figure 6-1 Signal without noise (a), with noise and envelope detected
(b), and a sample histogram of the envelope-detected noise alone (c).

time-average value are the same for a repetitive deterministic sequence
with little or no aliasing:

X(0) = E[x(n)] = 〈x(n)〉 = 1

N

N−1∑
n = 0

x(n) (6-2)

all of which are zero in Fig. 6-1a.
Figure 6-1b introduces a small amount of additive noise voltage ε(n)

to each x (n), so called because each x (n) is the same as in Fig. 6-1a but
with noise ε(n) that is added to x (n), not multiplied by x (n) as it would
be in various nonlinear applications. The noise voltage itself, as found



98 DISCRETE-SIGNAL ANALYSIS AND DESIGN

dB

dB

Linear
Plot

0.4

0.3

0.2

0.1

0

s = 1

−5 −4 −3 −2 −1 0 1 2 3 4 5

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

−20

−40

−60

−80

−100

−120

0

−20

−40

−60

−80

−100

−120

−140

−4 −3 −2 −1 0 1 2 3 4

s = 2

s = 1

s = 2

Figure 6-2 Normal distribution for σ = 1 and 2.

in communications systems, is assumed to have the familiar bell-shaped
Gaussian (also called) amplitude density function shown in the histogram
in Fig. 6-1c and in more detail in Figs. 6-2 and 6-3 [Schwartz, 1980,
Chap. 5]. See also Chapter 7 of this book for a more detailed discussion
of noise and its multiplication.
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The noise has random amplitude. For this discussion, the signal plus
noise [x (n) + ε(n)] is measured by an ideal (linear) full-wave envelope
detector that delivers the value |x (n) + ε(n)| at each (n), where the vertical
bars imply the positive magnitude. In Fig. 6-1b the ε(n) noise voltage is
a small fraction of the signal voltage. In each calculation of the sequence
x (n) a new sequence εx(n) is also generated. Equation (6-3) Þnds the
positive magnitude of [x (n) + ε(n)].

E[|(x + ε)n|] ≈ 〈|(x + ε)n|〉 ≈ 1

N

N−1∑
n=0

[|(x + ε)n|] (6-3)

This is an example of the wide-sense stationary process, in which the
expected value and the time average of a very long single record or the
average of many medium-length records are the same and the autocorre-
lation value (discussed later in the chapter) depends only on the time shift
τ [Carlson, 1986, Chap. 5.1].

The contribution of the sequence ε(n) to the detector output is a ran-
dom variable that ßuctuates with each solution of Eq. (6-3). The histogram
approximation in Fig. 6-1c for one of the many solutions shows a set of
amplitude values of ε(n), arranged in a set of discrete values on the hor-
izontal scale, with the number of times that value occurs on the vertical
scale. The total count is always 256, one noise sample for each value
of n from 0 to 255. The count within each rectangle, divided by 256,
is the fraction of the total occurring in that rectangle. This is a sim-
ple normalization procedure that we will use [see also Schwartz, 1980,
Fig. A-9]. The averaging of a large number of these data records leads to
an ensemble average. A single very long record such as N = 216 = 65,536
using Mathcad is also a very good approximation to the expected value.

Average Power

The average power , also known as the expected value of x (n)2 and also
as the time-average value 〈x(n)2〉 of the deterministic (no noise) sequence
in Fig. 6-1a is 1.00 W into 1.0 ohm, found in Eq. (6-4)

Pav = E[x(n)]2 = 〈
x(n)2

〉 = 1

N

N−1∑
n=0

x(n)2 = 1.00 W (6-4)
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This includes any power due to a dc component in x (n), which in
Fig. 6-1a is zero. The power in the envelope-detected signal is also
1.00 W. The total power in both cases must be identical because this
ideal full-wave envelope detector is assumed to be 100% efÞcient. In Fig.
6-1b with added noise, the power is

Pav ≈ 1

N

N−1∑
n=0

[x(n) + ε(n)]2

≈ 1

N

N−1∑
n=0

[
(x(n))2 + 2x(n)ε(n) + (ε(n))2

]
(6-5)

≈ 1

N

N−1∑
n=0

[
(x(n))2 + (ε(n))2

]≈1.024 W (on average)

and the additional 0.024 W is due to noise alone.
In most situations, the expected value of the product [2x (n)ε(n)] is

assumed to be zero because these two are, on average, statistically inde-
pendent of each other. In this example with additive noise and full-wave
ideal envelope detection we will be slightly more careful. Comparing
noise and signal within the linear envelope detector, and assuming that
the signal is usually much greater than the noise, the noise and signal are,
as a simpliÞcation, in phase half of the time and in opposite phase half
of the time. P(n) can then be approximated as

P(n) ≈ [x(n) + ε(n)]2 = x(n)2 + 2x(n)ε(n) + ε(n)2

≈ [x(n) − ε(n)]2 = x(n)2 − 2x(n)ε(n) + ε(n)2 (6-6)

average value of P(n) ≈ x(n)2 + ε(n)2

which is the same as Eq. (6-5).
Individual calculations of this product in Eq. (6-5) vary from about

+20 mW to about −20 mW, and the average approaches zero over many
repetitions. A single long record N = 216 = 65,536 produces about ±1.0
mW, and Pav ≈ 1.024 W.

The Pav result is then the expected value of signal power plus the
expected value of noise power. This illustrates the interesting and useful
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fact that linear systems have superposition of average or expected power
values that are independent (uncorrelated, see later in this chapter and
Chapter 7). This Pav is a random variable> 0 that has an average value
for a large number of repetitions or possibly for one very long sequence.
Numerous repeats of Eq. (6-5) converge to values �close� to 1.024 W. In
dB the ratio of desired signal power to undesired noise power is

S

N
≈ 10 log

1.0

0.024
≈ 16.2 dB (6-7)

We are often interested in the ratio (S + N)/N = 1 + (S/N) ≈ 16.3 dB
in this example not much different.

This exercise illustrates the importance of averaging many calculation
results when random noise or other random effects are involved. A single
calculation over a single very long sequence may be too time consuming.
Advanced texts consider these random effects in more excruciating detail.

Variance

Signals often have a dc component, and we want to identify separately
the power in the dc component and the power in the ac component. We
have looked at this in previous chapters. Variance is another way to do
it in the time domain, especially when x (n) includes an additive random
noise term ε(n), and is deÞned as

V
(
x′(n)

) = σ2
x = E

[
x′(n) − 〈x′(n)〉]2

= E
(
x′(n)2

) − [
E
(
x′(n)

)]2
(6-8)

= 〈
x′(n)2

〉 − 〈
x′(n)

〉2
where x

′ = x + ε,V (x
′
(n)) is the expected or average value of the square

of the entire waveform minus the square of the dc component, and the
result is the average ac power in x ′(n). The distinction between the
average-of-the-square and the square-of-the-average should be noted. The
positive root

√
V (x(n)) is known as σx, the standard deviation of x , and

has an ac rms �volts� value which we look at more closely in the next
topic.
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A dozen records of the noise-contaminated signal using Eq. (6-8), fol-
lowed by averaging of the results, produces an ensemble average that is
a more accurate estimate of the signal power and the noise power. An
example of variance as derived from Fig. 6-1b, using Eq. (6-8), is shown
in Eq. (6-9).

average of the square = E[x(n)2] = 1

N

N−1∑
n=0

(x(n) + ε(n))2 = 1.0224

square of the average = (E[x(n)])2 =
∣∣∣∣∣ 1

N

N−1∑
n=0

(x(n) + ε(n))

∣∣∣∣∣
2

= 0.6495

variance = average of the square − 1square of the average

= 1.0224 − 0.6495 = 0.3729 (6-9)

σ =
√

variance = 0.6107 Vrms ac

We point out also that various modes of data communication have spe-
cial methods of computing the power of signal waveforms, for example,
Understanding the Perils of Spectrum Analyzer Power Averaging, Steve
Murray, Keithley Instruments, Inc., Cleveland, Ohio.

GAUSSIAN (NORMAL) DISTRIBUTION

This probability density function (PDF) is used in many Þelds of science,
engineering, and statistics. We will give a brief overview that is appro-
priate for this introductory book on discrete-signal sequence analysis (see
[Meyer, 1970, Chap. 9] and many other references). The noise contami-
nation encountered in communication networks is very often of this type.
The form of the normal curve is

g(m) = 1√
2πσ

exp

[
−1

2

{
m − μ

σ

}2
]

− ∞ ≤ m ≤ +∞ (6-10)

Note that exp(x ) and ex are the same thing. The μ term is the value of
the offset of the peak of the curve from the m = 0 location (a positive
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value of μ corresponds to a shift to the right). The σ term is the standard
deviation previously mentioned. Values of g(m) for n outside the range
of ±4σ are very much smaller than the peak value and can often (but not
always) be ignored.

Figure 6-2 shows two normal curves with σ values 1 and 2 and μ= 0.
In this Þgure, the discrete values of m are Þnely subdivided in 0.01 steps
to give continuous line plots. An examination of Eq. (6-10) shows that
when m = 0 and μ = 0, the peak values of g(m) are approximately 0.4
and 0.2, respectively. When m = ± 1 and σ = 1, the large dots on the solid
curve are located at m= ± 1; similarly for σ = 2 on the dashed curve. The
horizontal markings therefore correspond to integer values of σ.

Figure 6-2 also displays dB values for σ = 1 and 2, which can be useful
for those values of σ. Note the changes in horizontal scale. Equation (6-10)
can be easily calculated in the Mathcad program for other values of μ

and σ, and the similarities and differences are noticed in Fig. 6-2.

CUMULATIVE DISTRIBUTION

The plots in Fig. 6-2 are probability density functions (PDFs) [Eq. (6-9)]
at each value of m . Another useful aspect of the normal distribution is
the area under the curve between two limits, which is the cumulative dis-
tribution function (CDF), the integral of the probability density function.
Equation (6-11) shows the continuous integral

G(σ, μ) = 1√
2πσ

∫ λ2

λ1

exp

[
−1

2

{
λ − μ

σ

}2
]
dλ; λ1 ≤ m ≤ λ2

(6-11)
where λ is a dummy variable of integration. The value of this integral
from − ∞ to + ∞ for Þnite values of σ and μ is exactly 1.0, which cor-
responds to 100% probability. Approximate values of this integral are
available only in lookup tables or by various numerical methods. For
a relatively easy method, use a favorite search engine to look up the
�trapezoidal rule� or some other rule, or use programs such as Mathcad
that have very sophisticated integration algorithms that can very quickly
produce 1.0 ± 10−12 or better.
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The area (CDF) for fractions of σ (called xσ) can be estimated visually
using Fig. 6-3, where x is the variable of integration in the equation in
Fig. 6-3 and the value of μ= 0. The G(x )-axis value is the area (CDF)
under the PDF curve from 0 to xσ, and the horizontal axis applies to
values of xσ from 0.01 to 3.0. The value of xσ must be ≤3 for a good
visual estimate. If xσ = 0.50, the area (CDF) from 0 to 0.5≈ 0.19. This
graph is universal and applies to any σ value.

To get the total area (CDF) for a combination of xσ > 0 and xσ < 0, get
the area G(xσ) values between the boundaries of the xσ > 0 range. Use the
positive region in the graph also to get the area for the xσ < 0 range and
add the two positive-valued results (the normal PDF curve is symmetrical
about the 0 value). The Þnal sum should be no greater than +1.0.

The basic ideas in this section regarding the normal distribution apply
with some modiÞcations to other types of statistics, which can be explored
in greater detail in the literature, e.g., [Meyer, 1970] and [Zwillinger, 1996,
Chap. 7].

CORRELATION AND COVARIANCE

Correlation and covariance are interesting subjects that are very useful
in noise-free and noise-contaminated electronic signals. They also lead to
useful ideas in system analysis in Chapter 7. We can only touch brießy on
these rather advanced subjects. Correlation is of two types: autocorrelation
and cross-correlation.

Autocorrelation

In autocorrelation, a discrete-time sequence x (n), with additive noise
ε(n), is sequence-multiplied (Chapter 5) by a time-shifted (τ) replica of
itself. The discrete-time equation for the autocorrelation of a discrete-time
sequence with noise ε is

CA(τ) = 1

N

N−1∑
n=0

{
[x + εx]n × [x + εx](n+τ)

}
(6-12)

in which the integer τ is the value of the time shift from (n) to (n + τ).
Each term (x + εx)n is one sample of a time sequence in which each has
amplitude plus noise and time-position attributes.
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Equation (6-12) is assumed, as usual, to be one record of a steady-state
repetitive sequence. Note that the �ßip� of x (n) does not occur as it did in
Eq. (5-4) for convolution. We only want to compare the sequence with an
exact time-shifted replica. Note also the division by N because CA(τ) is
by deÞnition a time-averaged value for each τ and convolution is not. As
such, it measures the average power commonality of the two sequences as
a function of their separation in time. When the shift τ = 0, CA(τ) =C A(0)
and Eq. (6-12), reduces to Eq. (6-5), which is by deÞnition the average
power for (x + εx)n.

