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PREFACE

The IMA Conference on the “Applications of Combinatorial Mathematics”
was held at Wadham College, Oxford, between the 14th and the 16th of De-
cember 1994. A total of 24 papers were presented, and 16 of these papers are
included in this volume.

In the last thirty years, combinatorial mathematics has found itself at the
heart of many technological applications. This conference was intended to give an
opportunity for papers to be presented on a wide range of different applications
of combinatorics. There were two main aims in promoting a conference of this
type: to stimulate combinatorial mathematicians to pursue new lines of research
of potential practical importance, and to inform all of those who attended of the
breadth of the application domain.

The consensus of those attending was that the conference met these objectives
very well. Although, or perhaps because, the conference was a small one, a lot
of fruitful exchanges of ideas took place in a warm and friendly atmosphere.
The range of papers was at least as wide as we could have anticipated, covering
topics as diverse as: neural networks, cryptography, radio frequency assignment
for mobile telecommunications, coding theory, sequences for communications
applications, interconnection networks, data types, knot theory, radar, parallel
processing, network reliability, formal specification of programs and protocols,
and combinatorial optimisation.

As editor of these proceedings I would like to thank three groups of peo-
ple without whom the conference could not have been the success that it was.
Firstly I should thank the programme committee and the referees, including
S. Blackburn, A. Camina, G. Carter, T. Etzion, R. Hill, P. Jeavons,
A. Johnstone, R. Leese, C. McDiarmid, P. Mukherjee, K. Paterson, S. Schneider,
J. Shawe-Taylor, M. Walker, P. Wild, B. Wilson, L. Wolsey and D. Youngs. Sec-
ondly I must thank all the many people at the IMA, for deing much of the hard
work in preparing these proceedings, in particular Pamela Bye, for making the
conference the success that it was. Thirdly, I would like to thank all the authors
for taking the time to prepare and revise their papers for these proceedings.

Chris Mitchell
Royal Holloway, University of London
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The Combinatorics of some Abstract Data
Types

M.D. Atkinson and D. Tulley

School of Mathematical and Computational Sciences, University of
St. Andrews, Scotland

Abstract

Abstract data types (ADTs) may be regarded as abstract machines and
then a program for an ADT is any sequence of operations allowed by its
specification. The effect of such programs on container ADTs is captured
by the relationship between each input sequence and the set of possible
output sequences that can result from it. This relationship is studied
principally in the case of dictionaries, stacks and priority queues and a
distinction is drawn between ADTs of unbounded and bounded capacity.

1 Introduction

Abstract machines have a long and honourable history in Computer Science.
Turing machines, push-down automata, and finite-state machines are three well
known types; they have been used to study general purpose computers, compil-
ers, and string manipulation although their importance goes well beyond these
three applications. The central theoretical issue for these (and other) machines
is the characterisation of the languages associated with them. The aim of this
paper is to study some abstract data types in the same spirit.

Abstract data types (ADTs) have a relatively short and honourable history.
They are central to the point of view adopted in object-oriented programming
{which is setting the direction of programming in the 1990s) and which now
permeates all large software projects. Although abstract data typing was ini-
tially adopted primarily for its use as a software design tool it has always been
recogunised that each data type had a rigorous mathematical definition.

Each ADT is characterised by the set of operations that can be performed on
it. Therefore an ADT can be regarded as an abstract machine whose instruction
set is the set of operations it supports. Some of these operations may supply
input or output while others may examine or change the state of the ADT. The
precise specification of these instruction sets has been studied in considerable
depth by algebraic means (see [9,10] for a survey). However, the classical abstract
machines are studied at a much deeper level; their behaviour in response to
arbitrary sequences of nstructions (i.e. programs) is studied and this behaviour
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Table 1. Some ADTs and their delete operations

Name of ADT  Delete Operation

Queue Delete the item that has been in the queue the longest

Stack Delete the item that was placed in the stack most
recently

Dictionary Delete any item

Priority queue Delete the smallest item

is captured by the idea of the language recognised by the machine. As yet, such
a study has hardly begun for ADTs although, as indicated below, there is a very
natural extension of the language notion to ADTs.

There is an infinite number of data types and it seems to be infeasible to give
a general theory of their associated languages which has deep implications for all
of them. However, in practice, only a small number of ADTs recur frequently in
software and algorithm design (stacks, queues, arrays, dictionaries etc) and it is
perhaps more profitable to study only those which have demonstrable software
utility.

This paper will concentrate on container ADTs: those for which Insert and
Delete operations are defined. Such ADTs act as data transformers, outputting
their input data in a permuted order. If, except for house-keeping operations,
Insert and Delete are the only operations supported by the data type then the
functional behaviour of the ADT is essentially defined by the possible ways in
which it can permute the data. A sequence of Insert and Delete operations
constitutes a program for the ADT when it is regarded as a machine. For such
an ADT it is not sensible to define its associated language to be the set of input
sequences that lead to an accepting state, since that discards so much essential
information about the output. Instead, we propose that the assoclated language
should be defined to be the set of (input, output) pairs of sequences that can
arise from the execution of an ADT program (indeed, even for Turing machines,
this definition is attractive since it avoids fudges about how the mput is to be
encoded). As we shall see, there are a number of questions about the language
associated with an ADT whose formulation and solution require combinatorial
machinery. We shall list some of these questions and then go on to discuss their
solutions for some particular data types.

The different container data types are generally distinguished from each other
by the type of Delete operation that they support. Table 1 shows four common
container data types and the properties of their Delete operation.

Let A be any container data type. We shall consider only programs for A
which begin and end with A in the empty state; this represents the normal way
that a container data type would be used. Such a program then consists of a
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sequence of Insert and Delete operations in which every initial segment contains
at least as many Inserts as Deletes (this condition is to ensure that a Delete
operation is never executed when A is empty) and having equal numbers of
Inserts and Deletes (to ensure that the final state of A4 is empty). Let o be any
sequence of length n and let P be any program with n Inserts and n Deletes.
The execution of P with o as the input sequence results in the members of &
being inserted into A in order of occurrence in o; the Delete operations generate
a sequence 7 which we call the output of P. A pair (o, 7) which is related by a
program P in this way is called allowable (or A-allowable when the ADT cannot
be deduced from context). The set of allowable pairs is denoted by L(A4) and
is called the language associated with the data type A. Basic combinatorial
questions about L(A) include:

1. How many A-allowable pairs with each component of length n are there?

2. Is there a characterisation of the A-allowable pairs that enables them to
be recognised quickly?

3. Is there an efficient algorithm that, given an input sequence o, can deter-
mine how many A-allowable pairs (¢, 7} there are? And, dually,

4. Is there an efficient algorithm that, given an output sequence 7, can deter-
mine how many A-allowable pairs (o, 7) there are?

In practice, container ADTs generally have a bounded size, either enforced
by their implementation or the physical limits of the hardware, so it makes sense
to consider the above questions when no more than k elements can be stored
at any time in the ADT. We therefore introduce the idea of k-allowability by
defining the language Ly(A4) of a k-bounded ADT A to be the set of allowable
pairs (o, 7) for which there is a program P which can transform o into 7 without
requiring more than k elements to be stored at any one time.

There are other variations we can introduce as well. We have not yet stip-
ulated what form the input sequence takes; it could be taken as a sequence of
distinct elements (which we can assume to be the elements 1,2,...n in some
order, without loss of generality), as a word over the binary alphabet, or as a
reordering of an arbitrary multiset S = {19:,2% ... ror}.

This leads to a large number of questions to be studied and we shall present
at least partial solutions to many of them in this paper. In Section 2 we present
results about dictionaries concentrating mainly on the case when the input se-
quence is a word over the binary alphabet. Then, in Section 3 we consider stacks
and show that, in the binary case, they behave like dictionaries. Section 4 con-
tains results for queues and deques (double ended queues) and finally in Section
5 we study priority queues and double ended priority queues.

Most of the results are related to questions 1, 3 and 4 in the above list but
there has been some progress on question 2. This is mostly, but not exclu-
sively, based on the idea of avoided patterns as used by Pratt ([15]) and Knuth
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(12, 2.2.1 Q5b]). A pattern of length m is a permutation p = (p1,p2,...m)
of 1,2,...,m, and a sequence o = (01,02,...0,) is said to contain the pattern
if there is a subsequence ¢’ of ¢ such that |¢/| = m and p; < p; if and only
if o} < o}. As an example, the sequence 5,4,2,3,1 contains the pattern 3,1,2
because it contains the subsequence 5,2, 3, but on the other hand 5,4, 3,2, 1 does
not contain the pattern 1,2,3. If p does not occur within o we shall say that o
avoids p.

2 Dictionaries

Dictionaries are the class of abstract data types with the most general delete
operation. They allow the removal of any element which is currently stored in
the dictionary. Their behaviour was studied in [2] where they are referred to as
buffers and, in the case of a bounded capacity, as bounded buffers. When the
input sequence is a permutation of distinct elements, the order of the elements
has no effect on the number of outputs possible and so instead of studying the
number of allowable pairs it is only necessary to consider how many output
sequences are possible from the input sequence 1,2,...,n. Then the number
of allowable pairs is n! times the number of allowable output sequences from
1,2,...,n. In the unbounded case there is not any great challenge since it is
clear that the input sequence can be permuted into any output sequence by
merely inserting the entire input sequence and then deleting the elements in the
required order. Thus L(Dictionary) = {(¢,7)|r is a rearrangement of ¢} and
for this reason the unbounded dictionary is the most permutationally powerful
abstract data type. The bounded case is also relatively simple for we have in [2]

Lemma 1. For a bounded dictionary of capacity k, each inpui sequence of n
distinct elements gives k»~*k! allowable output sequences.

Lemma 2. The allowable outpul sequences of a bounded dictionary with input
sequence 1,2,...,n are precisely the sequences that avoid all patterns of length
k + 1 which begin with their mazimal element.

In the case when the input sequence is a binary sequence the results are a
little more complex.

Lemma 3. For a bounded dictionary of size k the number z,, of binary allowable
pairs of length n satisfies the recurrence

r

Tpin = Z(—l)i+lmk+n_iai,k with r:[g]
i=1l

Aoy = 1

ap = 2(f:12> + (’”Z_Z> (2.1)
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Proof. Let w,(,i) be the number of allowable pairs of length n of the form (0, 8),
(0) d

then obviously z, = ws ’, an

w1(10-|>-1 = 2w,§1_?_1 for n>0
. i k-1 )
ws_%_l = wﬁf“l) -+ Z wg) for n>i>0.
j=i

The first of these two equations holds because the number of pairs of the form
(O, B) is the same as the number of pairs of the form (1a, 3) and all allowable
pairs have one of these two forms.

For the second notice that all pairs (0*, ), of length n + 1, either have the

form (0, 08’) or (0icr, 18'). There are wS ™" pairs of the first form because the

first 0 is input and immediately output, then there are w,(,i_l) ways to complete
the pair. The second can be split into several further forms, (0?1y,18') for

t < 7 < k. For each of these the dictionary must insert all j Os and the 1 and

then immediately output the 1. There are then wa) ways to complete the pair

and thus there are E;c;zl ng ) allowable pairs of the second form.

We can represent this recurrence more succinctly using matrix notation. Let

3 01 ... 1 1

wiH 1 1 -« 11

w, = : o= 01 1
LD Lo

0 0 1 1

then the recurrence equation is
Wp41 = Akwn. (22)

Hence, for any constants dg,d,...d;, ZZ:O divny; = Z:zo d; ALwy, and if
we choose the constants so that E:zo d; A is the characteristic polynomial of A

then we shall have 3_;_; diwn1s = 0. We can derive a recurrence equation for
the characteristic polynomial, ug(A) = det(Ax — AI), of Ay by subtracting the
(k — 1)* column of the determinant from the k** column and expanding it by
the k%" column. It is then easily seen that

up(A) = =A(up-1(A) + ug—2(A)) for all k > 3.
The initial cases

I
—

ug(A)
ui(A) 3-A
uz(A) = AT—4x+2
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are calculated directly.
From the recurrence it follows easily by induction on & that there exist poly-
nomials ys, and yp.11 each of degree r + 1 for which

uzr(A) = Ny () (2.3)
uzr41(A) = A"yary1(A) (24)
and that the polynomials satisfy
Yar(A) = =Ayar-1(A) = yar-2(}) (2.5)
Yor+1(A) = —92r () — y2r-1(A). (2.6)

Now a standard inductive proof using binomial coefficient identities proves

Yk—1( (-1)F~ 12)\r (1) a; (2.7)

k—i k—i
r=[%], aOk"lazk—2< _;)+< Z.Z)

Combining (2.3) and (2.4) gives

where

uk_l(/\) = )\I-]j-;_2—| yk—l()‘)

= (~1)k~1XT:M-”FZ—QJ(—l)iai,k.

=0

Therefore the sequence (wy,) satisfies

) k
i+l . —
E Wy | 552 | 4nm =" a;x =0 where r= lé]

Since r + |&s2 < k, wsll) is an element of the vector w, and
3

0 1
T = wﬁﬂ = Qw,(1 ), we have
+1
Trtn = § Th4n— z a; k-

The recurrence of this lemma shows how z, can be computed once initial
values zg,21,...251 are known. However, for ¢ < k — 1 (indeed t < k) the
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number of binary allowable pairs of length ¢ is unconstrained by the dictionary
size k. Therefore, if ¢ < k, it is easily seen that

w= (= (%)

For example, with £ = 3, the recurrence becomes

Tpis = 4Znq2 — 2Tn41

and the values of z,, are

12 3 4 5 6
2 6 20 68 112 312

nIO
1

@n |

3 Stacks

Unbounded stacks were studied extensively in the 1970s and a number of sig-
nificant connections with other combinatorial objects were found. Because the
permutational power of the stack comes from its structure and not from the
relative values of the elements it is processing, the allowable pairs are closely
related to the valid programs of a stack. This leads to several correspondences;
for example, the number of valid programs of length 2n which a stack can ex-
ecute, and thus, given a fixed input sequence, the number of allowable output
sequences of length 7, is in a one to one correspondence with the number of bal-
anced bracket sequences of length 2n. There are then similar correspondences
with trees ([12, 2.3.4.4],{16]), triangulations of polygons ([11, pp. 320-324]),
Young Tableaux ([13, pp. 63-64]), lattice paths ([14]) and ballot sequences
([13, p. 531],[17]). These connections are of great interest in the design of ef-
ficient algorithms ([13,15,18]) and all point to the stack’s fundamental role in
giving precise expression to informal concepts such as “nesting”, “structured
decomposition” and “hierarchy”.

It is known from the many correspondences above that, given a fixed input
sequence of distinct elements, there are ¢, = (*}/(n + 1) (the n'* Catalan
number) possible output sequences. Therefore the number of allowable pairs of
length n is nle,. It is also known that, if the input sequence is 1,2,...n, the
allowable output sequences of an unbounded stack are those sequences which
avoid the pattern 3,1,2 ([12]).

In the bounded case we can apply the techniques of [2] which show that the
number of output sequences for a fixed input sequence of distinct elements rises
exponentially in the length of the input sequence. The base a3 of the exponent
depends on the stack size k and some values of o are given in Table 2. Because
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Table 2. o for small values of &

Stack Size o Numerical Estimate
1 1 1
2 2
3 34/ 2.61
4 3 3
5 largest root of 3 — 5% 4+ 6z — 1 3.247

of the asymptotic behaviour of ¢,, oy — 4 as k — oo. This case was also
studied in [8], where it was posed as the problem of finding the average height of
planted plane trees. This corresponds to the average capacity require to generate
a randomly chosen output sequence. The result is that on average

1 1
k_\/ﬂ'n—i—{—O <%logn>

stack locations are required.

When the input sequence is a binary sequence the stack has exactly the same
behaviour as a dictionary for both the bounded and unbounded cases, as the
following shows.

Lemma 4. The allowable oulput sequences of a stack on a bhinary input are
precisely those of a dictionary of the same capacity on @ binary input.

Proof. Suppose (o, 7) € Lg(Dictionary), then there is a program of insert and
delete operations which transform o into 7. Among all such programs we choose
one, C say, in which all the insert operations are delayed as long as possible; in
C an insert operation only occurs if it is not possible to produce any more of the
output sequences 7 from the elements stored in the dictionary. So, when C is
executed, the only point at which both a 0 and a 1 are stored in the dictionary
1s when there are one or more Os stored already, a 1 was inserted by the last
operation in C which has been executed and the 1 will be deleted by the next
operation in C (and the same situation with 1 and 0 interchanged).

A stack can execute the same sequence, C, and will produce the same output
sequence 7 from the input sequence ¢ because, for every delete operation, the
element which the dictionary would output is either the last one inserted (in
which case the stack can also output it), or there are only elements of a sin-
gle value stored in the dictionary/stack. Therefore (o,7) € Lg(Stack) and so
Ly (Dictionary) C Li(Stack).

The other inclusion is trivial and so we have Lg(Dictionary) =

L (Stack).
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It follows from this that the number of allowable pairs of a stack with bi-
nary input sequences satisfies the recurrence given for the bounded dictionary
in Section 2.

When the input sequence is allowed to have duplicated elements, little is
know about the behaviour, but some progress has been made in [2] in the case
that equal symbols occur adjacently.

4 Queues and deques

The analysis of queues is entirely trivial. In both the bounded and unbounded
cases, the only possible output sequence is the input sequence, so there are n!
allowable pairs of length n. It is interesting to note that with such a permuta-
tionally weak data type even the transition from bounded to unbounded has no
effect on its power. In all the other data types considered here it is a significant
transition.

Double ended queues (deques) are queues which allow two insert and two
delete operations. It is possible to insert elements at both ends of the queue and
it is possible to delete elements from both ends. There are also variants of the
deque; an input restricted deque has only one input operation (it can only insert
elements at one end of the queue) and an output restricted deque has only one
delete operation (it can only remove elements from one end of the queue). The
third possible variant, where we have only one input operation and one output
operation, can have two forms. If we allow insertion and deletion at the same
end of the queue we have a stack, otherwise we have an ordinary queue. Both of
these possibilities have been considered previously so we shall ignore them here.
Deques and their two variants were studied in [15], where most of the results are
presented as excluded pattern conditions.

The number of cases to study is reduced a little because the properties of input
restricted deques and output restricted deques are symmetric. This is because, a
pair (o, 7) is allowable (or k-allowable) for an input restricted deque if and only
if the pair (7%, o) is allowable (or k-allowable) for an output restricted deque
(o® denotes the reversal of the sequence ¢). Knuth [13, p. 534, Q 13] states
that the generating function for the number of allowable output sequences for
an output restricted deque, with some input sequence ¢, is

G(z):%(l—i—z——\/l—()'z-{-zz).

Pratt then shows that there is a 2:1 correspondence between these outputs
and honest trees with n leaves (an honest tree is a general tree with no nodes of
out degree 1). He then goes on to prove that, on input 1,2,...n, the allowable
outputs are precisely those which avoid the patterns 4,2,3,1 and 4,1,3,2. The
corresponding patterns for an input restricted deque are 4,2,3,1 and 4,2,1,3.
He then shows that the allowable outputs for a deque with input 1,2,...n are
those sequences which avoid the infinite set of patterns shown in Table 3.
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Table 3. The excluded patterns which characterise a deque

5,23 4,1

5,2,7,4,1,6,3
5,2,7,4,9,6,3,8, 1
5,2,7,4,9,6,11,8, 1,10, 3
5,2,7,4,9,6, 11, 8, 13, 10, 3, 12, 1
etc.

and those obtained by exchanging 1 and 2
and/or the last two elements in each pattern

The bounded versions of the above deque variants can be handled by the
techniques of [2]. For example, for a deque of size 3 we can show there are
2.37~2 allowable outputs for any fixed input. Similarly for a deque of size 4
we can show that the number of allowable outputs for a fixed input sequence
is 6.4"~3. For size 5 the number of allowable outputs grows exponentially with
base a, where « is the largest root of 23 — 722 4 10z + 2 (approximately 4.855).

5 Priority queues

There has been a great deal of work in recent years on the combinatorial prop-
erties of priority queues, both bounded and unbounded, operating on input se-
quences formed from distinct elements, the binary alphabet and multisets.

It is convenient to define

s(r) = {o|(o, 7) € L(Priority Queue)}|
t(o) = {r|{(s, 7) € L(Priority Queue)}|
si(1) = [{o](o,7) € Li(Priority Queue)}|
tx{o) = |{r|(c,7) € L (Priority Queue)}|.

In [5] it is shown that, when the input is formed from n distinct elements,
there are (n+1)"~! allowable pairs of length n for an unbounded priority queue.
For this case algorithms are presented in [1] which calculate s(7) in O(n) time
and (o) in O(n?) time. The transitive closure of the allowability relation is also
found.

When the inputs are restricted to binary sequences it was shown in [6] that
there are ¢, allowable pairs of length n. An O(n?) algorithm is then presented
which calculates s(7). It is also shown that (o,7) is allowable if and only if
(TR, o®) is allowable and this gives an O(n?) algorithm to compute #(o).
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Some very recent work in [3] gives the only result we know of in the case
when the input is a rearrangement of a multiset S = {1%,2% ... r9}. Here it

is shown that there are ) .
n+
allowable pairs.
All the results above are for unbounded priority queues. The study of the
bounded case was begun in [4]. For input sequences of distinct elements the only

progress made has been for the priority queue of size 2. In this case, if z,, is the
number of allowable pairs then

S = g
"nl T 14log(1—t)

and from this it can be deduced that z,/n! is asymptotic to (e/(e — 1))" as
n — co. It was also shown how to compute s3(7) and ¢2(¢) in time O(n?).

When the input is a binary sequence more general results are known. For
example, s;(7) and tx(o) can be computed in time O(n?). It was also shown in
[4] that there is a 1 — 1 correspondence between k-allowable pairs of length n
and ordered forests of height no more than k¥ + 2 on n + 2 nodes.

The study of double ended priority queues has been rather less productive.
This data type has two kinds of delete operation: Delete-Minimum and Delete-
Maximum (denoted by “d” and “D” respectively). Many experimental results
and conjectures are reported in [19]. Linton has given a characterisation of
allowable pairs in terms of avoided pairs of patterns extending the idea of pattern
avoidance in Section 1. The only other results we know of bear on questions 3
and 4 of the introduction.

Let D be any sequence of n Delete-Minimum and Delete-Maximum opera-
tions and let (D) be the permutation of 1,2,...,n defined by

_[m-j if Dy=D
“(D)’“{i—l—j if Di=d

where j is the number of Ds among Dy ...D;_;.
Also define the complementary permutation #(D) by #(D); = n+ 1 — #(D);.
Then we have

Lemma 5. Consider the set of double ended priority queue programs in which
the sequence of delete operations is a fized sequence D, and let A(D) be the set
of all (o, 1) related by such programs. Further, let sp(r) = [{o|(s,7) € A(D)}|
and tp(o) = [{r|(o,7) € A(D)}|. Then
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1. sp(r) is mazimal when T = (D).
2. sp(r) is mintmal when 7 = 7(D).

3. tp(o) is minimal when o = w(D).

6 Conclusion

We have presented a unified framework in which the (input,output) relation for
various container data types can be studied. The properties of the relation for
stacks, queues, dictionaries and priority queues are fairly well understood.

The main unsolved problems requiring further research include

1. A treatment of deques and double ended priority queues as complete as
that for stacks, queues, dictionaries and unbounded priority queues.

2. A better understanding of bounded priority queues on non binary inputs.

3. An extension of the theory to networks of container data types (as proposed
by Tarjan for stacks and queues in [18]). Note that networks of bounded
dictionaries, queues, deques and stacks can, in principle, be handled by the
techniques of [2].
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Recent Results in the Theory of Program
Flowgraphs

J.R. Bainbridge and R.W. Whitty
South Bank Unwversity, London

Abstract

Attributed grammars, which play a major role in the theory of com-
piler design, provide a neat way of defining flowgraph functions (that is,
digraph functions where the digraphs are modelling programs). We use
this idea to review some recent research in which flowgraph functions are
used as complexity metrics for programs. The choice of grammar is seen
to influence the expressive power of this approach: some aspects of pro-
gram complexity, expressed as flowgraph functions, cannot be defined using
some grammars. The lesson seems to be that, at least from a mathematical
viewpoint, we are not comparing like with like when we study the many
complexity metrics which have been proposed.

1 Introduction

Graph theory has a natural role in the study of control flow in computer pro-
grams. The different possible routes of execution through the program code cor-
respond to the walks from a source to a termination vertex in a digraph called
a “flowgraph”. The flowgraph may be used as a basis for testing the program
([21]); for restructuring it to make it more comprehensible ([10]); for optimizing
its performance ([9]); or for measuring its complexity, as relating to any of the
above tasks, or some other ([6]).

Much of this analysis of flowgraphs revolves around flowgraph decomposition
which uncovers the structure of a flowgraph in terms of how it has been built up
using two digraph operations: sequencing and nesting. Sequencing concatenates
two or more flowgraphs together; nesting inserts one or more flowgraphs into
another. Often the analysis of flowgraphs amounts to defining suitable func-
tions on flowgraphs and decomposition offers a possible basis for defining such
functions. There are intuitive reasons for doing this: Prather and Guilieri [12]
advocate decomposition as a precursor to restrucuring, in order to preserve as
far as possible the original features of program structure. This is also the main
idea in the work of Cowell et al. [4] and the approach is implicit in earlier work
such as that of Urschler [17] and Linger et al. [10]. More recently, program
decomposition has been the basis for generating a class of software complexity
metrics known as hierarchical metrics ([6,7,13,22]). It is this latter idea which

15
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we will concentrate on but most of what we say applies equally well to other
aspects of flowgraph analysis. By the way, we use the word “metric” in a non-
mathematical sense: the term has nothing to do with the triangle inequality but
has stuck in programming circles.

There are three possible reasons for being interested in hierarchical metrics,
that is, in trying to define complexity metrics using the decomposition structure:

1. divide and conquer: the decomposition can often be expected to reduce
a flowgraph to “prime” components of only a few vertices each. This may
greatly simplify the calculation of the metric function. Later, we shall see
that counting the number of trails through a flowgraph is an example of
this approach ([3]).

2. a descriptive framework: many different complexity metrics can be
defined in a uniform way using the decomposition structure. This allows a
comparison of like with like, an approach adopted by Zuse [22] and Whitty
[20], and generalized by Fuchs and Stainer [8].

3. axiomatization: it has been proposed as an axiom ([13]) that the “com-
plexity” of a program should reduce to the complexity of its prime compo-
nents and the complexity of the sequencing and nesting operations. This
idea has recently been taken further by Prather [16] and applied to func-
tional programs by van den Berg and van den Broek [18].

Whatever the reason for studying hierarchical metrics, there have recently
been several papers which have examined the particular forms which these flow-
graph functions can take. These have been presented in different terminologies
and our main purpose is to review them in a uniform way using the language of
attributed grammars. This seems to us to be the most natural setting, not least
because of the link to standard program analysis techniques based on parsing
program syntax (see for example, [1]). In the next section we give some necessary
background in flowgraph theory. In Section 3 we explain how to define flowgraph
functions using an attributed grammar. In Section 4 we discuss some variations
of this basic grammar which have recently been proposed. Section 5 presents
what might be considered the state-of-the-art in terms of what flowgraph func-
tions can be represented using grammars: the particular problem being that of
defining metrics connected with program testing. Finally, Section 6 tries to draw
some conclusions from the preceding discussion.

2 Flowgraph theory

Many variants of the basic flowgraph model exist, all more or less equivalent,
and this paper adopts the one introduced in ([5]):
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Definition 1. A flowgraph F = (G,s,t) is a triple consisting of a digraph G
together with two distinguished vertices s and t of G satisfying the flowgraph
property: every vertez of G lies on some walk from s to t. Additionally, t is
required 1o have outdegree zero.

The vertices s and t are referred to as the start and fermination vertex of
F' respectively. Vertices of outdegree one play a special role and are referred to
as process vertices. They represent the actions performed or executed by the
computer program.

Informally, the sequencing operation may be described as follows: given two
flowgraphs, F; and F3, one produces a new flowgraph (Fy ; Fs) by simply re-
garding the termination vertex of F; as identical with the start vertex of Fs.

Again, given Fy and Fy, it may happen that Fy has a process vertex v. In
that case, we may produce a new flowgraph (F 1, Fs) by replacing the single
edge leading from v by the whole flowgraph F3. Thus, the start vertex of Fy is
identified with v and the termination vertex of Fy is identified with the successor
vertex of v in Fy. This is the process of nesting flowgraphs.

If a flowgraph F has several flowgraphs Fi,. .., Fy, nested into it, then clearly
they will be mutually edge-disjoint in the resulting flowgraph. So we may without
ambiguity represent the nesting as happening “simultaneously” via the expres-
sion F Ty, . o, F1,... Fy.

Sometimes the actual vertex v nested onto is of no importance. Where there
is no danger of confusion we use notation like F1 T F3.

An example of sequencing and nesting is shown in Figure 1.

F T (F", F'; Fn)

Figure 1. Sequencing and nesting flowgraphs
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0

(s=1)

Ds

Figure 2. Some prime flowgraphs

(1)
® ®
® @

Figure 3. Decomposition tree of F T F F'; F"

Prime flowgraphs are flowgraphs which cannot be built up non-trivially by
sequencing or nesting. The notion of primality has been traced in ([10]) to the
thesis of Maddux [11]. Some small primes which occur commonly in practice
are shown in Figure 2. Note that, by convention, the path graphs Py, &k > 2 are
counted as primes. Looking again at Figure 1 we can see that the flowgraph
resulting from the sequencing and nesting is, in fact, Dy 1 (D1, Po; Dy ).

Associated with any flowgraph is a decomposition tree which describes how
the flowgraph is built by sequencing and nesting primes. Decomposition trees
are just the syntax trees which arise in the “arithmetic” of flowgraphs in which
the two operations are sequencing and nesting and the “numbers” are prime
flowgraphs. For instance, Figure 3 shows the decomposition tree associated with
the nested flowgraph in Figure 1.

3 A flowgraph grammar

The idea of flowgraph decomposition is exploited by using attributed grammars
(see [1]) to define techniques for analysing flowgraphs: a divide and conquer
approach whereby analysis of prime flowgraphs, and of sequenced and nested
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Table 1. The flowgraph grammar

Production Semantic Rules

LF P Fy p(F) = f(u(Fr), ..., n(Fr))
2.F = Pl v, 1y s Fr p(F) = gp(p(Fy), ..., p(Fn))
3. F—P u(F) = val(P)

P is a prime flowgraph

Table 2. Counting flowgraph vertices

Production Semantic Rules

1.F — Fy;...;F, E(FYy=1-—n+Y 1 k(F)
2.F PtV F,.. F, k(F):k(P)—Qn-}—E?:lk(Fi)
3. F—-P k(F) = val(P)

P is a prime flowgraph

flowgraphs is represented in terms of semantic rules. If, by “flowgraph analysis”,
we mean calculating some graph function p for flowgraphs, then much of flow-
graph analysis can then be expressed quite neatly in standard computing science
terms within a “template” as shown in Table 1.

As an example of how this template is used, let us define a very simple
flowgraph function, k(F), the number of vertices. This may be calculated as
shown in Table 2. The calculation assumes that the function values for prime
flowgraphs are given (via the function “val”’). The attributed grammar then
describes how the function behaves under sequencing and nesting.

The action of the grammar on the flowgraph in Figure 1 is shown in Figure 4.
The decomposition tree of Figure 3 is annotated to show how the function values
are calculated “up” the tree.

The flowgraph grammar has to be interpreted in the right way if the flow-
graph functions are to be well-defined. It is to be assumed that none of the F; in
rule (1) can be further decomposed as a sequence of two flowgraphs; the functions
f and gp are assumed to be defined on lists of numbers, so that they are defined in
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7
()
® ®
4 3
GG
2 3
Figure 4. Calculating the number of vertices

the same way irrespective of the arity n in Fy, ..., F,. We assume that none of
P, Fy,..., F, in rule (2) are the prime P, since

F{P,=P,{F=F, (3.1)

for any flowgraph F'. Moreover, P # P,, for any n > 2 since nesting into a P,
is the same as sequencing;:

Pn..|.1TFl,...,Fn:Fl;...;Fn. (32)

Unless we adopt such interpretations it becomes hard to define flowgraph func-
tions unambiguously using the flowgraph grammar. Consider, for example,
Table 3 which defines the function d(F): the maximum depth of nesting within
a flowgraph. The left-hand side of the identity Equation 3.2 increases d by 1;
the right-hand side leaves it unchanged.

The interpretation of the grammar begs several questions which we will meet
with in the next section. For now, we will identify an important class of flowgraph
functions for which the grammar may be somewhat simplified.

Table 3. Depth of nesting in a flowgraph

Production Semantic Rules
1.LF—>F;.. . F, d(F) = max?_, d(F;)

2 F P F,. . ., F, dF)=14+maxl,dF)
3.F-P d(Fy=10

P is a prime flowgraph




Program Flowgraphs 21

The function gp in rule (2) of the flowgraph grammar (Table 1) may or may
not depend on the prime P. In the definition of k(F) in Table 2 the role of
the prime P was no different from that of the nested flowgraphs Fy,..., F,: gp
depended only on k(P), not on the structure of the digraph P itself. For the
function d(F), Table 3, gp does not even require d(P), since this is always 0.
This characteristic of certain flowgraph functions was formulated by Prather [14]:

Definition 2. A flowgraph function defined as in Table 1 is called recursive if
there is a function g such that, for all primes P,

gp(B(F1), ..., p(Fn)) = g(p(P), u(F1), ..., p(Fn)).

For recursive flowgraph functions we must ignore the nesting locations
v1,...V, in therule F — P 1, .. Fi,...,F, because the v; are vertices of P,
whose structure is ignored in a recursive definition. This was the case in the two
examples in Tables 2 and 3. It means we must make yet another assumption
about the grammar: the function g must treat the list p(F1),...,u(F,) as an
unordered list.

4 Flowgraph string grammars

Although the grammar specified in Table 1 is a convenient way of expressing
flowgraph functions, it is in fact not quite standard computing science because
grammars are supposed to be deterministic devices for generating sets of strings
of symbols. Devices such as “F' — Fy;...; F,” are not allowed since they are
nondeterministic. Moreover, we had to surround the grammar with “semantic”
interpretations to avoid questions about the role of P, (identity Equation 3.1)
and the relationship between sequencing and nesting (identity Equation 3.2).

Table 4. Flowgraph string grammar

Production Semantic Rules
1.F——>F1;F2 M(F)If(H(Fl);H(F2))
2.F - F TF, w(F) = g(p(Fy), p(Fy))
3. F — (Fy) u(F) = p(Fy)

4. F > P w(F) = val(P)

P is a prime flowgraph
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Table 5. String grammar version of Table 2

Production Semantic Rules

1. F— Fi Fy k(F):k(F1)+k(F2)—1
2.F > F 1 F k(F) = k(F1) + k(F;) -2
4 F—-P k(F) = val(P)

P is a prime flowgraph

The grammar shown in Table 4 is deterministic and generates strings of sym-
bols which may represent flowgraphs (for example, the flowgraph of Figure 1, is
represented by the string “F' T (F”, F'; F”)” which is generated by this gram-
mar). Notice that Fy in rule (2) does not necessarily represent a prime in this
new grammar.

The flowgraph string grammar avoids the interpretive difficulties inherent in
the flowgraph grammar of Table 1. But does this new grammar have the same
power of expression as Table 1? Clearly, the function k(F") can be expressed in
the new template, as is demonstrated in Table 5.

However, it is not hard to find functions which cannot be calculated within
the new template. For example, nesting is not associative: if I3 is being nested
into a vertex of Fy in the expression (F 1 Fy) T F3, then we necessarily have

Fy1(Fy 1 Fo)# (Fi 1 Fo) 1 F. (4.1)

Thus, consider the recursive flowgraph function d( F) giving the maximum depth
of nesting in a flowgraph, which was defined in Table 3. Given the flowgraph
F = (P17 F) 1 Fy, the value of d(F) will depend not only on d(P 1 Fy) and
d(F3), but also on whether F, is nested into F; or some other part of P. The
value of d(F') will be d(P 1 F1) + d(F3) or 1 + max{d(F}), d(Fy)}, respectively.
This example is taken from van den Broek and van den Berg [19], who give a
criterion for deciding which flowgraph functions can be defined unambiguously
using the string grammar of Table 4:

Theorem 3. Let p be calculated for flowgraphs as shown in Table 4. Then p is
a well-defined flowgraph function if end only if the following conditions hold:

g(u(F1), p(Pa)) = g(u(P2), p(F1)) = p(F1) (4.2)

F(u(F), n(F2)) = g(9(f (1(P2), p(P2)), 1(F1)), 1(F2)) (4.3)
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9(u(F1), 9(u(F2), u(Fs))) = g(g(p(Fr), p(F2)), p(F3)) (4.4)

and

9(g(u(F1), u(F2)), u(F3)) = g(g(p(F1), p(F3)), p(F2)) (4.5)
(provided that F3 is not nested into Fy).

Conditions 4.2, 4.3 and 4.4 ensure that Equations 3.1, 3.2 and 4.1 do not cause
ambiguity. Condition 4.5 ensures that the choice of which order flowgraphs are
nested does not cause ambiguity.

As an example, consider the definition of k(F) given in Table 5, which we
maintained was equivalent to Table 2. Let us confirm that rule (4.3) in Theorem 3
is satisfied:

g(g(f(k(P2)) k(PZ)) k(Fl))’ k(F2)) g(g(f(Q; 2): k(Fl)): k(FZ))

9(9(3) k(Fl))’ k(FZ))
g(k(F1) + 1, k(F2))
]C(Fl) + k(Fg) -2
= f(k(F1), k(F2))

as required. The other rules may be checked in a similar manner.

Flowgraph functions which can be defined as in Table 4 using functions f and
g satisfying the conditions of Theorem 3 are called strong by van den Broek and
van den Berg [19]. As we have seen, the depth of nesting function is not strong,
and van den Broek and van den Berg [19] propose a relaxation of the definition of
strong flowgraph functions to allow depth of nesting to be calculated. Effectively
this relaxation re-introduces some of the semantic interpretation required for the
original flowgraph grammar: in rule (2) of Table 4, it is required that F; cannot
be expressed as a sequence, and that Fy be maximal with respect to nesting
(loosely speaking, it is not being nested into something already nested in Fy,
the problem identified in Equation 4.1). They call flowgraph functions satisfying
these requirements semi-strong.

We would like to propose a further relaxation of the definition of strong
flowgraph functions as embodied in a string grammar which can capture the
idea of simultaneous nesting for recursive flowgraph functions. Such a grammar
is given in Table 6. The extra nonterminal symbol L represents a list of the
flowgraphs to be nested into P in rule (2). Not only can this grammar allow us
to define the depth of nesting function but it can also allow definitions which
require a “collective” knowledge about the nested flowgraphs. For example,
consider the adaptation of Prather [13] of the depth of nesting function (Table 3)
defined in Table 7, where #(F') is the number of non-process vertices in F'. This
flowgraph function is not semi-strong but can easily be seen to be definable using
the grammar of Table 6.

il
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Table 6. Enhanced flowgraph string grammar

Production Semantic Rules

LF— Fi;Fy #(F) = f(u(F1), p(F2))
2F—-P1L u(F) = g(val(P), u(L))
3.L—L,F #(L) = h(u(L), u(F))
4 L—F p(L) = p(F)

5. F — (F1) u(F) = p(Fr)
6.F—P u(P) = val(P)

P 1s a prime flowgraph

Table 7. Prather’s u metric

Production Semantic Rules
1.F—=Fy;. . Fy p(F) =" u(Fy)
2.F—P1F,...,F, p(F)=n(P)maxl, u(F;)
3. F—-P u(F) = =(P)

P is a prime flowgraph

Finally, we mention a refinement of the original flowgraph grammar due to
Prather [15]. Here it is assumed that decomposition is carried on until all nested
flowgraphs or nesting locations are identified. This means that we treat process
vertices as having P, nested on to them. For example, from Figures 1 and 2
we can rewrite the decomposition of the flowgraph Dy T (D1, Po; D1) as Dy 1
(D1 1 Py, P2; D1 1 Py), since the two copies of D; have nothing nested onto their
process vertices. Prather [15] then suggests assigning a nominal value of 1 to
each P, identified by decomposition, thereby replacing Table 1 with the grammar
shown in Table 8. Prather [15] calls this reduction to nested Pos normalization.
The motivation lies in the third reason for defining hierarchical metrics, given in
Section 1: axiomatization. In the end, the purpose of control flow is to combine
executable statements, therefore decomposition should reduce a flowgraph to a
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Table 8. Normalized flowgraph grammar

Production Semantic Rules

LE—F;. . F, w(F) = f(u(F1), .., p(Fn))
2. F = Plyun Fryeeoy Fa u(F) = gp(u(F), .., p(Fn))
3. F = P, wF)y=1

P is a prime flowgraph

combination of executable statements. And these statements, modelled as Pss,
should have a nominal complexity of 1. The approach represents a considerable
simplification but it is not clear how many flowgraph functions can still be defined
in this way. It effectively replaces pu(F') = val(P) (rule (3) of Table 1), with the
rule u#(F) = gp(1,...,1), (where there are as many 1s as the number of process
vertices in P. For example, Prather’s p metric (Table 7) is of this form. But it
seems to rule out the kind of divide and conquer approach to flowgraph function
evaluation which allows the function to be expensive to evaluate for primes as
long as it is cheap for nesting and sequencing.

5 Testability measures

Testability measures ([2]) attempt to quantify aspects of the structural com-
plexity of code which might give useful information about the testing stage of
software production. In this section we describe recent work in defining these
metrics using the flowgraph grammar template.

The path followed through a program when it is executed from a particular
state with a specific input is mirrored by a walk through the flowgraph which
models that program. Intuitively, describing the set of possible walks through
the flowgraph should provide information relating to the testability of the pro-
gram. One way of characterising these walks is to enumerate different classes
of walks. For instance we might count the number of different trails through
a flowgraph or the number of walks through a flowgraph which do not pass
through any vertex more than k times (k-walks). These counts are then viewed
as measurements of a program using the flowgraph as an intermediate model.
Many of these enumerations are known to be NP-Hard for flowgraphs in general.
Efficiency in their calculation therefore becomes reliant on exploiting knowledge
of likely flowgraph populations derived from modeling programs. The attributed
grammar description of measurements discussed above is a way by which some
of the testability measures can be efficiently calculated for flowgraphs derived
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from structured programs (i.e. those which are constructed by nesting and se-
quencing a small well-behaved set of primes: we shall use those in Figure 2). As
an example we take a definition from ([3]) of the Number of Trails, ¢(F') in a
flowgraph F.

Suppose that F' = (P 1 Fi, Fy, ..., Fy,) is the flowgraph constructed by nest-
ing the flowgraphs F1, Fy, ..., F,, onto P, a prime flowgraph possessing n process
vertices. Assume that the order of the flowgraphs Fy, Fy, ..., F,, prescribes which
process vertices they are nested onto. To calculate the number of trails in the
flowgraph F' it is not enough to know the number of trails in Fy, F3, ..., Fy,. If,
in addition, the number of ordered pairs of edge-disjoint trails of #3, Fy, ..., F,,
are known it becomes possible to calculate the number of trails in F', provided

Table 9. Definition of the number of s — ¢ trails ¢{(F)

Production Semantic Rules
F—Fj;.. . F t(F) = [Tz 4(F) {F) = [Tima 8F)
F—Di1FH HF) = 1+ t(F) {(F) = 2(Fy)
F—Dy1F YF) =1+ t(F) i(FY=0

F— D3t Fy H(F) = t(F1) + i F) HF)y=0
F—-Dst P, Fy WF) =t(F) +HFO)HF) i{(F)=0

F— Ky T F1,... Fy

F—-W,T1F,.. . F

t(F) = Tisy #(F)

t(F) =1+ Tf, T 4Fy)

HF) = 2 E ) S HEDHE)

{(F) = 2005 TTj= ()

F1P,k>2 HF)=1 H{F)=0
F 1D H(F)=2 i(F)=2
F 1D, WF) =2 HF)=0
F1Ds HF)=1 (=0
F1D, H(F)=1 HF)=0
F1Kag,k>2 HF)=k i(F) = k(k—1)
F 1 Wi k>2 HFY=k+1 HF)y=2(k~-1)
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Figure 5. Calculating the number of trails

P is structured. This additional attribute, the number of ordered pairs of edge-
disjoint trails will be denoted by i.

Table 9 shows the formulae which enable {(F'} to be calculated for flowgraphs
which decompose into the structured primes.

The calculation of ¢( ) is not recursive: a different g function is here used for
each prime P which is the target of nesting. Moreover, we have resorted to using
a pair of attributes, a technique introduced in {20]. The evaluation of ¢(F') for
the flowgraph in Figure 1 is shown in Figure 5 (¢(F') is the first number in each
pair, f(F) is the second). This flowgraph function seems a long way from the
strong functions of van den Broek and van den Berg or the normalized functions
of Prather, but our understanding of what exactly is this distant relationship is
still slight.

6 Concluding remarks

We have seen that the basic idea of defining flowgraph functions hierarchically
reveals some subtleties once we try to be precise about the way in which the def-
initions are specified. An attributed flowgraph grammar is a convenient format
for the definitions but has to be hedged about with interpretation rules. If we
want to stray strictly within the bounds of formal language theory then we can
use string grammars for our definitions but this seems to be at the expense of
some expressive power: in our most extreme example, the hierarichal definition
of the testability metric “number of trails” is well beyond what is easy to express
using a string grammar.

In Section 1, we gave three justifications for making hierarchical definitions.
The first of these, divide and conquer, is not affected by our discussion—provided
a flowgraph function definition is sufficiently clear for an algorithm to be imple-
mented from it, we will derive the benefits of greater efficiency no matter what
the format of the definition. This is clearly the case for the number of trails:
the calculation would in general require an enumeration of the actual paths;
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Table 9 shows that for structured flowgraphs we can do much better than this.
Nevertheless, it would presumably be much easier to implement algorithms ex-
pressed in terms of formal language theory, and to prove these implementations
correct. For instance, parser generators such as YACC, allow attributed gram-
mars to be implemented with a high degree of ease and reliability. Such parser
generators could in principle be used for the string grammars in Tables 4 and 6,
but not for the grammar of Table 1.

The second justification, achieving a unification of metric definitions, is more
affected: it does not seem to be easy to make this unification while at the same
time keeping the definitions as simple and natural as possible. Some flowgraph
functions can be defined using string grammars, for others it is not obvious that
this is possible; some functions can be normalized, others can not. The most we
can say 1s that attributed grammars offer a possible way of characterizing this
diversity, and we have tried to make a very limited start in the present paper.
At any rate we should take note that we are not comparing like with like when
we compare complexity metrics.

The third justification for hierarchical definitions, axiomatization, is also af-
fected by our analysis. We must be able to explore the consequences of axioms
using some mathematical machinery. van den Broek and van den Berg [19] use
the theory of functional languages. We have suggested using the theory of formal
languages. Either way, so far, the class of metrics which seem to be amenable to
analysis is very limited.
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Applications of Combinatorics to Security

Simon R. Blackburn' and Fred Piper
Department of Mathematics, Royal Holloway, University of London

1 Introduction

There are now many areas where users communicating over public channels
require either secrecy or assurance of the integrity of their data. Not surprisingly,
cryptography is one of the main tools used to meet these requirements and this
use of cryptography leads to a number of interesting problems in a wide range
of mathematical areas.

In this paper we discuss three particular security requirements and show how
they lead to interesting problems in three different branches of combinatorics.
The paper places the emphasis on how the security application gives rise to the
mathematical problems rather than concentrating on the detailed proofs of the
mathematical solutions.

The basic idea of a cipher system is given in Diagram 1. The fundamental
requirement is that the cryptogram should be a scrambled version of the message
so that unauthorised eavesdroppers who obtain the cryptogram cannot determine
the message. Good cryptographic practice suggests that we should assume that
the attacker will know the algorithm being used. Thus the security of the system
relies on the secrecy of the deciphering key. Clearly, the need to keep this
key secret is of paramount importance and key management is one of the most
important features of a secure system.

lKEYk] |KEYk

CRYPTOGRAM
DECIPHERING
MESSAGE m ENCIPHERING l C MESSAGE m

ALGORITHM ALGORITHM

INTERCEPTOR

Diagram 1.
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Our first problem arises from key management problems associated with large
networks and our final two problems are associated with the need for obtaining
strong algorithms with large key spaces.

2 Incidence structures

In this section we consider the key management problem in a large network where
communicating nodes use symmetric key cryptography to provide end-to-end en-
cryption. Many interesting mathematical applications arise and we concentrate
on the use of combinatorics to facilitate a number of important key manage-
ment issues. Motivated by a recent PhD thesis [30], we describe a combinatorial
incidence structure, known as a Key Distribution Pattern. This structure uses
subkeys to both reduce storage requirements at the nodes and allow direct secure
communication between nodes without further recourse to any central key dis-
tribution location. The competing interests of reduced storage and good security
pose problems which find solutions in the use of certain combinatorial incidence
structures and geometrical configurations.

2.1 Network security

The simplest form of security provided in a network is link encryption. This
protects data as it is transmitted along a single communications link joining two
nodes. For link encryption, a shared key is installed at each end of a direct link
and this is then used to encrypt and decrypt data transmitted between those
two ends. Since each node need only share secret keys with its adjoining nodes,
the key management problem for link encryption is relatively simple. When a
shared key is required for a given link, it may be generated at one end of that
link, and local arrangements can be introduced to distribute it to the other end
of the link. However, the security offered by link encryption is limited. Data
transmitted between two remote nodes may pass through several intermediary
nodes. At each node it needs to be decrypted and then re-encrypted under a
different key. This key translation process means that it may be vulnerable.

End-to-end encryption refers to the situation where data transmitted between
two nodes is encrypted under a secret key shared by those two nodes. This
achieves a logical separation of nodes which do not share keys. Although a node
may carry (encrypted) data from one node destined for another, it does not need
to process that data.

