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ABSTRACT
Support Vector Machines (SVM) were introduced in the early 90's as a novel nonlinear solution
for classification and regression tasks. These techniques have been proved to have superior
performances in a large variety of real world applications due to their generalization abilities
and robustness against noise and interferences.

This book introduces a set of novel techniques based on SVM that are applied to an-
tenna array processing and electromagnetics. In particular, it introduces methods for linear and

nonlinear beamforming and parameter design for arrays and electromagnetic applications.
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Preface

This book is intended to serve as an introduction to machine learning and support vector
machines for students and practicing engineers in the field of electromagnetics. The idea is
to show how this combination of optimization theory, statistical learning, and kernel theory,
labeled as “Support Vector Machines” can be applied to electromagnetic problems. We believe
that there are still alot of problems in electromagnetics that can be optimized using the “machine
learning approach”.

The basic material on support vector machines, Classifiers (SVCs) and Regressors (SVRs)
are introduced in the first two chapters and then we slowly add to the their algorithmic
complexity as we progress in terms of chapters. MATLAB files are provided so the readers
can experiment on their own using our algorithms before they start developing their own.

An important topic that was included in this textbook is the subject of nonlinear support
vector machines. This is an important subject since it addresses solution to a number of op-
timization problems that cannot be tackled using linear support vector machines only. The
differences between linear and nonlinear SVM algorithms are discussed and their applications
in electromagnetic problems are presented. The material presented here is more than enough
to provide the reader of this text with some serious expertise in the subject of Support Vector
Machines from the computational point of view. In fact, although this text was written with
the electromagnetics engineers in mind, it can be easily used by colleagues in the fields of com-
munications, radar and image processing. The algorithms are applicable to several optimization
problems and the MATLAB files provided can be altered to fit the data at hand. For access to the
electronic files of the Matlab code, please go to http://www.morganclaypool.com/page/matlab.

We hope that the reader finds the book enjoyable and helpful in triggering further research

in this area.







CHAPTER 1

Introduction

1.1  MOTIVATION OF THIS BOOK
Since the 1990s there has been a significant activity in the theoretical development and applica-
tions of Support Vector Machines (SVMs) (see, e.g. [1-5]). The theory of SVMs is based on the
cross-pollination of optimization theory, statistical learning, kernel theory and algorithmics. So
far, machine learning has largely been devoted to solving problems relating to data mining, text
categorization [6], biomedical problems as microarray data analysis [7], Magnetic Resonance
Imaging [8, 9], linear signal processing [10], speech recognition [11,12] and image processing
[13-18], for example (see also [19]), but not so much in the field of electromagnetics. Re-
cently, however, popular binary machine learning algorithms, including support vector machines
(SVM), have successfully been applied to wireless communication problems [20], notably spread
spectrum receiver design [21-23], and channel equalization [24]. The high-speed capabilities
and “learning” abilities of support vectors can also be applied to solving complex optimization
problems in electromagnetics in the areas of radar, remote sensing, microwaves and antennas.

The aim of this book is to gently introduce the subject of support vector machines in its
linear and nonlinear form, both as regressors and as classifiers and to show how it can be applied
to several antenna array processing problems and electromagnetics in general.

There are basically four main situations in which SVMs make good candidates for use in

electromagnetics:

¢ When closed form solutions do not exist and trial and error methods are the only
approaches to solving the problem at hand. By training an SVM one can use it to
predict solutions to the problem.

*  When the application requires real-time performance. This is an important feature
because SVMs can be trained off-line and then implemented in hardware and embedded
on any device.

*  When faster convergence rates and smaller errors are required in the optimization

of large systems. The superior generalized capabilities of SVM to optimize several

problems make them very advantageous.
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*  When enough measured data exist to train an SVM for prediction purposes, especially
when no analytical tools exist. In this case, one can actually use SVMs to solve part
of the problem where no analytical solution exist and combine the solution with other
existing analytical and closed form solutions.

1.2 LEARNING MACHINES AND GENERALIZATION

A learning machine can be formulated as a function f(x) which makes a correspondence of the
form f:RY — y : R from an input sample x to a scalar y. Let us assume that this function is
one of a class or family of parametric functions f(w, x), and we want to estimate the parameters
w to produce the best possible estimation of the scalar y from the vector x.

Let us assume that the pairs {x, y} are given a distribution of probability P(x, y), and that
we provide a given loss function £( f(w, x), y) between the estimation f(aw, x) and the desired
output y. A common loss function used in practice is the squared loss. The best possible solution
would be the one that minimizes a given expected error risk

R(f(w)) = f £(f(w, %), y)d Plx, y) (1.1)

Obviously, the distribution of probability is not given in practice, so all we can do is to
measure an empirical risk which can be expressed as the mean of the losses computed over all the
available training pairs {x, y}. This is often called the Empirical Risk Minimization Principle
(ERM). It is possible to make this principle consistent as the number of samples goes to infinity.
But for a small sample set, the difference between the actual error risk and the empirical risk
may be arbitrarily large.

When using the empirical risk into the learning procedure, it learns from the data available
for training. As the actual risk cannot be measured, the operational performance measure for the
trained network is the error on future data outside the training set, also known as generalization
error. This error may be undesirably large when, for example, the available training set size is
too small in comparison with the network parameter set size. Practice has shown that direct
minimization of the training error for a given fixed training set obtained by learning algorithms
does not necessarily imply a corresponding minimization of the generalization error. In the
neural network literature this phenomenon is usually referred to as overfitting [25].

An intuitive way to reduce overfitting is to minimize the complexity of our learning
machine . The rule is: choose the simplest possible function that satisfactorily explains the data.
This is simply the classical Occam’s razor rule [1,2]. Then, the optimization of our learning
(classification or regression, for example) machine implies the selection of the model or, in
other words, the measure and minimization of the complexity of this machine. If we choose a
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FIGURE 1.1: Example of regression using control of complexity (solid line) and without control of
complexity (dashed line). The first line generalizes better, as it approaches to the theoretical function
(dotted line), while the second approaches to the data available for the regression, but not to the theoretical

function

complex machine as classifier or regressor (say, for example, a high degree polynomial function),
this function will be able to adapt itself to the training data so it arbitrarily reduces the empirical
error. If the data used for training is not representative of the statistics of the problem, then, the
solution will be a poor one. This is, when using new, never seen, data to test the performance
of the machine, the error may be much higher (see Fig. 1.1). A solution to reduce the test or
generalization error will be to reduce the complexity of the machine, so it has less degrees of
freedom to express a solution. This may be viewed as a smoothing of the learned function. The
figure shows two different algorithms applied to the regression of a quadratic function. The
data available for the regression operation (circles in the figure) have been corrupted with white
noise. Dotted line represents the theoretical function. The solid line represents a regression in
which the complexity has been controlled, while the dash line corresponds to a regression in
which no control of the complexity has been applied. This line shows less quadratic error with
respect to the given data, but it has a poor generalization ability, as it does not approach to
the theoretical line. The solid line has a worse quadratic error with respect to the data, but its
generalization ability is better.

This equivalent problem of reducing the complexity of the learning machine is commonly
solved by introducing a regularization term in the function to be optimized. This term is
intended to penalize the complexity of the machine [26-28]. The particular way of introducing
the complexity penality that is given by the Vapnik—Chervonenkis Theory [1,2] is the one that
gives to the Support Vector Machines. In this book, we summarize the SVM from an intuitive

way and then we introduce its applications to array processing.
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1.3 ORGANIZATION OF THIS BOOK

This book is divided in three main parts. After the introduction, the first three chapters cover the
theory of SVMS, both as classifiers and regressors. The next three chapters deal with applications
in antenna array processing and other areas in electromagnetics. The four appendices at the end
of the book comprise the last part. We tried to be as complete as possible with examples and the
inclusion of MATLAB files that can help the readers start their application of the algorithms
covered in this book.

More specifically, the 2nd Chapter starts with the introduction of linear SVM classifiers.
We thought that this would be the easiest and most intuitive way to familiarize the reader with
the new theoretical concepts associated with SVMs. Next, the main ideas of SVM regressors
and their practical optimization are covered. The 3rd Chapter concentrates on the theory of
nonlinear SVMs. The Kernel trick is formulated and the Mercer theorem introduced. Examples
on how to construct nonlinear support vector classifiers and regressors are shown and MATLAB
files included. The 4th Chapter covers the most recent topic of SVMs in the complex plane.
Here, the foundation of SVM-autoregressor models and the concept of robust cost functions
are introduced. Several ideas for the practical use of these models for optimization are presented
and discussed.

The applications part of the book starts with Chapter 5. In this chapter the problem for
antenna beamforming and on how to maximize the received signal-to-noise ratio are presented.
This chapter really gives the reader a state of awareness on all the intricacies and difficulties
associated with applying SVMs to complex problems. It is shown how to generate training
and testing data that are used to optimize the bit error performance and provide a robust
SVM estimator. It should also be noted here that both linear and nonlinear beamformers are
constructed and compared. In Chapter 6, linear and nonlinear SVMs are applied to the angle of
arrival problem (AOA). This chapter not only includes our own work but also the most recent
work from other researchers in this field to demonstrate the superior optimization capabilities
of SVMs. Another important topic covered in this chapter is that of the multiclass classifier. It
is shown how M distinct classes one can construct M(M — 1)/2 hyperplanes that can separate
these classes with a maximum margin during the training phase of SVMs. Chapter 7 covers
three more but vary different applications in the area of electromagnetics

The third and final part include several appendices with several derivations and theorems
that will become very helpful to the reader who wants to develop his/her own SVM algorithms.




CHAPTER 2

Linear Support Vector Machines

We start this chapter by explaining the basic concepts of the Support Vector Classifier (SVC)
[29] and the Support Vector Regressor (SVR) [30] in their linear versions. We introduce some
basic examples of classification and regression that can be easily reproduced by the reader with
the provided code. Our aim is to make the reader understand the underlying ideas about the

SVM.

2.1 ANINTUITIVE EXPLANATION OF THE SUPPORT

VECTOR CLASSIFIER
2.1.1 The Linear Classifier
Let us assume that two classes of points x; are given in a vectorial space, and that these two
classes are located in different areas in the space, so they can be separated or classified using
a separating hyperplane. Let us further assume that the data is located in such a way that
the separating hyperplane contains the origin (see Fig. 2.1). The expression of the separating

Tx = 0. If one wants to know what is the class of a point x1, one has to

hyperplane is then w
determine if the angle between the vector w associated with the plane and the sample x4 is
greater or less than 90°. If it is less than 90°, the sample is classified as belonging to the class
A. Otherwise, the classification will be B. To do that, one computes the dot product between
the vectors. If it is positive, this means that the angle is less than 90°, then the class is A. For a
vector x3, the angle will be greater than 90°, so the dot product will be negative and the class
will be B. A sample located on the plane is orthogonal to w so the dot product will be zero,
meaning that we cannot determine its class.

If the data is not centered around the origin, the hyperplane must be biased from it, so

its expression is given by w’x + 4 = 0.

2.1.2 A Classical Procedure to Adjust the Separating Hyperplane
The main question now is how to locate the separating hyperplane to optimally classify the data.
What we really want is to minimize the probability of misclassification when classifying a set of

vectors that are different from those used to adjust the parameters w and & of the hyperplane.
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FIGURE 2.1: Classifier in a vector space

That concept is what we call generalization ability. Nevertheless, misclassification is measured
as a binary quantity (0 for correct classification, 1 for misclassification). Instead of using these
direct criteria, since the function is not differentiable, we use approximate criteria.

Classical approaches apply a procedure based on the Minimum Mean Squares Error
(MMSE) between the desired result (+1 for samples of class A and —1 for samples of class B)
and the actual result. The optimal separating hyperplane is the one that minimizes the mean
square error between the desired and actual results obtained when classifying the given data.
This criterion turns out to be optimal when the statistical properties of the data are Gaussian.
But if the data is not Gaussian, the result will be biased. An easy example is shown in Fig. 2.2.
In the left side, two Gaussian clusters of data are separated by a hyperplane. It is adjusted using
a MMSE criterium. Samples of both classes have the minimum possible mean squared distance
to the hyperplanes w”x + 4 = £1. But in the right side, the same procedure is applied for a
data set that in some points are far from the center of the cluster, thus biasing the result.

WX 4bh=—1

FIGURE 2.2: Left: Result of a hyperplane adjustment using MSE for Gaussian data. Right: Bias
produced by the presence of outliers
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FIGURE 2.3: The SVM procedure consists of placing the hyperplane as far as possible from the nearest
samples

This example may occur even in the case when the data are simply two Gaussians with
outliers (samples that are statistically nonsignificant, and are far from the center of the cluster).
If this occurs, the statistical properties of the data set will be biased from the theoretical ones.

2.1.3 The SVM Approach

Another procedure can be implemented which is able to deal with these situations, always with
the assumption that the data are separable without misclassifications by a linear hyperplane.
The optimality criterion will be: puz the hyperplane as far as possible from the nearest samples, but
keeping all samples in their correct side. This is shown in Fig. 2.3.

This translates in maximizing the margin 4 (see Fig. 2.3) between the separating hyper-
plane and its nearest samples, but now placing the margin hyperplanes w”x + 4 = %1 into the
separation margin. One can reformulate the SVM criterion as: maximize the distance d between
the separating hyperplane and the nearest samples subject to the constraints

y,—[wa,- +46]>1 (2.1)

where y; € {+1, —1} is the label associated to the sample x;.

It is straightforward to show that the distance & between the separating and the margin
1
||z |2

of the vector w. This provides with a more useful expression of the SVM criterion: minimize

hyperplanes is d = . Thus, maximizing the margin 4 is equivalent to minimizing the norm

L, =||wl|] (2.2)
subject to

yi[fwai +4]>1 (2.3)
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FIGURE 2.4: SVM for the nonseparable case

In practical situations, the samples are not linearly separable, so constraint (2.3) cannot
be satisfied. For that reason, slack variables must be introduced to account for the nonseparable
samples. Then, the optimization criterium consist of minimizing the (primal) functional [29]

1 N
Ly =Sllwl+C) & (2.4)
i=1
subject to the constraints
yi(’wai +b6)>1— & (2.5)

The values of &; must be constrained to be nonnegative. If the sample x; is correctly classified
by the hyperplane, and it is out of the margin, its corresponding slack variable is & = 0. If
it is well classified but it is into the margin, 0 < &; < 1. If the sample is misclassified, then
& > 1 (Fig. 2.4). The value of C is a trade-off between the maximization of the margin and
the minimization of the errors.

2.1.4 Practical Optimization of the Classifier
Once the criterion of optimality has been established, we need a method for finding the pa-
rameter vector w which meets it. The optimization problem in Egs. (2.4), (2.5) is a classical
constrained optimization problem.

In order to solve this a optimization problem, one must apply a Lagrange optimization
procedure with as many Lagrange multipliers o; as constraints [31]. The optimization leads to
the following (dual) unconstrained problem (see Appendix B): maximize

1 N N N
Ld:—EZZa;ajyiy/ngxj—i-;ai (2.6)

i=1 j=1
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with 0 < «; < C. Also, the following condition must be satisfied
Z a;y; = 0 (2. 7)

Expression (2.6) can be rewritten into matrix format as
1
L;= —EaTYRYa +a (2.8)

with o being a column vector containing all the Lagrange multipliers «;, ¥ being a diagonal
matrix of the form Y;; = y;, and R being the matrix of dot products

Rijle-ij (2.9)

This is a quadratic functional and it can be solved using quadratic programming [32].
The solution for the parameters is given by

N
w = Zaiyixl- (2.10)
i=1

The so-called Karush—-Kuhn—Tucker conditions state that if yinxi > 1 (and then &; =
0), then &; = 0. In other words, only a subset of the Lagrange multipliers will have a nonzero
value in the solution, while the others will vanish. Thus, the solution will be sparse and their
associated samples (those for which «; = 0) are the so-called Suppors Vectors.

In order to compute the value of 4, one has to consider thatifo; < C, then &; = 0, which
leads to the condition

yi(wla; +2)—1=0 (2.11)

for any sample «; for which «o; < C. We justify this fact in Appendix B. In practice, it is

numerically convenient to average the result of 4 for all samples with 0 < o; < C.

2.1.5 Example: Linear SVC in MATLAB®
A straightforward way to program a linear SVC is using the MATLAB function for quadratic
programming quadprog.m. First, we generate a two-dimensional data set with some samples

of two classes with this simple script:

x=[randn(1,10)-1 randn(1,10)+1;randn(1,10)-1 randn(1,10)+1]’;
y=[-ones(1,10) omnes(1,10)]’;

This generates a matrix of 20 two-dimensional row vectors as shown in Fig. 2.5. We
generate a nonseparable set. The first 10 samples are labeled as vectors of class 41, and the rest
as vectors of class —1.
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FIGURE 2.5: Generated data for the example of 2.1.5

Now, we need to solve the optimization problem in (2.8) for the given data using

quadprog.m.
Function z=quadprog(H, £, [1, [],a,K,K1,Ku) solves the problem
1
min EzTHz + 'z
subject to
az=K
K[ <z= Ku

In order to adapt the function to the SVC optimization in (2.8), we just need to identify the
variablesz = o, H=YRY, f = —1,a = yT, K =0,K; =0and K, = C1. Matrix H may be
ill-conditioned [27], i.e., it may have some very small eigenvalues. In order to avoid numerical
inaccuracies, the matrix must be numerically regularized by adding a small identity matrix. We
discuss the mean of this numerical regularization in Section 4.3.