Figure 6-4 is an example of the autocorrelation of a sequence in part (a)
(no noise) and the identical shifted (τ = 13) sequence in part b, c. There
are three overlaps, and the values of the autocorrelation vs overlap, which
is the sum of partial products (polynomial multiplication), are shown in
part (c). The correlation value for τ = 13 is

CA(13) = (1)(0.1875) + (0.9375)(0.125) + (0.875)(0.0625)

16
= 0.0225

This value is indicated in part (c), third from the left and also third from
the right. This procedure is repeated for each value of τ. At τ = 0, parts
(a) and (b) are fully overlapping, and the value shown in part (c) is 0.365.
For these two identical sequences, the maximum autocorrelation occurs
at τ = 0 and the value 0.365 is the average power in the sequence.

Compare Fig. 6-4 with Fig. 5-4 to see how circular autocorrelation
is performed. We can also see that x1(n) and x2(n) have 16 positions
and the autocorrelation sequence has 33 = (16 + 16 + 1) positions, which
demonstrates the same smoothing and stretching effect in auto correla-
tion that we saw in convolution. As we decided in Chapter 5, the extra
effort in circular correlation is not usually necessary, and we can work
around it.

Cross-Correlation

Two different waveforms can be completely or partially dependent or
completely independent. In each of these cases the two noise-contaminated
waveforms are time-shifted with respect to each other in increments of τ.
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N := 16 n := −N, −N + 1.. N

(x1(n)⋅x2(τ + n))

τ := −N, −N + 1.. N
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z(τ)

0

1− if n ≥ 0

0 if n > N

x2(n) :=

n
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1 −

0 if n > N
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Figure 6-4 Example of autocorrelation.
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Equation (6-13) is the basic equation for the cross-correlation of two
different waves x (n) and y(n):

CC(τ) = 1

N

N−1∑
n=0

[
(x + εx)n(y + εy)(n+τ)

]
(6-13)

We have pointed out one major difference between the correlation and
convolution equations. In correlation there is no �ßip� of one of the waves,
as explained in Chapter 7. This is in agreement with the desire to compare
a wave with a time-shifted replica of itself or a replica of two different
waves, one of which is time-shifted with respect to the other. In the case
of convolution we derived a useful relationship for the Fourier transform
of convolution. In Chapter 7, correlation leads to another useful idea in
linear analysis, called the Wiener-Khintchine (see Google, e.g.) principle.

Figure 6-5 (with no noise) is an example of cross-correlation. The two
time-domain sequences can have different lengths, different shapes, and
different amplitude scale factors. The maximum value of cross-correlation
occurs at τ = − 3 and − 4, which is quite a bit different from Fig. 6-4.
At τ = 0 the correlation is 0.096, and at τ = − 3 and − 4 the correla-
tion is about 0.149, so the correlation in the overlap area increases 10
log(0.149/0.096) = 1.90 dB. Recall that for each value of τ the area of
overlap (sum of products as in Fig. 6-4) of the two sequences represents
a value of common power . This value is the power that the two different
waves deliver in combination.

The correlation sequences in Figs. 6-4 and 6-5 are τ-domain power
sequences. These power sequences can also have complex (real watts
and imaginary vars) frequency-domain components, just like any other
time-domain sequence. The result is a power spectrum (Chapter 7) of
correlation parameter τ.

AUTOCOVARIANCE

The calculation of autocorrelation can produce an average term, perhaps
dc, which may not be useful or desired for statistical analysis reasons and
should be eliminated. To accomplish this, autocovariance equation (6-14)
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x1(n) := x2(n) :=0
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0
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Figure 6-5 Example of cross-correlation.
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removes the time average 〈nx〉 and the result is a good approximation
to the ac value expected. Many repetitions of Eq. (6-14), followed by
averaging, can greatly improve the accuracy. This equation also leads to
an ac energy or power result as a function of τ. If τ = 0, the result is the
average ac signal plus noise power in the x(n) signal.

Cacv(τ) = 1

N

N−1∑
n=0

(
[(x + ε)n − 〈nx〉] · [(x + ε)(n+τ) − 〈nx〉

])
(6-14)

An example of autocovariance is the same as Fig. 6-4, which has been
modiÞed to remove the dc component.

Cross-Covariance

The same modiÞcation of the cross-correlation of two separate waves,
x (n) and y(n), eliminating 〈nx〉 and 〈ny〉, produces the cross-covariance

CCCV(τ) = 1

N

N−1∑
n=0

(
[(x + εx)n − 〈nx〉] · [(y + εy)(n+τ) − 〈

ny

〉])
(6-15)

The cross-covariance is the ac signal power plus noise power that is
common to x (n) and y(n) as a function of shift τ. The result is the
relatedness of the two ac signal powers. At any value of τ the result is
the total ac power for that τ. Again, the result should be averaged over
many repetitions.

Correlation CoefÞcient

This is an important dimensionless number in statistics, in addition to
those just considered. Its value lies between− 1.0 and + 1.0 and it is a
measure of the �relatedness� in some sense (to be decided by the user)
between two possibly noise-contaminated sequences x (n) and y(n). The
value −1.0 means �negatively� related,+ 1.0 means �positively� related,
|ρxy| = 1 means completely related one way or the other, and 0 means that
x (n) and y(n) are completely unrelated (independent). The basic equation
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for it is Eq. (6-16), where we use E (expectation) to mean the same as
�averaging�, assuming that many repetitions have been performed:

ρxy = E{[x(n) − E(x(n))][y(n) − E(y(n))]}√
V (x(n))V (y(n))

(6-16)

= E{[x(n) − E(x(n))][y(n) − E(y(n))]}
σXσY

After many repetitions and averaging of ρxy, the numerator is the
expected value of the cross-covariance of x (n) and y(n) [Eq. (6-15)],
and the denominator is the square root of the product of the variances of
x (n) and y(n), or more simply, just σxσy. V (x (n)) and V (y(n)) or (σx and
σy) must both be greater than 0.0. This equation can be simpliÞed as

ρxy = E[x(n)y(n)] − E[x(n)]E[y(n)]√
V (x(n))V (y(n))

(6-17)

= E[x(n)y(n)] − E[x(n)]E[y(n)]

σXσY

If x (n) and y(n) are independent then the numerator of Eq. (6-17) is zero:

E[x(n)y(n)] = E[x(n)]E[y(n)] (6-18)

and ρxy = 0.0. However, there are some cases, not to be explored here,
where x (n) and y(n) are not independent, yet ρxy is nevertheless equal to
zero. So �uncorrelated� and �independent� do not always coincide. Look-
ing at Eq. (6-18), we can guess that this might happen. For further insight
about the correlation coefÞcient, see [Meyer, 1970, Chap. 7].

As an example we will calculate ρxy of Fig. 6-5 using Eq. (6-17) and
the time-averaged values instead of expected values because Eq. (6-17)
is assumed to be noise-free:

ρXY = 〈(xy)〉 − 〈x〉〈y〉
σXσY

(6-19)

= 0.096 − (0.31 · 0.277)

0.344 · 0.286
= 0.099

The same calculation on Fig. 6-4 produces a value of 1.00.



112 DISCRETE-SIGNAL ANALYSIS AND DESIGN

This brief introduction to correlation and variance is no more than a
�get acquainted� starting point for these topics and is not intended as a
substitute for more advanced study and experience with probability and
statistical methods. We are limited to signal sequences that are discrete in
both time and frequency domains from 0 to N − 1, which makes things
a little easier. Mathcad calculates very easily all of the equations in this
chapter.
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7
The Power Spectrum

We have learned that a time-domain discrete sequence x (n) that extends
from 0 ≤ n ≤ N − 1 can be considered as two-sided, positive-time for
the Þrst half and negative-time for the second half. Each sample x (n),
considered by itself, is just a magnitude (see Chapter 1). It also has
a time-position attribute but none other, such as frequency or phase or
properties such as real or imaginary. In other words, x (n) is not a phasor.
It is what we see on an ordinary oscilloscope.

On the other hand, the x (n) sequence (the entire scope screen dis-
play) can consist of a set of complex-valued voltage or current waveforms
applied to a complex load network of some kind. However, time-domain
analysis of complex signals combined with complex loads requires math
methods that we will not explore in this book [Oppenheim and Schafer,
1999; Carlson, 1986; Schwartz, 1980; Dorf and Bishop, 2005; Shearer
et al., 1971], so we prefer to convert the time sequence x (n) to the fre-
quency X (k ) domain using the DFT. After processing the signal in the
frequency domain we can, if we wish, use the IDFT to get the time
domain x (n) sequence representation of the processed discrete signal.

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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This is a simple and very useful approach that is widely used, especially
in computer-aided design.

In this chapter we are interested in power. We are also interested in
phasors. The problem is that any phasor that has constant amplitude has
zero average power, so it makes no sense to talk about average phasor
power. Therefore, we will combine the positive- and negative-frequency
phasors coherently, using the methods described in Fig. 2-2 and employed
elsewhere, to get a positive-frequency sine wave or cosine wave at fre-
quency (k ) and phase θ(k ) from 1 ≤ k ≤ N/2 − 1. We then have a true
signal that has average power at frequency (k ), and we can look at its
power spectrum.

There is another approach available. The real or imaginary part of the
phasor Mejωt is a sinusoidal wave that has a peak value M . The rms value
of this sinusoidal wave, considered by itself, is M · 0.7071. In our Mathcad
examples the method of the previous paragraph, where we combine both
sides of the phasor spectrum coherently, is an excellent and very simple
approach that takes into account the two complex-conjugate phasors that
are the constituents of the true sine or cosine signal.

FINDING THE POWER SPECTRUM

We will use voltage values, but current values apply equally well, using the
Norton source transformation [Shearer et al., 1971]. The discrete Fourier
transform DFT [Eq. (1-2)] of an x (n) signal sequence leads to a dis-
crete two-sided X (k ) steady-state spectrum of complex voltage phasors
oscillating at frequency (k ) from 1 to N − 1 with amplitude X (k ) and
relative phase θ(k ). At each (k ) and (N − k ) we will combine a pair of
complex-conjugate phasors to get a positive-side sine or cosine V (k ) from
k = 1 to k = N /2 − 1.

In order to keep the analysis consistent with circuit realities, assume that
V (k ) is an open-circuit voltage generator whose internal impedance is for
now a constant resistance Rg, but a complex Zg(k ) can very easily be used.
V (k ) is then the steady-state open-circuit voltage at frequency (k ). The
voltage VL(k ) across the load Y (k ) (see Fig. 7-1) is found independently
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V(k) ± jB(k)

G(k)

GB(k)

RG

Y(k)

VL(k)

P(k)

PL(k) :=
(XE(k))2 + (XO(k))2

(1 + R·Y(k))2
·Y(k)

VL(k) :=
V(k)

1 + RG·Y(k)

Figure 7-1 Equivalent circuit of frequency-domain power spectrum at
frequency position k .

at each frequency (k ) as

V L(k) = V (k)

1 + RGY(k)
= V (k)

1 + ZG(k)Y (k)
(7-1)

For a given V (k ) the steady-state value of VL(k ) depends only on the
present value of Y (k ) and ZG(k ) or RG, and not on previous or future val-
ues of (k ). The complex load admittance Y(k) = [G(k) + GB(k)] ± jB(k)

siemens which we have pre-determined by calculation or measurement at
each frequency (k ), is driven by the complex signal voltage V L(k) =
Re[V L(k)] ± j Im[V L(k)], and the complex power to the load is

PL(k) = V L(k)2Y(k) watts and vars (7-2)

Figure 7-1 shows the equivalent circuit for Eq. (7-1). PL(k ) is the
power spectrum with real part (watts), imaginary part (vars), and phase
angle θ(k ), that is delivered to the complex load admittance Y(k) =
G(k) + GB(k) ± jB(k). If B (k ) is zero, the power Pl(k ) is in phase with
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VL(k ), PL(k) = V L(k)2[GB(k) + G(k)] watts. If G(k) + GB(k) = 0, the
imaginary power (vars) PL(k) = ±jB(k) × V L(k)2.

The real part of the power PL(k ) is converted to radio or sound waves or
heat dissipation of some kind, and the imaginary part is cycled back and
forth between energy storage elements (lumped components) or stand-
ing waves (transmission lines) of some kind. This energy cycling al-
ways involves slightly lossy storage elements that dissipate a little of the
real power.

