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PREFACE

This is the third book of this type that I have written for OUP that
celebrates the everlasting wonder of mathematics. The first, Mathe-
matics for the Curious (1997) was general in nature while Mathematics
for the Imagination (2002) concentrated more on geometry. The topic
of networks was touched on in both those books but it deserves a
fuller treatment in its own right.

There are several reasons for this. From a mathematical viewpoint,
networks have come of age as they have invaded one branch of
the subject after another. What is more, networks themselves are all
around us from age-old examples such as family trees to the modern
phenomenon of the Internet and World Wide Web. On the other
hand networks can be introduced to anyone and, as with sudoku
puzzles, they can immediately begin playing with them as ‘they
don’t involve any mathematics, just logic’. This description has
brought a smile to many a mathematician’s face as they know better.
At the same time, however, they do appreciate what people mean
when they express these sentiments. It would be better to say that
the topic does not, at least at first glance, require all the mathematics
we might have heard about in school such as arithmetic and algebra,
geometry and trigonometry, and so on.

The text is designed to be read straight through. We go from
simple examples and ideas to a host of applications from various
games and puzzles, including sudoku, onwards to a variety of topics,
some serious, such as planning routes and maximizing profits, and
some seemingly not so. As often happens, mathematics is indifferent
to the applications we have in mind when we introduce a type of
problem and it can come to pass that ‘serious’ and ‘recreational’
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problems turn out to be related or in some cases one and the
same.

There is no denying the existence and importance of networks in
the world for they underpin the nature of traffic flow, both in com-
munications and in the movement of solid vehicles. Although these
topics are discussed, I want to continue the style of my previous
books and let the subject matter percolate up through a variety of
simple examples to engage the reader. That is why you will meet so
many different problem types from games to automata, postal routes
to map colouring, matchings to RNA reconstruction. The world of
networks is a wide one.

The descriptions by and large do not assume mathematical know-
ledge or habits of thinking and the development is based around
explaining what we mean by certain ordinary words in particular
contexts and straightforward ‘logical’ argument. However, I know
some of my readers do know a thing or two about mathematics
and would sometimes appreciate more explanation. For those of you
who wish to pursue these things without having to chase up another
source, the final chapter, ‘For Connoisseurs’, does give more in the
way of mathematical explanation. An asterisk in the text tells the
reader that more is said on a particular matter in this final chapter.

Peter Higgins
Colchester (2007)
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1
Nets, Trees, and Lies

The importance of networks has taken everyone by surprise. So
much of modern mathematics is about how one thing is related

to another, or more widely, how objects within a collection are
interrelated, and this idea is captured in the notion of a network.
And networks are just what you would imagine them to be—they
can be pictured as an array of dots on the page, called nodes or
vertices, with some of the dots joined to others by lines that we call
edges or arcs. These links could stand for physical connections by
bridges, roads, or wires, or less tangible connections by radio signals,
or abstract personal connections such as friendship or enmity, or
even the ancestral relationships of a family tree. This book reveals
something of the surprising and subtle nature of networks, or nets
as they can sometimes be called. Like nets themselves, it does not
have a linear structure but, as you read on, the overall picture will
become progressively clearer and the many sides of the subject will
begin to coalesce.

Who discovered networks? The question is almost like asking who
discovered drawing—the urge to start doodling pictures of networks
is almost overwhelming as soon as we begin thinking about a situ-
ation in which there is a multitude of connections. The advantage
of the picture is that it allows you to see all the connections at once
and we can remind ourselves of any one of them simply by flitting
our eyes around the diagram.

Perhaps networks have been underestimated because they are so
common, yet at the same time they seem to lack any structure. The
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mathematical topics that have been studied extensively for thou-
sands of years are numbers and geometry. Numbers are pervasive,
they allow us to tally and compare, and have an undeniable natural
order. Geometric objects are pretty and visual, providing all manner
of symmetries that can strike you before a word is said, so the
attraction of geometry is very powerful and immediate. Networks on
the other hand are none of these things. Networks are not numbers
of any kind, nor are they truly geometrical even though we can draw
pictures of them. They represent quite a different realm of mathe-
matics. And not only of mathematics, for everyone appreciates the
importance of networking—the real measure of our comprehension
of the world is our understanding of how all the various parts come
together and affect one another.

Moreover, the use of the word ‘network’ in this context is more
than just a metaphor. Some of the most difficult and technically
demanding research in the social and political sciences centres on
studying the nature of networks of international organizations of all
kinds, whether they be legal, cultural, and diplomatic, or scientific,
commercial, and sporting. Relatively small nations and organiza-
tions can have profound influence on world affairs. Sometimes this
can be tracked to their strategic or cultural importance or to dom-
inant individuals. However, substantial and sometimes less visible
influence often stems from the way they are placed within relevant
networks and how they draw from and feed into these webs.

It is fair to say that the first genuine problem in networks dates
to the eighteenth century when the famous Swiss mathematician,
Leonhard Euler, showed how to solve the now celebrated riddle of
the Bridges of Königsberg by finding a simple general principle that
dealt with any question of that kind. But more of that later. This
does alert us however to the fact that networks have been studied
from the mathematical viewpoint for centuries. None the less, it is
striking how their relative importance keeps growing and growing.
In part this is due to examples of networks springing up in modern
life—we need look no further than the internet to find a massive and
important instance of a network that has come into being almost
spontaneously. This network pervades most aspects of the modern
world and has taken on a life of its own. The internet acts as a vehicle
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for another network, the World Wide Web. These networks differ
in two ways, one physical and the other mathematical. The Web is
visible but intangible and floats on top of the internet, which is a
physical array consisting of routers and their connections. The Web
is also a directed network for there are links directed from one page
to another, but not necessarily in the reverse direction. This gives it
a very different character from networks in which all connections
are mutual and two-way.

It all goes much deeper than that however. Professional math-
ematicians have tended to have a similar reaction to that of the
general public to the underlying idea. The notion of a network of
connections is so simple and natural that there looks to be not
much to it. To be sure, even in the eighteenth century Euler showed
that even a simple example can yield an interesting problem. All
the same, it was felt that the depth and interest of the mathematics
involved could hardly be on a level comparable with really serious
science, such as that which explains how the Earth and the Heavens
move. Since the time of Isaac Newton, calculus, the mathemat-
ics of change and movement, has been a well-spring of scientific
inspiration and was seen as the heir to classical Greek geometry,
representing the pinnacle of mathematical practice and sophistica-
tion. Indeed Leonhard Euler himself perhaps did more than anyone
who has ever lived to develop the methods of Newton, the so-
called differential and integral calculus. By comparison, problems
about networks were regarded as a poor relation, little more than
recreational puzzles, fit only for those who could not contribute to
the really tough stuff.

Networks, however, spring many surprises. And they truly are
surprises because no one would expect objects with virtually no
mathematical structure to yield anything of interest. After all, a
network is any array of points on a page with lines drawn between
some of them in any fashion at all. The idea would seem to be far
too general to yield anything that went much beyond the obvious.
However, there is a whole world to be explored by those prepared to
search and the results have consequences for real networks of people
and telephone lines. For instance, at any party that ever there was,
or ever will be, or ever could be, there will be two people with the
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same number of friends at the gathering—this, and many results like
this, are unavoidable consequences of the nature of networks, as we
shall soon witness.

Part of the trouble has been that mathematics itself has been slow
to wake up to what was happening. Problems about networks keep
arising irresistibly, even when you are not looking for them. I myself
spend a lot of time on my own speciality that is a certain area of
algebra. What has happened in my own field has been mirrored
elsewhere. Certain intractable problems have arisen and, in the
end, progress is only made when they are represented in terms of
networks whereupon it transpires that what is holding you up is a
question about whether or not certain patterns can or cannot arise
in a network. No use sneering—it turns out that nets were really
what you have been studying all along.

If your own research topic, stripped of its pretensions, can be cast
in terms of networks, you can feel taken down a peg if you had
believed that your work was far above such mundane matters. After
all, anyone can understand a network. Indeed that is one of the
attractions of the subject. It is immediately accessible to everyone
and having an encyclopaedic mathematical knowledge often does
not help that much in the real world problems that arise. Sometimes
though, the reverse is true. Some problems in the theory of net-
works have been tamed by the use of very sophisticated mathe-
matics and you will see glimpses of why that should be so as our
story unfolds. Nonetheless it has not been possible to subsume the
theory of networks into an environment where all the problems
that arise can be, in principle, dealt with by a standard body of
mathematics.

It is true that we may generalize the idea of a network in sev-
eral ways. There is a branch of mathematics known in the trade
as matroid theory which, for example, includes networks under its
umbrella. When problems of matroids are solved, they automati-
cally have consequences in the theory of networks. This does not
mean, however, that the study of networks has been genuinely
superseded. To explain with a more common analogy, we all know
that any ordinary counting number, such as 6, can be represented
by a fraction, 6/1. We have a very good understanding of fractions,
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but that does not mean that the theory allows us to solve all
important problems about whole numbers. Placing a question in a
wider setting does not automatically augment your comprehension
of it. Indeed it might be a misguided distraction that will not help
at all.

In this opening chapter, we begin with the simplest kind of net-
work, that which resembles a tree. At first glance, some of our moti-
vating questions may seem to have nothing to do with networks of
any kind but, as you will see, the connections lie there, not far below
the surface.

Trees

Before we begin explaining things using trees it is best to pause to
say just what we mean by this term, tree. The name suggests that the
picture of a tree should have a trunk with branches and twigs stem-
ming from it. That is largely the case although there is not always an
obvious trunk to a mathematical tree. One mathematically precise
way of defining a tree is a network where there is exactly one path
between every pair of nodes. Equivalently, a tree is a connected
network (one that comes in one piece) that is free of cycles. Yet
another way of looking at trees is as the networks that are connected
and have one more node than edges.∗1

Figure 1.1 is the family of all trees with six nodes (and so five
edges). You can check for yourself that there is only one possible
tree with each of one, two, or three nodes. However, with four nodes
you will be able to draw two different trees, with five nodes there are
three trees and, as you can see, with six nodes there are six. After that
it gets complicated: with seven nodes there are also six distinctly
different trees but with eight nodes you can find twenty-three in
all. Going beyond this, the numbers grow quickly although rather
erratically. There are 104,636,890 different trees that can be drawn
with just twenty-five nodes.

1 We will not stop to demonstrate mathematical facts such as these. However, an

asterisk indicates that the matter is dealt with more fully in the final chapter, ‘For

Connoisseurs’.
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(b)

(d)

(e)

(f)

(c)

(a)

Figure 1.1 All trees with six nodes

Nevertheless, by hunting through systematically, you can find
them all. For example, for six nodes, there is just one tree with a
longest path of length 5 (a), two with a longest path of length 4,
(b) and (c), two where the longest path has length 3, (d) and (f),
and just one that contains no paths longer than 2, that being (e).
We see there is an essential difference between (b) and (c)—both
have a node of degree 3, meaning there is one node that has three
neighbours, but in (b) this node is adjacent to two endpoints, which
is not the case for tree (c). By the same token, (d) has a node of
degree 4 whereas (f) does not, so these pictures represent different
trees. Indeed these observations suggest another way of categorizing
the trees that we meet: tree (a) is the only one with no node of
degree more than 2; trees (b), (c), and (f) have a maximum degree of
3, while (d) is the only one where the maximum degree is 4. If we
introduce a node of degree 5, then all we can draw is the ‘star’ we
see in network (e).
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You might convince yourself for a time that you have drawn
another tree on six nodes that is different from the six listed above.
However, you will find that if you imagine your tree made of five
stiff rods linked together by movable joints, you will be able to
manipulate your tree to fit one of the above pictures. The simple
classification type arguments of the above paragraph should help
you quickly to identify the right candidate.

One aspect that comes to the fore when discussing networks is
that many simple ideas arise that have quite natural names. Up
till this point we have used the words node, edge, path, cycle,
connected, and degree, rather casually. Mathematicians fuss a little
about the precise meaning of these words (although they don’t
always quite concur as to which word means what). For example
a path is not allowed to go back on itself—that is to say, in a path
we are not allowed to traverse an edge and retrace it in the opposite
direction later; if you do then your ‘path’ becomes a mere ‘walk’. We
also distinguish between a circuit and a cycle: a circuit returns to its
starting point but is permitted to cross itself along the way, as in a
figure-of-eight. In other words, in a circuit, nodes may be revisited
although edges are used only once. A cycle on the other hand, also
known as a simple circuit, does not cross itself as you traverse it.

A serious study of trees would require us to explain precisely what
we mean when we say that two pictures represent the ‘same’ tree.
However, such precision, although necessary in the long run, can
wait for the time being as we are keen to visit some real problems.

Before moving on to examples, however, it is worth taking a
moment in order to illustrate the terms introduced. The network
of Figure 1.2 serves this purpose (without having any particular
meaning of its own). The network has three components, by which
we mean connected pieces, although the middle component merely
consists of an isolated node d with no edges connected to it. Between
nodes a and b there are multiple edges, as there are between f and h.
We say that two nodes are adjacent if they have an edge running
between them and two edges are adjacent if they share a common
node. We also say that an edge is incident with the nodes at either
end. The degree of a node is the number of edges incident with it so
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a b

c
d

e f

g h

Figure 1.2 A typical network

that the degree of node a is 3, that of h is 4, while that of d is 0.
At c we see a loop, which is an edge that starts and finishes at the
same node so that the degree of c is also taken to be 4 as the loop at
this vertex counts twice. We call a node even if it is of even degree
(and 0 is included among the even numbers); otherwise the node
is odd.

An example of a path in this network is e → g → h → f , although
there are two edges possible for the passage from h to f . For a walk
to be called a path we normally insist that there are no repeated
vertices, that is to say a path does not cross itself. A trail on the
other hand is allowed to do this and an example of a trail that is
not a path is e → h → f → e → g → h. A closed trail is a circuit: for
example a → b → c → c → a is a circuit as it returns to its starting
point (from where ever you begin).

The most general type of passage through a network is called
a walk for here we are allowed to repeat vertices and edges if
we choose. An example of a walk that is not a trail (and so not
a path either) is e → g → h → g → e → f . An example of a cycle
is e → g → h → e. As you see, there are many terms involved in
traversing a network and their usage is not completely standard.
Just occasionally, then, it becomes necessary to pause and spell out
exactly what you mean when talking about traversing a network in
a particular way, making it clear what you are and are not allowed
to do.

A cycle is sometimes called a simple circuit, while a simple network
is one in which no loops or multiple edges are permitted. In many
books, especially mathematics texts, the term graph is used in place
of network. Indeed the entire subject is referred to in the official
literature as graph theory. This takes a bit of getting used to as the
word ‘graph’ is also taken to mean the plot of a function, not
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just in mathematics but in everyday language. The term network
is often reserved for graphs that carry additional information on
their vertices and edges, especially when the network is a model of a
real set of connections of real objects so that edges might represent
pipelines or economic costs. We shall stick to the term network or
occasionally just nets.

Chemical isomers

Despite their simplicity, no one seemed to have recognized trees as
objects worthy of investigation until the mid-nineteenth century.
Often it takes a first-rate scientist to appreciate that a topic that looks
so simple as to be beneath serious notice is truly important. The first
person to study and use trees seems to have been Gustav Kirchhoff in
1847 when devising the laws that govern electrical circuitry. We will
return to this direction in Chapter 7. On the other hand, the famous
British algebraist Arthur Cayley began studying trees around 1857.
He was motivated not only by curiousity but rather was prompted by
particular problems. He was first led in this direction by something
rather technical, although mathematically important: the nature of
the Chain Rule of differential calculus when applied to functions of
several variables.

The same diagrams that we now call trees arose in a totally dif-
ferent setting, which is that of enumerating the so-called isomers
of the saturated hydrocarbons—that is molecules with chemical
formulas of the form CnH2n+2, where C and H stand respectively
for a carbon and hydrogen atom. Essentially Arthur Cayley (1821–
95) was trying to find all the trees in which every node is either
an endpoint or has degree four, as four is the valency of carbon—
the maximum, and chemically preferred, number of bonds a car-
bon atom may make with other atoms. For this historical rea-
son, the degree of a node in a network is still referred to as its
valency in some books. The five smallest saturated hydrocarbons
have their trees displayed in Figure 1.3: the endpoints are occu-
pied by hydrogen atoms while the other nodes are taken up by
carbon.
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Methane

Ethane

Propane

Butane

Isobutane

Figure 1.3 Trees of the simple saturated hydrocarbons

Lying liars and the lies they tell

A situation in which tree diagrams naturally arise is in the analysis
of a procedure where a succession of decisions is made leading to
the process evolving along a path with many forks. This is just what
happens in logic puzzles and one of the most elementary of these
puzzles concerns two tribes, one truthful and the other liars. The
standard version is that you meet a native at a fork in the road and
you need to find which way to go. You cannot tell by appearances if
he is truthful or a liar and the rule is that you may ask only one
question. There is obviously no value in asking which road you
should take and the standard solution is to ask, ‘Which road would
a member of the other tribe direct me along?’ The native, whether a
liar or not, will then indicate the wrong road and you then reply by
saying, ‘Well, we know not to pay any attention to them’ and set off
down the other.
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I have always thought that this course of action was a little unwise
as it carries with it the double risk of both confusing yourself and
offending the native. You can, after all, get the truth straight away
by simply saying to him, ‘Which road would you tell me to take if I
asked you?’ You will then be shown the correct path as a lying native
will be forced to lie about his lying. This question guarantees you a
true answer while providing the diplomatic bonus of not having to
bring up the potentially unwelcome subject of the other tribe.

Indeed this trick applies to any query you care to put to a native of
this strange land. As long as you phrase your questions in the style,
‘What would you say if I asked you . . . ’ you will never be misled.
However, if the natives start speaking of their own accord, they are
liable to cause mischief.

Suppose you meet up with three of them, A, B, and C who are not
too forthcoming about their tribal allegiances. Indeed C refuses to
speak at all, A merely offers the coy remark, ‘Some of us are liars,’
while B volunteers, ‘A would call C my tribal brother!’ What are we
to make of this trio? From which tribes do A, B, and C come?

How can we analyse a situation like this? We can display the
possibilities on offer as a tree. Each of the three natives has two
possibilities for his tribe so the full set of tribal allegiances of the
trio consists of 2 × 2 × 2 = 8 possibilities. We exhibit all eight in the
network of Figure 1.4.

In deference to the traditional setting for this problem type, I will
continue to refer to the two types of people as ‘tribes’. In some
modern treatments, this place of logic and confusion is referred to
as ‘The Land of Knaves and Knights’, a creation of the American
logician Raymond Smullyan, where the Knaves are the liars and the
Knights are always truthful. Of course, it all amounts to the same
thing.

The node at the top is labelled A, those on the second level B,
and the four at the third level, C. Each line, or edge as the lines of
a network are more often called, is labelled by either T or L: those
to the left labelled by T indicating that the native represented by
the corresponding node above is truthful while those to the right
indicating the opposite, that being they are liars. The procedure we
adopt is that of a tree search: each path from the top node (the root) to
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T

T

L

L

L

LLL

T

TT

L
C

CCCC

B B

A

T

T

Figure 1.4 Tree of all possible tribal allegiances

an endpoint represents a potential resolution of the tribal allegiance
question. We check all eight paths from the root to the bottom level
and discard any that contradict the facts as given in the problem. If
we are lucky and there is but one successful path, that will correspond
to a unique resolution of the tribal membership problem. Conceiv-
ably, however, there could be several successful paths, in other words
several solutions consistent with what the natives have told you.
This would mean that you have not yet learnt enough to be sure of
their respective tribal memberships.

With a little good fortune, you will not have to conduct a full
search of all paths. A path may lead to contradiction at the first
or second stage, allowing us to eliminate more than one path in a
single stroke: if an edge gives contradiction we can ‘prune’ all of the
tree from the corresponding node downwards. Indeed that is what
happens here when we consider the statement of A. He tells us that
some of the trio (that is, at least one of them) are liars. This must be
true, for if it were false that would make A a liar, showing that A in
fact spoke the truth! The only way to avoid contradiction then is for
A to be truthful and so his statement is also. It follows at once that
the right-hand four paths in our tree of possibilities, encircled by
a dotted curve in the diagram, are eliminated as they each begin
with an edge labelled L emanating from A, which represents an
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impossible situation. Only the possibilities represented by the left-
hand side of the tree are still standing.

Let us now looks at the other four paths in turn. There are two
paths beginning with TT. In this case B is truthful as well, and
so his statement that A would declare that C and he are brothers
would also be true. However, the truthful A would only say this
if C and B were both truthful, eliminating the TTL path, leaving
TTT. However, if all three were from the truthful tribe, the truthful
A would not have said some of them are liars, so this branch also
yields contradiction. Therefore both TTT and TTL are pruned from
the tree of possibilities.

The only remaining paths are TLT and TLL—in other words we
are sure that A is truthful but B is a liar and so only the tribal
allegiance of the silent member of the trio is any longer in doubt.
Now since B is a liar, his statement concerning A must be false, as
this applies to everything he ever says. Suppose now that C were also
a liar. Since B’s claim about A is false, A would not say that B and C
were of the same tribe—but since this pathway represents a scenario
where B and C are of the one tribe (lying brothers), this would mean
that A would also be lying, something he just never does. Hence we
have reached another contradiction and so C is a truth teller and the
remaining path, TLT, is the correct one.

We should check that TLT is really consistent with what we have
been told, just in case we have somehow misheard what A and B
have said. In this pathway, B is lying about what A would say: A
would not say that B and the taciturn C are brothers, and since B is
a liar and C is not, this would be consistent.

In summary, we conclude that B is the only liar in the group and
that C, should he ever choose to speak, will speak the truth.

Of course, in any legitimate scenario like this one there has to be
at least one solution to the tribal membership question, as otherwise
the scene could never have come to pass in the first place. If, how-
ever, one just imagines a collection of natives saying this and that,
there could be unavoidable contradiction in the problem that may
or may not be obvious on a first hearing. For example, you would
never meet a native of this strange land who would say candidly,
as you or I might, ‘Yes, I do lie sometimes.’ Even the most modest
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member of the Truth Tribe could never say this, as it would be a
lie, while a member of the lying tribe could never say it either as it
would be the truth!

Problems like the previous one on our two tribes can be quite fun
but it is crucial to get the meaning of the wording absolutely clear.
Under one interpretation, the TLL solution is also feasible. It may
be that A would not say that B and C are brothers simply because
he may refuse to make any such statement even though it is true. If
that were so, even though B and C are brothers, B is (technically)
lying when he says that A would call them brothers. Being in the
company of liars, A may find it circumspect to say nothing more
than he already has, while B might be a more cunning liar than we
gave him credit for.

In setting up our tree of possibilities, I began with A at the top
because I analysed the situation first by looking at what A was
saying. However we could similarly analyse all this beginning with
what B has to say, an exercise you might care to try yourself.

This is all reminiscent of the ancient paradox of Epimenides of
Knossus (c.600 BC) who famously asserted that ‘Cretans always lie,’
even though he himself was a Cretan. If Epimenides had only said
that Cretans are liars, simply meaning that they could not be trusted
to tell the truth, then the statement could well have been true and
apply to himself also. However, he made a stronger claim, that being
that Cretans all belong to a Lying Tribe, and this is paradoxical
as it should then not be possible for a Cretan to implicitly call
himself a liar in this way. The statement of Epimenides therefore
leads to contradiction if we assume that it is true but does it also
yield contradiction if we take it to be false? It would seem that the
ordinary commonsense meaning can be reconciled with logic by
assuming that Epimenides is a liar, at least in this instance, but that
some Cretans are not.

However, this leads to a strange conclusion in itself, for we then
seem to be claiming that we now know, beyond any doubt, a certain
fact about Cretans from a single statement made by one Cretan
that is in any case false. This surely does not make sense—we have
never come across any of the other Cretans from 2,600 years ago
and we know nothing about Epimenides but this one inconsistent
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statement, so how can we know anything about them with any
certainty?

There seems to be more to be said about this, however we look at
it. The twin spectres of self-reference and unknowable existence will
raise themselves again later when we consider a famous theorem of
Brouwer on fixed points, which in turn returns us to the question: Is
it reasonable to take for granted that every statement we could ever
make is either true or false?

We close this chapter with a couple of further examples involving
fibbing. Can you dispense justice in the following situation? Four
children are playing when the window is broken. Alex says that
Barbara did it, Barbara says that Caroline did it, while both Caroline
and David say they didn’t see what happened. Assuming only the
guilty child is not telling the truth, who broke the window?

Returning to our natives: suppose that you meet up with a pair of
them and the first says that the other is a liar to which the second
responds by claiming that they are from different tribes. What tribes
are they from?

As mentioned before, sometimes you may only be able to infer
a partial solution to the problem from what the natives tell you.
A scenario that arises all too often in Courts of Law is where two
defendants accuse one another of the crime. All that you can be
sure of is that at least one is a liar but the jury cannot convict
either of them from this evidence alone. If you meet two tribesmen
who assert that the other is a liar you can be sure of a little more.
Since the tribesmen always lie or never lie, you can deduce that you
have exactly one member from each of the two tribes, but symmetry
precludes you from deciding which is which!

As a final mindbender from the Land of the Two Tribes, suppose
you come across a whole string of them—A says B is a liar, B says
that C is a liar, C says the next in line is a liar, and so on, right down
to the last man who says that they are all liars except for him. What
is going on here?∗
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2
Trees and Games of Logic

M any games and puzzles, perhaps more than you realize, are tree
searches. Examples include games like Mastermind and puzzles

such as the modern creation known by the Japanese name of Su
Doku,1 although this puzzle type seems first to have appeared in the
US-based Dell magazine many years earlier. The most difficult are the
board games such as checkers and chess.

Familiar logic games

The simplest is tic-tac-toe or noughts and crosses. This pastime is
complicated enough to be a real game yet simple enough for we
humans to master it completely.

The first player marks his cross in any of the nine squares while the
second player counters with her noughts. They continue until one
or other gets three of their symbols in a line (horizontal, vertical,
or diagonal) or until all nine squares are occupied without this
happening in which case the game is drawn. It is obviously a big
advantage to go first in this game, yet, if the second player is careful,
she can avoid defeat and even win if the first is careless.

Many other popular games are the same as tic-tac-toe in that
players move in turns and each battles to take the game down a
favourable path in the tree or at worst avoid an unfavourable path.

1 Or simply Sudoku, the literal translation of which is ‘single number’.
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Co Ce S
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Figure 2.1 First pair of moves for noughts and crosses

Generally, though, the trees are so big that it is not possible for a
human and sometimes even a computer to be absolutely safe by
checking all final outcomes at every stage.

The full tree for tic-tac-toe is still quite complicated. It consists of
an inital node with nine levels below, the first corresponding to all
possible game positions after Cross has his first move, the second to
all positions that could arise after each player has had one move,
and so on. Of course some paths down the tree finish early because
they lead to a game in which one or other of the players has won.

Although there are nine initial moves for Cross, there are really
only three genuinely different positions the game can adopt after
the first move: either the first X has been placed in a corner, in
the centre, or in a side square; for that reason the initial node has
but three offspring nodes, marked in Figure 2.1 as Co (Corner), Ce
(Centre), and S (Side) respectively. If Cross does choose the centre
square first, there are only two truly different responses by Noughts:
either she goes for the Corner or a Side square, and both possibilities
are drawn in the partial tree in the diagram. The shaded nodes
correspond to the game that begins as in Figure 2.1, taken to the
second stage as the picture shows. As we know from experience,
Noughts has enough control over the game so that, on her turn,
she can always direct the game down a path in the tree that can
avoid a node in which Cross wins, although a thorough analysis of
all possibilities is required to verify this. All the same, it is not too
hard to do.
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One game that is perhaps a bit too tough for most humans but
which computers can totally master is Connect Four. In this game
opponents take it in turn to drop red and gold coloured plastic
discs into one of seven possible slots of a vertically mounted board.
Each slot can support a column of up to six discs. On each turn, a
player has at most seven choices of column into which to drop his
disc. Like tic-tac-toe, you win by being the first to create a row, this
time of length four, in your colour. By symmetry of the board, the
initial node of the game tree has just four offspring, but after that
the number of possibilities mushrooms giving a game with a huge
number of variations. What is more, this tree goes much deeper:
there are not merely nine levels below the starting node but 42,
corresponding to the 7 × 6 places on the board, each of which can
represent the placement of a disc, and so a turn of one player or the
other. Once more, the opening colour (red) has an advantage but,
seeing as Connect Four is a relatively long game, we might expect
that the advantage is not decisive. Surprisingly, however, it turned
out that Connect Four is a forced win for red: with best play, the
player who goes first can always ensure that he wins—there are now
computer programs that win every time in Connect Four if they are
allowed to go first.2

The Chess Tree, like that of the two previous games, consists of
one node for every possible position that could arise in the course of
a game of chess. Each node has a number of edges emanating from
it, one for each possible move from that position. The number of
edges coming from a node varies between 0 when a game has ended
or reached a stalemate where no move is possible,3 up to about 30—
if you count the number of moves available to you at any point in a
chess game, it is rare to find you have more options than about this
number. The playing of any one game of chess involves following a
path down the tree from the common starting position of all games
to some endpoint of the tree representing a completed game. Your

2 This was verified independently by two men: the Dutch artificial intelligence

researcher Victor Allis and the Californian computer scientist James D. Allen.
3 According to the rules of chess, if a player, on his turn to move, is not in check but

has no legal move, the game is at a stalemate, and is declared a draw, an outcome that

arises in real games on odd occasions.
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task at each stage is to pick a good move—one that leaves you in
a section of the tree where you can win or at least draw. However,
the choice of move at the odd numbered levels, the first, third, fifth,
and so on are the preserve of white (who always has the privilege of
the opening move) and the even numbered levels belong to black.
Ideally you want to lead the game down a path in which you can
ensure that you win. If this is achieved players say that, from this
particular position, you have a forced win. If you reach a node where
you have a forced win, it does not mean that all endpoints from this
point on lead to you winning, for it is virtually always possible to
squander a winning position. It does mean, however, that whatever
branch your opponent chooses from this point onwards, you can, by
making a suitable move, direct the game down a branch that finishes
with his king being the victim of checkmate. Presumably this does
not apply to the initial position, but that is something that has not
been proved.

Checkers is a similar game to chess, indeed it is played on the same
board. The tree representing all possible checkers games also extends
to many levels although the branching at each node is less vigorous.
Compared with chess, at a typical position in the game, the player
has fewer alternative moves from which to choose. In both chess
and checkers it is also true that most moves on offer are obviously
bad and this will be clear to any experienced player. For that reason
it is possible for the best checkers players to look many moves ahead,
they say up to thirty at times. In chess, even the grandmasters are
not mentally searching down the tree of all possibilities to that kind
of depth: the top players generally only ‘see’ the board about half a
dozen moves ahead. A game of chess is sometimes likened to looking
across a broad field while in checkers the players are peering into a
deep well.4

Another member of the club of ancient board games is the orien-
tal pastime of Go, a game of competing black and white counters
played on a large 19 × 19 board. Each player jostles for space as they
connect with their own counters to surround and remove those of

4 A group based at the University of Alberta now claim to have solved checkers in

that their program is unbeatable. In particular, this shows that the initial position is a

drawn one. See www.cs.alberta.ca/∼chinook/news/.
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their opponents. The tree of possibilities here must be enormous and
as yet it is claimed that no computer program can compete with the
true masters. Nonetheless, it is a game that looks ripe for attack by
a powerful computer primed with a cunning program. This seems
even more plausible as computers now reign supreme in the similar-
looking game known as Reversi or Othello. Othello is named after
Shakespeare’s famous Moorish character who treacherously had the
tables turned on him by the two-faced Iago. This game is played with
black and white counters on an 8 × 8 board where besieged pieces
are inverted and thereby have their colour reversed to that of their
opponent.

The trouble with trees like the chess tree is that they are so
enormous it is impossible to conduct a full search. Even modern
computers have no hope of searching anything like the whole chess
tree. Both human and computer chess players rely on heuristics, that
is rules of thumb, to guide their local search of the tree: a game
position represents a particular node in the chess tree. Whether you
are a human or a machine you will be able to examine completely
only a portion of the tree below this node, which corresponds to
all possible ‘near futures’ in the game. Ordinary players rarely look
more than a couple of moves ahead. Grand masters sometimes
directly take account of all possibilities up to the next dozen moves,
although brute force calculation is only one weapon in their arsenal.
Computer programs on the other hand do try to handle as much
of the tree as they can cope with. However, to be effective, they
also have to have simple rules that tell them when not to bother
searching one branch of the tree while persevering with another.
One rule for instance might be, if a series of future moves ends with
a piece being removed from the board, do not halt the search of
that branch but look down one more level to all configurations.
Eventually, however, the computer will have to give up the search
and choose one move, that is one branch of the tree, which is rated
as the best by some measure that the programmer has built in.

Computers and humans are both very good at chess but their
approaches are different. The more successful programs have not
tried to create machines that mimic human thinking but rather
exploit the strength of the computer, which is massive memory
recall and direct computational power. It is an interesting facet of
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modern chess to have two fundamentally different kinds of player
with contrasting strengths and weaknesses. A human player might
seek to ‘rattle’ his computer opponent by negating its computational
skill. This could be done by the human using openings of which
they have special knowledge or making the game very messy and
complicated and so give the machine a scrappy fight. If the human
can put the program in positions that its decision rules do not cope
with well, the computer is liable to do something dumb. To the
amused onlookers it will appear that the poor machine has got flus-
tered. The computer on the other hand should seek to control the
number of possibilities so that its computational power would allow
it to gaze much deeper into the game than its human opponent who
would then be left floundering and out of his depth.

A classic example where a suitable tree search quickly solves a
conundrum is that of the Counterfeit Coin. There are nine coins,
one of which is fake and can be detected because it is a bit too light
compared with the genuine article. You have a set of balances you
can use to identify the dud coin but the task is made more of a
challenge by you being confined to just two weighings before you
flush out the imposter. A tree with just three levels does the job
(Figure 2.2).

The idea is to use the scales to eliminate two thirds of the possibil-
ities at each weighing. We imagine the coins numbered 1 through
to 9 and we compare the collective weights of the sets {1, 2, 3}

123

3

1 2 3 4

1 4

5 6 7 8 9

6

789

7 9

Figure 2.2 A tree to detect the counterfeit coin



TREES AND GAMES OF LOGIC 23

and {7, 8, 9} as represented by the first node of the tree. At each
stage we move to the left down the tree if the left-hand side of
the scale is the lighter, to the right in the opposite case and, if
the scale remains in balance, we move down the middle. After two
weighings this will lead you to the false coin. For example, if 8 is
the fake, the first weighing will see a light right-hand scale, so we
know the culprit is one of 7, 8, or 9. We move down the right-hand
branch of the tree and compare the weights of 7 and 9. They will
of course be in balance and so we move down the central branch
emanating from that node and conclude that it is coin 8 that is the
fake.

This procedure can be applied to any number of coins with a
similar result based on a ternary tree, one in which each node has
three branches.∗ The problem is much tougher if it is not known
whether the bad coin is lighter or heavier, just that its weight differs
from that of a true coin.5

Exotic squares and Sudoku

The most recent logic puzzle to catch the global imagination is the
Japanese game challenge of Sudoku.6 We introduce these puzzles by
way of a short digression. The game of Sudoku is based on the idea
of a Latin Square, which should not in any way be confused with
Magic Squares.

A magic square is a square array of numbers in which every row,
column, and diagonal sum to the same number. Constructing a
magic square is a problem in arithmetic rather than straight logical
analysis.

Figure 2.3 shows two of the more famous magic squares. The first
is known as the Lo-shu and was discovered in China some thousands

5 To see these trickier versions tackled you can browse the web page <http://

www.iwnteiam.nl/Ha12coins.html>.
6 The history of Sudoku is now well documented: its modern origin was in the States

although it seems to have enjoyed a brief popular life in France around the end of

the nineteenth century. This is not unlike the history of Reversi, which originated in

nineteenth-century England, but only became widely popular after being taken up in

Japan in the 1970s.
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Figure 2.3 Two famous magic squares

of years ago. The numbers 1 through to 9 are arranged so that every
line and diagonal sum to 15. This is really the only 3 × 3 magic
square featuring the first nine numbers: any other you might come
up with can be realized by taking the Lo-shu and rotating it about
its centre or reflecting it about its diagonals or sides.

When we pass to larger squares things get more complicated. The
4 × 4 square appears in a picture engraved by Albrecht Durer. The
magic number that represents the sum of every line in this case is
34. (If we use the numbers 1 through to 16, the common line sum
has to be 34, as that is one quarter of 136, the sum of all the
numbers in the square.) The date of the engraving is also there for
all to see, 1514, but the square has other magical features as well.
Each quadrant also sums to 34 (for example 7 + 12 + 1 + 14), as do
the set of four numbers that make up the middle of the square.
Surprisingly, there are more symmetries still: if we glue the top
edge to the bottom, the 4 × 4 square we see also respects the magic
sum: 3 + 2 + 14 + 15 = 34, and the same happens when we stick the
vertical sides together: 5 + 9 + 12 + 8 = 34, and the four corners add
up to 34 as well.

A Latin Square on the other hand displays a symmetry that is not
about arithmetic but is more about balance: a Latin Square is an
n × n array where each of n distinct symbols appears exactly once
in every row and every column. The symbols used are often the
numbers 1 through to n but that is just for convenience as they
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Figure 2.4 Family Graeco-Latin Square

can be any symbols you fancy such as letters of the alphabet, signs
of the zodiac, or even colours.

It is not hard to make a Latin Square of any size n: just write down
the numbers 1 through to n for your first row, do the same for your
second row except this time start from 2, start the third row from
3, and so on, writing each row in cyclic order. And there are lots of
other ways of dreaming up Latin Squares.∗

A more interesting challenge is that of finding so called Graeco-
Latin Squares, which we introduce by way of a problem. Suppose we
have three families, named Adams, Baker, and Collins, which each
consist of a Mum, Dad, and Son.

Can we arrange all nine in a square so that each family and
each type of family member is represented in every row and
every column?

This seems to be quite a tall order but it can be done as is seen in
Figure 2.4. Each person carries two labels: their family name and the
type of family member they are and each of these labels is present in
every line. (But not every diagonal—the Collins family have a diago-
nal all their own while the Dads monopolize the opposite diagonal.)

Can we extend this to larger squares? In the 4 × 4 case we might
imagine four families each with two parents, a son, and a daughter.
Before we answer this it might be best to pause to examine what it is
we are attempting, which is to place two Latin Squares, one on top
of the other, in a certain way.

Imagine we had for instance a 4 × 4 Latin Square made up of the
first four letters of our Roman alphabet and another made from
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the first four letters of the Greek alphabet, ·, ‚, „, ‰. If we were to
superimpose the Roman Square on top of the Greek Square each
of the letters A, B, C, D and ·, ‚, „, ‰ would appear just the once in
each row and column of the square. The Graeco-Latin challenge now
arises as follows. For any such n × n square the number of possible
pairs of one Roman letter with one Greek letter is also n × n: in the
case of a 4 × 4 square there are 16 pairs possible featuring one Roman
and one of the Greek letters.

Is it possible to choose the Roman and Greek squares so that
every pairing of letters occurs in the superimposed squares?

We have already done this for the 3 × 3 square. It turns out that
the answer is ‘yes’ for squares of orders 3,4, and 5, where by order, I
mean the number n for an n × n square. Figure 2.5 exhibits solutions
for the n = 4 and n = 5 cases, although instead of Greek letters we
have used lower case Roman letters as they serve just as well: in
each row and column each capital and each lower case letter appears
exactly the once and every possible pairing from the two sets occurs
somewhere in the array.

Beautifully balanced arrays like this are very useful in the design
of real experimental trials for they allow, for example, the thorough
mixing of pairs of treatment types over a field.

