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Dedication: To Carmen, Maria, and Alexander,

who make our lives most enjoyable



Preface

This book discusses the physics and applications of quantum well infrared
photodetectors (QWIPs). The presentation is intended for both students as a
learning text and scientists/engineers as a reference. We have assumed that
the reader has a basic background of quantum mechanics, solid-state physics,
and semiconductor devices. To make this book as widely accessible as possible,
we have attempted to treat and present the materials in a simple and straight-
forward fashion. We chose the topics for the book by the following criteria: it
must be well established and understood, and it should have been or poten-
tially will be used in practical applications. We have addressed most aspects
relevant for the field but have omitted at the same time detailed discussions
of specialized topics such as the valence band quantum wells.

Our book is organized in two parts. Physics (Part I) begins with the basics
of infrared detection (Chap. 2), valid for any photon detector (of course, the
reader who is familiar with the general concepts of photon detectors may skip
this chapter). Chapter 3 covers a broad theoretical background on semicon-
ductor quantum wells and intersubband transitions, which will be referenced
in the following chapters (the reader may skip Chap. 3 at the beginning).
Chapter 4 on photoconductive QWIPs, continued by its further development,
the photovoltaic QWIP (Chap. 5), is considered as the central part of the
book – relevant for all the following chapters. Chapter 6 is devoted to opti-
cal coupling, which is crucial for practical implementation. The chapters on
miscellaneous effects (Chap. 7) and related devices (Chap. 8) are intended for
scientists interested in further developments, which the reader may choose to
skip (without affecting the rest of the book).

“Applications” (Part II) starts with thermal imaging (Chap. 9), the main
application field of QWIPs. After some general considerations on thermal
imaging using QWIPs, we showcase typical fabrication steps of QWIP arrays,
performance data of some QWIP thermal imagers, and their practical use
in fields like medicine, environmental sciences, and quality control. Finally,
Chap. 10 covers the second application field, i.e., ultrafast and heterodyne
detection. This field is still mostly in the stage of active research, but might
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Fig. 0.1. The authors in Freiburg (QWIP thermal image)

soon enter the application phase since demands have recently emerged for
ultrafast mid-infrared and terahertz detectors.

We thank our colleagues and coworkers for their contributions, especially
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orpe, C.Y. Song, and Z.R. Wasilewski of National Research Council Canada
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1

Introduction

Semiconductors have virtually touched everyone’s life. The amazing pace of
the advance in silicon (Si) microelectronics, responsible for the increasingly
more powerful computers, shows little signs of slowing down. Optoelectronics
relies on compound semiconductors, most commonly consisting of column
III and V elements in the periodic table, such as gallium arsenide (GaAs),
indium phosphide (InP), and related alloys. The research and development
of optoelectronic devices have mainly been driven by the applications needs,
e.g., in telecommunications, aerospace, and defense. The story of the quantum
well infrared photodetector (QWIP), the subject of this book, has been one of
the successful examples. The standard GaAs-based QWIPs cover the infrared
(IR) wavelength region longer than about 3 µm. The immediate use of these
QWIPs is therefore in the aerospace and defense areas.

A natural question arises concerning the motivation for studying QWIPs.
After all, technologies based on HgCdTe and InSb are well developed for
IR detection and imaging in the wavelength region of about 3–14 µm. What
advantages do QWIPs provide? The first and foremost important advantage
relates to the availability of a mature material and processing technology
for QWIPs based on GaAs. QWIPs based on Si and InP have also been
investigated, but they are far less mature. With the mature technology, it is
anticipated that the cost of an imaging device based on a QWIP would be
substantially less than that based on HgCdTe or InSb, and that a large volume
production capability can be easily established. Other advantages relate to the
uniqueness and the flexibility of the QWIP approach, e.g., in high speed and
multicolor applications. It is necessary and important to compare QWIPs with
other established detectors such as those based on HgCdTe and InSb. It is at
least equally or even more important to remind ourselves of the lemma of any
new technology, best described by the statement made by Kroemer [1]: “The
principal applications of any sufficiently new and innovative technology always
have been – and will continue to be – applications created by that technology.”
It is therefore our belief that the wide spread applications of QWIPs will come
in new applications such as in the medical and health areas.
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Fig. 1.1. Number of papers related to intersubband transition devices vs. year

The earliest studies of optical intersubband transitions (ISBT) in semi-
conductors were on two-dimensional (2D) electron systems in metal–oxide–
semiconductor inversion layers (see [2] and references therein). Suggestions of
using quantum wells for IR devices were first documented in [3,4]. The first ex-
periment on making use of quantum wells for IR detection was reported [5,6].
Proposals for specific embodiments of photodetectors and related theoretical
considerations were made [7–11]. The first experiment on ISBT in quantum
wells was reported [12]. Subsequently, strong intersubband absorption and
Stark shift were observed [13]. The first clear demonstration of QWIPs was
made in 1987 [14]; since then tremendous progress was made by the Bell
Laboratories’ group (see [15] and references therein). Today, large focal plane
arrays with excellent uniformity are being fabricated [16–18]. Several review
articles [15,16,19,20] relevant to QWIPs have been published. Collections of
conference papers related to ISBT in quantum wells can be found [21–23]
and to QWIPs specifically [24–26]. A book on QWIPs has been written by
Choi [27]. A literature search of the number of papers related to quantum
well ISBT devices is graphed in Fig. 1.1. The number of QWIP-related papers
has been growing since the initial demonstration. It will be interesting to see
how many more years the QWIP research will continue to advance. It is also
interesting to contrast this with papers on emitters based on ISBT. The re-
alization of the ISBT laser, the quantum cascade laser (QCL), was made in
1994 [28]. This area will no doubt continue to grow [29,30]. The development
of QCLs will likely expand the scope of QWIP applications, e.g., in the areas
of free space optical communication and chemical/environmental sensing.
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Basics of Infrared Detection

Before the in-depth analyses of quantum well, ISBT, and QWIP – a specific
infrared detector – we first discuss the general concept of how the tempera-
ture of an object influences the emission of infrared radiation, and how the
detection of this radiation allows us to sense the temperature of this object.
We also discuss the general properties of detector signal, noise, and figures of
merit such as noise-equivalent power (NEP), detectivity, and noise-equivalent
temperature difference (NETD).

2.1 Blackbody Radiation

To fully understand the process of infrared detection, we have to know some
basic properties of the signals. The concept of temperature is equivalent to
certain energy distributions. The Fermi–Dirac distribution describes the tem-
perature of an ensemble of indistinguishable particles obeying the exclusion
principle (fermions), e.g., of carriers in a semiconductor while the thermal en-
ergy distribution of particles with unlimited state occupancy (bosons) is given
by the Bose–Einstein distribution function

fB(E) =
1

exp(E/kBT ) − 1
. (2.1)

Here E is the energy, T is the temperature, and kB is the Boltzmann constant.
This distribution function describes in particular the energy distribution

of a photon field with temperature T . Applying (2.1) to the electromagnetic
modes (photon states) in a cavity yields Planck’s radiation law. In its com-
monly used form, it states that the irradiance Iν (total power per unit surface
area) at photon frequency ν is given by [31]

dIν =
2πh

c2

ν3dν

exp(hν/kBT ) − 1
. (2.2)
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Here h is the Planck’s constant which connects the frequency with the energy
E = hν of a photon, and c is the speed of light. Equation (2.2) characterizes
the radiation field inside a cavity with the radiation temperature T .

An important property of a thermal radiation field is that the radiation
temperature is constant at each position inside the cavity. Considering now
the walls of the cavity, thermal equilibrium can only exist if, at each part of
the surface, the absorbed radiation power equals the emitted radiation power.
The same is of course true for the surface of a small absorbing object inside
the cavity. Consequently, at any frequency and incident angle, the emissivity
ε of a surface equals the absorptivity (or (1 − reflectivity) if the object is
opaque).

Another important consequence of this concept is that the surface of an
object with temperature T still emits radiation in the absence of incident
radiation or, more generally, in the absence of thermal equilibrium between
the object and the radiation field. For a given emissivity ε(ν, Ω), the radiance
Hν,Ω (radiation power per unit area and steradian) can be expressed as

dHν,Ω = ε(ν, Ω)
2h

c2

ν3dν cos ϑdΩ

exp(hν/kBT ) − 1
, (2.3)

where dΩ = sinϑdϑdϕ.
In the simplest case, which is referred to as “blackbody,” the emissivity of

the surface is ε = 1, such that the emitted radiation is identical to a thermal
radiation field. Real objects often show a “greybody” behavior, where ε is
constant with a value slightly less than one.

In general, ε can exhibit a complicated angular and frequency dependence.
In particular, in the case of structured surfaces, ε may not just depend on the
polar angle ϑ but also on the azimuthal angle ϕ. Intentional modification of
these dependencies can be achieved by applying appropriate coatings (reflec-
tion/antireflection) and by structuring the surface. Moreover, the reflectivity
and thus also the emissivity are strongly affected if diffraction gratings are
fabricated at the surface. In addition to diffraction, the emissivity is also
influenced by surface plasmons, which can lead to a high degree of spatial
coherence and narrow angular dependence of the emitted radiation [32].

For isotropic ε, integration of Eq. (2.3) over ϑ and ϕ yields the total emitted
power density per frequency interval, which has the same value as Iν in (2.2)
times an additional factor ε. Substituting for the photon energy E yields the
power PE per energy interval radiated from a surface with area A:

dPE = Aε
2π

h3c2

E3dE

exp(E/kBT ) − 1
. (2.4)

Integration over the variable E (or ν) results in the Stefan–Boltzmann equa-
tion

Ptot = AεσT 4 (2.5)
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Fig. 2.1. Energy distribution of blackbody radiation vs. photon energy

with the Stefan–Boltzmann constant σ=2π5k4
B/15c2h3 =5.67×10−8 W/m2K4.

According to Eq. (2.5), the total emitted radiation power density Ptot of a
blackbody with ε = 1 at 300 K equals 46 mW cm−2.

The radiative energy distribution of a blackbody with ε = 1 is shown in
Fig. 2.1. Note that a different functional shape is obtained if the distribution
is expressed as a function of the wavelength λ = c/ν, since dν = dλ/λ2.

The blackbody radiation incident onto a small detector with area A
through an optical objective can be expressed in terms of the f-number
F# of the objective, which is the ratio between its focal length fL and
the lens diameter DL. We thus obtain tan(ϑ/2) = DL/2fL = 1/2F#, or
sin2(ϑ/2) = 1/(4F 2

# + 1). The objective redirects the incident light emitted
from a blackbody onto the detector, and it can be shown that the incident
photon flux is the same as if the clear aperture of the lens itself were a black-
body with the same temperature. Integrating over the angular variables, (2.3)
thus yields

dPν,lens = A
1

4F 2
# + 1

2πhν3dν

c2(exp(hν/kBT ) − 1)
, (2.6)

which determines the radiation power incident onto the detector. This equa-
tion provides the basis for calculating the temperature resolution later in this
chapter. We note that ϑ or F# also determine the optical field of view.

2.2 Signal, Noise, and Noise-Equivalent Power

We now assume that the power PS of a signal with photon energy hν, which
is equivalent to a photon number Φ = PS/hν per unit time, is incident on
a photon detector with an area A. There is a probability η, also called the
(internal) quantum efficiency, that an incident photon is absorbed in the de-
tector and contributes to the signal current IS that is flowing in the external
circuit. The photoconductive gain gphoto is defined as the ratio between the
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statistically averaged number nx of electrons that are collected in the external
circuit and the average number ndet of absorbed or detected photons,

gphoto = nx/ndet. (2.7)

Here the statistical average x̄ of a stochastic variable x denotes its average
over a large set of samples, each with duration τint.

IS can thus be expressed as IS = eηgphotoΦ. The responsivity R is then
defined as the ratio IS/PS, which leads to

R =
e

hν
ηgphoto. (2.8)

In the case of a photoconductor, gphoto can be expressed as the ratio be-
tween the mean free path of the photoexcited carriers before recombination
and the total thickness of the active region between the contacts; and, equiv-
alently, as the ratio between the excited carrier lifetime and the total transit
time. In the case of a photodiode, each detected photon contributes exactly
one electron to the signal. The responsivity is thus given by (2.8) with g = 1,
though the concept of gain is usually not applied to a photodiode. For both
cases, we have implicitly assumed that τint is much larger than the duration
τp of the signal pulses associated with individual detected photons. If τint ap-
proaches τp, then the signal (and also the noise associated with the signal) will
depend on the sampling time and on the detection frequency. In the context
of QWIPs, this case will be discussed in Chap. 10.

The noise associated with a stochastic variable is determined by its statis-
tical properties. In mathematical terms, the noise associated with a stochastic
variable x is given by its variance, defined by var(x) = (x − x)2.

In the case of a photodiode, each detected photon gives rise to a pho-
tocharge of exactly one electron. Thus, the number nx of electrons collected
during the sampling time τint obeys a Poisson distribution, meaning that the
probability p(n) of collecting n electrons is p(n) = (nx

n/n!) exp(−nx). The
variance for the specific case of a Poisson distribution is var(nx) = nx.

The time-averaged current Ī = enx/τint is associated with the (squared)
noise current

i2n = var(I) (2.9)

which, in the case of a photodiode, gives rise to i2n = eĪ/τint. In practice, noise
is measured as a mean square current transmitted through a filter with an
effective bandwidth ∆f . It can be shown that the sampling or measurement
time τint is related to the bandwidth by

∆f = 1/2τint. (2.10)

The noise in,s associated with a Poisson distribution is called shot noise.
According to the previous discussion, it can be written as

i2n,s = 2eĪ∆f. (2.11)
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For a given signal, shot noise yields the lowest noise level obtainable for any
detector since there is a one-to-one correspondence with the noise already
contained in the statistics of the incident photons themselves.

An “ideal” photoconductor exhibits a somewhat more complicated statis-
tics, since the lifetime of photoexcited electrons obeys in turn a Poisson distri-
bution. Assuming again τint � τp, the signal is thus composed of a sequence
of short pulses that are Poisson-distributed in time, and their amplitudes also
show a Poisson distribution. It can be shown that these statistics result in the
following noise expression:

i2n,gr = 4egphotoĪ∆f. (2.12)

This expression can be understood by the argument (see Sect. 4.3) that both
carrier generation and recombination are associated with Poisson distribu-
tions, each of which generates a noise contribution as in (2.11). in,gr is thus
called generation-recombination (g-r) noise. We note that a “real” photo-
conductor may obtain additional noise contributions, attributable to, e.g.,
impurity levels, traps, or various scattering events including impact ioniza-
tion [33,34].

We point out that, for an ideal photoconductor, currents induced by op-
tically or thermally generated carriers and the associated g-r noise are by
definition asociated with the same gain. The index of gphoto will therefore be
omitted in the present context. Due to the discrete microscopic structure of
QWIPs, it will sometimes be necessary, however, to distinguish between the
gains arising from the responsivity and the noise.

Noise is not only induced by the signal PS itself, but also by a background
power PB originating, e.g., from objects adjacent to the signal source, stray
light, or emission from the objective, and by the dark current Idark of the
detector. Assuming that Idark is associated with the same noise behavior as
the optically induced currents, which is usually a good approximation for
most detectors, the resulting noise current is readily obtained by substituting
I = RPS +RPB + Idark into Eqs. (2.11) and (2.12). Depending on the relative
magnitudes of RPS, RPB, and Idark, we then distinguish between signal-noise-
limited, background-noise-limited, and dark-current-limited detection.

Assuming that the dark current is caused by thermal excitation, we define
the thermal generation rate Gth (the number of thermally generated carriers
per time and volume V). Idark is thus expressed as

Idark = egGthV. (2.13)

In the case of QWIPs, Gth is obtained by spatial averaging over the detector
volume. Background-limited (BL) detection thus refers to the situation that
the optical generation rate induced by the radiation exceeds Gth.

The NEP is defined as the signal power needed to obtain a unity signal-
to-noise ratio. Since the ratio between the signal power and the noise power
equals the ratio between the squared currents, the NEP is determined by the
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condition i2n = R2P 2
S , such that NEP = in/R. For signal-noise limited (SL)

detection, we thus obtain

(NEP)SL,s =
hν

ητint
=

2hν∆f

η
(2.14)

in the case of a photodiode, and

(NEP)SL,gr =
2hν

ητint
=

4hν∆f

η
(2.15)

for a photoconductor. Similarly, BL detection yields

(NEP)BL,s =

√
hνPB

ητint
=

√
2hν∆fPB

η
(2.16)

in the case of a photodiode, and

(NEP)BL,gr =

√
2hνPB

ητint
=

√
4hν∆fPB

η
(2.17)

for a photoconductor. In the dark-limited (DL) case, (2.13) gives rise to

(NEP)DL,gr =
hν

η

√
4GthV∆f =

hν

η

√
4GthV∆f

τint
. (2.18)

We point out that the NEP in (2.15), (2.17), and (2.18) is not influenced by
the gain of the photoconductor.

2.3 Detectivity and Noise-Equivalent Temperature
Difference

The detectivity D of a detector is defined as the inverse of NEP. In order to
specify the performance of a detector, the specific detectivity D� = D

√
A∆f is

often used. D� is the detectivity normalized with respect to the detector area
and the bandwidth of the measurement. This definition leads to the general
expression

D∗ =
R
√

A∆f

in
. (2.19)

For BL detection in the presence of the background photon flux density
ΦB,ph (irradiance I), given by

ΦB,ph =
PB

hνA
=

I
hν

, (2.20)

we thus obtain from (2.16) and (2.17) the specific detectivities
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D�
BL,s =

√
η

2hνI (2.21)

and

D�
BL,gr =

√
η

4hνI . (2.22)

Equations (2.21) and (2.22) are sometimes referred to as the D� of a photo-
voltaic and photoconductive detector, respectively.

In the DL case, (2.18) yields

D�
DL,gr =

η

hν
√

4GthLDet

, (2.23)

where we have introduced the total thickness LDet = V/A of the photoconduc-
tor. Assuming that the detected radiation is absorbed with the penetration
depth α, η is given by (1 − exp(αLDet)), and η is proportional to LDet for
small LDet. Therefore, the ratio α/Gth can be used as a figure of merit of the
detector material. For larger LDet, this figure of merit can still be used since
D∗ according to Eq. (2.23) has its maximum for LDet = 1.26/α, where it has
a value of (0.31/hν)

√
α/Gth [20].

As expected, the detectivities in Eqs. (2.21)–(2.23) are independent of the
measurement bandwidth and detector area. More generally, D� is a figure of
merit that specifies any detector for which i2n is proportional to the detector
area.

The NETD is defined as the temperature difference ∆T at which the in-
duced change ∆PB of the background power equals NEP, i.e.,

NETD =
NEP

dPB/dT
. (2.24)

We note that (2.24), if expressed in terms of signal electrons NS = PBRτint/e
and noise electrons NN = inτint/e, is equivalent to the intuitive relation NN =
(dNS/dT ) × NETD. The NETD is probably the most important figure of
merit characterizing detectors and arrays used for passive infrared detection
and imaging.

In order to keep the following discussion simple, we consider infrared de-
tection within a narrow spectral band ∆ν around the detection energy hν. In
addition, hν/kBT is assumed to be large enough such that the Bose–Einstein
distribution in Planck’s radiation formula can be approximated by a simple
exponential. In this case, we obtain

dPB

dT
≈ hν

kBT 2
PB, (2.25)

or equivalently,
dNS

dT
≈ hν

kBT 2
NS. (2.26)
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Equation (2.26) now allows us to relate thermal resolution to the signal-to-
noise ratio

NETD =
kBT 2

hν

NN

NS
. (2.27)

This means in particular that in order to achieve a certain NETD, the required
signal-to-noise ratio is proportional to the detection wavelength.

Restricting the discussion to an ideal photoconductor as in Eq. (2.17), the
NETD can now be expressed as

NETD = kBT 2

√
2

hνηPBτint
. (2.28)

Substituting for PB the accumulated signal electrons NS yields

NETD =
kBT 2

hν

√
2g

NS
. (2.29)

To give a typical example, let us assume thermal detection within the
spectral band from 8 to 9 µm at 300 K radiation temperature using a detector
with η = 10% and A = 30 × 30 µm2 through an F# = 2 objective at an
integration time τint = 20 ms. According to Eq. (2.6), we expect an incident
power of PB = 1.5 nW, and Eq. (2.28) predicts NETD = 7 mK. If gphoto = 1,
the photo charge amounts to about NS = 1.3 × 108 signal electrons. Since
this number is already somewhat larger than the typical storage capacity of
a readout integrated circuit, such an NETD is only achievable by increasing
the storage capacity or by working at reduced noise levels, which is achievable
for lower gphoto. We will come back to this point in Chap. 9.

Finally, it is worthwhile to take a closer look at the number of noise elec-
trons NN = in,grτint/e. To this end, we express Eq. (2.12) in terms of NS and
NN, which yields

NN =
√

2gNS . (2.30)

The above example then yields NS/NN = 8,000 (see also (2.27)), which im-
poses additional harsh requirements on the readout noise and on other noise
sources associated with the detection electronics. The difficulty arises from
the necessity to resolve very small changes in the thermal background, which,
according to (2.25), are as low as ∆PB/PB = 1.3 × 10−4 for ∆T = 7 mK.
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Semiconductor Quantum Wells
and Intersubband Transitions

3.1 Quantum Wells

The success of QWIPs has been made possible by semiconductor crystal
growth technology such as molecular beam epitaxy (MBE) [35,36] and by de-
vice concepts using bandgap engineering [37]. Semiconductor structures with
atomic layer control are now routinely fabricated by MBEs. Several introduc-
tory textbooks on quantum well physics have been written by Bastard [38],
Weisbuch and Vinter [39], Shik [40], and Harrison [41].

3.2 Intersubband Transitions

The term intersubband transition (ISBT) refers to the electronic transition
between the confined states in quantum wells. The physics related to the op-
tical ISBT in quantum wells is treated in detail by Helm [42]. Other materials
of specific relevance to QWIPs can be found in [27,43]. Here, we discuss only
ISBTs in the conduction band (CB). Examples presented here are mostly on
samples made by GaAs-based MBE. For this system, a polarization selection
rule was realized in the early days [7]: only the light polarized in the growth
direction can cause ISBTs. (This will be discussed in more mathematical de-
tails in Sect. 3.3.) The selection rule is valid for quantum wells where the
single band isotropic effective mass approximation holds. Since the argument
is based on the effective mass approximation, the selection rule is naturally
not rigorous. As band mixing is the cause of the breakdown of the selection
rule, physical intuition tells us that the accuracy of the selection rule should
be related to the ratio of the energy scales involved. The closest band to the
conduction band (at least for the GaAs case) is the valence band (VB). The
relevant energy ratio is then En/Eg, where En (n = 1, 2, . . .) are the eigenen-
ergies of the confined states in the conduction band quantum well and Eg is
the bandgap. (Note that the reference point – zero energy – for En is chosen
at the conduction bandedge of the well.) For common quantum wells used
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Fig. 3.1. Schematic bandedge profile of a GaAs/AlGaAs quantum well. Conduction
band (CB), valence band (VB), and spin–orbit split-off (SO) band are shown. The
bandgap energy (Eg) is about ten times the conduction band offset (∆Ec)

in QWIPs (see, [15]) the ratio is small and therefore the selection rule is ex-
pected to be quite accurate, with a deviation of at most 10%, level, as shown
experimentally [44].

The bandedge profile of a GaAs/AlGaAs quantum well is depicted in
Fig. 3.1. An optical ISBT in the conduction band (CB) is shown by an ar-
row. The vertical energy scale is drawn roughly in the correct proportion.
It is seen that the closest bands, valence band (VB), and spin–orbit split-off
(SO) band, are far away in comparison with the ISBT energy involved. It is
therefore natural to expect that the effect of mixing to the VB or SO bands
should be small, and hence the selection rule holds quite accurately.

Because of the selection rule, a normal incidence geometry (i.e., light in-
cident normal to the wafer and along the growth direction) is not suitable.
A commonly employed 45◦ edge facet geometry is shown Fig. 3.2, as first
used [14]. This geometry “throws away” one half of the unpolarized light, but
is simple and convenient to realize, and is usually used to obtain a detec-
tor performance benchmark. The majority of applications of QWIPs requires
large 2D arrays where the facet geometry is not suited. Various diffraction
gratings are used for these practical devices, discussed in Chap. 6.

Within the single band effective mass approximation, the Schrödinger
equation reads

−∇ h̄2

2m
∇ψ + V ψ = Eψ, (3.1)

where m is the effective mass and V is the potential such as the one labeled CB
in Fig. 3.1. If we choose the quantum well direction as the z-axis, the potential
V and the mass m depend only on z and the wavefunction is separable into
a lateral (x − y plane) part ψxy and a z part ψz. The lateral part is simply a
planewave with kinetic energy E‖. ψz is a solution of
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Fig. 3.2. 45◦ edge facet light-coupling geometry. The figure is not drawn to scale.
The semi-insulating substrate thickness is usually in the range of 400–700 µm. For
testing individual detector performance, mesa devices of areas from about 1002–
10002 µm2 are used. The IR light is shone normal to the facet surface. The P and S
polarizations are defined with respect to the light incidence on the quantum wells

− d
dz

h̄2

2m

d
dz

ψz + V ψz = E⊥ψz, (3.2)

such that E = E‖ + E⊥. Taking into account that m = m(z) for different
barrier and well materials, the operator d/dz does not commute with 1/m.
Then (3.2) requires ψz and (1/m)dψz/dz to be continuous at the interfaces
between different materials.

To obtain a simple picture of an ISBT, much of the physics can be illus-
trated using the simplest model of an infinitely high barrier square quantum
well [12], i.e., V = 0 for 0 ≤ z ≤ Lw, V = ∞ for z < 0 and z > Lw, where
Lw is the well width. In this case the eigenstate wavefunction and energy are
trivial:

ψn(kxy) =
√

2
LwA

sin
(

πnz

Lw

)
exp(ikxy · x), (3.3)

En(kxy) =
h̄2

2m
(π2n2/L2

w + k2
xy), (3.4)

where A is the normalization area in the x–y plane, n is a positive integer,
kxy is the in-plane wavevector, and m is the effective mass in the well. Equa-
tion (3.4) explains the reason for the term “subband” instead of a single state.
For a given quantized state one can put many electrons occupying different
in-plane momenta. For the ground state in equilibrium, the occupation of elec-
trons leads to a Fermi energy determined by n2D = (m/πh̄2)Ef , where n2D is
the 2D quantum well carrier density and m/πh̄2 is the 2D density of states.

The dipole matrix moment between any two states (e.g., n and n′) with
opposite parity is:

e〈z〉n,n′ = eLw
8
π2

nn′

(n2 − n′2)2
. (3.5)

Note that the in-plane momentum remains the same between initial and final
states.
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The oscillator strength is

f ≡ 2mω

h̄
〈z〉2n,n′ =

64
π2

n2n′2

(n2 − n′2)3
. (3.6)

The absorption probability for an IR beam polarized in the plane of incidence
and propagating at an angle of θ with respect to the growth axis is

η =
e2h

4ε0nrmc

sin2 θ

cos θ
n2Df

1
π

∆E

(En,n′ − h̄ω)2 + (∆E)2
, (3.7)

where ε0 is the vacuum permitivity, nr is the index of refraction, c is the
speed of light, En,n′ ≡ En − En′ , and ∆E is the broadening half width.
The lineshape associated with broadening is modeled by a Lorenzian. At the
peak (En,n′ = h̄ω) the absorption is inversely proportional to ∆E. For a
given n2D, the absorption is inversely proportional to m, i.e., the smaller the
effective mass the larger the absorption. Note that for a given Ef , however,
the absorption is independent of m since n2D = (m/πh̄2)Ef . Note also that
the integrated absorption is independent of ∆E. The derivation of (3.7) is
straightforward by using a dipole interaction Hamiltonian and Fermi’s golden
rule (see Sect. 3.3.1 and [42]).

The factor sin2 θ in (3.7) comes from the polarization selection rule dis-
cussed above. The factor cos θ seems to give an unphysical result when
θ → 90◦; however, since the meaning of η is the absorption probability of
light passing through the well, in this extreme the passing length becomes
infinitely long resulting in an infinitely large absorption. If one had consid-
ered a quantity of absorption constant α defined by η = α×(length), where
(length)= Lw/ cos θ is the propagation length, this quantity would have al-
ways been finite. For a real quantum well with finite barrier height, it would be
more physical to choose the length using the quantum well structure thickness
(including barriers) instead of only the well width taken here.

Let us put some typical numbers into (3.7) to get a feeling for how strong
the ISBT absorption is. For a typical 8–12 µm peaked QWIP, the half width
is about ∆E = 0.01 eV. For ground state to first excited state transition, the
oscillator strength is f = 0.961 (see (3.6) with n′ = 1 and n = 2). For 77 K
operation, the carrier density is set to about n2D = 5 × 1011 cm−2 (see later
for the reason). For a GaAs well, the reduced effective mass is m∗ = 0.067
(m = m∗ × me, where me is the free electron mass) and the refractive index
is about nr = 3.3. With these values and for a 45◦ angle (θ = 45◦), the
absorption for a single quantum well is η = 0.54% (for polarized light). Let
us also evaluate the absorption constant for the case of θ = 90◦, with other
parameters the same as above. Taking a quantum well structure thickness of
50 nm (including barriers), the peak absorption constant is α = 1,520 cm−1.

For a standard QWIP, the optimum well design is the one having the
first excited state in resonance with the top of the barrier. This configuration
gives at the same time both a large peak absorption (similar to the bound
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state to bound state transition discussed above) and a rapid escape for the
excited electrons. The optimum design configuration has been experimentally
proven [45,46]. To design a quantum well for a given QWIP wavelength, one
needs to know how the barrier height (conduction band offset) relates to het-
erosystem parameters, i.e., Al fraction (x) in the GaAs/AlxGa1−xAs case.
Surveying many samples by comparing the calculated transition energy with
the experimental peak absorption, we find a range of values for the conduction
band offset ∆Ec = (0.87 ± 0.04) × x eV, where x is the Al fraction. The cal-
culation is a simple eigenenergy calculation of a square quantum well. Higher
order effects, such as nonparabolicity and many-body effects, influence the
precise values of the calculation (as discussed in Sect. 3.4).

For thermal imaging the spectral region of 3–12 µm is most interesting.
QWIPs based on GaAs can easily cover this region. Figure 3.3 shows spec-
tral response curves of six individual QWIPs with InGaAs or GaAs wells
and AlGaAs barriers. By employing special designs, QWIPs covering wave-
lengths much shorter than 3 µm may be possible (see [47–49]). The short
wavelength is limited by the lack of available high barriers. Using a set of p-
type GaAs/AlGaAs QWIPs, a wide spectral coverage was demonstrated [50].
The shortest wavelength device with a high Al fraction (95%) peaks at 1.9 µm
and covers a range of 1.4–3 µm. For beyond 12 µm, QWIPs with measured
cutoff wavelengths as long as 31 µm have been demonstrated [51–53]. How-
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Fig. 3.3. Spectral response curves of six QWIPs covering the two atmospheric
transmission windows of 3–5 and 8–12 µm wavelength regions. The dip in the second
curve from the left at about 4.2 µm is due to the CO2 absorption, and the noise from
5.5 to 7.5 µm is due to the water absorption
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ever, these longer wavelength QWIPs have small potential energy barriers
which require temperatures much lower than 77 K cooling for operation. The
region of 30–40 meV (31–41 µm) is masked by the restrahlen band (optical
phonon absorption), making it difficult to design QWIPs here. Very recently,
far-infrared (FIR) or terahertz QWIPs have been reported and background-
limited operation has been achieved for devices up to 100 µm in detection
wavelength [54,55]. For long wavelengths (longer than about 20 µm), since
free carrier absorption becomes strong and the plasma frequency becomes
comparable to the detection frequency, additional design considerations must
be made.

3.3 Intersubband Transition: More Details

In this section we present more mathematical details of the physics of ISBTs
in a single particle picture. For those readers who do not want to be bored
with the math, this section may be skipped. We use the effective mass approx-
imation and deal with a single spherical band which is a good approximation
for the conduction band of the GaAs–AlGaAs system. Higher order effects
such as scattering-assisted ISBTs [56] and many particle effects [57,58] are
not directly included and will be discussed in the following sections.

3.3.1 Basic Formulae

The interaction potential appropriate for calculating the radiative transition
absorption rate using Fermi’s golden rule is given by

Hrad =
e

m

(
φh̄

2ε0nrωc

)1/2

ε̂ · p eiq·x, (3.8)

where φ is the incident photon flux (number of photons per unit area per unit
time), ω is the photon angular frequency, ε̂ is the polarization unit vector, p
is the electron momentum operator, nr is the material refractive index, and
q is the photon momentum which is perpendicular to ε̂. We assume that the
photon flux is sufficiently small so that the interaction in (3.8) can be treated
as a perturbation. For high IR intensities, the perturbation approach fails and
the higher order term proportional to φ (in addition to the φ1/2 term in (3.8))
must be included in the analysis. The derivation of (3.8) is straightforward
starting from the dipole interaction Hamiltonian (e/2m)(A · p + p · A) and
keeping only the contribution for photon absorption, where A is the vector
potential.

The envelope wavefunction is written as

ψ(x) = ψxyψz, (3.9)
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where ψxy and ψz are two separable components of the envelope function ψ
in the x–y plane and in the z-direction, respectively. As before, the in-plane
envelope function is simply a planewave

ψxy = A−1/2eikxy·x, (3.10)

where A is the in-plane normalization area, and the 2D wavevector kxy

is kxy = (kx, ky). The energy associated with the x–y motion is E‖ =
h̄2k2

xy/(2m).
The matrix element of interest between the two states ψ and ψ′ is

M = 〈ψ′|Hrad|ψ〉. (3.11)

Some general properties can be obtained using (3.11). We first express (3.11) in
terms of the z-component and the in-plane envelope function in the quantum
well:

M = 〈ψ′|Hrad|ψ〉

=
e

m

(
φh̄

2ε0nrωc

)1/2 [( 1
A

∫
dxdye−ik′

xy·xε̂ · pxyeikxy·x
)

×
(∫

dzψ∗
z,n′eiqzzψz,n

)
+
(

1
A

∫
dxdyei(kxy−k′

xy)·xeiqxy·x
)

×
(∫

dzψ∗
z,n′ ε̂ · ẑpzψz,n

)]
,

≈ e

m

(
φh̄

2ε0nrωc

)1/2 [
h̄(ε̂ · kxy)δk′

xy, kxy

〈
ψz,n′ |eiqzz|ψz,n

〉
+ δkxy−k′

xy, qxy
(ε̂ · ẑ)〈ψz,n′ |pz|ψz,n〉

]
, (3.12)

where ẑ is a unit vector in the z-direction. The factor eiqzz in the first term
of the (3.12) can normally be neglected by setting eiqzz = 1. The photon
wavelength (λ) of interest is greater than about 3/nr ≈ 1 µm and the domain of
the z-direction integration is about w ∼ 100 Å (the bound state wavefunction
extent), giving qzz ∼ 2πw/λ � 1, where nr ≈ 3 for GaAs. The first term in
(3.12) is proportional to δk′

xy, kxy
δnn′ which vanishes because k′

xy = kxy and
n = n′ correspond to a transition between the same state (forbidden by energy
conservation). The first term can be shown to vanish for a superlattice, where
eiqzz ≈ 1 is no longer true in general. The physical reason for a vanishing
contribution from the first term in (3.12) is that photons cannot cause direct
transitions between free carrier states. Note that the in-plane motion of the
carriers is free. The commonly referred “free carrier absorption” is in fact
a higher order process assisted by scattering events (see [59]). In general, if
the incident light is polarized in the x–y plane, the matrix element in (3.12)
vanishes. By a similar argument that the photon momentum can be neglected,
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we can neglect the qxy in the δ-function of the second term in (3.12). The
matrix element then becomes

M =
e

m

(
φh̄

2ε0nrωc

)1/2

(δkxy, k′
xy

) sin θ〈ψz,n′ |pz|ψz,n〉, (3.13)

where (ε̂ · ẑ) = sin θ and θ is the internal angle of incidence. The polarization
selection rule [7] can now be stated as: optical intersubband transitions associ-
ated with a single spherical band are induced by light polarized in the quantum
well direction.

Using Fermi’s golden rule

W =
2π

h̄

∑
f, i

|M |2fi(1 − ff)δ(Ef − Ei − h̄ω), (3.14)

the total transition rate (W ) is easily calculated by summing over initial and
final states, where fi and ff are Fermi factors for the initial and final states.
Here, for a pure bound-to-bound transition, we sum over only the in-plane
2D states for the initial and final state summations, which is appropriate
for transitions between two 2D subbands. If stimulated emisssion (i.e., de-
excitation towards lower energies) is taken into account as well, the total
transition rate is given by the slightly simpler expression

W̃ =
2π

h̄

∑
f, i

|M |2(fi − ff )δ(Ef − Ei − h̄ω), (3.15)

since terms proportional to fiff vanish.
At zero temperature and weak excitation, Fermi factors become fi = 1

and ff = 0, assuming that only the ground state subband is occupied. The
momentum conserving δkxy, k′

xy
function in (3.13) takes care of the final state

summation in (3.14), and the initial state summation gives simply the 2D
density of electrons in the ground state subband (n2D) multiplied by the
area (A). Equation (3.14) is then trivially evaluated (defining the absorption
quantum efficiency η):

η ≡ W/(φA cos θ) =
e2h

4ε0nrmc

sin2 θ

cos θ
n2Df δ(E2 − E1 − h̄ω), (3.16)

where the oscillator strength [12,60] is defined by

f ≡ 2
mh̄ω

|〈ψ2|pz|ψ1〉|2, (3.17)

where ψ2 and ψ1 are the first excited and the ground state z-direction envelope
functions, and E2 and E1 are the corresponding eigenenergies. An equivalent
expression for the oscillator strength is given by

f =
2mω

h̄
|〈ψ2|z|ψ1〉|2. (3.18)
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The equivalence between (3.17) and (3.18) is shown by considering the matrix
element of commutator 〈ψ2|[Hz, z]|ψ1〉 and noting E2 − E1 = h̄ω, where
Hz is the quantum well effective mass Hamiltonian in the z-direction. For
finite temperatures, as long as E21 − EF � kBT , (3.16) gives an excellent
approximation, where E21 ≡ E2 − E1 and EF is the Fermi energy related to
the 2D electron density n2D in the ground state subband by

EF = (πh̄2/m)n2D. (3.19)

The expression m/(πh̄2) is the 2D density of states. Relevant energy scales of
interest are E21−EF ∼ 120 meV and kBT < 10 meV. (Note that mid-infrared
(MIR) detectors are normally cooled to T < 100 K.) Taking into account the
finite lifetime of the excited state (usually limited mainly by optical phonon
emission), the δ-function in (3.16) becomes a Lorentzian:

η =
e2h

4ε0nrmc

sin2 θ

cos θ
n2Df

1
π

∆E

(h̄ω − E21)2 + ∆E2
, (3.20)

where ∆E is the half width. Ideally, in the absence of other elastic broadening
mechanisms (e.g., by interface roughness and well width fluctuations), ∆E is
related to the lifetime by τlife = h̄/(2∆E). For convenience, we will use (3.20)
as a model, even when elastic broadening is not negligible as in the follow-
ing discussions. For GaAs at 10 µm wavelength, the constant e2h/4ε0nrmc in
(3.20) equals 5.2×10−16 eV cm2. Taking n2D = 1012 cm−2 and ∆E ∼ 0.01 eV,
peak absorption (at h̄ω = E21) of about a percent is expected, which is con-
sistent with measured results for absorption per quantum well [61].

3.3.2 Calculations for a Symmetric Quantum Well

The original proposal by Coon and Karunasiri [7] to use ISBTs for IR detection
predicted large absorption quantum efficiencies (up to 50% for only one well)
when the upper state (the ISBT absorption final state) is nearly in resonance
with the top of the barrier. This large absorption has never been observed
experimentally: an absorption of a fraction of a percent per well per IR path
at internal angles less than 45◦ is commonly observed [12,14,61,62]. Asai and
Kawamura studied the well width dependence of intersubband absorption
using a series of samples which included the situation where the upper state is
nearly in resonance with the top of the barrier, but no absorption enhancement
was observed [62]. Some of our own detector samples had the upper state very
close to the top of the barrier, but we only observed absorptions of less than
1% per well per IR path [61]. The work reported [46] has been motivated
by the question of whether one can obtain an extremely large absorption by
positioning the upper state in resonance with the top of the barrier. This
regime of having the upper state close to the top of the barrier is of practical
importance, since it corresponds to the optimum detector design [45].
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Fig. 3.4. The quantum well potential profile. The ground and the first excited
states are labeled by E1 and E2, respectively. For small well widths (Lw), the first
excited state is “pushed out” of the well and only the ground state exits. Both
bound-to-bound and bound-to-continuum intersubband transitions are considered

We reproduce the analytical results of [46] for ISBT absorption including
both bound-to-bound and bound-to-continuum contributions and including
Lorentzian broadening for the finite final state lifetime. Using these analytical
results, the physical reason for the large predicted absorption in the limit of
zero broadening and for the case when the upper (final) state is in resonance
with the top of the barrier is discussed. Calculated absorption spectra are
compared with the experiments of Asai and Kawamura [62].

The bound-to-bound ISBT is discussed first. The symmetric quantum well
potential profile is shown schematically in Fig. 3.4. The ground (ψ1) and the
first excited (ψ2) state wavefunctions are

ψ1 = C1

⎧⎨⎩
eκ1(z+Lw/2) cos k1Lw/2 if z < −Lw/2

cos k1z if −Lw/2 ≤ z ≤ Lw/2

e−κ1(z−Lw/2) cos k1Lw/2 if z > Lw/2

(3.21)

C1 =
1√

Lw/2 + (V/κ1E1) cos2 k1Lw/2

(3.22)

with
cos k1Lw/2 −

mbk1

mκ1
sin k1Lw/2 = 0, (3.23)

and

ψ2 = C2

⎧⎨⎩
−eκ2(z+Lw/2) sin k2Lw/2 if z < −Lw/2,
sin k2z if −Lw/2 ≤ z ≤ Lw/2,

e−κ2(z−Lw/2) sin k2Lw/2 if z > Lw/2,
(3.24)

C2 =
1√

Lw/2 + (V/κ2E2) sin2 k2Lw/2

(3.25)
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with
cos k2Lw/2 +

mκ2

mbk2
sin k2Lw/2 = 0, (3.26)

where k1,2 =
√

2mE1,2/h̄, κ1,2 =
√

2mb(V − E1,2)/h̄, E1 (E2) is the ground
(first excited) state eigenenergy, m (mb) is the well (barrier) effective mass,
V is the barrier height, and Lw/2 is the half well width (i.e., the well width
is Lw = 2Lw/2). Equations (3.23) and (3.26) determine the eigenenergies E1

and E2. In fact, all even parity bound states satisfy (3.21), (3.22), and (3.23),
and all odd parity bound states satisfy (3.24), (3.25), and (3.26). We have set
the origin (z = 0) at the center of the well.

The above-barrier continuum eigenstates can be chosen to have even or
odd parity. For ISBTs from the (even parity) ground state, only the odd parity
continuum states are allowed as final states:

ψodd =
1√
L

⎧⎨⎩
sin[k′(z + Lw/2) − β] if z < −Lw/2,(
sin2 kLw/2 + mbk

mk′ cos2 kLw/2

)−1/2
sin kz if −Lw/2 ≤ z ≤ Lw/2,

sin[k′(z − Lw/2) + β] if z > Lw/2,
(3.27)

where k =
√

2mEz/h̄, k′ =
√

2mb(Ez − V )/h̄, Ez is the energy associated
with only the z-direction motion, β is given by tanβ = (mk′/mbk) tan kLw/2,
and L is a normalization length on either side of the well (see Fig. 3.4). We have
used a box-normalization scheme (L � Lw), and the above-barrier continuum
states are normalized in a length 2L.

The ISBT oscillator strength (see (3.17) and (3.17)) is given by

f ≡ 2mω

h̄
|〈z〉|2 =

2h̄

mω
|〈∂/∂z〉|2, (3.28)

where 〈· · ·〉 represents a matrix element between wavefunctions.
After some algebraic manipulation, the oscillator strength for the bound-

to-bound transition (using ψ1 and ψ2 in (3.28)) is found to be

fB−B =
8h̄C2

1V 2

mω(E2 − E1)2
cos2 k1Lw/2

E2κ2 sin2 k2Lw/2

E2κ2Lw/2 + V sin2 k2Lw/2

(3.29)

and that for the bound-to-continuum (using ψ1 and ψodd) is

fB−C =
8h̄C2

1V 2

mωL(Ez − E1)2
cos2 k1Lw/2

(Ez − V ) tan2 kLw/2

Ez + (Ez − V ) tan2 kLw/2

. (3.30)

For analytical clarity, we have set m = mb in deriving the results given in
(3.29) and (3.30). This is a good approximation since ψ1 is localized mainly
in the well, with a very small exponential tail into the barrier. In determining
the eigenenergies, however, we do include the difference between m and mb,
which is important especially for the excited state E2.

We consider the two example measurement geometries shown in Fig. 3.5a
and b. The first geometry is relevant to the 45◦ facet detectors and to the
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Fig. 3.5. Two measurement geometries considered in the model calculation

45◦ zigzag waveguides [42]. The second is commonly used for the Brewster
angle transmission measurements [62]. From (3.20), the absorption quantum
efficiency for Fig. 3.5a is explicitly given by

η =
e2h

4ε0nrmc

sin2 θ

cos θ
n2D

∑
final

1
π∆E

1
1 + [(Efinal − E1 − h̄ω)/∆E]2

f, (3.31)

where Efinal is the final state energy associated with the z-direction motion,
the polarization of the light is in the plane of incidence (p-polarized), and
the summation is over the final states. The contribution from the bound-to-
bound transition is trivially evaluated, and the contribution from bound-to-
continuum transitions involves converting the sum into a integral by

∑
→∫∞

0
Ldk′/π. We then have

η =
e2h

4ε0nrmc

sin2 θ

cos θ
n2D

1
π∆E

[
1

1 + [(E2 − E1 − h̄ω)/∆E]2
fB−B +

+
L
√

2m

2πh̄

∫ ∞

V

dEz√
Ez − V

1
1 + [(Ez − E1 − h̄ω)/∆E]2

fB−C

]
. (3.32)

Note that the above is independent of L, as it should be, because fB−C ∝ L−1

(see (3.30)).
Because of the divergence in the one-dimensional (1D) density of states at

Ez = V (the 1/
√

Ez − V factor in the second term in (3.32)), the bound-to-
continuum contribution can be large when the broadening is small. In fact,
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in the limit of ∆E → 0, one obtains a divergent result. We will discuss this
divergence explicitly to show that it is an effect of the density of states together
with a special arrangement of the quantum well. In the ∆E → 0 limit, the
Lorentzian lineshape becomes a δ-function, and the second term in (3.32), i.e.,∑

fB−C , becomes

∑
final

fB−C =
8C2

1V 2
√

2m

2π2∆Emω(Ez − E1)2
cos2(k1Lw/2)

× 1√
Ez − V

(Ez − V ) tan2(kLw/2)
Ez + (Ez − V ) tan2(kLw/2)

. (3.33)

The conservation of energy gives Ez = E1 + h̄ω. Let us concentrate on the
following factor from (3.33):

1√
Ez − V

(Ez − V ) tan2 kLw/2

Ez + (Ez − V ) tan2 kLw/2

=
1√

h̄ω − (V − E1)

[h̄ω − (V − E1)] tan2 kLw/2

(E1 + h̄ω) + [h̄ω − (V − E1)] tan2 kLw/2

. (3.34)

One can see immediately that the divergence in the density of states at h̄ω =
V − E1 is normally canceled by the factor h̄ω − (V − E1) in the numerator
from the oscillator strength fB−C except when tan2 kLw/2 = ∞, i.e., kLw/2 =
π/2 + Pπ, where P = 0, 1, 2, . . . .

In order to clarify the physical correspondence of this “selection rule” for
kLw/2, we rewrite the upper state eigenenergy condition (3.26 in the following
form:

tan k2Lw/2 = −mbk2

mκ2
. (3.35)

When κ2 → 0, we have tan2 k2Lw/2 → ∞ for which k2Lw/2 = π/2+Pπ. This
implies that the condition k2Lw/2 = π/2 + Pπ corresponds to an odd parity
“bound” state which is exactly in resonance with the top of the barrier. The
physical reason for the divergent absorption is now clear: it arises from the
combination of the (1) 1D density of states and (2) having the final state in
resonance with the top of the barrier. One therefore might expect that a very
large absorption could be obtained in a quantum well specially designed to this
situation [7]. However, this does not occur in reality, because of the broadening
factor. This is shown below, where calculated examples with realistic values
for the broadening are given and are compared with experiments.

Figure 3.6 shows calculated absorption spectra for a single path through
one quantum well. The measurement geometry corresponds to that of Fig. 3.5a.
The internal angle of incidence is 45◦, and the IR light is p-polarized. Para-
meters appropriate for an Al0.33Ga0.67As–GaAs quantum well were used. The
GaAs well width was varied from 35 to 65 Å in 3 Å steps. The well reduced ef-
fective mass is 0.067 and that for the barrier is 0.094. The barrier height used
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Fig. 3.6. Calculated absorption quantum efficiency vs. photon energy for one well for
different well well widths from 35 to 65 Å. Parameters appropriate to Al33Ga67As–
GaAs were used. The electron density in the well is 9 × 1011 cm−2, and the internal
angle of incidence is 45◦ (p-polarized)

was 0.25 eV. The broadening full width 2∆E was taken to be 10 meV. The 2D
electron density in the well n2D is 9×1011 cm−2. The crossover from one bound
state to two bound states occurs in the range of 48–49 Å. From Fig. 3.6, the
absorption spectra become narrower in lineshape and higher in peak strength
when the well width is increased. There is no abrupt change in the spectra
when crossing from the pure bound-to-continuum case (Lw ≤ 47 Å) to the
case where both bound-to-bound and bound-to-continuum ISBTs contribute
to the absorption (Lw ≥ 50 Å).

To compare with experiments, including the interesting situation of cross-
ing from one bound state to two bound states, one needs to measure a series
of samples having either different well widths or different barrier heights.
The only systematic study of the well width dependence of ISBTs in this
crossover regime found in the literature is by Asai and Kawamura [62]. Some
of their results are reproduced in Fig. 3.7 (dashed lines). The calculated ab-
sorption spectra, using parameters appropriate for their 70-period InGaAs–
InAlAs quantum well structure grown on InP, are shown in Fig. 3.7. The In-
GaAs well width is varied from 35 to 100 Å. The reduced effective masses are
0.042 for the well and 0.075 for the barrier with 0.47 eV height. The broad-
ening 2∆E is taken to be 20 meV and the 2D electron density in the well
n2D = Lw × (1.5 × 1018 cm−3). The Brewster angle measurement geometry
as shown in Fig. 3.5b uses an external (internal) angle of incidence of 73◦

(17◦) and p-polarized IR light. Note that for the Brewster geometry, the fac-
tor sin2 θ/(nr cos θ) reduces [12] to 1/(n2

r

√
n2

r + 1). Since the bandgap of the
well material (InGaAs) is much narrower than that of GaAs, it is necessary
to include the effect of band nonparabolicity (see Sect. 3.4.4) to obtain an
agreement of the calculated absorption peak positions with experiment. The



3.3 Intersubband Transition: More Details 27

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.1

0.2

0.3

0.4

0.5

35Å

40Å

50Å
68Å

L
W

=100Å

A
bs

or
pt

io
n

(%
)

Photon Energy (eV)

Fig. 3.7. Experimental transmittance data (dashed lines) of Asai and Kawamura
[62], and calculated absorption quantum efficiency vs. photon energy (solid lines)
for 70wells for different well well widths of 35, 40, 50, 60, 70, 80, 90, and 100 Å.
Parameters appropriate to InGaAs–InAlAs quantum wells grown in InP were used.
The electron density in the well is Lw × (1.5 · 1018 cm−3), and the internal angle of
incidence is 17◦ (p-polarized), where Lw is the well width.

calculated curves in Fig. 3.7 were obtained using the same formalism for the
calculation of Fig. 3.6, but included an energy dependent effective mass [63]
with parameter α = 1.24 eV−1. The general agreement between our calcula-
tions and the measurements of Asai and Kawamura is good.