Example 7-1: The Use of Eq. (7-2)

Figure 7-2 is an example of the use of Eq. (7-2). The x (n) input signal
voltage waveform in part (a) is a complex time sequence of cosine and
sine waves. This Þgure uses steps of 0.1 in the (n) values for better visual
resolution, and this is the only place where x (n) is plotted. The two plots
in part (a) are I (n) (real) and Q(n) (imaginary) sequences that we have
looked at previously. Parts (b) and (c) are the DFT of part (a) that show
the two-sided phasor frequency X (k ) voltage values. The DFT uses (k )
steps of 1.0 to avoid spectral leakage between (k ) integers (Chapter 3).
If a dc voltage is present, it shows up at k = 0 (see Fig. 1-2). In this
example there is no dc, but it will be considered later. The integer values
are sufÞcient for a correct evaluation if there are enough of them to satisfy
the requirements for adequate sampling.

In part (d) the two-sided phasors are organized into two groups. One
group collects phasor pairs that have even symmetry about N /2 and are
added coherently (Chapter 1). These are the cosine (or j cosine) terms.
The other pairs that have odd symmetry about N /2 are the sine (or the
j sine) terms and are subtracted coherently. This procedure accounts for
all phasor pairs in any signal, regardless of its even and odd components,
and the results agree with Fig. 2-2. Plots (f) and (g) need only the positive
frequencies. Note also that the frequency plots are not functions of time,
like x (n), so each observation at frequency (k ) is a steady-state measure-
ment and we can take as much time at each (k ) as we like, after the x (n)
time sequence is obtained.

Part (e) calculates the load admittance Y(k) = G(k) ± jB(k) at each
(k ) for the frequency dependence that we have speciÞed. The plot in part
(f) shows the complex value of Y (k ) at each (k ).
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Figure 7-2 Power spectrum of a complex signal: (a) complex two-sided
time domain, real and imaginary; (b) complex two-sided phasor voltage
spectrum; (c) complex two-sided phasor voltage spectrum; (d) even and
odd parts of phasor spectrum; (e) load admittance deÞnition; (f) load
admittance plot; (g) load power spectrum after Þltering.
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In part (g), Eq. (7-2), the positive-frequency complex power PL(k )
as inßuenced by the complex load admittance Y (k ), is calculated and
plotted. This power value is due to two separate and independent power
contributions. The Þrst is due only to the XE (k ) terms (the even terms) that
are symmetrical about N /2. The second is due only to the XO(k ) terms
(the odd terms) that are odd-symmetrical about N /2. In other words, the
power spectrum is a linear collection of sinusoidal power signals, which
is what the Fourier series is all about. If a certain PL(k ) has a phase angle
associated with it, Mathcad separates PL(k ) into an even (real) part and
an odd (imaginary) part. Also, the power spectrum can have an imaginary
part that is negative, which is determined in this example by the deÞnition
of Y (k ), and the real part is positive in passive networks but can have a
negative component in amplifying feedback networks [Gonzalez, 1997].

If there is a dc component in the input signal x (n) in part (a), a dc
voltage will be seen in part (c) at zero frequency. Part (g) includes this
dc voltage in its calculation of the dc power component in PL(k ). Note
that part (f) shows an admittance value at k = 0 that can be forced to zero
using a dc block (coupling capacitor or shunt inductor).

As an alternative to the use of exact-integer values of (k ) and (n), the
windowing and smoothing procedures of Chapter 4 can greatly reduce
the spectral leakage sidelobes (Chapter 3), and that is a useful approach
in practical situations where almost-exact-integer values of (n) and (k )
using the rectangular window are not feasible. The methods in Chapter
4 can also reduce aliasing (Chapter 3). These windowing and smoothing
functions can easily be appended to x (n) in Fig. 7-2a.

At this point we would like to look more closely at random noise.

RANDOM GAUSSIAN NOISE

The product of temperature T in Kelvins and kB, Boltzmann�s constant
(1.38 × 10−23 joules per kelvin), equals energy in joules, and in conduct-
ing or radiating systems this amount of energy ßow per second at constant
(or varying) temperature is kBT watts (joules per kelvin per second). T is
quite often 290K or 17◦C (63◦F) and kBT = 4 × 10−21 watts, the electrical
thermal noise power that is available from any purely resistive electri-
cal thermal noise source in a 1.0-Hz bandwidth at a chilly �laboratory�
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temperature, and

P(avail) = 10 log

[
4.0 × 10−21

0.001
(1.0)

]
= −174 dBm (7-3a)

where the 0.001 converts watts to milliwatts. If the noise bandwidth is B
and the temperature is T , then

P (avail) = [−174 + 10 log(B/1.0) + 10 log(T /290)
]
dBm (7-3b)

Some resistance values are not sources of thermal noise and do not dis-
sipate power. These are called dynamic resistances . One example is the
lossless transmission line whose characteristic resistance, R0 = Vac/Iac,
such as 50 ohms. Another dynamic resistance is the plate (collector) resis-
tance of a vacuum tube (transistor), dv /di , which is due to a lossless
internal negative feedback effect. Also, a pure reactance is not a source of
thermal noise power because the across-voltage and through-current are
in phase quadrature (average power = 0).

This thermal noise has an inherent bandwidth of, not inÞnity, but
up to about 1000 GHz, (1.0 THz) where quantum-mechanical effects
involving Planck�s energy constant (6.63 × 10−34 joule-seconds) start to
cause a roll-off [Carlson, 1986, pp. 171�172]. For frequencies below this,
Eq. (7-3) is the thermal noise available power spectral density unless addi-
tional Þltering of some type further modiÞes it. We note also that Eq. (7-3)
is the one-sided (f ≥ 0) spectrum, 3 dB greater than the two-sided value.
The two-sided value is sometimes preferred in math analyses. Thermal
noise has the Gaussian (normal) probability density (PDF) and cumulative
distribution (CDF) previously discussed in Chapter 6. The thermal noise
signal is very important in low-level system simulations and analyses.

The term white noise refers to a constant wideband (<1000 GHz,
1 THz) value of power spectrum (see the next topic) and to essentially zero
autocorrelation for τ 
= 0 [Eq. (6-12)]. As the system bandwidth is greatly
reduced, these assumptions begin to deteriorate. At narrow bandwidths
an approach called narrowband noise analysis is needed, and real-world
envelope detection of noise combined with a weak signal imposes addi-
tional nonlinear complications, including a �threshold� effect [Schwartz,
1980, Chap. 5; Sabin, 1988]. A common experience is that as the signal
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increases slowly from zero, an increase in noise level is noticed. At higher
signal levels the noise level is reduced as the detector becomes more
�linearized�.

MEASURING POWER SPECTRUM

The spectrum analyzer (or scanning spectrum analyzer) is an excellent
example of a power spectrum instrument. The horizontal scale (usually,
a linear scale) indicates frequency increments, and the vertical scale is
calibrated in dB with respect to some selected reference level in dBm
at the top of the display screen. Frequency resolution bandwidth values
from 1 Hz (very expensive) to 100 MHz are common. The data in modern
instruments is stored digitally in one or more memory registers for each
resolution bandwidth value, and this data can be processed in many differ-
ent ways. We can think of the spectrum analyzer as a discrete-frequency
sampler at frequencies (k ). The amplitude X (k ) is usually also stored in
digital form.

One especially interesting usage is the �peak hold� option, where the
frequency range is scanned slowly several dozen times, and any increase
in the peak value at any frequency is preserved and updated on each
new scan. A steady-state pattern slowly emerges on the screen that is
an accurate display of the power spectrum. The analysis of random or
pseudorandom RF signal power spectra such as speech or data is greatly
facilitated. The input signal must be strong enough to override external
and internal noise contamination. Moderately priced instruments often
have this very valuable feature, and this is an excellent way to evaluate
signals that have long-term randomness.

Figure 7-3 is derived from a photograph of a spectrum analyzer display
of a long-term peak hold of a radio frequency 600 watt PEP single-side-
band adult male voice signal that shows a speech frequency passband
from about 300 Hz to about 3 kHz above the suppressed carrier frequency
f 0. The resolution bandwidth is 300 Hz. The lower speech frequencies are
attenuated somewhat in order to emphasize the higher speech frequencies
that improve readability under weak signal conditions. The low levels of
adjacent channel spillover caused by the inevitable nonlinearities in the
system (the transmitter) are also shown. Note the> 40-dB attenuation at
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1 kHz

10 dB

Upper Side Bandf 0

Figure 7-3 Single-sideband speech power spectrum, spectrum analyzer
plot.

(f 0 − 1) kHz and (f 0 + 4) kHz. This kind of display would be difÞcult to
obtain using purely mathematical methods because the long-term spectral
components on adjacent channels caused by various mild system non-
linearities combined with a very complicated complex signal would be
difÞcult, but not impossible, to model accurately.

Another instrument, the vector network analyzer, displays dB ampli-
tude and phase degrees or complex S -parameters in a polar or Smith
chart pattern, which adds greatly to the versatility in RF circuit design
and analysis applications. The important thing is that the signal is sam-
pled in certain Þxed and known bandwidths, and further analyses of the
types that we have been studying, such as Þltering, smoothing and win-
dowing and others, both linear and nonlinear, can be performed on the
data after it has been transferred from the instrument. This processed spec-
trum information can be transformed to the time or frequency domain for
further evaluations.

Wiener-Khintchine Theorem

Another way to get a two-sided power spectrum sequence is to carry out
the following procedures:
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1. From the x (n) time sequence, calculate the autocorrelation function
C A(τ) using Eq. (6-12). Note that τ is the integer value (0 to N − 1)
of shift of x (n) that is used to get CA(τ).

2. Perform the DFT on CA(τ) using Eq. (1-2) to get P (k ) [Carlson,
1986, Sec. 3]. Note that the shift of τ is carried out in steps of 1.0
over the range from 0 to N − 1 in Eq. (7-4).

P(k) = F[CA(τ)] = 1

N

N−1∑
τ=0

CA(τ)exp

(
− j2π

τ

N
k

)
(7-4)

This P (k ) spectrum is two-sided and can be converted to one-sided as
explained in Chapter 2 and earlier in this chapter. The Wiener-Khintchine
theorem is bi-directional and the two-sided autocorrelation CA(τ) can be
found by performing the IDFT [Eq. (1-8)] on the two-sided P (k ):

CA(τ) = F−1[P(k)] =
N−1∑
k=0

P(k) exp

(
j2π

τ

N
k

)
(7-5)

The FFT can be used to expedite the forward and reverse Fourier transfor-
mations. This method is also useful for sequences that are unlimited (not
periodic) in the time domain, if the autocorrelation function is available.

SYSTEM POWER TRANSFER

The autocorrelation and cross-correlation functions can be deÞned in terms
of periodic repeating signals, in terms of Þnite nonrepeating signals, and in
terms of random signals that may be inÞnite and nonrepeating [Oppenheim
and Schafer, 1999, Chap. 10].

We have said that for this introductory book we will assume that a
sequence of 0 to N − 1 of some reasonable length N contains enough
signiÞcant information that all three types can be calculated to a sufÞcient
degree of accuracy using Eqs. (6-12) and (6-13). We will make N large
enough that circular correlation and circular convolution are not needed.
We will continue to assume an inÞnitely repeating process. When a fairly
low value of noise contamination is present, we will perform averaging
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of many sequences to get an improved estimate of the correct values.
We will also assume ergodic, wide-sense stationary processes that make
our assumptions reasonable. This means that expected (ensemble) value
and time average are �nearly� equal, especially for Gaussian noise. We
also assume that windowing and anti-aliasing procedures as explained in
Chapters 3 and 4 have been applied to keep the 0 to N − 1 sequence
essentially �disconnected� from adjacent sequences. The Hanning and
Hamming windows are especially good for this.

If a linear system, possibly a lossy and complex network, has the com-
plex voltage or current input-to-output frequency response H (k ) and if
the input power spectrum is P (k )in, the output power spectrum P (k )out in
a 1.0 ohm resistor can be found using Eq. (7-6)

P(k)out = [H(k)H(k)∗]P(k)in = |H(k)|2P(k)in (7-6)

where the asterisk(*) means complex conjugate. Because P (k )in and
P (k )out are Fourier transforms of an autocorrelation, their values are
real and nonnegative and can be two-sided in frequency [Papoulis, 1965,
p. 338]. This is an important fundamental idea in the design and analysis
of linear systems. Equation (7-6) is related to the Fourier transform of
convolution that we studied and veriÞed in Eqs. (5-6) to (5-10). Equation
(7-6) for the power domain is easily deduced from that material by includ-
ing the complex conjugate of H (k ). To repeat, P (k )in and P (k )out are
real-valued, equal to or greater than zero and two-sided in frequency.