In the eighteenth century, Leonhard Euler, who we will meet
on more than one occasion in this book, showed how to make

Cd Db
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Aa Bd Cb De Ec

Ce Ea

Cc Da Ed Ab Be

Dd Eb Ae Bc Ca

Ac Cd

Ad

Ee Ba Db

Bb Dc

Da Ab BdCc

BcAa

Dc Ca

CbDd

Figure 2.5 Graeco-Latin squares of orders four and five
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Graeco-Latin squares of order n for any odd number or any num-
ber that was a multiple of four. However the other even numbers,
2, 6, 10, 14, . . . would not cooperate and the corresponding Graeco-
Latin squares remained elusive.

It is obvious, and you will soon convince yourself should you
try, that there is no 2 × 2 Graeco-Latin square. Euler then set the
challenge for n = 6 by way of his Ranks and Regiments problem.
There are six ranks and six regiments and they want to send a
marching square of 6 × 6 through the town with every rank and
every regiment represented in each row and file and with every reg-
iment being represented by each rank (and so, in consequence, vice
versa). We see that Euler was in effect asking for the construction
of a Graeco-Latin square of order six. He conjectured that it simply
could not be done and he went further to suggest that there were
no Graeco-Latin squares of order n if the number n has the form
4m + 2.7

There the matter stood for over a hundred years until in 1901
Gaston Terry showed that Euler was right about his ranks and regi-
ments and there simply was no Graeco-Latin square of order 6. This
strengthened the general belief that Euler had been right all along
but no further progress was made for over fifty years. Then, in 1959,
some counterexamples to Euler’s Conjecture were discovered and
soon an example was found of a Graeco-Latin Square of order 10—
this proved to be quite a sensation at the time, featuring promi-
nently in the New York Times. It did have the making of a good story
as the papers could not only explain the question but could print the
solution for everyone to see. This psychological breakthrough led to
an avalanche and in 1959 Bose, Shrikhande, and Parker showed that
Euler was, on this occasion, almost as wrong as can be. There are
Graeco-Latin squares of any order greater than 2 except for n = 6. In
the entire infinity of numbers, only Euler’s Ranks and Regiments are
fated never to find a solution.

Returning to the new fashion of Sudoku problems, they are
all based on 9 × 9 Latin Squares, and so the symbols used are

7 These numbers are known troublemakers—they are the only ones that are not the

difference of two squares.∗
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conveniently taken to be the numerals 1 through to 9. The puzzle-
setter gives the player a partial Latin Square to complete with the
added proviso that each symbol has to appear in each of the nine 3 × 3
squares that make up the big square. Like most crosswords, the given
display is usually symmetric with respect to the pattern of occupied
cells. In the case of Figure 2.6, the picture possesses rotational sym-
metry through a half turn about the centre, due to its reflectional
symmetry through horizontal and vertical axes through the same
point. This visually attractive feature was not always present in the
original versions known as ‘Number Place’ in Dell magazine in the
early 1980s. However, it is not an important aspect of the challenge,
as the symmetry does not extend to the structure of the puzzle
itself in that the logical interactions between the numbers are not
symmetric: for example, in the puzzle below, if you work out the
square in the top left corner that does not automatically give you the
bottom right-hand corner ‘for free’ by replicating the corresponding
pattern of numbers.

Again, when playing the more difficult Sudoku, the reader is in
for a tree search, testing successive guesses until she gets stuck, in
which case the player has to re-trace one or more steps up the tree
and try another branch instead—it can be a very complicated busi-
ness. A fine training session can be found on <http://www.sudoku.
org.uk/PDF/Solving_Sudoku.pdf>. The setter always guarantees that
there is a solution to Sudoku and that it is unique: there is one and
only one path down the tree that terminates with a full Latin Square
in which every minor box has every digit as well. Old hands of
this new sport will not find the puzzle of Figure 2.6 too much of
a challenge.∗

In general there are lots of ways of completing a Latin square,
although it is possible to get stuck. You can reach a stage, as in
Figure 2.7, where although you have not broken the rule as yet, you
cannot complete the square as there is one cell where, no matter
which number you insert, there will be a duplication in its row or its
column.

However, this example shows the fastest way possible to foul up
the square—there is a remarkable result that if fewer than n symbols
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Figure 2.6 Sudoku Puzzle

are placed in an n × n square in such a way that no row or column
contains a repeat, then it is always possible to complete this partial
Latin square to a full one, although perhaps in more than one way.
This was first conjectured by Trevor Evans in 1960 but it took twenty
years before a proof was found. The proof is only a few pages long
but is very delicate and clever—it is considered by some to be one
of the prettiest proofs in the world and so merits a place in the
compendium of stunning mathematical tricks: Proofs from the Book,
by Aigner and Ziegler.

321

5

4

Figure 2.7 A partial Latin square that cannot be completed
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When constructing Latin Squares row by row, at any stage we have
a Latin Rectangle, that is to say an m-row and n-column rectangle,
with m no more than n, such that no number appears twice in any
row or column but, because the square is incomplete, only m of the
n numbers yet appear in each column. The question then arises as
to whether it is always possible to keep building the rectangle up to
a square or might we become thwarted, with no way to continue.
It turns out that it is always possible to complete any m× n Latin
rectangle to a full n × n Latin square and we will be able to explain
why in a later chapter. Astonishingly, it is a fact that can be deduced
as a consequence of studying the maximum capacity that can flow
through a network of pipes.

As a variant on the traditional Sudoku, I can offer you the next
puzzle (Figure 2.8) that is a circular version of the same idea.
Each of the four rings and eight quarter circles are to carry each
of the numbers 1 through to 8. The solution is unique and can
be found in the final chapter along with some hints on how to
solve this problem type.∗ Although different from orthodox Sudoku,
it is similar in that Latin Squares have slipped into the puzzle,
even though they are not visible at first glance. Once you appre-
ciate this, you should be able to solve the problem relatively eas-
ily, without having to guess and backtrack in the search for the
solution.
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Figure 2.8 Circular Sudoku
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It is also a puzzle that lends itself to scaling up or down. Even a
three-ring puzzle requires some thought. Five- and six-ring versions
are more difficult and, in principle, puzzles with any number of rings
can be produced—some more examples and variants are given in
the final chapter of the book. For a complete book of these puzzles,
featuring half a dozen variations, you can get The Official Book of
Circular Sudoku, by Peter and Caroline Higgins.

The puzzle requires relatively few given cells in order to determine
a unique solution. In this example ten of the thirty-two are given but
in some cases as few as nine are required in order to fix the solution.
The first Circular Sudoku puzzle was published by the author in the
British national newspaper, the Sunday Telegraph, on 26 June 2005
and now features regularly in a number of magazines and newspa-
pers. Most of the Sunday Telegraph puzzles were based on a five-ring
version in which case there are fifty cells and ten symbols. Each ring
and each of the ten pairs of adjacent slices has to carry each of the
ten numerals 0 through to 9. The least number of occupied cells that
can fix the solution is then thirteen, representing 26 per cent of the
total number of entries. There is also a handheld electronic version
of the game available based on these five-ring puzzles.

One final game to add to our collection is Mastermind, as the
player trying to crack the code in this game is conducting a true tree
search. This differs from the trees describing tic-tac-toe and chess
where the levels of the tree belong alternately to one player and
then the other as they compete in trying to force the game down
a branch favourable to them. In Mastermind each node represents a
partial state of knowledge for the active player. Each guess takes the
player down one more level in the tree to a node which represents
an increase in his knowledge (it cannot decrease but he can waste a
go and learn nothing). Eventually the secret code will be revealed,
although the active player is only allowed ten guesses. In terms of
his tree he has to reach a node representing full knowledge of the
secret without needing to search beyond ten levels down in the tree,
and therein lies his difficulty.

The object of the game is to discover a secret code consisting of
four coloured pegs. The colours, which may be repeated, number six
types in all: red, white, yellow, green, blue, and black, and are laid
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Figure 2.9 Two guesses at Mastermind

down in a particular order. For example, the code may be yellow,
black, black, blue. The active player’s turn consists of a guess at the
code and after each guess the player who chose the code reveals
some information—he indicates

(a) how many of the code pegs in the guess are the right colour and
in the correct position (each is indicated by showing the player
a black marker)

(b) how many pegs (occurring elsewhere in the line) are the right
colour but are out of position (indicated by showing a white
marker).

For example, suppose after two guesses the codebreaker was pre-
sented with information as seen in Figure 2.9. From the first guess,
we know that we have all the colours right, but all in the wrong
places. For our second guess we have rearranged the colours. Since
we have left two in the same places, we know in advance that this
guess cannot be right but we have extracted more information. Now
two are in the right places, and the other two are the wrong way
around. Since red and green have not moved, these must be the
pair that are wrongly placed, while white and yellow are correctly
positioned. The hidden code must then be G W R Y. We got there by
going down only three levels in the tree of possible guesses.

In this example we were lucky with the first guess, but a skilled
player should be able to crack any code within the given ten moves.
For this reason, a harder version of the game is sometimes played
where the codemaker may use empty places as well, in effective
adding a seventh colour to the game, which then becomes quite
tough.

Trees are the diagrams we naturally turn to for a visual display
of any hierarchical structure. Invariably it is the relationships rep-
resented by the vertical ordering that are important. The left–right
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ordering of offspring nodes, for instance, often carries little or no
information and may be arbitrary.

The trees that arose in the analysis of our games might be more
accurately called root systems as they grow down rather than up.
The term tree is universally preferred, however—look for example in
any computer manual describing a network of directories and files.
One system of relationships that is displayed as a genuine (upward
growing) tree is that of family ancestry, even though as we trace a
path up the tree, we are moving back through the past. But that does
raise one interesting question:

Why does the size of past generations not keep growing?

Everyone has a biological father and mother and if we were to trace
back our direct ancestry we find two parents, four grandparents,
eight great grandparents, and so on. This seems totally inevitable
but it is just as obvious that it cannot go on forever. The size of
each preceding ancestral generation seems to double and it does
not take many generations then until we would have an incredible
number of ancestors: twenty generations ago we would have more
than a million direct ancestors, and, doubling each time, you find
that thirty generations back there are in total more than a thou-
sand million people collectively responsible for your birth. Given
that a generation is about twenty-five years, we would be led to
believe that around the year AD 1000 there were over a billion
people on Earth, which most certainly was not the case. On the
contrary, we know that there were a lot fewer people in the past
than in the present. (A very large portion of all the people who
have ever lived are alive today, and the number of people older than
you is always diminishing.) So, how can it be that the burgeoning
numbers that appear when we look at family trees are somehow
avoided?

One thing of which you can be certain is that multiple marriages
and marital infidelity are not a necessary part of the explanation.
Even if all your ancestors were absolutely scrupulous in this matter
and abided by the strictest rules on reproduction—it only being
possible inside marriage and no one may marry more than once
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(widows and widowers remaining so, for example), the same appar-
ent doubling in the generations would still be there.

The explanation is not hard to find but it is not always easy to
see as it does not come to light in a typical family tree as far back as
most people can trace, which is only a handful of generations. What
happens is that, if you extended your complete family tree, eventu-
ally some pairs of parents would be listed more than once. This does
not happen in most family trees until quite a few generations have
been traced.

What must happen, of course, is that as we continue to track back
more and more generations, eventually we begin to see the same
people popping up more than once; that is to say not every person
in the family tree is represented by a unique node, but rather, there
is duplication with some individuals turning up repeatedly. How can
this come about?

Collapse will begin to occur when we reach generations in which
two siblings appear (although not necessarily in the same gener-
ation). This pair only give rise to one set of parents in previous
generations instead of two, and then only four grandparents instead
of eight, and so on. After that, duplications will become more and
more common until eventually it must be the case that one gen-
eration in your family tree has more individuals than the previous
one. Although the portion of your ancestral network representing
your recent ancestors may be a tree, the entire object is a much
more tangled web indeed whose very ancient members are not even
humans!

Even in recent geological times our direct ancestors must have
been very few in number. We are told that the entire human popu-
lation almost perished in preceding ice ages and may have dropped
as low as a few thousand hardy and heroic individuals. It seems that
we are all one big family, a theme that will be taken up next.



3
The Nature of Nets

In this chapter you will be introduced to an array of different kinds
of questions that concern general networks that are not just trees

but in which cycles and multiple edges are permitted between nodes.
At first inspection the problems and queries may not seem to be
about networks but the underlying network comes to life as a natural
model of the situation in each case. But first we look a little more
closely at the reasons why nets are becoming more noticed.

The small world phenomenon

‘I’ve danced with a man, who has danced with a girl, who has
danced with the Prince of Wales!’ The idea of this was enough to
send the girl singing this old song into raptures. However, as has
often been observed, this kind of thing is bound to happen once
we start to mix with prominent people. Even if we make a point of
avoiding celebrities all our lives, it was observed, apparently by the
Hungarian writer Frigyes Karinthy as early as 1929, that it is more
than likely that any two people on Earth could be linked through a
chain of no more than five personal acquaintances. This claim was
supported by direct experimentation carried out by the sociologist
Stanley Milgram in the 1960s and formed the basis of a popular play,
Six Degrees of Separation by John Guare in the 1990s. Why should
the shortest paths in the global network of acquaintanceship be so
very short?
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There is a naive mathematical approach that at least explains why
the claim is plausible. Suppose that, on average, a typical person
has 100 acquaintances. That person’s acquaintances will themselves
know about 100 people each so that our original person will be
acquainted at up to one remove with 100 × 100 = 10,000 people.
Continuing in this way, we see that if we allow two intermedi-
ate people we link to around 104 × 102 = 106, which is a million
individuals! (The reader will excuse the use of power notation
here—10n just means the number consisting of 1 followed by n
zeros.) One step further gives a link to one hundred million (108)
people and five links allow us to join our original person with
1010, that is ten billion people, more than all the people in the
world!

This line of reasoning has already broken down in somewhat the
same fashion as our exponentiating family tree did in the previous
chapter. The argument assumes that each set of acquaintances that
arises is entirely new whereas in practice we would soon be led
back to people who have already appeared earlier in the chains
of acquaintances. In other words, we are guilty of some double-
counting. To be more precise, the rough part of the argument centres
on the assumption that every person we meet along the way con-
tributes 100 fresh acquaintances or more. This is the flaw that, in
the long run, inevitably undermines any form of pyramid selling
or chain letter spread. As in the family tree expansion, however,
the truth does not begin to bite hard until quite a few steps of
the process have been run through, although long term collapse is
absolutely guaranteed. Unfortunately for gullible victims of pyramid
selling scams, that can allow more than enough time for the perpe-
trators of the scheme to stuff their pockets and bolt!

The argument does lend credence however to the expectation
that, beginning with one person, the number of people connected
to him or her by chains of acquaintance of length no more than five
is likely to be very, very large indeed and could include a sizeable
portion of the entire global population.

However, the argument given by Karinthy is more convincing and
pays due respect to the true nature of the network of human contact.
It exploits the fact that a relatively small number of people in the
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world are especially well connected. His line of reasoning goes via
‘hubs’.

Imagine how you might go about finding a short chain of acquain-
tance between two randomly chosen people, a man in the USA and
a young girl in Nigeria, say. A suitable chain could well be made of
two shorter chains that link to two very prominent individuals, for
example the United States President and the Pope, who we assume
have met. The Nigerian girl may well have met a Catholic Bishop
who has had an audience with the Holy Father, while our American
man’s boss might well be an old friend of a prominent business man
who has personally met the President. That is all it takes to link our
young Nigerian girl to our American gentleman by the short chain
we seek.

The evidence seems to suggest that this picture is not too far from
the truth. The nature of personal relationships lends to these very
short chains. There are features that mitigate against this, however.
Friendship links are not random but have a local bias—the majority
of people you know are liable to live and work close by, and this
factor tends to inhibit the forming of short chains of acquaintance
between distant people as will language and other social barriers of
various kinds. Indeed a few centuries ago there were large islands of
people separated from all the other peoples of the world. Presumably
there were no paths of acquaintanceship at all between the peoples
of Europe, the Americas, and the South Pacific until the sixteenth
century at the earliest. However, in the modern world most of us
have a considerable number of friendship ties to individuals who
live far away.

This same pattern of short chains arises within particular groups
as well. The mathematical community is a prime example as the
phenomenon itself is of interest to its members and is amenable
to study. The person who was a hub par excellence in the twentieth
century was undoubtedly the eccentric Hungarian mathematician
Paul Erdös who came to the attention of the general public through
Paul Hoffman’s biography, The Man Who Loved Only Numbers. Erdös
spent most of his life, certainly the latter half, as a mathemat-
ical vagabond, being looked after by his colleagues throughout
the world, never spending very long in one place. He simply did
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mathematics all the time, mainly in the fields of networks, combi-
natorics, and number theory. He collaborated with hundreds and
hundreds of individuals on mathematical papers and was happy to
talk with anyone as long as it was about mathematics. He referred
to people who had ceased to do maths as having ‘died’ and so were
presumably no longer worth talking to. He eschewed sex, alcohol,
and music but indulged heavily in coffee and amphetamines. He
did manage to win a bet by giving up drugs for a month but claimed
that his self-denial served only to set the cause of mathematics back
four weeks—without his stimulants blank sheets of paper remained
blank. Although I never met the great man, I am left with the
distinct impression that despite no one being able to put up with
him for very long, he was personally perceptive and had the ability
to bring out the best in people when it came to engaging their
natural mathematical capacity.

The network of mathematical collaboration based around the
node of Erdös has received a lot of attention. The length of the
shortest chain of published collaboration (if there is one) from Erdös
to a particular mathematician is known as their Erdös number. Erdös’s
own number uniquely is 0 while his collaborators have the privilege
of an Erdös number of 1. My own Erdös number, I believe, is 3 (one
of my co-authors claims to be a ‘2’ and I have taken his word for it)
and it is said that 90 per cent of the world’s mathematicians have an
Erdös number no more than 8.1 Some, of course, have no number
at all. If your collaboration chains do not reach the component con-
taining the Erdös node then you have no Erdös number. However,
one could arise even after your own death through new edges of
collaboration arising from those people with whom you have jointly
published.

Although Erdös, has now ‘left’, as he liked to put it, it is still
possible to reduce one’s Erdös number to as low as 2 by writing a
joint paper with one of Erdös’s original collaborators. However, as
the years pass, and more people ‘leave’ it will become progressively

1 During the writing of this book I have been able to verify my E. number using the

Erdös Number Project website: <http://www.oakland.edu/enp/>, which is dedicated to

studying mathematical research collaboration. The number of people with an E. number

of 2 is nearly 7,000 and, as explained above, it is still possible to join this club.
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harder to lower an existing value. As the generations pass, the centre
of the Erdös network will ossify, with no new edges coming from the
nodes that have ‘left’. It will still be possible for newly born math-
ematicians to join the Erdös network through surviving members,
a measure of the enduring influence of this one hub. However, the
new chains must inevitably get longer and longer as time passes and
whether the outer part of the network will continue to grow and
flourish indefinitely as the inner realm passes into history remains
to be seen.

There have of course been other prolific and sociable mathemati-
cians down the years. Leonhard Euler, for example, although living
his life in the eighteenth century, managed to produce more pages
of published mathematical research than the single-minded Erdös
and was arguably wider in scope. Some historical mathematical hubs
were not themselves important mathematicians. Plato was such an
example in the fifth century BC and in the seventeenth century a key
channel of communication was through the monk Marin Mersenne.
Although making only modest personal contributions, Mersenne
was in contact with the leading mathematical figures in Europe
and thereby disseminated discoveries throughout the community in
the days before mathematical journals. His contact with the prolific
but reclusive amateur mathematician Pierre Fermat was of particular
significance.

The most important qualitative feature of the network of personal
familiarity is the presence of the hubs, as they go a long way to
giving this network its character. These hubs have very large num-
bers of disparate acquaintances. And a hub does not need to be an
especially famous person like the Pope or the President or Erdös.
There are many thousands of individuals who, in the course of their
life, become well known to thousands of others. Most of us will be
directly acquainted with one or two of these hubs who are likely to
have very short acquaintance chains to millions upon millions of
people. That is why it is a small world.

We may be tempted to think these considerations apply to any
big network based on human contact such as the World Wide Web.
Broadly speaking, this is the case, however six degrees of separation
is not always enough. Albert-Laszlo Barabasi in his influential book
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Linked: The New Science of Networks explains that experiment has
shown that the degree of separation of Web sites averages about nine
clicks with the largest separation rarely exceeding nineteen links. It
seems that currently the Web, a nebulous object that no one can
see in its entirety, is a little different from the network of human
acquaintanceship. On the one hand it is run by and for people, there
is a similar number of nodes in the network and, like the human
species, it has spread across most of the globe. What is more, it
features many large hubs: popular web pages linked to myriads of
others. On the other hand, the web is a directed network with links
often only going in one direction. Individual web pages and blogs
can be lonely and seldom visited. There may be many links out of a
personal web page, but few going in.

The Web can offer the illusion of allowing anyone to be part of
the worldwide flow and be a real and independent player in the
modern era centred around the Internet. The reality may be that the
vast majority of web pages and the people behind them are invisible,
even to search engines. The Web does allow similarly inclined people
to communicate with one another and so form ‘local’ friendships
even though these kindred spirits may not be geographically close
and indeed may never live to shake one another by the hand.
Like the rest of the human world, however, the Web is somewhat
dominated by big shots and large institutions with most individuals
struggling to be heard.

All the same, non-commercial networks can flourish on the web
and the common thread of the participants can be tiddlywinks or
terrorism, pornography or peace, death or dating. There is more
freedom for individuals on the net than would normally be allowed
even within very liberal democracies. No one is calling the shots and
there are few guardian angels.

A key point made convincingly by Barabasi is that links in impor-
tant networks are not random but the degree of their nodes follow
power laws.∗ A lot of the early mathematical work on networks
regarded them as ‘random graphs’ where the set of nodes was given
and fixed while links sprang up between them by chance. However,
in the real world, the networks we meet evolve. New nodes are born
and begin to acquire links while old ones sometimes die along with
the links binding them to the network.
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Direct mapping and measurement of various important networks
have verified that the distribution of the degree of nodes follows
power laws as opposed to the exponential drop off that you would
meet if the connections were more random. In a random network,
although the degrees of nodes would vary, there would be very few
nodes that were much larger than average and virtually no real hubs:
nodes of very large degree. In contrast, if the degree distribution
of a network follows a power law things looks very different. It is
still true that the vast majority of nodes will be of low degree but
there will be a reasonable proportion of nodes that are considerably
larger than most. Moreover there will be a small percentage of very
large nodes indeed. In a large network a small percentage can still
represent a large number, for example 0.5 per cent of one million is
500. To top things off, a handful of these big nodes will be monsters.
These big nodes can be very dominant, driving the development of
the network which itself may be vulnerable to collapse if some of
them fail. This seems to be the kind of structure we come across
when dealing with most evolving, real-world networks.

Barabasi and others have studied a multitude of networks such
as the Web, networks of business and personal contacts, the spread
of epidemics, fashion trends and ideas, and chemical and biolog-
ical interactions. In each case they have found similar qualitative
features throughout. More importantly, they can model these net-
works mathematically, allowing prediction of their behaviour and
understanding of their strengths and vulnerabilities.2

It is these weaknesses that are often invisible to the participants
of a network who can all be left baffled when it suffers collapse or
massive disruption. Examples are given varying from internet chaos
to international banking and financial collapses. Events such as the
Asian financial crisis of the later 1990s take everyone by surprise.
In these crises it becomes apparent that there are no true experts
available, for no one had a clear picture at the time as to what was
happening and how far the crisis would spread. After the fact, it is

2 The extent to which certain suggested mechanisms for producing scale free net-

works really apply to the internet and other large nets is by no means a settled question:

there is an interesting referenced essay on the topic of scale-free networks to be found

(at the time of writing) on Wikipedia.
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possible to list the train of events and explain how each triggered
the next, which gives the illusion that, with hindsight, the process
is comprehensible and perhaps could even have been anticipated.
Authorities try to reassure everyone that all will be sorted out and
that ‘lessons will be learned’ but that is easier said than done. After
an earthquake, it might be clear how the collapse of one building
undermined another. That may allow you to build more earthquake-
proof structures in future but it does not mean that you can predict
when the next quake is coming or how severe it will prove to be.
Although humans are the ones who create financial systems and
markets it does not guarantee that the behaviour of these networks
is predictable or even understandable—at least experience warns
that we should not be over confident. The case has been made that
networks merit a thorough investigation in their own right.

The sciences are often criticized for being too relentlessly ana-
lytical. Much research goes into breaking the object of study into
constituent pieces that can be thoroughly examined and understood
while too little effort is spent in understanding the overall picture.
Scientists themselves have been conscious of this but, unfortunately,
holistic approaches often yield little that is new. I once spoke to
a biologist who said he felt sympathy for young researchers but
would cringe when he heard them say they wanted to study an
organism ‘as a whole’. He would try to dissuade them from this
mindset because, ‘I just know they are going to fail’. What Barabasi
and others are succeeding in doing is offering some hope for those
who yearn for a holistic approach. Through the study of networks,
large systems can be investigated in their entirety and genuinely sur-
prising and critical conclusions can be demonstrated. It is obviously
important to be able to tell when a network that looks stable and
robust in fact is not. A great deal of interdependency can be a source
both of strength and of weakness. At the same time, important
networks have a life of their own. Not only are they under the
control of no one but they are not even visible in their entirety. Real
networks grow and evolve of their own accord, with no one person
or institution having overall responsibility or even knowledge of
what is going on. The problems this throws up are interesting and
important indeed.
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Let us return, however, to where the subject all began, a small
Prussian city in the eighteenth century.

The bridges of Königsberg

The very first problem of network theory was solved in 1735 by
Leonhard Euler (pronounced ‘Oiler’). It was a simple question about
traversing a bridge network, a problem type that has become a staple
of puzzle books and mathematical riddle makers ever since.

The old Prussian town of Königsberg (now Kaliningrad in Rus-
sia) lies on the banks of the Pregel river. It is known as the
birthplace of the nineteenth-century physicist Gustav Kirchhoff,
who has been mentioned before and will feature again later. How-
ever, Königsberg’s most famous son is the great eighteenth-century
philosopher Emmanual Kant who, we are told, spent his entire life
in the town, never venturing more than a few miles outside it and,
according to one biographer, ‘never saw a mountain’. It appears
that Kant led a monkish life entirely devoted to his philosophical
musings. He was however fond of walks so he would undoubtedly
have been well acquainted with the seven bridges that serviced the
town and gave access to the banks and to a pair of islands that nestle
in the river, something like what we see in Figure 3.1. The question
that was asked was:

Can a person walk all the bridges of Königsberg once and
only once?

The frustrated citizens brought the problem to the attention of Euler
who saw that, although simple, it was unlike any problem that
mathematicians had hitherto tackled. It required a fresh approach.
He showed how to solve this vexing puzzle and any similar problem.

The key is to spot that what we have on our hands is really a
question about the underlying network, and so to make progress,
we should identify and draw that network. With respect to the
network of seven bridges, there are only four places a walker can be,
as indicated in the next diagram. Our first simplification in the way
we look at the problem is to represent these four places (the two
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Figure 3.1 The seven bridges of Königsberg

banks of the river and its pair of islands) as nodes. Naturally we
draw one line between pairs of nodes corresponding to each of the
Königsberg bridges. This network distils all the information about
the bridge network relevant to the question at hand (Fig. 3.2).

Euler explained that the network did not allow you to walk all the
bridges just the once, and it is all to do with even and odd numbers.
Suppose, said Euler, that there were such a walk that traversed all
seven bridges exactly once. It would begin at some node, end at
another (although this conceivably might be the same node), but
there would be at least two nodes that were neither at the end nor
the beginning of your walk. Focus on one of them—let us call it
node X for the time being. Since X is at neither end of our walk, we

I1 I2

B2

B1

Figure 3.2 Network for the Königsberg bridges
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would visit X a certain number of times, and leave X an equal number
of times. This would make use of an even number of bridges overall—
each time we arrived and left X, we would use a pair of bridges that
we would be forbidden to use again. It follows that X must have an
even number of bridges servicing it in total. Unfortunately, however,
this is true of none of the nodes in our picture: I1 is connected to
five bridges, while the other nodes each have three. This shows that
there is no walk with the properties we were after. It cannot be done.

This may be disappointing, but mathematics is often very good for
this purpose—showing conclusively that we are wasting our time
trying to find something that does not exist because it cannot: if
something is mathematically impossible, then it truly is impossible.

The network that represents the Königsberg bridges is certainly
not a tree. It is connected but there are cycles in the network and
it even displays multiple edges in that some pairs of nodes have
more than one edge running between them (I1 and B1 for example
have two). Nonetheless, Euler showed exactly when you can and
cannot traverse a network like this. He gave a simple rule to decide
the question and, what is more, he explained how you can go
about finding a successful walk in the cases where it is possible. The
method also allows you to decide if you can organize things so that
you will return to your starting point and whether or not you can
almost find the walk you need. (It is not hard to convince yourself
that you can walk any set of six of the bridges of Königsberg but, as
we have seen, never the seventh.)

Surprisingly, these claims are all quite easily explained as the basic
principle amounts only to taking the idea of this example and plac-
ing it in the general setting. Before we go further in that direction
however, we look at the next question, which looks different, but
really isn’t:

Can you walk through all the doors of the house just once?

The straight lines in the picture of Figure 3.3 represents the walls of
a house with the gaps indicating doors. The challenge is to move
about the house by using every door exactly the once. The diagram
shows my near successful attempt where I have just missed one
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Figure 3.3 Wending through all the doors of a house

internal door. Unfortunately, neither end of my walk can reach the
door I overlooked without passing through a door that I already
have used. You may be tempted to wrestle with the problem your-
self but you will fare no better. Underlying the problem is a net-
work, which although a little more complicated than that of the
Königsberg bridges, has the same awkward feature that is going to
thwart our every attempt.

In this problem the network will have six nodes: one for each
room and another for the outside of the house. The outside has
no special status as regards our problem and indeed this is a facet
that we have already seen in the Königsberg problem for two of
the nodes represented the islands in the Pregel but the other two
represented the river banks, which were regions that were effectively
boundless in the direction away from the river. That, however, is
mathematically irrelevant—it is only the connections that matter!

The rooms are the nodes and the doors are the edges that allow us
to travel between nodes. To draw the network we just place a node in
each room and one more outside and draw one edge between nodes
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Figure 3.4 The network of our house

if there is a door between them. Having done that we recover the
network shown in Figure 3.4.

Can we apply Euler’s reasoning to this network also to explain
our failings? If we read through the argument that worked for
Königsberg, we find that it does not apply immediately, so let us
take stock of our position. First, let us note the degree of each node:
O is of degree 9, corresponding to the nine outside doors, nodes A,
B, and D are of degree 5, while the remaining two nodes have degree
4. If we examine the argument used in Königsberg we see that there
is one conclusion that will always apply: if there is a traversing walk,
that is one that uses every edge (i.e. door) exactly once, then the
degree of every node, with the possible exception of the first and
last, must be an even number, as we leave non-terminal nodes as
many times as we arrive. This is the general principle that lies at the
heart of the matter: to be able to traverse the network there cannot be
more than two odd nodes. Unlike the Königsberg Bridge Network, the
House Network does have some even nodes (that is, nodes of even
degree) but it does have more than two odd nodes (four in fact, O,
A, B, and D) and therein lies the rub, we can’t pass through all the
doors just the once.
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In a later chapter we shall return to Euler’s Principle and consider
its consequences more carefully, that being that a connected net-
work can be traversed in such a way that you may return to your
starting node exactly when the network has no odd nodes; if the
network has two odd nodes, it can be traversed but the beginning
and end of your path must be these two odd nodes. What if we have
just one odd node? Well, that is an impossibility by virtue of the
following principle.

Hand-shaking and its consequences

In relation to the general principle that sprang from the Königs-
berg bridges, we make a pair of related observations about general
networks. If you look at any of the diagrams of networks in the
book and add together the degrees of all the nodes the answer
is always an even number. For example, take the tree represent-
ing the propane molecule in Figure 1.3: summing all the degrees
gives (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) + (4 + 4 + 4) = 8 + 12 = 20, while for
the network of the Königsberg Bridges (Figure 3.2) we get the sum
5 + 3 + 3 + 3 = 14. Can you see why this is unavoidable? It is all
because of the edges: each edge is incident with two nodes and so
contributes two to the overall sum of the degrees, once for each end.
It follows that the sum of the degrees is equal to twice the number
of edges in the network and therefore must be an even number. This
fact is often referred to as The Hand-Shaking Lemma since it implies
that if several people shake hands, the total number of hands shaken
must be even, as each handshake involves a pair of hands. It is one of
the very few results that applies to all networks and it is convenient
to have a memorable name for this simple rule to refer to it by. This
lemma may seem obvious, at least once it is pointed out to you, and
of little value as there would seem to be little interest in the sum of
the degrees of a network in any case. However the lemma has one
consequence well worth noting.

The number of odd nodes in a network is itself an even number.
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Or put differently, a network cannot have an odd number of odd
vertices, for suppose that it did. If we were to sum the degrees of all
the odd vertices in this instance we would have the sum of an odd
number of odd numbers, let’s call it O, which is always itself odd.
The sum of the degrees of the even vertices will be an even number,
E say, as the sum of any group of even numbers is even. The total
degree sum would then be O + E , and since an odd plus an even is
odd, this would give a network where the sum of the degrees was
odd, contrary to the Hand-Shaking Lemma. This then is impossible
and so the number of odd nodes in a network is always an even
number. For example, in that of Figure 3.2 there are 4 odd nodes,
in Figure 3.5 there are 6, while in Figure 3.9 there are none at all.
This corollary of the Hand-Shaking Lemma is indeed worth appreci-
ating as it represents a constraint that applies to all networks—the
network may consist of several pieces, it may have multiple edges
and loops, it will make no difference: you just cannot have an odd
number of odd nodes, a fact that asserts itself from time to time in
the everyday world of human affairs and is not to be denied!

For example, it is not possible to have a gathering of nine people
where each of them is acquainted with precisely five others in the
group for if we represented this as a network of nine nodes in the
obvious way, each node would be odd (of degree five) and so we
would have a network with an odd number of odd vertices, and that
can never happen. Alan Tucker noted in his text Applied Combina-
torics that this very point was overlooked under the old National
Football League schedule guidelines in America. At one time there
were twenty-six teams divided into two equal Conferences, the AFC
and the NFC. Each team played fourteen regular games each season
and the recommendation was that each team should play eleven
times within its own Conference and three times against teams from
the opposite Conference. Can you spot the trouble with this? Just
focus on the network of games within either of the two Conferences.
If this guideline were somehow satisfied the scheduling network
within a Conference would consist of thirteen nodes (one for each
team) each of degree eleven, as we, quite naturally, draw an edge
between teams that play one another. This would yield a network
with an odd number of odd nodes—don’t waste time getting your
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computer buffs to search through all possible schedules—it just
cannot be done!

All this allows us to say more about our previous two examples.
If any one of the Königsberg bridges were dismantled, then the
resulting network would have exactly two odd vertices, those being
the pair that were not joined by the bridge. This means that if one
bridge were taken away, you could walk the remaining six, provided
that you start and end at the points that were not connected by the
bridge you removed. Another way of putting this is that although
the seven bridges of Königsberg cannot be traversed, any set of six
of them can be managed.

The story with the house is similar but not quite so simple. The
two lower outside rooms represent even nodes in our network, and
so it will not help you to stop up any door of rooms C or E , as
that will not reduce the number of odd nodes in the network. On
the other hand, if you remove an edge connecting a pair of odd
nodes, that will leave the network with only two odd nodes and so
it will be possible to traverse it provided that you begin at one of
the two remaining odd nodes and finish at the other. For example,
my near successful attempt would work if we closed off the door
connecting rooms A and D, as the original picture shows. Similarly
if we walled up one of the outside doors of B, this would leave B and
O as even nodes and the problem could now be solved provided that
the path ran between the two remaining odd nodes, A and D. (Try
for yourself.) However, removing any door of C will still leave you
with an impossible problem.

The next network problem, although superficially similar to our
previous examples, represents a fundamentally different kind of
question. We have three houses, A, B, C to be joined to the three
services: Gas, Electricity, and Water. We would like to do it without
any of the connecting links crossing one another.

Can the three services be joined to the three houses without
the connecting lines crossing?

My first attempt (Figure 3.5) in which I have simply drawn a straight
connection between each house and each service does not look too
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Figure 3.5 Connecting three homes to three services

promising as it has created six points where lines meet in pairs and
one point where all three cross. However, it is not too difficult to do
much better than that as shown in the second figure.

This attempt is an improvement, yet it is still a failure as the Water
connection of A crosses the Gas connection of C. This is however the
best anyone can do—it a very fundamental fact that this particular
network is not planar, that is to say cannot be drawn on a flat sheet
of paper without one pair of edges meeting.

To convince you of this, it is perhaps better to draw it another way.
This network is certainly not a tree as it contains cycles: for instance
a cycle of length six is given by A → G → B → E → C → W → A. If
we draw the network starting with this six-cycle we draw a closed
curve of some kind in the plane containing these six nodes. This
leads to quite a different picture of the same network (Figure 3.6).

Although it is a strikingly different picture, we can at the same
time recognize it as the same network, as the connections between
the named nodes are precisely the same. With the network drawn
in this fashion, the difficulty in trying to avoid edges crossing can
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Figure 3.6 New configuration of network

be more readily seen. Let us suppose that we somehow do draw the
network while avoiding the crossing of edges. However we go about
it, we shall have the above cycle creating a closed curve that has
an inside and an outside. Each of the three remaining edges will
need to lie entirely inside or entirely outside the cycle. This will
mean that at least two of these additional edges will be both inside
or both outside that curve. Once one edge, such as AE , is drawn
inside, however, it splits the interior of the curve into two parts with
the edge forming a barrier for the two remaining edges GC and BW
to cross. One of these edges can be placed outside, by symmetry it
matters not which one, but let us say it is GC. However it is done,
one node of the remaining edge BW will find itself surrounded by a
closed curve made up of edges already drawn and cut off from the
node at the other end of the remaining edge to be included (in the
diagram the curve in question is determined by the cycle GAECG).
The best we can manage is one edge crossing as we have seen before
and which is repeated for this formulation in the diagram on the
right in Figure 3.6.

It turns out that there are two fundamental examples of small
networks that are not planar, one of which is that above that mathe-
maticians call K3, 3 as it consist of two sets of three nodes, with each
node of the first set joined to the second. The second problematic
fellow is K5, which is the so-called complete network on five nodes,
meaning that each node is connected to the other four. This one
can also be drawn with just the one unwanted crossing but that is
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the best you will manage—K5, like K3, 3 is also not planar. These
fellows are sometimes referred to as the ‘minimal criminals’ for it
turns out that a network is planar unless it contains one of these two
embedded inside itself in a certain fashion that will have to wait till
later to be explained more precisely.

Cycles that take you on a tour

As a rule of thumb, we can say that a network will be planar unless
it has too many edges compared with its number of nodes. This
is indeed a very rough and ready way of putting it but it is pretty
obvious that the more edges we insist the network has, the more
difficult it becomes to draw them all without the edges crossing
somewhere. Although having many edges is a property that is bad
for planarity, it is good for another aspect that is nice to have in a
network, which is that of having a Hamilton cycle. By a cycle we
mean a path that begins and ends at the same node without going
through any node more than once.

The idea of a Hamilton cycle is named after the famous Irish
mathematician Sir William Rowan Hamilton (1805–65) and it means
a cycle that takes in all of the nodes in the network. In this way it
is a kind of dual idea to that of an Eulerian circuit we saw above:
an Euler circuit has to pass through every edge of the network
exactly once while a Hamilton cycle must do the same but for every
node.