To end this section, we point out that ISBTs have been investigated in
many other structures and materials, though the conduction band n-type QWs
are the most successful one for QWIPs. When tunnel coupling between adja-
cent QWs is nonnegligible, the multi-quantum well (MQW) is called a super-
lattice. Transport and ISBT in superlattices have been reviewed by Helm [64].
ISBTs can be also observed and potentially made use of in the valence band
QWs [50,65–67]. Various material systems have been investigated recently,
notably GaN/AlN QWs [68–71].

3.3.3 Transfer-Matrix Method

In order to calculate subband energies and associated wave functions not just
for simple quantum wells but for potential structures involving a larger num-
ber of material layers, the transfer-matrix method is often applied. Here the
boundary conditions between subsequent layers result in a matrix multiplica-
tion, thus giving rise to a “transfer matrix” describing the propagation across
the whole multilayer.
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We restrict ourselves here to piecewise constant potentials. A similar cal-
culation involving Airy functions can in principle be executed for the case
of piecewise linear potentials. Let us define a piecewise constant potential
V (z) = Vν and effective mass m(z) = mν within the intervals (zν−1, zν)
for ν = 1, ..., N , respectively, V (z) = V0 for z < z0, and V (z) = VN for
z > zN . Let us further assume V0 = VN , m0 = mN . Our goal is to solve the
Schrödinger equation (3.2) in order to determine the wave function ψ. We
use a basis representation, where the wavefunction ψ(z) within the interval
(zν−1, zν) is given by

ψ(z) = Aνeikν(z−zν) + Bνe−ikν(z−zν) for zν−1 ≤ z < zν . (3.36)

Equation (3.36) is a solution of (3.2) inside the interval (zν−1, zν) if the mo-
mentum parameter (or wavenumber) kν is given by

kν =
{

(1/h̄)
√

2mν(E − Vν) if E > Vν ,

−i(1/h̄)
√

2mν(Vν − E) if E < Vν .
(3.37)

The parameters Aν and Bν are now determined by the requirement that
the functions ψ and d/dz(ψ/m) are continuous at the positions z = zν . These
boundary conditions can be expressed as(

Aν+1

Bν+1

)
= Tν+1,ν

(
Aν

Bν

)
. (3.38)

The matrix Tν+1,ν is given by

Tν+1,ν =
1
2

(
(1 + αν)eikν+1dν+1 (1 − αν)eikν+1dν+1

(1 − αν)e−ikν+1dν+1 (1 + αν)e−ikν+1dν+1

)
, (3.39)

where we have introduced dν+1 = zν+1 − zν and

αν =
kνmν+1

kν+1mν
. (3.40)

Equation (3.38) represents a recursion relation between the coefficients Aν ,
Bν associated with adjacent intervals. The iteration of (3.38) thus gives rise
to an equation of the form (

AN

BN

)
= T

(
A0

B0

)
, (3.41)

where we have defined the transfer matrix1

T = TN,N−1TN−1,N−2. . . .T1,0. (3.42)

1 Some authors define the transfer matrix T̃ via

(
A0

B0

)
= T̃

(
AN

BN

)
, which is

related to the present definition via T̃ = T−1 = 1
detT

(
T11 −T12

−T21 T22

)
.
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By construction, the determinant of T is given by detT = mNk0/kNm0. In
particular, we have detT = 1 if the potential and mass are identical for ν = 0
and ν = N .

This transfer matrix T ≡
(

T11 T12

T21 T22

)
now provides access to various

types of numerical calculations:

• For bound states, we have E < V0 and E < VN . According to (3.36)
and (3.37), we need A0 = 0 and BN = 0 in order to obtain an asymp-
totically decaying ψ. This condition is equivalent to T22 = 0, such that
the associated subband energies can be calculated by finding the zeroes of
T22(E).

• In order to determine tunnel probabilities (or transmission probabilities)
of continuum states with E > V0 and E > VN , we can think of a particle
wave coming in from the left, which is partially transmitted. For A0 = 1,
we thus have BN = 0, which yields AN = (detT)/T22. The transmission
probability is thus given by T = |(detT)/T22|−2.

• Conducting the analogous calculation with a periodic potential allows us to
evaluate quasiperiodic (or superlattice) states. Here quasiperiodicity refers
to the condition that ψ(z + d) = exp(iφ)ψ(z) after the period d, which
implies that T should have an eigenvalue of exp(iφ), and the Bloch-phase
φ determines the momentum-wavevector k = 2πφ/d of the superlattice
dispersion relation. Since we have detT = 1 for a periodic potential, the
other eigenvalue is exp(−iφ), and the trace tr(T) ≡ T11 + T22 satisfies
tr(T) = 2 cos φ. The latter relation can be used to calculate the miniband
structure; in particular, miniband states are characterized by the condition
|tr T| ≤ 2.

3.4 Corrections to the Intersubband Energy and
Lineshape

The previous considerations focus on the main contribution to the ISBT en-
ergy, magnitude, and lineshape based on the single-particle Schrödinger equa-
tion. Here we will treat some additional interactions and give criteria for when
these interactions need to be taken into account.

3.4.1 Coulomb Interaction

Since carriers (electrons or holes) and ionized dopants (donors or acceptors)
all have charges, the Coulomb interaction is probably the first that occurs to
one to include in addition to the simple quantum well potential.

In fact, the Coulomb interaction is the origin of the commonly ob-
served asymmetry between the forward and reverse I–V characteristics of
GaAs/AlGaAs QWIPs, where the segregation of the Si dopant atoms oc-
curring during growth leads to an asymmetry in the doping profile and
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hence in the quantum well potential. As a consequence, the effective bar-
rier heights seen by electrons in the well in the forward and reverse direc-
tions will be different. Modeling the potential profile of n-type GaAs/AlGaAs
QWIPs and comparing with experiments will be discussed in more detail in
Sect. 7.3. Since the current depends exponentially on the barrier height, I–V
measurements are very sensitive to the amount of asymmetry in the barrier
heights.

As a simple illustrative example, the electrostatic potential V due the ion-
ized dopants and electrons in the ground state satisfies the Poisson equation:

d2V

dx2
=

e2

ε
[N+

D (x) − n2Dψ∗(x)ψ(x)], (3.43)

where ε is the vacuum permitivity multiplied by the material dielectric con-
stant, and ψ(x) is the ground state wavefunction. Choosing V |x=−∞ = 0 and
dV/dx|x=−∞ = 0, we get

V (x) =
e2

ε

∫ x

−∞
dx1(x − x1)[N+

D (x1) − n2Dψ∗(x1)ψ(x1)]. (3.44)

The resulting quantum well potential is the sum of the perfect square well
potential due to the bandedge profile and the electrostatic potential given
by (3.44). We assume that all dopants are ionized, so that

∫∞
−∞ dxN+

D (x) =
n2D; and we use the ground state wavefunction of the perfect square well for
simplicity (see Sect. 3.3.2).

Obviously when the potential profile is modified, the eigenenergy and
eigenfunction would change as a result. To include the leading order correc-
tion, one could perform a textbook first-order perturbation calculation for the
position of the ground state eigenenergy. A change in wavefunction then leads
to a change in potential profile. A rigorous solution should then be done self-
consistently by numerically solving the Poisson and Schrödinger equations. To
show an example of the effect discussed here, we plot in Fig. 3.8 a calculated
self-consistent potential for a quantum well designed for 9-µm peak detection.
We have purposely used a higher-than-optimum doping density of 1012 cm−2

to show clearly the band bending. Even with this higher doping, the correction
to the ISBT energy is only about 2%. The effect is even smaller for the case
of a uniform doping in the well because the spread out of the ionized dopant
charges mostly balances the carrier charge determined by the wavefunction
shape.

Helm [42] calculated an example of a 8-nm well with 5-nm center region
uniformly doped to 2 × 1018 cm−3 giving rise to a 2D electron density of
1012 cm−2. The effect of the Coulomb interaction is still very small; the cor-
rection to the intersubband energy is about 1%. In addition, he also calculated
the same well and electron density but for a modulation doping case. Modu-
lation doping refers to the scheme of doping the barrier and having electrons
transferred into the well. Modulation doped QWs exhibit substantially en-
hanced lateral mobility which leads to a narrower intersubband linewidth.
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Fig. 3.8. Self-consistently calculated potential profile for a quantum well with 5.4-
nm well width, x = 0.24 Aluminum fraction, and center delta doping of 1012 cm−2.
The ground and the first excited states are at 60.8 and 195.9 meV

The band bending, however, is substantial as a result of having electrons sep-
arated from the ionized donors. In his calculated example, the intersubband
energy was changed from 111.1 to 104.4 meV (about 6% change).

3.4.2 Many-Particle Effects

Electrons or holes are identical spin-1/2 particles obeying Fermi statistics and
Pauli principle, which implies that the wavefunction of the system must be
anti-symmetric. There are effects associated with these special characteristics,
which do not have classical analogies. Perhaps the most commonly noted one
is the exchange correction to the energy. We briefly discuss the cause of this
exchange correction using a two-electron example.

Suppose we have two electrons occupying two single-particle states ψa and
ψb, the wavefunction of the system (before including the Coulomb interaction
between them) is

ψ(x1,x2) =
1√
2
(ψa(x1)ψb(x2) − ψa(x2)ψb(x1)). (3.45)

This is the Slater determinant of a two-particle wavefunction. We now “add”
the Coulomb interaction V (x1−x2) = e2/4πε|x1−x2| and evaluate the lead-
ing order correction to the energy of the system. The first-order perturbation
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energy correction is:

〈ψ|V |ψ〉 =
1
2

∫
dx1dx2[ψ∗

a(x1)ψ∗
b (x2)V ψa(x1)ψb(x2)

+ ψ∗
a(x2)ψ∗

b (x1)V ψa(x2)ψb(x1) − ψ∗
a(x1)ψ∗

b (x2)V ψa(x2)ψb(x1)
− ψ∗

a(x2)ψ∗
b (x1)V ψa(x1)ψb(x2)]. (3.46)

The first two terms are identical as the Coulomb interaction depends only on
|x1−x2|, i.e., that the subscripts 1 and 2 are interchangeable. This is precisely
the direct Coulomb correction discussed in Sect. 3.4.1.

ECoul = 〈ψ|V |ψ〉Coulomb =
∫

dx1dx2
ρa(x1)ρb(x2)
4πε|x1 − x2|

, (3.47)

where the charge densities are ρa(x) = e|ψa(x)|2 and ρb(x) = e|ψb(x)|2.
The last two terms in (3.46) are the “exchange” correction:

Eex = 〈ψ|V |ψ〉Exchange =
∫

dx1dx2Re[ψ∗
a(x1)ψ∗

b (x2)V ψa(x2)ψb(x1)].

(3.48)
The term “exchange” can now be understood: similar to a Coulomb inter-
action integral but with the wavefunctions (or the particle position indices)
exchanged. Clearly the exchange interaction does not have a classical analogy
and is purely a quantum mechanical effect of spin-1/2 identical particles or
Fermions.

For a many-particle system, one could proceed with a similar procedure of
constructing a Slater determinant wavefunction and calculating the correction
(or diagonalizing the full Hamiltonian). One can imagine there will be many
more terms than in (3.46). In addition to the direct Coulomb interaction, the
leading term correction is still the exchange and what is left (all the rest) is
called “correlation.” A full treatment of exchange-correlation is beyond the
scope of this book, and in the following we list some results and discuss the
qualitative features. Using a scheme called Hartree–Fock equation (including
the direct Coulomb and exchange contributions), Bandara et al. [72] derived
an approximate expression for a single QW with infinitely high potentials:

Eex ≈ − e2

4πε
kF[(2/π)E(k/kF) − 0.32(kF/kL)], (3.49)

where E(k/kF) is the complete elliptical integral of the second kind, and
kL = π/Lw. For k = 0, the above becomes:

Eex(k = 0) ≈ − e2

4πε
kF[1 − 0.32(kF/kL)] (3.50)

and for k = kF:

Eex(k = kF) ≈ − e2

4πε
kF[2/π − 0.32(kF/kL)]. (3.51)
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Including only the exchange effect tends to overestimate the correction
because the correlation is usually of opposite sign. A well-known approach
that includes both exchange and correlation contributions is the local density
approximation (LDA) within the well-celebrated density functional theory. A
popular form of the LDA potential is given in [73] and refinements have been
made to improve the accuracy [74]. The LDA formalism is very convenient
in numerical calculations because the full exchange-correlation “potential”
depends only on the local electron density.

So far we have only discussed corrections to the eigenenergy when the
static Coulomb interaction is included. There are also dynamic effects, i.e.,
the observed ISBT resonance position is not simply the difference between
the subband energies. There has been a body of work in connection with the
Si inversion layers where ISBT was also studied; for a review see Ando et
al. [2]. It has been shown that the ISBT resonance occurs at

Ẽ2
21 = E2

21(1 + α − β), (3.52)

where E21 = E2 −E1 is the difference between subband 1 and 2, and α and β
describe the depolarization and exciton-like shifts, respectively. The heuristic
physical picture of the depolarization effect is as follows. Under the AC field
associated with the incident photons, the electron that is trying to make the
transition feels the time-dependent change of all other electrons. The depo-
larization shift essentially comes from direct Coulomb (Hartree) interaction
with the oscillating electrons. Similarly, the exciton-like correction is due to
the time-dependent Coulomb interaction with the “hole” left behind in the
lower subband. The expressions for the two constants α and β are given by

α =
2e2n2D

εE21
S (3.53)

with

S =
∫ ∞

−∞
dz

[∫ z

−∞
dz′ψ2(z′)ψ1(z′)

]2
, (3.54)

and

β = −2n2D

E21

∫ ∞

−∞
dzψ2(z)2ψ1(z)2

∂Vxc[n(z)]
∂n(z)

, (3.55)

where Vxc[n(z)] is the exchange-correlation energy in the LDA. Equations
(3.53)and (3.54) have been derived in several ways, while (3.55) applies only
under the LDA. Since both α and β are linearly related to the electron density,
a higher density clearly leads to a larger correction.

There is a simpler way in estimating the depolarization correction [75,76].
The result is still written in the form Ẽ2

21 = E2
21(1 + α). For α � 1, the

depolarization correction is given by

Edepol = Ẽ21 − E21 ≈ e2h̄2n3Df12

2εE21m∗ , (3.56)

where f12 is the oscillator strength.
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Helm [42] gave a more detailed discussion of all these many-particle ef-
fects. We give again his results on the calculated example of a well-doped
(2 × 1018 cm−3 over 5 nm) example of an 8-nm GaAs well with Al0.3Ga0.7As
barriers. The ground to first excited state separation under the ideal square
well is 111.2 meV. The direct Coulomb (Hartree) changes it to 112.3 meV,
and including exchange-correlation results in 114.6 meV. The depolarization
effect moves the intersubband resonance to 123.4 meV, and the exciton-like
effect leads to 120.3 meV. The net effect of all interactions is to move the
resonance to a slightly larger energy, consistent with experiments.

3.4.3 Further Interactions

The linewidth of ISBT relates to various scattering effects by interactions of
electrons with interface roughness, phonons, alloy disorder, and impurities.
In principle, since ISBT is a fully collective phenomenon, the linewidth and
resonance position should be calculated using many-particle theory. As an
approximation, however, we discuss the linewidth in a single particle picture.
The theoretical justification relies on the work of Nikonov et al. [77] who
showed that in the limit of small band nonparabolicity the many-particle ef-
fects only cause blue shifts in the absorption spectra (depolarization shift) and
that the linewidth is solely determined by the single particle relaxation rate.
Nevertheless, experimental [78] and recent theoretical [79] results indicate
that collective effects have a certain influence on the intersubband linewidth.
In QWIPs, this contribution is not essential because of their specific device
parameters (low carrier densities), and will therefore be neglected.

Unuma et al. [80] carried out a systematic investigation on the linewidth
due to scattering by interface roughness, phonons, alloy disorder, and impuri-
ties. They found that interface roughness is a major factor because it broadens
the width of the excited state by a large amount. The physical origin of this
broadening is easy to understand by simply considering the eigenenergy of a
QW with infinitely high barriers:

En =
h̄2

2m

π2n2

L2
w

. (3.57)

A fluctuation in the well width δLw leads to a broadening in eigenenergy of

δEn =
h̄2π2n2

2m

2
L3

w

δLw (3.58)

or
δEn = 2En

δLw

Lw
. (3.59)

Clearly a larger subband index n leads to a larger δEn. For a 10-nm GaAs well,
if there is a one-monolayer (0.3 nm) well width fluctuation, the broadening of
the ground state (n = 1) is 3.3 meV, and that for the first excited state (n = 2)



3.4 Corrections to the Intersubband Energy and Lineshape 35

is 13.4 meV. This should give rise to an observed linewidth of at least 10 meV,
comparable to experimental results.

Depending on the correlation length Λ of these thickness fluctuations, two
different kinds of broadening exist. If Λ exceeds the coherence length lc of the
electrons, then electrons at lateral positions in the QW plane can be consid-
ered as independent. In this case, the observed broadening can be significantly
larger than the “intrinsic” broadening associated with the scattering lifetime
of the transition. This situation is refered to as “inhomogeneous broaden-
ing.” On the other hand, if Λ < lc, then the interface fluctuations increase
the homogeneous broadening (or lifeime broadening) of the electrons. This
case leads to a reduced scattering time of the in-plane momentum (intrasub-
band scattering), which takes into account of the fact that the lateral electron
momentum does not have a strict physical meaning any more. A detailed the-
oretical treatment of this situation including numerical calculations can be
found in [80]. Since the contribution from intrasubband scattering in the first
excited subband is much larger than that in the ground subband, interface
roughness scattering has a much stronger influence (by about one order of
magnitude) on the homogenous lifetime of the transition than on the momen-
tum relaxation time [80].

Interface roughness scattering plays a particularly important role in GaAs
and InGaAs quantum wells, such that ISBT are mostly homogeneously broad-
ened. While homogeneous and inhomogeneous broadening cannot be distin-
guished in standard absorption measurements, prominent differences exist in
ultrafast spectroscopy and nonlinear optics (see also Chap. 10).

An additional influence on the ISBT energy and spectrum is caused by
the Coulomb potential of individual dopant atoms and the associated binding
energy. At the carrier densities usually used in QWIPs, the associated donor
states, (confined in the QW plane by the impurity potential) couple into im-
purity bands. In addition to the usual ISBT of “free” carriers without in-plane
confinement, there are in addition transitions from the ground impurity band
(located slightly below E1) to excited impurity bands which are analogous
to higher subbands but share the in-plane confinement. In most cases, the
impurity-related absorption band (which also depends on the precise impu-
rity positions in the growth direction) cannot be observed experimentally since
it overlaps with the “free” intersubband absorption, in particular for bound-
to-continuum QWIPs. Nevertheless, recent investigations resulted in a clear
evidence of two spectral bands split by about 6 meV for a E1 → E2 tran-
sition energy around 150 meV. Increasing the carrier density from 2 × 1011

to 4 × 1011 cm−2 gave rise to a Mott transition, where, due to the increase
of the coupling, the impurity band merges with the conduction band [81].
The impurity potential is supposed to be of stronger influence in THz-QWIPs
(discussed in Sect. 4.4), which operate not only at smaller transition energies,
but also at lower operating temperatures and carrier densities. At low car-
rier densities and temperatures, changes in the absorption spectrum can be
caused by carrier freeze-out into the impurity band. Pronounced effects have
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been demonstrated recently in superlattices where the parity selection rule
was affected by the impurity potential [82].

3.4.4 Band Nonparabolicity

Much of the discussion in this book uses the simplest effective mass model
of one parabolic band, i.e., the energy vs. wavevector dispersion relation is
described by E = h̄2k2/2m, with the effective mass m taken to be constant.
This ideal situation is a good approximation only if the energy of the electron
is close to the bandedge. Far away from the bandedge the dispersion becomes
different from a parabolic band. Within the k · p formalism [83], this nonpar-
abolicity is explained by mixing of the conduction band with additional (spin
split-off and valence) bands. The 8-band k · p model, originally proposed by
E.O. Kane [83], uses an 8 × 8-matrix Hamilton operator acting on wavefunc-
tions of electron, heavy-hole, light-hole, and split-off bands, each with two spin
values. Taking into account also the second conduction band, located about
3 eV above EC in GaAs, results in a 14-band model [84].

Two-Band Model

As a simpler approach, we discuss here an effective two-band model, which can
be regarded as a good approximation to an n-type QWIP. In fact, the three
valence bands used in the original Kane model are energetically far enough
away from the conduction band and can be merged into one effective valence
band. The free Hamiltonian H0 is given here by the 2 × 2-matrix [85–87]

H0 =
(

VC(z) −iγ̃ ∂
∂z

−iγ̃ ∂
∂z VV(z)

)
, (3.60)

where VC(z), VV(z) are the spatial distributions of the conduction and va-
lence bandedge, respectively. This Hamiltonian acts on the wave function
ψ = (ψC, ψV)t which comprises a conduction part ψC and a valence part ψV.
The wave equation H0ψ = Eψ now implies that ψC is accompanied by the
valence part

ψV =
−iγ̃

E − VV

∂

∂z
ψC. (3.61)

In particular, a bound state ψ with real-valued ψC contains an imaginary ψV.
The meaning of the parameter γ̃, which is related to the k·p matrix element

πcv via γ̃ =
√

2/3h̄πcv [85–87], becomes clear when solving the wave equation
for ψC, [

VC − ∂

∂z

γ̃2

E − VV

∂

∂z

]
ψC = EψC. (3.62)

Comparing this equation with an effective mass approximation suggests a
correspondence between h̄2/2m and γ̃2/(E − VV), which can be interpreted
as an energy dependence of the effective mass,
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m =
h̄2

2γ̃2
(E − VV). (3.63)

For constant potentials VC and VV, (3.62) leads to a hyperbolic dispersion
of the electron momentum k, given by the relation γ̃2k2 = (E −VC)(E −VV),
or equivalently,

E − VC = −Eg

2
±
√

E2
g

4
+ γ̃2k2 (3.64)

with the bandgap energy Eg = EC − EV. From (3.64), the group velocity
vg = h̄−1|∂E/∂k| at the energy E > VC is found to be

vg =
2γ̃

h̄

√
E − VC

√
E − VV

2E − VC − VV
. (3.65)

We note that vg → γ̃/h̄ for E → ∞, which indicates a mathematical analogy
between the two-band model and relativistic quantum mechanics.

The probability density associated with a state ψ = (ψC, ψV)t is given by
ρ = ψCψC+ψVψV = ψ∗ψ, and the current density by j = γ̃

h̄ (ψCψV+ψVψC) =
ψ∗vopψ. Here we have introduced the velocity operator vop = (i/h̄)(H0z −

zH0) = γ̃
h̄

(
0 1
1 0

)
. Sufficiently close to the conduction bandedge, we typically

have |ψC| � |ψV|, so ψC can be used for plotting the wavefunction.
The parameter γ̃ is now determined by the condition that the correct

effective mass is obtained at the conduction bandedge. For GaAs, we use
EC − EV = 1.519 eV and (3.63) yields γ̃ = 0.9294 eV nm. For the conduction
bandedge as a function of the Al-content x, we use the expression [88] EC =
0.57(1.594x + x(1 − x)(0.127 − 1.310x)) eV, where the prefactor 0.57 is the
band offset parameter. In order to ensure the correct reduced effective mass
value also at higher Al-contents, i.e., m∗ = 0.067 + 0.083x, we define the
effective valence bandedge EV (rather than the real one) via the relation [87]
EV = EC − 1.519(1 + 0.083

0.067 x) eV.
We note that a two-band formalism yields a significantly better description

of the observed subband structure than the usual one-band Hamiltonian. This
also becomes clear when comparing the momentum dispersions predicted by
different models, as shown in Fig. 3.9. Significant deviations exist between the
predictions of the effective-mass approximation and the two-band model, and
the latter already behaves quite similar to the 14-band model of [84]. These
deviations directly influence the accuracy of calculated subband energies, in
particular for excited subbands. Figure 3.9 also indicates the necessity to
distinguish between the dispersions of the barrier (Al0.3Ga0.7As) and quantum
well (GaAs) materials.

For multilayers, a transfer matrix calculation in the two-band approxima-
tion essentially works as already described in Sect. 3.3.3. Using the potentials
VC(z) = VCν and VV(z) = VVν inside the interval [zν−1, zν ], (3.38), (3.39),
(3.41), and (3.42) still hold after defining the momentum parameters (instead
of (3.37))
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Fig. 3.9. Momentum dispersions as obtained from the “parabolic” effective mass
model (3.1), the two-band model (3.64), the model of (3.69) with α = 0.64 eV−1 for
GaAs, and the 14-band calculation of [84]

kν =
{

(1/γ̃)
√

(E − VCν)(E − VVν) if E > VCν

(−i/γ̃)
√

(VCν − E)(E − VVν) if E < VCν
(3.66)

and the parameter (instead of (3.40))

αν =
kν(E − VV,ν+1)
kν+1(E − VVν)

. (3.67)

Results of subband calculations using the transfer-matrix method in the two-
band approximation are shown in Figs. 3.8 and 5.3.

Simple Model for Nonparabolicity

Finally, as a simpler way to include the effect of nonparabolicity, one could
use the following expression:

E =
h̄2k2

2m
(1 − γk2), (3.68)

where γ is a nonparabolicity parameter or, more conveniently,

E =
h̄2k2

2m
(1 − αE), (3.69)

where α is a nonparabolicity parameter with the dimension of an inverse
energy. To determine the eigenenergies, one needs to numerically solve the
appropriate transcendental equations (see Sect. 3.3.2 for the case of a sym-
metrical single QW). In computer programs, one scans the energy and looks
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for roots. The expressions in the transcendental equations require relations be-
tween E and k. Using (3.69), the band nonparabolicity is taken into account
in this simple way (used in Sect. 3.3.2).

Applying this scheme to the case of a quantum well with infinitely high
barriers, one easily gets (instead of (3.4)):

En =
h̄2

2m

(
πn

Lw

)2
/(

1 +
h̄2

2m

(
πn

Lw

)2

α

)
. (3.70)

Taking the reduced effective mass m∗ = 0.067 for GaAs and a well width of
10 nm, the value of the quantity h̄2

2m ( π
Lw

)2 is 0.0558 eV. The parameter α for
GaAs amounts to less than 1 eV−1. The nonparabolicity correction for the
ground state n = 1 is very small and for the excited states can be nonnegli-
bible. For InGaAs lattice matched to InP, the value taken in the calculation of
Sect. 3.3.2 is α = 1.24 eV−1, and the results compare well with experiments.

In the in-plane directions, nonparabolicity causes upper and lower sub-
bands to be nonparallel in their E vs. kxy relations (see also Fig. 3.9). This was
expected to cause a broadening in the observed ISBT linewidth [89]. However
the situation is complicated by the collective nature of the ISBT. Warburton
et al. [78] showed that the ISBT linewidth in InAs/AlSb QWs (with highly
nonparabolic band structure) is dominated by the collective effect resulting
in a narrow and almost temperature-independent linewidth.

3.5 Intersubband Relaxation and Carrier Capture

The photoconductive gain in QWIPs is strongly influenced by the time con-
stant for relaxation of the photoexcited carriers back into the ground sub-
band. We therefore provide in this section some basic concepts on how to
treat theoretically the relevant interactions leading to carrier capture, namely
electron–phonon, electron–impurity, and electron–electron scattering. We re-
strict ourselves here to n-type QWIPs (i.e., to electrons), since the bandstruc-
ture parameters of the conduction band are known reasonably well, and since
the coupling between heavy and light hole states in the valence band produces
additional complications.

The standard theoretical approach uses Fermi’s golden rule

1
τi

=
2π

h̄

∑
f

|〈i|Hscatt|f〉|2δ(Ef − Ei), (3.71)

to calculate the lifetime τi of the initial state i at the energy Ei [90–92].
The scattering processes into the final states f at energy Ef are induced by
the scattering Hamiltonian Hscatt. We note that the energies Ei and Ef of the
initial and final states include not only the electrons but also other excitations
(e.g., phonons) participating in the interaction.
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Using the interaction Hamiltonians treated below, typical applications of
(3.71) include the determination of time constants for intersubband relaxation,
carrier capture, and tunneling. In many cases, only one initial state 〈i| is
relevant for the relaxation process (particularly if 〈i| is a bound state), or it
is a good approximation to take into account one representative initial state.

The most relevant interaction here is the Fröhlich interaction between
electrons and longitudinal optical (LO) phonons. At large carrier densities
(∼1012 cm−2 and greater), electron–impurity and electron–electron scatter-
ing also have a substantial influence. Radiative relaxation governed by the
Hamiltonian of (3.8) is orders of magnitude less efficient than electron–photon
interaction and can be neglected in this context.

3.5.1 Electron-Phonon Interaction

In general, the elecron–phonon interaction can be written as [92]

Hep =
∑
q,µ

Cµ(q)eiqrb̂µ
q + C∗

µ(q)e−iqrb̂µ†
q , (3.72)

where µ is the band index, q the phonon wavevector, b̂µ†
q , b̂µ

q are the phonon
creation and annihilation operators, and Cµ(q) the coupling constant. The
asterisk denotes the complex conjugate. The scattering process is then de-
scribed using electron states |Ψi〉 and a boson representation of the phonon
states (e.g., b̂µ†

qf
|0〉 for a one-phonon state with final phonon wavevector qf ).

In the following, we consider bulk-like LO phonons and neglect their mo-
mentum dispersion. This approximation has proven to yield realistic time
constants both in the contexts of intersubband relaxation [91] and carrier
capture in QW structures [90,93]. In this case, the Fröhlich interaction be-
tween electrons and LO phonons can be written as

Cµ(q) =
ie
|q|

√
πELO

V (
1

ε∞
− 1

εS
), (3.73)

where ELO is the LO phonon energy, ε∞ (εS) the high-frequency (static)
dielectric constant, and V the normalization volume.

The resulting scattering rate for Fröhlich scattering by LO phonons from
subband Ψi to subband Ψf with the effective mass m is then given by [91,92]

1
τi

=
me2ELO

4h̄3 (
1

ε∞
− 1

εS
)
∫ ∫

dzdz′Ψ∗
f (z)Ψf (z′)Ψi(z)Ψ∗

i (z′)

×
∫ 2π

0

dϕ
exp(−aϕ|z − z′|)

aϕ
, (3.74)

where we have defined the quantitiy aϕ = |kf − ki|. Here ϕ denotes the angle
between the initial and final electron wavevectors ki and kf . For the present



3.5 Intersubband Relaxation and Carrier Capture 41

discussion, we assume ki = 0, so that aϕ = kf . At high temperatures, (3.74)
should be multiplied by NLO + 1/2± 1/2, with the Bose-Einstein occupation
factor NLO = (exp(h̄ωLO/kBT )−1)−1, with the plus and minus signs referring
to phonon emission and phonon absorption, respectively. This correction can
be neglected for temperatures at which IR detectors are usually operated.

Equations (3.71)–(3.74) show the most prominent property of LO phonon-
assisted relaxation – the interaction is inversely proportional to the phonon
wavevector q. For intersubband energies E2 −E1 higher than the LO phonon
energy ELO, τi thus increases roughly proportional to E2−E1−ELO. For E2−
E1 � ELO, (3.74) can be approximated (in the case of bound-to-continuum
QWIPs) by the relation [20,94]

1
τi

=
e2λcELOI1

4h2cLp

(
1

ε∞
− 1

εS

)
, (3.75)

where λc is the cutoff wavelength, Lp a characteristic length (taken as the
QWIP period), and I1 ≈ 2 a dimensionless integral. Equation (3.75) is quite
useful for a quick estimate of the capture time, and yields about 5 ps for typical
QWIP parameters.

For E2−E1 → ELO, q in (3.74) goes to zero, but τi remains finite since the
number of final states decreases. For energy spacings below ELO, the emission
of LO-phonon becomes irrelevant; in this case, scattering by acoustic phonons
(not discussed here) becomes important which leads to lower associated de-
cay rates. Intersubbband relaxation times in excess of 500 ps have thus been
observed at low temperatures [95].

In addition to these general trends, carrier capture in QWIPs also de-
pends on the actual manifold of continuum states over which the elec-
trons are distributed prior to their capture. Here the situation rapidly be-
comes involved by the influence of resonance effects, due to electric field-
induced localization and resonant couplings of minibands in the continuum
and due to the enhancement associated with the quasibound nature of the
excited subband. We therefore refer to [41,91] for a more detailed theoretical
treatment.

Figure 3.10a shows calculated LO phonon-mediated intersubband scat-
tering times τ2→1 from the second into the first subband for GaAs/AlGaAs
quantum wells between 5.5 nm (where the second subband is quasibound) and
17.8 nm (where E2 − E1 = ELO) at T = 0 K. The increase of τ2→1 with de-
creasing well width (increasing intersubband energy) is clearly seen. The steep
increase of τ2→1 at well widths below ∼6 nm arises from the reduced overlap
when the second subband turns into a quasibound state.

3.5.2 Electron-Impurity and Electron-Electron Scattering

Both electron–impurity and electron–electron scattering are based on the
Coulomb interaction HC = e2/4πεr. Since the scattering potential for both
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Fig. 3.10. (a) Inter subband (τ2→1) and intrasubband (τ1→1) relaxation times
associated with LO phonon emission in GaAs/Al0.3Ga0.7As single-quantum-wells
at T = 0K vs. well thickness. The inset depicts the schematics of the scattering
process. (b) τ2→1 (right scale) and broadening 1/2τ2→1 due to electron–impurity
scattering vs. dimensionless impurity position zi/L (on-center: zi/L = 0, on-edge:
zi/L = 1/2). Horizontal arrows correspond to homogeneous impurity distributions
in the GaAs quantum well (From [91])

processes is basically identical, the associated relaxation times are of the same
order of magnitude.

Scattering by Ionized Impurities

Scattering by ionized (i.e., unscreened) impurities has been investigated
theoretically by Ferreira and Bastard [91]. An ionized impurity located at
Rν = (R‖ν , zν) gives rise to the scattering potential

Hν =
2πe2

εsV2/3

∑
Q‖

1
Q‖

exp
(
−Q‖|z − zν | + iQ‖ · (r‖ − R‖ν)

)
, (3.76)

where the summation is over the wavevector Q‖ = (Qx, Qy). V is the volume
of the sample and εs the static dielectric constant.

The associated scattering rate τi has been evaluated [91] for the case of a
sheet of impurities with the areal density Nimp at the position z0. The result
is given by

1
τi

=
2π2e4

h̄ε2S
Nimp

∑
f

Ef<Ei

1
Ei − Ef
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×
∣∣∣∣∣
〈

Ψf

∣∣∣∣∣exp

(
−|z − z0|

√
2m

h̄2 (Ei − Ef)

)∣∣∣∣∣Ψi

〉∣∣∣∣∣
2

, (3.77)

which holds for an initial electron momentum ki = 0. For impurities distrib-
uted on several layer planes, (3.77) has to be calculated and summed up for
each impurity sheet.

Associated intersubband relaxation times τ2→1 are plotted in Fig. 3.10b
for 10 and 15 nm wide GaAs quantum wells as a function of the impurity
position. For an impurity density of ∼1010 cm−2, typical time constants are a
few 10 ps. Note however that impurity scattering is parity forbidden according
to (3.77), if the impurities happen to be located exactly at the well center.

Electron–Electron Scattering

In the case of electron–electron scattering, at least two carriers with different
initial and final states participate in the interaction, thus giving rise to matrix
elements of the form

〈f |HC|i〉 = 〈ψa(x1))ψb(x2)|
e2

4πε|x1 − x2|
|ψc(x1))ψd(x2)〉. (3.78)

The summation thus involves four independent states ψa, . . . , ψd; a more com-
plicated situation than the one covered in Sect. 3.4.2. According to (3.78), one
or two electrons per scattering event are transferred into a different subband.
For further evaluation of this scattering process, see [41].

At higher carrier densities, the electron–electron interaction in a quan-
tum well is screened due to the presence of other carriers, i.e., the proba-
bility for electron–electron scattering is reduced since many other carriers
respond to the changes induced by such a scattering event. For example, at
n2D ∼ 1012 cm−2, scattering rates are a few times 1012 s−1 without screening
and about 50% less if screening is taken into account [41]. The influence of
screening is negligible at low carrier densities n2D ∼ 1010 cm−2, where the
calculated scattering rate is a few 1010 s−1 [41].

Ando [96] has taken a different approach, where electron–electron scat-
tering is treated in terms of “collective excitations.” This approach allows
for some computational simplifications, since intersubband relaxation in the
presence of many-particle effects leads to “effective” lifetimes and broadenings.
In this way, additional interactions (including optical-phonon scattering) can
still be taken into account in the presence of electron–electron interaction [80].
Intersubband scattering rates using different screening models have been com-
pared by Lee and Galbraith [97]. They found that intersubband scattering can
be considerably enhanced by collective effects, and that screening – in spite
of a sometimes negligible quantitative influence – gives rise to a qualitative
difference at small momentum transfer, where scattering rates remain finite
(in contrast to the single-particle picture discussed in Sect. 3.5.1).
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Fig. 3.11. Peak responsivity and dark current of In0.3Ga0.7As/Al0.32Ga0.68As
MWIR QWIPs vs. carrier density (from [18])

Figure 3.11 shows the measured responsivity of InGaAs/AlGaAs QWIPs
with 2.6 nm well width, as a function of the carrier density [18], which can
give a feeling for the practical influence of these scattering processes. While
the responsivity is approximately linear with the carrier density at the usual
n2D = 1 . . . 5 × 1011 cm−2, the figure clearly shows that R saturates above
1012 cm−2, and even indicates a slight trend towards decreasing R (which we
attribute to a broadening of the spectra). At low n2D, carrier capture mainly
occurs via LO phonon scattering, which leads to the linear behavior since τc

(and therefore g) remains approximately unchanged. The saturation at high
n2D is understood by a scattering rate proportional to n2D, such that the
increase in quantum efficiency is compensated by the resulting decrease in the
gain, thus leading to a constant responsivity.
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Photoconductive QWIP

The simplest picture of a QWIP made of n-type GaAs/AlGaAs is given in
Fig. 4.1. The detector operation is based on photoemission of electrons from
the quantum wells. The contacts on both sides are of the same n-type. The
device is essentially a unipolar photoconductor. Usually many wells (10–100)
are required for sufficient absorption.

4.1 Dark Current

A good understanding of the dark current is crucial for design and optimiza-
tion of QWIPs because dark current contributes to the detector noise and dic-
tates the operating temperature. We first present two simple physical models.
As such, the results provide only an order-of-magnitude estimate; however, the
physical principles are clear. A brief discussion of numerical models suited for
guiding the fine-tuning of the device parameters and for interpreting higher
order effects is then given.

4.1.1 Simple Models

There are several common assumptions or approximations made to define
the physical regime for all the discussions in this section. These are: (a) the
interwell tunneling contributes negligibly to the dark current, (b) the electron
density in each well remains constant, (c) the heavily doped emitter serves as
a perfectly injecting contact, and (d) mainly one bound state is confined in
the quantum well, including the case where the upper state (final state of the
ISBT) is in resonance or very close to the top of the barrier. Assumption (a) is
satisfied by requiring the barriers to be sufficiently thick. Assumption (b) is a
good approximation, but is not strictly valid especially at large bias voltages as
shown experimentally [58]. Assumption (c) is expected to be valid for QWIPs
with a large number of quantum wells, consistent with experimental results
[98]. The effect of contacts becomes important for QWIPs with a small number
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Fig. 4.1. Schematic conduction bandedge profile of a GaAs/AlGaAs QWIP under
zero (above) and finite (below) bias. The electron population in the n-type wells
is provided by doping using silicon. The emitter and collector contact layers are
doped with silicon. Photons (hν) excite electrons from quantum wells, causing a
photocurrent

of quantum wells as shown in simulations [99]. To produce good detectors,
condition (d) is required, as stated in Sect. 3.1.

Having defined the physical regime, the dark current in a typical and stan-
dard photoconductive QWIP is controlled by the flow of electrons above the
barriers, and by the emission and capture of electrons in the wells. Figure 4.2
presents pictorially the electron distribution (top) and the processes control-
ling the dark current (bottom).

The top part of the figure indicates that at finite temperatures electrons
are not only bound in the well, but are also distributed outside of the well
and on top of the barriers. The energy region for electrons contributing to the
dark current is indicated by the large brace bracket.

The lower part of Fig. 4.2 shows the dark current paths. In the barrier
regions (on top of the barriers), the current flows in a three-dimensional (3D)
fashion, and the current density is labeled as j3D which equals the dark current
Jdark. In the vicinity of each well, the emission of electrons from the well
(je) contributes to the dark current. This current, which tends to lower the
electron density in the well, must be balanced by the trapping or capture of
electrons into the well under steady state (jc = je). Since the dark current is
the same throughout the structure, j3D and je (or jc) are related. If we define
a trapping or capture probability pc for an electron traversing a well with
energy larger than the barrier height, we must have jc = pc j3D, and the sum
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Fig. 4.2. Schematic representation of the electron distribution (top) and the
processes controlling the dark current (bottom). Symbols are defined in the text

of the captured and uncaptured fractions must equal the current in the barrier
region: j3D = jc + (1 − pc)j3D = je + (1 − pc)j3D. With this physical picture,
one can model the dark current Jdark by calculating either j3D directly or je,
and in the latter case Jdark = je/pc.

3D Carrier Drift Model

The first physical model calculates Jdark by directly estimating j3D. A 3D
electron density on top of the barriers N3D is estimated with only the drift
contribution taken into account (diffusion is neglected). The model was first
presented in a very clear and concise paper by Kane et al. [100]. The dark
current density is given by

Jdark = eN3Dv(F ), (4.1)

where v(F ) is the drift velocity as a function of electric field F . The 3D density
is calculated by treating the barriers as a bulk semiconductor. Superlattice
band structure effects are neglected, justified because the barriers are thick
(much thicker than the wells) and the resulting superlattice miniband gaps
are less than the thermal energy kBT at device operating temperatures. The
only 2D quantum well effect comes into the picture for the evaluation of
the Fermi energy Ef . Usually QWIPs are degenerately doped in the wells,
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i.e., the top of the Fermi sea is higher than the energy of the lowest subband.
Assuming a complete ionization, the 2D doping density ND equals the electron
density within a given well, as a good approximation. The Fermi energy is
then calculated by ND = (m/πh̄2)Ef . With all above assumptions, a simple
calculation yields

N3D ≈ 2(mbkBT/2πh̄2)3/2 exp(−Eact/kBT ), (4.2)

where mb is the barrier effective mass, and Eact is the thermal activation
energy which equals the energy difference between the top of the barrier and
the top of the Fermi sea in the well. We have assumed that Eact/kBT � 1,
appropriate for most practical cases.

The drift velocity takes the usual form

v(F ) =
µF

[1 + (µF/vsat)2]1/2
, (4.3)

where µ is the low field mobility and vsat is the saturated drift velocity. While
(4.3) is sufficient for the present considerations, to take into account the neg-
ative differential mobility phenomenon a more elaborate form of v(F ) will be
used in Sect. 7.2.2.

A note on the validity of the model is needed. The key step is the evaluation
of N3D, by taking the equilibrium value at zero bias with the Fermi level
determined by the well doping. It is therefore expected that the result is only
valid for low electric field. As an extension and perhaps an improvement, Man
and Pan [101] and Chu et al. [102] proposed a model involving different carrier
temperatures or Fermi levels for the 3D barrier electrons and the 2D well
electrons. Man and Pan adopted an empirical expression relating the barrier
hot electron temperature to the 2D well electron temperature and applied
electric field, whereas Chu et al. calculated the 3D barrier electron Fermi level
by balancing the tunneling escape rate and the capture rate due to electron–
phonon scattering. For both cases better fits to experiments were obtained.

The simple model compares well with experiments in the expected regime
of low applied electric field. We show a comparison with three samples de-
signed to have high absorption for heterodyne detection, having high well
doping and sacrificing dark current. The main difference between the samples
is the doping density in the well. The three samples were grown by MBE
on semi-insulating GaAs substrates. The period of the 100-repeat multiple
quantum well structure consists of a GaAs well and AlxGa1−xAs barriers,
the GaAs well center region is doped with Si, and the top and bottom GaAs
contact layers are 400 and 800 nm thick, doped with Si to 2× 1018 cm−3. The
quantum well parameters are listed in Table 4.1.

Values of µ = 1, 000 cm2 Vs−1, for the mobility and vsat = 107 cm s−1

for the saturated velocity were used for fitting. The final parameter needed
is the activation energy, which is Eact = Vb − (E1 − Eex) + Ef , where Vb is
the barrier height and E1 is the ground state eigenenergy. The energy shift
in ground state due to the exchange effect is taken into account using the
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Table 4.1. Quantum well parameters of the 100 well QWIPs

ND (cm−2) x Lw (nm) Lb (nm) Vb (eV) E1 (eV) Eex (eV)

1 × 1012 0.200 6.6 25.0 0.18 0.049 0.015
1.5 × 1012 0.192 6.6 25.0 0.17 0.048 0.017
2 × 1012 0.197 5.9 24.0 0.18 0.056 0.020

Symbols: x – Al fraction, Lw – well width, Lb – barrier width, ND – doping density
in the well, Vb – barrier height, E1 – ground state energy, and Eex – exchange energy

expression given in Sect. 3.4. With these parameters, we obtain an adequate
fit to the experimental data in Fig. 4.3 (dashed curves) in the low-field region
(below a few kilovolt per centimeter), as expected for the model. The fit can
be improved if the effect of barrier lowering due to the applied bias field is
included. The dash-dotted curves in Fig. 4.3 are calculated using Eact = Vb −
(E1−Eex)+Ef−eFLw/2; the last term takes into account the effective barrier
lowering because E1 (referenced to the center of the well) is approximately
independent of F .

In fact, this simple 3D carrier drift model can be applied to more com-
plicated structures, as the assumption of having only one bound state can
be relaxed. As an example, we apply this model to a set of three p-type
QWIPs [103] where several bound states (including both heavy and light hole
states) are confined in the well. The main difference between the samples
is the barrier height (or the x value). The period of the 100-repeat multiple
quantum well structure consists of a GaAs well and AlxGa1−xAs barriers. The

Fig. 4.3. Dark current characteristics at 77K for a set of n-type QWIPs. Solid
curves are experimental results, while dashed and dash-dotted are calculated using
the simple 3D drift model for low field. The three samples differ mainly by the
doping in the well
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Table 4.2. Quantum well parameters of the 100 well p-type QWIPs

x Lw (nm) Vb (eV) HH1 (eV) HH2 (eV) LH1 (eV)

0.215 4.0 0.114 0.029 0.101 0.057
0.245 4.1 0.130 0.029 0.106 0.059
0.290 4.1 0.154 0.031 0.114 0.064

The symbols: x – Al fraction, Lw – well width, Vb – barrier height, HH – heavy
hole, LH – light hole, and the number after HH or LH is the eigenlevel index. All
barriers are 20 nm thick, and all well center regions are doped with Be to 1012 cm−2

top and bottom GaAs contact layers are 200 and 600 nm thick, doped with
Be to 8×1018 cm−3. The quantum well parameters are listed in Table 4.2; for
completeness, the calculated eigenenergies are given as well.

The 3D density of free holes in the barrier region is estimated using the
Fermi energy determined by the well doping. Both heavy and light hole
densities are included. The hole effective mass in the barrier was obtained
by linearly interpolating the values for GaAs and AlAs. The hole mobil-
ity values are not known for this type of structures, and we have used a
value of µh = 100 cm2 Vs−1 as an approximation. The activation energy is
Eact = Vb − (EHH1 − Eex) + Ef , where EHH1 is the heavy hole ground state
eigenenergy. Again using the expression in Sect. 3.4, the calculated exchange
energy Eex is 26 meV. The eigenenergies and the Fermi energy are calculated
using the 8×8 envelope function approximation [104], which gives Ef = 9 meV,
where Ef is referenced to the HH1 eigenlevel. Using these parameters, we ob-
tain an adequate fit to the experimental data in Fig. 4.4 in the low-field region
(below a few kilovolt per centimeter) as expected for the model.

Fig. 4.4. Dark current characteristics at 77K for a set of p-type QWIPs. Solid
curves are experimental results, while dashed are calculated using the simple 3D
drift model for low field. The three samples differ mainly by the barrier Al fraction
(x) which determines the barrier height
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Emission-Capture Model

The second approach [105] calculates je and then Jdark = je/pc (see the lower
part of Fig. 4.2).

We first review and comment on several other published models in the
literature. The model given by Levine et al. [106] has been widely used
[105,107,108]. However, they [106] did not discuss the process of trapping or
capture to balance the emission or escape. Andrew and Miller [107] included
an image charge effect using the usual formula for the image potential, but
this is incorrect for a quantum well with mainly an occupied ground state;
thus the image charge effect is expected to be small for QWIPs [109]. In a well-
cited paper, Kinch and Yariv [110] formulated a model by estimating the 2D
electrons distributed above the barriers, but they did not discuss the process
of trapping or capture. The model by Petrov and Shik [111] estimates je and
takes this as the total dark current. The estimate was done by integrating
the product of a velocity vz and the transmission coefficient, where the z-
coordinate is in the direction of the current flow. This approach models the
electron escape by direct tunneling only, and neglects the scattering-assisted
escape process.

Scattering-assisted escape is the dominant process for a typical QWIP,
especially at low fields. Electrons associated with the confined ground state
in the well and distributed on the 2D in-plane dispersion curve undergo a
scattering event to get out of the well and then become a 3D mobile carrier
in the barrier. This physical picture is illustrated in Fig. 4.5.

We now construct the dark current expression. Under certain approxi-
mations, the result from considering je and then Jdark = je/pc should be
consistent with the previous expression (4.1). Referring to Fig. 4.5, the escape

VB
N2D

N3D

1/τc

1/τscatt

Fig. 4.5. Processes of scattering of electrons from the ground state subband into the
continuum states and capture of electrons from the continuum back to the subband.
The main contribution to the scattering escape is from electrons with their energy
higher than the barrier height
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current density can be written as

je = eN2D/τscatt, (4.4)

where N2D is a 2D electron density which only includes electrons on the up-
per part (with energy greater than the barrier height) of the ground state
subband and τscatt is the scattering time to transfer these electrons from the
2D subband to the nonconfined continuum on top of the barrier. The stan-
dard QWIPs having their barriers much wider than wells, we neglect any
superlattice miniband effects.

The capture probability is related to the relevant time constants by

pc =
τtrans

τc + τtrans
, (4.5)

where τc is the capture time for an excited electron back into the well, and
τtrans is the transit time for an electron across one quantum well region in-
cluding the surrounding barriers. (Note that the capture time τc is equivalent
to the excited electron lifetime τlife, more widely used in the discussion of pho-
toconductors. Also note that τtrans defined here is associated with only one
period of the multiple quantum well device in contrast to, e.g., [112], where
the same symbol was used for the transit time across the entire detector.)

In the limit of pc � 1, i.e., τc � τtrans, as is true for actual devices at
operating electric fields, the dark current becomes

Jdark = je/pc = e
N2D

τscatt

1
pc

= e
N2Dτc

τscattτtrans
= e

N2D

Lp

τc

τscatt
v, (4.6)

where Lp is the period length of the multiple quantum well structure, which
is the sum of the well and barrier widths Lp = Lw + Lb. This gives some
physical insights into the physical processes involved in the dark current. The
quantity N2D/τscatt represents the thermal escape or generation of electrons
from the quantum well, and 1/pc, as shown later, is directly proportional to
the photoconductive gain. This implicit dependence of Jdark on the photocon-
ductive gain will be conceptually important when discussing the detectivity
of a QWIP.