CROSS POWER SPECTRUM

Equation (7-4) showed how to use the auto-correlation in Eq. (6-12) to
Þnd the power spectrum of a single signal using the DFT. In a similar
manner, the cross-spectrum between two signals can be found from the
DFT of the cross-correlation in Eq. (6-13). The cross-spectrum evaluates
the commonality of the power in signals 1 and 2, and phase commonality
is included in the deÞnition. We will now use an example of a pair of
sinusoidal signals to illustrate some interesting ideas.

Equation (7-7) compares the average power P1 for the product of a
sine wave and a cosine wave on the same frequency, and the average
power P2 in a single sine wave. P3 is the average power for the sum of
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two sine waves in phase on the same frequency. For better visual clar-
ity we temporarily use integrals instead of the usual discrete summation
formulas:

P1 = 1

2π

∫ 2π

0
A cosθB sin θdθ = AB

2π

∫ 2π

0
cos θ · sin θdθ = 0

P2 = 1

2π

∫ 2π

0
(sin θ)2dθ = 1

2π
·
∫ 2π

0
sin θ sin θdθ = 0.5 (7-7)

P3 = 1

2π

∫ 2π

0
(sin θ + sin θ)2 dθ = 1

2π

∫ 2π

0
4(sin θ)2dθ = 2.0

The trig identities conÞrm the values of the integrals for P1, P2 and P3.
In P1 the two are 90◦ out of phase and the integral evaluates to zero.
Note that P1 (only) is zero for any real or complex amplitudes A and
B . However, a very large product A·B can make it difÞcult to make the
numerical integration of the product (cosθ)·(sinθ) actually become very
small. To repeat, P2 is the average power of a single sine wave.

We can also compare P1 and P2 using the cross-correlation Eq. ( 6-13).
P2 is the product of two sine waves with τ= 0. The cross-correlation,
and therefore the cross power spectrum, is maximum. P1 is the cross-
correlation of two sine waves with τ = ± 1/4 cycle applied to the left-hand
sine wave. The cross-correlation is then zero and the cross power spectrum
is also zero, applying the Wiener-Khintchine theorem to Eq. (6-13).

In P3 the two are 0◦ in-phase (completely correlated) and the sum
of two sine waves produces an average power of 2.0, four times (6 dB
greater than) the average power P2 for a single sine wave. If the two
waves in P3 were on greatly different frequencies, in other words uncor-
related, each would have an average power of 0.5 and the total average
power would be 1.0. This means that linear superposition of indepen-
dent (uncorrelated) power values can occur in a linear system, but if the
two waves are identically in phase, an additional 3 dB is achieved. The
generator must deliver 3 dB more power. P3 for the sum of a sine wave
and a cosine wave = 0.5 + 0.5 = 1.0 because the sine and cosine are inde-
pendent (uncorrelated). Also, inside a narrow passband the correlation
(auto or cross) value does not suddenly go to zero for slightly different
frequencies; instead, it decreases smoothly from its maximum value at
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�f = 0, and more gradually than in a wider passband [Schwartz, 1980,
p. 471]. Coherence is used to compare the relationship, including the phase
relationship, of two sources. If they are all fully in phase, they are fully
coherent. Coherence can also apply to a constant value of phase differ-
ence. The coherence number ρ between spectrum power S 1 and spectrum
power S 2 can be found from Eq. (7-8).

ρ = cross power spectrum√
S1S2

, ρ ≤ 1.0 (7-8)

Finally, two independent uncorrelated signals in the same frequency
passband, each with power 0.5, produce a peak envelope power
(PEP) = 2.0 (6 dB greater) and an average power = 1.0 (3 dB greater)
[Sabin and Schoenike, 1998, Chap. 1]. The system must deliver this PEP
with low levels of distortion.

As we said before [Eq. (7-7)], if two pure sinusoidal signals at the
same amplitude and frequency are 90 degrees out of phase, the average
power in their product is zero. But if these signals are contaminated with
amplitude noise, or often more important, phase noise, the two signals
do not completely cancel. The combination of phase noise and amplitude
noise is known as composite noise. The noise spectrum can have a band-
width that degrades the performance of a phase-sensitive system or some
adjacent channel equipment.

Measurement equipment that compares one relatively pure sine wave
and a test signal that is much less pure is used to quantify the noise con-
tamination and spectrum of the test signal. It is also possible to compare
two identical sources and calculate the phase noise of each source. The
90◦ phase shift that greatly attenuates the product at baseband of the two
large sine-wave signals is important because it allows the residual unat-
tenuated phase noise to be greatly ampliÞed for easier measurement. A
lowpass Þlter attenuates each input tone and all harmonics. A great deal
of interest and effort are directed to tests of this kind and some elegant
test equipment is commonly used.

Example 7-2: Calculating Phase Noise

An example of phase noise is shown in Fig. 7-4. What follows is a
step-by-step description of the math. This is also an interesting example
of discrete-signal analysis.
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At the upper left is a noise-free discrete sine wave V 1(n) at frequency
f = 1.0, amplitude 1.0, in 128 positions of (n). A discrete cosine wave
V 2(n), amplitude 1.0 at the same frequency, has some phase noise added,
0.1·[rnd(1) − 0.5]. The rnd(1) function creates a random number from
0 to + 1 at each position of (n). The value 0.5 is subtracted, so the
random number is then between −0.5 and +0.5. The index of the phase
modulation is 0.1.

(a) The plot of the noise-free sine wave.

(b) The plot of the cosine wave with the noise just barely visible.

(c) We now multiply the sine wave and the cosine wave. This mul-
tiplication produces the baseband phase noise output VT (n) and a
sine wave of amplitude 0.5 at twice the frequency of the two input
waves. We subtract this unwanted wave so that only the phase noise
is visible in part (c). This is equivalent to a lowpass Þlter that rejects
the times 2 frequency. Note the vertical scale in the graph of part
(c) that shows the phase noise greatly ampliÞed.

(d) We next use the DFT to get the noise spectrum VT (k ) in dB format.
At this point we also perform two 3-point smoothing operations on
VT (k ), Þrst to get VT 1(k ) and then to get VT 2(k ). This operation
smoothes the spectrum of VT (k ) so that VT (k ) in the graph in
part (e) is smoothed to VT 2(k ) in the graph in part (f). This is
postdetection Þltering that is used in spectrum analyzers and many
other applications to get a smoother appearance and reduce noise
peaks; it improves �readability� of the noise shelf value.

(e) Also in part (d) we perform lowpass Þltering [−20 log(1 + k2)]
(a Butterworth lowpass Þlter) to get VN (k ). This result is also
smoothed two times and the comparison of VN (k ) and VN 2(k ) is
seen in the graphs of parts (e) and (f).

(f) Note that in parts (e) and (f) the upper level of the phase noise plot
VT (k ) and VT 2(k ) is >53 dB below the 0-dB reference level of the
test signal V 2 at frequency k = 1. This is called the relative noise
shelf for the noisy test signal that we used. It is usually expressed
as a dBc number (dB below the carrier, in this case, >53 dBc). This
noise shelf is of great signiÞcance in equipment design. It deÞnes
the ability to reject interference to and from closely adjacent signals
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and also to analyze unwanted phase disturbances on input signals.
The lowpass Þlter to get VN 2(k ) greatly improves phase noise, but
only at frequencies somewhat removed from the signal frequency.
Still, it is very important that wideband phase noise interference is
greatly reduced.

In conclusion, there are many advanced applications of the cross power
spectrum that we cannot cover in this book but that can be explored using
various search engines and texts.
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8
The Hilbert
Transform

D. Hilbert 1862-1943

This Þnal chapter considers a valuable resource, the Hilbert transform
(HT), which is used in signal-processing systems to achieve certain prop-
erties in the time domain and the frequency domain. The DFT, IDFT,
FFT, and Hilbert transform work quite well together with discrete signals
if certain problem areas to be discussed are handled correctly.

Example of the Hilbert Transform

Figure 8-1 shows a two-sided square wave x (n) time sequence, and
we will walk through the creation of an HT for this wave. Design the
two-sided square-wave time sequence using N = 128. The value at n = 0
is zero, which provides a sloping leading edge for better plot results. Val-
ues from 1 to N /2− 1 = + 1.0. Set the N /2 position to zero, which has
been found to be important for successful execution of the HT because
N /2 is a special location that can cause problems because of its small
but non-zero value. Values from N /2 + 1 to N − 1 = − 1. At N the wave
returns to zero.

(a) Plot the two-sided square wave from n = 0 to N − 1.

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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(b) Execute the DFT to get X (k ), the two-sided, positive-frequency Þrst-
half and negative-frequency second-half phasor spectrum. This spec-
trum is a set of sine waves as shown in Fig. 2-2c. Each sine wave
consists of two imaginary components.

(c) Multiply the Þrst-half positive-frequency X (k ) values by � j to get
a 90◦ phase lag. Multiply the second-half negative-frequency X (k )
values by + j to get a 90◦ phase lead. As in step (a), be sure to set the
N /2 value to zero. This value can sometimes confuse the computer
unless it is forced to zero. This step (c) is the ideal Hilbert transform.

(d) Part (d) of the graph shows the two-sided spectrum XH (k ) after the
phase shifts of part (c). This spectrum is a set of negative cosine
waves as shown in Fig. 2-2b. Each cosine wave consists of two real
negative components, one at +k and one at N − k .

(e) Use the IDFT to get the two-sided xh(n) time response. Note that
xh(n) is a sequence of real numbers because x (n) is real.

(f) The original square wave and its HT are both shown in the graph.
Note the large peaks at the ends and in the center. These peaks are
characteristic of the HT of an almost square wave. The perfect square
wave would have inÞnite (very undesirable) peaks.

(g) Calculate two 3-point smoothing sequences described in Chapter 4
for the sequence in part (f). This smoothing is equivalent to a lowpass
Þlter, or at radio frequencies to a narrow band-pass Þlter.

(h) Plot the Þnal result. The sharp peaks have been reduced by about
2 dB. Further smoothing is usually required in narrowband circuit
design applications, as we will see later.

The three peaks in part (f) are usually a problem in any peak-power-
limited system (which is almost always the practical situation). The
smoothing in part (h) thus becomes important. Despite the peaks, the
rms voltage in part (f) is the same for both of the waveforms in that
diagram (nothing is lost).

For problems of this type, the calculation effort becomes extensive,
and the use of the FFT algorithm, with its greater speed, would ordinarily
be preferred. The methods of the Mathcad FFT and IFFT functions are
described in the User Guide and especially in the online Help. In this



THE HILBERT TRANSFORM 131

0 16 32 48 64 80 96 112 128

0

−1

1

x(n)

n

(a)

N := 128 n := 0, 1.. N

k := 0, 1.. N

x(n) := 0

−1 if n >

1 if n > 0

0 if n = N

0 if n =

N
2

N
2

(c)

XH(k) := −j⋅X(k) if k < N
2

N
2

0 if k =

N
2

j⋅X(k) if k >

0 16 32 48 64 80 96 112 128
−1

−0.5

0

0.5

1

Im(X(k))

k

(b)

Imaginary

X(k) := ∑
N−1

n = 0

1
N

n
N

x(n)⋅exp −j⋅2⋅π⋅    ⋅k⋅

Figure 8-1 Example of the Hilbert transform.
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chapter we will continue to use DFT and IDFT and stay focused on the
main objective, understanding the Hilbert transform.

Why do the samples in Fig. 8-1f and h bunch up at the two ends and
in the center to produce the large peaks? The answer can be seen by
comparing Fig. 8-1b and d. In Fig. 8-1b we see a collection of (sine)
wave harmonics as deÞned in Fig. 2-2c. These sine wave harmonics are
the Fourier series constituents of the symmetrical square wave in Fig.
8-1a. In Fig. 8-1d we see a collection of (− cosine) waves as deÞned
in Fig. 2-2b. These ( − cosine) wave harmonic amplitudes accumulate at
the endpoints and the center exactly as Fig. 8-1f and h verify. As the
harmonics are attenuated, the peaks are softened. The smoothing also
tends to equalize adjacent amplitudes slightly. The peaks in Fig. 8-1h rise
about 8 dB above the square-wave amplitude, which is almost always too
much. There are various ways to deal with this. One factor is that the
square-wave input is unusually abrupt at the ends and center. Smoothing
(equivalent to lowpass Þltering) of the input signal x (n), is a very useful
approach as described in Chapter 4. This method is usually preferred in
circuit design.