You will notice that we have to start being careful with our words:
we are calling it an Eulerian circuit because it is not necessarily a
cycle—a circuit can visit the same node more than once but a cycle
cannot. Some books use the term simple circuit to mean cycle for just
this reason. Another part of the definition of an Euler circuit we have
not mentioned up till this point is that the circuit visits every node.
This is not quite automatic: for example, if a network consisted
of two components, one of which was an isolated node, a circuit
could traverse every edge without visiting that node. In practice, we
are only interested in connected networks when discussing Euler or
Hamilton paths and so this nicety need not presently concern us.
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Figure 3.7 The bow-tie network

All the networks we have seen so far, with the exception of trees
that of course have no non-trivial circuits of any kind, large or small,
have a Hamilton cycle and they are easily spotted. In our K3, 3 net-
work for instance the cycle we drew attention to that contributed to
its non-planarity was Hamilton: A → G → B → E → C → W → A.
An example of a network in which every node lies in a cycle but is
not Hamiltonian is the bow-tie network of Figure 3.7.

The bow-tie has an Euler circuit A → B → C → D → E → C → A
but this circuit is not a cycle as the node C is repeated. (It appears
that A is visited twice as well but it is not, this is an illusion due to
choosing A as the starting point of our circuit—the difference with
C is that we both arrive at and leave node C twice.) In order for
a network to have a Hamilton cycle it cannot have a node like C.
What is different about C? The special property it has is that if it
were removed (along with the edges that are incident with it), the
network would split into separated parts. Any circuit in the network
that took in every node would have to visit such a node more than
once as it passes from one of these components to another and back
again. For that reason, the circuit could not be simply a cycle, so no
Hamilton cycle is to be found.

Euler discovered in the eighteenth century exactly when a net-
work has an Eulerian circuit and when it does not. No one has come
up with a similar answer as regards the Hamiltonian property. There
are, however, some sufficient conditions that are simple to state and
guarantee that a network is Hamiltonian. For example, if each node
in the network is adjacent to at least half the nodes in the network
then a Hamilton cycle is an inevitable consequence. (There is one
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Figure 3.8 Hamilton cycle for the network of the dodecahedron

little exception, namely the network O—O.) However, in general,
the question is not easy to decide, even for fairly simple networks as
seen in the next example (Figure 3.8), due to Hamilton himself.

This network is called Platonic as it arises as the network of vertices
and edges of one of the five regular Platonic solids, which are the
tetrahedron, the cube, the octahedron, the icosahedron (made up
of twenty equilateral triangles) and the dodecahedron that consists
of twelve regular pentagons pasted together. If we were to project
the shadow of a dodecahedron onto a flat sheet of paper, we could
obtain the network in the diagram of Figure 3.8. In 1859 Hamilton
exploited his discovery of a cycle that spanned all the nodes to
invent a game based on the idea of a grand tour of twenty great
cities of the world. Perhaps realizing the limitations of this discovery
as the focus of a game, he sold the patent on.

The idea of devising ways of efficiently visiting a number of
designated places and returning home became the Travelling Sales-
man Problem, which is still unsolved and receives a great deal of
practical attention to this day. Here the call is not just for any
Hamiltonian cycle but for one that minimizes length, or cost,
or time of travel. That is to say the edges of the network carry
weights, and the problem calls upon us to take these weights into
consideration while finding a solution. A great many problems
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in economics, and in operations research as the associated math-
ematical field is known, are concerned with problems of this
kind.

The numbering of the nodes in Figure 3.8 for Hamilton’s original
nineteenth-century problem provides a Hamilton cycle for all to see.
At the same time, finding a cycle in the first place is not so easy and
indeed we have no way to tell in advance that there is one at all.
There are, however, practical approaches to conducting the search
for Hamilton cycles. These come down to judicious application of
the following rules:

1. If a node has degree 2 then both of its edges must be part of any
Hamilton cycle.

2. No cycle not containing all the nodes can arise when building a
Hamilton cycle.

3. Once a Hamilton cycle under construction has passed through a
node then all of the unused edges incident with the node can be
dropped from consideration.

Party problems

In our next pair of questions, we return to the subject of networks
of friendship and acquaintance, but we begin by examining the
properties they possess, even on a very small scale. The Ramsey
question seems so innocent and simple yet represents the tip of
an enormous mathematical iceberg, that of Ramsey Theory. The
problem is this: how many people do you need at a party to ensure
that there will be a triangle of mutual acquaintances, or a triangle of
three mutual strangers?

The answer has to be more than five, because of the following
dinner party arrangement. Imagine five people sitting down to their
meal in such a way that each person knows the two people sitting
next to them but not the two others. This is certainly possible: if
we sit the five around the table and let them join hands with the
two they know we obtain a simple five-cycle as their network of
acquaintantship (Figure 3.9).
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Figure 3.9 Acquaintanceship of five dinner guests

This network has no triangles, as no three people are all mutually
acquainted. Neither is there a triangle of strangers: for example, look
at person A (by symmetry, it matters not which person we focus on);
the guests that A does not know are C and D but they are mutual
acquaintances.

We can display the network of strangers but we get what at first
sight looks a bit of a tangle. Indeed a slightly sinister pentagram
appears as the network of strangers. However, in this case, these two
networks are in reality the same: if we list the nodes of the network
on the right in Figure 3.9 in the order A → C → E → B → D → A,
we see that this pentagram is also just a simple five-cycle, identical
to the original—in particular, it has no triangle of three mutually
connected nodes.

In general, the network we obtain when we take the same set of
nodes, delete all the edges, and then connect the pairs of nodes that
were previously not connected is called the complementary network
(an idea that only makes sense when discussing networks that do
not have loops nor multiple edges running between pairs of nodes).
The five-cycle is an example of a self-complementary network, as
the complement is also a five-cycle, as you can see upon closer
inspection.

The answer to our Ramsey Problem is therefore at least 6 and if
you play around with networks representing six or more people long
enough you will convince yourself that 6 is indeed the answer—but
how can we be sure?
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Figure 3.10 Acquaintances at a party

The difficulty is that, given six people, there are many possible
arrangements of acquaintanceship that could arise between them.
Our argument has to be able to cope with them all. If we go about
it the wrong way, we will soon be lost in a multitude of cases. An
effective and simple argument however is to hand but takes a little
sharp observation.

Consider any six people at the gathering and focus on one of
them, called A (Figure 3.10). Of the other five, either A knows at least
three of them or, if not, there are at least three he does not know.
(This is the one place in the argument where we use the fact that
there are at least six people present.) Let us suppose for the moment
that three of the people are known by A. Then either these three
people have not met before, in which case we have found a required
triangle of mutual strangers, or at least two of them, let us call them
B and C, do happen to know each other. But then the threesome
of A, B, and C form a trio of mutual acquaintances. The argument
is now essentially complete as the alternative case in which none
of B, C, or D is known by A is the same—either BCD is a triangle
of mutual acquaintances or if not, one pair of them, together with
A, form a triangle of strangers. We conclude that whenever six or
more people gather together, there is either a triangle of mutual
acquaintances, or a triangle of strangers (and perhaps both).

We have shown that 6 is the smallest number of nodes that a
simple network must have in order to guarantee that either the net-
work or its complement has a triangle. This kind of result will always
stimulate a response from someone with mathematical training



THE NATURE OF NETS 59

for generalization looks a real possibility. The query that naturally
comes to mind is: How large a network do we need to ensure that
either it or its complement has a clique of four nodes that are all
mutually connected? And generally, how big does the network have
to be to guarantee that a clique of a given size k is present in either
the network or its complement?

These are very good and very tough questions—indeed no one
knows the answer to the latter, not even for k = 5. However, we do
know that there is an answer, for even that is by no means obvious.
After all, it is conceivable that it might be possible to arrange a
party of a size exceeding any given number in which there was
no group of four friends and no group of four strangers. However
it is known that once we have 18 or more people, this becomes
impossible—we say the fourth Ramsey number is 18. What the Eng-
lish mathematician and economist F. P. Ramsey (1903–30) proved in
the 1930s was that Ramsey numbers always exist—for any k there is
a minimum number n (the size of n depending on k), such that any
party of n or more people has a clique of k mutual acquaintances
or a k-clique of mutual strangers. However, the exact values of these
Ramsey numbers generally remain a mystery, but they do exist—
Ramsey proved it and a demonstration can be found in the final
chapter.∗

The next question on networks is also most easily appreciated in
terms of a party.

At a party, must two people share the same number of
friends?

You may not have realized that this is the case but if you experi-
ment with any gathering, large or small, real or imaginary, it will
always turn out to be true. Why should that be? Once again, it
is to do with the nature of networks that continues to spring sur-
prises. The demonstration, however, involves a fundamental fact
about counting often called the Pigeonhole Principle. This extremely
important observation is little more than a piece of mathematical
common sense: if you have more letters than you have mail slots
(or pigeonholes as they are sometimes known) to place them in,
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then at least one slot must have at least two letters. This observation,
simple though it may seem, is extremely important and arises time
and again in combinatorics, the mathematics of counting, to yield
conclusions of inevitability.

For example, in a town of 400 souls, at least two have the same
birthday as there are more people than possible birthdays. Indeed
we can say more: even allowing for the 29th of February, there must
be at least 400 − 366 = 34 people in the town who share a birthday
with some other citizen because the number of people for which
this is false cannot exceed 366, the number of birthdays available.
No one may have any idea who these 34 people are (and there could
of course be more than that) but it is a mathematical certainty that
they are there!

I must confess that we already slipped in versions of the Pigeon-
hole Principle in the argument about the Ramsey Problem and
even earlier when we were showing that the gas, electicity, water
configuration was not planar. Here we made the simple observation
that if we draw three edges connecting points of a cycle, then at
least two of them have to be either inside or outside the cycle: this
corresponds to three letters slotting into two pigeonholes. In the
Ramsey argument recall that we focused on A, one of the six people,
and divided the other five guests into two types, those acquainted
with A and those that were not. In doing this we are in effect putting
five objects into two slots and concluding that one slot must contain
at least three. The general principle at work here is the following: if
we put more than m× n objects into m slots then at least one slot
must have more than n of them. In the Ramsey Problem m = n = 2, so
that m× n = 4 and we are placing the 5 people into 2 categories, so
that at least 3 are of the one type. There is nothing difficult in any
of this but I draw your attention to it just to emphasize how often
this trick comes up in reasoning of this kind.

There are many clever exploitations of the principle that have
been devised to prove surprising results on inevitability within large
collections. A simple example comes from considering the set of all
numbers up to the nth even number, 1, 2, . . . , 2n. If we now take
any set of n + 1 of these numbers, at least two of them will have
no common factor. This follows at once from the fact that two
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numbers from your collection must differ by only 1 as it is plainly
impossible for the gaps between all the numbers in your collection
to be more than 1, for then the largest member of your set would
be at least as great as 1 + 2n. (That is to say, to have at least 2 letters
in n slots requires at least 2n letters.) For example, for any collection
of six numbers from 1, 2, . . . , 10, two of them must be consecutive
integers. Any factor of the first of these neighbouring numbers will
leave a remainder of 1 when divided into the second so there are
your two numbers with no common factor (other than 1). This is
not very surprising, although we should add that the observation
cannot be pushed any further for it is easy to find a set of n numbers
in this range, all with a common factor of 2, namely all the even
numbers, 2, 4, . . . , 2n.

A more surprising observation about this set of n + 1 numbers is
that one of them must always be a multiple of one of the others. This
is proved through a rather more deft application of the Pigeonhole
Principle.∗

This Pigeonhole idea also surfaces in our party question as I will
now explain. Suppose that there are n people at the party, where
n must be at least 2, for otherwise we would have no party. The
most friends one of the party goers can have at the event is n − 1:
for instance the girl hosting the party might have only invited her
own friends. The least number is 0. This sounds sad but is possible:
the party might have an unwelcome gatecrasher. Bear in mind then
that every individual at the party has a friend number, the number
of friends at the party, and this number lies in the range 0 to n − 1
inclusive.

Now suppose, contrary to what we are expecting, no two people
at the party did have the same number of friends, that is to say,
everyone’s friend number is different to everyone else’s. This is not
easy, but looks just possible: there are n different numbers distrib-
uted among the n people, which means that each of the possible
friend numbers 0, 1, 2, . . . , n − 1 is taken up exactly once. There is,
however, one final twist that renders this impossible. Some person
P scores 0 (no friends) while some other, Q say, scores the maximum
n − 1. This means however that Q regards everyone else at the party
as her friend, including the otherwise friendless P . However, if P and
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Q are friends, then P cannot score 0 after all. We have thus found a
genuine incompatibility arising from the assumption that everyone
has a different number of friends, and so this cannot be the case.
Therefore there are always at least two people at the party with the
same number of friends, and this goes for any gathering anywhere,
anytime.

Of course, all this is really telling us something about networks,
at least about any network that could represent party acquaintance,
and these are indeed pretty general. There are no real restrictions
on a ‘party network’ except that the number of edges between any
pair of nodes is either 0 or 1—no multiple edges like those we saw
in Königsberg, and no edge passes from a node to itself giving us
a loop.3 This type of network that forbids multiple edges and loops
is sometimes called a simple network. The party argument is really
telling us that in any simple network there must always be two
nodes of the same degree.

This completes our collection of problems for the moment. The
next chapter introduces a simple question which has a simple
answer, but it seems, no simple solution.

3 Aristotle assures us that a man may be his own friend if he is a good man, so his

friendship networks might have loops: however such introspection is not entertained

here.



4
Colouring and Planarity

This chapter begins and ends with questions that can be resolved
through talking about colouring the vertices of networks while

respecting certain rules. It is striking that a topic that sounds very
technical lies at the heart of a variety of questions that vary from
the colouring of maps, to the guarding of museums, to deep mathe-
matical questions that are applicable particularly in economics. The
common thread throughout these investigations is planarity of the
networks but its development from these problems is surprising and
in one instance the application of network ideas emerges very much
out of the blue.

The four-colour map problem

The most famously difficult problem in network theory is that of the
four-colour map problem. Once again, at first sight, it seems not to
be a network question. It is a fascinating question of a rare type: a
mathematician could explain it to anyone he or she meets. After five
minutes each would understand the problem perfectly and neither
would be able to solve it. It does seem now, however, that an alliance
of men and machines has conquered this problem. It first arose at
University College London in 1852 where a mathematics student
named Francis Guthrie asked himself how many colours are needed
to ensure that a map may be coloured so that any two bordering
countries had different colours. He soon came to the conclusion that
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the answer is just four but could not see how it might be proved.
The problem was eventually brought to the attention of one of his
lecturers, the famous logician De Morgan who, like Guthrie, could
not see how to tackle it.

It took over twenty years before the problem was taken very
seriously. Mathematicians, like most professionals, are busy and
nothing vital seemed to be riding on this problem—in these early
days, no great acclaim would be attached to the first who solved
it, especially if it turned out to be quite straightforward in the end.
Yet a simple problem that cannot be solved should never be ignored
as little mysteries often harbour deep principles and can yield rich
rewards. Part of a mathematician’s skill and training is the capacity
to spot something interesting and new. The four-colour problem
highlights an aspect of networks that was touched on in the previous
chapter, that of planarity.

To recast the four-colour problem as a question about networks,
we first need to make the original question more precise by explain-
ing exactly what we mean by one country bordering another. We
do not mean merely sharing a common point. For example, the
US states of Arizona, Utah, Colorado, and New Mexico all meet
at a single point, known as the Four Corners. We do not regard
the diagonally opposite states (Arizona and Colorado, New Mexico
and Utah) as sharing a common border. If we did, there would be
potentially no limit to the required number of colours: we could
have any number of countries shaped like slices of pie, meeting at
the common point in the centre and we would then need as many
colours as countries to colour the map as, counting a point as a
common border, each of the countries would border every other
one on the map. Moreover, every country must consist of a single
connected piece—that is to say it should be possible in principle to
travel from any point within a country to any other point without
crossing a border. Again if we allowed one country to consist of any
number of pieces, these enclaves and disjoint regions would lead to
maps requiring any number of colours.

Having said that, we can show how to introduce a network, indeed
it will always be a planar network, associated with a given political
map. We need to do this in a way so that, as with the Königsberg
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bridges, the network distils all the important information in the
problem. The actual question posed will then have a reformulation
in terms of features of the network that we can then hope to solve.
This new problem should be equivalent to the old—that is to say
solving one should solve the other, and this is a theme that often
occurs in mathematics.

The map itself could be regarded as a planar network where the
edges are the borders and the nodes are the points where borders
meet. It is more enlightening, however, to construct another net-
work, known as the dual of this one, when it comes to the map
colouring question. To construct this sister network we represent
each country by a node and join two nodes by an edge if the
corresponding countries share a common border (as we did in the
‘house’ problem in passing from Fig. 3.3 to Fig. 3.4). This network
then tells you whether the members of any given pair of countries
are contiguous or not, which is all that matters in this question.
Colouring the countries of the map then amounts to doing the same
for the nodes. The question now becomes, can we colour the nodes
of the network, using no more than four different colours, in such
a way that two adjacent nodes, that is two nodes connected by an
edge, always have different colours?

This is a reformulation, but it does not yet represent a complete
reformulation of the problem, as not all networks arise as ‘map’
networks. For example, consider the network K5 that consists of five
nodes, each joined to all the others (Figure 4.1).

No less than five colours are required for K5 because every node
must be coloured differently to every other as every node is adjacent
to every other. Given that Guthrie was right, and we only need four
colours for any map, the network K5 must not arise as the ‘map’
network of any real map. What, we might ask, would a map look
like if it was associated with a K5 network? There would need to be
five regions in the plane, with each region bordering every other.
If you try and draw such a map, as De Morgan did, you will find
yourself frustrated! You can certainly draw four regions with each
having a common border. However, when drawing the fourth one,
you will cut off one region from the outside, and the fifth region you
draw will not border this now isolated one. This much De Morgan
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Figure 4.1 The complete network on five nodes

wrote to his friend Hamilton (of Hamiltonian cycle fame) when the
problem was first disseminated.

And it is possible to show that this cannot happen. It rests on the
observation, explained more carefully in a moment, that the net-
work associated with any map is planar, that is to say it can be drawn
without the edges crossing. This is an idea we first met when we
considered the utilities connection problem in the previous chapter,
but let us now look at it in a more thoughtful fashion.

Consider the network K4, which consists of four nodes all joined
to one another. Our first attempt to draw K4 might result in the
picture on the left in Figure 4.2 but, by redirecting one edge, we see
that K4 can be drawn without edges meeting anywhere (other than
perhaps at common nodes) and so K4 is planar.

A network that is planar may not look so, not only at first glance
but even upon closer inspection. The network K2,2,2 consists of three
pairs of nodes: each node is not connected to itself or its partner,
but is adjacent to each of the other four. The first picture you might
draw of this network could be that of Figure 4.3, which, with its
cobweb of unwanted edge crossings, looks too complicated to be
untangled.
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Figure 4.2 The complete network on four nodes is planar

However, the same network can be pictured in a plane fashion,
without any unwanted crossing of edges, as in Figure 4.4.

We call a picture like that of Figure 4.4 a plane network, meaning
that it is a representation of a planar network, drawn in a fashion
that exhibits its planarity, with no pair of edges meeting except per-
haps at their endpoints where they share a common node. There is
no requirement that edges are straight lines; however, there happens
to be a curious theorem that assures us that if a network is planar,
then it is possible to draw a plane representation of it in which all
the edges are indeed straight line segments.

Figure 4.3 A planar network looking non-planar
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Figure 4.4 The previous network shown to be planar

Since the pictures of our networks are getting a little more com-
plicated, this is a good place to pin down the idea of what we
mean when we say two pictures represent the same network, an idea
we have taken as read up until now. An example we have already
looked at was that of Figure 3.9, which consisted of a five-cycle,
drawn as a pentagon, and its complementary network, which was
then naturally drawn as a pentagram. Since the pentagram turns
out to be just another five-cycle, the two networks are essentially
the same. The way we make this precise is to label the nodes of
the first network, N, with the letters a, b, c, . . . and those of the
second N′, with the corresponding dashed letters a′, b′, c′, . . . . If
the networks are really the same, there must of course be the same
number of nodes in each network, but we need more than that. We
also insist that whenever two nodes, u and v say, are connected by
an edge, then so are u′ and v′ and, just as importantly, if u and v

are not adjacent, nor are u′ and v′. To be more precise still, we insist
that some labelling of the nodes of N′ can be found in which the
number of edges running between any two nodes u and v of N is
the same as the number of edges running between u′ and v′ in N′.
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Figure 4.5 The pentagon and pentagram are the same networks

Only if that is the case do we say the networks N and N′ are the
same.

The word mathematicians use is that these two networks are
isomorphic and the labelling of the nodes of N′ is called an isomor-
phism. This is a technical term but it is handy to have a word for
this situation when two mathematical objects are not absolutely
identical yet they are the same in all the ways of current interest—
it would be wrong, after all, to say the two pictures were ‘equal’
when there are obvious differences: it is just that the pictures
do represent exactly the same arrangement of connections of the
nodes. One isomorphism for the two five-cycles is then given by
Figure 4.5.

Figure 4.6 Similar but different networks
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In a similar way, we can label the networks in Figures 3.5 and 3.6
to show that all those networks are the same.

For complicated networks, in general it can be a difficult problem
to decide whether or not two networks are isomorphic to each other
or not. If you suspect not, you need to find a network feature of one
that does not occur in the other. There are the obvious things to
check: do the networks have the same number of nodes and edges
as one another? If they pass this first test, you can set them others.
Do they have the same number of nodes of each degree? If you still
have not distinguished one from the other, you need to look for
more subtle differences. For example, the two networks of Figure 4.6
are genuinely different.

Each network has eight nodes and ten edges and they have equal
numbers of nodes of degrees 2 and 3 (four of each). However, in
the first network no node of degree 2 is adjacent to another degree
2 node but this happens for two such pairs on the right. Any
isomorphic labelling of the nodes in the two networks would pre-
serve features such as this, and so there can be no isomorphism
between them—they are similar but different networks.

Returning to the network of a map, we examine how it is con-
structed. We place a node in each country or region as the case
may be, and join two nodes if the regions share a common border.
We give an example in Figure 4.7 based on the states and territo-
ries of Australia. Like the USA, Australia has its capital, Canberra,
enclosed in a special Federal region, the Australian Capital Territory,
an enclave within the state of New South Wales (N).

It is usual to insist on no colour clash with the outside of the
region as well so we place a node in each state and one in the
ocean. The network we generate by doing this is always planar for
it can be drawn without edges meeting except at endpoints. This
is because each edge may be drawn as a diagonal of a four-sided
figure the opposite corners of which are the pair of nodes connected
by the edge and the two ends of the common border associated
with the regions of the edge—no other edge has call to enter this
four-sided region so that no unwanted crossings need arise. We call
this collection of nodes and edges the plane network of the map. For
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Figure 4.7 Construction of the network of Australian states

clarity, the plane network of the Australian states has been redrawn
in Figure 4.8 with all edges straight, which is always possible.

Let us return now to the idea of five regions that all share a
common border. If this were possible, the network of the map would
be a planar network of five nodes with an edge running between
each pair, giving ten edges in all. This network is called K5, the
complete network on five nodes. However, try as you might, you will
not be able to represent this network in the required plane fashion—
the best you will be able to manage is a picture along the lines of
Figure 4.9, which has just one pair of edges crossing.

For suppose we somehow managed to draw K5 in a plane way
so that no edges crossed. The network will then have a cycle A →
B → C → D → E → A that will form a closed figure, splitting the
plane into an inside and an outside. There are still five edges, or
let us call them arcs as they do not need to be straight lines, to be
drawn so that at least three of them will be outside the cycle and
the remainder inside, or at least three will be inside with the rest
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Figure 4.8 Plane network of Australian states

outside the closed cycle. However, it is not even possible to draw
two of these arcs inside the figure without them crossing unless they
begin at the same node, and then it is certainly not possible to draw
a third inside without an unwanted crossing (try it and see!). What
is more, there is no difference between the inside and the outside of
the figure as regards the validity of this argument—only two of the
required arcs can be drawn outside the figure, and then they must
have a common endpoint. It follows that, however you go about it,

B C

DE

A

Figure 4.9 Near plane drawing of K5
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you will not be able to draw the final tenth arc without crossing an
arc already drawn.

And so it is not possible to have five regions on a map any two
of which share a common border. You should not imagine that
this observation proves that the four-colour conjecture is true, for it
only shows that, with any map, you will be able to four-colour any
five regions with differing colours each side of any border, but it is
conceivable that, if there were many regions to colour, interactions
between sets of regions could make it impossible to use just the same
four colours throughout.

Returning to the problem itself, it has had an interesting genesis
all its own. Guthrie himself never published anything on his own
problem, although he became a mathematician in South Africa and
also contributed to botany with several plant species bearing his
name. There were only a few inconclusive publications on the topic
until 1879 when A. P. Kempe claimed to have solved the problem
in the affirmative and on the strength of his paper was admitted to
the august ranks of the Royal Society. However, 11 years later, the
American mathematician P. J. Heawood identified a flaw in Kempe’s
proof, and one it seems that could not be patched up. Kempe’s
argument was, however, of some value, as Heawood pointed out that
the Kempe technique could be used to show that no more than five
colours were required for any conceivable map, but that was as far
as it would take you. The Four-Colour Problem was again open, and
the race was on to find a solution to this question that was evidently
tougher and more important than a casual glance might have you
believe.

Despite some progress, no solution was found until 1976, and
even then, it was not of the kind that mathematicians were used
to. Kenneth Appel and Wolfgang Haken verified that the Guthrie
Conjecture was true. It was, however, more of a verification than
a normal proof, for their approach was to split the problem up into
over a thousand different cases, each of which could be checked by a
direct calculation. These calculations were, however, enormous, and
could only be done by computer.

This was something of a shock to the mathematical community.
Was this a proof or not? Over the intervening 30 years, others have
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revisited this problem and no mistake has been found. In 1996,
Robinson, Sanders, Seymour, and Thomas tried to verify the original
proof of Appel and Haken for themselves but ‘soon gave up’. Instead
they devised their own program, similar to the original, and reached
the same conclusion. They claim their method is much quicker, yet
the proof is still very much ‘computer assisted’.

The mathematical world has now grown more relaxed about
‘Computer Assisted Proof’, where part of the argument depends on
computer verification. Perhaps certain combinatorial problems can
only be solved in this way. That the Four-Colour Problem seems
to be one of these is something of a surprise—it is by no means
obvious that it can be reformulated in a manner that leads to this.
It may yet be the case that someone will find an ordinary proof
that does not involve computation. (And make no mistake, this
would still be seen as an astounding achievement and the reputation
of whoever came up with it would be secure!) A more reasonable
hope would be that a better way of doing the necessary calculation
will be found so that independent checks will be relatively easy to
carry out and so the validity of the proof will be beyond all doubt.
There is certainly nothing wrong with a computer assisted proof
and, in principle, it is no different from one that does not involve
a machine. However, as with any very long proof, the chance of
a crucial mistake going undetected is high and the very existence
of such a proof can inhibit people from trying to find a better
one.

How edges can ruin planarity

This is something we observed in a casual way before but it is
possible, with a little thought, to be much more precise and, as
we shall see, precision brings with it other rewards. Any network
has two numbers associated with it: n, the number of nodes, and
e, the number of edges; with a planar network we can associate
a third, f , the number of faces of the plane figure, a face being a
region bounded by the edges and not containing any smaller region
bounded by edges. For instance, if we take the example of the plane
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network of Figure 4.4, the hexagon in the diagram is not a face as it
contains four smaller faces of the network.

It is convenient to continue to count the outside of a plane net-
work as another face. For example, in the plane copy of K4 above
(Figure 4.2), we see that n = 4, e = 6, and f = 4. For the network of
Figure 4.4 we get n = 6, e = 12, and f = 8, while for the network of
Australian states (Figure 4.8) we count up n = 9, e = 17, and f = 10.
(Sometimes when counting e, you are more liable to get the count
right by using the Hand-Shaking Lemma, explained in Chapter 3:
sum all the nodal degrees and divide by 2!)

Clearly, however the plane network is drawn, the numbers n and e
must remain the same, but this is not so clear as regards f . It is true,
however, since for any connected plane network the three numbers
are linked by a very simple equation:

n + f = e + 2.

Rewriting this to make f the subject of the formula we find that:
f = e − n + 2. This is easily tested on all the examples we have met:
for instance, for the map of Australia we verify that 9 + 10 = 17 + 2.
The reason why this relationship persists in any connected network
can be seen as you draw the network, one edge at a time, adding any
new nodes as they arise. You will note that when you draw the first
edge we have at that stage n = 2, e = 1, and f = 1 (we always have
the unbounded outside face) and so the formula for f is respected.
At every subsequent stage, as we draw a new edge connected to the
body of the network, we increase e by 1 but we either add a new
node, and so increase n by 1 or, if we join two existing nodes, we
split an existing face into two, so increasing f by 1. In any case, the
two sides of the equation n + f = e + 2 remain in balance and so it
continues to hold true.

This formula, familiar to Euler by 1752, can be used to show
that in a planar network the number of edges e cannot exceed
3n − 6. To reveal this very precise fact requires a little thought. If
you are unused to this kind of tight reasoning and the manipula-
tions involved, the following argument may all look a little daunt-
ing. It is not important to remember the details but at the same
time it is worthwhile trying to follow it through as, if nothing
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else, it gives a good example of how mathematicians think things
through. The desired conclusion follows from a couple of careful
observations.

Before we explain why this inequality always applies, note that
when studying planarity, we only need consider simple networks,
that is those that lack loops or multiple edges. Given a simple plane
network, it is clear that we can decorate it with as many loops and
multiple edges as we wish without spoiling the planarity. For that
reason, only the underlying simple network of a given network,
where we strip away any loops and coalesce any multiple edges into
a single edge, need concern us. Also, a network is planar if and
only if each of its components is planar, so for the remainder of
the discussion we take our network N to be simple and connected,
meaning that it has but one component.

Suppose now that N is drawn in a plane fashion with the number
of nodes, edges, and faces being designated by n, e, and f respec-
tively. Count up the number of edges of every face, take the sum
of all these numbers and call this total T. Now each edge lies on
the boundary of at most two faces (it is possible for an edge to be
surrounded by just one face—this happens for two of the edges in
Figure 4.8) and so we infer that T is no more than 2e; we write this
symbolically as T ≤ 2e. Since there are no multiple edges or loops,
each face is bounded by three edges or more, meaning that each face
contributes at least 3 to the sum T, and since there are f faces in all
we see that 3 f ≤ T; putting these two inequalities together reveals
that 3 f ≤ 2e in a plane simple network. Now we know that for a
plane network, e = n + f − 2, and multiplying through by 3 gives
3e = 3n + 3 f − 6. Since we have discovered that 2e is at least as large
as 3 f , replacing 3 f by 2e on the right hand side of the equality
reveals that 3e ≤ 3n + 2e − 6; and finally, taking the number 2e away
from both sides of the inequality we deduce that e ≤ 3n − 6 in any
planar network.

This fact immediately disqualifies the complete network on five
edges, K5 from the realm of planar networks as for K5 we have e = 10
while 3n − 6 = 3 × 5 − 6 = 15 − 6 = 9, so that K5 has one too many
edges to be drawn in a plane fashion. However, the other minimal
criminal, K3,3 of the gas, electricity, and water problem (Figure 3.5)
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momentarily escapes our net as here we have e = 9 ≤ 3n − 6 = 3 ×
6 − 6 = 12 and so our inequality rule is respected by K3,3.

It does, however, surrender to the following argument, similar to
the one that has just been put to you. Since the edges of K3,3 always
run between two sets of three nodes, it follows that any cycles in K3,3

must be of even length. In particular, there are no triangles and so,
in any plane picture of K3,3, assuming that one is somehow possible,
each face would be surrounded by at least four edges. This gives us a
stronger statement than before when we compare f with e, namely
that 4 f ≤ 2e. The Euler equation, when we multiply both sides by
4, says that 4e = 4n + 4 f − 8. Replacing 4 f by 2e gives the inequality
4e ≤ 4n + 2e − 8. Taking 2e from both sides and dividing all terms by
2 then yields the conclusion that in a plane version of K3,3 we have
e ≤ 2n − 4. Putting e = 9 and n = 6, however, then results in the false
statement that 9 ≤ 8 and so we have a contradiction. Therefore our
assumption that K3,3 could be drawn without edges crossing must
be wrong and, like K5, this little network is not planar. Our two
minimal criminals have now been convicted by two separate strands
of evidence!

Another handy fact that follows at once from our inequality is that
any planar network must have a node of degree no more than 5, for
if we suppose to the contrary that a planar network existed in which
every node has degree at least 6, then its number of edges would
be at least 6n

2 = 3n, which exceeds the maximum possible value of
3n − 6. This fact allows us to prove quite easily that any map may be
coloured with five or fewer colours.∗ We know now however, thanks
to Appel and Hanken, that you never need more than four.

The key fact determining whether or not a network is planar was
discovered by Kuratowski in 1930 for he proved that a network will
always be planar unless it contains a copy of either K5 or K3,3, and so
these two examples are the root of all the difficulty. This has become
a model for many theorems in combinatorics which have the style
that an object will enjoy a certain property unless, lurking inside it,
is a copy of an object from a particular list of known culprits. The
notion of ‘containing a copy’ is slightly more subtle than having an
exact replica of either network, and indeed a little thought reveals
that there must be some caveat involved. For example, consider the
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Figure 4.10 Complete network with nodes inserted

network K5 (as pictured in Figure 4.9 for instance) and insert an
extra node along one of the edges as shown in Figure 4.10.

We can see two things at once in this example. First, plonking
an extra node along one edge is not going to turn this non-planar
network planar. If we had a plane version of this fellow, we could
just rub out the extra node and create a plane version of K5, which
we have seen is impossible (in two different ways). On the other
hand, the network does not, strictly speaking, contain a copy of K5

as there is no set of five nodes in which every node is adjacent to
every other. This, however, is the extent of the complication and
mathematicians have a big word for this. We say that two networks
are homeomorphic if one can be obtained from the other by inserting
or erasing ‘trivial’ nodes of degree two. In particular, a network that
is obtained from another by introducing nodes along edges in this
way is a homeomorph of the original. For example, any two cycles
are homeomorphic. The precise statement of Kuratowski’s Theorem
is that a network is planar unless it contains a homeomorph of either
K5 or K3,3 (in which case it is not).

An application of this idea, which does not go quite the way you
might anticipate, is given by the next network (Figure 4.11).
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Figure 4.11 The Petersen Network is not planar

The rather sinister looking network on the left consisting of a
pentagon connected to a twisted copy of itself, goes by the name
of the Petersen network. It is an example of what is known as a
regular network, that is to say a network in which every node has
the same degree. The only connected regular networks of degree 2
are the cycles of any positive length. If we allow the network not
to be connected then its components consist of cycles possibly
including isolated loops. The only regular networks of degree 1 have
components consisting of a single edge, while a regular network of
degree 0 just consists of a collection of isolated nodes. The Petersen
network is an instance of a trivalent network, that is a regular
network of degree 3. Other examples of regular networks are the
Platonic networks that arise from the regular solids such as that of
the dodecahedron as seen in Figure 3.8. Any regular solid looks the
same at each vertex: in particular the degree of each node of the
corresponding network of connections is the same. The network of
the cube is also trivalent as it consists of eight nodes all adjacent to
three others. Any complete network Kn is of course regular of degree
n − 1, as every node is adjacent to all the rest.

As the Petersen network looks very reminiscent of K5, it is not
surprising that it is not planar. If we search, as would seem natural,
for a homeomorph of K5 lying within, we will be frustrated and it is
not hard to see that no such thing exists; every node in the Petersen
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graph has degree 3, while in K5 every node has degree 4. Adding or
deleting extra nodes along the edge of a network cannot destroy or
create nodes of degrees 3 or 4 and so it is not possible to find the
required copy of K5 inside the network in that way.

What is lurking within the Petersen network is a copy of K3,3, and
this is revealed by deleting some edges of the network, and finding a
suitable homeomorph. We reason as follows. If the Petersen network
were planar, then so would be the network that results from deleting
some edges. (Quite generally, erasing some nodes and edges of a
planar network will leave you with a planar network, as deleting
edges will not create edge crossings that were not present before.) In
particular, we drop the edges except those shown in the diagram on
the right in Figure 4.11. The copy of K3,3 then appears for all to see—
the network pictured is none other than K3,3 itself with four edges
subdivided with the additional ‘trivial’ (that is degree 2) nodes C, b,
e, and D.

There is a direct connection between the Petersen network and
K5, however, in that it is contractible to K5, meaning that we can
deform the network into a copy of K5 by sliding nodes together so
that the edge joining them disappears. Another way to think about
contracting a network without the talk of sliding around is to delete
a pair of adjacent nodes u and v and adjoin a new node w that is
adjacent to all those nodes to which u or v was adjacent. This has
the same net effect as ‘identifying’ u and v by coalescing them into a
single node. The idea of contractibility does lead to another different
but similar criterion for planarity of a network, that being that a
network is planar unless it can be contracted to one of K5 or K3,3.

Rabbits out of hats

There are many problems which, although not stated in terms of
networks, lead to questions that involve connected objects. The
underlying networks may not be obvious at first glance sometimes
because the nodes do not represent solid objects but rather processes
or ideas. However, as we become more experienced in this type
of question, the emergence of a network representation is not
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surprising and indeed becomes an expected way of coming to grips
with the essential connections of the problem to hand. What is
much more exciting, even stunning, are the cases where difficult
questions that look to have nothing whatever to do with networks
are completely solved by an application of network ideas. The most
breathtaking examples often involve planarity and colourability.

So far we have only met the idea of node colouring in the context
of the four-colour map problem but it is a notion that can be applied
to any network. By a colouring of a network is usually meant a colour-
ing of the nodes of the network in such a way that adjacent nodes
have different colours. The smallest number of colours required is
called the chromatic number of the network. We say a network is n-
colourable if it can be coloured with n or fewer colours.

For example, any cycle is 2-colourable if the number of nodes
is even, but a cycle with an odd number of nodes will need three
colours, a fact that becomes clear if you examine a pair of typical
examples. Indeed it can be proved that a network is 2-colourable
unless it contains a cycle of odd length.∗ The odd cycles then play
the role of the ‘criminals’ in this context. On the other hand the
complete network on n nodes has a chromatic number of n as no
node can afford to carry the same colour as any other as each pair
has an edge running between them.

1. Guarding the gallery

A museum gallery needs guards stationed at fixed points to keep
an eye on what is going on so that no point is allowed to remain
invisible to the eyes of the guards. In 1973 Victor Klee asked what
is the minimum number of guards required for a museum with n
walls? Nowadays the guards may have been replaced by surveillance
cameras but the problem is much the same. The guards are fixed in
position but can swivel about, seeing freely in all directions. For that
reason, quite often only one guard will be required.

An enclosed shape is called convex if the line joining any two
points inside the shape stays entirely within it. For example, circles,
rectangles, ellipses, and regular hexagons are examples of convex
shapes in which case you only need one guard and he can stand
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anywhere he likes. A Christmas tree star on the other hand is not
convex as a line joining two points near separate tips of the star
will cross outside the figure. However, if you have a star-shaped
gallery you can still get by with one guard—as long as he is posted
somewhere near the centre of the star, he can see every wall in the
gallery as he spins around, without moving from his spot.

On the other hand, a gallery with lots of side chapels might
require a separate guard for each chapel. A particularly labour-
intensive museum to guard would be one shaped like a comb as
depicted in Figure 4.12.