We can establish a relationship between N2D and N3D due to the balance
in scattering escape and capture (see Fig. 4.5):

N2D

τscatt
=

N3DLp

τc
, (4.7)

This is consistent with the expectation that τscatt is independent of Lb for
large barrier widths (Lb → ∞), whereas τc should be proportional to Lb.

Substituting (4.7) into (4.6), we get

Jdark = eN3D
Lp

τtrans
= eN3Dv, (4.8)

with the drift velocity v = Lp/τtrans, exactly the same as in (4.1).
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It is also easy to establish an approximate relationship between τscatt and
τc. The 3D density has been given in (4.2). Similarly by counting all electrons
distributed on the ground state subband above the activation energy, we get

N2D ≈ m

πh̄2 kBT exp(−Eact/kBT ). (4.9)

Using (4.2), (4.7), and (4.9), we get

τc

τscatt
≈ mb

m
Lp

(
mbkBT

hh̄

)1/2

. (4.10)

Equation (4.10) yields τc/τscatt ≈ 2 for typical GaAs/AlGaAs QWIPs with
Lp = 50 nm at T = 77 K, while experimentally, τscatt is in the range of 1–2 ps
and τc is 5–10 ps. The emission-capture and 3D carrier drift models thus yield
quite similar results.

Another popular model already mentioned earlier in this section, given by
Levine et al. [106], gives rise to the formula

Jdark = e
N2D

Lp
v. (4.11)

Comparing with (4.6), the above is equivalent to setting τc = τscatt in (4.6).
Although (4.11) has been widely used by many authors, it ignores the implicit
dependence of Jdark on the photoconductive gain, and it implies an unrealistic
proportionality between Jdark and 1/Lp. Nevertheless, both approaches yield
the correct order of magnitude for practical dark current calculations.

Calculation of dark current now relies on obtaining a good estimate of
N2D. So far we calculated N2D by including only those electrons with their
energies above the barrier height. Electrons near the barrier height (but be-
low) can also contribute by scattering-assisted tunneling. This contribution
can be accounted for in the following way. We use the important theoretical
result of Meshkov [113] which can be stated as follows: including scattering
processes, an electron tunneling rate in a 1D potential is controlled by the to-
tal energy rather than the energy associated with the tunneling direction. For
thick barriers, scattering- assisted processes determine the tunneling transmis-
sion probability. We use the following expression, which in view of Meshkov
effectively includes the scattering escape process [106]:

N2D =
∫ ∞

E1

m

πh̄2 T (E,F )
[
1 + exp

(
E − Ef

kBT

)]−1

dE, (4.12)

where T (E,F ) is the transmission coefficient which is taken to be unity for
E higher than the barrier. According to (4.6), the final expression for dark
current is then given by

Jdark = e N2Dτc/Lp v τscatt

=
evτc

τscatt

∫ ∞

E1

m

πh̄2Lp

T (E,F )
[
1 + exp

(
E − Ef

kBT

)]−1

dE. (4.13)
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Fig. 4.6. Schematic illustration of relevant energies and the effective barrier lower-
ing. The electron energy E is referenced to the center of the well

As before, the v vs. F relationship is given by (4.3). The electric field de-
pendence in (4.13) is explicitly through (4.3) and implicitly through T (E,F ).
Using the WKB approximation, T (E,F ) is given by

T (E,F ) = exp
[
−2
∫ zc

0

dz
√

2mb(V − E − eFz)/h̄

]
, (4.14)

for energy less than the barrier height E < V , where mb is the barrier mass
and V = Vb − eFLw/2 includes the barrier lowering by applied bias field,
and zc = (V − E)/eF defines the classical turning point. Figure 4.6 shows
schematically the relevant quantities. The WKB approximation compares well
with more exact calculations using the transfer matrix approach.

Equation (4.13) can be simplified in the pure thermionic emission regime,
i.e., the tunneling contribution can be neglected. This is equivalent to setting
T (E,F ) = 0 for E below the barrier.

Furthermore, the condition (E −Ef)/kBT � 1 for E > V generally holds.
Equation (4.13) then becomes

Jdark =
evτc

τscatt

m

πh̄2Lp

kBT exp(−Eact/kBT ). (4.15)

This expression closely resembles (4.1) together with (4.2), and corresponds
exactly to (4.6).

The model discussed here (with τc/τscatt set to 1) has been extensively
compared with experiments (see [43,106]). Given the simplicity of the model,
the good agreement obtained exceeds expectations. Figure 4.7 shows an exam-
ple of model-experiment comparison. The samples have nominally the same
parameters other than the number of wells. The well width is 6 nm, the barrier
width is 25 nm, the barrier x value is 0.25, and the well doping is 9×1011 cm−2.
The measured curves in Fig. 4.7 display an asymmetry between positive and
negative bias polarities, which was found to be due to the dopant segregation
during growth [114,115] (to be discussed in Sect. 7.3).
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Fig. 4.7. Dark current of a set of nearly identical samples varying only the number
of wells. The dashed curve is calculated using Levine’s formula (4.13) (τc/τscatt set
to 1)

4.1.2 Self-Consistent and Numerical Models

Self-Consistent Drift-Diffusion Model

The model developed by Ershov et al. [99,116] calculates the QWIP char-
acteristics by self-consistently solving three equations: (1) Poisson equation,
(2) continuity equation for electrons in the barriers, and (3) rate equation
for electrons in the quantum wells. The inclusion of the Poisson equation is
especially important for QWIPs with a small number of wells (<10) because
the field can be substantially different (often higher) for the first few peri-
ods starting from the emitter in comparison with the rest of the wells (see
Fig. 4.8). The continuity equation involves the current (expressed in the stan-
dard drift-diffusion form) and rates of thermal and optical generation and of
recombination.

Using this numerical model, we were able to account for the observed un-
usual capacitance behavior [117] and explain the nonlinear photoconductivity
at high excitation power using a CO2 laser [118]. In addition, the model has
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Fig. 4.8. Self-consistently calculated profiles of QWIPs with 4, 8, and 16 wells. The
average applied field (10 kV cm−1) is shown by a dash-dotted line (Courtesy of M.
Ershov)

the capability to predict transient and hence frequency characteristics [119],
as well as photoresponse under localized IR excitation [120].

Self-Consistent Emission-Capture Model

Thibaudeau et al. [121] presented a numerical model which extends the simple
emission-capture model presented before. The model allows the electric field
to be nonuniform, self-consistently determined by Gauss’ law. The authors
obtained better agreement with experiments than the simple model.

Ryzhii [122] constructed an analytical model by solving Poisson’s equation
and an equation governing the electron balance in the quantum well. Inter-
esting functional dependencies of the responsivity on the number of wells and
the photon excitation power were found.

Jovanović et al. [123] constructed a quantum mechanical model considering
all scattering processes including emission and capture. The model results
were compared with experimental data on a GaAs/AlGaAs device and good
agreement was found.

Numerical Monte Carlo Model

Ryzhii et al. [124,125] carried out Monte Carlo simulations on QWIPs, in
particular their ultrafast electron transport properties. Cellek et al. [126,127]
also performed such simulations, analyzing the effects of material properties
on the device characteristics. They found the evidence that the L-valley in
GaAs/AlGaAs QWIPs plays an important role in determining the respon-
sivity vs. voltage behavior. Monte Carlo simulations shed light on the hot
electron distribution on top of the barriers, and should provide guidance to
the optimization of QWIPs.

To end this section, although several models have been established, with
varying degree of complexity, and good agreement between models and exper-
iments has been obtained, to formulate a true first-principle QWIP model is a



4.2 Photocurrent 57

highly nontrivial task. This is because the QWIP is a complicated and “dirty”
system. Given the wide barriers and narrow wells, the transport mechanism
falls between ballistic and drift-diffusion; and due to the high doping and
high field, realistic calculations of scattering or trapping rates are extremely
complicated and have not been performed so far. The situation becomes even
more complicated to model for p-type structures [65,128].

4.2 Photocurrent

Photoconductivity phenomena in solids are well known, and many texts have
been written on the subject [31,33,129,130]. The device operation of the photo-
conductive QWIPs is similar to that of extrinsic semiconductor detectors [131].
The distinct feature of QWIPs in contrast with the conventional intrinsic and
extrinsic photoconductors is the discreteness, i.e., incident photons are only
absorbed in discrete quantum wells which are normally much narrower than
the inactive barrier regions. In this section, we discuss the photocurrent caused
by intersubband excitations in a QWIP and introduce the concept of photo-
conductive gain. Here we consider only the case of positive photoconductivity,
i.e., the effect of the incident IR light is to make the device resistance smaller.
Negative photoconductivity is possible, e.g., if one has a device with a negative
differential resistance region [132–136].

4.2.1 Photoconductive Gain

Photoconductive gain is defined as the number of electrons flowing through
the external circuit for each photon absorbed. A model [112] specifically for
photoconductive QWIPs has been constructed, which answers exactly what
constitutes the mechanism of photoconductive gain and how it depends on
device parameters such as the number of wells. The model also explains
observations of large (�1) photoconductive gains [61,137]. In this section,
we first present the physical picture, and then derive an expression for the
gain. A comparison with experiments and an estimate of relevant time scales
follow.

To visualize the physical process and the gain mechanism, a simple one-
well structure is given in Fig. 4.9. The top part shows the dark current paths
(same as in the bottom part of Fig. 4.2). All these dark current paths remain
unchanged when IR light is shone on the detector. The additional processes as
a result of the IR radiation are shown in the bottom part of Fig. 4.9. There is a
direct photoemission of electrons from the well, and this, of course, contributes
to the observed photocurrent in the collector. The photoconductive gain is a
result of the extra current injection from the contact necessary to balance
the loss of electrons from the well due to photoemission. The amount of the
extra injection must be sufficiently large that its fraction trapped in the well
equals the direct photoemission current. On the other hand, the fraction of
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Fig. 4.9. The photoconductive gain mechanism. The top part shows the dark current
paths, while the bottom indicates the direct photoemission and the extra current
injection from the contact to balance the loss of electrons from the well. The dark
current paths remain the same under illumination. The collected total photocurrent
is the sum of the direct photoexcited and the extra injection contributions

the extra injected current that reaches the collector contact is in fact indistin-
guishable from the direct photoemitted current, and therefore contributes to
the observed photocurrent. The total photocurrent consists of contributions
from the direct photoemission and the extra current injection. Note that the
physical mechanism given here is the same as for a conventional photoconduc-
tor [33] though this simple physical picture was presented only in the context
of QWIP physics [112]. The common physical picture to explain larger than
unity gain states that photoexcited electrons circulate around the circuit sev-
eral times. This seems plausible, and appears in textbooks (see, p. 97, [130]),
but is misleading since a collector “absorbs” all electrons and the excess energy
of the electrons gives rise to the Ohmic heating.

An important fact, perhaps counter-intuitive at first sight, is that the mag-
nitude of photocurrent is independent of the number of wells if the absorption
for each well is the same. To understand this pictorially, Fig. 4.10 shows the
photoccurrent paths for a two-well structure. If the first well is next to the
emitter, one can see that for the second well the processes of photoemission
and refilling are identical to those in the first well. The only difference is that
for the first well the extra injection comes directly from the emitter whereas
for the second well the injection is the resulting total photocurrent in the
barrier separating the two wells. The same argument can be made for any
subsequent wells. This means that the magnitude of the photocurrent is unaf-
fected by adding more wells as long as the magnitude of absorption and hence
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Fig. 4.10. A two-well case which illustrates the independence of photocurrent on
number of wells. The left well is next to the emitter. The extra injection is the
observed photocurrent, and the same injection balances the photoemission from
both wells

photoemission from all the wells remains the same. A further discussion of
the photocurrent paths will be given in Sect. 10.1.1.

We present a derivation of the photoconductive gain expression explicitly
for QWIPs. The model is constructed under the same assumptions (a)–(d) as
in Sect. 4.1.1. A clarification of how the assumption of an injecting contact
(assumption (c) in Sect. 4.1.1) can be fulfilled is in order, because this is
an important point both for the dark current model and for the concept of
photoconductive gain. To have a good injecting contact, the barrier between
the emitter contact and the multiquantumwell (MQW) region must not be
large. In most cases this barrier is the same as the barrier separating wells
in the MQW region. If needed, an extra injection of electrons is achieved
by increasing the electric field at the emitter–MQW junction. This is a self-
consistent process: e.g., if one adds an extra emission channel of electrons
from the wells (e.g., by photoemission), the wells will tend to become slightly
charged, which increases the electric field at the emitter–MQW junction and
hence increase injection to balance the loss of electrons in the wells [138]. The
mechanism is shown schematically in Fig. 4.11.

Having discussed the two pictures of one- and two-well cases (Figs. 4.9 and
4.10), a simple derivation can be constructed. We first calculate the emission

Fig. 4.11. The mechanism of injection. The bandedge profile with and without the
photoemission is shown in dashed and solid lines, respectively. Due to photoemission
of electrons, the well becomes slightly charged, leading to an increase in the electric
field and injection
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current as a consequence of direct excitation of electrons into the continuum
(the zigzag arrow shown in the bottom part of Fig. 4.9). The photoemission
current directly ejected from one well is

i
(1)
photo = eΦη(1) τrelax

τrelax + τesc
≡ eΦη

pe

N
, (4.16)

where Φ is the incident photon number per unit time, the superscript (1) indi-
cates quantities for one well, τesc is the escape time, τrelax is the intersubband
relaxation time, η ≡ Nη(1) is the total absorption quantum efficiency, N is
the number of wells, and the escape probability for an excited electron from
the well is given by

pe ≡
τrelax

τrelax + τesc
. (4.17)

We have assumed that the amount of absorption is the same for all the wells,
i.e., η ≡ Nη(1). The photon flux could depend on the location of the well, but
this is very specific to the detector light coupling geometry (e.g., 45◦ facet
coupling [14] or grating coupling [139]). The derivation of (4.16) is straight-
forward from a rate equation consideration: letting nex be the number of the
excited electrons, we have

dnex

dt
= Φη(1) − nex

τesc
− nex

τrelax
. (4.18)

Under steady state, dnex/dt = 0, we solve for nex from (4.18). Then the
photoemitted current from one well is enex/τesc which gives (4.16).

As shown in Figs. 4.9 and 4.10, for each well, the injection current (i(1)photo/pc)

which refills the well to balance the loss due to emission (i(1)photo) equals the
observed photocurrent. The photocurrent is then given by

Iphoto = i
(1)
photo/pc. (4.19)

Using (4.16), we immediately get

Iphoto = eΦη
pe

Npc
≡ eΦηgphoto (4.20)

and
gphoto ≡ pe

Npc
(4.21)

is the photoconductive gain. As before in the discussion of dark current, the
capture probability is given by

pc =
τtrans

τc + τtrans
, (4.22)

where τtrans is the transit time for an electron across one quantum well region
or the period of the structure. Note that Beck [140], using the same physical
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model, obtained gphoto = 1/(Npc). The difference from (4.21) is purely due
to the difference in the definition of quantum efficiency η. Beck’s definition
of quantum efficiency is not photon absorption quantum efficiency. His quan-
tum efficiency is equivalent to peη here, which results in the missing pe factor
in his photoconductive gain expression in comparison with (4.21). A similar
photoconductive gain expression for QWIPs was given [141], valid for pc � 1.
Heuristically, since the processes of escape and capture are complimentary,
the quantities of pe and pc should be correlated in a standard photoconduc-
tive QWIP with simple quantum wells. Looking at the times involved in the
definitions, (4.17) and (4.22), an approximation pe ∼ 1 − pc holds, but only
as a rough guide.

The photoconductive gain expression for QWIP should correspond to
the expression given by the conventional theory of photoconductivity [33],
gphoto = τc/τtrans,tot, where τtrans,tot = (N + 1)τtrans is the total transit
time across the detector active region. Under the approximation pe ≈ 1,
pc ≈ τtrans/τc � 1 and N � 1, the gain expressions given by (4.21) and
the conventional theory become the same:

gphoto ≈ 1
Npc

≈ τc

τtrans,tot
=

τcv

NLp
. (4.23)

For QWIPs, the lifetime (capture time) τc is associated only with those
processes that scatter an electron into the ground state subband in the well
(trapping). For a simple square well, the condition pe ≈ 1 is met for a bound-
to-continuum case (i.e., only one bound state is confined in the well); while
for a bound-to-bound case (two bound states) this is no longer true [142]. For
structures where pe and pc can be designed independently [143] (see Chap. 5),
(4.23) cannot be used. If the absorption is proportional to N , as is a good
approximation for a lot of practical cases, the photocurrent is independent
of N since gphoto is inversely proportional to N . This was shown experimen-
tally [61] (see Fig. 4.12). Photocurrent independence of N is equivalent to its
independence of device length in the conventional theory. This independence
does not mean that the detector performance is independent of the number
of wells because of noise considerations (see Sect. 4.3).

Using (4.21) for different values of pc and pe = 1, the calculated photo-
conductive gain is plotted vs. the number of wells in Fig. 4.13, together with
some experimental data (at high fields) from [61,100,106,137,144]. The NRC
data [61] were obtained on samples with comparable parameters (grown one
after the other) except the number of wells. A capture probability of about
0.07 is inferred from these data. Most of the reported detector samples have
50 quantum wells. It is seen from Fig. 4.13 that a range of gain values from
about 0.27–0.80 for 50 well samples have been observed, and hence the gain
is quite sample dependent. The difference in τtrans between samples is a pos-
sible reason for the spread of the observed gain values. The transit time τtrans

is mainly determined by the high-field drift velocity of an excited electron
in the barrier region and varies somewhat depending on the field strength
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Fig. 4.12. Absorption (top) and responsivity (bottom) spectra of four samples with
nominally identical parameters but the number of wells. This clearly evidences that
the responsivity is independent of the number of wells although the absorption is
increased proportionally. See [61] for experimental details

and barrier materials. The other possibility is the variation in τc. Processes
that result in capture are due to scattering by impurities and electrons in
the well region, phonons, and interface roughness. Experiments of Gunapala
et al. [144] suggest that the impurity and electron–electron scattering may not
be the dominant mechanism because the observed gain values did not decrease
systematically with increasing well doping density. Phonon scattering would
probably result in comparable values of capture probability for similar struc-
tures, and may not explain the strong sample dependence. Interfaces between
AlGaAs and GaAs could be very different from sample to sample and from
one crystal growth facility to another. Finally, the resonant enhancement of
the density of states close to the barrier bandedge – usually present in or-
der to obtain efficient intersubband or bound-to-continuum absorption – is
expected to cause also a resonantly enhanced capture probability and thus a
reduced τc.

We can make some estimates of the time scales involved. From the mea-
sured intersubband absorption line width (normally no narrower than about
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Fig. 4.13. Calculated photoconductive gain vs. the number of wells for capture
probability pc = 0.01, 0.04, 0.07, 0.1, and 0.4, respectively. Experimental data are
taken from Liu et al. (cross), Levine et al. (triangle), Kane et al. (square), and
Schneider et al. (circle)

5 meV), we know that τrelax is longer than 100 fs for a typical QWIP, i.e.,
100 fs is a lower bound for τrelax. From time-resolved experiments, Tatham
et al. [145] projected an upper bound on the intersubband relaxation time of
about 500 fs and Baier et al. [146] deduced this time to be approximately 1 ps,
both for a bound-to-bound state relaxation process. Using an excited state dif-
ferential absorption technique, Faist et al. [147] inferred a relaxation time of
slightly less than 1 ps, again, for a bound-to-bound situation. Andersson [94]
performed calculations of τc for QWIPs [see (3.74)] and gave τc = 5.5 ps
for a typical structure. There is a difference between the bound-to-bound
and continuum-to-bound relaxation processes. Since in the latter case the ex-
cited electron is extended in the barrier region, the relaxation should take
more time. We therefore expect that τc for a typical GaAs/AlGaAs QWIP
should be approximately 5 ps. This value is consistent with findings from time-
resolved photocurrent measurements [148], which deduced τc < 7 ps. For In-
GaAs/GaAs QWIPs, capture times are about twice as long (see Sects. 10.1.2
and 10.2.2).

The transit time can be estimated by τtrans ≈ Lp/v, where Lp is the
quantum well period and v is the drift velocity. For typical parameters of
v = 107 cm s−1 and Lp = 30–50 nm, τtrans is estimated to be in the range
of 0.3–0.5 ps. One therefore expects a capture probability [pc = τtrans/(τc +
τtrans) ≈ τtrans/τc] to be in the range of 0.06–0.1 consistent with existing
experiments (see Fig. 4.13).
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To quantitatively calculate τc is a highly nontrivial problem [149,150]. This
problem is also of key importance to the operation of (interband) quantum
well lasers [151] as well as QCL [28,29]. Large variations of carrier relaxation
time from about 1 to 20 ps have been predicted, and experimental studies
using many samples with varying well width have resulted in similar variations
[151–153].

4.2.2 Detector Responsivity

In this section, we discuss factors that control the responsivity. The magnitude
of responsivity is controlled by both quantum efficiency and photoconductive
gain. A high absorption does not necessarily result in a high detector respon-
sivity. There must not only be high absorption but the photoexcited electrons
must also escape the wells efficiently to give rise to a large photocurrent. Both
experiments [45] and calculations [46] have been performed to address the op-
timal design of quantum well for maximizing the responsivity. It was shown
that the optimum occurs when the excited state is in close resonance with
the top of the barrier. In general, the spectral current responsivity is given
by

Ri = Iphoto/(hνΦ) =
e

hν
ηgphoto, (4.24)

where ν is the photon frequency. For QWIPs, gphoto is given by (4.21), which
is

gphoto =
τrelax

τrelax + τesc

τc + τtrans

τtrans

1
N

, (4.25)

where the first two fractions come from pe and 1/pc, respectively.
Let us discuss ways to maximize the responsivity. Under the assumption

of η ∝ N , there is nothing that can be done about the number of wells since
Ri is independent of N . The escape probability must be made close to unity.
This is done by ensuring τesc � τrelax. For the bound-to-continuum case, the
process of escape takes little time, i.e., once an electron is excited, it is already
in the continuum. In this case, τesc ≈ 0 and pe ≈ 1. For the bound-to-bound
case, τrelax is shorter than τc. From various experiments and calculations (see
Sect. 4.2.1), the value of τrelax is about 1 ps (5 ps for τc). In order to ensure
pe ∼ 1, we must have τesc � 1 ps. This implies that if a bound-to-bound
design is employed, one must have the excited state close to the top of the
barrier so that the tunneling escape time is much less than 1 ps. For a typical
10 µm GaAs/AlGaAs QWIP under a typical field of 10 kV cm−1, this dictates
that the excited state should not be lower than about 10 meV below the top of
the barrier. The upper state (E2) tunneling escape time is estimated easily by
considering an “attempt frequency” v2/2Lw and the transmission probability
T , and is given by τtunnel ≈ (2Lw/v2)T −1, where v2 =

√
2E2/m. This esti-

mate is semiclassical, but does produce excellent results in comparison with
rigorous calculations. The electric field dependent transmission probability is
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Fig. 4.14. (a) Estimated peak spectral responsivity vs. well width for photocon-
ductive gain values of 0.4 (solid line) and 0.7 (dashed line), and experimental results
(bullets and square), and (b) calculated peak absorption quantum efficiency vs. well
width for one well and one infrared path at an internal angle of incidence of 45◦. The
arrow indicates the crossover from the bound-to-continuum to the bound-to-bound
case

easily estimated using a WKB method. A calculated example together with
experimental data is shown in Fig. 4.14.

4.3 Detector Performance

4.3.1 Detector Noise

In general, a photoconductor has several sources of noise: 1/f noise, Johnson
noise, dark current noise, and photon noise (noise associated with the current
induced by incident photons). The physical mechanism of 1/f noise is very
complicated and is an ongoing research topic. For GaAs QWIPs, experiments
show that 1/f noise seldom limits the detector performance. We therefore
neglect the contribution of 1/f noise. Johnson noise is inherent to all resistive
devices and the noise mean square current is

i2n,J =
4kBT

R
∆f, (4.26)
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where ∆f is the measurement bandwidth and R is the device differential
resistance. Johnson noise is easily calculated once the device I–V curve is
known, and the contribution is usually small in a photoconductive QWIP
[142]. Contributions from the dark current noise and the photon noise usually
limit the detector ultimate performance in QWIPs. Here we concentrate on
these two mechanisms.

In deriving noise expressions, we use the simple physical picture given by
Rose (see pp. 97–99 of [33]). One identifies the source αn of the noise and the
magnification factor F in observation. Then the noise (square average) is

I2
n = 2F 2αn∆f. (4.27)

Given the transport mechanism (see Figs. 4.2 and 4.9 and related discus-
sions), the dark current noise is generation-recombination (g-r) in nature. The
noise current should be given by the standard g-r noise expression [33]

i2n,dark = 4egnoiseIdark∆f, (4.28)

where gnoise is the noise gain, and Idark is the device dark current. If we label
the emission current (see the top part in Fig. 4.9) from one well as i

(1)
e the

dark current is
Idark = i(1)e /pc = ie/(Npc), (4.29)

where ie ≡ N×i
(1)
e is the total emission current from all N wells. Equivalently,

one can express the dark current in an alternative form Idark = i
(1)
c /pc, where

i
(1)
c is the capture current per well and i

(1)
c = i

(1)
e . The “g-r” (emission and

capture here) noise therefore consists of two contributions: fluctuations in ie
and ic. The magnification factor is 1/(Npc) according to (4.27). Then we have

i2n,dark = 2e

(
1

Npc

)2

(ie + ic)∆f

= 4e

(
1

Npc

)2

ie∆f

= 4e
1

Npc
Idark∆f

≡ 4egnoiseIdark∆f, (4.30)

where the noise gain is defined by gnoise ≡ 1/(Npc). In a conventional photo-
conductor, the noise gain equals the photoconductive gain gnoise = gphoto (at
least as a very good approximation for all practical purposes). Here we see that
gnoise is different [154] from the photoconductive (4.21) gphoto = pe/(Npc).
Experiments [15,142,155] reported a gain derived from the ratio of the mea-
sured current responsivity and absorption (i.e., the photoconductive gain),
and a gain derived from direct noise measurements (the noise gain). The ratio
of the two measured gains gave the escape probability pe which approached
unity as the bias voltage was increased.
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In the limit of pc → 1, (4.30) does not give the expected N full shot noise
sources in series. Beck [140] extended the model and derived a more general
expression i2n = 4egnoiseI(1 − pc/2)∆f which does give the expected result
when pc → 1 (see also Sect. 5.2.3). Several other related discussions of gain in
QWIPs are given in [27,156,157].

An expression for photon noise current can be easily obtained by replac-
ing Idark in (4.30) with photocurrent. One of the most important sources of
photon noise is caused by the background photons absorbed by a detector, as
already discussed in detail in Chap. 2. The background photon noise usually
determines a detector operating temperature.

4.3.2 Detectivity and Blip Condition

In this section we provide a simple analytical estimate that displays the key
physical parameters. In doing so, we can easily identify the key parameters
and point out possible directions for improvement. The two most important IR
photon detector characteristics are detectivity (D�) and background infrared
limited performance blip temperature (Tblip). D� is the signal (per unit inci-
dent power)-to-noise ratio appropriately normalized by the detector area and
the measurement electrical bandwidth. The relevant noise contributions are
from (1) the detector itself (i.e., dark current) and (2) the fluctuation of the
photocurrent induced by background photons incident on the detector. The
blip regime is defined as the regime where the dominant noise is caused by
the background photons. It is always desirable to operate a detector under
blip condition for maximal sensitivity.

As already discussed in Chap. 2, the current noise power spectral density
Si ≡ i2n,dark/∆f is related to dark current by

Si = 4egIdark, (4.31)

where g ≈ 1/Npc is the gain. We assume that we are in the regime where noise
and photoconductive gains are the same. This is valid for structures where
pc � 1 and pe ≈ 1, i.e., a nearly ideal photoconductor. The dark current can
be estimated (4.1)

Idark = eN3DvA, (4.32)

where v is the drift velocity and A is the device area, or by (4.6)

Idark = e
N2D

Lp

τc

τscatt
vA. (4.33)

The 3D and 2D above-barrier electron densities N3D and N2D (see (4.2)
and (4.9)) can be approximated by

N3D = 2
(

mbkBT

2πh̄2

)3/2

exp(−hc/λckBT + Ef/kBT ), (4.34)

N2D =
m

πh̄2 kBT exp(−hc/λckBT + Ef/kBT ), (4.35)
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with m (mb) – effective mass in the well (barrier), T – temperature, λc – cutoff
wavelength, and Ef – Fermi energy. There is a simple relationship between
the Fermi energy and the well 2D doping density ND = (m/πh̄2)Ef (assuming
doping is in the well and the dopants are completely ionized).

As before (4.24), the current responsivity of a QWIP is defined as

Ri = e
λ

hc
ηg. (4.36)

The detector dark current limited D� is given by

D�
det =

Ri√
Si/A

. (4.37)

Using the expression g = τc/Nτtrans, where τtrans (as before) is the transit
time across one period, and substituting (4.31), (4.32), and (4.36) into (4.37),
the 3D drift model yields the detector noise limited D�

D�
det =

λ

2hc

η√
N

√
τc

N3DLp
. (4.38)

Here λ is the wavelength, η is the absorption quantum efficiency, N is the
number of quantum wells, and Lp is the quantum well period. Similarly, the
2D emission-capture model (4.6) yields the detectivity

D�
det =

λ

2hc

η√
N

√
τscatt

N2D
. (4.39)

An alternate instructive derivation of (4.39) is based on (2.23). Here the
relation GthV = NjeA between the emission current je and the 3D ther-
mal generation rate Gth (see (2.13)) gives rise to the simple expression
D∗ = η/(hν

√
4Nje). (4.39) then follows by inserting (4.4).

In view of the balance between scattering escape and capture (4.7), (4.38)
and (4.39) are actually equivalent (and yield in fact similar numerical values
if typical band parameters and time constants are inserted). However, they do
show the physical process from different perspectives. While (4.38) relates the
detectivity to the 3D effective carrier concentration and the capture process,
(4.39) addresses a 2D effective carrier concentration and a scattering (or emis-
sion) process. We point out that, by distinguishing between carriers in the 3D
continuum and carriers in the 2D subband at high kinetic energy, D�

det (4.39)
becomes conceptually different from Levine’s model (which leads to the same
result except that τscatt is replaced by τlife or τc). In fact, if we think of a hy-
pothetical QWIP with extremely thick barriers, D�

det according to (4.38) and
(4.39) will remain constant (since τc ∼ Lp), while D�

det ∼
√

Lp in Levine’s
model.

Some limitations of QWIPs are seen from (4.38) and (4.34), and (4.39) and
(4.35). Since the lifetime (and scattering time) is short for QWIPs, a lower
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detector dark current limited D�
det ∝

√
τc/Lp (D�

det ∝
√

τscatt) is anticipated.
In addition, an “extra” thermal excitation factor appears (Ef/kBT in the
exponent of (4.34) and (4.35)). This causes a larger dark current and hence
results in a lower D�

det. Note that this discussion is for a QWIP with its noise
coming solely from its dark current (i.e., no background); a similar discussion
is given below for background photon noise limited detectivity.

From (4.38) and (4.39), the expected general behavior for a photoconduc-
tor is seen, such as (1) a higher η, longer τc (or τscatt), shorter λc or lower
T lead to a higher D�, and (2) λc and T are the most sensitive parameters,
being on the exponent.

Noting that η is proportional to the doping density and hence the Fermi en-
ergy (η ∝ Ef), there is an optimum value for Ef . Since D� ∝ Ef exp(−Ef/2kBT ),
the optimum value is found by

d
dEf

Ef exp(−Ef/2kBT ) = 0, (4.40)

which gives the maximum D� when Ef = 2kBT [100]. This condition dictates
an optimum value for ND for maximizing D�. Figure 4.15 shows calculated
D� values vs. wavelength and temperature. Typical values are used: η = 25%,
N = 50, τc = 5 ps, and m∗ = 0.067 for GaAs reduced effective mass (m =
mem

∗, where me is the free electron mass). The optimum doping or Fermi
energy value Ef = 2kBT is assumed. The calculation uses (4.38) for a quantum
well period Lp = 40 nm. Identical results would of course have been obtained
with (4.39), provided that the values chosen for τc and τscatt satisfy (4.38).

Fig. 4.15. Calculated detector dark current limited detectivity vs. (left) wavelength
for different temperatures, and vs. (right) temperature for different wavelengths
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Useful empirical D∗ values of GaAs-based QWIPs with 45◦ facet coupling
at around 77 K, as reported by Levine et al. [15,158], are given by

D�
e = 1.1 × 106 exp(Ec/2kBT ) cm

√
Hz/W (4.41)

for n-type devices, and by

D�
h = 2 × 105 exp(Ec/2kBT ) cm

√
Hz/W (4.42)

for p-type. As a matter of fact, (4.41) is in nice agreement with the results of
Fig. 4.15.

From (4.38) and (4.39), a point worth noting is that provided η can be made
high, say close to 100%, one should use the least number of quantum wells in
a QWIP. The limiting and the best case is a single well (N = 1) QWIP with
η = 100%. In this limit, a QWIP would in fact have a comparable performance
to that of HgCdTe or InSb detectors. This limit is not completely impractical,
e.g. it may be achievable by a waveguide-grating coupler with a high quality
factor (see related discussion in Sect. 6.3).

For comparison, the background-limited spectral peak D� is given by (see
also (2.22))

D�
blip =

λp

2hc

√
ηp

φB,ph
, (4.43)

where λp is the peak detection wavelength, ηp is the peak absorption, and
φB,ph is the integrated background photon number flux (per unit area) incident
on the detector. Equation (4.43) is obtained from the same definition (4.37)
by replacing Idark in (4.31) to obtain the noise spectral density caused by the
background photocurrent.

One can see that for a given wavelength and if a detector is blip, D� only
depends on the absorption quantum efficiency and the background photon
flux. The lifetime becomes irrelevant in this regime. Unlike a broadband pho-
ton detector with a cutoff, a QWIP spectral response is peaked and can be
approximated by a Lorentzian lineshape. In evaluating φB,ph an integration
is therefore performed using the blackbody function and a Lorentzian with
unity height peaked at λp. Another parameter, the full width of the response
curve ∆λ, must be specified for the integration. For a standard QWIP, the
range is approximately ∆λ/λp =10–30% [15].

The blip condition is defined when the photocurrent caused by the back-
ground equals the dark current. (This condition is equivalent to when back-
ground photon noise equals the dark current noise.) For operations at and
lower than Tblip, the detector is said to be under blip condition. Using (4.32)
and (4.36), the blip temperature is found to be determined by the following
equations (using 3D drift model):

η(1)τcφB,ph = 2
(

mbkBT

2πh̄2

)3/2

Lp exp(−hc/λckBT + Ef/kBT ) (4.44)



4.3 Detector Performance 71

Fig. 4.16. Calculated background-limited infrared performance (blip) temperature
vs. peak detection wavelength for LP = 50 and different carrier lifetimes (τlife) or
capture time (τc). For GaAs QWIPs, τc ≈ 5 ps

or (using (4.13)):

η(1)τscattφB,ph =
m

πh̄2 kBT exp(−hc/λckBT + Ef/kBT ), (4.45)

where η(1) is the peak absorption efficiency for one quantum well. Solving
the above transcendental equation (4.44) for T gives Tblip. Figure 4.16 shows
the calculated Tblip vs. QWIP peak detection wavelength (λp) for different
values of τc. Typical values have been used: response bandwidth ∆λ/λp =
20%, η(1) = 0.5%, 90◦ full cone field of view (FOV), and 300 K background
temperature. Note that the cutoff wavelength is 10% larger than the peak in
this calculated example, i.e., λc = 1.10× λp. Another shortcoming of QWIPs
is clearly displayed in (4.44) and (4.45). The short capture time (or high
“capture velocity” Lp/τc of typically 104 ms−1) results in a lower Tblip and
the effect of a finite Ef on the exponential also leads to a lower Tblip.

From (4.44) and (4.45) for Tblip, the most sensitive parameter is λc, being
in the exponent. The high capture velocity (short scattering time), although
giving rise to a fast intrinsic response speed, is the cause for the low Tblip. It is
interesting to note that Tblip depends on the one-well absorption, not the total
absorption, and that improving η(1) has the same effect as improving τc/Lp

or τscatt. Detectors made of HgCdTe or InSb have a performance similar to or
slightly better than the solid line (τc = 1 ns) of Fig. 4.16. The practical values
of τc for QWIPs fall in the range of 1–10 ps. It then follows that if η(1) can
be enhanced by about 100 times, QWIP performance would be comparable
to HgCdTe or InSb.

From (4.44), an optimum condition for the Fermi energy and hence the
doping density can be found. Given λc, τc, T , and φB,ph, (4.44) can be
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re-written as

Ef/kBT exp(−Ef/kBT ) = (Constant) × exp(−hc/λckBT ), (4.46)

noting η(1) ∝ ND ∝ Ef . One can adjust Ef to maximize the left-hand side of
the equation, which maximizes Tblip. The optimum condition is Ef = kBT ,
which is different from the optimum condition for maximizing the detector
limited detectivity by a factor of two (i.e., Ef = 2kBT ).

For completeness, the ideal (blackbody) background photon flux is given
by

φB,ph =
∫

dλ

(
π sin2 θ

2

)
η(λ)LB(λ), (4.47)

where θ is the FOV full cone angle, the photon irradiance is given by

LB(λ) =
2c

λ4

1
ehc/λkBTB − 1

, (4.48)

TB is the background temperature, and the spectral lineshape of a QWIP is
modeled by

η(λ) =
1

1 + (∆λ
2λ − ∆λ

2λp
)2

. (4.49)

4.4 Design of an Optimized Detector

In this section, we summarize the guidelines in designing an optimum pho-
toconductive QWIP, which involves choosing the following parameters: well
width Lw, barrier height (Al fraction x, in the case of GaAs well and AlGaAs
barrier), barrier width Lb, well doping density ND, and number of wells N .
We use the simplest structure made of GaAs/AlGaAs square quantum wells.
The well region is GaAs, and the barrier is AlxGa1−xAs so that its height is
controlled by Al fraction x.

As discussed before, the optimum well shape is the one having the first
excited state in resonance with the top of the barrier. Given this design rule,
the well width and barrier height are fixed once a desired detection wavelength
(peak wavelength λp) is chosen. Figure 4.17 shows these parameters for a range
of λp for a GaAs/AlGaAs quantum well. The peak detection wavelength λp

corresponds to the energy difference between the first excited and the ground
states. The calculation is a simple one-band effective mass model calculation.
The difference in effective mass values between AlGaAs and GaAs is included.
The barrier height Vb relates to Al fraction by Vb = 0.87 × x eV. All higher
order effects have been neglected, such as, band nonparabolicity, Coulomb in-
teraction between ionized donors and electrons (Hartree correction), exchange-
correlation effect, and depolarization-exciton effect. For a structure appropri-
ate for λp = 10 µm, these effects all lead to a modification of the transition
energy in the few-percent range (discussed in Sect. 3.4).



4.4 Design of an Optimized Detector 73

Fig. 4.17. Calculated parameters of barrier Al fraction and well width for a given
peak detection wavelength (λp). The values in parentheses give λp including many-
body effects for a doping density of 5 × 1011 cm−2 in the quantum well

As an example, the main effect of adding the exchange-correlation and
depolarization-exciton effects is to shift the transition energy to a higher
value. The amount is about 10 meV for a 2D electron (or doping) density
of ND = 5 × 1011 cm−2. Taking this into account, the renormalized peak
wavelengths are shown in Fig. 4.17 in parentheses. For this range of elec-
tron densities (optimum for detector sensitivity as discussed below), the ef-
fect results in only a correction for short wavelength structures, but is very
important for long wavelengths. In general, the quantitative values of detec-
tion wavelength and doping density determine whether Hartree, exchange-
correlation, and depolarization-exciton effects are just minor corrections or
must be included to obtain a good fit to experiments. For λ < 7 µm, the
nonparabolicity effect becomes important. Figure 4.17 stops at x = 0.35,
and a high x value (e.g., > 0.4) is not advisable since such a QWIP re-
sults in a low responsivity [159] due to the poor transport properties in Al-
GaAs with a high x value. A better approach in this case is to use InGaAs
wells [18].

The next parameter is the well doping. As discussed before, to maxi-
mize the detector-limited detectivity, the doping density should be such that
the Fermi energy is Ef = 2kBT , where T is the desired operating tempera-
ture. On the other hand, to maximize the blip temperature, one should have
Ef = kBT . As before, the doping density relates to Fermi energy by ND =
(m/πh̄2)Ef . Figure 4.18 shows these two (trivial) relations for QWIPs with
GaAs wells.

The barrier width parameter Lb has so far been chosen intuitively. Only
very limited experiments have been reported on the investigation of barriers.
In general, the barrier width should be wide enough so that the interwell
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Fig. 4.18. Optimum doping density vs. device operating temperature. The well
material is GaAs

tunneling current is suppressed; this means that one should use thick barri-
ers. There is however a critical value beyond which any further increase in
Lb does not lead to a lowering in dark current for the same applied field.
Moreover, practical concerns for MBE growth mean that the thicker the total
epilayer, the lower the material quality. Furthermore, if the barrier width can
be reduced, one can grow more repeats for higher absorption for a given total
epilayer thickness. In the literature [15], a barrier width in the range of 30–
50 nm seems to be sufficient for QWIPs operating in the mid-infrared (MIR)
region (3–12 µm).

An ideal estimate of the interwell direct tunneling can be given. Similar
to the approximation used in Sect. 4.2.2 for the tunneling escape time, we
calculate an interwell tunneling time by considering an “attempt frequency”
v1/2Lw and the transmission probability T , given by τtunnel ≈ (2Lw/v1)T −1,
where v1 =

√
2E1/m, E1 is the ground state eigenenergy, and T at energy E1

is calculated by a WKB approximation as in Sect. 4.1.1. The product of the
tunneling time and the 2D well charge density yields the interwell tunneling
current. Figure 4.19 shows the estimated results of the tunneling current vs.
barrier width for several values of barrier Al fractions. The choice of barrier
width must ensure that the interwell tunneling current is completely negligi-
ble in comparison with the background photocurrent. Taking a usual 300 K
blackbody background temperature and common values of QWIP responsiv-
ity, the background photocurrent is in the range of 10−4–10−5 A cm−2. This
was proven successful in recent work on THz QWIPs [54,55] (see Sect. 4.5).
One can make an additional “hand-waving” argument in estimating the criti-
cal barrier thickness. For example, if the operating field is below about 10 kV
cm−1, to ensure that the tunneling of electrons near the top of the barrier
(e.g., within 20 meV) directly into the next well is suppressed, one needs a
barrier width of more than about 20 nm. A study of QWIPs for one particular
wavelength (∼9 µm) was carried out by Sim et al. [160], who found a criti-
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Fig. 4.19. Estimated interwell tunneling current vs. barrier width. The well is GaAs
and the barrier is AlxGa1−xAs. The well 2D electron density is set to 4×1011 cm−2.
Well widths are chosen according to Fig. 4.17

cal barrier value in the range of 20–30 nm, which depends on the operating
temperature and the FOV.

Lastly, for the number of wells or repeats (N), only a general guideline can
be given since the absorption depends strongly on the device geometry and
optical coupling scheme: one should maximize the absorption with a minimum
number of wells.

Note that these design guidelines are based on our current understanding
and on our and others’ published experimental results. As yet there have not
been systematic studies to reenforce or confirm these design “rules.”

4.5 THz QWIPs

Terahertz (THz) science and technology have attracted much recent atten-
tion [161,162]. The THz region is loosely defined as the range of frequencies
from 0.1 to 10 THz (wavelengths from 30 to 3,000 µm or energies from 0.41 to
41 meV). THz frequencies fall partly into the FIR spectrum and partly into
the millimeter-submillimeter wave band. Although many proof of concept ex-
periments, demonstrating potential applications [161–163], have been carried
out, the lack of compact and convenient THz generation and detection devices
needs to be addressed before widespread applications become a reality. The
recent development on THz QCL could fulfill the void in THz generation de-
vices [164,165]. This section addresses THz detection and presents the design
and experimental results on three test devices, all working at photon energies
below and around the GaAs optical phonons. Blip operations were observed
for all three devices designed for different wavelengths.



76 4 Photoconductive QWIP

Fig. 4.20. Calculated parameters of barrier Al percentage and well width for a
given peak detection frequency νp (wavelength λp)

4.5.1 Design Considerations

Using the same design rules discussed earlier in this chapter, QWIPs have
been extended to the THz frequencies [54,55]. Figure 4.20 shows calculated
quantum well parameters corresponding to THz QWIPs. The high absorption
by the optical phonons of GaAs makes the region of 34–36 meV (34–36 µm or
8–9 THz) inaccessible. From Fig. 4.20, it is predicted that the THz frequency
range of 1–8 THz is covered by QWIPs with low aluminum fractions from
0.8 to 5.4%. For completeness, the calculated blip temperatures are shown
in Fig. 4.21. For achieving the highest dark-current-limited detectivity, if one
follows the Ef = 2kBT rule, the density would become very low for low temper-
atures (� 80 K), making the absorption also low. We therefore considered two
cases in Fig. 4.21. The upper curve uses the Ef = 2kBT condition, while the
lower curve starts with a higher absorption (using higher doping) η(1) = 0.5%
at 10 THz, and is reduced linearly down to 0.05% at 1 THz. The trade-off
here is that if the operating temperature is desired to be as high as possible,
the upper curve should be followed. However, if a high absorption is needed
one should use the lower curve, which will mean a somewhat lower operation
temperature. Since for these very FIR devices the doping densities are usually
low, many-body effects result in small energy corrections. However, since the
transition energies are also small, many-body effects need to be considered.
The exact values depend on doping densities, but could be a substantial frac-
tion of the transition energy as in the test devices discussed in Sect. 4.5.2.
The detection frequency given in Fig. 4.20 and the horizontal axis in Fig. 4.21
should therefore be shifted to higher values by about 30% if these effects are
included.



4.5 THz QWIPs 77

Fig. 4.21. Calculated background-limited infrared performance (blip) temperature
vs. peak detection frequency

In general, to qualify as a good detector there must be a sufficiently high
absorption. On one hand, a high doping is desirable for achieving high absorp-
tion; but on the other hand, high doping leads to a high dark current and low
operating temperature. A trade-off must therefore be made for a given ap-
plication. For most applications, it is desirable to operate the detector under
the blip condition for detecting weak signals. In some applications involving a
strong source such as a THz QCL, the requirement is different. Here as long as
the dark current is lower than the signal photocurrent, photon noise-limited
detection is achieved. In such a case, the detector operating temperature can
be raised.

So far, the above analysis assumes that the tunneling contribution (such
as, direct interwell, scattering assisted, and hopping-like via deep impurity
levels in the barriers) is negligible. Some of the mechanisms are highly sample
dependent, such as those related to impurity and defect. From the design point
of view, as before, we must ensure that the barrier thickness is sufficient to
suppress the interwell tunneling contribution. Figure 4.22 shows the estimated
tunneling current vs. barrier thickness for three values of aluminum fraction x.

4.5.2 Experimental and Discussion

Under the guidance of the above design considerations, three test samples
were fabricated. The sample parameters are listed in Table 4.3. The barrier
thickness was chosen according to Fig. 4.22 so that the interwell tunneling cur-
rents are below 10−5 A cm−2 which corresponds to the estimated background
current. The center 10 nm of each well was doped with Si. The doping val-
ues were chosen to be close to the condition for optimizing detectivity. These
values give rise to an estimated absorption in the range of a fraction of a
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Fig. 4.22. Estimated direct interwell tunneling current vs. barrier thickness for three
cases of barrier aluminum fractions of x = 1.5, 3, and 5%. Other parameters used
for the estimate are E1 = 4.3, 8.6, and 14 meV, n2D = 0.3, 0.6, and 1.0× 1011 cm−2,
and Lw = 22.0, 15.4, and 12.0 nm, for the three x values, respectively

percent per well. The top 400-nm and bottom 800-nm GaAs contact layers
were doped with Si to 1017 cm−3. The relatively low contact doping value was
used to reduce the contact layer free carrier absorption and plasma reflection
in the THz region. The numbers of wells were varied among the three samples
to keep the total epilayer thickness at no more than about 3.5 µm. In Table 4.3,
the calculated transition frequencies include exchange and depolarization cor-
rections. Using formulae given in Sect. 3.4.2, the values are Eex = 7.5, 5.8, and
4.1, and Edepol = 2.2, 1.6, and 1.0 meV, for the three samples, respectively.

Mesa devices of different sizes were fabricated using standard GaAs
processing techniques. Test devices were angle polished to give rise to a 45◦

facet and packaged in the standard double-pass backside illumination geom-

Table 4.3. Structure parameters for the THz QWIPs

Sample Lw (nm) Lb (nm) [Al] (%) Nd (cm−3) N ν (THz)

v265 11.9 55.2 5 1 × 1017 40 9.3
v266 15.5 70.2 3 6 × 1016 30 6.0
v267 22.1 95.1 1.5 3 × 1016 23 3.3

Lw is the well width, Lb is the barrier width, [Al] is the barrier aluminum frac-
tion, Nd is the doping value in the center 10 nm of each quantum well, N is the
number of quantum wells, and ν is the frequency corresponding to the calculated
intersubband transition energy (including exchange and depolarization corrections).
The GaAs/AlGaAs MQWs are sandwiched between 400-nm top and 800-nm bottom
GaAs contact layers doped with Si to 1017 cm−3.
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Fig. 4.23. Normalized photocurrent spectra at 8K

etry with a 45◦ internal incident angle. The photocurrent spectra at 8 K for
the three samples are shown in Fig. 4.23. Photocurrent was observed only un-
der p-polarization, confirming its origin from (ISBT). The response peaks
were measured at 322 cm−1 (31 µm, 9.7 THz), 180 cm−1 (56 µm, 5.4 THz),
and 108 cm−1 (93 µm, 3.2 THz) for sample v265, v266, and v267, respectively.
These agree reasonably well with the design value, considering the uncertainty
in the growth and the untested range of very low aluminum fractions. The
main dark region from 265 to 297 cm−1 (33–37 meV) is due to GaAs optical
phonon absorption. Other smaller features are also related to phonons: The
dip at about 360 cm−1 is caused by the AlAs-like phonon, and the two at
about 310 and 340 cm−1 are due to zone-edge two-phonon processes [59]. Be-
cause of the strong phonon absorption, the as-observed peak at 322 cm−1 for
sample v265 has a large uncertainty. The photoresponse spectra for all three
samples are quite broad, indicating that the ISBTs are of bound-to-continuum
origin. The doping value in the GaAs contact layer (1017 cm−3) gives rise to
a plasma edge frequency of 101 cm−1, which may contribute to the relatively
sharp decline at the longer wavelength side around 100 cm−1 for sample v267.
For all three samples, the spectral shapes are nearly independent of bias volt-
age up to a certain voltage value. Beyond the voltage limits, the dark currents
increase rapidly and the photocurrent spectra cannot be taken reliably. The
voltage limits are ±0.8, ±0.2, and ±0.03 V for sample v265, v266, and v267,
respectively.

The calibrated peak responsivity vs. bias voltage at different temperatures
is shown in Fig. 4.24. All three curves display very similar trends. The respon-
sivity increases nearly linearly with bias from the origin, another indication
that the transition is of bound-to-continuum origin. The responsivity–voltage
curves are largely independent of temperature up to a certain value. Higher
than this temperature, the responsivity curves show a marked increase. This
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Fig. 4.24. Peak responsivity vs. bias voltage at different temperatures

upward trend behavior may be related to the increase in mobility with tem-
perature in the impurity scattering-limited regime. The responsivity values at
low temperature are in the range of 0.4–1.0 A W−1, comparable to those from
MIR QWIPs. This result implies that the photoconductive gain is similar to
those of MIR QWIPs and excited carrier lifetimes are also similar.