The MATLAB code for the optimization will be, then

R=x*x’; %Dot products
Y=diag(y);
H=Y*R*Y+le-6*eye (length(y)); JMatrix H regularized

f=-ones(size(y)); a=y’; K=0;

Kl=zeros(size(y));

C=100; %Functional Trade-off
Ku=Cxones (size(y));
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FIGURE 2.6: Values of the Lagrange multipliers «;. Circles and stars correspond to the circles and
squares of the data in Figs. 2.5 and 2.7

alpha=quadprog(H,f,[],[],a,K,K1,Ku); %Solver
w=x’*(alpha.x*y) ; %Parameters of the
%Hyperplane

The values of the Lagrange multipliers are shown in Fig. 2.6. It can be seen that most of them
have vanished. Some are saturated to C and three of them are between 0 and C. The last three
ones correspond to the samples which are exactly in the margin.

Finally, we must find the bias 4 of the separating hyperplane, and we can do that from
the fact that all samples x; for which 0 < o; < C satisty yi(fwai) + 6 —1 = 0. We compute
b for all those samples and then we average the results. The MATLAB code is

e=le-6; %Tolerance to errors in alpha
ind=find(alpha>e & alpha<C-e) %Search for O < alpha i < C
b=mean(y(ind) - x(ind, :)*w) %hAveraged result

A plot of the resulting separating and the margin hyperplanes can be seen in Fig. 2.7. For
this example, three of the vectors are in the margin, as stated before. The vectors marked with
squares are the Support Vectors, this is, the ones with nonzero Lagrange multiplier ;.

2.1.6 Summary of the SVC MATLAB® Code

Here we summarize the code used to obtain the results of the presented example. The data has
been generated sampling 2 subsets of 10 two-dimensional data points. Each subset has a Gauss
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FIGURE 2.7: Resulting margin and separating hyperplanes. Support Vectors are marked

distribution with mean (—1,1) and (1,1). The first subset has been labeled with the label “—1”
and the second subset has been labeled with “1”.

The optimization has been performed using the MATLAB function quadprog. The
representation of the solution together with the samples used to train the classifier is also detailed.

Too oo oo To o oo oo To oo oo oo o o o o

%%% Data Generation %%%

Too o To s To oo oo To oo oo To Foto o oo Fo o

x=[randn(1,10)-1 randn(1,10)+1;randn(1,10)-1 randn(1,10)+1]’;
y=[-ones(1,10) omnes(1,10)]’;

ToToto o Too o ToTo o o Too o Jo o o o To o o To o o
%%% SVC Optimization %%%
ToToTo o Too o ToTo o o Too o To o o oo o o To o o

R=x*x’; % Dot products
Y=diag(y) ;
H=Y+*R*Y+1le-6*eye (length(y)); % Matrix H regularized

f=-ones(size(y)); a=y’; K=0;

Kl=zeros(size(y));

C=100; % Functional Trade-off
Ku=Cxones (size(y));

alpha=quadprog(H,f,[],[],a,K,K1,Ku); % Solver
w=x’*(alpha.*y) ; % Parameters of the Hyperplane
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%%% Computation of the bias b %%k

e=le-6; % Tolerance to errors in alpha
ind=find(alpha>e & alpha<C-e) % Search for 0 < alpha_i < C
b=mean(y(ind) - x(ind,:)*w) % Averaged result

For the sake of brevity, we include below just a simplified code of representation of the

data for the reader to use it.

Fo1oo s To oo o To o o To o o ToTo o o To o o o
%%% Representation %%
Do Toto s Toto oo To o o Too o ToTo o o To o o o
datal=x(find(y==1),:);
data2=x(find(y==-1),
svc=x(find(alpha>e),

)

)
)5
plot(datal(:,1),datal(:,2),%0’)
hold on
plot(data2(:,1),data2(:,2),’*’)
plot(svc(:,1),svec(:,2),’s’)

% Separating hyperplane

plot ([-3 3], [(3*w(1)-b)/w(2) (-3*w(1)-b)/w(2)])

% Margin hyperplanes

plot([-3 3], [(3*w(1)-b)/w(2)+1 (-3*w(1)-b)/w(2)+1],’ =)
plot([-3 3], [(B*w(1)-b)/w(2)-1 (-3*w(1)-b)/w(2)-1],’--")

Finally, the reader may generate a test set using the same code used for the training data
generation, and a test may be performed by adding the code lines

Tototo Toto o oto To o To oo To o To o to oo to Foto o oo Voo
%%% Test Data Generation %%%
Tooto Jo o To oo To o To o To oo To Foto oo To Fo o o oo Fo o
x=[randn(1,10)-1 randn(1,10)+1;randn(1,10)-1 randn(1,10)+1]7;
y=[-ones(1,10) ones(1,10)]’;

y_pred=sign (x*w+b) ; hTest
error=mean(y_pred~=y); JError Computation
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° y=w'x+b

FIGURE 2.8: Linear regressor

2.2 ANINTUITIVE EXPLANATION OF THE SUPPORT
VECTOR REGRESSOR
2.2.1 The Main Idea
A linear regressor is a function f(x) = w”x + & which approximates a given mapping from a
set of vectors x € R” to a set of scalars y € R (see Fig. 2.8).

As in classification, linear regression has been traditionally solved using Least Squares
approaches. In other words, the regressor function is the hyperplane that fits the given data with
the minimum mean square error between itself and the data.

The Support Vector Regressor (SVR) has a different objective. The main idea of a SVR
is to find a function which fits the data with a deviation less than a given quantity ¢ for every
single pair x;, ;. At the same time, we want the solution to have a minimum norm |[Jaw||. This
means that SVR does not minimize errors less than ¢, but only higher errors. Doing this allows
us to construct a machine whose parameters are a linear combination of those samples whose
error is higher or equal than €. This leads to a sparse solution, as in SVC.

Also, minimizing the norm produces a smooth solution, or a solution which minimizes

overfitting. The idea is 7o find a solution which uses the minimum possible energy of the data.

2.2.2 Formulation of the SVR
The above idea to adjust the linear regressor can be formulated in the following primal functional,
in which we minimize the total error plus the norm of aw.

1 N
L,= Eufwn2 + czlj(s,- + &) (2.12)
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"_e""é‘ ° ’

FIGURE 2.9: Concept of e-insensitivity. Only the samples out of the & margin will have a nonzero
slack variable, so they will be the only ones that will be part of the solution

subject to the constraints

yi—wxi—b<&+e
—yi+wlai+b<E+e (2.13)
&, xi. >0

Constraints (2.13) have the following meaning: for each sample, if the error is positive
(negative) and its absolute value is higher than ¢, then this absolute value is forced to be less
than & + & (§/ + ¢). If the absolute value of the error is less than &, then the corresponding
slack variable will be zero, as this is the minimum allowed value for the slack variables in the
constraints (2.13). This is the concept of e-insensitivity[2]. The conceptis illustrated in Fig. 2.9.

The functional is intended to minimize the sum of the slack variables &;, x:". Only losses
of samples for which the error is greater than ¢ appear, so the solution will be only function of
those samples. The applied cost function is a linear one, so the described procedure is equivalent
to the application of the so-called Vapnik or e-insensitive cost function (shown in Fig. 2.10)

0 el <€
Ue:) = il (2.14)
leil —& leil > ¢
fore =& +¢,e =—& —e.
This procedure is similar to the one applied to SVC. In principle, we should force the
errors to be less than ¢ and we minimize the norm of the parameters. Nevertheless, in practical

situations, it may be not possible to force all the errors to be less than €. In order to be able
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FIGURE 2.10: Vapnik or e-insensitive cost function

to solve the functional, we introduce slack variables on the constraints, and then we minimize

them.

2.2.3 Practical Optimization of the SVR

In order to solve the constrained optimization problemin (2.12), (2.13), we must apply Lagrange

optimization to convert it into an unconstrained one. The resulting dual formulation for this

dual functional is

1 N N
Ld = — 5 ZZ((X,’ — otl{)xz-ij(ot,- — Ol;)

=1 i=1

N
+ Y (o — al)yi — (o + a))e)
=1

with the additional constraint
0<(aj—a;)<C

The important result of this derivation is that the expression of the parameters w is

N
w= Z(ai —al)x;
=1

and that

N
Z(ai —a)=0
i—1

(2.15)

(2.16)

(2.17)

(2.18)

In order to find the bias, we just need to recall that for all samples that lie in one of the

two margins, the error is exactly ¢ for those samples «;, o) < C (see Appendix C for details).
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Once these samples are identified, we can solve 4 from the following equations
—yi+wa;+b+e=0

yi—wlai—b+e=0 (2.19)
for those x; for which «;, ot} < C

A complete derivation of this functional can also be found in Appendix C.
In matrix notation we get

L; = —%(a —a)'Rla—-a)+(a—-a)y—(a+a)le (2.20)

This functional can be maximized using the same procedure used for SVC. Very small eigen-
values may eventually appear in the matrix, so it is convenient to numerically regularize it by

adding a small diagonal matrix to it. The functional becomes
1
L, = —E(a — ) [R+yIla—-a)+(a—-a)y—(a+a)le (2.21)

In Section 4.3 it is shown that this numerical regularization is equivalent to the application
of a modified version of the cost function. The interpretation of the regularization constant y
in terms of this cost function is derived.

2.2.4 Example: Linear SVR in MATLAB®

We start by writing a simple linear model of the form
y(x;) =ax; +b+n; (2.22)
where x; is a random variable and #; is a Gaussian process. The code is
x=rand (100,1) % Generates 100 uniform

% samples between -1 and 1
y=1.5%x+1+0.1*randn(100,1) % Linear model plus noise

A sample of the generated data is shown in Fig. 2.11.

We need to compute the dot product matrix R and then the product (o — &')T[R +
yIl(a — '), but the Lagrange multipliers o; and o} should be split to be identified after the
optimization. To achieve this we use the equivalent form

A e
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FIGURE 2.11: Generated data for the SVR example

The code for the regularized matrix is

R_=x*x’;
R_=R_+1le-9*eye(size(R_));
H=[R_ -R_;-R_ R_];

We make use of the function quadprog.m, now to solve the optimization problem in
(2.21). Remind that function
z=quadprog(H,f, []1,[],a,K,K1,Ku)
solves the problem
1
min EzTHz + sz
subject to

az=K
K/ <z< Ku

and we are solving the optimization problem
1
L, = —E(a — )[R+ yIla—a)+(a—a)y—(a+a)le

with the constraints

0<a,a<C

N
Z(a,- —a)=0
i=1
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so we simply need to identify az = K with (Z‘/)T( 711,) = 0 from condition (2.18). Also, we
identify K/ < z < Ku with 0 < () < 1C from condition (2.16) and, finally, f = (_yy) — 1e.
Then, the code for the optimization is

a=[ones(size(y’)) -ones(size(y’))];

y2=ly;-yl;

epsilon=0.1; C=100;
f=-y2’+epsilon*ones(size(y2’));

K=0;

Kl=zeros(size(y2’));

Ku=C*ones(size(y2’));

alpha=quadprog(H,f, [1,[],a,K,K1,Ku); % Solver

Using expression (2.17), we find the coefficients of the regressor

beta=(alpha(l:end/2)-alpha(end/2+1:end));

w=beta’*x;
Finally, we solve the bias using the expression (2.19) and averaging

e=1e-6; % Tolerance to errors
% in alpha
ind=find(abs(beta)>e & abs(beta)<C-e) % Search for
% 0 < alpha_i < C

b=mean(y(ind) - x(ind, :)*w) % Averaged result

A plot of the result is depicted in Fig. 2.12. The continuous line represents the resulting SVR
line, and the dotted line is the actual linear model. Dashed lines represent the margins and the
squared points are the Support Vectors. Note that all support vectors are out or on the margin,

but not into it.

2.2.5 Summary of the SVR MATLAB® Code
Voo to Toto o oo To o To oo Voo To o to oo o fo o
%%% Data Generation %%%
Voo o To o To oo Toto To oo oo To FoFo oo To Fo o
x=rand(30,1); % Generate 30 samples
y=1.5%x+1+0.2*randn(30,1); % Linear model plus noise




SUPPORT VECTOR MACHINES

3 ‘ ‘ ‘ W

251

0.5 . . . .
0 0.2 0.4 0.6 0.8 1

FIGURE 2.12: Result of the SVR procedure. Continuous line: SVR; Dotted line: actual linear model;
Dashed lines: margins; Squared points: Support Vectors

ToToto o Too o ToTo o o Too o To o o o To o o To o o

%%% SVR Optimization %%%

Too o 1o o Too o To o Too fo o o To o JoTo o Jo o Jo o

R_=x*x’;

R=[R_ -R_;-R_ R_];
a=[ones(size(y’)) -ones(size(y’))];
y2=[y;-yl;
H=(R+le-9*eye(size(R,1)));
epsilon=0.1; C=100;
f=-y2’+epsilon*ones(size(y2’));
K=0;

Kl=zeros(size(y2’));
Ku=C*ones(size(y2’));
alpha=quadprog(H,f,[],[],a,K,K1,Ku); % Solver

beta=(alpha(l:end/2)-alpha(end/2+1:end));
w=beta’x*x;
%% Computation of bias b %k
e=1le-6; % Tolerance to errors in
alpha

ind=find(abs(beta)>e & abs(beta)<C-e) % Search for

% 0 < alpha_i < C
b=mean(y(ind) - x(ind, :)*w) % Averaged result
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Do 1oto o ToTo o ToTo o o Too o ToTo o o To o o o
%%/, Representation %k
Tl Toto oo ToTo o oo ToTo o o o To o To o o o
plot(x,y,’.”) % All data
hold on
ind=find(abs(beta)>e);
plot(x(ind),y(ind),’s’)
plot ([0 11, [b w+bl) % Regression line
plot ([0 1], [b+epsilon w+b+epsilon],’--’) % Margins
plot ([0 1], [b-epsilon w+b-epsilon],’--7)
plot ([0 11,[1 1.5+1],°:7) % True model}

==

» Support Vectors
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CHAPTER 3

Nonlinear Support Vector Machines

3.1 THEKERNEL TRICK

The practical application of the Support Vector Machine procedure is only possible with lin-
ear machines because we only have an optimality criterion for linear hyperplanes. There are
no general results for nonlinear functions. Nevertheless, for many classification or regression
problems, a linear solution does not provide good performances, so many times a nonlinear
approach is needed.

Fortunately, there is a theorem provided by Mercer (see, e.g. [33,34]) in the early 1900s
which is of extreme relevance to extend the principle to nonlinear machines. The basic idea
is that vectors x in a finite dimension space (called input space) can be mapped to a higher
(possibly infinite) dimensional Hilbert ! space H provided with a dot product through a nonlinear
transformation ¢(-). A linear machine can be constructed in a higher dimensional space [1,2]
(often called the feature space), but it stays nonlinear in the input space. This is possible by
virtue of the Mercer theorem.

Most of the transformations ¢(-) are unknown, but the dot product of the corresponding
spaces can be expressed as a function of the input vectors as

o) o(x;) = K(x;, x;) (3.1)

These spaces are called Reproducing Kernel Hilbert Spaces (RKHS), and their dot products
K(x;, x ;) are called Mercer kernels. Fortunately, an explicit representation of the vectors in the
feature space is not required as the SVM formulation only contains dot products among vectors.
Thus, it is possible to explicitly represent an SVM into a Hilbert space.

The Mercer theorem gives the condition that a kernel K(x;, x ;) must satisfy in order to
be the dot product of a Hilbert space. There exist a function ¢ : R” — H and a dot product

! A Hilbert space is a generalization of an Euclidean space, specifically any linear space provided with an inner product
and that is complete with respect to this defined norm (i.e. any Cauchy sequence converges to a point in these space).
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K(xi, x;) = go(xi)Tgo(xj) if and only if for any function g(x) for which

/g(x)dx < 00 (3.2)

the inequality

f K(x, )g®)g(p)dx dy = 0 3.3)

is satisfied.
This condition is not always easy to prove for any function. The first kernels to be proven
to fit the Mercer theorem were the homogeneous polynomial kernel

K(xi, %) = (] %) (3.4)
and the inhomogeneous polynomial kernel
Kx;, x;) = (¢, +1)7 (3.5)

The mapping for these two kernel families can be found in an explicit way and the corresponding
Hilbert space has finite dimension equal to (‘H;*l) where 7 is the dimension of the input space.