The walls of each little vee are only visible from the corresponding
shaded area and since these regions do not overlap, we need as many
guards as we have vees. If there are m of these vees, then the total
number of walls is n = 3m, so in this case the museum needs to hire
n
3 guards.

The surprising result, revealed by a little network theory, is that
the m-comb is as bad as it can get, meaning that in any musuem,
the number of guards required is never any more than one third the
number of walls. A simple proof of this was devised by Steve Fisk
using network colouring. It relies on an idea frequently employed
in mathematics to demostrate fundamental properties of complex
shapes, that of triangulation.

In particular, if you draw a quadrilateral of any shape you will be
able to split it into two triangles by drawing a diagonal between
one pair of opposite corners. A five-sided shape can be similarly
triangulated with two such diagonals, a six-sided figure will require
three diagonals and in general any polygon, that is to say the plan of
any museum, can be triangulated in this way by drawing n − 3 non-
crossing diagonals between corners of the n walls. A formal proof of
this fact relies on what is known as an induction argument, where we
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Figure 4.13 Triangulation of a gallery with 18 walls

build from one case to the next. It is slightly trickier than you might
first expect as it takes some thought to show that it is always possible
to find at least one diagonal that splits the polygon into two smaller
ones with fewer sides. But it can be done.∗

Taking this fact for granted, we can complete the proof with a
piece of network magic. We think of the triangulated plan as a
plane network in the obvious way. Figure 4.13 gives a representative
example to focus on, where a museum with 18 walls is triangulated
by 15 non-crossing diagonals. The nodes of the network are the
corners of the gallery and the edges are the sides of the triangles
used in the triangulation, some of which are the walls themselves.
It turns out that this network is always 3-colourable. The reason this
is true stems from the obvious fact that the chromatic number of a
triangle is three. We may colour one triangle and then colour the
remaining node of an adjacent triangle with a different colour from
the two used to colour the ends of the common side of the triangle
pair. Continuing in this way we may colour the entire network using
just the three colours.

Now the number of walls, n, is the same as the total number of
corners of the collection of triangles as we may match walls with
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corners as we move in a complete circuit around the perimeter of
the gallery (because the triangulation does not permit new corners
to arise as the diagonals used do not cross one another). Each corner
now has a colour associated with it and so at least one of the three
colours is used no more than one third of the time (by the Pigeon-
hole Principle). Stationing your guards at each of these corners,
which are no more than n

3 in number, then gives full surveillance
of the museum as every triangle has at least one guard, and so the
space within every triangle is visible and therefore the entire gallery
is covered.

2. Innocent questions of points and lines

We next feature a well-known result that amounts to just a single
very simple observation about points and lines: given any finite
collection of points in the plane, not all lying on the one line, it
is possible to find a line that passes through exactly two of them.

A little experimentation with dots and lines will soon convince
you of this fact, but how can we be sure? The proof must require
some thought as the claim fails if we drop the proviso that the col-
lection is finite: if we take all points in the plane then every line
contains infinitely many of them!

Part of the reason the problem is interesting is the surprising
variety of ideas that have been brought to bear to prove it and
similar results along these lines. As you will be expecting, here
we give a proof based on planarity. However, the dots and asso-
ciated lines will not in general give us a planar network and no
progress lies in that direction. Nonetheless, N. Steenrod showed
that the problem was amenable to this kind of argument if it
is transferred to another setting. This approach of introducing a
‘magic mirror’ is one that mathematicians are very fond of. Some-
times, for reasons that can remain mysterious, the solution to a
problem becomes clear when it is transformed into a different
environment.

The particular transformation used in this instance involves pass-
ing from the plane to a sphere. Up until this point we have always
drawn our networks on a flat sheet of paper, that is, in a plane.
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The same net of connections can be represented on other surfaces
and a network that is not planar on one surface can sometimes be
drawn on another without the edges crossing. In particular, surfaces
with one or more holes in them, such as a doughnut, allow things
to happen that are impossible in the plane. For example, the two
basic non-planar networks, K5 and K3,3, can both be drawn on the
surface of a doughnut (known as a torus) in a plane fashion. This
may surprise you but, if you have such a shape to hand, or even if
you draw one, it is not hard to see how to use the hole to avoid the
crossing that is unavoidable when we keep everything flat. The other
side of the coin is that you need more colours to colour maps drawn
on a torus. Indeed on the surface of a doughnut it is possible to
draw up to seven regions with each pair of them having a common
border.1

However, the plane networks that can be depicted on a sphere
are just the same as the ones that work in the plane. It is clear that
any plane network can be transferred to a sphere and planarity is
retained—indeed if you make the sphere big enough compared with
the picture of your network, the surface appears almost flat and so
the picture is hardly distinguishable from the plane representation.
We can also go in the other direction: suppose you draw a network
on a sphere with no edge crossings. This network can then be
smeared into a very small part of the surface of the sphere without
disrupting the connections in your network. We can imagine taking
a small circle within one face of the network and letting the circle
expand, pushing the edges and nodes of the network along with it
as it grows. Eventually the network will lie within one hemisphere
and we can then contract the network futher until it lies within a
small circle on the sphere’s surface. Eventually the plane network
will occupy a small section of the sphere that is almost flat and this
configuration can then be projected onto a flat plane with the pla-
narity of the network still intact. The sphere gives us no more ‘plana-
rity power’ than does the the plane. We cannot use the nature of the
sphere somehow to avoid the otherwise unavoidable edge crossing
in a network such as K5.

1 See for example the webpage <http://enderton.org/eric/torus/omdex.html>.
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Figure 4.14 Projecting lines in a plane onto a sphere

All the same, transferring the Sylvester–Gallai problem, as it is
known, from the plane to the sphere helps solve it, but not in a
fashion you might naturally expect. We transfer the points and lines
in the plane by projecting them on to a nearby sphere as suggested
by Figure 4.14.

We imagine the plane suspended above a sphere and identify each
point in the plane with the diameter of the sphere whose extension
passes through the point in the plane on which we are focusing.
This diameter is determined by the line through the point and the
centre of the sphere and intersects the sphere’s surface at two points
exactly opposite one another on the globe, known as antipodes. In
this way we may regard the point in the plane as being identified
with this pair of antipodal points on the sphere or, if we prefer, we
can think in terms of the diameter bounded by the pair of antipodes.
In any case, imagine the point in the plane moving along a straight
line. As the point traces out the entire line, in both directions, the
corresponding diameter of the sphere performs a 180◦ turn, tracing
out a great circle on the surface of the sphere, that is a circle with
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its centre at the centre of the globe. If you like to think in terms of
globes of the Earth, lines of longitude are exactly the great circles
that go through the pair of antipodes represented by the north and
south poles. Circles of latitude, however, with the exception of the
equator, are not great circles for although their centres lie on the
polar axis, they do not lie at the centre of the planet.

And so we can recast our points and lines in the plane as diameters
and great circles of the globe: a collection of points in the plane, not
all on one line, give rise to a set D of diameters of the globe, not all
being the diameters of the same great circle.

Now comes the trick. We recast the problem as it appears on the
sphere in another way. With each diameter from D we associate
the great circle whose plane is at right angles to it—for example, if
the diameter happened to be the north–south axis, then the great
circle in question is the equator. There is nothing special about this
axis, however, for any diameter there is such a great circle. Let us
write G for this collection of great circles that arise from the mem-
bers of D. If the diameters of D were all common to one great circle,
this would correspond to the set G of great circles that arise from
these diameters all having a common diameter as well, that diameter
being the one at right angles to the common great circle: that is to
say all the circles of G would share a common axis through a pair of
antipodal points. However, since this is not the case, the associated
great circles of G do not all share a single common diameter.

The required conclusion of a line containing exactly two of the
original points corresponds to a great circle that has exactly two
members of D as diameter, which in turn corresponds to a pair of
great circles from G whose common diameter is not shared with any
other member of G. It is this version of the conclusion that we now
demonstrate.

This conclusion drops out by treating G as a planar network on the
sphere with the nodes being the points where great circles meet and
the edges begins the arcs of the great circles between these common
nodes. This network is simple—multiple edges could only arise if all
the great circles went through a common pair of antipodal points,
which is precluded as not all of the original set of points lay on the
same line.
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In this planar network, as a great circle passes through a node, it
contributes two to its degree and so all nodes are even and indeed,
since a node represents a point where great circles meet, its degree
is at least four. Since the network is planar, it must have a node of
degree no more than five—in this context that degree must be no more
than four, and so by the previous comment, there must be a node of
degree exactly four. That is to say, there is a point on the sphere where
exactly two, but not more than two, of the great circles meet, which
is the conclusion that we seek.

Remarkable and short as this argument is, it is natural to wonder
why the proof has come in so roundabout a way. Surely there is a
simple and direct way of demonstrating this fact?

The answer is ‘yes’ and here is a proof that avoids introducing
spheres or networks and grapples directly with the points and the
lines involved. Let P denote the set of given points and L the set of
all lines that pass through two or more points of P . For each line l
in L, consider the points p in P that do not lie on l: there is always
at least one such point p for any l as we are given that not all the
points lie on the one line. Of all these pairs of lines and points,
choose one pair, l0 and p0, such that the distance from the point to
the line is as small as possible. (This is possible because we have a
finite collection, so that this minimum is attained.) We shall show
that the line l0 contains exactly two of the points of P .

All the lines in L, including l0, contain at least two points of P
but suppose, contrary to what we want to show, that l0 had three
points of P . Let q be the closest point on l0 to the point p0 (see
Figure 4.15). Then at least two of the three points lie on l0 on the

l
0

q p
2

p
0

l
1

p
1

Figure 4.15 Proof of the Sylvester–Gallai theorem
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same side of q, with the order of these points on the line being q, p1,
p2 say (although p1 might actually be equal to q). This however leads
to trouble, for look at the line l1 that goes through the points p0 and
p2. Since l1 has two points of P, the line l1 is one of the lines in our
collection L. On the other hand, the distance of the point p1 to l1
is less than that of p0 to q, which contradicts the way we chose the
point p0 and the line l0 in the first place. This contradiction is the
inevitable consequence of supposing that l0 contained more than
two points from P , and so it is this that must be wrong. Hence our
claim that there is a line that contains just two and no more of the
given points is valid and so the Sylvester–Gallai Theorem, as this fact
is known, is true.

This straightforward proof may strike you as more natural and
easier to remember than our first argument. All the same, upon
reading it, a mathematician might feel a little uneasy and suspect
that there remains more to be said on the question. The proof is
short and clear but it does make crucial uses of the idea of distance
between points. There is nothing wrong with this, but it is an aspect
of the question that we might have thought would not need to
feature heavily in a proof of this result. This contrasts with our
first proof that did not rely on any specific comparison of distances
between points.

In finite geometries at their most abstract, there is a notion of
points and lines incident with each other, but no notion of distance,
angles, or even of order. However, in these very general settings, the
Sylvester–Gallai Theorem simply does not hold so that it seems that
any proof requires some additional structure to work with, such as a
meaningful order for the points on a line.

Members of the general public are often bemused as to why
mathematicians fret about this kind of thing. However, it comes
about because mathematicians are not satisfied with any old proof
as their mission is to understand all that surrounds the question as
thoroughly as possible. Although a vague and elusive goal, this is
a very important part of the motivation for real research. It may
sound nonsensical for a mathematician to ‘disapprove’ of a proof.
What is meant by such a criticism is not that the proof is invalid
but that the line of argument is not the best one to take. Another



90 COLOURING AND PLANARITY

approach might clear up the question thoroughly and lead to more
enlightening ideas. A ‘bad’ proof on the other hand might be a dead
end that has the effect of inhibiting further progress rather than
fostering it. On the one hand, favourite techniques can be a matter
of taste but on the other, some approaches can prove more fruitful
than others and, in time, these subjective questions can, to a large
degree, become settled.

3. Brouwer’s fixed point theorem

All of us like to believe from time to time that life has some fixed
points. We would have it that there are some good things that
never change no matter what upheavel may strike our own world.
Mathematics itself is one of these everlasting wonders and what
is more, it offers some support to this optimistic outlook through
the particular topic of fixed point theorems that gain application in a
variety of subjects, especially in economics.

The simplest fixed point theorem applies to a line segment that is
mapped into itself in a continuous way. We take our segment to be
of unit length so that the left-hand endpoint is numbered 0 while
the right-hand endpoint carries the number 1. Intermediate points
are labelled by x, where x is the distance as measured from 0. Let
us write f (x) for the value of the point to where x is moved to on
the line segment under some continuous transformation, where by
continuous we mean that the interval may be stretched in places,
compressed in others, and even folded onto itself (so that several
points are mapped on top of one another), but the domain is not
torn. Another way of viewing continuity is that neighbouring points
are mapped to neighbouring points—it is not possible to find points
arbitrarily close to one another that have images separated by some
fixed value.

We intend to convince ourselves that at least one point p is left
untouched by all this moving about so that f (p) = p. If neither of the
endpoints remain fixed then we have that 0 < f (0) (0 is less than its
image) and f (1) < 1. Imagine what we would see if we were to draw
the graph of y = f (x) on ordinary cartesian (xy) axes. Since we are
insisting that our function f is continuous, its graph would be some
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kind of continuous (although perhaps extremely irregular) curve.
We can say little more about it in general except that it will begin
above the diagonal line y = x, because 0 < f (0), and finish below the
same line, as f (1) < 1. Therefore, somewhere in between, it must
meet the line y = x at some point, (p,p) say, and so f (p) = p and we
have found our fixed point.

To be honest, we have not found our fixed point at all, but rather
have deduced that there must be one somewhere between 0 and
1 because the graph, being that of a continuous function, cannot
jump from one side of the diagonal line to the other. Indeed it may
cross back and forth, cutting the line any number of times and even
coincide with it for a time, which would give us infinitely many
fixed points in the interval. We can be sure, however, that there is
some point p in that interval where, like baby bear’s porridge, the
balance between x and f (x) has to be just right, and so p and f (p)
are precisely the same value. To use a word of which mathematicians
are fond, the position of p is invariant under this transformation.

Does this apply to a disc? Imagine a circle and rotate it about
its centre through some particular angle, let us say, in order to be
definite, anti-clockwise through a right angle. Every single point on
the face of this disc is moved under this transformation except the
centre of the circle, which remains where it was. Here then is a sim-
ple example of a continous transformation of a disc with only one
fixed point. In 1910 L. E. J. Brouwer (1881–1966) published a paper,
however, in which he proved that a fixed point in this and similar
situations was inevitable. Indeed his theorem applies not only to
discs but to any region that could be continously transformed into
a disc and indeed not only in two dimensions. Brouwer’s theorem
proves that if a sphere, or a region that could be deformed in a con-
tinuous way into a sphere, in any number of dimensions, is mapped
back into itself in a continuous manner, there is then a fixed point.

A graphic illustration for this theorem applies to two identical
sheets of paper, one laid over the other. If the top sheet is then
crumpled up any way you wish (without tearing) and placed on
top of the other then there is at least one point of the crumpled
sheet that lies exactly on top of its original position before the
crumpling took place. The first sheet, although a rectangle perhaps,
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corresponds to the original disc, while the second sheet represents
the action of the continuous function: a point p on the second sheet
whose original co-ordinates were (x, y), say, now lies over a new
point p′ on the first sheet with new co-ordinates (x′, y′). However,
Brouwer guarantees that for at least one point p, x = x′ and y = y′.

However, you don’t know where this fixed point p is, and
Brouwer’s proof does not show you how to locate it. In his later life,
Brouwer himself found this profoundly unsatisfactory and person-
ally rejected this kind of existence argument. He preferred to regard a
mathematical object as only truly existing if it could be constructed.
For example it might be possible to prove that there exists a 10 × 10
Graeco-Latin square (see Chapter 2) without specifically construct-
ing it. This might be done by showing that the non-existence of
such a square leads to a contradiction. Brouwer’s later mathematical
philosophy would not deny that a contradiction had been correctly
deduced but he would not accept that we had a proof that such a
square exists until one had been written down. More precisely, the
constructionist approach would insist that we devise an algorithm
for producing the square that would thereby guarantee that we could
produce the square after some calculation that is bound to be of
finite duration. Brouwer would not insist that you always need to go
through the calculation in question but if you did, more’s the better.

Most mathematicians do not share Brouwer’s view but have some
respect for it all the same. A contradiction argument would be
accepted as a proper proof of the existence of an object even if it
gave no clue as to how to find such an object. However, the proof
should then act as a spur to the mathematical community to go out
and find what they know must be there.

In the case of an example such as Graeco-Latin squares, there
would be less controversy, as in principle, all possibilities could be
enumerated and checked so there is an algorithm at hand for settling
the question, even if it is too difficult to implement in practice. How-
ever, existence arguments involving infinite collections can leave
one wondering and it is not hard to give a real example.

A number that is a simple fraction, such as 5
8 = 0.625 is called ratio-

nal. Rational numbers are characterized by having decimal expan-
sions that either terminate or fall into a recurring patterns such
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as 5
12 = 0.416666 . . . . Numbers that lack such recurring expansions,

such as
√

2 and , are called irrational. It is easy to show that there
exist two irrational numbers, a and b, such that ab is rational. To see

this consider the number c =
√

2
√

2
. Either c is rational or it is not.

If it is, we have already found an example by putting a = b =
√

2.

If not, put a = c and b =
√

2. Then ab = (
√

2
√

2
)
√

2 =
√

2
2

= 2, which is
rational. Since one of the two cases must apply, the existence of the
required numbers is proved.

This is just the kind of proof Brouwer would not have had any
truck with. The technicalities of the argument are not important
here. Rather it is the fact that it gives two alternatives yet provides
no clue as to which one applies. It merely observes that if one
does not work then, as a consequence, the other must. (Fortunately

this particular problem has been settled: it is known that
√

2
√

2
is

irrational, but the proof is very difficult.) However, Brouwer is right
in pointing out that we are not really that much the wiser for such
a proof as it leaves us with no way of testing, not even in principle,
which of the two alternatives applies. The proof is of real value all
the same—many students of mathematics might mistakenly think
that it is impossible for an irrational power of an irrational to
be rational, for it just doesn’t sound right. This little argument
at least tells you not to waste your time trying to prove that,
even if it does not settle the question to the extent we would like
to see.

Paradoxes
Most of us would still not have too much sympathy with Brouwer’s
pedantic view as we all like to believe that any statement is either
true or false with no third option. Accepting this allows us to make
use of contradiction arguments to settle questions for if we prove
that a statement leads to contradiction, then its opposite must be
true and the question is decided. However, it is just not possible to
adopt this attractive commonsense viewpoint in a totally unquali-
fied manner and remain consistent.

The dilemma as to what constitutes a real proof can be traced right
back to that disturbing utterance of Epimenides the Cretan in 600
BC that ‘All Cretans are liars.’ (See Chapter 1.) Self-reference seems
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to lie at the heart of all inconsistency and contradiction, something
that has plagued both mathematicians and philosophers through
the ages and has never been resolved—the existence and eventual
non-existence of our own consciousness seems to smack of the same
dilemma whenever we ask ourselves the unanswerable question,
‘Why am I me, and not someone else?’

The mathematical difficulty arises when we naively assume that
any statement is either true or false. We may not know which is
the correct alternative, conceivably it is impossible ever to find out,
but surely one or the other applies. Epimenides alerted us to the
difficulty of this position with his statement about Cretans. To put
the paradox more baldly, consider the sentence, ‘This statement is
false.’ If we assume that it is true, then it is false (for that is what
it says), and if we assume it is false, then we infer that it must be
true. We conclude that we simply cannot assign a truth value, to this
‘statement’.

This is an annoying example. It is self-referential and indeed refers
to itself as an existing statement before it is even completed. We
could argue that this is implicitly nonsensical and so this kind of
thing should be prohibited. Having said that, it seems we can return
to our commonsense position that any (sensible) statement is either
true or false, and there is no third alternative.

All the same, a spanner has been thrown in the works, for how are
we to define and recognize these kinds of nonsensical statements?
Whatever definition we come up with may conceivably leave the
door open to other assertions that also cannot be given a truth value.
How can we be sure we have banished all troublemakers?

We could therefore be driven to issuing a blanket ban on any
statement that causes trouble in this way. That would be consistent
but would leave us very much in the dark, for how could we know in
advance whether a statement led to contradiction whichever truth
value is assigned to it?

Nonetheless, something along these lines has to be done to rescue
logic and mathematics. It is, however, a disappointment to be forced
into quite technical considerations on a matter where all seems clear
except for unimportant exceptions that are deliberately designed
to be a nuisance. For this we are forced to relinquish the absolute
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freedom of expression we thought we had by rights. A similar
dilemma arose with a vengeance in the nineteenth century when
Set Theory came to the fore.

The idea that every collection of mathematical objects could be
regarded as a set was a notion that freed the subject, allowing it a sin-
gle arena where all mathematics could be carried out. This ‘paradise’
as David Hilbert described it soon started to beget contradiction
nevertheless, along the lines that Epimenides had warned us about
all those years ago. Although not the first paradox of set theory, that
of Bertrand Russell is perhaps the most famous and shows that if
we believe we can define sets in any fashion whatsoever, we land in
trouble.

Russell’s paradox concerns the set S of all sets that are not mem-
bers of themselves. It is possible for a set to be a member of itself—
the quaint example that Russell himself uses is the set T of all things
that are not teaspoons. Whatever T is, it is evidently not a teaspoon,
so that T is itself a member of T. We write this symbolically as T ∈ T,
the funny ∈ sign being shorthand for ‘is a member of’ or ‘belongs to’.

Returning to Russell’s set S, the embarassing question to ask is:

Is S ∈ S?

However you answer yields a contradiction: if S is a member of S,
then S must meet the qualification to be in S, which is that S is not
a member of itself, and so that can’t be right. Therefore the other
alternative must apply: S is not in S; but since S must fail to meet
the entry requirement for membership of S, it follows that S is a
member of itself after all, and so S ∈ S must be true.

It simply does not work and so in order to have a consistent theory
of sets we need to introduce restrictions on how a set can be defined.
This is what Russell and others have done. There really was no choice
other than to restrict the theory in some way or other, but again
it is uncomfortable for there is more than one way to construct a
reasonable theory. Which should we choose and how can we yet be
sure our theory is consistent? Some mathematicians make a living
from sorting these things out, while many still don’t care or at least
take the attitude that they won’t worry about foundations until they
somehow cause trouble for them personally.
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Sperner’s Lemma
Leaving philosophical musings aside, the purpose of introducing
Brouwer’s theorem is that it has a remarkable proof based on a
remarkable fact known as Sperner’s Lemma. A lemma is a mathemat-
ical theorem, sometimes of a technical nature, which allows you
to go on to deduce more interesting things. However, to a math-
ematician, the proof of a key lemma often represents the heart of
a topic in that it identifies the driving imperative behind a whole
body of interesting theory. Sperner’s Lemma is a true lemma and,
most interesting for us, the lemma itself is a surprising by-product
of a problem of network colouring.

John Fraleigh, in his classic undergraduate text on abstract alge-
bra, tells his students never to underestimate a theorem that counts
something. This mathematical maxim needs a little explanation as
the idea of a theorem that ‘counts’ goes a little wider than discov-
ering a formula for finding the number of certain mathematical
objects, although that would certainly be included within the scope
of counting theorems.

An argument that leads to a conclusion such as the number of
objects of a certain kind is odd, or is a multiple of three, or is a
prime is often very powerful as it can place great constraint on what
is possible. A simple example arises in the form of so-called parity
arguments in which two very similar-looking objects are shown to be
fundamentally different by identifying one feature that is ‘even’ in
one object but ‘odd’ in the other, and so they cannot be the same.

This can all be made clear by simple examples. A classic instance
comes from one of the celebrated puzzle books of Martin Gardiner:
the problem of the mutilated chessboard. Suppose we have a chess-
board and also some dominoes each of which is just the right size to
cover two squares on the board. We can cover the board with these
dominoes very easily, laying down four in each row for instance. If
we now mutilate the board by cutting out two diagonally opposite
corner squares, can the remaining board be covered by the domi-
noes? (Without, of course, any protruding over the edge.)

The answer is ‘no’ and this can be seen by focusing on the colours
of the remaining squares. The two squares removed are necessarily of
the same colour: let us suppose they are both white. The remaining
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board then has two more black squares than white. However you
lay a domino on the board, it will cover two adjacent squares, one
of which will be white, the other black. It follows that as we cover
the board with dominos, at any stage we will have covered equal
numbers of black and white squares and so the covering by dominos
and the entire mutilated board can never be made to match.

Another similar example of a parity argument concerns a teacher’s
class in which 35 children are seated in a 7 × 5 rectangle. She wants
to rearrange the seating so that every child moves to a new desk but,
to make things simple, she orders everyone to move just one space,
either forwards, backwards, or sideways. She then tells the children
to sort it out among themselves.

The teacher has set her poor class an impossible game of musical
chairs. How can we tell? Once again imagine the array as a mini
chessboard, with alternate spaces coloured black and white. The
trouble is, there are an odd number of squares, so the number of
black and white squares will differ by one—if we colour the first
square white we will end up with 18 white and 17 black. Now when
places are changed in the manner prescribed, a child in a white
square moves into a black one (and vice versa). However, since there
is one more white square than black, one child will always be left
with nowhere to sit. Very frustrating for the poor kids but they are
not being silly—their teacher has inadvertantly set them a problem
with no solution.

Returning to the matter in hand, the key to our verification of the
Brouwer Theorem is analysis of the following situation, somewhat
akin to our problem of guarding the gallery. Suppose that we have
a big triangle with vertices V1, V2, and V3 and it is triangulated as
in our earlier problem. A typical outcome could be as pictured in
Figure 4.16.

We now colour the vertices of the network with three colours 1,
2, and 3 but not according to the usual rule that adjacent colours
need be different. There are rather different constraints, these being,
V1, V2, and V3 are coloured 1, 2, and 3 respectively, the vertices on
the side from V1 to V2 are only coloured 1 and 2, and similarly the
side from V2 to V3 only carries the colours 2 and 3, and likewise
the 3–1 side is only coloured using 1 and 3. The interior vertices
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Figure 4.16 Triply coloured triangles always arise

of the triangle however are coloured using 1, 2, and 3 with no
restriction whatever. Sperner’s Lemma then concludes that a triangle
carrying all three colours must emerge within this triangulation.

As you see, this is a true ‘lemma’ as the set-up looks quite artificial
and the conclusion seems to be of little or no interest. However, that
is an illusion as this little result is very powerful. And we prove it in a
very sneaky way—we show the the number of tri-coloured triangles
must be odd. (And so there must be at least one of them!)

The idea is to draw a kind of map network but subject to different
rules. As with the map network we have one node for each triangle
and another for the outside. However, two nodes are joined by an
edge only if their separating edge is labelled 1–2.



COLOURING AND PLANARITY 99

Let us now look at the degree of each node. The outside node is
odd as there is one edge from the outside node through each of the
edges on the base of the triangle labelled by both 1 and 2, and since
there is an odd number of alternations between 1 and 2 on the base
(as we begin with a 1 and end with a 2), then the outside node must
be odd. A node will be isolated, and so of degree 0, if its triangle
lacks either of the colours 1 and 2; if a node lies within a triangle
with colours 1 and 2 but no 3, it will be of degree 2; and finally
any triply coloured triangle will have degree 1. We now finish the
proof by invoking the Hand-Shaking Lemma—the number of nodes
of odd degree is even, and since the outside node is odd, there must
be an odd number of other nodes of degree 1, that is to say there
is an odd number of triply coloured triangles. Therefore Sperner’s
Lemma is established.

All this can be seen in action in the example of Figure 4.16. In this
instance the number of triply coloured triangles is three and they
are shaded.

Using Sperner’s Lemma, it is surprising but true that it is quite
easy to deduce Brouwer’s Theorem for the disc and the details are
recorded for interested readers in the final chapter, although a little
additional mathematical knowledge is required.∗

The first observation is that we can work with an equilateral
triangle instead of a disc because one may be continuously deformed
into the other, and so that a mapping of the disc that was fixed-
point free could be used to produce a fixed-point free mapping on
the triangle. To show that no such mapping of the triangle can arise,
the argument goes by way of ever finer triangulations of the triangle
itself and a timely application of Sperner’s Lemma to contradict the
assumption that no point remains unmoved.
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5
How to Traverse a Network

L et us now return to Euler’s resolution of the question of finding
traversing walks in networks. Our explanation is thoroughly

modern and is not expressed in the fashion that Euler would have
used. Although he is regarded as an excellent expositor of his own
work and is renowned for producing mathematics that was free of
error, he suffered greatly from the fact that network theory was
a new and unrecognized field. It would have been strange in the
extreme to devise the kind of language that we have introduced
here, incorporating as it does a large number of interrelated ideas,
simply in order to deal with one or two problem types. Lacking
this language and notation was however a great handicap and Euler
struggled to convey his new ideas, despite the fact that, to the
modern mathematical outlook, they are not especially difficult to
come to terms with and put into practice.

The Euler–Fleury Method

Recall now that an Euler path in a network is one that traverses each
edge exactly once and let us call such a path an Euler circuit if it
is both an Euler path and a circuit. For example, the bow-tie of
Figure 3.7 has an Euler circuit that can be described as: A → B →
C → D → E → C → A.

To traverse a network N, it must be connected, that is to say, must
consist of just one component, so let us take that for granted. Euler
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laid down the law on when you can traverse a connected network.
The full story is:

1. N can be traversed by an Euler circuit if all nodes are of even
degree, and not otherwise;

2. N can be traversed by an Euler path, but not by an Euler circuit,
if it has two odd nodes and not otherwise. Moreover, any Euler
path must begin at one odd node and terminate at the other.

We have already explained why these criteria must be met. Each
time an Euler path passes through a node it uses up a pair of edges
that we are forbidden to use again. It follows that all the nodes must
be even except perhaps the first and last. In a circuit, no node is
intrinsically first or last (we must begin somewhere, but all nodes
are equally good) so that no odd nodes are possible at all. Since we
now know, as a corollary of the Hand-Shaking Lemma, that it is
impossible to have a network with exactly one odd node, this is a
case that never arises.

Deciding whether or not a network has an Euler circuit is a global
question concerning the array as a whole. It does however have a
local solution in that the question can be decided through inspec-
tion of local features of the network, namely the degrees of the
nodes. In contrast, determining whether or not your network has
a Hamilton cycle cannot always be decided through some series of
local inspections.

Moreoever, and this contrasts with many other problems in net-
work theory, the task of finding a solution to the Euler circuit prob-
lem is relatively easy, although not as easy as it might be, for a
completely naive approach can let you down. Suppose for instance
that the network has exactly two odd vertices, u and v. We might
begin at u and cross any available edge, without giving it a thought,
and keep going, hoping for the best. If you are careless, however,
you can get stuck and find yourself sitting on a node with no way
out, even though you have not yet traversed all the edges.

For example, the network of Figure 5.1 has exactly two odd ver-
tices, numbered 1 and 8, and so we should be able to traverse all the
edges of the network, beginning at 1 and finishing at 8. However if
we begin our walk with 1 → 2 → 3 → 6 → 7 → . . . , we have landed
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Figure 5.1 A traversable network

ourselves in trouble. If we imagine burning our bridges as we pass
over each one, we see that upon our arrival at 7, the remaining net-
work has split into two pieces and we have managed to strand our-
selves on the left-hand side, with no prospect of traversing the edges
still unwalked in what remains within the right-hand component.

This is the only difficulty that can arise, however, and it is readily
avoided. We do not have to be very clever when we construct our
walk—we don’t have to think two steps ahead—we only need to
avoid taking a step that splits what is left of the network into two
pieces. We can indeed give an automatic procedure that will work
and avoids the necessity of guessing and hoping. This solution to
the problem is due to Fleury.

To traverse a network with no more than two odd nodes, begin
at any vertex you wish if there are no odd nodes, and at either of
the two odd nodes otherwise. You may now walk the edges of the
network making sure that:

1. You draw a picture of the network and erase as you go any edge
that you have used and any node that has had all of its edges
traversed;

2. At each step use a bridge (sometimes called an isthmus), that is to
say an edge connecting two otherwise disconnected components
of the remaining network, only if there is no choice.

You should have no trouble traversing the above network now,
starting at 1 and ending at 8. Note that the failed walk above violated
rule 2 when the choice was made to travel along the edge 6 → 7 as
this crosses an isthmus of the remaining network.
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A list of instructions like this one is known as an algorithm. It gives
a mechanical procedure, one that in principle could be programmed
on a computer, by which the problem can be solved. Having a
simply described algorithm that solves a given problem is not always
the end of the matter. If the process that the algorithm demands
takes an impossibly long time to carry out, it may be of no practical
use. For this reason no end of effort still goes into finding faster
and faster algorithms to deal with problems that have already been
‘solved’. However, the above example for finding Euler circuits is
a good algorithm in that it can be implemented on even large
networks and the procedure is genuinely feasible.

An explanation showing that the Fleury method must find a
traversing walk whenever one exists is in the final chapter.∗ (After
all, I have provided no proof that the Euler condition of ‘no odd
nodes’ is sufficient to guarantee the existence of an Euler circuit, nor
that the preceding algorithm always works.) This kind of problem is
popular in riddle books but is usually phrased in terms of drawing
the bridges in rather than rubbing them out. The question often
posed is: Can you draw this picture without taking your pencil off
the page and without going over any line twice? The standard pair

Figure 5.2 Traversing the open and the closed envelope
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of examples that can and cannot be done respectively are the open
and closed envelopes, shown in Figure 5.2.

Provided you begin and end at the bottom, the first figure
can be drawn within the rules, but the closed envelope, with its
four odd vertices, is impossible. And as mentioned in Chapter 2,
there are variants, such as traversing through all the doors of a
house.

To be able to solve a network problem through the application of
a few simple rules is not something that can be taken for granted,
but there are other interesting problems that succumb to simple
techniques, as we shall see.

The Chinese Postman Problem

A very practical problem that all of us who have ever had to deliver
goods or services to many dwellings will have met is how to plan
the route so as to avoid unnecessary traipsing about. It is most
easily understood in terms of a postman who has to perform a mail
run where he leaves and eventually returns to his post office base
having delivered to every street in a section of town for which he
is responsible. The problem was first considered as early as 1917 by
H. E. Dudeney but it now always goes by the name of the Chinese
Postman Problem because the complete solution was devised and
explained by the Chinese mathematician Mei-ko Kwan in a short
paper in 1962.

It comes down to a problem about Euler paths. Indeed the
postman’s delivery area can be imagined as a network where we
place a node on each corner and join corners by edges if a street
runs between them. From this we can see that the postman already
has a solution to hand if he is lucky enough to have a street network
where every street corner represents an even node. All he needs to
do is find an Euler circuit that begins and ends at his base through
using the method outlined above. This will lead to him travers-
ing each of his streets exactly once. This is as good as a solution
can be as it involves no backtracking or repetition of edges in his
walk.
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However, what if there are odd nodes in the postman’s world?
He still needs to begin and end at his post office and now there
is no Euler circuit so he will have to tolerate a walk that is not
an ideal circuit free of any repetition. How can he find an optimal
route?

Before plunging further in to this question, however, it is best
to draw your attention to a guiding principle that is often used
by mathematicians. When a problem is met that looks similar to
but harder than another problem that you can deal with, a natural
approach is to try to perturb the new problem so that it resembles
the doable one, and then somehow manipulate the solution of
the simpler problem into an answer to your new question. This
rather vague advice would not be worth calling upon if were not
the case that this kind of thinking is used so very often, and the
Chinese Postman Problem is a case in point where it does indeed
apply.

Think back to the problem of how to find an Euler path for a
connected network N with exactly two odd nodes, u and v. Given
that we can find an Euler circuit in the case of a network with only
even nodes, we consider how we can associate a network of this type
with N. If you were to draw your N on a sheet of paper you may well
have a natural impulse to ‘cheat’ by drawing an extra edge between
the offending nodes u and v to give yourself a network N′ free from
troublesome odd nodes. Rather than retreating in shame from this
temptation, it is better to pursue this mischievous line of thought.
Construct an Euler circuit for N′ that begins with the new edge uv.
The remaining part of the Euler circuit v → · · · → u then represents
the required Euler path in the original network N. In this way we
have simplified the case of a network with a pair of odd nodes to
that of the standard case where all nodes are even.

Our postman can apply this thinking for the delivery network of
Figure 5.3. This is a particularly simple problem as we assume all the
streets have the same length. The post depot is at P but our postman
does have two odd nodes, u and v, to contend with. The idea is to
join the nodes u and v but, owing to the nature of the situation, this
should not be done directly as there is no street that leads directly
from u to v. Instead we adjoin two new edges, shown as dashed arcs
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Figure 5.3 Simple Chinese Postman problem

in the picture, which will be used to retrace the streets in question.
In this augmented network, the nodes u and v have become even
and the intermediate node that has been affected remains even also
as an even number of edges (two) has been adjoined to it: one for
going in and the other for leaving. We can now find an Euler circuit
in the new network, beginning and ending wherever we wish, so
that the postman can begin and end at his depot P, and one such
Euler circuit is indicated in the diagram on the right through the
numbering of the edges. This must be an optimal solution to this
problem: each odd node will require one of the adjoining streets
incident with the node to be retraced and it cannot be done with a
single edge because the nodes in question do not have a street that
connects them.

This exercise is enough to illustrate some of the facets of the
general solution but the question remains as to exactly how we
would go about solving a problem of this kind faced with a really
big network with lots of odd nodes scattered about. To see all the
ideas in practice we need an example that is a bit more challenging
(see Figure 5.4).

Let us insist that our postman walks all the streets shown, starting
and ending at A. This time the streets have differing lengths, as
shown by the edge labels, and he also has four odd nodes to cope
with, A, B, C, and D. The first step is to group the odd nodes in
pairs—this is something that can always be done as, by the Hand-
Shaking Lemma, the number of odd nodes is always even. For
example, we might try the pairings (A, B) and (C, D). If we adjoin an
additional edge between the members of each of these pairs, which
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Figure 5.4 Postman facing four odd nodes

is possible in this instance as A is adjacent to B and C to D, then we
have a network of even nodes. Any Euler circuit of this augmented
network that begins and ends in A will be a possible route for our
postman. Its length will be the sum of the lengths of all the streets on
his route, plus the lengths AB and CD, which amounts to 4 + 3 = 7
additional units.

Is this the best he can do? Not necessarily. After all, this method
will give the postman a covering route for any pairing of the odd
nodes and indeed we do have to check out every possible pairing.
For each pairing, find the shortest path between the nodes of the
pair and draw in the corresponding edges. The optimal routes are
the ones where the additional mileage is as small as possible.

And so we continue to see if we can do better. Let us try the
pairings (A, C) and (B, D) next. There are two equally short paths
between A and C of length 5: the length of ABC is 4 + 1 while
AGC has total length 2 + 3. The shortest path from B to D has
length 1 + 3 = 4. Putting in the reverse edges will lead to the postman
walking an additional 5 + 4 = 9 units above the total street lengths,
which is two units farther than our first route.

Finally we calculate the effect of the third possible pairing: (A, D)
and (B, C). We see that the increase above the basic street total in
this case is given by (2 + 3) + 1 = 6, which is the best of them all. Here
then is the solution to this particular Chinese Postman Problem: we
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draw in new edges corresponding to these paths: AG, GD, and BC
and construct an Euler circuit for the augmented network. A solution
is then given by

A → B → C → D → E → G → F → A → G →
→ D → G → C → B → G → A.

This represents the general method by which the Chinese Postman
Problem is solved. However, the type of question involved goes
somewhat beyond postal deliveries and snowplough routes. The
labels on the edges can stand for any weights we wish, not necessarily
physical distance. The most common alternative source of weighting
in real-world problems is cost. Whether the weights represent costs
or distances, mathematically the problem is identical, in that we
minimize costs by minimizing the total weight of the route taken.