It is useful to keep in mind, especially when working with the HT,
that the quadrature of θ, which is θ ± 90◦, is not always the same thing
as the conjugate of θ. If the angle is+30◦, its conjugate is −30◦, but its
quadrature is +30◦ ± 90◦ = +120◦ or −60◦. The HT uses θ

◦ ± 90◦. For
example, Fig. 8-1b shows +j0.5 at k = 127. The HT multiplies this by + j
to get a real value of − 0.5 in part (d) at k = 127. This is a quadrature
positive phase shift at negative frequency k = 127. A similar event occurs
at k = 1. Also, at k = 0 and N the phase jump is 180◦ from ± j to ∓j ,
and the same, although barely noticeable, at N /2. (Use a highly magniÞed
vertical scale in Mathcad.)

A different example is shown in Fig. 8-2. The baseband signal in
part (b) is triangular in shape, and this makes a difference. The abrupt
changes in the square wave are gone, the baseband spectrum (d) contains
only real cosine-wave harmonics, and the Hilbert transform (f) contains
only sine-wave harmonics. The sharp peaks in xh(n) that we see in
Fig. 8-1g disappear in Fig. 8-1h. However, for equal peak-to-peak ampli-
tude, the square wave of Fig. 8-1 has 4.8 dB more average power than
the triangular wave of Fig. 8-2. It is not clear what practical advantage
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Figure 8-2 Hilbert transform using a triangular waveform.

the triangular wave would have. The importance of peak amplitude limits
and peak power limits in circuit design must always be kept in mind.

BASIC PRINCIPLES OF THE HILBERT TRANSFORM

There are many types of transforms that are useful in electronics work. The
DFT and IDFT are well known in this book because they transform back
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Figure 8-2 (continued )

and forth between the discrete time-domain signal x (n) and the discrete
frequency-domain spectrum X (k ).

Another very popular transform converts a linear differential equation
into a linear algebraic equation. For example, consider the differential
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equation

v(t) = L
di(t)

dt
; let i(t) = ejωt (a phasor or a sum of phasors)

di(t)

dt
= jωejωt = jωi(t) (8-1)

v(t) = Ljωi(t) = jωLi(t)

Vac = jωLIac

V ac and I ac are sinusoidal voltage and current at frequency ω = 2πf. The
phasor ejωt is the �transformer.� This is the ac circuit analysis method
pioneered by Charles Proteus Steinmetz and others in the 1890s as a way
to avoid having to Þnd the steady-state solution to the linear differential
equation. If the LaPlace transform is used to deÞne a linear network (with
zero initial conditions) on the S -plane, we can replace �S � with �jω, which
also results in an ac circuit with sinusoidal voltages and currents. We can
also start at time = zero and wait for all of the transients to disappear,
leaving only the steady-state ac response. The Appendix of this book
looks into this subject brießy.

These methods are today very popular and useful. If dc voltage and/or
current are present, the dc and ac solutions can be superimposed.

A sum or difference of two phasors creates the cosine wave or sine
wave excitation I ac. These can be plugged into Eq. (8-1):

j sin ωt = ejωt − e−jωt

2
, cos ωt = ejωt + e−jωt

2
(8-2)

The HT always starts and ends in the time domain, as shown in Figs.
8-1 and 8-2. The HT of a ( + sine) wave is a ( − cosine) wave (as in Fig.
8-1) and the (− cosine) wave produces a (− sine) wave. Two consecutive
performances of the HT of a function followed by a polarity reversal
restore the starting function.

In order to simplify the Hilbert operations we will use the phase shift
method of Fig. 8-1c combined with Þltering. But Þrst we look at the basic
deÞnition to get further understanding. Consider the impulse response
function h(t) = 1/t , which becomes inÞnite at t = 0. The HT is deÞned as



THE HILBERT TRANSFORM 137

the convolution of h(t) and the signal s(t) as described in Eq. (5-4) for the
discrete sequences x (m) and h(m). The same �fold and slide� procedure
is used in Eq. (8-3), where the symbol H means �Hilbert� and ∗ (not the
same as asterisk *) is the convolution operator:

H [s(t)] = ŝ(t) = h(t) ∗ s(t) = 1

π

∫ +∞

−∞

s(τ)

t − τ
dτ (8-3)

In this equation τ is the �dummy� variable of integration. The value
of the integral and H[s(t)] become inÞnite when t = τ and the integral is
called �improper� for this reason. First, the problem of the �exploding�
integral must be corrected. This is done by separating the integral into
two or more integrals that avoid t = τ.

H[s(t)] =ŝ(t) = h(t) ∗ s(t)

= lim

ε → 0

{[
1

π

∫ −ε

−∞

s(τ)

t − τ
dτ + 1

π

∫ +∞

+ε

s(τ)

t − τ
dτ

]} (8-4)

This equation is called the �principal� value, also the Cauchy principal
value, in honor of Augustin Cauchy (1789�1857). As the convolution
is performed, certain points and perhaps regions must be excluded. This
�connects� us with Fig. 8-1, where the value of the HT became very large
at three locations.

There is also a problem if s(t) has a dc component. Equations (8-3)
and (8-4) can become inÞnite, and the dc region should be avoided. The
common practice is to reduce the low-frequency response to zero at zero
frequency.

The Perfect Hilbert Transformer

The procedure in Fig. 8-1c is an all-pass network [Van Valkenburg, 1982,
Chapts. 4 and 8], also known as a quadrature Þlter [Carlson, 1986, p.
103]. Part (c) shows that its gain at all phasor frequencies, positive and
negative, is± 1.0, and that it performs an exact+ 90◦ or − 90◦ phase shift.
This is the practical software deÞnition of the perfect Hilbert transformer.

It is useful to point out at this time that the HT of a +sine wave is a
(−cosine) wave and the HT of a +cosine wave is a (+sine) wave. At a
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speciÞc frequency, a± 90◦ phase shift network can accomplish the same
thing, but for the true HT the wideband constant amplitude and wideband
constant ± 90◦ are much more desirable. This is a valuable improvement
where these wideband properties are important, as they usually are.

In software-deÞned DSP equipment the almost-perfect HT is fairly easy,
but in hardware some compromises can creep in. Digital integrated cir-
cuits that are quite accurate and stable are available from several vendors,
for example the AD9786. In Chapter 2 we learned how to convert a
two-sided phasor spectrum into a positive-sided sine�cosine�θ spectrum.
When we are working with actual analog signal generator outputs (pos-
itive frequency), a specially designed lowpass network with an almost
constant −90◦ shift and an almost constant amplitude response over some
desired positive frequency range is a very good component in an analog
HT which we will describe a little later.

Please note the following: For this lowpass Þlter the relationship
between negative frequency phase and positive-frequency phase is not
simple. If the signal is a perfectly odd-symmetric sine wave (Fig. 2-2c),
the positive- and negative-frequency sides are in opposite phase, just like
the true HT. But if the input signal is an even-symmetric cosine wave
(Fig. 2-2b) or if it contains an even-symmetric component , then it is not
consistent with the requirements of the HT because the two sides are not
exactly in opposite phase. If the signal is a random signal (or random
noise), it is at least partially even-symmetric most of the time. Therefore,
the lowpass Þlter cannot do double duty as a true HT over a two-sided fre-
quency range, and the circuit application must work around this problem.
Otherwise, the true all-pass HT is needed instead of a lowpass Þlter. The
bottom line is that the signal-processing application (e.g., SSB) requires
either an exact HT or its mathematical equivalent. Also, the validity and
practical utility of the two-sided frequency concept are veriÞed in this
example.

Analytic Signal

The combination of the time sequence x (n) and the time sequence
±j x̂(n), where x̂(n), has a spectrum that occupies only one-half of the
two-sided phasor spectrum. This is called the analytic signal xâ(n). The
result is not a physical signal that can light a light bulb [Schwartz, 1980,
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p. 250]. It is a phasor spectrum that exists only in �analysis.� �Analytic�
also has a special mathematical meaning regarding differentiability within
a certain region [Mathworld]. We have seen in Eqs. (8-3) and (8-4) that
the HT does have some problems in this respect, because it is analytic
only away from sudden transitions. Nevertheless, the analytic signal is a
very valuable concept for us because it leads the way to some important
applications, such as SSB. It is deÞned in Eq. (8-5), and we will soon
process this �signal� into a form that is a true SSB signal that can light a
light bulb and communicate.

xa(n) = x(n) ± j x̂(n) (8-5)

In this equation the sequence x (n) is converted to the Hilbert sequence
x̂(n) using Eq. (8-4) shifted ± 90◦ by the ± j operator and added to x (n).

Note that the one-sided phasor exp( ± jθf) = cosθf ± j sinθf can be rec-
ognized as an analytic signal at any single frequency f because the HT of
cos(θf) is sin(θf), where cos(θf) and sin(θf) are both real numbers. The ± j
determines positive or negative frequency for this analytic signal.

Example of the Construction of an Analytic Signal

Figure 8-3 shows an example of the construction of an analytic signal.
We will walk through the development.

(a) The input signal consists of two cosine waves of amplitude 1.0 and
frequencies 2 and 8 (they can be any of the waves deÞned in Fig.
2-2).

(b) This input is plotted from n = 0 to n = N − 1 (N = 64). The nature
of the input signal can be very difÞcult to determine from this �oscil-
loscope� display.

(c) This is the two-sided spectrum, using the DFT.

(d) The positive-frequency spectrum X (k ) is phase shifted − 90◦ and the
negative spectrum is shifted + 90◦. The N /2 position is set to 0. This
is the Hilbert transformer.

(e) The two-sided spectrum XH (k ) is plotted using the DFT. The real
(solid) cosine components of part (c) become imaginary (dotted) sine
components in part (e).
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(f) The spectrum XH(k ) is converted to the time domain xh(n) using
the IDFT. This is the Hilbert transform HT of the input signal x (n).

(g) The HT xh(n) of the input signal sequence is plotted. Note that xh(n)
is a real sequence, as is x (n).

(h) The formula xa(n) for the complex analytic signal in the time domain.

(i) There are two time-domain plot sequences , one dashed for the imag-
inary part of xa(n) and one solid for the real part of xa(n). These I
and Q sequences are in phase quadrature.

(j) The spectrum XA(k ) of the analytic signal is calculated.

(k) The spectrum of the analytic signal is plotted. Only the negative-
frequency real components − 2 (same as 62) and − 8 (same as 56)
appear because the minus sine was used in part (H). If the plus sign
were used in part (h), only the positive-frequency real components
at +2 and +8 would appear in part (k). Note that the amplitudes of
the frequency components are twice those of the original spectrum in
part (c). All of this behavior can be understood by comparing parts
(c) and (e), where the components at 2 and 8 cancel and those at −2
and −8 add, but only after the equation in part (h) is used. The± j
operator in part (h) aligns the components in the correct phase either
to augment or to cancel.

This is the baseband analytic signal, also known as the lowpass equiv-
alent spectrum [Carlson, 1986, pp. 198�199] that is centered at zero
frequency. To use this signal, for example in radio communication, it must
be frequency-translated. It then becomes a true single-sideband �signal�
at positive SSB frequencies with suppressed carrier. If this SSB RF signal
is represented as phasors, it is a two-sided SSB phasor, spectrum, one
SSB sideband at positive RF frequencies and the other SSB sideband at
negative RF frequencies. The value of the positive suppressed carrier fre-
quency ω0 can be anything, but in the limit, as ω0→0, the idea of an
actual SSB signal disappears (in principle), as mentioned before.

SINGLE-SIDEBAND RF SIGNAL

At radio frequencies the single-sideband (SSB) signal contains informa-
tion only on upper singlesideband (USSB) or only on lower singlesideband
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(LSSB). The usual �carrier� that we see in conventional AM is miss-
ing. A related approach is the �vestigial� opposite sideband, which tapers
off in a special manner. Some systems (e.g., shortwave broadcast) use
a reduced-level pilot carrier (−12 dB), that is used to phase lock to an
input signal. In the usual peak-power-limited system the power in the pilot
carrier reduces slightly the power in the desired single sideband. Special
methods are used to modulate and demodulate the SSB signal, which add
somewhat to the cost and complexity of the equipment. The big plus fac-
tor is that almost all of the transmitted and received signal power reside
in one narrow sideband, where they are most effective.

Incidentally, and to digress for a moment, AM mode is criticized
because of all of the �wasted� power that is put into the carrier. Nothing
could be further from the truth. The basic AM receiver uses a very simple
diode detector for the AM signal. The AM carrier is the �local oscillator�
for this detector which demodulates (translates) the AM signal to audio
(see Fig. 3-5). The transmitted carrier can service many millions of simple
AM receivers in this manner. The receiver provides the power level at
the carrier frequency that the detector requires and provides synchronous
demodulation. In advanced designs a− 12-dBc PLL pilot carrier, possi-
bly combined with SSB, is created that reduces �selective fading� (search
�selective fading� and subtopics such as �OFDM� on the Web).