Another important kernel type is the Gaussian kernel, because it is widely used in many
practical applications. Its expression is

Ilx;—x ;112

K(x,-,xj):e 202 (36)

The corresponding nonlinear mapping is not explicit and the dimension of the Hilbert space is
infinite.

Other kernel examples are the sigmoidal kernel
K(x;, x;) = tanh (yxiij + ,u) (3.7)

and the Dirichlet kernel

_sin((n 4 1/2)(x; — x,))
Kxi, x5) = 2sin((x; — x;)/2) (38)

3.2 CONSTRUCTION OF ANONLINEAR SVC

The solution for the linear Support Vector Classifier is given by a linear combination of a subset
of the training data

N
w = E Vit x;
=1
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If prior to the optimization the data is mapped into a Hilbert space, then the solution becomes

N
w = Z)’i%"ﬂ(xi) (3.9)
i=1

where ¢(-) is the mapping function.

The parameter vector w is a combination of vectors into the Hilbert space, but recall that
many transformations ¢(-) are unknown. Thus, we may not have an explicit form for them. But
the problem can still be solved, because the machine just needs the dot products of the vector,
and not an explicit form of them. We cannot use this

yi=w'olx;)+5 (3.10)

because the parameters w are in an infinite-dimensional space, so no explicit expression exists
for them. However, by substituting Eq. (3.9) into (3.10), yields

N N
9=y yiipx) o)) + b= yiot: K(wi, x,) + b (3.12)
i=1 i=1

The resulting machine can now be expressed directly in terms of the Lagrange multipliers and
the Kernel dot products . In order to solve the dual functional which determines the Lagrange
multipliers, the vectors are not required either, but only the Gram matrix K of the dot products

between them. Again, the kernel is used to compute this matrix
Kl‘]' = K(xi,xj) (312)

Once this matrix has been computed, solving for a nonlinear SVM is as easy as solving for a
linear one, as long as the matrix is positive definite. It can be shown that if the kernel fits the
Mercer theorem, the matrix will be positive definite [34].

In order to compute the bias 4, we can still make use of the expression (2.11), but for the
nonlinear SVC it becomes

N
Vi (Z)’iai@(xi)T(P(x i)+ b) —-1=0

=1

3 3.13
Yi (Z.ylalK(xlaxj)"‘b)—l:O ( )

=1

for all x; for whicha; < C

We just need to extract & from expression (3.13) and average it for all samples withor; < C.
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3.2.1 Example: Nonlinear SVCin MATLAB®

In this example, we try to classify a set of data which cannot be reasonably classified using a
linear hyperplane. We generate a set of 40 training vectors using this code

k=20; %Number of training data per class
ro=2*pi*rand(k,1);

r=5+randn(k,1);

xl=[r.*cos(ro) r.*sin(ro)];
x2=[randn(k,1) randn(k,1)];

x=[x1;x2];

y=[-ones(1,k) ones(1,k)]’;

Also, we generate a set of 100 vectors to test the machine

ktest=50; ’%Number of test data per class
ro=2*pi*rand(ktest,1);
r=5+randn(ktest,1);

x1=[r.*cos(ro) r.*sin(ro)];
x2=[randn(ktest,1) randn(ktest,1)];
xtest=[x1;x2];

ytest=[-ones(1,ktest) ones(l,ktest)]’;

A sample of the generated data is shown in Fig. 3.1. The next step for the SVC procedure
is to compute the dot product matrix. Since we want a nonlinear classifier, we compute this dot
product matrix using a kernel. We choose the Gaussian kernel K(u, v) = exp (42—:’”2) The
computation of the kernel matrix of (3.72) implements as follows. First, we need to compute

the matrix of all the distances between vectors

N=2xk; % Number of data

sigma=1; % Parameter of the kernel
D=buffer (sum([kron(x,ones(N,1))...

- kron(ones(1,N),x’)’].72,2),N,0)
% This is a recipe for fast computation
% of a matrix of distances in MATLAB

% using the Kronecker product
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FIGURE 3.1: Data for the nonlinear SVC example

Then we compute the kernel matrix
R=exp(-D/(2*sigma)); % Kernel Matrix

Once the matrix has been obtained, the optimization procedure is exactly equal to the one for the
linear case, except for the fact that we cannot have an explicit expression for the parameters w.

Y=diag(y);
H=Y+*R*Y+1le-6*eye (length(y)); % Matrix H regularized
f=-ones(size(y)); a=y’; K=0;
Kl=zeros(size(y));
C=100; % Functional Trade-off
Ku=Cxones (size(y));
alpha=quadprog(H,f,[],[],a,K,K1,Ku); % Solver
ind=find(alpha>e);
x_sv=x(ind, :); % Extraction of the

% support vectors
N_SV=length(ind) ; % Number of support vectors
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To compute 4, we find first all vectors x; with ; < C. We use (3.13) to extract 4 for all these

vectors and finally average the results.

%%% Computation of the bias b %%k
e=1le-6; % Tolerance to errors
% in alpha
ind=find(alpha>e & alpha<C-e); % Search for
% 0 < alpha_i < C
N_margin=length(ind);

D=buffer (sum([kron(x_sv,ones(N_margin,1))...
- kron(ones(1,N_SV),x(ind,:)’)’]."2,2),N_margin,0);

% Computation of the kernel matrix
R_margin=exp(-D/(2*sigma));

y_margin=R_margin*(y(ind) .*alpha(ind));

b=mean(y(ind) - y_margin); % Averaged result

The next step is to construct the Support Vector Classifier using the expression (3.71). We first
compute the matrix of distances between the support vectors and the test vectors

ind=find(alpha>e);
x_sv=x(ind,:); % Extraction of the support vectors
N_SV=length(ind); % Number of support vectors
N_test=2xktest; % Number of test data
%%hComputation of the kernel matrixii
D=buffer (sum([kron(x_sv,ones(N_test,1))...

- kron(ones(1,N_SV),xtest’)’]."2,2),N_test,0);

and then we compute the kernel matrix corresponding to (3.11)
R_test=exp(-D/(2*sigma)) ;

Finally, the support vector machine can be computed as
y_output=sign(R_test*(y(ind) .*alpha(ind))+b);

We can approximately draw the separating boundary in the input space using numerical com-

putations (see Subsection 3.2.2 for the details). The result is shown in Fig. 3.2.
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FIGURE 3.2: Separating boundary, margins and support vectors for the nonlinear SVC example

3.2.2 Summary of the Code
TotoToToToToTotoToto oo To o To oo oo o o o o
%%% Data Generation %%%
Voo o Toto o oo To o To oo Voo To o to oo o fo o
k=20; JNumber of training data per
class
ro=2*pi*rand(k,1);
r=5+randn(k,1);
x1=[r.*cos(ro) r.*sin(ro)];
x2=[randn(k,1) randn(k,1)];
x=[x1;x2];
y=[-ones(1,k) ones(1,k)]’;

ktest=50; %Number of test data per class
ro=2*xpi*rand(ktest,1);

r=6+randn (ktest,1);

x1=[r.*cos(ro) r.*sin(ro)];

x2=[randn(ktest,1) randn(ktest,1)];

xtest=[x1;x2];

ytest=[-ones(1,ktest) ones(l,ktest)]’;
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Do Toto s Too o ToTo o o Too o To o o o To o o To o o
%%t SVC Optimization %%%
Tl ToToTo oo o o ToToTo oo o o o o JoToTo o o
N=2xk; % Number of data
sigma=2; % Parameter of the kernel
D=buffer (sum([kron(x,ones(N,1))...
- kron(ones(1,N),x’)’].72,2),N,0);
% This is a recipe for fast computation

% of a matrix of distances in MATLAB

R=exp(-D/(2*sigma)); % Kernel Matrix
Y=diag(y);
H=Y*R*Y+le-6*eye (length(y)); % Matrix H regularized

f=-ones(size(y)); a=y’; K=0;

Kl=zeros(size(y));

C=100; % Functional Trade-off

Ku=C*ones(size(y));

alpha=quadprog(H,f,[],[],a,K,K1,Ku); % Solver

ind=find(alpha>e);

x_sv=x(ind, :); % Extraction of the support
% vectors

N_SV=length(ind) ; % Number of SV

%%% Computation of the bias b %%%
e=le-6; % Tolerance to

% errors in alpha
ind=find(alpha>e & alpha<C-e); % Search for

% 0 < alpha_i < C
N_margin=length(ind) ;
D=buffer (sum([kron(x_sv,ones(N_margin,1))

- kron(ones(1,N_SV),x(ind,:)’)’]."2,2),N_margin,0);

% Computation of the kernel matrix
R_margin=exp(-D/(2*sigma)) ;
y_margin=R_margin* (y(ind) .*alpha(ind));
b=mean(y(ind) - y_margin); % Averaged result
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Do Toto s ToTo o ToTo o o To o o To o o ToJo o o To o o Jo o o To T o o To o
%kl Support Vector Classifier %%%
T ToToto oo ToTo o oo ToTo o o o ToTo o o o ToTo o o o ToTo o o o To o

N_test=2*ktest; % Number of test data
%%hComputation of the kernel matrix’
D=buffer (sum([kron(x_sv,ones(N_test,1))...
- kron(ones(1,N_SV),xtest’)’].72,2),N_test,0);
% Computation of the kernel matrix
R_test=exp(-D/(2*sigma)) ;
% Output of the classifier
y_output=sign(R_test*(y(ind) .*alpha(ind))+b);
errors=sum(ytest”=y_output) % Error Computation

Do 1oTo s ToTo oo To o o To o o ToTo o o To o o o
%%% Representation %h%
ToToTo oo ToTo o oo ToTo o o o To o To o o o
datal=x(find(y==1),:);
data2=x(find(y==-1),
svc=x(find(alpha>e),

)
)5
plot(datal(:,1),datal(:,2),’0%)
hold on
plot(data2(:,1),data2(:,2),’ %)
plot(svc(:,1),svc(:,2),’s’)

g=(-8:0.1:8)"; % Grid between -8 and 8
x_grid=[kron(g,ones(length(g),1)) kron(ones(length(g),1),g)];
N_grid=length(x_grid);
D=buffer (sum([kron(x_sv,ones(N_grid,1))...

- kron(ones(1,N_SV),x_grid’)’]."2,2),N_grid,0);

% Computation of the kernel matrix

R_grid=exp(-D/(2*sigma)) ;

y_grid=(R_grid*(y(ind) .*alpha(ind))+b) ;
contour(g,g,buffer(y_grid,length(g),0),[0 0]) % Boundary draw

31
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3.3 CONSTRUCTION OF ANONLINEAR SVR

The solution for the linear Support Vector Regressor is

N
w= Y (o — )
i=1
Its nonlinear counterpart will have the expression
w = Z(a, o )p(x;) (3.14)

Following the same procedure as in the SVC, one can find the expression of the nonlinear SVR

Z(a, —aDp(x) p(x;) + b = Z(a, — @)K (x;,x,)+ b (3.15)

i=1

The construction of a nonlinear SVR 1is almost identical to the construction of the nonlinear
SVC. We let the reader the coding of these machine as an exercise.
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CHAPTER 4

Advanced Topics

4.1 SUPPORT VECTOR MACHINES IN THE COMPLEX PLANE

In communications applications the used signals are complex-valued. In order to process them,
it is not a good idea to use two separate processors for real and imaginary parts, since there is
cross-information that cannot be ignored.

So, there is a need for a complex-valued version of support vector machines. This version
can be found in taking into account the in-phase or real and quadrature-phase or imaginary
parts of the error signal.

We present here a summarized derivation of the complex-valued linear SVM regressor,
but similar derivations hold true for other SVM approaches. Also, using the Kernel trick of
Section 3.1, the result is directly applicable to nonlinear machines.

As in the real regressor, the risk function consists of two terms, a structural risk term,
which comprises a bound on the complexity of the resulting model and an empirical risk term,
measured directly on the residuals by using an appropriate cost function. Now the residuals are
complex-valued, so we need to minimize simultaneously both real and imaginary parts of them.
Therefore, applying the error cost function (2.14) is equivalent to minimize

1 N N
Ly=5lwl?+C) (E+8&)+C) (6 +8) (4.1)
i=1 i=1
subject to

Re (yi —w'x; —b) <e+&
Re (—yi + w'x; +6) < e+ &
)<8+§, (4.2)
m(—yi +wix;i +b) <&+
£,8,0,0 >0

Im (yi —awlx; — b

where &; (£/) are the slack variables or losses standing for positive (negative) errors in the real

part of the output -analogously for ¢; (¢/) in the imaginary part (Fig. 4.1).
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FIGURE 4.1: Complex-valued single sample y, its e-insensitivity zone, and relationship between errors

(e) and losses

The primal-dual Lagrange functional can be written with Lagrange multipliers o, S,

/ / / /
)\'?ﬁnnsa n9)\'n7 T]n ZO'

n

Lpy = —||«w||2+02(a+s>+02(¢,+;>

ieh ieh
N
Z(/\§,+/\E)—Z(n§z+n§)
i=1 =1
N
+ Z(xi[Re (yi — wlw; — b) — e —&]
e (4.3)

N
+Za;[ ( yi +w xl—b)—s—é]
N
+ 3 BilIm (i — '~ 8) — je - jt]

N
+ Zﬂf[lm (—yi + w’lx; + b) — je — ji!]

Besides, the KKT conditions force TL =0, —d[;L =0,1,&, =0,1,§, = 0andn,s, =0,
n,¢, = 0. Applying them, we obtain an optimal solution for the SVM regressor weights

N
w= Z Yiat (4.4)
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where ¥, = o, — &), + 7 (B, — B.). This result is analogous to the one for the real-valued SVM
regressor problem, except that now Lagrange multipliers o; and B; for both the real and the
imaginary components have been considered.

The norm of the complex-valued coefficients can be written as

N N
Nl =) "> wival’x; = "Ry (4.5)

=1 j=mng

where R;; = xZij

By substituting (4.4) in functional (4.3) and proceeding as in the real-valued case to reduce
the functional, one arrives to the dual functional

Ly = —%W’ (R+ %I) P+ Re[ypy] — (a+ o' + B+ B)1e (4.6)

where we introduced a numerical regularization term % I as we did in the real-valued case.
Expression (4.6) is formally equal to the real-valued expression SVM regression functional
(2.21). This is still a quadratic form that can be solved using the same strategies suitable for the
real-valued Support Vector Machines.
The functional for SVM-autoregressive (ARx) models has exactly the same form [35].
For SVM classifiers, the expression for the functional is simply

1
L, = —§¢HYH[R+ yIY) + 4 (4.7)
where for this problem ¥, = & + ;8

4.2 LINEAR SUPPORT VECTOR ARx

Let {y,} be a discrete time series, from which a set of IV consecutive samples are measured and

grouped in a vector of observations,

y=[y1?y27---a_yN]T (48)

and let the set of vectors {z”} be a base expanding a P-dimensional subspace into an V-
dimensional space, given by the following P vectors

T
zf’:[zf,zg,...,zﬁ,] , p=1,...,P (4.9)
Each observed signal vector y can be represented as a linear combination of elements of
this base, plus an error term e = [e1, . .., ey]” modeling the measurement errors, as follows:
P
y:wa’zP+e (4.10)

r=1
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For a given time instant 7, a linear time series model can be written as

P
yn=2wpzf+en=fwTv,,+en (4.11)
p=1
where w = [w!, ..., w’]7 is the model weight vector to be estimated, and v, = [22, ..., 2']7

represents the input space at time instant 7.

Note that the input space is closely related to the signal space. The input vector is given
at time instant 7z by the nth element of the signal space vectors. For instance, in the case of a
nonparametric spectral estimation, the base is formed by the lagged sinusoidal harmonics [36].
In the case of ARx system identification and modeling, the base in space is generated by the
input signal and the delayed versions of input and output signals [35].

The expression in Eq. (4.11) is the one of a regressor and the model parameters can be
adjusted using the SVR optimization described in Chapter 2. Applying it lead to the following

expression for the filter coefficients

wh = (o, — o)z, (4.12)

and to the dual functional of Eq. (2.20),

1 #\7T' * #\ 7, T *
—E(a—a) [R, + 8] (a — a") + (¢ — ™)'y — el' (a + ) (4.13)
constrained to
C>a% >0, (4.14)
*) @]"

where a) = [0‘1 RN N] , in whose formulation we can identify the cross-correlation

matrix of input space vectors and denote it as
Ry(s,2) =vlv, (4.15)

After obtaining Lagrange multipliers o), the time series model for a new sample at time
instant 7 can be readily expressed as

N
I = FWn) =Y (ty —@)VIV,, (4.16)
n=1

which is a function of weights in the input space associated to nonzero Lagrange multipliers.
Hence, identification of a suitable base in the space becomes crucial but also straightforward.