Although the previous example is indicative of a typical problem,
we have cheated a little. One of the steps in the method tells you
to find the shortest path between a given pair of odd nodes. You are
entitled to ask, how do we do that? In principle it is easy. In principle
we can simply list all paths between the two nodes and then choose
one that is as short as possible. However, if the given network is very
complicated, and real world networks are often extremely so, is that
a feasible way to go about it?

The answer is ‘no’: the amount of computation involved in
directly checking every conceivable path is prohibitive and a better
way of solving this problem, the Shortest Path Problem, is called for.
Fortunately, this is a problem that does have a short cut approach
that always works. The method is known as Dijkstra’s Algorithm and
just how to work it will be shown in Chapter 7.

In conclusion, the Chinese Postman Problem does have a working
solution, thanks in the main to Euler’s original idea based on the
Königsberg Bridges.

In a later chapter I shall show you a more recent and striking
application of Euler circuits. In modern biology the problem arises of
reconstructing an RNA chain, genetic material carried in the cells of
a living organism, from the collection of fragments that result when
the RNA chain breaks up in the presence of enzymes. The problem
has certain idiosyncratic features that allow some inference as to
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the form of the original chain. After the decks have been cleared,
however, the heart of the problem amounts to finding an Euler
circuit in a certain directed graph the nodes of which are certain RNA
fragments and whose arcs are indicative of other structural features.
There is a one-to-one correspondence between the Eulerian circuits
and the set of all possible RNA chains that lead to the observed
collection of fragments. In other words, the network carries all the
information that remains as to the original structure of the chain.

This application is a legacy of the ideas of Euler that he could
never have anticipated. Seeing as it involves directed Euler circuits,
however, its natural role in the story follows later.



6
One-Way Systems

A ll networks we have looked at hitherto have represented mutual
relationships such as friendship or a two-way physical connec-

tion. However one-way systems are common. And not only in road
and other transport networks: in physical and physiological systems
involving valves, such as radios and the workings of the heart, we
see traffic flowing in one direction only.

These directed networks are pictured in much the same way as
two-way ones but now the edges carry arrows indicating the direc-
tion of the relationship between the two nodes. One-way networks
like this are known in the trade as digraphs. This term is short for
directed graph because a general network is often called a graph in
the world of mathematics. Although we have stuck with the word
‘network’ throughout, we will, out of convenience, use the word
digraph for these one-way networks.

One digraph that often arises is that of a tournament. The under-
lying network in this case is a complete network on some number
of nodes and the directed edges, often known as arcs in the context
of digraphs, can represent the result of matches in a round-robin
tournament where each of a number of contestants all play one
another once. An arrow from node a to node b indicates that it was
player a who won the match between this pair. An example is to be
seen in Figure 6.1 that could represent the results of a round-robin
tournament of five players.

Ideas from undirected networks have obvious analogues for
digraphs. For example, instead of simply speaking about the degree
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Figure 6.1 A tournament of five players

of a node we use the terms out-degreee and in-degree. For instance
node E has out-degree 3 but in-degree 1, indicating that E won three
of his four matches, only losing to player B. A node with only out-
edges and no in-edges is called a source while a sink has only arrows
going in, and no way out.

This particular tournament is strongly connected in that it is pos-
sible to find a directed path, that is one that respects the one-way
system, from any node to any other. As a consequence, it can be
proved that it is Hamiltonian in the sense that there is a directed
cycle that passes through all the nodes of the digraph: A → C →
B → E → D → A; in particular, discovering this cycle shows that
every node is accessible from every other. Not all tournaments are
Hamiltonian: it is obviously impossible for a digraph to be so if it
has a source or a sink, as there is no escape from a sink, while a
source can never be reached from another node.

Since a digraph with a Hamiltonian circuit is obviously strongly
connected, these two properties go hand in hand for tournaments.
Although not every tournament is Hamiltonian, as we have already
seen, it is the case that a tournament is always at least semi-
Hamiltonian, meaning that there is a path that starts at one node,
finishes at another (possibly different) node, and passes just once
through all others on the way.∗
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The results of a tournament can be used to rank the performance
of the players, but often not unambiguously. In our tournament,
no one is undefeated but E is the top-ranked player, winning three
out of four, while C won just the one match. The other three con-
testants are equally ranked with two wins a piece. In a round-robin
tournament with n players, a complete ranking could only emerge if
each of the possible number of wins: 0, 1, 2, . . . , n − 1 was achieved
by the n players. There is a ‘minimal criminal’ characterization of
tournaments which allow that. A tournament will yield a perfect
ranking if and only if it does not contain a directed cycle of length
three. In other words, a complete linear ranking will not be possible
exactly when we witness a triangle of ‘inconsistent’ results as in our
example where E beat C, C beat B, yet B defeated E .

One problem that naturally leads to a directed network is the
construction of a one-way traffic system. Suppose that a town has
a congested road network which is a free-for-all two-way system,
that is to say every street carries traffic in both directions. Even if
it involves longer journeys, traffic often flows better if the system is
made one-way. This raises an obvious question: given a connected
(two-way) network, can we orient each edge so that we obtain a
one-way system?

The thing that can go wrong is that it may turn out that, how-
ever you go about it, the resulting directed network is not strongly
connected—that is to say some places may be inaccessible if you
start from the wrong part of town, and that would never do. And
this can certainly happen. Imagine your town has a single bridge
over the river. If that bridge took only one-way traffic, and if you
happened to live on the wrong side of the bridge, you could never
cross to the far side of the stream.

Indeed this is enough to let us see that we cannot make the system
one-way if the underlying network has a bridge, which you will
remember is an edge whose removal would leave two distinct com-
ponents. However, this is the only aspect that ruins any possibility
of a one-way system—as long as the road network is free of bridges
(in the sense above) then it is feasible to orient the arcs in such a
way that it is possible to travel from any place to any place else. It
will be easier to explain how to do this however in the next chapter
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as the method involves spanning trees, which is the subject of
Chapter 7.

Nets that remember where you have been

The analogue of an Euler circuit in a digraph is a directed circuit that
covers every possible arc. Following closely the pattern of possibili-
ties that arise in an undirected network, the principal result here is
that there is a directed Euler circuit if every node is balanced in that
there are as many arcs leading in to each node as there are leading
out. This applies to one of my favourite types of directed networks
called de Bruijn graphs. Part of their significance is that they are useful
in the design of machine dial controls, a fact that requires a little
explanation.

Figure 6.2 shows a rotating washing machine dial that allows 16
different settings. The setting in use corresponds to the four symbols
on the top of the dial. Imagine that the sequence of four slots at the
top of the picture is visible to the user and behind each slot there is a
switch that can be either off (0) or on (1). As viewed in the diagram,
the dial is in the off position with none of the switches active. As
the dial is rotated, some of the switches become active, triggering
a particular response from the machine. Since each switch has just
two modes, off or on, the total number of different switch settings
possible with the four switches is 2 × 2 × 2 × 2 = 16 in all.

0
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1
10
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1

Figure 6.2 Dial with 16 settings
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The dial will click through 16 positions as it rotates. What is
remarkable here is that the cyclic sequence of 0’s and 1’s allows
for each of the 16 possible settings to come up exactly once as we
click the dial around one full turn. Specifically, if we click the above
dial anticlockwise, the strings that appear in the top window come
through in the following order:

0000 0001 0010 0101 1011 0111 1111 1110

1101 1010 0100 1001 0011 0110 1100 1000

That is to say this cyclic binary sequence, 0000101111010011, has
the special property that starting from any point on the dial and
reading, let us say clockwise, we find each of the possible 16 binary
strings of length 4 coming up exactly once—very neat and efficient!

This kind of binary string is called a de Bruijn sequence. In general,
a de Bruijn sequence of order n is a circular sequence on two symbols,
often taken to be 0 and 1, of length 2n in which every possible
sequence of n consecutive digits appears. The above example of the
washing machine dial features a de Bruijn sequence of order 4. For
any circular arrangement of binary symbols of length 2n, we can read
2n binary strings of length n as we ‘turn the dial’, as it were. Since
there are 2n possible different strings of length n, if each appears
once, then each must appear exactly once, as there is no room for
repeats.

So we see that de Bruijn sequences are obviously good things to
have, but is there any way of producing them? After all, they may
not even exist—we can see with our own eyes that there is one of
order 4, but what of order 5 and higher orders? Are they always
there, ready for us to exploit, and if so, how can we generate them?

The answer lies in traversing all the edges of a de Bruijn graph,
which we can now introduce. Figure 6.3 shows the de Bruijn graph
of order 4.

The de Bruijn graph of order n has as its nodes the 2n−1 binary
strings of length n − 1. In Figure 6.3 we have n = 4 and so there
are 23 = 8 nodes labelled by the eight binary strings of length three.
Each of these nodes has two out-edges, one labelled 0 and the other
1. What characterizes this graph and gives it a touch of magic is
the rule that tells you where each arrow goes to: to locate the end
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Figure 6.3 de Bruijn graph of order 4

node, take the label of your starting node, erase its first digit, and
adjoin on the right the digit that labels the out-edge in question—
that gives you the label of the node at the other end of the arrow. For
example, apply this to the arrow labelled 0 that emanates from the
node labelled 101: we erase the initial 1 and adjoin 0 on the right—
the out-edge labelled 0 coming from 101 takes you to the node 010.
Similarly the arrow labelled 1 from the same node terminates at 011.
You will now see that this applies right throughout this network.
We have described the workings of the rule for the case n = 4 but
the same applies for any de Bruijn graph and is no more difficult to
execute. For example, you may care to test it on the de Bruijn graph
of order 5 that is drawn in Figure 6.4.

De Bruijn graphs are ideal for people who are easily lost. No matter
where you happen to be in a de Bruijn graph you can always get to
your home node, whatever it might be, by calling its name. From
whatever node you find yourself at, just follow the path whose label
is the name of the node you wish to find and it will take you there,
as if by magic.

For example, in Figure 6.3 begin anywhere you wish and follow
the path labelled 011 and you will finish at node 011. This remark-
able property is built into the very design of the network: any path
of length 1 goes to a node that ends in the digit labelling the path.
When we extend to a path of length 2, the terminal node will record
the label of the path in its final two digits, as the label of the first
digit in the path will be preserved in the label of the end node, only
shunted one place to the left. For illustration, take Figure 6.3 and
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Figure 6.4 the de Bruijn graph of order 5

take any path with label 01; it will take you to one of the two nodes
001 or 101, no matter where you begin in the network. Similarly, if
your path has length 3 (or more) the label of the final three edges
will be recorded in the three digits of the terminal node. In the
de Bruijn graph of Figure 6.3, that is the limit that the nodes can
‘remember’ but in general, the name of the terminal node in the de
Bruijn graph of order n tells you the label of the path consisting of
the final n − 1 edges of that path. To further underline the point,
look to the more complex order 5 de Bruijn graph (Figure 6.4). Any
path ending 11 terminates at one of the four nodes 0011,0111,1011
or 1111, while you may check for yourself that wherever you begin,
the path 0000 for instance leads you to the node atop the picture.

The secret to producing de Bruijn sequences for our washing
machines is to take the label of any Euler circuit in the appropriate
de Bruijn graph. For our machine with 16 settings, the graph
of Figure 6.3 will do the job. Beginning at the appropriate node



118 ONE-WAY SYSTEMS

(explained in a moment), read in the circular label of our washing
machine dial and you will find yourself traversing every directed arc
of the de Bruijn graph exactly once and returning to your starting
node. More importantly, we can generate de Bruijn sequences by
writing down the label of any Euler circuit of the corresponding de
Bruijn graph. A few experiments should be enough to convince you
that all this works as it ought, but why should that be so?

Let us see what happens as regards Figure 6.3, which is quite
representative of the general situation. The network has 16 arcs and
each node has two coming in and two going out. It follows that the
network will have an Euler circuit and the sequence of labels on the
successive arcs produces a binary string of length 16. Moreover, that
string will be a de Bruijn sequence and, conversely, any de Bruijn
sequence corresponds to an Euler circuit of the digraph, as we now
explain.

To see an example of this last point, let us take the de Bruijn
sequence of our washing machine dial: 0000101111010011. This
does provide us with an Euler circuit, provided that we begin at the
right node. For example, if we start at the node 000 and read in this
path we don’t get an Euler circuit, as we can see right away, as we
would begin by circling around the loop labelled 0 at this node four
times before leaving it—definitely not we want to do. The clue as
to where to start comes from the end of the sequence—specifically
the last three digits, 011, tell you where you will finish so that node
011 will be the start and end of your Euler circuit. If you begin your
walk from this node, you will find yourself taken by the string on an
Euler circuit of the entire network.

To see this, we note that by design the walk determined by a
given de Bruijn sequence will finish where it began after traversing
16 edges. We need only convince ourselves therefore that no arc is
covered twice for, if that is the case, it follows that all 16 arcs must
be traversed exactly once by the 16 arcs in our walk. To this end,
then, take any arc e that is traversed in our walk. Suppose this arc
exits from node abc, say, and is labelled by d, where each of the
letters a, b, c, and d represent either 0 or 1. By the nature of the de
Bruijn graph, the string abc is the one and only three-letter string
that terminates at the node labelled abc so it follows that the part of
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the de Bruijn sequence of length four that ends with our traversing
the arc e is abcd. Since this four-letter string occurs once and only
once in the de Bruijn sequence, it follows that e cannot be traversed
more than once during our walk. Therefore, for each de Bruijn
sequence there is an Euler circuit whose label is the given de Bruijn
sequence.

And the argument goes the other way: the label of an Euler circuit
in our de Bruijn graph is a de Bruijn sequence: consider the binary
sequence S (of length 16 if we work with Figure 6.3) that forms the
label of the successive arcs in the circuit. Let abcd be a binary string
of length 4 that crops up in S. Then the segment of the path labelled
abc ends at the node with that same label and is followed by the arc
e from the node abc labelled by d. Since this arc is only traversed
once as we walk through the Euler circuit, it follows that the string
abcd can occur no more than once in S because, each time we read
the string abcd we are forced along the arc e. Therefore each four-
letter binary string occurs no more than once in S. However, since
the cyclic sequence S does contain 16 strings of length 4, it follows
that each of the 16 strings of length 4 must occur exactly once in
the cyclic list.

In short, each binary string of length 4 corresponds to an arc
in the de Bruijn graph in such a way that a directed Euler circuit
exactly matches the order in which the binary strings read in a de
Bruijn sequence. We conclude that the label of an Euler circuit of a
de Bruijn graph is a de Bruijn sequence and conversely any de Bruijn
sequence arises as the label of an Euler circuit of the corresponding
de Bruijn graph. We therefore have a complete theory that ties these
two ideas together. Using the de Bruijn graph of Figure 6.4 you will
be able to find de Bruijn sequences of length 32, a problem that
would be very difficult without the de Bruijn graph to turn to.

Nets as machines

We may regard digraphs from a totally different perspective, that of
an automaton. Mathematicians, computer scientists, and engineers
all do this for their own purposes and some inkling as to why can be
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indicated here. One reason why mathematics is useful is that it leads
to mechanical methods for solving problems. These methods were
not necessarily performed by machines, but they could in principle
be performed by inanimate devices. This allows us to solve problems,
such as multiplying numbers together, without having to rediscover
how to do it each time. When the mathematical recipe gets to the
stage that it can be carried out in principle without thinking or
indeed understanding what is going on, we say that the procedure
has been reduced to an algorithm, a very ancient Arabic word that
pervades modern scientific thinking.

As Mark Lawson explains in his book Finite Automata, it was no
accident that as mathematicians were laying the foundations of the
theory of algorithms, engineers were constructing real machines
that implemented algorithms as programs. Algorithms and pro-
grams are just two sides of the same coin. However, some algorithms
are much better than others. A good algorithm is fast and efficient.
One approach to classifying the inherent simplicity of an algorithm
is through language theory, and here the simplest algorithms are
those that can be carried out on the simplest kind of machines,
which are the finite automata.

The main ingredient of an automaton is a network in which the
nodes are traditionally called states. Among the nodes there is an
initial state and a number of accepting or terminal states. There may
be more than one of these, and the initial state may also be an
accepting state. I prefer the term accepting state to terminal state
principally because these states are not final—in general an automa-
ton can leave an accepting state under the action of further input
letters. At any given moment an automaton A is in some state and
may be acted on by an input, denoted by a letter of some set known
as the alphabet, which has the effect of sending the automaton from
one state to another. After a string of letters (a word) w acts acts on
A, the automaton will either be in an accepting state or not, as the
letters of w take the automaton through some succession of states.
We say that a word w is accepted by the automaton, or is recognized
by the automaton, if it leaves it in an accepting state. If not, w

is rejected, and we say that the word is not part of the language
recognized by the automaton.
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If you are inclined to anthropomorphism, you can think of the
states of A as moods with the accepting states representing the
machine’s good moods and the remaining states its bad moods. It
wakes up in its initial state (which, like us, may be good or bad,
depending on the particular machine’s temperament) and the inputs
to which it is subjected render it either in a good or bad mood. If it
finishes in a good mood then it accepts the word, but if the word
puts it in a bad mood, then it rejects it. The languages that we talk
about in this context are not generally thought to be ordinary lan-
guages, although they are by no means excluded. Formal languages,
taken in full generality, consist of arbitrary strings of symbols from
some alphabet. Usually our automata are out to detect patterns, or
the absence of them, within these strings, which are referred to as
words despite not necessarily having a meaning in themselves.

For example, let us have a simple alphabet A = {a, b}. This will
always suffice for our purposes, and indeed for most theoretical
work; two letters are like two sexes, more than enough to create all
the trouble you would ever want.

In the three automata of Figure 6.5, the initial state is labelled i
and the accepting states are shaded. The arrows on the arcs indicate
how a letter changes the automaton from one state to another.

i 1 3

b a

a b a

,bab

i

a

b

a,b

(b)

(c)

i

2

a

b

b a

a,b

(a)

1

2

Figure 6.5 three automata
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The automaton pictured in Figure 6.5(a) recognizes a word pro-
vided that it contains at least one instance of the letter b. A word
consisting only of a’s never takes the machine out of its initial
state. Once the automaton sees a b it is happy, and it stays in
its happy mood (the accepting state) no matter what it sees after
that.

The machine of part (b) of the figure is not so easily pleased. This
fellow will recognize a word only if it consists of a string on ab’s,
which includes the empty word (a string of zero ab’s). (Quite gener-
ally, to say that an automaton accepts the empty word is tantamount
to saying that its initial state is also an accepting state.) For example,
the word abababab will cause the machine in (b) to go from its initial
state (which is its only accepting state) to state 1 and back again to i,
four times. Since in this instance it finishes at the accepting state, it
recognizes the word. However, as soon as it can tell it is not going to
get a string of ab’s, it moves to its sink state, 2, from which it will not
budge. This will happen if you input a word beginning with a b, or if
your word ever has two consecutive letters that are the same. Either
of these events is enough to offend the machine as it will know that
it is being offered a word that is not in its language, after which it
totally loses interest. The word ababa would leave the automaton in
state 1, which is still not an accepting state. State 1 is not a sink state,
however—in this state the machine is still disposed to accepting the
input string should it happen to continue in an acceptable way.

Before reading on, you might like to see if you can describe
for yourself the language recognized by our third machine in (c).
This automaton accepts the word baababba, but not abba. Closer
examination will allow you to see that a word is in the language of
this machine if it contains the factor aba and not otherwise. Indeed
this is the smallest automaton that can be devised that accepts this
particular language.

Having seen these few examples, readers may be inspired to exper-
iment and design some automata of their own. Some examples to
develop your skill would be automata that accepted the following
languages: (1) words that contain ba as a factor; (2) words that
contain both of the letters a and b at least once; (3) words that end
in the letter a; (4) words of odd length; (5) words that begin and end
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in different letters.∗ You should bear in mind that your machine
must accept the words described, but no others—your automaton
must discriminate between acceptable words, and those that fail to
qualify. After all, it is easy to make an automaton that accepts all
words—just take the one state automaton where this initial state is
also an accepting state with every letter taking that state to itself. We
can input any word into this trivial machine and it will be accepted.
The challenge is to create automata that accept desirable words, but
are discerning enough to discard the rest.

You may like to dream up examples of your own, but you need
to be wary—many languages that offer simple verbal descriptions
are not recognizable by automata. For example, the language of all
palindromes (words such as radar, minim, and redder that are them-
selves when spelt backwards) is not the language of any automaton.
Any automaton that accepts every palindrome will be forced also to
accept some words that are not palindromic.

It would seem then that automata are good at recognizing some
patterns but not others. Automata also have some trouble counting,
or to be more precise, there is always a limit to how many things
any individual automaton can group together in pairs, and you
will see why shortly. However, they can solve problems such as
telling you whether a given number is a multiple of some particular
integer. Indeed the machine of Figure 6.6 in effect does just that by
recognizing multiples of 3.

In this case our alphabet consists of just the single letter, a. Clearly
a string of n a’s, which we often write more conveniently as an, will
leave this machine in its accepting state if, and only if, n is a multiple
of 3. This automaton contrasts with previous examples in that in
every case it needs to examine the input word in its entirety before
it can decide whether or not that word is a member of its language.

i
a

a

a

Figure 6.6 An automaton that counts in threes
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However, any particular automaton cannot count past a certain
number. (The automaton of Figure 6.6 will tell you if any given
number is divisible by three, but it cannot tell you the outcome of
the division as it completely loses track of how many times it has
looped around the cycle of states.) In fact we can give an example
of an unrecognizable language and demonstrate that this is the case.
Interestingly, the argument makes use of the Pigeonhole Principle,
introduced in Chapter 3.

Once again, let us revert to the standard two-letter alphabet, {a,b}
and let L be the language of all words of the form anbn. That is to say,
L consists of all the words ab, aabb, aaabbb, . . . that consist of a string
of a’s followed by an equal number of b’s. Suppose that A were an
automaton that recognized all the words of the above language L.
This much is entirely possible, but we will show that A will be forced
also to accept some words not of this type, so that the language of A
is not L but rather it is some larger set of words.

For each particular number n, the word an takes A from its initial
state to some state that we shall denote by sn. Since anbn is accepted
by A, the word bn takes A from the state sn to some accepting state,
let us call it cn.

Now since A has a limited number of states but there are infinitely
many possibilities for n, it follows that there must be two different
numbers, m and n say, such that the states sm and sn of A are the
same, even though the numbers m and n are not. With this in mind,
consider the word ambn, which is not in L because m =/ n. This word
is, however, accepted by A, as am takes A from the initial state i to
sm = sn, and then bn takes A from sn to the same accepting state cn, as
before. As we explained above, it follows therefore that L is not the
language of any automaton.

It is worth noting that the previous argument did use a version
of the Pigeonhole Principle. With each number n, we associated
a state of the automaton, which we called sn. In this way we are
assigning an infinite number of objects (all the counting numbers)
to a finite collection of pigeonholes (the states of the automaton)
and so at least one state has two different numbers, m and n, assigned
to it; that is to say sm = sn. Although that is all we needed in our
argument, we can of course say more—at least one state will have
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infinitely many different numbers assigned to it. This more general
observation is the basis of the famous Pumping Lemma in automata
theory, which says that once an automaton accepts a word of length
at least as large as the number of states in the machine, then the
automaton is forced to accept infinitely many words of a certain
type, associated with cycles that arise when reading the input. This
lemma is a tool by which it can be demonstrated that many lan-
guages are not recognized by automata, including the language of
all palindromes and the language of all squares, which are words of
the form w2 = ww, where w is any string.

There are numerous applications of automata theory to theoretical
computer science. Part of the reason it arises so often is that there
are several equivalent ways of representing the class of recognizable
languages and the different angles of approach are revealing. There
are two other ways of introducing this class which, at first sight, bear
no relationship with the machine viewpoint. The class coincides
with the class of so-called regular sets (sometimes also known as the
class of rational languages).

This collection is built up as follows from the letters of the under-
lying alphabet A, which are taken, by definition, to represent regular
sets. If we have two regular sets, U and V, the set of words that
results by pooling the two sets together is also regular (by definition,
nothing to prove here). Mathematicians call this operation union
and write U ∪ V for the set formed by taking the union. Similarly
the set of words common to two regular sets is also regular—this is
known as the intersection of the two sets and is denoted by U ∩ V.
Similarly we speak of the product of the sets U and V, denoted by
U V, as the set that consists of any word from U followed (without a
space) by any word from V, and this too is a regular set. In particular,
the set V could be the same as the set U , in which case we write the
product set as U 2, although this should in no way be confused with
the familiar squaring operation that applies to numbers. Continuing
this process we see that the sets U 3, U 4, . . . and so on of further
products are also regular. Finally, the collection of words that result
by taking the union of all the powers of a regular set, U ∪ U 2 ∪
U 3 ∪ . . . is denoted by U ∗ and is also deemed, by definition, to be
regular.
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The class of all regular sets is said to be the collection of all
‘languages’, that is sets of words over the alphabet A, that can be
constructed from A using these operations any number of times. For
example, A∗ab2 A∗ represents the regular set that consists of all words
containing the factor ab2 somewhere in the string.

A famous theorem first proved by Stephen Kleene in 1956 then
says that this collection is exactly the same as the set of languages
that can be recognized by an automaton. A third characterization
of the regular languages, that I will not explain here, is the class of
languages that arise as inverse images of homomorphisms of the free
semigroup over A.∗

Suffice it to say that all three viewpoints have advantages. For
example, look what happens if you consider any automaton and
take its ‘complement’, in that we interchange the roles of all the
accepting and non-accepting states. It is clear that a word will be
accepted by this new machine if and only if it was not accepted
by the original. In other words, this complementary automaton
recognizes the complementary language of the original—the set of
all words that were not accepted by the original machine. On the
other hand, given automata that accept languages U and V respec-
tively, it is not so obvious how to construct a machine that accepts
the languages U ∪ V, and another that accepts U ∩ V. However, by
Kleene’s Theorem, it must be possible.

The algebraic approach to recognizable languages, briefly referred
to above, is naturally symmetric and so lends itself to transparency
when it comes to establishing results that are double-sided in
nature. The machine approach however by contrast is extremely
one-sided—an automaton has a unique out-edge from every state for
each letter of the alphabet but there is no corresponding uniqueness
as regards edges directed inwards. Despite the intuitive appeal of the
machine idea, some symmetries of the theory may appear obscure if
we insist on adhering to strict automata interpretation of all matters
to do with recognizable languages. The algebraic approach makes it
clear that given a regular language L, the language Lr of all reversed
words is also regular. However, it is not immediately obvious how to
build an automaton that accepts Lr given an automaton that accepts
L, but again, by Kleene’s Theorem, it must be possible.
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The regular language approach is also a nice framework in which
to show that certain operations on regular languages always yield
more regular languages. One particular operation, known as the tak-
ing of quotients, is one of these. As you might imagine, the quotient
of two languages is designed to be a kind of reverse to the product
operation on two languages. Using the theory of quotients, we can
show that there is a unique smallest automaton (that is to say, one
with the fewest states) that recognizes a given language. This allows
us a syntactic (that is to say, grammar-based) approach to building
these minimal machines that are often used as pattern recognizers
in real computers.

The ‘mechanical’ way of introducing regular languages may
appear rather cumbersome. The definition of automaton has an arbi-
trary and non-symmetric feel to it. After all, why should the digraph
always have just one initial state but any number of accepting states?
Mathematicians would normally give that kind of clumsy definition
short shrift. It turns out, however, that it makes no difference if we
allow multiple initial states in that the language of such a machine
is still regular and so can be recognized by an automaton with a
unique initial state. (It does matter, however, if you insist on a
unique terminal state—that would restrict the class of languages that
were recognizable.)

Indeed, we can allow ourselves a lot of freedom in the definition
of automata and the class of languages that are accepted does not
alter at all. We can even allow the automata to be non-deterministic,
meaning that when a letter acts on a state, the machine might
move to a number of states or none at all. We can also allow for
ε-actions where the machine may change states when you are not
looking, under the action of the empty word, ε. It continues to
make no difference in that the class of recognizable languages still
coincides with the regular languages and goes no wider. There are
great advantages in this. On the one hand, we can restrict our-
selves to the standard definition of automaton without any loss
of computing power. On the other, it is often easier for theoretical
purposes to argue in terms of automata with more liberally defined
features and so, if it suits us, we can indulge ourselves in that
way.
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The theory of regular and associated languages is a beautiful sub-
ject, replete with elegant constructions, and the starting point for it
all is the study of certain kinds of digraphs. However, the most likely
examples of automata that we are liable to meet in everyday life
come in the form of vending machines or traffic light systems. These
can be modelled as automata but with accessories as these machines
also have outputs. A working vending machine, for instance, is
always in one of a fixed number of states and responds to letters of
an input alphabet in the form of customer selection options which
stimulate it to move to a new state. In the process of transition there
is also an output in the form of one or a string of available products.
In a similar way, a traffic light system at a road intersection that
responds to stimulation through road sensors is an automaton with
outputs in the form of commands to traffic at the junction that it
controls.

Automata with something to say

Computer science has an entire zoo of theoretical machines that
can and cannot carry out certain tasks. The next step up from an
ordinary automaton is a so-called pushdown automaton (PDA), which
can be thought of as an automaton with a memory stack. Your access
to the stack is limited, however, in that it is only possible to access
the stack at the top. This is often likened to a pile of stacked dinner
plates—to get to a plate in the middle you need to unstack the tower
first.

This kind of machine does enjoy greater power of recognition
than simple automata. For example, the languages of all palin-
dromes, which is not regular, is recognized by a suitable PDA. The
class of languages that PDAs accept is known as the context-free
languages, a technical term derived from formal grammar theory
which means, broadly speaking, that the meaning which can be
derived from any particular formal grammar symbol is independent
of the context in which the symbol may find itself. Although a wider
class, the class of context-free languages lack some of the mathe-
matical properties of regular languages, for example, the class is not
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closed under complementation. Moreover, some simply described
languages, such as the language of all squares, are not context-free
(nor regular). Those grammars not of the context-free type are, quite
naturally, called context-sensitive. The heirarchy of grammars that
correspond to various theoretical machine types is often known
as the Chomsky Heirarchy, named after the famous mathematician,
linguist, and political commentator Noam Chomsky.

The most general type of machine is named after the famous
English mathematician and wartime codebreaker Alan Turing. A
Turing machine consists of a tape, unbounded in both directions, and
a programmable head that can move the tape in either direction,
erasing cells and overwriting new symbols as it goes, depending on
what it has just seen. Simple-minded as this sounds, any algorithm
can be implemented on a Turing machine so this theoretical but
simple construction potentially allows full exploration of what is
and is not computationally possible.

In this book, however, we are concentrating on automata as they
are the machines that come to us naturally as networks with nodes
and edges decorated in one fashion or another. There are two stan-
dard types of automata with outputs known respectively as Mealy
and Moore machines. In a Mealy machine the output is associated
with the transition between states whereas in the Moore model the
output is determined by the state itself. However, both models are
equivalent in that any function that can be carried out by one of
these automata types can also be performed by the other. In each
case the machine can be fully described by a directed graph with
appropriate labelling of states and arcs.

In Figure 6.7 we see two Mealy machines with very different pur-
poses. The first example is reminiscent of the automaton in Figure
6.5(c), whose purpose was to detect the pattern aba in an input
string. The Mealy machine is first and foremost an automaton that
will pass through a series of states as dictated by the input string.
However, as the machine executes a transition, it will print a binary
symbol, either 0 or 1, in the manner indicated in the diagram.
(Meaning that x/y indicates that y is the output accompanying
the transition induced by input x.) For example, if the input were
the string w = bababab2aba2 it would move through the series of
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Figure 6.7 Mealy machines for two different purposes

states i, i, 1, 2, 3, 2, 3, 2, i, 1, 2, 3, 1. Since this is a Mealy machine,
however, we are interested in its output, which in this case would
be 000101000010.

What is this machine doing? Just regarding it as an automaton
with accepting state 3, we observe that a word will be accepted
by this underlying automaton exactly if it ends in the string aba.
The Mealy machine always outputs a 0 except when it enters this
accepting state when it registers a 1. What the Mealy machine is
doing then is to count the number of times the factor aba occurs in
the input string. The three instances of 1 in the output correspond
to the three aba factors in the original input as you can now check
(although the first two instances of aba in the input string overlap).
Since an automaton with outputs can make a record of its transitions
in this way, it can perform counting operations that are beyond the
capabilities of a plain automaton.

The function of the second Mealy machine in Figure 6.7(b) is quite
different for it adds 1 to a given number, when working in binary—
we say that this machine computes the successor function. Since the
operation of addition is carried out from right to left, we need to
introduce the input string in reverse, reading it in from right to left.
In the same way, if we write down the output string from left to right
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as it comes out of the machine, we need to reverse it to interpret the
outcome as a binary number. Again an example is the best way to
see what is going on.

In binary, the number 23 is 10111 (as this stands for 1 + 2 + 4 +
16). Feeding this string into our machine (starting from the right)
yields an output string 00011; the reverse of this string is 11000 =
8 + 16 = 24, as we said it would be. The succession of states that the
Mealy machine passes through as it reads its input are in this case
i, 1, 1, 1, 2, 2.

If this looks a little perplexing, let us pause to see exactly what
is happening. There are two things that can occur when we add 1
to a number written in binary. The simplest case is where the input
number ends in 0, such as 1010. In this simple situation, all the
machine needs to do is scrub out the final 0 and replace it by a 1,
which is just what it will do: the machine passes from i to state 2
while doing this and then happily copies the rest of the string that
it was given while remaining in state 2.

The more complicated alternative is when the final digit of the
input string is a 1. In that case we need to change the final 1 to
a 0 and ‘carry’ a 1 to the next column; the machine manages this
by passing into the carry state, state 1. Here it will stay as long as
necessary as it reads in the rest of the number: if the next digit is
also a 1, that will have to be replaced by 0, and a 1 be carried to the
next column. If that is what the machines sees, it stays in the carry
state as it does this. It will remain there until it sees a 0, in which
case it replaces that 0 with a 1 (because it still carrying a 1 from the
previous step) and proceeds to state 2 from which point it merely
needs to transcribe the rest of the string as it is given.

There is one slight blemish in the behaviour of this Mealy
machine. By design, the length of the output string always equals
that of the input. However, any number that is one less than a
power of 2, such as 7 or 15, is represented in binary as a string of
1′s: 7 = 1 + 2 + 4 is written 111 in base 2 and similarly 15 comes
out as 1111. When we add 1 to such a number, its binary length
increases by 1: 7 + 1 = 8, which is written 1000 in binary, and simi-
larly 16 = 15 + 1 has the representation 10000. However, when these
strings are fed into our Mealy machine the outcomes are 000 and
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0000 respectively. In other words, the machine neglects putting the
1 on the front. However, provided that we interpret the output
of a string of zeros as representing the binary number that begins
with 1 followed by that zero string, then the machine is still telling
us the right answer and the output always has an unambiguous
meaning.

Automata with outputs are important in circuit design and can be
generalized further to the class of so-called rational transducers. This
leads into the fields of symbolic dynamics and coding with related
applications that vary from the programming of computer compilers
to designing compressed storage on compact discs.

Lattices

One of the more picturesque terms for a mathematical object is
that of a lattice. Like family trees, lattices are networks directed
from top to bottom but cycles in the underlying network are no
longer forbidden. A lattice requires a little more structure than this,
however. Each pair of nodes in a lattice must possess a least upper
bound or join as well as a greatest lower bound or meet. If a and b are
the two nodes in question we denote the join and meet of the pair
by a ∨ b and a ∧ b respectively. The expression ‘least upper bound’ is
just about self-explanatory. We say that a node u is an upper bound
of a node v if u lies above or is equal to v in the directed network. If
this is the case we may indicate it by writing v ≤ u or equivalently,
u ≥ v. The least upper bound c of a and b is a node that is first and
foremost an upper bound of both a and b. Moreover, c is the least
of all these upper bounds: in other words if u is any node that lies
above both a and b then we require that c ≤ u for c to qualify as the
least upper bound of a and b. The dual notions of lower bound and
greatest lower bound mirror that of upper bound and least upper
bound. That is to say, we call u a lower bound of a if u ≤ a and we
say c is the greatest lower bound of the pair a and b if c is a lower
bound of them both and if u is any common lower bound of a and
b then u ≤ c. Since a and b enter symmetrically into the definition
of meet and join it is clear that these operations are commutative,
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meaning that a ∧ b = b ∧ a and a ∨ b = b ∨ a. (Note that if a ≤ b this
causes no particular problem: in this case a ∧ b = a and a ∨ b = b.)

With these technicalities out of the way we can illustrate the
concept of lattice through some natural examples. Lattices are by
no means rare! A beautiful instance of a true lattice arises from the
counting numbers N = {1, 2, 3, . . .}. There is one node for each num-
ber and a lies below b if a is a factor of b, which we sometimes write
as a|b. The greatest lower bound a ∧ b of a and b is then the highest
common factor (hcf ) of the two numbers in question, while the least
upper bound, a ∨ b is the least common multiple (lcm) of a and b. For
example, if a = 24 and b = 60 then a ∧ b = 12 and a ∨ b = 120.1 The
idea of meet and join of two nodes can be extended to three or
more and indeed to any number of nodes. You might like to take up
the challenge of finding the join of the set of the first ten counting
numbers.∗

And so you see that you studied lattices in school without ever
knowing it. Many concepts of advanced mathematics have examples
and motivation that lie at the most basic of levels and lattices are an
instance of this. The lattice of divisors of the natural numbers has
a common lower bound in the number 1 but no common upper
bound. That is to say, there is no single number that is a multiple
of every other number. Our lattice in this case is an infinite one, an
infinite network if you like. To keep with the theme of finite net-
works and to give the opportunity of picturing a lattice of divisors,
let us look at just a portion of this lattice, the sublattice of all divisors
of the number 60. This lattice is pictured in Figure 6.8.

Although we have said what the nodes of this network are, we
have yet to describe the arcs precisely. In this case it is best to talk of
the edges being directed upwards so that if there is an arc from a to b
then a|b, that is a is a factor of b. However, you will observe that 2|12
also but there is no edge between these two numbers. This is because
we only draw an edge from a up to b if there is no third number

1 In case you have forgotten or were simply never taught, you find the hcf using

Euclid’s Algorithm, that is keep subtracting the smaller from the larger number until

the two numbers in hand are the same. In this example you get, 60 − 24 = 36, then

36 − 24 = 12, and finally 24 − 12 = 12, so that 12 is the hcf. The lcm is then ab/hcf(a,b),

which in this case is 24 × 60/12 = 2 × 60 = 120.
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Figure 6.8 Divisor lattice of the number 60

c such that a|c and c|b. It is still possible to tell from inspecting
the lattice if one number divides another for the first is a factor
of the second if and only if there is a path from the first up to the
second. This works because the relationship ‘is a factor of’ is transitive
meaning that if a|b, b|c, c|d, . . . and so on, then the first number
in the list is a factor of the last. This behaviour is reminiscent of
the ordinary ≤ relation on the integers. If transitivity could not be
assumed we would need to indicate every relationship a|b explicitly
in the diagram otherwise we would lose information about which
numbers are factors of which. Note that the layer immediately above
1 consists of the prime factors of the number at the top of the
lattice.

The lattice of factors of a given number is a good example of a
partially ordered set. There is an ordering on the set but some pairs
of nodes are incomparable in that neither lies below the other. For
example 10 and 15 are incomparable as neither divides the other.
This contrasts with the usual linear ordering of the integers where
given any two distinct integers, one always lies below the other.
We do, however, require that a partial ordering have the property
of transitivity, mentioned a moment ago, and also that it be anti-
symmetric, meaning that if a and b are different nodes we cannot
simultaneously have a ≤ b and b ≤ a. This condition will ensure that
we are never led around in a directed cycle in the network (even
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Figure 6.9 An ordered set that is not a lattice

though we may see cycles in the underlying undirected network, as
we can in Figure 6.8).