We will use the baseband analytic signal xb(n) to create mathematically
in Fig. 8-4 a high-frequency SSB two-tone USSB or LSSB power spec-
trum that is capable of radio communication. Figure 8-4g is the desired
USSB output.

(a) klo = 10 is the frequency of the carrier that is to be suppressed in
SSB.

(b) Part (b) is the time sequence x (n) of the two-tone baseband inputs
at frequencies 9 and 12.

(c) Part (c) is the two-sided baseband spectrum X (k ) of the two-tone
baseband input.

(d) Part (d) is the ideal Hilbert transform XH(k ) of the two-tone baseband
input.

(e) The analytic spectrum [X (k ) + jXH(k )] is formed and then multiplied
by the carrier frequency klo = 10. This frequency-converted result is
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N :=  64 n := 0, 1..N − 1 k := 0, 1,..N − 1 klo := 10
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Figure 8-4 Construction of an upper single-sideband signal.
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then converted to the time-domain signal xb(n), centered at k = 10,
using the IDFT.

(f) The DFT of xb(n) provides the two-tone real signal at k = 19 and
22. This is the spectrum XB(k ) of the USSB. RF frequencies are 19
and 22. The LSSB output is obtained by using [X (k )� jXH(k )] in
step (e).

(g) Part (g) is the frequency plot of the USSB RF signal. Note the
absence of any outputs except the desired two-tone real signal. Only
the magnitudes of the two outputs are of interest in this experiment,
but the phase of each can also be plotted.

Note that, as always, the multiplication of two time-domain sequences
[part (f)] is a nonlinear process, and the subsequent DFT then reveals
a spectrum of two real signals. The SSB output is a real signal, not an
analytic signal as deÞned in Eq. (8-5).

Figure 8-4 is not a realistic example in terms of actual baseband and RF
frequencies, but the general idea is conveyed correctly. Figures 8-1 and
8-2 may also be reviewed as needed. The reader can use the time- and
frequency-scaling procedures in Chapter 1 and some appropriate graph
method (if needed) to get the real-world model working.

SSB DESIGN

It is interesting to look brießy at some receiving and transmitting meth-
ods that can be implemented using analog or discrete-signal methods.
Comparable methods are used in DSP [Sabin and Schoenike, 1998,
Chap. 8].

The basic op-amp Þrst-order all-pass network shown in Fig. 8-5 has a
constant gain magnitude ≈ 1.0 at all frequencies, including zero, phase
≈ + 180◦ at very low frequency, and phase ≈0◦ at very high frequency.
The output phase is 90◦ leading at ω = a (conÞrmed by analysis and
simulation). The gain at zero frequency is −1.0, which corresponds to
+180◦. At zero frequency on the S -plane, the pole on the left-side for
this �nonminimum phase� network is at 0◦ and the zero on the right side
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N := 128 ω := 0, 1..N a :=  20 T(ω) := 
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Figure 8-5 Elementary all-pass active RC network.

is at +180◦, according to the usual conventions [Dorf, 1990, Figs. 7-15b
and 7-16].

T (jω) = jω − a

jω + a
, T (s) = s − z

s + p
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Note the use of the Mathcad function atan2(x, y) that measures phase
out to ±180◦ (see also Chapter 2). The values 0.0025 μF and 100 K
are modiÞed in each usage of this circuit. Metal Þlm resistors and stable
NP0 capacitors are used. The op-amp is of high quality because several
of them in cascade are usually dc coupled.

Figure 8-6 shows how these basic networks can be combined to produce
a wideband −90◦ phase shift with small phase error and almost constant
amplitude over a baseband frequency range. Each of the two all-pass net-
works (I and Q) is derived from a computer program that minimizes
the phase error between the I and Q channels on two separate �wires.�
[Bedrosian, 1963] is the original and deÞnitive IRE article on this subject.
Examples of the circuit design and component values of RC op-amp net-
works are in [Williams and Taylor, 1995, Chap. 7] and numerous articles.
A simulation of this circuit from 300 to 3000 Hz using Multisim and the
values from the book of Williams and Taylor (p. 7.36) shows a maxi-
mum phase error of 0.4◦. The 6 capacitors are 1000 pF within 1.0%. The
input and output of each channel may require voltage-follower op-amps
to assure minimal external loading by adjacent circuitry. Copying R and
C values from a handbook in this manner is sometimes quite sensible
when the alternatives can be unreasonably labor-intensive. A high-speed
PC could possibly be used to Þne-tune the phase error in a particular appli-
cation (see, for example, [Cuthbert, 1987], and also Mathcad�s optimizing
algorithms).
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Figure 8-6 Two sets of basic all-pass networks create I and Q outputs
with a 90◦ phase difference across the frequency range 300 to 3000 Hz.
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The following brief discussion provides some examples regarding the
usage of the Hilbert transform and its mathematical equivalent in radio
equipment. Analog methods are used for visual convenience.

SSB TRANSMITTER

We illustrate in Fig. 8-7 the analog design of an SSB transmitter sig-
nal using the phase-shift method. It uses the −90◦ lowpass (positive-
frequency) Þlter of Fig. 8-6, two double-balanced mixers, and an HF
local oscillator [Krauss et al., 1980, Chap. 8]. The mixers create two
double-sideband suppressed carrier (DSBSC) signals. The combiner at
the output uses the sum of these two inputs to create at the local oscil-
lator frequency ω0 an LSB or the difference of the two inputs to create
an USB. The BPF restricts the output to some desired frequency band.
The end result is equivalent mathematically to a synthesis of the Hilbert
transform and the analytic signal translated to RF that we have considered
in this chapter.

There is an interesting artifact of this circuit that we should look at.

1. Start at the input, where the baseband signal is cos ωmt at 0◦ refer-
ence.

2. The I -channel output (a) has a phase shift ∠θ
◦, relative to the 0◦

reference input, that varies from +64◦ at 300 Hz to −154◦ at 3 kHz.
The I -channel output (a) is cosωmt + θ

◦. This effect is inherent in
the design of this Þlter.

USB
or
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Output

L.O.

AF In 
x(n)

+

+−
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Filter

Fig 8-6
90°
+

−

cos wot

sin wot

DSBSC mixer

DSBSC mixer

Q

I q

q − 90°

(b)

(e)

(d )
(c)

(a)

−90°

Figure 8-7 SSB generator using the phasing method.
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3. Because the wideband phase shift from 300 to 3000 Hz is very nearly
−90◦ from I to Q , the Q output (c) has the same additional shift θ

◦

as the I -channel output (a).

If we compare locations (a) and (c) we see that they differ only in
phase and not in frequency. So this process is not phase modulation,
which would have to be a nonlinear process that creates phase modula-
tion sidebands. It is an additive process that does not contribute additional
spectrum components. For a typical SSB speech signal this phase shift is
usually not noticed by a human listener, although some amplitude mod-
iÞcation (not the same as nonlinear distortion) can occur if the circuitry
is not almost linear-phase. It could be noticed in data modes that are not
normally used in SSB. The important thing is that the I and Q channels
are separated by very nearly 90◦, positive at the I channel and negative
at the Q channel.

In a DSP SSB transmitter an FIR design HT would need only a single
channel, located, for example, on the Q side [Sabin and Schoenike, 1998,
Chap. 8].

Also, other phase errors in the circuit can reduce the degree of cancel-
lation of the undesired sideband. A practical goal for this cancellation is
in the range 40 to 50 dB.

FILTER METHOD TRANSMITTER

Figure 8-8 shows the Þlter method of creating an SSB signal. The DSBSC
signal goes through a narrowband mechanical or crystal Þlter. The Þlter
creates the one-sided real SSB signal at IF, and the result is indistinguish-
able from the phasing method. Both methods are basically equivalent
mathematically in terms of the analytic signal [Carlson, 1986, Chap. 6].
In other words, the result of a frequency translation of the transmit signal
to baseband is indistinguishable from the analytic signal in Eq. (8-5.)

PHASING METHOD SSB RECEIVER

Figure 8-9 illustrates a phase-shift, image-canceling SSB receiver. It is
similar to the SSB transmitter except that two identical lowpass Þlters are
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Figure 8-8 SSB generator using the IF Þlter method.
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Figure 8-9 Phasing method image-canceling SSB demodulator.

used after the IF or RF down-conversion to baseband (especially in the
direct-conversion receiver) to establish the desired audio-frequency range
and attenuate undesired mixer outputs that can interfere with the desired
input frequency range. The lowpass Þlter of Fig. 8-6 provides the I and
Q audio. The combiner selects the USB or LSB mode. The mixers are
identical double-balanced types that perform the DSBSC function. Digital
circuitry that divides four times the desired L.O. frequency by four and
also provides two quadrature outputs, I LO and QLO, is frequently used
[Sabin and Schoenike, 1998, Chap. 4], especially when the L.O. frequency
must be variable to cover an input signal range.

FILTER METHOD RECEIVER

Figure 8-8, ßipped from left to right, shows the receiver IF Þlter method.
The narrowband Þlter precedes the down-converter mixer. This method
is also equivalent to the phasing method, which has a possible advan-
tage in circuit cost, where crystal and mechanical Þlters are usually more
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expensive. Receivers very often combine the phasing and Þlter methods
in the same or different signal frequency ranges to get greatly improved
performance in difÞcult-signal environments.

The comments for the SSB transmitter section also apply to the receiver,
and no additional comments are needed for this chapter, which is intended
only to show the Hilbert transform and its mathematical equivalent in
a few speciÞc applications. Further and more complete information is
available from a wide variety of sources [e.g., Sabin and Schoenike, 1998],
that cannot be pursued adequately in this introductory book, which has
emphasized the analysis and design of discrete signals in the time and
frequency domains.
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APPENDIX

Additional Discrete-Signal
Analysis and Design
Information�

This brief Appendix will provide a few additional examples of how Math-
cad can be used in discrete math problem solving. The online sources and
Mathcad User Guide and Help (F1) are very valuable sources of infor-
mation on speciÞc questions that the user might encounter in engineering
and other technical activities. The following material is guided by, and is
similar to, that of Dorf and Bishop [2004, Chap. 3].

DISCRETE DERIVATIVE

We consider Þrst Fig. A-1, the discrete derivative, which can be a useful
tool in solving discrete differential equations, both linear and nonlinear.
We consider a speciÞc example, the exponential function exp(·) from

�Permission has been granted by Pearson Education, Inc., Upper Saddle River, NJ, to use
in this appendix, text and graphical material similar to that in Chapter 3 of [Dorf and
Bishop, 2004].

Discrete-Signal Analysis and Design, By William E. Sabin
Copyright 2008 John Wiley & Sons, Inc.
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Figure A-1 Discrete derivative: (a) exact exponential decay; (b) deÞ-
nition of the discrete derivative; (c) exponential decay using the discrete
derivative.

n = 0 to N − 1 that decays as

x(n) = exp

(−n

N

)
, 0 < n < N − 1 (A-1)

The decay of this function from n = 0 to N is from 1.0 to 0.3679,
corresponding to a time constant of 1.0. Figure A-1 shows the exact
decay.
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Now consider the discrete approximation to this derivative, called y(n),
and deÞne �y(n)/�n as an approximation to the true derivative, as fol-
lows:

y(n) =
{

x(0) if n = 0

y(n − 1) + x(n+T )−x(n)
T

if n > 0
(A-2)

T = 1 in this example.
In this equation the second additive term is derived from an incre-

ment of x (n). In other words, at each step in this process, y(n) hopefully
does not change too much (in some situations with large sudden transi-
tions, it might). The advantage that we get is an easy-to-calculate discrete
approximation to the exact derivative.

Figure A-1c shows the decay of x (n) using the discrete derivative.
In part (b) the accumulated error in the approximation is about 0.67%,
which is pretty good. Smaller values of T can improve the accuracy; for
example, T = 0.1 gives an improvement to about 0.37%, but values of
T smaller than this are not helpful for this example. A larger number of
samples, such as 29, is also helpful. The discrete derivative can be very
useful in discrete signal analysis and design.

STATE-VARIABLE SOLUTIONS

We will use the discrete derivative and matrix algebra to solve the two-
state differential equation for the LCR network in Fig. A-2. There are
two energy storage elements, L and C , in the circuit. There is a voltage
across and a displacement current through the capacitor C , and a voltage
across and an electronic current through the inductor L. We want all of
these as a function of time t . There are also possible initial conditions at
t = 0, which are a voltage VC0 on the capacitor and a current IL0 through
the inductor, and a generator (u) (in this case, a current source) is con-
nected as shown. The two basic differential equations are, in terms of vC

and iL,
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Figure A-2 LCR Circuit differential equation solution for initial values
of VC and IL, Igen = 0.

iC = C
dvC

dt
= u − iL

vL = L
diL

dt
= vC − RiL (A-3)

vOUT = RiL
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Rewrite Eq. (A-3) in state-variable format:

v·
C = 0vC − 1

C
iL + 1

C
u

õ·L = 1

L
vC − R

L
iL + 0u (A-4)

vO = RiL

A nodal circuit analysis conÞrms these facts for this example. R, L,
and C are constant values, but they can easily be time-varying and/or
nonlinear functions of voltage and current. The discrete analysis method
deals with all of this very nicely.