Clearly, two nodes that need to communicate securely must share a common
key. Furthermore, greater security is achieved if different keys are used by each
pair of communicating nodes. This minimizes the damage caused if a key is
compromised and prevents surreptitious or accidental decryption by unintended
recipients. However, it also increases the complexity of the problems associated
with key management. In particular, keys must be distributed to remote nodes
and there may be the need for every pair of nodes to share a unique secret key.
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2.2 Key management

The first difficulty to note is the sheer volume of key material that may be
required. A network of n nodes in which every pair of nodes shares a key requires
in(n — 1) keys. If each node were to store all the keys it needed then each node
would need to store n — 1 keys. A large network may consist of some tens of
thousands of nodes. If every pair of nodes in a network of 10,000 nodes were to
share a DES key of 56 bits then we might require of the order of 5 x 107 keys or
3 Gbits of key material. Moreover, each node would need to store of the order
of 10% keys, i.e. about a megabit of key material. The problem is compounded
by the need to change keys on a regular basis. If, as is often the case, a node
needs to store several old keys as well as the current one, then there will be an
even heavier storage burden on the nodes.

In order to initialise the security mechanisms, a network is likely to require
some facility, in the role of a Key Distribution Centre (KDC), to generate and
distribute these keys. This KDC would also keep a register of which nodes own
what keys (both current and old versions). Clearly, the storage requirement at
the KDC could be very large indeed. Further, in order to distribute the keys, the
KDC must be able to communicate securely with every node. This requirement
necessitates either having a separate secure channel or using the network with
the transmissions secured by another key. There are many practical solutions
to this problem. For example, the KDC may establish with each node a local
key which is used to encrypt only those messages which contain the keys to be
distributed. These local keys will then need to be protected by another key, thus
creating a key hierarchy. In most situations the top (master) key will be used
infrequently and, as a result, a public key cryptosystem such as RSA could be
used.

Whatever system is used, the requirements of a key hierarchical system to
install all keys that allow end-to-end encryption between any two nodes is likely
to give rise to considerable storage problems at both the KDC and the user
nodes.

2.3 Subkeys

One solution to the problem utilises the concept of a trusted centre to generate
and distribute keys as required, thereby exchanging a storage overhead for one
in communications. An alternative to accepting increased communication as a
means of reducing storage is to relax the requirement that the %—n(n — 1) keys,
that may be required to secure every pair of nodes in a network of n nodes,
are independent. Several authors have taken this approach [7,8,15,28,29]. One
solution is the following. Instead of generating 1n(n — 1) independent keys (and
distributing n — 1 of these to each node) the KDC could generate a collection of
subkeys and distribute a subset of these to each node. Any pair of nodes could
determine a key to secure their communication channel by combining the subkeys
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they have in common. Thus, after the KDC has distributed the subkeys, the
nodes have no need for any further direct communication with the KDC,

In the original scheme there is a unique key among the %n(n— 1) independent
keys which is common to a pair of nodes and no other node holds this key (among
his n— 1 keys). If, however, subkeys are used then it is possible that other nodes
hold one (or more) of the subkeys that the two nodes combine to produce their
key. Thus these other nodes may have some information about this key. This
disadvantage may be tolerated for the potential advantage in reduced storage.
For example, if a node holds m subkeys and only 2 subkeys are combined to
produce a key then we have Zm(m — 1) different possible combinations. Thus
m need only be of the order of v/2n in order to provide distinct (though not
necessarily all independent) keys for communication with each of the other nodes.
So, in a network of 10,000 nodes, each node need only store about 8 x 102 bits
rather than the 10° bits we calculated earlier in order to share a DES key with
every other node.

2.4 A small example

To illustrate the use of subkeys we use the biplane with v = 7 and k = 4. There
are seven nodes, vi,...,v7 in the network. The KDC generates seven subkeys
k1, ..., k7 and distributes them so that each node receives four subkeys as follows:

vyt kl kg kg k5
Vg ! k’g ](,’3 k4 ks
Vs . k’3 k’4 ks k’[
V4 k4 ks ke ]{71
Vs . ]C5 ks k’7 k‘g
Vg k’s ](,'7 k’l ](73
V7 . k‘7 ](,'1 kz k4

It is easy to check that, in this scheme, any two nodes have two subkeys in
common. Moreover, only these two nodes have both these subkeys. There are
21 pairs of subkeys and these correspond to the 21 pairs of nodes. Thus each pair
of nodes may obtain their own key by combining their two common subkeys.

2.4.1 Storage reduction and security for the example

If each subkey consists of 28 bits then the two common subkeys may be concate-
nated to obtain a 56 bit DES key. In this case each node stores 4 x 28 = 112
bits rather than 6 x 56 = 336 bits required for 6 independent DES keys. Also,
the KDC generates and stores 7 x 28 = 196 bits rather than 21 x 56 = 1176 bits.
However, the disadvantage of this scheme is that a node may know as many as
28 of the 56 bits of a DES key that a pair of nodes shares. That node would
then need only 228 trials to determine the key. Moreover, vz and vs together hold
both ko and k3 and so can determine the key used by v; and vy. This scheme
provides a marked reduction in storage at the cost of significantly decreasing
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the security and sacrificing the independence of keys. Greater security can be
obtained by using the same biplane but increasing the storage by increasing the
size of the subkeys.

If, for instance, each subkey consists of 56 bits, so that the storage at each
node is doubled to 224, which is still a reduction on the 336 bits, each pair of
nodes can obtain a DES key by XORing their common subkeys. Now, as any
other node holds at most one of the two subkeys, no single other node knows as
much as a single bit of any key which is shared with any other node. However,
as before, v3 and vz can determine the key used by v; and vs.

2.5 Keys from subkeys

There are two aspects of the general use of subkeys that must be discussed.
Firstly, there is the question of the distribution of the subkeys to the nodes, i.e.
the determination of which subset of subkeys each node is given. Clearly, the
subkeys each node holds must be labelled in such a way that it can determine
which subkeys it shares with any other node. It is also important to protect each
pair of nodes from other users. Secondly, there is the question of how each one
of a pair of nodes combines the subkeys that they have in common to produce a
key.

There are many ways of tackling the first problem. However, we will concen-
trate on those which are applications of the study of finite incidence structures.

2.6 Finite incidence structures

A finite incidence structure § = (P, B,Z) consists of two finite non-empty sets P
and B and an incidence relation Z C P x B. The elements of P are called points
and those of B blocks. If (P,z) € Z, where P € P and z € B, then we say that
P is incident with z (or P is on @, or ¢ contains P). Otherwise P and z are not
incident [14].

We relate incidence structures to our key distribution problem by identifying
the set of nodes of the network and the set of subkeys with the set of points and
set of blocks, respectively, of an incidence structure. A node P and a subkey z
are incident if and only if subkey z is one of the subkeys distributed to node P.

2.7 Key Distribution Patterns

We have noted that, with this method of using subkeys to determine keys, some
nodes may have partial information about a key that is shared by a pair of nodes.
That is, they may know some of the subkeys that are combined to produce that
key. A basic requirement that we may ask of a scheme such as this is that no
single node should hold all of the subkeys that are common to a pair of nodes
(except, of course, the two nodes of this pair). We may state this requirement
in incidence structure terms as follows. For any three distinct points Py, Py, Q
of the finite incidence structure [(P;) N (P2) \ (Q)] > 1 where, for any point P,
the set of blocks incident with P is denoted (P).
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A finite incidence structure with this property is called a Key Distribution
Pattern (KDP) [28,29]. If Py, P, are distinct points of a finite incidence structure
the line determined by P, and P; is defined to be the set of all points which are
incident with every block in (P1)N(P2). It is relatively easy to show that a KDP
is a finite incidence structure in which every line has size 2 and that, conversely,
a finite incidence structure with line size 2 is a KDP [30]. A design in which
every pair of points lie on a unique block is trivial and has %—v(v — 1) blocks. We
call the corresponding KDP trivial. Note that in a trivial KDP the subkeys are
keys.

2.7.1 w-secure KDPs

If subkeys are held by more than two nodes then it is (theoretically) possible
that some group of nodes may hold all the subkeys that two other nodes have
in common. Such a group of nodes could then pool their subkeys and determine
the key that that pair of nodes would use. We say that a KDP is w-secure if
no group of w or fewer nodes can determine another pair’s key. Thus a KDP is
w-secure if for every pair of distinct points P, and P, and every subset of w points
Q1,-..,Qu (distinct from P; and P;) we have |(P1) N(P2) \ UL, (Qi)] > 1. We
note that every KDP is 1-secure. For every KDP there will be a maximum value
of w such that the KDP is w-secure. Usually, for a given network, a decision will
need to be made on the value of w required for the w-security of the KDP and
this will then influence the way in which subkeys are distributed. Of particular
interest to network providers are the KDPs which achieve the desired level of
w-security and have the lowest storage requirement.

2.7.2 Storage

The storage requirement takes two forms: storage at the nodes and storage
at the KDC. We may assume, by splitting (larger) subkeys if necessary, that
all subkeys have the same size. When we do this the storage requirement is
given by the number of blocks containing a point (|(P)| for P € P) and the total
number of blocks (|5]) in the KDP. Usually minimising the storage at the nodes is
more important. However, depending on the application, users concern may also
focus on the average nodal storage or on the maximum storage at a single node.
There is another factor which is relevant in discussing storage requirements;
this is the size of the key that pairs of nodes share. If this latter consideration
is important then the way in which subkeys are combined to produce the key
becomes particularly relevant.

If a key is obtained by the concatenation of subkeys then knowledge of any
subkey gives part of the key and reduces the size of an exhaustive key search.
Thus concatenation is not a sensible method for combining subkeys. Clearly we
need a method of combining subkeys that produces a key of the appropriate size
but where knowledge of some of the subkeys will not shorten an exhaustive key
search. One option might be to let subkeys and keys have the same length and
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to use XOR as the combining operation. There are many alternatives including
the use of orthogonal arrays (or MDS codes).

The use of orthogonal arrays allows any pair of nodes P;, Py to share a key
whose size is equivalent to the concatenation of m independent subkeys and which
is secure against collusion of up to w other nodes provided that the corresponding
KDP satisfies [(P1)N(P2)\UL,(Q;)] > m for all w-subsets {Q1, ..., Quw} disjoint
from {P;, P,}. When this condition holds for every pair of nodes Quinn [30] says
that the KDP has w-residue m. These parameters set the security requirements
of the network. The storage requirements of the nodes are reflected in the values
|(P)] for P € P and that of the KDC in |B|. The greatest key storage reduction
is obtained when these values are minimized. It is a challenge to find KDPs in
which these values are minimal.

When w = n — 2 the trivial KDP provides the minimum storage. The size of
the key equals the size of a subkey and |(P)| = n — 1 for every node.

In order to be able to improve upon this storage of the trivial KDP we must
have w < n — 2 and some node P must hold a subkey which contributes to more
than one of his keys. Quinn shows that in the case |(P)| > $(w + 1)(w + 2m).

In a KDP with w-residue m a pair of nodes may use a key of size m times the
size of a subkey. A reduction in storage at a node over that of the trivial KDP
is possible only if gw—“éﬂ"fﬂl < n - 1. Quinn considers KDPs in which each
subkey is held by the same number of nodes and every pair of nodes have the
same number of subkeys in common. She obtains a lower bound on the storage
at a node in such a KDP, showing that |(P)] > 1(1 + /1 + 4(w + m)(n — 1)).
(This is equivalent to |(P)|(J(P)| — 1) > (w+ m)(n — 1).)

2.7.3 Biplanes

A biplane is a KDP with 1-residue 1. Indeed, any pair of points are incident
with 2 blocks and any other point is on at most one of these blocks. So for
any three distinct points Py, Py, @ we have |(P1) N (P2)\ (@)] > 1. In a biplane
with n points, every point is incident with k& blocks where k(k — 1) = 2(n — 1).
Thus biplanes attain Quinn’s lower bound for this class of KDPs [30]. Biplanes
have equally many blocks as points and also attain the lower bound |B| > n
for storage at the KDC. Unfortunately, no biplane with more than 79 points is
known. So we must lock elsewhere for KDPs suitable for large networks.

We consider KDPs in which every pair of nodes have the same number, s, of
subkeys in common and each subkey is held by the same number, &, of nodes.
Let A be the maximum, over all triples Py, Py, P3 of nodes, of |(P1)N(P2)N(P3)|.
If A = 0 then any subkey is held by exactly two nodes and we have nothing more
than the trivial KDP. Thus we can only achieve some storage reduction with
A > 1. Quinn [30] shows that such a KDP is a w-KDP with w-residue m for any
w and m with wA + m < s. She considers the case A = 1 and constructs many
examples. The basis of her method is her observation that if £ > 3 then A = 1
if, and only if, any pair of blocks have at most two points in common. One of
Quinn’s constructions uses conics in desarguesian projective planes.
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2.74 Example 2 (Quinn’s Construction)

The desarguesian projective plane of order ¢ has ¢?+ ¢+ 1 points and ¢ + ¢+ 1
lines (blocks). Every line is incident with ¢+ 1 points and any pair of points are
incident with exactly one common line. A conic is a set of ¢ + 1 points no three
of which belong to any line. It may be shown that the desarguesian projective
plane contains a collection of g2 + ¢ + 1 conics with the properties that any two
of them have exactly one point in common. The structure whose points are the
points of the plane and whose blocks are the lines and such a collection of conics
clearly satisfies Quinn’s criterion for the size of block intersection. The structure
is therefore a 1-KDP with l-residue m =1 (s = 2,A = 1).

Quinn generalises her construction by considering incidence structures in
which every pair of points has either 0 or s blocks in common. Techniques
similar to the example above allow her to construct such structures with the
property that any two blocks have at most two points in common. Pairs of
nodes having s common subkeys then have m subkeys not held by any group of
w other nodes whenever w+m < s. By introducing m separate subkeys for each
pair of nodes with no common subkey we can obtain a w-KDP with w-residue
m.

3 Enumerating permutations

In this section we will consider some permutation enumeration questions which
can be motivated both from a pure and a practical point of view. We begin by
looking at a particular speech scrambling system. For an introduction to speech
scrambling techniques, see [3].

A time element speech scrambler is a method of encrypting analogue speech
signals which works as follows. A speech signal M is divided up into segments
Mo, My, ..., M- of equal duration (7" seconds, say). The scrambler permutes
the segments of M according to a secret permutation o of the set {0,1,...,1—1}
and then transmits the signal C'= My,, Mio,. .., M(1-1), consisting of the seg-
ments of M in this permuted order. The descrambler recovers M by reordering
the segments of C.

The permutation ¢ used in time element speech scrambler systems should
be chosen carefully. There are two main requirements that ¢ should satisfy: it
should be chosen so as to make the resulting system secure (in particular, so as
to make the signal C unintelligible to any evesdropper) and so as to allow the
scrambler to operate efficiently. We will discuss the security criteria for o at the
end of the section, but we start by showing how o should be chosen for efficiency.

We discuss two techniques: overlapping frame sliding window scramblers and
disjoint frame sliding window scramblers. Both these techniques are discussed
in [26]. See also [3,27].
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3.1 Overlapping frame speech scrambling

In the first technique, we divide M into sets of n consecutive segments, called
frames. We pick an integer k such that £ < n and a permutation 7 from the set

Ank)y ={reS,ime{i—-1,i—2,...,i—k}foralli € {0,...,n—1}}

where S, is the set of permutations of Q := {0,1,...,n — 1} and where we are
regarding the elements of Q as integers modulo n. Suppose the message starts
to enter the scrambler at time 0. We then scramble the message by transmitting
at time tT" the segment received at time (¢ — »)T", where r is defined to be the
smallest nonnegative integer such that (t modulo n)r = (¢ — r) modulo n. One
can show that the total system delay will be (k + 1)T" seconds when using this
technique. An overlapping frame sliding window scrambler is shown in Figure 1,
where n = 8 and we are using the permutation = = (0541)(2763).

Time (t) t=0

Frame A t=8T  Frame B t=16T
Speech g‘ V? ) %
input n.) !Al lA2lA3lA4|A5]A6|A7IA8!B1 B2 [B3[B4[B5 BS [137[138!01 lc2]
i i i oo v T D
oSV SR v 5 v 5 15/ D ) D

receiver

3
1
4
1
1
L ———— e
System Delay

4T Seconds

Figure 1. Overlapping frame sliding window scrambling
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3.2 Disjoint frame speech scrambling

The second technique is known as disjoint frame sliding window scrambling. As
before, we partition the sequence of segments into frames of length n. In contrast
to the previous technique, we aim to scramble the message within each frame,
rather than mixing the frames together. This allows us to use a different per-
mutation when secrambling each frame, so increasing the security of the system.
We select nonnegative integers s and ¢ such that s +¢+ 1 < n. For each frame,
we choose a permutation 7 satisfying

{0,1,...,i+¢}ifi € {0,1,...,5 =1},
ire {i—si—-s+1,...;i+t—1i+t}ifie{s,...,n—1~1t} and
{i—si—-s+1,...,n=1}ifiec{n—¢t,...,n—1}
(3.1

and permute the segments of the frame according to 7. The total system delay
in a system of this type is (s + ¢ + 2)T seconds. See Figure 2 for an exam-
ple of this technique, where n = 8, s = # = 1 and where we use the permu-
tation (01)(2)(34)(56)(7) to scramble the first frame A and the permutation
(0)(12)(34)(5)(67) to permute the second frame B.

Time (t) t=0 t=2T t=4T t=8T  Frame B t=16T
Speech E E é E E

input to |y iaslas[aslas|aca7|as1|B2[Bs[B4[B5 [B6 B7[BSIC1 [C2|
transmitter , ! ! , E ,
Transmittcds H H ; 5 E
speech | tazlijasiasiadirlaciaspipalp[ps Befpopsipr]
Speech E E : ; :
output at | arja2jasiaelasiaciarjasiprpaBaipas be|

receiver

———p
System Delay

4T Seconds

Figure 2. Disjoint frame sliding window scrambling
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3.3 Enumeration questions

In order for our speech scrambling system to be secure when using one of the
sliding window techniques above, there must be a “reasonable” number of permu-
tations 7 satisfying the constraints imposed above (for otherwise an evesdropper
could just try every suitable permutation until they hit upon the correct one).
The two techniques above explain why designers of speech scrambling systems
are interested in determining (or at least estimating) the size of the sets

Alnky={reS,:ire{i—-1,...;i—k}foralli € {0,...,n — 1}}
and

B(n,s,t) ;= {7 € S, : 7 satisfies Equation 3.1}.

The sets A(n,k) and B(n,s,t) (where s = t) have been studied [2,26] with
the speech scrambling motivation in mind. However, the study of these sets
can also be motivated from classical combinatorics. Finding the order of the
set A{n,n — 1) is the “probléme des rencontres” and of the set A(n,n — 2)
is the “probléme des ménages”. So enumerating the elements of A(n, k) can
be regarded as generalising these well known combinatorial problems. Both
enumeration problems can be phrased in terms of evaluating the permanent of
an n by n matrix (see [24] or [25] for background material on permanents).
Indeed, the problem of evaluating |A(n,k)| has been studied in this guise by
combinatorialists [23]. For the remainder of this section, we follow the approach
to these enumeration questions found in [5].

We can enumerate the elements in A(n, k) by first dividing them into k classes
A(n,k,0), A(n,k,1),..., A(n, k, k — 1) where we define A(n, k,r) to be the set

{m€ A(n, k) : {1 €{1,2,...,k -1} :imr € {0,1,...,i = 2}}| = r}.

It is possible to establish a bijection between the elements in A(n, &, ) and closed
paths of length n in a certain strongly connected directed graph I'(k, r). We may
then use the incidence matrix of I'(k,7) both to explicitly find |A(n,k,r)| for
small parameters (using a computer) and to investigate the asymptotic behaviour
of |A(n, k,r)| using Perron-Frobenius theory. We can show:

Theorem 1. Let H(k,r) be the incidence matriz of the graph T'(k,r). Define
a(n, k,r) .= |A(n,k,r)|. Then a(n,k,r) = Trace (H(k,r)"). Also a(n,k,r) ~
(r,r)™ as n — oo where py , is the (unique) mazimum eigenvalue of H(k,r).

If we define py = max{pug , : 0 < r < k—1}, the theorem implies that |A(n, k)| ~
my(px)” as n — oo where my := [{r: p» = pr}l.

The values of u , for & < 15 are shown in Table 1. Only the values of py »
for r < k%l are shown, since it is not difficult to show that up , = g5 g—~1-». The
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Table 1. The maximum eigenvalue px, of H{k,r) for small k

1 2 3 4 5 6 7
3 1.61803
4 1.83929
5 1.92756 2.33355
6
7
8

1.96595 2.60771
1.98358 2.76284 3.06177
1.99196 2.85335 3.36009
9 1.99603 2.90768 3.55755 3.79352
16 1.99803 2.94107 3.69013 4.10597
11 1.99902 2.96197 3.78052 4.33205 4.52677
12 1.99951 2.97526 3.84303 4.49690 4.84856
13 1.99976 2.98381 3.88682 4.61820 5.09514 5.26082
14 199988 2.98035 3.91783 4.70829 5.28498 5.58923
15 1.99994 2.99297 3.94000 4.77576 5.43199 5.85119 5.99534

column r = 0 is omitted since uz,0 = 1 for all k. There are several interesting
questions about the behaviour of pg , that arise from examining the table. The
most obvious feature of the table is that the figures in column r seem to tend
to r + 1 from below: it is possible to show that this is in fact the case [5]. It is
also possible to show that pp ~ % as k — oo (the proof of this result [5] follows
from the general theory of permanents and from a result of Hwang [18]). Thus
we have an estimate for the maximum p; of each of the rows of the table. It
would be interesting to show that pr,_1 < pig» for all r < k_Tl This would, for
example, imply that my = 1 if k is odd and my = 2 if k is even. However, this
remains an open problem.

Estimates of the value of b(n,s,t) := |B(n,s,t)| are closely bound up with
the estimation of |A{n, k)|. The connection is provided by a bijection which
exists between B(n, s,t) and closed paths in 'y ;41 4 of length n which start and
end at a particular vertex. By making use of this bijection, we can show that
b(n,s,t) corresponds to a particular entry on the main diagonal of the matrix
H(s+t+ 1,t)*. This allows us to calculate the values of b(n,s,t) for small
parameter sets and enables us to prove that there exist constants c¢; and cs,
depending only on s and ¢, such that

e1(ftsqi1,)” < b(n,s,t) < colphsgegre)”

for all sufficiently large n. This result shows that all the constants y; . appear
in the enumeration function of a natural class of permutations. Hence it would
be interesting to find good estimates of the values of each individual gy, (rather
than just the values of up).
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There are a great many interesting problems which remain unsolved in this
area. As well as improving the asymptotic and non-asymptotic estimates for
the number of permutations in A(n, k) and B(n, s,t), there are other interesting
classes of permutations waiting to be enumerated. For example, the classes of
the permutations considered here were chosen so as to make some specific types
of speech scrambler efficient. Considering security issues provides new classes of
permutations to examine. The concept of security is difficult to define in our
situation, but by experimenting with different permutations some criteria that
a permutation should satisfy emerge. Beker and Mitchell [2, Section 7] say that
the most important property a secure permutation = of {0,...,n — 1} should
satisfy is that 4w 4+ 1 # (¢ + 1)7. Enumerating permutations with this property
which lie in A(n, k) or B(n,s,t) is an example of a class of permutations whose
enumeration would be of interest to both combinatorialists and to the designers
of speech scramblers of the type we have discussed.

4 Finite fields

This section concentrates on the use of the techniques of finite field theory in
the analysis of a class of ciphers known as stream ciphers. This is just one of the
many areas of cryptography where finite field theory plays a role (others include
the analysis of block ciphers by approximating them by linear structures and the
use of polynomial interpolation in certain secret sharing schemes).

A stream cipher is a machine which accepts a small secret random num-
ber (known as the key) and rapidly produces a long pseudorandom sequence of
elements from some finite field (usually IFy). One of the main applications of
such ciphers is in the encryption of digitised speech. In this application, the
digitised speech can be regarded as a binary sequence M = mg, my,... which is
produced at a high rate. Suppose a stream cipher produces the binary sequence
S = sg, 81, ... when fed a certain secret key. The message M is encrypted to form
the sequence C' = cp,cy,... by defining ¢; = m; + s; modulo 2. The sequence
C is transmitted and is decrypted by anyone with knowledge of the sequence S
by setting m; = ¢; + s; modulo 2. For such a system to be secure, the sequence
S must be difficult to predict by an evesdropper who has no knowledge of the
secret key, but who may have information about a small segment of the sequence

S.

4.1 Linear complexity

One of the most important criteria for a stream cipher is the linear complexity
of its output sequence S. A sequence sg,. .., 8, _1 of elements from a field IF has
linear complexity [ if there exist elements ag,aq,...,a; € IF, not all zero, such
that
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H

Zajsiﬂ- =0 (4.1)

j=0
forall i =0,1,...,m—1—1 and if no non-trivial relation of the form (4.1) exists
for any smaller value of {. An infinite sequence sg, 81, ... has linear complexity [

if (4.1) holds for some ag,a1,...,a; € I, not all zero, and for all i € {0,1,...}
and if no non-trivial equation of the form (4.1) holds for any smaller value of 1.
Every finite sequence has a linear complexity and one can show that (when IF is
finite) an infinite sequence has a linear complexity if and only if it is ultimately
periodic.

The notion of linear complexity is important for three reasons. Firstly, if
a sequence has a low linear complexity then knowing a small segment of the
sequence, together with an equation of the form (4.1), allows the rest of the
sequence to be easily predicted. Secondly, a basic component (the linear feedback
shift register) of many modern stream ciphers often produces sequences of low
linear complexity, so it is quite possible that a poorly designed stream cipher
could produce sequences which have low linear complexity. Lastly, there exist
efficient algorithms which, when given a sequence S, find a recurrence of the form
(4.1). This allows any evesdropper to tell if a sequence S produced by a stream
cipher could fall to linear complexity attacks, if they know a short segment of
S. For the remainder of this section, we concentrate on some of the algorithms
which find the linear complexity of a sequence.

The algorithms we are considering fall into two broad groups: algorithms
which measure the linear complexity of infinite sequences whose period is known
and algorithms which measure the linear complexity of a finite sequence.

4.2 Algorithms to measure linear complexity

Suppose that S is a sequence of elements from IF of period ¢. The classical method
of finding the linear complexity of S is to use the Discrete Fourier Transform
(DFT) of S: the weight of the transform of S is equal to the linear complexity
of S. The DFT requires a primitive tth root of unity in order to operate, so
can only be used when ¢ is coprime to the characteristic of IF. The DFT can,
however, be generalised to apply to sequences of any period. For a discussion
of the unmodified DFT, see [31]. The Games—Chan algorithm, which operates
when the sequence S is binary and has period a power of 2, is given in [12]. The
general case—using various approaches—can be found in [4,17,22].

Another group of algorithms can be used when the period of the sequence S is
unknown. The Berlekamp-Massey algorithm [21] is given the elements sg, 51, . . .
in turn and returns the linear complexity of the finite sequence sg, sy, ...,si-1 at
each stage. It can be shown that the linear complexity of the infinite sequence
S of period t is equal to that of the finite sequence sg,s1,...,s;—1 whenever
i > 2t. So if an upper bound on the period of S is known, the Berlekamp—
Massey algorithm can be used to calculate the linear complexity of S. The
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Berlekamp—Massey algorithm was invented to solve the decoding problem for
Reed—Solomon codes [20]. It is strongly related to other algorithms [9,19,34]
which solve this decoding problem. In fact, both the Berlekamp-Massey algo-
rithm and the other decoding algorithms solve special cases of a more general
problem—an interpolation problem which is related to a problem in the theory
of rational approximation of analytic functions [1]. See [6] for a discussion of the
general problem and a description of an algorithm which solves it.

A final algorithm, which is of a quite different nature to the previous al-
gorithms, is the Zero Square algorithm [33]. This algorithm, when fed the
elements sg,sq,... in turn, outputs the linear complexity of the ¢ sequences
S := sj,8541,...,8i—1 where j € {0,1,...,4 — 1}. The complexities of such
sequences are of interest since the output sequence of a stream cipher should
have a low linear complexity from any starting point in order to be secure. The
algorithm manages to compute these quantities efficiently by avoiding having
to calculate the elements ag,...,q; in equations of the form (4.1), unlike the
Berlekamp-Massey algorithm.

There are several directions that future research in this area might take. One
approach is to investigate methods of improving the efficiency of algorithms to
calculate the linear complexity of sequences in various situations. Another is
to consider other complexity measures of sequences. For example, the & error
linear complexity of [32] is very interesting (this notion has also been considered
in {10] and [11]), but an algorithm only exists to measure this quantity when
S is a binary sequence whose period is a power of 2. The p-adic span [16] is
another interesting measure: efficient algorithms seem to exist to calculate the
p-adic span, but there is currently no close analogue of the Berlekamp—Massey
algorithm?. There are plenty of interesting questions which remain unsolved.
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Abstract

A regular coloration of a graph is an assignment of colours to the ver-
tices which obeys the rule that if two vertices are coloured the same then
their neighborhoods have the same set of colours. If the graph represents a
social system then vertices which are coloured the same can be thought of
as playing the same role. We investigate the concept of regular coloration
and present some results which allow for the development of algorithms
which can be used to analyze social network data.

1 Introduction

Graph theory has been extensively used as a model in the social sciences. The
vertices of a graph represent individuals or groups of individuals. The groups can
be as diverse as political parties, countries or family groups. The edges repre-
sent interpersonal or intergroup relations, for example “likes”, “hates”, “agrees”,
“communicates with”, “married to”, “allied with”, “trades with” etc. Clearly
this model can give rise to both digraphs and graphs. The area of social sciences
is known as social networks and graph theory has been a principal tool in the
development of both theory and techniques for data analysis. In this paper we
shall examine a graph theoretic formulation of the concept of social role.

Ideas of social role have been important to social theorists since the middle
of the century. Early concepts were limited to roles which had been identified by
common language; these include kinship roles such as “mother”, work roles such
as “the manager of”, occupational roles such as “teacher” and more general roles
such as “leader”. Social networks provide an ideal environment in which to for-
malize a more abstract concept of social role. Individuals are identified as playing
the same role if they relate in the same way to individuals playing counterpart
roles. For example the role of middle manager in an organisational structure
can be determined by examining their relationships to higher management and
workers.

Let G(V, E) be a finite graph with vertex set V and edge set £. Self-loops
and multiple edges are allowed. We shall refer to directed graphs as digraphs
and use the notation D(V, E).

In a directed graph we define the in-neighbourhood of a vertex v as the set
of vertices from which v receives connections, and the out-neighbourhood as the
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set of vertices which receive connections from v; these are denoted by N;(v) and
Ny(v) respectively so that

Ni(v) ={z : (z,v) € E}
No(v) = {z : (v,z) € E}.

In the undirected case these two sets would be the same and we therefore
use the general term neighbourkood of v, which will be denoted by N{v). A
coloration C of a digraph D is an assignment of colours to the vertices of D. If §
is a subset of the vertices of a digraph then the spectrum of S, denoted by C(S),
is the set of all colours assigned to the vertices of S. If S consists of just a single
vertex v, then we shall write C(v) and call this the colour of v.

2 Regular coloration

Definition 1. A coloration C of a digraph D(V, F) is régular if and only if for
alu,veV.

C(u) = C(v) = C(Ni(u)) = C(Ni(v))

and

C(No(w)) = C(No(v))-

In the undirected case this reduces to the condition that

C(u) = C(v) = C(N(u)) = C(N(v)).

We shall now assume that all graphs and digraphs do not contain isolates (i.e.
vertices with no adjacencies to other vertices). This restriction is of little conse-
quence to the theory of regular coloration but it does simplify the statements of
a number of the results.

In any graph or digraph, the coloration which assigns a different colour to
every vertex is always regular. In a graph (but not necessarily a digraph) the
coloration in which every vertex is coloured the same is also regular. It is clear
that for any graph or digraph there may be a number of possible regular col-
orations. Since every regular coloration defines a partition (two vertices, being
in the same colour class if they are coloured the same) then we can order the set
of regular colorations by using the refinement relation on the induced partition.
Let R be the set of all regular colorations of a digraph D. Let C1,C2 €R
and suppose Cy < Co, where < is the order defined above, then for any pair of
vertices u and v in D such that Cy(u) = Ci(v) it follows that

Co(u) = Ca(v).
The idea of regular coloration was first formulated algebraically by White

and Reitz [1], the regular coloration formulation was by Everett and Borgatti
(2], in which the following theorem was first proved for graphs.
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Theorem 2. For any digraph D(V,E) then the set of all regular colorations,
denoted by R(D), partially ordered by < forms a lattice.

Proof. We shall prove the existence of arbitrary joins; we note the trivial regular
coloration provide us with zero so we need only consider non-empty subsets of
R(D). Let R € R(D), then each regular coloration induces an equivalence
relation =g on V. If I is a non-empty subset of R(D), then we can identify a
family of induced equivalence relations =;, for each i € I. Define a new relation
= on V by vy = v, 1f there exists a sequence 2q, 21, .. ., 2, with v = 20, v, = 25,
such that for all j in the range 1 < j < n, 3i(j) € 1 such that z;_1 =) 2.
In other words, in our new coloration, two vertices, v; and v,,, are in the same
colour class if we can find a sequence of vertices beginning with v; and ending
with v,,, such that every successive pair in the sequence is in the same colour class
for some regular coloration. We shall show that = induces a regular coloration
on D which is equal to VI. The construction of = is the same as that used in the
construction of the join for the lattice of equivalence relations; consequently, it
is well known that = is an equivalence relation and a supremum with respect to
the refinement ordering. We need only show that it induces a regular coloration.

Suppose v, = v;, with corresponding sequence zp,21,...,2,, and further
suppose that z € No(vg), hence C(z) € C(No(vg)). Now 2o =i1) 21 and
since zo = v, then z € No(z). It follows that Cj)(z) € Ci1)(No(21)) and
therefore 3di € No(z1) with Cy1y(z) = Cj1y(di) and hence & =;1) d;. Sim-
ilarly since z; =) 22 and d; € No(zy) we can repeat the above argument
and find a d; such that dy =3y di. Continuing inductively we construct a
sequence z,d1,dy...,dn, wWhere d, € No(z,) = No(vj) with each pair of the
sequence in the same colour class for some member of I. It therefore follows that
z = dp so that C(z) € C(No(v;)) and hence C(No(vi)) C C(No(v;)). Similarly,
C(No(vj)) C C(No(vr)), C(Ni(ve)) C C(Ni(v;)), C(Ni(v;)) C C(Ny(vx)) and
the result follows.

It is not the case that R(D) is simply a sublattice of £(V), the lattice of
all colorations (i.e. all equivalence relations) on V. Whilst the joins are the
same the meets are not. Consider the following two colorations of 2P;. For
the first coloration colour each vertex of one component P; a different colour
and repeat the coloration for the second component. For the second coloration,
simply interchange the colours of the two endpoints of one of the components
of the graph. The equivalence relation meet of these two colorations is not a
regular coloration.

Definition 3. A regular coloration which uses k colours is called @ k-regular
coloration.

Clearly a bipartite graph has a 2-regular coloration. As previously stated any
graph has a l-regular coloration. The following theorem gives conditions under
which a digraph has a I-regular coloration. (Borgatti and Everett [3]).
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Theorem 4. A digraph D(V, E) has a 1-regular coloration if and only if it con-
tains no sources or sinks.

Proof. Suppose D contains no sources or sinks then every vertex of D has non-
empty in-neighbourhoods and out-neighbourhoods. Hence if every vertex is the
same colour the coloration will be regular.

Conversely, suppose that assigning every vertex the same colour produces a
regular coloration. If D contains a source then by definition the in-neighbourhood
of this vertex will be empty. Since the digraph must contain a vertex which is
not a source then this vertex must have a non-empty in-neighbourhood. Both
neighbourhoods cannot be coloured the same which contradicts the regularity of
the coloration.

Definition 5. The image digraph D'(C(V), E') of a coloration C of a digraph
D(V,E) has C(V) as its vertices. There is an edge from vertez A to B if there
exisis an edge in D from a vertex coloured A to a vertex coloured B.

Definition 6. Let C be a coloration of a digraph D(V, E). Given a colour K € C
then the K outdegree of a vertex v € V, denoted by X po(v) is the number of edges
initiating from v and terminating at a vertez coloured K. We define K indegree,
denoted by ¥ p;(v) similarly. The coloration C is a divisor coloration if, and only
if, for all u,v € V and every K € C(V).

C(u) = C(v) 2 po(u) = po(v)

and

K pi(u) =% pi(v)

Clearly any divisor coloration is a regular coloration. The term divisor col-
oration is a consequence of a result of Sachs [4]. He showed that for a divisor
coloration if we place the value of X pg(u) on the edge (C(u), K) in the image
digraph then the characteristic polynomial of the image digraph is a factor of
the characteristic polynomial of the original digraph. One important example of
a divisor coloration is colouring each orbit of any subgroup of the automorphism
group of a digraph a different colour. A proof of this, together with further
details on divisor coloration is contained in Cvetkovic, Doob and Sachs [5]. A
consequence of this result is the following theorem.

Theorem 7. Colouring each orbit of any subgroup of the automorphism group
of a digraph a different colour is a regular coloration.

The next theorem gives us a useful characterisation which is exploited in some
of the proofs of other theorems in the paper.
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Theorem 8. Let D(V, E) be a digraph with coloration C, then C is a regular
coloration if and only if for every v € V, C(No(v)) = No(C(v)) and C(N;(v)) =
Ni(C(v)). Note the two right hand sides refer to the neighbourhoods of the image
digraph under C.

Proof. The construction of the image means that for all v € V,
C(No(v)) C No(C(v)). Suppose that C is a regular coloration and v such
that No(C(v))¢ C(No(v)). That is, 3 a colour A such that A € No(C(v)) but
A ¢ C(No(v)). Since A € No(V(v)) then Jy € V such that C(y) = C(v) and
A € C(Ny(y)) contradicting the regularity of C.

Now suppose that for all v € V, C(Ny(v)) = No(C(v)). If C(z) = C(y) then
No(C(z)) = No(C(y)) and hence C(No(z)) = C(No(y)). We can repeat the
above argument by replacing Ny by N; and the result follows.

Any digraph D(V, E) is simply a binary relation E on the vertex set V. We
can use E to generate a semigroup S under the operation of relational composi-
tion. We call this the semigroup associated with D. The following theorem was
first proved by White and Reitz [1].

Theorem 9. Let D' be the image digraph of a regular coloration C of a digraph
D. Let S and S’ be the associated semigroups of D and D' respectively then S
s a homomorphic image of S.

Proof. Let E and E’ be the relations induced by D and D’. Suppose A(E*)'B
so that Ju,v € V(D) such that uE*v with C(u) = A and C(v) = B. Since uE%v
then 3z1,29...2;1 with uE2y,21Ezs, ... 2.1 Ev. By the construction of the im-
age we have C(u)E'C(z1), C(21)E'C(23) ...C(2i—1)E'C(v) and hence A(E')!B.

Conversely, if A(E')YB then 3Xi,Xo,...X;-; such that
AE,Xl,XlEIXz, .. .X,'_lE'B. Since AE'Xl then Ju € V(D) such that
C(u) = A and X; € N(C(u)). It follows from Theorem 8 that C(z1) = X,
so that 3z; € V such that C(z;) = X; and uEz;. We can continue in this way
to form a sequence u,z21,29,...,2;-1,v € V such that uFz1,21Ezs,...2;1Fv
with C(z;) = X; j=1...i -1, C(u) = A and C(v) = B so that A(E*)B. It
follows that (E*)' = (E)". Let Q € S then @ = EP and define ¢(Q) = (EPY, it
easily follows that ¢ is a homomorphism.

Corollary. If in addition to the theorem the coloration is such that for all
u,v €V then C(u)E'c(v) implies uEv then S and S’ are isomorphic.

The conditions of the corollary are much stronger than required and it would
be useful to weaken them to some extent, but no reasonable weakening is known
to the authors.

Definition 10. If the lattice of all regular colorations of a graph or digraph is
trivial (i.e. consists of 1 or 2 elements) then we call the graph or digraph role
primitive.
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Figure 1. A role primitive graph

Clearly we are interested in graphs and digraphs with 3 or more vertices. It is
easy to construct role primitive digraphs (with more than 3 vertices) but slightly
more difficult for graphs. Let H be the 8 vertex graph as shown in Figure 1.

Theorem 11. The graph H is role primitive.

Proof. Suppose that C(5) = A. It follows that C(4) must be a different colour,
B say. Now if C(3) = A then the only way we could complete the regular
coloration is if the graph was bipartite. Alternatively if C(3) = B then it would
not be possible to colour 1 in such a way that the coloration was regular. We
therefore assume C(3) = C. Clearly C(2) cannot be coloured A, suppose C(2) =
B. Since B’s are only adjacent to A’s and C’s then C(7) is A or C. However
A’s and C’s are only adjacent to B’s and it follows that 8 must be coloured
B. This contradicts regular coloration since B’s cannot be pendants so that
C(2) # B. If C(2) = C then 1 cannot be coloured in such a way as to produce a
regular coloration so 2 must be coloured with a new colour D. If C(2) = D then
C(1) must also be a different colour E. Since vertex 8 is a pendant it can only
be coloured A, F or a new colour. If C(8) = A then C(7) = B and we cannot
complete a regular coloration. Alternatively if C(8) = E then C(7) = D in which
case C(6) must be C but this is non-regular. It follows that C(8) = F in which
case C(7) would be forced to be D but this cannot give a regular coloration.
Hence 7 and therefore 6 both require new colours. We conclude that H is role
primitive.

A computer search can be used to verify that there are no graphs with fewer
than 8 vertices which are role primitive. The following theorem allows us to
restrict our search to identity graphs.

Theorem 12. Ewvery role primitive graph with 3 or more vertices 1s an identity
graph.
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Proof. Since the orbits of any subgraph of the automorphism group of the graph
G can be used to form a regular coloration then Aut(G) is either the identity or
acts transitively. It follows that if Aut(G) is transitive the stabilizers are trivial
and so Aut(G) acts regularly. Since no subgroup of a regular group can be
transitive Aut(G) must have prime order and so be Abelian. The only Abelian
automorphion groups which can act regularly on the vertices of a graph are
the elementary Abelian 2-groups. It follows that Aut(G) = Z; and Burnsides
theorem then contradicts the fact that G has 3 or more vertices.

Note that the above theorem is false for digraphs, any directed cycle of prime
length acts as a counter—-example. The next result examines regular coloration
in terms of standard graph operations.

Theorem 13. Let D and E be digraphs.

1. If D has a k-regular coloration and E has an l-regular coloration then
DUE and D+ FE have a k + l-regular coloration.

2. If DUEFE has an m-regular coloration then D x E has an m? regular col-
oration.

3. If DUE 1s coloured so that D, FE and D U E are m—regular colorations
D x E has an ' /ym(m + 1) regular coloration.

Proof.

1. Simply colour each vertex of D and F as for the k and ! regular colorations
making sure that E is not coloured using any of the colours of D.

2. Let C' be an m~-regular coloration of DUE. Colour each vertex u = (ug, ug)
of D x E by (C(u1), C(uz)).

C(Ni(u)) {(C(u1),A) : A€ C(Ni(u2))}

U {(B,C(w)) : BeCNi(w))}
= {(Clu),A) : A€N(Clu))}
U {(B,C(w) : BeN(Clu))}
= N(C(u)

The out—degree is similar.

3. Follows from noting that the proof in 2 remains valid if we replace the
ordered pair (C(uy),C(uz)) by the un—ordered pair {C(uy), C(usz)}.

Definition 14. A coloration of a digraph D is ecological if C(N;(u)) = C(N;(v)
and C(No(u)) = C(No(v)) = C(u) = C(v).

A coloration which is ecological and regular is called a perfect coloration.
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Ecological colorations are precisely the converse condition of regular col-
orations. It can be shown that the class of all ecological colorations forms a
lattice (simply use the meet as in the lattice of all equivalence relations). The
following theorem is a useful characterization of perfect colorations.

Theorem 15. A regular coloration of a digraph D is a perfect coloration if and
only if the image digraph contains no pairs of vertices with identical in and out
neighbourhoods.

Proof. Suppose that D has a perfect coloration and that in the image graph
the distinct vertices C(u) and C(v) have identical neighbourhoods. That is
N;(C(u)) = N;(C(v)), but since the coloration is regular then C(N;(u)) =
C(N;(v)); similarly C(No(u)) = C(Np(v)). Since the coloration is also eco-
logical it follows that C'(u) = C(v), a contradiction. Conversely suppose that D
has a regular coloration and that the image graph does not contain vertices with
the same neighbourhoods. If C(N;(u)) = C(N;(v)) then N;(C(u)) = N;(C(v))
and similarly if C(No(u)) = C(No(v)) then No(C(u)) = No(C(v)). It follows
that the neighbourhoods are the same so that C(u) = C(v).

The following corollaries can be derived from the above theorem.

Corollary. The class of all perfect colorations forms a lattice under the refine-
ment relation.

Corollary. The mazimal element of the regular coloration lattice is perfect.

3 Algorithmic considerations

To be of use in the social sciences it is necessary that a regular coloration can
be computed for a given data set. Noise in network data offers means that it
is desirable to have robust approximate regular coloration algorithms. In this
section we examine two methods—one based upon combinatorial optimisation
and one direct method for computing regular coloration.

Definition 16. Let D be a digraph with coloration C and adjacency mairiz A.
Then the partitioning of A by which the rows and columns are partitioned into
the colour classes 1s called blocking of A. The submatrices corresponding to a
blocking are called blocks.

Theorem 17. A coloration of a digraph D is regular if and only if the blocks of
the corresponding adjacency matriz are either made up of zeros or have a I in

every row and every column.

Proof. Simple application of the definition of regular coloration.
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Given a coloration then Theorem 17 allows us to measure to what extent
the coloration is regular. We simply compute the Hamming distance between
each block and a block which satisfies the regular coloration condition. The sum
of all these distances gives a cost function which can be used as the basis of a
combinatorial optimization method. The software package UCINET (Borgatti
et al. [6]) implements a Tabu Search routine, the authors have also experimented
with a genetic algorithm which has proved more efficient.

The following n® algorithm finds the maximal element of the regular col-
oration lattice.

1. Colour all vertices the same.
2. For each colour pick a representative colour.

3. For each representative: check the regular coloration condition against all
vertices in the same colour class. Re-colour all vertices which fail the

condition with a new colour. If no re-colouring occurs stop: otherwise go
to 2.

Of course, by virtue of Theorem 4 this algorithm is only of use on digraphs
which contain sources or sinks.

We note however, that this algorithm and Theorem 2 can be applied, with a
small modification to divisor colorations. Therefore, an application area in the
Social Sciences has thrown some light onto an area of pure mathematics. There
are, of course, a number of problems still open in this area. In particular the
following are of interest to social networks.

e What is the meet operation in the lattice of regular colorations?

o What is a characterization of any k-regular colorations other than k£ = 1
or n. In particular can we characterize 2-regular colorations?

o Can we give conditions under which the semigroups of the original graph
and the image graph are isomorphic?

¢ How common are role primitive graphs?
o Can we develop a theory of “nearly” regular coloration which involves

polynomial time algorithms?
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1 Favourable signal sets

For many kinds of communication channels, the optimum detection system is a
correlation detector, which computes the cross-correlation between the actual
(noisy) received signal and locally generated models of the various waveforms
which might have been sent. The waveform with the largest correlation is the
mazimum lLikelihood estimate of what was sent. It is this fact which motivates
the search for sets of signals (waveforms) which are as mutually uncorrelated
as possible for use as the “codewords” in reliable communication systems, and
for signals which are as uncorrelated as possible with all non-zero time-shifts of
themselves for use in radar, sonar, and synchronisation applications.

Typically, modern communication systems use binary {or at most g-level)
modulation on some kind of carrier signal to obtain the transmitted signal. The
rows of a Hadamard matrix can be used to provide mutually uncorrelated
(i.e. orthogonal) waveforms for use in communications (see Diagram 1). The
Hadamard matrix can be modified in any of a number of ways to provide addi-
tional desired characteristics of the waveforms. (See Diagrams 2-4.)

HADAMARD MATRIX = ORTHOGONAL CODE

fl(t)l I | I ]
to 1]

oL T 601 [

Y

Y

\J

Y

gl 1 [

Y

Diagram 1. The correspondence between the rows of a Hadamard matrix and a set
of orthogonal signals

59



60 S.W. Golomb

DOUBLED H-MATRIX = BI-ORTHOGONAL CODE

fl(t)l [T 1] >t
+ ]+ |+ |+ ACH u >t
+ | + 1 - - [ |
f3(0) l—| >t
Ll L
+| -1+ -
Lol 1 I
| ==+ - I
i I f5() >
- -+ +
f6(0 I l o> t
-+ -]+ n
— + + - f7(t), [— —] >
jupn
foo L 1 -t
|

Diagram 2. A Hadamard matrix is 4¢ x 4¢. (Do they exist for all £ € Z*?) When
4t = 2", the bi-orthogonal code is called a “Reed-Muller Code”

HADAMARD MATRIX = ORTHOGONAL CODE

foTTT1

+ ]+ |+ |+
oL 1] ¢
+1 +]1 -] - | l l
+ _ + _ o f3(t) l— l— >
1L
+ ] -1 -1+
ol 1 1 o

Diagram 3. (Normalised) correlation: fol Fi@)f;()dt = 65
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Reduced HADAMARD MATRIX = SIMPLEX CODE

51(‘)_EED____> t

+ + +
9]
N B _ $2( [ >t
_ + _ 53("-) » t
L
N - * 54(t)—D::l_—> t
. . . 1 lifs =y
Diagram 4. (Normalised) correlation: fo si(t)s; (1)dt = —1/(n=1)ifi#j

2 The simplex bound

Theorem 1. Given n “signals” (= functions) h;i(t) on [0,1], with (h; - hj) =
fol hi(t)h;(t)dt such that (h; - hy) =1 for alli, 1 < i< n, then
Proof.

max;x;(h; - hj) > average;; (hi - hy)

= o { DR T (e hy) = i (b - ha)
= by (T h) - (Tpes b)) — )
= ey U L= hil? = n} 2 55k (0—n)

Corollary. If the signals {h;(¢)} are “binary”, i.e. restricted to the values +1
and —1, then

. z g2 0if n even
an«‘??éélesnl;h'(t)' Z{ 1ifn odd }

Thus,
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. Y —1/(n—1), neven
aII‘I‘?éges” I?;}x(hz hJ) S { —1/71., n odd } ’

Note. If 4¢ x 4t Hadamard matrices exist for all ¢t € Z%, then the simplex bound
—~1/(n ~ 1) can be attained with binary signals for all even n € Z%.