Blip temperatures were measured by comparing current–voltage curves
under dark condition and under a 300 K background with a 90◦ FOV at
different temperatures. The measured current–voltage curves are shown in
Fig. 4.25. Rblip is taken as the temperature at which the background pho-
tocurrent equals the dark current. The measured blip temperatures are 17,
13, and 12 K for sample v265, v266, and v267, respectively. The results agree
reasonably well with the calculated values for v265 and v266 in Fig. 4.21. For
sample v267, the measured value of 12 K is much higher than the calculated
5 K. The reason for this is not known presently. It is interesting to compare
dark current of sample v265 with a previous device [54], which had a similar
quantum well structure but a narrower barrier width (40 nm). V265 has much
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lower dark current, about three orders lower at temperatures below 17 K. We
attribute the substantial decrease in dark current to the reduction of inter-
well tunneling by employing wider barriers. When the temperature dropped
below a certain point, the dark current stopped decreasing and remained the
same. This temperature is 14 and 9 K for samples v265 and v266, respec-
tively. This bottom-out behavior is due to the remaining interwell tunneling
or other mechanisms. Since these tunneling currents are much lower than
the background photocurrent, they do not affect device performance under
normal background-limited operation. For sample v267, because thermionic
emission and field-assisted tunneling were much stronger than interwell tun-
neling within th1e experiment temperature range, we did not observe any
current bottom-out behavior.

To end this section, we have discussed the design parameters and pro-
jected characteristics, and presented the experimental results on a set of test
devices. We have demonstrated blip operation of three QWIPs with different
detection wavelengths in the terahertz region. Increasing barrier thickness is
found to be an efficient method to reduce the dark current and to enable blip
operation. blip temperatures of 17, 13, and 12 K were achieved for peak de-
tection wavelengths of 31, 56, and 94 µm, respectively. Although substantial
follow-up work is needed, we are optimistic that we will further improve the
device performance, and we project that optimized THz quantum devices will
be useful for the booming field of THz science and technology and create new
and unique applications.



5

Photovoltaic QWIP

5.1 General Concept

Most QWIP studies have so far concentrated on the photoconductive detec-
tion mechanism discussed in the previous chapter, where photoexcited carriers
are swept out of the quantum well (QW) region by an externally applied elec-
tric field. A different class of QWIP structures is formed by devices with a
built-in inversion asymmetry acting as an internal field; the devices can in
principle be operated without external bias voltage, i.e., in a photovoltaic
mode (see Chap. 2). At first sight, this concept has the advantage of a vanish-
ing dark current, such that no generation-recombination noise is present un-
der dark conditions. However, the photocurrent of these photovoltaic QWIPs
is associated with a much smaller gain by comparison to photoconductive
QWIPs. As we will show below, the reduced photocurrent and the reduced
noise floor give rise to similar detectivities for optimized photoconductive and
photovoltaic QWIPs. Therefore, photoconductive QWIPs are preferrable for
applications which require high responsivity, e.g., for sensors operating in the
3–5 µm regime. Photovoltaic QWIPs will be a good choice if the integration
time of the FPA is limited by the storage capacity of the readout circuit.
In this case, the benefits of the photovoltaic QWIP arise from the facts that,
(1) the capacitor is not loaded by any dark current and (2) the noise associated
with the collected photocharge is extremely small.

Early device concepts for photovoltaic QWIP-like structures are shown in
Fig. 5.1a and b. The device reported by Kastalsky et al. [166] relies on inter-
miniband absorption in a superlattice with an adjacent barrier layer. While
electron motion in the lower miniband is blocked by this barrier, electrons ex-
cited into the upper miniband gain enough energy to traverse this barrier, thus
giving rise to a photocurrent already without external bias voltage. Goossen
et al. [11] reported a different approach, in which the capacitance of the de-
vice is influenced by carriers emitted into a depletion layer located between an
n-type QW and a surface metallization (see Fig. 5.1b). This device structure
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(a) (b)

(c)

(d)

(e)

Fig. 5.1. Transport mechanism (arrows) of photovoltaic infrared detectors involving
intersubband transitions: (a) superlattice with blocking barrier after Kastalsky et al.
[166], (b) single quantum well with surface depletion layer after Goossen et al. [11],
(c) asymmetrically doped double-barrier quantum well [167], (d) general subband
configuration for photovoltaic detection, and (e) modulation-doped single-barrier
quantum well [168]

was shown to exhibit an ac photovoltaic effect, i.e., periodically modulated
illumination induced an alternating current without external bias voltage.

While these approaches were based on one single absorbing region, huge
photovoltaic signals have been observed in periodic GaAs/AlAs/AlGaAs dou-
ble barrier QW structures detecting radiation in the 3–5 µm regime [47]. The
asymmetrically doped double-barrier QW structure depicted in Fig. 5.1c con-
sists of 5 nm GaAs QWs, 2 nm AlAs barriers, and 25 nm wide Al0.3Ga0.7As
layers, and gives rise to an efficient transport mechanism [167]. After inter-
subband excitation from the lower to the upper subband of a QW (vertical
arrows), there is a finite probability for the photoexcited electrons to be emit-
ted from the QW across the AlAs barriers before intersubband relaxation
occurs. Emission proceeds both to the right-hand and the left-hand sides of
the QW. However, the space charge field across the Al0.3Ga0.7As layers causes
a net electron current towards the right, as the majority of the emitted carri-
ers relax back into the QW located at the right-hand side of the Al0.3Ga0.7As
layers. In [167], the position of the dopant spike was varied systematically,
resulting in a strong impact on the photovoltaic properties. It was shown that
the “built-in voltage” of those detectors is about as large as the external bias
necessary to compensate the built-in field across the Al0.3Ga0.7As layers.

The general concept behind this transport mechanism is characterized by
the configuration of subband levels shown in Fig. 5.1d, which forms the basis
for the photovoltaic QWIP structures discussed below. As a first application of
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this concept, it is straightforward to conceive of a detector similar to Fig. 5.1c,
but with reduced barrier heights. This idea leads to the single-barrier QW of
Fig. 5.1e. In fact, model calculations show [169] that the latter approach should
lead to similar detectivities to those observed for photoconductive QWIPs.

To demonstrate the detector of Fig. 5.1e experimentally, we have realized
a device structure where photovoltaic operation was achieved by a tunnel
barrier on one side of the QW and by using modulation doping, giving rise to
an internal electric field [168,170]. The detector was found to have a reasonable
detectivity which was about three times less as compared with an optimized
photoconductive QWIP with the same cutoff wavelength of 10.5 µm. This
reduction in detectivity of this initial photovoltaic QWIP is not unexpected
due to the bidirectional emission of the photoexcited carriers at zero bias, the
unoptimized internal electric field, and the possibility of thermionic reemission
from the intermediate state across the triangular barrier.

Recently a configuration similar to Fig. 5.1e was reported [171] by gener-
ating the built-in field by a digitally graded superlattice barrier rather than
modulation doping. The photovoltaic effect was successfully achieved. How-
ever, this “quantum cascade detector” (the band diagram actually resembles
a quantum cascade laser [QCL]) showed limited performance due to dark cur-
rents caused by residual carrier leakage into resonant states of the barrier. In
spite of some drastic improvement [172], this problem has not been completely
resolved.

5.2 The Four-Zone QWIP

5.2.1 Transport Mechanism and Device Structure

A similar detetectivity as for photoconductive QWIPs has been achieved for
photovoltaic detection by using the concept of the “four-zone” QWIP [173,
174]. Here each period of the active QWIP region is divided into four zones
which can be optimized independently. The transport mechanism of this class
of IR detectors is summarized in Fig. 5.2a. In the excitation zone 1, carriers
are optically excited and emitted into the quasicontinuum above the bandedge
of the drift zone 2. A photocurrent without external bias voltage is achieved,
if the excited carriers relax into the capture zone 3. Finally, the carriers have
to cross the tunneling zone 4 in order to populate the adjacent QW. This
tunneling process has to be fast enough to prevent the captured carriers from
being reemitted thermionically into the original well. The second task of the
tunneling zone is to prevent the photoexcited carriers from being emitted
towards the left-hand side of the excitation zone.

For efficient implementation of this transport mechanism, several require-
ments have to be met, as summarized in Fig. 5.2b, which depicts the transport
behavior under a finite applied electric field. The tunnel barrier has to exhibit
low probability for tunneling at high energies, such that the capture time into
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high tunneling
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small tunneling probability
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high capture
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no tunneling
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(b)

Fig. 5.2. (a) Schematics of the four-zone approach for photovoltaic intersubband
photodetection; potential distribution (1: emission zone, 2: drift zone, 3: capture
zone, and 4: tunneling zone) and basic operation (arrows). (b) Bandedge distribution
of a four-zone QWIP in an electric field and considerations for optimization

the narrow QW is shorter than the tunneling escape time. Simultaneously,
the time constant for tunneling has to be shorter than that for thermionic
reemission from the narrow QW back into the wide QW. The requirements
concerning high escape probability, high absorption strength, and suppression
of tunneling across the wide barrier are analogous to the photoconductive
QWIP. Another important detail is the steplike shape of the tunneling zone
shown in Fig. 5.2b. This separation between the wide QW (emission zone) and
the high-energy part of the tunneling zone is required to achieve a spectrally
narrow absorption band and a high peak absorption.

For an initial demonstration of this approach [173], we have realized de-
tector structures containing (in the growth direction) an active region with 20
periods of nominally 3.6 nm GaAs (the capture zone), 45 nm Al0.24Ga0.76As
(the drift zone), 4.8 nm GaAs (the excitation zone), and a sequence of 3.6 nm
Al0.24Ga0.76As, 0.6 nm AlAs, 1.8 nm Al0.24Ga0.76As, and 0.6 nm AlAs (the
tunneling zone). The 4.8 nm GaAs wells are n-doped to a sheet concentration
of 4 × 1011 cm−2 per well. The active region is sandwiched between n-type
(1.0 × 1018 cm−3 Si) contact layers. While this detector structure will be re-
ferred to as sample 1, we have also produced a second structure (sample 2),
in which the capture zone is replaced by a sequence of 3.0 nm GaAs, 1.8 nm
Al0.24Ga0.76As, and 1.8 nm GaAs. The samples were grown by MBE on (100)-
oriented, semi-insulating GaAs substrates. Mesa diodes with 120 × 120 µm2

area were fabricated using standard photolithography, wet chemical etching,
and ohmic contact metallization.
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Fig. 5.3. Potential distribution and calculated periodic wavefunctions of (a) sample
1 and (b) sample 2 (after [173]). The transport mechanism is indicated by arrows.

Figure 5.3a indicates the conduction bandedge distribution and the calcu-
lated electronic wavefunctions for sample 1. Here the tunneling zone contains
two AlAs spikes, which are introduced in order to suppress tunneling processes
at energies above the Al0.24Ga0.76As bandedge, and to induce emission across
the drift zone. The energy of the subband located in the narrow well (cap-
ture zone) is as low as possible, with the restriction that this subband does
not mix substantially with the ground state, and that only a negligible ther-
mal population occurs at 77 K. By design, these two subbands are separated
by a longitudinal optical phonon energy in order to ensure efficient phonon-
assisted inelastic tunneling across the tunneling zone. This configuration also
minimizes thermal reemission of the captured carriers, thus maximizing the
probability for tunneling across the tunneling zone into the excitation zone of
the subsequent period.

For this device structure, photoexcited electrons arriving at the capture
zone can be reflected at the AlAs spikes without being captured by the narrow
well, which will reduce the responsivity of the device, as the returning carriers
can then be captured back into the excitation zone. It is therefore desirable
to generate a resonance to increase the capture probability in the capture
zone. An interesting concept to achieve this goal is the potential-inserted QW
structure, which has been proposed by Akiyama et al. [175] for the case of
bound-to-bound transitions. They introduced an AlAs spike at the center of a
GaAs/AlGaAs QW, based on the idea that the second subband has a node at
the spike position and the subband energy will not be affected. However, the
spike will raise the groundstate energy, as its wavefunction has a maximum
in the QW center.

The subband structure of our sample 2 is shown in Fig. 5.3b. Since the
energy of the lowest subband in a potential-inserted QW depends critically
on the thickness and the band parameters of the spike material, we used a
strongly coupled double QW containing an Al0.24Ga0.76As layer rather than
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an AlAs spike for the capture zone. In Fig. 5.3b, the signature of an above-
barrier resonance manifests itself by a large amplitude of the higher-energy
states. This resonantly enhanced amplitude is now present not only at the
emitting QW, but also at the capture zone.

In addition to the four-zone QWIP structures described here, several mod-
ifications and parameter variations have been conducted, as described in more
detail [176].

5.2.2 Responsivity and Dark Current

The optical properties of the detector structures discussed here are summa-
rized in Fig. 5.4. The inset shows the normalized spectral dependence of the
photocurrent, which is nearly identical for the two samples. Both samples show
a peak wavelength of 8.4 µm and a 50% cutoff wavelength of 9.0 µm. At 0 V,
samples 1 and 2 show peak responsivities of 3.5 mA W−1 and 10 mA W−1, re-
spectively. At negative bias, the voltage dependence of both samples exhibits a
plateau region from −2 to −3 V, more pronounced for sample 2, at a respon-
sivity of about 37 mA W−1. We associate this plateau region with the field
regime where complete emission of the photoexcited electrons occurs, while
the capture and tunneling zones still reabsorb the emitted carriers efficiently.
The subsequent increase at higher negative fields is due to the increasing prob-
ability for carrier transport across the tunneling zone without relaxation into
the capture zone.

This interpretation is also consistent with the observation that the two
responsivity curves cross each other at −2 V. At low fields, carrier relaxation
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of 77K (after [173])

at the capture zone increases the responsivity; this is no longer the case at
high negative fields, since the relaxation back into the initial well is already
suppressed by the field. Instead, the probability for traversing the tunneling
zone without relaxation into the capture zone is reduced upon optimizing the
capture zone, as this also lowers the responsivity at high voltages.

We therefore relate the plateau region at a responsivity of 37 mA W−1 in
Fig. 5.4 with a photocarrier mean free path of one period, i.e., to a photocur-
rent gain of 1/20 = 0.05. These values are in fact consistent with the usual
behavior of photoconductive QWIPs with similar doping densities, which typ-
ically exhibit mean free paths of 10 periods, and the responsivities are also
about 10 times as large [15].

Figure 5.5 shows the differential conductivity σ and the dark current Idark.
At positive bias, σ and Idark both show a steep increase for both samples. For
an explanation of this behavior we note that the carrier distributions within
the bound states located on both sides of the tunneling zone are in thermal
equilibrium, since the tunneling probability is finite. With increasing positive
bias, the capture zone is energetically lowered with respect to the excitation
zone adjacent to the tunneling zone, thus giving rise to a considerable increase
of the carrier density within the capture zone, and to a strong increase of
the current. This effect is more pronounced for sample 2, as the width of
the capture zone is larger than for sample 1. It is beneficial for the detector
performance that a high photoconductivity and a low dark conductivity are
observed at the same (negative) polarity, as this results in a high detectivity.

5.2.3 Noise

The appropriate noise model for the four-zone QWIP was first given by Beck
[140]. His model explicitly considers the case of high capture probability pc ≈ 1
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(or equivalently low noise gain gnoise). The model was obtained by stochastic
considerations (for derivations we refer [140,177]) and take into account that
a high capture probability is not necessarily connected with a low escape
probability. This is exactly the case for the four-zone QWIP. The g-r noise
current expression obtained in this model is given by

i2n = 4egnoiseIdark

(
1 − pc

2

)
∆f. (5.1)

where Idark is the dark current and ∆f the measurement bandwidth. For the
case of pc ≈ 1, this expression equals the shot noise expression of N series-
connected photodiodes.

The noise gain in this model is given by gnoise = 1/(Npc), which, in com-
bination with (5.1), yields

gnoise =
i2n

4eIdark∆f
+

1
2N

. (5.2)

Assuming a capture probability of unity, the lower limit for the gain is given
by 1/N = 0.05 for N = 20 periods.

For comparison, we apply the conventional noise model (4.30) of a photo-
conductor. This model is strictly applicable only to the case of a low capture
probability and is often used to evaluate the noise gain of conventional QWIP
structures. The noise gain obtained from noise and dark current measurements
according to expression (4.30) is then given by

gnoise =
i2n

4eIdark∆f
. (5.3)

Noise measurements were performed using a spectrum analyzer in combi-
nation with a low noise current preamplifier, as described in detail by Rehm
et al. [178]. The samples were mounted on a shielded sample holder, and di-
rectly immersed into liquid nitrogen. The spectra exhibited white noise up to
several kHz. Measurements were conducted at 1430 Hz. The g–r noise is ob-
tained from the measured noise current in by the equation i2n,gr = i2n−i2amp−i2J,
which includes small corrections to in due to the amplifier noise iamp and the
Johnson noise in,J (see (4.26)). For this purpose, Idark and dIdark/dV ≡ 1/R
were measured simultaneously with the noise current.

The evaluation of the noise gain from the noise and dark current measure-
ments on sample 2 according to (5.3) is indicated by the short dashed line
in Fig. 5.6a. It is clearly seen that the conventional photoconductive model
is not applicable to the four-zone QWIP since the result lies far beyond the
theoretical limit gnoise ≥ 1/N = 5% of these N = 20 period structures. The
failure of the photoconductive noise model is attributed to the large capture
probability of these four-zone QWIPs. In contrast, the model according to
(5.1) (full line in Fig. 5.6a) yields exactly the expected result for moderate
reverse bias (V ≥ −2 V).
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Fig. 5.6. Comparison between (a) the gain values for sample 2 evaluated according
to the shot noise model (solid line) and the conventional photoconductive noise
model (dashed line), and between (b) the gain values of both device structures
according to Fig. 5.3 (after [143]). The inset of (a) shows the measured 77K noise
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The noise gain of both device structures is compared in Fig 5.6b. Sample 1
exhibits a larger noise gain than sample 2 at high reverse fields, in addition
to showing the same value of gnoise = 5% at moderate reverse bias. The larger
gain is completely consistent with the observed behavior of the photo- and
dark currents; it thus confirms the discussion in the Sect. 5.2.2.

Figure 5.7 relates the noise gain to the responsivity [143,178]. In the photo-
conductive QWIP of Fig. 5.7a, g is proportional to the responsivity, since the
escape probability pe has saturated to a value close to one, and the internal
quantum efficiency of the detector does not depend on the bias (see Sect. 4.3).
In the four-zone QWIPs of Fig. 5.7b, a gain of 1/N = 5% is observed accord-
ing to the transport mechanism discussed above. At high bias (above 2.5 V), g
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increases in a similar way as the responsivity does, indicating that some elec-
trons are penetrating the tunneling zone without relaxation into the QWs.
Interestingly, g remains constant below 1 V, even though R decreases signifi-
cantly. This deviation is attributed to the fact that a significant percentage of
the photoexcited carriers are captured in the emission zone at these voltages,
such that pe decreases.

In particular, these experimental results, in combination with (5.1), clearly
demonstrate the “

√
2-advantage” in the signal-to-noise ratio for four-zone

QWIPs over photoconductive QWIPs, which is analogous to a similar ad-
vantage of photodiodes vs. photoconductors in the interband case (see (2.11)
and (2.12)). In order to emphasize this improved noise behavior, photovoltaic
QWIPs are referred to as “low-noise” QWIPs.

5.2.4 Detectivity

We have calculated the detectivity from the measured voltage dependence of
responsivity and dark current. The 77 K detectivities obtained for samples 1
and 2, respectively, are 5.4×109 cm Hz1/2 W−1 and 8.1×109 cm Hz1/2 W−1 at
0 V. The highest detectivities are observed around −1.4 V, with a value of 1.2×
1010 cm Hz1/2 W−1 for both samples. Here the detectivity is already limited
by g-r noise rather than Johnson noise, so the increase of the detectivity
upon going from 0–−1.4 V is much less pronounced than the increase of the
responsivity.

Figure 5.8 compares the bias dependencies of the dark D∗ observed for
low-noise QWIPs and photoconductive devices [176], both with 20 period ac-
tive regions. With a somewhat different design of the active region (three
rather than two AlAs spikes in the tunneling zone), this particular low-noise
QWIP reaches its largest D∗ at around −0.5 V, and about 70% of this max-
imum at 0 V (circle in Fig. 5.8). For both devices, the detectivity strongly
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Fig. 5.8. Bias dependence of the detectivity of a four-zone QWIP as compared to
a photoconductive QWIP (after [176])
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decreases towards large bias for both polarities. This decrease is caused by
an exponential-like bias depencence of the dark current at high electric fields
(see Chap. 4).

Figure 5.9 shows peak detectivities of both conventional and low-noise
QWIP structures as a function of the cutoff wavelength [17]. A good descrip-
tion of the functional dependence is obtained within a thermionic emission
model (dashed line). The low-noise QWIPs show similar detectivities as the
conventional ones. Since these detectivities are limited by the dark current
and not by the background photocurrent, the improvement due to the sup-
pression of the recombination noise is not prominent in Fig. 5.9. In fact, the
low-noise QWIPs were grown with much higher carrier densities than the con-
ventional QWIPs (4 × 1011 cm−2 and 1 × 1011 cm−2 per QW, respectively),
which resulted in a decrease of the activation energy. In addition, the spectral
linewidth of the responsivity in low-noise QWIPs is typically 10–20% larger
than for the conventional QWIPs, such that the peak detectivity is reduced
correspondingly. However, in contrast to the dark detectivities of Fig. 5.9, the
suppression of the recombination noise does have a significant influence on the
background-limited detectivity which determines the temperature resolution
of a thermal imager.

5.2.5 Time Dependence

Time-resolved measurements were performed on low-noise QWIPs in order
to obtain further insight into the transport mechanism. The experiment was
carried out using IR, pulses of <200 fs duration. These pulses were generated
by difference frequency mixing of the signal and idler beams of an optical
parametric oscillator, pumped by a mode-locked Ti:sapphire laser at a repeti-
tion rate of 76 MHz [179]. The intersubband photocurrent was measured with
a sampling oscilloscope using the methods of [148].
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Figure 5.10 shows the time dependence of the photocurrent of sample 2
at different temperatures [173]. The curve obtained at 86 K represents the be-
havior observed at temperatures below 100 K. Here the photocurrent consists
of two components. The fast component (about 18 ps full width at half max-
imum) is limited by the time resolution of the experiment. This component
is attributed to carrier capture of the photoemitted carriers into the capture
zone, as indicated in the inset (process A). The slow component, which cor-
responds to a decay time of about 0.11 ns, arises from tunneling from the
capture zone across the tunneling zone (process B). In fact, the time constant
can be explained quantitatively by inelastic tunneling assisted by longitudinal
optical phonons [92,93].

At higher temperatures, we observed an additional component due to
thermionic emission of carriers from the capture zone back into the emis-
sion zone (process C in Fig. 5.10). This process becomes important as soon
as the associated thermionic emission time is comparable to or shorter than
the time constant of the tunneling process. Since thermionic back emission
gives rise to the opposite transport direction, the slow component is strongly
reduced at 179 K and becomes negative at room temperature.

5.2.6 Theoretical Performance of Low-Noise QWIPs

From a theoretical point of view, the comparable performance of the detec-
tivity as experimentally observed is not unexpected since the dark current
mechanism of the low-noise QWIP under bias is closely analogous to the pho-
toconductive structure. In fact, the thermionic emission current is determined
by the emission and drift zones, which play essentially the same roles as the
QW and thermionic barrier, respectively, of the photoconductive QWIP.

As long as electron reemission from the capture zone is negligible with
respect to tunneling across the tunneling zone (which is the case according
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to Sect. 5.2.5), the main effect of these two zones is to increase the capture
probability pc and to reduce the gain.

For these reasons, the dark current mechanism essentially agrees with the
case of the photoconductive QWIP discussed in Chap. 4. However, we should
keep in mind that the condition pc ≈ 1 − pe does not hold for low-noise
QWIPs. Similarly, intersubband absorption follows the same physical laws
and is therefore comparable for both devices.

Since, in spite of the large capture probability pc, the probability pe for es-
cape of photoexcited carriers from the emission zone can be high, the quantum
efficiency for detection also remains high. In this way, the signal-to-noise ratio
in low-noise QWIPs remains high, even though the signal and dark currents
are strongly reduced as compared to the photoconductive device.

We conclude this chapter by listing a few trade-offs which are different for
low-noise and photoconductive QWIPs.

1. As already mentioned, the probabilities for emission and capture in low-
noise QWIPs obey pc ≈ 1 and pe ≈ 1, while pc ≈ 1− pe for photoconduc-
tive QWIPs.

2. In order to reach a certain NETD, a photovoltaic QWIP requires only
half as much photocharge as a photoconductive QWIP with the same
gain (see Chap. 9). The “

√
2-advantage” of the photovoltaic device is thus

equivalent to a twofold increase in quantum efficiency. Presently, this ad-
vantage only comes into play for large photo charges (i.e., long integration
times and/or large apertures) where detector noise becomes comparable
to readout noise.

3. The tunneling zone has some influence on the spectral bandwidth of the
detector. The bandwidth can be tuned by a spacer layer between the
tunnel barrier and the emission zone. Since this spacer layer must not be
too large, due to its influence on the tunneling, the spectral bandwidth
of low-noise QWIPs is usually somewhat larger than for photoconductive
QWIPs.

4. Low-noise QWIPs for thermal imaging applications usually use higher car-
rier densities as high internal quantum efficiencies can be realized without
saturating the readout electronics, and as system noise is more critical
than for photovoltaic QWIPs. The trade-off between quantum efficiency
and BLIP temperature is similar for both devices.

5. The reduced gain of low-noise QWIPs is expected to lead to smaller space
charge effects (see Sect. 10.1.1).



6

Optical Coupling

The ISBT selection rule requires a nonzero polarization component in the
QW direction (the epitaxial growth direction), as discussed in Chap. 3. In
the simplest experimental geometry of shining the incident light normal to
the as-grown wafer, a negligible ISBT absorption should be observed [44];
so other experimental geometries must be used. This chapter discusses the
various optical coupling schemes for ISBTs and QWIPs.

6.1 Simple Experimental Geometries

Other than shining the light normal to the wafer, the next simplest is to have
the light incident at an angle. In this case, only p-polarized light will have a
component in the correct direction. P-polarized light is completely transmitted
at the Brewster angle, so the geometry shown in Fig. 6.1 is commonly used
to get a quick measure of the ISBT absorption spectrum after wafer growth.
The complete transmission automatically eliminates the interference fringes
often seen in IR transmission spectra of flat samples. For GaAs materials,
the refractive index is about 3.3 in the MIR, leading to a Brewster angle of
about 73◦. An example of measured spectra is given in Fig. 4.12 of Chap. 4.
Although the Brewster angle geometry is very convenient, it is not efficient
in coupling to ISBT. Because of the large value of the refractive index, the
internal incident angle onto the MQW is relatively small (17◦ in this case).

Another common geometry is the 45◦ zigzag waveguide formed by pol-
ishing two parallel facets into the substrate (schematically shown in Fig. 6.2).
The length of the waveguide determines how many double passes the light will
interact with the sample. If the length is made exactly two times the substrate
thickness, only one double pass is obtained, enabling the measurement of the
absorption equivalent to the 45◦ facet detector.

Alternatively, one can use a longer sample and etch away the QWIP layers
except in a stripe twice as wide as the substrate thickness. An advantage of
this geometry is that one can use s-polarized light as a reference, eliminating
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Fig. 6.1. Brewster angle incident measurement geometry for a typical GaAs sub-
strate with a refractive index of 3.3. The backside of the substrate needs to be
polished

Fig. 6.2. Two parallel polished 45◦ facets forming a zigzag waveguide. The backside
of the substrate needs to be polished

the need for a separate reference sample and hence the error associated with
inequivalent optical beam paths. Measured transmission spectra on a set of
samples for different wavelengths are given in Fig. 8.1 of Chap. 8.

Using this geometry, interference between the incident and reflected radia-
tion gives rise to standing wave effects [180]. In order to determine the spatial
distribution of the optical excitation density along the growth axis theoreti-
cally, we assume that a light beam is incident on a metal surface with a wave
vector k at an angle α with respect to the growth direction, with the electric
field F being polarized within the plane of incidence (see Fig. 6.3a). The po-
larization normal (y-direction) to the plane of incidence (x- and z-directions)
is not relevant here since it does not satisfy the polarization rules for in-
tersubband excitation. The perfectly conducting metal surface is located at
z = 0. Introducing kz = |k| cos α, kx = |k| sin α, the electric field is then given
by

F =

⎛⎝Fx

Fy

Fz

⎞⎠ = 2F exp(ikxx − iωt

⎛⎝ i cos α sin(kzz)
0

sin α cos(kzz)

⎞⎠ . (6.1)

This means, in particular, that the power density associated with Fz is pro-
portional to cos2(kzz). The interference between the incident and the reflected
beams thus has a periodicity of λ/2nr cos α. Both the photon fluxes polarized
along the x- and z-directions show strong spatial variations due to this inter-
ference, even though the total power density for unpolarized light is constant
at an angle of α = 45◦.

A surface which is not covered with metal, however, gives rise to a dielectric
reflection. If α is far beyond the critical angle for total internal reflection
(which is the case at α = 45◦), the electric field distribution is given by
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F = 2F exp(ikxx − iωt)

⎛⎝ cos α cos(kzz)
0

i sin α sin(kzz)

⎞⎠ . (6.2)

We use here the approximation to neglect the extra phase shift (which amounts
to π/33 at α = 45◦) induced by the leakage of the light field into the vacuum
[181]. Total internal reflection thus results in a phase shift of π/2 as compared
to a metal reflector.

Figure 6.3b shows the spatial distribution of F 2
z , as predicted by (6.1) and

(6.2), together with the actual positions of the QWs of a practical 20-period
QWIP structure. In the case of a perfectly reflecting metal contact, the local
power density has a minimum within the active region of the QWIP and
the average power density is reduced by destructive interference. Dielectric
reflection, however, gives rise to an increase of the power density due to an
appropriate constructive interference.

The interference effect has several consequences on the detection properties
of a QWIP structure. First, the total absorbed power depends on the precise
location of the active QWIP region. In the example shown in Fig. 6.3b, the
absorbed power is reduced almost by a factor of two due to a destructive
interference. In fact, the active region will be located around a maximum
of F 2

z when inserting an additional 1 µm spacer between the metal contact
and the active region. This influence of the active layer position has been
clearly observed experimentally [180]. Also, variations of the absorbed power
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density along the growth direction of the QWIP induce inhomogeneous field
distributions and nonlinear detection behavior. We will come back to this
point in Chap. 7.

An approach to suppress the role of this interference on the detection
properties of the QWIP consists of the use of mesa structures with a 50%
metal coverage of the top surface. Within our simple calculation, the power
density (averaged over the total mesa area) is constant along the whole active
region. In fact, the in-plane conductivity in each quantum well is much higher
than the conductivity across the barrier layers, such that each QW exhibits
a well-defined potential along the whole area [182]. Therefore, the potential
distribution is determined by the lateral average of the local power density
with respect to the area of the QWIP, and the 50% metallized device is ex-
pected to behave in the same way as a device without any interference. In
reality, some small deviations might still be present due to optical absorption
by the carriers in the quantum wells [157] and contact layers, reflection losses
at the metal surface, and distortions of the field distribution close to the side
facets of the mesa devices. For most QWIP structures, the carrier-induced
absorption is small (<10% typically), such that neglecting its influence on the
phase of the reflected radiation is justifiable.

6.2 Gratings for Focal Plane Arrays

The majority of existing applications for IR detectors are related to imaging
using 2D focal plane arrays (FPAs). A 2D array needs light incident normal to
the wafer, so one has to use other means to bend the light than just discussed.
Gratings have been exploited by Heitmann et al. [183] to excite ISBT in Si
inversion layers, and their use was proposed in the very beginning of QWIP
research [10]. 2D gratings have been modeled and tested systematically in a
number of studies yielding quite high absorptions in large area devices [139,
184–187]. The gratings that have been mostly used so far have been made by
etching them into the extra layer grown after the top contact layer. Gratings
are in the form of either etched pits or trenches leaving unetched bumps, and
gold metal is then evaporated for near perfect reflection. In a standard FPA,
the illumination is through the substrate backside. Metal gratings (which do
not need the extra layer) have also been studied [188]. In addition, biperiodic
gratings have been studied [189,190], perhaps suited for dual-band or two-color
QWIPs.

For the case of etched gratings, with the help of Fig. 6.4, simple design
guidelines are as follows. The grating period d should be approximately the
wavelength inside the material, i.e., d = λ/nr, where λ is the wavelength to
be detected and nr is the refractive index. This will maximize the diffraction
angle and lead to a high absorption. In practice λ should be chosen close
to the cutoff wavelength. The etch depth h should be about one fourth of
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Fig. 6.4. Schematic of a grating fabricated on the top of a detector with infrared
incident from the backside

Fig. 6.5. Scanning electron microscope picture of a grating fabricated into GaAs
(courtesy of M. Buchanan)

the inside wavelength, i.e., h = λ/4nr. The areas of the etched and unetched
regions should be equal. The last two conditions, under the simplest consid-
eration, will eliminate the direct reflection (zero-order diffraction) due to the
destructive interference. The grating features should be chosen to maximize
the transverse-magnetic (TM) mode diffraction, as shown in Fig. 6.4. Finally,
when the substrate is removed or a low index cladding layer is grown under
the QWIP, an additional pass through the MQW is possible due to the re-
flection as shown in Fig. 6.4. An example of a pit grating is shown in Fig. 6.5.
Details from FPAs [18] comprising gratings optimized to peak wavelengths of
4.8 and 8.5 µm are shown in Fig. 6.6.

Andersson and Lundqvist [187] reported a systematic study on gratings
etched in the form of trenches. Their results are in reasonable agreement with
the above general guidelines. They found that a square shaped bump grat-
ing tends to favor the TM diffraction. They also found that a slightly deeper
etch seemed to enhance the performance. The range of values in their calcula-
tions corresponds to h/(λ/nr) ≈ 0.25–0.28; this represents a 10% etch depth
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20 µm20 µm

Fig. 6.6. Scanning electron microscope micrographs of 640×512 QWIP arrays with
24 µm pitch, comprising 2D diffraction gratings for the LWIR (left) with 2.95 µm
period, and for the MWIR (right) with 1.65 µm period (from [18])

variation (a comfortable value in fabrication tolerance). Furthermore, they
predicted that the edge length detch of the etched squares should fall in the
range of detch/d ∼ 0.55–0.63. Note that for equal etched and unetched areas
(50% fill factor), one expects detch/d = 1/

√
2 = 0.707. In an experimental

test on the effect of fill factor for pit gratings (as in Fig. 6.5), we found quite
a good agreement with the detch/d = 1/

√
2 condition [191]. A summary of

this test is shown in Fig. 6.7. With a systematic change of the etch dimen-
sion from smaller than the d/

√
2 condition to larger, we observed a gradual

change in the resulting QWIP responsivity. The exact value of d/
√

2 for these
data is 2.8/

√
2 = 1.980 µm. We found that within ±0.1 µm, the resulting
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Fig. 6.7. (Left) Schematic of one period of etched pit grating and (right) peak
responsivity vs. fill factor. The device is a standard 9-µm peaked QWIP. The grating
constant d is fixed at 2.8 µm. The target etch size is 2 µm (labeled by Z), and slightly
smaller and larger sizes are included: M1 – 1.9 µm, P1 – 2.1 µm, and P2 – 2.2 µm.
The dashed line shows the 45◦ facet value
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Fig. 6.8. Schematic illustration of the idea of a random grating

performance is not substantially affected. Again this gives a comfortable fab-
rication tolerance.

We emphasize that the grating problem is a very complicated one and
many higher order effects play an important role, in some cases the dominant
role. One such example is the near field effect [192]. This effect has been put to
a good use in two cases. Bois et al. [192] maximized the near field absorption in
a two-stack QWIP structure and used the upper stack as the active detector
and the lower as a reference for subtracting the dark current. This serves
as an effective “skimming” of the dark current in an FPA. In another case,
gratings (pits/holes) are etched directly into the active QWIP layers, making
the coupling completely near field [193].

Even 1D gratings are not simple in the presence of ISBT and free carrier
absorption in both the MQWs and the contact layers. Dupont [194] modeled
this case and found a highly nontrivial dependence of ISBT absorption on
grating parameters. For example, an etch depth close to one eighth of the
inside wavelength, rather than one fourth, gave the highest absorption.

The idea of random “gratings” [195–199] is simple and elegant as shown in
Fig. 6.8. The incident light is scattered by the grating into a random direction,
in most cases, with an angle larger than the total internal reflection, so that
the light is trapped in the detector pixel. On each pass through the MQW a
fraction of the IR gets absorbed, eventually leading to a high or near 100%
absorption.

As a general comment, although they are successfully incorporated in
QWIP FPAs which are commercially available, we believe that the gratings,
or more generally the optical couplers, can be further improved. The difficulty,
or the uncertainty, comes from two areas. (1) To accurately model a grating-
coupled QWIP is a highly nontrivial problem [196,200,201], and presently
involves heavy, sometimes unreliable, computation. The effects that must be
included are the dielectric function change due to ISBT, free carrier absorp-
tion, multilayer structures, finite mesa sizes, realistic grating shapes and metal
coatings on them, and others. Perhaps techniques from other fields, such as
computer-generated holograms [202] and photonic crystals [203], could be ex-
plored for a more efficient and accurate computation. (2) The second factor
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Fig. 6.9. Left: scanning electron microscope picture of V-grooves fabricated into
GaAs (courtesy of M. Buchanan), and right: schematic optical coupling scheme

Fig. 6.10. Schematic layers of a dielectric waveguide

involves the microfabrication technology. The minimum feature size required
for gratings is often in the submicron region. With the common optical litho-
graphy tools (not the state of the art achieved in Si technology), this is close
to the limit. The fabricated features then often deviate from the design.

Finally, an alternative technique has been explored by Choi et al. [27],
involving fabricating V-grooves with nearly 45◦ slopes. The process relies on
the anisotropic wet chemical etch rates in GaAs. An example of fabricated
V-grooves and the idea of the V-groove optical coupler are shown in Fig. 6.9.

6.3 Strong Coupling in Waveguides, Polaritons, and
Vacuum-Field Rabi Splitting

If an MQW is embedded in a waveguide, e.g., by incorporating a sufficiently
thick low index layer under the MQW, a strong coupling between the ISBT
and the waveguide mode can occur. This leads to the formation of polaritons.
By measuring the transmission or reflection spectra, a vacuum-field-like Rabi
splitting is observed [204,205]. A simple structure, like the one in [204], is
schematically shown in Fig. 6.10. The MQW is the core of the waveguide,
with the QW made of GaAs and low Al fraction AlGaAs. The cladding layer
is high Al fraction AlGaAs, or even pure AlAs as in [204]. The experimental
results are reproduced in Fig. 6.11, showing a clear anticrossing behavior by
varying the angle of incidence. The left inset shows the two polariton positions.
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Fig. 6.11. Observed TM or p-polarized reflection spectra (left inset) polariton reso-
nance positions, and (right inset) TE or s-polarized waveguide mode [204] (courtesy
of A. Tredicucci)

Under transverse-electric (TE) or s-polarized light, the ISBT is “turned off,”
and a pure waveguide mode is seen in the spectrum due to the residual free
carrier absorption. Of course, the TE mode position is not exactly the same
as that for TM polarization, but slightly red shifted.

A potential use of the strong coupling is to yield a QWIP with very low
doping density, and hence low dark current, and yet high absorption [205].
This may lead to high temperature operation.
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Miscellaneous Effects

7.1 Intersubband Absorption Saturation

So far the excitation infrared intensity has been assumed to be low so that
the absorption is far from saturated. Absorption saturation was studied in
the early years of ISBT physics research [206,207]. The power level at which
saturation occurs can be easily estimated by the following consideration. Sup-
pose an intense infrared radiation resonantly couples the ground state and the
first excited state of a quantum well structure. The 2D electron density of the
excited state (n2) is determined by

dn2

dt
= φphσ(n1 − n2) − n2/τrelax, (7.1)

where φph is the photon number flux, σ is the absorption cross section, n1 is
the ground state 2D electron density, and τrelax is the intersubband relaxation
time. In steady state dn2/dt = 0, one finds

n2 =
n1

1 + 1
φphστrelax

=
n1

1 + φph,sat/φph
, (7.2)

where the saturation photon flux is φph,sat = 1/στrelax. As the intensity in-
creases and far exceeds saturation, the two densities become equal (n2 → n1 as
φph → ∞). The photon energy flux φ is a more practical unit, which is given by
φ = hνφph. The absorption efficiency as a function of φ is η(φ) = σ(n1 − n2).
Using (7.2), we get the standard expression for absorption saturation:

η(φ) =
η(0)

1 + φ/φsat
, (7.3)

where the saturation flux is

φsat = hν/στrelax. (7.4)
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We can easily estimate the order of magnitude of the saturation intensity.
Referring to (3.7) and the discussion thereafter in Chap. 3 for a typical case
of a simple GaAs/AlGaAs quantum well, the low power absorption efficiency
per quantum well is η ≈ 0.5% for polarized light at a 45◦ angle-of-incidence.
The electron density was n2D = 5× 1011 cm−2. The absorption efficiency and
crosssection are related by η = n2Dσ. We then have σ ≈ 10−14 cm2 or σ ≈(1
nm)2, and for τrelax ∼ 1 ps and 10-µm light, φsat ∼ 2 MW cm−2.

A more in-depth discussion and experimental results are found [208].
Including many-body effects, the absorption spectrum displays interesting
physics shown theoretically by Za�lużny [209] and experimentally [210]. Fig-
ure 7.1 reproduces the results of [210]. The experiments were performed on a
MQW with 40-nm GaAs wells and modulation doped Al0.3Ga0.7As barriers
with the UCSB free electron laser. Gates were fabricated on the sample to
provide tuning of the electron density. The low-intensity absorption spectral
peak is depolarization-shifted substantially from the intersubband separation.
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At higher intensities, the absorption peak shifts to lower frequencies, in effect
“undresses” the collective effect. It is interesting to note that because of the
smaller photon energy and the longer relaxation time the saturation intensity
is much lower than that for 10-µm light case.

Using optical pulses of ≤1 ps duration, φsat ∼ 2 MW cm−2 corresponds to
≈2 µJcm−2 or to ≈200 nJ for a (100 µm)2 spot. Even much higher pulse ener-
gies are readily achieved by table-top laser systems incorporating an optical
amplifier. The coherent nonlinear response of modulation-doped GaAs QWs
has been studied recently by Luo et al. [211] using intense 200 fs long pulses
at 12.4 µm wavelength. Phase-resolved detection of the transmitted pulses
provided clear evidence of Rabi oscillations.

7.2 Nonlinear Transport and Optical Effects

As a QWIP is a photoconductive and intersubband dipole transition based
detector, the nonlinear behavior in QWIPs is caused by both the (extrinsic)
transport and (intrinsic) optical processes. Extrinsic nonlinearity leads to a
degradation of QWIP performance at high incident power or low operating
temperatures. In this case, as the responsivity (the ratio between the pho-
tocurrent and the incident power) is measured as a function of increasing
power, the observed value decreases from a constant at lower power. In con-
trast, some intrinsic nonlinear QWIP properties are useful in applications.
An example is in autocorrelation of short pulses by two-photon absorption,
where the photocurrent is proportional to the square of the incident power.
The general area of QWIP nonlinear properties [212] has not been extensively
investigated: only limited work has been carried out [118,213,214]. To study
nonlinear effects a strong infrared excitation is required. Hence laser is com-
monly used. The study of QWIPs under strong illumination is relevant to
a number of applications such as heterodyne detection [215], infrared pulse
characterization [216,217], and free space optical communication [30,218]. In
view of the high intrinsic speed [219], and the demonstration of near ideal ab-
sorption efficiency [220,221], QWIPs are well suited for these more exploratory
applications.

7.2.1 Extrinsic (Photoconductive) Nonlinearity

An ideal photoconductor has a responsivity independent of the illumination
power if the power is low; i.e., the photocurrent is linearly proportional to the
power. The dependence of responsivity on the fundamental QWIP parameters
is given by the standard expression:

R(F ) =
e

hν
ηg(F ) =

e

hν
ηpe(F )

τc(F )
τtrans,tot(F )

(7.5)
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where hν is the photon energy, η is the total absorption quantum efficiency,
g is the photocurrent gain, pe is the photoexcited carrier escape probability,
τc is the photoexcited carrier lifetime, and τtrans,tot is the transit time across
the QWIP (τtrans,tot = L/v(F ), where L is the QWIP length, and v is the
drift velocity). In an idealized case, the electric field F across the QWIP
is constant and equal to F0 = V/L, where V is the applied voltage. This
condition is satisfied in QWIPs with a large number of equally doped QWs
at low excitation power. The condition that the electric field is constant and
independent of the illumination power can be violated at high incident power
due to several reasons [212].

Contact Effects

Under uniform QW excitation (including both thermo- and photoexcitation)
the electric field in QWIPs with multiple QWs is constant in the bulk of
the detector [99,116]. However, the balance between the injection from the
emitter and the bulk current in the steady state leads to the creation of a
high electric field domain near the injection contact [99]. QWs in the bulk
of a QWIP are electrically neutral (i.e., the QW electron density equals the
doping), while a few (2–5) QWs near the emitter are partially depleted to pro-
vide the high contact electric field required for injection. At high illumination
power, the total current and therefore the injection current may become so
high that the voltage drop across the high field domain becomes comparable
to the total applied voltage. This leads to a reduction of the electric field in
the bulk of the QWIP (since the total voltage is kept constant), and hence
to a decrease of the escape probability and an increase of the transit time
(due to the decreased drift velocity). As a result, the responsivity is decreased
at high power and the photocurrent may saturate with power. This behav-
ior, investigated in detail in [118], is illustrated in Fig. 7.2. The experiments
were conducted on standard 9 µm QWIPs at 77 K (nonbackground limited)
using a CO2 laser. The experimental results were explained by self-consistent
numerical simulations. For these experiments, the nonlinearity was observed
at a power level greater than about 1 W cm−2, and the power was increased
up to about 1,000 W cm−2. With a CW CO2 laser we did not observe any
damage to the device. This property of laser “hardness” is quite unique to
QWIPs, especially in view of the low damage threshold (∼1 W cm−2) of the
standard infrared detectors made of HgCdTe. This hardness in resisting high
power illumination is an advantageous property for heterodyne detection.

Figure 7.3 shows experimental results from a different study [222] which
was conducted at 65 K (a typical operation temperature for QWIP cameras,
where the dark current is at least ten times lower than typical background
photocurrents) and low excitation powers. In Fig. 7.3a, symbols indicate mea-
sured responsivities of a 4-period QWIP which fall off significantly well below
0.1 W cm−2. The lines are the result of a simple phenomenological model,
in which we approximate the field distribution inside the QWIP by electric
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Fig. 7.2. Simulation results for (a)–(c) 4-well and (d)–(f) 32-well QWIPs under
different infrared illumination power densities: (a) and (d) responsivity vs. voltage,
(b) and (e) electric field in the bulk vs. average field, and (c) and (f) conduction
bandedge profile at an average field of 15 kV cm−1 (courtesy of M. Ershov). Values
of the bulk field were taken at positions shown by the dashed lines in (c) and (f)

fields F1 at the emitter barrier and F2 which is common to the remaining bar-
riers (see also Fig. 7.2c and f for the validity of this approximation). Within
this approximation, the photocurrent nonlinearity is readily obtained from
the measured dark current and low-power responsivity curves without any
free parameter. Figure 7.3b displays the corresponding result for a 50-period
QWIP, which already exhibits the nonlinearity at the thermal background.

When a QWIP is operated at low temperatures and low backgrounds, so
that the total current is low, the nonlinearity can thus be observed under a
very low IR illumination [222,223]. The key factor is the relative magnitude of
the total current and photocurrent. If the photocurrent is a large or dominant
fraction of the total current, the response becomes nonlinear. As nonlinearity
is an important issue for the correctability of focal plane arrays, we point out
that the observed nonlinearity is still very weak and that it can be reduced
further by using appropriate operating conditions (e.g., suitable bias voltages).

With the demonstration of near 100% absorption efficiencies [220,221],
QWIPs are ideally suited for heterodyne detection [215]. Thus, the first mech-
anism of high power QWIP nonlinearity is related to the contact effects and
modulation (reduction) of the bulk electric field in QWIPs. This mechanism is
shown much more strongly in QWIPs with a small number of QWs, where the
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responsivity. In (b), the inset shows the measured low-power responsivity vs. applied
voltage, and the vertical double arrow indicates the equivalent power due to thermal
background radiation (after [222])

role of contact effects is especially important [99]. Contact related nonlinearity
appears to be relatively unimportant in QWIPs with many QWs (>10) [98],
where the voltage drop in the high field domain is small compared to the total
applied voltage. It should be noted that in this mode of nonlinearity (7.5) and
other classic formulae for the ideal photoconductor are still applicable, but
the electric field F entering these formulae becomes lower than the average
electric field F0 = V/L.

Nonuniform Optical Field Distribution

Another mechanism of nonlinearity is due to a nonuniform optical field distri-
bution in QWIPs [224]. The nonuniformity may be caused by the attenuation
of the optical power due to absorption [156]. This effect may be pronounced in
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QWIPs optimized for heterodyne operation, because they have much higher
QW doping [220,221] and hence higher absorption than QWIPs designed for
low-temperature and low-power applications. Optical power nonuniformity
may also be caused by IR radiation reflection from the top metal contact, from
sidewalls, and by interference. The monochromatic light could lead to strong
interference patterns in a given experimental geometry. For example, with a
polished 45◦ facet-coupled QWIP [180], the standing wave pattern leads to a
strongly nonuniform illumination. This nonuniform distribution of the optical
power leads to a coordinate-dependent photoexcitation rate from the QWs
and therefore to a nonuniform concentration of the photoexcited carriers (see
Chap. 6). If the nonuniform photoexcitation rate exceeds the thermal or back-
ground excitation, current continuity can no longer be provided by a constant
electric field across the QWIP. The electric field readjusts itself so that the
field is increased in regions with low optical power, and decreased where the
optical intensity is high (this effect is illustrated in Fig. 7.4). The electric field
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Fig. 7.4. Coordinate dependence of (a) potential, (b) electric field, (c) QW capture
probability, and (d) photoexcited electron escape probability for low-power (solid
line) and high-power (dashed line) densities, all for a 32-well QWIP at tempera-
ture T = 77K and applied voltage V = 1 V [224]. The dash-dotted line shows the
distribution of optical power
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Fig. 7.5. Responsivity R, photocurrent gain g, and photoemission efficiency η′ =
ηpe vs. incident infrared power [224]

distribution becomes nonuniform, making invalid the simple standard formu-
lae for responsivity, noise, etc. The nonuniformity of the electric field is sup-
ported by a slight recharging of the QWs. Theoretical calculations of detector
characteristics in this case require self-consistent modelling. Photoconductive
noise and detector responsivity decrease, while the noise gain and noise power
are increased, with respect to the uniform electric field case (see Fig. 7.5).
QWIP nonlinearity due to nonuniform optical power distribution takes place
when the photocurrent exceeds the dark current or the background current.

Quantum Well Depletion

In the steady-state regime considered above, the variation of the QW electron
density with incident power is not significant (unless the number of QWs is
very small), so the depletion of the QWs by electrons causes a negligible re-
duction in the absorption efficiency. The situation however may be different in
the nonequilibrium regime. If a high-power short infrared pulse is incident on
the QWIP, a significant fraction of electrons are excited from the QWs [225].
On the short time scale, the absorption and the photocurrent may saturate
because the electron density in the QWs responsible for the absorption is de-
creased. Experimental studies of these effects permitted the estimation of the
photoexcited electron lifetime [213,214] and the study of the carrier dynam-
ics [225]. The saturation of the absorption and photoconductivity happens at
a very high power–over 10–100 MW cm−2. However, this type of nonlinearity
can only exist on a very short time scale (the lifetime or transit time). This
is because the photoexcited carriers quickly relax back to the QWs, or exit to
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the collector (in which case they are replenished by an extra electron injection
from the emitter).