In order to find the meets (hcf’s) and joins (lcm’s) of pairs of num-
bers you follow paths down and up respectively from the numbers
in question and see where they first meet. For example, the lattice
indicates that 12 ∧ 15 = 3, while 4 ∨ 15 = 60.

The existence of meets and joins is by no means automatic in
networks that represent orderings on sets. Figure 6.9 is a case in
point. The partially ordered set defined by the network has no
intrinsic significance. Rather it is introduced merely as an example
of a (partially) ordered set that fails to qualify as a lattice.

Here we see an ordered set: X ≤ Y if there is a path from X up to Y
in the diagram. For example, C ≤ A as we can pass from C up to A via
E . The join of C and D does not exist! There are three upper bounds
for the pair C and D. However, two of them, B and E , have equally
good claim to being the join of C and D: they are both minimal
upper bounds in that no other upper bound of the pair lies below
them. However, neither can claim to be the minimum upper bound as
B is not below E but neither is E below B. Similarly B and E have no
greatest lower bound as both C and D are competing equally for the
title. Worse still, C and D have no lower bound at all, so the pair C
and D certainly lack a greatest lower bound. We see that the ordered
set of Figure 6.9 is not a lattice. Although it is not quite obvious,
it is simple to show that in any finite lattice any set of nodes has
a greatest lower bound and a least upper bound. In particular this
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applies to the set of nodes of the entire lattice so that any finite
lattice has a single absolutely least node (often denoted by 0) and a
node that lies supreme above them all (denoted by 1).∗

Lattices arise naturally right across crystallography and geome-
try but, more surprisingly perhaps, abstract algebra as well. Indeed
lattices, with their two binary operations, are somewhat akin to
ordinary algebra that is based on the familiar + and × operations
of arithmetic. The prototype of a lattice in algebra is the lattice of
all subsets of a set. The meet of two subsets is their intersection
while their join corresponds to set union, the set that arises when we
pool all elements of the two sets together. Often in modern algebra,
a mathematician considers an object together with all of its sub-
objects of the same type or considers all the algebraic ‘images’ an
object can have. This invariably leads to lattices of various kinds,
often with very special properties, which in turn shed light on what
goes on in the original algebraic setting.

Like other aspects of networks, lattices have emerged in recent
years in their own right outside of mathematics. One area in which
lattices have arisen is in the visual organization of complicated infor-
mation. For example, the idea of concept lattice has become an impor-
tant tool in many fields from linguistics to data mining, which is the
extraction of deeper information from an enormous and seemingly
unstructured mass of facts and measurements. Concept analysis is
beyond the scope of this book but involves representing a concept
both by its intent (properties of the concept) and its extent (the set
of things that furnish instances of the concept). The lattice gives
a picture of all the data simultaneously and so renders transparent
relationships that may not be seen from a mere table of information.
In particular (directed) paths in the lattice correspond to relation-
ships between the concepts. The same information in tabular form
would hide these structural features. The lattice structure can reveal
attributes of the concepts involved. Moreover, new lattices can be
formed, leading to interpretations of the subject matter that could
not readily be arrived at by other routes.



7
Spanning Networks

W e have talked about networks such as those of personal rela-
tionships and the World Wide Web that develop, if not of

their own accord, with a measure of autonomy, with the growth
largely determined by the will of individuals acting through their
nodes. However, a more concrete and traditional way that networks
arise is by overall design. Here the nodes represent places or people
that wish to form a network but the infrastructure of the edges
simply does not exist and has to be built. This can be a daunting
job.

What the engineers might have to hand is a paper network of pos-
sible connections between nodes. Each pencilled edge could be very
expensive to realize due to distance and other factors that separate
the nodes. All the same, it is easy enough to draw the possible edges
that might make up the network and to assign weights to each of
these edges proportional to the cost of making each edge a concrete
reality.

In the case of a road or communications network, it may not be
required or even desirable to put in place all the edges that might
be built. It may only be necessary to create enough edges so that
the network becomes one single component. The simplest way to
accomplish this is to find a spanning tree of the paper network. By
this we mean a tree containing all the nodes (and so just enough
edges so that the network consists of a single component). If we
had a network that was connected but was not a tree then it would
of necessity contain some cycles. An edge could be dropped from
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each cycle and the network would still remain connected so that
the simplest and cheapest network will be a spanning tree.

If all the edges were equally easy to build, so that all carried
the same weight, so to speak, it would be very straightforward to
design a suitable spanning tree: we would simply keep building
edges until the network formed one connected block, mindful as
we went never to add an edge that created a cycle, as that would
be redundant. Although this would result in one of perhaps several
possible solutions, every tree would be equally good as the number
of edges of each spanning tree would necessarily be the same, that
number being one less than the number of nodes in the network.
Real-life networks are rarely so cooperative, however, as different
edges have quite different associated costs.

We could just hope for the best and proceed in one of two
simple-minded ways. We could build edges, one after another, to
form a spanning tree by adjoining at each stage a new edge whose
weight was as small as possible. This would see us successively
building edges scattered all over the place. Eventually, however,
given that the underlying paper network is connected, it would all
come together and the outcome would be a spanning tree for our
network. This seems a good common-sense approach but it is not
clear that being greedy in this way—at each stage we always choose
the cheapest option for the next step—will necessarily reward us
with a spanning tree that is the least expensive. It is conceivable, for
instance, that by choosing the second most expensive edge at some
stage, we might avoid additional costs later on in the build.

A second approach, also quite naive, is motivated by the practical
concern that it might be easiest to keep tacking on to what we have
and build a larger and larger tree as we go. That is to say, as in
the previous method, you begin with as cheap an edge as possible
but at each stage you adjoin the least weighted edge that you can
find to the tree you have already built. In other words you do not
necessarily build the cheapest edge next, but rather the least costly
edge that connects to the tree built so far. Once again, following this
procedure, we shall eventually build a spanning tree for the network
but it may look even more doubtful that it will be a tree of minimum
possible weight.
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Figure 7.1 Network and minimal spanning tree

Fortunately, both these methods always work! The first is due to
Kruskal while the second goes by the name of Prim’s algorithm
(sometimes equally attributed to Dijkstra but was first discovered by
V. Jarnik in 1930). Each will provide us with a spanning tree of least
weight.∗

In the example of Figure 7.1 based on our Chinese Postman
Problem of the previous chapter, we have a network and the given
spanning tree of minimal weight can be found using either the
approach of Kruskal or that of Prim. Taking on trust that these
methods always give an optimal answer, we see that the weight of a
minimal spanning tree in this example is 14 units.

Both these algorithms are known as Greedy Algorithms as at each
step we maximize our gain at that step without regard as to how it
might affect the overall result. When it works, greed is good, but in
other similar problems greed can let you down, as we shall see later
when we revisit travelling salesmen.

There happens to be a remarkable piece of mathematics due to
Kirchhoff that allows us to calculate the precise number of spanning
trees of a connected network. It is based on representing the network
by an incidence matrix, which is a binary table that records which
nodes are adjacent to which. The word matrix is a very fashionable
one in modern management parlance and is often used there to indi-
cate no more than a table of numbers. The word ‘matrix’ sounded
snappy enough to become the title of the cult 1999 movie starring
Keanu Reeves.
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However, matrices come from mathematics and are of immense
importance. Their power stems from the fact they can be multi-
plied in a way that is all their own. This leads to the enormous
theory known as linear algebra that has grown over the last 150
years into one of the cornerstones of modern mathematics. It is a
little fragment of matrix theory that offers a neat solution to this
problem of counting spanning trees. Development of the theory
would not be appropriate here as although it is not very deep, there
are no shortcuts. However, for those who would like to dip into the
topic, the Kirchhoff method as it applies to the problem of counting
spanning trees is outlined in the final chapter.∗

Sorting the traffic

In the previous chapter we considered the problem of making a two-
way traffic system into a one-way set up and observed that this could
only work if none of the streets of the network were ‘bridges’ in the
network sense, that is to say edges that connected two otherwise
disconnected blocks of the system. It was also stated that no other
condition was required and, so as long as the network was free of
bridges, a one-way system could be devised where it was possible to
get from anywhere to anywhere else.

There are two approaches to solving this problem. The first is
based on an alternative formulation of the condition that the net-
work has no bridges, for this comes down to saying that every edge
in the network is part of some circuit. Certainly a bridge cannot be
part of a circuit for if it were, it would still be possible to get to the
other side of the bridge by going the long way around the rest of
the circuit. This is logically the same as saying that if an edge lies on
some circuit, then the edge is not a bridge.1

And the converse is also true, for suppose that an edge e from a
to b is not a bridge. That means that if we were to drop e from the

1 Mathematicians are fond of this logical twist known as the contrapositive: P implies

Q is logically the same as not Q implies not P . This takes a little thought—another

example: if we lose then we are not happy is logically the same as if we are happy then we

didn’t lose!
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network it would not split into distinct components, and so it must
still be possible to drive from a to b somehow—this alternative trail
from a to b together with the edge e will then constitute a circuit
containing the given edge e. To reinforce this conclusion: an edge of
a network lies on some circuit if and only if that edge is not a bridge.
In consequence a network is free of bridges exactly when every edge
is part of some circuit (the relevant circuit depends of course on the
edge in question).

The circuit reformulation of the ‘no bridges’ condition allows us to
explain how to build a one-way system in these circumstances. The
method is very similar to the proof of the theorem on Euler circuits
recorded in the final chapter. We begin with any circuit C1 in the
network, orienting each arc in the direction taken, we traverse the
circuit until we return to the node u where the journey commenced.
There may be additional streets between nodes in the circuit that are
not part of C1; put one-way directions on each of these in any way
that seems convenient.

There may well remain edges and indeed nodes we have not
visited but since the network is connected, in these circumstances
there is an edge e from some node v that is not part of the original
circuit C1, to another node w that does lie in C1. Find a circuit, C2,
that contains this edge e. Beginning at v, we put a one-way arrow
from v to w and attempt to continue around the circuit C2, leaving
arrows in the direction we travel until we return to v. However, the
circuit C2 may meet up and share edges with the circuit C1 that
is already directed. When this happens, we do not argue with the
orientations already provided, but respect the direction established
earlier. In these circumstances we may have to take the long way
around that part of C1 to reach the end of the common segment of
C1 and C2 before continuing our journey. The circuit C2 therefore
may not necessarily end up as a directed circuit but, using C2 and
C1 together, it will be possible to drive from any point of C2 or
C1 to any other point of C2 or C1, following the one-way system
throughout. As before, after orienting C2 in this manner there may
be some additional streets in the system joining various nodes in
C1 or C2—they can be oriented as we please, and may provide some
useful shortcuts.
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Continuing in this fashion, we eventually create a strongly con-
nected digraph, that is to say a one-way traffic system that works.
We can apply this method to the system of streets of our Chinese
postman in Figure 7.1. The edge weights, which represent the
lengths of the streets, are not relevant to the one-way system prob-
lem and so can be ignored. A nice circuit with which to begin is the
‘ring road’, C1: A → B → C → D → E → G → F → A and we orient
this cycle accordingly. Since this is an oriented Hamilton cycle, the
network is already strongly connected and we can get away with
orienting the remaining edges any way we choose. We can however
continue to follow the recipe, noting that the edge G A leads into
the circuit C1. There is a circuit C2 that contains this and all the
remaining edges: C2: G → A → B → G → C → D → G. Indeed C2,
consisting as it does of two separate cycles, is a true circuit and the
given orientation is consistent with that of C1 along the two arcs,
AB and CD, that the two circuits share in common. All edges are
now oriented and we have a strongly connected digraph, that is to
say a one-way road system.

There is, however, a second way of approaching this problem that
makes use of spanning trees and a version of Prim’s algorithm. Since
the network is connected, it is possible to find a spanning tree. We
can do this by a depth-first search as follows.

Suppose that the network has n nodes in all. We choose any one of
them, which we number 1, and then set out on a path through the
network for as far as we can without repeating a node, numbering
the nodes as we go, 1, 2, . . . , k. Eventually we reach a dead end in
that we can go no further without repeating a node. Whenever this
happens we backtrack in the following way: we step back one edge
along the path, and set out, if possible along a new path, numbering
the nodes as we go k + 1, k + 2, . . . until we are stuck, whereupon we
repeat this backtracking procedure. Eventually this yields a spanning
tree with all the nodes of the network carrying a number from 1 to
n. The later a node is discovered by this search procedure, the higher
will be its number.

Of course, sometimes after we have backtracked one step, no new
path will be available from this node either and we have to backtrack
again. Eventually, we may retreat all the way back to node number 1,
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from which point we will start off on a fresh path from 1, if some
nodes remain unvisited.

This way of enumerating a spanning tree of a network is the key
to the systematic search through a maze that we will meet again
in Chapter 9. The pitfall to avoid is that of unknowingly slipping
into a cycle. Given that the (connected) network is not a tree, then
it will have cycles. An attempt to follow a path when constructing
your spanning tree will then occasionally lead to a node that has
been met before and we need to be aware of this. When this occurs,
we should immediately backtrack and delete the edge we have just
travelled upon from taking any further part in the construction of
our tree as its inclusion would give a cycle.

If you have difficulty with picturing what is going on in a depth-
first tree search, the best way to imagine the process is as a circum-
navigation of an island. For example, if you leaf forward in the book
to Figure 9.8(f) you will see a tree with labelled nodes (and edges).
The purpose of this tree need not concern us at present but it serves
as an example to search, beginning at the root node, that happens to
be labelled 88, at the top of the picture. Imagine sailing around the
boundary, setting off to the left as you sail down the page (so going
to the right as we view the picture) and, clinging to the shore, listing
each node that we meet until we complete our circumnavigation by
returning to the root. We would be forced to backtrack a number of
times and so some nodes would be repeatedly visited. Indeed the full
list of nodes (together with repeats) that we meet in sailing around
the tree is:

88, 37, 20, 37, 17, 37, 88, 51, 28, 51, 23, 12, 23, 11,

7, 11, 4, 11, 23, 51, 88

Deleting repeated nodes from the list, gives the following result for
our depth-first search of the tree:

88, 37, 20, 17, 51, 28, 23, 12, 11, 7, 4.

Let us now see how to set up a one-way system using the tree we
have built from our depth-first search. Our spanning tree having
been found in this way, the rule we use for orienting the edges
to yield a one-way system is very simple indeed. Take any edge e
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that runs between the nodes i and j , say, with i the smaller of the
two numbers. If e is part of our spanning tree, orient this arc i → j ;
otherwise let the arrow point in the opposite direction. This orients
the entire network in a manner that leaves it strongly connected.

We can apply this again to our example of Figure 7.1. Commenc-
ing at A, there is a single path that takes in every node in the
network, which consists of the circuit C1 above without the final
edge that makes the path into a circuit. We number the nodes A = 1,
B = 2,. . ., G = 6, F = 7 as required to give our depth-first spanning
tree. We orient all these edges consistent with this path; every other
edge (i, j) is now directed from the higher to the lower of the two
numbers i and j . This affords us a different solution to our search for
a one-way system in that the arcs BG and DG of our first solution
are reversed in our second.

The spanning-tree approach can be applied to any connected
network in order to give it an orientation. If, however, the net-
work has bridges then, inevitably, the resulting digraph will not be
strongly connected. Because this algorithm can always be applied, it
is by no means obvious that the spanning-tree method will always
work and furnish a viable one-way system in any network that is
free of bridges. To see why, and to see how the lack of bridges
comes into it, you will need to read the details recorded in the final
chapter.∗

Recall that one definition of a tree is that of a connected acyclic
network, which is to say one without cycles. The term acyclic can be
applied to digraphs as well, meaning that the network has no directed
cycles. Of course, any digraph whose underlying network is a tree
will be acyclic but there will be other kinds as well: for example just
take a triangle and orient two of the arcs away from their common
node, orienting the final arc as you like it. This gives an example
of a connected acyclic digraph whose underlying network is not
a tree.

A simple characterization of acyclic digraphs is at hand all the
same. Suppose that the digraph N has n nodes and suppose it were
possible to name them v1, v2,. . ., vn in such a way that arcs of the
digraph pass only in the increasing direction of this order. That is to
say that if vi → v j were an arc of N, then i < j . (We are not asking
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for the converse: just because i < j we are not assuming there is an
arc from i to j , just that there is not an arc from j to i.) It is then
easy to see that N has to be acyclic, as the subscripts of the nodes
we meet on any directed walk in N always increase and so we can
never return whence we came, that is to say there can be no directed
cycles in N.

Happily the reverse is also true: given that N is an acylic digraph,
we can find an ordering of the nodes so that all arcs only lead
upward in the order. The simple inductive proof is recorded in
Chapter 10.∗

Greedy salesmen

A little more can now be said of our travelling salesmen. Sometimes
the salesman is replaced by a salesperson these days and, in the
trade, the name of the problem is often shortened to the acronym
TSP, an abbreviation that sidesteps any talk of gender specifics.2 The
sales representative has to start and end at home base having visited
all of a designated set of cities. The challenge is to find the shortest
route to go by. Traditionally the problem demands a cycle of the
smallest possible total weight of the underlying network. If there
is no Hamilton cycle, the problem of finding a Hamilton circuit of
least weight arises.

The problem here then is to find a minimal spanning cycle as
opposed to a minimal spanning tree. A greedy approach would be
to follow the Nearest Neighbour Algorithm, where at each stage the
salesman travels to the nearest available city not already visited and,
when he has visited them all, goes home via the shortest possible
route.

However, it is possible to find simple examples where the Nearest
Neighbour Strategy is wasteful such as that of Figure 7.2.

Beginning at A, the Nearest Neighbour Strategy takes you through
one of two equally good Hamilton cycles ACBDA, or ACDB A, each

2 Somewhat ironically, the term Traveling Salesman Problem seems to have been coined

in a 1955 paper by one of the most well known women mathematicians of the twentieth

century, Julia Robinson, famous for her work on Hilbert’s 10th Problem.
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Figure 7.2 Near neighbour failure

of which has weight 10 + 13 + 24 + 13 = 60 miles. However, ABCDA
is a better Hamilton cycle of weight 4 × 13 = 52 miles. Indeed, in
this example, the short-sighted Nearest Neighbour Strategy fails in
much the same fashion from whichever of the four towns the sales-
man uses as his base. What is more, this example could represent
real distances on straight roads as the picture is based on four real
and identical right-angled triangles of side lengths 5, 12, and 13,
and the sum of the squares of the smaller of these three numbers
equals the square of the largest, in accord with the age-old demands
of Pythagoras on this matter, and so the diagram represents true
separations.

In general, the TSP is an unsolved problem, as any problem lead-
ing in the direction of Hamilton cycles tends to be. Moreover, in
many TSP networks, there is no Hamilton cycle and we have to make
do with a Hamilton circuit. Since the TSP is a problem involving a
finite search, it is strictly solvable as it is possible in principle to
enumerate all the Hamilton circuits and find those of least weight.
However, this is not in general a practical approach for real networks
as the length of the calculation increases exponentially with the
size of the network. A variety of usable algorithms are available and
generally they aim to strike a balance between time of execution and
optimality of solution. In general the architects of these methods
seek to prove that their algorithm will always come very close to the
best solution so that, in practice, their method will give you a near
optimal solution in good time. They then measure the performance
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of their methods empirically against standard benchmarks (a net-
work used by the French military is frequently cited as a standard
test) and compare them with other commercially available software.

The TSP differs from the Chinese Postman Problem of the previ-
ous chapter in that the postman is required to travel all the edges
whereas the salesman only needs to visit the nodes and is not
required to make use of every road available. In our solution of the
CPP we implicitly assumed that we could always readily find the
shortest path between any two points in a connected network. For
small networks this can be easily done by inspection but what about
the general problem? If we were reduced to checking every possible
path between a given pair of nodes we would not really have solved
the problem at all. The situation would be similar to that of the TSP
which, although solvable in principle, was not solvable in practice,
as a direct check of all possibilities leads to a prohibitive amount of
work. However, this important subtext, the solution of the Shortest
Path Problem, has been resolved.

Finding the quick route

A simple example suffices to show how this is done, even though,
as in all simple examples, the answer may be got by inspection as
there are few cases to consider. In fact it is instructive to stare at the
picture (Figure 7.3) long enough to convince yourself you can see
the answer before proceeding.

We shall show how the algorithm applies to find the shortest path
from a to f in the network of Figure 7.3.

To be meaningful it would be best to consider the edge labels as
weights, let us say costs as, in this instance, they could not represent
direct physical distances because, for example, the net weight of
two sides of the triangle cde is less than that of the third side
(however, the numbers could represent lengths of winding roads).
For that reason the interpretation of the solution would be the
path of minimum cost, rather than least distance. The weights can,
in general, take any positive value. For convenience we continue
talking in terms of ‘shortest paths’. The first to introduce a successful
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Figure 7.3 Finding the shortest path

algorithm for this problem was the Dutch mathematician Edsger
Dijkstra (1930–2002).

It is a good algorithm from the computational point of view in
that, if the network has n nodes, then the number of comparisons
required is about n2. One version of it runs as follows.

Keep in mind that our task is to find the length of a shortest path
from a to f . The idea is to assign to each node a temporary label that
represents an upper bound on the path length from a. At first, in
order to err on the side of caution, all nodes are initially labelled
∞, which is a symbol taken to denote a quantity greater than any
integer, apart from a itself that is labelled by 0. On each pass through
the algorithm a temporary label, is replaced by a permanent one,
which is the best we can do, in that it represents the length of the
shortest path from a to that node. When you get to the stage where
the node you are interested in reaching, f in our case, acquires
its permanent label, we can stop. If we were to continue we would
eventually find the shortest path length to all the nodes from our
starting point a.

We shall write w(e) for the weight of an edge e in the network. The
rules of the algorithm are then as follows.

1. Set v1 = a and assign this node the permanent label 0. Assign every
other node the temporary label ∞.

2. Repeat the following step as long as necessary:

(a) Take the node vi that has most recently acquired a permanent
label, which is d, say. Look at each node v that is adjacent to vi
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but has not yet been permanently labelled and if d + w(e) < t,
where t is the current label of v and e is the edge from vi to v,
change the temporary label to the (smaller) value d + w(e).

(b) Having completed (a), take a node v that has the smallest tem-
porary label among those still having temporary assignments,
and make this temporary label permanent (if there are several
of equal value, select whichever you prefer). Finally set v = vi+1

and repeat step 2.

This process will eventually halt as each time we pass through the
loop the number of permanent labels on the nodes increases by one.
Importantly it does yield the length of the shortest path between the
two vertices you declare an interest in. By following the procedure
through on this little example, you will see how it works. In this
case the shortest path is a → b → c → d → e → f , which has total
length 6 + 2 + 2 + 1 + 4 = 15 units. In the course of working Dijkstra’s
algorithm you will find that c first has its temporary label changed to
9 before gaining the permanent label 8 on the next step, indicating
that a → b → c is the shortest path as far as c. Similarly the label
sequence of g goes through the temporary 19 before acquiring the
permanent 17, while f itself is temporarily labelled 22 before the
optimal value of 15 is found.

As stated, the algorithm ends by providing us with the length
of a shortest path, but not the path itself. It is a simple matter,
however, to trace back and build the path: to keep track of the
path we need only note whenever we assign a permanent label to
a node, which node led to that label becoming permanent. This
allows us to see, starting at f , where the shortest path has just
come from, and in this way we follow the path right back to the
beginning.

This algorithm is only one of a number. The Bellman–Ford algo-
rithm also solves the same single-source shortest path problem. It has
the advantage over the Dijkstra algorithm in that it can also deal
with edges that have negative weightings. If the problem does not
involve negative weights, however, the Dijkstra algorithm is the
quicker of the two. The time complexity of the Bellman–Ford algo-
rithm is proportional to the product ne of the number of nodes n
and edges e in the network.
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Another popular algorithm for this problem was developed by
Floyd and Warshall. Although the time complexity of their algo-
rithm is of order n3, it nonetheless has several advantages. The
amount of data stored at any stage in the process is quite modest
and the algorithm simultaneously calculates the shortest distances
between all pairs of nodes in the network.

Applications of algorithms like these are common in management
science where large projects need to be organized efficiently and
massive logistical mazes have to be negotiated in order to do this. In
particular, the Shortest Path Algorithm can be applied in Critical Path
Analysis. A typical example here involves a project that requires sev-
eral stages. Some programs cannot begin before others have ended
or, more generally, the cost and time taken by one part of the project
depends on the overall stage of the project when the program is
initiated. The problem is to finish the task in a way that minimizes
time or cost. This leads to digraphs of the kind seen above and the
required solution is represented by a critical path, which corresponds
to a shortest path in the network from the initial to the terminal
node.

Another name given to these problem types is PERT, which is an
acronym standing for Project Evaluation and Review Techniques.
PERT originated in the US Navy around 1956 while Critical Path
Analysis was developed at about the same time by firms involved
in commercial construction. Although there were some histori-
cal differences in the methods—PERT for instance incorporated a
probabilistic element—both methods now come under the general
heading of Project Scheduling Techniques and their applications are
standard and widespread.

The P versus NP controversy

One of the greatest unsolved problems in all of mathematics is
whether or not P = NP. Some say yes, some no, some say they
have no idea, while still others suspect that the question can never
be answered at all. This vexing question is all about exactly how
difficult it is to solve a problem. Despite the fact that its precise
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formulation is a little technical, it can however be explained and,
along the way, you will see that the TSP is not just a cute prob-
lem about saving time and money for travelling salesman but
rather it represents one of the more fundamental difficulties of
mathematics.

As we have mentioned more than once, an algorithm is a mechan-
ical procedure that will solve a given type of problem. An algorithm
may be complicated and proving that it works very difficult but,
nonetheless, it might be quite easy to implement, at least with the
aid of a computer. On the other hand some algorithms may be
simple, even obvious, yet carrying them out can be prohibitively
difficult.

The difficulty or costs associated with carrying out an algorithm
are of two basic kinds. The first is time which is directly proportional
to the number of basic computations that will need to be carried
out in order to complete the calculation in question. The second
might be called space by which we mean the amount of information
that we need to store as the calculation proceeds. The P versus NP
controversy centres around time, or more precisely the number of
steps involved in an algorithm.

For example, suppose we are given n objects such as words or num-
bers and our task is to put them in order (alphabetical or numerical
as the case may be). It is obvious that this can be done but how many
steps will it take? Taking the example of number ranking, we ask:
How many pairs of numbers might we end up having to compare
before we are sure we have them all in ascending order?

In part this depends on what algorithm you use. One natural
method is known as bubble sort where you make a number of succes-
sive passes through a list, each time swapping a consecutive pair of
numbers if they are in the wrong order—in other words the bigger
numbers rise like bubbles to the top. It turns out that the number
of comparisons you may need to make is 1

2 n(n − 1) and we say that
the complexity of the algorithm is of order n2, denoted by O(n2), as,
when the previous expression is multiplied out, n2 is the highest
power and, as n gets large, that is all that really matters, as it is the
maximum power that dominates the long-term behaviour of this
function.
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However, there are better ways of sorting. The so-called merge sort
algorithm uses a divide and conquer technique that is generally
much quicker. The method involves repeated subdivision of the list
into two, a process that can be represented as a binary tree followed
by a merging of these lists which corresponds to a reflected image
of the binary tree. The splitting process requires about log2 n steps
while the merging is a linear procedure in n so that merge sort
has complexity n log2 n, which is known in the trade as log linear.3

Since log n increases so much slower than n, this is a much smaller
quantity than n2. Indeed, since the log function increases extremely
slowly, a log linear algorithm is considered to be about as good in
practice as one of order n, a linear algorithm, which is very highly
prized.

An example of a difficult-looking question that can be settled ‘in
linear time’ is whether or not a network is a tree. Indeed a wider
type of network that includes trees is the class of bipartite networks,
which arise in the next chapter, and deciding whether or not a
network is bipartite can be done in time of order n, where n is the
number of edges. As mentioned above, the Shortest Path Algorithm
is of order n2 (in the nodes) while the standard method known
as Gaussian elimination for solving a set of n linear equations in
n unknowns, requires up to 1

6 n3 basic arithmetic steps and so its
complexity is of order n3.

An algorithm that acts on a set of objects of size n is said to operate
in polynomial time if its complexity is no more than nk for some fixed
power k, in which case we say the algorithm lies in the class P. As a
rule of thumb, if an algorithm is in P it is regarded as being generally
usable and otherwise not. This general position needs considerable
amendment in practice. Some algorithms not in P are fine in that
they will work quickly enough except for rare pathological cases
while a polynomial time algorithm with a very high power of k
might be useless. Indeed even a linear algorithm might be practically
worthless if its true complexity in n was, for example, 10100n. It is all
very well to say that the length of time taken to run the algorithm is

3 The divide and conquer nature of merge sort is explained, for example, in K. H.

Rosen’s Discrete Mathematics and its Applications.
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directly proportional to n but, even for small n, the number of steps
would be billions of trillions!

There are some tasks for which it is known that a polynomial
time algorithm is not possible. Examples include finding the best
move for the board games chess and go. Algorithms that are not in
P are sometimes loosely characterized as demanding exponential time,
meaning that the number of steps required as a function of the n bits
of input increases as least as fast as an for some constant a greater
than 1. The point of this observation is that any such exponential
function outstrips the growth of any polynomial function as n grows
large and so exponential algorithms are, for sufficiently large data
sets, not feasible to run, at least in the worst case. This apparent
dichotomy between polynomial and exponential time is not quite
the full picture for there is more to the story. There are processes of
intermediate growth, functions that, in the long run, grow faster than
every polynomial but slower than every exponential (for example,
the function 2

√
n is intermediate in nature), although you have to

hunt hard to find algorithms leading to such growth. There are,
however, some processes that are doubly exponential and there
are monsters such as the reknowned Ackermann’s function whose
growth is so phenomenal that, although its values are ‘computable’,
it transcends the ordinary laws of computability in a way that mere
exponentials of exponentials never can.4

There are, however, a whole range of problems that do not look
that hard but seem not to lie in the class P. The most simple to
describe is the subset sum problem. We are given a finite list of integers
and the task is to decide whether or not some subset of them sums
to zero. (You can use any of the numbers you want once or not at
all, but no repeats.) For example, suppose we are given the list

−131, − 97, − 90, − 70, − 35, − 9, 1, 6, 7, 11, 18, 41, 50, 60, 78, 102

How can we decide this question? We want an algorithm, that is
to say a list of instructions that will apply to any problem of this
type, which will always settle the question, one way or the other.

4 For those familiar with the technicalities, the Ackermann function is an example of

a function that is recursive without being primitive recursive.
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The obvious algorithm is to test every possible subset of numbers
and see if each sums to zero or not. If we find one that does, then
the answer is ‘yes’, if we exhaust all possiblities without ever finding
a solution, the answer is ‘no’.

This is fine in principle but unfortunately we are, in general, in
for a full tree search, which is very bad news. You can see this by
recasting what you are doing in terms of searching a binary tree as
follows.

We can list all the members of any given finite set in some particu-
lar order: a1, a2,. . ., an, say. A subset is then a list of some of these and
any subset may be coded as a binary string of length n, that is to say
a string in the two symbols 0 and 1. Given a subset, the first element
of the string is 1 if a1 lies in your collection and is 0 otherwise. We
define the second, third, and so on symbols of the string in terms of
the presence or absence of the corresponding ai in your subset. For
example, if n = 4 then the strings 0101, 1000, 1111 and 0000 would
correspond to the respective subsets {a2, a4}, {a1}, {a1, a2, a3, a4}, and
the empty set respectively. (The empty set, often denoted by ∅ in
books, is the set with no elements and is considered a subset of any
set in order to keep the bookkeeping tidy.)

We can now see exactly how many subsets we have to check, for
there is one subset for each binary string. The number of different
binary strings of length n that can be built is 2 × 2 × 2 × . . . × 2,
with n multiplications in all, as there are two choices (0 or 1) for
each entry and each choice is made completely freely and is in no
way dependent on any of the others. Hence there are 2n subsets to
check in our algorithm, which renders it not polynomial but rather
an exponential process.

A full complete binary tree with n levels begins with a root and each
node has two offspring down till we reach n levels below the root
when we have a tree with 2n leaves. (Our tribal allegiance tree of
Figure 1.4 is an example where n = 3.) If we label the edges of the
tree 0 or 1 according as the edge leans to the right or left then every
path from the root to a leaf represents a unique binary string of
length n, which, as we have just seen, can be interpreted as some
subset of the original set of n objects. An example of such a tree
appeared early in the first chapter. Figure 1.4 that we used to analyse
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our trio of tribesmen is a binary tree of height 3 (if we interpret T as
1 and L as 0) and each leaf represents one of the 23 = 8 possibilities
of tribal allegiance. In general, an algorithm that requires, at least in
the worst case, a complete search of the leaves of a binary tree (or
indeed an m-ary tree for any m ≥ 2 ) is an algorithm that is not in the
class P and so demands prohibitive computing time in large cases.

There is, however, one way in which the Subset Sum Problem
is not bad at all. If some oracle were to give you a solution to
the problem, we can readily check that it is telling the truth. For
instance if I tell you a solution to our particular problem is the
subset {−90, −70, −35, −9, 1, 6, 18, 41, 60, 78} you can easily check,
in polynomial time, that the negative and positive numbers in this
subset both sum to the same number:

90 + 70 + 35 + 9 = 204 = 1 + 6 + 18 + 41 + 60 + 78

and therefore the entire set sums to zero. Therefore the answer to
the Subset Sum Problem is, in this instance, ‘yes’.

A decision problem such as the Subset Sum Problem that requires a
yes or no answer and whose solutions can be checked in polynomial
time is said to lie in the class NP. The abbreviation NP does not
mean, as you might expect, Not Polynomial, but rather the more
technical ‘non-deterministic polynomial’. A problem is of class P
if it can be solved by a so-called sequential deterministic machine
while a problem is in NP if it can be solved using a non-deterministic
sequential machine. All problems in P are automatically in NP. A big
question in computer science, arguably the very biggest question, is
whether or not the reverse is true. Are all problems in the class NP
really in P as well? That is to say, is P = NP?

There is a one million dollar prize on offer waiting for anyone
who can settle this vexing question one way or the other. Whether
P (easy to do) is the same as NP (easy to check) is one of the seven
problems that the Clay Institute of MIT list as worthy of this special
Millennium status.5

5 For rules and background, check the web page <http://www.claymath.org/

millennium>.
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The reason why this conundrum is particularly intriguing is that
much which surrounds it is understood and has been examined
extensively. Since the question is not settled, this means in particular
that no one has ever actually proved that any standard NP problem
such as our Subset Sum Problem absolutely does not succumb to
a polynomial time algorithm. And you cannot assume these things
are impossible just because many clever people have tried and failed.
Only recently one particular problem that is very important in net-
work security has been proved to be solvable in polynomial time,
that of determining whether or not a number is prime. This was real
news.6 However, when it comes to the Subset Sum Problem, no one
has found an approach that is a dramatic improvement on the naive
tree search. That is, no polynomial time algorithm is known.

Furthermore, there are many important NP problems that have
acquired special status. Both the Subset Sum and the Travelling
Salesman Problems have been shown to be NP-complete and recently
the same has been verified for the general problem of setting an
n × n Sudoku puzzle.7 This means that we know, for certain, that
if we could solve the TSP in polynomial time then we could solve
every NP problem in polynomial time and, in particular, the P = NP
question would be settled once and for all in the affirmative.

The way this type of result is proved is diabolically cunning but is
typical of the kind of thing mathematicians get up to all the time.
The strategy in proving, for example, that the TSP is NP-complete is
to show that, given any problem in NP, it is possible to reformulate
it, in polynomial time, to a particular problem about the route of a
travelling salesman. If we could settle the TSP in polynomial time,
then the same would therefore apply to this arbitrary NP problem
and so the TSP is NP-complete.

There is now a very extensive list of these NP-complete problems
to choose from, including that of determining the presence of a

6 Discovered in 2002, the AKS primality test has now been shown to have a very low

power logarithm complexity: see <http://www.mathworld.wolfram.com/AKSPrimality

Test.html>.
7 This is not the same as the problem faced by the solver which is: given a partial

sudoku grid that has a unique solution, find what it is. From what this author has read,

the status of the complexity of this problem is less clear.
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Hamiltonian cycle in a network. Indeed many on the ever-growing
NP-complete list involve network isomorphism, network colouring,
or the partition of numbers into sums. The hardest bit was getting
going in the first place and this was achieved by Stephen Cook in
1971 when he proved that a certain problem of formal logic known
as the Boolean Satisfiability Problem was NP-complete (although
this terminology, now standard, was not used in the original paper).

Once we have one NP-complete problem the floodgates open, for
we can show that another such as the TSP is likewise by transform-
ing the known NP-complete problem into the new setting, thereby
avoiding the necessity of showing that this can be done for every NP
problem, which is what Cook, the originator of the theory, did have
to do. Contrary to the expectations of the early days, networks are
proving a natural source for some of the deepest, toughest, and most
important problems in all of mathematics.
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8
Going with the Flow

Network capacities and finding suitable boys

The two topics in the title of this section may sound a world apart
but it transpires that the network problems involved are intimately
connected. As is always the case, mathematics is indifferent to the
applications we may have in mind and so serves to provide unex-
pected links between matters that would seem to be unrelated.

The first application is the very practical real-world problem of
determining the maximum capacity of a given network. By contrast
the second is that of finding out if it is possible or not to match up
a group of girls with a given group of boys so that each of the girls
is married off. The constraint that applies to this problem is that all
marriages be by mutual consent, so a solution is not necessarily so
easy to find.

To see an example of the first problem type we can return to the
network of Figure 7.3 and interpret its meaning differently. Instead
of distances, this time the weights on the edges represent capacities.
Imagine the edges as pipelines of varying cross sections as given
by the edge labels. Suppose then that our company wants to employ
the network to pump oil from a to f and needs to know how much
the system can take.

We can solve this problem by inspection, although even this rel-
atively simple exercise requires enough thought to bring interesting
features into play. There are three pipes leading from a of total capac-
ity 7 + 9 + 6 = 22, and so the capacity of the network cannot exceed



160 GOING WITH THE FLOW

this sum. However, can the network cope with this throughput or
will bottlenecks arise?

The 7 units through pipe ah should not meet any obstruction as
the pipes hg and g f have more than ample capacity to take this flow.
Similarly the capacity 14 pipe from c to f should be able to take the
9 units arriving along ac with ease. However, let us see what will
happen when we try a pump 6 units along ab. Upon reaching b we
meet a node that can cope with a possible outflow of 10 units: up
to 2 along bc and 8 along bd. Pumping 2 units through bc looks all
right as c f has more than enough capacity to take these two units,
even if it is already taking 9 from the pipe ac. However, at least 4
units will have to travel along bd but when that hits node d there
is a problem. The total outward capacity at node d is 1 + 2 = 3 and
we have hit upon an unavoidable bottleneck. It seems then that we
may only pump 2 + 3 = 5 units through ab, which will then split
into 2 units and 3 unit flows in completing the passage to f . The
maximum capacity of this network is thus only 7 + 9 + (2 + 3) = 21
units, and not the 22 we may have hoped for.

Having solved the problem, we can glean much by looking to the
set of pipes that critically affected the overall result. The pipes that
acted to limit the capacity of the network were ah, ac, bc, dc and
de. This collection of pipes, taken all together, has one important
property—if they were all removed from the network, it would fall
apart, leaving no directed path of any kind from the source, a, to the
sink, f . The name for such a collection of arcs whose deletion would
cut the network’s capacity to zero is a cutset.