A general framework for nonlinear versions of SVM-ARMA models can be found in [37].
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4.2.1 Support Vector Auto-Regressive Model

A simple way to estimate the spectrum of a signal is to compute a model of the signal then
compute the spectrum of the model (cf. [38]). The observed signal is modeled as the output
of a linear system driven by white noise, and the coefficients of the linear system are estimated
by Yule-~Walker, Burg, or Covariance methods [39]. The most used linear system model is the
all-pole structure, and output y, of such a filter for a white noise input is an auto-regressive

(AR) process of order P, AR(P), which can be expressed by a difference equation

P
yu= wly,_,+e, (4.17)
p:l

where w? are the AR parameters, and ¢, denotes the samples of the innovation process. Once
the coefficients w? of the AR process are calculated, the PSD estimation can be computed.
Examples of application are shown in Subsection 6.1.1.

4.2.2 SVM-ARMA Complex Formulation

Let us consider now two complex, discrete time processes {,} and {y,}, representing the input
and the output, respectively, of a linear, time invariant system that is defined by the following
finite difference equation

Mo Q
Vn = Z ﬂz_yn—i + Z bjxn—j+1 +en (4.18)
=1 =1

where {a'}, {$/} are M and Q complex coefficients standing for the autoregressive (AR) and the
moving-average (IMA) parts of the system, respectively, and ¢, is complex residual noise. Model
(4.18) can be rewritten into its vector form, as given in (4.11), by introducing the following
notation:

T
ZP = [_yl—fv LI ,yN—Py x])’ ce ey xN—P-’rl]

we [T 7] (4.19)

Therefore, the space base vectors are formed by delayed versions of both the output and the
input time series, and again, initial conditions are necessary.

Once the base in the space has been identified, we must check the validity of the proposed
cost function and the functional to be minimized. In the two previous examples, these steps
are trivially obtained. Nevertheless, for complex SVM-ARMA modeling, we must include real
and imaginary slack variables in the cost function and their corresponding constraints as in
(4.2). Introducing the constraints into the primal functional by means of Lagrange multipliers

{or ) lag ) {arna), o7}, for the real (subscript R) and imaginary (subscript I) parts, we
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obtain the primal-dual function. By making zero its gradient with respect to w?,

N
a=) vuy'ln—1]
" (4.20)
b= vx[n]
n=ngo
where ¥, = (g, — ok ,) + jlar, — af ). The analytical relationship between the residuals
and the Lagrange multipliers is identical to that of the real case.
Placing the optimal solution (4.20) in the primal-dual functional and grouping terms lead
to a compact form of the functional problem, which is equal to the one of Eq. (4.7)

1
—El/fH(Rz + 8Dy + Re (¥"y) — (ar + oy + ap + af)le
which where the Gram matrix R of dot products has the expression

R.(s5,1) = z:th (4.21)

4.3 ROBUST COST FUNCTION OF SUPPORT

VECTOR REGRESSORS
InEqs. (2.21) and (4.7) we introduced a term £ I to avoid numerical problems in those situations
in which the eigenvectors of the matrix are too small. In such a situation, the optimization
problem is ill-posed, so adding a small diagonal matrix increases the lowest eigenvectors without
significantly biasing the solution.

We present here another interpretation of the effect of this small diagonal term as a
modification of the e-insensitive cost function (2.74) [10]. This interpretation will allow us to
use other criteria to adjust the value of y depending of the nature and power of the noise present
in the data.

To do that, we simply modify the e-insensitive cost function and repeat the optimization
computations of the resulting primal functional. The modified cost function is

0 El < e
L) = | 5, (&1 — &) e<l§l <ec (4.22)
C(gl —e) = 37C* [El = ec
where ¢ = ¢ + y C; € is the insensitive parameter, and y and C control the trade-off between
the regularization and the losses. Three different regions allow to deal with different kinds of

noise (see Fig. 4.2): e-insensitive zone ignores errors lower than &; quadratic cost zone uses
the Ly-norm of errors, which is appropriate for Gaussian noise; and linear cost zone limits
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FIGURE 4.2: Cost function with e-insensitive, quadratic, and linear cost zones (¢¢ = ¢ + ¥ C)

the effect of outliers. Note that (4.22) represents Vapnik e-insensitive cost function when y is
small enough, and Huber’s cost function [40] when ¢ = 0. y also plays the role of numerical
regularization in the quadratic problem.

In most situations, the noise present at the signal output is the sum of thermal noise
plus other contributions coming from external interference, which are usually sub-Gaussian. In
these situations, the probability density function (PDF) is the convolution of both PDFs, but
a good approximation near the origin is the Gaussian one. Then, a L, cost function will give
the maximum-likelihood (ML) estimator. Far from the origin, the sub-Gaussian approach is a
more convenient one. Then, a L,, p < 1 (sub-linear) cost function will yield the ML estimator.
Nevertheless, to assure convergence, the cost function must be convex. The lowest degree in
the cost function which leads to a convex optimization problem is 1, so the most convenient
cost function far from the origin is linear.

The primal which fits the loss function (4.22) is

1 1 2 )/C
Ly =Sl + =3 (& +&)+C ) (sz- +& - 7) (4.23)
Y ek ich
I, I, are the sets of samples for which losses are required to have a quadratic or a linear
cost, respectively. These sets are not necessarily static during the optimization procedure. The
constraints are the same as in (2.13)

—yi+wlx, +o+&+e>0
yi—wla;, —b+& +e>0
£.6 >0
Again, we must apply the technique of Lagrange multipliers to solve the constrained
optimization problem. The details of the derivation are provided in Appendix C.
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The resulting expression for the dual functional is

1NN
L;=— 5 Z Z(ai — ocg)xl-ij(aj - oc;-)
Vo (4.24)
+ 2 ((oz,- — o)y — (i +al)e — g(ozz-z + a;z))

A matrix expression of this equation can be easily found by rearranging terms and taking into
account that o;a) = 0

L; = —%(a — )[R+ yIa—a)+(a—a)y—(a+a)le

In this equation the numerical regularization term is y. This parameter has an interpretation in
terms of the applied cost function. Applying it is equivalent to apply a cost function which has
quadratic interval between ¢ and € + y C. If the motivation for the use of y is to raise the values
of the eigenvectors of R, then, its value is very low small, and the quadratic interval is negligible.
Nevertheless, greater values of ¥ can also be used in order to make the interval wide enough
to include all the data which is mainly corrupted by additive white Gaussian noise (AWGN)),
letting the linear interval to the outliers, or samples corrupted by impulse or other sub-Gaussian

noises.

44 PARAMETER SELECTION
The trade-off between generalization ability and empirical risk minimization in an SVM is
controlled by the parameter C, as seen in Chapter 2 (see also Appendix A). This parameter
may eventually be critical, for example, if the sample set for training is too small. The user may
choose to sweep this parameter using a validation set to find the best value for this parameter,
but this is sometimes impossible due to a lack of data or due to the fact that this procedure is
time consuming and some applications cannot afford the delay that such a search of C implies.
The same occurs with the parameter ¢, which allows a sparse solution for SVM regressors, but
may produce poor results if it is not carefully chosen.

The used kernels also have parameters, whose choice can make the difference between
an SVM with reasonable results and an SVM with poor ones.

There are several criteria to choose these parameters. In order to choose C and the
kernel parameters for classification, we summarize the Kwok’s criterion based on the Evidence
Framework [41]. To choose C and ¢ in regression, we summarize the Evidence Framework

criterion by Kwok [42] and the criterion of Cherkassky [43].
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4.4.1 The Evidence Framework Criterion

The Evidence Framework [44] is applied in [41] to find the parameters of a nonlinear SVM
for classification. In this framework a classifier is assumed to have a classification function
y = f(w, x), a distribution p(x|w, /) and a prior parameter distribution

exp(—AEp(w, 1))
Zyy(L)

where A is some regularization parameter, and Zjy is a normalization parameter for (4.25) to

plw| fiA) = (4.25)

have distribution properties. The method first obtains a posterior distribution of the parameters
(level 1 inference) using (4.25) and applying the Bayes rule:
exp(—M(w))

Zw(2)
where M(w) = AEpy(w) — log p(x|w, ). The maximization of (4.26) (minimization of M(w))
leads to the maximum a posteriori (MAP) value wpz4p.

plwlx, fL1) = (4.26)

The distribution (4.26) can be approximated by a Gaussian whose mean value is M(wpz4p)
and whose covariance matrix is the Hessian 4 = V2 M. It can be seen [44] that

1 k
log p(x|x, f) = —AENAP  GMAP _ 5 logdet() + > log(2) (4.27)

where E%AP = Ep(wpyp| f) and GMAP — log p(x|wazsp, f). The quantity (4.27) is the so-
called evidence of A. In order to iteratively obtain the MAP value for A (level 2 inference), the
derivative of its evidence (4.27) has to be set to zero. Then, the following result is obtained

Dap EfFAP =y (4.28)

where y = & — Atrace(A 1), % being the dimension of w. Then, going to (4.26), waz4p has to
be recalculated and the process iterated until convergence.
Finally, the model f can be ranked by examining its posterior probability p(flx) =

px| f)p(x) (level 3 inference), taking into account that using a Gaussian approximation,

x| f) = p(x|Apap, f)/VV-

4.4.2 Selection of ¢ for Gaussian and Exponential Noises
In [42], the distribution function is introduced for the output y; of an SVM regression model
in which the e-insensitive cost function has been applied. This distribution has the form

P(_yilxbw? IB’ 8) = eXP(—ﬂU’i _waiD (429)

b
2(1+ &)
Using a method similar to the presented in the previous section, an expression for the MAP value

of w is obtained, then an evidence for & can be computed. Assuming that the noise affecting y;
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is Gaussian, a closed expression for the optimum value of ¢ is computed
¢ = 1.00430 (4.30)

where o2 is the noise power. Also, a computation of ¢ is done for exponential noise, whose
resultis € = 0.

4.4.3 Selection of C and € Based on Heuristics

The previous parameter selection criterion is based in a model of prior probability of the output
y; which does not take into account the sample size, but that may be inaccurate for those cases in
which the sample size is small, as the models are asymptotic with the number of samples. Also,
the possible presence of outliers is not taking into account into these criterion. Cherkassky [43]
introduced an alternative method for selecting ¢ and C in regression which takes into account
the sample size and it is robust against outliers. Taking into account the SVM expression for f

f(xl) = ZO(]'K(JC,', xj)
J

and knowing that o; < C, the following inequality can be derived for kernels which satisfy

| f(x:)] < ns,C (4.31)

where 7, is the number of support vectors. This number inversely depends on the value of ¢.
The expression is meaningful, as it suggests us that the variance of the output may increase if

we increase C or if we decrease €. Cherkassky suggests to use the heuristic value
C =30 (4.32)

It is known that the noise standard deviation of the output of a linear regressor is propor-
tional to the input noise and inversely proportional to the number of training samples. Also, it
is known [42] that the value of & should be proportional to the input noise. Then, in [43] an
heuristic is applied for the selection of it:

In NV
=3 - 4.33
e =30,/ ~ (4.33)

This heuristic provides better performance than (4.30) when the number of samples is small.
When the number of samples is high, this heuristic value tends to zero, so (4.30) performs
better.
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CHAPTER 5

Support Vector Machines
for Beamforming

Support Vector Machines (SVM) have shown clear advantage in prediction, regression and
estimation over classical approaches in a wide range of applications due to its improved gener-
alization performance, which is important when small datasets are available for the training of
the algorithms. Array signal processing involves complex signals, for which a complex-valued
formulation of the SVM is needed. We introduced this formulation by introducing the real
and imaginary parts of the error in the primal optimization and then proceeding as usual to
solve a complex-valued constrained optimization problem in the previous chapter. The resulting
algorithm is a natural counterpart of the real-valued Support Vector Regressor, which can be
immediately applied to array signal processing.

In this chapter, we will make use of the SVM regression framework presented in the
previous chapter to array beamforming. The first section is devoted to the application of the
SVM to linear beamforming. The second one deals with the application of nonlinear Support
Vector Regressors to the fast estimation of linear beamformer parameters, and the last section

develops strategies to construct nonlinear beamformers.

5.1 PROBLEM STATEMENT

The signal received by an array consists of the desired or friendly signal, which may come from
one or more directions of arrival with different amplitudes and phases and the interfering or
undesired signals (Fig. 5.1).

The output vector of an M-element array receiving K signals can be written in matrix
notation as

x[n] = As[n] + g[n] (5.1)
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e
k=0 M-1

FIGURE 5.1: Angles of arrival

where
A =[a(6y)---a(6))]
a(6;) = [1e 7% ... o~/ (M-DE]T
s[n] = [s1[n] - - - sa[n]]*
gln] = [giln] - - gaddn]]”

are respectively the M x K steering matrix and vectors, the received signals and the thermal

(5.2)

noise present at the output of each array element.

The spatial correlation matrix of the received signals is
1
R= XX
N
= El(As[n] + gln)Asln] +gln])"] (>-3)
=APAT + O'gZI
provided that the signal and noise are independent, where P is the autocorrelation of s[#], and

o2

¢ 1s the noise power.

5.1.1 Temporal Reference
Assuming that certain transmitted data is known for training purposes, one may apply the
Minimum Mean Square Error (MMSE) criterion to the received signal, that is

min E{]le|*} (5.4)
where
e[n] = 3] — wlix(r] (5.5)
which leads to the well-known and widely used Wiener solution
w=R"p (5.6)

p being the cross-correlation between the desired output and the incoming signal.
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5.1.2 Spatial Reference
If the AOA of the desired signal is known, the optimal beamformer needs to satisfy

min{wRw’’} (5.7)
subject to the constraint

w's,[n] = yln] (5.8)

That is, it minimizes the output power subject to the condition that the desired signal
s;[7] produces a given output y[#]. This is the classical solution to beamforming with spatial
reference, also known as Minimum Variance Distortionless Method (MVDM), as it assumes
the use of the covariance method of data windowing [45]. Applying Lagrange multipliers to
that constrained optimization problem leads to the solution

wopl = Rilsd[SZ,{Rilsd]ily (59)

where S; is the matrix of all desired input vectors, and y is the vector of all desired output
signals. It is straightforward to prove that both MMSE and MVDM lead to the same solution,

provided that the autocorrelation matrix R is accurately computed.

5.2 LINEAR SVM BEAMFORMER WITH
TEMPORAL REFERENCE

The output vector x[n] is linearly processed to obtain the desired output 4[7]. The expression
for the output of the array processor is

y[n] = w’x[n] = d[n] + €[n] (5.10)

where w = [w; - - - wyy] is the weight vector of the array and €[7] is the estimation error.
Foraset of IV observed samples of {x[7]} and when nonzero empirical errors are expected,
the functional to be minimized is

1 N
5||fw||2 +) " Lz(e[n]. e, . C) (5.11)

n=1

Therefore, particularizing to the error cost function (4.22), we have to minimize [46]

1
5wl + Y LrE +E)+ Y Lr(Gu+¢) (5.12)
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subject to
Re (d[n] — wa[n]) <e+E,
Re (—d[n] + w'x[n]) <e+&,
Im (d[n] — wa[n]) <&+ Cn (5.13)
m (—d[n] + wa[n]) <&+
&[n], &'[n], ¢[n], ¢'[n] = 0

where &[] (§'[n]) stand for positive (negative) errors in the real part of the output -analogously
for ¢[n] (¢'[n]) in the imaginary part. As in other SVM formulations, parameter C can be seen
as a trade-oft factor between the empirical risk and the structural risk.

Now the functional in Eq. (4.6) can be applied

L, = —%wHRe (R+ gz) ¥+ Re[yy] — (@ + o' + B+ B)1e (5.14)

The optimization of this functional will give a set of parameters ¥; = «; + jf;, and using
expression (4.4)

we can compute the weights of the beamformer. Combining this equation and (5.10), the
beamformer can be expressed as

yln] = Z yiaTxln] (5.15)

5.2.1 Bit Error Rate Performance

We first test the algorithm against to the regularized Least Squares (LS) method [45] with an
array of 6 elements. The desired signal comes from the angles of arrival (AOA) —0.17 and
0.257, with amplitudes 1 and 0.3, and the interfering signals come from the AOAs —0.057x,
0.1m and 0.37 with amplitude 1.

In order to train the beamformer, a burst of 50 known symbols is sent. Then, the Bit
Error Rate (BER) is measured with bursts of 10,000 unknown symbols.

In this and in the next examples, we fix y of Eq. (4.6) to 10~° and then the product y C is
adjusted to the noise standard deviation. That way, most of the samples which are corrupted by
thermal noise will fall in the quadratic area, where the outliers produced by interfering signals
will fall in the linear area.



Bit Error Rate

SUPPORT VECTOR MACHINES FOR BEAMFORMING 47

1072

103

1074

1075

1

5

10
-0 2(AWGN Power)

15

FIGURE 5.2: BER performance for experiment 1. SVM (continuous line) and regularized LS (dashed

line) beamformers. (Source [46]. Reprinted with permission of the IEEE)

We calculate the BER performance of LS method and SVM for different noise levels
from 0 dB to —15 dB. Each BER has been measured by averaging the results of 100 independent
trials. The results can be seen in Fig. 5.2.