Finally, extrinsic or photoconductive nonlinearity of QWIPs can be caused
by a number of physical phenomena discussed above. These effects are para-
sitic, i.e., they lead to a deterioration of the detector characteristics (respon-
sivity, noise power, etc.). In addition, detector nonlinearity complicates the
calibration procedure. Extra care must be taken to avoid these effects, when-
ever possible. The standard formulae describing QWIP characteristics may
lead to erroneous results, and the basic detector parameters (photocurrent
gain, noise gain, etc.) lose their straightforward physical meanings due to the
nonuniformity of the electric field.

7.2.2 Negative Differential Photoconductivity and Electric
Field Domains

In most III–V bulk semiconductors, negative differential conductivity (NDC)
is observed in n-type material at sufficiently high electric fields (e.g., at F >
5 kV cm−1 in GaAs). This NDC is induced by scattering of the carriers from
the Γ -minimum into the L- and X-minima of the conduction band. These
intervalley scattering processes give rise to a reduced conductivity, since due
to the higher effective mass, the electron drift velocity at an indirect minimum
is smaller than at the Γ -point. In GaAs, the negative differential dependence
of the average drift velocity v as a function of the electric field F is well
described by the expression [226,227]

v(F ) =
µ1F + vv(F/Fc)4

1 + (F/Fc)4
, (7.6)

where µ1 is the mobility at the Γ -point, vv is the asymptotic drift velocity
for F → ∞, and Fc is the characteristic field for intervalley scattering. The
NDC gives rise to the formation of stable electric field domains at small carrier
densities (typically <1014 cm−3). Propagating domains are observed at higher
carrier densities. In the latter case, pronounced oscillations of the current
are observed [226]. These Gunn-oscillations have found widespread use in
microwave oscillators and amplifiers.

Negative Differential Photoconductive Gain in QWIPs

QWIPs are typically operated at electric fields of the order of 10 kV cm−1. This
field value is expected to be high enough to induce intervalley scattering. In
order to obtain more information about the transport properties and precise
values of the gain, we have carefully investigated the noise gain gnoise associ-
ated with the dark current using the methods described in Sect. 5.2.3. Since
pe ≈ 1, we do not distinguish here between noise gain and photoconductive
gain, as g ≈ gnoise ≈ gphoto.
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Figure 7.6 shows the field dependence of g as obtained from a noise mea-
surement with the QWIP covered by a cold shield [228,229]. In the low-
field regime, we observe a strictly linear dependence of g on F up to about
±5 kV cm−1. The linear regime is followed by a strong saturation and, at
fields above ±8 kV cm−1, by a pronounced negative differential behavior. For
a constant carrier density in the continuum, this will induce NDC.

Using (4.23), we now relate g with v. Assuming a constant capture time τc,
the gain g should be proportional to v. The observed negative differential field
dependence of g obviously contradicts the usual form (4.3). Therefore, we have
used (7.6) to obtain the theoretical fit shown in Fig. 7.6, which is in excellent
agreement with the experimental data. For positive (negative) polarity, the
fit yields Fc = 8.0 kV cm−1 (9.3 kV cm−1), vvτc = 0.40 µm (0.32 µm), and
µ1τc = 1.57 µm2 V−1 (1.35 µm2 V−1). Since the value obtained for Fc is only
twice as large as in bulk GaAs [226], it is plausible that the observed decrease
of g is indeed caused by intervalley scattering.

Assuming a value of 5 ps for the capture time τc (see the discussions in
Sects. 4.2, 10.1.2, and 10.2.2), the fit yields vv = 7.9 × 106 cm s−1 (6.5 ×
106 cm s−1 for negative bias) and µ1 = 3,100 cm2 V−1s (2,700 cm2 Vs−1). vv

has a similar value as typically observed in bulk GaAs, while µ1 is about 3–4
times smaller. The lower value of µ1 (as compared to bulk GaAs) is in good
correspondence with the observed higher value of Fc. The noise gain in Fig. 7.6
shows a slight asymmetry with respect to the polarity of the bias, which we
attribute to segregation of the dopant atoms (see Sect. 7.3).

The potential distributions for the Γ , L, and X-minima are indicated in
the inset of Fig. 7.6. Both the L- and X-minima are expected to contribute
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to the inter-valley transfer since the L-minimum of Al0.26Ga0.74As lies only
slightly below the X-minimum, and since the X-minimum contains the largest
density of states. However, the experimentally observed reduction of g at high
fields suggests that Γ−L-transfer is more efficient than Γ–X transfer, since
the GaAs layers induce shallow wells at the L-point and potential barriers at
the X-point [230]. Therefore, the lowest subbands at the L-point have a much
stronger spatial overlap with the GaAs wells than the lowest X-subbands have,
such that an efficient recapture into the Γ -point is possible. This interpretation
is further supported by the observation of extremely high gain values in a
GaAs/Al0.55Ga0.45As QWIP, where carrier transport occurs mainly at the
X-minimum [15].

In order to demonstrate that a similar negative differential dependence
is also experienced by the photocurrent, Fig. 7.7 shows the bias-dependent
responsivity R of the same 50 period QWIP structure at 9.21 µm excitation
wavelength. The measurement was performed with a lock-in technique at a
small excitation density of 0.1 mW cm−2, which is more than an order of
magnitude lower than the intensity of the thermal 300 K background radiation.
In fact, R shows a negative differential dependence at high bias similar to the
one observed in Fig. 7.6.

R shows somewhat different voltage dependencies for mesa devices with
100% and 50% metal coverage of the top surface. In fact, the fully metallized
device has its highest responsivities at −4.2 V and +3.4 V, while the 50% met-
allized structure has its peak values at −2 V and +1.8 V. This difference is
attributed to different electric field distributions. For 100% metallization, op-
tical interference induces a strong spatial dependence of the optical excitation
(see Chap. 6), thus giving rise to a “dark zone” where most of the applied
voltage is dropped, and to a reduced field in the illuminated region. Since
the interference is approximately opposite for metallic and dielectric reflec-
tions, the total absorbed power becomes homogeneous along the structure
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in the case of a 50% metallized mesa; and since the in-plane conductivity in
the wells is much higher than the conductivity across the barriers, each well
exhibits, in fact, a well-defined potential along the whole area of the detec-
tor [182]. Therefore, the 50% metallized QWIP is expected to behave like a
device without any interference, such that the highest responsivity is reached
at lower bias than for 100% metallization. In spite of the strongly different bias
dependencies, the overall responsivity values are similar for the two devices.
In fact, the length of the active region has a similar value to π/kz, leading to
about the same average excitation density for both devices.

Comparing Fig. 7.7 with Fig. 7.6, we see that the behavior of the respon-
sivity of the 50% metallized detector is closer to the noise data than that of
the completely covered one, which is in turn explained by the associated field
distributions.

Electric Field Domains

More information about the transport behavior can be obtained at higher ex-
citation densities where the nonlinear transport effects become more promi-
nent. Figure 7.8 shows I–V curves measured at different power densities. We
have used here half-metallized mesa structures in order to suppress features
induced by the interference effect. The data reveal a prominent plateau be-
havior, which is limited by the mobility regime at low bias (up to about ±
1.5 V) and by the increase of the dark current at high bias.

Before discussing the plateau formation, let us first focus on the behavior
of the dark current. As can be seen in Fig. 7.8, the dark current increases
monotonically with applied voltage. Using (4.1) and (4.23), we have Jdark =
eN3D NLpg/τc. The monotonic increase of Jdark means that, with increasing
field F , the carrier density in the continuum n3D(F ) grows faster than the gain
g(F ) shrinks, such that the differential conductivity is always positive. The
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fast increase of n3D(F ) is due to the field-induced reduction of the effective
barrier height, which reduces the activation energy of the dark current [15].
ID(F ) thus exhibits an exponential-like behavior at higher fields. From the
absence of NDC, we then expect an approximately homogeneous electric field
distribution in the dark.

The situation changes drastically on illuminating the device. As a function
of the electric field F , the total current can be expressed as

I = e

(
n3D(F )

NLp

τc
+

ηPE

hν

)
g(F ). (7.7)

NDC thus becomes prominent as soon as the optical excitation rate signifi-
cantly exceeds the thermal excitation rate. In Fig. 7.9, we have plotted the I–V
curve as expected for a homogeneous field. Here the photocurrent has been
obtained from the measured gain (see Fig. 7.6), assuming a power density of
P = 1 W cm−2 and a quantum efficiency of η = 7%, and has been added to
the experimental dark current.

The origin of the plateau formation is as follows. The homogeneous field
distribution becomes unstable if the applied field is in the the NDC regime.
However, two stable field values, F1 and F2, are possible if the total current
is between the peak current and the valley current (between the dashed lines
in Fig. 7.9). Therefore, the field distribution splits up into low-field and high-
field domains, characterized by F1 and F2, respectively. Since the current
(which is already determined by the local field and illumination density within
such a domain) is not affected by the domain sizes (as long as the domain
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Fig. 7.10. (a) Schematics of stable electric field domains for positive space charge.
Upon changing the bias voltage, the transition region (indicated by the dashed and
dotted lines, respectively, for two different applied voltages) is shifted while the field
values F1 and F2 remain constant. (b) Same for a negatively charged transition
region. (c) Domain configuration where the high-field domain is located inside the
active region

field remains constant), this property automatically gives rise to the plateau
formation as observed in Fig. 7.8.

The exact location of the respective electric field domains and of the pre-
cise value of the plateau current (within the allowed window as indicated by
the dashed lines in Fig. 7.9) is expected to depend on the actual device struc-
ture, its structural inhomogeneities, the spatial distribution of the excitation
density, and the details of the transport mechanism.

A few possible domain configurations are summarized in Fig. 7.10. As a
common signature of these distributions, the high-field domain increases at
the expense of the low-field domain for increasing applied bias, while the val-
ues of F1 and F2 remain constant. In between two domains there must exist
a transition region in which F1 changes to F2 or vice versa. This transition
region is expected to contain one or several quantum wells carrying a positive
or negative space charge. In Fig. 7.10a, the high-field domain is located adja-
cent to the emitter contact. This configuration is associated with a positive
space charge (i.e., fewer electrons than donor atoms) at the transition region.
The other case, with the low-field domain close to the emitter contact and a
negative space charge, is shown in Fig. 7.10b. Finally, a potential distribution
with three domains, comprising both positive and negative space charges, is
shown in Fig. 7.10c. Configurations with three or more domains are expected
to become increasingly probable for very thick active regions.

Besides n-GaAs and QWIPs, domain formation also occurs in weakly cou-
pled superlattices [231,232], where NDC is induced by interwell tunneling
rather than intervalley scattering: a recent overview can be found in [233].
Of interest is also the actual domain configuration present in the device, and
the role of inhomogeneities. Domain formation in GaAs/AlGaAs superlat-
tices containing a gradient in the well widths has been investigated by Han
et al. [234]. They found that the high-field domain is always formed on the
side with the wider wells, such that the location of the high-field domain does
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not depend on the polarity of the applied bias. A similar conclusion has been
drawn by Yamashita et al. [235], who studied domain formation in n-type
GaAs and attributed the observed location of the high-field domain to an
inhomogeneous local conductivity.

Inhomogeneities are also expected to play a key role for electric field do-
mains in QWIPs. In this context, inhomogeneities associated with the emitter
and collector barriers, as well as inhomogeneities arising from the interference
of the IR illumination (including residual interference in the case of partial
metal coverage) are expected to be relevant to the nucleation of high-field do-
mains, rather than structural inhomogeneities within the active region. These
effects can also lead to changes of the domain configuration upon reversing
the polarity of the applied bias. In fact, the configurations in Figs. 7.10a and
b have been identified in a 50-period QWIP structure at opposite polari-
ties [236]. The experimental signature for different domain configurations is
obtained from the fact that the configuration of Fig. 7.10a is associated with
the peak current, whereas Fig. 7.10b is associated with the valley current.

In conclusion, the photoconductivity in GaAs/AlGaAs QWIPs exhibits
a negative differential behavior, which is attributed to intervalley scatter-
ing. In spite of this NDC, the dark current behaves normally since the gain
reduction is overcompensated by the field-induced increase of the thermal
excitation rate. The field distribution in an illuminated QWIP is strongly in-
fluenced by NDC, giving rise to high- and low-field domains. This behavior,
which can readily occur under background-limited operation, is very typical
for GaAs/AlGaAs-based QWIPs, in particular for bound-to-continuum ones.
A nice feature of the effect from the viewpoint of detector applications is its
role in stabilizing the current with respect to fluctuations of the bias voltage –
which is also the reason why the phenomenon is easily overlooked.

7.2.3 Intrinsic Nonlinearity

With increasing power, the standard nonlinear optical processes become im-
portant. For the dipole intersubband transition itself, the full range of non-
linear optical processes should be observable. So far, absorption saturation
[213,214], hole burning [237], harmonic (including sum frequency) and dif-
ference frequency generation [238–240], and two-photon and multiphoton ab-
sorption [239,241] have been reported. A review of intersubband nonlinear
optics in quantum well structures is given [239]. Here, specific to QWIPs,
we describe the two-photon absorption process occurring in QWIPs; and its
potential applications.

Using the simplest picture of 1-dimensionally confined quantum wells, the
calculation of two-photon absorption is straightforward. For a square quantum
well, three configurations are schematically shown in Fig. 7.11. For a given
photon energy, the three configurations correspond to photo-ionization from
the ground state to the continuum via an intermediate resonant real state
(1), off-resonant state, (2), and virtual state (3). The first case is expected to
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Fig. 7.11. Schematic two-photon absorption from ground (bound) state to the
continuum via an intermediate (left) real resonant state, (center) off-resonant state,
and (right) virtual state

have the highest two-photon absorption efficiency – close to that for a true
double-resonance case. A high efficiency is the advantage of the resonant case,
but the intrinsic time scale would be limited by the intersubband relaxation
of the order of 1 ps. With a sufficient detuning (off-resonant) or for the virtual
state case, the intrinsic speed of the device could be much faster than 1 ps.
A simple calculation [241] in Fig. 7.12 shows the efficiency vs. photon energy
for the three cases. As an estimate of the maximum possible efficiency, we
can evaluate a double-resonance case analytically. For example, for an equally
spaced three-level structure and a photon energy exactly on resonance (h̄ω =
E2 − E1 = E3 − E2), the efficiency (for one QW) is

η(2) =
(

e2h

4ε0nrmc

)2 sin4 θ

cos θ
n2Df23f12

P

2π2ωγ3
, (7.8)

where nr is the refractive index, m is the effective mass, θ is the angle of
incidence, n2D is the 2D electron density, fmn is the oscillator strength between
m and n states, P is the infrared power flux, and γ is the (half width) linewidth
parameter. For the same γ = 10 meV as used in Fig. 7.12 and assuming f12 ∼ 1

Fig. 7.12. Calculated two-photon absorption efficiency for three quantum well struc-
tures. The GaAs/AlGaAs quantum well parameters are given in the inset. The
linewidth parameter is set to be 20 meV. The schematic shown in Fig. 7.11 corre-
sponds to a photon energy of 136 meV
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and f23 ∼ 2, the two-photon absorption efficiency for the double-resonance
case is η(2)/P ∼ 3×10−10 (W cm−2)−1. The peak value in Fig. 7.12 for the solid
curve is close to this value, and hence the case of bound–bound continuum
resonant configuration is close to the highest efficiency that we expect to
achieve.

The first experimental study on two-photon absorption and photocurrent
was reported [216,241]. They used a standard 8-µm QWIP operated at 77 K,
the situation of the center part of Fig. 7.12. The device was excited by CO2

laser pulses at 10.6 µm with a flat-top shape and 3-ps duration, generated
by semiconductor optical switching [216]. As an experimental proof of a two-
photon detection, the QWIP signal was shown to be quadratically propor-
tional to the linear monitor signal.

Of particular interest is the use of a two-photon QWIP to characterize the
pulses produced by mode-locked quantum cascade lasers [217,242]. This how-
ever may require a higher efficiency than the substantially detuned quantum
well. This goal has been achieved by resonant two-photon QWIPs (Fig. 7.11,
left panel), as described later in Sect. 10.3.

7.3 Asymmetry Caused by Dopant Segregation

In the measured QWIP I–V curves, an asymmetry is often seen, as in results
reported in [105]. The main cause of the asymmetry is attributed to the segre-
gation of the dopants during growth [114,115,167]. For QWIPs with intended
doping in the center of the well, the segregation leads to an asymmetric dis-
tribution of the dopants and therefore the positive background charge seen
by the electrons. Experiments on a set of samples with purposely shifted δ-
doping positions away from the center led to the above conclusion [114]. From
Fig. 7.13, it is seen as the shift increases the I–Vs become more and more
symmetric. From this study, the “true” shape of the δ-doping profile for Si at
a growth substrate temperature of Tsub = 605◦C is broadened asymmetrically
with a width of 27 Å. This inferred true profile is shown in the right panel of
Fig. 7.14. The left panel shows the substantial asymmetry in the potential if
the δ-doping is shifted (and also remained sharp). The center panel shows the
case of a smaller segregation which still leads to an asymmetry. The amount
of segregation is sensitive to the growth substrate temperature: as Tsub is re-
duced, the segregation decreases, as seen in the curve from a Tsub = 550◦C
sample in Fig. 7.13.

Furthermore, using the measured asymmetric I–Vs together with mod-
eling, we can infer the segregation length [115]. A set of samples grown at
different growth temperatures have been measured and modeled and the re-
sults are summarized in Fig. 7.15. Finally, the As overpressure during growth
is shown to suppress the Si segregation for both As2 and As4 sources [115].

Similar results have been obtained by Larkins et al. [243], who studied
Si incorporation in QWIP structures based on GaAs/AlAs/AlGaAs double-
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Fig. 7.13. Sample parameters (top table), measured current-voltage characteristics
(a) and the ratio of the forward and reverse currents (b) for six samples at 77K

barrier quantum wells. These investigations were triggered by experimental
observations of a significant photovoltaic behavior in these double-barrier
QWIPs [167,244]. Figure 7.16 shows simulated Si doping profiles obtained
by two different models. The observed photovoltaic effect was successfully ex-
plained in terms of the resulting dipole fields between ionized impurities and
the electrons in the quantum wells.
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Fig. 7.14. Model simulations of doping profiles and quantum well potentials for a
nominally δ-doping shifted from the center by 22 Å. The left part is for the case
of no segregation and the δ-doping is modeled by exponentials with a width of
a monolayer. The center and the right parts are for segregation of 11 and 22 Å,
respectively

7.4 Coherent Photocurrent

7.4.1 Coherent Control by Optical Fields

An interesting experiment demonstrating the coherent nature of the electron
waves was carried out by Dupont et al. [245]. Using a bound-to-bound tran-
sition QWIP and excitations of both one- and two-photon transitions, the
interference photocurrent polarity or direction was shown to be controlled by
the relative phase between the two coherently related IR beams. The second
harmonic frequency light generated in a nonlinear crystal from a pulsed CO2
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Fig. 7.15. Si segregation length λL vs. inverse temperature

Fig. 7.16. Comparison of the Si doping profiles obtained using kinetically (growth
rate) limited Si incorporation (solid curve) and equilibrium Si incorporation (dashed
curve). The growth direction is toward the right. A profile of the conduction band
minima is shown below these curves for visual reference [243]

laser was used for one-photon excitation, and a part of the CO2 light for two-
photon excitation. Neither the one-photon nor the two-photon transition were
in resonance with a final or intermediate bound state. The two-photon tran-
sition corresponded to the center part of Fig. 7.11. In a symmetric quantum
well, the final state of the one-photon transition was parity asymmetric, and
that for two-photon transition was symmetric. This is schematically shown in
Fig. 7.17. When the two degenerate final states are superimposed, the result-
ing wavefunction could resemble a left or a right-going planewave, depending
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Fig. 7.17. Intersubband excitations by one-photon (left) and two-photon (right)
transitions. The excited final state wavefunctions are asymmetric (left) |E, A > and
symmetric (right) |E, S >. See more details in Dupont et al. [245]

Fig. 7.18. Observed photocurrent vs. phase. The phase change is done by rotating
a piece of NaCl crystal using its dispersion between 5.3 and 10.6 µm wavelengths.
The rotating angle is plotted on the top axis. The relevant phase in expected in-
terference photocurrent is plotted on the lower axis. See more details in Dupont
et al. [245]

on the relative phase. The observed photocurrent at zero external bias should
then oscillate with phase. This quantum interference phenomenon is experi-
mentally shown in Fig. 7.18.
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Fig. 7.19. Coherent transmission and reflection processes occurring in an asym-
metric double quantum well structure upon optical carrier excitation

7.4.2 Coherent Control Through Potential Offsets

Coherent control of the photocurrent polarity can also be achieved by ap-
propriate heterostructures. Schönbein et al. [246] have investigated the pho-
tocurrent in asymmetric GaAs/AlGaAs double quantum well structures. The
samples under study contained 20 asymmetric double quantum wells sepa-
rated by 45 nm thick Al0.24Ga0.76As barrier layers. Each double quantum well
consists of nominally 4.8 nm n-type GaAs, 7.8 nm Al0.24Ga0.76As, and 3 nm
GaAs (sample 1). In sample 2, the 7.8 nm wide Al0.24Ga0.76As layer is replaced
by 11 nm Al0.24Ga0.76As.

Semiclassically, the situation upon optical carrier excitation in these struc-
tures is indicated by the horizontal arrows in Fig. 7.19. Due to the presence
of the narrow GaAs quantum well, the inversion symmetry of the continuum
states is broken. Carriers, which are initially emitted from the wide doped
quantum well with equal probability toward both sides, undergo reflections
when passing the second, narrow quantum well. The reflected waves can inter-
fere constructively or destructively with the incoming wave [247] according to
their de Broglie wavelengths. The occurrence of standing waves between the
wide and the narrow quantum well is expected in the case when the spacing
between the two quantum wells is within the coherent mean free path lc of
the excited carriers.

Photocurrent spectra were taken at 77 K using a Fourier spectrometer
equipped with a glowbar source. In order to obtain the correct sign of the
photocurrent at 0 V external bias, the phase of a spectrum at higher bias
voltages (−2 V) where no current sign reversal occurs was stored and used for
the zero bias measurement. A positive sign of the photocurrent is associated
with carrier propagation in the growth direction.

Figure 7.20 shows photocurrent spectra of both samples at zero bias. Since
the lowest subband of the narrow well is not populated under the experimen-
tal conditions, this well does not contribute to the total photocurrent. Due
to the broken inversion symmetry, the structure has a slight photovoltaic be-
havior, favoring a current flow towards the substrate direction. The spectra
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Fig. 7.20. Comparison of measurement and theory for sample 1 (a) and sample
2 (b). The measurements were conducted at 77 K without externally applied bias
(after [246])

exhibit several sign reversals, which are only present at small fields and dis-
appear above +0.5 kV cm−1 (+60 mV applied bias) and below −0.83 kV cm−1

(−100 mV applied bias) [246].
A semiclassical calculation of the current sign reversals has been given

by calculating the transmission probability across wide and narrow quantum
wells [247], which qualitatively explains the observed sign reversals.

In a quantum mechanical approach, the bound-to-continuum transition
is described by the time dependent perturbation operator H1(z, t) = (eiωt +
e−iωt)H1(z) in addition to the stationary one-electron Hamiltonian H0(z),
where the growth direction is denoted by z. Nonparabolicities are taken into
account within an empirical two-band model [87], where H0 is given by

H0(z) =
(

Vc(z) −iγ ∂
∂z

−iγ ∂
∂z Vv(z)

)
. (7.9)

Here, Vc(z) and Vv(z) are the piecewise constant potential distributions of the
conduction and valence bandedges, respectively. γ is related to the effective
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Fig. 7.21. Conduction bandedge distribution and probability densities of bound
states as well as continuum states with asymptotic boundary conditions for the pa-
rameters of sample 1. The virtual states have been arbitrarily chosen at equidistant
energies to demonstrate standing-wave effects between the two wells (after [246])

mass m by γ =
√

h̄2(Vc(z) − Vv(z))/(2m(z)), where γ = 0.9294 eVnm as-
sures the correct reduced effective mass of m∗ = m/me = 0.067 at the GaAs
conduction bandedge. Neglecting the photon wave vector, the perturbation
Hamiltonian H1 is obtained by the substitution p̂ → p̂ − e

cA. The vector po-
tential A = −(cF/ω) cos ωtez, with F the amplitude of the radiation field and
ez the unit vector in z-direction, thus gives rise to the dipole Hamiltonian

H1 =
γF

2h̄ω

(
0 1
1 0

)
. (7.10)

The total wave function ψ(z, t) ≡ (ψc(z, t), ψv(z, t))T in this model is given
by

ψ(z, t) = ψi(z)e−(i/h̄)Et + ψf (z)e−(i/h̄)(E+h̄ω)t. (7.11)

Here the ground state ψi is located at the first subband in the emitting
quantum well, while the excited state ψf is located in the continuum above
the AlGaAs conduction bandedge. Wave functions ψf at arbitrarily chosen
equidistant energies are shown in Fig. 7.21. Substituting (7.11) into the time
dependent Schrödinger equation with the Hamiltonian H = H0 + H1 and
expanding to the first order in e−iωt yields

H0ψ
i = Eψi (7.12)

H0ψ
f + H1ψ

i = (E + h̄ω)ψf . (7.13)

These equations correspond to the approach given by Sumetskii et al. [248],
who model the quantum well structure by short range delta potentials.

The equations have been solved within a modified transfer matrix cal-
culation developed for arbitrary, piecewise constant potentials. In the cal-
culation, outgoing boundary conditions are assumed for the excited state
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wave function ψf ≡ (ψf
c , ψf

v )T, characterized by ψf
c (z → ∞) = Aeikz, and

ψf
c (z → −∞) = Be−ikz, with the 45 nm thick AlGaAs barrier layers replaced

by infinitely extended barriers in the calculation. This is a good approxima-
tion in the case where this width is large compared to the coherent mean free
path of the excited charge carriers. The coefficients A and B are obtained
using the transfer matrix algorithm. The boundary conditions in the transfer
matrix algorithm are obtained from the requirement that ψ(z, t) (see (7.11))
is continuous. The current density j is obtained from the wave function ψf via
the relation j = γ

h̄ ((ψf
c )∗ψf

v +(ψf
v )∗ψf

c ). The expression for the total coherent
current is then given by

j =
2γ2k

h̄(E − Vv)
(|A|2 − |B|2). (7.14)

The term associated with the coefficient |A|2 can be viewed as an outgoing
current to the right side, while the term associated with the coefficient |B|2
represents an outgoing current to the left side. The “inhomogeneity” H1ψ

i in
(7.13) acts as a source term for the outgoing currents.

Figure 7.20 also shows theoretical spectra as obtained from this model.
For both samples, the spectral shape of the first peak is well reproduced. The
model also correctly describes the spectral positions of the remaining maxima
and minima. The strong influence of the quantum well spacing on the current
sign reversals of the spectra can be clearly seen. The spacing between the
energy values where the current drops to zero is narrower for the sample with
the wider barrier.

Although the shape of the first peak and the sign reversals are nicely
predicted by the calculation, the relative height of the first peak as compared
to the following peaks is too large. A proper description of the amplitudes
would thus require taking inelastic scattering into account, not contained in
the present theory.

The interference effect discussed here also provides information on the
coherent mean-free-path lc of the excited charge carriers, as coherent effects
are only observed if the width of the barrier layer separating the wide quantum
well from the narrow quantum well is smaller than lc. The absence of high-
frequency oscillations indicates that the approximation of the 45 nm thick
AlGaAs layers by infinitely extended layers in the simulation is justified, i.e.,
the width of these layers is larger than lc.

7.5 Impact Ionization and Avalanche Multiplication

If carriers gain sufficiently high kinetic energy, there is a finite probability
that this energy will be used to create new carriers through the ionization
of impurities or the creation of electron-hole pairs. Since this process can oc-
cur a multiple times during the drift across the active region of a device, the
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phenomenon is similar to an avalanche. This avalanche multiplication is an
important mechanism in a large number of semiconductor devices [34,249].
The avalanche process is generally described by a multiplication factor M,
which specifies the ratio between the total current and the primary current.
In bipolar avalanche photodiodes, avalanche multiplication is usually accom-
panied by excess noise, which results in a reduction of the signal-to-noise
ratio even though the signal itself is enhanced [34,249]. Only for a unipolar
multiplication process, i.e., if only either electrons or holes cause impact ion-
ization, avalanche multiplication without excess noise is possible, and enables
“noiseless” amplification of the signal.

In addition to avalanche multiplication involving interband excitations,
several theoretical and experimental studies have investigated avalanche
processes based on intersubband transitions in MQW heterostructures [250–
252]. The inset of Fig. 7.22 illustrates the avalanche process in a QWIP. Mo-
bile electrons in continuum states of the conduction band are accelerated
by the electric field during their drift in the barrier regions. These carri-
ers may experience an energy relaxation during their drift due to scattering
processes (indicated by the open arrows), resulting in a “ballistic” mean free
path. Provided that the kinetic energy of the incident carriers exceeds the
activation energy EA, the confined ground-state electrons can be promoted
to an excited state within the continuum [250]. Subsequently, both the pri-
mary and the secondary electron leave the quantum-well region and gather
kinetic energy from the electric field across the following barrier layer to con-
tinue the avalanche process. The first evidence of avalanche multiplication in
GaAs/AlGaAs QWIPs was obtained by Levine et al. [253] through a compar-
ison between measured responsivity data and a theoretical model. However,
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Fig. 7.22. Photoconductive gain gphoto and noise gain gnoise vs. bias voltage. The
solid line displays the “net” gain g, which the investigated QWIP would posses in
absence of avalanche processes. The inset shows the conduction band edge distrib-
ution in a photoconductive QWIP, and schematics of the avalanche multiplication
process due to impact ionization (after [254])
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their method did not allow them to derive the avalanche multiplication factor
M.

In QWIPs, the relation gphoto ≈ gnoise ≈ g usually holds for N � 1
and pc � 1, since avalanche processes are absent [255]. Taking avalanche
multiplication into consideration, we express the photoconductive gain as
gphoto = gM, where the “net gain” g refers to the situation without avalanche
multiplication. Thus, the responsivity is given by Ri = eηgM/hν. The pres-
ence of excess noise then causes an increase of the noise gain gnoise over
the photoconductive gain gphoto. As experimental evidence for this phe-
nomenon, Fig. 7.22 compares the values of gphoto and gnoise measured on
a 20-period QWIP structure. To demonstrate avalanche multiplication, an
InGaAs/GaAs-QWIP was used since alloy and intervalley scattering processes
are less pronounced [256] than in conventional GaAs/AlGaAs-QWIPs. In fact,
gnoise starts to increase more steeply than gphoto if the bias exceeds 2.4 V
(≈22 kV cm−1).

For a quantitative description of this excess noise, we introduce the noise
factor F(M), which defines the excess noise associated with the noise spectral
density. The generalized g–r noise current associated with the current I within
the bandwidth ∆f can thus be written as

i2n = 2egphotoI∆fF(M). (7.15)

In order to obtain a model for g–r noise in QWIPs, that includes avalanche
multiplication, we have generalized the model developed by Beck [140] by
introducing an additional term which takes avalanche processes into account.
Re-expressing the result in terms of M and pc, the calculation predicts [177]

F(M) = 2M− pc

(
2M− 2 +

1
M

)
. (7.16)

Without impact ionization, i.e., at M = 1, (7.15) and (7.16) reproduce Beck’s
result gnoise = gphoto −1/2N . In particular (7.16) yields F(M) = 1 for photo-
voltaic QWIPs (pc = 1) and F(M) = 2 for photoconductive QWIPs (pc � 1).
For M > 1, and pc � 1, (7.16) simplifies into F(M) ≈ 2M(1 − pc). The ex-
cess noise factor is plotted in Fig. 7.23 for different values of pc. The limiting
cases M = 1, pc � 1, and pc = 1 discussed above are clearly verified in the
figure.

For the experiment of Fig. 7.22, we expect the condition Mpc � 1 to be
valid, such that F(M) ≈ 2M. In this case, gphoto and gnoise are connected by
the simple relation

gnoise/gphoto = M. (7.17)

The extra noise contribution in the presence of impact ionization is due to
the additional statistical indeterminacy inherent with the avalanche process.
Equation (7.17) now allows us to determine the multiplication factor M
which is plotted in Fig. 7.24. M is roughly equal to unity up to +2.4 V, and
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Fig. 7.24. Avalanche multiplication factor M vs. bias voltage. The inset shows the
bias dependence of the activation energy Eact (after [254])

rises significantly above 1 at higher bias voltages, up to M = 3.6 at +4.0 V
(≈37 kV cm−1).

In order to initiate avalanche multiplication processes, the kinetic energy
Ekin accumulated by drifting carriers along their coherent (or ballistic) mean
free path lc must reach a threshold value before a ground state electron can
be scattered out into the continuum. This threshold energy is expected to be
comparable to the activation energy Eact of the dark current [250]. A rough
estimation of lc is thus obtained by dividing the experimental value Eact =
121 meV (at +2.4 V), as determined from the temperature dependence of the
dark current (see inset of Fig. 7.24), by the threshold field Fth of ≈22 kV cm−1;
yielding lc = Eact/eFth = 55 nm. In fact, this value is consistent with results
from independent experiments. Investigations of the coherent mean free path
of electrons in the continuum of asymmetric GaAs double quantum-wells (see
Sect. 7.4.2) suggest a value above 20 nm at 77 K and about 100 nm at liquid
helium temperatures. Studies of GaAs hot-electron transistor structures also
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point to lc-values of about 70 nm at low temperatures [257,258]. Knowing
M, we can now determine the “net” gain g of the investigated QWIP in the
absence of avalanche processes using the relation g = gphoto/M. The gain
obtained in this way is shown as a function of the bias voltage by the solid
line in Fig. 7.22. While gphoto ≈ gnoise ≈ g in the regime below +2.4 V, gphoto

and gnoise show a substantial increase when avalanche multiplication sets in.
In contrast, g increases linearly below +1.0 V (9.2 kV cm−1) and saturates at a
value of about g = 3, followed by a slight decrease at high bias (above ≈3 V).

Similar avalanche multiplication effects have also been reported for In-
GaAs/InP devices by Aslan et al. [259]. The effect appears to be much less
important in GaAs/AlGaAs QWIPs.

7.6 Radiation Hardness

QWIPs are suited to and are used for space applications [16,260]. It is well
known that permanent degradation of semiconductor device performance can
result from a prolonged operation in the space environment. GaAs based de-
vices are generally regarded as more radiation resistant than others. In the
space environment, there exists a wide range of light and heavy particles with
different energies. A systematic study of QWIP radiation damage is therefore
important for predicting their performance, and for qualifying them for space
applications.

Measurements [261,262] have been carried out on the effect of high energy
proton, α-particle, oxygen ion, and gold ion radiation on the performance of
GaAs/AlGaAs QWIPs. In addition, Akhmetov et al. [263] have studied the
effect due to 3.5 MeV electron radiation. In our experiments, the particle en-
ergies of protons, α-particles and oxygen ions ranged from 0.8 to 30 MeV,
with the fluences from 1010 to 1016 cm−2. The energy of Au ions was 1.5 GeV,
and the fluence ranged from 106 to 109 cm−2. The dark current and spectral
response of irradiated devices were measured. A device operability, defined
by the fractional reduction of detector responsivity, was used to evaluate the
performance degradation. Device operability degrades with fluence for all par-
ticles. It also degrades with the mass of the ion and with the decrease in the
energy of the particle.

In these studies, a standard QWIP was used, with peak detection wave-
length at 10.7 µm. The epitaxial layers in growth sequence were: a 0.8 µm GaAs
bottom contact layer Si-doped to 1.5× 1018 cm−3, a 32-repeat multiple quan-
tum well structure with 36 nm wide Al0.19Ga0.81As barriers and 7.5 nm wide
GaAs wells, and a 0.4 µm GaAs top contact layer Si-doped to 1.5×1018 cm−3.
The center of all wells was δ-doped with Si to 5.0 × 1011 cm−2. Mesa devices
with 120 × 120 µm2 active areas were made by standard wet chemical etch-
ing, and contacts were formed with alloyed NiGeAu. The processed wafer was
cleaved into chips of about 4 × 4 mm2 in size, each containing many devices.
Each chip was attached to a metal block at room temperature and was irradi-
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Fig. 7.25. Dark current vs. bias voltage characteristics at 77 K for 3MeV proton
irradiated QWIPs at different fluences

ated from the top in vacuum. The radiation beam current was sufficiently low,
causing no appreciable change of the block temperature during irradiation.

The nuclear particles and energies used in the experiments were selected
to provide a sample of radiation damage data at different energies. The range
of these ions decreases with decreasing particle energy: the range of 0.8 MeV
protons, the lowest energy protons used here, is about 8 µm in GaAs and
AlGaAs, while the range of the lowest energy (2.4 MeV) α-particles is about
7 µm and that of 10 MeV oxygen ions is about 5 µm in these materials. The
GeV energy Au particles used here have a range of about 50 µm. Since the
QWIP active layer is thin (less than about 2 µm), the range of the irradiating
particle in the device material is greater than the total thickness of the QWIP,
which ensures a uniform damage in the device.

As an example, Figs. 7.25 and 7.26 show the dark current and the spectral
responsivity curves. The I–V characteristic at the lowest fluence level is very
similar to the unirradiated device. With increasing fluence, the dark current is
reduced (Fig. 7.25). A dramatic decrease is seen over the range in fluence stud-
ied (approximately a 100-fold reduction). Further increases in fluence made
the devices practically insulating. The responsivity measurements were per-
formed using a liquid nitrogen cold-finger dewar with an estimated device
temperature of 80 K. Spectra were taken over a range of applied voltages, and
those for −2 V are shown. Comparing Figs. 7.25 and 7.26, the influence of radi-
ation damage on the dark current is larger than that on the responsivity. Since
the barrier is much thicker than the well, the defects created by the radiation
are mainly in the barriers. Since the QWIP is a unipolar device, the effect of
these defects is (a) to remove electrons from the wells and (b) to increase the
effective barrier height because the defects trap electrons taken away from the
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Fig. 7.26. Spectral responsivity vs. wavelength characteristics at 80 K and −2 V
for 10 MeV proton irradiated QWIPs at different fluences

wells, resulting in a bandbending. For QWIPs, the dark current depends on
electron density and barrier height exponentially; the absorption, however, is
directly proportional to the electron density. Thus, the dark current is more
sensitive to radiation damage than the detector responsivity. Moreover, de-
fects and traps in the barriers could cause leakage paths leading to an increase
in dark current, but this is not evidenced in the experiments.

We can compare the device responsivity dependence on radiation damage
due to particles at different energies if we define a device operability by the

Fig. 7.27. Device operability (defined as the fractional reduction in responsivity)
vs. fluence for QWIPs irradiated with different high energy proton and α-particles
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reduction in responsivity: i.e., if the responsivity is reduced by a factor of ten,
the operability is, by definition, 0.1 or 10%. Figure 7.27 gives the operability
vs. proton and alpha fluence for different energies. It is clear that when the
fluence is low, the device operability is nearly 100%, which means the effect of
radiation damage is negligible. With increasing fluence, for all energy values,
the device operability decreases monotonically. The devices became practically
insulating at some fluence dependent on the radiating particle energy. Looking
at the behavior at different energies, a clear trend is shown: at a fixed fluence,
the device displays more damage for a lower energy proton than for a higher
energy proton in the energy range tested here. Comparing the proton and
alpha curves reveals that the degradation due to α-particles is much greater
than that due to protons for the same particle energy.

An overall trend in the introduction of radiation damage can be stated
after observing results from all particles [262]. For any particle at a fixed
energy, there is a gradual and continuously increasing low level damage at
low fluence levels. However, the rate of radiation damage changes at higher
fluence levels, and this change in the rate as a function of fluence sets in at a
lower fluence level with the same particle at a lower energy.

To compare damage due to different particles, we list a set of typical
values. When the damage is relatively small, and not catastrophic, the device
operability is 0.95 for a 1013 cm−2 fluence of 10 MeV protons, while it is 0.43
for the same fluence of 10 MeV α-particles. For 10 MeV oxygen ions, the device
operability is 0.34 at a 1011 cm−2 fluence level. Thus, 10 MeV α-particles are
about twice as damaging, and 10 MeV oxygen ions are about 300 times more
damaging, than are protons at the same energy. In the same study, we found
that the 1.5 GeV Au ions in the fluence range from 106 to 109 cm−2 did not
cause measurable damage. Based on other experiments and simulations, a
fluence of 1010 cm−2 or greater is needed.

An interesting (somewhat unexpected) result was seen in the experiment
of [262]: Low level irradiations slightly improved the detectivity. The behavior
is explained as follows. Since the optimum well doping density for D∗ corre-
sponds to a Fermi energy EF = 2kBT , where T is the operating temperature
(which is T = 80 K here). The Fermi energy for this QWIP before irradiation
is EF = 18 meV. For T = 80 K, 2kBT = 14 meV. Since EF > 2kBT before
irradiation, the effect of removing electrons (which decreases EF) brings the
electron density closer to the optimum and hence results in an initial im-
provement in D∗. This observation also confirms the insensitivity of QWIPs
(as majority unipolar devices) to irradiation.
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Related Structures and Devices

This chapter discusses related and new/novel structures and devices for study-
ing physical processes, which may lead to IR detection and imaging applica-
tions.

8.1 High Absorption QWIPs

When the signal to be detected is strong (e.g., from a laser) the signal induced
photocurrent can dominate over the dark current. In this case, the detection
sensitivity is only limited by the absorption, and hence a high absorption is
most desirable. This is also true in the case of heterodyne detection (to be
discussed in Sect. 10.2.2). In the simplest picture (Sect. 3.2), the absorption is
proportional to the electron density and the number of wells. We demonstrate
here that high absorption (∼100%) can be achieved by simply changing these
device parameters.

The device intrinsic absorption is best characterized by a direct measure-
ment of transmission/absorption. In this section, we show experimental re-
sults to demonstrate the high absorption capability. We also show that these
devices can work at elevated temperatures either within the thermoelectric
cooling range (>200 K) or at room temperature.

8.1.1 Absorption Measurements

Starting from a standard QWIP structure, the simplest way to enhance ab-
sorption is to dope the wells more heavily and to grow more wells [220,221].
At 45◦ incidence with polarized light, the absorption per quantum well per
pass is about 0.54% per well for a standard GaAs/AlGaAs QWIP with
5× 1011 cm−2 doping (see Sect. 3.2). For a doping density of 1.5× 1012 cm−2,
the one-well/one-pass absorption is expected to be η1 ≈ 1.6%. If a 90%
QWIP absorption is desired, the number of wells needed is determined by:
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Table 8.1. GaAs/AlGaAs QWIP sample parameters

Sample λp (µm) x Lw (nm) Lb (nm)

QWIP10 10.0 0.19 6.6 25
QWIP8 8.4 0.24 5.9 24
QWIP5 5.0 0.48 5.0 22

(The doping in the well is Si, δ-doped at the center to 1.5× 1012 cm−2. The number
of periods is 100. The symbols are λp – peak detection wavelength, x – Al fraction,
Lw – well width, and Lb – barrier thickness.)

exp(−2Nη1) = 10%, which gives N = 72. (The factor of 2 in the expo-
nential accounts for the double passes in the 45◦ facet detector geometry.)
N = 100 was chosen in the experimental verification, with a doping density
of 1.5× 1012 cm−2. Other doping densities were also tried. The study of [220]
indicated that a 100-well QWIP with 1–1.5 × 1012 cm−2 well doping is close
to the optimum. Decreasing the doping substantially leads to a reduction in
absorption, while increasing the doping seems to only result in a spectral
broadening.

Here we show three examples with different detection wavelengths centered
at about 10, 8, and 5 µm. The period of the 100-repeat multiple quantum
well structure consists of a GaAs well and AlxGa1−xAs barriers. The GaAs
well center region is doped with Si to give an equivalent 2D density of 1.5 ×
1012 cm−2. The top and bottom GaAs contact layers are 400 and 800 nm thick,
doped with Si to 2×1018 cm−3. Other device parameters are listed in Table 8.1.
Mesa devices were fabricated by standard GaAs processing techniques. All
devices were packaged into the 45◦ edge facet geometry.

With the high well doping densities used in these QWIPs, we expect a
large increase in dark current. Using a set of samples having similar cutoff
wavelengths, but different doping densities of 5× 1011, 1.0× 1012, 1.5× 1012,
and 2.0 × 1012 cm−2, measurement of current–voltage (I–V) characteristics
at 77 K showed approximately a factor of 10 increase between consecutive
samples. The increase is mainly caused by the increase in the well Fermi energy
∆Ef which raises the dark current by exp(∆Ef/kBT ). Measurements of blip
temperature show that Tblip is degraded with increasing doping. Tblip ≈ 60,
45, and 30 K for 1.0 × 1012, 1.5 × 1012, and 2.0 × 1012 cm−2 doping samples,
respectively, were found. By contrast, an optimized QWIP (with about 4×1011

cm−2 doping) covering the same wavelength range would have a Tblip about
77 K for a 2π-solid-angle field of view, so high doping devices are therefore far
from optimum for the detection of weak signals.

To show the anticipated high absorption, Fig. 8.1 presents the measured
double-pass polarized 45◦ incident transmission spectra for the three sam-
ples (see Fig. 6.2 for the measurement geometry). For samples QWIP10 and
QWIP8, the high absorption is clearly demonstrated. We would have expected
QWIP5 to have a similar absorption. Possibly carrier transfer to the L and X
valleys may be responsible for the reduced absorption.
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Fig. 8.1. Double-pass 45◦ incidence transmission spectra at room temperature and
with polarized light

8.1.2 Detector Characteristics

Figure 8.2 shows the spectral response curves for the three samples, covering
the designed wavelength regions. A further goal of these samples was to at-
tempt operation at an elevated temperature. To maximize the dark current
limited detectivity, it has been established (see Sects. 4.3 and 4.4) that the well
doping density should be such that the Fermi energy is Ef = 2kBT , where T

Fig. 8.2. Normalized spectral response curves at 80 K and 3 V. The device geometry
is equivalent to that of Fig. 8.1 so that the absorption efficiency is represented by
Fig. 8.1
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Fig. 8.3. Responsivity vs. applied voltage under a CO2 laser (10.6 µm) illumination
and at various temperatures for sample QWIP10

is the desired operating temperature. The 2D doping density is related to the
Fermi energy by ND = (m/πh̄2)Ef , where m is the well effective mass. For
T = 80 K, the required density is about 4 × 1011 cm−2 for GaAs wells, and it
is expected that QWIPs with doping in the 1–2 × 1012 cm−2 range may be
operable near room temperature, albeit with a reduced sensitivity. Measured
results at various temperatures using a CO2 laser tuned to 10.6 µm are shown
in Fig. 8.3 for sample QWIP10, and it is clear that the device does indeed
work up to room temperature.

It is interesting to note that with increasing temperature the responsivity
first increases and then decreases for a given bias voltage. This behavior is
explained qualitatively as follows. Since the responsivity is proportional to
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the mobility, the behavior is attributed, in a large part, to the temperature
dependence of the mobility. It is well known that the impurity scattering
limited mobility increases with temperature, whereas the phonon scattering
limited mobility decreases. The two scattering effects result in a mobility vs.
temperature dependence similar to the observed responsivity vs. temperature
behavior [264]. For elevated temperature operation, where the QWIP resis-
tance is low, a high responsivity is highly desirable to overcome the large
noise associated with the low resistance and the 50 Ω termination. There is a
difficulty in accurately measuring the responsivity when the device resistance
is low and comparable to contact and/or series resistance. The low resistance
causes a “short-circuit” for the photocurrent, leading to an apparent low re-
sponsivity. The values in Fig. 8.3 for high temperatures (>200 K) could be
somewhat lower than reality.

Given the measured I–Vs, responsivity, and absorption, the detectivity D�

can be evaluated. Using the relations Ri = (e/hν)gη and D� = Ri

√
A/

√
4egI,

where Ri is the responsivity, ν is the photon frequency, g is the photoconduc-
tive gain, A is the device area, and I is the device current, the detectivity at
10.6 µm and for polarized light is calculated and plotted in Fig. 8.4 for var-
ious temperatures. A state-of-the-art QWIP for the same wavelength would
have a D� value of about 1010 cmHz1/2 W−1. The device here is therefore
far from optimum for low signal and low temperature use. Comparing with a
room temperature thermal detector having a D� value of about 108 cmHz1/2

W−1, which is commonly used in MIR spectrometers, this device needs to be
cooled to about 150 K to achieve the same D�. Note that temperatures about
200 K and higher are attainable by thermoelectric cooling. Operation at ele-
vated temperatures implies high dark currents. In order to overcome the dark
current noise at room temperature, a laser power of about 10 mW is required

Fig. 8.4. Detectivity at 10.6 µm for sample QWIP10 and at various temperatures
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Fig. 8.5. Detectivity at 5 µm for sample QWIP5 and at various temperatures

for a 10× 10 µm2 active-area device; and similarly at 200 K a power of about
5 mW is needed. High speed operation requires small device capacitances.
The approach employing a large number of quantum wells makes the device
thicker than a typical QWIP and hence has lower capacitance. For these de-
vices having a thickness of about 3 µm, an active area of about 50 × 50 µm2

or smaller is sufficient for operation at 30 GHz or higher. Similarly, the de-
tectivity for sample QWIP5 is shown in Fig. 8.5. For this shorter wavelength
device, a higher detectivity is obtained, making this device able to operate
with a thermoelectric cooler.

8.2 Multicolor QWIPs

Being based on thin multilayers grown by epitaxial techniques, the design of
QWIPs is very flexible. This enables various implementations of multicolor
and multispectral detectors. The word “color” used here is only by analogy
to the visible spectrum, and is meant for different wavelengths in the IR
spectrum. The approaches to multicolor QWIPs are divided into three basic
categories: (1) multiple leads, (2) voltage switched, and (3) voltage tuned. The
three cases are schematically shown in Fig. 8.6. The division here is somewhat
arbitrary. In general, a multicolor or multispectral detector is a device having
its spectral response varied with parameters like applied bias voltage or any
other parameters such as temperature, pressure, magnetic field, filter position,
etc. The latter cases are not as desirable in practical applications and are not
discussed here.

Approach (1) is a direct one which involves contacting each intermediate
conducting layer separating one-color QWIPs grown in a multistack. This re-
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Fig. 8.6. Three different multicolor QWIP approaches. (1) Shows two QWIPs
with different response wavelengths grown in a multistack. Intermediate leads are
provided, so that each QWIP functions independently. (2) The QWIP has a response
peaked at λ1 at voltage V1 and at λ2 at voltage V2. (3) The QWIP has a response
that is continuously tuned by voltage

sults in a separately readable and addressable multicolor QWIP with multiple-
electrical leads, and a two-color version has been demonstrated [265]. The ad-
vantage of this approach is its simplicity in design and its negligible electrical
cross-talk between colors. Moreover, each QWIP region can be optimized in-
dependently for a desired detection wavelength. However, the additional elec-
trodes require additional detector processing and special/complicated readout
electronics. A further drawback is the difficulty in fabricating a many color
version because of the many separate leads required in contacting each inter-
mediate layer. Bois et al. [266,267] have developed processing technologies for
implementing two-color imaging arrays. Other direct approaches include the
use of different parts or rows for different colors. Gunapala et al. [268] demon-
strated a four-color imager by separating a large array into four stripes, each
responding to a different color. The technology developed at IAF (Fraunhofer
Institute for Applied Solid State Physics) is described in Sect. 9.3.
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8.2.1 Voltage Switched Multicolor QWIP

The second approach (middle part in Fig. 8.6) is to have a QWIP with a
switchable response, e.g., for an applied voltage V1 the response is at λ1 and
for V2 at λ2. One such example is realized by stacking one-color QWIPs sep-
arated by thin conducting layers [269,270]. The device operation relies on the
highly nonlinear and exponential nature of the device dark I–V characteris-
tics. This implies that an applied voltage across the entire multistack would
be distributed among the one-color QWIPs according to their values of dc re-
sistances. Thus, when the applied voltage is increased from zero, most of the
voltage will be dropped across the one-color QWIP with the highest resistance
(which will be the shortest wavelength). As the voltage is further increased,
an increasing fraction of the voltage will be dropped across the next highest
resistance one-color QWIP, and so on. Since the detector responsivity of a one-
color QWIP gradually turns on with applied voltage, we therefore can achieve
a multicolor QWIP with spectral response peaks that turn on sequentially
with applied voltage.