We now add in the initial conditions at time zero, VC0 and IL0:

v·
C = 0(vC + VC0) − 1

C
(iL + IL0) + 1

C
u

õ·L = 1

L
(vC + VC0) − R

L
(iL + IL0) + 0u (A-5)

vO = RiL

The two derivatives appear on the left side. Note that if (vC + VC0) is
multiplied by zero, the rate of change of vC does not depend on that term,
and the rate of change of iL does not depend on u if the u is multiplied
by zero. The options of Eqs. (A-4) and (A-5) can easily be imagined.
Description of ßow-graph methods in [Dorf and Bishop, 2004, Chaps.
2 and 3] and in numerous other references are excellent tools that are
commonly used for these problems. We will not be able to get deeply
into that subject in this book, but Fig. A-4 is an example.

The next step is to rewrite Eq. (A-5) in matrix format. Also, vC is now
called X 1, and I L is now called X 2.

(
Ẋ1

Ẋ2

)
=

(
0 −1

C
1
L

−R
L

)(
X1

X2

)
+

( 1
C

0

)
(u) (A-6)

VO = RX2
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Now write the (A-6) equations as follows:

Ẋ1 = 0X1 − 1

C
X2 + 1

C
u

Ẋ2 = 1

L
X1 − R

L
X2 + 0u (A-7)

VO = RX2

Next, we will solve Eq. (A-6) [same as Eq. (A-7) for X 1 ( = vc), X 2

( = i L), and V O]. Component u is the input signal generator.
This general idea applies to a wide variety of practical problems (see

[Dorf and Bishop, 2004, Chap. 3] and many other references). The meth-
ods of matrix algebra and matrix calculus operations are found in many
handbooks (e.g., [Zwillinger, 1996]).

The general format for state-variable equations, similar to Eqs. (A-4)
and (A-5), is

ẋ = Ax + Bu
y = Cx + Du

(A-8)

in which A, B, C, and D are coefÞcient matrices whose numbers may
be complex and varying in some manner with time, voltage, or current,
u pertains to complex signal sources, and y is the complex output for a
complex input signal u. The boldface letters denote matrices speciÞcally.
Comparing Eq. (A-6) with Eq. (A-5), the general idea is clear. At any
time t , x is the collection (vector) of voltages v and currents i in the
circuit, and ẋ is the collection (vector) of their time derivatives.

Matrix algebra or matrix calculus, using Mathcad, Þnds all the values
of x and y at each value of time t with great rapidity, and plots graphs
of the results. Starting at t = 0, from a set of initial values of V and I , we
can trace the history of the network through the transient period and into
the steady state.

We will look more closely at the general method of matrix construc-
tion for our speciÞc example. Equations (A-6), (A-7), and (A-9) can be
Laplace-transformed. In this process the unit matrix [I ] = [

1 0
0 1

]
, and

this work must be in accordance with the rules of matrix algebra and the
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Laplace transform:

1. sX(s) − x(0) = AX(s) + BU(s)

2. sX(s) − AX(s) = x(0) + BU(s)

3. X(s)[sI − A] = x(0) + BU(s)

4. X(s) = [sI − A]−1x(0) + [sI − A]−1BU(s)

(A-9)

This can be inverse-Laplace-transformed to get x (t), a function of time
for each X (s) [Dorf and Bishop, 2004, Sec. 3], but we want to use the dis-
crete derivative of Eq. (A-2) as an alternative for discrete-signal analysis
and design [Dorf and Bishop, 2004, Sec. 3].

USING THE DISCRETE DERIVATIVE

We now replace the ẋ matrix in Eq. (A-6) by incorporating Eq. (A-2).
Using the intermediate steps in Eq. (A-10) and using the sequence index
x (n) method that we are already very familiar with produces the following
Mathcad program, expressed in Word for Windows format.

1. (if n = 0)

(
x0(n)

x1(n)

)
=

(
VC0

IL0

)

2. (if n > 0)

(
x0(n)

x1(n)

)
=

[
T

(
0 −1

C
1
L

−R
L

)
+

(
1 0
0 1

)]
(A-10)

×
(

x0(n − 1)

x1(n − 1)

)
+ T

(
b0

b1

)
u(n)

Figure A-3 shows this equation in Mathcad program form. We can imme-
diately use three options:

1. Initial conditions x0(0) and x1(0) can be zero, u(n) can have a dc
value or a time function such as a step or sine wave, and in this
example [Eqs. (A-6) and (A-7)] b0 = 1, b1 = 0, T = 0.1, u(n) = 1.0.

2. u(n) can be zero, and the transient response is driven by x (0), an
initial value of capacitor voltage or inductor current or both.
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Figure A-3 Time response of the LCR network with zero initial condi-
tions and sine-wave current excitation.

3. x (0) and u(n) can both be operational at t = 0 or later than zero.
There are a lot of options for this problem.

The Mathcad worksheet Fig. A-2 shows option 2 for initial condition
values of VC and IL, and u(n) = 0. The values of x (n)0 and x (n)1 are
plotted.

Figure A-3 uses zero initial conditions and u(n) = 100 mA sine wave,
frequency = 4, b0 = 1.0, b1 = 0. The buildups from zero of x1 (capacitor
volts) and x2 (inductor amperes) are plotted. The lag of I L (peaks at a
later time) can be noticed.
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Figure A-4 Flow-chart for the network of Fig. A-2: (a) with no input
(u) but with initial values of V C and I L; (b) with no initial conditions but
with a sine-wave input signal u(t).

The book by [Dorf and Bishop] explores this problem using several
different methods that are very instructional but that we do not pursue
in this book. The reader is encouraged to become more familiar with the
network analysis methods described in this appendix. It is good practical
engineering.

Finally, Fig. A-4 illustrates the two varieties of ßow graph for the
network discussed in this appendix. We can understand Fig. A-4a by
referring to Eq. (A-5) with u set to zero (no external inputs) and with
initial values of VC(0) and IL(0), as shown also in Fig. A-2. In Fig. A-4b,
VC, IL, and their derivatives correspond to those in Eq. (A-5) with initial
conditions VC and IL set to zero, as shown in Fig. A-3, and the input u
drives the network from a zero start with a sine wave that starts at zero
value. The output peak amplitude VO(t) ßuctuates for at least the 1000
time increments illustrated.

It is also an interesting exercise for the reader to calculate and plot
the inductor voltage and current and the capacitor voltage and current as
functions of time n in Figs. A-2 and A-3.
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Adjacent channel interference. One or more adjacent channel signals
create interference in a desired channel by aliasing or wideband
emissions.

Aliasing (classical). In positive-only frequency systems, a signal in part
of the positive-frequency region is invaded by a second signal that is
in an adjacent part of the positive-frequency region.

Aliasing. The overlapping (invasion) from one 0 to N − 1 time or fre-
quency sequence to an adjacent 0 to N − 1 time or frequency sequence.

Amplitude noise. Noise created by variations in the amplitude of a signal.

Analytic signal (sequence). An X (k ), its Hilbert transform X̂(k) and
the ±j operator combine to create a phasor sequence that is one-
sided in the positive- or negative-frequency domain. The phasor A
exp(±jθ) is an analytic signal. The analytic phasor sequence is used to
construct SSB signals digitally or discretely. It is synthesized to design
analog SSB systems.

Auto-covariance. The ac component of an autocorrelation.

Average value. The time average of a signal between two time limits,
often minus inÞnity to plus inÞnity.
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Boltzmann�s constant. 1.38 × 10−23 joules per Kelvin. Used in noise
calculations.

Coherent. Two time signals x1(n) and x2(n) are coherent if their x (n)
values add together algebraically at each (n). In the frequency domain
the X (k )s add in a similar manner.

Complex frequency domain. Values of X (k ) phasors contain a real part,
an imaginary part, an amplitude value, a frequency value, and a phase
value relative to some reference phase value. The domain has a positive-
frequency side and an equal-length negative-frequency side.

Complex plane. The two-dimensional rectangular plane of the real axis
(x ) and the imaginary axis (jy) (see Fig. 1-5).

Complex signal. A signal that is deÞned as part real and part imaginary
on the complex plane. In the time domain, sequences can be complex.
In the frequency domain, a single phasor can be complex.

Convolution. A fold, slide, and multiply operation to obtain an overlap
area between two geometric or mathematical regions.

Correlation. A measure of the similarity of a function and a time- or
frequency-shifted copy of the function (auto correlation) or the similar-
ity of two different functions, one of which is shifted (cross-correlation).

Correlation coefÞcient. A measure of the �relatedness� in some sense,
from −1 to +1, of two nondeterministic or deterministic processes.

Cross-covariance. The ac component of a cross-correlation.

Cross power spectrum. The commonality of power spectrum in two
associated signals.

Discrete derivative. An approximate implementation of a time-derivative
that uses the discrete sequence x (n).

Discrete Fourier series. In discrete-signal length-N analysis, a periodic
repeating waveform can be deÞned as a useful set of positive-frequency
harmonics from k = 1 to k = N /2 − 1.

Discrete Fourier transform (DFT). Converts the time domain x (n) to
the frequency domain X (k ).

Discrete Fourier transform of convolution. Converts a convolution of
two time sequences to the product of two frequency sequences: the
system function. Used in linear system analysis.
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Discrete frequency. Signals X (k ) in the frequency domain occur at dis-
crete values of frequency (k ) from 0 to N − 1.

Discrete time. Signals x (n) in the time domain occur at discrete values
of time (n) from 0 to N − 1.

Digital signal processing (DSP). Signal processing in which signal
amplitudes are also discrete (quantized).

Even symmetry. The two sides, X (k ) and X (N − k ), of a phasor spec-
trum have the same phase.

Expected value. The sum of products of a signal amplitude at time T
and the probability of occurrence of the signal at time T [Eq. (6-1)].
Also known as the Þrst moment .

Fast Fourier transform (FFT). A high-speed algorithm for the DFT.

Flow graph. A graphical method of tracing the ßow of signals within a
network.

Fourier, Joseph. French mathematician who originated the trigonometric
series method of analysis and design of mathematical and physical
phenomena.

Frequency domain. Signals are classiÞed according to their occurrence
in frequency (f ) continuous or discrete X (k ).

Frequency scaling. A sequence of frequency values have a certain
sequential relationship from low end to high end. The maximum fre-
quency minus the minimum frequency, divided by the number of
frequencies, is the frequency scale factor.

Gaussian noise. Random electrical noise, perhaps thermally generated
noise, that has the Gaussian (normal) amplitude probability density
function.

Hermitian symmetry. A spectral property such that positive- and
negative-frequency values are complex conjugates. The sine and cosine-
wave phasors are Hermitian

Hilbert transform. In RF work, an algorithm that modiÞes a two-sided
phasor spectrum so that positive-frequency phasors are phase shifted
−90◦ and negative-frequency phasors are phase shifted +90◦. This idea
is useful in many applications, especially in SSB.

Integer. A collection of whole numbers: such as ±(1, 2, 3, . . .).
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Intermodulation. Two or more input signals combine in a nonlinear cir-
cuit or device to create spurious output frequencies.

Inverse discrete Fourier transform (IDFT). Converts the frequency
domain X (k ) to the time domain x (n). DeÞned according to Bracewell.

Inverse fast Fourier transform (IFFT). A high-speed alternative for the
IDFT. A Mathcad function deÞned according to Bracewell.

Laplace transform. Converts a function in the S -plane σ ± jω domain
to a function in the time domain. The inverse transform performs the
opposite process.

Mathcad. A personal computer program that performs a very wide range
of mathematical calculations, either numerical or symbolic, in inter-
active form.

Mathcad program. A structured set of logical operations that perform
branching, counting, and loop procedures in a Mathcad worksheet.

Mathcad X-Y Trace. A Mathcad utility that displays x and y values on
a Mathcad graph.

Mathtype. A program from Design Science.com that is used to enter
equations into a word-processing document.

Multiplication. A math process such as �3 × 4 = 12� or �a × b = c.� Two
types of multiplication are �sequence� and �polynomial.� Two proper-
ties are �commutative� and �associative.�

Multisim. A program from National Instruments Co. that aids in circuit
and system simulation, using accurate device models and embedded
test instruments and sophisticated graphing capabilities.