We repeat the same example with the desired signals coming from the angles of arrival
(AOA) —0.17 and 0.257, with amplitudes 1 and 0.3, and the interfering signals coming from
the AOAs —0.027, 0.27, 0.3 with amplitude 1 (see Fig. 5.3). In this example, the interfering
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FIGURE 5.3: BER performance for experiment 2. SVM (continuous line) and regularized LS method
(dashed line) beamformers. (Source [46]. Reprinted with permission of the IEEE)
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FIGURE 5.4: BER performance against the number of training samples. SVM (continuous line) and
regularized LS method (dashed line) beamformers. (Source [46]. Reprinted with permission of the IEEE)

signals are much closer to the desired ones, thus biasing the LS method algorithm. The superior
performance of SVM is due to its better robustness against the non-Gaussian outliers produced

by the interfering signals.

5.2.2 Robustness Against Overfitting

One advantage of the SVM is that its generalization ability is controlled by the regularization
imposed by the minimization of the weight vector norm. We highlight this fact by measuring
the Bit Error Rate for different number of training samples. The results are shown in Fig. 5.4.

5.3 LINEAR SVM BEAMFORMER WITH SPATIAL REFERENCE
In [47, 48], an algorithm has been introduced that uses the knowledge of the AOA of the
desired signal in a similar way as in (5.7). The procedure consists of a transformation of the
solution provided by the SVM. In [49, 50], a variant has been introduced that uses an ex-
plicit form of the complex-valued SVM and that includes a nonlinear version of the algorithm
(see 5.6).

A linear SVM beamformer with sidelobe control can be expressed as

1
Ly=swRw+ ) LE+E) + ) L& +) (5.16)
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where L is the cost function (4.22) applied to the MVDM constraints. These constraints have
been adapted to the Support Vector formulation as follows:

Re (y[n] — wasd[n]) <e—&[n]

Im (y[n] — w's4[n]) < & — ¢[n] 517
Re (ol + o) <~ €] 517)
I (—y[n] + wsy[n]) < & — ¢'[n]

Applying Lagrange analysis to this primal functional straightforwardly gives the result
w = RIS, (5.18)

Applied to the primal, the previous result leads to the dual

——¢H[SHR 1S+ vI]Y — Re(p’y) + ella + B+ o' + 3) (5.19)

where y = [y[1], - -+, y[V]]. Note that a regularization term naturally appears from the ap-
plication of the cost function (see Section 4.3).

5.4 NONLINEAR PARAMETER ESTIMATION
OF LINEAR BEAMFORMERS

The inconvenient of linear beamformers is that the parameter vector has to be recalculated each
time the direction of arrival of the sources or the number of sources changes. The parameter
vector w can be estimated using a nonlinear regressor so that it can place nulls in the direction
of the interfering signals and track the desired signal. The difference between the linear and
the nonlinear approaches is that the last one can be trained off line with a large number of different
angles of arrival of signals [51].

Next, during detection, the network computes the beamformer by performing a nonlinear
interpolation. That way, the network does not need to be retrained, as it contains the needed
information to estimate the optimal beamformer. The adaptation procedure becomes then faster.

5.4.1 Generation of the Training Data
We can assume that a dataset consisting of . matrices of the form X/ = {x/ xlN}, 1</<L
is generated using the definition (5.7). In order to make the network robust to changes in
amplitude and to make it less dependent of its kernel parameters, the data has to be normalized
in terms of amplitude. One effective way is simply to divide them by its norm.

The information that we need to compute the beamformer is present in the autocor-
relation matrix of the data. As in the training phase the data is artificially generated and the
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autocorrelation matrices of all samples can be exactly computed by
R = AP(A)Y + (o])’1

They have to be normalized to have diagonal elements equal to one, as this is the power of the
assumed received data.
The next step is to produce the optimal parameter vector for the beamformer using

expression (5.9). Then, a set of pairs {X/, w’} is available to train a set of M nonlinear regressors,
M being the number of elements of w.

5.4.2 Structure of the Estimator
There are two possible approaches for the training of the regressors. The structure is depicted

in Fig. 5.5. The input consists of the signal vector {x1[#] - - - xp[7]}, and the outputs are the
elements of the parameter vector w.

Taking into account that input and output should be complex-valued, the output of
regressor 7, 1 < m < M, is equivalent to that of (4.4)

N
Wy = Z VimK(xi, ;) + by, (5.20)
i=1

where ¥, = a, — o, + j (B, — BL).

x1x2 xM

ﬂ)?.. .ﬁ)
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% M
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FIGURE5.5: Structure of the multiregressor
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The first approach is quite straightforward, and consists of independently training a num-
ber of regressors with each one of the M elements of w. Then, each one will learn the particular
behavior of each weight element. The performance of this approach is limited by the fact that
each regressor does not use the information of the outputs of the others to train. But the out-
puts are not really independent, then this loss of information may decrease the performance.
Implementation and training are exactly the ones presented in Subsection 3.1.5 and Section 4.1.

The other approach is to construct a multiregression structure in which we train all the
outputs in a block. Then, the outputs are related, which may lead to a better performance. The
expression of the output of the multiregressor is

w=@lx)V+b+e; (5.21)
where

V=I[v vuml

(5.22)
e;, = [31,1' Tt EN,i]

The difference with the first approach is that here we compute all the parameters w; in the
same equation.

If we use this approach, we must generalize the e-insensitivity cost function that we use
in the optimization in (2.14), which we reproduce here for convenience.

0 i
o)) = le;| < &

leil —¢& le;l > &

That cost function is designed to allow errors less or equal to €. As we explained in
Subsection 2.2.2, the application of this function produces a sparse solution, in which the
samples used to produce the optimal regressor are the subset of samples out of the & band. This
is valid when the output is a scalar. A first approach to generalize this cost function is to directly
apply it to all the components of the regressor output, so the resulting primal functional is an
extension of (4.1) to more dimensions, i.e.:

M

m=1nel m=1nel (5.23)

1 M

m=1 ne]z nel

[\)IP—*
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subject to

)
)

Im (w,,m — fu,gxn,m — bm) <e+lum (5.24)
)

&
én,m’ S;{,,ma é_n,m» ;;;’m 2 O

This approach, however, is not the most suitable one due to the fact that the errors of the
samples are not equally treated. The € band turns out to be here a hypercube with M dimensions.
The minimum distance between the origin and the hypercube is, obviously, &, but the maximum
distance is equal to the distance to one of the corners. This distance is +/Me. A sample whose
error vector is close to the center of one of the faces of the hypercube will be discarded if the
norm of the error vector exceeds €. But for a sample whose error vector is close to a corner will
not be discarded until its error norm exceeds ~/Me [52].

The solution provided in [52] equally treats all errors, as it use a quadratic approach.
Let us denote the norm of the vector constructed with all errors as ||e;|| = elHe,'. The cost
function is expressed as

0 N &
fe) = il <
(leill — &) lleill > ¢

Then, instead of having a & hypercube in the cost function, we will use a hypersphere.
The primal functional is expressed as

1 M M
Ly=5) Mol +C ) _tlen) (5.25)

This functional cannot be optimized using a quadratic programming approach. The alterna-
tive optimization introduced in [52] consists of an iterative weighted least squares (IWRLS)
algorithm. This approach uses a quadratic approximation of the functional of the form

1 H 1 M
Ly=5 3 loall + 5 Y anllesl? + CT (5.26)
m=1 m=1
where
0 lelim <€
@m =\ 2C(leli)— leli > & (5.27)

lelim
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In each step of the recursion, it is necessary to compute the solution of functional (5.26).
It consists of computing its gradient and solving it for zero. The gradient computation leads to

oD, +1 fa|| w; " D,y;
e i, o | =1 oa, (5.28)
@ i Yi
1<:< M.

Let initialize parameters ¥ and b to zero. Define ¥; and &; as the values of the

the set of equations

parameters at iteration 4. The procedure for the optimization has the following steps:

Obtain the solution W, b to the functional (5.26).
2. Compute

wW—w,
P,=|". 5.29
! [b_bk} (5.29)

3. Compute

|:WH1:|=|:WH1:|+MPk (5.30)

where  is an adaptation step.

4. Compute e; and 4; for the functional (5.26) and go back to step 1 until convergence.

5.4.3 Examples

A nonlinear SVM estimator with Gaussian kernel has been trained with different angles of
arrival using the multiregressor described in Egs. (5.26) to (5.30). We use 50 different angles of
arrival between —80° and 80° and SNRs of 10 dB, 15 dB and 20 dB. For each SNR and angle
of arrival we generate 10 different samples, thus the number of data for training is of 1500.

Figures 5.6 and 5.7 show the result of a test of the estimator using a set of ten snapshots
with a DOA of 0 and 10 degrees respectively and an SNR of 10 db. Figures 5.8 and 5.9 are the
result of the same test, but with an SNR of 20 dB.

In all figures we compare the result with those of the optimum MVDM beamformer. It
can be observed that the difference is low, and it is comparable to the result of the application
of the MV by estimating the covariance matrix R from a set of samples. Also, there is no
appreciable difference between the results of the data with both SNREs.
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FIGURE 5.6: Beam diagrams for the SVM estimation of the parameters of a linear beamformer of
10 elements, with DOA at 0° and SNR = 10 dB (continuous line) and optimum MVDM (dotted line)
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FIGURE 5.7: Beam diagrams for the SVM estimation of the parameters of a linear beamformer of

10 elements, with DOA at 10° and SNR = 10 dB (continuous line) and optimum MVDM (dotted line)
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FIGURE 5.8: Beam diagrams for the SVM estimation of the parameters of a linear beamformer of
10 elements, with DOA at 0° and SNR = 20 dB (continuous line) and optimum MVDM (dotted line)
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FIGURE 5.9: Beam diagrams for the SVM estimation of the parameters of a linear beamformer of
10 elements, with DOA at 10° and SNR = 20 dB (continuous line) and optimum MVDM (dotted line)
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5.5 NONLINEAR SVM BEAMFORMER WITH

TEMPORAL REFERENCE
5.5.1 Structure of the Estimator
The structure of a nonlinear beamformer is similar to those of the linear beamformer presented
in Section 5.2. Here, the same idea is applied but, prior to the optimization of the beamformer,
a nonlinear transformation is applied in order to map the data in an infinite-dimensional Kernel
Reproducing Hilbert Space. Once the data is in this space, it is treated linearly as explained in
Chapter 2.

Two main differences with the linear beamformer of this kind of nonlinear ones are
important to highlight. First of all, as the function which relates the input and output signals is
nonlinear, there is no possibility of drawing a beamshape from the parameters of the beamformer,
so all beamshapes will be approximations.

Second, using an adequate nonlinear function, the nonlinear transformation maps the
data into an infinite-dimensional space, in which all vectors are linearly independent. Then,
the dimension of the subspace in which the transformed signal lies has as many dimensions as
data. This gives a more powerful structure to process the signal, having the possibility to deal
with more signals than sensors in the antenna.

The input vector x[n] is expressed as in Eq. (5.1)

x[n] = As[n] + g[n] (5.31)

where A is the matrix of the steering vectors of the incoming signals s[#]. The input vector is
nonlinearly processed to obtain the output d[z], which is expressed as

ylnl = wlp&[n)) = d[n] + €[n] (5.32)

where d[n] is the desired signal at time [#]. We assume that a sequence d[n],n =1, -+, Nis
known and we will use it to train the beamformer.

Note that here we apply a nonlinear transformation ¢(x[7]). As usual, this nonlinear
transformation may not be known and the weight vector w will possibly have an infinite dimen-
sion. So, this formulation is in fact not explicit in the structure of the beamformer, but only the
equivalent one which uses the dot product < ¢(«), ¢(v) = K(u, v) > in the Hilbert space.

Assuming that a set of NV observed samples of x[7] are available for training and that
the desired signal at the output of the receiver is known, we can directly formulate the dual
functional (4.6):

L= —%wHRe (K + gl) ¥+ Re[yPd] — (0 + o + B+ B)le

where d is the vector of all desired signals.
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Solving the functional gives the optimum values for parameters 1/;, and the solution has
the same form as that for the linear beamformer except that the dot product between vectors is
given by the chosen kernel function K(-, ).

N
dln] =) vix"x[n] (5.33)
=1

Here we do not have an explicit solution for the parameters w. Note also that, as we
pointed earlier, the Fourier Transform of does not apply here, so we cannot find the beamshape
of the beamformer. In other words, where vectors x = {1, exp(wn) - - - , exp(kwn)} are eigen-
vectors of linear systems, their transformations ¢(x) = ¢({1, exp(wn), - - , exp(kwn)}) into
KRHS are not, in general, so the concept of Fourier Transform disappears on them. The im-
plication of this is that the beamshape will depend on the number and amplitude of arriving
sources.

5.5.2 Examples

We compare the performance of the nonlinear (Gaussian kernel) SVM beamformer to those
of the linear ones in an environment in which there are /V signals, one of them is the de-
sired signals and the other V— 1 are independent for different number of sensors in the
antenna.

In this example, we simulated four directions of arrival. One of them belong to the desired
user signal, and the other three are interfering or nondesired independent signals. All signals
have unitary amplitude and different randomly chosen phase shifts, and the used modulation
is QAM. The channel shows complex-valued additive Gaussian noise. In order to train the
beamformers, we use a burst of 100 symbols, and then we test it during 10.000 symbol times,
using previously unseen signals. Assuming that the thermal noise power o, is known, we choose
¢ = 0, and C = 1000, though the results with other parameter choice do not show significative
differences.

We compare the performance of the nonlinear beamformer with those of the linear one
for different values of the signal-to-noise ratio (SNR).

Figure 5.10 shows the results of the simulations. Continuous line graphs correspond to
simulations of the nonlinear beamformer, while dashed lines correspond to the simulations of
the linear beamformer. The performance of the linear beamformer degrades rapidly when the
number of elements is less than 6, as expected. The performance of the SVM beamformer
degrades slowly, being able to detect the desired transmitter even when the number of elements

is less than the number of angles of arrival.




58

SUPPORT VECTOR MACHINES

BER

10 i i i i i i i i
1 2 3 4 5 6 7 8 9 10

-10 Iogwcr2

FIGURE 5.10: Simulations of the linear MMSE and the nonlinear SVM with temporal reference

beamformers for 7 array elements

5.5.3 Matlab Code

function example

%=PARAMETERS=7,

n=3;

A=[1 1 1]; %Amplitudes
doal1d=0.5; %DOA 1 Desired
doa2d=0.65; %DOA 1 Desired
doa2=[0.40 0.6 0.7]; pl1=0.1;

noise_level=(10:20);
BER=zeros (length(noise_level),2);
noise=10." (-noise_level/20);

ker="rbf’;
C=100; gamma=1e-6;
epsilon=0;
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%=TRAINGING SIGNAL=Y

N_train=100; [x_train,B]=generate_data(N_train,n,pi*doald);

[x_train]=x_train-0.3*generate_data(N_train,n,pi*doa2d) ;

for I=1:length(A)
X_train=x_train+1*A(I)*generate_data(N_train,n,pi*doa2(I));

end

tr_noise=randn(size(x_train))+1j*randn(size(x_train));

%=TESTING SIGNAL=%

N_test=200; [x_test,b]=generate_data(N_test,n,pi*doald);

[x_test]=x_test-0.3*generate_data(N_test,n,pi*doa2d) ;

for I=1:length(A)
X_test=x_test+1*A(I)*generate_data(N_test,n,pi*doa2(I));

end

tst_noise=randn(size(x_test))+1j*randn(size(x_test));

for j=1:length(noise_level)
%Adding noise to signals
x_train_noisy=x_train+noise(j)*tr_noise;

X_test_noisy=x_test+noise(j)*tst_noise;

JNormalzation of data and SVM training
normalization=diag(l./sqrt(sum(x_train_noisy."2’)’/N_train));
x_tr_nois_norm=(x_train_noisy’*normalization)’;
X_test_nois_norm=(x_test_noisy’*normalization)’;

%0ptimization

[beta, b0,R2] = svr_standard(x_tr_nois_norm,B,pl,C,gamna,
epsilon);

%Test

R=kernel _matrix(x_test_nois_norm,x_tr_nois_norm,pl);
output=sign(R*beta+b0); %SVM output
error=sum(output~=b); %SVM error

%iRepresentation
BER(j, :)=[error/(N_test)];

59




60 SUPPORT VECTOR MACHINES

semilogy (noise_level,BER)
xlabel (’-\sigma"2_n (AWGN Power)’)
ylabel(’Bit Error Rate’)
grid on
end

function [beta, bO,R_] = svr_standard(X,Y,pl,C,gamma,epsilon)

R_=kernel _matrix(X,X,pl); R=[R_ -R_;-R_ R_];

Y=Y(:);

fi=[ones(size(Y’)) -ones(size(Y’))];

Y=[Y;-Y];

H=(R+gammaxeye (size(R,1)));

f=ones(size(Y’));

OPTIONS = optimset(’LargeScale’,’off’,...
’diffmaxchange’,le-4,’Diagnostics’,’off’);

alpha=quadprog(H,-Y’+epsilonx*f, [],[],f1,0,...
zeros(size(Y’)),Cxf, [],0PTIONS);

beta=conj((alpha(l:end/2)-alpha(end/2+1:end)));

b0 = 0;

svi = find( abs(beta) > epsilon);

svii = find(abs(beta) > epsilon & abs(beta) < (C - epsilon));

if length(svii) > 0
b0 = (1/length(svii))*sum(Y(svii) - ...