The bandedge profiles of a three-color version are schematically shown in
Fig. 8.7. To quantitatively predict the magnitude of the photocurrent, we need
to consider what is being measured. The use of a photoconductive detector
usually involves applying a constant dc bias across the detector in series with

Fig. 8.7. Bandedge profile of a three-color QWIP at different bias voltages. The
top part is for a small voltage where only the highest resistance one-color QWIP
(at the shortest wavelength λ1) is turned on, the middle part is appropriate for the
situation where two of the three one-color QWIPs (at λ1 and λ2) contribute to the
photocurrent, and in the lower part the applied voltage is high enough so that all
three one-color QWIPs (at λ1, λ2, and λ3) have nonnegligible electrical fields
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Fig. 8.8. Model equivalent circuit of a three-color QWIP biased through a series
load resistor Rs. Symbols ip and r are the photocurrent source and the internal
resistance

a load resistor Rs. The equivalent circuit of this three-color detector involves
a network of photocurrent sources (ip1, ip2, and ip3) and dynamic device
resistances (r1, r2, and r3), as shown in Fig. 8.8. Under small signal condition,
the measured photoresponse current is

Iphoto =
ip1r1 + ip2r2 + ip3r3

Rs + r1 + r2 + r3
. (8.1)

The nonlinear nature of the dynamic resistances as a function of the voltage
leads to a nonlinear weighting factor of the relative contributions among ip1,
ip2, and ip3 to Iphoto. An example of a two-color QWIP is shown in Fig. 8.9.
The sample consists of a two-QWIP stack with 25 GaAs/AlGaAs quantum
wells in each QWIP. The well width and Al fraction are 4.8 and 0.19, and
5.8 and 0.31 nm, for the two QWIPs, respectively. All barriers are 35-nm
thick. The full detail is found in [270]. The two colors of this device are within
the LWIR region. Based on the same principle, a two-color device working in

Fig. 8.9. A two-color QWIP response vs. applied voltage and wavelength at 80 K.
In the voltage range around −8 V, the dominant response is from the 7.5 µm QWIP;
whereas at around −14 V, the 10 µm QWIP becomes strong
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LWIR and MWIR was also demonstrated [271]. A similar multicolor QWIP
relying on high and low field domains has also been demonstrated [272].

The advantage of this approach is that it is simple in fabrication (as it
requires only two terminals) and suited for implementing a QWIP with many
colors. The drawback is the difficulty to achieve a negligible electrical crosstalk
between colors. Other practical issues need to be resolved before such an
approach can be implemented into a full imaging device. The measurements
cited above were all conducted under nonblip conditions, whereas the devices
are normally used under blip or near blip in practical applications. Moreover,
the raw curves showing the wavelength switching (e.g., Fig. 8.9) were collected
using a blackbody or globar IR source at a temperature of about 1,000 K. The
common applications are, however, in an ambient of about 300 K. Noting the
blackbody distribution for different temperatures, one would require a higher
responsivity for the MWIR region than that for the LWIR region for a common
ambient. The situation is reversed for 1,000 K.

Another approach, which avoids the above nonlinear coupling, relies on
different intersubband transitions originating from the same quantum well. An
example of this approach is based on a wide quantum well with two occupied
subbands [273,274]. Figure 8.10a shows the subband energy diagram of a
device containing 9.5 nm thick Si-doped GaAs quantum wells with an electron
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Fig. 8.10. (a) Energy level diagram of a two-color QWIP with the Fermi energy
EF located above the energy of subband 2. Arrows indicate the transitions 1→4 and
2→3. (b) Low-temperature photocurrent spectra of the device at three different bias
voltages
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density of 6.5 × 1012 cm−2 per well, seperated by 50 nm wide Al0.32Ga0.68As
barriers. Due to the high carrier density, the lowest two subbands (1 and 2)
are occupied. Since two resonances (3 and 4) exist in the continuum, there
are two parity-allowed transitions (2→3 and 1→4) which are designed for the
8–12 and 3–5 µm regions, respectively.

Even though both transitions originate from the same well, the associated
photocurrents can be accessed independently upon varying the bias. Three
representative photocurrent spectra are depicted in Fig. 8.10b. At −2.2 V,
both transitions induce photocurrent signals of comparable peak amplitude.
Interestingly, only transition 2→3 is visible at 1.9 V while transition 1→4 is
dominant at 0 V. In fact, it was possible to change the ratio between these two
signal intensities by more than two orders of magnitude simply by adjusting
the bias. Phenomenologically, the signal induced by 1→4 shows a photovoltaic
behavior, while the component due to 2→3 is photoconductive. This behavior
is related to the fact that subband 3 is located close to the conduction band-
edge of the AlGaAs barrier, while state 4 is far in the continuum. Apparently,
transition 1→4 is associated with a strongly unidirectional emission of pho-
toexcited electrons, which induces a signal at zero bias and blocks it at the
wrong polarity. We attribute this asymmetry to an asymmetric distribution
of the Si dopants with respect to the well center (see Sect. 7.3). Also, in stan-
dard QWIP structures, such dopant distributions are known to cause strong
dependencies of the photocurrent and dark current upon the bias polarity.

Unfortunately, this approach has the disadvantage that the noise is the
same for both detection wavelengths, i.e., that the noise current is determined
by the large dark current associated with the longer wavelength transition.
This means that a state-of-the-art detector can be realized for the longer
wavelength using this concept – but only a poor detector will be feasible for
the shorter wavelength.

A different type of two-color QWIP using asymmetric double quantum
wells has been demonstrated by Berger et al. [275]. In this case, a population
transfer is induced between the wide and narrow wells by an external voltage,
thus giving rise to a corresponding change in the intersubband energy.

8.2.2 Voltage Tuned Multicolor QWIP

The last case (lower part in Fig. 8.6) is a QWIP with its response continuously
tuned in a range of wavelengths. The demonstrated examples of approach (3)
involve special shapes of quantum wells, e.g., a stepped well [276–278] or an
asymmetrically coupled double well [231] so that the response spectrum shifts
as a function of applied bias voltage (commonly referred to as the phenomenon
of Stark shift). This provides a continuous tuning of the spectrum by moving
the intersubband resonance position. A range from 8.5 to 13.5 µm has been
achieved using stepped wells [278]. The large continuous tuning capability is
the distinct feature of this approach. The difficulty is to ensure a good QWIP
performance for all voltages. To achieve a good performance, the transition
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Fig. 8.11. Bandedge profile of stepped quantum well used for voltage tunable
QWIP. The device had 32 repeats

final state (usually the first excited state) should be close to the top of the
barrier, as discussed in Chap. 4, providing a large intersubband transition
strength and, at the same time, an easy escape for the excited carriers. These
two conditions are difficult to fulfill for all voltages. Another factor which may
degrade the QWIP performance, is the use of relatively wide wells as in the
case of a stepped well. This may lead to an enhanced trapping probability
and hence a shorter carrier lifetime. Generally, electric field-induced changes
of the subband structure usually require relatively high external electric fields,
thus giving rise to large dark currents and noise.

As an example, Fig. 8.11 depicts the stepped quantum well QWIP that
we fabricated. The QWIP had 32 wells with the centers of the InGaAs lay-
ers doped with Si to 5 × 1011 cm−2. The normalized spectra are given in
Fig. 8.12. A large tuning of 17% in the range of 220 to 260 meV was obtained.
The apparent “noise” in the −17 V curve was due to water absorption in

Fig. 8.12. Spectra at different applied voltages for sample in Fig. 8.11 (Data taken
by E. Dupont)
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Fig. 8.13. Comparison with calculations. The experimental peak positions are taken
from Fig. 8.11. The ground and first excited states are labeled by E1 and E2, re-
spectively. Calculated energy difference between the top of the barrier (V ) and E2

is also shown (Calculations made by G.C. Aers)

the measurement optical path. Figure 8.13 shows a comparison between the
experimental response peak positions (taken from Fig. 8.12) and calculated
eigenenergy difference. A reasonable agreement was obtained. Also shown is
the energy difference of the barrier height and the excited level (V −E1). It is
clearly seen that the quantity V −E1 varies substantially in the range between
0 and 50 meV. This may be a detrimental effect, as discussed earlier.

As a final comment on multicolor QWIPs, it seems that for all the ap-
proaches the device performance has not been fully optimized. Further work
is therefore needed both in optimization and in new and better designs. More-
over, multicolor QWIPs require special gratings which have not been stud-
ied. Possibilities include the use of quasirandom gratings or V-grooves (as in
Chap. 6).

8.3 Interband and Intersubband Dual-band Detectors

For some applications, it is desirable to have a multispectral detector covering
not only the middle or far infrared (FIR) but also the visible or near infrared
(NIR) spectral regions [279].

8.3.1 Using the Same Quantum Well

So far, we have neglected the valence band. If light with its photon energy
larger than the bandgap is present, an interband excitation can occur and
a QWIP can operate as an interband detector as well. Together with the
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Fig. 8.14. Schematic bandedge profile of the dual-band InGaAs/InP QWIP. The
arrow within the conduction band quantum well shows the detection process for the
middle infrared; while the arrow from valence band to the conduction band indicates
the excitation of electrons by near infrared or visible light

intersubband mechanism, we then have a dual-band detector. The dual-band
operation of (1) InGaAs/InP QWIPs for both NIR and middle infrared (MIR)
spectra, and (2) GaAs/AlGaAs QWIPs for visible (VIS) and MIR regions have
been demonstrated. In the first case [259,280], a usual QWIP structure with
InGaAs wells and InP barriers [281] was used for MIR detection. At the same
time, NIR can be absorbed in the InGaAs layers resulting in a photocurrent.
The contact layers were InP, so that the NIR light could reach the quantum
well region without being absorbed. In the second case [282], large bandgap
top contacts were used on standard GaAs/AlGaAs QWIPs so that visible light
could reach the quantum-well region and be absorbed. Two large bandgap top
contacts were investigated, using a high Al fraction AlGaAs and a short period
GaAs/AlAs superlattice.

For the NIR and MIR experiments, two 20-well InGaAs/InP QWIPs were
used, with 6.6 and 6.0 nm well widths, respectively. The InP barriers were
about 30 nm thick. The bandedge profile of the device is schematically shown
in Fig. 8.14. The two well widths correspond to bound-to-bound and bound-
to-quasibound intersubband transitions.

For VIS and MIR, two samples A and B were tested, both consisting of
a standard QWIP and a wide bandgap top contact layer. The QWIP has
40 quantum wells made of GaAs (5.3 and 5.1 nm)/Al0.25Ga0.75As(39.5 and
37.8 nm) for samples A and B, respectively. The top contact layers were de-
signed to have a larger bandgap energy than Al0.25Ga0.75As. The first design
(A) is a 405-nm Al0.7Ga0.3As layer doped with Si to 4×1018 cm−3. The second
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Fig. 8.15. InGaAs/InP device spectral photoresponse curves at a device temper-
ature of about 80 K. The data were taken with two different sets of beamsplitters
and light sources. The two parts are separately normalized

design (B) is a 200-period superlattice of GaAs(0.9 nm)/AlAs(1.0 nm) doped
with Si to 1.5 × 1018 cm−3.

Mesa devices were fabricated with alloyed NiGeAu ring or solid contacts.
45◦ edge facets were polished for light coupling to the intersubband transition.
For the NIR and visible spectral response measurements, the illumination was
through the facets for the InGaAs/InP devices and through the top windows
for the GaAs/AlGaAs devices to avoid the GaAs substrate absorption.

For the InGaAs/InP QWIPs, the spectral photoresponse curves for both
MIR and NIR regions are shown in Fig. 8.15. The sharp cutoff at 1.4 eV is
due to the InP substrate absorption since the light must pass through the
substrate after entering the 45◦ facet. Figure 8.16 shows the responsivity vs.
voltage characteristics at 1.06 and 8.9 µm for the InGaAs/InP QWIP. Both
curves show responsivity increasing monotonically with voltage.

For the GaAs/AlGaAs devices, the photoresponse spectra are shown in
Fig. 8.17. The MIR response band centered at about 8.3 µm corresponds to the
intersubband transition in the QWIP. Two states E1 and E2 in the conduction
band are confined in the quantum well, with the upper one (E2) very close
to the top of the barrier. The visible response covers a wavelength region
from 0.55 to 0.7 µm (Fig. 8.17(top)), or photon energies 1.8–2.3 eV, resulting
from interband transitions from both the well and the barrier regions. By
considering the confined quantum-well states in both conduction and valence
bands as well as the barrier bandgap, all features shown in Fig. 8.17(top)
can be accounted for. Since electrons excited from the valence band to E1

in the quantum wells cannot escape easily, they are likely to recombine with
holes before escape, giving rise to a small photocurrent. The photoresponse is
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Fig. 8.16. InGaAs/InP device responsivity vs. voltage at a device temperature of
about 80 K

stronger for the transition from HH2 to E2 because E2 by design is close to the
top of the barrier. When the photon energy is higher than the barrier bandgap,
i.e., hν > Eg for Al0.25Ga0.75As, the photocurrent is substantially increased
due to the larger barrier thickness in comparison to the well thickness. The
sharp peak structure at the onset of the barrier absorption is due to excitons.

It is expected that the top contact in sample A is nearly completely
transparent up to about 2.5 eV, corresponding to the direct bandgap of
Al0.7Ga0.3As; and the indirect minima, although lower than 2.5 eV, should
have little absorption for a thickness of 405 nm. For sample B, the effective
bandgap is determined by the superlattice minibands in the valence and con-
duction bands. A simple calculation (including band nonparabolicity) gave
an effective bandgap of 2.3 eV. For the conduction band, we used the di-
rect bandgap profile with a barrier height of 1 eV. This probably leads to an
overestimate of the conduction miniband, predicting a higher energy as also
evidenced in other work [48]. The drop in response at about 2.2 eV for Sample
B is attributed to the direct interminiband transition in the superlattice.

For the GaAs/AlGaAs devices, responsivity (Fig. 8.18) in the MIR was
measured at 8.3 µm. Results for both devices show a maximum value of about
0.75 A W−1. For the visible region, the responsivity at 0.63 µm is lower than
that at 8.3 µm for the same voltage regions (|V | < 6 V). A rapid increase in
responsivity at 0.63 µm is observed for both devices at high voltages (|V | >
6 V), reaching up to about 10 A/W.
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Fig. 8.17. Spectral response in the visible (top) and middle infrared (bottom) regions
for Sample A and B. The visible light is shone through the top window of the mesa
at normal incidence. The middle infrared is coupled into the device through the 45◦

edge facet

To understand the operation qualitatively, we model the detector as a
photoconductor for both interband and intersubband excitations, since the
device is unipolar (n+–n–n+). For the MIR detection, the device works as
a standard photoconductive QWIP. For the NIR and visible region, photons
excite electrons into the conduction band, leaving holes in the valence band.
The holes, if not already in the wells, are trapped into the quantum wells on
a subpicosecond time scale. Due to the heavy effective mass, the holes are
assumed to be trapped in the well. If electrons are excited into the wells, their
escape will contribute to photocurrent. If electrons are in the barriers, their
flow under bias leads to photocurrent. The current will flow until the trapped
holes recombine with electrons.
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Fig. 8.18. GaAs/AlGaAs device responsivity at 0.63 µm for visible light detection
region (above) and at the peak (8.3 µm) for middle infrared detection region (below)
vs. applied bias voltage

For a photoconductor, the current responsivity is given by

Ri =
e

hν
ηg, (8.2)

where ν is the photon frequency, η is the absorption quantum efficiency, and g
is the photoconductive gain related to the excited carrier lifetime and transit
time by

g =
τ

τtrans,tot
pe, (8.3)

where pe is the escape probability for a photoexcited electron from the well,
and τ = τc the capture time for the intersubband process, or τ = τrecomb the
recombination time for the interband case. For a device where the excitation
is to a bound state for both the intersubband and interband transitions, the
factor pe must be included. For weak absorption, which is valid for these
structures, the absorption efficiency can be written as

η = αL, (8.4)

where α is the absorption constant and L is the device length in the growth
direction. Substituting (8.3) and (8.4) into (8.2), one obtains:
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Ri =
e

hν
αpeτv, (8.5)

where we have used v = L/τtrans,tot for the drift velocity.
The electric field dependence of the various quantities in (8.5) determines

the characteristics shown in Figs. 8.16 and 8.18. In the InGaAs/InP case, for
the MIR response where the 6.6 nm well QWIP uses a bound-to-bound in-
tersubband transition, we observe a substantial delay in the turn-on of the
photoresponse as a function of voltage [142]. That is, the escape probability
pe is small at low field and gradually turns on due to field assisted electron
tunneling escape. The rise in response thereafter follows the increase in the
drift velocity v. One would expect a saturation of the responsivity when v sat-
urates, but this is not observed in these devices up to the maximum voltage
(which is limited by device heating). In fact, the value of the QWIP respon-
sivity here is substantially larger than devices of the GaAs/AlGaAs system.
The high responsivity is partly due to an intraband impact ionization process
as discussed in previous chapter. For the NIR response, the situation is simi-
lar since the excitation is also due to the confined states in the well. For the
GaAs/AlGaAs devices, the MIR response vs. voltage is typical of a standard
QWIP.

As the QWIP IR performance is generally well understood, the key ques-
tion is whether such a NIR or VIS detector can be made highly sensitive. Since
the noise current is common to both detection processes, in order to have a
higher detectivity for the NIR or VIS region, one needs to have a higher re-
sponsivity. For reference, a good NIR/VIS detector is about 100 times better
than the background limited 9 µm detector in terms of detectivity [34].

Let us make an estimate using typical values and (8.5). The interband
absorption constant is about 10 times larger than that for the intersubband
transition. The photon energy is about a factor of 10 larger for the NIR/VIS
than the MIR. These two factors approximately cancel when comparing the
responsivities. The escape probability pe and drift velocity v are common for
interband and intersubband cases. The recombination time for the interband
process is roughly 500 ps, and is therefore a factor of about 100 larger than
the capture time in the intersubband process. So, this estimate shows that
the responsivity for the interband photoconductor could be 100 times higher
than that for the QWIP. This is very encouraging – implying that in the best
case one could obtain the desired enhancement value of 100.

For the InGaAs/InP QWIP, looking at the absolute values in Fig. 8.16,
the observed NIR responsivity is quite high, comparable to a commercial
NIR detector, for example, a Ge one. However, the desired 100-fold projected
responsivity enhancement is not seen. The GaAs/AlGaAs devices show a lower
interband responsivity (Fig. 8.18) for the low voltage regions (|V | < 6 V), most
likely due to a short hole recombination time with the abundant electrons in
the well. Larger values are only seen at high voltages (|V | > 6 V), which could
be an indication of the expected long interband recombination time.
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To achieve a high interband responsivity, it may help to employ different
quantum wells in order to obtain a long interband recombination time. One
possible way is to spatially separate the minority holes and the electrons
by using an appropriately designed double-well structure. However the first
experimental trial to achieve this goal was not successful [283].

Finally, we comment on how the dual-band detector can be implemented
as a 2D imaging device or a focal plane array. In the standard configuration
(see Chap. 9), the light is incident from the backside. For a QWIP array,
the substrate is usually completely removed after the GaAs or InP chip is
hybridized with the readout circuit chip. For the fabrication of a dual-band
detector into a hybrid array, both the top and bottom contacts should be wide
bandgap materials to eliminate absorption.

8.3.2 Stacked QWIP and PIN

Another straightforward way to realize a dual-band device is by stacking
a QWIP structure and a photodiode. The proof-of-the-concept device was
arranged in a p–i–n–i–n configuration [284]. High-performance IR detection
at both detection wavelengths was realized because of the highly nonlinear dark
current characteristics of the photodiode.

The dual-band detector operation is schematically indicated in Fig. 8.19.
The detector was designed such that the photodiode is sensitive at short wave-
length and the QWIP detects at long wavelength. Under a sufficiently high
forward bias (Fig. 8.19a), the differential resistance of the p-i-n photodiode is
negligible as compared to that of the QWIP structure, so that both the pho-

p i n i n

InGaAs/GaAs GaAs/AlGaAs

QWIPPhotodiode

(a) 10µm
i

(b) 900nm operation

Fig. 8.19. Conduction and valence band distribution of a p–i–n–i–n dual-band
detector consisting of a QWIP and a photodiode. (a) and (b) indicate the detection
modes in which the operation is controlled by the QWIP and by the photodiode,
respectively
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toresponse and the differential resistance are controlled by the QWIP. Under
reverse bias (Fig. 8.19b), the photodiode resistance is much larger than the
QWIP resistance, and consequently, the detector response is determined by
the photodiode. The series resistance of the QWIP only plays a role if the
short-wavelength power is high and the reverse bias is simultaneously too
small.

To demonstrate the detection scheme of Fig. 8.19 experimentally, a de-
vice containing a GaAs/AlGaAs QWIP and a photodiode with InGaAs/GaAs
quantum wells in the intrinsic region was fabricated. The InGaAs wells were
introduced in order to make the photodiode compatible with an illumination
from the substrate side. The detector structure consists (from top to bottom)
of a 500-nm p-type GaAs (1 × 1019 cm−3 Be) contact layer, a 20-period mul-
tiple quantum well with 5-nm In0.08Ga0.92As wells and 20-nm GaAs barriers,
200-nm n-type GaAs (1×1018 cm−3 Si), a 20 period QWIP structure contain-
ing 4-nm GaAs wells (1 × 1018cm−3 Si) separated by 50-nm Al0.24Ga0.76As
barriers, and a 1 µm thick n-type GaAs contact layer (1× 1018 cm−3 Si). The
device was grown by MBE on semi-insulating (100)-oriented GaAs substrates
and processed into mesa diodes of 0.04 mm2 area by optical lithography and
wet chemical etching.

Figure 8.20 shows the responsivity spectra for the dual-band detector at
77 K. The QWIP responsivity, in the standard 45◦ facet geometry, has a max-
imum of about 0.5 A W−1 at 2 V bias and at a photon energy of 153 meV
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Fig. 8.20. Responsivity under illumination from the GaAs substrate vs. photon
energy at different applied voltages as indicated (full lines). The dashed line indicates
the shape of the photocurrent spectrum under front illumination. The inset shows
the responsivity vs. voltage under monochromatic illumination at 0.153 eV (8.1 µm),
1.470 eV (843.5 nm), and 1.483 eV (836 nm)



160 8 Related Structures and Devices

(8.1 µm). This responsivity value is essentially the same as observed in con-
ventional QWIP structures [15].

At 1 V forward bias, the responsivity of the photodiode shows a pro-
nounced exciton peak at 1.47 eV, giving rise to a peak responsivity of 0.18 A
W−1. This value agrees reasonably well with the responsivities of similar In-
GaAs/GaAs photodiodes studied in a previous work [285]. Under back illumi-
nation, the spectrum shows a cut-off at around 1.5 eV because of the absorp-
tion of the 0.5 mm thick GaAs substrate. The spectral shape of the spectrum
(obtained by front-illumination of a different mesa with a ring-shaped con-
tact) is also shown for comparison. Here the response at energies above 1.5 eV
is drastically improved due to the thinner absorbing layer. The exciton peak
disappears under reverse bias, due to field dissociation.

The voltage dependence of the photoresponse is plotted in the inset of
Fig. 8.20. The responsivity at 153 meV, representative for the QWIP, sets in
at about 1 V forward bias. It shows the usual voltage dependence as in conven-
tional QWIP structures [15], except for the 1 V threshold. The responsivity
disappears completely under reverse bias. The threshold behavior is a con-
sequence of the built-in voltage of the photodiode. The responsivity of the
photodiode (at 1.483 and 1.470 eV) is almost constant at voltages below 1
V. In this regime, the photocurrent gain is equal to one, indicating complete
collection of the photoexcited carriers at the contacts. The residual voltage
dependence of the responsivity is caused by electroabsorption effects. The NIR
photocurrent disappears completely above 1.5 V forward bias, as that is larger
than the built-in voltage of the photodiode.

The observed bias dependence of the photoresponse is consistent with the
dark current of the device, which rapidly drops off to less than 1 pA below 1 V,
indicating the large resistance of the p–n junction under reverse bias [284].
Above 1.5 V, the dark current shows the typical voltage dependence of a QWIP
structure, which is again offset by the built-in voltage of the photodiode. From
the responsivity data, we calculate a detectivity of about 4 × 109 cm

√
Hz

W−1, for the peak wavelength of 8.1 µm, an applied voltage of 2 V, and a
temperature of 77 K. The detectivity of the photodiode is already limited by
the photocurrent noise at weak illumination levels.

For focal-plane-array cameras hybridized with Si readout electronics, fur-
ther optimization of this type of detector is straightforward: Diffraction grat-
ings for the QWIP structure can be fabricated in the usual way. Substrate
thinning will improve the responsivity of the QWIP [15] and broaden the
spectral window of the photodiode (similar to the dashed line in Fig. 8.20).
The responsivity of the photodiode can be raised further by introducing a
larger number of InGaAs wells and by lowering the effective bandgap.

This dual-band detector represents a detection scheme which is also
promising for different material systems. In particular, the combination of
a 10-µm QWIP with a photodiode operating in the 3–5 µm window would be
interesting for temperature mapping. Such a combination can be realized in
the InAs/GaSb/AlSb material system, e.g., by using GaSb/AlGaSb for the



8.4 Integrated QWIP–LED 161

QWIP and bulk InAs or an InAs/GaSb superlattice for the intrinsic region of
the photodiode. The only restriction for making the concept work is that the
photodiode should be designed for the higher of the two detection energies.

We would like to point out that this approach is also suitable for balanced
dual-band detection. Looking at the responsivity data of Fig. 8.20, we see that
the dual-band detector is sensitive to both bands at around 1.3 V. Since the
photocurrents associated with the two bands have different signs, the sign
of the total photocurrent depends on the ratio of the relative illumination
intensities. In the case of a dual-band detector operating at 10 and 3–5 µm
(or at two different wavelengths within a single atmospheric window), this type
of balanced detection can be used for temperature discrimination. As the sign
of the total photocurrent is determined by the photon flux ratio associated
with the two colors, and this flux ratio is given by the target temperature,
irrespective of the particular field of view. It is even possible to select the
threshold temperature, by adjusting the bias voltage.

Finally, we note that a similar detector behavior is expected when using
a p–i–n–i–p (or n–i–p–i–n) structure containing two photodiodes with dif-
ferent bandgaps. Such a device has been realized in the HgCdTe materials
system [286]. Another approach involving integrating a HBT (heterojunction
bipolar transistor) with a QWIP is also being explored [287], where the HBT
is used with its base floating; i.e., a photoconductor with a large gain or a
phototransistor.

8.4 Integrated QWIP–LED

To utilize the flexibility of quantum wells, the integration of QWIPs with
light emitting diodes (LEDs) has been investigated. The integrated QWIP–
LED device is intended for thermal imaging applications requiring large-area
devices in the MIR and FIR region for wavelengths longer than 3 µm.

The basic idea [288] of an integrated QWIP–LED is to epitaxially grow
a QWIP with an LED on top. The QWIP can be either n- or p-type. Fig-
ure 8.21 shows a GaAs/AlGaAs n-QWIP with an InGaAs/GaAs quantum
well LED. Only two contacts are made – to the heavily p-doped LED contact
layer and the heavily n-doped QWIP emitter. A forward bias is applied to this
serial QWIP – LED, which should be large enough to turn both the QWIP
and the LED to their operating bias conditions. For concreteness, we assume
that the QWIP detects M&FIR light of wavelength greater than 3 µm and
the LED emits in the NIR region at wavelengths 800–1,000 nm. The QWIP
is a photoconductor, so that under MIR and FIR light illumination its re-
sistance decreases, which leads to an increase in the voltage drop across the
LED and therefore an increase in the amount of NIR emission. This device
is therefore an M&FIR to NIR converter. For 77 K operation, a well-designed
QWIP can be quite efficient easily with higher than 10% absorption, and the
LED technology is well developed. An optimized QWIP–LED therefore can be
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Fig. 8.21. Bandedge profile of the integrated QWIP with LED. For the QWIP
part, only the conduction bandedge is shown. A forward bias is applied so that both
the QWIP and the LED are in operating conditions. Photocurrent electrons from
the QWIP recombine with injected holes in LED, giving rise to an increase in LED
emission

very efficient with little or no loss of performance compared with the QWIP
used alone as a MIR and FIR detector. The advantage of this integrated
QWIP–LED is technologically important. In this scheme, one can make large
format 2D imaging devices without the need of making any circuits on the de-
vice chip, and without the need of hybrid bonding with another readout chip
(normally a Si IC). The resulting NIR emission can be easily imaged using
the well-developed Si-CCD which has a spectral response covering the NIR
wavelength.

The first experimental demonstration of a QWIP – LED was made by
Liu et al. [288] The concept was independently proposed by Ryzhii et al. [289]
The first device used a standard 50-well GaAs/AlGaAs QWIP peaked at 9 µm
and a 7.0 nm In0.2Ga0.8As quantum well LED emitting at 927 nm for 77 K
operation. InGaAs was used as the well material so that the emitted light
was not absorbed in any of the other layers. The design of the LED for this
first test of the concept was borrowed from that of a state-of-the-art quantum
well laser. The LED emission power increased linearly with bias current, and
the measured external efficiency was about 1%, limited entirely by the device
geometry. This implied that the LED internal efficiency was 100%, within the
experimental uncertainty.

An intriguing possibility for the QWIP–LED is to fabricate a continuous
image conversion device – a pixelless large-area imaging device [290]. Since the
entire active layer of a QWIP–LED in the growth direction is very thin (nor-
mally less than 4 µm) the up-conversion process (i.e., photoexcitation in the
QWIP, carrier transport to the LED, and radiative recombination in the LED)
should have little in-plane spreading. Theoretical analyses [291,292] show that
the intrinsic spreading and crosstalk are negligible for a practical QWIP with
a large number of wells (N > 20). As an order-of-magnitude estimate, the
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in-plane spreading in the QWIP is limited by the diffusion of excited carriers
within their lifetime; and that in the LED is related to the bipolar diffusion
and the radiative interband recombination lifetime. Taking some typical num-
bers (10 and 1 cm2 s−1 for the diffusion constants, and 5 ps and 1 ns for the
lifetimes, in the QWIP and LED, respectively) we get spreading lengths (given
by the square root of the product of diffusion constant and lifetime) of 0.1
and 0.3 µm, respectively. These values both are negligible since they are much
smaller than the wavelength of the IR to be imaged.

The initial demonstration of the pixelless QWIP–LED used a p-type QWIP
because of its Simplicity, by avoiding the fabrication of a grating [290,293].
The first pixelless device, although clearly demonstrating the concept, was
only able to image a hot object of about 1,000 K. Thereafter, efforts were
concentrated on n-type QWIPs and steady improvements were made [191,
294,295].

Apart from improving both the QWIP and the LED efficiencies, a chal-
lenge for achieving a pixelless QWIP–LED imaging device – with negligible
distortion, smearing, and crosstalk – is related to extrinsic optical effects. One
must ensure that incident IR light and the emitted NIR light both have negli-
gible crosstalk and smearing. Removing the entire substrate helps to minimize
the optical crosstalk. One way to improve the LED external efficiency is by the
use of the photon recycling effect [296,297]. There is however a tradeoff of LED
efficiency and smearing if the photon recycling effect is used. Another major
issue relates to the material quality: the pixelless device is more demanding
on materials. Any leakage point in the QWIP would cause a “hot spot” in
the LED emission, and any leakage point through the entire structure would
render the whole device useless. Femtosecond laser micromachining [298] has
been used to remove these hot spots. Finally, a CCD with sufficient full well
capacity is required, since in thermal imaging one always needs to subtract
the background. The latest imaging result [191] is shown in Fig. 8.22. Finally,
two of the envisioned final camera system layouts are sketched in Fig. 8.23.

There are other potential advantages of this up-conversion approach. These
include (a) the ease of implementing multicolor imaging devices in a pixel-
less geometry [271], (b) the low cooling power requirement since the readout
chip (CCD) does not need to be cooled, and (c) the simplicity of fabricat-
ing ultralarge-area imaging devices. The concept of up-conversion may be ex-
panded to cover the other technologically important regions, e.g., 3–5 µm [299]
and 1.5 µm [211,300–302].

8.5 Quantum Dot Infrared Photodetector

Quantum dot infrared photodetectors (QDIP) have many similarities to
QWIPs, and have attracted a lot of interests [303–317]. An ideal QDIP is
expected to be substantially superior to a QWIP. The area of QDIP research
has therefore been very active in recent years. This section discusses key is-
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Fig. 8.22. Thermal image of a person (See Dupont et al. [191] for details)

sues related to QDIPs and the potential advantages of the QDIP over the
QWIP–the normal incidence response, the dark current, and the responsivity
and detectivity. We attempt to address the following questions of what is the

Fig. 8.23. Possible final imaging system configurations. (Top): The IR scene is
mapped onto the transmissive QWIP–LED device by the IR optics, the device is
mounted in the dewar, the output emission image is mapped onto the CCD by visible
or near-IR (Vis–NIR) optics. The Vis–NIR optics could be a lens or a fiber bundle.
(Bottom) The CCD is mounted in the dewar in proximity with QWIP–LED
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Fig. 8.24. Schematic layers of a QWIP (left) and QDIP (right). In the QDIP case,
the dot cross-section is shown as rectangular, approximating the shape of dots grown
under some growth conditions. The wetting layer is neglected

QDIP’s potential, what is lacking, and what is needed to make a QDIP vi-
able in practical applications. It is argued that the present QDIPs have not
fully demonstrated their potential advantages. Representative experimental
results are compared with typical QWIP characteristics, and areas that need
improvements are pointed out.

QDIPs are similar to QWIPs, with the quantum wells replaced by quan-
tum dots. The quantum dots discussed have size confinement in all spatial
directions. A schematic of the layered structures of a QWIP and an (ideal)
QDIP is shown in Fig. 8.24. The most widely studied QDIPs are made of
self-assembled InAs dots on GaAs substrates. For these dots there is com-
monly a thin wetting layer of InAs; however, in the discussion here we neglect
any explicit effects of the wetting layer. The detection mechanism in both
QWIPs and QDIPs relies on the intraband photoexcitation of electrons from
confined states in the conduction band wells or dots into the continuum. If
one draws the (bandedge) potential profile along the growth direction, QWIPs
and QDIPs would have a similar shape. If the dots were aligned in the growth
direction, the potential profile would be exactly the same. However, because
the barriers are usually wide to suppress dark current, dots are not correlated
between layers. All discussions and estimates here are independent of the po-
sition correlation among the dots. We also assume that barriers between any
adjacent dots are sufficiently wide so that tunneling can be neglected.

8.5.1 Anticipated Advantages and Current Status

One of the major selling points is that “QDIPs allow normal incidence.” That
is, the incident light normal to the wafer along the growth direction is ex-
pected to cause intraband absorption, unlike the standard n-type QWIPs.
The normal incidence property is advantageous because it avoids the need
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of fabricating a grating coupler as for the standard QWIP imaging arrays.
The grating coupler not only adds at least one extra fabrication step but
also causes difficulties in realizing a wide and multiple wavelength coverage
and in fabricating a short wavelength coupler because of the required small
grating features. Indeed, normal incidence response in QDIPs has been re-
ported in several publications [303,305,307,310,313]. Most publications, how-
ever, do not show a polarization dependence of the photocurrent spectra,
and some [306,308,311] show dominant P-polarized response in the 45◦ facet
geometry. This is very similar to QWIPs measured in the same geometry un-
der flood illumination. In one publication [318] on absorption measurements,
clear evidence of absorption features due to in-plane confined quantum dot
levels was reported. It seems that a dominant normal incident response in
present QDIPs has not been achieved.

This is also the conclusion of our experiments on a number of QDIPs where
the dominant response comes from light polarized in the growth direction

Fig. 8.25. P- and S-polarized spectral response curves in the 45◦ facet detector
geometry. The QDIPs have 50 layers of InAs dots separated by 30-nm GaAs barriers.
The dot density is about 5×109 cm−2. The number of electrons is estimated to be 2,
5, and 7 per dot for Sample A, B, and C, respectively, due to the delta-modulation
Si doping in the barriers
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[314,316]. Figure 8.25 shows spectra of three of our samples under both P and
S-polarized light in the 45◦ facet geometry. Clearly the P-polarized response
is much stronger than that for S.

The problem is believed to be due to the fact that the self-assembled quan-
tum dots grown so far for QDIPs are wide in the in-plane direction (∼20 nm)
and narrow in the growth direction (∼3 nm). The strong confinement is there-
fore in the growth direction, while the in-plane confinement is weak, resulting
in several levels in the dots. The transitions between in-plane confined levels
give rise to the normal incidence response. From the ground state, the transi-
tion oscillator strength is reduced for higher final states. In other words, the
transitions within the dots (which do not result in a detection photocurrent
because the excited electrons cannot escape) exhaust most of the in-plane
oscillator strength. In contrast, in the growth direction, the high oscillator
strength transition is the one to the continuum, resulting in the dominant
photocurrent. This point is illustrated in Fig. 8.26. The strong confinement
in the growth direction is represented by a narrow well; whereas the in-plane
weak confinement leads to several states. For conceptual simplicity, the con-
finement potentials are represented by one-dimensional wells separately in z
and x–y directions.

Another potential advantage of QDIPs over QWIPs is that “QDIPs have
lower dark currents” [319]. Since dark current causes noise, a lower dark cur-
rent leads to a higher detector sensitivity. The simplest way to estimate dark
current is by counting the mobile carrier density in the barrier. The current
is then given by multiplying by the carrier velocity (see Sect. 4.1). We use the

Z

XInAs

GaAs

Vx

~20 nm
At least 3 levelsconfined

Vz

~3 nm
Only 1 level confined

Fig. 8.26. Illustration of transitions under polarized light in the growth direction
(z) or in the in-plane directions (x or y). The strong confinement in the growth
direction is represented by a narrow well; whereas the in-plane wide potential well
leads to several states. The upward arrows indicate the strongest transitions for z
and x polarized lights
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following expression:
jdark = evn3D, (8.6)

where v is the drift velocity and n3D is the 3D density, both for electrons in
the barrier. Equation (8.6) neglects the diffusion contribution. The electron
density can be estimated by

n3D = 2(mbkBT/2πh̄2)3/2 exp(−Ea/kBT ), (8.7)

where mb is the barrier effective mass and Ea is the thermal activation energy
which is the energy difference between the top of the barrier and the Fermi
level in the well or dot. We have assumed that Ea/kBT � 1, appropriate for
most practical cases. For similar barriers in a QWIP or a QDIP (i.e., where
v and mb are comparable), the difference in Ea gives rise to a difference in
dark current. If we neglect the field induced barrier lowering effect in Ea which
makes the estimation valid for low applied fields (but not so low that diffusion
must be considered), the activation energy is related to the detection cut-off
wavelength (λc) by

EQWIP
a = hc/λc − Ef , (8.8)

for a QWIP with a bound-to-continuum detection scheme, where Ef is the
Fermi level in the well, and for a QDIP

EQDIP
a = hc/λc. (8.9)

The term Ef in (8.8) is due to the subband nature of QWIP quantum wells: the
intersubband transition is from all electrons in a subband at the same energy
whereas the thermal activation energy is from the top of the Fermi sea. Given
that the optimal design for a QWIP is having Ef = 2kBT for maximizing
detectivity or Ef = kBT for maximizing operating temperature [19] (as in
Sect. 4.3), the reduction in dark current in QDIPs vs. QWIPs for the same
cut-off wavelength and barrier material is only in the range of a factor of
about 3–7, in the ideal case.

The devices tested so far are far from ideal, and have shown much higher
dark currents than the ideal estimate. Figure 8.27 shows a comparison of
current–voltage characteristics at 77 K. For a “fair” comparison, the chosen
QWIP has the same cut off wavelength of 8.6 µm as one of the QDIPs. Even
the shorter wavelength QDIP (λc = 8.1 µm) with lower electron occupation
has a substantially higher dark current than that for the QWIP. Effects such
as ionized dopant induced potential fluctuations and strain induced distortion
of the potential well could be the cause of the excess dark current [320].

The final advantage relates to the potentially long excited electron life-
time or capture time (τc). It has been anticipated [321] that the relaxation of
electrons is substantially slowed when the interlevel spacing is larger than the
phonon energy a “phonon bottleneck.” This effect has been investigated exten-
sively [322], and the topic is still under debate and controversial. If the phonon
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Fig. 8.27. Dark current characteristics for a QWIP and QDIPs with the same
cutoff wavelength. The QWIP has 32 GaAs wells center delta-doped with Si to
5×1011 cm−2 and undoped AlGaAs barriers, with a total device thickness of 1.58 µm.
The QDIPs are similar to those in Fig. 8.25

bottleneck can be fully implemented in a QDIP, the long excited electron life-
time directly leads to a higher responsivity, higher operating temperature,
and higher dark current limited detectivity. The reason is very simple, since
a photoconductor responsivity is given by

R =
e

hν
ηg, (8.10)

where ν is the photon frequency, η is the absorption efficiency, and g is the
photoconductive gain:

g = τc/τtrans,tot, (8.11)

with τtrans,tot the transit time across the device. A long capture time thus
directly translates into a large R. However, high gain does not automatically
imply high operating temperature or high detectivity since it also leads usually
to a large dark current (see the discussion after (4.6)). These advantages will
only come into play if the scattering rate is really reduced due to some effects,
for example the phonon bottleneck.

Ryzhii et al. [323] analyzed the detectivity and made comparisons between
QWIPs and QDIPs having the same ground state ionization energy (not the
same cut-off wavelength). Their main conclusions are similar to those reached
here.

Experimentally, the situation is encouraging in view of the high measured
responsivity values [310,313,316], often comparable to or even larger than
those for QWIPs, despite the small absorption efficiency which is very often
not directly measurable; this is an indirect evidence of the long lifetime.
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8.5.2 Areas for Improvement

To realize a strong and dominant normal incident response, first and foremost
one should make the dots small so that the in-plane confinement leads to
only one or two bound states. For two bound states, the second state should
be very close to the top of the barrier: this will allow strong and dominant
normal incidence absorption. If a broader response spectrum is desired, one
could have two or more states in the dots, all occupied with electrons; but no
unoccupied states which are deep in the dot potential should exist.

To have a good detector, the absorption efficiency must be high, and this
requires a high dot density. To have a comparable absorption as in QWIPs, the
electron density per layer of dots should be in the range of 2–10×1011 cm−2.
If there are two electrons occupying every dot, the dot density should be in
the range of 1–5×1011 cm−2, and six electrons per dot, this reduces to 3–
17×1010 cm−2. The dot densities commonly achieved are in the range of 0.01–
1×1010 cm−2, so some improvement is therefore needed. The desired high dot
density necessarily requires small dot size. For example, in the extreme case,
for a dot density of 5× 1011 cm−2, the dot size must be smaller than 14 nm in
diameter.

To populate dots with electrons one needs doping. In a QWIP, this can
be simply done by directly doping the wells. Since the doping density is high
and degenerate, the effect of random dopant distribution is minor and is ex-
pected to lead only to a broadening in the absorption linewidth. In a QDIP,
however, if the doping is done in the same layer as the dots, some dopants
would reside in the wetting layer and each dot would have a random num-
ber of dopants. This random distribution could lead to a significant potential
fluctuation. Moreover, if the doping is done in the barriers (modulation dop-
ing), the random distribution of the ionized dopants could lead to a leakage
current path. Similarly, ionized dopants in the wetting layers could also lead
to a leakage path. Detailed modeling and doping control are needed to fully
account for the effect of doping and to realize the lower dark current.

There are alternative QDIP designs to further enhance the photoconduc-
tive gain such as those in [324–326] involving in-plane transport. These are
interesting directions (not available to QWIPs) that explore the uniqueness
of quantum dots.

To close this section, we are still far from realizing all the projected ad-
vantages, but QDIPs have very attractive potential if the growth/fabrication
technology delivers the design requirements. The key areas for improvement
are: producing smaller and denser dots, and having better doping controls.

8.6 Single Well and Blocked Miniband QWIPs

A QWIP with only a single quantum well is interesting because it is the sim-
plest structure, and therefore relatively easy to accurately model and simulate.
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Fig. 8.28. Schematic bandedge profile of a single well QWIP with tunneling refill
of the well

In the case of narrow barriers, so that the current in and out of the quan-
tum well is by tunneling, the structure is the well-known resonant tunneling
diode – RTD (see, e.g., [327] for a review). Even before the first experimental
demonstration of QWIPs, the single well structure was proposed and ana-
lyzed for high speed detection [9]. A schematic of a single well QWIP with
tunneling injection is shown in Fig. 8.28. Studies of single well QWIPs have
been carried out since the early years of research in this field. Intersubband
photocurrents were measured and detailed self-consistent calculations were
performed [133,134,328,329]. ISBT induced switching was demonstrated in a
suitably biased RTD [330]. Single well QWIPs provide a model system to
study the noise mechanism [331–333]. Single well QWIPs have been further
explored for high speed detection [334–336] – with a rapid refilling of the well
by tunneling [9], they are thought to offer the ultimate intrinsic speed.

Obviously, the absorption efficiency in a single well QWIP is limited. As an
improvement, the single well is replaced by a superlattice [166,337] schemat-
ically shown in Fig. 8.29. This “blocked miniband” QWIP relies on the in-
tersubband transition between superlattice minibands [64]. This approach in-
creases the absorption, however, only by a limited amount since only the region
immediately next to the blocking barrier (within a mean free path) is effec-
tive. The low absorption is the main problem with these single stage QWIPs.
However, an interesting new development in strong coupling to an ISBT in
waveguides (see Sect. 6.3) offers the possibility of achieving high absorption

Fig. 8.29. Schematic bandedge profile of a superlattice blocked miniband QWIP
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Fig. 8.30. The operation principal of IHET. For an in-depth discussion, see Cho [27]

with one or only a few quantum wells. Another drawback is the low respon-
sivity due to the absence of photoconductive gain. Single well and blocked
miniband QWIPs are also interesting for low background and low temperature
applications [337,338] since they do not have the problem of slow dielectric
relaxation like behavior associated with the recharging of the quantum wells
(see discussions in Sect. 10.1).

8.7 Transistors and Monolithic Integration

The IR hot electron transistor (IHET) was invented by Choi and its physics
was discussed in detail [27]. IHETs are well suited for the study of various
relevant physical processes, such as carrier relaxation and hot electron trans-
port. In addition, they have been shown to improve the QWIP sensitivity by
filtering out a fraction of the dark current and yet having most of the pho-
tocurrent reach the collector [27,339]. Figure 8.30 shows a schematic of the
IHET operation.

Potentially, GaAs based QWIPs can be monolithically integrated with
GaAs circuits. Unfortunately, very limited work has been undertaken. A con-
cept based on the integration of a QWIP with a high electron mobility tran-
sistor (HEMT) was demonstrated [340]. Various other transistor ideas have
been proposed to either improve the QWIP performance (e.g., by providing
high gain [341]) or to achieve monolithic integration (e.g., by integrating with
an heterojunction bipolar transistor (HBT) [342]). Clearly, a monolithically
integrated focal plane array (FPA) is conceptually simple and extremely at-
tractive. However, the GaAs technology is not developed in the area of readout
circuits. Substantial development work needs to be done in order to establish
the technology for the fabrication of a monolithic FPA based on QWIPs.
QWIP FPAs are made so far with the traditional indium bump hybrid tech-
nology as discussed in Chap. 9.
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Thermal Imaging

This chapter starts with some general concepts of thermal imaging involving
2D detector arrays, with specific emphasis to QWIPs. Subsequently, particu-
lar QWIP arrays, including their technology and performance, are described.
They include arrays for both one and two spectral bands. Application fields
in thermal imaging which QWIP arrays are particularly suited for are the
topic of an additional section. Finally, the potential of QWIP technology for
infrared detector arrays with novel functionality is discussed.

9.1 Signal, Noise, and Noise-Equivalent Temperature
Difference

9.1.1 Signal Detection

A thermal-imaging camera relies on detecting the thermal background radia-
tion emitted by warm objects. We therefore need to know the spectral power
density dPν , incident on a detector element of area A through the aperture
of a cold shield with f-number F#, that is associated with the thermal back-
ground at a temperature TB . An expression for dPν (2.6) has been given in
Chap. 2.

Let us assume that the detector is sensitive between 8 and 9 µm. From
(2.6), the signal power PB within this spectral regime at T = 300 K is derived
as PB = A/(4f2 +1) ·29 W m−2. Values of PB obtained for some typical pixel
areas, f-numbers, and other system parameters are summarized in Table 9.1.
For a given responsivity R according to (2.8), the signal current of the detector
is readily calculated from the relation IS = RPB. In this chapter, we omit the
subscript of gphoto.

In order to collect the signals from a detector array, each detector ele-
ment has to be accessed electrically using a readout integrated circuit (ROIC),
which is usually based on silicon CMOS technology. On a pixel level, the ROIC
includes a circuit like the one shown in Fig. 9.1, with field-effect transistors
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Table 9.1. Parameters for infrared detectors with 22 × 22 µm2 and 37 × 37 µm2

area, respectively, at 20 ms integration time, and f/2 optics

Parameter Symbol 256 × 256 640 × 512

pitch 40 µm 24 µm
pixel area A 37 × 37 µm2 22 × 22 µm2

filling factor 85% 84%
f-number F# 2.0 2.0
spectral range 8 to 9 µm 8 to 9 µm
frame rate 50 Hz 50 Hz
integration time τint <20 ms <20 ms
storage capacity Qc 4.5 × 107 e 8 × 106 e
incident power at 300K PB 2.3 nW 0.82 nW

critical responsivity Rc

300 K scene 156 mA W−1 78 mA W−1

318 K scene 113 mA W−1 58 mA W−1

Thermal resolution NETD
Ideal detector (PC, η = 10%) 5.5 mK 8.9 mK
Ideal detector (PV, η = 10%) 3.9 mK 6.3 mK
Readout-limited (PC, g = 0.5) 8.0 mK 19 mK

VDetG

VR≈ 6 V

QWIP

DS

Reset

CR

In bump

VADC

Fig. 9.1. Typical circuit used for operating a QWIP detector element in an ROIC

(FETs) for integration and reset. Here a measurement is initiated through a
reset pulse, which charges the readout capacitor CR to the voltage VR. Dur-
ing the measurement cycle, CR is discharged via the photocurrent (and dark
current) of the detector element. A second FET is used to keep a constant
voltage drop across the detector element during integration. After the integra-
tion time τint has passed, the voltage present at CR is digitized. Additional
electronics, not shown in Fig. 9.1, are used for individually addressing each
pixel of the array and for an optional impedance match.

In a 2D array, the area available on the ROIC for each QWIP detector
element is limited by the pitch of the array. This lack of area puts restrictions
on the readout capacitor, with some tradeoff between its capacitance (on
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the order of 1 pF) and the breakdown voltage (of a few volts), which can be
adjusted by the thickness of the dielectric between the capacitor plates, leading
to typical storage capacities of the order of 107–108 electrons. The limited
storage capacity usually imposes restrictions on the operating conditions, in
particular on the integration time, in order not to saturate the readout cell.
Even though this readout limitation might be circumvented by some electronic
impedance transformation, the “direct charging” approach as in Fig. 9.1 is
usually preferred since it is a low-noise circuit which is also simple enough to
comply with the lack of space on the ROIC chip.