Non-real-time analysis. The signal is stored in memory and the analysis
is performed at the speed of the computer, not at the same rate as the
signal itself.

Normal distribution. The Gaussian probability density function of x
from x = minus inÞnity to x = plus inÞnity. The cumulative distribution
function CDF is the area under the curve from xmin to xmax.

Odd symmetry. The two sides X (k ) and X (N − k ) of a phasor spectrum
have opposite phase.

One-sided sequence. A sequence in which all components are in the
positive-frequency or positive-time domain. The sequence is construc-
ted from the two-sided sequence.
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Phase noise. Noise created by variations in phase of a signal. The rate
of change of phase creates a phase noise power spectrum.

Phase shift network. An RC op-amp or DSP network that performs a
negative 90◦ phase shift and a constant amplitude over a desired (e.g.,
speech) bandwidth.

Phasor. The complex exponential A exp ( ± jωt) is a phasor with ampli-
tude A and zero average power. It can be at a positive or a negative
frequency, depending on the sign of j . Two ± j phasors combine to
produce a sine wave or a cosine wave at positive frequency.

Planck�s constant. 6.63 × 10−34 joule-sec.

Postdetection Þlter. After RF/IF-to-baseband conversion, a signal can
be Þltered at baseband to improve the quality of the signal and can
frequently improve signal-to-noise ratio.

Power spectrum. In an X (k ) two-sided phasor spectrum, the collection
of phasor values (real or complex) at (k) from 0 to N − 1 is a phasor
spectrum. The combination of phasors at X (k ) and X (N − k ) form
a voltage or current signal at frequency (k ). This signal has a power
value, real (watts) or imaginary (vars), and a phase angle. The collection
of the power values from 0 to N /2 − 1 is a positive-frequency (including
dc) power spectrum.

Power (average). The average value of the product of voltage v (t) and
the current i (t). If the two are in phase, the power is maximum and
realvalued. If they are 90◦ out of phase, the average power is zero.
The power value in a circuit can have a real component (watts) and an
imaginary component (vars) and can have a phase angle θ with respect
to some reference point.

Probability. A measure of the likelihood of an event. A tossed coin can
be heads (50% probability) or tails (50% probability) for a large number
of experiments.

Programming. Mathcad allows special program structures to be placed
on a Mathcad worksheet. These programs greatly expedite and simplify
certain kind of calculations that are difÞcult otherwise.

Pseudorandom. An event that is unpredictable in a short time interval
but repeats at speciÞc longer time intervals. Each occurrence may have
random properties.
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Random. An event that is unpredictable in time and frequency and
amplitude.

Real-time analysis. An analysis that is performed in the same time frame
as the experiment that is being observed.

Record averaging. A statistical averaging of many sets (records) of mea-
surements of a noise-contaminated random signal.

Record length. The number of observations or measurements, from 0 to
N − 1, in a sequence.

Sequence. A succession from 0 to N − 1 of values of a discrete signal
in the time domain or frequency domain.

Sine wave, cosine wave. A pair of phasors, one at positive frequency and
one at negative frequency, combine to make a sine or cosine wave.

Smoothing. The process of reducing the amplitude differences between
adjacent samples of a discrete signal.

Spectral leakage. The variation of the amplitude of a discrete spectrum
line at an integer value of k ± a small deviation |ε|.

Spectrum analyzer. An instrument used to view the spectrum of an RF
signal on a CRT display.

State variable. The state of a system is its values of time, amplitude,
frequency, phase, and derivatives at time (n) and frequency (k ).

Statistical analysis. The properties of a noisy signal must be determined
by procedures that extract an average result that approximates the prop-
erties of the noise-free signal.

Steady-state sequence. A sequence from 0 to N − 1 that repeats forever
in the time x (n) or frequency X (k ) domain. Each sequence consists
of time, or frequency-varying components, possibly superimposed on
a constant (dc) background. All transient behaviors due to initial con-
ditions have decayed to zero long ago. Other methods for transient
analysis are used (see the Appendix).

Symbolic. A method of problem solving in terms of variables that are
deÞned not in numbers, but in math symbols.

System power transfer. In the frequency domain or time domain, the
ratio of power out of a network to power into the network.

Time domain. Signals that are classiÞed according to their occurrence in
time t or x (n).
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Time scaling. A sequence of time values have a certain sequential rela-
tionship from the low end tothe high end. The maximum time minus
the minimum time, divided by the number of time values, is the time
scale factor.

Time sequence. An x (n) time sample within a time sequence has two
attributes, amplitude and position within the sequence, and x (n) in this
book is always a real number. A sequence has a positive-time Þrst half
and a negative-time second half.

Two-sided. A sequence from 0 to N − 1 is divided into the sequences 0 to
N /2 − 1 and N /2 + 1 to N − 1. Point N /2 is usually treated separately.

Variance. The ac component of a complex signal. The rms value of the
ac component is the positive square root of the variance.

Wave analysis. An algorithm to determine the properties of a signal.
The properties include frequency spectrum, time waveform, amplitude,
recordlength, period, power, statistics, harmonics, convolution, various
transform values, and random properties.

Window function. A function such as rectangular Hanning, or Hamming
that is used for windowing operations.

Windowing. A time or frequency record is multiplied by a window func-
tion that modiÞes the time and/or frequency properties of the record in
order to make the record more desirable in some respect.
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(k) harmonic numbers, 17
(n) time samples, 13

Adequate number of samples, 12
Adequate samples, 21
Adequate sampling, 16
Adjacent channel interference,

53
Adjacent frequencies, 47
AGC loop, 66
Aliasing, 3, 10
Aliasing, �classical�, 53
Aliasing and Þlter design, 53
Aliasing in the frequency domain,

48
Aliasing in time domain, 59
All-pass Þlter, 145�147
Analytic signal, 138
Approximation, 3
At-home productivity software, 7
Augmenting zeroes, 21
Autocorrelation, 10, 104
Autocovariance, 108
Averaging of data records, 13
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Bandpass Þlter -60 dB response, 52
BASIC language, 6
Boltzmann�s constant, 118

C++, 6
Circular smoothing, 65
Communications, 9
Complex conjugate phasors, 29
Complex frequency domain sequences, 22
Complex load impedance, 114
Computer aided design, 114
Continuous data vs discrete, 13
Convert MATLAB to Mathcad, 5
Convolution, 3, 10
Convolution, associative, 73
Convolution, circular, 85,122
Convolution, distributive, 73
Convolution �fold and slide�, 82
Convolution and multiplication, 89�93
Convolution smoothing and stretching, 82
Convolution sum, 85
Convolution, time domain, 81
Correlation, 3, 106
Correlation coefÞcient, 110
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Correlation, circular, 106, 122
Cosine wave, 32, 51
Covariance, 104
Cross-correlation, 10, 106
Cross power spectrum, 123
Cross-covariance, 110
Cumulative distribution function (CDF),

103

dB of aliasing, 53
dBm, 119
dc component in a sequence, 15
Deconvolution, 94
DFT, 2, 14
DFT and IDFT of discrete convolution, 89
Discrete data, 2
Discrete derivative, 153, 159
Discrete differential equation, 10
Discrete Fourier series, 9
Discrete-frequency, 2
Discrete-signal, 2
Discrete-signal amplitude, 12
Discrete-signal processing, 10
Discrete-time, 2
DSP, 2
Dummy variable, 103

Electronic engineering, 2, 9
Energy and power in a sequence, 12
Energy in a time sequence, 12
Ensemble average, 99
Envelope detection, 99
Equivalent circuit, 115
Estimate of noisy signal, 63
Eternal steady-state sequence, 9
Even symmetry, 30
Expected value (deterministic sequence),

96
Experimentally acquired values in

frequency domain, 12
Experimentally acquired values in time, 12

FFT and IFFT, 2, 16, 123
Filter method receiver, 150
Filter method SSB transmitter, 149
Flow chart, 161
Fortran, 6

Four point smoothing sequence, 61
Fractional values of frequency, 48
Frequency conversion, 52
Frequency conversion to baseband, 54
Frequency-domain, 1
Frequency-domain aliasing, example of,

55
Frequency-domain sequence, 1
Frequency doubler, 38
Frequency resolution, 19
Frequency scaling, 10, 19, 30, 48

Gain distribution, 52
Gaussian (normal) distribution, 102
Gaussian (normal) noise, 10
Gaussian �white� noise, 56

Hamming window, 123
Hanning window, 123
Help (F1), 5
Hilbert transform, 3, 10, 129�137
Hilbert transformer, 137�138
Histogram, 98

IDFT, 2, 18
Imaginary power (Vars), 116
Impulse response, 82
Initial conditions, 157
k/2 special frequency, 30

LabVIEW, 6
Laplace transform, 12
Long sequence windows, 75
Lowpass Þlter, 138, 147

Math literacy, 1
Mathcad, 4
Mathcad algorithms, 16
Mathcad Help (F1), 5
Mathcad �programming language�, 4
Mathcad Program (subroutine), 30
Mathcad student version, 5
Mathcad user guide, 5
Mathcad X-Y Trace tool, 41
MathType equation editor, 7
MATLAB, 5
Multiplication, 10
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Multiplication, polynomial, 78
Multiplication, sequence, 78

Narrowband noise analysis, 119
National Instruments Co., 6
Noise, additive, 97
Noise bandwidth, 119
Noise-contaminated spectrum, 3
Noise Þgure distribution, 52
Noise, random gaussian, 118
Noise ratio, 63
Noninteger x(n), X(k), 35
Nonlinear ampliÞer, 35
Nonlinear effects in envelope detection,

119
Nyquist and Shannon requirements, 12

Odd symmetry, 30
One-sided sequence, 29
Open circuit generator voltage, 114

Pascal, 6
Peak and average power, 15
Peak hold in spectrum analyzer, 120
Pedestal window, 61
Personal computer, 2
Phase advance, 32
Phase conjugate and quadrature, 23
Phase delay, 32
Phase lag and advance in a sequence, 15
Phase modulation, 24
Phase noise, 125�129
Phasing method SSB receiver, 149
Phasor, 22, 24
Phasor even/odd combinations, 30
Phasor even symmetry, 51
Phasor odd symmetry, 51
Phasor polarity, 31
Phasor power, 114, 117
Phasor spectrum, 27
Planck�s energy constant, 119
Positive and negative frequency, 13, 15
Power, average, 99
Power cross spectrum, 10
Power in alias zone, 56
Power spectrum, 10, 113
Present, past, and future time, 13

Probability, 96
Probability distribution function (PDF),

102
Programming languages, 4
Pseudo-periodic sequence, 12
Pseudorandom data, 3

Quantum mechanical, 119

Ramp function spectrum, 39
Random data, 3
Randomness in a signal, 12
Random variable, 99
Real power (watts), 116
Real time samples and complex frequency

samples, 23
Record averaging, 101
Ronald Bracewell, 16

Scalar spectrum analyzer, 46
Scalloping effect, 46
Sequence structure, 10
Sequence time and phase shift, 86
Seven point smoothing sequence, 64
SigniÞcant and adequate signal energy, 14
Sine wave, 32, 51
Sine�cosine spectrum, 51
Sine�cosine�theta spectrum, 29
Single-sideband, 142�145
Smoothing, 3
Solving the difference equation,

159�162
Special k/2 frequency, 30
Spectral leakage, 3, 10, 43
Spectral leakage vs frequency offset,

49
Spectral overlap due to aliasing, 50
Spectrum errors, 44
Spectrum of a time sequence, 16
Square-law modulation, 35�37
SSB rf signal, 145
SSB transmitter, 148
Standard deviation, 101
State variable equation, 158
State variable solutions, 155
Statistical average of the square, 102
Statistical square of the average, 102
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Steady-state repetition of sequences,
14

Steady-state sequence, 3
Structured languages, 4
Superposition, 101
Symmetry, phasor, even, 116
Symmetry, phasor, odd, 116

Taylor series expansion, 16
Threshold effect, 119
Time average, 96
Time-domain, 2
Time-domain sequence, 9, 10
Time resolution, 20
Time scaling, 10, 19
Transient and steady states in sequences,

26
Transitional design, 66
Transition sampling, 66

Variance, 101
Vector spectrum analyzer, 47, 121

Wide sense stationary, 99
Wiener-Khintchine principle, 108,

121
Wiener-Khintchine theorem, 10, 124
Window, 6
Window aliasing, 75
Window Hamming, 68
Window Hanning(Hann), 68
Windowing, 3, 47, 67
Window Kaiser, 71
Window lobes, 68�75
Window rectangular, 68
Window widening at (k =0), 70
X(k) and its complex conjugate, 18

XCEL, 6
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