3 Signals for range radar and sonar

For applications to range radar and sonar, sequences are sought which have a
uniformly low autocorrelation value for all non-zero time shifts of the sequence.
The problem of finding binary sequences with two-level periodic autocorrela-
tion is mathematically equivalent to finding cyclic (v,k,A) designs. For an
out-of-phase periodic auto-correlation value near zero, cyclic Hadamard designs
(v=4t—1,k=2t—1, A =t~ 1) are the appropriate choice.

In addition to periodic binary modulation on a continuous wave (CW)
carrier, a number of other radar and sonar systems are also in use. Instead
of binary modulation, ¢-phase modulation (corresponding to sequences of com-
plex numbers from the unit circle) may be used, for which the sequences of
Frank and of Chu have specially favourable properties in the periodic case; and
in the non-periodic [so-called finite] correlation case, Barker sequences (using
binary modulation), generalised Barker sequences (using g¢-phase modulation),
the aperiodic versions of Frank’s and Chu’s sequences, and Huffman’s “impulse-
equivalent pulse trains” (corresponding to amplitude modulation, i.e. the use
of sequences of real numbers to generate the waveform) have all been studied.
For pulse radar (as contrasted with CW radar), the optimum pulse patterns
correspond to combinatorial objects called minimum spanning rulers.

4 Cyclic Hadamard difference sets

A cyclic Hadamard difference set is a cyclic (v, &, A) difference set where v =
4t — 1, k = 2t — 1, and A = t — 1. These correspond to “cyclic Hadamard
matrices”, where the rows are cyclic shifts of one another after the top row and
left column of the matrix have been removed. For example:

+1 +1 41 +1
+1 +1 -1 -1
+1 -1 41 -1
+1 -1 -1 41

il

Hy
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Examples of this type are called “cyclic Hadamard matrices”, and are in
one-to-one correspondence with “cyclic Hadamard difference sets”.
All known examples of cyclic Hadamard difference sets have v = 4t — 1 of one

of three types
1. v =4t -1 prime.

2. v=4t — 1 =u(u+2), a product of twin primes.

3. v=2% — 1, one less than a power of 2.

We recently conducted a search for v < 10,000. Of the 2500 values of v on
this range, all examples found had v of one of these three types, and only 17
other values of v remain to be completely checked.

The general constructions which give these designs are

1. For v = 4t — 1 prime, use the Legendre symbol a; = (%) for the sequence
for 1 <k < wv-1, but take a, = +1 (instead of using (%) = 0). [“Legendre
sequence” = “Quadratic residue sequence”].

2. For v = 4t — 1 = u(u 4 2) a product of twin primes, set a; = (%), the
Jacobi symbol, when (k,v) = 1, but take a; = +1 when (k,v) = u, and
ar = —1 when (k,v) = u+ 2 and when k = 0. [“T'win-prime sequence” =

“Stanton-Sprott sequence”].
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3. For v = 2% — 1, use the “m-sequence construction”, i.e. use a “maximum
length linear binary shift register sequence of degree k”.

4.1 Other constructions for cyclic Hadamard sequences

1. When v = 4¢ — 1 is prime, if also v = 4a? + 27 (for example v = 31,43, 127,
223,283, ...) there is M. Hall, Jr.’s “sextic residue sequence” construction.
However, these periods form a subset of those for which the Legendre
sequence construction provides examples.

2. When v = 2% — 1, with k composite, the Gordon—Mills-Welch (GMW)
construction provides an alternative to the m-sequence construction.

3. Exhaustive searches have been conducted for all cyclic Hadamard difference
sets when v =27 -1 =127, v =28 -1 =255, and v = 2° — 1 = 511. In
each case, there were at least two “new” examples (three new examples at
v = 127) not belonging to any of the previously described families. These
may be examples of new families of cyclic Hadamard matrices which are
still awaiting discovery.

5 The applications to range radar and sonar

To determine the range (i.e. the distance) to a target by radar or sonar, a
signal is transmitted, reflected by the target, and detected at a receiver which
is usually, though not always, located at or near the transmitter. The range is
then proportional to the round-trip time of the signal.

One strategy is to send a very brief pulse with very high intensity (amplitude),
and measure the elapsed time until an echo is detected. Quite often, however,
the transmitter has a peak power limitation which makes it impossible to send a
single pulse signal of sufficient intensity that its echo can be detected with high
confidence. Broadening the pulse may allow more total energy to be transmitted,
but at the expense of sharpness in the measurement of the round-trip time, and
hence of the range being determined. (See Figure 1.)

A strategy to get more energy into the signal, and yet to retain the ability
to make sharp range determinations, is to use coded waveforms. The type of
coded waveform depends on the kind of signal the radar (or sonar) is able to
generate.

A pulse radar (or sonar) generates pulses of energy of fixed amplitude and
duration. However, the spaces between the pulses may be varied in some coded
fashion. We will return to the coding problem for these pulse patterns later,
under the heading of a family of combinatorial designs called spanning rulers.

A “continuous wave” (CW) radar or sonar transmits a sine wave signal f(t) =
A sin (wt + ¢) which may be modulated in amplitude A, frequency w, or phase
¢. Quite commonly, phase modulation is used. In the case of binary phase
modulation, the phase angle ¢ changes at intervals specified by an appropriate
coding scheme between the values 0° and 180°, which has the same effect as
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SHORT LONG

‘Lﬂ— PULSES——P_I:l_
! ‘ 5 <@~ CORRELATIONS—P™ /[\

Figure 1. The shorter the pulse, the sharper the antocorrelation function

binary amplitude modulation, with the amplitude changing abruptly between
+A and —A at the same intervals. We will see that the optimum coding scheme
for bi-phase modulated CW radar (or sonar) corresponds to using the successive
terms of a cyclic Hadamard sequence, of the type already described.

Another type of radar (or sonar) modulation, called frequency hopping,
involves transmitting a sequence of pulses at different frequencies, where the
sequence follows some type of coded pattern. A range/doppler radar {or sonar)
is one which is used to determine both the distance (range) and the velocity
relative to the observer (doppler shift) of the target. Frequency hopping pat-
terns based on a family of combinatorial objects called Costas Arrays provide
an optimum coding scheme for the simultaneous determination of distance and
velocity.

It is possible to design a range radar (or sonar) system based on a uniformly
spaced sequence of amplitude-modulated pulses. This idea, under the name of
“impulse-equivalent pulse trains”, was cleverly explored by David A. Huffman,
but it has not led to practical systems.

Phase modulation with more than two phases is frequently used in radar
signals. There is also a significant distinction between CW radars that “stay on
the air” by repeating their patterns periodically, and those that “turn off” after
completing their signal pattern.

As early as 1953, R.H. Barker explored the question of 41 modulation on a
finite radar signal, and found excellent binary “Barker sequences” of lengths 2,
3,4,5,7, 11 and 13. Several years later (1961) Turyn and Storer proved that
no odd-length Barker sequences exist with length L > 13, and it is generally
believed that no even-length Barker sequences exist with length L > 4. This is
an unsolved combinatorial problem which has attracted considerable attention.
It is equivalent to finding a “totally cyclic” Hadamard matrix larger than this
4 x 4 example
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+ + + -
+ + - +
+ - + +
- 4+ 4+ +
Barker’s constraint on his sequences {a;,as,...,a r} is that the “unnormal-

ized correlation” C(r) = Ef’;{ a;a;4r satisfy |C(7)| < 1, for 7 = £1,+2,...,

(L — 1). In 1965, Golomb and Scholtz introduced the notion of “generalised
Barker sequences”, where now the terms of the sequence {a1,az,...,ar} are
numbers on the unit circle in the complex plane, with C(7) = Ef’:_f a;aj,, and
[C(r)| < 1for 7 = £1,+2,...,4(L — 1). Examples of “generalised Barker se-
quences” have now been found for all lengths L < 20 (N. Zhang and S. Golomb),
and for several additional values with 21 < L < 25 (Bomer and Antweiler), but
1t seems very unlikely that examples of arbitrarily great length exist.

Much longer “polyphase” signals, with weaker correlation constraints, have
been introduced and studied for both the periodic case (Frank and Chu), and
for the “finite” case (Frank, Zhang and Golomb et al.)

What all of these radar and sonar signals have in common is a highly
favourable “auto-correlation function” C(r) = 3, a;a} +r, Where, for 7 = 0,
C(0) = ¥, |a;[* = the total energy of the signal, while for all 7 # 0,|C(7)] is
small compared to the length, or period, of the sequence.

The brute force approach is to undertake ever more ambitious and time-
consuming attacks on these problems by intensive computer search. It is unlikely
that we will ever abandon this method of finding good specific examples of ever
greater lengths (or periods). However, there is one general approach to the study
of the autocorrelation of sequences which applies to all of these specific cases,
and yields valuable information about each of them.

6 The polynomial model

With the sequence {ao,a1,az,...,a,-1} of length n, we associate the degree-
(n — 1) polynomial f(z) = ag+ a2+ ...+ a,_12"~!. We then observe that

ar (= oo

r=—(n-1)
where as before,
n—

C(r)= Y aaly, if 120, and C(~1) = C*(r).

1-7
=0

Different specialisations of the f(z)f* (%) identity above have led to impor-
tant results in several of the applications areas we have discussed. For the case
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of cyclic difference sets modulo v, this identity is the first step in the demonstra-
tion of M. Hall, Jr.’s “multiplier theorem” for difference sets. For pulse radar
sequences, and the spanning ruler formulation, this identity is a crucial step in
the study of “homometric rulers”. Huffman used this identity in his work on
“impulse-equivalent pulse trains”, and it was used by Golomb and Scholtz to
help identify the group of “Barker preserving transformations” on a sequence.

Recapitulation

1. Barker sequences.

2. Generalised Barker sequences.
3. Frank sequences.

4. Chu/Golomb~Zhang sequences.

5. Huffman’s “Impulse-equivalent pulse trains”.
Hadamard matrices (constructions)

1. Orthogonal codes.
2. Bi-orthogonal codes.

3. Reed—Muller codes.

4. Simplex codes.
Spanning rulers (applications)

1. Pulse radar patterns.
2. Antenna positioning for radio astronomy.
3. X-ray diffraction crystallography.

4. Tap combinations for convolutional codes.
2-level periodic correlation {constructions)

1. Shift register (PN, or m-) sequences.
2. Quadratic residue (Legendre) sequences.
3. Twin prime (Jacobi-symbol) sequences.

4. Cyclic Hadamard design sequences.
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5. Cyclic (v, k, A)-design sequences.

Costas arrays

Tuscan squares } Frequency-hopping patterns.

Some general methods
1. Lower bounds on mutual correlation

(a) Simplex bound.
(b) Bounds of Sidel’nikov, Welch, Levenshtain, etc.

2. The polynomial model (degree L = n — 1)

L
{artizo = ) aa® = f(2).
k=0

Then F(z) = f(2)f* (1) = 25 _; C(r)z", where C(r) = SEratap ..
3. Applications

(a) |C(7)| is unchanged by az — pn*ar and by ax = pn¥ar_j for any
complex numbers p and 5 with |p| = || = 1.

(b) Information is gained by setting

i. f(z)=0,
il F(z) =0,
iii. z = e?™/™ = @, or

iv. 2 = @ € GF(q) with o™ = 1.
(¢) (v, k, X)-[cyclic]-difference sets, including [cyclic] Hadamard matrices.

(d) Barker gave examples having the following lengths

Sequence

+1

+1, +1

+1, +1, -1
+1, +1, =1, +1

+1, 41, +1, -1, +1

+1, +1, 41, -1, =1, +1, —1

+1, +1, +1, =1, =1, =1, 41, =1, =1, +1, —1

+1, +1, 41, +1, +1, =1, =1, +1, +1, =1, +1, —1, +1

e IS N N S

Turyn and Storer showed that there are no other “Barker Sequences”
for odd lengths L > 13. It is still unproven that even length Barker
Sequences with L > 4 do not exist, though this is generally believed.
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7 Examples of generalised Barker sequences*

Length  # (Phases) Sequences Correlation K(r) for 7 =
L ¢ {a1,a2,...,a5} 0 1 2 3 4 5 6 T 8
2 7B..C. 11 2, 1
3 2B. 1,1,-1 3, 0, 1
4 2B.,F. 1,1,1,1 4, 1, 0, -1
5 2B. 1,1,1,-1,1 5, 0, 1, 0, 1
6 6C. 1L,e-1,1,¢,-1 6, -1, -1, 1, -1, -1
7 2B. 1,1,11,-1,1-1 7, 0, -1, 0, -1, 0, -1
9 3F. 1,1,11wwl, ow 9, € €, 0, €, ¢, 0, -1, €

7

o x| K(T)|<lfor|r|>1 e=e*/8 0w=eT=w?=¢.

e “B” BARKER SEQUENCE. ¢ = 2.

e “F” FRANK SEQUENCE. L = ¢2.

o “C” CHU SEQUENCE. ¢ = L. (Not generalised Barker for ¢ = L > 9.)
Frank sequences

Let a = e2™/". {Sequence length L = n%}.

0 0 0 .0 1 .2 n—1
oL, L, o, o s
T N
n terms n terms
0 2 4 2(n—1 0 n—-1 _2(n-1 n—1)2
a,a,a,...,a( ),---,a,a ,a( ),...,a( )
n terms n terms

Chu sequences

L
. 3
Let o = e?™/L_ Sequence of length L is: { a® al,a3,af,... ,a( )} =

{a(ﬁ),a(ﬁ) .0 ,a(’i)}

For both Frank and Chu sequences, the periodic correlation C(r) = 0 for
all 72 0 (mod L).

For both Frank and Chu sequences, the aperiodic (= finite) unnormalised
correlation K(7) satisfies

max|-|>1|K(r)| < c- Y2,

so that the normalised auto-correlation KALD— satisfies

K(r)
L

maxj,|>1 =O0(L Y% as L — 0.
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Bounds proved by

Periodic Correlation  Finite Correlation
Frank sequences Frank Turyn
Chu sequences Chu Golomb & Zhang

8 Pulse patterns and “optimal rulers”

A pulse radar can send one or more pulses of RF energy toward a target. It
is convenient and realistic to assume that all pulses have the same amplitude
and duration. The signal design problem is to devise patterns of these identical
pulses with an autocorrelation function as impulse-like as possible.

Equivalent problem: for each positive integer n, what is the shortest length
L = L(n) for which there is a sequence {a1,az,...,a,} with0 =ay <az < --- <

an = L, such that the ( 721 differences {a; — a;} with 1 <i < j < n are all
distinct?
We envision brief pulses at each time position 0 = a1, a3,as,...,a, = L. The

distinctness of all a; — a; (4 < j) guarantees that for each 7, the unnormalised
correlation at = # 0 is at most 1.

The sequence model is also described in terms of a certain class of rulers (the
measuring devices, not the monarchs or autocrats).

A ruler of length L has only n marks on it, at integer positions ay,as,...,
an, where a; = 0 and a, = L are the two endpoints of the ruler. If every
integer distance d, 1 < d < L, can be measured in one and only one way

RULER PULSE PATTERN K(v

2

n=2 O 101
01 01 -

01 3 01 23 3210123
14
n=¢ [—1T 1 1] [ 1 prrtr g
01 4 6 01 4 6 6543210123456

Figure 2. Perfect rulers for n = 2, n = 3 and n = 4, with the corresponding pulse
radar patterns and their unnormalised autocorrelation functions
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as a distance between two of the n marks, then the ruler is called a perfect

2
between the n marks, and these must be some permutation of {1,2,3,...,L}. In
Figure 2, we see perfect rulers for n = 2,3, and 4, with the corresponding pulse
radar patterns and their autocorrelation functions K(7).
Unfortunately, for n > 4, there are no perfect rulers.

ruler. For a perfect ruler, L = ( g ), since there are exactly ™ ) distances

Theorem 2. For n > 4, no perfect rulers ezist.

There are two obvious ways to relax the requirements on a perfect ruler to
get objects which exist for all n. A covering ruler with n marks and length
L measures every distance from 1 to L, as a distance between two marks on
the ruler, in at least one way; while a spanning ruler with n marks and length
L measures every distance from 1 to L, as a distance between two marks on
the ruler, in at most one way. The interesting combinatorial problems are to
determine the longest covering ruler with n marks, and the shortest spanning
ruler with n marks, for each positive integer n. Both of these problems have long
histories in the combinatorial literature. However, the application to pulse radar
involves only finding the shortest spanning ruler for each n. (Martin Gardner
termed these objects “Golomb rulers”, a name which seems subsequently to have
been widely adopted. There are also important papers which refer only to the
“difference triangles”, and not to the rulers themselves.)

The behavior of L(n) as a function of n, for the shortest spanning ruler,
is quite erratic in detail, although it is known that asymptotically L{n) ~ n?
as n — oo. The value of L(n) has been determined by exhaustive computer
search for all n < 19. (For the values of n with 14 < n < 16, this search was first
performed by J. Shearer of IBM. The values of L(17) and L(18) were determined
in 1993 by W. Olin Sibert of Lexington, MA, and the value of L(19) was found
in 1994 by a group at Duke University consisting of A. Dellas, T. Rankin, and
D. McCracken.) In addition to left-right reversal of the ruler, these rulers are
not unique for several of the smaller values of n. One example of a spanning
ruler of length L(n), for each n < 16, is shown in Table 1.

PULSE PATTERN K(7)

(Spanning Ruler)

L1 | L | oeenr pibiiToneed vantty
01 4 9 1 -11-109-8-76-54-32-101 2345678 91011

Figure 3. Radar pulse pattern, and its autocorrelation, for n = 5 pulses
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Table 1. Table of the shortest spanning rulers

n L(n) m Sequence of Marks
51 1 01
3 3 1 013
4 6 1 0146
5 11 2 014911
6 17 4 0,1,4,10,12,17
725 5 0,14,10,18,23,25
8 34 1 0,149,15.22,3234
9 44 1 0,1,5,12,25.27,35,41,44
10 55 1 0,16,10,23 2634415355
11 72 2 0,14,13,2833,47,54,64,70,72
12 8 1 0,2,6,24,29,40,43,55,68,75,76,85
13 106 1 0,2,5,2537,43,59,70,85,89,98,99,106
14 127 1 0,5,28,38,41,49,50,68,75,92,107,121,123,127
15 151 1 0,6,7,15,28,40,51,75,89,92,94,121,131,147,151
16 177 1 0,1,4,11,26,32,56,68,76,115,117,134,150,163,168,177

Note: The quantity “m” is the number of inequivalent rulers of length L(n)
which are shortest spanning rulers with n marks. Only one of each set of m
rulers is listed explicitly in this table.

PULSE PATTERN

DIFFERENCE TRIANGLES

0 1 4 9 11
1 3 5 2

II 4 8 7
9 10

9 11 11

AUTOCORRELATION FUNCTION

pRnal 1iiid

-11-10-9-8-76-54-3-2-101 23435678 91011

Diagram 5. The difference triangle corresponding to the five-mark spanning ruler in

Figure 3, and auto-correlation
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In Figure 3, we see the pulse pattern and correlation corresponding to the
sequence listed for n = 5. The difference triangle, and the polynomial model for
this example, are shown in Diagram 5.

Additional shortest spanning rulers

n =17, L(17) =199 W. Olin Sibert (1993)
0,8,31,34,40,61,77,99,118,119,132, 143,147,182,192, 194, 199

n=18, L(18) =216 W.Olin Sibert (1993)

0,2,10,22,53,56,82, 83,89, 98,130, 148,153, 167, 188,192, 205, 216
n=19, L(19) =246 A. Dollas, T. Rankin, D. McCracken (1994)

0,1,6,25,32,72, 100, 108, 120, 130, 153, 169, 187, 190, 204, 231, 233, 242, 246

with polynomial

f(z) =142z +z* +2° 4+ 21,
given by

e (H) = % Ko

T7=-11

9 Sophie Piccard’s “Theorem”

Homometric rulers are rulers which measure the same set of distances.

In our terminology, S. Piccard’s “Theorem” (1939) asserts

“If two spanning rulers of length L, with n marks, are homometric, they are
either identical, or are mirror images of each other.”

The counter-example shown in Diagram 6, with n = 6 and L = 17, was found
(c. 1974) by Gary Bloom. [These were two of the four minimum spanning rulers
(n = 6) from a table by John Leech, c. 1952.]

We found two infinite 2-parameter families of counter-examples for the case
of rulers with n = 6 marks.

We now believe that there are no counter-examples with n > 6 marks. (We
proved there are none for n < 6.)

G. Yovanof proved that if a counter-example is of the form f;(z) = ¢(z)g:(z),
f2&) = $(@)aa(e), fila)fy () = fal@)fa (2) (as it must be) and ¢(z), 1(c)

have at most one negative term between them, then n = 6.
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HOMOMETRIC RULERS
01 4 10 12 17 01 8 11 13 17
1 36 2 5 1 7 3 2 4
4 9 8 7 8 10 5 6
10 11 13 EACH SKIPS 11 12 9
12 16 14 & 15 13 16
17 17

Diagram 6. Non-identical homometric rulers, whose polynomial must be related as
shown in this example

@) =l+z+aet+e0+ 2% + 27,
fZ(CB) = 1+.’L‘+$8+m11 +.’L’13+J;17.
fi(z) = ¢(2)g1(z), faoz) = é(z)ga(z)

g2(z) = z%g1 (%)

filz) = (Q+z+2%1 42t —25+ 21

fa(z)

where

(142 +28)(1 — 2% 4+ 27 + z11).
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9.1 Two-dimensional pulse patterns

J.P. Costas (see [21]) proposed the following problem: we wish to design an nxn
frequency hop pattern, for radar or sonar, using n consecutive time intervals
t1,%2,...1,, and n consecutive frequencies fi, fs,..., fn, where some permuta-
tion of the n frequencies is assigned to the n consecutive time slots. Moreover,
this should be done in such a way that, if two frequencies f; and f;1, occur at
the two times ¢; and %;4,, then there is no ¢/,#’ # i, where the two frequen-
cies fi and fyy, occur at times ¢;; and t;:;,. This constraint corresponds to
an ideal, or “thumb-tack” ambiguity function for the frequency hop pattern.
[A “thumb-tack” (US) is a “drawing pin” (UK).]

We may represent the frequency hop pattern by an n x n permutation matrix
(aij), where a;; = 1 if and only if frequency f; is used at time ¢;. (Otherwise

a;;j; = 0.) The extra condition is that the “vectors” connecting the

n
2
n positions in the matrix where 1s are located are all distinct as vectors: no
two vectors are the same in both magnitude and slope. One may visualise a
dot at each position where a;; = 1. When the pattern is shifted in both time
(horizontally) and frequency (vertically), any dot can be brought into coincidence
with any other dot. However, the extra “Costas” condition is that no such
shift (other than the identity, which is no shift at all) will bring two dots into
coincidence with two other dots.

Costas succeeded, initially, in finding examples, by exhaustive computer
search, only for n < 12. However, several systematic constructions for these
“Costas Arrays” are now known, giving examples for arbitrarily large values of
n. All of these systematic constructions are based on the existence of primitive
roots in finite fields. Three such constructions are:

1. The Welch Construction, for n =p—1 and p — 2, p prime.

Let ¢ be a primitive root modulo p. The “dots” of the permutation matrix
occur at the locations (7,¢*) for 1 < ¢ < p — 1, giving a Costas Array of
order n = p— 1.

Since g?~! = 1 (mod p), there is a dot at (p—1,¢P~!), which is at a corner

of the matrix. Removing the row and column of this dot leaves a Costas
Array of order n = p — 2.

2. The Lempel Construction, for n = ¢ — 2, ¢ a prime power.

Let o be a primitive element in GF(q). The “dots” of the permutation
matrix occur at the locations (i,j) whenever of + o/ = 1 in GF(q),1 <
i,j < n — 2. (This always produces a symmetric matrix.)

3. The Golomb Construction, for n = ¢ — 2 and ¢ — 3, ¢ a prime power.
Let « and 8 be any two primitive elements in GF(q). The “dots” of the
permutation matrix occur at the locations (¢, j) whenever o* + 8 =1 in

GF(q),1 < i,7 < n— 2. (The special case when « = f# is the Lempel
Construction.)
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Table 2. The number of Costas Arrays for n < 23; where C(n) is the total number,
¢(n) is the reduced number, and s(n) is the number of symmetric Costas Arrays of

order n
n  C(n) c(n) s(n)
2 2 1 1
3 4 1 1
4 12 2 1
5 40 6 2
6 116 17 5
7 200 30 10
8 444 60 9
9 760 100 10

10 2160 277 14
11 4368 555 18
12 7852 990 17
13 12828 1616 25
14 17252 2168 23
15 19612 2467 31
16 21104 2648 20
17 18276 2294 19
18 15096 1892 10
19 10240 1283 6
20 6464 810 4
21 3536 446 8
22 2052 259 5
23 872 114 10

It has been shown that for all ¢ > 2, the field GF(¢) contains primitive
elements « and B (not necessarily distinct) with o + § = 1. Using such «
and (B in the Golomb Construction, since a' + ! = 1, we have (1,1) as
the location of a “dot” in the construction. Removing the top row and left
column of the matrix leaves a (¢ — 3) x (¢ — 3) Costas Array.

For proofs that these three constructions must yield Costas Arrays, see [22].
For additional variants, and the way they yield examples of Costas Arrays for
many values of n < 360, see [23]. Since 1984, the smallest values of n for which
no examples of Costas Arrays are known are n = 32 and n = 33.
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1 Introduction

We describe a deterministic algorithm for designing a multilayer perceptron
(MLP) [11] for the solution of a two—state classification problem. This algorithm
1s illustrated in the context of channel equalization [4], but is more generally
applicable.

We consider MLPs constructed from McCulloch-Pitts units [5]. A
McCulloch~Pitts unit or node (see Figure 1) accepts a real-valued input y € R™
and calculates as its output the quantity f(y”w — 6), where f is the Heaviside
step function and w € R™ and 6 € R are the weight vector and threshold of
the node, respectively.

Attention is restricted to MLPs with one hidden layer of nodes and a single
output node (see [3] and Figure 1). The outputs of the nodes in the first (hidden)
layer are the inputs to the output node.

2 Channel equalization

The algorithm presented was motivated by the problem of reconstructing digital
signals which have been passed through a dispersive channel and corrupted with
additive noise as depicted in Figure 2. Explicitly, a random sequence {z;},
z; € {—1, 1}, is passed through a real linear dispersive channel of finite impulse
response with response function a(z) = ag + a;27 ! + ... + azz~*, where the
coefficients a; are real, 0 < j < k, and ap and a; are non-zero; producing a
sequence of outputs, {y;}, where y; = E;“:Oaj zi—;. A term, o;, which represents
additive noise, is then added to each y; to produce an observation sequence
{9:}. The task of the equalizer is to use the information represented by the
observed channel outputs @, 9;—1, .., Ji—m+1, to produce an estimate of the
input symbol z;_4, where the integer d > 0 is the delay and m > d. The integer
m is the order of the equalizer. The input samples z; are chosen from {—1, 1}
with equal probability and are assumed to be independent of one another.

!Supported by EPSRC Grant GR/J34248
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Figure 1. i} A single node, ii) MLP with one hidden layer

In the absence of noise the problem is to separate two sets of points in R™.
These sets of points are the images of the sets

Xi={(20,.. 2 pms1) i €{-1,1}, =k—m+1<i<0, z_g4=1}
and
Xy ={(z0, . 2 p-ms1)T s @i €{-1,1}, =k —m+1<i<0, z_q=~1}

under the linear transformation represented by the m x (m + k) matrix

ag ap ap ak 0 © 0
4= 0 @ @ ak-1 ap 0 0
0 0 agp ay ... Qp

Let Prm,ay(1) = AX; and P g)(—1) = AX_; as defined in ([4]).

When noise is present, the observed channel outputs ¥ = (%, ..., Ji—m+1)"
represent elements of Py, ¢)(£1) which are corrupted in each component inde-
pendently by noise. For low values of the noise variance, each § is very close
to an element of Py, 4y(1) or Py ay(—1). The equalizer must represent some
function

g : R™ — {-1,1}

i

such that g(A(2;, zi-1,..., mi-(k+m_1))T) =4

Previous attempts to use the MLP as a channel equalizer are discussed by
[4]. In general, Py q4y(1) and Py a)(—1) cannot be separated by a single hyper-
plane, that is, are not linearly separable, and so a linear transversal equalizer
(represented by a single node) will fail to separate them. It has been shown
that for d = 0, the sets will be linearly separable, for all sufficiently large m, if
and only if the channel is minimum phase; that is, if all the roots of z*a(z) lie
strictly within the unit circle in the complex plane [4]. Even if the two sets are
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Figure 2. Transmission system

linearly separable, the optimal decision boundary (see Section 4.2.2) is generally
non-linear.

Motivated by these difficulties, the MLP was considered. Simulations have
shown [4] that a MLP with two hidden layers trained by back propagation {8]
can approximate the decision boundary of an optimal equalizer better than can
a linear transversal equalizer. In this study, the architecture was chosen by
experiment. The training was slow and the decision boundaries obtained were
sub—optimal in general. The convergence was often too slow to be of use in the
case of time—dependent response function coefficients. In this paper we adopt
an alternative approach.

There are basically two strategies for channel equalization:

e estimating the channel characteristics from the data and constructing the
data equalizer; or

o estimating the equalizer directly from the data.

The former strategy is usually preferred in the case of time—dependent chan-
nel characteristics, or when speed is required, as fewer parameters need to be
estimated. Methods for estimating the channel are described and assessed in [6].

These observations led us to develop and propose a new algorithm we call the
Slab Algorithm to construct a solution in the form of a MLP with one hidden

layer and a single output node, assuming knowledge of the channel characteris-
tics.
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3 The Slab Algorithm

Let U and V be the cells of a partition of a finite set of points in IR™. Our aim
1s to construct a classifier that separates U from V. Let Uy = U and Vp = V.
Iterate the following steps, p > 1.

1. Find a slab
Sp={yeR™ : aps_y_Ty"pr}

where ap, b, € R, a, <b,, wP € R™ and wP # (, such that

(2)

Up-1 C{y € R™ : ap < y"wl},

Vo1 C{y€ R™ : fTw? <by)
and

(b) the width of the slab is minimal (in the sense defined below).

2. Let U, = Up-1 NS, and let V, = V1 N S,. If U, = V, = B then stop.
Otherwise, return to step 1, increasing p by one.

We use standard linear programming techniques to identify the slabs. By
“find a slab of minimal width” we mean

o if U,_1 and V,_1 are linearly separable then 5, must be a separating hy-
perplane such that (Up—y UV,-1) NS, =0,

e otherwise, attempt to minimize the number of elements in
(Up-1UVp1) N Sp.

Knowledge of the slabs S,, p > 1, enables a separating network to be specified.
If U and V are linearly separable, the Slab Algorithm yields a single separating
hyperplane, S;. A network comprising a single node with weight vector w* and
threshold a; = by will separate U from V.

Otherwise, let S1,...,S¢+1, ¢ > 1, be the slabs calculated. For p, 1 < p <g,
Sp specifies a pair of hidden layer nodes. The hidden layer nodes are assigned
weights wf, ..., wf, with threshold a, and weights —w}, ..., —w’, with threshold
—by. The weights for the output node in the second layer which multiply the
outputs from the two nodes corresponding to Sy, are 1/2” and —1/2°, respectively.
These two nodes combine to contribute 1/2F to the output node from points in
Up—1\Sp, —1/2” to the output node from points in V,_1\S, and zero from points
in (Up—1 UVp-1)NSp, 1 < p <q. The last node in the hidden layer is specified
by the separating hyperplane

Sq+1 — {QE RrR™ - ETQQ-H =dag4 = bq-{-l}
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Figure 3. MLP constructed by the Slab Algorithm

such that
Up C{y € R™ : y"w®™ > beia}

and
V,ClyeR™ : g w™! < by}

The last hidden layer node has weights wi*?, ..., wg+! with threshold b,,;. The

corresponding weight for the output node in the second layer is 1/ 20+ This
output node is assigned the threshold 1/ 2(e+2) (see Figure 3). We make use of
the geometric series
1/24+1/4+1/8+....
Note that
1/2+1/4+1/8+ ... £1/297 5 1720+ 5 ¢,

Hence, when ¢ > 1 and 1 < p < ¢, points in Up_1\S, and V,_1\S, are well
classified by the pair of nodes corresponding to S, and will not be misclassified
by the addition of further hidden layer nodes.

The number of nodes generated by this process is guaranteed finite because
we ensure that at least one point in Up_; UV, -1 is excluded from the slab S, at
each step.

It is possible to replace the p-th pair of hidden layer nodes, 1 < p < ¢, when
g > 1, by a single hidden layer node with two thresholds, a, and b, and node
activation function

f+ R — {-1,0,1}
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defined by f(z) = ~1ifz < ap, f(z)=0ifa, <z < b, and f(z)=1if z > by.
The outputs from these nodes (inputs to the output node) are multiplied by the
weights 1/2, 1/4, 1/8,..., 1/29, respectively.

The slabs Sp, 1 <p < g¢+1, ¢ > 0, are determined by linear programming as
follows.

1. We first try to separate U,_; from Vp—1 with a hyperplane
Sp={yeR™ : ap =yTwf =b,}

such that

Up-1 C{y e R™ : QTQP > ap}
and

Vp-1 C{y e R™ : y_TQp <ap}.

Linear programming constraints are expressed in the form of linear inequal-
ities or equations, but not as strict inequalities. Hence we seek a separating
slab of non—zero thickness

SZ’,:{QE]Rm:cpgy_TQPSdP}

where ¢,, d, € R, ¢, +1=d,, wP € R™, wP # 0, such that

and
Vp-1 C{y e R™ : gTQ” <c¢p}

The constraints which must be satisfied are

(a) uTwP >dy if u€Upoy

(b) v"w? < ¢, ifv € Vp_; and

() 0<d,—c, <1

while minimizing ¢, — d,. Begin by setting w? = ( and ¢ =dy = 0.

If Up_;1 and V,_; are linearly separable then, by linear programming, we
can find a separating slab S; such that ¢, +1 = d, and w? # 0. Set

Sp={ye R™ : yTwP =1/2 x (¢, + dp)}.

No more slabs are required.
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2. Failure to find a suitable w?, ¢, and d, as described above indicates that
Up—1 and V,_; are not linearly separable. In this case, try to find a slab

Sy={ye R™ : a, <y w? <b}
where aj,, b, € R, a, +1=1b,, wf € R™, v’ # 0,

Upr C{y€ R™ : y"wP 2 a})

and
Vo1 C{y e R™ : y¥w? <b},

containing as few elements as possible in Up_3 U V1.
The constraints to satisfy are
(a) uTw? > a, if ue Upy
(b) vTwP <¥ ifv € Vp_y and
(c) by —ap =1
while minimizing
—Duev,, @' —b,) + Zev, ., (@7 —ap).
Begin by setting w? = 0 and a, = b, = 0.
This method yields a suitable slab
Sy ={yeR™: a;,SQT_”Sb;)}
whose upper bounding hyperplane
{ye R™ : y'uP = b}
contains elements in V,_1 and whose lower bounding hyperplane
{ye R™ : w” = a,}

contains elements in Up—1. With our noisy channel equalization application
in mind, we shift the slab boundaries outwards. If Up_1\S, # 0, let

b= T w?
¥ ue(g_l\s»{g“}

and let by = 1/2 x (b, + b}). Else, let b, = b}, + 1/2. If V,_1\Sp # 0, let

ay =  max T wP}
e, .‘1\5,,)

and let a, = 1/2 x (aj, + ay). Else, let ap = a, — 1/2. Define

S, ={yeR™ : q SET@QP <b,}.
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v

Channetl (0.5, 1.0)

m=2 d=0 ® P(1) o P1
20 20

Figure 4. MLP constructed by the Slab Algorithm for channel 1

Sometimes, one of a pair of hidden layer nodes may be eliminated. If
Vp—1 C Sp, replace S, by a single hyperplane, namely

{QE R™ : QTQ)_" = by},

corresponding to a single hidden layer node with weights w?, ..., wF, and thresh-
old b,. The corresponding weight for the output node in the second layer is

1/2®. Similarly, if Up—; C S, replace S, by the hyperplane
{ye R™ : y'v’ = ap},

corresponding to a single hidden layer node with weights —uf,..., —w?, and
threshold —a,. The corresponding weight for the output node in the second
layer is —1/2%).

In the case of channel equalization, the hyperplanes bounding each slab may
be chosen equidistant from the origin and the final separating hyperplane may
be chosen to contain the origin (see Figures 4 and 5). Note that y € Py g)(1)
if and only if —y € Py q)(—1). Taking account of this symmetry reduces the
number of parameters to be determined (for a general study see [9]). In a more
general case, this symmetry will not be present. We also require 0 € Py, 4y(£1).
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Figure 5. MLP constructed by the Slab Algorithm for channel 2

4 Comparisons

4.1 The Slab Algorithm versus the Upstart Algorithm

Another algorithm designed to separate two finite disjoint sets of points by con-
structing a MLP with one hidden layer and one output node is the Upstart
Algorithm [2]. It is more specialized than our algorithm, designed only to sepa-
rate two disjoint sets of hypercube vertices in Euclidean space. The hypercube
in R™is {y € R™ : 0 <y <1,1 <i<m}. Its vertices are the elements of
B™ where B = {0, 1}.

Both algorithms yield the most efficient solution for the parity problem. In
this problem, a hypercube vertex is labelled positive if the sum of its components
is odd and is labelled negative otherwise. Given the parity problem in IR™, both
algorithms produce a layer of m hidden nodes and an output node. These hidden
nodes can be visualized as parallel hyperplanes slicing diagonally through the
hypercube.

In the random mapping problem, each hypercube vertex in R™ is labelled
positive or negative at random, with equal probability. Frean [2] reports that the
number of hidden nodes generated by the Upstart Algorithm is approximately
2m/9, 1 < m < 10. The Slab Algorithm generates approximately 2™ /5 slabs or
2™ /4 hidden layer nodes (after pruning), 3 < m < 6.

The Upstart Algorithm cannot be used alone as a channel equalizer as it is
designed only to separate two disjoint sets of hypercube vertices.
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4.2 The Slab Algorithm applied to channel equalization
4.2.1 Linear Transversal Equalizers

The most commonly used equalizer is the linear transversal equalizer (LTE)
trained by the least means squares method (LMS) [10]. A LTE, though not
difficult to train, will succeed in the absence of noise if and only if the two sets
Pm,a)(1) and P(p, 4y(—1) are linearly separable. This is not always the case [4].
Even if the two sets are linearly separable, the optimal decision boundary is
generally non-linear [4].

The Wiener optimal filter of order m and delay d is the LTE obtained by
minimising a statistical mean squared error cost function. It is estimated by
minimising the data dependent least mean squares error cost function [7]. If
the sets Pyn,ay(1) and Py ay(—1) are linearly separable, the Slab Algorithm
produces a LTE which appears to approximate the Wiener optimal filter well.

4.2.2 Bayesian optimal equalizers

Given values for the channel response function, the order, the delay and a spec-
ification of the additive noise at the output, we can determine the output of an
equalizer which minimizes the probability of a wrong decision in the estimation
of the transmitted signal z;_4.

Channel 1

0 T T T T T T T T T

‘Slab_Algorithm’ o
) L R ‘Bayesian_Optimal_Equalizer’ +
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Figure 6. Slab Algorithm and optimal equalizer BERs for channel 1
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Figure 7. Slab Algorithm and optimal equalizer BERs for channel 2

Let f1 : R™ — IR be the probability density function of the observed channel
output vectors {§, € R™ : y. € Py 4)(1)} and let f_; be similarly defined. Let

g: R >R

be defined by
9(y) — sgn(f1(y) - f-1(v))

where sgn(z) = 1 if ¢ > 0 and sgn(z) = —1 otherwise. An equalizer whose
output is ¢ minimizes the probability of a wrong decision in the estimation of
the transmitted signal z;..4 [4]. We call it a Bayesian optimal equalizer, or simply
an optimal equalizer. If the additive noise at the output is Gaussian, an optimal
equalizer is constructed naturally using a radial basis function network [1] but
may require a prohibitively large number of parameters for even modest values
of k, the channel memory. Failure rates, called bit error rates (BERs), for the
two channels defined by

1.k=1,m=2,d=0, ap = 0.5, a1 = 1.0 (see Figures 4 and 6) and

2. k=2, m=2,d=1, ag = 0.333, a; = 0.667, ay = 1.000 (see Figures 5 and
7

were simulated at signal-to-noise ratios between 1dB and 20dB, in steps of 1dB,
using decision boundaries formed by
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1. the Slab Algorithm and

2. an optimal equalizer.

It was assumed that the additive noise samples o; were chosen randomly and

independently from a Gaussian distribution with mean 0 and variance o2.

In each case, the sets P, q)(%1) are not linearly separable. These BERs sug-
gest that the Slab Algorithm may be used to construct a channel equalizer whose
performance approximates that of a Bayesian optimal equalizer well, especially
at high signal-to—noise ratios.

4.2.3 Channel estimation

We have assumed knowledge of the channel characteristics. In practice, the delay
and order are known and the channel response function vector a = (ao, ..., az)
is estimated [1]. In general, a MLP constructed by the Slab Algorithm using
estimated channel response function coefficients generates a higher BER, at a
given signal-to—noise ratio, than the MLP constructed using the true values
of the coefficients. We assume that the additive noise samples o; are chosen
randomly and independently from a Gaussian distribution with mean 0 and
variance o2, Let f : RF*! — R be the probability density function of the
estimated channel response function vectors ¢’ € R¥+!, We assume that f is a

Gaussian distribution with mean @ = (ao, ..., ;) and covariance matrix equal
to y

o li+1

o2M

where o2 is the power of the additive noise samples at the output of the channel,
Iz41 is the identity matrix, M is the number of observations taken in the process
of estimating a and o2 is the power of the incoming signal. We assume o2 = 1
and M = 4(k+1).

The effect of estimating the channel response function coeflicients was studied
for the two channels

lLLk=1,m=2d=0,a,=0.5,a; =1.0and

2. k=2, m=2,d=1, ag = 0.333, a; = 0.667, az = 1.000
at (output) signal-to-noise ratios of

1. 7dB

2. 18dB.

In each case, the bit error rate generated by the MLP constructed using the
true channel response function vector, namely BER(a), is compared with an
estimate of

/ BER(d') f(d')dd’
RE+1
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Table 1. Slab Algorithm

Channel 1 Channel 1 Channel 2 Channel 2

(7dB) (18dB) (7dB) (18dB)
BER(a) 0.238 0.000299 0.264 0.0215
log;o(BER(a)) -0.624 -3.525 -0.578 -1.668
estimate of
ka+1 BER(a')f(a")dd’ 0.259 0.000815 0.296 0.109
log,, (estimate) -0.587 -3.089 -0.528 -0.964

Table 2. Bayesian optimal equalizer

Channel 1 Channel 1 Channel 2 Channel 2

(7dB) (18dB) (7dB) (18dB)
BER(a) 0.212 0.000207 0.243 0.00517
log,(BER(a)) -0.674 -3.684 -0.615 -2.287
estimate of
fnk+1 BER(d')f(a')de’ 0.240 0.000425 0.281 0.00751
log;, (estimate) -0.621 -3.372 -0.652 -2.125

where BER(¢') is the bit error rate generated by a MLP constructed using the
estimate g’ in place of g (see Tables 1 and 2). The integrals were estimated by
sampling at random from the probability density function f, calculating a BER
at each sampled point @’ and averaging.

5 Conclusions

The Slab Algorithm will always succeed in separating two finite disjoint sets of
points in IR™. It produces a MLP whose design is simple and predictable. If the
sets to be separated are linearly separable, it constructs a single separating node.
Otherwise, it constructs a MLP with one hidden layer and one output node. In
the latter case, the decision boundary is non—linear, formed from hyperplanes.
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It is fast and efficient, especially when separating sets U/ and V exhibiting the
symmetry y € U if and only if —y € V.

Our results suggest that the Slab Algorithm may be used to construct a
channel equalizer whose performance approximates that of an optimal equalizer
well, especially at high signal-to—noise ratios. Its speed may mean it is useful in
the case of time varying channels.

Our simulations suggest that the equalizer constructed is robust with respect
to error in channel estimation at low signal-tomoise ratios. It remains to be
seen how the performance at high signal-to—noise ratios can be improved; for
example, by increasing M, the number of observations taken in the estimation
process.
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The Weight Distribution of K M Codes
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1 Introduction

This paper is about linear error-correcting codes which adapt to the degree of
interference encountered. The idea was mooted by Mandelbaum [1] in 1974,
and in succeeding years various schemes were proposed. Essentially we require a
generator matrix for an (n, k) code partitioned into blocks, G = [G1|Ga] . .. |GL],
so that the code C; with generator matrix [G1|G2]...|G;] has error correction
and/or detection ability greater than C;._1, for 2 <i < L.

Let Zs denote the field with elements 0,1 subject to 141 = 0. A linear
(n,k,d) code C is here a subset of the n-tuples over Z, such that the sum of any
two members of C' is a third, and further, the minimum distance of C, the least
number of coordinates in which distinct members of C differ, is at least d. Then
when a codeword of C arrives from a noisy channel, up to d — 1 errors can be
detected, and e corrected if 2e + 1 < d. A generator matrix for Cisa k x n
matrix G for which C consists of all possible sums of rows. For more information
see 2] or [3].

(G1 G2 G3 G4] =

[ 101 | 101 | 101 | O ]
{ | | 101 | 101 | 101 | 0
011 | 011 | 011 | © 1 1 |
| | | 011 | 011 | 011 | ©
000 | 101 | 110 | 0 | — | | |
| | | 000 | 101 | 110 | ©
000 | 011 | 101 | O [ | |
| | | | 000 | 011 | 101 | 1 |
| 000 | 101 | 011 | 1 |

(1.1)

¢ Shunting (—) to obtain a generator matrix for a KM (10,4,4) code from
that of a KM (10,5,3) code The first three blocks come from polynomial
multiplications modulo respectively u?, u? 4+ 1, u% +u + 1; the last column
is devoted to wraparound (see Example 1). The “shunting” property is
explained in Section 2.

95
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Suppose k,d are given and Cr is to be an (n, k,d) code for some n, prefer-
ably as small as possible consistent with the existence of suitable C; to Cr_1.
An ingenious solution is given by the KM codes of [4-7], following the work
of Lempel and Winograd [8] which exposed the connection between codes and
bilinear forms. Let z = [zp,...,%;-1] and ¥ = [yo,---,Ya—1] be sequences of
indeterminates. The product of their respective generating polynomials Z(u},
Y (u) (over Z3) in a variable u is F(u) = Y, fru", where

Jo= 2%, fi1=2y1+ 2190, f2= 2042+ 2151+ 22%0, ... (1.2)

In the basic version G; ...y, are constructed as follows. We start with a
polynomial P(u) which is the product of L coprime polynomials,

P(u) = Pi{u)... PL(u) (Pi(u) of degree D). (1.3)

Let g¢(u) be the reduction mod Py(u)(1 < ¢ < L) of any polynomial g{u), and
() its reduction mod P(u). By the Chinese Remainder Theorem, £'(u) may be
reconstructed from the reductions Fy(u). We choose P(u) of degree N = k+d—1
so that determining £'(u) is equivalent to determining F(u) itself. The length
n of the code Cp is the number of multiplications mg ... m,..; we use to enable
each coefficient f. to be expressed as a sum of certain of these, with

m; = (ZQ?)(yh?): where g; = [gOiglz' .. .gk_]_’i], h; = [hoihli e hd—l,z’]- (1‘4)

Thus m; = (goizo+g1iz1+. . .+ gr-1,i2k-1) X (hosyo+hiiyi+. . .+ ha_1va-1),
and G = [g;] has ith column g; containing the z-coefficients in m;. For 1 <t < L
the columns of G; correspond to the multiplications required to calculate F;(u).

1.1 Wraparound

We may often save multiplications by going beyond the basic version and allowing
wraparound s, meaning that we choose P(u) of degree D = N — s, with s = 0
giving the basic version. For reference

D = degree P(u), N=D+s, k+d=N+1 (1.5)

We add a wraparound block to G from the multiplications that enable us
to calculate Z(u)Y (u) mod u*; here g(u) denotes the reciprocal polynomial of
g(u), obtained by writing the coefficients in reverse order, or formally G(u) =
udegree 84 (1 /u). Note the relation fg = fg. (Exercise: verify that u”g(u) has the
same reciprocal as g(u).)
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Example 1.

1. The result of calculating (ag + ai1u)(bg + biu) mod u? +1 4s apho + a1 by +
(aob1 + a1bo)u. Arranged this way, it uses four multiplications, but this
may be reduced to three (additions are not counted) by setting mo = aobo,
my = a1hy, my = (ao + @1)(bo + b1), and re-expressing the product as
(mo+ m1)+ (mg+my + mg)u. This is best possible for finding the product
of two polynomials module a polynomial of degree two, and yields the first
three blocks in Equation 1.1 {see Ezample 4).

2. The fourth block in Equation 1.1 corresponds to wraparound s = 1. Here
7(u)?(u) = (24 + z3u+ zou? + 2143 + zout)(y2 + y1u + you?) reduces mod
ul to just zayo, giving a single column block [0 0 0 0 1]7. More generally,
see Theorem 11.