H(svii,svi)*beta(svi) .*ones(size(Y(svii))));
end

function [x,b]=generate_data(N,n_elements,phi)

%Simulate data in a N element array

x=zeros(n_elements,N); %Snapshots (row vectors)

b=sign(randn(N,1)); %Data

for i=1:N
x(:,1)=exp(1j*phi*x(0:n_elements-1)’)*b(i);

end

function R=kernel matrix(xtest,x_sv,pl)
N_test=size(xtest,2) ;% Number of test data
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N_SV=size(x_sv,2);
xtest=xtest’;
X_SV=X_sVv’;
D=buffer (sum(abs([kron(x_sv,ones(N_test,1))...
- kron(ones(1,N_SV),xtest?)’])."2,2),N_test,0);
R=exp(-D/(2%p172));% Computation of the kernel matrix

5.6 NONLINEAR SVM BEAMFORMER
WITH SPATIAL REFERENCE

5.6.1 Structure of the Estimator
In Section 5.3, a linear beamformer with spatial reference has been presented that makes use
of the SVM formulation in its linear version. Here we reproduce the generalization of the
algorithm to the nonlinear case, presented in [49, 50].

Assume that a nonlinear transformation x : RY — ((x) : H from the input space R to
a higher dimensional Hilbert space H whose dot product can be expressed in kernel form, i.e.
p(x1)7p(xz) = K(x1,%). The primal functional for the nonlinear beamformer is the same as
in (5.16)

1

Ly=wRw+ ) LE+E)+) L& +¢)

but here the autocorrelation matrix R has the expression

1
R= ]—v@@H (5.34)

& being a matrix whose column 7 is equal to ¢(x;).

The SVM constraints must be adapted to the nonlinear case as follows. Here, the trans-
formations ¢ introduce a nonlinear relationship between input and output. Then, we must force
the desired signal for each possible direction of arrival s,[7] and desired amplitude 7[7].

Re (r[n] — wp(r[nls,[n])) < & — &[n]
Im (r[n] — wp(r[nls,[n))) <& — ¢[n]
Re (—r[n] + wp(r[nls,[n]) < & — &'[n]
I (=r[n] + wp(r[nls,[n])) < & —¢'[n]

rin

(5.35)

The Lagrange analysis gives the result (similar to these of)

w=R®, (5.36)
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where @, = [¢(s[1]), -+, p(sa[N])].
The corresponding dual is

—%sz [B/R'®D + yI|p — Re(ypr) + el + B+ o' + B) (5.37)

where r = [r[1],---, r[V]].
Expressing the inverse of the autocorrelation matrix as R™! = UD~1U#| one can rewrite
the dual as

%W’ [8/UD'UY®, + yI| ¢ — Re(yp"'r) + el(a + B+ o’ + ) (5.38)

The optimization of the dual (5.38) gives us the Lagrange multipliers 1) from which one can
compute the optimal weight vector (5.6.1).

We cannot use this algorithm in its present form, because we may not have access to the
data into the feature space. In order to make the problem handy, we must use Kernel Principal
Component Analysis (KPCA) techniques [53]. Let the autocorrelation matrix in the feature
space be defined as in (5.34). The eigenvalues D and eigenvectors U of these matrix satisfy
DU = RU. Also, the eigenvectors can be expressed as a linear combination of the data set as
U = &V. Combining these two expressions and premultiplying by #*/ we get

1
D&V = @HNSP@H@V (5.39)

Here, one can find the matrix K = & whose element 7, ; is the dot product go(xi)H(p(xj) =
K(x;,x;), that we can compute.

Putting expression (5.39) in (5.38) gives the result

1

§¢H (B/DVD 'V D, + yI|p — Re(vp"r) + ella + B+ o' + 3) (5.40)
The matrix VD~ 'V# = K~ appears, so we can rewrite

%1/)” [K/K'K, + y1] 9 — Re(ppr) + el + B+ & + 3) (5.41)

The first of the two matrices in the above expression is is the Gram matrix of kernel prod-
ucts whose elements are known. The second is the matrix K; = #7&, whose elements are
K (x[n], sz[m]). This dual functional can be now optimized.

Putting Eq. (5.39) into (5.6.1) gives the expression of the weights as a function of the
dual parameters

w=R7®,p = VD VISP o) = DK 'K, 1) (5.42)
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and then the support vector machine output for a snapshot x[72] can be expressed as
y[m] = wox[m]) + 6 = YIKK 1@ px[m]) + 6 = pK,K k[m] + & (5.43)

where k[] = [Kx[1], x[m]), --- , K&[N], x[m])]".
For the autocorrelation matrix to be computed in the Hilbert space, the data must be
centered, which implies [5]

K = K- AK — KA + AKA (5.44)
where A is an N x N matrix whose elements are equal to iM, and
k[m] = k[m] — aK — k[m]A + aKA (5.45)

where a is a row vector whose elements are equal to +.

5.6.2 Examples

We reproduce here the same example as in Subsection 5.5.2 but here we apply the spatial
reference SVM (see Fig. 5.11). Continuous line correspond to the nonlinear SVM with spatial
reference, and the dashed line corresponds to the linear MVDM. As expected, the performances
of both algorithms are similar and clearly outperform the linear ones.
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FIGURE 5.11: Simulations of the linear MVDM and the nonlinear SVM with space reference beam-

formers for 7 array elements
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5.6.3 Matlab Code

The following codes are the functions that perform the spatial reference training and test for
a BPSK signal. This code can be used together with the code used in Subsection 5.5.2 to

reproduce the above experiment.

function [beta,bO,R,r,a_d]=SVM_MVDM_TRAIN(x,s_d,ker,par,gamma,
C,epsilon)

s_d=s_d/norm(s_d(:,1));

x=x/norm(x(:,1));

N=size(x,2);

r=[1;-1]; %Possible Symbols

%These are the steering vectors of the desired directions of
arrival

a_d=s_d(:,1);

a_d=kron(a_d,r’);

%Compute the matrices K and K_d

K=kernel_matrix(ker,x,x,par);
A=ones(size(K))/N;
K_=K-A*xK-K*xA+A*Kx*A;
K_d=kernel_matrix(ker,x,a_d,par);

a=ones (size(x,2),size(K_d4,2))/N;
K_d_=(K_d-K*a-A*K_d+A*xKx*a) ;
%Compute the matrix of the optimization

R_=K_d_’#*pinv(K_)*K_d_x*N;

1=[ones(size(r’))];

H=(R+gammaxeye (size(R,1)));

f=ones(size(r’));

OPTIONS = optimset(’LargeScale’,’off’,...
’diffmaxchange’,le-4,’Diagnostics’,’off’);

alpha=quadprog(H,-Y’+epsilonx*f, [],[],f1,0,...
zeros(size(Y’)),Cxf, [],0PTIONS);

beta=conj((alpha(l:end/2)-alpha(end/2+1:end)));

b0 = 0;
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svi = find( abs(beta) > epsilon);
svii = find(abs(beta) > epsilon & abs(beta) < (C - epsilon));
if length(svii) > 0
b0 = (1/length(svii))*sum(Y(svii) - ...
H(svii,svi)*beta(svi).*ones(size(Y(svii))));

end

function [y]=SVM_MVDM_TEST(x_sv,s_d,beta,b0,x,ker,par)
s_d=s_d/norm(s_d(:,1));

x=x/norm(x(:,1));

x_sv=x_sv/norm(x_sv(:,1));

N=size(x_sv,2);

r=[1;-11;

%These are the steering vectors of the desired directions of
arrival

a_d=s_d(:,1);

a_d=kron(a_d,r’);

%Compute matrices K and K_d
k=kernel_matrix(ker,x_sv,x,par);
K=kernel_matrix(ker,x_sv,x_sv,par);
A=ones(size(x_sv,2))/size(x_sv,2);
a=ones (size(x_sv,2),size(x,2))/N;
K_=K-KxA-AxK+A*Kx*A;
k_=k-Kxa-Axk+A*Kx*a;

K_d=kernel _matrix(ker,x_sv,a_d,par);
a=ones(size(x_sv,2),size(a_d,2))/N;
K_d_=(K_d-Kxa-A*K_d+A*Kx*a) ;

%Compute the matrix
R=K_d_’*pinv(K_)*k_x*N;
y=(beta’*R).’+b0;
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CHAPTER 6

Determination of Angle of Arrival

The capacity of communication systems has limitations due to cochannel interference. For
example, in CDMA, users can share the same frequency at the same time, but the number
of users is limited by the multiuser interference (MUI) (see, e.g. [54]) due to the fact that
the spread spectrum codes are not orthogonal. In real systems, not only the number of users
increases the MUI but we also have to deal with the relative distances of them from the receiver.
If the receiver antenna is able to determine the angle of arrival (AOA) of each user and then
construct different beams for different users and track them, the capacity of the channel can be
considerably increased. In TDMA this problem does not exist as users share the spectrum but
not the time, but the number of users is limited by the available bandwidth. A truly efficient
way to increase the channel capacity is to reuse the available frequencies for those transmitters
which are received from different AOAs. This is only possible if the receiver antenna is able to
determine the direction of arrival of each receiver and, then, construct a beamshape for each
one of the receivers in order to minimize the cochannel interference.

Pseudospectrum computation is used to provide acceptable results in AOA with low
computational burden [38,55]. In these methods, the signal is modeled by an AR model. That
is, the signal is modeled as the output of a linear AR system for which the input is a white
signal. The spectrum of the signal is then equal to the spectrum of the AR. The parameters
are fit using a Least Squares algorithm, which is optimal (in the sense of Maximum Likelihood
[45]) for Gaussian noise. Nevertheless, the algorithm is highly sensitive to impulse noise and
other non-Gaussian noises. Also, the algorithm shows overfitting where the number of samples
used to train the system is low.

The most popular algorithms for determining the angle of arrival are the Multiple Signal
Classification algorithm (MUSIC), introduced by R. O. Schmidt in 1981, and the ESPRIT

algorithm [56]. These algorithms are based on the determination of the noise eigenvec-
tors of the signal and then the computation of its spectrum. Noise eigenvectors are or-
thogonal to signal eigenvectors. This implies that in the spectrum of noise eigenvectors
there will be nulls in those frequencies in which a signal is present [57]. Then, the in-

verse of the spectrum of noise eigenvectors will show infinite values in the frequencies in
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which there is a signal. The inverse of the noise spectrums produces a function which shows
thin spectral lines in the frequencies of the signals. These algorithms are called hyperres-
olution algorithms because the thickness of the spectral lines are much smaller that those
of the Fourier transform of the signal, so the determination of AOA has much more accu-
racy.

There are two main disadvantages of these methods. First, they are computationally in-
tensive, so its real-time implementation has a considerable computational burden. The second
one is that they assume that the antenna elements are exactly equal, so tolerances in the calibra-
tion of them will produce inaccuracies in the AOA computation. If one of the elements fails,
the technique also gives inaccurate results.

An alternative to these algorithms is the use of neural networks [58]. Neural networks
can be trained offline to determine the AOAs of the signal, so the real-time determination
of AOA is less time consuming due to the low computational burden of the operation of the
neural network compared to the one of MUSIC or ESPRIT. Second, one can incorporate the
calibration tolerances of the antenna element into the signal and then the neural network can
compensate them. Then, the ideal element assumption can be removed.

The main drawbacks of classical neural network approaches are that some of them lead to
optimization problems which do not have a single solution, and that the complexity of the used
structures may produce overfitting . Support Vector Machines are a way to construct linear and
nonlinear processors (neural networks) which solve the problem of local minima and overfitting.
Here we present three methods for determination of AOA based on linear and nonlinear SVIM
regressors, and using multiclass SVM classifiers.

The linear method consists of the signal modeling using an AR model and then computing
the model DFT. It is shown to have better performance than the classical AR model based AOA
using a Least Squares algorithm. The second and third ones have hyperresolution performance

with a much lower computational burden.

6.1 LINEAR SVM AOA ESTIMATOR USING REGRESSION

6.1.1 Linear SVM Spectrum Estimator

A direct parametric pseudospectrum estimation can be derived from (4.17). If we set z;[n] =
x;[n] and use the subarray ;[7] = x;41[n] - - - x;4 p_1[7]} then the model is

pP-1

xi[n] = Z wixi 1] + e[n] = w'&;[n] + e;[n] (6.1)
i
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This model is just an AR predictor of the sample x;[7] given the subarray &;. The real real-valued
counterpart has been introduced in [36].
Assuming white noise, the Z transform of this model with respect the variable 7 is

o, o,
X(w) = P—1

- k=1

(6.2)

wégjkw 1-— ’LDTe

where e = {¢/*?}. Applying the result (4.20) to the model weights, the following expression

holds
o

1- Zi,n wi,n&i[n]e

In the denominator we have the support vectors. We must recall that these vectors are a subset

Xw) =

(6.3)

of the whole data set. The quantity of vectors is determined by the value of ¢ in the cost function
(4.22). The selection of this parameter is subject to a trade-off between the quantity of used
support vectors to compute the model parameters w and the introduced noise power. If noise
giln] is present in the data, then we can write the signal as x;[n] = &;[#] + g;[n], where &;[ 7]
is the unknown signal (before adding noise) whose spectrum is to be estimated. Then, the
expression for the model parameters is

w = Z Vi [n] + ) vingi (7] (6.4)

If ¢ =0, all the vectors are used, so, in the absence of noise, we will have the best possible
estimation of x;[7]. If there is noise in the data, setting ¢ > 0 will reduce the presence of noise
in the parameters. It is intuitively clear that ¢ = 0 will result in an overfitting of the model,
which will be trained to fit to the noisy samples rather than the clean signal. A too much high
value of ¢ will reduce the data, so the estimation error will increase. It can be experimentally
seen that for the case of white noise, a good compromise between both limits is setting the value
of ¢ to the noise standard deviation o,,. This is possible for the case of thermal noise, where its
power is usually known. A theoretical justification of this choice for & can be found in [42].

This method can improve classical LS approach for parametric pseudospectrum com-
putation in two ways. First, the solution is robust against outliers, due to the fact that large
errors or outliers are weighted with the same constant C in the solution. Second, when the
pseudospectrum technique is used to detect sinusoids buried in noise, it is relatively easy to
choose a proper value for ¢.

6.1.2 Robustness with Respect to Additive Noise
The Direction of Arrival of two sinusoids of amplitude 1 in white Gaussian noise of power

0?2 = 0.16 has been estimated using the SVM-AR and the Minimum Variance (MV') methods
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FIGURE 6.1: Mean and variance of SVM pseudospectrum using ¢ = o (solid lines) and ¢ = 0 (dotted
and dashed lines). (Source: [10]. Reprinted with permission of Elsevier)

[38]. The number of samples was 30 and P = 10 (model order). A value of C = 0.1 was set to
assure smoothness of the solution. A value of § = 10~ was used, but good results were observed
for a wide range of this parameter.

Figure 6.1 shows the different performance of SVM-AR as a function of . Two hundred
trials with ¢ = 0 and ¢ = o were run, and then the mean and the variance of the resulting spec-
trums were computed. For this experiment, we used a single snapshot (N = 1), and subarrays of
length P = 15 in an array of length M = 30. Experiments with ¢ = o show much less variance
than those with & = 0. Also, a smaller number and amplitude of artifacts is observed. Figure 6.2
shows the comparison between MV and SVM-AR when ¢ = o. It can be seen that SVM-AR
detects the sinusoids where in the MV the presence of artifacts in the pseudospectrum may be
interpreted as signals.