9.1.2 Detector Noise

Generation-Recombination Noise

In general, the most important noise contribution is generation-recombination
(g-r) noise, caused by the fluctuation of the number of mobile carriers in the
detector and by the statistical variation of their drift lengths before being
re-captured. The g-r noise of a QWIP with N periods is given by (5.1)

i2n,gr = 4e

(
g − 1

2N

)
I∆f =

4e

Npc

(
1 − pc

2

)
I∆f. (9.1)

Here I = Ith + Iph is the total current, which is composed of a thermally
excited (or dark) component Ith and the photocurrent Iph, and ∆f the band-
width of the noise measurement. In a photoconductive QWIP where pc � 1,
(9.1) is thus reduced to the conventional [15,343] expression 4egI∆f (as in
2.12).

In the case of a low-noise QWIP, we have pc ≈ 1, so the noise induced by
statistical variations of the drift length (“recombination noise”) is suppressed.
Due to this deterministic capture, (9.1) transforms into i2n,gr = 2egI∆f , and
the noise current is a factor of

√
2 smaller than in the previous limit, as already

discussed in more detail in Sect. 5.2.3. It is this superior noise performance
which is addressed by the term “low-noise QWIP,” and which contributes to
the excellent thermal resolution achievable with these detectors.

Johnson Noise

Johnson noise (also called Johnson–Nyquist noise) is associated with the dif-
ferential conductivity dI/dV of the detector, induced by random fluctuations
of the thermal energy of the carriers. At the bias voltageV , Johnson noise
gives rise to the noise current i2n,J = 4kBT (dI/dV )∆f .

Since g-r noise and Johnson noise are statistically independent, the total
noise in of the detector can be expressed as i2n = i2n,gr + i2n,J. Since Johnson
noise is already present at thermal equilibrium, this noise source is dominant
at sufficiently low bias and (simultaneously) weak illumination. Detailed in-
vestigations of the noise behavior of QWIP structures indicate that Johnson
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noise represents only a minor contribution to the total detector noise at bias
voltages where the detectivity is maximized [178]. While Johnson noise has
been taken into account in order to accurately determine the g-r noise and the
photoconductive gain in an experiment, it can be neglected in the discussion
of system properties.

9.1.3 System Noise

System noise becomes particularly relevant if the noise generated by the de-
tector is low. Specific noise sources include the analog-to-digital converter
(ADC), the input amplifier, the cooling machine (mostly a Stirling cooler),
and stray electromagnetic fields. The latter two sources depend strongly on
the specific layout of the system and can be suppressed sufficiently by proper
construction. Good temperature regulation of the detector is crucial since the
dark current of the sensor is strongly temperature dependent.

Optimum system performance also requires an appropriate ADC. Thermal
imagers are mostly operated at about 50% of the full storage capacity in order
to maintain a reasonable dynamic range, since the thermal background at
around 9 µm increases by 100% if TB is raised from 300 to 340 K. In the case
of a 14 bit ADC, the least significant bit (LSB) thus corresponds to a relative
accuracy of 1/8000, which is equivalent to ∆T = 7 mK at a signal wavelength
of 8–9 µm and a 300 K background (see also (227)). Similarly, less sophisticated
systems containing a 12 bit ADC are limited to a thermal resolution of 28 mK,
which is already poorer than that of a state-of-the-art QWIP focal-plane array
(FPA). For the same accuracy, somewhat better performance is achievable at
MWIR wavelengths, with ∆T = 4 mK (16 mK) at λ = 5 µm for a 14 bit
(12 bit) ADC. Since ADC noise gives rise to an equivalent noise charge QADC

that does not depend on the charge collected in the readout capacitor, the
resulting noise current can be expressed as in,ADC = 2QADC∆f . Usually QADC

is identical to or slightly larger than the charge corresponding to the LSB.
Amplifier noise describes the degradation of the signal-to-noise ratio in-

duced by amplification. Most conveniently, amplifier noise is expressed in
terms of an equivalent noise contribution in,amp at the input port of the
amplifier, which adds quadratically to the noise of the detector. It is given
by [31]

in,amp =
√

4kBTA∆f

RA
, (9.2)

which is equivalent to the Johnson noise of a load resistor RA at the noise
temperature TA. Due to the strong analogy with the Johnson noise of the
detector, both contributions are sometimes combined into the expression [31]
i2n,J + i2n,amp = 4kBTN∆f/RN, with TN being an effective noise temperature
and RN the parallel combination of the detector and load resistances. Since
amplifier noise is usually of the same order as Johnson noise, it usually does
not represent any significant restriction for a state-of-the-art thermal imaging
system.
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Additional noise sources arise from mechanical vibrations and from fluc-
tuations of the detector temperature. Since most of the system noise is in-
dependent of the detector signal and of the integration time, it affects the
signal-to-noise ratio in particular for short integration times and/or small in-
cident photon fluxes.

9.1.4 Thermal Resolution

The noise-equivalent temperature difference (NETD) as defined in Sect. 2.2
can be expressed as NETD = in/R(dPB/dT ), where R is the responsivity and
in the noise current [31]. For the photon energies considered here, the Bose–
Einstein distribution function (see (2.6)) can be approximated by an exponen-
tial dependence. In this way, we obtain the relation dPB/dT = hνPB/kBT 2

(see (2.25)), which results in the following expression for the NETD,

NETD =
kBT 2

hν

in
RPB

. (9.3)

This equation allows us to derive relatively simple expressions for NETD
values NETDα limited by different noise currents iα in the case of narrow-
band detectors where the detected IR radiation can be assumed to be mono-
chromatic. If several stochastically independent noise sources α are present,
the resulting total NETD is readily obtained by quadratic summation, i.e.,

NETD =
√∑

α NETD2
α.

Detector-limited NETD

Starting with the NETD given by the signal and noise of a background-limited
detector with quantum efficiency η, we use the standard expression R =
eηg/hν and obtain from (9.1) and (9.3)

NETDDET = 2kBT 2
B

√
∆f

hνηPB

(
1 − pc

2

)
. (9.4)

This expression will be referred to as the detector-limited NETD of a QWIP.
The expression generalizes the cases pc = 0 which holds for a standard photo-
conductor (and is the usual approximation used for a photoconductive QWIP)
and pc ≈ 1 which describes the NETD of a low-noise QWIP.

Assuming a rectangular gate function for the readout process, ∆f is related
to the integration time τint via [31] ∆f = 1/2τint. In actual circuits, the
bandwidth ∆f for a given τint is usually larger than in this relation, which
results in a somewhat higher value of the NETD.
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Readout-Limited NETD

In thermal imagers, an extremely important system factor is charge storage
capacity. Since the photocharge of a 2D FPA is stored in the ROIC, the charge
storage capacity Qc of the readout cell is relatively small since the lateral size
of the storage capacitor is limited by the pitch of the detector array. Readout
limitation occurs if the integration time has to be reduced below its desired
value in order to prevent the readout cell from overload. We therefore define
the critical responsivity Rc by the condition that the detected photocharge
within the integration time τint equals the storage capacity Qc of the readout
cell. In addition to the case TB = 300 K, Table 9.1 also summarizes the Rc-
values at an upper scene temperature of 318 K (45◦C), where PB is about 40%
higher than at 300 K. Since the resulting responsivities are easily achieved
with most detectors, it is clear that readout limitation is an important issue
for 2D FPAs. Additional constrictions appear if there exists a significant dark
current, since the system performance of the camera usually degrades more
strongly due to the extra charging of the ROIC by the dark current than by
the reduced detectivity of the detector.

Different restrictions apply in the case where the responsivity of the de-
tector exceeds Rc, since the integration time has to be reduced according to
the storage capacity Qc of the ROIC. Assuming a 100% background limited
detection, we thus obtain in the readout-limited case

NETDRL =
kBT 2

hν

√
2e(g − 1/2N)

Qc
. (9.5)

The relation NETDRL ∼
√

g/Qc, which holds for g � 1/2N , implies that a
small gain improves the NETD since it enables long integration times and thus
increases the effective storage capacity of the sensor. In fact, each detected
photon charges the readout capacitor by g electrons, such that a reduced
gain implies a reduced number of noise electrons and an improved dynamic
range of the sensor. Small responsivities can thus be tolerated for camera
applications if the gain is small and if “snapshot” capability with very short
integration times is not required. To give a practical example, Table 9.1 lists
the NETD-values according to (9.4) and (9.5) for the geometrical parameters
of the respective arrays.

NETD Limited by ADC Noise

Although the system noise of a thermal imager usually does not impose any
limitation on the NETD, it becomes important if the integration time is cho-
sen to be exceptionally short (such that the collected photocharge is almost
zero), and/or if the detector noise is exceptionally low. System noise therefore
already becomes relevant for low-noise QWIP FPAs at moderately reduced
integration times. The contribution due to the readout noise of the ADC can
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be expressed as

NETDADC =
kBT 2

hν

QADC

τintRPB
. (9.6)

This expression shows the penalty that occurs at small detector signals, lead-
ing to a strong increase of the NETD proportional to 1/τint.

NETD Limited by Amplifier Noise

For the sake of completeness, we finally write down the NETD limited by
amplifier noise (see (9.2)),

NETDamp =
kBT 2

hνRPB

√
4kBTA∆f

RA
. (9.7)

This component bears the practical difficulty that it has the same dependence
on the integration time as g-r noise and Johnson noise, and so discrimination
between these components cannot be accomplished by varying τint.

9.1.5 Fixed-Pattern Noise and NETD of an Array

While the previous noise contributions relate to the temporal noise of each
individual pixel, fixed-pattern noise is caused by the spatial variation of the
pixel photo response across the whole FPA. In standard thermal imaging cam-
eras, nonuniformity correction algorithms are applied to digitized data sets.
The variation of the total response thus does not only include the inhomo-
geneities of the detector array, but also those of the ROIC and the optical
system. Inhomogeneities of the ROIC are mostly due to some scatter in the
operating points and transconductance of the transistors and in the readout
capacitors. Even for perfectly homogeneous arrays, some inhomogeneity is al-
ways present since the fields-of-view of the cold shield and the objective vary
across the FPA.

The most common algorithm for nonuniformity correction is the so-called
two-point correction. Here the output signal Si(Tj) of each pixel i is deter-
mined at two different temperatures Tj (j = 1, 2) of a homogeneous blackbody
reference scene. From these calibration data, coefficients ai and bi are deter-
mined such that the corrected signal SC

i (Tj) = ai + (1 + bi)Si(Tj) equals the
mean value 〈Sj〉 averaged over the FPA. In order to obtain accurate coeffi-
cients without too many uncertainties originating from the noise of the calibra-
tion measurement, multiple exposures are accumulated at each temperature in
order to reduce the temporal noise. By analogy with this algorithm, different
correction procedures can be applied, which include three-point corrections
with quadratic interpolation and gradual spatial corrections accounting for
the geometry of the cold shield [344].

After the calibration parameters are determined, subsequent image data
are numerically corrected in real time. The NETD of the corrected FPA then
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relates temperature-induced changes of the photon flux with temporal and
spatial variations of the signal. For a quantitative treatment, we go back to
the definitions of the NETD (9.3) and the noise (2.9) and apply these to the
corrected output signal SC . Treating SC as a stochastic variable, we thus
obtain the NETD of an array,

NETDFPA =
kBT 2

hν

√
var(SC)
〈SC〉 . (9.8)

For a single detector, (9.8) is equivalent to the previous definition (9.3), while
it also contains the spatial noise when applied to an array.

To obtain a more intuitive approach to spatial inhomogeneities, we assume
that temporal noise can be eliminated by averaging over a set of measure-
ments, resulting in the data set SC. Then we can define the relative resid-

ual spatial inhomogeneity u =
√

var(SC)/〈SC〉. In this way, we obtain the
inhomogeneity-equivalent temperature difference (IETD)

IETD =
kBT 2

hν
u. (9.9)

We thus reach the conclusion that the relation NETD2
FPA = 〈NETD〉2+IETD2

should hold to a good approximation, where 〈NETD〉 denotes the average over
the temporal NETDs of the individual pixels.

It is thus clear that residual inhomogeneity u is an important figure of
merit for a FPA, and that it should be kept smaller than the signal-to-noise
ratio of the detector elements. Good homogeneity of the detector array before
correction is a necessary condition to achieve a good residual inhomogeneity
– of the order of 10−4 for high-performance FPAs.

Nonlinearity, Drift, and 1/f Noise

If the FPA properties are temporally constant, spatial nonuniformity should
be completely eliminated at the particular background temperatures used for
the calibration. At other temperatures, always present when looking at an
IR scene, a necessary condition to guarantee the absence of fixed-pattern
noise is that the calibration parameters should not be too sensitive to the
incident signals. Also, for perfectly linear detectors, some residual nonlinearity
is usually induced by the characteristics of the transistors in the ROIC. For
QWIP arrays, the nonlinearity is usually small enough to achieve excellent
homogeneity after two-point correction.

Another important advantage of QWIPs over most interband detectors is
the fact that FPA properties are sufficiently constant in time, i.e., the “drift”
of the FPA is negligible. Calibration procedures thus need not be repeated
during FPA operation, and in many cases, fixed parameters for nonuniformity
correction work reliably even for repetitive cooling cycles of the array.
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The most important cause of drift is 1/f noise, where certain “bad pix-
els” or, to a lesser extent, the pixels of the whole array change slightly their
properties, so that the inhomogeneity correction is no longer accurate after
some time. If this is the case, the nonuniformity correction has to be repeated
regularly in order to maintain the performance of the array. This effect is
relevant for interband semiconductors, particularly at long detection wave-
lengths. The low bandgap, e.g., of HgCdTe photodiodes in the LWIR, makes
the performance of interband photodetectors very sensitive to surface currents
induced by lateral space charge fields at the edges. QWIP FPAs which are
intersubband detectors have no surface current effects, and therefore 1/f noise
is usually negligible.

According to (9.4) we have NETD ∼
√

1/τ , so the NETD goes to zero at
large integration times τ , or after averaging over many measurements. This
is no longer the case in the presence of 1/f noise, as the increasing noise
amplitude prevents the variance of the signal from falling below a certain
value. Because of their negligible 1/f noise, QWIP FPAs are therefore good
candidates for all applications where long-term image accumulation is needed.

9.1.6 Modulation Transfer Function

Certainly the most important parameter of a staring detector array (we will
not discuss here any scanned arrays) in any imaging application is the spatial
part of the signal, i.e., the variation of the signal throughout the array. In
general, the geometrical properties of the array do not only affect the noise –
leading to fixed-pattern noise) – they also influence the signal. This influence
can be expressed quantitatively in terms of the modulation transfer function
(MTF). The MTF of an array is defined as the contrast (or modulation)
obtained at a particular spatial frequency νs. More precisely, if the array is
illuminated with a signal Sνs(x) = S0(1 − cos(2πνsx)), then the MTF along
the x direction is given by

MTF(νs) =
Smax − Smin

Smax + Smin
, (9.10)

where Smax and Smin are the maximum and minimum signals detected by
the pixels of the array. The characteristic spatial frequency of the array, the
Nyquist frequency νN is obtained if the maxima and minima of Sν (along the
x-direction) match the pixels of the array, i.e., if 1/2νs equals the pitch of the
array. The y-direction is, of course, analogous.

For an “ideal” array (filling factor of 100%, no crosstalk between adjacent
pixels), Smin and Smax can be obtained by integrating Sνs over one pitch of
the array, which leads to the relation MTF (νs) = (2νN/πνs) sin(πνs/2νN). At
the Nyquist condition of νs = νN, this gives an MTF of 2/π = 0.64.

In order to determine the MTF of an array, two different approaches can
be employed. One method is to use calibration targets comprising stripes
with well-defined spatial frequencies in order to estimate the MTF at this
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Fig. 9.2. Horizontal and vertical MTF of an MWIR imaging system based on a
1,024 × 1,024 pixel QWIP MWIR camera (courtesy of S.D. Gunapala [345])

particular frequency. An alternative method is to illuminate one point of the
FPA with a small light spot then calculate the spatial Fourier transform of
the array signal in order to obtain the full MTF. In both cases, it is important
to take into account the influence of all system components which can affect
the MTF. To a good approximation, the MTF of the system can then be
expressed as a product of the MTFs associated with the optics, electronics,
FPA, and cables [345].

Using a well-collimated 20 µm diameter spot, the latter approach has re-
cently been exploited by Gunapala et al. [345] in order to obtain the MTFs of
QWIP megapixel imagers for MWIR and LWIR wavelengths. An example for
a measured system-MTF is shown in Fig. 9.2. The 19.5 µm pitch of this array
corresponds to νN = 25.6 cycles mm−1. Since the MTF of the spot scanner
optics at νN is 0.2, the as-measured system MTF of about 6% and 9% along
the horizontal and vertical axes translates into an MTF of the FPA at the
Nyquist condition of 30% and 45%, respectively. In fact, these values are not
far from the theoretical limit of 0.64, which emphasizes the excellent spatial
resolution obtained by this array.

Minimum Resolvable Temperature Difference

A related, practically important quantitiy is the minimum resolvable temper-
ature difference (MRTD), which is the temperature difference that can still be
resolved by an observer equipped with a thermal imager. Clearly, the MRTD
depends on the actual size and shape of the region (or target) of slightly dif-
ferent temperature. This influence can be taken into account by using test
targets patterned with different spatial frequencies. As the measured temper-
ature difference is degraded by a finite MTF, the MRTD can be expressed
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as MRTDν = Kν × NETD/MTFν . The calibration factor Kν , which has to
be determined in field studies, reflects the visual ability of test persons to
distinguish between signal and noise patterns. The concept of the MRTD is
widely exploited to model detection ranges of thermal imagers [346].

9.2 QWIP Cameras

In this section we will describe the fabrication, technology, and performance
of QWIP-based thermal imagers. Although we will concentrate here almost
exclusively on QWIP imagers realized by our own teams, a variety of ex-
cellent FPAs have been developed by many other groups. These include the
first arrays realized at today’s Lucent Technologies (Murray Hill, USA) in the
early days, and those of the Jet Propulsion Laboratory (Pasadena CA, USA),
Thales Research and Technology (Palaiseau, France), ACREO (Kista, Swe-
den), and BAE systems (former Lockheed-Martin), among others. Focus varies
from new approaches to commercialization. Several university groups, e.g.,
at Northwestern University (Evanston IL, USA), Jerusalem College of Tech-
nology (Jerusalem, Israel), and Middle East Technical University (Ankara,
Turkey) have also demonstrated QWIP FPAs.

9.2.1 Fabrication of QWIP FPAs

Mature GaAs-based process technology has made it possible to realize large
and homogeneous detector arrays. GaAs substrates are available with diam-
eters up to 8 in., although processing lines for QWIP array processing are
usually set for a full-wafer process on 3 or 4 inch GaAs substrates. Epitaxial
growth is the first step in array fabrication. In the case of n-type GaAs-based
QWIP FPAs, the typical growth sequence includes an etch-stop layer (usu-
ally AlGaAs) used for substrate removal, the QWIP active region sandwiched
between two n-type GaAs contact layers, and an etch stop followed by a sacri-
ficial layer for the grating. For optical coupling, most groups equip their QWIP
FPAs with 2D reflective diffraction gratings (as in Chap. 6). Figure 9.3 shows
the cross section of a typical detector element as well as an SEM micrograph
of some pixels from a detector array with 40 µm pitch [17,347,348].

Process technology includes selective etching (usually reactive ion beam
etching) for patterning the grating coupler into each pixel. The pixels are
defined by mesa etching through the QW region into the bottom contact
layer. This step can be accomplished using wet chemical (Fig. 9.3c) or dry
etching techniques (Fig. 6.6); and Table 9.1 gives further geometrical para-
meters. Essentially the same processes are used for the fabrication of devices
for wavelengths in the MWIR and LWIR, except that the mesas are defined
by reactive ion beam etching (RIE) for MWIR QWIPs and by chemically
assisted ion beam etching for LWIR QWIPs. This modification is necessary
since the MWIR QWIPs are based on InGaAs/AlGaAs multiple quantum
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Fig. 9.3. Cross-section of a detector element in a QWIP array (a) and of a QWIP
array hybridized to a Si ROIC (b); SEM micrograph (c) of pixels from a detector
array with 40 µm pitch. The 2.95 µm period of the 2D grating is optimized for optical
coupling of 8–9.5 µm wavelength

wells, whereas the LWIR devices only contain In-free GaAs/AlGaAs epilay-
ers. Diffraction gratings for the MWIR with 1.65 µm period were successfully
fabricated with contact photolithograpy and RIE, similar to the LWIR grat-
ings with 2.95 µm period (as in Fig. 6.6).

Ohmic contacts to the upper and common lower contact layer are evap-
orated and alloyed by rapid thermal annealing. The grating on each pixel
is covered by a metallization. It is advantageous to use a seperate reflector
metallization for this purpose rather than the ohmic contact metal in order to
increase IR absorption in the QW region. The surface of the array is passivated
with silicon nitride. Openings in the nitride are formed to provide electrical
contact to each detector element. A separate bond metallization is evaporated
in order to facilitate the hybridization. The process layout also has to provide
electrical connections to the common lower contact layer, which are usually
located adjacent to the actual detector array.
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After dicing the wafers into single chips, the detector arrays are hybridized
to Si-CMOS ROIC with In bumps. Subsequently, the GaAs substrate is re-
moved in order to reduce mechanical stress arising from the different thermal
expansion coefficients of the two chips. Substrate removal is also required
to prevent optical crosstalk arising from light propagation between individ-
ual pixels. Removal of the GaAs substrate is accomplished using a sequence
of mechanical lapping, wet chemical polishing, and a selective wet chemical
etching process which stops at a dedicated etch-stop layer deposited during
epitaxial growth.

Figure 9.3b depicts the cross section of a typical QWIP FPA, comprising
a GaAs-based detector array and a silicon CMOS ROIC. The top contact and
active region of the individual detectors (pixels) are separated electrically by
a trench, while the back contact is common to the whole array. As indicated
in the figure, IR radiation enters from the backside of the chip. After being
diffracted by the reflective grating, light propagates in oblique direction to
satisfy the polarization selection rules.

9.2.2 System Integration

Setting up a thermal imaging system involves a variety of different compo-
nents and subsystems in addition to the FPA which comprises the QWIP array
and the ROIC. Figure 9.4 summarizes device packages used by AIM Infrarot-
Module GmbH (AIM), Heilbronn, Germany. The main subsystem is the inte-
grated detector cooler assembly (IDCA) which comprises FPA, dewar, cooler,
and electronic boards. AIM thermography systems [349] are based on a 14 bit
ADC which allows digitizing the output of high-performance FPAs without

Fig. 9.4. Modular concept of thermography systems [349]
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any loss of information. The image sequence is either processed in a video
processor board that selects the 8 bit information to be displayed on the built-
in liquid crystal display or on an external monitor, or directed to a personal
computer through a high-speed digital data interface. The LWIR and MWIR
QWIP FPAs developed in a cooperation between AIM and the Fraunhofer-
Institute of Applied Solid-State Physics (IAF) are cooled down by Stirling
coolers to about 60–65 K and 88 K, respectively. The complete camera plat-
form is equipped with a standard serial interface for easy connection with a
personal computer and with a fast parallel port that allows real-time data
transfer of the full 14 bit digitized images of the 256 × 256, 384 × 28, and
640× 512 QWIP FPAs at frame rates up to 200, 120, and 60 Hz, respectively.

9.2.3 Camera Performance

For thermal imaging applications, the extremely low noise levels of low-noise
QWIP FPAs enable a higher dynamic range, longer integration time, and
improved thermal resolution as compared to conventional photoconductive
QWIPs, in particular at a high photon flux. In fact, an NETD as low as
5.2 mK has been observed for a 256× 256 low-noise QWIP FPA camera with
40 µm pitch. Photoconductive QWIPs, on the other hand, are best suited if
short integration times (5 ms and below) are required. In this case, thermal
resolution is not limited by the storage capacity of the readout but by the
finite external quantum efficiency η of the detector. Therefore, QWIP FPAs
with high quantum efficiency have been developed [18], where a higher carrier
concentration of 4 × 1011 cm−2 electrons per quantum well (about four times
higher than for “standard” photoconductive QWIP FPAs) is used in order to
increase η. The advantage of high η comes with the penalty that slightly lower
(by a few Kelvin) detector temperatures are necessary for background-limited
operation. Photoconductive QWIPs with even higher carrier concentration
(2 × 1012 cm−2 electrons per quantum well) are exploited for MWIR wave-
lengths where background-limited performance are still obtained at about
90 K.

In order to address the performance of QWIP FPAs, we present represen-
tative image data from two FPA types – low-noise and MWIR FPAs, with
640 × 512 pixels [18]. The experimentally determined NETD histogram of
a 640 × 486 low-noise QWIP camera system with 24 µm pitch is depicted
in Fig. 9.5a. At 30 ms integration time, we observe a NETD as low as 9.6
mK. To the best of our knowledge, both NETD values represent the best
temperature resolutions ever obtained for thermal imagers operating in the
8–12 µm regime. The main noise contribution in the system stems from the
ADC, which also indicates the extremely low noise level and high dynamic
range achieved by the low-noise QWIP. The correctability has been charac-
terized by determining the IETD of a 15◦C scene after gain calibration at
10◦C and 30◦C and offset calibration at 20◦C scene temperature. Under these
conditions, IETD < NETD/2 is found [350] even for this record low NETD,
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Fig. 9.5. NETD-histogram of a 640× 512 LWIR low-noise QWIP FPA for f/2 and
30 ms (a), and of a 640×512 MWIR QWIP FPA for f/1.5 and 20 ms (b) (after [18])

which demonstrates the excellent linearity and correctability, and thus the low
fixed-pattern noise of this array.

As a second example, Fig. 9.5b depicts the NETD histogram of a typical
640 × 512 MWIR QWIP FPA at a detector temperature of 88 K, indicating
an excellent NETD value of 14.3 mK. In addition, this FPA shows very good
correctability, with an IETD of less than 7 mK after the same calibration pro-
cedure as described above [351]. High-performance IR sensors for the MWIR
can thus be realized using QWIP technology, which provides an attractive
alternative to HgCdTe, InSb, and PtSi.

Figure 9.6 shows sample images taken with both QWIP FPAs. In addition
to the excellent thermal resolution and contrast, both thermal images show
high detail which indicates a small optical crosstalk between adjacent pixels
and a good modulation transfer function. A closer inspection of the imagery
reveals a better sharpness for the LWIR image, which is not unexpected as the
absorption quantum efficiency of the low-noise QWIP FPA is at least twice
as high as that of the MWIR QWIP FPA.

MWIRLWIR

Fig. 9.6. 640 × 486 thermal images taken by a low-noise QWIP camera (left) and
by a MWIR QWIP camera (right) [18]
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Table 9.2. Properties of demonstrated QWIP FPAs (PC photoconductive, LN low-
noise, HQE high quantum efficiency, τint integration time)

Pitch λ τint NETD
FPA Type Array Size (µm) (µm) F# (ms) (mK)

256 × 256 PC 256 × 256 40 8–9.5 f/2 16 10

640 × 512 PC 640 × 486 24 8–9.5 f/2 16 20
512 × 512

256 × 256 LN 256 × 256 40 8–9.5 f/2 20 7
40 5

384 × 288 LN 384 × 288 24 8–9.5 f/2 20 10

640 × 512 LN 640 × 486 24 8–9.5 f/2 20 10
512 × 512

384 × 288 PC-HQE 384 × 288 24 8–9.5 f/2 1.5 40

640 × 512 PC-HQE 640 × 486 24 8–9.5 f/2 1.5 40
512 × 512

640 × 512 PC-MWIR 640 × 486 24 4.3–5 f/1.5 20 14
512 × 512

Key properties of our demonstrated QWIP FPAs are summarized in Ta-
ble 9.2. The best thermal resolution is achieved with low-noise QWIP FPAs,
with NETD values representing the best temperature resolutions ever ob-
tained for thermal imagers operating in the LWIR. Specifically, for short in-
tegration times, “high-quantum-efficiency” QWIP arrays with higher doping
(4×1011 cm−2 per QW) and an increased number of periods (N = 35) achieve
a thermal resolution of 40 mK at a short integration time of only 1.5 ms.

9.3 MWIR/LWIR Dual-Band QWIP FPA

Increasing efforts are being put into camera systems with multiple detec-
tion wavelengths, operating either as dual-color FPAs within the LWIR or
the MWIR, or as dual-band FPAs at two different (LWIR and MWIR)
bands [16,18,268,352–355]. These dual-band or dual-color FPAs provide sev-
eral advantages, including the ability of remote absolute temperature mea-
surement, operation in a wider range of ambient conditions, and better dis-
tinction between targets and background clutter. Because of their enhanced
functionality, dual-band FPAs represent a new generation (“third generation”)
of thermal imagers. QWIP technology is ideally suited for dual- and multi-
spectral FPAs since the intrinsically narrow absorption width ∆λ/λ (10–20%)
of QWIPs leads to a negligible spectral crosstalk, and the QWIP active re-
gion for the longer wavelength band is transparent at shorter wavelengths.
In addition, mature GaAs-based technology facilitates the fabrication of the
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required elaborate FPA topologies with multiple etch depths, metallizations,
and passivations. Most military applications involving dual- or multi-spectral
IR sensors, however, demand high quantum efficiency. Comparing the differ-
ent technologies, there is presently a tradeoff between the higher quantum
efficiency achievable with HgCdTe-based photodiodes and the better spectral
separation achievable with QWIPs.

The first QWIP FPA with simultaneous, pixel-registered operation in the
mid-wavelength IR (MWIR, 3–5 µm) and LWIR has been described by Gold-
berg et al. [353]. With an array size of 256×256 pixels, their FPA has achieved
an NETD of 30 mK in the MWIR and 34 mK in the LWIR.

9.3.1 Detector Concept

Our approach to dual-band QWIP FPA is summarized in Fig. 9.7, which de-
picts the schematics of a detector element of the hybridized array. The sen-
sor pixel comprises two QWIP active regions sandwiched between three n-
type GaAs contact layers. The detector element is connected with the ROIC
by three electrical contacts, with the intermediate n-GaAs layer used as the
ground electrode. This configuration allows for simultaneous, pixel-registered
detection in both bands.

For optical coupling of the incident thermal radiation according to the po-
larization rules for intersubband transitions, a 2D reflective grating is located
underneath the top contact (“top” refers to the location prior to flipping the
GaAs chip). The MWIR QWIP is adjacent to the grating (in the near field

hνν

passivation

contact
layers

metallization

grating

In bumps

MWIR
LWIR

Si readout integrated circuit

νν

bu

MWIR
LWIR

Fig. 9.7. Schematics of MWIR/LWIR dual-band QWIP FPA pixel after flip-chip
hybridization to a silicon-based readout integrated circuit and GaAs substrate re-
moval. Insets indicate the potential distributions and transport mechanisms of a
photovoltaic low-noise QWIP (left) for the LWIR band and of a photoconductive
QWIP (right) for the MWIR band. Note that the MWIR QWIP is adjacent to the
grating (near-field regime)
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Fig. 9.8. Normalized spectral sensitivity of dual-band QWIP test devices with 45◦

facet coupling. The dashed line indicates the spectral power density dP/dE of a
Planck radiator at 300 K in a log-scale [355]

region, see also Fig. 9.7), giving rise to efficient optical coupling of MWIR
radiation.

The whole device relies on two different QWIP types (as in the insets to
Fig. 9.7). For the MWIR band, a photoconductive QWIP is used (right inset),
comprising 20 periods of 2.6 nm wide In0.3Ga0.7As quantum wells, doped to
a carrier density of 2.1 × 1012 cm−2 per well, and 24 nm wide Al0.32Ga0.68As
barriers. The barrier width is significantly smaller than in previous MWIR
QWIP FPAs [18], so the active region is only 0.56 µm thick. Detection in the
LWIR band is accomplished by a photovoltaic QWIP.

The spectral dependence of the dual-band QWIP photocurrent is shown
in Fig. 9.8. For comparison, the spectral power density dP/dE for a 300 K
thermal background according to Planck’s radiation law is also plotted. The
sensitivity of the MWIR QWIP has its peak at the long-wavelength end of the
3–5 µm atmospheric window where the photon flux is higher than at shorter
wavelengths. The spectrum of the LWIR QWIP, however, is matched to the
short-wavelength end of the 8–12 µm regime in order to avoid excessive dark
currents. While the spectra in this figure have been obtained using 45◦ facet
coupling, almost identical spectral dependencies are observed for small detec-
tor elements with a grating [354]. As can be seen from Fig. 9.8, the photon
flux in the LWIR spectral band is about an order of magnitude higher than in
the MWIR, this large difference in photoconductive gain (by about a factor
of ten) for the two QWIP structures thus compensates for the difference in
photon flux. Similar signal levels are therefore obtained for the LWIR and
MWIR bands, if the grating has similar coupling efficiencies for both bands.
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(b)(a) (c)

Fig. 9.9. SEM images of a single pixel in a processed dual-band QWIP array (a)
and test structures, equivalent to two FPA pixels, allowing optoelectronic charac-
terization (b), (c). The grating period in (a) and (b) is 1.65 µm, while a segmented
grating with periods of 1.65 and 2.8 µm was used in (c). Pixel size corresponds to a
pitch of 40 µm in all cases [355]

9.3.2 Array Fabrication and FPA Layout

The dual-band QWIP layer structures were grown by molecular beam epi-
taxy on 3-in. semi-insulating GaAs substrates. The epitaxial layer comprised
two QWIP active regions as described above, which were sandwiched between
three n-type GaAs contact regions. The growth was completed by an AlGaAs
etch stop layer followed by a GaAs sacrificial layer, which defined the depth of
the diffraction grating. A full-wafer process based on standard optical litho-
graphy was used to fabricate arrays with 384 × 288 detector elements and
40 µm pitch, with 12 detector arrays per wafer.

An SEM image of a single FPA pixel is shown in Fig. 9.9a. The pixel
comprises three contact lands (bright areas) for In-soldering with the ROIC.
The etched holes close to the right-hand edge of the pixel in Fig. 9.8a are
needed for contacting the two buried n-GaAs contact layers.

In addition to the detector arrays, various test devices were processed si-
multaneously on the same wafer. They included mesa structures without grat-
ings for standard 45◦ facet coupling, and detector mesas with gratings. These
test devices are available with gratings optimized to the MWIR (1.65 µm
grating period, see Fig. 9.9b) and LWIR (2.8 µm grating period, not shown)
detection bands as well as in a segmented version (Fig. 9.9c) which contains
both gratings.

The pixel layout of Fig. 9.9a has been chosen in order to obtain a hexag-
onal symmetry for the contacts of the entire detector array. This hexagonal
lattice ensures maximum distance between adjacent contact lands for a given
FPA pitch. In this way, a nearest-neighbor spacing of approximately 24 µm
is obtained for a 40 µm pitch. As can be seen from Fig. 9.10, the hexagonal
symmetry appears if the detector array is composed of columns with alternat-
ing, vertically flipped symmetry. The rectangular unit cell of such a lattice is
indicated in Fig. 9.10a. It includes two pixels.
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(a) (b)

Fig. 9.10. SEM images of processed MWIR/LWIR QWIP arrays with 1.65 µm (a)
and 2.8 µm (b) grating period. The white rectangle in (a) indicates the two-pixel
unit cell of the detector array. Pixel size corresponds to a pitch of 40 µm [355]

9.3.3 Properties of Dual-Band QWIP Test Devices

Gratings for optical coupling in dual-band QWIP FPAs are subject to several
tradeoffs, since optimization for one operating wavelength generally implies
reduced performance for the other detection band. This difficulty results from
incompatible periods (1.65 vs. 2.8 µm) and depths (0.35 vs. 0.6 µm) that would
be needed for the MWIR and LWIR wavelength bands. In addition, only
one QWIP stack can be placed within the near field of the grating where
the coupling efficiency is substantially enhanced [267]. For these reasons, the
coupling efficiency in a dual-band QWIP FPA is necessarily smaller in at least
one detection band as compared to independently optimized single wavelength
QWIP FPAs. The coupling efficiency also depends on the size of the detector
element [201] and on the presence of irregularities such as etched trenches.

The test structure geometries of Figs. 9.9 are used to investigate the dual-
band performance of gratings and their coupling efficiency. Figure 9.11 sum-
marizes the results for an MWIR QWIP. We observed the following trends:

1. The photocurrent density increases with the size of individual detector
elements. Indeed, a “large” mesa (120×120 µm2 area) with 1.65 µm period
grating gives rise to 70% higher coupling efficiency than a “twin pixel”
with the same grating. Most of this increase is attributable to a spectrally
narrower coupling efficiency achievable with large mesas, which in turn
improves the resonant enhancement. This trend is also consistent with the
observation [13] that only minor deviations exist between the photocurrent
spectra measured for twin-pixels and for 45◦ facet coupling.

2. A more than threefold increase, as compared to the case without gratings,
is observed if the grating period is optimized to the “wrong” (LWIR)
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Fig. 9.11. Photocurrent density of MWIR QWIP obtained from different mesa
geometries as indicated vs. applied bias [355]. Labels indicate the device geometry
and grating type (MW: 1.65 µm, LW: 2.8 µm grating period, SG: segmented grating)

wavelength band. Apparently, the grating enables some residual coupling
since its depth is still optimized to MWIR wavelengths.

3. There is still a significant coupling efficiency (13% as compared to an
MWIR grating) for mesas without grating. This residual coupling, which
is attributed to stray light, is believed to be significantly enhanced by
total internal reflections. Even though substrate thinning might have some
influence on the coupling efficiency of dual-band QWIP FPAs, we expect
similar trends to exist for devices after substrate removal.

Similar results to those in Fig. 9.11, for the LWIR active region, indicate
a two-fold increase of the LWIR signal if the “correct” grating with a 2.8 µm
period is used, rather than a 1.65 µm period.

9.3.4 System Integration and Dual-Band QWIP FPA Performance

The detector arrays are hybridized to a custom-designed ROIC which exhibits
equal storage capacities for the readout cells for the MWIR and LWIR bands.
Figure 9.12 shows a section of a dual-band QWIP FPA after GaAs substrate
removal. Dark lines between the individual pixels indicate complete removal
of the semiconductor material down to the passivation. The procedure thus
minimizes thermally induced stress and optical crosstalk. The hybrid is finally
mounted in a dewar and cooler assembly.

While results for a first prototype of a MWIR/LWIR dual-band QWIP
FPA can be found [354], we show here results for an improved version [355].
The previous FPA showed excellent performance in the MWIR band (17 mK
NETD) but had a comparably high NETD of 43 mK in the LWIR. In ac-
cordance with the measured behavior of the test devices as discussed in the
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Fig. 9.12. Microscope image of a hybridized dual-band QWIP FPA after substrate
removal [355]

previous paragraph, the previous 1.65 µm period grating was replaced by a
grating with 2.8 µm period. In this way, the LWIR signal was expected to
increase by about a factor two, whereas the MWIR performance should have
degraded slightly. Our goal was to achieve similar performance in both bands.

The array histograms in Fig. 9.13 indicate that this goal has been met. In
fact, the NETD in the MWIR and LWIR bands, which are plotted together
with Gaussian fit functions, indicate an average NETD as low as 20.6 mK in
the LWIR and 26.7 mK in the MWIR. Here an integration time of 6.8 ms was
chosen, which allows for 100 Hz repetition rate and for a 2× 2 microscan with
25 Hz for subpixel resolution (768 × 576 effective pixels). To our knowledge,
this is the first dual-band FPA which achieves NETDs significantly below
30 mK in both bands. The drastic improvement in the LWIR band is not
unexpected since the noise associated with the LWIR part is still limited by
system noise. This property leads to an essentially linear, rather than square-
root, dependence of the NETD on the integrated signal. For the conditions of
Fig. 9.13, almost identical signal strengths (with only about 12% difference)
were observed in the two detection bands. An excellent pixel yield of >99.5%
was obtained.

9.4 Opportunities for QWIP FPAs in Thermal Imaging

QWIP-based thermal-imaging systems compete with those based on other
sensor technologies, such as HgCdTe, InSb, PtSi, and uncooled microbolome-
ters. Each technology has advantages and disadvantages, so different detector
materials are used according to the specific demands imposed for each appli-
cation. These requirements determine the required thermal resolution, spatial
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Fig. 9.13. NETD-histograms (bar plots) of the MWIR (a) and LWIR (b) bands of
improved dual-band QWIP FPA at 58 K operation temperature and 300 K radiation
temperature [355]. Gaussian fit curves (solid lines) indicate excellent NETDs of
26.7 mK (MWIR) and 20.6 mK (LWIR)

resolution, wavelength band, integration time, pixel operability, and allowable
cost.

At present, QWIP-based thermal imagers are used if high spatial resolu-
tion or thermal resolution is needed in the LWIR spectral regime. Further
advantages of QWIP arrays include excellent homogeneity, low fixed-pattern
noise, low 1/f noise, and low drift. Typical frame rates of QWIP FPAs are
in the range of 10 to 100 Hz (as in Table 9.2). For high-performance thermal
imaging in the LWIR, the only competing technology is HgCdTe, which is sig-
nificantly more expensive than QWIPs but allows shorter (sub-ms) integration
times and slightly higher operation temperatures.

At very long IR wavelengths above 12 µm and in the terahertz regime, new
challenges are waiting for QWIP technology. At these wavelengths, HgCdTe
technology becomes extremely difficult, whereas the performance of QWIPs is
still comparable to theoretical predictions. In the MWIR regime, high quan-
tum efficiency is very important, and the market for high-performance ther-
mal imaging is presently shared between HgCdTe and InSb. Nevertheless,
the MWIR also provides increasing opportunities for QWIPs since quantum
efficiencies in excess of 50% have been demonstrated recently [345,356].

Extending their use beyond the military market, QWIP FPAs are partic-
ularly promising for civil applications including medical imaging and environ-
mental research. In medicine, the method of dynamic area telethermometry
(DAT) has been introduced [357,358] for breast cancer detection and for veri-
fying the efficiency of cancer medication and therapy. The method is based on
the detection of subtle temporal changes of the skin temperature, which ex-
hibit characteristic modifications in the vicinity of a tumor. Exploiting both
local and global signatures, the method also allows the detection of deeper
lying cancerous lesions. To this end, thermal deviations with a modulation
frequency from 0.1 to 2 Hz have to be detected. The spatial distribution of
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temperature modulation on the skin surface is obtained by quantitative nu-
merical analysis of several thousands of subsequent thermal images. Since the
amplitude of these temperature fluctuations is only a few mK, low-noise QWIP
FPAs are most suitable for this application due to their superior thermal res-
olution. As a second advantage, the low drift of QWIP arrays is crucial for
this application. In contrast to the standard method of x-ray mammography,
the new method of DAT enables early detection of cancerous lesions without
the involvement of mechanical stress or radiation exposure. The method can
therefore be repeated arbitrarily often, thus allowing monitoring of the effi-
cacy of medication. Additional applications in medicine include brain surgery
and pre-clinical testing.

An extremely interesting application, for which QWIP arrays are ideally
suited due to their narrow spectral width, is the detection of gas leaks. Specif-
ically, the method of “Gas correlation imaging” allows one to locate gas leaks
by comparing IR images, which are obtained with and without additional
transmission through the targeted gas [359]. This can be achieved by two se-
quential exposures, by dividing one array into two segments, or by using two
separate arrays. After numerical subtraction of the two images, the difference
image contains information associated with the absorption lines of the target
gas. In this way, the target gas is used to recognize its own specific spectral
features, and the gas leak can even be located in real-time by superimposing
the difference images with camera signals in the visible. A variety of gases
can be detected in this way, the most important ones being methane, ethane,
and ammonia. Application areas of this method include the inspection of on-
and off-shore oil platforms, gas pipelines, and refineries. The method helps
to prevent explosions, fires, production loss, and environmental damage. Due
to its ability for real-time detection, the approach largely eliminates motion
artefacts, thus allowing for quick inspection of large areas, e.g., by using a
helicopter.

The excellent thermal resolution of QWIP cameras also makes them an
interesting measurement tool in research. For instance, such a camera was
used by Garbe et al. [360] in order to study convection processes on wa-
ter surfaces and wind–water interactions. This was with the ultimate goal of
understanding the exchange of CO2 between the oceans and the atmosphere.
Such investigations also aim towards a better understanding of the greenhouse
effect induced by the combustion of fossil fuels.

Further applications of QWIP cameras have been reported recently in
semiconductor research. The spatial carrier profile in Si wafers has been mea-
sured by shining IR light through the wafers [361]. The excellent thermal
resolution of QWIP FPAs has also proven to be very useful in lock-in ther-
mography, where thermal signatures of modulated excitations are detected.
The method has recently been applied to capacitance mapping of semicon-
ductor p-n junctions [362].

At present, QWIPs are the only commercially viable technology for the
production of large 640 × 480 and megapixel staring arrays operating in the
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LWIR. Further potential also exists in other nonmilitary markets, e.g., produc-
tion monitoring, nondestructive testing, and fire fighting. Commercialization
of dual-band or dual-color thermal imagers will open up further applications,
in particular if an absolute determination of the radiation temperature is re-
quired.

9.5 Alternative Architecture and New Functionality
of QWIP FPAs

Multicolor Arrays

The QWIP approach is nicely suited for multi-band arrays (see Sect. 8.2). Re-
cently, a four-band 640 × 512 QWIP FPA has been demonstrated [268,363].
The array is divided into four segments with 640 × 128 pixels, which are
sensitive in the 4–5.5, 8.5–10, 10–12, and 13–15.5 µm wavelength bands, re-
spectively. The cross section of the individual pixels is shown schematically in
Fig. 9.14. Unwanted bottom detectors are electrically shorted from the out-
side of the array, which is operated with a common back contact with bias
Vc. Varying period numbers and carrier densities are used for the four active
layers due to thickness restrictions and due to the common operating voltage.
The array, which has been developed for a hyperspectral imaging instrument,
was fabricated in the InGaAs/GaAs/AlGaAs material system.

Polarization-Sensitive Arrays

Due to the polarization rule of intersubband absorption, QWIPs are ideally
suited to exploit polarization signatures in passive IR thermal imaging. This
functionality is very promising for remote sensing and target recognition, in

Fig. 9.14. Schematic cross section and pixel isolation scheme of a four-band QWIP
array [363]. Gold-coated reflective etched gratings, which also serve as contacts and
shorten the unwanted top detectors, are fabricated on each pixel (D1 to D4: QWIP
active regions, C1–C5: heavily doped contact layers)
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particular of man-made objects which, due to their typically smooth and
reflecting surfaces, are mostly associated with stronger polarization signature
than the natural scene. The polarization contrast thus provides additional
signatures which help to detect specific objects, e.g., land mines [364,365].

The straightforward approach to realize polarization dependent QWIP
FPAs is to use pixels equipped with linear gratings which only couple one
linear polarization of the radiation. Such an array has been demonstrated
by Beekman and Anda [364]. The array comprises pixels with 0◦- and 90◦-
oriented linear gratings which are arranged in a checkerboard pattern. Here
the detection of a linear polarization still depends on the relative orientation
between the grating and the polarization. A more complete determination
of the polarization state, i.e. including the degree of linear polarization and
polarization angle, is possible with four kinds of gratings oriented at 0◦, 45◦,
90◦, and 135◦. Chen et al. [366] have used corrugated QWIPs oriented in these
directions to detect polarized light.

Beyond this lateral architecture for polarization sensitive arrays, it would
be advantageous to achieve this functionality on one pixel. In fact, a high
degree of co-location for the detection of different polarization is necessary,
not only for moving targets but also to obtain polarization information for
point objects. From a systems perspective, it will be necessary to detect the
degree of polarization with an uncertainty of less than a few percent. If these
requirements can be met, superior performance as compared to today’s imag-
ing polarimeters, which usually consist of rotating polarization filters in front
of the detector array, will be achieved. Serna [365] has conducted computer
simulations, and developed a process for integrating a polarimeter on a single
pixel. His approach uses four active QWIP regions, seperated by contact lay-
ers comprising metallic or dielectric linear gratings with different orientation
(with a fourth grating on top of the structure). In this geometry, it is even
possible to determine the full Stokes vector of the polarization, i.e., to measure
not only linear but also elliptic polarizations.

Skimming QWIP

In order to increase the capacity of the readout circuit, the “skimming QWIP”
architecture has been proposed by Costard et al. [267,367]. Figure 9.15 indi-
cates the basic idea of this architecture.

Two QWIP active regions are operated in series, and the readout capaci-
tor Cint is connected to the electrode in between. One QWIP structure serves
as the active detector, the other one as the skimming element which removes
an “unwanted” part of the current. Ideally, the active QWIP is illuminated
and contributes a photocurrent and a dark current, whereas the skimming
QWIP only produces a dark current. If the two dark currents are equal, then
the photocurrent charges the capacitor, while the two dark currents cancel
each other. The big advantage of this architecture comes into play in par-
ticular at higher operation temperature where the skimming QWIP removes
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Fig. 9.15. Operation principle of the skimming-QWIP architecture

(or skims) the dark current and thus allows for larger integration times and
better signal-to-noise ratios. We should also mention that, in spite of the cur-
rent cancellation leading to an improved “virtual” readout capacitance, the
noise contributions add, such that the absolute noise in a skimmed FPA is
somewhat higher than in a normal array.

In practice, it is useful to integrate the two QWIP structures vertically,
such that the whole structure resembles a dual-band QWIP (as in Sect. 9.3),
albeit with two identical active regions in order to generate identical dark
currents. The photocurrent can be selectively generated in the QWIP region
adjacent to the grating, since the near-field of the grating is associated with
a much higher coupling efficiency than the far-field [201]. In fact, a five times
higher photocurrent has been measured in the QWIP region close to the grat-
ing as compared to the second active region, even though both active regions
were nominally identical [367].
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Dynamics, Ultrafast, and Heterodyne

Thanks to the intrinsic short carrier lifetime (τ ∼ 5 ps), QWIPs are well suited
for high-speed and high-frequency applications [368]. The inherent short car-
rier lifetime was inferred both from heterodyne experiments [215,369], show-
ing a cutoff frequency of about 30 GHz, and from time-resolved photocurrent
measurements [148,370,371]. High-speed detectors may also create new ap-
plications; e.g., environmental remote sensing of molecules [372] and CO2 or
quantum cascade laser based communication [218], as well as laboratory in-
strumentation [217,242,373–375] and astronomical studies [376,377]. For these
applications, there is commonly a strong signal or a powerful local oscillator,
in most cases employing lasers. Under such circumstances, a high dark current
can be tolerated to a large degree, and a high absorption and high operating
temperature is desirable (discussed in Sect. 8.1). Note also that the polar-
ization sensitivity of the QWIP is no longer a disadvantage for (polarized)
laser-based systems.

The intrinsic detector response time is limited by either the photoelectron
lifetime or the transit time, whichever is smaller. For a large number of QWs,
the total transit time is usually much longer than the lifetime, leading to a
lifetime limited intrinsic response time of about 5 ps. If, however, a QWIP
has a small number of QWs (e.g., 10 or less), photoexcited carriers will be
swept out before capture, resulting in a transit time limited situation. We
discuss these dynamical processes, and also review the high speed capability.
Presently, QWIPs hold the unique position of having high speed/frequency
capability and high absorption for the thermal IR region. There are no com-
petitive alternatives.

10.1 Dynamic Processes in QWIPs

The most direct experiment to investigate the dynamics of the photocurrent
in a QWIP is to measure the transient photocurrent after illumination with a
short optical pulse [148,370,371]. To get the full picture, we start this section
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a)

b)

c)

Fig. 10.1. Conduction bandedge distribution of a QWIP structure under an ap-
plied voltage, indicating (a) photoexcited carrier emission, (b) carrier capture, and
(c) redistribution of space charges. We note that the equilibrium distribution (a)
corresponds to the assumption of perfectly injecting contact layers; usually space
charges are already present without infrared illumination

by investigating the current that is induced by the re-charging of the QWs af-
ter photoinduced depletion. We then continue by exploring the signal induced
by photoinduced emission and capture processes.