We emphasise that to say the product F(u) = Z(u)Y(u) can be computed
with n multiplications means that there exist mq,...,mp_1 of form (1.4) such
that every coefficient f; implied in Equation 1.2 is a Zo-linear combination of
mg,...,Mp_1, ..6. is a sum of certain m;’s. The least such n is called the mul-
tiplicative complezity of this product, also denoted n,;, in the present context.
Here is the basic Theorem.

Theorem 2. (Krishna and Morgera [6].) If Z(u)Y (u) can be computed in
n multiplications then G = [g,;] is a generator matriz for a KM (n,k,d) code.

The parameter d is called the designed distance of the code, since the actual
minimum distance may fortuitously be greater. Now, given a block in G, we may
be able to reduce the code’s length by omitting from this block any multiplication
which is a linear combination of multiplications from earlier blocks, as is done
where possible in Section 3. If we do not do this, the block is self-contained,
or independent, in the sense that Z(u)Y(u) mod Pi(u) (or ZY mod u* in a
wraparound block) may be computed from multiplications within that block
alone.

Of course the error-correcting capability of a KM code depends not only on
its minimum distance but on the distribution of other distances. Such codes
being linear, the distance between codewords u, v equals the weight wt(u — v),
where wt(w) is the number of 1’s in a codeword w. In particular the minimum
distance equals the least weight wy,;, of any codeword. Further, the distribution
is determined by the weight enumerator A(z) = 3 ;. , A;z', where A; is the
number of codewords of weight <.

Now, A(z) can be determined by computer for any given code. Our aim is to
obtain results about A(z) for families of KM codes in terms of their parameters.
After Section 2, where the idea of “shunting” is introduced, we investigate in
Section 3, for low values of parameters k, d, how the least possible values of n
and wyy;, can be obtained simultaneously by varying (1.3), s, and the choice of
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multiplications. In Section 4 we present results enabling an approach to A(z)
via the dual code and MacWilliams identity, leading to expressions for the A; in
terms of the parameter d for certain families of KM codes related by shunting.

2 Reduction, and a shunting theorem

Remark A. (Wraparound lemma.) Let F(u) = Z(w)Y(u) = 5 fru"(0 <
r < D+ s~ 1). Here is how the multiplications giving the reduction of
F(u) mod P(u), and those from the wraparound block, together determine F(u)
itself.

The reciprocal of F(u) is F(u) = Y foys—1-iu(0 < i < D+ s~ 1), with
a reduction mod u® of 3 fp4s—1-¢u*(0 <i < s—1). Thus fp,..., fp4+s—1 are
determined by the wraparound multiplications. Moreover by definition of ﬁ‘(u),
there are coefficients b; such that F'(u) = F(u)+(bo+biu+...+bs_1u* ") P(u).
Equating coefficients of the top s powers of u gives [fpys—1...fp+1fp] =
[bs—1...bo] M, where the s by s matrix M has ith row the truncation to length s
of [0'pp ... pe0*](0 < i < s—1), 0 denoting a sequence of i zeros. But pp = 1 by
definition of P(u), so M has a main diagonal of 1’s, and is zero below. Thus M
is invertible, the b; as well as F’(u) are determined by the given multiplications,
and therefore so is Fi(u).

Theorem 3. (Chinese Remainder Theorem, or CRT). A polynomial g(u)
may be determined modulo P(u) of (1.3) from its reductions g;(u) modulo P;(u),
1<i<L, by

L
g(u) = Z Si(u)g;(v) mod P(u), (2.1)

where the polynomials S;(u) are determined by: S;(u) = 1 mod Pj(u) if j = ¢,
otherwise S;(u) = 0 mod Pj(u). Indeed S;j(u) = R;(u)[[ P;j(v)(j # i), where
Ri(w) I Pi(w)(j # ©) = 1 mod P;(u). (Further reduction may be required after
Equation 2.1 is calculated, as in Equation §.14.)

2.1 A viewpoint on reduction

First some notation. Bold type a = [a;] = [apa; . ..] denotes the sequence/vector
of coefficients of a polynomial a(u) = 5" a;u’. Exceptionally X (u) = Y z;u’ has
coefficient vector z = [;] and similarly for Y(u), Z(u). For simplicity let P(u),
of degree D, stand for P;(u), with u* a special case. Let X (u), of degree h — 1,
reduce mod P(u) to a(u), necessarily of degree D — 1. Then there are constants
ri; such that

D-1
u* mod P(u) = Z riju . (2.2)
i=0
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Hence a(u) = >, zi ) ; rijul, giving a; = Y. zir;;. We may write this in
terms of the h by D matrix R = [r;;], whose first D rows (if A > 1) form the
identity matrix I = Ip

a=zR, RF=[I..], (2.3)

row i+ 1of R=[0r0...7p-2] +7ip_1lpop1-..pp-1]- (2.4)

Thus Equation 2.3 gives the first D rows of R, then applying Equation 2.4 to
any row (note the shift) gives the next. On the other hand, an algorithm for the
product mod P(u) of polynomials a(u), b(u) of degree D—1 gives multiplications
(aXl)(bpl), where X;, p; are D-vectors over Z3. The a-parts form a vector aS,
with S = [ATAT .. ], whose first D columns commonly form the identity I. If
Z(u) reduces to a(u) then a = zR, so aS = zRS and finally

G: = RS, where zR represents reduction mod P;(u), (2.5)

and
G: = [R|RS"] if $=[I|5"]. (2.6)

Example 4. The first few rows of R for certain P(u), by Equation 2.3 end
Equation 2., are shown below:

P(u) uP uP+1 uZ+u+l wd+u+l u4+u2+1

I I 1o 100 1000

) 01 010 0100
Matrix R 0 I 11 001 0010
10 110 0001

0 1 01 011 1010

(3D rows) (3D rows) P i oot

For case D = 2, Example 1 gives [¢pa1]S = [ag a; ag + a4], hence Equation
1 0 1

2.6 applies with S = 01 1

. With Example 4, this S gives the first three
blocks in Equation 1.1.

2.2 Shunting—new codes from old

As indicated in Equation 1.1, we may be able to trade dimension for mini-
mum distance by dropping the last row of G, except in a wraparound block
where, because the order of coefficients is reversed in taking reciprocals, we must
rather drop the first row and move the rest up one place. We shall call this
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process shunting, and offer criteria and proof, seemingly hard to pin down and
lacking in the literature, of when and why it works, i.e. why it produces a
KM (n,k—1,d+1) code from an (n,k, d).

Theorem 5. (Shunting theorem.) An (n,k,d) KM code with independent
blocks may be shunted to ¢ KM (n,k — 1,d + 1) code if k > 2 and
d> Maz, (degree Py(u), s).

Proof. Consider first the case of no wraparound: s = 0. Shunting means setting
zk—1 = 0 in all multiplications, and will by Theorem 2 yield a (n,k — 1,d + 1)
code if the y-parts of the multiplications can be modified so that the new ZY can
be constructed. The key idea is first to prove the following, without restriction
on k+d.

Lemma 6. Let k > 2 and d > D (= degree P(u)). Suppose that for cerlain
constants ki, k-vectors A; and d-vectors pj, the multiplications mj = (22T )(yp?)
yield the identity mod P(u)

D—-1 [fn-1 )
Z(u)Y(u):Z Zk,,mj . 2.7

Then there are (d + 1)-vectors o; such that the following identity holds mod
P(u)

D-

Z(u)(Y (u) + yqu’ Z (Z kijm; ) u', where m; (z/\T)([y]yd} T) (2.8)

=0

To prove this, assume Equation 2.7 holds, let a = [ag...ap—1] be a vector of
indeterminants, set y equal to a extended by 0’s up to length d, and let p; be
the truncation of p; down to length D. Crucially, the latter two operations are
well defined because d > D. We now have yp]T = auf, and so

Z(u)(ag + a1+ ... +ap_uP) = Z Icij(z/\;r)(apf)ui. (2.9)
i,

Having dropped the y’s, start again with yo...ys and let Zf__}l a;u’ be the
reduction mod P(u) of Yo+ y1u+ ...+ yau?. Then a = [yo...ya}R for the d+ 1
by D matrix R given by Equation 2.3, and substituting for a in Equation 2.9
gives Equation 2.8 with o; = ijT.

Now, with the hypotheses of the present theorem, d > degree Pi(u), 1 <
t < L, so by the lemma, F(u) = (2 + ... + zr—1u* " D(yo + y1u + yau?) is
reconstructible mod Pi(u) for 1 < ¢ < L and hence mod the product P(u) by
the Chinese Remainder Theorem 3. Since d > s is also given our multiplications
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also reconstruct the reciprocal of F(u), mod u*, by a slight modification of the
lemma. Therefore we can reconstruct F'(u) itself provided its degree is less than
D + s (see Remark A). But this inequality is achieved subject to the required
k+d= D-+s+1, provided we set zx_; = 0, which is precisely what we do in
shunting. An application of Theorem 2 with k replaced by k—1 and d by d+1
completes the proof.

3 Minimum length KM codes with N <4

3.1 Preliminaries, and cases N =1,2,3

We investigate for each given N and admissible k,d the KM codes of least
possible length n,:;,. Thus we vary

1. k,dsubject to 1 <k, d< Nandk+d-1=N.
2. P(u), its factors, and their number L.

3. The order of blocks corresponding to these factors.
4. The wraparound s.

5. The choice of multiplications of least number n = n;,.

Minimality of the length implies that a block column is deleted if it corre-
sponds to a multiplication that is a linear combination of those already used.
Note that columns are not deleted on the grounds of column dependency, but on
the grounds of that of their multiplications. We are especially interested in the
weight enumerator A(z) of a KM (n,k,d) code. Now, without changing A(z)
we may convert a generator matrix G into a standard form in two stages: (a)
reduce G to its unique Reduced Echelon form by elementary row operations, here
switching distinct rows 4, j(R; «— R;) or adding row j to row i(R; — R; + R;),
and then (b) perform column interchanges C; « Cj to obtain G = [I|U] where
the £ by n—k matrix U is determined up to the order of its columns; the symbol
~ denotes equivalence under operations (a) and (b). Of course all generator
matrices for a given code are equivalent under operations (a). There follows an
observation on extremal cases k = 1, N for a KM code of minimal length which
holds independently of choices allowed by (2)-(5). Let 17 denote a sequence of
rl’s.

Theorem 7. A minimum length KM (n, k,d) code satisfies n = N in extremal
cases: (a) k=1: G=[1"] and A(z) =1+ 2V, and (b)) k = N: G = [Iy] and
A(z) = (1 +2)N. Up to equivalence of G we have the following possibilities for
N <3.
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N=1: k=1=d, G=[1], A(z) =1,

N=2: k=1,d=2,G=[11], A(z) = 1+2% k=2,d=1, G =1,
Ae) = (14 2),

N=3: k=1 d= , G=[111], A(z) =1+23% k=2 d=2,

011
A) = (1+2)%,

1
G = jI A(z)=14+32%k=3,d=1, G=1Is,

Proof. (a) we have d = N by Equation 1.5 and hence Z(u)Y(u) = zo(yo +
...+ yn—uly ~1), so the number n of multiplications is exactly N, which
equals d. Thus G = [11...1], of length N. In case (b) Z(w)Y (u) = (20 + z1u +

o+ 2y 1N "Dy, implying n = N = k, G =~ Iy. The number of codewords of
weight r then equals the coefficient of z” in (1 4+ z)V. The rest follows straight
from (a), (b) except for case N = 3 with ¥ = d = 2. These values imply
Z(W)Y (u) = (20 + z1w){yo + y1u), so from Example 1 the least possible length is
n = 3. Hence G ~ [I;|U] with U = [ab]? (a,b € Z,). But d = 2 forces a = b = 1.

3.2 Cases with N =4

The extremal cases were described in Theorem 7. We note that they satisfy
n = 4. There remain, in order of increasing interest, the cases k¥ = 2, 3. Both
have length n,;, = 5 according to Theorem 8 below, and are related by shunting.
The first has only one outcome for A(z), over all admissable choices ((2)-(5) in
Section 3.1). The second has three outcomes; however we shall show that the
multiplications can always be selected, for each subcase allowed by varying P(u)
and s, so as to give A(z) a preferred “optimal” outcome. Part (a) of the next
theorem is proved by adapting the methods of [9].

Theorem 8. (a) Let N = 4. In casesk =2,d =3 and k =3, d = 2 we have
Npin = 9. (b) If k = 2 then for all admissible s, P(u), its factorisation Equation
1.8, and all valid choices of multiplications giving n = 5, the weight enumerator
A(z) equals 1+ 223 + z*.

Proof. (b) for any of the allowed choices, G is a 2 by 5 matrix of rank 2 and so
may be transformed by operations which do not affect A(z) (see above Theorem
7) to the form [[2]U], where the rows of U are 3-vectors u,v say. Since the
minimum weight is at least three we have that u # v and u,v have weights at
least two. Thus u,v are distinct members of {101,110,011,111}. As a result the
three nonzero codewords have weights 3,3,4 in some order and A(x) is as stated.
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33 The N=4casek=3,d=2
3.3.1 The possibilities for A{x)

Given that a generator matrix G is 3 by 5 of rank 3 it may be transformed by
operations not affecting A(z) (see above Theorem 7) to the form [I3|U], where
the rows of U are 2-vectors u,v,w which may be permuted amongst themselves
without affecting A{z); likewise the two columns of U may be interchanged.
Since the least weight is at least two u,v,w are all nonzero. They need not
be distinct. If identical they must all be 11, otherwise G has a zero column.
Here are representative choices under =, and their outcomes for A(z) ordered

by increasing A, i, the number of codewords of least weight.

w,v,w=10,01,110r 10,11,11 A, i =2 A(e) =1+ 222 +42° 4 z*

u,v,w=10,10,110r 11,11,11 A i, =3 A(z)=1+ 322 + 323 + &5
u,v,w = 10,10,01 Aymin =4 A(z) = 1+42? + 3z

For a given wy,;;, it is desirable for error correction that the number of code-
words A, i, of this weight be as small as possible. We shall call A(z) optimal
when this minimum is attained for given N,k,d, which occurs in the present
case when u,v,w are distinct or exactly two of u,v,w are 11 (see above). We
find that, in general, the value of A, ;, depends upon the choice of multiplica-
tions used, but that in every option of Table 1 to follow there ezxists a choice of
multiplications for which A(z) is optimal.

3.3.2 Multiplications for optimal A(z)

We wish to achieve the product Z(u)Y (u) = (20 + z1u + z2u®)(yo + n14), and a
suitable set of multiplications m; can be sought directly from the product itself,
or built up in steps from the calculations Z;(u)Y;(u), and Z(u)Y (u) mod u*.
Here is a set mg,...,m4 taken from a look at the product itself, which give
optimal A(z), together with a set of alternatives m} such that if exactly one m;
is replaced by m} the optimality remains. The *s carry over to the abbreviating
notation Equation 3.1 below, which is restricted to Section 3.3.
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mi+m . dmy =my g, my = (2-Gi)(y-H;), Gijox=GiG;... .Gy (3.1)
Moy = ZoYo mg =my = (20 + 21 + 22)(yo + 1) = Mo1234
my = z1Y1 m3 = z2Yo = Mo3
mz = (20 + 21)(Yo + 1) mi = z2y1 = Mg
ma = (20 + 22)Yo Double star below is a second alternative

my = (21 + 22)y1 my* = m3* = 25(yo + Y1) = Mo1aa

3, and

Z(u)Y(u)is : mo+ morau + mo1zu? + miu
modu+b : myifb=0, mjifdb=1, and
mod u? + aju + ag : mg + (mh + my + mh)u+ mi(aju +ag), where
mg = (2 + ao22)yo = my if ag = 0, else mg,

mi = (21 + a1 29)y1 = my if ay = 0, else my,

mh = [z0 + z1 + (ao + a1)2z2)(yo + y1) = ma if ap = a3, else mf.

Note (a) Z(u)Y (u) = m} + morau +mo1u® + mou® = Mo + Moy 2u+Moysu? +
miu3, where a reciprocal multiplication T is obtained from m by zg « 22, yo <
y1, (b) calculating ZY mod u? + a;u + ag requires three multiplications except
in the special case u? + u = u(u + 1), when two suffice as a consequence of the
Chinese Remainder Theorem (Theorem 3), with mg for mod u and m§ for mod

u -+ 1.

Example 9. [Go-4], [G} G123 G}, [G2-4|Go|GY] are respectively

10110 10110 110 | 1 ] 1
l |

01101 |, | 11100, [101 | 0 | 1
{ |

00011 10011 011 | 0 | 1
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Derivation of Table 1.

e Nr7. Ourstandard ways to reduce ZY mod @2, ZY mod u-+b(b = 0,1),
and ZY mod u, give the first block matrix below, which is equivalent to
the second by the operation Ry — Ry — agRg ~ a1 R;.

1 0 1 | 110 10 1 | 1 | 0
| | l |
01 1 | b ]o0l~]|011] b | o
l | | l
ag a1 ao+ax ‘ b l 1 0 0 0 ! b+ ag+ arb l 1

But u + b and @ are coprime, implying Q2(b) = 1, i.e. that the sum in
the second matrix is 1. Hence after interchange of columns two and four
G is in a form which, by the list in Section 3.3.1, gives optimal A(z) for
both values of b.

e Nr8. Both reductions ZY mod Q2(# u?+1) and ZY mod u?, require
three multiplications, so one must be saved to achieve n = 5. With ZY
using the m’ of Section 3.3.2, which equal various m; according to the
identity of 2, Table 1 shows how to obtain optimal A(z).

¢ Nr9. We have to reduce ZY mod u, u-+1, and ZY mod u?. Since this
can be done with respective multiplication sets mg, m§ and my, mq, m}
we are down to n = 5 and the blocks are independent. Also G is equivalent
to a top line case in the list of Section 3.3.1, so A(z) is optimal.

3.3.3 Non-optimal Weight enumerators

All three logically possible non-optimal A(z)'s do occur. For example we find
that [Go12G3G%] for Option 1 of Table 1 gives wy,;, = 4, whereas [G5G123G%)
gives wyyip = 3.
3.3.4 Shunting

According to Theorem 5 shunting must work to produce KM (5,2,3) and (5,1,4)
codes in each case of Table 1 for which the blocks are independent. This holds
for exactly one case of Option 8, for example. Of course kmin = 3 or 2 may hold
fortuitously, as in the first line of Option 5. Notice that after shunting to k = 2,
the resulting code must satisfy A(z) =1+ 223 + z*, by Theorem 8.
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Table 1. Generator matrices G for KM (n,3,2) codes for all admissible choices of
s and P;...Pr. Multiplications chosen to satisfy (a) the code has minimum length
n =5, (b) A(z) is optimal. Q; stands for an arbitrary polynomial u* + ... of degree 1,
but Qs # u®. Nr = option number. (I) denotes Independent blocks, ki, is the lowest
k to which the code shunts. The wraparound block is last unless otherwise stated. Nrs

S. Hoggar and K. Pickavance

1,7,9 exemplify independent blocks

Nr s L Admissible Coprime Py ... Pr: Block Generator Matrix  kp,ip
1 01 Q4 [Go-3GE] (I) 1
2 02 uQs: [GolGi-4], (u+1)Qs: [GH|G1-4], 2,2

ud(u+1): [Go-s|GF] (I) 1
3 11 Qs [G4|Go-3] (wrap first), u®: [Go-3]G3] (1) 1,1
4 31w [GQIG134GZ] (I), u+1: [GS‘G134GZ] (I) 1,1
5 02 uz(uz + 1) [Go12|G3G3l,

(uz + 1)(11,2 +u-+ 1) [G13G81G24] 1,2

u?(u? 4+ u+ 1): [Go12|Gad],

(u? + w)(v? + u+1): [GoG}lGa-a] () 2,1
6 03 u(u + 1)(u2 +u+ 1) [GolGBlG234] (I) 1
7 12 uQs: [Go|Goyo|GE] (D), (v + 1)Q2: [G5lGor21GE] (T) 11
8 21 o [0012[G34], u? + 1: [GI3G3IG24L 2,2

u? +u+ 1: [Go34|GoGEl, u? + u: [GoGE|G14GY] (I) 3,1
9 22 w(u+l): [GolGaleGg] (I) 1
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4 Weight enumerators of shunted families

4.1 The method of duals
Keeping independent blocks, our general method is in three stages:

1. Determine n — k independent relations on the codeword entries ¢y ...cp—1
and hence generators for the dual code.

2. Determine the weight enumerator B(x) of the dual code.

3. Dualise B(x) to obtain the weight enumerator A(z) of the KM code, by
using the MacWilliams Identity [3): if an (n,¢) code has weight enumerator
W (x) then its dual has weight enumerator

l—2
L — 9—q n
WH(z) =2"9(1+=z) W<__1+:c> (4.1)
Theorem 10. (a) The coefficients in Z(u)(= Z(u) mod P(u)) are kinear com-
binations of the columns of zG, and (b) the rank of G; equals the degree D; of
Pt('u.)

Proof. (a) By hypothesis the multiplications m; giving block Gy, say a < j < b,
satisfy

D;-1 b
Zi(wYy(u) = > (Z k,-jm,-) u* mod P;(u) (4.2)

i=0 j=a

for certain constants k;;, where m; = (zgf)(yhf), g;f" is column j of G, and h;

is a d-vector. In particular, we may set yo = 1 and y; = 0 otherwise, so that
Yi(u) =1 and

Di-1 [ b
Zi(u) = Z (Z lij(zg]) | o (4.3)
i=0 j=a

where l;; equals k;; times the 0’th entry of h;. Since such an equality holds for
each ¢, the Chinese Remainder Theorem shows that the coefficients in Z(u) are
linear combinations of the ngT (0 £ j < n-1). (b) The D; coefficients of powers
of v in Equation 4.3, necessarily independent, are linear combinations of the
columns of zG; by Equation 4.3, hence D; < column rank of G;. But the latter
cannot exceed Dy, since each zgl is a linear combination of the D; columns of
matrix zR, with R as in Equation 2.3. This proves (b).

It is helpful to divide the relations into the three categories below and to view
2o ...25—1 as information bits defining a codeword by

[20...2x=1]G = [0 .. . cn-1]- (4.4)
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4.2 Inner relations

A linear relation between entries ¢; is of innertype if it corresponds via Equation
44 to a relation between columns of the same block {otherwise outer). Let
block G; have n; columns. By Theorem 10 this block has exactly n; — Dy
independent relations between its columns. These reduce the dimension from n
ton—-) (ne—Dy)=n—3 ni+y Dy =n—n+D = D, leaving D — k relations
tofind. If s=0we have k+d=N+1=D+1, and so need (D —k =)d — 1
more relations. These are supplied by the next type.

4.3 Outer relations

By Theorem 10 and Equation 4.4, the coefficients %; in Z(u) are linear combi-
nations of the entries ¢;. In particular, if s = 0 there are expressions for the
coeflicients zp to zp.1, which must all equal zero, giving d — 1 outer relations.
These may be obtained by the CRT or perhaps more easily by the matrix method
of Equation 4.15.

4.4 Wraparound relations

If s > 0 then the outer relations refer to 2}s rather than to z/s, and Theorem 11
below is crucial for converting back to z/s. We need a further ny41 — s relations,
and this is the number of inner relations in the wraparound block. They are
converted to relations among the ¢; by equating columns in Equation 4.4.

Theorem 11. Let P(u) have reciprocal Q(u) = go+qru+ ... +qeu®, of degree
E. Write Q;(z) = o +qiz+ ... + ;2 (0 < j < E). Then (a), with coefficients
d; independent of k

% =z, if0<i< D~ E (case D > E), (4.5)
Zp_j = zp—j + ZdizD+i(D+i <k), fl<ji<E, (4.6)
i>o0

where d, = q1dn_1 + qadn—2+ ... + qedn-p(n > 0) with initial values d_, =
85(1 < s < E). (b) Let Gj(z) = 3o 50dr—jz" = dj +d_jraz+.... Then
G;(z) = Qj-1(z)/Q(z).-

Corollary. (a) Gi(z) = 1/Q(z), Ge(z) = 1 — 2EG1(z). Hence G1, Gg have
the same period, equal to ord(Q), and d; (Case j = E) = d;_; (Case j = 1), for
i > 0. (b) The period L of G;(z) satisfies, (i) L| ord(Q), (ii) L >Max(int(E/2),
j—1, E—j), where int denotes “integer part of”, (iii) if Q(z) is irreducible then
all G(z) have the same period L and L|(2® — 1), and (iv) for any 1 < j < E, if
¢; = 0 then Gj41 = Gj(z).
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Proof of Theorem 11. By its definition, Z(u) satisfies Z(u) = Z(u)+a(u)P(u)
for some polynomial a(u) = Y a;u’ of degree k — 1 — D. Writing I(u) =
Z(u) ~ Z(u) = T liw, we cast the relation in matrix form as [lp...lx—1] =
[ag ... ax_p—-1]M, where the k—D by k matrix M has i’th row [0¢[po ... pp|0...0]
(0! is a sequence of i zeros). An example is the case k = 8, D = 3 shown below,
where the separator lies between columns D — 1 and D of M, and zero entries
are left blank.

Po P1 P2 P3

(po p1 P2 | ps ]
Po P1 % b2 p3
lols ... 1] = [ao. .. as) o { P P2 Pa (4.7)
|
|

l Po P1 P2 P3

Now Equation 4.5 follows because the definition of Q(z) implies that the first
D — FE columns of M are zero. Relation Equation 4.6 will follow from a relation
between columns of M. Let {d,}»>_E be a sequence of constants. Then a
relation of the form

z7(Q(x) — Qj—1(z)) = > diz' Q(z) (4.8)
i>0
must hold, provided the d; have suitable initial values and recurrence, since the
left hand side is a polynomial and Q(z) has constant term go = 1 (by definition).
But we can take care of the initial value problem by rewriting Equation 4.8 as

Qj-1(z) = Z diz'* Q(2)(d_g ... d_; is zero except ford_; = 1).  (4.9)
i>-E

Equating coefficients of 2"t/ (n > 0) we obtain 0 = godn + q1dn—1 + ... +
ged,_g. Invoking again ¢o = 1 gives the E-term recurrence relation of the
Theorem. Now identify a column [rory...]T of M with the series Y >0 izt
Then, up to the power k — D of z, column D — j equals the left hand side of
Equation 4.8 (0 < j < E) and column D+i equals ' @(z)(i > 0). This completes
the proof of Equation 4.6. Part (b) of the Theorem follows from Equation 4.9
on dividing both sides by Q(z).

4.5 A KM (9,k,7—k) family, and the matrix method

Let P(u) = u?(u? + 1)(u? + u + 1). Although k +d = 7 it is convenient,
for finding a neat set of relations, to start with ¥ = 6, d = 2 in the product
Z(uw)Y (u) before writing down the usual matrix G with blocks corresponding
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to reductions mod P;(u). Regarding z = z;...z5 as information bits defining
codewords ¢ = ¢ ... cg, we obtain Equation 4.10.

101 | 101 | 101
l |

011 ] 011 | 011
I |

000 | 101 | 110

[2’0...25] ‘ ] :[CQ...Cg]. (410)

000 | 011 | 101
I |

000 | 101 | 011
| I

| 000 | 011 | 110 |

e Matrix of blocks for reductions of Z(u)Y (u) mod uv?, u? +1, u? +u+ 1, in
case k = 6, d = 2. Deleting the last row (setting z5 = 0) gives a shuntable
KM (9,5,2) code.

The polynomial ZY, of degree six, can be reconstructed via the Chinese
Remainder Theorem 3, from the represented multiplications, but only modulo
P(u), whose degree is also six. Thus G is not yet the generator matrix of a KM
code. However, by adding a preliminary relation z5 = 0 we reduce ZY to degree
five and so have a K M (9,5,2) code by Theorem 2. Shunting can now commence,
by Theorem 5. Noting that within each block in Equation 4.10 the sum of the
columns is zero, we exhibit below a complete set of independent relations for
each KM code of the present shunt related family with parameters (9,k,7 — k),
2<k<5.

Notation : ci+ci . ter =cij. .k (4.11)
Inner relations :  coio = €ags = cgrg = 0 (4.12)
QOuter relations: zp=...=25 =0 (4.13)

The outer relations in terms of ¢. In the notation of Example 4 (D = 2),
Z1(w) = ag + a1u = zg% + (297 )u, which equals ¢y + c1u from Equation 4.10.
Similarly Zs(u) = ¢35 + cqu and Z3(u) = ¢ + cyu. Now, according to the Chi-
nese Remainder Theorem, the polynomials Z;(u) determine Z(u) modulo P(u).
However this gives Z(u) (unlike ZY) exactly, since its degree is just five, one
less than that of P(u). We shall first reconstruct Z(u) by the standard method
of the CRT, then show how the approach of Equation 4.15 may be simpler in
the present context. For the CRT we must first compute the auziliary polyno-
mials R;, 1 < ¢ < 3 from R; [ Pj(u)(j # ¢) = 1 mod P;(u), then the S; from
Si(uw) = R; [] Pj(u)(j # ). Some details are given for comparison’s sake. We
have Ry - (u?+ 1)(v?+u+1) = 1 mod u?, Ry -u?(u? + u+1) = 1 mod (u? +1),
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and Rz - u?(u? +1) = 1 mod (u? + u + 1), implying Ry = v+ 1, Ry = v,
Rz =1. Then S) = RiPyP3 = (U + 1)(u2 + 1)(’&2 +u+ 1) = (u2 -+ 1)(’&3 -+ 1),
Sy = w?u(u? +u+1), S3 = u?(u? +1). In the notation of Equation 4.11,
Z(u) =3 Si(w)Z;(u) is

= (u® + u® + u? + D(co + cru) + (u® + u* + u®)(es + cau) + (u* + u?)(cs + cru)

2 3 4 5 6
= cp + c1u + cosu” + Co137U” -+ C1346U° + Co347U - Cr4U .

Reducing modulo P(u) and equating coefficients,

Zo = Co, 21 =C1 22 = Cpl46, 23 = Co347, 24 = C1346,%5 = co1a7.  (4.14)

Finally, writing z; = (;¢F(0 < ¢ < 5) defines the dual code generator (;
corresponding to the relation z; = 0. Notice the z’s are determined by the P;(u)
rather than the choice of multiplication algorithm (cf. (2.5) and (2.6)).

The matrix method. Let s =0 and z = [z ... 2p_1]. By the CRT, Theorem
3, the equation zGG = ¢ has a unique solution for z in terms of ¢. We shall
reduce GG to an invertible matrix. Now, the columns of G; = RS (Equations
2.5 and 2.6) are linear combinations of those of R. Since by Theorem 10 the
rank of G; is D; we may, by rearranging if necessary, take the first D; columns
as independent; the remaining columns are then linear combinations of these.
Indeed, for simplicity we shall assume that, as is usually the case, these first
Dy columns constitute R itself, and write G = [R1 Rz ... Rr]. Now the equation
zG = ¢ is obtained from zG = ¢ by deleting certain columns of G and their
counterparts in ¢, and so has a unique solution for z in terms of ¢. But since G
is square of order D, uniqueness implies that G is invertible, z = ¢G~!. Thus
with the same entry deletions indicated by underlining,

... 1=G7", wherez; = ¢cT (0<i< D-1). (4.15)

Periodicity of R and G;. The following analysis for L = 1, P;(u) = P(u) (not
divisible by u), applies to each block in case L > 1. By Equation 2.2, row i of R is
the vector [rjg...7r; p-1], where v’ mod P(u) =Y r;;u/(0 < j < D—1). Hence
row ¢ = row r <= uf = u” mod P(u) & e|(r—q), where e = e(P(u)) is both (a)
the order of w mod P(u), the least m > 1 such that ™ =1 mod P(u), and (b)
the order of P(u), namely the least m such that P(u)|(u™ — 1). In particular,
the rows of R repeat, so far as they are present, with period e < 2P — 1, and
hence so do the rows of G; = RS. This periodicity may be seen in Example 4
and in the last two blocks of Equation 4.10.

The case P(u) is irreducible. Now e is the order of the element « represent-
ing polynomial u in the field Zs[u]/(P(u)), of finite order 27, and in this field
the ’th row of R gives the expression of ot as a polynomial in « of degree D —1,
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at = rj0 + ri1a + ...+7‘,',D_1C!D~1. (4.16)

Using the matrix method. The method is useful when inverting G is easier
than the CRT calculation. A type of code fairly easily handled, which fits nicely
with the conditions for shunting (Theorem 5), and includes the present case, is
given by Dy = D/L(1 <t < L) = m, say. We may take as coprime factors of
P(u) : Pi(u) = u™, Po(u) = u™ +1, and any or all the irreducibles of degree m.
Note e(u™ + 1) =m, e(u? +u+1)=3.

Example 12. Write I for I,,,, where m 1s any posttive integer. For L = 2 we

é § = G7'. In case L = 3 the first matriz below is

[G|Ism], a 3 x 6 block matriz of m x m sized blocks. Let R; denote block row
i. We perform “higher” row operations which convert G to I3, and hence I3,
to G™. Firstly Ry — Ry — Ry, Rs — Rs — Ry gives the second matriz below
(remember we are working mod 2). Since G™! exists, so does C = (A+B)~!. It
remains to perform Rs — CRs, Ry — Ry ~ (I + A)Rs, Rs — Ry — AR3, and we
have G~ as shown. The mairiz G~ of Equation 4.18 is the result applied to

have uniquely G =

KM (9,k,7T—k), for which it is trivial to compute that A = { i [1) ] JA+B =1.
ITI7 | 100 I 0 I+44 | II0
| l
0IA | 0I0 | —]|0 I A | 010
I I
0IB | 0017 0 0 A+B | 011
I (I+B)C (I+A)]C
Gl'=|0 BC AC ,C=(A+B)"" (4.17)
0 C C
For P(u) = w?(v®* + D(u? +u+1):
(s = 110 010 100
I A B
-1 _ ¢s = 100 110 010
= —{8 s ‘?}’g‘, — 010 110 100 (4.18)
¢s = 110 100 010

Notation A. (Calculating A(z)). Let U be the space of n-vectors over Zs,
viewed as sequences of three triples 4 = ujusugs followed by n — 9 single digits.
We define the following, where V is any subset of U.

E The span Sp(E1, E2, E3) where E; is zero except for #’th triple 111.

u+V The translate {u+v:v €V} of V by u.

Sk Sp(CkyCht1, - - -, C5) as subspace of U(0 < k < 5), defined as {0} if
k> 5.

t(u) The number of nonzero triples of u € Sg. Thus £(0) = 0.

R(V) The weight enumerator Y z¥*¥)(v € V) of V.
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Table 2. Weight enumerators A(z) of the shunt related KM (9,k,7 — k) codes,
2 < k < 5, based on: t(u) = 3 for u = (k, {2 + (3, s + (s otherwise t(u) = 2 for » in Sy

k d ap’s ay's asz's Az) b(z): B(z) = b(x) + z°b(z)
5 2 1 0 1 14322 + 1527+ 132° 1+ 42% + 3¢

4 3 1 0 3 1+49z*+62° 1+ 623 + 9z*

3 4 1 3 4 1+ 3z*+42° 14 3z? 4 1323 + 15z*

2 5 1 9 6 14 32° 14922 + 2723 4 272*

From Equation 4.12 and Equation 4.13 the dual code is generated by E1, E»,
E3; Ck’ cee ,C5) or

Dual KM (9,k,7— k) code = U(u + E)(u € Si). (4.19)
Lemma 13. R(u+ E) = (z + 22)'(1 + 23)3~*, where t = t(u).

Proof. Let V; = {u;, u;+E;}. Then u+ E equals the Cartesian product V3 x V3 x
Vs and R(u+ E) = R(V;)R(V2)R(V3). Now, by construction of the {’s the third
digit of each triple is 0, so u; is one of 000,100,010,110. Hence R(V;) = 1 + 23 if
u; = 000, otherwise z + 2%, and R(u + V) is as stated.

This Lemma gives the dual code’s weight enumerator B(z), which we dualise
back to A(z) by the MacWilliams Identity Equation 4.1, as shown below. The
result is Table 2.

o =(1-y)(1+3)> " (y=2%), B =(x+2H)(1 + %), (4.20)

Az) =2°7° Z ey, Bl(z) = Zﬁt(u) (u € Sy). (4.21)

4.6 A KM (10,k,8 — k) family with wraparound s =1

With P(u) as in Equation 4.18 we now incorporate wraparound s = 1, so that
N=D+s=7and k+d= N +1 = 8. The shunted family have parameters
(10,%,8 — k), with 2 < k, d < 6, and generator matrix represented in Equation
4.22 below by case k = 4 (see also Equation 1.1). The last column ends in a 1,
whatever the value of k.
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101 | 101 | 101 | 0]
| l l
011 ] 011 | 011 | ©
[z0 ... 2x—1] | | | =[eg...co] (4.22)
000 | 101 | 110 | O
| | |
| 000 | 011 | 101 | 1 |

o Generator matrix for KM (10, k%,8 — k) family represented by case k = 4.
The last column, from wraparound s = 1, has a 1 in its last row for all &.

Some notation. Equating column 9 of the two sides in Equation 4.22 we have
a new kind of equation, z;_1 = cg. The corresponding dual generator is {; _; =
(k—1 + €9, where e; is the vector with only position i nonzero, in the space U
of Notation A. The ¢; of the previous section are extended by one zero, leaving
values of ¢ unchanged. We can now give the necessary 10 — & independent
generators for the dual code in the form Equation 4.23 and, with §; asin Equation
4.20, the weight enumerators (Equation 4.24) of the translates of £ which make
up this code.

Dual KM (10, k,8 — k) code =U(u + E)(u € Sp({i_1,5%)) (4.23)

R(u + E) = ﬂ;(u) if u € Sg, but x,@,(u) ifue C]Ic-—l + 5% (4.24)

As before, we apply the MacWilliams Identity Equation 4.1. Changing the
code length to 10 adds an extra factor 1 + = to the a; of Equation 4.20, and
multiplying 8; by z replaces the 1 + = by 1 — z, resulting in say o}, which
equals ((1 — z)/(1+ z))a. As an aid to calculation we give the «'s in the form
Equation 4.25 below. The result is Table 3. We omit B(z); it is easily recovered
from Equation 4.26 by removing the factor 27 and replacing the symbols « by
8 but o by z8.

1 9 21 27

o = Zf:o (berz™ + bz t1) 1 5 3 -9

where [b;] = 1 1 -5 3

a; = Z?:O (btrmzr - btrmzr'l-l) 1 -3 3 -1
(4.25)

Az) =257 {Z () (u € Sk) + D (v € Gy + Sk)} (4.26)
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Table 3. Weight enumerators of the KM (10,k,8 — k) family with coefficients a;, a}
of @i, o} determined by counting separately the vectors u, v of Equation 4.26 with each

value of . Note: a9 = 1 always, and a1 = 0 here, for 2<k <6

k_d Sp(Ct_1,5) ay az a5 a3 a3 A(z)

6 2 0, (5’ 0 0 0 0 1 14 3z°+ 623 + 152* + 122°
41328 + 1427

5 3 S5, C'+Ss 0 0 0 1 2 1432%+9z%462% 46254727
4 4 S84, ¢'+8Ss 0 0 3 3 1 1+432z%+4 6254428+ 227
3 5 S3,('+Ss 0 3 6 4 2 143254325427

2 6 S, (1'+S2 3 9 6 6 7T 14284227

Can we get explicit formulae for the A;7 We would like both to bypass
the actual counting of the number of times ¢t = 2 and ¢t = 3 occur, and to
find a systematic way of obtaining formulae a;(d), a}(d), and especially A;(d),
expressing everything in terms of d (or equally, k). As a first step we deduce a
compact expression for the 4; from Equation 4.25, and Equation 4.26, replacing
26=7 by 21=4 i the latter

29=1 Ay, = bor +byr(as+ah) +bs,(az+a5) (d>2),
(4.27)
2d—1A2r+1 = bO,r —+ b2,,.(a2 — a'z) -+ b3,r(a3 — ag) (d > 2)

Without knowing the actual distribution of ¢ values, we may infer from the
construction of the Sp(...) column of Table 3, and the size |S;| = 2¢-2(d > 2),
that

as(d+ 1) = as(d) + a5(d), as(d+1) =as(d) +a5(d) (2<d<5), (4.28)

az+a3 =22 -1 dy+aj=2%% (2<d<5). (4.29)

The a; and a} are trivial to determine for d = 2, so we may conveniently
use them as initial values for Equation 4.28. The hypothesis d > 2 implies that
Ap =1, Ay = 0 which, by Equation 4.25, Equation 4.27 are together equivalent
to Equation 4.29; furthermore for d > 3 we have A5 = 0, which translates to the
first equation of Equation 4.30 below; the second is obtained by adding the two



116 S. Hoggar and K. Pickavance

Table 4. Coefficients in the weight enumerators of the KM (10, k, d) family, as func-
tions of the parameter d = 8 — k. Ditto marks are shown thus ”

E d Ay A4 Aq As As Az
6 2 3 6 15 2 13 14
5 3 0 3 3(254-1) 6 25442 7
4 4 0 0 ? 3.25-4 ” 25-4d
3 5 O 0 » » ”» »

2 6 0 0 0 0 1 2

equations of Equation 4.29. Solving Equation 4.30 as simultaneous equations in
two variables a; + a4 and a3 + af yields Equation 4.31.

(a2 +d5) — 3(as +a3) = =9(d > 3), (az+ah)+(as+az)=2"""~-1 (d>2)
(4.30)

as+ay =324 -1)(d>3), as+ay=234+2 (3<d<5). (431

Now we simply substitute Equation 4.31 into Equation 4.28 to get the first two
explicit expressions in Equation 4.32 for ag, ag, then substitute these back into
Equation 4.31 to obtain a5, a5. Finally we may use these values with Equation
4.25 to compute Table 4. Notice that the general formula for As, holds for d > 3
rather than just d > 4 because it may be derived from Equation 4.25 using only
Equation 4.31.

az =3(2% 1), a3 =24"%42, a,=32%"% ay=2"4d>4) (4.32)

Essentially we have formulae in the range between impractically small & or d
(see Table 4).

Conjecture. For each N, k,d and P(u), the shortest KM code and the least
A,min can be achieved simultaneously by suitable choice of multiplications (de-
pending on the factorisation of P(u)).

4.7 Objectives

Give formulae for the A; in terms of parameters for general KM codes. Show
how to obtain the “best” codes for a given purpose. Determine the “best” value
of s to use. Determine the precise way in which a code’s properties depend on
the choice of P(u), its factorisation, and the multiplications chosen.
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On the other hand we would like to produce results which are indepen-

dent of the multiplication algorithms chosen, following on for example from
Equations 2.5 and 4.15.
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Densities of Perfect Linear Complexity Profile
Binary Sequences

A.E.D. Houston!
Royal Holloway, University of London

Abstract

Binary Perfect Linear Complexity Profile sequences (PLCPs) have the
profile closest to the expected linear complexity of random binary se-
quences. In this paper we investigate the proportion of ones in finite length
PLCPs, showing that they do not in general have the balance property of
random sequences. The PLCP with uniformly least density is given, as
well as evidence to support the conjecture that the limit of the maximum
density, as the length tends to infinity, is 2/3.

1 Introduction

In a stream cipher, the data sequence in bits is added modulo 2 to a keystream
before transmission. At the receiver, the same keystream is added to the received
ciphertext to regain the message. The keystream must be deterministic (so it
can be reproduced at both ends of the communication channel), but for security
it is recommended that it have pseudo-random properties (see [1]) so that an
eavesdropper, even if he knows some of the keystream sequence, cannot predict
any of the rest. Although it is not easy to quantify randomness, the following
have been suggested in [2] and [3] as pseudo-random properties;

e a balance of 0’s and 1’s in a period,
¢ ideal run frequencies in a period,
e low out-of-phase auto-correlation, and

o linear complexity close to half the length of the sequence.

Perfect Linear Complexity Profile sequences (PLCPs) satisfy the last condition
exactly. In this paper we shall investigate to what degree PLCPs satisfy the first
pseudo-random property, i.e. we look at the proportion of ones (the density)
in finite length PLCPs. After giving some basic definitions and relevant results,
we shall look in turn at some specific PLCPs and their densities, then at the

1This research is supported by the EPSRC Case award number: 92500137, in conjunction
with Vodafone Limited.
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maximum and minimum densities over all PLCPs for particular lengths, and the
limits of these as the length tends to infinity. The PLCP with the uniformly least
density for all lengths is given, as well as evidence to support the conjecture that
the limit of the maximum density is 2/3.

1.1 Density

Definition 1. The density D(n) of a binary sequence s1,s3,...,s, of length n
s the number of ones in the sequence, divided by n, t.c.

D(n) = -———-—Z?ZI %

Clearly,
0< D(n) <1, for all n.

The density measures the proportion of ones in a finite sequence, and hence in-
dicates how balanced the sequence is. The expected density for a purely random
sequence is 1/2, for any length, hence a balance of 0’s and 1’s is desirable in a
pseudo-random keystream.

Example 2. The sequence 1100101.... has D(1) = 1, D(2) = 1, D(3) = 2/3,
D(4) = 1/2, D(5) = 3/5 etc.

1.2 Linear complexity profiles

Definition 3. Let sy, 52,...,5, be an arbitrary finite binary sequence. Then the
linear complexity L(n) of the sequence is the length of the shortest linear feedback
shift register that can generate s1,82,...,8q.

We write L as a function of n to note the length of the sequence involved.
Explicitly, it is the least & such that there exist binary integers cg,...,c5-1
satisfying:

Sitk = €08; D 1841 D ... D Cp-18i4+k—1

for i = 1,...,n — k, where @ denotes addition modulo 2. The shift register
is uniquely defined by the above recursion coefficients cq,...,cr—1, and the se-
quence is uniquely defined by the ¢; and the initial values s1, ..., sy. The integer
k is the length of the shift register, and we shall use the convention that the zero
sequence 000... is generated by a shift register of length 0.

Definition 4. The Linear Complexity Profile of the (possibly infinite) sequence
81,82, .- is the corresponding sequence L(1), L(2),. .., i.e. the sequence of values
the linear complexity takes as the binary sequence gets longer and longer.
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This is most clearly pictured as a monotone increasing step—graph of L(n)
against n. In [4], Massey shows that the iterative algorithm introduced by
Berlekamp in [5] for decoding BCH codes provides a general solution to the
problem of finding the linear complexity profile of a prescribed finite sequence.
Informally, the algorithm shows that the linear complexity as another bit is
added to the sequence either remains the same, or jumps up to an equal distance
on the other side of the y = /2 line on the graph, i.e. L(n+ 1) = L(n), or
n+1— L(n).

1.3 Perfect Linear Complexity Profile Sequences (PLCPs)

A purely random sequence of n bits would be expected to have linear complexity
of approximately n/2. Explicitly, Rueppel has shown in [3] that the expected
value of L(n), for large n, is § +¢,, with 0 < e, < '1§§' The profile which follows
as closely as possible the y = z/2 line, see Figure 1, is thus called the perfect
profile, and is given explicitly by;

n+1
2

L(n)=|

| for1<n < co.

y==z/2

L(n)

Figure 1. The Perfect Linear Complexity Profile
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Rueppel suggested a candidate PLCP sequence in 1984, but it was not proven
to have a perfect profile until 1986, by Dai in [6]. Massey and Wang were the
first to characterize all PLCP sequences in terms of a simple linear recurrence,
see [7]. Their result is stated in the following theorem:

Theorem 5. (Massey-Wang) A binary sequence of length n has PLCP if and
only if sy =1 and fori > 1
S2i41 = S2; D ;.

Thus the even positions in the sequence can be arbitrary, but the odd po-
sitions are dependent on the previous even position and the bit half way back
along the sequence. This also shows that although the PLCP sequences have
linear complexity profile close to that of random sequences, they are far from
unpredictable. Since there are two choices for each even bit, we can count the
number of PLCP sequences of length n to be 2L7/2]

1.4 Examples
1.4.1 Generalised Rueppel Sequences (GRS)

Defined in [8], as their name suggests, this family of PLCPs contains the Rueppel
sequence. Let the binary sequence ¢y, ¢g, .. . determine the monotonic increasing
sequence of integers ny,no ... by:

ny =1, and nj 1 = 2n;5 + ¢;.

This sequence in turn determines the positions of the ones in the corresponding
GRS, i.e.
si=1 & ¢ =n; for some j.
Two simple examples of Generalised Rueppel sequences are:
o c; = 0 for all i—this gives the Rueppel sequence 110100010710%°1. ., i.e.
r1,79,..., where _
=1« i=2 forj > 0.
This description is also equivalent to the relation ro; = r; with roy; =
ro; @ r; from the Massey-Wang characterization.
e ¢; = 1 for all i—this is the Morii~Kasahara (M-K) sequence, see [9], which
is just the Rueppel sequence with the first bit removed,
i.e. 101000107100 ... etc., or my, ma, ..., where
mi=1<¢ i=%—1forj>0.
It also satisfies myg; = 0 for all 4, along with the Massey—Wang relation.

Having seen sequences which satisfy so; = 0 and s9; = s; for all 7, it is natural
to look at their “complements” sq; = 1 and sq; = 5;, for all <.

Definition 6. The Type I and Type Il sequences are the PLCPs defined by
s2; = 1 and s9; = 5, for all 1, respectively.
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1.4.2 The Type I sequence

Since s9; = 1, for all i, we have from Theorem 5 that
s2i41 = 1 ® 5.
This leads us to two cases:

e i iseven or 1,80 s; = 1 which implies s9;41 =1®1=0;
e iis odd, say ¢ = 2j + 1, which implies s5;41 = 1@ 835411 = 101D 55 = 55,
which leads us to two subcases:
% j is even or 1, which implies sq4;41 = 1;

* jis odd, say j = 2k + 1, which implies s9;41 = 1 @ s, which leads us
to two subcases:

o k is even or 1, which implies s2i41 = 0;

o kis odd, say k = 2]+ 1, which implies s9;11 = sy, etc....

Continuing to break down 2i+1 in this way, we obtain a sequencen, i, j, &,1,. ..
of odd numbers which terminates in an even number or a 1.