Figure 6.3 shows the mean square error of both methods with respect the noiseless
spectrum in a Gaussian white noise environment, while Fig. 6.4 compares both methods for a
fixed power of white noise and different powers of impulse (super-Gaussian) noise. The impulse
noise is added randomly to a 20% of the samples, and its amplitude has Gaussian density with

power o7.
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FIGURE 6.2: Mean and variance of SVM pseudospectrum using ¢ = o (solid lines) and Minimum
Variance method (dotted and dashed lines). (Source: [10]. Reprinted with permission of Elsevier)
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FIGURE 6.3: DOA error of the SVM and the MV spectrums in additive Gaussian white noise for a
signal containing two DOAS




72 SUPPORT VECTOR MACHINES

10" T

> f, W
—+ MV
E= f1,SVM 1

A 1 SUM ]

Frequency error

-3 I I
0 5 10 15
Noise power

FIGURE 6.4: DOA error of the SVM and the MV spectrums in AWGN of power 1073 plus impulse
noise for a signal containing two DOAS

6.1.3 Matlab Code

function example

%=PARAMETERS=7,

n=15;

A=[1 1 1]; %Amplitudes
doal1d=0.5; %DOA 1 Desired
doa2d=0.65; %DOA 1 Desired
doa2=[0.40 0.6 0.7]; pl1=0.1;

noise_level=10;

noise=10." (-noise_level/20);
C=100; gamma=1e-6;

epsilon=0;

%=TRAINGING SIGNAL=Y,
N_train=100; [x_train,B]=generate_data(N_train,n,pi*doald);



DETERMINATION OF ANGLE OF ARRIVAL

[x_train]=x_train-0.3*generate_data(N_train,n,pi*doa2d);

for I=1:length(A)
x_train=x_train+1*A(I)*generate_data(N_train,n,pi*doa2(I));

end

tr_noise=randn(size(x_train))+1j*randn(size(x_train));

%Adding noise to signals

x_train_noisy=x_train+noise*tr_noise;

%Normalzation of data and SVM training
normalization=diag(l./sqrt(sum(x_train_noisy."2’)’/N_train));

x_tr_nois_norm=(x_train_noisy’*normalization)’;

%0ptimization
[beta, b0,R2] = svr_standard(x_tr_nois_norm,B,pl,C,gamma,epsilon);
w=beta’*x_tr_nois_norm’;

spectrum=abs (fftshift (fft(w,256)));
semilogy (spectrum)

function [beta, bO,R_] = svr_standard(X,Y,pl,C,gamma,epsilon)

R_=kernel_matrix(X,X); R=[R_ -R_;-R_ R_];

Y=Y(:);

f1=[ones(size(Y’)) -ones(size(Y’))];

Y=[Y;-Y];

H=(R+gammax*eye (size(R,1)));

f=ones(size(Y’));

OPTIONS = optimset(’LargeScale’,’off’,...
’diffmaxchange’,le-4,’Diagnostics’,’off’);

alpha=quadprog(H,-Y’+epsilonx*f, [1,[],£1,0,...
zeros(size(Y’)),Cxf, [],0PTIONS);

beta=conj((alpha(l:end/2)-alpha(end/2+1:end)));

b0 = 0;

svi = find( abs(beta) > epsilon);

svii = find(abs(beta) > epsilon & abs(beta) < (C - epsilon));

if length(svii) > 0

73
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b0 = (1/length(svii))*sum(Y(svii) - ...
H(svii,svi)*beta(svi).*ones(size(Y(svii))));

end

function [x,b]=generate_data(N,n_elements,phi)
%Simulate data in a N element array
x=zeros(n_elements,N); %Snapshots (row vectors)

b=sign(randn(N,1)); %Data

for i=1:N
x(:,1)=exp(1j*phi*(0:n_elements-1)’)*b(i);

end

function R=kernel_matrix(xtest,x_sv)

R=xtest’*x_sv;

6.2 NONLINEAR AOA ESTIMATORS
6.2.1 Structure of an AOA Problem on Nonlinear Regression
In [59], Pastorino et al. showed that a nonlinear regressor can be used to solve the problem
of AOA of several signals. Basically, the idea behind it is to use an SVR to approximate the
unknown function x that relates the received signals and their angles of arrival.

A number of input/output pairs are created by considering an NV fixed number of angles
(0o, 01, . .., On_1) and their corresponding normalized array input vectors ( zo, z1, . . ., ZN—1).
These input/output pairs can be used to evaluate the function ¥ which approximates the un-

known desired function , i.e.,
X(@) = (w, o(z))+ & (6.5)

Here @ is the nonlinear function that is used for transforming the input array data from its
original space to a higher dimensional space. The regression risk associated with this SVR is

given by (see Appendix A)
N1y
L,=C) £z'0;)+ = 6.6
> () + o (6.6)
where C = constant and £(2, 6;) is the e-insensitive cost function that was described in Chapters
2 and 3. More specifically, this function can be expressed as (see Eq. (2.74))
0: = Xzl <

o 0
0= N (6.7)
6, — X(z") —¢e 0, — X(z")] > ¢

with ¢ being the allowable error during training.
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Using the dual optimization problem (see Eq. (3.15)), w can be written in terms of the
input data z as [59]

N-1
w= Y (a; — o) p(z) (6.8)
1=0
where «; and &/ are unknown coefficients. Substituting (6.8) into (6.5) yields

N-1

K@= (e —a)lp"). o(2)) + b (6.9)
=0
N—-1 )
X (=) = Z(ai —a)K(=', 2)+b (6.10)
=0

In (6.9) the kernel function that is used on the original space is given by (see Eq. (3.6)):

2
K(z',z9)=e¢ == (6.11)

The parameter C in this case was set equal to 0.82. This number was determined a trade-
off between the capability of the SVR algorithm to estimate the angles of arrival from signals
in the training set and the angles of arrival of the signals that were not included in the training
set.

Following the procedure outline in Subsection 2.2.3, in order to solve the constrained
optimization problem in (6.10), we must use Lagrange multipliers to convert it into an uncon-

strained problem. Thus, we get [59]

N-1 N—lw 1N—1 ) )
Lia, o) = — i+ 0" (; — ;) — Lt o)l —a)K(z, 7)) (6.12
(@, a)=—-€) (a +al)+; ( — i) 2Z(a,+a)(a, @)K(z',z’) (6.12)

i=0 i.j=0

To demonstrate the validity of this approach, Pastorino et al. [59] examined several
scenarios. Figure 6.5 shows a case where there are two impinging signals, separated by 15°.
The figure shows how well the SVR can estimate the angle of arrivals for the two signals as a
function of sample number. The number of sample used for the test set was 166. Figure 6.6
depicts another example where the signals are separated by 17.5°. In Fig. 6.7 the SVR algorithm
is compared with two other techniques, MUSIC and Neural Networks.

Next, another approach, using multiclass classification, for determining the angles of

arrival is presented.
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FIGUREG®6.5: Comparison of actual and estimated values for AOAs for two impinging signals (separated
by 15°) versus the sample number. (Source: [59]. Reprinted by permission of IEEE)

6.3 NONLINEAR SVM ESTIMATOR USING
MULTICLASS CLASSIFICATION

6.3.1 Structure of an AOA Based on a Multiclass Classifier

Rowher et al. [60,61] developed a multiclass Least Squares-SVM (LS-SVM) architecture for
AOA estimation as applied to a CDMA cellular system. One-vs-one multiclass classification is
based on the extension of binary LS-SVMs. For M distinct classes one can construct M(M —
1)/2 hyperplanes that can separate these classes with a maximum margin during the LS-
SVM training phase. For one-vs-one multiclass classification the Decision Directed Acyclic
Graph (DDAG) technique [62] is employed. This technique uses a tree structure to compare
the test data to each of the hyperplanes. Through a process of elimination the closest label
is assigned to the input vector data. The LS-SVM algorithm developed in [60] for AOA
estimation is based on the DDAG architecture. Figure 6.8 shows an example of a DDAG
architecture with each each node containing a binary LS-SVM classifier of the 7th and jth

classes.
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FIGURE6.6: Comparison of actual and estimated values for AOAs for two impinging signals (separated
by 17.5°) versus the sample number. (Source: [59]. Reprinted by permission of IEEE)

This LS-SVM AOA estimation algorithm can be broken in the following 5 stages:

*  Preprocessing for SVM Training Data
— Generate the L x N training vectors for the M SVM classes. L represents the
number of antenna elements in the array and NV the number of input data samples
used for training.
— Generate the sample covariance matrices from the data vector.
— Calculate the signal eigenvector from each of the M sample covariance matrices.
— Calculate the L projection vectors for each of the M classes.
— Store the projection vectors for the training phase and the eigenvectors for the testing
phase.
* LS-SVM Training
— Using the projection vectors train the M(M — 1)/2 nodes with the one-vs-one LS-
SVM algorithm.
— Store the LS-SVM Lagrange multipliers ¢; and the bias term b (see Eq. (2.1)).
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Preprocessing for SVM Testing

— Determine the L x N input signal from the antenna array.

FIGURE6.7: Comparison of estimated values for AOAs versus the sample number against the standard
Music algorithm and with a NN-based technique.(Source: [59]. Reprinted by permission of IEEE)

— Obtain the sample covariance matrix with samples from the L x N data vector.

— Find the eigenvectors for the signal subspace and the noise subspace.

— Calculate the covariance matrices for each eigenvector.

LS-SVM Testing for the ith/;th DDAG Node

Obtain two projection vectors with the desired eigenvector covariance matrix and

the 7th and sth eigenvectors stoted during the training phase.

Test both projection vectors against the LS-SVM hyperplane for the ith/;th node.

Evaluate the mean value of the two LS-SVM output vectors (labels). Select the

closest mean value to a decision boundary (0 or 1).

Compare this value to the label definition at the DDAG node, then assign the proper

output label.

Repeat the same process for the next DDAG node in the evaluation path or declare

the final DOA label.
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FIGURE 6.8: LS-SVM for DOA estimation for five classes with 4 degrees of separation between each

+ LS-SVM DDAG Error Control
— Review the mean square error calculations for the DDAG evaluation path.

— Apply error control and classify the label as either an accurate AOA estimate or as
noise.

6.3.2 Simulation Results
Simulations of the LS-SVM DDAG AOA estimation algorithm are based on a complex system
model that includes amplitude and phase distributions that describe the communication channel

1n use.

79
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FIGURE 6.9: LS-SVM for DOA estimation, four classes with 10 degrees separation between each

To demonstrate the functionality of this approach an antenna array with eight elements
was used The LS-SVM system includes five AOA classes and six DDAG nodes. Figure 6.9 de-
picts results for a different degree range per class. To test the DDAG capabilities the simulations
were automated to test a wide range of AOAs. As can been seen from Fig. 6.9 the LS-SVM
DDAG AOA estimation algorithm is extremely accurate. Additional simulations show that
the LS-SVM DDAG system accurately classifies the AOAs for three to ten classes and AOA
ranges from 1 degree to 20 degrees.
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CHAPTER 7

Other Applications in

Electromagnetics

SVMs have also been used in several other applications in electromagnetics such as automatic
target recognition in radar [63,64], remote sensing [65,66] and in the intelligent alignment of
waveguide filters. Moreover, SVMs have been used in the fault detection of digital microwave
radio communication equipment and electrical machines [67]. Here we are going to show a

couple of recent examples that have been used successfully in electromagnetics.

7.1 BURIED OBJECT DETECTION
SVMs are very suitable for real-time inverse scattering problems in electromagnetics since
the inverse scattering problem can be casted as a constrained quadratic optimization problem.
Bermani et al. in [68] considered a two-dimensional space problem shown in Fig. 7.1

The figure represents a pipe buried in a lossy inhomogeneous medium. The parameter
characterizing the scatterer are €, and o. if the line source located at (x;, y,) is radiating then
the scattered field at the observation point (x,, y,) can be expressed as:

E“ %y, y,) = E) (%7, y,) + kz/ E,(x,y)- Glx, —x, 9, —y) F
D
X[(x —x,, 9 — y,), p. €, 0)dxdy (7.1)
where E¢ is the electric field inside the domain filled with the background lossy medium. G
is the Green’s function [68] and F(x, y) is the dielectric profile of the medium. The aim is to

determine the location, shape, and dielectric properties of the buried object from the scattered

field E°“(x,, y,). Mathematically, the problem can be casted as
y = O[E] (7.2)

where y is the scatterer data array described in terms of position, radius, €, and o. £ can also
be written as an array of sample data as shown in Fig. 7.1.
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FIGURE 7.1: Geometry of a buried object. (Source: [68]. Reprinted by permission of IEEE)

To use SVM on Eq. (7.2) the problem must be reformulated as a regression problem
following the procedure outlined in Chapter 2. The unknown function ® must be evaluated
from several sets of I/O data pairs of vectors {y,, E&“} forn=1,..., NV.

In [68], Bermani et al. verified the SVM algorithm using a buried circular cylinder with
an electric line source, located at A, /6 above the air—soil interface. The dielectric constant of
the cylinder is €, = 5.0 and its radius p = A,/12. The subsurface region is characterized by
€, = 20 and 0, = 1072 S/m. The E** data was generated in this example using an FEM code
but any code or experimental data can be used. 16 equally spaced points were used to sample the
field at y, = 21,. Figure 7.2 depicts the estimated versus the actual scatterer properties. Some
additional work in using SVMs for the detection of buried objects can be found in [69].

7.2 SIDELOBE CONTROL

In Chapters 5 and 6 it was shown SVMs can be used for beamforming and estimating the direc-
tion of arrival (DOA). Gaudes et al. [70] demonstrated how sidelobe control with beamforming
can be optimized using SVMs. This was achieved by modifying the basic MVDR beamforming
problem by adding additional constraints as a regularization term of the array output power and
the problem was converted into a quadratic programming problem similar to that of a classical
Support Vector Regressor. The derivation of the optimization problem can be found in [70].
Here we show some of the results obtained from that work.



OTHER APPLICATIONS IN ELECTROMAGNETICS
05 el

0.1

Estimated
i

Actual
(2)

0.5 - )

0.3 + - - : - — - —_ - -::—;—-x:i:-—--::- '

0.1 - | ) }Fj £

Estimated

-0.5 -0.3 -0.1 01 0.3 0.5
Actual
ey
FIGURE 7.2: Estimated versus real scatterer properties object. (a) x, /4, and (b) y,/A,. (Source: [68].
Reprinted by permission of IEEE)

7.2.1 Examplel

The first example assumes that the source steering vector is known exactly and that power of
the signal of interest (SOI) has a power level of 10 db and the interfering signals are at the 30
db level. Moreover, the angle of arrival for the SOI is at 6, = 0° and the directions of arrival
for the interfering signals are at ; = —30°, 6, = 30°, and 63 = 70°. Fifty snapshots (V. = 50)
were used to compute the correlation matrix. Figure 7.3 depicts the array patterns of the SVM
approach for two cases of SNR as compared to two other beamformers (the Capon Beamformer
and (SpheRCB) a robust array beamformer that includes a spherical type of constraint [71]). The
vertical lines in the figure are used to indicate the location of both the SOI and the interfering

83
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FIGURE 7.3: Patterns for 3 different beamformers: SVM (solid line), SpherCB (dotted line), and the

Capon Beamformer (dash-dotted line). (a) SNR = 5 dB, (b) SNR = 30 dB. (Source: [70]. Reprinted by
permission of IEEE)
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signals. One can see from the this figure that the SVM approach yields lower sidelobes, especially
for low SNRs.

7.2.2 Example2

In this case the steering vector included some error. The actual desired DOA was set at 6, = 0°
and assumed desired signal (that is the error) at 0, = 2°. The rest of the parameters are the same
as in the previous example. From Fig. 7.4 one can see that the Capon beamformer classifies
the signal at 2° as an interfering signal. The SVM and SpheRCB approaches classify the signal
correctly but only the SVM yields lower sidelobe levels as well.

H H H H H i L L i L L L L i L
80 0 40 20 0 20 20 60 80 -80 60 40 20 0 20 40 60 20
Angle of Arrival (degrees) Angle of Arrival (degrees)

(a) (b)

FIGURE 7.4: Patterns for 3 different beamformers: SVM (solid line), SpherCB (dotted line), and the
Capon Beamformer (dash-dotted line). (a) SNR= 5 dB, (b) SNR= 30 dB. (Source: [70]. Reprinted by
permission of IEEE)
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FIGURE 7.7: (a) The §11 of an untuned filter. Center frequency = 10.531 GHz, bandwidth = 0.136
GHz, and minimum loss = —26 db. (b) The MLS output of the filter. (Source: [72]. Reprinted by
permission of IEEE)

7.3 INTELLIGENT ALIGNMENT OF WAVEGUIDE FILTERS
In 1989, Mirzai et al. [72] adopted a machine learning system in a way that it can assist an
unskilled operator to accurately tune waveguide filters. Figure 7.5 shows the top view of a cavity
waveguide filter with two types of screws. the bigger size screw is used for tuning purposes,
whereas the other for coupling purposes.

The process of applying the SVM approach in this case is shown in the flow chart in
Fig. 7.5. As shown it is a two-step process that can be used to tune waveguide filters in a very
systematic and accurate way. The high level of interaction between adjacent screws and their
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FIGURE 7.8: (a) The MLS output of the filter after four adjustments. (b) The S1; of the tuned filter.
Center frequency = 10.532 GHz, bandwidth = 0.138 GHz, and minimum loss = —32 db. (Source: [72].
Reprinted by permission of IEEE)

effect on the sensitivity of the filter is also an issue that has to be taken care of during the training
of the SVM.
Figures 7.6 and 7.7 show how the output of the MLS (machine learning) algorithm and

the 811 characteristics for an untuned and a tuned filter, respectively.