Cutsets are a critical feature in the maximum flow problem as the
total capacity of the network cannot possibly exceed the combined
capacity of the arcs in any cutset, as every drop of oil has to pass
through at least one of the pipes in the cutset. Therefore we already
have an upper bound to the problem:

the maximum capacity of a network is no more than the minimum
of the capacity of its cutsets.

There are many other cutsets in this particular network: the three
arcs from the source a is an example already mentioned of capacity
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22 while the collection of arcs going into the sink f form another
cutset, this time of capacity 10 + 14 + 4 = 28. Neither of these, how-
ever, have the minimum measure of 21 that acts to limit the net-
work’s capacity to just this value.

A remarkable result, due to Ford and Fulkerson, is that this bound
can always be attained. That is to say:

the maximum capacity of a directed network is equal to the minimum
capacity of its cutsets.

We have already observed that the first quantity cannot exceed
the second. The clever part of the proof is showing the reverse
inequalilty allowing us to deduce the two numbers are always the
same. It turns out that it takes only a few paragraphs of careful argu-
ment to establish this.∗ What is more, there is a workable algorithm,
similar in feel to the Dijkstra algorithm for shortest paths but some-
what more complicated, that allows us to find the maximum capac-
ity and actually set up an optimal flow. The idea is to begin with
some feasible flow and augment it step-by-step. It can be proved
that, by adhering to certain simple rules, a maximum flow can be
attained.1 It is not obvious that this would necessarily work as, if we
go about it the wrong way, we can hit a dead end where we have
a flow that is not optimal but which cannot be increased without
first backtracking and reducing flows through some arcs. A workable
algorithm that can operate in real time needs to avoid becoming a
tree search of all possible flows in the network. It must navigate its
way to an optimal result without excessive backtracking and search-
ing through myriads of non-optimal cases that are of no interest, for
only then can complex real-world problems be solved in practice.

As is often the case with networks, there are surprises in store.
There are two reactions to a topic like the Maximum Flow Problem
that are rather at odds with one another. On the one hand, some
people approve of this kind of problem as they see it, quite cor-
rectly, as practical and important and so its solution represents a
worthwhile mathematical direction justified on utilitarian grounds.
On the other hand, others, especially those with no natural appetite

1 See for example, Introduction to Graph Theory, p. 132, by Robin J. Wilson.
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for engineering matters, are turned off by this setting and tend to
lose interest, concluding that the subject has drifted into a direction
that is all too mundane.

Happily, network theory manages to reconcile these two otherwise
conflicting attitudes. The topic and the problems that it leads to such
as job assignment problems are genuinely important and simply
need to be solved. However, results such as the previous one are
of real mathematical interest and when a development like that
occurs it normally has consequences in unexpected directions that
are revealed to the open-minded individuals who are prepared to
follow the mathematical signposts they encounter.

The feature of real research that all mathematicians know but
which is difficult to convey to the general public is that mathe-
matics needs to be free to dip in and out of applications as the
mood requires. A lot of good mathematics arises from practical
problems. However, the mathematics that results often transcends
the original problem and sheds light elsewhere, first in other parts
of mathematics, and eventually in entirely different subjects. For
example, problems in classical fluid dynamics took on a life of their
own and the models involved then surfaced in economics. This
is a natural development that ought not be hindered. We should
not obstruct progress by insisting that researchers are driven only
by narrowly defined goals announced in advance of the research
program. Ploughing the same furrow, however important it seems,
yields less and less as time goes by and if we ignore interesting
diversions along the way on the grounds that they are not relevant
to the matter at hand, it is a safe bet that we will be missing a trick.
Real research is about the unknown and when an opportunity arises
you need to drop everything and follow where it leads, despite what
you may have written on the grant application.

At the level of teaching, it will always be the case however that
people’s appetite for studying a problem depends on the context in
which it arises. Placing mathematics problems in enticing settings is
a little art in itself. A question about footballers running around a
pitch might be tackled better by boys than by girls, yet the same
problem, when introduced in terms of people on a dance floor,
encounters the opposite sex bias.
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You can do things with the Max Flow Min Cut Theorem that have
nothing to do with the capacity of grids and that you could hardly
expect. One application is the resolution of the following problem
that goes by the title of Hall’s Marriage Lemma.

Marriage and other problems

Readers should not take offence at the original 1930s setting of this
problem, as the distraction involved may lead to them missing the
point entirely. Indeed I am going to dress the problem up with the
opposite sex bias to that which it bore originally, as it seems more
chivalrous.

Here is how it goes. We have a set of n girls that we would like
to marry off and there is a set of m male suitors for our girls to
choose from. You will be happy to hear that all marriages are to
be by mutual consent. In other words, each suitor is only interested
in some of the girls and not the others while, in just the same way,
each girl is prepared to accept some of the suitors but not others, no
matter what anyone says. The question is, given these constraints,
can we marry every girl to a suitable boy?

The answer obviously is, ‘it depends’. But what exactly does it
depend on? That is the real question. Certainly it depends if noth-
ing else on having enough boys in the first place—if there were
more maidens than suitors, some of the girls would have to be
disappointed. This simple observation brings home the fact that the
problem is not a symmetric one. We have asked ourselves whether
we can marry the girls off and are not worried about pleasing all the
boys, something we should not lose sight of.

The basic observation of the previous paragraph can be taken one
step further. Certainly there is no hope of solving the problem unless
each girl has at least one suitor who she is prepared to wed. Taking
this further, if we had two girls who only had eyes for the one man,
then the problem is unsolvable as well. Between them there must be
two suitors they are prepared to marry—if they each have one and
only one sweetheart, it mustn’t be the same fellow. And the same
holds for any trio of girls: the collection of boys they are willing to
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take on must number at least three, as otherwise our matchmaking
will end in frustration.

In general, then, if we take any set of k girls, the total set of boys
they are (collectively) prepared to marry must number at least k if we
are to see all our girls married. This is a necessary condition, known
as Hall’s condition, which must be satisfied if the Marriage Problem is
to have any solution at all.

The pleasing aspect of the problem is that this is all we need—this
necessary condition is also sufficient: as long as the set of suitable
boys for each group of girls is not fewer in number than the girls, a
solution can be found, a very happy outcome.

This pattern of solution we have seen on previous occasions when
an obvious necessary condition has turned out to be enough to
solve a problem. Just recently we saw that it is possible to have a
particular flow through a network as long as the value of the flow
does not exceed the capacity of any cutset. These similarities are
not just coincidental but stem from the same root, for it is possible
to view Hall’s Lemma as a special case of the Max Flow Min Cut
Theorem.

To see why, it is best to talk in terms of networks. The network
of the Marriage Problem has two parts; we have one node for each
girl and one for each boy and two nodes are joined if the pair
represents a possible match. This kind of network is called bipartite.
One particular bipartite network featured heavily in our discussion
of planarity, that being the network K3, 3 first seen in Figure 3.5.
This network consists of two sets of three nodes with each node in
the first set adjacent to each node in the second set, and is called
a complete biparite network for that reason. In general, a bipartite
network consists of a pair of disjoint sets of vertices, G and B, and
the edges of the network run exclusively between nodes of G and
of B, with no edges between nodes in G, nor nodes in B. If every
node in G is joined to every node in B, we have a complete bipartite
network of which K3, 3 is a prime example (although there is no call
for the sets G and B to have the same number of nodes in a complete
bipartite network, as is the case in K3, 3). The Marriage Network is
bipartite but would only be complete in the case where every girl
and boy were happy to wed each other.
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To say that a network is birpartite is the same as saying that it
is 2-colourable, meaning that nodes can be coloured red and blue,
say, in such a way that adjacent nodes have different colours. The
blue and red nodes correspond exactly to the two ‘parts’, G (blue)
and B (red), of the bipartite network. A more subtle characterization
of bipartite networks, however, is as those in which all cycles have
even length. This is quite simple to prove and leads to a method of
deciding whether or not a given network is bipartite that is quick to
implement.∗

One consequence of this characterization that might strike you as
surprising is that any tree is bipartite (as it has no cycles at all, and
so satisfies the given condition without even trying). To 2-colour
the nodes of your tree just start by colouring any endpoint red and
then alternate the colours blue and red as you go. You can’t go
wrong!

The trick to reducing Hall’s Lemma to a network flow problem
is to take the bipartite network of the girls’ and boys’ marriage
preferences and adjoin two new nodes, s and z, to act as source and
sink respectively. We draw arcs from s to every node in G, the node
set of the girls, and an arc from every boy in B to the sink z. All these
new arcs are given a capacity of one unit.

Rather cunningly, we assign limitless capacity to each arc joining
a girl to a suitable boy. Actually, as you will see, we do not need the
capacity of their links to be infinite but rather some quantity q at
least as large as n, the total number of girls.

For example, suppose that we have five girls and six boys with the
marital preferences given by Figure 8.1. In this example, there are 6
boys for n = 5 girls but boy 6 is unwanted by all the girls (although,
to be fair, he may be the fussy one) so any matching has to pair off
five girls with five boys. Now b3 is the only man for g5, so there is
no choice there. After that, b5 is the only match left for g2, and then
fortunately the other three girls can be matched with the remaining
boys to give our bridal pairs: (g1, b1), (g2, b5), (g3, b2), (g4, b4), (g5, b3).
Indeed you will be able to find one other solution as well.

The general connection has yet to be made between the bipartite
network of the potential brides and grooms and the network flows
in the augmented network. This is based on the observation that any
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Figure 8.1 Flow network for a marriage problem

flow in the network corresponds to at least a partial matching of the
couples for the following reason. In any flow from s to z, each arc
from s to one of the female nodes carries either one unit or nothing.
(Remember that the flow is ‘quantized’ and only comes in multiples
of our basic unit.) Similarly an arc from one of the male nodes to z
either carries one unit or nothing at all. Hence, despite the network
having a very large outward capacity, flow of at most one unit exits
from each female node, matching it with one and only one of the
male nodes. In summary, in any flow through the network, each
girl is matched by the flow with at most one (mutually) acceptable
boy.

We are seeking to maximize the matchings of the girls which
can be done by maximizing the flow. By the Max Flow Min Cut
Theorem, we know the maximum value of the flow is the capacity
of a minimum cut in the network. What remains to be demonstrated
therefore is that if every set of k girls is joined collectively to at least
k boys (for all 1 ≤ k ≤ n), then any cut has capacity at least n, for that
corresponds to a husband for each of our maidens.

To prove this, we assume to the contrary that despite Hall’s con-
dition being met, there is a set of arcs A that forms a cutset for the
network and the capacity of A is less than n. We have deliberately
constructed the network in order to ensure that no arc from G to B
can be in A for the capacity of every one of these arcs is at least n,
which exceeds the total capacity of A. Hence A consists of two sets
of arcs, X and Y, with the arcs of X all emanating from the source, s,
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and leading into G, while those of Y all come from the boys’ nodes
B, and are directed to the sink, z.

Careful examination of this scenario leads to a contradiction, as
you are about to read. The set X will have some number of nodes k,
where k could be as low as 0 or as high as n − 1. The remaining set of
girls number n − k and, by Hall’s condition that we are assuming is
satisfied, they collectively have a set of at least n − k boys to which
they may be wed. For each of these boys, then, there is at least one
girl, not in X, to whom he is linked. The arc from that boy to z
must be in the cutset A for otherwise there would be a flow through
the network via this girl and boy pair even after the arcs of A were
dropped from the system. It follows that the size of Y is at least n − k
and so the total size of A, which is the sum of the sizes of X and Y,
is at least k + (n − k) = n. This, however, contradicts our assumption
that A had fewer than n arcs. All this proves that in the presence of
Hall’s condition, the size of a minimum cutset is at least n, and so
the maximum flow is at least n. Clearly the flow can be no greater
than n as there are only n arcs coming from the source, s, and each
may carry no more than one unit. Therefore the maximum flow in
this augmented Marriage Network is n which, as we explained above,
corresponds to all of our n girls finding a husband.

This argument is a good example of an unexpected application
of the topic of network flows. On the other hand you may still
object that there should surely be some direct way of demon-
strating the truth of the Hall Marriage Lemma without recourse
to rather artificially embedding the set-up in a network flow. The
answer is of course yes, and another short although subtle proof
can be found in Chapter 10 that does not engineer the problem
into a different setting.∗ At the same time we should also note
additional advantages supplied by the flow model. Whether or not
Hall’s condition is satisfied, the flow model can be set up and will
find an optimal solution, for a maximum flow corresponds to the
matching of as many girls and boys as possible. In other words,
the flow model will make the best of the situation at hand in all
cases.

Applying one method to a variety of disparate problems is a good
approach as not only does it show the generality of the method
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but it helps to bring out connections between mathematical topics
that would not seem to be linked. It is often the case, and we saw
it before with the Sylvester–Gallai Theorem of Chapter 4, that a
problem is solved by recasting it in a new context. This happens
quite often in mathematics where a problem in one realm is first
solved in another. This can on some occasions rather annoy the
experts from the first realm who are left feeling affronted. Thinking
that they should have solved the problem themselves in the first
place, they can then be galvanized into action and usually devise
a proof that is more straightforward and natural, to them at least,
with which they feel at home. Vanity, pride, and embarassment can
be as strong as more noble motivations in discovering mathematical
truth.

Harems, maximum flows, and other things

Short and succint as the statement of the Marriage Lemma is, the
criterion is not an easy one to verify as it involves checking a condi-
tion for all subsets of the girls. In practice such assigment problems
regularly fail to offer a complete solution and the flow model allows
us to do the best we can, finding an optimal outcome through
setting up a maximum flow. A situation that is met more often in
practice than mass marriages is the assignment of jobs to workers.
In this interpretation the set G represents jobs that need doing and
the set B represents your set of potential workers. Each applicant is
qualified for some jobs and not others and so we are left once again
with the problem of trying to find a matching in a bipartite network,
this time matching as many jobs to people as we can. The same
network flow model that we used to prove the Marriage Lemma now
serves as our model to find the best matching which will, once again,
correspond to the maximum flow in the augmented network. In a
way, this is not a different problem at all and the diagram of Figure
8.1 could well represent an example where we have five positions
and six workers, although unfortunately applicant number 6 is not
qualified for any of the jobs on offer and so is of no use to the
employer.
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The Max Flow Min Cut Theorem and the Marriage Lemma are
both related to another problem type of real importance, that of
finding disjoint paths between nodes in a network, an instance
of which will surface when analysing Instant Insanity cubes in the
next chapter. A good example to illustrate this problem type is the
network of our Chinese postman, Figure 7.1. How many paths can
you find in the picture that lead from A to D that have no edges in
common? You should have little trouble finding a set of three: for
example,

A → G → D, A → F → G → E → D, A → B → G → C → D.

At the same time this network has several cutsets of three edges, for
example, removing the set of edges incident with A makes it impos-
sible to travel from A to D. Do these two numbers, the minimum
size of an edge cutset and the maximum size of a collection of edge
disjoint paths between a pair of given nodes, always coincide?

The pattern we have seen with problems of this type persists in
that it is clear that one of these numbers cannot exceed the other—
any path between the two nodes of interest must include at least
one edge from any given cutset and so it is impossible to have more
edge disjoint paths than edges in any cutset. That the converse is
true is not so obvious and was first brought to light by Karl Menger
(1902–85) in 1927: the number of edge disjoint paths between two
nodes in a connected network equals the mimimum size of an edge
cutset for those nodes.

Like the Marriage Lemma, the difficult direction of Menger’s The-
orem may be proved directly or through use of a clever application
of the Max Flow Min Cut Theorem. What is more, the Marriage
Lemma can be inferred easily from Menger’s Theorem, or at least
from the nodal form of it, which we next explain.∗

Instead of asking how many edge disjoint paths we can find, we
may look to see how many node disjoint paths there are between two
given nodes, meaning paths that have no nodes in common except
for those at the beginning and end of the path. Any set of node
disjoint paths will obviously have no edges in common either, but
that is not necessarily true the other way round, for a pair of edge
disjoint paths may well cross one another and so share a common
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node along the way. We see therefore that the maximum size of
a set of node disjoint paths between two given nodes can be no
more than the maximum size of a collection of paths that share no
common edges.

For example, let us look again at Figure 7.1 and the nodes A and
D. If we remove just the two nodes B and G (together with their
incident edges) we see that A is now cut off from D. It follows that
there can be no more than two paths in any set of node disjoint
paths running between A and D and indeed it is easy to find a pair
of paths that meet nowhere except at A and D.

Once again we have a pair of related numbers associated with the
network: the size of a smallest nodal cutset, that is a set of nodes
whose removal leaves our two given nodes disconnected, and the
maximum possible size of a family of paths between the two nodes
that share no common vertices. As with the edge form of Menger’s
Theorem, it is clear that the latter number is no more than the
former, as any path between our two chosen nodes has to run
through at least one member of any node cutset. The nodal form of
Menger’s Theorem (which is the version he originally proved) again
says these numbers are one and the same every time: the maximum
size of a set of node disjoint paths between a given pair of nodes in
a network equals the minimum size of a nodal cutset between the
pair. Good examples on which to try these ideas out are the network
of the dodecahedron (Figure 3.8) and the Petersen graph of Figure
4.11: it is an instructive exercise to verify both the edge form and
the nodal form of Menger’s result for these networks for all possible
choices of vertex pairs.

Contrary to the style of the presentation here, Hall’s Marriage
Problem has traditionally been introduced as a task of marrying off
a set of boys with no necessity to marry all the girls. It is perhaps
more natural to focus on the boys when considering the following
generalization, known as the Harem Problem. In this variation we are
looking to satisfy all the boys who each have expressed a wish for a
harem of wives. That is to say, b1 wants r1 wives, b2 wants r2 wives,
and so on where each of the r ’s is some non-negative integer. Indeed
we may as well assume that all the r ’s are positive for if one of the
boys doesn’t want any wives then he is not part of the problem.
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This is a generalization of the Marriage Problem as if we put all of
the r ’s equal to 1, we return to the original setting where we know
the answer.

The reason for drawing your attention to this question is not
because I have a particular interest in polygamy but because it is
another example of use of the principle that was introduced earlier
when we saw how we could extend the Euler circuit theorem for
networks with no odd nodes, to the case where there are up to two
odd nodes, by tweaking the solution of the simpler problem. Once
again we can apply the principle by virtue of the following device.

We may reduce the Harem Problem to the Marriage Problem by
imagining that boy b who required r wives is replaced by r copies
of himself with each of the copies seeking just the one bride. Mar-
rying this inflated set of boys off to the girls, one at a time, then
corresponds to a solution of the Harem Problem and vice versa.
Since we have now managed to work the problem into the original
framework, we can state without further argument the conditions
under which there is a solution: it will be possible for each of the
boys to have the harem he desires if and only if it is the case that
whenever we take any set of k of the boys, the collection of girls
they are suited to marry is at least as great as the sum of all the
numbers r for each boy in the set. For example, if r1 = 2, r2 = 6, and
r3 = 1 then the collection of potential wives for this particular set of
three boys must number at least 2 + 6 + 1 = 9 if we are to meet their
requirements.

There is one particular set of circumstances that does automati-
cally guarantee, however, that the condition of the Marriage Lemma
is respected and moreover we can use it to settle a question that arose
right back in Chapter 2 when we were talking about Sudoku grids. If
there is some number r such that every one of the girls has exactly
r boyfriends and every one of the boys has that same number r of
girlfriends, then the conditions of the lemma are satisfied and the
girls can all be married off.

In other words, we are seeking a matching in a regular bipartite
network as every node, whether it lies in G or in B, has degree r .
You might be wondering if in these circumstances the sizes of G
and B must be the same. The answer is yes, and it is worth settling
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this before going any further. In any bipartite network, the sum of
the degrees of G must equal the sum of the degrees of B, as all
edges run between nodes of G and of B. In these circumstances
this gives r n = rm, so that n = m and there are equal numbers of
girls and boys. Therefore, if we show that there is a matching in
these circumstances, it must be what is naturally known as a perfect
matching where each girl has a husband and each boy his bride.

It remains to check that Hall’s Condition is met, so let us consider
any set of k of the girls. These nodes are linked to let us say l nodes
of B. The number of edges from this set of k nodes, that is to say
the sum of their degrees, is r k. On the one hand, the number of
edges coming from these l boys is r l, and on the other, this set of
edges contains at least all the edges coming from the set of k girls,
so we infer that r l ≥ r k and so l ≥ k. That is to say, each set of k girls
(1 ≤ k ≤ n) is suited to at least k boys, and so Hall’s Criterion is met
and a perfect matching can be effected.

Finally, as promised, we revisit and solve a problem we left unre-
solved in the second chapter. Recall that an m× n Latin rectangle is
an array of m rows and n columns, with m ≤ n, such that every row,
which then has length n, contains each of the numbers 1, 2, . . . , n
(and so has no repeats) and no column has a repeated number either.
The question was, is it true that a Latin rectangle can always be
extended to make a Latin square where each number appears in each
row and column?

The answer is yes, and the reassurance comes quickly through the
Marriage Lemma. All that needs to be shown is that, if there are
fewer rows than columns, we can always extend the Latin rectangle
by one row. Carrying out this process n − m times will then yield
the full n × n Latin square that we seek.

We take for our set G the n columns of the rectangle and for our
set B the n numbers 1 through to n. Each column is then linked
with the set of n − m numbers that do not appear in that column—
our motivation for this is that we are trying to find a new number
for each column in order to form the next row of the rectangle.

Let us take stock of our position: we have a bipartite network in
which both parts, G and B, have n nodes and the degree of each
node in G is n − m, which we shall call r . What is the degree of each
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node of B? Each of the numbers of B has appeared once in each row,
and so has appeared in m rows and likewise in m of the columns as
well, as no number appears twice in the one column. Therefore the
degree of each node of B is also r = n − m, as that is the number of
columns the number has not featured in to date. This means that we
have precisely the situation just mentioned where we have a regular
bipartite network in which every node has degree r . We now know
that in these circumstances there is a perfect matching between the
sets G and B, assigning the first column a new number, the second
column a new number different from the first, and so on. Writing
this down gives us the next row of our Latin rectangle, as every
number is used and each column is extended by a new number.

As explained at the outset of the argument, we can now repeat
this until we have filled out and created a full n × n Latin square. In
conclusion, a Latin rectangle can always be padded out to form a
full Latin quare.
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9
Novel Applications of Nets

You have now seen enough to be shown some striking applica-
tions of network theory. The first is merely a puzzle, while the

final one involves unravelling the mystery of life itself. As is often
the case, the mathematics pays scant regard to our inital motivation
and takes care of things in its own way.

Instant Insanity

This is a colourful and tactile Parker Brothers game that is based on
a simple set of four plastic cubes each face carrying one the four
colours, red, yellow, green, or blue, with each colour featuring at
least once on every cube. The task is to form a tower from the four
blocks so that each colour appears on each face of the four long sides
of the tower.

Of course the problem is different for each different set of four
cubes. With some colourings, the problem could have several solu-
tions so that it may be relatively easy to stumble across one of them.
On the other hand, with some colourings, there may be no way of
doing it at all. The commercial toys are made to be pretty difficult
and, for that reason, playing around with the cubes randomly can
lead to real frustration, hence the name of this executive toy. There
are a huge number of combinations you might try and it can be
hard to find a systematic way of searching through them all to find
the answer. In practice, coding up the problem in terms of related
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networks allows you to see your way through with relative ease. The
nets organize the search for you in a manner that makes it possible
to gain control over the problem and discover the solution with only
a modest amount of trial and error.

It is easiest to show how it is all done through a good example.
Rather than draw representations of three-dimensional objects on a
flat sheet, which always involves some kind of distortion, we can
resort to another device where we open up the geometrical object
and fold it out flat. The flattened version is often known as a net of
the original object, which is not to be confused with the way we use
the words net and network throughout the rest of the book. The net
of a cube is not unique in that a different picture can result if we
separate along different edges. However, whatever version of the net
we choose can be used to reassemble the cube from which it was first
derived.

We open up each of the cubes to give us four cruciform nets with
the sides labelled to identify the colourings involved (see Figure 9.1).
We store all the information in the puzzle in the form of a network
and then reinterpret the task in terms of features of that graph. In
order to specify a network one needs to say what each node is and
how each edge arises. In this case we draw one node for each colour
and draw three edges for each cube, each labelled by the number of
the cube. An edge is drawn between a pair of nodes representing two
(not necessarily different) colours if these are the colours of a pair
of opposite faces of the cube in question. For example, if we imagine
reassembling cube 1 from its net, we see that the three opposite pairs
of faces are (B, G), (B, Y), and (Y, Y) leading to edges labelled 1
running between the nodes B and G, B and Y, and a loop at the
yellow node. We continue drawing the network in this way for each
of the other cubes and the outcome is as seen in the figure. The
network of the puzzle is not a simple network but will generally
have multiple edges between pairs of nodes and some loops.

We have lost no information in passing from the collection of
cubes to this single network, for once you know the colours of the
three pairs of opposite faces of a cube, you can reconstruct the cube
unambiguously. The question now is, what, in terms of the network,
is the puzzle requiring from us?
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Figure 9.1 Network for Instant Insanity

If we can locate a Hamilton cycle in the network in which every
type of numbered edge occurs once, we are halfway to solving the
problem, for think what this represents. One cycle of this kind is to
be seen in Figure 9.2(a).

Stack the cubes, one on top of each other, with cube 1 on the top,
followed by cube 2, then 3, then 4. We can use the first cycle to
arrange the tower so that the left- and right-hand sides have every
colour. Start anywhere in the cycle, let us say at B, and trace a path
around it, let’s say clockwise. The first edge is labelled 1 so we may
arrange cube 1 so that the left side is blue and the right is green. The
next edge is labelled 4 so we adjust the bottom cube so that its left
face is green and the right face is red; next we arrange cube 3 with red
on the left-hand side and yellow on the right; finally we complete
the circuit and in so doing place the second cube with yellow on the
left and blue on the right.
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Figure 9.2 Hamilton cycles for Instant Insanity

By following this recipe we arrange it so that each colour in turn
appears first on the left, then on the right of the tower of cubes. We
want this to be part of our solution. That is to say we want to adjust
the tower so that each colour also appears on the front and back
faces while not upsetting the progress we have made thus far.

We can adjust the front and back of each cube if we wish by
rotating the cube about the axis that runs through its left and right
faces. In other words, we can swap the current front–back pair with
the top–bottom pair for any cube while keeping the left and right
faces the same. This measure of independence allows us to split the
search for a solution into two similar parts for in this way we proceed
by trying to repeat the process for the remaining front and back faces
of the tower.

Having made this encouraging start, we look for another of these
doubly Hamilton cycles—I say doubly Hamilton as not only is each
colour represented exactly once through the nodes but we want
every edge label to come up once as well. Since we wish to maintain
the left and right faces as they are, we cannot use any of the edges
of the cycle of Figure 9.2(a) again. The way to proceed, then, is to
return to the original network of the problem, delete the edges of
the cycle we have just used, and search for a fresh one with the same
properties. In this example we are in luck and we see there is another
and it is shown in Figure 9.2(b). We now use this to complete the
puzzle.
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Once again, let us begin from the bottom left-hand node and
read the instructions off clockwise. We rotate cube 3 as necessary
so that its front face is blue and back is green, arrange cube 2 so
that the front is green and the back red, then cube 4 with the red
facing front and yellow at the back, and finally the top cube 1 with
yellow facing forward and blue behind. This gives a solution to this
particular Instant Insanity Puzzle as pictured in Figure 9.3. The lower
case letters designate colourings of the left and back faces of the cube
that would be hidden from the viewing angle in the picture.

Does the problem, then, always come down to finding a pair of
these disjoint doubly Hamilton cycles in the underlying network?
Well, no: there is more to it as the solutions are not always in that
form.

For example, suppose that for a given set, one cube had a pair of
opposite faces coloured blue, another a red pair, a third a yellow pair,
and the final cube had a green pair of opposing faces. Lining these
pairs up in our tower would immediately solve half the problem for
us, yet the corresponding edges do not form a cycle in the network.
Indeed these colourings manifest themselves in the network as four
loops, one at each colour node, labelled by the four different edge
numbers 1 through to 4. However, this will work just as well as the
first ingredient to our solution.



180 NOVEL APPLICATIONS OF NETS

What is required in order to find a suitable position of a pair of
parallel sides of the tower (left–right or front–back) is a set of four
edges of the network, carrying each of the four labels 1 to 4, that
have the property that every node (i.e. colour) occurs once and every
node has degree 2. A regular network of degree 2 such as this is
not necessarily a four-cycle but could consist of a three-cycle and a
loop at the remaining node, or a pair of two-cycles (multiple edges),
or one two-cycle and a pair of loops, or finally, as we have already
mentioned, four loops, one at each node. Any subnetwork of this
type is known as a factor of the original network and to complete
the problem we need not just one such factor, but two. Moreover,
these factors must be edge-disjoint, that is to say share no common
edge.

Any such pair of factors leads to a solution of the Insanity cube
problem and conversely, if you find a solution then the colourings
of the left–right faces and the front–back faces give you an edge-
disjoint pair of factors of the full network of the problem with
all the stated properties. It follows that all solutions can be found
through finding all such factor pairs. The method then is to find one
factor, and then look for another, edge-disjoint to your first choice.
If there are none to be found, try beginning with another factor
and repeat the process. In this way, all solutions are found quite
readily and, if the problem is unsolvable, that will be revealed too
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as you conduct a full search for the edge-disjoint factor pairs of the
network.

As another example, in which the factors are not just cycles, you
may care to solve the Insanity problem for the previous set of four
cubes in Figure 9.4, given by their nets. The solution is in the final
chapter.∗

Sharing the wine

Simeon Poisson was one of the greatest mathematicians of the
nineteenth century. However, the young Frenchman took some
time to find his calling, having spent his early years failing at
one profession then another. The clarion call to mathematics
apparently came about in an innocent way when he discovered that
he had little trouble solving a puzzle of the following kind while
others around him got in a muddle. It is a juggling and pouring
problem.

Two friends wish to share equally eight litres of wine that fills a
big pitcher. They have at hand two empty vessels of capacities five
and three litres respectively. Can they manage the task of creating
two four-litre portions?

It is implicit in the problem that all the friends are allowed to do is
to pour wine from one jug to another until the receiving jug is full or
the pouring jug is empty. Although it takes seven steps, the task can
be managed and you are welcome to try to see your way through
to the answer. There is a general method however that allows you
to find all possibilities by means of a tree search organized on an
ordinary xy-grid. At any one time the wine is divided into three
portions with values x, y, and z say, where x is the amount in the
five-litre jug, y the amount in the three, and z is the volume of wine
left in the original large container. Since these three numbers always
sum to 8, we only need keep track of the first two co-ordinates, x and
y, to know the exact whereabouts of all the wine. We can therefore
systematically plot all possibilities by starting at the initial position
of the puzzle (0, 0) and drawing arrows from each point arrived at
to each possible new position.
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Figure 9.5 Sharing the wine

The plot of all possibilities is quite constrained; we know that x
and y are always integral and never less than zero, and indeed the
following hold:

0 ≤ x ≤ 5, 0 ≤ y ≤ 3 and 0 ≤ x + y ≤ 8.

From any point, the puzzle may head off in at most three directions:
if we pour from the small container (y) to the large one or the
reverse, the arrow moves parallel to the y-axis, similarly we move
parallel to the x-axis should we pour between the medium container
and the biggest jug, while if we pour between the two smaller
containers we move at an angle of 45◦ to the axes parallel to the
line x + y = 8. The complete description of all outcomes can now be
drawn and is to be seen in Figure 9.5.

In order to ensure we do not miss any possibilities, we begin from
the root of the tree (0, 0) and draw arcs to each feasible outcome of
the first step; from the origin we can get to the points (5, 0), (0, 3)
only, giving us all paths of length 1. We then mark the inspected
node (0, 0) with a star, as we have located all of its offspring.
We continue in this way searching through the tree for any new
possibilities and follow down each branch until no new offspring
occur. We must, however, avoid cycles: if two paths meet up to
form a cycle, it is not necessary to include the final directed edge
of the longer path as that node is reachable using a shorter path
not involving that arc. If two paths of equal length from the root
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meet, we can safely ignore the final arc of one of them—that arc
might provide us with an alternative equally good solution but not
a better one.

In this problem we are actually on the lookout for the node (4, 0)
as then we have divided the wine into two four-litre portions in the
two larger pitchers. Indeed we discover that this is feasible, and there
are two routes to the solution:

(0, 0) → (5, 0) → (2, 3) → (2, 0) → (0, 2) → (5, 2) → (4, 3) → (4, 0)

or
(0, 0) → (0, 3) → (3, 0) → (3, 3) → (5, 1) → (0, 1) →

(1, 0) → (1, 3) → (4, 0)

but the latter takes one more step.
If you care to try your hand at a similar problem, suppose we have

three jugs of capacities 10, 7, and 4 litres, with the largest one full.
Your job this time is to find a way of getting exactly two litres of
wine in one of the pitchers.∗

In this example we have used what is known as a breadth-first
search of the tree where we begin at the root and determine all
arcs leaving each node and so find the offspring of each node. This
contrasts with the depth-first search that we have used on a number
of previous problems such as our spanning tree for generating a
one-way traffic system and indeed the original Knaves and Knights
questions of the first chapter.

In a depth-first approach we search for a solution by beginning at
the root but build a path as far as possible down the tree until a leaf is
reached. If none is found, we backtrack one arc and proceed down in
another direction from the last fork. If no solutions are forthcoming
we may be forced to backtrack more than one step and in this way
are led through a systematic search of the entire tree, looking for
solutions.

The best search method to use in part depends on the require-
ments of the problem. If the tree of possibilities is large, the
breadth-first method can become very unwieldy and the backtrack
method, which traces only one path at a time, is the best way to
go. If, however, we are keen on solutions with short paths, the
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breadth-first approach, which moves from shorter paths to longer
ones, is the more likely to find shorter solutions quicker.

Jealousy problems

This represents a range of problems that arise when a task needs to be
carried out when certain people, animals, or objects involved cannot
be trusted alone together. Often framed in the form of jealous wives
and husbands, the original eighth-century version is due to Bishop
Alcuin of York and so arguably represents the oldest of network
problems. We are invited to imagine a small boat owned by a boy
who is left with the responsibility of transporting a fox, a goose, and
a bag of corn from one river bank to the other. The trouble is that his
boat is only big enough for himself and one of his three possessions
and to make matters worse, the fox will attack the goose and the
goose will eat the corn if left unsupervised. What is he to do?

He has to be patient—it will take him seven river crossings to do
the job safely although there are two equally good ways of going
about it. We can analyse all possibilities by a digraph (Figure 9.6)
where each node describes the current state the job is in. For exam-
ple our root is labelled F GB∗/, indicating that the Fox, Goose, and
Bag of corn are together on the near shore with the ∗ indicating the
position of the boat (and hence our little boy). From each node we
direct an arc representing a course of action, labelled by the object
transported, or blank if the boy is crossing the river alone. Any arc
that leads to the pairs F G or GB together without the protection of
their guiding star is forbidden and so not drawn.

/

F B

B F

FGB∗/ FB/G∗

G

FB∗/G

B/FG∗

G

BG∗/F

G/FB∗

F/GB∗

G

FG∗/B

G∗/FB G

FGB∗

Figure 9.6 Fox, Goose, and Bag of corn problem
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The digraph of all possibilities is shown in Figure 9.6, showing that
there are just two equally good ways he can go about it. Indeed each
solution may be obtained from the other through interchanging the
symbols B and F throughout, as they enter the problem symmet-
rically (although not from the viewpoint of the goose!). The goose,
the middle object in the pecking order, is the most liable to eat or be
eaten and she has to be guarded carefully throughout.

There are other similar and more complicated problems that have
been spawned by this, the classic example. Sometimes three married
couples have to get themselves across the river without the risk
of infidelity, while on other occasions there is a mixed group of
missionaries and cannibals where, as you can imagine, it is the
missionaries who have to keep their wits about them if everyone
is to reach the other side in one piece.

Mazes and labyrinths

The Cretan maze is perhaps the oldest network in the world. Its
design was found on a clay tablet in the ruins of the palace of King
Nestor in Pylos, in western Greece, and dates to around 1200 BC.
For millennia it seems to have functioned as the universal design of
a basic maze for depictions of it, with remarkably little variation,
are to be found not only in ancient Greece, in the ruins of the
Italian city of Pompeii, and the floor of Chartres Cathedral in France,
but outside Europe and the Middle East in carvings in Peru and
aboriginal art in Australia.

The design itself is not so simple, yet it can be built up using a
simple rule which perhaps accounts for its continual discovery and
rediscovery across the ages. Figure 9.7 gives a picture of the maze
itself. We begin with a cross, four L-shapes, and four dots as shown.
The procedure is to join up the ends of the figure symmetrically,
beginning as shown with a central pair, whether they be ends of
lines or dots, always joining the next two ends, one from either side.
Since there are sixteen endpoints at the beginning of the process, the
maze is drawn in eight steps. In (a) we see the intial configuration
and then the process is shown in (b) after two steps, in (c) after five,
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Figure 9.7 The maze of the minotaur

in (d) after seven, and the final picture is the complete maze after all
eight arcs have been drawn.

Legend has it (there are many variations), that the Cretan maze
was the lair of the minotaur and Dionysius thwarted the beast and
solved the riddle of the labyrinth by use of Ariadne’s thread. His
lover Ariadne gifted him a sword and a golden thread to track his
way through the maze and make good his escape after killing the
minotaur that had captured an Athenian youth.

Confusing as it may appear with its layered paths, this labyrinth
offers only one route from the outside to the centre so there
is no opportunity to become truly lost. This differs from some
other real mazes such as the famous example in the grounds of
Hampton Court in Richmond, England where thousand of visi-
tors each year are happy to get themselves lost and disoriented as
they try to find their way back out. Although easy to negotiate
once the plan is revealed, it is less easy to get the overall picture
when you are wandering between the high hedges of this beautiful
trap.

One rule of thumb for a systematic search of a maze is to follow
the left (or right) wall throughout. This will allow you to create a
map of the maze and so reveal all its secrets, including that of escape.
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As with any search of this type, the key is to avoid an infinite loop.
You may need help from Ariadne in one guise or another in order to
recognize when you have completed some kind of circuit within the
labyrinth.

By following this strategy you are in reality revealing the under-
lying network of the maze and finding a spanning tree of that
network, N. To construct N, we draw one node at each junction
in the maze where a choice of path is offered and join one node to
another if there is a direct path from the first node to the second in
which we do not meet any other nodes along the way. However long
this path may be as it winds around the maze, it is still represented
by a single edge.

To conquer the maze, you do not necessarily need to find all
of its edges, for a spanning tree will do the job by providing you
with a unique path between any pair of nodes in the maze. The
spanning tree can be systematically constructed using just the same
enumerative approach that we introduced in a preceding chapter
when using a spanning tree to solve the one-way traffic problem. As
always, and this is the real trap when dealing with mazes, the pitfall
to avoid is that of being led around in circles. This can be achieved
by backtracking as soon as a path leads to a node already visited, so
you need to be able to recognize when you have seen a node before,
which can be tricky in real mazes where the designers deliberately
make many of the junctions appear identical just to confuse those
who venture in.

The designers also purposely make the exit node hard to find.
Often a maze has a centre, which is a junction with many paths
leading in and out and the one and only path leading to the exit
goes via the centre. A visitor to the maze will soon find him- or
herself in the centre from which they will find it difficult to escape,
for if they wander about in a random way they will meet many
paths that will lead them back whence they came, even though the
path may look tempting by leading off in a new direction, only to
wind back on itself and return then to the middle of the maze. Maze
designers sometimes speak of the ‘valving’ being against you when
most paths from a certain spot flatter to deceive and are there in
order to lead you everywhere within the maze except the one exit
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you are striving to find. Of course by making the maze complicated
enough it would be possible to make it near escape-proof. The art
in real maze design is to create a maze that, although based on a
network of modest size, still manages gently to confuse those who
drift around it by tempting them along paths leading to nowhere in
particular.