Lemma 7. The Type I sequence has zeros at the positions s, if and only if

22K _ 1, or
22K-1 1 mod 2°X forn > 22K for some K > 1

n
n

il

Proof. From the above discussion, sg;41 = 0 if there is an odd number of odd
numbers in the sequence n,i,j, k,l, ... before the even or 1. If there is an even
number of odds, then sg;11 = 1. To find the general form of n such that s, =0,
we have two cases:

odd no.
1o n=202(2(---(22X)+1)-- )+ 1)+ 1) + 1, for some X > 1, or
odd no.
e
2. n=20202(---2(1)+1)-- )+ D+ 1)+ 1,

where, in both cases there are an odd number of 2s before the central bracket.
Multiplying the brackets out, letting the odd number of 2s be 2K — 1, we get

1. n=22Kx 4 92K-2 4 ... 4 941=9KXx 1 92K-1_1 o
2. n:22K‘1+22K"2+...+2+1:22K__1’

which give us the formulae stated in the Lemma 7 for the positions of zeros.
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1.4.3 'The Type I sequence

Lemma 8. The Type II sequence has zeros at the positions s, if and only if

n =21 mod 22X for some K > 1

Proof. This is a slightly simpler version of the above proof for Type I sequences,
so 1s omitted.

2 Densities of PLCPs

2.1 Results for the Rueppel, M-K, Type I and II sequences

The density, Dgr(n), of the Rueppel sequence is easy since we know exactly where
the ones are:

Dgr(n) = Uogynj +1 ZJ +1

Similarly for the M-K sequence:

DM(n) _ I.logZ(z + 1).' .

Since the Rueppel sequence has ones most often, and the M-K sequence has ones
least often out of all Generalised Rueppel sequences, we have that

DM(n) S DGRs(n) _<__ _DR(TL), for all n,

but clearly the exact value depends on the sequence {¢;}.

For the Type I and II sequences it is a little more complicated, but if we
consider splitting the sequences into blocks of size 22X for each fixed K, we see
that each congruence in Lemmas 7 and 8 gives us exactly one zero per block.
It is easy to check that the congruences do not overlap, i.e. some n cannot be
a solution for two different values of K. Thus, for example, we get one zero in
every block of 4 from K = 1, another zero in every block of 16 from K = 2 etc.
If we cut the sequence off at n = 22X it follows that the density of zeros is

1 1 1

1
DIp() = g+ttt tax

_ o
3 4 ’
so the density of onesis given by:

Lemma 9. The density for a Type I or Type II sequence of length 22K is

2 1 /1\¥
D1,11(22K)=§+§(Z> :
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Proof. From D(n) = 1 — D°(n).
Corollary. The number of zeros in a Type I or II sequence of length 22X
NO(22X) s given by:
N0(22K) - % (22K _ 1) .

Proof. Multiply the density in Lemma 9 by 22X,

We can use this result to work out the densities for any length n, by expressing
n in its base 4 expansion, i.e. n = Zi:o a;dt, for a; € {0,1,2,3}, and counting
the number of zeros in the a; complete blocks of length 4*, for each i.

For the Type II sequence, a block of length 2% contains 4 full blocks of length
2%-2 with all their zeros, as well as its contribution of one zero half-way along
at 22~1, Hence;

N0(2.22i—2) = 1+ 2.N0(22i—2) =1 + §(22i—2 _ 1) — %(1 +22i—1),

and
ND(3.22i_2) - 1+ 3‘N0(22i_2) =1 + (22i—2 _ 1) — 221:—2'
Define the function S, (%), for ¢ > 0, by:

0 if a,-:O,
L4 -1) if a=1,
Sa;(1) = -
W+ i a=2
\ 4 if a;=3.

Then S,,(%) counts the number of zeros contributed by the a; complete blocks
of length 4°. For example, when i = 1, we are looking at complete blocks of
length 4. If a; = 1, we know there is only one zero in the middle of that block.
If a; = 2, we know there are 3 zeros—2 from the centres of the 4-blocks and
one contributed by the mod 16 congruence. Finally, if a; = 3, there are 4 zeros.
Checking these values with S,,(1):

0 if e =0,
(4 -1=1 if a =1,

Sax(l) = 141
-+ =3 if a1=2,

\ 4l =4 if ay =3

Similarly with ¢ = 0, in a block of 4 we are counting the units. The only zero
is at the second unit, so the cumulative number of zeros is 0,0,1,1 when ag is
0,1,2,and 3 respectively. This also agrees with S, (0).
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Theorem 10. Lei n = Z:'=o a;4t, for a; € {0,1,2,3}, then the density of a
Type II sequence of Iength n s given by:

Dr(n)=3— 5 (#{z a; =2} —#{i:a; =1})
where #{i : a; = k} denotes the number of the coefficients equal to k.

Proof. From the above discussion, we now have the complete number of zeros:

1
NO(n) =" Sa,(9).
i=0

So

DII(n) — Zz =0 al4z Zz oSa,( )
since we require the number of ones d1v1ded by the length. Note that all the
expressions for S;,(¢) contain a term a;4¢, in fact

1.
Sdi(i) = g(aizlz + Tai))

where
0 if a; = 0,
J —1 if a; = 1,
T, =
1 if a; = 2,
0 if a; = 3.
Thus

i
Di(n) = %( -3 0T )
i=0

which gives the result stated in the theorem, since all T does is add up the
number of a;’s equal to 2, and subtract the number if a;’s equal to 1.

Example 11. n=29=16434+1, s0 ag =1, a1 =3, and a9 = 1. This gives
us the result that the total number of zeros is 3(16 — 1) +4+0 = 9. We can
check this from the definition of the positions of zeros—we have zeros at bits 2,
6, 10, 14, 18, 22, 26, 30... etc from the modulo 4 condition; bits 8, 24, 40... etc
from the modulo 16 condition; bits 32, 96... etc. from mod 64; etc. This shows
the 9 zeros wn length 29.
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For the Type I sequence, let n = Zfzzo a;4*, where a; # 0, so that 4' <
n < 41, Thus we have a; complete blocks of length 4/, each one contributing
1(4' — 1) zeros. The zero from the 4'+! congruence comes at the (41 — 1)st
position (since we are in the first block of this length: recall Lemma 7) and so
we only count it if n = 4"+! — 1, ie. if all the a;, 0 < i < I, are equal to 3.
If aj_1 > 2, or ¢j—; = 1 and all subsequent a;, i =1 —2,...,0, are equal to
3, (so that n = @;4' +2.4=! — 1), then we must count the zero from the next
incomplete block of length 4/. Otherwise we just have the zeros in a complete
block of length 4~1, and we move on to a;_2, aj_s... etc., until a1, having to
add additional zeros to the complete blocks only when a; > 2 or ¢; = 1 and all
subsequent coefficients are 3. Care must be taken within a block of length 4,
since the zero occurs for positions congruent to 1 mod 4, and so if ag > 0 we
must count this zero. Putting all of this together, we get that the total number
of zeros in a Type I sequence of length n is

i

N(m) = DR -D+#{iia22i#Li#0)

i=1

1 ifap>0

+ { 0 ifag=0

" 1 if last > 2 consecutive a;s are 13...3
0 otherwise

+ 1 ifalla;=3,i=0,...,!
0 otherwise

This gives us the following theorem:

Theorem 12. The density of a Type I sequence of length n = Zﬁﬂ a; 4, where
ar 20, is given by

i
2 1 i . . .
Dl(n)=§+;( %——#{z:ai22,z;&l,z¢0}—l{),

where K, 0 < K < 2, counts the occurences of the events {ag > 0}, {alla; = 3
fori=20,...1} and {the last > 2 consecutive a; are 13...3}.

Example 13. The Type I sequence has zeros at positions 3, 5, 9, 13, 17, 21,
25, 29, 38, 37, 41, 45, 49, 53, 57, 61, 65... elc., from the mod 4 congruence; 15,
23, 89, 55, 71... etc., from the mod 16; 63, 95... etc., from the mod 64. Thus
for n = 63, we can count directly the 21 zeros. Using the formula in the above
theorem:

n=3164344+3 = a3 =a; =ag =3,

and
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NO63)=(16—-1)+(4—1)+14+1+1=21,

since ag > 0, a1 > 2, and all the a;’s are 3.

2.2 Limits, maximum and minimum densities

We can see that, as n — oo, Dp{n) — 0 and Dp(n) — 0. Since we know
that the density of a Generalised Rueppel sequence is at least that of the M-K
sequence and at most that of the Rueppel sequence, by squeezing, the limit of
the density of a GRS must also be 0. For the Type I and II sequences as n — oo,
D(n) — 2. Since Dy(n) < Dgrs(n) for all n, and its limit is zero, is the
M-K sequence the PLCP with uniformly least density? That is, for all PLCP
sequences S(n), of length n, is it true that Dps{(n) < Dg(n) for all n? This is an
open problem stated in [9].
Consider firstly the following lemma:

Lemma 14. If there does ezist ¢ uniformly least dense PLCP, then it must be
the Morii-Kasahare sequence.

Proof. Suppose an infinite PLCP, L, with uniformiy least density exists, and
that it has a 1 in one of its even positions. Consider the sequence which agrees
with L in all but that even bit, i.e. it has a 0 instead of a 1 in that position, then
this sequence has strictly less density than L at that point, which contradicts
the uniform minimality of L. Hence L must have zeros in all even positions, and
so must be the M-K sequence.

Suppose there exists a PLCP, S, with lower density than the M-K sequence
at some point. Then there exists a least index 7 such that Dg(¢) < Dps(7). For
all § < 7 we must therefore have Dg(j) > Dup(j), in particular Dg(z — 1) >
Dps(i—1). For the density of S to go from at least the density of M-K at length
i — 1 to strictly less than it at length ¢, we must have that s; = 0 and m; = 1.
Hence i = 2K — 1 for some K.

Lemma 15. Let i = 2K —1 > 1 be the smallest indez such that Ds(i) < Dpr(i),
then

Ds(j) = Du(j), forallj < i.

Proof. Suppose there exists a greatest index k < ¢ such that Dg(k) > Dar(k).
Note that k£ + 1 < 7 also, as Dg(k) > Dar(k) implies Dg(k + 1) = Dp(k + 1),
since we can at best only add one other one to the M-K sequence at the k + 1st
bit, and leave the number of ones in S unchanged. Thus we must have s; 1 =0
and myy;1 = 1, which implies that k+1 = 2" — 1 for some h < K. We must also
have that Dg(j) = Dy (j) forall k < j <4, and thus s; = m; for k+ 1< j < 1.
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Table 1.
Position: 1 2 - 21 2 . ol okl
M-K 1 0 - 1 0o .- 0 1

Now suppose b+ 1 # K. Thus spr+1_; = mar+1_3 = 1 since the bits must
agree up to 2K — 2. But from the PLCP recurrence:

Soht1_1 = Sort1_9g & Soh__{ = Soht+i_g T 1,

since son_1 = 0. Since mor+1_9 = 0, this contradicts the fact that the bits must
agree, so we conclude that A + 1 = K (as shown in Table 1).

Now let H < k satisfying 2! — 1 < H < 211 — 1, for some 1 < I < h, be
the greatest index such that sy = 1 and myg = 0. H must exist for S to have
greater density than M-K at length k. Since mag = 0 by definition, we must
have sog = 0, otherwise we would contradict the maximality of H. Thus

SoH+1 = SpDsp =01 =1

This implies may 41 = 1, otherwise we would again contradict the maximality of
H,and so 2H +1 = 2% — 1 for some L. But 2/ — 1 < H < 2! — 1 implies that

2H 1 <2H +1< 22 -1,
which is impossible if 2H + 1 = 2L — 1. Hence we have reached a contradiction,

and so there cannot exist a k < ¢ with Dg(k) > Dp(k), and so we have proved
that Ds(j) = Dm(j) for all j < i.

Theorem 16. The M-K sequence is the uniformly least dense PLCP.
Proof. By the above lemmma, if there does exist a PLCP, S, with lower density
at some length, then S must agree with the M-K sequence up to length ¢ — 1,

using the above notation, and then s; = 0 and m; = 1. Recall i = 2¥ — 1, so

s; =0

S9K _9 55 S9K-1_1

MoK .9 D Mok-1_1
0pl=1

which is impossible. Thus S cannot exist and we have proved the theorem.

Now we know the uniformly least dense PLCP, is there a corresponding uni-
formly most dense one?
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Lemma 17. If a uniformly most dense PLCP ezists, then it must be the Type
I sequence.

Proof. If it does exist, then it must have all the even positions equal to 1, since
otherwise we could just replace a zero even bit with a 1 to get a sequence with
strictly greater density for that length. The sequence with all its even bits equal
to 1 is the Type I sequence.

Table 2 shows experimental results of PLCP densities. It gives for each sequence
length up to 56 the maximum number of ones, found by computer search, over
all the PLCPs, and compares this with the number of ones in the Type I and
Type II sequences.

The values of n marked with a * are those for which the number of ones in
the Type I sequence is stricily less than the maximum. This shows that the Type
I sequence cannot have a uniformly maximum density for all n, even though it
does attain the maximum number at some values. Hence we have proved:

Theorem 18. There is no uniformly most dense PLCP.

Now we know that there cannot be a uniformly most dense PLCP, what can
we say about sequences which are close to it? From the experimental results, we
see that both the Type I and Type II sequences either attain the maximum, or
only have a couple less ones than the maximum at that length. Since the Limits
of both densities as n — oo is %, is it true that this is the limit of the: maximum
density? The following theorem goes a little way to showing this, by proving it
only for specific values of n.

Theorem 19. Considering only values of n of the formn =2K — 1, for K > 1,
we have:
Dgs{n) < Dyy(n)

for all PLCP sequences S(n), so that

. K _ -z
I{lgnoo max Ds(2 1) 3

Proof. Recall that the density is given by

1 n
D(n) = ;}: ZSi,
i=1

where the addition is over the integers. For a binary PLCP sequence we also
have that sg;+1 = $2; @ si, which in terms of normal integer addition is the same
as

S2i41 = 82 + 8i — 252;8;.
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Table 2. PLCP densities
n Maximum Typel Typell =n Maximum Typel Typell
1 1 1 1 20% 20 19 20
2 2 2 1 30*% 21 20 20
3 2 2 2 31 21 21 21
4 3 3 3 32 22 22 21
5* 4 3 4 33* 23 22 22
6* b 4 4 34* 24 23 22
7 5 5 5 3 24 24 23
8 6 6 5 36 25 25 24
9* 7 6 6 37* 26 25 25
10* 8 7 6 38* 27 26 25
11 8 8 7 39% 27 26 26
129 9 3 40*% 28 27 26
13 9 9 9 41% 29 27 27
14 10 10 9 42*% 30 28 27
15 10 10 10 43* 30 29 28
16 11 11 11 44* 31 30 29
17% 12 11 12 45% 31 30 30
18% 13 12 12 46* 32 31 30
19 13 13 13 47 32 32 31
20 14 14 14 48 33 33 32
21* 15 14 15 49* 34 33 33
22* 16 15 15 50* 35 34 33
23* 16 15 16 51 35 35 34
24* 17 16 17 52 36 36 35
25* 18 16 17 53 36 36 36
26* 19 17 17 54 37 37 36
27* 19 18 18 55 37 37 37
28* 20 19 19 56 38 38 37
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So for n = 2k + 1;

2k+1

Zsi = s+

i=1

M=

(s2i + $2i41)
1

o
i

= 14 (250 + i — 25%8;)

i=1
k k
= 1+2Zb’2i(1 —-Si) +Zsi
i=1 i=1

Now suppose k = 25+ 1, so we can break down Zf___l s; into the same sums, but
from 1 to j, and continue in this way until we come down to s;. Noting that
2K+1 1 = 2(2% — 1) + 1 =2(2(2%-1 ~ 1) + 1) + 1 and so on, we have:

oF+i g K {2*-1
Z $i=K+2 Z Z 32,-(1—3,-) + 81
i=1

h=1 | i=1

Hence
K+1+2(T5, [E?ifl s2i(1 — S@')])

K+1 _ 1y —
Dg(2 = SR+ ]

Since all the s; are either 0 or 1, this expression for the density is maximized
when sg; = 1—s; for all 7, since we get as many 1x 1’s as possible in the s5;(1—s;)
terms. This is the Type II sequence.

If K is even, K = 2l, say, then

n=2"-1=32%"24392244...434+3,

so all the a; from i = 0 to [ — 1 are equal to 3.
If K is odd, K = 2] — 1, say, then

n=2%"1_1=192%"2139%"4%4...434+3,

so g;_1 = 1 and the rest are 3.

Putting these into the formula in Theorem 10 for the density of the Type
IT sequence, when K is even we have no coefficients equal to either 1 or 2, and
when K is odd we only have one coefficient equal to 1.

Therefore we have proved that

if K is even,

win

Dr(2% - 1) =
24 goroyy  if K is odd,

which gives the limit stated in the theorem.
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3 Conclusion

Although these PLCPs have a profile like random sequences, they are not unpre-
dictable and do not in general have the balance property of random sequences.
(There are however examples of some which do; the PLCP defined by ss; = 3%;°7
does satisfy D(n) — % as n — oo, since each odd bit has its complement fol-
lowing it.) The Morii-Kasahara PLCP has the uniformly lowest proportion of
ones, and this tends to 0 as the length tends to infinity, showing that zeros can
dominate nearly all the bits of very long PLCPs. This is clearly undesirable for
a keystream sequence. It was shown that no PLCP always has the maximum
density for each length, but some examples come close to it, and for these ex-
amples the density tends to 2/3. We prove that the limit, as K — oo, of the
maximum density for lengths of the form 2K — 1 is 2/3, and we conjecture? that
this is the limit of the maximum density for all lengths.
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Abstract

Many practical combinatorial search problems may be expressed as
constraint satisfaction problems, in which values must be assigned to a set
of variables subject to a given set of constraints. Finding solutions to a
constraint satisfaction problem is known to be an NP-complete problem in
general, but may be tractable in cases where the form of allowed constraints
is restricted. In this paper we describe two sets of constraints which give
rise to tractable problems and give polynomial time algorithms for solving
such problems. We also prove that the class of problems generated by any
superset of these sets of constraints is NP-complete.

1 Introduction

A number of important problems in artificial intelligence, graph theory and oper-
ational research may be formulated very naturally as consiraint satisfaction prob-
lems [14,16): they involve putting together pieces of information (constraints) to
obtain a global solution which simultaneously satisfies all of them. Recent exam-
ples include object recognition problems for robots {9], generalized graph coloring
[13] and stock cutting problems [6].

Finding solutions to a constraint satisfaction problem is known to be an
NP-complete problem in general [14] even when the constraints are restricted
to binary constraints. However, many of the problems which arise in practice
have special properties which allow them to be solved efficiently. The question
of identifying restrictions to the general problem which are sufficient to ensure
tractability has been discussed by a number of authors {3,7,10,17].

In this paper we examine what restrictions must be imposed on the type of
constraints allowed in order to ensure that a constraint satisfaction problem may
be solved efficiently. We identify two distinct families of tractable constraints,
and we give polynomial time algorithms for solving any problem involving con-
straints from either one of those families.

Finally, we show that any collection of constraints which includes the whole
of these families and any other constraint will generate a class of problems which
is NP-complete. This means that these tractable families are both defined in the
most general way possible (assuming P is not equal to NP).

135
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2 Definitions

Definition 1. A constraint satisfaction problem, P, consists of

o A finite set of wvariables, N, identified by the natural numbers
1,2,...,n.

o A finite domain of values, D.

o A set of constraints {C(S1),C(S2),...,C(S:)}-

Each S; is an ordered subset of the variables, and each constraint C(S;) is a
set of tuples indicating the mutually consistent values for the variables in S;.

A solution to a constraint satisfaction problem is an assignment of values to
the variables which is consistent with all of the constraints.

The length of the tuples in a given constraint will be called the ‘arity’ of that
constraint. In particular, unary constraints specify the allowed values for a single
variable, and binary constraints specify the allowed combinations of values for a
pair of variables.

It is convenient to make use of the following operations from relational algebra

[2].

Definition 2. Let S be any ordered set of r variables and let C(S) be a constraint
on S.

For any ordered subset 8" C S, let (i1,14a, .. .,1i5) be the indices of the elements
of §' in S§. Define the projection of C(S) onto S’, denoted wg:(C(S)), as follows

1s/(C(S)) = {(&iy, 2,1 -, 25,) | 321, 72, . .., 2,) € C(S)).

Definition 3. For any constraints C(S;) and C(S2), the join of C(S;) and
C(S3), denoted C(S1) X C(S2) is the constraint on S1U Sy containing all tuples
t such that w5, ({t}) C C(S1) and 7s,({t}) C C(Sy).

We shall assume, for simplicity, that each variable is subject to at least one
constraint. Hence, the set of all solutions to a constraint satisfaction problem
P, denoted Sol(P), is simply the join of all the constraints [10]

Sol(P) = C(S1) M C(Sp) M -- - X C(S,).

The decision problem for a constraint satisfaction problem is to determine whether
or not this join is non-empty. For the purposes of this paper, a CSP will be con-
sidered solved once a single solution has been found, or alternatively the fact
that there are no solutions has been established.

The class of problems in which the constraints all belong to some set C will
be denoted CSP (C).
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3 0/1/all constraints

We now define the first family of constraints, which contains only binary con-
straints.

Definition 4. A binary constraint, C(i,7), is a directed 0/1/all constraint
if

Vz(3y, 2((z,y) € C(3,j) A (2,2) € C(3,§) Ay # 2)

=V € 1;,(C(0,9) (2, w) € O, ))- (3.1)

In words, each value z € D is consistent with zero, one or all of the values in
753 (C (5, 5))- ‘

If both C(i,5) and the corresponding constraint C(j,1) = {(y,2) : (z,y) €
C(i,5)} are directed 0/1/all constraints, then C(i,j) will be simply referred to
as a “0/1/all constraint”.

Example 5. If |D| = 2, then every possible binary constraint is a 0/1/all con-
straint since each value for variable i is consistent with zero, one or two (i.e.
all) values for variable j, and vice versa.

Example 6. To obtain a binary constraint which is not a 0/1/all constraint
we must have a value (say ‘a’), which occurs in the set of ordered pairs at some
position with at least two, but not all, of the values occurring in the other position.
(say ‘a’ and ‘b’ but not ‘c’). Hence, a smallest possible example is

{(a,a),(a,b),(d,¢c)}.

In order to characterise 0/1/all constraints, we define the following three
types of constraint.

Definition 7. A complete constraint is any constraint C(, j) which is equal
to A x B for some AC D and some B C D.

A permutation constraint is a constraint C(i,j) which is equal to
{(z,0(2)) | = € A} for some A C D and some bijection ¢ : A — B, where
BCD.

A two-fan constraint is a constraint C(i, ;) where there exists z € A C D

and y € B C D with C(4,j) = (2 x BYU (4 x y). Such a constraint will be
denoted < z,y >.

These three types of constraint are illustrated in Figure 1 which shows a typical
complete constraint, permutation constraint and two-fan constraint. In this
Figure the constraints are shown diagramatically by drawing a single point for
each possible value for node i on the left, and a single point for each possible
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Complete Permutation Two-Fan < b,c >

Figure 1. Three types of constraint

value for node j on the right, and then connecting two points if the corresponding
combination of values is allowed by the constraint.

It can easily be verified that any complete constraint is a 0/1/all constraint,
since the right-hand side of the implication in Definition 4 is always satisfied.
Any permutation constraint also trivially satisfies the definition of a 0/1/all
constraint, since the left-hand side of the implication is never satisfied. Finally,
any two-fan constraint C(i,5) = (z x B) U (4 X y) is also a 0/1/all constraint
since for any p € 71 (C(4, §)), either p = z, and C(4, j) allows p to be combined
with every member of 7;3(C(3,7)), or else p # z, in which case C(¢,5) only
allows p to be combined with y (similar remarks apply to C(j,1)).

We will now prove that there are no other types of 0/1/all constraint. First
we define a fan-out.

Definition 8. A value x € D such that

Vy € 753(C( 7)) ((=,9) € CG,J))

will be called a fan-out from ¢ to j.
We now prove a technical lemma.

Lemma 9. If C(4,]) is a 0/1/all constraint whick is not a complete constraint,
then there is at most one fan-out from i to j.

Proof. Let C(i,j) be a 0/1/all constraint, and assume that there is more than
one fan-out from 7 to j. In other words, there exists w, £ € D, w # & such that
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Vy € m(;3(CG, 7)) (w,9) € O, 4) Az, y) € C(,5)).
Then, directly from Definition 4, we can deduce that

which is equivalent to the definition of a complete constraint. The lemma follows
immediately.

We may now show that all 0/1/all constraints must be of a type described in
Definition 7.

Lemma 10. (Categorisation) Any 0/1/all constraint is either a complete con-
straint, a permutation constraini, or a two-fan constraint.

Proof. Let C(i,7) be a 0/1/all constraint which is neither a permutation con-
straint nor a complete constraint. We shall demonstrate that C(z,7) must be a
two-fan constraint.

Without loss of generality, suppose that C(i,j) is not a permutation con-
straint because (z,u), (2,v) € C(4, j) where u # v. By Definition 4,  must be a
fan-out, that is

Vz € m;3(C,5) ((=,2) € C(1,5)).
If 7;;3(C(3, 7)) = {2}, then C(i, ) would be complete, so we can choose w # =z
such that (w,y) € C(4,5) for some y € 7(;3(C(4,5)). But then, by Definition

4, since C(j,4) is a 0/1/all constraint and (w,y),(z,y) € C(j,1), y must be a
fan-out, that is

Vzemy(CGEL 7)) ((2,9) € CG,5).
By Lemma 9, we know that C(%, j) contains at most one fan-out from ¢ to j, and
at most one fan-out from j to ¢. This means that C(%, j) is a two-fan constraint
with fan-outs at = and y.
The family of all 0/1/all constraints over some fixed domain of values D will be
denoted Zp. To complete the description of Zp, we show that it is preserved
under some standard operations on constraints.

Lemma 11. The family of 0/1/all constraints, Zp, is closed under the following
operations

1. Intersection, N.

2. Composition, o, where C(4,7) o C(j,k) is the constraint C(i, k) between i
and k, given by

C(i,k) ={(p,¢) : Ir € D,(p,r) € C(4,5) A(r,q) € C(j, k)}.
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3. Restriction, ||, where C(4,j) || (P x @)= {(p,q) € C(i,§) :p€ P,q € Q}.

4. Permutation, for permutations o and o’ of D, C"’x"l(i, 7)) ={(c(p), o'(q)) :
() €C(E )}

Proof. The proof for intersection, restriction, and permutation follows immedi-
ately from Definition 4. The proof for composition follows from Lemma 10 by
considering compositions of each of the three possible types of 0/1/all constraints
individually.

3.1 A polynomial time algorithm for CSP (Zp)

Definition 12. A CSP is path consistent (3-consistent) tf, for any three nodes
i,j and k, C(i, k) C C(s, §) o C(j, k).

The next two lemmas establish special properties of the class CSPEp) relating
to path consistency.

Lemma 13. After application of a path consistency algorithm, any problem P €
CSPEp) is still in CSP £p).

Proof. Path consistency can be established by repeatedly applying the operation

C(i, k) := C(i, k) n(C(, j) o C(j, k)

for all triples of nodes i, j, k¥ until there are no more changes in the constraints.
(Any pair of nodes, 1, j, for which no constraint is specified originally is assumed
to be constrained by the complete constraint D x D, which is a 0/1/all con-
straint.) Since the set of 0/1/all constraints is closed under intersection and
composition (Lemma 11), we can deduce that it is closed under application of
this path consistency algorithm.

Lemma 14. In any path consistent P € CSPEp), for any value p # ¢, if
C(i,7) =< s,p> and C(j,k) =< ¢q,r >, then C(i,k) =< 5,7 >.

Proof. Suppose that C(i,j) =< s,p > and C(j, k) =< ¢,r >, where p # ¢.
(Two constraints of this form are illustrated in Figure 2.) Let z € ;) (C(3, 7).
Now (z,p) € C(4,7), but (p,y) € C(j, k) only for y = r (since p # ¢). Therefore,
we must have (z,7) € C(i, k), otherwise (z,p) would have to be deleted from
C(i,j) by path consistency.

Similarly (s,y) € C(i, k) for all y € 713 C(, k). Therefore C(i, k) D< 5,7 >.
However, we know, by path consistency, that C(:,k) C C(¢,7) o C(j, k), the
composition of C(Z,5) and C(j, k). Any path from ¢ to & either starts at s or
finishes at r (see Figure 2), and hence C(3,7) o C(j, k) C< s,7 >. Therefore
C@i, k) =<s,r>.

We now prove the main result establishing the tractability of problems in CSPEp).
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<sp> <qr>

Figure 2. The composition of 2 two-fans

Theorem 15. Any constraint in which the constraints are all 0/1/all constraints
may be solved in polynomial time.

Proof. Let P be a constraint in CSPEp), and compute an equivalent path-
consistent problem P’ also in CSPEp), by Lemma 13. It is well known that path
consistency in any binary constraint satisfaction problem can be established in
O(n®|DJ?) time [11].

We will show that for any ¢ in the range 3 to n, any assignment of values

Z1,...,2;_1 which satisfies all the constraints in P’ on variables 1,2,...,7 —1
can be extended to an assignment z1,...,2;_1, 2; which satisfies all constraints
on variables 1,2,...,1.

There are two distinct cases

Case (a): Thereis a j € {1,...,i — 1} such that C(j,) is a permutation
constraint associated with the bijection ¢. By path consistency, z; must be
consistent with some value for variable ¢, so o(z;) must be defined. In this case,
we can simply choose z; = o(x;). By path consistency, z; must be consistent
with each xx, k < 1, since z; is consistent with each x, & < 4.

Case (b): Each constraint C(j, 1), for j < ¢, is either a complete constraint or
a two-fan < p,g¢ >.

Call a variable j € {1,...,i—1} restrictiveif C(j,7) =< p;,¢; > with p; # ;.
If there is a restrictive variable r with C(», 1) =< p,, ¢, >, and a second restrictive
variable s with C(s,?) =< p,, ¢, >, then we will show that ¢, = ¢,. Assume
for contradiction that ¢, # ¢,. Then, by Lemma 14, C(r,s) =< p,,ps >.
However, r and s are restrictive, so ¢, # p, and z, # p,s, which implies that
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(zr,z5) & C(r,s), so the pair of values 2, and 2, do not satisfy the constraint
C(r, s), which contradicts the choice of z, and z,.

If there is a restrictive variable » with C(r,{) =< p,, ¢r >, then we assign the
value ¢, to variable ¢ with ¢,, otherwise we choose an arbitrary value for variable
i from the set 7;3(C(3,1)). We have shown that this choice of value satisfies
C(i,j) for any restrictive variable j € {1,...,i—1}, and it is also clearly satisfies
C(i,j) for any unrestrictive variable j € {1,...,7—1}.

This completes the proof for the second case. Hence, any pair (z1,22) €
C(1,2) of P', may be extended to a complete solution of P’ and hence of P.

Finally, this complete solution can be found in O(n?|D|) time, since for each
new variable we simply check each possible value against all the constraints
between that variable and the preceding variables.

3.2 NP-completeness of larger constraint sets

In this section we shall demonstrate that any superset of the set of (/1/all
constraints can generate intractable problems. Hence this set of constraints is a
maximal set of tractable constraints.

We first prove the following lemmas.

Lemma 16. Any constraint C(i,j) which is not a 0/1/all constraint is equiva-
lent to one of the three consiraints illusirated in Figure 3 after suitable permu-
tations and restrictions.

Case (1) Case (2) Case (3)

Figure 3. The three generic constraints which are not 0/1/all constraints
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Proof. Without loss of generality, suppose that C(,j) does not satisfy Def-
inition 4 of a directed 0/1/all constraint. Then there must be a value, say a,
in D which is consistent with at least two, but not all, values in 7(;3(C(3, ))-
Suppose that (a,a),(a,b) € C(4,5) and (a,c) & C(3,5), where c € n;;3(C(4, 7))
But ¢ € 7(;3(C(3,5)) implies that there is a value in m;(C(4,)), say b # qa,
such that (b,¢) € C(i,j). We identify four different cases

L. (b,a),(b,b) & C(4, 7).
2. (b,a) & C(4,4), (b,b) € C®,j).
3. (b,a) € C(i, ), (b,b) & C(33, 7).
4. (b,a),(b,b) € C(4, 7).

Cases 1, 2 and 4 are illustrated in Figure 3. Case 3 is equivalent to case 2 after
permutation of values a and b. Hence after restricting the possible values of ¢
to {a,b}, and the possible values for j to {a,bd,c}, C(4,5) is equal to one of the
constraints given in Figure 3.

Lemma 17. Any constraint between two variables with three possible values can
be constructed by composition and intersection from any one of the constraints
of Figure 8 and permutations of it.

Proof. Figure 4 shows that, by inserting extra variables ki, ks, ks between
variables ¢ and j in Case 1, k1,ks in Case 2 and k; in Case 4, we can arrange
that the resulting constraint allows every pair of values except for one, say (a, a).

For example, in Case 1, (a,b) € C(i, j) since there exist a consistent sequence
of values of the form (a,...,b) for variables (¢, k1, k2, ks, j), namely (a,b, ¢, b,b).
However, (a,a) € C(4,J) since there is no consistent sequence of values of the
form (a,...,a) for (i, ki, ke, k3, 7). The four constraints Cix,, Ck,k,, Choksr Chaj
can all be obtained from Case 1 in Figure 3 by permutations of the value sets.

Hence, by permuting the value sets as necessary, we can construct the con-
straint which allows every possible pair of values except (z,y), for any choice
of values = and y. By connecting these constraints in parallel we can form the
constraint which disallows any desired combinations of values, and the result
follows.
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Lemma 18. Let T be any set of constraints with at most three values for each
variable. Let S be any set of constraints closed under permutations and restric-
tions, which does not consist entirely of 0/1/all constraints.

There is a polynomial-time reduction from CSP(T) to CSP(S).

Proof. By Lemma 16 S must contain one of the constraints of Figure 3. By the
proof of Lemma 17 any member of 7" may be constructed from this constraint and
its permutations by using a network containing at most 27 additional variables
and 36 edges. (Since at most 3 additional variables and 4 edges are required
for the series comstruction shown in Figure 4.) Hence, given any problem P
in CSP(T) we may replace each edge in the constraint graph with a network
generating the same constraint in polynomial time, to obtain a problem P’ in
CSP(S). The solutions to P are projections of the solutions to P’ onto the
original variables.

Note that any permutation or restriction may be obtained by composition with
some element of Zp. Hence we may apply Lemma 18 to the set Zp U{C}, giving
the following theorem.

Theorem 19. If C is not a 0/1/all constraint, then CSPEp U {C}) is NP-
complete.

Proof. Any constraint satisfaction problem clearly belongs to NP [8].
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Furthermore, GRAPH 3-COLORABILITY is an NP-complete problem [8]
and Lemma 18 gives a polynomial-time reduction from GRAPH 3-COLORA-
BILITY to CSPEp U{C}).

4 Max-closed constraints

In this section we shall break the symmetry of the domain of values D and
assume that D is a totally-ordered set. This assumption is not unreasonable,
since in many applications the domain may be considered to be a subset of the
natural numbers, or the real numbers.

As a consequence of assuming that the domain is ordered, we may define the
following operation on the elements of any constraint,

Definition 20. Let C be a constraint and let t = (x1,%9,...,2,) and t/ =
(2}, 2h,...,2.) be elements of C.

The mazimum of t and t', denoted t Ut is defined as follows

t Ut = (max(zq,2]), max(z2, 25),. .. ,max(z,,z,)).

The minimum of t and t', denoted t Nt is defined as follows
t Nt = (min(zy,2}), min(ze, 25),. .., min(z,, z})).

Using these operations on tuples, we may now define the following property of
constraints.

Definition 21. A constraint C is said to be maz-closed if, for all t,t' € C,

tut’ e C.
Similarly, C is said to be min-closed if, for allt,t' € C,

tnt eC.
Lemma 22. All unary constrainis are maz-closed.
Proof. Since the domain D is assumed to be totally ordered, we know that
for any unary constraint C, and any (z),(z’) € C, (z) U (2’) = (max(z,z’)) =

(z) or (2'), so (z) U (2") € C. Hence, C is max-closed.

Example 23. Figure § shows some ezamples of binary maz-closed constraints.
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Figure 5. Examples of binary max-closed constaints

Example 24. Any binary constraint which restricts the differences between the
values of two variables to a fized interval of the real numbers [§], is maz-closed.

Example 25. The constraint programming language CHIP incorporates a num-
ber of constraint solving techniques for arithmetic and other constraints. In par-
ticular, @ provides a consiraint solver for a restricted class of constrainis over
natural numbers, referred to as basic constrainis [17]. These basic constraints
are of two kinds.

Domain constraints:
o X e{ay,...,an}
Arithmetic constraints:

e aX #b

aX =bY +¢
aX <bY +e¢
aX >bY +e¢

[ ]

where variables are represented by upper-case letlers, and constants by lower case
letters, all constants are positive and a is non-zero.

It may be shown, using the definition above that all of these constraints are
maz-closed (and also min-closed). The resulls given below therefore confirm that
any system. of constraints of this restricted type may be solved efficiently [17].

QOther arithmetic constraints which are also maz-closed, and could therefore
be added to this set without losing this property, include

e WX +ayY+---+rZ>c.
e aXY >c.
. (alX > bl) Vv (azY > bz) Vv (a3Z < b3).
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The class of all max-closed constraints over some fixed domain D will be de-
noted Mp. Note that Mp is not restricted to binary constraints, but includes
constraints of all possible arities.

The following properties of Mp follow directly from the above definitions.

Proposition 26.

o Mp is closed under the join operation, in other words, for any pair of
constraints C(S1),C(S2) € Mp,

C(S1) X C(S,) € Mp.

o Mp is closed under projection, in other words, for any constraint C(S) €
Mp and any subset S’ C S,

WSI(C(S)) € Mp.

4.1 A polynomial time algorithm for CSP(Mp)

A constraint satisfaction problem is said to be ‘interconsistent’ [12] if for any
pair of constraints C(S1),C(S2), 7s,n5,(C(S1)) = 7s;ns,(C(S2)). When all
constraints are binary, interconsistency is equivalent to arc-consistency [11] (pro-
vided that in establishing arc-consistency the constraints are updated as well as
the domains).

Proposition 27. For any P € CSP(Mp) with ¢ constraints of arity at most
r, an equivalent interconsistent problem P’ € CSP(Mp) may be calculated in
O(c®~+|D|?) time.

Proof. Interconsistency may be established by a succession of join and projec-
tion operations, hence by Proposition 26, P’ is still in CSP(Mp).

Since interconsistency is equivalent to arc-consistency in the dual problem
[5], it may be established in O(ea?) time by using an efficient algorithm for
arc-consistency [1,15], where e is the number of pairs of overlapping constraints
(C(S;),C(S;) such that S;NS; # @) and a is the maximum cardinality of a
constraint. It can be shown that e is O(c>~¥) with the upper bound being
achieved when the constraints form a complete hypergraph of degree » on O(c%)
vertices. The value of a is clearly O(|D|"), so the result follows.

Using Proposition 27 we are able to obtain the main result establishing the

tractability of CSP(Mp).

Theorem 28. Any consiraini satisfaction problem which the constraints are all
maz-closed may be solved in polynomial time.
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Proof. Let P be a constraint satisfaction problem in CSP(Mp), and compute
an equivalent interconsistent problem P’ also in CSP(Mp ), by Proposition 27.

If any of the constraints of P’ are empty, then P’ has no solutions, hence P
has no solutions. Otherwise, for each variable i, let z; be the maximum value
allowed by all of the constraints on that variable.

z; = max ﬂ 741 (C(S))
{C(8)eP|ieS}

We claim that (21,2, ...,2,) is a solution to P/, and hence a solution to P.

To establish this claim, consider any constraint C(S) of P’, where S =
(i1,%2,...,4r), and any ¢; € S. By the choice of the #; we must have some
tuple ¢;, € C(S) whose jth coordinate is z;;.

Now consider the tuple t = ¢;, Ut;, U---U¢; . Since C(S) is max-closed, we
have t € C(S), and, by the choice of z;, we have ¢ = (@;,,2;,,...,2;.). Hence
(21, 22,...,2n) satisfies C(S), and the claim follows.

Finally, it is clear that the solution (z1,zs,...,2,) may be computed in
O(c|D[") time from P’, where the values of ¢ and r are as defined in Proposition
217.

Equivalent results clearly also hold for min-closed constraints.

4.2 NP-completeness of larger constraint sets

In this section we shall demonstrate that any superset of the set of max-closed
(or min-closed) constraints can generate intractable problems. Hence each of
these sets of constraints is a maximal set of tractable constraints.

We begin by characterizing max-closed constraints using the following prop-
erty.

Definition 29. A constraint C(S) is said to be “crossover-closed” if, for all
iL,jES,

(@i, 25) € 7.1y (C(SN] A [(i> 45) € 7. 5) (CSN] A (2 > wi) A (25 < y5)

= [(2i,5;) € 73,1H(C(S))] -
For binary constraints, this is equivalent to being max-closed.

Lemma 30. A binary constraint is maz-closed if and only if it is crossover-
closed.

However, for constraints of higher arity, it is possible to be crossover-closed
without being max-closed, as the following example illustrates.
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Example 31. Consider the following constraint, C, consisting of 3 tuples

C ={(T,T,F),(T,F,T),(F,T,T)}.

If the domain D is ordered such that F < T, then C is crossover-closed, because
the projection of C onto any pair of variables is {(T,T),(T, F),(F,T)}.

However, C is not maz-closed because the mazimum of any pair of tuples is
(T',T,T), which is not an element of C.

We now establish the precise relationship between these properties for constraints
of any arity.

Lemma 32. A constraint C(S) is maz-closed if and only if every intersection
of C(S) with maz-closed constraints is crossover-closed.

Proof. (=) If C(S) is max-closed then, for all 4,j € S,
[(zi, 27) € 75,57 (CEN] A (v, 3) € 7:,55(C(S))]

=> [(max(s;, %:), max(z;, 7)) € 7:,1(C(S))] -
Hence, C(S) is crossover-closed.

Furthermore, the join of C(S) with any max-closed constraint remains max-
closed, by Proposition 26. Hence, C(S) remains crossover-closed no matter what
further restrictions are imposed by max-closed constraints.

(«) If C(S) is not max-closed, then there exist t1,t; € C(S), such that
t =1t Uty & C(S). Let &y = (zy,29,...,2,) and t3 = (y1,¥2,.-.,r) and let
t = (z1,22,...,%;) where z; = max(z;, ¥;).

Now impose a further constraint on S which restricts each variable i € S to
values less than or equal to z;. This additional constraint is clearly max-closed,
and the intersection of C(S) with this constraint results in a new constraint,
which will be denoted C'(S).

Choose a minimal subset M = {i1,...,4n} C S such that mp{t} ¢
7p(C'(S)). By the choice of ¢, we have 2 < [M| < r. Since M is minimal,
for any i; € M we have myn\(i,3{t} € man\(i,;3(C'(S)). In other words, for
any i; € M, C’(S) must contain a tuple (zi,, .. ©yZij10 %5y Fijpns s - %) Where
z, # z;. Since variable i; is constrained by C’(S) to take values less than or
equal to z;,, it follows that z;, < z;.

Now choose any two distinct variables ¢;,% € M and impose a further con-
straint on the variables in M \ {7;, i} (if any) which requires each variable i, to
take the value z;,. The intersection of C’(S) with this additional (max-closed)
constraint results in a new constraint C”(S) such that



150 P. Jeavons et al

[(Zij’zz{k) € 7r(1:5’1:)¢)(C’”(‘S'))] A I:(Z'L{J"z":k) € W(ij,ik)(c’”(s))}

/\(zij > zz{,-) A (Zz{k < Zik) A [(zij) zik) ¢ W(ij,ik)(cu(s))] .
Hence C"(S) is not crossover-closed.

Using this lemma, we are able to prove the main result of this section.

Theorem 33. For any domain D, with |D| > 3, and any constraint C' not in
Mp, CSP(Mp U{C}) is NP-complete.

Furthermore, it remains NP-complele even when Mp 1s restricted to binary
maz-closed constraints.

Proof. Any CSP clearly belongs to NP since a solution may be checked against
all of the constraints of the problem in polynomial time.

To demonstrate that CSP(Mp U {C}) is NP-complete we shall provide a
polynomial time reduction from the NP-complete problem GRAPH 3-COLORA-
BILITY [8].

To carry out this reduction, we first note that, by Lemma 32, since C is not
max-closed, we may compose C with max-closed constraints to form a constraint
C’ which is not crossover-closed. In other words, on some pair of coordinate
positions, there exist values z1, s, y1, y2, with y1 < z1 and y2 > @2, such that C’
allows the combinations (1, zs) and (y1, y2) but does not allow the combination
(z1,y2). Without loss of generality, we may assume that this holds in the first
and last coordinate positions.

Now let r be the length of the tuples in C' and consider the constraint
satisfaction problem P with variables {1,2,3,...,2r,2r + 1,27 + 2}, domain
D = {a,b,¢c,...} where (a > b > ¢), and the following constraints

e C(1,2,...,7Y=C(r+1,r+2,...,2r)=C".

C(2r + 1,1) = {(a, z1), (b, z1), (¢, 1), (b, y1), (¢, ¥1) }-

C(2r +2,7) = {(a,12), (b, v2), (¢, 2), (b, 22), (¢, 22) }.

C2r+ 1,7+ 1) = {(a,21), (b, 21), (¢, 21),(a, 31), (¢, 1) }-

C(2r +2,2r) = {(a,y2), (b, y2), (¢, ¥2), (2, 22), (¢, 22) }-

o C(2r+1,2r +2) = {(a,a),(a,b),(b,a),(b,b),(c, a),(a,¢),(c, b),(b, c)}.

The problem P is illustrated in Figure 6. Note that the additional constraints
used in P are all max-closed, hence P € CSP(Mp U {C}).

By explicitly constructing all possible solutions to P, we may show that all
possible combinations of a, b and ¢ are allowed for the variables 2r+1 and 2r+2
except for the pairs (a, a), (b,8) and (¢, ¢).
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r+1 2r

o

2r+1 % 9r+2

Figure 6. The CSP P used to construct a # constraint

But this means that we may reduce any instance of GRAPH 3-COLORA-
BILITY to a problem in CSP(Mp U {C}) in polynomial time, by replacing
each edge in the graph with P and identifying the vertices of the edge with the
variables corresponding to 2r + 1 and 2r + 2.

Since the above construction uses only binary constraints, this result remains
true even when Mp is restricted to binary constraints.

Corresponding resuits may clearly also be obtained for min-closed constraints.

5 Conclusion

This paper has described three families of tractable constraints, which we have
called “0/1/all constraints”, “max-closed constraints” and “min-closed
constraints”.

We have shown that any constraint satisfaction problem where the constraints
all lie within one of these families may be solved efficiently.

We have also shown that any class of problems allowing a larger set of con-
straints is NP-complete, so it is unlikely that efficient general solution techniques
exist.
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A Unified Approach to Problems in Radio
Channel Assignment

R.A. Leese

Mathemaiical Institute, Ozford, and Smith Institute, Surrey Research Park,
Guildford

1 Introduction

Many problems of resource allocation can be thought of in terms of constrained
combinatorial optimization. The purpose of this paper is to apply such tech-
niques to radio channel assignment, where constraints arise from the need to
avoid excessive interference levels between different signals. A key issue in the
overall strategy is the way in which channels are reused in sufficiently separated
areas. Channel reuse is a general feature of radio systems, and particularly im-
portant when the area of coverage is large, as for example with entertainment
broadcasting and mobile telephony. The results of this work will be of interest
both to the designers of large radio systems and to those responsible for spectrum
management.

Cellular layouts provide the natural setting for studying channel assignment,
with the most commonly studied geometry being a mesh of regular hexagons. In
the simplest scenario, each cell is taken to represent the coverage area of a single
transmitter, located at its centre; all transmitters are identical. Even when the
true coverage areas are distorted by topographic features, regular geometries are
very important in the design and planning stages, and shed light on the general
principles of good spectral management.

The next section formulates the general problem, and in doing so defines the
terminology that will be used throughout. Section 3 describes the use of regular
tilings in regular cellular systems. Section 4 then discusses several algorithms for
generating explicit assignments. A selection of results is presented in Section 5,
together with topics for further investigation.

2 The channel assignment problem

The mathematical description of the assignment problem proceeds along the
following lines. Suppose that the available channels are uniformly spaced in
the spectrum. Each one is, in practice, a narrow band of frequencies, but for
the assignment problem can be identified with the frequency at its centre. The
frequency difference between adjacent channels will be called the spectral unit.

155
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Channels are conveniently labelled by the positive integers, in ascending order of
frequency. A channel assignment is then a map from the set 7 of all transmitters
to the positive integers. Given an assignment 4, one can identify the number of
different channels, m(.A), the highest channel used, n{.A), and the characteristic
distances {d;(A) : 1 =0,1,2,...}, defined by

di(A) = min {6(t1,12) : t1,¢2 € T and |A(t1) — A(t2)| = i}, (2.1

where (£1,t2) runs over all pairs of transmitters assigned channels that are 1
spectral units apart, and 6(%;,%2) is the geographical distance between them.
If, for some i, there are no such pairs of transmitters, then d;(4) = oo. In
particular, d;(A) = oo for all i > n(A).

Clearly m(A) < n(A), but there is no requirement that all channels
1,2,...,n(A) are used, i.e. it is not necessarily true that m(A) = n(A). Here
one can make an analogy with formulations of the assignment problem in terms
of graph colouring [1], where each transmitter is represented by a vertex, with
pairs of potential interferers joined by edges; in particular, m(A4) will be called
the order of the assignment, and n(A) — 1 its span (assuming that channel 1 is
used, which one can do without loss of generality).

Interference constraints are most commonly expressed by prescribing lower
bounds D; on the characteristic distances d;(A). In practice, system designers
and spectrum managers need only take into account a few spectral separations
(typically 4, for example, in broadcast systems); in other words D; = 0 for all
sufficiently large ¢. An assignment A is feasible if d;(A) > D; for all ¢; it is
optimal if it has minimal span, i.e. if there is no feasible A’ with n(A’) < n(A).
(Note that the optimal assignment for a given set of constraints is not necessarily
unique.)