APPENDIX A

The Principle of Structural
Risk Minimization

A.1 ACTUAL RISKAND EMPIRICAL RISK

The underlying task in classification or regression is to find a rule or function which assigns
a scalar y to a vector x. One possibility consists of choosing a family of parametric functions
f(x, w), where w are the parameters. Then, the function f(x, w): X — ) is estimated by
adjusting aw.

Adjustment of parameters has to be done accordingly to a given optimality criteria. The
actual performance of the machines can be measured by its risk

() = f 0(f(aw, x), y)d Plx. y) (4.1)

where P(x, y) is the probability distribution of the pairs (x, y) and £(-) is a function chosen
to take a measure of the output error, or /oss function. In binary classification, the indicatrix
function I( /(x, w = y)) is often used. The most commonly used loss function for regression
are the square function £ = (f(w, x) — y)2 and the absolute value £ = | f(x, w) — y|.

The measure L( f) is the so-called risk or generalization error. As P(x, y) is not known,
all knowledge must be taken from the available data set {x, y}.

The first approach one can take is to minimize the measured empirical risk by taking a
suitable loss function.

1 N
=1

where Vis the number of available samples. The intrinsic principle applied to this procedure is
the assumption of that the risk L of the machine monotonically approaches the empirical risk
L,,. In general, this assumption is not true. The empirical risk of the function ( /(w, x), y)) can
be arbitrarily low depending on the complexity of it.
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For example, one may attempt to minimize the regression function for the system y; =
Ax; + g; where g; is the observation noise. If the family of Gaussian functions f(x, w, o) =
>, wrG(x, o) is chosen as a regressor, the parameter set w which reduces to zero the empirical
risk can be obtained. But the resulting function will not approximate well the linear function
y = Ax unless the noise is zero.

This is an example of the phenomenon known as overfitting. Overfitting is a consequence
of a lack of knowledge of the statistical properties of the data. The first approach of minimizing
the empirical risk assumes that overfitting will monotonically decreases with the number of
data, but this may not be true, as in the example above.

To make the empirical risk monotonically approach the actual risk, one classical strategy
is to use a sequential training algorithm, and use a second data set called va/idation set, not used
for training, to measure its empirical risk. The goal is to minimize the empirical risk of the
validation set.

Another strategy which one can use is to use a technique to control the complexity of the
machine [73]. It is clear that if we constrain the expression ability of the above machine, we will
obtain a smoother solution, which will approximate better the given system. Trying to control
the complexity of a machine is often called regularization [27].

A.2 COMPLEXITY CONTROL BY MEANS OF SRM

The regularization technique used in Support Vector machines is the so-called Structural Min-
imization Principle. It has been proven [1,3] that the actual risk Z( /) of a machine is bounded
with probability 1 — p by

I+ \/blog(ZN//J) — log(p/4) 43)

N

where 5 is called Vapnik—Chervonenkis (VC) dimension. The VC dimension is a measure of
the complexity of the machine. The second term of the expression is the Structural Risk of the
machine. Two terms control the generalization ability of the machine, the first one being the
number of samples NV, as is intuitive. The other one is the VC dimension. By decreasing this
parameter (equivalently decreasing the complexity) the generalization ability increases. On the
other side, if the VC dimension decreases too much, the resulting machine may not be able to
express the data, thus increasing the empirical risk.
Vapnik also provides a proof of that for a linear machine

y = wlx+ b (A.4)
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used to approximate the set x;, y; with ||w|| < A and being the the VC dimension is bounded
by

h < AR (4.5)

R? being the smallest ball containing the data.

This gives us a rule to minimize the complexity: minimizing the norm of the vector w
maximizes the generalization ability. One can also see from this result that the complexity of a
linear machine not just consist of its number of parameters in w, but also of its norm.

There is no mean to measure the VC dimension of an arbitrary machine, but the above
rule can still be used to minimize the complexity of certain nonlinear machines. These machines
are constructed using the rather old kernel trick, which are explained in Chapter 3.
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APPENDIX B

Linear Support Vector Classifier

B.1 MINIMIZATION OF THE SRM IN A LINEAR CLASSIFIER

A binary classifier is a function f : X — ) which maps a set of vectors x into scalars (or labels)
y € +1, —1. A linear classifier is constructed by means of a separating hyperplane

N=w/x+4=0 (B.1)
The classification rule can be written as
y = sign(w’x + 5) (B.2)

The Structural Minimization Principle here is applied by controlling the norm of the
vector w. An intuitive explanation of this is choosing the following heuristic: provided all the
available sample can be classified without any missclassification, the best one can do is to place
the separating hyperplane at the maximum possible distance of the nearest points x; subject to

the constrain (Fig. B.1)
yi(w’x; +8) > 1 (B.3)

This constraint means, simply, that the sign of the classifier output and the sign of the label
must be equal in all cases.

In practical situations, the samples are not linearly separable, so constraints (B.3) cannot
be satisfied. For that reason, slack variables must be introduced to account for the nonseparable

samples. Then, the optimization criterium consist of minimizing the (primal) functional [74].

1 N
Ly =Slwl?+C) & (B.4)
i=1
subject to the constraints
yilwla; +6) > 1§ (B.5)

The values of & must be constrained to be nonnegative. If the sample x; is correctly classified
by the hyperplane and it is out of the margin, its corresponding slack variable is & = 0. If it is

well classified but it is into the margin, 0 < &; < 1. If the sample is missclassified, then & > 1.
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FIGURE B.1: A rule to optimize a separating hyperplane is to maximize its distance to the nearest
samples

The term 1/2 in the functional (B.4) is placed for computational convenience. The term C
is a parameter to adjust the trade-off between the minimization of the parameters (minimization
of the VC dimension) and the minimization of the empirical error. A low value of C will lead
to a low complex machine, but too low values will not be able to express the data, while a too
much high value of € will lead to a machine whose empirical error is low, but that will have
poor generalization ability. The value of C is, thus, a parameter to heuristically adjust, though

several approaches avoid the search for C in some cases [43].

B.2 SOLVING THE FUNCTIONAL

In order to optimize the constrained functional (B.4), we need to make use of Lagrange multi-
pliers. First, the constraints must be rewritten as

T
yilw'x; +0)—1+& >0 (B.6)
§ =0 '
We must minimize a functional with respect to w and &; and we need to maximize it with respect
to the constraints. The corresponding primal-dual functional to minimize is then constructed

by substracting a linear combination of the constraints to the primal

1 N
L],d:§||fw||2—|-C;§l Y ailyiw’x; +8) — 1+ ] Zusl (B.7)
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where «;, B; are the Lagrange multipliers. The Karush—-Kuhn—Tucker (KKT) conditions [75]

for this problem are

ow
dL
pd
=0
A (B.8)
0
o, i =0 (B.9)
aiyil(w'x; +4)—14+£]1=0 (B.10)
Applying the KKT conditions (B.8) leads to
L i
P4 _ e —
Py _w—;alyix, =0 (B.12)
dL
f’d Za ;i =0 (B.13)
dL
3;d =C— o — U = 0 (B.]4)

The result (B.12) gives the solution for the parameters

N
w = Zaiyix,- (B.15)
=1

Combining these equations with the primal-dual leads to the dual functional

———ZZaa]yij, x]—i-zaz (B.16)

=1 j=

which can be written in matrix format as

1
L;= —EaTYRYa +a (B.17)
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o being a column vector containing all the Lagrange multipliers «;, ¥ a diagonal matrix of the
form Y;; = y;, and R being the matrix of dot products

R;; = xiij (B.18)

Note that condition (B.11) eliminates the last term of the functional (B.7). Also, it is easy to
see from condition (B.11) and (B.12) that

O<o; <C
ifa; < C,then& =0 (B.19)
ifé& > 0,thena; = C

Then, the slack variables does not appear in the dual formulation because term C ) &; cancels
with Z Olifl'.

This functional is a quadratic form, and it can be solved using quadratic programming
[32] or other techniques [76].

Only a subset of the Lagrange multipliers will have a nonzero value in the solution, while
the others will vanish. Their associated samples are the so-called Support Vectors.

In order to compute the value of 4 one has to take into account that if o; < C, then
& =0, as stated in (B.19). Then, it is easy to compute 4 from condition (B.10) for any sample
x; for which o; < C. In practice, it is numerically convenient to average the result of 4 for all
samples with o; < C.

Some of the eigenvectors of R may have very small associate eigenvalues, leading to an
ill-conditioned problem. This inconvenience is overcome as usual by adding a small identity
matrix. Then, the dual to solve will be

1
L;= —EaTY[R+ yIlYa + o (B.20)

The introduction of this identity matrix is known to have an equivalent effect as modifying
the loss measure over the slacks in (B.4). There, a linear loss function is applied. Adding the
identity is equivalent to apply a quadratic cost function to the slacks whose value is less than
y C and a linear cost function to the others. We formalize this in Appendix C for the case of
regression SVIM.
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APPENDIX C

Linear Support Vector Regressor

C.1  APPLICATION OF THE SRM TO REGRESSION
A regressor is a function f : R” — R which maps a set of vectors x € R” intoaset y € R. A

regressor is constructed as
y(x) = wlx + b+ e(x) (C.1)

where €(x) accounts for the approximation error. Regression has been widely used in many
areas, among them, model estimation, linear prediction [55], equalization [45], others, and, of
course, array signal processing [57], in time and frequency domains.

Classical approaches use to apply a Minimum Squared Error strategy (MSE) of the
available data, making the assumption that it is corrupted by additive Gaussian white noise
(AWGN). Then, the best one can do is to use a MSE algorithm, as it is the Maximum
Likelyhood (ML) function for AWGN. Nevertheless, one cannot directly minimize the actual
Least Squares function because the parameters of the noise distribution are unknown. A simple
MSE may then result in overfitting. In order to make the resulting machine robust against
overfitting, a number of regularization techniques exist. Moreover, MSE is not the best one
can do when, in addition to the unavoidable observation AWGN, other non-Gaussian noises
are present. This is often the case in communications. In these applications multiuser noise,
which is not Gaussian [77] or impulse noise may be present. Then, the MSE is no longer
the ML function. In these situations, it is worth to apply a more robust cost function, as the
Huber Robust cost function [40]. Using the SRM Induction principle, a form of the Huber
cost function is applied in a natural way.

The regularization provided by the SRM Principle can be applied here [30, 78] in a
similar way as in Support Vector Classifiers. The information taken from the data is, obviously,
in the parameters w, 4. These data will be limited, usually only small data sets are available.
If the training attempts to extract too much information from the data, the system will show
overfitting, and attempting to extract low information will lead to an undertrained machine.
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So, we can formulate an heuristic to traduce this trade-off into a functional:

Find the linear machine which approximates the correspondence
Sfunction between x and y using the minimum possible energy from the
data.

As we have seen in Appendix B, the parameters w resulting of the application of the
SRM is a linear combination of the input data, which has the minimum possible norm. Using
the SVM will lead to a direct interpretation of the above heuristic. Following it results in the

minimization of the primal functional

1 2 . /
Ly = llwl?+ ;E@, &) (C2)
subject to the constraints
yi—wxi—b<&+e
—yitwxi+b<E+e (C3)
£, >0

where the first expression is to be applied for positive errors and the second one for negative
errors. Again, slack variables &;, &/ are forced to be nonnegative. Obviously, for each sample x;
only one of the slack variables will be different from zero. Parameter ¢ is used here to discard
from the solution those samples whose output error are less that €. In other words, we allow
the positiveness of the conditions for estimation errors less than €. That way, following a KKT
condition similar to (B.10), all Lagrange multipliers associated to samples with &;, £/ < ¢ will
be zero. The solution for the Support Vector Regressor will be sparse, as it is for the case of
classification.

If we simply choose £(§;, &) = &; + &/ into (C.2), this is equivalent to apply the so-called

Vapnik or e-insensitive loss function, which is [30, 78]

Le=1" k= (c.4)

|&] — e otherwise

C.2 ROBUST COST FUNCTION

The optimization of primal (C.2) leads to a quadratic form, but the problem may be again
ill-conditioned, so we need to add a small identity to the dot product matrix as we previously
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FIGURE C.1: Cost function with e-insensitive, quadratic, and linear cost zones (e¢ = ¢ + y C)

did for the classification problem above. In order to find an interpretation for this small identity,

we slightly modify the loss (C.4). The loss that we apply has the following expression [10]

0 ] < e
LE) = | 5 (&l — &) e <|E] <ec (C.5)
C(lel—e)— 3y C? &l = ec

where ec = € + Y C; ¢ is the insensitive parameter, and y and C control the trade-oft between
the regularization and the losses. Three different regions allow to deal with different kinds of
noise (see Fig. C.1): e-insensitive zone ignores errors lower than €; quadratic cost zone uses
the Ly-norm of errors, which is appropriate for Gaussian noise; and linear cost zone limits
the effect of outliers. Note that (C.5) represents Vapnik e-insensitive cost function when y is
small enough, and Huber’s [40] cost function when ¢ = 0. y also plays the role of numerical
regularization in the quadratic problem.

In most situations, the noise present at the signal output is the sum of thermal noise
plus other contributions coming from external interference, which are usually sub-Gaussian. In
these situations, the probability density function (PDF) is the convolution of both PDFs, but a
good approximation near the origin is the Gaussian one. Then, a L; cost function will give the
maximum-likelihood (ML) estimator. Far from the origin, the sub-Gaussian approach is the
more convenient one. Then, a L,, p < 1 (sub-linear) cost function will give the ML estimator.
Nevertheless, to assure convergence, the cost function must be convex. The lowest degree cost

function which is convex is p = 1, so the most convenient cost function far from the origin
1s Ll.
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C.3 SOLVING THE FUNCTIONAL
The primal which fits the loss function (C.5) is

1 1 C
LP=§||«w||2+5;(&%&’2)%2(&% —%) (C.6)

I, I, are the sets of samples for which losses are required to have a quadratic or a linear
cost, respectively. These sets are not necessarily static during the optimization procedure. The

constraints are the same as in (C.3), which we rewrite as

—yi+wlx;+b+E+e>0
yi—wla;—b+&E +e>0 (C.7)
£,5>0

The corresponding primal-dual Lagrange formulation is

o
Lya ——||fw|| +2VZ(§2+E/2 —|—CZ(§Z+§ _VT)

lGIl ZEIZ

—i—Za —awlx; —b— EZ—S)

(C.8)
+Z“;‘(_}’i+‘wai+b—'§i —¢)
N N
- Zm%i - Z WiE!
i=1 i=1
The KKT conditions for the present problem are
ow
dL
—1 =0 .9
db (c9)
aLPd — 0
d&;
o, o, Wiy 1 >0 (C.10)
o (—yi+wla;+b6+&+¢)=0
adi(yi —wla;, —b+& +e)=0 (C.11)

wi&i, wig =0 (C.12)
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If condition (C.9) is applied, the following results hold

N
w= Z(ai —al)x; (C.13)
i=1
N
Z(ai —a)=0 (C.14)
i=1
1 .
—§—a;—p;=0,1€h
Y (C.15)
1
—& —al—pn,=0,i€
Y
C—o;,—u; = 0, € I
dim ref (C.16)

C—ua—u.=0,1eh

Result (C.13) is the solution for the parameters w. Also, we can see that, as & > 0 in intervals
I and b, then p; = 0 in these intervals. From expressions (C.15) and (C.16), the following
equality holds for the Lagrange multipliers «; (and, equivalently, for o))

C &>e+yC
o = % e<&<e+yC (C.17)
0 0<é§=<¢

which is just the derivative of the cost function (C.5).
Now, we can apply expressions (C.12), (C.13) and (C.17) to the primal-dual functional
(C.8), obtaining the dual

=1 i=1
N
+ > (e — a))y; — (0 + a))e) (C.18)
=1
— Z (Ol 4 /2) _ Z VCZ
1611 1612

Taking into account again that, in interval L, «;, o) = C, we can change the last term of
(C.18)by > icr %(Otz-2 + 0522). With that, the expression becomes

=—c Z Z(az z/')xiij(“j - a})

111

(C.19)

+

N
=1

((ozZ — (o +al)e — E(a +a! ))
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A matrix expression of this equation can be easily found by rearranging terms and taking into
account that o;a) = 0

L,= —%(a — ) [R+yIla—a)+(a—a)y—(a+a)le (C.20)

In this equation the numerical regularization term is y, as we claimed at the beginning of the
section. This parameter has an interpretation in terms of the applied cost function. Applying
it is equivalent to apply a cost function which has quadratic interval between ¢ and ¢ + y C. If
the motivation for the use of y is to raise the values of the eigenvectors of R, then, its value
is very low small, and the quadratic interval is negligible. Nevertheless, greater values of y can
also be used in order to make the interval wide enough to include all the data which is mainly
corrupted by AWGN, letting the linear interval to the outliers, or samples corrupted by impulse
or other sub-Gaussian noises.
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