10.1.1 Quantum Well Recharging

The optical response of QWIPs can be separated into a “primary” or “fast”
photocurrent j1 associated with carrier emission and capture, and a “sec-
ondary” or “slow” contribution j2 associated with the recharging of the quan-
tum wells. This two-component behavior influences various effects related to
time and frequency dependent photocurrents, frequency dependent noise, pho-
toconductive nonlinearity, and thermal imaging at low background flux.

Figure 10.1 summarizes the different stages of a QWIP structure after
pulsed IR illumination. After intersubband excitation, the carriers should
leave the quantum well within a very short time, since the intersubband re-
laxation time is of the order of 1 ps. The emission process is schematically
indicated in Fig. 10.1a. An important contribution to this initial transport
comes from the fact that the final state involved in the excitation process of
a detector structure already carries a finite group velocity, which enables the
photoexcited carriers to escape from the well. After emission, carrier capture
becomes relevant (see Fig. 10.1b). Due to the short time constant τc associated
with this process, the duration of the “fast” photocurrent j1 is of the order of
10 ps.
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After carrier capture has occurred, nonequilibrium space charges will re-
main in the QWIP structure. The redistribution of these space charges gives
rise to an additional slow component of the photocurrent, which can be con-
sidered as an extra injection current induced by the larger local electric field
close to the injection contact (see Fig. 10.1c). The time constant associated
with the redistribution of these space charges depends critically on the num-
ber of electrons flowing across the QWIP structure and is closely related to
the dielectric relaxation time. Depending on the experimental conditions, the
associated “slow” photocurrent j2 can be in the sub-ns regime, or it can last
for hours.

Assuming that j1, j2, and the dark current of a QWIP with N quantum
wells and N + 1 barriers are associated with the same capture probability pc,
the following relation holds for the time-averaged signals 〈j1〉 and 〈j2〉,

〈j1〉
〈j1〉 + 〈j2〉

= 1 − 1
(N + 1)pc

[
1 − (1 − pc)N+1

]
. (10.1)

This expression properly takes into account the displacement current, i.e.,
that an electron moving from well j to well k induces a photocharge of (j −
k)/(N +1) electron charges in the external circuit. Equation (10.1) is different
from a previous expression [154,378], 〈j1〉/(〈j1〉+ 〈j2〉) = 1− (1− pc)N , which
arises from counting only the carriers that arrive at the collector contact of
the QWIP.

To derive (10.1), we assume that s electrons per well are exited into the
continuum by a weak optical pulse, giving rise to a photocharge Q = Q1+Q2 =
es/pc, which consists of a “fast” photocharge Q1 and a “slow” photocharge
Q2. Let us now consider the first quantum well, i.e., j = 1. The contribu-
tions (probabilities weighted by the associated distance relative to the total
thickness) are indicated in Fig. 10.2. Summing up the contributions listed in
Fig. 10.2, we thus obtain the “fast” photocharge associated with carrier emis-
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Fig. 10.2. Contributions to the “fast” photocharge Q1 originating from an electron
emitted out of the first well in an N -period QWIP
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sion from the first well,

QfirstQW
1 = es

[(
N−1∑
k=1

kpc

N + 1
(1 − pc)k−1

)
+

N

N + 1
(1 − pc)N−1

]
. (10.2)

Here the summation represents the electrons captured by the other N − 1
wells, whereas the last term on the right-hand side stands for the electrons
arriving at the collector contact.

The summation over all the N wells now yields1

Q1 =
es

N + 1

⎡⎣⎛⎝N−1∑
j=1

j∑
k=1

kpc(1 − pc)k−1

⎞⎠+
N∑

j=1

j(1 − pc)j−1

⎤⎦
= es

Ng

N + 1

[(
1 − 1

Ng

)N

(Ng − 1) + N + 1 − Ng

]
, (10.3)

where we have used g = 1/npc. Equation (10.1) readily follows from the
relation 〈j1〉/(〈j1〉 + 〈j2〉) = Q1/(Q1 + Q2) and (10.3).

To illustrate (10.1), Fig. 10.3 shows the ratio 〈j1〉/(〈j1〉+ 〈j2〉) for different
pc and N . In GaAs/AlGaAs QWIPs, we typically have pc ≈ 0.1, such that
〈j1〉/(〈j1〉 + 〈j2〉) = 80% for a standard 50 period structure. While j1 usually
dominates for N ≥ 50, j2 becomes important for QWIP structures with fewer
periods. For N = 1, we have 〈j2〉 = 〈j1〉 even for pc = 1, since each electron
that is emitted via the collector barrier has to be replaced via the emitter
barrier.

Substituting pc by the gain g = 1/Npc and taking the limit N → ∞, (10.1)
yields the following result, first derived by Ershov et al. [379],

1 The summations are easily worked out using software for symbolic calculations.
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〈j1〉
〈j1〉 + 〈j2〉

= 1 − g

[
1 − exp

(
1
g

)]
. (10.4)

The first direct experimental observation of this two-component behavior
was reported by Ehret et al. [378] who investigated an 8-period GaAs/AlGaAs
QWIP structure. Figure 10.4 shows the time dependence of the photocurrent
excited by 1.2 µs IR pulses. The transients consist of fast and slow components,
which are directly associated with j1 and j2, respectively. While the fast com-
ponent is limited by the time resolution of the experiment, the duration of the
slow component shows a clear temperature dependence. The measurements
were performed under extremely weak illumination in order to ensure that the
potential distribution was not altered significantly by the illumination. Under
this condition, the measured decay times of the slow component were found
to be in approximate agreement with the expected dielectric relaxation times.

According to an analytical model by Ershov et al. [379], the time constant
τ2 associated with the slow component j2 can be obtained from the equation

1
τ2

=
1

ε0εr

[
1 − g

(
1 − exp

(
−1

g

))]
∂je
∂Ee

. (10.5)

Here ∂je/∂Ee is the specific differential conductivity at the emitter barrier
with the local electric field Ee. Note that, in general, τ2 according to (10.5)
differs to some extent from the dielectric relaxation time τD = ε0εr/(∂je/∂E)
of a resistive dielectric. While τ2 ≈ τD for g � 1, we have τ2 ≈ 2gτD for g � 1.

The re-charging of the quantum wells not only influences the photocur-
rent, but it also influences the frequency dependence of the noise. While noise
in QWIPs is generally assumed to be white, there are some frequency depen-
dencies observed in the vicinity of the “recharging frequency” fR = 1/2πτ2

associated with the time constant τ2. This recharging frequency acts as a cut-
off frequency for the noise associated with j2, whereas only j1 will contribute
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Fig. 10.5. Dark current noise spectra of an InGaAs/GaAs QWIP with 20 periods
for different applied bias voltages. The arrows indicate the values of fR as calculated
from experimental dark I–V and gain measurements (after [380])

to the noise at higher frequencies. The frequency dependence of the noise
current should thus exhibit a steplike behavior around fR.

This influence has been studied by Rehm et al. [380] using an InGaAs/GaAs
QWIP structure with 20 periods. Figure 10.5 shows the frequency dependent
dark current noise at different bias voltages. The spectra clearly reveal a step-
like behavior at certain noise frequencies. For comparison, the vertical arrows
in Fig. 10.5 indicate the expected values of τR according to (10.5). Not only
the position, but also the height of the measured steps in the noise spectra
agree nicely with the theoretically expected values. Residual deviations be-
tween the theoretical and experimental recharging frequencies are attributed
to the uncertainty of the precise value of Ee, which was approximated by the
average field E applied to the QWIP structure. While τ2 ≈ 0.2 ms at 1 V in
Fig. 10.5, recharging times can easily become as long as hours when working
at liquid Helium temperatures.

10.1.2 Picosecond Photocurrent

In order to investigate the fast component of the transient photocurrent in
QWIPs, we have used In0.28Ga0.72As/GaAs QWIP structures with N = 20
and N = 100 periods in the active region. Each period contained a 47.5 nm
undoped barrier and a 4.5 nm wide QW with a sheet concentration of 3.8 ×
1011 cm−2. The peak wavelength of the photocurrent was 9.2 µm at 8 V.

Subpicosecond IR pulses were generated by difference frequency mixing
of the signal and idler beams of an optical parametric oscillator, which was
pumped by a mode-locked Ti:Sapphire laser. The optical setup produces MIR
pulses with a pulse duration below 200 fs and a wavelength tunability between
6 and 18 µm [179].



10.1 Dynamic Processes in QWIPs 209

250 µm
sample

GSG

a) b)

probe
head

Fig. 10.6. Schematics (a) and photograph (b) of the ground-signal-ground sample
geometry with 100 µm pitch and the microwave probe

A high electrical bandwidth was provided by a ground-signal-ground sam-
ple geometry, which is compatible with a coplanar 45 GHz microwave probe
with 100 µm pitch (see Fig. 10.6). A semirigid high-frequency cable connected
the microwave probe with a bias network (HP 11612B), which separated the
high frequency component of the photocurrent signal from the dc dark cur-
rent. The photocurrent transients were recorded by a sampling oscilloscope
(Tektronix CSA 8000) equipped with a 50 GHz sampling head. An external
trigger signal was generated by a reflected part of the Ti:Sapphire laser in a
fast p–i–n diode.

Figure 10.7 shows the first 9 ns of a typical photocurrent transient of the
20-period InGaAs/GaAs QWIP at 77 K and a bias of 5.2 V. The observed two-
component behavior of the photocurrent exhibits a strong “slow” component
since the gain under these conditions is very high (g ≈ 7). The inset also
indicates fit functions for j1 and j2, which enabled us to separate the two
components experimentally.

Figure 10.8a summarizes the transient photoresponse of the device with
100 periods. While the rise time is independent of the bias voltage, the decay
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Fig. 10.7. Transient photocurrent of a 20-period InGaAs/GaAs QWIP at 77 K
and 5.2 V. The inset shows the photocurrent and fit functions for j1 and j2 in an
expanded time-scale [381]



210 10 Dynamics, Ultrafast, and Heterodyne

-20 0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100
1E-5

1E-4

1E-3

0.01-4 V
-8 V
-10 V
-16 V

N
O

R
M

A
LI

Z
E

D
 P

H
O

T
O

C
U

R
R

E
N

T

TIME (ps)

-4 V
-8 V
-16 V

(b)(a)

S
P

E
C

T
R

A
L 

D
E

N
S

IT
Y

 (
ar

b.
 u

.)

FREQUENCY (GHz)

Fig. 10.8. Transient photocurrent (a) and corresponding Fourier transforms (b) of
a 100-period InGaAs/GaAs QWIP device at 77 K and several bias voltages (after
[371])

shows some prominent changes. At −16 V bias, contributions of both j1 and
j2 are clearly observed. Here j2 yields a pronounced signal since the recharg-
ing time is only about 200 ps, short enough to be covered by the temporal
measurement window of the experimental setup. To allow a detailed study of
the “fast” photocurrent contribution j1, we thus have to choose conditions,
where the slow component can be neglected. In Fig. 10.8a, this requirement
is satisfied at bias voltages ≤10 V. This can be seen from the fact that the
respective photocurrent traces exhibit the same value at, say, 80 ps, indicating
that the slow component takes so long (µs regime) that the associated current
becomes negligible.

Figure 10.8b shows the Fourier transform of the photocurrent transients
and illustrates the corresponding frequency dependence of the photocurrent.
The plot shows two different frequency ranges, with qualitatively different
dependencies of the spectral density. At low frequency we observe an increase,
and at high frequency a decrease, of the spectral density with increasing bias
voltage. This behavior is caused by the fact that the frequency dependence
is determined by the total photocurrent j1 + j2 at low frequency, and by the
“fast” photocurrent j1 at high frequency.

For a quantitative investigation of the dynamics we take into account two
characteristic time constants, the capture time τc, which describes the recap-
ture of optically excited electrons, and the transit time τtrans,tot, which is the
drift time of a carrier across the whole active region from the emitter to the
collector contact. The decay of the photocurrent associated with the captured
electrons is exponential and the decay of the photocurrent due to the arrival
of optically excited electrons at the collector contact can be described linearly.
Therefore the total decay of the “fast” photocurrent I1(t) can be expressed
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as [379]

I1(t) =

{
I0

(
1 − t

τtrans,tot

)
exp(−t/τc) for t < τtrans,tot,

0 for t ≥ τtrans,tot.
(10.6)

According to (10.6), it is crucial to use a QWIP with a large τtrans,tot, i.e.,
large period number N , in order to measure τc in a reliable way.

To extract the characteristic time constants from the experimental data,
we have created a fit-function based on (10.6), which additionally considers
the finite electrical bandwidth of the measurement setup. Assuming that the
system response, i.e. the response of the electric circuit to a δ-like excitation,
can be described by a Gaussian pulse with a finite temporal width. Then,
the fit-function for the time dependence is given by the convolution of this
Gaussian pulse and (10.6). The Fourier transform of this convolution results
in a product of the Fourier transforms of each contribution.

Since the voltage dependent feature of the ps photocurrent transient is
small and disturbed by parasitic oscillations (see Fig. 10.8a), the Fourier trans-
form of the transient allows a better analysis. In Fig. 10.9a, the Fourier trans-
form of a transient at 77 K and 7 V and the corresponding fit function are plot-
ted. The fitting procedure was performed between the 2 GHz lower frequency,
which is related to the measurement window of 500 ps, and the upper limit
of 73 GHz, where any photocurrent contribution from the QWIP to the sig-
nal vanishes. To restrict the number of fit parameters we eliminated τtrans,tot

by the gain g via g = τc/τtrans,tot. The latter was determined from noise
measurements. The corresponding noise gain at 77 K is plotted in Fig. 10.8b.

1 10 100

1E-4

1E-3

0.01

0 10 20 30
0.1

1

(a)

Experiment
Fit

S
P

E
C

T
R

A
L

 D
E

N
S

IT
Y

 (
ar

b
.u

.)

FREQUENCY (GHz)

(b)

ELECTRIC FIELD (kV/cm)

N
O

IS
E

 G
A

IN
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function of the electric field (after [371])
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The capture time τc established by this method is plotted in Fig. 10.10.
The error bars indicated in Fig. 10.10a take into account a relative uncertainty
of 30%. This uncertainty of the capture time is related to the assumed system
response time, i.e. the full-width at half-maximum (FWHM) of the Gaussian
pulse. For the lower limit, we estimated an FWHM of 8.5 ps, which corresponds
to the specified 3-dB bandwidth of the bias-tee (45 GHz). As an upper limit
for the system response time, we took the FWHM of the fastest ever measured
transient of 12.7 ps. For our fitting procedure we used an FWHM of 10 ps,
which is in between these limits.

The calculated values of the transit times using the measured capture times
enable us to determine the bias dependence of the drift velocity vd via the re-
lation vd = D/τtrans,tot, where D is the length of the active region. The result
is plotted in Fig. 10.10b and shows the typical negative differential behavior of
the barrier material GaAs [226], caused by intervalley scattering of electrons
(see Sect. 7.2.2). To check whether the drift velocity determined in this way
is physically justifiable, we fitted (7.6) to the measured data. Figure 10.10b
shows that this fit accurately reproduces the experimental data. In addition,
this procedure results in the saturation drift velocity vsat = 1.49×107 cm s−1,
electron mobility µe = 6, 140 cm2 Vs−1, and critical field Fc = 5.9 kV cm−1.
This comparison shows that µe and vsat are between the values observed in
conventional GaAs/AlGaAs-QWIPs and those of bulk GaAs. The observed
higher values of µe and vsat in the present InGaAs/GaAs-QWIP as compared
to standard GaAs/AlGaAs QWIPs are not unexpected since similar devia-
tions exist between the respective barrier materials, i.e., GaAs and AlGaAs
[256].
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10.2 High Frequency and Heterodyne QWIPs

The measurement of high-speed and high-frequency characteristics can be
done in either the frequency [215,219,369] or the time [148,370,371] domain. In
this section, we discuss the physics and show results in the frequency domain.

10.2.1 Microwave Rectification

We first discuss the microwave rectification technique [219]. We apply a mi-
crowave signal to the QWIP and measure the change in its dc biasing current.
This is complementary to the optical heterodyne technique, which involves
generating a microwave signal within a QWIP at the difference frequency of
two optical beams [369]. The rectification in the QWIP relies on its inherent
nonlinear I–V characteristic, and therefore probes its transport properties.

The small-signal rectified dc current is given by

Irect =
1
4

I ′′ V 2
µ , (10.7)

where I ′′ is the second derivative of the I–V curve and Vµ is the amplitude
of the microwave voltage applied to the device. Both I ′′ and Vµ depend on
the microwave frequency (ω). The dependence of I ′′ on ω reflects the fre-
quency roll-off behavior of the intrinsic transport mechanism, and therefore
is expected to behave as 1/[1 + (ωτ)2], where τ is some characteristic time.
This τ is expected to be approximately the excited electron lifetime or the
photoconductive lifetime. Given a constant output power from a microwave
source, Vµ varies as a function of frequency because of the circuit limited by
the device capacitance and differential resistance, and other parasitics. We
then rewrite (10.7), separating out the frequency dependences:

Irect =
1
4

I ′′0 V 2
µ0 α(ω)β(ω), (10.8)

where
α(ω) =

1
1 + (ωτ)2

, (10.9)

β(ω) is the circuit dependence, and I ′′0 and Vµ0 are the low frequency limiting
values of I ′′ and Vµ, respectively.

The experiment is schematically shown in Fig. 10.11. QWIPs were con-
nected to the end of a 50-Ω coplanar transmission line by a short wirebond.
The dc bias was applied through a bias-tee. The microwave power was sup-
plied by a microwave source capable of frequencies up to 40 GHz. The QWIP
was modeled by a parallel resistance–capacitance (RC) equivalent circuit and
the parasitic inductance (L) was caused by the wirebond. Given the equivalent
circuit of the device and its parasitic inductance (Fig. 10.11), the microwave
voltage across the device can be straightforwardly found:
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Fig. 10.11. Schematic of the microwave rectification experiment. The QWIP is
mounted at the end of a 50-Ω transmission line. The QWIP is modeled by a parallel
resistance-capacitance equivalent circuit and the parasitic inductance is caused by
the short wirebond

V 2
µ =

8RL

(1 − ω2LC)2 + ω2(RLC + L/R)2
Pout, (10.10)

where RL = 50 Ω is the line impedance, R = 1/I ′ is the device differential
resistance, I ′ is the derivative of the I–V curve, and Pout is the output power
from the microwave source. We have made the approximation R + RL ≈ R
because RL � R for a typical QWIP. For ω → 0 we get

V 2
µ0 = 8RLPout, (10.11)

and by comparison with (10.8)

β(ω) =
1

(1 − ω2LC)2 + ω2(RLC + L/R)2
. (10.12)

The L → 0 limit of the above gives the usual RC roll-off: 1/[1 + (ωRLC)2].
We show experimental results on the three samples listed in Table 10.1.

The samples differ mainly in the number of quantum wells. All experiments
were carried out with the sample at 77 K. The relevant device parameters

Table 10.1. Sample structural parameters

Sample x Lw (nm) Lb (nm) Repeats

16W 0.265 5.7 23.7 16
8W 0.260 5.9 24.6 8
4W 0.276 6.0 24.6 4

(The Si doping density in the two contact layers was 1.5× 1018 cm−3 and the center
Si δ-doping density in the wells was 9 × 1011 cm−2 for all samples)
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Table 10.2. Sample device parameters

Sample Ltot (µm) C (fF) fRC (GHz) fmax (GHz) τ (ps)

16W 0.49 21.5 148 33 4.8
8W 0.27 39.4 81 ≈ 33 ≈ 4.8
4W 0.15 72.2 44 ≈ 33 ≈ 4.8

(The device size is 10 × 10 µm2. Ltot is the total active device thickness, C is the
device capacitance, fRC = 1/(2πRLC), RL = 50Ω, fmax is the lifetime limited cutoff
frequency, and τ = 1/(2πfmax))

are listed in Table 10.2. The expected RC characteristic frequency is fRC =
1/(2πRLC) for RL = 50 Ω load resistance. The estimated carrier lifetime (τ)
and the intrinsic cutoff frequency (fmax defined by τ = 1/(2πfmax)) will be
discussed later.

Figure 10.12 shows the measured (dots) and calculated (lines) rectified
current versus frequency for the three samples. The 3 dB point from the max-
imum fmax for the 16 well sample (sample 16W) is about 33 GHz. For this
sample, the RC-limited frequency is much larger than 33 GHz, and hence the
roll-off here directly relates to τ resulting in a value of 4.8 ps. However, for the

Fig. 10.12. Rectified current vs. frequency for (a) the 4 well, (b) the 8 well, and (c)
the 16 well samples. The solid lines are calculated. The bias voltages were chosen
to give approximately the same electric field of 70 kV cm−1. All devices areas were
10× 10 µm2. The device temperature was 77K. The microwave power was 1.0 mW
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4 and 8 well samples, the RC effect is clearly seen. The rectified current starts
to roll off at a lower frequency and with a much slower rate. The calculated
curves in Fig. 10.12 used the expressions given above with the inductance L
determined by the length of the wire-bond. Further details are given in [219].

10.2.2 Heterodyne Detection

Heterodyne detection involves a local oscillator (LO), commonly a laser, at a
slightly different wavelength from that of the signal. The difference frequency
signal (often referred to as the IF – the intermediate frequency signal) is mea-
sured. This method is also used to characterize the high-frequency behavior
by beating two lasers and measuring the IF as a function of the frequency.

Although QWIPs are very well suited to heterodyne detection, this has re-
ceived limited attention [215,369,373,382,383]. The advantage of heterodyne
detection is well known and described [31]. The key point is that with a suf-
ficiently high LO power the ideal detection limit can be reached, and the
sensitivity (e.g., the noise-equivalent power (NEP)) depends only on the ab-
sorption quantum efficiency for a given wavelength. The argument can be
easily constructed for a photoconductive QWIP as follows. As established,
the detector current responsivity is written as:

Ri =
e

hν
ηg, (10.13)

where η is the absorption quantum efficiency and g is the photoconductive
gain. Under a strong LO power (PLO), i.e., the LO induced current (ILO)
dominates the dark current, the g-r noise current spectral density is

Si = 4egILO = 4egRiPLO. (10.14)

Using (10.13), this becomes

Si = (2eg)2
η

hν
PLO, (10.15)

and hence the noise current is

inoise =
√

SiB = 2eg

√
η

hν
PLOB, (10.16)

where B is the measurement bandwidth.
The heterodyne current for a signal power of Psig is

ihet = 2Ri

√
PLOPsig = 2eg

η

hν

√
PLOPsig, (10.17)

using (10.13).
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The minimum detectable signal is when inoise = ihet. From (10.16) and
(10.17), we then have

Psig,min

B
=

hν

η
, (10.18)

or equivalently,

(NEP)het =
hν

η
B. (10.19)

The heterodyne NEP is proportional to the measurement bandwidth or in-
versely proportional to the measurement time (different from the square root
dependence for the usual detection scheme). It is shown from (10.19) that the
heterodyne NEP depends only on the absorption quantum efficiency η and
the photon quantum hν, and is independent of gain g. This of course is in
the regime where LO induced current is dominant, referred to as photon noise
limited. If a similar analysis is carried out for an ideal photodiode, an NEP
of a factor of two better is obtained.

For an experimental implementation of heterodyne detection, the LO and
signal beams should have the same polarization, and their phase fronts should
be parallel. Due to this spatial coherence between the two beams, heterodyne
detection is often referred to as “coherent detection.”

The direct measurement of the IF signal is limited to frequencies up to the
capability of the available spectrum analyzer. To achieve higher frequencies,
we can employ mixing in the QWIP to down-convert the IF signal generated
by the optical heterodyne [215]. This again (as in the rectification case) relies
on the nonlinear I–V characteristic as in rectification. Specifically, we apply
to the QWIP not only the two IR beams, as in a conventional heterodyne
experiment, but an additional microwave excitation. Furthermore, let fIR1

and fIR2 denote the two IR frequencies, and fµwave the microwave frequency.
The IR heterodyne frequency is then fhet = |fIR1 − fIR2|, while the down-
converted signal frequency is |fhet − fµwave|. In this scheme, one can reach
very high fhet frequencies using a standard spectrum analyzer at the output
of the QWIP. Of course, when fhet and fµwave are both sufficiently small
we also observe the up-converted signal at fhet + fµwave on the spectrum
analyzer.

The device used in this experiment was a 100-well QWIP with a GaAs
well width of 4.5 nm and an Al0.21Ga0.79As barrier width of 40 nm. The cen-
ter 2.5 nm of each well was doped with Si to 2.5× 1018 cm−3. The IR sources
were either two CO2 lasers [384], or a CO2 laser and a lead-salt temperature
tunable diode laser (TDL) [385]. The microwave or millimeter-wave radiation
was either generated by a microwave source tunable up to 40 GHz or by a
Gunn oscillator mechanically tunable in the range of 91–94 GHz. The CO2

lasers were operated in the neighborhood of 10.3 µm on individual lines se-
lected by gratings with a separation between adjacent lines of about 41 GHz.
The TDL was used only for fhet < 26.5 GHz, which was the limit of the
spectrum analyzer. A schematic of the experimental techniques is shown in
Fig. 10.13.
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Fig. 10.13. A schematic of heterodyne detection experiment: (above) direct mea-
surement of the IF and (below) mixing on QWIP for extending the measurement
frequencies

The experimental results covering the frequency range of about 1–100 GHz
are shown in Fig. 10.14. The curves show the expected roll-off behavior due
to the device RC time constant and the photocarrier lifetime, again using
τ ∼ 5 ps. The optical heterodyne data were taken with a CO2 laser and the
TDL laser [369]. We have normalized the signal for a constant incident power
of about 0.2 mW from each of the IR lasers and 0.3 mW from the microwave
source. The measured signal in the direct heterodyne case agrees with (10.17)
in the low frequency limit. The five data points [215] shown in Fig. 10.14
for the mixing experiment were taken using different sources and different
microwave coupling schemes. For the first three points at fhet = 1.83, 5.37,
and 15.5 GHz, we used one CO2 laser, the TDL, and the microwave source
at frequencies of fµwave = 9, 15, and 10 GHz, respectively, and measured the
sum signals of fhet and fµwave. The point at 41.42 GHz was obtained using
two CO2 lasers separated by fhet = 41.42 GHz and the microwave source at
fµwave = 20 GHz, measuring the difference signal at 41.42 − 20 = 21.42 GHz.
The point at 82.16 GHz was obtained using two CO2 lasers separated by



10.2 High Frequency and Heterodyne QWIPs 219

Fig. 10.14. Direct infrared heterodyne and mixed heterodyne frequency with mi-
crowave frequency signal vs. heterodyne frequency for a bias voltage of 2 V. The
curves show the expected roll-off behaviors. The heterodyne frequency is defined
as the difference between the two IR frequencies. The incident powers from the
two IR sources and the microwave source are normalized to about 0.2 and 0.3 mW,
respectively. The device temperature was about 80K

this frequency and a Gunn oscillator mechanically tuned in the range of 91–
94 GHz. The difference signal in the range of 9–12 GHz was measured. For
this data point, millimeter-wave radiation was coupled into the device through
free space.

To cross-check the consistency between results measured in frequency and
time domains, both microwave rectification and time resolve photocurrent
measurements were made on one of our QWIPs. The Fourier transform of
the time resolved photocurrent is compared with the microwave rectification
curve in Fig. 10.15. For this experiment, we used a QWIP very similar to
sample QWIP10 in Sect. 8.1, but with a doping concentration of 1012 cm−2.
The details of this sample were described in [220]. The plot in Fig. 10.15
exhibits an excellent quantitative agreement between the two experimental
methods. There was a defect in the packaging of this device, resulted in a
drop in the frequency response at about 8 GHz.

Recently, substantial advances both in fabrication and packaging of high
frequency devices and in measurement techniques have been made [386]. Air-
bridge and coplanar waveguide have been monolithically integrated with the
QWIP, eliminating the wirebond. Direct measurements of the heterodyne sig-
nal over coaxial cables have been performed up to 110 GHz and from cryogenic
to room temperatures. Data measured on a 100-well QWIP with 1012 cm−2

well doping are shown in Fig. 10.16, representing a substantial improvement
over the results in Fig. 10.14.
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Fig. 10.15. Comparison of the Fourier transform of the photocurrent transient and
the frequency dependence obtained from the microwave rectification method

Fig. 10.16. Normalized heterodyne signal taken at 80 K (circles) and 300 K (dots)

10.3 Two-Photon QWIP

10.3.1 Equidistant Three-Level System for Quadratic Detection

While the detection methods so far discussed in this chapter need to take into
account the residual capacitance and inductance of the QWIP device and
its packaging, much faster signals can be studied by exploiting the intrinsic
nonlinearity discussed in Sect. 7.2.3. Since such nonlinear spectroscopy usually
suffers from a lack of detection sensitivity, an artificial three-level system
has been realized by energetically equidistant subbands in a semiconductor
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Fig. 10.17. (a) Schematics of the two-photon QWIP. (b) Normalized absorption
at 77K in Brewster-angle geometry, photocurrent at 130 K due to excitation from
thermally populated subband 2 into subband 3, and two-photon photocurrent at
77 K under excitation by a continuous-wave CO2 laser, vs. excitation wavelength
[387]

quantum well [387,388], as indicated in Fig. 10.17a. Subbands 1 and 2 are
bound in the QW, while the third state is a continuum resonance located
close to the barrier energy. In an external electric field, the carriers excited
into the continuum are swept out of the QW and give rise to a photocurrent.
According to numerical simulations, a 7.6 nm thick GaAs QW, sandwiched
between Al0.33Ga0.67As barriers, is optimized for a transition wavelength of
10.2 µm, whereas operation at 7.9 µm is achieved using a 6.8 nm In0.10Ga0.90As
QW and Al0.38Ga0.62As barriers.

Figure 10.17b summarizes the spectral characteristics of a two-photon
QWIP comprising 20 GaAs QWs of 7.6 nm width, Si-doped to an electron
concentration of n2D = 4 × 1011 cm−2, and Al0.33Ga0.67As barriers (for the
first device). The spectral dependence of the optical transition from the first
to the second subband (1 → 2) was obtained through intersubband absorp-
tion measurements in a Brewster-angle geometry at 77 K. The 2 → 3 transi-
tion was studied through photocurrent measurements at 130 K, where thermal
population of the second subband causes a signal. The spectral dependence of
the two-photon photocurrent at 77 K has been measured with a wavelength-
tunable CO2 laser. Most remarkably, all three experimental curves give iden-
tical peak wavelengths (10.4 µm), indicating perfectly equidistant subband
energies (E2 −E1 = E3 −E2 = 119 meV). The spectrum associated with CO2

laser illumination is narrower than the absorption spectrum, which reflects
the quadratic nature of the two-photon transition [212].

Figure 10.18 shows the photocurrent versus the power density P upon CO2

laser illumination at 10.2 µm. The photocurrent exhibits a linear increase with
P up to about 0.1 W cm−2 at 70 K (up to 1 W cm−2 at 90 K) followed by a
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Fig. 10.18. Photocurrent density under continuous wave illumination at a wave-
length of 10.3 µm and 1.5 V detector bias versus power density at different temper-
atures as indicated [387]

quadratic increase. Closer investigation at different temperatures up to 160 K
reveals thermally activated behavior of the photocurrent in the linear regime,
with an activation energy of 104 meV. This result allows us to conclude that
the linear regime is caused by thermal population of E2. Quadratic behavior
can be achieved even below 0.1 W cm−2 when operating the device at lower
temperature.

We now determine the two-photon absorption coefficient β. In a two-
photon detector with an absorbing region of thickness L, the associated quan-
tum efficiency η2P is given by η2P = βPLfθ. Here the factor fθ relates to
the selection rule for intersubband transitions. If θ is the angle between light
propagation and the sample normal, we have fθ = sin4 θ/ cos θ for two-photon
absorption, whereas the corresponding factor in the linear case is sin2 θ/ cos θ.
β is defined via its effect on the power density P (z) along the detector normal
z, which obeys dP/dz = −βfθP (z) in the case of pure two-photon absorption.
The approximation βPL � 1, justified up to power densities approaching
106 W cm−2, then yields P (z) ≈ P (0) − βfθPz. Using the definition of the
responsivity (2.8), the two-photon photocurrent density j2P is thus expressed
as

j2P =
eg

hν
βLfθP

2. (10.20)

For a double-pass at θ = 45◦, the light traverses 2N = 40 absorbing QWs
with a total thickness of L = NLw ≈ 0.3 µm. The gain as determined from
noise measurements amounts to g = 0.3 at 1.5 V. Equation (10.20) thus yields
a two-photon absorption coefficient of 1.3×107 cm GW−1. This nonlinearity is
six orders of magnitude higher than in typical bulk semiconductors (Si, ZnSe,
GaAs), where values of β ≈ 10 cm GW−1 are observed. Our present results also
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Fig. 10.19. Two-photon photocurrent autocorrelation of fs optical pulses at 8.0 µm
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indicate a huge increase of β as compared to the detuned two-photon QWIP
discussed in Sect. 7.2.3, where β takes a value of about 5×103 cm GW−1 [216].

10.3.2 Autocorrelation of Subpicosecond Optical Pulses

We now exploit this detection scheme for quadratic autocorrelation mea-
surements of ultrashort optical pulses. Using a Michelson-interferometer, the
pulses are split into two parts separated by a variable time delay τ . While
quadratic intensity autocorrelation measurements have been studied in [388],
we concentrate here on interferometric autocorrelation. Here the interference
between the pulses contains additional information associated with the relative
phase between the pulses. The optical pulse source used for the experiment is
based on difference frequency generation between the signal and idler pulses
of an optical parametric oscillator pumped by a fs Ti:Sapphire laser [179]. The
pulse source is wavelength tunable from 6 to 18 µm, with 10 pJ pulse intensity,
160 fs pulsewidth, and 76 MHz repetition rate. Due to the high sensitivity of
the present two-photon QWIP, interferometric autocorrelation measurements
can be performed in spite of the low optical power.

The upper part of Fig. 10.19 shows an autocorrelation trace measured at
77 K on a device with 6.8 nm In0.10Ga0.90As quantum wells and Al0.38Ga0.62As
barriers. From these data, important information both on the temporal width
of the optical pulses and on the dynamic properties of the two-photon QWIP
can be obtained. While the interference fringes around zero time delay corre-
spond to those of a nearly ideal autocorrelation of the optical field, two addi-
tional signatures are associated with intrinsic time constants of the detector.
First, the amplitude of the interference fringes towards increasing positive and
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negative delay times shows an exponential rather than Gaussian-like decay.
This behavior is attributable to the decay time T2 (dephasing time) of the
coherent intersubband polarization between the first and second subbands.
Second, after the disappearance of the fringes, the signal still decreases expo-
nentially with delay time towards its asymptotic value. The associated time
constant T1 is due to intersubband relaxation of electrons from the second
back to the first subband.

While the ideal interferometric autocorrelation for Gaussian pulses of
width σ is proportional to

j(τ) ∼ 1+2e−4 ln 2( τ
σ )2+4e−3 ln 2( τ

σ )2 cos(ωτ)+e−4 ln 2( τ
σ )2 cos(2ωτ), (10.21)

a proper theoretical description of the experiment is based on the density
matrix formalism and the optical Bloch equations [389]. The complexity of
this three level system, however, prevents an analytic solution. We therefore
use a phenomenologic approach, introduced by Nessler et al. [390] for electron
photoemission in Bi2Sr2CaCu2O8+δ, which shows satisfactory agreement with
the theory of [389]. Whereas the first term of the right-hand side of (10.21)
describes the signal for large time delay τ , the second term is affected by
the population decay time T1, which is taken into account by a convolution
with a symmetric exponential decay function, f(t) = exp(−|t/T1|). Similarly,
the third term is broadened by the phase relaxation time T2, whereas the
broadening of the fourth term can be neglected due to the very short coherence
time associated with the level E3. These convolutions result in an analytical
model function which allows for numerical fitting.

The lower part of Fig. 10.19 shows a numerical least squares fit of the
measured autocorrelation. The fit yields T1 = 0.46 ps and T2 = 0.10 ps, which
agrees with typical values obtained from degenerate four-wave mixing [391].
The value of T2 corresponds to a broadening with a full-width at half maxi-
mum of Γ12 = h/πT2 = 13 meV. Since the absorption linewidth of this sample
has a similar value (11 meV), we conclude that the 1→ 2 transition is homo-
geneously broadened. We note that similar time constants, T1 = 0.53 ps and
T2 = 0.13 ps, have been obtained for the sample of Fig. 10.17b [388].

Theoretically, two different mechanisms give rise to photoemission involv-
ing two absorbed photons. One mechanism is a coherent two-photon transition
which, like degenerate four-wave mixing, is associated with the third-order
nonlinear susceptibility χ3. Within second-order perturbation theory, it gives
rise to the two-photon absorption coefficient

βχ3 =
(

e2

4ε0nrmc

)2
n2D

Lwhν
f12f232T 2

2 Te (10.22)

with the well width Lw, the refractive index nr, and the dimensionless os-
cillator strengths f12 and f23 associated with the 1 → 2 and 2 → 3 transi-
tions, respectively. Te is the time constant associated with the broadening of
state 3, which is attributed to the escape time. Equation (10.22) (together with
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(10.20)) can be seen as a generalization of the two-photon quantum efficiency
η(2) of (7.8) to the case of N quantum wells.

The other mechanism is a sequential two-step absorption

β2step =
(

e2

4ε0nrmc

)2
n2D

Lwhν
f12f234T1T2Te, (10.23)

where the population of subband 2 is either excited into 3 or decays with the
time constant T1.

While the two processes cannot be distinguished in a continuous-wave
experiment, they have different signatures in the autocorrelation traces in
Fig. 10.19. In fact, the χ3 process manifests itself by interference fringes, lim-
ited with increasing time delay by the decay time T2 of the coherent inter-
subband polarization. Sequential absorption produces the “slow” decrease in
the autocorrelation trace, prominent at larger time delays when the coherence
has been lost.

Interestingly, the expressions in (10.22) and (10.23) take the same value if
the decoherence of the 1 → 2 transition is entirely due to relaxation (i.e., ab-
sence of pure dephasing [391]) and the relation T2 = 2T1 holds. In the present
experiment, the coherence loss is mainly caused by pure dephasing, such that
β2step is almost an order of magnitude larger than β3

χ. Using an estimated
value of Te = 50 fs (consistent with the linewidth of the measured 2 → 3
absorption), (10.23) in fact yields a value of 1 × 107 cm GW−1, which is in
excellent agreement with the experimentally observed two-photon absorption
coefficient. Even though βχ3 � β2step, the χ3 process is still dominant at short
delay times, as (10.22) and (10.23) refer to the time-integrated response.

10.3.3 Externally Switchable Quadratic and Linear Response

We have recently reported a QWIP structure which can be switched between
perfectly quadratic and linear behavior by reversing the polarity of the bias
voltage [392]. The same detector can thus be used for measurements of the
linear autocorrelation (or interferogram), second-order intensity autocorre-
lation, and second-order interferometric autocorrelation. According to Diels
et al. [393], these measurements are sufficient to determine the electric field of
IR pulses in amplitude and phase. For characterizing IR ps-laser pulses such
as those generated by mode-locked quantum cascade lasers [217], the detec-
tor presented here combines the possibility of measuring the average output
power in the linear regime with the determination of the pulse width in the
case of quadratic power dependence.

Figure 10.20 depicts the conduction band edge of the device for both nega-
tive and positive bias voltage. The asymmetry with respect to the bias voltage
is introduced into the structure by modulation-doping the quantum-wells on
one side. In Fig. 10.20a, we have a three-level system where only electrons
that absorb two photons reach the continuum resonance E3 and contribute to
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Fig. 10.20. Conduction band diagram under (a) negative and (b) positive bias
voltage. The subbands are indicated as shaded areas [392]

a photocurrent. Radiation resonant with the E1 → E2 transition leads to a
strongly enhanced two-photon photoemission, such that the photocurrent is
proportional to the square of the power density. Upon switching the bias po-
larity (Fig. 10.20b), the space charge in the barriers induced by the one-sided
modulation-doping lowers the effective barrier height and results in intermedi-
ate state electron tunnelling, which becomes significantly more efficient than
a two-step excitation. Therefore, the detector scheme under positive bias re-
duces to a two-level system and exhibits a behavior comparable to a standard
(bound-to-quasibound) QWIP.

According to (10.22) and (10.23), the two-photon photocurrent arises from
an incoherent two-step photoexcitation and two-photon absorption, which are
proportional to T1T2 and T 2

2 , respectively. Therefore, the highest two-photon
sensitivity is expected in modulation-doped QWIPs, where reduced impurity
scattering in the quantum-wells leads to larger intra- and inter-subband scat-
tering times as compared to well-doped structures.

The InGaAs/AlGaAs QWIP-device under investigation contains 20
In0.1Ga0.90 QWs of 7.3 nm width separated by 46 nm wide Al0.31Ga0.69As bar-
riers. Each quantum-well is modulation-doped on one side, with a 2 nm thick
doped region at a 12 nm distance from the quantum well, to a sheet doping
concentration of 2 × 1011 cm−2. Measurements of the linear photocurrent in
a 45◦ facet geometry using a Fourier-transform IR spectrometer indicated a
peak wavelength of 8.2 µm. Highly efficient tunnelling of intermediate state
electrons is observed at positive bias, with more than 100 mA W−1 responsiv-
ity at 9 V, whereas this process is negligible, e.g., at -2 V [392]. At moderate
negative bias voltages, the photocurrent is thus quadratic with the incident
power.

Figure 10.21a demonstrates the use of the detector as a quadratic auto-
correlator using the 165 fs pulse source described in the previous section. The
excitation energy was set to match the E1 → E2 transition. Despite the low
pulse energy of only a few pJ, the detector shows ideal quadratic behavior as
can be seen from the peak-to-background ratio close to the theoretical value
of 8:1. As before, the finite values of T1 and T2 lead to deviations from an ideal
autocorrelation trace, and alow us to determine these time constants through
numerical fitting. The thin line in Fig. 10.21a indicates the envelope of such a
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Fig. 10.21. Photocurrent for (a) negative and (b) positive bias voltage as function
of the time between two pulses with 165 fs duration and a peak wavelength matched
to the E1 → E2 transition. The thin lines show the envelope of a numerical fit
function. (after [392])

numerical fit. The obtained relaxation times are T1 = 640 fs and T2 = 260 fs,
which is consistent with theoretical calculations [91] and independent mea-
surements using degenerate four wave mixing [394].

In contrast, a linear interference pattern with a 2:1 peak-to-background-
ratio is found at positive bias (see Fig. 10.21b). Here the signal height is pro-
portional to the intermediate state population, whereas the shape of the inter-
ferometric signal is independent of T1. The numerical fit, which assumes de-
phasing in a two-level system, yields the same value for T2 as in the quadratic
case.

Comparing this detector with the one of Fig. 10.19, we notice the influence
of impurity scattering on observed values of T1 and T2. Recent experiments
performed on GaAs/AlGaAs two-photon QWIPs resulted in a similar two-
fold increase of T2 and 40%-increase of T1 in modulation-doped QWIPs with
respect to well doped reference structures [395]. These results indicate that
impurity scattering is of similar importance as interface scattering (which
dominates the dephasing in modulation-doped devices [80]), and that impu-
rity scattering represents a non-negligible channel for intersubband relaxation
(even though LO-phonon relaxation is still dominant).

It also becomes obvious from these considerations that two-photon QWIPs
are not only useful for infrared pulse diagnostics, but that these devices also
provide a convenient and precise experimental access to the dynamics of in-
tersubband relaxation and dephasing.

Concluding this Section, two-photon QWIPs based on resonant optical
transitions between three energetically equidistant subbands allow us to study
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the autocorrelation of weak infrared sources with unprecedented sensitiv-
ity and femtosecond temporal resolution. The observed nonlinear absorption
(β = 1.3× 107 cm GW−1) is more than three orders of magnitude higher than
in previous, non-resonant devices. In this three-level system, both coherent
and sequential two-photon absorptions are necessarily present, and manifest
themselves through different experimental signatures, which also allow us to
determine the dephasing time T2 and the inter-subband relaxation time T1.
This approach enables quadratic detection at much lower radiation density.
In addition, both linear and quadratic detection modes are possible through
voltage-switchable devices. Two-photon QWIPs are thus expected to make
substantial impact on the characterization and development of novel infrared
and terahertz radiation sources.
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Conclusions and outlook

To conclude, there is no question that the new quantum well approach to
IR detection has been one of the success stories in modern semiconductor re-
search. QWIPs presently represent a mature technology for high-performance
thermal imaging, in fact the only technology providing large (i.e., 640 × 480
pixels and up) staring focal plane arrays for LWIR wavelengths.

Of course, each detector material has its pros and cons as compared to
the others. This implies that the commercial market will be shared among
different detector technologies, and no individual technology is likely to to-
tally dominate. QWIPs will most likely not reach the high-temperature per-
formance of bolometric and pyroelectric detectors, or the high quantum effi-
ciencies of HgCdTe and InSb (although quantum efficiencies >50% at MWIR
wavelengths have been reported for QWIPs implemented into focal plane ar-
rays). In comparison with other technologies, however, the QWIP approach
is favorable and attractive in many areas such as producibility, thermal reso-
lution, spatial resolution, long-term stability, multicolor and multiband, high
speed, and integration. Although there are many issues that need to be studied
further, this new technology has found its way into the commercial market. As
should be the case for any new successful technology, in addition to competing
with existing technology, QWIPs have already created their own applications.

QWIPs are also extremely promising for the field of high-speed/heterodyne
detection in the thermal IR, which is still at the beginning stage. In addition,
QWIPs may provide practical and convenient devices for the field of terahertz
science and technology. In both cases, the QWIP approach is likely to provide
new and unique directions and solutions, and we therefore expect that QWIPs
will contribute to many emerging applications.

As emphasized in this book, the QWIP approach is very flexible, and has
created a wealth of different device structures that can be used for a variety
of functionalities and applications. Many of these new directions are hitherto
almost unexplored, such that it is likely that future research will give rise
to exciting advances and developments. We hope that the present book will
contribute to understanding and solving some of the known problems, and to
excite new thoughts and ideas leading to novel devices and applications in the
coming years.
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376. G. Sonnabend, D. Wirtz, F. Schmülling, R. Schieder, Appl. Opt. 41, 2978
(2002)

377. W.C. Danchi, C.H. Townes, W. Fitelson, D.D.S. Hale, J.D. Monnier, S.
Tevosjan, J. Weiner, SPIE 4838, 33 (2003)

378. S. Ehret, H. Schneider, C. Schönbein, G. Bihlmann, J. Fleissner, Appl. Phys.
Lett. 69, 931 (1996)

379. M. Ershov, S. Satou, Y. Ikebe, J. Appl. Phys. 86, 6442 (1999)
380. R. Rehm, H. Schneider, M. Walther, P. Koidl, Appl. Phys. Lett. 80, 862

(2002)
381. S. Steinkogler, H. Schneider, R. Rehm, M. Walther, P. Koidl, P. Grant, R.

Dudek, H.C. Liu, Infrared Phys. Technol. 44, 355 (2003)
382. E.R. Brown, K.A. McIntosh, F.W. Smith, M.J. Manfra, Appl. Phys. Lett.

62, 1513 (1993)
383. E.R. Brown, K.A. McIntosh, K.B. Nichols, F.W. Smith, M.J. Manfra: CO2-

laser heterodyne detection with GaAs/AlGaAs MQW structures. In: Quan-
tum Well Intersubband Transition Physics and Devices, ed. by H.C. Liu, B.F.
Levine, J.Y. Andersson (Kluwer, Dordrecht 1994) pp. 207–220



References 245

384. K.J. Siemsen, H.D. Riccius, Appl. Phys. A 35, 177 (1984)
385. T. Koizumi, H. Tashiro, K. Nagasaka, S. Namba, Jpn. J. Appl. Phys. 23,

L809 (1984)
386. P.D. Grant, R. Dudek, L. Wolfson, M. Buchanan, H.C. Liu, Electron. Lett.

41, 69 (2005)
387. H. Schneider, T. Maier, H.C. Liu, M. Walther, P. Koidl, Opt. Lett. 30, 287

(2005)
388. T. Maier, H. Schneider, M. Walther, P. Koidl, H.C. Liu, Appl. Phys. Lett.

84, 5162 (2004)
389. T. Hattori, Y. Kawashima, M. Daikoku, H. Inouye, H. Nakatsuka, Jpn. J.

Appl. Phys. 39, 4793 (2000)
390. W. Nessler, S. Ogawa, H. Nagano, H. Petek, J. Shimoyama, Y. Nakayama,

K. Kisho, J. Electron Spectrosc. Relat. Phenom. 88, 495 (1998)
391. R.A. Kaindl, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, K. Ploog, Phys.

Rev. B 24, 161308 (2001)
392. T. Maier, H. Schneider, H.C. Liu, M. Walther, P. Koidl, Appl. Phys. Lett.

88, 051117 (2006)
393. J.-C.M. Diels, J.J. Fontaine, I.C. McMichael, F. Simoni, Appl. Opt. 24, 1270

(1985)
394. M. Woerner, R.A. Kaindl, F. Eickemeyer, K. Reimann, T. Elsaesser, A.M.

Weiner, R. Hey, K.H. Ploog, Physica B 314, 244 (2002)
395. T. Maier, H. Schneider, H.C. Liu, M. Walther, P. Koidl, Infrared Phys. Tech-

nol. 47, 182 (2005)



Index

absorption
impurity-related 35
probability 16
quantum efficiency 20, 24, 60, 68

autocorrelation 223
avalanche multiplication 131

bandwidth 8
blackbody radiation 5
Brewster angle 97

capture probability 46, 52
capture zone 85
coherent photocurrent 125

depolarization, exciton-like 33
detectivity 10, 67, 92
domain, electric field 115
drift velocity 48, 115
dynamic area telethermometry 197
dynamics 203

escape probability 60
exchange

correction 31
correlation 32

f-number 7
facet 98

geometry 14
Fermi’s golden rule 20

gain
noise 66

photoconductive 7, 57
grating 100, 185, 191

heterodyne 216
high frequency 213

impact ionization 131
inhomogeneity-equivalent temperature

difference, IETD 182
integration, monolithic 172
intersubband relaxation 39
intersubband transition, ISBT 13, 18
irradiance 5

minimum resolvable temperature
difference, MRTD 184

modulation transfer function, MTF
183

negative differential photoconductivity
115

NETD 11, 179
histogram 188
readout-limited 178

noise
1/f 183
amplifier 178
fixed-pattern 181
g-r 9, 66, 90, 177
Johnson 65, 177
shot noise 8

noise-equivalent power, NEP 9, 216
nonlinearity

intrinsic 121



248 Index

transport 109
nonparabolicity 36
Nyquist frequency 183

oscillator strength 16, 20

Planck’s radiation law 5
Poisson equation 30
polariton 105
polarization selection rule 20

QDIP 163
quantum dot 163
quantum well 13
QWIP 1

dual-band 151, 190
four-zone, low-noise 85, 92, 177
high absorption 139
multicolor 144, 199
p-type 49
photoconductive 45
photovoltaic 83
quantum cascade 85
single well 171

skimming 201
Thz 76
two-photon 220

QWIP-LED 161

Rabi splitting 105
radiation hardness 135
readout integrated circuit, ROIC 175
responsivity 8, 64

saturation, absorption 107
segregation, dopant 123

transfer matrix 27
transistor 172
transmission probability 29, 64, 74
tunneling time 74
two-band model 36
two-photon absorption 121, 222

waveguide
strong coupling 105
zigzag 97



Springer Series in

optical sciences
Volume 1

1 Solid-State Laser Engineering
By W. Koechner, 5th revised and updated ed. 1999, 472 figs., 55 tabs., XII, 746 pages

Published titles since volume 90

91 Optical Super Resolution
By Z. Zalevsky, D. Mendlovic, 2004, 164 figs., XVIII, 232 pages

92 UV-Visible Reflection Spectroscopy of Liquids
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