A further useful notion is to say that A is saturaied if there is no A’ having
n(A’) < n(A) and d;(A’) > di(A) for all ¢, with, in the second condition, strict
inequality for some 7. In other words, one cannot increase any characteristic
distance of a saturated assignment, while at the same time maintaining all the
others, without increasing the span. Note that saturated assignments are defined
without reference to a set of constraints. Their importance lies in the fact that
for any set of constraints D;, there is an optimal 4 that is saturated; conversely,
every saturated assignment is optimal for some set of constraints. There is
therefore much to be gained from building up an understanding of saturated
assignments. For example, one could construct a look-up table of saturated
assignments that contains optimal solutions for whole sets of problems.

3 Regular problems

3.1 Assignment by regular tiling

The general problem of finding optimal assignments, given a set of constraints,
is NP-complete. It is therefore attractive, in the initial stages at least, to aid
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Figure 1. A saturated assignment in Fo of order 9, with do
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signment in Fy of order 9, with d3

Figure 2. A saturated as
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progress by imposing some added structure. The remainder of this paper con-
centrates on the regular hexagonal geometry mentioned above, which provides
an excellent testbed for channel assignment techniques, and has the added ad-
vantage of already being widely used in industry. When considering a regular
geometry, it is natural to construct assignments by copying a basic tile, which in
the hexagonal case would be a polyhex (a rigid arrangement of hexagons, joined
by their edges). Each channel in the image A(T) appears in the tile exactly once.
Laying down sufficiently many copies allows the assignment to be extended to
arbitrarily large spatial regions.

The tilings considered here are regular, meaning that all tiles have the same
orientation, with the set of displacements between pairs of tiles taking the form
{jv1 + kva : (j,k) € Z*%} for some fixed vectors v; and vy (see, for example,
[2] for a discussion of different classes of tiling). They may be thought of as
making up a special set of assignments, Fy. The definitions of optimal and
saturated assignments are then modified by making a restriction to Fp: for
example, an assignment A € Fo is said to be optimal in Fp if there is no feasible
A’ € Fy with n(A’) < n(A). The computational difficulty of the general problem
stems to a large extent from the prohibitively large search spaces, and so a
main theme of this work is to identify families of assignments contained in Fp,
which are described by small numbers of parameters, but which include optimal
assignments for large classes of real problems.

Figures 1 and 2 show two assignments, each of order 9, that are saturated
in Fy. The shaded portion makes up the basic tile. In Figure 1, dy = 3 and
di = 1, while in Figure 2, dy = /7 and d; = /3. These examples will be used
in later sections as illustrations for general techniques.

3.2 The co-channel lattice

The characterizing property of Fy is that channels are reused at the vertices of
a two-dimensional lattice, called the co-channel lattice. In Figure 1, the lattice
for channel 1 has been superimposed on the two assignments. Construction of
assignments may be considered in two parts: defining the co-channel lattice and
associated polyhex, and then laying down channels within each tile. The first
stage, described in this section, is completely solved; the second, discussed in the
next section, is very much still open, although results so far are very encouraging.

Regular geometries generally put restrictions on the values that can be taken
by the characteristic distances. Suppose that, in the hexagonal cellular system,
the centres of adjoining cells are unit distance apart; then the square of any
characteristic distance is a rthombic number, i.e. d? = p? + pg + ¢* for some
integer p and ¢. In calculations, it is useful to have the following characterization
of the rhombic numbers:

Lemma 1. A {positive) integer v is rhombic if and only if, after removing all
square factors, its prime decomposition contains no prime other than 8 and
primes of the form 6k + 1.
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When characteristic distances are restricted to some set of values in this way, one
can, without loss of generality, impose the same restriction on the constraints
D;.

3.3 Quadratic forms and the master equation

There is a correspondence between co-channel lattices and reduced binary
quadratic forms of discriminant —3m(A)?. The following remarks are intended
to illustrate, rather than derive, this connection. The detailed derivation appears
in [3]. Explicitly, the forms of interest are

f(z,y) = diz® + By + 792, (3.1)
where, to ensure the correct discriminant,
B? — 4ydi +3m? = 0. (3.2)

Generally, reduced forms are given by f(z,y) = az? + Bzy + vy?%, where either
—a< f<a<yor0<B<a=-+v. The additional requirement here is that «
is rhombic, since it must be equal to d3. Moreover, one can also fix the sign of
B to be positive, say. (In general, reduced forms come in pairs, with equal and
opposite values of 3; flipping the sign corresponds to an overall reflection, which
is not important in the assignment problem.)

Equation 3.2 acts as a master equation for the generation of co-channel lat-
tices. It forces B to have the same parity (odd or even) as m; also, 7 is necessarily
rhombic. Using the defining property of reduced forms, it is straightforward to
show that 8 € [0,d2] and d? < [m]g, where [z]r denotes the largest rhombic
number no greater than z. The upshot is that for a fixed order of assignment,
m, the possible co-channel lattices are identified by looking for solutions (3,7, d?)
of Equation 3.2 satisfying

0< B <df<[m]gandy>dj. (33)

For example, Figure 1 has (8,7,d%) = (9,9,9) and Figure 2 has (8,7,d?) =
(3,9, 7). To carry through an explicit construction, these triplets must be trans-
lated into a pair of basis vectors (vi,vs) for the co-channel lattice. This is a
straightforward task, described in [3].

3.4 Tile construction

Each possible co-channel lattice will admit various shapes of polyhexagonal tile
from which the assignments can be built. The precise choice of tile is unimpor-
tant: it is the underlying co-channel lattice that determines the characteristic
distance dp, and the tile simply provides a framework in which to explore spe-
cific channel patterns. Nevertheless, a good choice of tile can help illuminate the
relative merits of different algorithms.
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A sensible way forward is to construct a polyhex P around each vertex V of
the co-channel lattice, as follows: P includes every cell strictly closer to V than
to any other vertex, and, conversely, includes no cell strictly closer to another
vertex than to V. (The distance to a cell is always understood to be the distance
to its centre.) There is some freedom when there are cells equidistant from V
and another vertex; these choices are resolved by including cells to make up a
total of m (the required order), in such a way that P contains no pair of cells
separated by a co-channel lattice vector. The shaded regions in Figures 1 and 2
are examples of this construction.

4 Regular problems: filling the tile

The previous section reviewed the way in which candidate co-channel lattices
are constructed; the result is an understanding of the possible values of the first
characteristic distance dy for each order m, and the associated shapes of tile. To
complete the assignment, the arrangement of channels within each tile must now
be specified, and the precise details will determine the values of all the higher
characteristic distances d; (¢ > 0). As yet, there is no general theory for this
phase of the procedure, but one can identify several subsets of the set Fp of
all regular tilings, in an attempt to build up an overall picture. Three of these
families are discussed below.

4.1 Successive Maximal Repetition

An assignment A is said to be generated by Successive Mazimal Repetition
(SMR) if its channels are laid out according to the algorithm shown schematically
in Figure 3. The basic ingredients are a set of L nested loops, where L is called
the level of the assignment. Each loop has a spatial offset a; (i =1,..., L), and
a positive spectral offset ¢;, repeated m; times, so that the order m satisfies

Hm,,; =m (41)

and the span is

L 1)
n—l:mzcz(iL. (4.2)
i=1 Hj:l m;

The family of all SMR assignments will be denoted F;. Clearly 71 C Fy. A
much fuller description of SMR than is possible here appears in {3].

A feature of the SMR algorithm is that it assigns the channels in A(7)
consecutively, in ascending order. At each step, the addition of the offset «;
to the cell position is taken modulo co-channel lattice vectors, so as to define a
unique cell within the tile. Moreover, each «; determines the corresponding m;,
namely m; is defined to be the number of times that a; can be applied until a
cell is encountered that already has a channel assigned to it. In this sense, a
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cell_position = origin
channel number=1

fork; =1tom
fork, ,=1tomg,
“for k,=1tom,
fork,=1tom,
assign channel_number to cell_position
if ki<m, {cell offset = ¢;; channel_offset = c;}
else if k,<m, {cell_offset = o,; channel offset = c,}

else if ki,<m; {cell offset =0, ,; channel offset = ¢;}
else {cell_offset = 0;; channel offset=c,}

cell_position = cell_position + cell_offset
channel number = channel_number + channel offset
next k,
next k,
next k; ;
next k;

Figure 3. Channel assignment by successive maximal repetition

new level is introduced into the assignment only when required. An important
consequence is that the number of levels does not increase as n becomes large,
i.e. the number of parameters needed to describe SMR assignments remains
small. Explicit studies, such as that outlined in Section 5 below, have so far not
required assignments with more than four levels.

If an assignment has only one level, then it is called balanced. This usage is
consistent with previous work (see for example [4] and [5]), in which balanced as-
signments are characterised by fixed channel progressions (modulo m) along each
direction in the cellular structure. Roughly speaking, in a balanced assignment,
all channels in A(7) have the same relationship with their neighbours. More
precisely, in terms of the general formulation of Section 2, consider a fixed (but
arbitrary) spectral separation of ¢ units between pairs of transmitters (1,%2);
if A is balanced, then the values of the geographical separation §(t1,f2) that
appear in Equation 2.1 are independent of the channel A(t;) assigned to ¢;.
Figure 2 is an example of a balanced assignment, but Figure 1 is not (it has two
levels).

If more than one level is used then a degree of inhomogeneity is introduced,
in that generally the 8(¢;,¢2) appearing in Equation 2.1 are dependent on A(%;).
For example, consider the sites ¢; in Figure 1 with A(¢;) = 3; there exists ¢,
with |A(¢1) — A(t2)| = 1 and 8(¢1,%2) = 1. On the other hand, if A(t1) = 2, say,
then there is no such ¢5.

The innermost loop in Figure 3 has a precise geometric interpretation: it
traces out a group orbit in the set of cells making up the basic tile, under the
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action of the group G generated by the displacement «;. Hence every assign-
ment is really formed by tracing out in turn the orbits of G. The higher offsets
ag, ag,. .., af serve only to specify the order in which the orbits are traced out
and the starting point in each one.

Note that the SMR algorithm, as presented here, is a generalization of the
version originally introduced in [3], which in turn is here called “local no-hole
SMR” and described in Section 4.3.

4.2 No-hole SMR

As remarked in Section 2, the general assignment problem does not require that
all channels 1,...,n{A) be used. However, if they are all used then the assign-
ment is said to be no-hole, in analogy with the terminology that has been used
in graph-colouring problems [6]. The no-hole SMR, assignments are generated by
the algorithm of Figure 3, but with all the ¢; set equal to 1, so that no channels
are omitted. They form a subset of F;, which will be denoted by Fs.

4.3 Local no-hole SMR

There is a final special case that is of interest here, producing a further subfamily
of the SMR assignments, which will be denoted by Fs; it is important because it
is relatively easy to analyse in detail, while at the same time containing assign-
ments that reproduce (and often improve upon) the results of earlier work. The
motivation and definition for F3 are as follows. This is the version of the SMR
algorithm that was described in detail in {3].

Recall that for a general SMR assignment, the offsets «; are free, but each
one determines the number of repetitions m;. The family F3 comes with an
additional prescription for the «; also, which is very natural if, for given co-
channel lattice, one’s main aim is to minimize interference between transmitters
operating on adjacent channels. To be explicit, each time a new offset is required,
it is chosen to be as long as possible, i.e. it is chosen to be the displacement from
the starting cell (called the origin in Figure 3) to the furthest cell in the basic
polyhex without a channel currently assigned. If there are several equidistant
possibilities then one with maximal m; is chosen. Proceeding along these lines
tends to maximise the characteristic distance d;, since successive channels are
always placed as far apart as possible. Moreover, any additional freedom is used
to maximize m;, therefore tending to control the number of levels.

The adjective “local” is used to describe this process because each offset
is generated only when needed, and without any reference to how the choice
of future offsets might be affected. The advantage of such a rule is that it is
efficient to implement and amenable to theoretical analysis {(see Section 5 and
also [3]); but it may be that a more global construction, in which all offsets are
determined collectively, might be better. More precisely, one can ask whether
the saturated assignments in F3 are also saturated in Fs.
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4.4 Summary

To summarize, we have defined four families of assignment:

e Fq: all assignments by regular tiling;

e Fi: all regular tilings with successive maximal repetition;
e Fy: all regular tilings with no-hole SMR;

e F3: all regular tilings with local no-hole SMR.

Clearly F3 C Fs C F1 C Fo. An important question when one has a nested
sequence of families like this is to ask which saturated assignments in the smaller
ones are also saturated in the larger ones.

The family F3 attempts to maximize dy for given dy and is therefore more
restricted in scope than the others. For instance, it would not be expected, in
general, to include optimal assignments when there are non-zero constraints D;
with ¢ > 1. However, even problems with only Dy and D; non-zero have not
previously been fully understood, and so F3 is certainly still of interest.

As a final remark, there is, in addition to the simple bound d% < [m]g, a
bound on d; in terms of the co-channel parameters (3,7,d3). It is calculated by
considering Dirichlet regions in the co-channel lattice (see [3]) and (subject to
the mild restriction dg > $n) given by

& < [d%(%%(”f)j]n (43)

5 Some results and areas for further work

5.1 Detailed study of the family F;

The local no-hole SMR assignments that make up F5 have the attraction of being
efficient to compute and therefore amenable to detailed analysis. Reference [3]
describes such a study, the results of which are summarized here.

First it is sensible to impose a lower bound on dZ/m, since otherwise the
basic tile is allowed to become long and thin, which tends to preclude satu-
rated assignments. In [3], df > im; there are 1077 such assignments in F3 with
m < 125, and it takes of the order of 100 seconds on a workstation to compute
them all. Figure 4 picks out the particular assignments with maximal dy for
each order m. The values of d2 and d? are plotted, together with the bound
(Equation 4.3). There is the linear trend one would expect, together with fluc-
tuations caused by the discrete nature of the underlying geometry.

The main purpose of Figure 4 is to compare with the results obtained by
Gamst (7], who performed similar calculations (see especially Figure 9 in [7]).
Gamst’s methods look for no-hole regular tilings (a family containing F»), but
are restricted to rhombic values of m and co-channel lattices with di = m,
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Figure 4. Summary of the assignments in F; with maximal dy for each order; the
upper and lower curves show the values of d2 and d2, respectively, against m. The
upper bound (Equation 4.3} on d? is also shown

corresponding to the solution (8,7, d2) = (m, m,m) in Equation 3.2. Local no-
hole SMR is much more flexible, in that it allows non-rhombic m and all possible
co-channe] lattices. However, Gamst guaranteed the highest possible di; in other
words he produced assignments that are saturated in the set of no-hole regular
tilings. It turns out that F3 reproduces all of Gamst’s figures exactly. This
shows that F3 deserves further study, and in particular that many assignments
saturated in F3 are also saturated in F;. Indeed, returning to the question posed
at the end of Section 4.3, it seems reasonable to conjecture that all assignments
saturated in F3 are also saturated in Fs.

5.2 A no-hole assignment that is not optimal

As yet, there are no significant general results concerning assignments in which
n(A) # m(A). The following example is not the simplest possible, but it illus-
trates several of the issues involved. Roughly speaking, when trying to reduce
interference levels, there is a trade-off between geographical separation and spec-
tral separation. Assignments that do not use all available channels have smaller
order than the maximum consistent with their span, and hence tend to reduce ge-
ographical separations; but at the same time spectral separations are increased,
and the combined effect might be beneficial.

To be specific, look for assignments that are optimal for the set of constraints

Dy=3, D=3 D;=0(i>1). (5.1)
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Figure 5. An optimal assignment in F; for the constraints (Equation 5.1)

Restricting to the family F3, the optimal assignment, Az, has order 12 and
span 11 and is well known (see both [7] and [8]). However, F; contains an
assignment A;, shown in Figure 5, which satisfies the constraints {Equation 5.1)
and has order 9 and span 10. Although A3 is saturated in both F3 and Fy, it is
only in F3 that it is optimal for the constraints (Equation 5.1).

In terms of SMR parameters, .4; has two levels, with m; =my =3, ¢, =1
and ¢z = 2. It has the same co-channel structure as Figure 1, but with a skipped
channel at the end of each group orbit, i.e. at the end of each execution of the
innermost loop. A similar idea was suggested by Prosch in [9], but not developed.

5.3 An example with more constraints

Previous results in this section have concentrated on the characteristic distances
do and dy, effectively assuming that D; = 0 for ¢ > 1. As a final example,
consider the more complicated set of constraints

Dy=V13, D1 =V3, Dy =3, D;=0(i>?2). (5.2)

The family F3 is not appropriate here, because of the non-zero value of D,
(although F3 does contain an assignment that would be optimal in Fy if D,
were zero). It is not yet known how to incorporate the constraints Dy and
above into a general theory, but case-by-case analysis is still possible. Here,
since Dy = /13, any feasible regular tiling must have order at least 13. Within
the no-hole SMR family 5, an exhaustive search reveals that 15 is the minimal
order for Equation 5.2 to be satisfied. The corresponding optimal assignment is
shown in Figure 6.
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Figure 6. An optimal assignment in F, for the constraints (Equation 5.2)

6 Summary and closing remarks

It is clear that combinatorial methods can address many problems in radio chan-
nel assignment within a unified framework. The regular tilings contained in Fq
are very natural in design and planning work, and considerable progress is pos-
sible by restricting attention to various well-motivated subfamilies, described by
small numbers of parameters. In particular, the SMR algorithm is very promis-
ing, and for local no-hole SMR, detailed analysis already exists. However, the last
two examples in Section 5 highlight areas in which further research is needed.

Radio channel assignment does not necessarily have to be addressed using
the methods discussed here, and there is much to be gained from looking at
alternatives. Formulations using graph colouring [1] can potentially provide use-
ful checks and comparisons, as can approaches using large-scale optimization
techniques, such as simulated annealing [10] and tabu search [11].

Finally, there are several directions in which the problem as stated in
Section 2 can be extended to include further aspects of real systems. For
example, in many problems each cell must be assigned several channels, rather
than a single one as assumed here; this introduces extra, frequency-only con-
straints [12] to control effects such as intermodulation products. Another major
issue concerns inhomogeneities, which tend to destroy the structure of a regu-
lar system. Cellular assignments can be distorted by localized regions of high
demand in population centres, or by variations in terrain. It is worth trying to
describe such effects by adding extra parameters to regular theories.
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Abstract

A family of directed graphs generalising the de Bruijn graphs and re-
taining many of their attractive features are proposed as interconnection
networks. For ¥ > 2 and u,v > 1, the graph B(k, »,v) has ¥*? vertices and
out-degree and in-degree equal to ¥* +%”. B(k, u, v) has diameter equal to
min(u, v) and connectivity at least ¢ = k* + &¥* — kuv — 2. In the presence
of up to ¢ — 1 faulty vertices, the diameter of the graph increases to at
most max(u, v) + 1. A simple fault-tolerant routing algorithm is given for
B(k,u,v), and the graphs are shown to have a range of computationally
useful sub-graphs, including complete trees, rings and meshes, all of large
size.

1 Introduction

An inferconnection network is a means of connecting together a large number
of Processing Elements (PEs) by communication links. The careful design of
such networks is of fundamental importance in building efficient, general-purpose
parallel computers. The performance and characteristics of an interconnection
network are traditionally studied in terms of properties of the underlying graph
G = (V, E): the vertices V of G represent the PEs and the edges E of G represent
communication links between PEs. G is directed or undirected according to
whether the links are uni- or bi-directional. Some standard graph theoretical
parameters are of immediate practical interest: referring to [5] for definitions,
the diameter of G is related to the worst-case communication delay between two
PEs, while the degree (or out-degree in the directed case) is just the number of
links emanating from the corresponding PE. The connectivity of the graph G is
a measure of the network’s fault-tolerance: if the connectivity of the graph is ¢,
then a communication path can be maintained between any two non-faulty PEs
in the presence of up to ¢ — 1 PE failures.

1This work was supported by The Royal Society through its European Science Exchange
Programme and the Swiss National Science Foundation.
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The mathematical problem of constructing regular directed and undirected
graphs with a large number of vertices for a given degree and diameter has
received much attention (see [1] for a survey and [2] for recent results on this,
the (d, k)-graph problem). This problem corresponds to designing networks with
a large number of PEs for a fixed number of communication links per PE and
a given worst case delay. At the same time, of practical importance is the
problem of finding networks that have simple message routing algorithms, both
in the fault-free and faulty cases. Equally, parallel algorithms are often tailored
to a particular topology. For example, distributed searching and arithmetic
algorithms may be suited to a tree structure, [27], while it is known that the
FFT is well-adapted to implementation on a shuffie-exchange network [31] or a
hypercube [6]. Other desirable network topologies are rings, meshes and Tree
Machines [27]. To build computers capable of supporting many types of parallel
algorithm, we therefore need to find graphs G in which such computationally
useful topologies can be found as subgraphs or on which they can be emulated
efficiently (see [25] for a discussion of the concept of emulation).

The family of de Bruijn graphs have very good performance with respect
to the requirements outlined above. The de Bruijn graph B(k,u) is a directed
graph with vertices the set of k-ary u-tuples. There is an edge from vertex
(z1,Z2,...,2y) to every vertex of the form (z3,...,%y,Zut1) so that B(k,u)
has k* vertices, in-degree and out-degree equal to k and diameter u. This is the
minimum possible diameter for a directed graph with out-degree k and k* vertices
[15]. It is also known that the connectivity of G(k,u) is equal to k — 1 [16,29],
the highest possible value given that the graph has loop-edges. The diameter
increases by only one in the presence of up to k — 2 faulty vertices [29]. Optimal
fault-tolerant routing algorithms based on string-matching have been developed
for a large family of graphs which includes the de Bruijn graphs in {30]. The fault-
tolerance of the de Bruijn graph was also the subject of [13]. In [27], it was shown
that the undirected version of the de Bruijn graph (obtained by removing the
orientation of edges of the de Bruijn graphs, see [8,23]) contains rings, complete
binary trees and Tree Machines as subgraphs and can emulate shuffle-exchange
networks. The de Bruijn graphs and their undirected relatives therefore give
suitable topologies for implementing a large range of parallel algorithms. Because
of all of these desirable properties, the de Bruijn graphs are held to be strong
competitors with the hypercube graphs as interconnection networks [3,27].

A number of authors have already considered generalisations of the de Bruijn
graphs as interconnection networks. In [14,15,24] families of graphs with arbi-
trary degree and number of vertices, minimum or close to minimum diameter,
high connectivity [16] and containing the standard de Bruijn graphs as a sub-
family were introduced. In [7] and [28] these graphs were shown to contain trees
and cycles as subgraphs. As yet, however, it appears that no fault-tolerant rout-
ing algorithms have been developed for these graphs, and they are not known
to have the important property of containing meshes as subgraphs. In a differ-
ent direction, the properties of the undirected graph obtained from the direct
product of two graphs B(2,m) and B(2,n) were examined in [25]. The so-called
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order-(m, n) Product Shuffle (PS) network has degree 8, diameter m + n and
2m+7 vertices. In [25], the PS networks were shown to be capable of efficiently
emulating other important networks. They were also shown to contain as sub-
graphs large binary trees, meshes and meshes of trees.

Here we study a somewhat different generalisation of the de Bruijn graphs
— two-dimensional de Bruijn graphs. Our graphs appear to have been first
considered by Fan et al. [11] in the binary case, in the context of constructing
Perfect Maps (see Section 4 below). We describe our graphs and derive their
basic properties (including a lower bound on their connectivity) in Section 2.
We obtain simple fault-tolerant routing algorithms in Section 3. In Section 4 we
show how to construct cycles, trees and meshes of large sizes as subgraphs of our
graphs. We conclude with a discussion of the strengths and weaknesses of our
graphs relative to other popular interconnection networks and by listing some
topics for future exploration.

2 Two-dimensional de Bruijn graphs

Let w,v > 1 and k > 2. The vertex set V of the graph B(k,u,v) is the set of
u X v matrices with entries from {0,1,...,k —1} (so B(k,u,v) has k*¥ vertices).
B(k,u,v) has two edge sets, labelled E; and E, and defined as follows. Let

Ry
Ry
Az[CI,CZ)'“)CU]: :
Ry
be a vertex of B(k,u,v) with columns Cy,Cs,...C, and rows Ri, Ry, ..., Ry.
There is a directed edge in E; from A to every vertex of the form

[CZ)‘ . )Cuycv-i-l]
and a directed edge in Ey from A to every vertex of the form
Ry

R,
Rut1
Here Cy 41 is an arbitrary column (i.e. k-ary v-tuple) and R,y; an arbitrary row
(i.e. k-ary u-tuple).

Notice that the graph (V, Ey) is isomorphic to the de Bruijn graph B(k*,v):
we merely identify each column of the vertex A with an integer in the range
0,1,...,k* — 1. Similarly, (V, E3) is isomorphic to B(kY,u). Thus the graph
B(k,u,v) has as subgraphs two de Bruijn graphs. Our simple analysis of the
properties of the graphs B(k, u, v) hinges on this observation. We can also think
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of the graph B(k,u,v) as being obtained from B(k*,v) (B(k",u)) by adding k*
(respectively, k¥) out-edges at each vertex.

Every vertex of B(k,u, v) is the initial vertex of k¥ edges in E; and k* edges
in Ey, so every vertex has out-degree k% + kY. Similarly, every vertex has in-
degree k* + k”. Moreover, since B(k,u,v) contains as sub-graphs B(k¥,v) and
B(k?,u), we see immediately that B(k,u,v) has diameter at most min(u,v).
That this is in fact the diameter is easily seen by considering any path from the
all-zero matrix to, say, the all-one matrix.

2.1 Connectivity

We make use of the basic results of [29] on the connectivity of B(k,u). Let
A = (a1,a9,...,04) and B = (by,bs,...,b,) be distinct vertices in B(k,u). For
0 < i < k, let P; denote the the path

})i:(a23a31'”)au;i) '—')(G'Z)"';a’lui)bl)

- (iybl)bZ; . 'abu—l)

from successor i of A to predecessor i of B. That the connectivity of B(k,u) is
k — 1 is a simple consequence of the following result:

Result A. [29] There is at most one vertex of B(k,u) that simultaneously lies
on two distinct paths P;, P;.

This result applies to the subgraphs (V, Ey) and (V, E;) of B(k, u, v) to show
that B(k,u,v) has connectivity at least max(k* — 1,k% — 1). This argument
does not make full use of the fact that paths with edges from E; and Ej are
simultaneously available and the bound can be improved as follows. Let A, B be
vertices of B(k,u,v) with the rows and columns of A labelled as before and with

Ryt
B =[Cy41,Cu4s,...,C2] = R”:“
Ra.
Let C° C%,...,C* ~! be an ordering of the k-ary u-tuples. For 0 < i < k%, we
denote by P; the path

Pz' : [Cg,Ca,...,Cv,Ci] —F [Cs,...,Cv,Ci,Cv+1]

— [C*,Cy41,Cr42y -+ ,Cap_1]
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from successor i of A to predecessor ¢ of B in the subgraph isomorphic to B(k*,v).
Similarly, for an ordering R, RY,..., R¥" =1 of the k-ary v-tuples, we denote by
Q; the path

Ry Rs Ri
R : Ryys
Qj : — R, — L, Ryt
Ry R E
R Rup1 Roy-1

from the successor j of A to predecessor j of B in the subgraph isomorphic to
B(k?,u).

Lemma 1. There are at most kuv pairs of paths P;, Q; sharing a common
vertez of B(k,u,v).

Proof. Suppose 1 <m < v,1 <n < uand a vertex F of G(k, u,v) occurs both
as the m'® vertex.on path P; and as the n'® vertex on path @; for some i, j.

Then

- Rn+1 -
. R’f
F:[Cm+1,...,CU,Cz,Ov+1,...,OU+m_1]: RJ
Ruy1

-Ru+n-—1—

From this we see that every entry of C* excepting entry v — n + 1 is determined
by the rows of A and B while every entry of R/ excepting entry v — m + 1
is determined by the columns of A and B. Moreover these two undetermined
entries must be equal. Since there are k possibilities for this common entry, we
see that for each of the uv different choices of m, n there are at most k choices
for the vertex F' and so at most kuv pairs of paths P;, ); share a vertex.

Lemma 2. The graph B(k,u,v) has connectivity at least k¥ + k¥ — kuv — 2.

Proof. Let A and B be, as before, arbitrary vertices of B(k,u,v) and consider
the set of k* 4 k¥ paths P;,Q);. We show that a subset of k* + k¥ — kuv — 2 of
these paths are vertex disjoint. The bound on connectivity quickly follows from
this.

Any vertex F' on a path F; or (J; may lie on just one of the k* 4+ %" paths, or
it could lie on two paths P,, P, according to Result A, on two paths Q., @4, on
some pairs of paths (P;, Q;) according to Lemma 1, or some combination of these
possibilities could occur. We consider the case where some vertex F' actually does
lie on two paths P,, P, and two paths @J., (4. By Result A, F' is the only vertex
with this property and P, Py, @, Q4 are distinct paths. Notice that the four
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pairs (P,, Q¢), (Pa, Qa), (P, Qc), (P, @a) are of the type considered in Lemma
1. Thus there remain at most kuv — 4 pairs of paths P;,Q; sharing common
vertices. The vertices shared in the pairs are all distinct from one another and
from F (otherwise we would have more than one vertex lying on two paths
Py, Py, contradicting Result A). This leaves at least k* + k¥ — 4 — 2(kuv — 4) =
k% + k¥ — 2kuv + 4 vertex disjoint paths of the types P;, );. Taking all of these
paths, one path from the four paths P,, P, Q., Q4 and one path from each of
the at most kuv — 4 pairs, we obtain at least k% + &Y — kuv + 1 vertex disjoint
paths of the types F;, @;.

A careful analysis of the other cases, carried out using similar arguments,
shows that at least k% 4 k¥ — kuv — 2 of the paths P;, @); are vertex disjoint in
every case.

Notice that we have only considered a special set of paths in proving Lemma
2. These paths will be put to good use in our routing algorithms in the next
section, but notice that considering a more complex set of paths could lead to a
better value for the connectivity of B(k, u, v). Indeed Blackburn [4] has produced
an asymptotically superior lower bound of &% + k¥ — 12k — 20 in this way. Of
course the connectivity of B(k,u,v) is at most k% + k¥ — k — 1, since this is the
number of distinct successors of the all-zero vertex. We leave as an important
outstanding problem the determination of the exact value of the connectivity of
B(k,u,v).

3 Routing in the graphs B(k,u,v)
Routing of messages is trivial in the absence of faults. Given two vertices A
and B with rows and columns as before, the PE corresponding to A can easily

compute the By and FEy canonical paths from A to B

A —[C5,Cs,...,Cy,Cypq]

~+ [C¥,Cy41,Co42,- -, Cov-1]

— B
and
Ry Ry
R3 Ru-H.
A— | > ..o | But2 | 5B
R :
Ru+1 R2u-—1

These paths require v and « hops, respectively. Shorter paths may be available
if vertices A and B have an “overlap”, i.e. share common rows or columns. The
communication load on links and PEs can be balanced by using each canonical
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path half of the time. The average number of hops needed to route a message is
then (u + v).

Suppose now that up to &% + k¥ — kuv — 3 PEs are faulty. Let A and B
be non-faulty vertices and consider the k% + k¥ paths from A to B obtained by
traversing an edge from A to one of its successors then the appropriate path
P; or Qj, then finally an edge from a predecessor of B to B itself. The proof
of Lemma 2 guarantees that at least one of these paths is fault-free and so the
diameter of the graph increases to at most max(u,v)+1 in the presence of up to
kY + kY — kuv — 3 faulty vertices. If PE A has available the list of faulty vertices,
then A can find a fault-free route to B by simply testing the vertices of each of
the paths in turn until a fault-free path is found. An optimally efficient method
for testing paths against a fault-set can be obtained by an obvious extension of
the string-matching techniques of {30].

The reader will notice that we have not considered methods for fault diagnosis
or the transmission of fault-information. In common with [30] we assume that
some underlying mechanism is available to perform these tasks.

4 Some important subgraphs of B(k,u,v)

In this section we show that the family of graphs B(k, u, v) contain as subgraphs
cycles, trees and meshes, all of large sizes. Cycles (and paths derived from them)
are important topologies for solving pipeline-type problems (for example matrix-
vector multiplication, recurrence evaluation, some kinds of single input/single
output sorting [27]. Trees, particularly complete binary trees, allow efficient
algorithms for many problems in the multiplex class of problems (for example
evaluation of general arithmetic functions, parallel-input, single-output sorting
[27]). Meshes are widely used in numerical and linear-algebraic algorithms [25].

4.1 Cycles

B(k,u,v) contains as edge-disjoint subgraphs B(k*,v) and B(k¥,u). These are
Hamiltonian graphs on k%Y vertices (note that Hamiltonian cycles correspond to
k%-ary span v and kY-ary span u de Bruijn sequences respectively, see [12] for
further discussion). Therefore B(k,u,v) contains pairs of edge-disjoint cycles of
period k%Y (i.e. having k“Y vertices). We can improve this result as follows.

Result B. [17] For k£ > 2 and every u > 1, B(k,u) is pancyclic, i.e. contains
cycles of period 2, for every 1 <t < k%.

An algorithm which generates cycles of arbitrary period in B(2,u) was pre-
sented in [9].

Corollary. Suppose k£ > 2 and u,v > 1. Then for every choice of ¢; and ¢, with
1 < t1,ta < k%Y, the graph B(k,u,v) contains a pair of edge disjoint cycles of
periods ¢; and ?5.
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The question of finding cycles and paths in B(k,u) in the event of edge failures
has recently been examined in [26]. There the following result was proved.

Result C. [26] Suppose k is a prime-power and u > 1. Then the de Bruijn
graph B(k,u) contains k edge disjoint cycles of period k¥ — 1. Therefore, in the
event of up to k — 1 edge failures, B(k, u) still contains a cycle of period k* — 1.

We can adapt this result to B(k,u,v), once again by using the edge-disjoint
subgraphs B(k*,v) and B(k",u).

Corollary. Suppose k is a prime-power and u,v > 1. Then the graph B(k, u, v)
contains k¥ + k¥ edge-disjoint cycles of period £¥¥ — 1. Therefore, in the event of
up to k¥ + k¥ — 1 edge failures, B(k, u, v) still contains a cycle of period k¥ - 1.

The problem of finding large cycles in de Bruijn graphs in the presence of
vertex failures was also addressed in [26]. These results can be adapted to the
family B(k,u,v) too.

4.2 Trees

Since B(k,u,v) is a directed graph, we consider both trees in which every edge
is directed towards the root vertex and in which every edge is directed away
from the root vertex. Our results are trivially adapted to give large trees in
the undirected version of B(k, u,v) (obtained by removing the orientation of the
edges of the graph).

Definition 3. (c.f. [25]) The complete k-ary out-directed tree of height n, de-
noted CTO(k,n), is a graph with ’“”,:_1;1 vertices labelled by the k-ary strings
of length at most n. There is a single root vertex at level 0, labelled by the null
string. For 0 <t < n-—1 and each 0 < z; < k, there is a directed edge from
vertez (zg,%1,...,%1—1) at level t to vertex (o, 21,..., 211, 2¢) af level t + 1.
The complete k-ary in-directed tree CTI(k,n) is identical to CTO(k,n) except

that the orientation of the edges are reversed.

It is well-known [27] that the graph B(2, u) contains as subgraphs CTO(2, u—
1) and CTI(2,u — 1). For example, we can take vertex (07!, 1) as root ver-
tex and directed edges from each vertex (0~ *~1,1,w;,ws,...,w;) to vertices
(0¥7*=2,1, w1, ws, ..., w, 0) and (0¥7*%,1, w1, ws,..., w, 1) to obtain a sub-
graph isomorphic to CTO(2,u — 1). Here 0/ denotes a string of zeros of length
j. Similarly, the vertex (1,0%~!) is the root vertex of a subgraph isomor-
phic to CTI(2,u — 1) — this time there are edges from vertices of the form
0,wy,wa, ..., w,1,04712)  and  (1,w;,wq,...,ws;, 1,0%7172)  to  vertex
(wy,ws, ..., w, 1,087%71). These facts are easily extended to the k-ary case
to show that B(k,u) contains a set of k£ — 1 vertex-disjoint CTO(k,u — 1) and a
set of k — 1 vertex-disjoint CTI(k,u — 1) as subgraphs: we take as root vertices
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(0¥-1,9), 1 < i < k and (§,0471), 1 < j < k, respectively. Notice that each of
these sets of trees makes use of every vertex of the graph except the vertex (0%).
On considering the subgraphs B(k*,v) and B(k", u) of B(k,u, v) we immediately
obtain the following.

Lemma 4. The graph B(k,u,v) coniains a set of k* — 1 wvertez-disjoint
CTO(k*,v—1) and a set of k¥ — 1 vertez-disjoint CTI(k",v — 1) as subgraphs.
B(k,u,v) also contains a set of k¥ — 1 vertez-disjoint CTO(k",u — 1) and a set
of k¥ — 1 vertez-disjoint CTI(k¥,u — 1) as subgraphs.

Since the trees in each set in Lemma 4 are vertex disjoint, we can guarantee
that such trees can still be found in the presence of faulty vertices. For example,
B(k,u,v) still contains a CTO(k%,v — 1) and a CTI(k%,v — 1) in the event of
up to k¥ — 2 vertex failures.

Lemma 4 shows that moderately tall complete trees can be found in B(k, u,v).
These trees have quite high degree (namely k¥ or k). It may be desirable in
some applications to have complete trees with small degree available. One way
to obtain these is to prune the trees of Lemma 4. With a little more work, we
can obtain much taller k-ary trees in B(k,u,v).

‘We begin with the construction of k-ary out-directed trees in B(k,u,v). For
0<i<wuandl<c<k,let R(7,c) denote the set of k-ary u x v matrices with
rows Ry,...,R, where Ry,...,Ry_;-1 are zero, R, _;,..., R, are arbitrary
and R, = (0°~1,¢). Choosing any matrix A € R(i,c) we write

Ru-—z’
[Cy...Cy]= :
Ryt
so that Cy,...,C, are the columns of a submatrix of A.

We describe a construction for a CTO(k,v — 1) in B(k,u,v) having root
vertex A: A is placed at level 0, while for 1 < j < v — 1, the vertices in level j
of the tree are the matrices of the form

0 ... 0 0 0 ... 0

6 ... 0 0 0 ... 0 0 < wy,...,w; <k)
Cit1 +.. Cou1 Cy» C1 ... Cj

0o ... O c wp ... w;

obtained by repeatedly rotating columns to the left and introducing elements

wy,...,Wy—1 in position (u,v). It is clear that there are directed edges in Ey
from the vertex in level j with final row (0°=7=1 ¢, wy,...,w;) to the k vertices
in level j+1 with final rows (0" 77=2, ¢, wy, ..., wj, wj4+1). Supplying these edges

we obtain CTO(k,v — 1) as a subgraph of B(k,u,v). Notice that if two trees
obtained in this way have distinct root vertices, then the trees are vertex disjoint.



178 K.G. Paterson
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0601 0061 001 001 011 011 011 011 101 1061 101 101 111 111 111 111
100 101 110 111 106 101 110 111 100 101 110 111 100 101 110 111

Figure 1. The tree T(1,1) in B(2,2,3)

Next we show how to link together subtrees of trees with root vertices in
R(ci,i), 0 < i < u by edges in Ej to form a set of vertex disjoint CTO(k, uv — u)
in B(k,u,v). To this end, let (co,c1,...,cu—1) be a k-ary u-tuple with ¢; # 0 for
each 7. The set R(0, o) contains just one vertex, the array with « — 1 zero rows
and final row (0v~%, cy). We denote by T(cg) the CTO(k,v — 1) constructed as
above having this vertex as root. T'(¢g) has leaves of the form

0 0 ... 0

C : (0 < wy,...,wj_1 < k).
0 0 ... 0 !

Co W1 ... Wy—1

There is an edge in £, from such a leaf of T(¢g) to each of the k vertices of
the form

0 0 ... 0 0 0

0 0 ... 0 0 0 (0 <z <k).
o W1 ... Wy—3 Wy-2 Wy-—1

0 0 PN 0 Ci Xy

These are vertices in level 1 of a tree T'(c;) with root vertex in the set R(1,¢1).
Using the appropriate edge of Ey, we can link the leaf of T'(cy) under consider-
ation to levels 1 up to v — 1 of the tree T'(¢c;). The trees T'(c;) that are linked
to leaves in this way are vertex disjoint, since their roots are distinct. Hence we
have constructed a CTO(k,2v — 2) in B(k,u,v), T(co,c1). It is clear how this
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process can be continued to generate a CTO(k, uv — u), T(cg, c1,...,Cu—1). As
an example, the height 4 tree 7'(1,1) in B(2,2,3) is shown in Figure 1.

A little more thought shows that distinct choices of u-tuple (co,¢1,...,Cu—1)
lead to vertex-disjoint CTO(k,uv — u). Since there are (k — 1)* choices for
(co,€1y---,Cu—1) (this is just one choice in the case k = 2) and the construction
can be equally well applied to columns instead of rows, we have the following.

Theorem 5. B(k,u,v) contains a set of (k—1)* vertex disjoint CTO(k,uv —u)
and a set of (k — 1)? vertez disjoint CTO(k,uv — v).

Thus for example, in the presence of up to (k—1)*—1 faulty vertices, Bk, u,v)
still contains a CTO(k, uv — u).

Using similar ideas, we can construct sets of disjoint CTI(k,uv — u) and
CTI(k,uv — v) in B{k,u,v). We sketch the method. For 0 < 7 < u and
1 < ¢ < k, we define R(¢,¢) to be the set of of k-ary u x v matrices with rows
Ri,...,R, where Ry = (c,0"" '), Ry,..., R;11 are arbitrary and Rjys,..., Ry
are zero. For each choice of ¢,c and A € R'(i,¢), a CTI(k,v — 1) with root
vertex A can be obtained (c.f. the construction of CTI(2,u — 1) in B(2,u)).
The set of trees obtained in this way are again vertex-disjoint. For each choice
of {(co,¢1,...,Cu—1), subtrees of trees with roots in R’(7,¢;) can be linked using
edges in E5 to the leaves of trees with roots in R/( — 1,¢;_1). This gives a
CTI(k,uv — u). Analogously to Theorem 5, we have the following.

Theorem 6. B(k,u,v) contains a set of (k—1)* vertex disjoint CTI(k,uv —u)
and a set of (k — 1)V vertex disjoint CTI(k,uv — v).

4.3 Meshes

Meshes with the largest possible number of PEs, k%*, can be obtained by consid-
ering the combinatorial objects known as Perfect Maps (also known as de Bruijn
arrays or de Bruijn tori), for which we give an informal definition below (see [21]
for a more detailed development).

Definition 7. A k-ary (r, s;u,v) Perfect Map (PM) s a two-dimensional peri-
odic array with periods r and s and symbols drawn from the set {0,1,...,k —1}
with the property that every possible u X v array of symbols occurs exactly once
as a sub-array in a period of the array.

The following necessary conditions on the parameters of a Perfect Map are
easily derived.
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Lemma 8. Suppose there exists a k-ary (r,s;u,v) PM. Then

1. rs = k¥,
2. r>uorr=u=1,

3 s>vors=v=1.

Our motivation for considering Perfect Maps comes from the fact that a k-
ary (r,s;u,v) Perfect Map is equivalent to an embedding of an r x s directed
mesh in B(k,u,v) having the properties that every vertex appears in the mesh,
that edges in F; are used to move along one dimension of the mesh and that
edges in F5 are used to move along the other dimension. This is analogous to
the fact that a k-ary span u de Bruijn sequence is equivalent to a Hamiltonian
cycle in B(k,u). We look briefly at the known results on Perfect Maps. A
constructive proof of the sufficiency of the conditions of Lemma 8 was given in
the case k = 2 in [20] and in the case where k is a prime-power in [21]. The
latter paper also contains a survey of the other known results on Perfect Maps.
The most general result known in the k-ary case was obtained in [22] and can be
stated as follows. From Lemma 8, any prime p dividing r or s must also divide
k, so we may suppose that k has prime factorisation k = []i., p;*' and write
r =T, pi¥, s = [Tiey pi®¥*~% where 0 < k; < ajuv. The result of [22] is
that there exists a k-ary (r, s; u,v) Perfect Map if, for some ¢, we have

pi¥>u  and p;*TR > .

We illustrate these results by listing the meshes available in two different
graphs B(k,u,v).

Example 9. Consider the graph B(2,4,4). From the results of [20], this graph
has as subgraphs 8 x 8192, 16 x 4096, 32x 2048, 64 x 1024, 128 x 512 and 256 x 256
meshes. Each mesh makes use of all the vertices of the graph.

Example 10. By the results of [22], the graph B(6,2,2) has as subgraphs 3x432,
4% 324, 6 x 216, 9 x 144, 12 x 108, 18 x 72, 24 x 54, 27 x 48 and 36 x 36 meshes.
Again, each mesh makes use of all the vertices of the graph.

So far we have examined meshes in B(k,u,v) using all k¥ vertices. “Non-
maximal” meshes in B(k, u,v) can be derived from other families of arrays having
a “window property” (see, for example, [10,18,19]) and allow further variety in
the sizes of mesh available.
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5 Comparison with other families of graphs

5.1 The directed Moore bound

The directed Moore bound [15] bounds the number of vertices N in a directed
graph with maximum out-degree K and diameter D

N<1+K+K*+...+KP.

The de Bruijn graph B(k,u) has degree k, diameter « and k* vertices, so that
YNE = 1 and for k fixed, N has the same asymptotic order as the directed Moore
bound as u — co. Consider now the performance of the graphs B(k, u, v) relative
to the directed Moore bound. For the arguments that follow we assume (without
loss of generality) that u < v. Then B(k,u,v) has k%Y vertices, degree &* + k"

and diameter u. Here
KD — (ku + kv)u — kuv(l 4 ku-—v)u = N(l + ku——v)u'

When u = v, B(k, u,v) has KP = N2¥ so that 7% = 27¥. This is clearly in-
ferior to the performance of B(k, u). If, on the other hand, v—u = Q(log(ulog u))
(for example, if v = [cu] for some fixed ¢ > 1), then we have

7?—%:(1+/c"'”)'“——*1 as U — 00

and B(k,u,v) has the same asymptotic behaviour as the de Bruijn graph B(k, u).
Roughly speaking, B(k,u,v) achieves this performance using high degree (k* +
k¥) and low diameter, while B(k,u) has fixed degree and medium diameter. As
an illustrative example, consider designing an interconnection network with 216
PEs. B(2,16) has in-degree and out-degree 2 and diameter 16, an order-(8, 8)
PS network [25] degree 8 and diameter 16, a 16-dimensional hypercube degree
and diameter 16, while B(2,4,4) has in-degree and out-degree 32, but diameter
only 4. High degree may be the major obstacle limiting the practicality of the
graphs B(k,u,v).

5.2 Connectivity and fault-tolerance

We have shown that the connectivity of B(k, u, v) is asymptotically equal to the
degree k¥ + k¥ and have given an efficient fault-tolerant routing algorithm for
B(k,u,v). In comparison, even though the graphs introduced in [14,15,24] allow
a more flexible choice of parameters and have close to optimal connectivity, it
appears that fault-tolerant routing algorithms have yet to be developed for these
families.

However, in any practical interconnection network, the number of connections
at a PE is limited and it is precisely in this situation where our bound on the
connectivity of B(k,u,v) is weak. For example, the graph B(2,4,4) has out-
degree 32 but Lemma 2 tells us only that the connectivity is at least —2, whereas
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the subgraph B(16,4) of B(2,4,4) already has connectivity 15. It would be
valuable to obtain a better estimate for the connectivity of B(k,u,v) when u
and v are small.

5.3 Computationally useful subgraphs

We have shown that in common with the de Bruijn graph, the graphs B(k, u,v)
contain attractive classes of complete trees and cycles as subgraphs, even in the
presence of faulty edges and vertices. Additionally, B(k,u,v) offers meshes of
maximum size as subgraphs. This feature is also enjoyed by the PS networks of
[25], but not by other de Bruijn-type networks.

6 Conclusions

We have examined the properties of the graphs B(k,u,v), a generalisation of the
de Bruijn graphs to two dimensions. They have high degree, low diameter and,
in some cases, good performance relative to the directed Moore bound. We have
further obtained an asymptotically optimal bound on the connectivity of these
graphs and given simple routing algorithms. We have shown that they admit a
range of computationally useful topologies as subgraphs.

Important topics still to be addressed include finding the exact value of the
connectivity of B{k,u,v), examining the emulation capabilities of the graphs
B{k,u,v) (can they efficiently emulate other networks such as the hypercube
or butterfly networks, for example?) and finding efficient VLSI layouts of the
graphs B(k,u,v).
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Abstract

The synthesis and subsequent generation of protocol converters can be
a time consuming and tedious affair. An automatic means of generating
these converters, given a formal description of the interfacing protocols, has
been researched by a number of academics and industrialists. While there
is a strong standards movement within the protocol community, the output
from that process is likely to be slow in terms of its dissemination to the
communications world at large. Hence, the development of convertors will
be a key issue for many years to come. The work in this paper can be seen
as a natural extension of the earlier work of Norris, Martin and Shields.
The theory developed adopts a completely novel approach — moving the
problem into the domain of graph theory and topology. The resulting the-
ory has spawned a number of interesting results, which include extensions
to CCS, further development of the quotient machine concept, the notion
of symmetric validation and a further unification between automata and
graph theory.

1 Introduction

Far-reaching technological advances in communication networks have enabled
the interconnection of heterogeneous systems in order to provide services such
as voice, data and video transfer and the sharing of distributed resources. The
importance of protocols to the whole field of communications has led to the
establishment of a new sub-discipline of communications engineering, namely
protocol engineering [6,11].

Even in these days of OSI standardisation there is an increased need for the
development of protocol converters which act as an interface between two or more
possibly widely differing protocols. There are a number of reasons for this. Green
[9], for example, gives a convincing set of reasons why OSI will never become
a global standard. First, it is already too late, with very large installed bases
of SNA, DECnet and TCP/IP networks. Second, computer communication is a
relatively young field and is improving all the time, and new technology is likely
to destabilise any attempt to converge to a single architecture. Hence protocol
conversion will to be an active area — certainly in the medium term.

185



186 A.D. Pengelly and D.C. Ince .

Protocol converters are both time consuming and complex to develop [9],
especially with modern protocols, which are becoming increasingly complicated.
Hence, there are potentially large commercial gains to be made by reducing
the development time. By reducing the time to delivery, the converter can be
released to the field sooner, where the appropriate services can be delivered to
the customer and hence generating revenue much more quickly. So not only are
development costs reduced, but revenue increased. The automatic synthesis and
development of protocol converter specifications could thus lead to significant
commercial benefits.

A number of researchers have been active in this field with [4,9,12,22,28]
being the most cited works. The common feature of the work that has been
carried out is the reliance on some form of formal description technique, usually
simple finite state machines or communicating finite state machines. The general
design principles employed are discussed in [3], as are the underlying models in
[30], which suggest strategies for solving the converter problem in a systematic
manner. There are two basic approaches. The first derives converters at the
service level by concatenating common services between the given protocols. In
doing so, the protocol engineer can ignore the details of the Protocol Data Unit
(PDU) sequences and message exchange control. The problem with this is that
since PDU level functionality is not always apparent at the service level, the
reliability of the resulting protocol converter may be questionable. This is in
fact the most common method (as will be seen below). The second is at the
protocol data unit (PDU), where the service specification is ignored. The PDU
approach has led to more formal techniques and here the influence of automata
theory has been evident.

Of particular interest is the body of work referred to as the interface equation.
An interface equation has the following form:

(lr)\A~g

Where p, ¢ and r are processes!, A the restriction set and ~ strong

equivalence?. The semantics are that if p and r are composed in parallel, with
certain actions restricted as defined by A, then the resultant machine or process
will be equivalent to q.

A succession of papers from Norris, Shields and Martin mark the progress
of what is the most concerted effort to solve the interface equation. Through-
out their research, the base specification language is Milner’s CCS [18]. While
Norris formulated the problem [20], Shields provided a method of solution for
the weakly determinate case using the interesting notions of /-completeness and
O—completeness [27]. This was referred to as the discarding algorithm and can
be seen as a “brute-force” approach to the problem in that every possible state

1We will actually use the term “machine” from now on to mean any automata, process etc.

2The reader may ask why strong equivalence is used as opposed to observational equiva-
lence. In short, the current theory cannot recover the information lost via reduction in the
observational equivalence case. In essence, too much symmetry is lost.
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is examined. In general, the algorithm produces maximal solutions, which can
nevertheless be reduced using observational equivalence (essentially identifying
T-cycles and contracting them). However, it quickly becomes computationally
intractable for anything but small problems. Martin attempted to improve the
efficiency of Shields’ work [14]. The approach adopted by Martin for the con-
structive algorithm was quite different [15,16]. The work involved constructing
an initial “guess” and then adding (or removing) more structure as needed.
While less general than the discarding algorithm, the advantage of this approach
is that the solution is sometimes minimal. However, additional processing is
needed and hence the problem of computational hardness is not dealt with.
Indeed, to make the constructive algorithm completely general would require
additional algorithms, in particular merge-split [17].

The interface equation was developed as a generalised approach to systems
synthesis [19,21]. However, protocol conversion turns out to be ideally suited
for application to the interface equation. The problem with using the interface
equation with such problems is size and the NP characteristics of past algorithms.
Modern protocols can be of the order of 3000 states or more. With respect to the
work of Shields and Martin, this is simply too high. It would take a enormous
amount of time to provide a solution, if one were possible. The suspicion has
been that this work is rather a brute force approach and misses certain clues
that point to a more economical approach. Likewise, the methods developed by
other researchers are also limited in terms of their applicability to the practical
problem of protocol development [5,13,23,26].

It was to address many of these limitations that the work described in this
paper was undertaken. In short, a new approach to the problem was developed,
based on the use of graph theory to solve the interface equation.

2 Graph theory

The first observation that needs to be made is that the solution of the inter-
face equation is essentially a quotient problem, that r is related to ¢ modulo
p. Following on from this, we can ask the question “are there existing quotient
problems in computer science and discrete mathematics that are applicable?”.
While the notion of quotient in the context of finite state machines and formal
languages (such as context free grammars) is well defined, these are not quite
what it is needed in the case of the interface equation. It turns out that the most
appropriate domain is graph theory.

Graph theory [2] is a mature, established subject area with a number of
important results which are ripe for application. Of particular interest is quotient
graph theory, where certain classes of problems can be solved via a range of
algorithms in polynomial time. Hence, if a formal mapping between CCS and
graph theory could be established, the interface equation could be solved entirely
within the graph theoretic domain. The actual relationship is in many ways non-
trivial. We have had to extend CCS to accommodate the structural requirements
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of graph analysis, since the bisimulation semantics of CCS are too limiting.
The remainder of this paper highlights the key aspects of the theory developed,
though the reader should bear in mind that there are a number of subtle issues,
which although they have been addressed, cannot be covered here. These include:

1. What is the relationship between bisimularity and topological equivalence?
In particular, how can weak notions of equivalence such as observational
equivalence be dealt with from a topological perspective?

2. What behavioural properties of the p and ¢ machines, such as safety and
liveness, are inherited by the » machine?

3. Is there a functor from the category CCS to the category GRAPH?

The interested reader should refer to [24].
We first show the rather elementary result that Milner’s parallel composition
operator is closely related to the Graph Cartesian Product (GCP).

Definition 1. Given two graphs Gy and Go with V(G1)NV(Gy) = 0, the graph
Cartesian product G; x G is the graph G3 with vertez set V(G1) x V(Gs) such
that two vertices (u1,us) and (vy,v;) of G3 are adjacent if and only if either
uy = v; and the (directed) edge usva € E(G2) or up = vy and ujv; € E(Gh).
Now consider machines and in particular the stale transition graphs asso-
ciated with them. It is clear that the state transition graphs are no more than
labelled digraphs. As such, we can form the product of the state transition graphs
using the GCP. It turns out that the GCP is identical, in terms of the result-
ing product structure, as that obtained if the machines were specified in CCS
and composed using Milner’s composition operator “|” and where there are no
communicating T events (that is p and r do not talk to each other). To see
this, consider Milner’s definition of the composition operator (see the Expansion
Theorem [18]), where given p —* p’ andg —* ¢’ then p | q is defined as:

p—p | q—P ¢
ple—plg Ple—=Pr ¢, pld —>v|d, pla—=Ppl|d

It is clear that there is some similarity here between the structure of the prod-
uct graphs and the composition of the machines. What is interesting is that we
are making topological, or structural, observations. From this point of view the
behavioural dynamics of the machines are of no consequence and, as such, is-
sues such as nondeterminism, deadlock, livelock or divergence among others, can
effectively be ignored. From these observations we deduce the following theorem:
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Theorem 2. Given two arbitrary machines p and ¢, such thatVa € A(p)—3Ja €
A(g), along with their state transition graph representations Gm, and Gm, Te-
spectively, then Gam, |m, = Gm, X GMm,-

Proof. Not given here (see [24]).

3 Tau splitting

This section will provide the necessary syntax and semantics of -splitting, begin-
ning with formal definitions and closing with an example. This splitting process
is key to the application of the graph quotient algorithms, since it restores the
symmetries of the graph product form (remember the graphs are the state tran-
sition diagrams of machines). Before dealing with the formal definitions, we will
use a simple example to highlight the issues involved.

The aim of the r-splitting transformation is to resolve a 7,2 action into its
component actions—that is the actions which combined to form it. If py =% p2
and r; =% ry are composed using parallel composition we getp; | r1 —7"¢ pa |
ro (assuming the original @ and @ actions are in the restriction set A). The
r-splitting transformation, which is denoted by T, takes as its argument the
given transition and “splits” the 7, in order to recover the o and @ transitions.
Hence, the 7, is removed from the machine and new transitions added. Now
p1 | 11 =™ p2 | 72 could be written as ¢; —" ¢3. Indeed, in the context of
the problem domain covered in this paper, this will be the standard format.
Now the inference is that this g-machine is in fact the composition of two other
machines. We are given one component, in this case the p-machine, but need
to find an r-machine such that p | r is equivalent in some way to g. Now if ¢
is the composition of two machines then each state of ¢, ¢1 say, is in fact an
ordered pair (p;,r1). Following the approach adopted by Shields and Martin,
we partition the ¢ machine into distinct sets of states, called K(r)-sets. The
affect of this is to divide the ¢ machine into a number of planes with each
plane being associated with a unique state of the » machine. These planes are
connected by actions from the r-machine and 7, actions and no others. All the
p-machine transitions not involved in communication lie within the K(r)-sets.
This is the central observation regarding 7-splitting, since the 7. transitions
between K (r)-sets arose from communication between the p and r machine. If
the communicating actions are removed and the “lost” actions which combined
to form it replaced we would find that the transitions within the K(r)-sets are all
the transitions performed by the p-machine and the transitions between K(r)-
sets are the transitions performed by the r-machine. The resulting structure is
now in a form whereby the quotient algorithms can be used. There are a number
of issues here, they are:

3We distinguish between a T action which arises from communication between the p and r
machines.



190 A.D. Pengelly and D.C. Ince

Definition 3. The r-splitting relation T is defined by the following mapping:

T : R(q) x{r} x R(g) — R(q) x A(p) x R(g) x R(q) x A(p) x R(q)
T (@67 04) — {< (%o e | (0T @i)tp >:

(p,r:) = (¢',r;) € I™(r;) ¥V r; € R(r) and

(pi,r) =% (pi,7) € L(pi) ¥ pi € R(p)}-

Given an interface equation (p | r) A = q. Assume there exists a transition
p’ =% p" inp, where o € A. By definition, all actions in A will be restricted in q.
However, there will be  actions in ¢ which have arisen via p——r communication.
Stated more formally, given p' —% p" in p with « € A, then -3¢, ¢" : ¢/ =% ¢
ing. But 3y, q1,"m,n 1 @ =7 @ with g = (p' | rm) Aand g = (p" [ ra)\A =
@ | rm)\A =" (p" | rn)\ A. Since p' = p”, it follows that r, —% r,. Each
v is associated with a K(r')-set, hence ry —% ro¥p' € p.K(rp) —% K(rn)
(note that it may be the case that rp, = r, ). By the definition of the GCP and
Theorem 2 p' —* p"Vr' € r. In terms of Y, @ —™ q is split and projected
onto the underlying p and r componenis as < (¢', o, qx)tr | (¢, %, @1)1p >, where
“” indicates that the action is repeated in the plane indicated.

Tau splitting is a transformation which effectively removes all internal com-
munication. By doing so the machines involved can be represented using graphs
and the equation solved via a quotient graph algorithm. As mentioned earlier,
this isn’t quite the whole story. Issues such as the nature of equivalence, in-
variants and the extensions to CCS are not discussed here in detail. Three new
concepts have been added to CCS, they are:

1. Structural equivalence, denoted “é”, where two machines are structurally
equivalent if their associated underlying directed graphs are isomorphic.
This notion of equivalence was necessary since the method of solution
described here is essentially structural, whilst existing CCS equivalence
notions are behavioural.

2. Structural composition, denoted by “||”, which is a variation on Milner’s
composition operator.

3. Rendezvous operator, denoted by 9", which was introduced to address

short-comings (within the field of protocol development) of Milner’s re-

striction operator.

See [24] for further details.
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4 Algorithms

This section presents a simplified view of the procedures and algorithms to solve
the interface equation using the theory so far described. The authors have de-
liberately left a number of details in order to convey the basic principals of the
algorithm. All details can be found in [24].

The procedure consists on two basic steps. The first is to translate the CCS
interface equation to the graph domain. The second is to solve the resulting
quotient problem.The first requires extensions to CCS, symmetry-based analysis
and 7-splitting. The second uses standard graph quotient algorithms as found
in [1,7,8,10,29].

The assumption is that we are given an interface equation in the form,

(PITNAUB ~¢q

where
Alp) NA(g) € {7},
A(p)NA =0,
A@)n(Aud) =19,

A(r) N A(p) € {7}

where A is the set of actions involved in communication, B the set of restricted
actions not involved in communication.

Step 1la.

The first step is to identify the states of p and ¢ with r (each state of r
corresponds to a “plane” of p — ¢ states which we call II-planes). This is done
using the procedure discussed earlier. We derive the K-sets as per Martin’s
algorithm [14]. The o mapping ([24]) is then applied to derive the II-planes,
which are submachines of p. This re-labelled ¢ will be referred to as ¢’.

Step 1b.

It has been found that the application of symmetric closure ([24]) is best done
interactively with Step la, since the derivation of the K-sets provides vital clues
where reduction has taken place. The best indication that symmetry conditions
are being violated is the appearance of a distinct ¢ state in more than one K-
set, say K(ry) and K(rg). Symmetric closure “unfolds” such states and via
the addition of new states and actions, restores the symmetries. In practice
symmetric closure will not always be successful.
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Step 2.

Construction of the II-planes is achieved by first grouping the states of ¢’
with respect to the » component. The aim here is to derive the structure of the
embedded p machine in ¢. The algorithms used by Shields and Martin to derive
the K-sets can be used here with some modification, such as the exclusion of
the O-completeness condition®. The output from this process is a set of K-sets
which are all individually non-A/ B reachable.

Step 3.
The connectedness conditions for the algorithm proposed here are weaker
(more general) than those of preceding methods in that strong connectedness is

not a precondition. The I (r)-sets are constructed by forming the union of all
K(r)-sets for each r. We will assume here that the internal structure of each

II-plane is weakly connected.

Notice that at this stage we can begin to use symmetry as a validation tool.
The emergent structure should contain certain symmetries, which if not there,
are a good indicator to the existence of errors. These errors are typically missing
states and actions or incorrect labelling.

Step 4.
The L sets are formed in exactly the same fashion as the II-planes. However,
unlike the II-planes, it is assumed that each L-set will be non-A/B reachable

(24D

Step 5.

Let 4 € A(p) — (AUAU B), an action of p which does not communicate. Let
C be the set of all such actions. These actions provide no additional information
in terms of the derivation of the » machine. Construct the machine ¢ = ¢’\C.
¢" will now contain non-7 actions which are from r and 7 actions which are
either intrinsic to p or », or are communicating 7 actions. The primary function
for removing the C actions is to reduce the processing requirements for quotient
extraction. The next step is to distinguish between the 7; and 7. actions.

Step 6.
The main steps in distinguishing between 7; and 7, actions is as follows:

Pred=3uc A(p)NA:p—#p and
¢ & A(g) and — 3r : L(p") =7 L{p""),Vr € R(r) for some

ror - 3r I (r) —TI (r'")YVp € R(p).

41t is felt that graph partitioning has a key role to play here, but is left as a subject for
future research.
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For each (p,q,7) =" (p',¢,7') transition do
If Pred = true then
Split 7 (Step 7)
else
Mark intrinsic
end if

Repeat until 12 p (A(p, INI) =0).

The rather complex expression within the if statement first checks to see
if p did an action in A which ¢” does not do. This action will be involved in
communication and hence will be associated with a 7. action. However, even if
such an action can be found there are situations where this may not be the correct
T action. Hence, the rest of the expression checks the symmetry properties to
see if there are 7 transitions in the R(p) x R(¢) or R(r) X R(q) planes which are
symmetric.

Step 7.

From Step 6 identify all (p,q,r) —" (p/,¢’,7') transitions. Identify
p € A(p)NA:p—#p inp Add transition to ¢” Vr € R(r). Create r —F r/
transition and add to ¢’ Vp € R(p). Remove (p,q,7) =" (¢/,¢',r’) from ¢ as
described in Definition 3. A ¢ with all its 7, actions split is labelled ¢°.

Step 8.
We now apply the quotient algorithm.

Factor G, (a weakly connected digraph).
G, = U(D(V,, E,)) the underlying graph of D(V,, E,).
Gy == U(D(V,, E,)) the underlying graph of D(V,, E,).

Find the prime factorisation of G, (say m-components).

BN ol S

Let Ay, As,..., A be the arc classes corresponding to the edge classes
E\, Ey,...,Ey (associated with Gy).

Set R = {.

bl

7. Apply algorithm [7].

for each pair of arc classes A;, A;
for each pair of adjacent copies G¥,GY
for each pair of edges u —v € Ej,u— v/ € E;,ue G¥,u' € GY
if the 4-cycle u — u’ — v’ — v — u lifts to a subgraph of D(V,, E,) that shows
a conflict between A; and A;
then R := RU{(4:,4;)};
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R* .= the reflexive, transitive closure of R;
p = the number of equivalence classes R*;
fori:=1top
begin
Let {A;} be the ith class in R*;
Let {E;} be the corresponding edge classes in Gy, ;
H:=G%U---UGF for some z € V(G);
Let D; be the subgraph of D(Vg, ;) to which H lifts;
The ith prime factor of D(Vy, E,) is isomorphic to D;;
end

8. D(Vy,Ey) = Dy x Dy x -+ X Dp,.

9. Repeat for G, = D(V;, E,), giving D(V,, Ep) = Dy x Dy x - - - X Dy, where
m > n.

The assertion is that G, = D(V;, E,} is equal to:

D(Vy,E

D, Er) = By
~ DixDoX-xDp
—  DixDoX-xXDp

R

Dppyy X D1 X -+ X Diy.

Hence the unlabelled G, = Dy, .n X Dppep1 X - - - X Dy . This is the unlabelled
underlying digraph of ».

Step 9.

The output from Step 8 is the underlying digraph of » which has unlabelled
edges, but resides within ¢”. Labelling of the edges, which corresponds to actions
in the machine representation, can be achieved by pattern matching on ¢”, or
via heuristic methods.

Step 10.

Use a tool such as Concurrency Workbench to check that r is a solution of
(] NAUB ~q.

It is interesting to note that under certain conditions the quotient graph
algorithm is not needed and we can extract the quotient via indirect means
using the L-sets. Clearly enormous processing gains could be made here, but
this is a matter for further research.

The algorithm has been validated on a number of examples, including a 600
state ¢ and 45 state p-machine pair.
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5 Summary

This paper has presented the basic elements required to solve the interface equa-
tion using graph theory. Central to the approach is the use of symmetry and
the splitting of the communicating events, followed by quotient extraction. A
procedure for generating a solution has been given. Application to a much larger
example, which is significantly closer to industrial sized problems than previously
encountered in the work by other researchers, is given in [24].

Comparison with other techniques has shown that our approach is able to
solve problems which could not be realistically solved via previous techniques
and that this class of problems is extensive. On the other hand, our approach
needs further work before we can satisfactorily solve the observational equiva-
lence problem (where too much information is lost during the reduction process).
An interesting assertion is that the graph theoretic approach, with additional al-
gorithms to solve the observational equivalence problem, is equivalent to the
constructive algorithm with merge-split [17]. The strength of the graph the-
oretic approach is that issues such as deadlock, livelock, divergence, fairness,
nondeterminism and weak-connectedness present no difficulties for the theory
[25]. The inherent reliance on symmetry proved to be a valuable validation tool,
since non-compliance to certain symmetry constraints invariably indicated an
error in the protocol specifications.

The authors also assert that the graph theoretic approach is computationally
more tractable than previous algorithms and will reduce protocol converter syn-
thesis development times by at least an order of magnitude. This work offers the
chance of radically reducing interface development times and effort associated
with protocol development.
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Uniformly Optimally Reliable Networks for
Vertex Failures
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Abstract

Graphs with minimum probability of disconnection for all vertex failure
probabilities are said to be Uniformly Optimally Reliable. We describe
some recent results concerning the existence of these graphs. In particular,
we prove a new nonexistence result for graphs of large diameter. We also
illustrate the proof method used for sparse graphs by proving nonexistence
in one case that has not been explicitly dealt with in the literature.

These results lead us to consider the existence of Regular Uniformly
Optimally Reliable Graphs. For small vertex failure probabilities we ex-
tend our previous results on the number of minimal vertex cut sets. This
result, and its associated constructions, are also of practical interest. For
large vertex failure probabilities we show that the girth of the graph must
be maximal. The combination of these two cases suggests that regular
uniformly optimally reliable graphs are rare.

The implications of these results for network designers are discussed.

1 Introduction

The study of network reliability is concerned with the interconnection of various
elements in the form of a network, typically a telecommunication, distribution or
computer network. The components of the network are represented by the edges
and vertices of an underlying directed or undirected graph. The components
may be unreliable, but the network should operate as reliably as possible in the
presence of component failures.

Work on network reliability has for the most part followed two lines of ap-
proach. The first approach is concerned with methods of calculating the reliability
of a fixed network for a given reliability measure. A second alternative approach
attempts to design the graph underlying the network, given a fixed number of
vertices and edges, so that the network will operate as reliably as possible with
respect to a given measure of reliability. We shall concern ourselves with the
latter approach.

Many different measures of reliability have been proposed. One of the most
natural is the probability of disconnection of the network, and we shall concen-
trate on this reliability measure. Most work on this measure has been concerned
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with the edge failure case. However the results of Smith [10] show that for small
failure probabilities optimal graphs in the vertex failure case are often optimal
graphs for mixed and edge failures. Consequently in this paper we study the
vertex failure case, using an undirected graph as a model of the network. It can
also be argued that the vertex failure case is often of more practical importance.
The edges may represent relatively reliable cables or radio links, whereas the
vertices may represent complex failure prone systems.

Let G be a finite, simple, undirected, connected graph with N vertices and m
edges, which we shall refer to as an (V, m) graph. Let G have connectivity & and
let k = [2m/N]. If the vertices of G all have the same probability p of failure
(removal with their incident edges) and the failures are assumed independent,

then we can write
N-2

P(G)= )Y Nip(1-p)N 7,
1=K
where P(G) is the probability of disconnection of G, and Nj is the number of
vertex cut sets with i vertices.

If p is sufficiently small then P(G) is minimised if & is maximised and N, is
minimised. The maximum value of x is k and Harary [6] showed that graphs of
connectivity k always exist. A number of results are available which construct
graphs with x maximal and N, minimal [3,8,9,11] although these results are not
comprehensive.

A graph is said to be uniformly optimally reliable for vertex failures if P(G)
is minimised for all p,0 < p < 1. In the corresponding case for edge failures
Boesch et al. [4] showed that uniformly optimally reliable graphs exist for
N -1 < m < N — 2. Boesch [2] conjectured that uniformly optimally reli-
able graphs always exist, but Myrvold et al. [7] showed that if N > 6 is even and
m = N(N — 2)/2 — 1 then there does not exist a uniformly optimally reliable
graph for edge failures. In the case of vertex failures Amin et al. [1] have studied
a measure called pair—connected reliability and shown that for this measure uni-
formly optimally reliable graphs do not exist for N < m < ~ 2N?%/9, although
they do exist for some other values of m. The existence of uniformly optimally
reliable graphs for the probability of disconnection in the vertex failure case has
been studied in a very recent paper [5].

In this paper we shall restrict attention to the probability of disconnection
P(G) in the vertex failure case. We shall see that uniformly optimally reliable
graphs do not exist if G has diameter > 4 and, in fact, do not exist in most cases
when the graph is sparse.

This leads us to study the same problem for regular graphs: does there exist
aregular (N, kN/2) graph with P(G) minimised for all p,0 < p < 1 in the vertex
failure case? We improve the result in {11] which is used for constructing optimal
graphs in the case of small p. In this case an optimal graph will usually have
girth 4. On the other hand for p close to 1 an optimal graph has maximal girth.
Thus regular uniformly optimally reliable graphs for vertex failures are also rare.
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In the concluding section we discuss the implications of these results for network
designers.

2 Degree sequence dominance

Let P3 denote a path with three vertices and, following [1], we let #(G, P3) and
*(G, P3) denote respectively the number of subgraphs of G isomorphic to Ps and
the number of induced subgraphs of G isomorphic to Ps.

Denote by C; the number of connected induced subgraphs of G with ¢ vertices.
Then N; = (7) — Cn-; and C; = m. Thus Ny,Nny_1, Ny_o are fixed for an
(N, m) graph and for sufficiently large p, P(G) is minimised if C3 is maximised.
If #(G, K3) denotes the number of triangles in G then

Cs = #(G,Ps)+#(G,Ks) (2.1)
= #(G, Ps) — 2#(G, K3) (2.2)

as each triangle contributes 3Pss which are not induced subgraphs.

Definition 1. Let D(G) = (di1,da,...,dn),(d1 > da > ... > dn) and D(H) =
(di,db,...,dy),(d) > dy > ... > dy) denote the degree sequences of (N,m)
grephs G and H respectively. Then D(H) is said to dominate D{G) if for all

i=142,..,N
j J
Ddizd di
i=1

i=1

with strict inequality for af least one j.

It follows from 2.2 that

Cs = f: (‘;) — 9(G, Ks) (2.3)

i=1
The following Lemma is straightforward [1].

Lemma 2. If D(H) dominates D(G) then #(H, P3) > #(G, Ps).

Lemma 3. Let G be an (N, m) graph and let G, be the complement of G. Then
G minimises P(G) for p large if and only if #(G, K3)+*(G., P3) is the minimum
over all (N, m) graphs.

Proof. Let ¢ be an edge of G incident with vertices u and v. Denote by
no(e),ni(e) and ny(e) the number of vertices adjacent to exactly 0, 1, and 2
vertices in {u, v} respectively. Then ng(e) is the number of induced Pss in G,
with u and v as end vertices, n,(e) is the number of induced Pss in G containing
the edge ¢ and na(e) is the number of K3s in G containing the edge e¢. Also
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no(e) + ni(e) + na(e) = N — 2. Summing over all edges and noting that in G
each induced Ps is counted twice and each K3 is counted 3 times, we have

m(N~2) = ) (no(e) +nile) + na(e))

e€eG
= *(G., P3)+ 2% (G, P5) + 3#(G, Ks).
Then

Cy; = *(G, P3) 4+ #(G, 1{3)
= (m(N = 2) — x(G., P5) — #(G, K3))/2

and the result follows.

3 Graphs with large diameter

As noted in the introduction, an (N, m) graph G which minimises P(G) for p
small will have connectivity k = k = |2m/N| which will equal the minimum
degree of G.

Theorem 4. If G has minimum degree k = |2m/N| and no vertex y such that
d(z,y) < 2 for all vertices z, then G does not minimise P(G) for large p.

Proof. Choose a vertex z; adjacent to a vertex z, of degree k. Choose another
vertex z3 such that d(z3,z;) > 2. Construct a new graph G’ by removing the
edge (z122) and inserting an edge (x123). Since no new triangle is created and
the degree sequence of G’ dominates the degree sequence of G, it follows from
Equation 2.2 and Lemma 2 that Cs is not maximised in G.

In particular, if G has diameter > 4 or if m = Nk/2 (so G'is regular) and
N > 1+ k? then G is not uniformly optimally reliable.

4 Graphs with k/N small

We can extend Theorem 4 by following closely the method of [1] for pair con-
nected reliability, which makes crucial use of Lemma 3. However, these results
appear to have been superceded by the results in [5] which include the following:

Theorem 5. Given N and m, let 2m = Nk+s (0 < s < N/2,4 < k& <
2N/5 — 8). Then there does not exist a uniformly optimally reliable (N, m)
graph.

The condition (0 < s < N/2) is easily extended to (0 < s < N) and, in fact,
Goldschmidt et al. [5] claim, without giving full details, that Theorem 5 can be
extended as follows:
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Theorem 6. Given N and m, let 2m = Nk+s (0 < s < N,2 < k < N/2 -
6,m > N). Then there does not ezist a uniformly optimally reliable (N, m)
graph.

The methods used to prove these theorems are very similar to those in [1]
and are basically as follows. Find an upper bound for Cj3 for an (N, m) graph of
connectivity k. Then find a graph with a larger value of Cs, normally a complete
bipartite graph plus or minus some edges. To illustrate the method we follow
closely the method in [1] to give a simple proof in the case £ = 2, N > 8.

Proof in the case k=2,N >8. Let G denote an optimal (N, m) graph which
minimises P(G) for p small. G will have connectivity 2 and m = N + 0
(0 <6 < N/2).

As C3 = #(G,Ps) — 2#(G,Ks) we see that Cs cannot exceed
2(“2'2) + (N - 2)(3) corresponding to a graph with no triangles and degree
sequence (8 +2,6+2,2,2,...,2) which dominates the degree sequence of all other
2-connected (N, N + 6) graphs.

Now let Gy denote the graph obtained from K y_2 by removing N — 6 — 4
edges from a vertex in the part with two vertices. Then

C3(Gy) = (N;2)+<0;2>+0+2

and

C3(G1) —Cs(G) 2 (N-2)(N-3)/2-(0+2)(0+1)/2+
(0+2)—(N-2)
> (N =2)(N=5)/2—(0+2)(6 - 1)/2
> 0Ofor N>8as N >60+4.

Thus G is not uniformly optimally reliable.

5 Regular uniformly optimally reliable graphs

Uniformly optimally reliable graphs for the probability of disconnection in the
presence of vertex failures certainly exist, for example K3 3 is easily seen to have
the minimum value of N; for i = 1,2, ...,4. In fact complete multipartite graphs
can be shown to be uniformly optimally reliable (see for example [5]). However,
the results of the previous sections show that other examples are likely to be
rare. In addition, the case when the probability p of vertex failure is close to 1
is rather anomalous. Minimising Ny _3 may force the graph to be nonregular
and the connectivity to be smaller than it need be. This conflicts with the usual
requirement to maximise the connectivity of a network. If the value of p is not
known in advance, it is possible that a very sub—optimal graph will be obtained
if too much weight is given to values of p close to 1. It is therefore of interest to
remove this oddity by focusing attention on regular graphs.
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Definition 7. A regular graph with N vertices and degree k is said to be regular
uniformly optimally reliable if P(G) is minimised over all such graphs for all
p,0<p<l

Before considering the existence of regular uniformly optimally reliable graphs
we shall improve somewhat the results in [11] for the case of p close to 0.

6 Small probabilities of vertex failure

Smith and Doty [11] noted that, for sufficiently small p, P(G) is a minimum for
regular graphs of degree k if G has connectivity k and Nj is minimised. They
proved that if N/k > 5/2 then Ny > [6N/2k] and constructed families of graphs
meeting this bound. In this section we will remove the need for the condition
N/k > 5/2 and characterise graphs meeting the bound in certain cases.

Let I'(u) denote the set of vertices adjacent to u in G. Define an equivalence
relation ~ on the vertices of G by u ~ v if and only if I'(u) = I'(v). Let T'(G)
be a graph with the equivalence classes of ~ as vertices. Vertices [u] and [v] of
I'(G) are adjacent if and only if u and v are adjacent in G. We refer to I'(G)
as the quotient graph of G. Label the vertices [v] of I'(G) with integer weights
L[v], the weight giving the number of vertices in the equivalence class.

Theorem 8. If G is a noncomplete regular graph with N > 3 vertices, degree
k, connectivity k and with q vertez cut sets with k vertices, then either G is a
complete bipartite graph Kyy, with ¢ = 2, I'(G) is a cycle C3 and ¢ = 3, I'(G) is
a cycle Cs and g =5, or ¢ > [BN/2k].

In order to prove this theorem we note first that the quotient graph of G can
only have vertices of degree 1 if G is complete bipartite. Assume that G satisfies
the conditions of the theorem. If I'(G) is not a cycle then I'(G) must have at
least 2 vertices of degree > 2.

Lemma 9. IfT(G) is a cycle then T(G) = Cs, T(G) = Cs or ¢ > [5N/2k].

Proof. T'(G) cannot be Cy4 by the definition of quotient graph. If I'(G) is a cycle
Ci(i > 5), then ¢ > [BN/2k].

The next lemma is essentially Lemma 1 in {11]. The condition N/k > 5/2 stated
in [11] is not used in the proof.

Lemma 10. Suppose that I'(G) is not a cycle. Let I'(G) have at least two ver-
tices of degree > 2, and at least two vertlices of degree 2 which are adjacent. Let
[a], [e1],[ea], .- [er), [B)(r > 2) be a path in the quotient graph such that [a], [b]
have degree > 2 and the vertices [¢;}(i = 1,2, ...,7) have degree 2. Then

L(fea)) = L([ea]) = --- = L([er]) = s,

with s < k/2 and [a], [b] are not adjacent. (In fact, if r > 3, k is even and
s=k/2).



Reliable Networks 205

Lemma 11. Suppose that the quotient graph T'(G) has vertices of degree > 2.
Let S denote the set of vertices of G corresponding to vertices of degree 2 in
T(G) and S’ denote V(G)\ S. Suppose that T(G) has e > 0 edges that join two
vertices of degree 2. Then |S'| > N/2 — ke /4.

Proof. It follows from Lemma 10 that G has at most ek? /4 edges joining vertices
of § and so

|S|.k — e.k?/2 < number of edges joining S to S’ < k|S’|
s0
1S'] = 151 > —ek/2
and the result follows from |S’| + S| = N.

The following Lemma is essentially Lemma 3 in [11]. The condition N/k > 5/2
stated in [11] is not used in the proof.

Lemma 12. Suppose that the quotient graph T'(G) has vertices of degree > 2
and that there are e edges of I'(G) that join two vertices of degree 2. Then G
has at least 2e vertez cut sets that are not neighbour sets of a vertex.

Proof of Theorem 8. IfI'(G) is a cycle the result follows from Lemma 9. Oth-
erwise, let ¢’ denote the number of vertex cut sets of G with k vertices that are
vertex neighbour sets. Let e, S, S’ be as defined in Lemma 11. Counting in two
ways the vertices in the vertex cut sets of G that are neighbour sets, we have

gk= D dful).L(fu])

[vileT(@)

Let T denote the set of vertices of I'(G) corresponding to vertices of S and

T' = V(I(G) \ T.

¢k = ) 2L+ Y d(wl) L)
[vileT [vileT’
> 2 > LD+ Y, L(w)
[vileT(G) [vileT’
> 2N +|5]|

> b5N/2— ke/4 (from Lemma 11).
From Lemma 12 we have
> 4 +2
> BN/2k+Te/d
so ¢ > [BN/2k].
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Notice that if ¢ = [5N/2k] we must have ¢ = 0. If in addition 5N/2k is an
integer we have |S’| = [S| = N/2 and d([v;]) = 3 for [v;] € T'. We see from
the proof of Lemma 11 that each vertex of degree 3 in T'(G) is adjacent to three
vertices of I'(G) of degree 2. Thus I'(G) is obtained from a graph of degree 3
by inserting a vertex of degree 2 on every edge. Examples of optimal graphs
with ['(GQ) of this type are given in [11]. If £ > 3 then such an optimal graph,
if it exists, must have girth 4. These optimal graphs certainly exist if N/k > 4
is an even integer and k > 8 [11]. Thus in this case at least, optimal regular
graphs for small probabilities of vertex failure have girth 4. The quotient graph
approach gives evidence for the conjecture that optimal regular graphs for small
probabilities of vertex failure will have girth 4 in most other cases where the
number of edges is not too large.

7 Large probabilities of vertex failure

As noted for the general case in Section 2, if C; denotes the number of connected
mduced subgraphs of G with 7 vertices then N; = (‘Y) ~ CN-i, C1 = N and
Cy = m. Thus for sufficiently large p, P(G) is minimised if C3 is maximised. In
general, if regular graphs G, G’ have C; = C] (i = 3,4,...,j — 1) and C; < C},

then P(G’) is smaller than P(G) for sufficiently large p.
In the regular case we have from Equation 2.2

Cs = Nk(k — 1)/2 — 24(G, K3).

If G has girth > 3 we have

Cy

*(G’ P4) + #(G’Z) + #(Gvu)
#(G, Py) + #(G, 1) - 3#(G,[])

Nk(k —1)2/2+ Nk(k — 1)(k — 2)/6 — 33(G,[])-

Similarly, if G has girth > 4

«(G, Ps) + #(G, /) + #(G, [£) + #(G.[>)
#(G, P5) + #(G, 1/ )+ #(G,[£r) — 4G, >)

Cs

Nk(k —1)/2 4+ N(k(k — 1)(k —2)/6).3(k — 1) +

N(k = 1)(k — 2)(k — 3)/24 — 43(G, ] >>)
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and in general if G has girth > s —1

C, = (G, P,)+ #(G,trees with s vertices # Py) + #(G,s — cycles)
= #(G, trees with s vertices) — (s — 1)#(G, s — cycles). (7.1)

The girth condition implies that the number of each type of tree in G counted
in Equation 7.1 depends only on N and k. To see this, fix either the centre of
the tree in N ways or the bicentre in Nk/2 ways. In either case the number of
ways of completing the tree, given the girth condition, depends only on k.

It follows from Equation 7.1 that if G, G’ are regular of degree k and girth
G > girth G’ then G will be more reliable than G’ for sufficiently large p.

8 Conclusion

‘We have seen that in the regular case as well as in the general case, the conditions
for small p and for large p tend to conflict. In the regular case many of the optimal
graphs for small p can be constructed using quotient graphs and have girth 4.
In the case of large p we must attempt to maximise girth. Again in the regular
case, the example K33 shows that regular uniformly optimally reliable graphs
do exist, but we conjecture that they are rare.

It appears that a network designer who wishes to design an optimal or near
optimal network, particularly when vertex failures are important, should have
a good estimate of p available in advance. Otherwise, if the estimate of p is
wrong, there may be a danger of choosing an apparently optimal network whose
reliability is in fact very poor.
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Multi-Function Coding and Modulation for
Spread Spectrum and CDMA with Inherent
Security

S. Shepherd
Department of Electronic and Electrical Engineering, University of Bradford

1 Introduction

Currently, spreading sequences for spread-spectrum communications and se-
quences for CDMA (code division multiple access) systems typically use codes
whose auto— and cross—correlation properties are optimized for the characteristics
of the channel in question. If security is desired, this is added as a further layer
of coding. Sequences exist, however, which combine both desirable modulation
characteristics and strong cryptographic properties.

The most promising of these appears to be the sequences produced by the
Blum Generator, which has been shown to possess a very high degree of ran-
domness [1]. This generator has already been used to provide the key sequence
for a public key stream cipher radio scheme [2] and so a natural extension of
this is the use of such sequences as spreading codes, which as well as offering
the advantages of spread spectrum communications, also exhibit the unbreakable
cryptographic properties of the Vernam one—time—pad. In addition, the combi-
nation of the modulation encoding with security offers considerable savings in
processing and significantly enhances system efliciency. The main problem to be
solved in this area now is the synchronization of the sequences. Knowledge of the
secret key (the factors of the generator modulus), as well as allowing decryption
of the data, is also expected to allow an efficient synchronization algorithm to
be implemented.

2 Background
Ideally, a spreading code should possess the following qualities [3]:

o Optimal cross—correlation properties to minimize symbol error rate due to
interference.

o Good synchronization (auto-correlation) properties for reliable recovery.
o High algorithmic complexity to prevent unauthorized data recovery.

¢ Uniform spectral shape of transmitted pulses for design reasons.

209
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A preliminary investigation into the mathematical properties of Blum se-
quences from the security point of view has already been carried out [4]. The
main approach of the current research program described in this paper is to
extend the work to an analysis of the spreading and coding properties of these
sequences, especially with regard to synchronization and redundancy. This three
year program of work is supported by an EPSRC grant.

Existing spreading sequences use arithmetic from integer fields, notably
GF(2), GF(¢q) and GF(2?). Little appears to have been done on the use of
integer rings for these purposes although they exhibit a number of potential
advantages:

e The computation of the multiplicative inverse in a finite ring (with suffi-
ciently large modulus) is intractable without knowledge of the factors of
the modulus, whereas in a field it is trivial. This is the theoretical basis of
all public key ciphers and hence offers inherent cryptographic properties
“for free” along with the modulation scheme.

e Given a knowledge of the factors, operations in a ring are easier owing to
the Chinese Remainder Theorem, for example the Quisquater—Couvreur
speedup algorithm for RSA decryption.

o A ring is less structured than a field, and hence a greater number of se-
quences of sufficient orthogonality may be possible from a ring of given
order than from a field of similar order.

This paper focuses on an investigation of the cross—correlation and auto—
correlation properties of sequences generated from integer rings of proven cryp-
tographic strength to assess their usefulness and applicability to CDMA and
spread—spectrum communications. Some of the more obvious aspects of the
theoretical analysis have already been addressed heuristically, for example, the
analysis of the probability of another user (by chance) starting to transmit using
the same seed for his spreading code generator as that reached by another user
in the process of an existing transmission. This critically determines the symbol
error rate. Based on pure chance alone, clearly if the sequence length is of the
order of, say, 22°0 bits then the probability of synchronizing with another user
is 27250 i.e. vanishingly small!

3 Spreading codes

The ideal CDMA system uses a constellation of totally orthogonal codes. The
receiver has a complete set of correlators, there is no co—channel interference
and the near—far resistance problem does not arise. Totally orthogonal codes,
however, are only possible for a fixed timing offset in a completely synchronous
system. In practice, systems will generally be asynchronous, and such codes
tend to have poor cross—correlation characteristics if synchronization fails. Con-
sequently, codes that are “sufficiently” orthogonal (i.e. have some finite low
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cross—correlation) are used instead. The spreading codes can be generated by
many different methods. For convenience, linear feedback shift registers (LFSR)
are often used for simplicity. Algorithmically simple generators, however, can
lead to security weaknesses. Should an eavesdropper be sufficiently near to the
transmitter to be able to receive the spreading signal, then the interception of
a comparatively short block of code can allow recovery of the LFSR feedback
arrangement and the complete transmission can be correlated and recovered.

4 Blum sequences

It would clearly be advantageous to use a spreading code with better security
properties and it is suggested that such a code might be that produced by the
z? mod n or Blum generator [1,2,4,5]. This generator uses a modulus n which is
a strong Blum integer (i.e. the product of two strong primes each congruent to
3 mod 4) and a seed value zg. The seed is successively squared mod n and the
log, n least significant bits of the result appended to the output bit stream. It has
been shown that such a sequence exhibits such excellent randomness properties
that, given an unlimited length of the bitstream (less than the period) there is
no more chance of guessing whether the next bit at either end is a one or a zero
than by tossing a fair coin. Cryptographically, the sequence is thus equivalent to
a truly random one and yet is completely deterministic and easily regenerated
by the legitimate receiver.

There are only two ways for an eavesdropper to determine the Blum sequence:

o Factorize the modulus n. For sufficiently large n, this is an intractable
problem in number theory. Using the most efficient general-purpose fac-
toring algorithms (multiple polynomial quadratic sieve), estimated times
for factoring on a Cray II are given in Table 1.

e Cycle forwards through the sequence until it starts to repeat. A Blum
generator, for a suitable choice of seed and modulus, has a maximum
length sequence (MLS) of at least A(A(n)) where X is the number—theoretic
Carmichael function. Since A(n) is of the order of n, so is A(A(n)). Thus,
the sequence period can easily be arranged to be sufficiently long to pre-
clude this attack. For example, if n is a 256-bit quantity, the period of
an MLS would be of the order of 259 bits. Using fast hardware to pro-
duce a residue in 10 microseconds then 10° residues could be computed per
second. Thus, computing the entire cycle would take 2245 seconds or over
102 years. Clearly, attempting to factorize the modulus is preferable!
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Table 1. Integer factorization times

Size of n in Bits Factorization Time

64 10 seconds
128 20 seconds
192 11 minutes
256 11 hours
320 25 days
384 4.2 years
448 253 years
512 16,000 years
585 1 million years

5 Main research areas
The key points of the research are:

e An analysis of the auto—correlation properties of individual blocks of a
Blum sequence to determine whether reliable recovery and hence an ac-
ceptable symbol error rate is possible.

o An analysis of the cross—correlation properties between different blocks of
a Blum sequence to determine whether co—channel rejection and hence an
acceptable symbol error rate is possible. This will depend on the prob-
ability distribution of the cross—correlations. These two areas have been
addressed initially by some simulations. Given the highly random nature of
the sequences, it is likely that the correlation properties will be acceptable
and this has been confirmed by the simulation results.

e An analysis of the algorithmic complexity of the Blum generator. This is
important for operational reasons as the algorithmic complexity limits the
rate at which the residues can be generated and hence limits the chip rate
of the system. Typical speeds that have been attained are 1000 residues
per second in software (on a PC) and 100,000 residues per second in custom
hardware.

¢ Confirmation of the uniformity of Blum sequence spectral shape. Given
the fact that the Blum sequences exhibit all the characteristics of a totally
random sequence, it is likely that this requirement will be satisfied but it
is important to analyze second and higher order statistics as well in order
to avoid adjacent channel interference and other problems.
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o An investigation of the problems of receiver synchronization. This is prob-
ably the most important and difficult problem. With the very long codes
involved, it is necessary to reduce the search range. However, the property
of Blum sequences that (the receiver’s) knowledge of the factors of the
modulus allows random access to any point in the sequence, is the key to
synchronization. During the call setup, a starting seed and offset may be
openly exchanged. Knowledge of the factors allows the receiver to rapidly
jump to the new point in the sequence which might be, say, 10%° chips
downstream. An eavesdropper, however, has no option but to generate the
intervening 10%° chips until he reaches the correct point in the sequence.
This clearly infeasible. Given a typical propagation delay spread of 20:1,
the receiver only has to search 20 or so correlations until the correct one is
found.

o An analysis of possible schemes whereby “good” seeds that produce se-
quences with the desirable properties described can be selected. The abil-
ity to do this without undue effort is important for operational reasons.
Although the maximum length sequences produced by the Blum generator
are of period A(A(n)), it is possible to find certain “pathological” seeds that
generate very much shorter sequences. Trivially, 1 would clearly be a poor
choice! It is important to avoid these bad seeds for all the reasons given
above.

6 Applications
Secure spreading codes have wide application in a number of areas:

e Personal Communications. The possible use of CDMA techniques for
personal communications is the subject of a very large current LINK re-
search project. The use of spreading codes with cryptographic properties
would considerably enhance the value—added attractions of such a system
from the users’ point of view.

e Frequency Hopping. Up to now, only direct spreading applications have
been considered. The ideas described could also be applied to frequency
hopping systems. Here, the carrier frequency is selected from a range of,
say, 256 possible frequencies and changed every so often under the control
of the spreading sequence. This is typically every 10 microseconds for fast
hopping and every millisecond for slow hopping. The slow hopping rate
is possible in software on a PC. Given the current state of fast multiplier
hardware technology, a 256-bit residue can be generated in 10 microsec-
onds. Thus 10° residues can be generated per second, each contributing 8
bits to the spreading sequence. Thus, a maximum spreading rate of 800
kbps is possible for fast hopping. It may be possible to combine the Blum
sequence with code inversion of a LFSR sequence on, say, a 16:1 basis to
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gain the advantage of a higher spreading rate (12.8 Mbps) while retaining
the randomness of the Blum sequence for security.
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Multi-Stage Scheduling Problems with
Precedence Constraints

V.A. Strusevich

University of Greenwich, London

1 Introduction

In the shop scheduling models, we are given a set M = {My, Ms,..., Mp} of
machines, m > 2, and a set J = {J1,J2,...,Jn} of jobs. Each job J; consists
of m; operations O1;, Osj, .. .,Om,; each to be processed on a specified machine
of set M. The processing time of an operation O;; equals p;; time units. It is
assumed that each machine processes at most one job at a time, and each job is
processed on at most one machine at a time.

The most well-known shop scheduling model is the flow shop. Here, each job
Jj is first processed on machine M;, then on machine My, and so on, until it is
processed on machine M,,. In what follows, the order in which a job has to pass
the machines is called the processing route. Thus, in the flow shop, all jobs are
given the same processing route (My, My, ..., Mp).

A more general situation is known as job shop. For this model, the processing
routes of the jobs are assumed to be known in advance, but those need not be
the same. Moreover, for the job shop, a job need not visit all machines of set
M, however, it may visit some machines more than once.

Many practical situations lead to the necessity of studying so-called open
shops. The point of difference between this model and the flow shop is that,
in the open shop, the order of processing operations of a job is immaterial and
must be found, different jobs being allowed to get different orders.

These three basic models can be generalized by combining some or all of
them.

For example, combining the flow shop and the open shop, we obtain the
model which is known as the mized shop. More precisely, for the mixed shop,
it is assumed that the set J of jobs is partitioned into two non-empty subsets
Jo and J;. The jobs of the set Jy have non—fixed orders of their operations
(as in an open shop), while all jobs of the set J; have the processing route
(My, Ms,...,My) (as in a flow shop).

One of the most general shop scheduling models which covers all the previous
ones is called the super shop. This is obtained as a result of combining the open
shop and the job shop. According to that model, set J is partitioned into r + 1
non—empty subsets Jo, J1,J2,---,Jr,7 > 2. The jobs of set Jy have non—fixed
orders of processing their operations (as in an open shop), while the jobs of a
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set Jy,1 < g < r, have the processing route L,; some machines of set M may
not occur in a sequence L,, while, on the other hand, some of them may occur
more than once (as in a job shop).

For any shop scheduling model, preemption may or may not be allowed. If
preemption is not allowed, then there is no interruption in the processing of each
operation. On the other hand, if preemption is allowed, then the processing
of any job on any machine may be interrupted at any time and resumed later.
If the operations of a job have to be processed in the prescribed order, then,
irrespective of whether preemption is allowed the next operation of the job can
only start after the previous operation has been completed. If the order of
the operations of a job is immaterial, then, in between an interruption and a
resumption of the processing of an operation any other unfinished operation of
this job may be processed. In any case, the total length of all time intervals in
which an operation O;; is processed is equal to the given processing time p;;.

In this paper, it is assumed that the jobs are not independent, and there is
a precedence relation imposed over set J. We distinguish between two types of
precedence constraints, given by the relations — and =, respectively.

For two jobs J; and J, we write J; — J; and say that job J; precedes job
Jx if and only if job Ji cannot start on any machine until job J; is completed
on all machines it has to be processed on. The relation — will be called the
precedence relation of the first type. If J; — Jp and there is no job J; such that
Jj — Ji — Ji, then job J; is said to directly precede job Ji, and this is denoted
by Jj —d> Jk.

On the other hand, for two jobs J; and Ji, we write J; = J; and say that
job J; precedes job Jy if and only if for any :,1 < i < m, job Ji cannot start on
machine M; until job J; is completed on M;. The relation = will be called the
precedence relation of the second type. If J; = Ji and there is no job J; such
that J; => J; = Ji, then job J; is said to directly precede job Ji, and this is

denoted by J; L 7.
We assume that precedence constraints are given by a so—called reduction
graph We denote the reduction graphs corresponding to relations — and = by

G and G, respectively. The set of vertices of the reduction graph coincides with
the set of jobs, and there is an arc going from a vertex J; to vertex Ji if and
only if job J; directly precedes job Ji.

The remainder of this paper is organized as follows. Section 2 gives notation
and presents a short overview of the complexity of shop scheduling problems
with no precedence constraints. The problems under precedence constraints of
the first type are considered in Section 3. Section 4 is devoted to studying the
problems under precedence constraints of the second type. Some concluding
remarks are contained in Section 5.

Because of lack of space, we normally give only sketches of the proofs. Missing
details can be found in [19].
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2 Preliminaries

To make an easy reference to a problem, we follow standard notation for schedul-
ing problems based on the three—field classification scheme of the form «f Bly, see,
for example [11]. Here, the first position « stands for the machine environment,
or the type of a shop. We use a € {F, J,0, X, S} in the following way: F — flow
shop; J — job shop; O - open shop; X — mixed shop; S - super shop.

As a rule, the number of machines in a shop is indicated explicitly. For
example, a = F2 denotes the two—machine flow shop. If the number m of
machines is not shown, it is assumed to be variable.

The second position B of the classification scheme describes the processing
conditions. If this position is left empty, this implies that preemption is for-
bidden, and no precedence constraints are imposed. We write “pmtn” in this
position if preemption is allowed. Also, we write either “prec;” or “precs” to
indicate that there are precedence constraints either of the first or of the second
type, respectively.

Let m; denote the number of operations of a job J;. We write “m; < m'’”
in the position § if the number of operations of any job does not exceed a given
number m/’.

The third position v specifies the objective function. In what follows, v =
Cinax, 1.¢, we minimize the makespen or the maximum completion time of all
jobs on all machines. A schedule that minimizes the makespan is called (time-)
optimal.

In our study, we often deal with the two—machine shop scheduling systems of
two—stage processing. In that case, special notation is used. The machines are
denoted by A and B, respectively. For a job J;, the processing times on A and
B are a; and bj, respectively. The set of jobs J is divided into three subsets
Jap,Ipa and Jo. Here, each job of set Jup is first processed on machine A4
and then on machine B, i.e., has the processing route (A, B); each job of set
Jpa has the processing route (B, A); set Jo contains the jobs for which the
processing route can be either (4, B) or (B, A) and is not fixed in advance. The
jobs that have to be processed on exactly one of the machines are also assumed
to belong to the set Jo.

For a non-empty set of jobs Q, we define

a(Q)= ) a,b(Q)= 3 b,
J;€Q J;eQ
while a(0) = 5(@) = 0.

Our main goal is to provide a sharp borderline between “easy”, i.e., polyno-
mially solvable problems, and “difficult” i.e., N P-hard problems. For the later
problems, the existence of a polynomial-time algorithm is unlikely.

First, recall some results on relevant scheduling problems with no precedence
constraints imposed.

The F'2||Cmax and J2|m; < 2|Cmax problems are solvable in O(nlogn) time
due to Johnson [9] and Jackson [8], respectively. The O2||Cmax problem can
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be solved in O(n) time due to Gonzalez and Sahni [6]. Masuda et al. [13]
give an O(nlogn) time algorithm for solving the X2||Cmax problem. Note that
for all these problems preemption, if allowed, does not reduce the makespan,
i.e., the corresponding algorithms also solve the preemptive counterparts of the
mentioned problems.

Both S2|m; < 2|Cmax and S2|m; < 2, pmin|Crax problems are solvable in
O(nlogn) time due to Strusevich [19,20]. For this model, an optimal preemptive
schedule may be shorter than a non—-preemptive one.

Several polynomial-time algorithms are known for the Olpmin|Cyax problem
(see, for example, [6]).

We now give a brief overview of “difficult” shop scheduling problems, the
terminology can be found in [4].

Both F3|[Cipax and F3|pmin|Cpeax problems are NP-hard in the strong
sense, as proved by Garey et al. [5] and by Gonzalez and Sahni [7], respectively.
Both J3|m; < 2|Cmax and J2|m; < 3|Crax problems, as well as their preemptive
counterparts are N P-hard in the strong sense (see [7,12]). The O3||Cnax prob-
lem is N P-hard in the ordinary sense [6], while the general O||Cnax is N P-hard
in the strong sense due to J.K. Lenstra (see, for example, [11]).

In this paper, to prove the N P-hardness of a scheduling problem, we use two
well-known problems, PARTITION and 3-PARTITION. The former problem
is N P-complete in the ordinary sense, while the later is N P-complete in the
strong sense.

PARTITION. Given r positive integers ¢;,i € R = {1,2,...,r}, and an
integer E such that ) ;. e; = 2, does there exist a partition of set R into two
subsets R; and Ry such that ), p e; = ZiERz e; = E?

3-PARTITION. Given 3r positive integers e;,1 € R = {1,2,...,3r}, and
an integer E such that ), pe; = r7E and E/4 < e; < Ef2 , does there exists a
partition of set R into r three-element subsets R; such that 3 . g; €& = E for
all j =1,2,...,77

To prove that a scheduling problem to minimize the makespan is N P-hard,
we consider the corresponding decision problem, i.e. the problem of determin-
ing whether there exists a schedule Sy such that Cpax(So) < y for a given y.
We transform either PARTITION or 3-PARTITION to a specific instance of
the decision counterpart of a scheduling problem in question, and show that in
the resulting problem schedule Sy exists if and only if there exists the desired
partition (or 3—partition). To prove the N P-hardness in the ordinary sense, we
start with PARTITION and show that the required transformation takes time
bounded by a polynomial in . To prove the N P-hardness in the strong sense,
we start with 3~PARTITION and show that the required transformation takes
time bounded by a polynomial in r and E.



Scheduling Problems 219
3 Precedence relation of the first type

In this section we study the complexity of the S|prec;|Cmax and
Slprec1, pmin|Cnax problems under various assumptions on the structure of

set J and the reduction graph a

We only consider reduction graphs of a chain-like structure, which happens
to be enough to give a complete complexity classification of the problems under
consideration. Some of the results presented below can be found in [20].

3.1 Linear order

We start with considering the trivial case, assuming that the set of jobs is linearly

ordered, i.e, the reduction graph a is a single chain.

It is obvious that at any time at most one operation can be processed. There-
fore, a non—preemptive schedule S* that is optimal for both S|prec;|Cinax and
S|preci, pmtn|Cmax problems can be found as follows. The jobs are processed in
the prescribed order and according to their processing routes; for the jobs of set
Jo the processing route can be arbitrary, for example, (M1, Ms, ..., M,,); each
operation starts as soon as possible. It is clear that the time required for finding

schedule S* is O(n 377, m;).

3.2 Single chain constraints

We now consider a more general situation, assuming that the reduction graph
G contains a single chain as well as a number of isolated vertices. In this case,
we denote the linearly ordered subset of jobs corresponding to the chain by 7,

while the subset of non—ordered jobs is denoted by 7.

The F2|prec;|Cmax problem is proved to be N P-hard in the ordinary sense
even if just two jobs are ordered, see [12]. The proof can easily be extended to
show that in fact both F2|prec;|Cnax and F2|prec;, pmtn|Crax problems are
N P-hard in the strong sense if set J = Jap is split into two subsets Jip and
J? ip» such that one of them is linearly ordered and the other is not ordered, i.e.,

J =T =JTigUT2s,T=Tip,J= I35

The O2[prec;|Cmax problem is considered in [1], see also [22], Chapter 3,
Section 4.1. The problem is shown to be N P-hard in the strong sense if

J=Jo=J5UT8 T=J8,T= T2

These results imply that in the non—preemptive case any two-machine prob-
lem to minimize the makespan is N P-hard in the strong sense, if some (but
not all) of the jobs having the same fixed route (or non—fixed route) are linearly
ordered while the other jobs are not ordered.
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Suppose now that preemption is allowed and consider the S|prec;, pmin|Cpax
problem, provided that set J is composed as follows. The set Jg of the jobs with
non—fixed routes is split into two subsets J3 and JZ, so that the jobs of J? are
not ordered, while all other jobs are linearly ordered, i.e.,

Jo=JiUIET=JURU...UT, T= JE. (3.1)

It can be shown that there exists an optimal schedule in which the jobs of

set J are processed without preemption.

Theorem 1. The S|preci, pmitn|Cupax problem is solvable in polynomial time,
provided that set J 1s composed as in Equation 3.1.

Proof. Denote a non—preemptive time—optimal schedule for processing the jobs
of set 3 by S* (3 ). This schedule can be found as described in Section 3.1.

Let the total number of operations of the jobs of set 3 be equal to W.
Assume that the operations are numbered in such a way that in schedule S *(3 )

they are processed in the sequence 1,2,..., W. Since in S* ((_f ) these operations
do not overlap, we may number the corresponding time intervals by the integers
1,2,...,W, assuming that an operation V is processed in the interval V,1 <
V < W. Also, if an operation Oy is numbered as V, we refer to machine M, as
M(V), and to job Jy as J(V).

We show that schedule S*(J) for processing the jobs of set 7 can be extended
to an optimal schedule §* for processing all jobs of set 7.

Let z;;(V) denote the total time of processing job J; €F on machine M;
in the time interval V,1 < V < W. Also, for a positive C, let y;; be the total

time for processing job J; 63 on machine M; in the time interval [Cpax(S™ (3 s
Crax(S*(J)) + CJ.

Consider the following linear programming problem:
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minimize C

s.t.
m
> 2i5(V) < par
i=1iq

5 €T, e =J(V), M, = M(V),V =1,2,...,W;
Z L5 (V) S Pgk,

J;€T

i=1,2...,mi#tqJi=J(V),M,=MYV),V=12..W,

m
Zyij SC:J] EJ: Z Yij SC,ZZ 1a2awm)
=1

JjE;
W ~
doei(V) 4w =pij,i=1,2,...,m; J; €F;
V=1

2i;(V)=0,J; €7, M; = M(V),V =1,2,...,W;

zi; (VY2 0,0; €7,i=1,2,...,m,M; # M(V),V =1,2,..., W.

Suppose that C is the optimal value of C, while .{t\t,-]-( V) and 3,),-_,- are the values
of variables z;;(V) and y;;, respectively, for which the value C = C is achieved,
€T, i=12...,mV=12. . W.

For each V|1 < V < W, solve the O|pmin|Cpax problem of processing the
jobs of set 3 in the time interval V, assuming that the processing times are
equal to /a\zij(V),Jj E,},i =12,...,m If >0 , then solve the Olpmin|Cpax
problem of processing the jobs of set J in the time interval [Cmax(S*(:f N,
Crmax(S* (i )) 4 C], assuming that the processing times are equal to @ij I €.
Concatenating the corresponding partial schedules, we obtain the desired opti-
mal schedule S* with Cinax(5*) = Camax(S*(F)) +C.

Notice that finding the schedule S*(,:_f ) takes polynomial time. The linear

programming problem can be solved in polynomial time. The Olpmin|Cpax
problem is polynomially solvable, and the number of these problems to be solved
depends polynomially on the number of operations of jobs in set 7. Therefore,

we conclude that the problem under consideration is solvable in polynomial time.
The theorem is proved.
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We now consider a special case of the previous problem with m = 2. We
use the notation accepted for the two—machine shop problems. Thus, we assume

that set Jo is split into two subsets J3 and JZ, so that 3: JapU JTpa UJS
and J= J3.

Theorem 2. The S2|precy,pmin, m; < 2|Crax problem is solvable in O(n)
time, zfj JaBUTpa UJ} and(] Jé.

Proof. Suppose that | 3 | = n; and that the jobs of the linearly ordered set 3
are numbered in such a way that J; 4 Jit1,d =1,2,...,n; — 1. Assume that

the jobs in J are numbered arbitrarily and the jobs of set j are processed with
no preemption.
For any feasible schedule S, we have

Crmax(8) 2 T = max{a(7),b(7), a(T) + b(T), max{a; + b;|J; €7}}.

Thus, if we find a schedule that meets this lower bound, this schedule will be
optimal.

First, we find a non—-preemptive schedule S*(i ) for processing the jobs in set
J as described in Section 3.1. This requires O(n1) time.

We need an algorithm for scheduling the jobs of set 7 .

The desired algorithm can be derived from the algorithm by Lawler et al.
[10] for solving the two~machine preemptive open shop scheduling problem to
minimize maximum lateness. That algorithm actually finds a preemptive open
shop schedule with no late jobs with respect to specially defined deadlines. Our
super shop problem can also be viewed as that of finding a schedule with no late

jobs, provided that a job Jg E:f is given the deadline Dy = E;c:l (a; +b;), k=

1,2,...,n1, while all jobs of set J are given the common deadline D = T'. A
slight difference between this problem and that from [10] is that in our case some
jobs may have fixed routes.

In general the running time of the algorithm from [10] is O(nlogn). However,
if the deadlines are sorted in non-decreasing order, the algorithm runs in O(n)
time. Since in our case the jobs are numbered in the required way beforehand,
we conclude that the problem under consideration is solvable in O(n) time. The
theorem is proved.

We now consider the S2|prec;, m; < 2|Crax and S2|precy, pmin, m; < 2|Crax
problems, provided that exactly one of the sets Jap, Jpa or Jo is empty, one
of the remaining sets is linearly ordered, and the other set is not ordered.
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Theorem 3. The S2|preci,m;j < 2|Crmax and S2|preci,pmin, ™ < 2|Ciax
problems are NP-hard in the strong sense zfj Jap and eztherj JBa,Jo =
0 or.,’7— Jo,Tpa = 0.

Proof. We give a sketch of a reduction scheme of 3-PARTITION to the prob-
lems under consideration.

Let the set J consist of n = 4r jobs divided into two groups: U—jobs denoted
by U;,i=1,2,...,3r, and V—jobs denoted by V;,j = 1,2,...,r. The processing

times are set equal to ay, = by, = €51 = 1,2,...,3ray; = by, = E,j =
1,2,...,r

Define J= Jap = {U1,Us,...,Us.} and J= {V4,V5,...,V;}. The prece-
dence relation — is defined in such a way that V; LN Vist, 5 =1,2,...,7r— L

It can be shown that if either {7: Ipa,Jo=0or 3: Jo,Isa = 0, then in
the constructed problem a schedule Sy, preemptive or not, such that Crex(So) <
y = 2rE exists if and only if 3-PARTITION has a solution.

Theorem 4. The S2|prec1,mJ < 2|Cmax problem is N P-hard in the strong
sense lfj JAB,J Jo-

Proof. Use the same reduction of 3-PARTITION to the corresponding deci-
sion problem as in the proof of the previous theorem. The only difference is that

here we define 3: Jap = {V1,Vs,...,V;} and ,:;: Jo ={U1,Ua,...,Us}.

3.3 Summary

The above results provide the complete complexity classification of the super
shop scheduling problems to minimize the makespan under precedence con-
straints of the first type.

Table 1.

3 3 Complexity  Reference
Js I NP [1,22]
Jis Jis NP [12]
Jo Jam NP Theorem 3
Jpa JaB NP Theorem 3

Jap Jo NP Theorem 4
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Table 2.
3 3 Complexity  Reference
JapUJTBaUJs T3 O(n) Theorem 2
Jis T3 NP [12]
Jo JaB NP Theorem 3
IBa JaB NP Theorem 3

If the set of jobs is linearly ordered, then both S|prec;|Cnax and S|prec,
pmitn|Cr .y problems are solvable in polynomial time.

If the reduction graph a contains exactly one chain and possibly a number
of isolated vertices, then the Slprec;, pmitn|Chpax problem is solvable in polyno-
mial time by linear programming, provided that the structure of set J satisfies
Equation 3.1 (see Theorem 1). 'The complexity results for the S2|preci,
m; < 2|Crax problem and the S2|prec;, pmin, m; < 2|Cray problem are given
in Tables 1 and 2, respectively. In these tables, we write “N P” to indicate that
the corresponding problem is N P-hard in the strong sense.

Suppose that the reduction graph a contains p > 2 chains and possibly a
number of isolated vertices (see Figure 1).

It follows from Section 3.2 that we only need to examine the S2|prec;, pmin,
mj < 2|Cmax problem in which the set J& # 0 is not ordered while the set
J = Jap U Jga U J§ is ordered. However, the O2[precy, pmin|Cmax problem
under precedence constraints of the required structure is proved to be N P-hard
in the strong sense by Borodich and Strusevich [2] (see also [22], Chapter 3,
Section 4.5).

Figure 1.
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4 Precedence relation of the second type

In this section we study the complexity of the super shop scheduling problems
under precedence constraints of the second type. Recall that these constraints
are specified by the relation =, and we write J; = J; to indicate that job J;
cannot be started on any machine until job J; is completed on that machine.

The reduction graph of this relation is denoted by E

4.1 Linear order

We start with the simplest situation, in which the set of jobs is linearly ordered,

=
i.e., the graph G is a chain. Assume that the jobs are numbered in such a way
that

n3n% 4.

First, consider the S{precs|Crmax problem with Jo = 0, i.e., the J{precs |Cmax
problem. Since there is a unique feasible sequence of the jobs for each machine,
and each job is defined by a unique sequence of operations, we conclude that an
optimal schedule can be found in O(n 3°7_; m;) time by starting each operation
as soon as possible. Moreover, observe that in this case preemption, if allowed,
may not reduce the makespan, therefore the J|precy, pmin|Cpax problem with
the linearly ordered set of jobs is also polynomially solvable.

Now consider the Om|preca|{Cmax problem with the linearly ordered set of
jobs. By interchanging the set of jobs and the set of machines, we see that
the original problem is equivalent to the Fn||{Cyax problem of processing the
jobs My, M, ..., M,, on the machines Jy,J3,...,J,, in this order. Similarly,
the Om|preca, pmitn|{Cuax problem with the linearly ordered set of jobs becomes
equivalent to the Fn|pmin|Cnax problem of processing the jobs M1, Mo, ..., M,
on the machines Jy, Js,...,J,.

Sotskov [18] proves that both F||Cyax and Flpmin|Cyax problems are N P-
hard in the ordinary sense if the number of jobs is three and the number of
machines is variable. This implies that if the set of jobs is linearly ordered, then
both O3|precs|Cmax and O3|precy, pmin|Cinax problems have the same complex-
ity.

Consider the O2|precs|Cmax and O2|precs, pmin|Crmax  problems with the
linearly ordered set of jobs. As usual, the machines are denoted by A and B,
and the processing times of job J; on these machines are equal to a; and b;,
respectively. By interchanging the set of jobs and the set of machines, the origi-
nal problems become equivalent to the Fn{|Cnax and Fnlpmin|Cpay problems,
respectively, in which two jobs A and B are to be processed on the machines
J1,J2,...,Jn in this order. The last two problems are solvable in polynomial
time. In fact, Sotskov [18] proves that essentially more general problems with two
jobs are polynomially solvable in both the preemptive and non—-preemptive cases.
See also {3]. Applying Sotskov’s algorithm to the flow shop problems with two
Jjobs, we obtain that if the set of jobs is linearly ordered, then the O2|precs|Cmax
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and O2|precy, pmin|Cmax problems are solvable in O(nlogn) and O(n?) time,
respectively. Note that for these problems preemption, if allowed, may reduce
the makespan.

This approach can be extended to the S2|precy, m; < 2|Cax or S2|precs,
pmtn, m; < 2|Cpax problems with linearly ordered set of jobs. Here we have
that Jap U Jga # 0, therefore in the two—job flow shop problem arising after
interchanging the set of jobs and the set of machines, the set of operations is
partially ordered.

We skip the details of a slight modification of Sotskov’s algorithm that is
required to handle this situation. Note that the required changes do not affect
the running time. Thus, the following statement holds:

Theorem 5. If the set of jobs is linearly ordered, the S2|precy, m; < 2|Cmax
and S2|precs, pmin, mj < 2|Cmax problems are solvable in O(nlogn) and O(n?)
time, respectively.

4.2 Single chain constraints

We now consider a more general situation, assuming that the reduction graph

= . . . . . .

G contains a single chain as well as a number of isolated vertices. In this case,
=

we denote the linearly ordered subset of jobs corresponding to the chain by 7,

while the subset of non—ordered jobs is denoted by 3 .
The O2|precs|Cnax problem with

:} ~
T =Jo=J50I3,T=35,T=T&.

is shown to be N P-hard in the strong sense [2], see also [22], Chapter 3, Section
4.6.

Note that the O2|precs,pmin|Chpax and the F2|precy|Ciax problems are
polynomially solvable even under more general precedence constrains. See Sec-
tions 4.3 and 4.4.

In this section we establish the N P-hardness of several two—machine shop
scheduling problems.

Theorem 6. Both S2|precs, m; < 2|[Cmax and S2|precs, pmin,m; < 2| Crax
problems are N P-hard in the strong sense if J = JpalUJap = JpaUJTigUT 25,

=z 1 2 g2
J= jBAUJAB sy J= JAB 75@.
Proof. Starting with 3-PARTITION, define the following instance of the prob-

lems under consideration. Without loss of generality, assume that in the formu-
lation of 3-PARTITION the integer E is even.
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Vi Wi Xi iV, W2 Xo Y2 Vs Vi W, X, Y. Vip
.-».—»H—»‘—».——»HM-».——».——»‘——».——».

U1 U2 U3'r
®e o - .- .9
Figure 2.

Let the set J consist of n = 7r + 1 jobs divided into five groups:

U-jobs denoted by U;,t = 1,2,...,3r;
V—jobs denoted by Vj,i =1,2,...,7r+ 15
W—jobs denoted by W;,j =1,2,...,7;
X-jobs denoted by X;,i =1,2,...,7;
Y-jobs denoted by Y;,5 = 1,2,...,n.

The processing times are set equal to

ay; = by, = €;,=1,2,...,3r;

ay; = E/2,by; = E,j=1,2,...,7+ 1
aw; = E,bw; = E/2,j =1,2,...,7;
ax,=E,bx; =E[2,j=1,2,...,7;
ay; = E/2,by; = E,j=1,2,...,7.

Define J= jﬁB = {U1>U2y"')U3'l‘} and J/]iB :':; {Vl;VZ)"',‘/r-l-l)
Wi, Wao, ..., Wr}, JIBa = {Xl,Xz, o Xe, 1, Y, .,Y,-}, J= JBAUJAB- The
precedence relation = is defined as shown in Figure 2.

It can be shown that in the constructed problem a schedule Sg, preemptive or

not, such that Crax(So) < y = (4r+3/2)E exists if and only if 3-PARTITION
has a solution.

Theorem 7. The S2|precs, pmin|Crmax problem is NP-hard in the ordinary
= ~
sense if J = Jap Y Jo, = Jo, TJ= TaB-

Proof. Starting with PARTITION, define the following instance of the problem
under consideration.

Let the set J consist of n = r + 5 jobs divided into two groups: U—jobs
denoted by U;,i = 1,2,...,r, and V—jobs denoted by V;,5 =1,2,...,5.
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The processing times are set equal to
ay; = by, = 2¢;,=1,2,...,7;
ay; = 2E,by; = 4E,j € {1,3,5};
av; =6E,by; = E,j € {2,4}.

Define 7= Jup = {Us,Us,...,Us,} and F= Jo = Vi, Vo, Vo). The

precedence relation = is defined in such a way that job V; -4 Vir1, 7= 1,2,3,4.
It can be shown that in the constructed problem a schedule Sy, such that
Crinax(So) € y = 20F exists if and only if PARTITION has a solution.

Theorem 8. The ‘S'2l;m'ecz|Cmax problem is NP-hard in the ordinary sense if
J =Jap U Jo, J Jo, ..7 JaB.

Proof. We present the reduction scheme of PARTITION to the decision coun-
terpart of the problem under consideration. Without loss of generality, assume
that in the formulation of PARTITION the integer F is even.

Let the set J consist of n = r 4 10 jobs divided into two groups: U—jobs
denoted by U;,i = 1,2,...,r, and V-jobs denoted by V;,j = 1,2,...,10.

The processing times are set equal to

ay; :bU,‘ =€i,:1,2,.--,7',
ay; = E/2;ij = 3E:] € {1:4:5’8: 9};
av, = 3E, by, = E/2,j € {2,3,6,7,10}.

~ >
Define J= Jap = {U1,Us,...,Us.} and J= Jo = {V1,V2,...,Vie}. The

precedence relation = is defined in such a way that job V; 4 Viv, 7 =1,2,...,9.
It is not difficult to show that in the constructed problem a schedule Sy, such
that Cinax(Se) < y = 20F exists if and only if PARTITION has a solution.

4.3 Series—parallel constraints

Let G(X,U) be a (di)graph, where X is the set of vertices and U is the set of
arcs.

A graph G(X,U) is said to be a parallel composition of two graphs G1(X1,U;)
and Gz(Xz,Uz) such that X1 ﬂXz = @, if X = X1 UX2 and U = U1 U Uz.

A graph G(X,U) is said to be a series composition of two graphs G1(X1,U;)
and G4(X,,Us) such that Xy N X, = 0,if X = X; U Xy and U = U; UU5U T,
where 5 is the set of arcs from each vertex of the graph G, with zero outdegree
to each vertex of the graph G¢ with zero indegree.
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A graph G is called series—parallel (or SP-graph) if either it consists of only
one vertex, or it can be obtained from a set of single~vertex graphs by a subse-
quent application of the operations of series and/or parallel composition.

The monograph [21] by Tanaev et al. provides a systematic exposition of the
theory of optimization of so—called priority—generating functions over partially
ordered sets. Some related facts can also be found in [16] by Monma and Sidney.
As described in [21], any priority—generating function can be minimized over the
set of permutations of n elements that are feasible with respect to a series—parallel
graph in O(nlogn) time.

In particular, this implies that the F2|precy|Cinax problem assuming that the

reduction graph ( is series—parallel is solvable in O(nlogn) time. See [14,17] for
algorithms of the same running time especially designed for solving this problem.

We now consider the S2|precy,m; < 2|Cpax and S2|precy, pmin, m; <
2|Cmax problems under precedence constraints of the following structure. The

=> =
reduction graph G (J) =G (J,U) is a parallel composition of three graphs
= => > > > >
G (JaB) =G (JaB,UaB), G (Ipa) =G (IBa,Usa) and G (Jo) = G (Jo, Uo),
where each is the first two graphs is series-parallel while for the third graph
Uop =19.

It can be shown that the algorithm from [19] for solving the S2|m; < 2|Cmax
and S2[pmitn, m; < 2|Cpax problems can be modified in order to solve S2|prec,
m;j < 2|Cnax and S2|precy , pmin, m; < 2|Crpax problems with the graph a (J)
of the described structure so that the following statement holds.

Theorem 9. The S2|precs, m; < 2|Crnax and S2|precy,pmin, m; < 2|Cpax
problems under series—parallel precedence constraints imposed over set J4p and
over set Jpa are solvable in O(nlogn) time.

4.4 Summary

We now summarize the complexity results for the super shop scheduling problems
to minimize the makespan under precedence constraints of the second type.

If the set of job is linearly ordered, then both J|preca|Cmax and J|precs,
pmin|Crax problems are solvable in polynomial time; the S2]precy|Cmax and
S2|precy, pmitn|Crax problems are solvable in O(nlogn) and O(n?) time, re-
spectively; both O3|precs|Crax and O3|precy, pmin|Cpax are N P-hard in the
ordinary sense. See Section 4.1.

If the reduction graph 2 contains exactly one chain and possibly a number
of isolated vertices, then the complexity results for the S2|precs,m; < 2|Crax
problem and the S2|precy, pmin, m; < 2|Cpax problem are given in Tables 3 and
4, respectively. In these tables, we write “N P” to indicate that the corresponding
problem is N P-hard in the strong sense, and “N P?” to indicate that the problem
is proved to be N P-hard in the ordinary sense and it is unknown if this is N P-
hard in the strong sense. See Section 4.2.
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Table 3.
= ~
J J Complexity  Reference
To TE NP [2,22]
IJpaUJLlp Jig NP Theorem 6
Jo JaB NP? Theorem 8
Table 4.
3 3 Complexity  Reference
JIBaUTip Jip NP Theorem 6
Jo JAB NP? Theorem 7

If the reduction graph 2 contains p > 2 chains and possibly a number of
isolated vertices (see Figure 1), then the O2|precy, pmtn|Cpax problem is solvable
in O(n?) time (see [20] and [22], Chapter 3, Section 4.7).

The S2|preca,mj < 2|Crax and S2|precy, pmin,m; < 2|Cpax problems un-
der series—parallel precedence constraints imposed over set J4p and over set
Jpa are solvable in O(nlogn) time. See Section 4.3.

The F2|precy|Cipax problem under arbitrary precedence constraints of the

second type is N P-hard in the strong sense due to Monma [15].

5 Conclusion

In this paper, we have presented the complexity results of the shop scheduling
problems under precedence constraints of two types.

In the case of the precedence relation — (the first type), the complete clas-
sification is obtained.

For the relation = (the second type) the complexity status of several prob-
lems listed below is still unknown.

1. Determine the complexity of the O2|precq, pmin|Cmnax problem if the re-
duction graph is a tree, a series—parallel graph, an arbitrary circuit—free
graph.

2. Does there exist a reduction graph, more general than a series—parallel
graph such that the F2|precs|Crnax problem is polynomially solvable?

3. Are the X2|precs|Cmax and X2|precy, pmin|Ciax problems under single
chain constraints with 7= Jp and J= Jap N P-hard in the strong sense?
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It is also an interesting research goal to determine the complexity of shop

scheduling problems under precedence constraints with the objectives different
from makespan.

References

1.

10.

11.

12.

Borodich, S.A. and Tuzikov, A.V. (1985). On the complexity of constructing
time—optimal schedules for some two—stage service systems with non-fixed
routes. Methods, Algorithms and Programs for the Solution of Extremal
Problems, Institute of Engineering Cybernetics, Minsk, 76-85. (In Russian.)

. Borodich, S.A. and Strusevich, V.A. (1986). Scheduling a partially ordered

set of jobs for a class of servicing systems. Izvestiya Akademii Nauk BSSR,
Seriya Fiziko-matematicheskikh Nauk, N3, 19-22. (In Russian.)

. Brucker, P. (1988). An efficient algorithm for the job—shop problem with

two jobs. Computing, 40, 353-358.

. Garey, M.R. and Johmnson, D.S. (1979). Computers and Intractability.

A Guide to The Theory of NP-Completeness, Freeman, San Francisco.

. Garey, M.R., Johnson, D.S. and Sethi, R. (1976). The complexity of flow-

shop and jobshop scheduling. Mathematics of Operations Research, 1,
117-129.

Gonzalez, T. and Sahni, S. (1976). Open shop scheduling to minimize finish
time. J. Association for Computer Machinery, 23, 665-669.

Gonzalez, T. and Sahni, S. (1978). Flowshop and jobshop schedules: com-
plexity and approximation. Operations Research, 26, 36-52.

. Jackson, J.R. (1956). An extension of Johnson’s results on job lot scheduling.

Naval Research Logistics Quarterly, 3, 210-203.

. Johnson, S.M. (1954). Optimal two and three production schedules with set

up times included. Naval Research Logistics Quarterly, 1, 61-68.

Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. {1981). Minimizing
maximum lateness in a two—machine open shop. Mathematics of Operations
Research, 6, 153-158.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1993).
Sequencing and scheduling: algorithms and complexity. Handbooks in Op-
erations Research and Management Science, 4, Logistics of Production and
Inventory, Editor: S.C. Graves et al., North~Holland, Amsterdam, 445-522.

Lenstra, J.K., Rinnooy Kan, A.H.G. and Brucker, P. (1977). Complexity of
machine scheduling problems. Annals of Discrete Mathematics, 1, 343-362.



232

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

V.A. Strusevich

Masuda, T., Ishii, H. and Nishida, T. (1985). The mixed shop scheduling
problem. Discrete Applied Mathematics, 11, 175-186.

Monma, C.L. (1979). The two—machine maximum flow-time problem with
series—parallel precedence constraints: an algorithm and extensions. Oper-
ations Research, 27, 792-797.

Monma, C.L. (1980). Sequencing to minimize the maximum job cost. Op-
erations Research, 28, 942-951.

Monma, C.L. and Sidney, J.B. (1979). Sequencing with series—parallel prece-
dence constraints. Mathematics of Operations Research, 4, 215-234.

Sidney, J.B. (1979). The two-machine maximum flow—time problem with
series—parallel precedence relation. Operations Research, 27, 782-791.

Sotskov, Y.N. (1991). The complexity of shop—scheduling problems with two
or three jobs. Furopean J. Operational Research, 53, 326-336.

Strusevich, V.A. (1991). Complexity Aspects of Shop Scheduling Problems,
Ph.D. Thesis, Erasmus University, Rotterdam.

Strusevich, V.A. (1991). Two machine super shop scheduling problem.
J. Operational Research Society, 42, 479-492.

Tanaev, V.S., Gordon, V.S. and Shafransky, Y.M. (1994). Scheduling The-
ory, Single-Stage Systems, Editors: Dordrecht et al., Kluwer Academic Pub-
lishers.

Tanaev, V.S., Sotskov, Y.N. and Strusevich, V.A. (1994). Scheduling The-
ory, Multi-Stage Systems., Editors: Dordrecht et al., Kluwer Academic
Publishers.



Frequency Assignment for Cellular Radio
Networks

D.A. Youngs
Vodafone Limited, Berkshire

Abstract

Assigning frequencies to cells in a cellular radio network has tradition-
ally been carried out either by hand or, more recently, using algorithms
derived from the theory of abstract graphs. This second approach is re-
alised by modelling the problem as a simple graph colouring problem,
where vertices of the graph represent the cells and edges correspond to
potentially interfering cell pairs. The algorithms used were originally de-
veloped to colour unweighted graphs. In effect this means that they utilise
only “hard” interference data between cells.

In this note we describe a graph colouring algorithm that can be ap-
plied quite naturally to edge weighted graphs, and thus also to frequency
assignment problems using “soft” interference data. Prior to this we re-
view a number of existing colouring algorithms widely used today. We also
discuss issues surrounding the generation of interference data, and how to
measure the quality of a given frequency plan.

1 Introduction

The basic frequency assignment problem is to assign a single radio frequency
to each cell in a network (the initial motivation for this work came from mobile
telecommunications networks). Two cells in close proximity are likely to interfere
with each other if they are assigned the same frequency. The difficulty then,
comes in assigning the frequencies so that this interference is minimised. By
modelling the problem as a graph whose vertices represent the cells, and whose
edges correspond to potentially interfering cell pairs, the problem can be solved
effectively using elementary graph colouring techniques. These techniques date
back to at least the 1960’ through the work of Welsh and Powell [1], Szekeres
and Wilf [2], and Matula et al. [3]. An early indication of their applicability to
frequency assignment was given by Hale [4].

The basic problem is prone to a number of further complications. First, it
may be necessary to assign more than one frequency to a cell. This merely leads
to an increase in the size of the problem instance, and can also be solved ef-
fectively using the same graph colouring techniques. Secondly, simply assigning
different frequencies to two cells may not be sufficient to avoid interference, in
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which case further frequency separation between the cells is necessary. This re-
sults in what is still a fairly straightforward problem, and little further work is
required for the usual graph colouring algorithms to apply. Finally, most colour-
ing algorithms attempt to minimise the the number of colours used, whereas in
frequency assignment, the number of frequencies is usually specified in advance,
and the objective is to make the best possible use of them. Whilst the colour-
ing algorithms can usually be adapted to cope with this situation, the resulting
algorithms are rarely as elegant or as effective.

The problem as it now stands is interesting enough, and most present-day
frequency assignment is carried out by applying standard graph colouring al-
gorithms to this problem (although promising alternative approaches, such as
Kunz’s neural networks [5], have been proposed). Nevertheless, there is one
further aspect that should be taken into account, one that sets it apart from
elementary graph colouring. The problems encountered so far are characterised
by the fact that the exclusions (or edges) are “hard”—either they exist or they
do not. In practice we have available far more information than this, usually in
the form of an inierference value between each pair of cells that lies in a spec-
ified continuous range. Thus, we can remodel our problem by considering an
edge weighted graph whose weights correspond to interference values. To solve
this problem requires a significant digression from the usual graph colouring
techniques.

In the next section we review a number of well known sequential colouring al-
gorithms and briefly discuss their application to frequency assignment problems.
Following this, in Section 3 we present a non-sequential colouring algorithm that
can be applied very easily to edge weighted graphs with a specified number of
colours, and thus also to frequency assignment problems with soft (or continuous)
interference data.

Once a solution (i.e. a frequency plan) has been found, the next question
is: how good is it? How to measure the “quality” of a particular solution is a
difficult and possibly subjective matter. The measure we introduce and use is a
crude one based on the residual interference the network experiences after the
frequency assignment. This is considered further in Section 4.

A major factor influencing the quality of solutions produced by our, or any
other, frequency assignment algorithm, is the information content of the input
data. The important data in our case are the weights between pairs of cells.
These weights should correspond to the importance of avoiding interference.
The generation of interference data is discussed in Section 5.

2 Sequential algorithms

Perhaps the most obvious way to colour a graph (or assign frequencies) is to use
a sequential or “greedy” algorithm. In this case we simply consider the vertices
(cells) one at a time, successively assigning allowable colours (frequencies) as we
go, until we have either coloured all vertices or run out of colours.



Cellular Frequency Assignment 235

The main point where frequency assignment differs from the traditional
colouring problem, is that a frequency plan must use only a specified number of
frequencies. Therefore, the second terminating condition is unacceptable for fre-
quency assignment. To combat this a “fix” is normally used whereby disallowed
colours are assigned to the remaining uncoloured vertices.

Perhaps the most important factor affecting the quality of solutions generated
by this method is how the next vertex is chosen. In addition, an initial ordering
of the vertices for resolving uncertainties from the “choice of next vertex” is
important, as is the method by which we choose a colour for each vertex. We may
therefore generate a whole series of algorithms, each with the same underlying
modular structure based on the three components

¢ initial ordering,
e choice of next vertex,

o assignment of colour.

The most popular algorithms are formed through some combination of the
following components

Initial ordering

e random order,
o largest vertex degree first (excluding vertices already ordered),
o smallest vertex degree last (excluding vertices already ordered),

o largest vertex degree first (including vertices already ordered).

Choice of next vertex

e next vertex in the initial ordering (excluding vertices already coloured),
o vertex of smallest degree (excluding vertices already coloured),
o vertex with fewest colours available to it,

o vertex whose assignment results in the minimum degree of the uncoloured
vertices being maximised,

o vertex whose assignment results in the minimum number of colours avail-
able to uncoloured vertices being maximised.
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Assignment of colour

o smallest available colour (assuming we initially order the colours),
o least used available colour,

¢ most used available colour.

Frequency separation can easily be built into the algorithm at the “assignment
of colour” stage.

It is possible to generalise the algorithms to cope with weighted edges (or soft
interference data). This can be achieved at the “choice of next vertex” stage. To
be more precise, where a summation of edges is involved (for example calculation
of the degree of a vertex), this could be replaced by a summation of edge weights.

One of the major problems that can occur with weighted edge versions of the
algorithms, is that the terminating conditions may become ineffective. This is
because, using soft interference data usually leads to considerably more edges
being involved (hard data corresponds to the inclusion of only those edges whose
weights exceed a given threshold), which in turn means that the graph is harder
to colour and a large number of vertices remain uncoloured when the algorithm
terminates. To remedy this, a large number of vertices may have to be assigned
previously disallowed colours. Careful consideration then needs to be given re-
garding how these colours are assigned.

The family of sequential algorithms described above are generally acceptable
for use in practical situations. Nevertheless, very little formal analysis has ap-
peared in the published literature regarding the quality of the solutions they
produce.

3 An alternative algorithm

In this section we describe an algorithm having an entirely different character
to those of the previous section. The fundamental difference lies in the fact that
this algorithm is not sequential in nature. Since our primary application is to
frequency assignment, we consider it appropriate to describe the algorithm in
terms of frequency assignment rather than graph colouring.

3.1 Input data
The algorithm requires the following input data

Cell set
This is simply the set C of identities of cells to be assigned frequencies.

Multiple frequencies

A positive integer m(c) is associated with each cell ¢. This corresponds to the
number of frequencies to be assigned at that cell. In effect, when the algorithm
runs, each cell is divided into m(c) “sub-cells”, one for each desired frequency.
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Frequency number
This value k corresponds to the number of different frequencies available. The
set of frequencies themselves are usually defined as F = {1,2,...,k}.

Interference

A weight or potential interference i(c,d) is associated with each pair of (sub-)
cells ¢ and d. This corresponds to the perceived potential interference between
the cells, or more precisely to the importance of avoiding interference between
the two cells. The weights may take values in any given range, usually some
closed interval of real numbers or discrete (-1 values. Note that i(c,d) = 0
whenever ¢ and d do not interfere.

Frequency separation

A positive integer ds(c, d) is associated with each pair of (sub-) cells ¢ and d. This
value corresponds to the desired frequency separation between the cells. Note
that ds(c,d) = 0 whenever ¢ and d do not interfere, and ds(c,d) = 1 whenever
it is sufficient for ¢ and d to be assigned merely distinct frequencies.

Initial frequency plan

For each (sub-) cell ¢ we are given an initial frequency assignment if(c) for c.
For simplicity we usually assume if(¢) = 1 for all c. Nevertheless, if can be set to
other values such as a randomly generated frequency assignment, or a frequency
assignment generated by some other means (for example by another frequency
assignment algorithm).

Predefined frequencies
A subset of the cells with preassigned fixed frequencies may also be prescribed.

3.2 Notation

Some further notation is required before we describe the algorithm itself. At any
point during the algorithm, a frequency plan f : C — F will be in place. The
actual frequency separation as;(c,d) between two cells ¢ and d with respect to
f is given by

asy(c,d) = |f(c) - F(d)].
We may then define the deficiency D¢(c) of a cell ¢ with respect to f to be

D¢(c) = Z max{0,ds(c, d) — asf(c, d)}i(c,d).
d:d#c

This can be viewed simply as the sum, taken over all cells d distinct from e,
of the interference between ¢ and d, weighted according to how well they achieve
their desired frequency separation.

Finally, suppose f is a frequency plan and ¢ is a cell. We define a set F(f,¢)
which consists of frequency plans that are identical to f except possibly in their
assignment at the cell ¢. Notice that |F(f,c)| = k (where k is the number of
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frequencies available). The net deficiency Ef(c) of ¢ with respect to f is then
defined as

Ey(c) = maxger(s,e{Ds(c) — Dy(c)}.

This can be viewed as the amount by which the deficiency of ¢ can be reduced
by assigning a different frequency. Clearly E¢(c) is always non-negative, and is
zero whenever the current frequency assigned to ¢ has the smallest deficiency. If
¢ is a frequency plan for which E;(c) achieves its maximum, then g is termed a
preferred plan for ¢ (relative to f), and g(c) a preferred frequency for ¢.

3.3 The algorithm

The algorithm assigns the desired number of frequencies to each cell. It does
this in a way that minimises, as far as possible, the residual interference expe-
rienced in the network. Precisely how this residual interference is calculated is
the subject of Section 4. The remainder of this section is concerned with how
the solution is generated.

Initially we construct a larger network of cells from our initial set, so that
each cell requires precisely one frequency to be assigned. Frequency “1” is then
assigned to all cells to give our initial frequency plan. Thereafter we continually
change the frequencies assigned to cells until a stable plan is reached. At each
stage of the algorithm we have a current frequency plan. Upon termination of
the algorithm we take the stable current plan as our final solution.

Formally, the steps of the algorithm are as follows

Step 1 (expansion): Divide each cell ¢ into m(c) sub-cells, one for each of the
desired frequencies in that cell, each one incident with the same neighbouring
cells as the original, and also with the other newly formed sub-cells.

Step 2 (initialisation): Set the frequency plan current = if (here we assume
if(c) = 1 for all ¢). Set the number of available frequencies freq = 2.

Step 3 (reassignment): While cells exist with net deficiency Ecurpent > 0,
choose a cell ¢ such that E.yrrent(c) is a maximum (taken over all cs). Set the
frequency plan current equal to a preferred plan for c.

Step 4 (increment): If the total number of available frequencies freq < k,
then set freq = freq + 1 and return to Step 3. Otherwise STOP.

At this point a few explanatory remarks are in order. The new edges intro-
duced between pairs of sub-cells in Step 1 must be assigned suitable interference
values (also determined by the factors discussed in Section 5). All frequency
plans considered in Step 3 are allowed to range over frequencies 1,2,..., freq only.
A simple derivation of the algorithm is obtained by setting freq = k at Step 1
and ignoring Step 4. This is useful if if is not the trivial all “1”s assignment. If a
cell has a prescribed fixed frequency, then we always set its net deficiency equal
to zero. This prevents its assigned frequency from being changed.
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It is left as an easy exercise for the reader to show that the algorithm always
terminates.

4 Quality measure

Suppose that for each cell ¢ we are given the frequency assignment f(¢) of ¢, and
for each pair ¢ and d of cells, we are also given the interference i(c, d), the desired
frequency separation ds(c, d), and the actual frequency separation as;(c, d). We
assume here that in the case of multiple frequencies, the set of cells has been
split as described in Step 1 of the algorithm (i.e. we treat them as separate cells
and have precisely one frequency assigned in each cell).

We define the residual interference I = I(f,%, ds) of the frequency plan f to
be

I = Zc,d:c;ﬁdmax{o,ds(c,d)—as;(c,d)}i(c,d)

32 Ds(e)

This can be viewed simply as the sum, taken over all pairs of cells, of the
interference between them, weighted according to how well they achieve their
desired frequency separation. Notice that the summation is over all unordered
pairs of cells.

It is possible that a better measure than I can be found to assess the quality
of a given frequency assignment. Nevertheless, the function I does possess most
of the essential qualities required of such a measure, so it is likely that a good
measure will not differ to any great extent from I. Two of the basic properties
of I are as follows

o I achieves its maximum value with the worst possible frequency assign-
ment, i.e. when all cells are assigned identical frequencies.

o [ achieves its minimum value (= 0) if and only if the frequency assignment
is perfect, i.e. when no two cells interfere with each other.

The function I also possesses other desirable properties, such as its apparent
“monotonicity” (i.e. for intermediate values of I, a lower value seems to indicate
a “better” plan), and its “dependence” on all of the input data.

Of course, even if I were deemed to be an acceptable measure, there are still
aspects of it that require further study. In particular, there is the question of
whether the interference is a linear function of the frequency separation achieved.

A very important assumption made thus far is that all information (inter-
ference data and frequency separation) concerns merely “pairs of cells”. The
problem becomes far more complicated if “triples of cells” and so on are to be
considered. Indeed it then becomes impossible to even model the problem in a
graph theoretic setting (it requires a more general “hypergraph” or “set system”
theory), let alone trying to solve it using techniques from the theory.
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Finally, we reiterate that there is a very important distinction to be made
between the applicability of the function I, and how interference values are
assigned to pairs of cells. For example, factors such as “cell size” and “cell usage”
can be taken into account through the interference value assigned between cell
pairs, and not in the way that quality is measured. Further discussion on this
matter may be found in Section 5.

5 Interference data

As described previously, a weight or interference value is assigned between each
pair of cells in the network. These values should reflect the importance of assign-
ing distinct (or further separated) frequencies, and not just the level of interfer-
ence experienced when assigning the same frequency. Of course the amount of
interference caused is an important factor, but there are other equally important
factors that up to now have been largely ignored in practice.

Other factors that should have a bearing on the weight are cell loading and
geographical location. Obviously if a cell is heavily loaded with users then it
1s more important than a cell that is hardly used at all. Similarly, in certain
geographical locations such as Inner London it is desirable to reduce interference
to an absolute minimum, not only because the cells situated there are heavily
used, but also because there may be competition from other networks, or perhaps
the users may expect a superior service. Another factor is that of “cell size”: two
large cells interfering with one another will result in interference over a larger
geographical area than two small cells interfering.

How to calculate weights between cells is an area where considerable further
work is required. At present the interference value for a pair of cells is often
derived simply from data that estimates how much (which is itself a fairly loosely
defined term) interference is experienced between the cells when they are assigned
identical frequencies. Other factors such as those mentioned above should be
incorporated into the weight calculations.

6 Conclusions

Frequency assignment problems in cellular radio environments are commonly
solved using techniques borrowed from the theory of abstract graphs, more specif-
ically, graph colouring. These techniques tend to aim at minimising the number
of colours used to colour a graph, whereas frequency assignment can be viewed
as making maximum use of a predefined set of colours. In addition, the data
available for use in practical frequency assignment is generally “soft” in nature,
representing the level of potential interference between cells. In spite of these two
distinguishing features, graph colouring algorithms have up to now, been used
only in their traditional form, minimising the number of frequencies (colours)
and handling hard input data.
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In this note we have attempted to show how graph colouring techniques can
be used to tackle frequency assignment problems in thier natural setting with
predefined sets of available colours and soft input data. As well as giving a
brief indication of how traditional sequential algorithms can be generalised to
cope with soft input data, we have described a new non-sequential algorithm
eminently suitable for use with soft input data.

Measuring the quality of solutions offered by traditional graph colouring tech-
niques is a trivial exercise, it amounts to counting the number of colours used.
For frequency assignment the problem becomes far more difficult—we are given
a set of frequencies, and must make “best” use of them. in this note we have
proposed a simple quality measure for frequency assignment. Nevertheless, until
comparable algorithms (i.e. based on fixed sets of frequencies and soft data)
are forthcoming, the relative merits of the algorithm presented here cannot be
assessed in any meaningful way.
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