Constructing a spanning tree, either mentally (which can be hard)
or on paper, will help, but return trips to the centre may still be
unavoidable. However, patient building of the tree will at least
ensure that even if you do revisit certain nodes, you will not reuse
edges, so eventually the way out will be found. If you are lucky, you
may escape without having to map out an entire spanning tree but
a cunning design will ensure that even the most careful of visitors
will most likely have to do a lot of walking before she finds her way
out of the labyrinth.

Trees and codes

The topic of codes and ciphers is one of the hottest in modern
applied mathematics and seems likely to remain so for some time
to come. The most used piece of software in the world is the so-
called RSA program that safely encrypts personal and other data
over the internet. The development of these so-called public key
cryptosystems, which had seemed impossible to create only thirty
years ago, has made viable the commercial use of the internet and
its World Wide Web.

However, coding is not always a matter of secrecy and often the
purpose of a code is simply to store information in a succinct and
usable way. One of the most basic of ideas is that of a prefix code
where objects are encoded as strings of symbols in such a way that
no string forms the prefix of any other. One standard example of this
is a telephone directory in which a telephone outlet is identified as
a number. It is vital that no number a is simply the beginning of
some longer number b as, if that were to happen, it would never be
possible to phone b at all as anyone dialling the number would be
put through to a first!
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There are many ways of forming prefix codes, nonetheless. Per-
haps the simplest is to make sure that all the code words have the
same length so that none can form an initial segment of any other.

Consider the following common problem. Suppose that we wish
to develop a way to represent the letters of the alphabet using binary
strings of 0’s and 1’s. Since there are 26 letters and there are 32
possible binary strings of length 5, we can encode the letters of
the alphabet using strings of that length. However, in English, or
indeed any language, not all letters occur with the same frequency—
far from it. Consequently, it would be more efficient to use binary
sequences of different lengths, with the more frequently occurring
letters (such as e, i, and t) represented by short strings.

Practical considerations of this nature undoubtedly went into the
design of the Morse code in the nineteenth century, which was the
basis of the first instantaneous electronic transfer of information
across the world. However, if there are many symbols, such as
26 alphabet letters, a trial-and-error method for constructing the
tree of possibilities is not efficient. Indeed, if we decide to include
more grammatical symbols such as punctuation, spacing, upper and
lower case, and so on, the number of symbols we wish to repre-
sent increases considerably. However, an elegant method due to
David Huffman provides a technique for dealing with this question
through the construction of a certain tree.

We give here only a simple example but it is enough to show how
to go about it and why it works so well. Our task is to construct a
prefix code for the six letters a, o, q, u, y, z that occur in a sample
with respective relative frequencies 20, 28, 4, 17, 12, 7. The following
natural construction builds a tree from which suitable code words
for each letter can be read. The beauty of the resulting prefix code
is that it is optimal, meaning that it will allow the translation of
the passage as the shortest possible coded binary string. Any other
coding of these six letters as a prefix code would yield a coded
passage that was as long or probably longer than the one provided
through the Huffman code. The procedure is carried out in full in
Figure 9.8.

We begin by forming a list of nodes, six in this case, one for each
symbol to be coded up, and label each node by its relative frequency
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Figure 9.8 Building a Huffman tree code

in the passage and list them in order of increasing frequency. These
nodes are to be viewed as six single-node trees, that node being the
tree’s root. At each stage we combine two of the remaining trees into
a single one by taking the pair whose roots are labelled by the lowest
numbers. The two trees are combined under the umbrella of a new
common root that is labelled by the sum of the labels of the roots of
the two trees in question. This is continued until we have a single-
rooted tree. The number of steps required for this formation is one
fewer than the number of symbols to be coded, so there are six stages
in all from start to finish in this little example. (See Figure 9.8.)

Once the tree has been built, the required code can be read off as
follows. Label the edges of the tree either 0 or 1 according as the
edge goes to the left or the right in the tree. Label the leaf nodes
with the letters that correspond to the frequencies indicated by each
node. The code string for each letter is then read as the sequence of
edge labels from the root of the Huffman tree to the corresponding
leaf. In this illustrative example we therefore obtain our Huffman
prefix code as

q = 0000, z = 0001, y = 001, o = 01, u = 10, a = 11

The code is as efficient as possible for the given frequency distri-
bution. (However, there may be other equally good solutions—in
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particular we could swap 0 and 1 throughout if we wished.) The tree
structure ensures that no code word will be a prefix of any other.

The number of 0’s and 1’s in the coded passage is the sum of the
lengths of each code word multiplied by the number of times it
appears in the text. In this case this gives us the sum of contributions
from the letters q through to a in the order above as

(4 × 4) + (4 × 7) + (3 × 12) + (2 × 20) + (2 × 28) = 176

Therefore the passage could be transmitted as a binary string of total
length 176 and this is the shortest length possible.

Since we are dealing with a prefix code, the deciphering of the
passage back to plain text will not require spaces or any other
indicators. We would simply begin at the left-hand end of the coded
message and read the binary string until the enciphered form of
one of the six letters was recognized. Since this is a prefix code, the
deciphering is unambiguous—there is no possibility that this string
is merely an initial segment of a longer string of another code word.
Having properly deciphered the first letter, we continue with the
remainder of the code string in this fashion, detecting one letter at
a time, until the entire message is revealed.

Reassembling RNA chains

RNA, like its better known cousin DNA, is genetic material carried
within living cells. Ribonucleic acid, to give its full title, forms chains
made up of four bases: uracil (U ), cytosine (C), adenine (A), and
guanine (G). RNA chains, however, break up into fragments in the
presence of enzymes.

This happens in one of two ways. A G-enzyme breaks a chain after
each G-link, whereas a U, C-enzyme breaks a chain after each U- and
each C-link. For example, if the initial RNA chain was

GUGAUGACCAGCC

then the G-enzyme would act to give the fragments

G-fragments: G, UG, AUG, ACCAG, CC
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while the effect of the U, C-enzyme would result in the set of
fragments

U, C-fragments: GU, GAU, GAC, C, AGC, C

The problem encountered is that the research worker may be left
only with the fragments, appearing in any order, and needs to
reconstruct the original chain from the evidence to hand. The
problem is known as that of reconstituting the RNA chain from
its complete enzyme digest. It turns out that all possible solutions
(sometimes there are more than one) can be reconstructed through
finding all directed Eulerian paths in a certain digraph built in
a way that will now be described, using this problem as a case
study. We assume that we do not possess the original chain and,
in any instance, we will be interested to find all other solutions,
if there are any, other than the chain which is the seed of our
problem. We also take it for granted that there are at least two
fragments of both the G- and U, C-kind, for otherwise the solution is
apparent.

Before arriving at the magic digraph, there are some elementary
observations that make life easier.

It is possible to spot at once the fragment that forms the (right-
hand) end of the chain. In the above example, the G-fragment CC
does not end in G and is so-called abnormal, for the only way a G-
fragment may end in a base other than a G is if it appears at the end
of the chain. It is possible, although not a feature of this example,
to witness an abnormal U, C-fragment—one that does not end in a
U or a C. Indeed it is sometimes possible for both fragment lists to
have one abnormal fragment (necessarily ending in A). In this case
the abnormal fragments are different and both form part of the end
of the chain so that the longer of the two will be a continuation of
the shorter.

In summary, there is at most one abnormal fragment in each
list and each occurs at the right-hand end of the chain, the longer
being an extension of the shorter. In our example we have that the
reconstituted chain ends with the abnormal fragment CC. The other
four G-fragments could still be arranged in 4 × 3 × 2 × 1 = 24 ways,
so the problem yet offers many potential solutions.
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To emphasize that the original order of the fragments is lost let us
suppose they come to us in the following order:

G-fragments AUG, UG, G, ACCAG, CC;
U,C-fragments C, GAU, AGC, C, GU, GAC

We shall refer to this list as the complete enzyme digest (CED). The
next stage is to list what happens if we were to split the given G-
fragments and U, C-fragments further using the other enzyme. For
instance, the G-fragment ACCAG would break down further into
AC, C, AG, in the presence of the U, C-enzyme while the U, C-
fragment AGC would be broken into AG, C in the presence of the G-
enzyme. The resulting minor fragments are known as extended bases
and those extended bases that are neither first nor last in one of the
original fragments are described as interior. For instance, when the
fragment ACCAG breaks down giving the extended bases as listed
above, C is an interior extended base. Plainly, interior extended
bases only arise when a fragment breaks into three or more extended
bases.

A list must now be formed of all the interior extended bases that
would arise when this secondary round of splitting was carried out.
In this case there is but one: C.

We also need to list all the unsplittable fragments, that is those
fragments on either the G- or U, C-list that do not split further under
the action of the enzymes. In our case this list consists of

G, C, C

There are two unsplittable fragments that are not interior extended
bases, namely G and one of the C. This must always be the case: the
chain must begin and end with fragments that could not be split
further and any other fragment that does not split under the action
of either enzyme must arise as an interior extended base. Since we
know that our chain ends with CC, it must therefore begin with G.

From the complete enzyme digest the required digraph is con-
structed as follows. Consider any fragment such as AUG in the CED
that is not an extended base, that is to say it splits under the action
of another enzyme. Draw two nodes labelled AU and G for the first
and last extended bases in this G-fragment and join them by an arc,
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Figure 9.9 Digraph for reconstructing RNA

from AU to G in this case, carrying the label AUG. By the same token
UG gives rise to an arc from a node labelled U to the node labelled
G with the arc itself carrying the label of the fragment, UG.

We apply this procedure to all normal fragments that split. The
result is represented in the digraph as shown in Figure 9.9. The
digraph has one additional labelled edge not specified by the basic
rule of construction. This final arc runs from the first extended base
of the (longest) abnormal fragment, to the node labelled by the first
extended base in the chain. In this example the abnormal chain is
CC so that C is its first extended base, while the initial fragment of
the chain is G, giving an arc directed from C to G, as shown. The
label of this arc is CC∗G.

The solution to the reconstruction problem now comes through
reading the paths of Eulerian circuits that begin at node G, the initial
fragment of the RNA chain, and end the circuit by returning to G
along the special arc labelled in this case CC∗G.

The actual solution is then given by the labels of the successive
arcs, noting that each node is met twice on the arc label but should
only feature once in the solution. For instance, in this example, we
have an Eulerian circuit, the arcs labels of which yield the sequence

GU UG GAU AUG GAC ACCAG AGC CC∗G

which corresponds to the reconstructed RNA chain

GUGAUGACCAGCC

with which we began the problem. However, there is another
Eulerian path that allows a different interpretation of the complete
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enzyme digest that has arc label sequence

GAU AUG GU UG GAC ACCAG AGC CC∗G

which gives the alternative solution

GAUGUGACCAGCC

The reader can easily check that this truly is a solution as the action
of the G- and U, C-enzymes on this chain produces the same CED as
given originally.

Another example that readers might like to try their hand on is
the following complete enzyme digest:

G-fragments: AACUG, UAG, A, AG, AG, AG, G

U, C-fragments: U, AGAAC, AGAGA, GGAGU

On this occasion, the reconstructed chain is unique and the digraph
features a loop carrying the starred label. The solution is given in the
final chapter.∗

The Eulerian circuits of the digraph, ending with the starred arc,
represent all possible ways of consistently reconstructing the origi-
nal RNA chain as the digraph carries all the information available
from the complete enzyme digest, which is the starting point of the
the problem. At least one solution to the problem must emerge as
otherwise the given CED could not have come about in the first
place. If by some chance the digraph failed to have an Eulerian
circuit of the required type, that would indicate that some fault
had occurred with the procedure, as that would not be possible
otherwise.
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10
For Connoisseurs

This final chapter is intended to give a little more mathemat-
ical explanation for those readers who would appreciate some

without having to pursue another source. The level of difficulty
will vary—much of it is not very hard at all but, unlike in the
main part of the book, I will assume that the reader has some
familiarity with mathematical ideas and notation. However, most
readers will be able to gain from dipping into the text here and
there.

In some places I will be using proof by induction. This is the
mathematical technique where the proof is established by build-
ing from one case to the next. A case study that is relevant
here is the fact that any tree with n nodes has n − 1 edges.
We begin by checking the first case: if a tree has n = 1 node
only, then it evidently has n − 1 = 0 edges. This base case anchors
the induction. Next comes the general inductive case whereby
we somehow show that if the statement held for trees with k
nodes, then, in consequence, it will hold for trees with k + 1
nodes. Having established both the base case and the induc-
tive step, it follows that the proposition holds for all trees.
This is perhaps the most fundamental technique of mathematical
proof, often likened to the toppling of an unending sequence of
dominoes.
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Chapter 1

Page 5 Characterizations of trees

Before we get into this, we make a simple observation that comes up
time and again.

A network in which every node has degree at least two has a cycle.

To see this, start at any node in the network and set out to walk a
trail, that is to say walk about the network, never retracing the same
edge, in either direction, once you have passed over it. If, contary to
our claim, we can never find a cycle in our walk, this will mean that
each node we reach will not have been met before. Upon arrival at a
node u, there will be at least one edge by which we may exit, as the
degree of each node is at least two and u has not been visited before.
Therefore if we never found a cycle, we could continue indefinitely
without repetition of a node. This is, however, impossible as any
network is finite (at least the ones we have considered in this book)
and so we must eventually revisit a node, and in so doing trace out
a cycle in the network.

We define a tree as a connected network N that is free of non-trivial
cycles. (A trivial cycle has length 0 and consists of starting at a node
and not moving at all.) Suppose that our network has n nodes and e
edges. The following are equivalent ways of defining the same idea,
although this list is not exhaustive.

1. N is a tree;
2. There is a unique path between any two given nodes in N;
3. N is connected and e = n − 1.

In theorems of this kind there is no need to prove that each con-
dition implies every other, which would in this instance call for
some six separate arguments. The standard trick is to verify the
implications cyclically. In this case we show that each of the three
implications 2 ⇒ 1 ⇒ 3 ⇒ 2 holds. Given this, we may begin at
any of the numbered conditions and deduce any of the others as
a consequence: for instance we may deduce 2 from 1 via 3.
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2) implies 1). Given that condition 2) holds in N then there is
certainly a path between any two nodes in N and so N is connected.
Moreover, N cannot have a cycle of length more than 0 as a cycle
clearly provides two distinct paths between any two points on the
cycle. Therefore if 2) holds then so does 1).

1) implies 3). We proceed by induction on the number n of nodes
of N, the base case where n = 1 being clear. Since N is connected,
every node of N has degree at least 1. Given that N has no cycles,
then N must have at least one endpoint, which is a node of degree
1, as this follows by the italicized observation at the beginning of
this section. We remove an endpoint and its edge from N to give a
new network N′ with one fewer nodes than N. What is more, the
network N′ is still connected and is cycle free. Hence N′ is a tree and
by induction the number of edges of N′ is (n − 1) − 1 = n − 2, so that
our original network N has n − 1 edges.

3) implies 2). First we show by induction that a connected net-
work of n nodes has at least n − 1 edges, a claim that is vacuously
true if n = 1. Suppose then that a connected newtork N has n ≥ 2
nodes. Delete as many edges as possible without disconnecting the
remaining network N′. Then N′ has no cycles (as otherwise it could
be further pruned) and so has an endpoint u. Remove u and the
edge incident with u from N′ to give a connected network N′′ on
n − 1 nodes. By induction, it follows that N′′ has at least n − 2 edges
and so N′, and hence the original N, has at least (n − 2) + 1 = n − 1
edges.

Now suppose that N is connected, that e = n − 1, but there are two
distinct paths between nodes u and v in N. The two paths diverge at
some point only to meet up again at some later point and in so doing
form a cycle containing the two points where the paths first diverge
and next meet. Removing an edge from this cycle would leave a
network on n nodes that was still connected but had only n − 2
edges, contrary to what we just proved. Hence the path between
any two nodes of N is unique, thus completing the proof.

Other similar characterizations of trees are as the connected net-
works with fewer edges than nodes; networks with no circuits and
exactly one more node than edges; connected networks in which
every edge is a bridge; and networks that are free of circuits but
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where the addition of any new edge between existing nodes creates
one.

Another way to see that trees have n − 1 edges comes through
regarding the network as directed. Choose any node of your tree
as its root and direct all edges away from the root; since there are
no cycles this can be done unambiguously. Every node, except the
root, has an edge associated with it, that being the final edge from
the directed path from the root to the node. This gives a one-to-one
correspondence between the edges and the non-root nodes so, in
particular, the number of edges must be one less than the number
of nodes.

Page 15 Puzzling Liars

Who broke the window? If Alex had done it then Barbara would
not have blamed anyone else. Therefore, Alex is telling the truth
and Barbara must be the culprit. This is also consistent with what
Caroline and David said.

A says B is a liar and B says the two are from different tribes.
If A were telling the truth then A would be a ‘Knight’ and B a
‘Knave’. However, B’s statement would then be true, contradicting
the conclusion that B is a liar. Hence A is a liar, so B must be truthful
and B’s observation is both true and consistent. Therefore A is a liar
and B is not.

Finally we come to the problem about the string of natives, each
calling the next a liar and the final one claiming they are all liars
bar him. Essentially the Knaves and Knights must alternate in this
situation, but whether or not A is Knight or Knave depends on
whether we have an even or odd number of natives in the line. Let us
suppose that the total number of natives is even. If there were only
two of them, we would have a pair of natives branding one another
liars. One of them would be a Knave and the other a Knight but we
would have no way of telling which. Suppose that the number of
natives were 4 or 6 or some other even number. If we suppose that
A is truthful, it will follow that B is not, that C is, and so on with all
the odd-numbered natives truthful but the even-numbered ones are
liars, and that goes for the last man as well. Since he branded all the
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rest liars and not all of them are, this is all consistent. However, if we
assume that A is lying we get the same alternating pattern of Knaves
and Knights but now it is the even-numbered natives, B,D,F , and
so on that are the Knights. However, that would make the last man
a Knight, but he claims that all of them, including the truthful B
for instance, is a liar. This is inconsistent and so we conclude that if
there is an even number of natives, then the first, third, fifth, and so
on are Knights but the rest are lying Knaves.

A similar argument applies if we are faced with an odd number
of natives but now, as you can easily check, the opposite conclusion
applies: A is a liar and now it is A,C,E , and so on who are the Knaves,
which includes the last man, and the rest are Knights.

Chapter 2

Page 23 Number of weighings for the counterfeit coin

In general, the number of weighings to solve this problem is log3 n,
rounded up, where n is the number of coins. We proceed just as
in the particular problem given in the text by weighing in order to
divide the current subset of coins to hand into three almost equal
piles by comparing two piles of the same size. We can always do this
whether or not the total number of coins remaining is or is not a
multiple of 3. The outcome tells us each time which of the three
piles contains the fake. The number of weighings needed will be
the height h of the ternary tree that starts with a root and each node,
except the endpoints, known as the leaves, has three offspring nodes.
The value of h will be the least number where the final generation
has at least n nodes, covering all the possibilities for the identity of
the fake.

In general, the number of nodes of each new generation of an
m-ary tree (one where each internal node has m offspring) is m times
the previous level so that the number of nodes at each level follows
that pattern 1,m,m2, . . . ,mh. In our problem we have a ternary tree
so that m = 3 and the value of h is therefore the least integer such
that 3h ≥ n. Taking logarithms to the base 3 then gives h ≥ log3 n,
and since h must be a whole number, the value of the logarithm
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should always be rounded up to the nearest integer to give the min-
imum number of weighings. In the example in the text, n = 9 and
so h = log3 9 = log3(32) = 2 log3 3 = 2, and, as we saw, two weighings
sufficed.

Page 25 Numbers of Latin Squares

We need the exclamation mark factorial notation here: n! = n ×
(n−1) × (n − 2) × . . . × 2 × 1. The number of Latin squares of a given
size n is huge: at least n!(n − 1)!(n − 2)! . . . 2! This is because the
first row can be filled in n! ways, then there are n − 1 choices for
the first entry of the second row, at least n − 2 possibilities for the
second entry, and so it continues. This is only a lower bound as,
for example, there may be n − 1 choices for the second entry of
the second row in the event that entries in positions (1,2) and
(2,1) are identical. For n = 3 there are exactly 3! × 2! = 6 × 2 = 12
Latin squares. For n = 4 there are however 576 Latin squares
although 4! × 3! × 2! = 24 × 6 × 2 is only 288. Even the number
of Graeco-Latin squares, also known as orthogonal Latin squares,
grows fast: the numbers of orders 3 and 4 are respectively 36
and 3456.1

It should be said, however, that many of the Latin squares are
equivalent in that one can be transformed into the other simply by
permuting, that is to say renaming, the entries or through one of
the eight symmetries of the square (reflections in sides or diagonals;
rotations through one or more right angles about the centre). Two
Latin squares related in this way might be regarded as essentially
the same. Indeed when discussing Latin squares it is often taken
as read that they are normalized, which means that both the first
row and column consist of the numbers 1,2, . . . ,n in that order,
for there is no loss of generality in doing this for most matters of
interest.

1 This and other mathematical facts can be called up quickly from the excellent

website <http://mathworld.wolram.com>, which links and leads to original sources.
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Page 27 Difference of Two Squares

Any odd number 2m + 1 and any multiple 4m of four is the differ-
ence of two squares by virtue of the identities 2m + 1 = (m + 1)2 − m2

and 4m = (m + 1)2 − (m− 1)2. However, for any difference n of two
squares we have n = a2 − b2 = (a − b)(a + b) and since the factors on
the right differ by the even number 2b, they are either both even,
in which case n is a multiple of 4, or these factors are both odd, in
which case so is n. Therefore the numbers of the form 4m + 2 are
exactly the ones that cannot be expressed as the difference of two
squares. (See Figure 2.6 on p. 29.)
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Figure 10.1 Sudoku puzzle solution

Pages 28–30 Sudoku Puzzle Solution

For the Circular Sudoku the solution is displayed in Figure 10.2 (see
Figure 2.8 on p. 30).

The circular version may look tricky because of the condition on
overlapping quarter circles. It would seem that you have to keep
track of a series of overlapping sets and that looks like a headache. It
is this that makes the problem easy, however. If you look at any
slice of the pie making up 1

8 of the circle, the slice will contain
four numbers. The slices either side of it must both contain the
complementary set of four numbers, and this applies throughout
the circle. In other words, if you colour the slices alternately red



204 FOR CONNOISSEURS

6

2

7 1 2
8

6

4
5

1
3

2

7

6

5
3

4

1

8
6

7
2

5
1 3

8

5

4

38

4 7

Figure 10.2 Circular Sudoku solution

and blue, the red slices contain the same set of four numbers, and
the blue slices similarly carry the complemetary four. The first step,
then, is to collect up the ‘blue’ and the ‘red’ numbers. Let us say that
the segment at the top right headed by the number 6 is a blue slice.
Gathering up the numbers from the other blue slices then gives us
the blue set B = {6,2,8,7} = {2,6,7,8}, and so in this case the red set
is {1,3,4,5}. The 4 × 4 array making up the blue slices is then a 4 × 4
Latin square in the numbers from B while the reds similarly form a
4 × 4 Latin square in the red numbers. There are enough numbers
in each to determine each of these squares completely and finding
the solution is now child’s play.

Armed with this advice, you might like to solve the next example
that is one size up. This time, each of the ten numerals 0 through to
9 must appear in each of the five rings and each of the ten double
slices. Again, the solution is unique (see Figure 10.3).

There are other variants of traditional Sudoku although they gen-
erally seem to involve a bigger and more complicated version of the
same array. This new puzzle takes a leaf out of the book of Graeco-
Latin squares in that it involves two parallel Latin squares harnessed
in tandem. The idea, however, is not to superimpose the squares but
rather to interleave the rows of the pair and wrap them around,
bottom to top. The effect is the circular array shown. The charm
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Figure 10.3 Five-ring Circular Sudoku

of the puzzle lies in the way the Latin squares smuggled themselves
into the picture and split it into two parallel problems.

What is more, only 10
32 , which is about 31 per cent, of the numbers

needed to be given in order to determine a unique solution, which
is somewhat less than some orthodox Sudoku. There are examples,
however, of Sudoku puzzles with as few as 17 ‘givens’. At the time
of writing it has not yet been established whether or not 17 is the
minimum number possible. In the given square Sudoku problem
the proportion of filled cells at the start was 30

81 , which is about
37 per cent. However, the least number of cells that can fix the
solution is 9 in the 4-ring version and, I believe, 13 in the 5-ring
puzzle, which repesents only 26 per cent of the entries.

The original format as appeared in newspapers in 2005 lacked the
space in the centre of the puzzle. In The Official Book of Circular
Sudoku we opted to punch a hole out in the middle of the circle
so that each ring, include that innermost, appears as a true ring. The
purpose of this is just to avoid the cramping of symbols near the
centre of the diagram and does not alter the mathematical nature of
the puzzle in any way. Also light shading of every other ring makes
it easier for the eye to follow a ring around the puzzle without losing
track.
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Figure 10.4 Target Sudoku Puzzle

A more diabolical variation involving only partial overlap con-
ditions can be manufactured. These do not split into two distinct
parts and pose dilemmas of the kind that arise in the tougher stan-
dard Sudoku challenges. In the puzzle of Figure 10.4, the challenge
is to fill each of the four rings with each of the twelve symbols
0,1,2, . . . 9,A,B in such a way that each of the six white-black-white
quarter circles also features every one of the twelve symbols. There is,
however, no rule concerning the black-white-black quarter circles. If
the same rule did apply, the problem would split into three parallel
4 × 4 Latin squares and would be easily solved. As it is however, with
fewer constraints on the array, it takes more work to find the unique
solution (Figure 10.5).

Page 40 Power Laws

To say that one quantity y is related to another x by a power law
means that there is a relationship between them expressed by a rule
of the form y = kxn, where k and n are fixed numbers. We say that
y is proportional to x to the power n. In the context of nodal degrees
in a network, y would represent the number of nodes of degree x
and so as x increases we would expect y to fall off quite sharply. For
this to occur, the exponent n needs to be negative or, put differently,
the law has the form y = k

xm where m is some positive number. As x
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Figure 10.5 Solution to Target Sudoku

increases, y decreases in these circumstances and the larger the value
of m, the more rapid the descent. This is the kind of power law that
seems to arise in many real networks. The value of m itself has to
be estimated and may take on a value other than a whole number.
However, in some important examples the value of m seems to be
about 3.

In the case of random networks, the distribution of degrees of
nodes does not follow a power law but rather we see what is known
as exponential decay characterized by laws like y = 1

2x . In this kind
of law the base of the exponent is not x but rather a fixed num-
ber, in this case 2, but other values arise. The exponent, however,
is not a fixed number n but is x itself. This makes an enormous
qualititative difference—an exponential decay is, in the long run,
much more rapid and severe than one determined by a power
law.

It is true that for any large value of x, both types of law will
return very small values of y and the larger x the smaller the y.
However, if we take the value of y as given by a power law and divide
it by the y-value as provided through an exponential law we find
that, for large values of x, the ratio is very large and keeps getting
larger. In other words, although both quantites are small, the power
law value will be many thousands or even millions of times larger
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than that provided through exponential decay which vanishes with
extraordinary rapidity.

This accounts for the hubs. In a ‘power law’ network, we will see
some large hubs and a few very large ones. In a random network
we are more than likely to see no large hubs at all, the largest nodal
degree only being two or three times the size of the average.

In the literature, networks subject to these power law distributions
are sometimes described as scale-free. This is not intended to mean
that their structure has a fractal-like property of looking the same
when examined on any scale, whether it be very large or at the
finest level. Rather, it is an implicit reference to another qualitative
difference between a random distribution and one based on a power
law.

In the case of a random distribution, the graph of numbers of
nodes versus the degree of the node displays a typical bell-shaped or
normal curve that is nearly symmetric and is dominated by a well-
defined peak. The degree corresponding to this peak then gives the
measure of the degree of a typical node and in that way lends a scale
to the entire network. This contrasts with a power law distribution
which falls away continually as we move to the right with a larger
degree value always being less likely than a smaller one, despite the
fact that we see more examples of large hubs in networks subject to
power laws than we observe in random networks. These networks
are scale free in the sense that even though it is possible to calculate
the mean size of the degree of the nodes in the network, that average
does not represent a particularly significant statistic. For example,
even though the average degree, say, was six, there would be more
nodes of degree five than degree six.

The term small world networks has a mathematical meaning, which
is that of a large random network where most nodes are not mutual
neighbours yet the average path length between randomly cho-
sen nodes is small. Small world networks do not necessarily have
the scale free property even though this is commonly the case in
large social and other naturally occurring networks in biology and
physics.

There is a simple piece of mathematical trickery for detecting a
power law. Suppose we suspect that y is related to x by a power law
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but we have no idea what the values of k and n might be. We can
still flush the law out by use of the venerable mathematical device
of logarithms, invented by the Scot John Napier around the turn of
the seventeenth century.

If a law of the form y = kxn is present then, by taking logarithms
to any base we obtain

log y = log(kxn) = log k + log xn = log k + n log x

The last two equalities are justified through use of the so-called log
laws: the log of a product is the sum of the logs, and the log of
a power is the exponent times the log. Since log k = A, say, is a
constant, as is n, it follows that if a power law is present then we
will observe a tell-tale linear relationship when we plot log y against
log x on graph paper. Moreoever, if this linear relationship emerges,
so will the values of the unknown constants k and n, for n will be
the gradient of the line and the value of A = log k will equal the
coordinate of the intercept of the vertical axis.

Traditionally, this technique was called on so often in the physic-
al and biological sciences that log-log paper was invented—graph
paper where the axes were already scaled logarithmically so that
plotting data subject to a power law will immediately manifest itself
in a straight line graph on the log-log paper.

Chapter 3

Page 59 Existence of Ramsey Numbers

We will show you how to find bigger cliques at bigger parties. The
next question along in the sequence is: How large a party do we
have to have in order to ensure that there is a group of four mutual
friends or four mutual strangers? Cast in the language of networks,
we ask: How many nodes does a simple network N require in order
to ensure that either N or its complement N′ contains a copy of K4,
the complete network on four vertices? It has been verified that the
answer is 18. I cannot show that here. What I can prove, however,
is that the number does exist, and that it is no more than 63.
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This may not sound too impressive, but remember that it is not
obvious that the number has to exist at all. What is more, although
we will run through the argument for 4-cliques, it does extend in a
very straightforward way to show the existence of all Ramsey num-
bers and indeed the argument for m = 4 is completely representative
of what happens in general. In contrast, the simple argument in the
text that works for K3 does not generalize to higher Ramsey numbers
without some extra complications arising.

The argument demonstrates that given any m, there is a number
n such that if a network N has at least n vertices then either N or its
complement contains a copy of the complete network Km, and what
is more the argument shows that n need be no more than 4m − 1.
This bound may vastly exceed the true size of the Ramsey Number in
question but it does show copies of Km are inevitable in sufficiently
large network-complement pairs.

The argument even has useful interpretations in cases involving
infinite sets and the whole flavour is that of the Pigeonhole Princi-
ple, which you will see popping up explicitly throughout the proof.

It is best to imagine the network N and its complement N′ to be
superimposed, giving a copy of the complete network on n vertices
but, in order to keep track of which edge belongs to which network,
let us colour, in our imaginations at least, the edges of N blue, and
the edges of N′ in red. What will be shown is that, provided that
N has at least 63 nodes, this complete network must contain a
monochromatic copy of K4; that is to say, there is some set of four
nodes with the edges running between them all coloured blue, or all
red.

Suppose then that our network (or party, if you prefer) has at least

1 + 2 + 22 + 23 + 24 + 25 = 63 nodes.

The precise value of this number is chosen only to ensure that we
have a sufficiently large supply of nodes to carry out the following
procedure without running out.

Focus on one node—A1 say—and proceed as follows (see
Figure 10.6). Of all the edges leading from A1 (there are at least 62
of them, of course), at least half will be of one particular colour, let
us call that colour C1 (C1 will either be blue or red). Consider all the



FOR CONNOISSEURS 211

S1

S2

S3

S4

C1

C2

C3

C4

C5

S5

A2

A3

A4

A5

A6

A1

Figure 10.6 The inevitable four-clique

nodes connected to A1 by an edge of colour C1, and call this set of
nodes S1. There are at least

1
2

(2 + 22 + 23 + 24 + 25) = 1 + 2 + 22 + 23 + 24 = 31

of these nodes. (Of course it is obvious that half of 62 is 31, the
calculation is displayed this way here only to draw attention to the
general pattern that emerges.) Let us choose one of them and name
it A2.

At least half the nodes from A2 leading to other nodes in S1 are of the
one colour; call this colour C2, which may or may not be the same
as C1. Let S2 denote the collection of these nodes. Note, and this is
critical, S2 is entirely contained in S1 as indicated in the diagram and
S2 itself has at least

1
2

(2 + 22 + 23 + 24) = 1 + 2 + 22 + 23 = 15

members. Choose a member of S2, calling it A3.
We carry out this process five times in all, giving us nodes

A1,A2, . . . ,A6 and a descending chain of sets

S1, S2, S3, S4, S5

each of which is contained in the one before, as indicated in
Figure 10.6. It is now clearer that the purpose of the choice of the
initial number of nodes (63) was to guarantee that we can carry out
this process at least five times—the sets S3, S4, and S5 will have at
least 7, 3, and 1 member respectively.
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How does all this help? We need one subtle observation now to
settle the question. The next paragraph has the key idea, although it
requires a little thought.

Consider the list of nodes A1,A2,A3,A4,A5. Look at any member in
the list, A3 say. All the edges from A3 to the members of the set S3

are of the one colour. Now the nodes A4,A5, and A6 are all in S3 so
that all of the edges from A3 to the members of the list that follow
A3 are the same colour. This argument applies equally well to all the
nodes A1 through to A5: each of the Ai ’s has a colour associated with
it, Ci , the colour of the edges leading from it to all the members of
the list that follow it. Now there are only the two colours available,
blue and red, and so, by the Pigeonhole Principle, at least three of
A1,A2, . . . ,A5 have the same colour (blue say) associated with them.
Choose such a group of three nodes together with A6; now every edge
between these four nodes must be blue, and so we have discovered
our required monochromatic copy of K4 or, if you prefer, we have
tracked down a clique of four mutual acquaintances at the party of
sixty-three or more people.

Ramsey numbers are normally defined slightly more generally. A
set of nodes in a network is called independent if none is adjacent
to any other in the set; this corresponds to saying that the set form
a clique, that is a complete graph, in the complementary network.
The Ramsey number R(k,l) is then defined to be the least number
n such that every network with at least n nodes contains a copy
of the complete network on k nodes or an independent set of size
l. If k = l we get the Ramsey numbers that we have been talking
of thus far. The argument of Chapter 2 shows us that R(3,3) = 6
and the Ramsey numbers for smaller values of k and l are easily
found: indeed R(k,2) = k for all values of k. There are are some simple
observations: the values of R(k,l) increase monotonically in each
of the variables k and l and the function R is symmetric in that
R(k,l) = R(l,k) because a network N satisfies the requirements of the
R(k,l) condition if and only if its complementary network N′ satisfies
the requirements of the condition defining R(l,k).

The above argument shows that R(4,4) ≤ 63. In fact it is known
that R(4,4) = 18 and also R(3,4) = 9 (not hard to show); moreover
R(3,5) = 14, R(3,6) = 18. Importantly, as already mentioned, the
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argument type extends naturally to show that all the Ramsey num-
bers R(k,k) exist from which it follows that R(k,l) always exists as this
number is certainly bounded by R(m,m), where m is the maximum
of the two numbers k and l. However, exact values of the function R
are not known for many other pairs: for instance R(4,4) may be as
small as 43 but the question is undecided. However, there is a useful
bound in terms of binomial coefficients:

R(k, l) ≤ C(k + l − 2,k − 1) =
(k + l − 2)!

(l − 1)!(k − 1)!

Applying this inequality gives quite sharp upper bounds for small
Ramsey numbers: R(3,3) ≤ 6, (the exact value) R(4,4) ≤ 20 (com-
pared with the exact 18), but the inequality only tells us that
R(5,5) ≤ 70, when the exact answer is known to lie in the range
43–49.

This is a glimpse of the tip of the iceberg that has become Ramsey
Theory, which centres on results of the kind that show that in a suf-
ficiently large ‘system’ there are subsystems of a given size with more
organization and structure than the original object was assumed to
possess. Another classic result of this genre that has spurred a whole
theory in itself is Van der Waerden’s Theorem that says that if you
partition the positive integers into two classes in any way at all,
then at least one of the classes contains arithmetic progressions of
arbitrarily long lengths.

Page 61 Pigeonhole Principle

The claim is that any set of n + 1 numbers from among the first 2n
positive integers must contain one number that is a factor of one
of the others. First we observe that any number m can be written in
the form m = 2kt, where k ≥ 0 and t is odd. The index k will be zero
exactly if m is already odd and the number t will be 1 if m happens
to be a power of 2. Given that m lies in the range from 1 to 2n, so
does its odd factor t. However, there are only n distinct odd numbers
in this range so that it follows, by the Pigeonhole Principle, that two
different numbers from our subset of size n + 1 share the same odd
factor t. Call these numbers m1 and m2 so that we have m1 = 2k1 t and
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m2 = 2k2 t, say. The smaller of these two numbers, m1 and m2, is then
a factor of the other, as required.

Once again, this inference is tight—if we replace n + 1 by n the
claim is false: we only need consider the set of n numbers n + 1,n +
2, . . . ,2n to see this.

If you are up for another challenge, try to show, using the Prin-
ciple, that given any eight numbers, the sum or difference of at
least one pair of them must be a multiple of 13, although this is
not necessarily the case if you begin with only seven integers.

Chapter 4

Page 77 The five-colour map problem

Enough has been revealed in the text to give a demonstration show-
ing that no more than five colours are ever required to colour a
map, however complicated. Since we can work one component at
a time, we need only consider a typical connected planar network,
N. We show, by induction on n, the number of nodes of N, that the
network may be 5-coloured. There is obviously no trouble anchoring
the induction as a one-vertex network can be 1-coloured.

We make use of the fact, explained in the text, that any planar
network must have a node x of degree no more than five. We assume
inductively of course that any planar network on fewer than n nodes
has a chromatic number no more than five. If we remove x from N,
along with its edges we have a planar network on n − 1 nodes which
can, by induction, be 5-coloured (whether or not is is connected is
irrelevant as that is not part of the inductive assumption). We now
replace x to recover the network N and the task is to find a way of
properly completing the colouring with x included.

We next clear the decks by disposing of the easy cases. If the
degree of x is actually less than five, we have no problem, as we
can simply colour x differently from any of its neighbours and the
colouring is complete. The same applies even if the degree of x is
five if two of its neighbours share the same colour—we colour x
with a colour that has not been used by any of the neighbouring
vertices.
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Figure 10.7 Five-colouring a network

The hard case then is where x has five neighbours, one of each
of the five colours we are using. This crucial case is depicted in
Figure 10.7 where we have numbered x’s neighbours 1 through to
5 in clockwise order and used the letters a,b,c,d, and e to stand for
the colours currently assigned to each of these nodes.

First we look at all paths from a whose nodes are coloured alter-
nately 1 and 3. We can change the colour of a from 1 to 3, change
the neighbours of a coloured 3 to 1, and so on along all paths of 1-
and 3-coloured nodes coming from a and this will not violate the
colour condition, as all nodes adjacent to these and not involved in
the change of colour necessarily carry colours other than 1 and 3.

Suppose there is no path of this kind that reaches from a to c. This
interchange of the 1 and 3 colours then cannot affect the colour of
c and since a and c are now both coloured 3, we can safely colour x
with a 1.

The alternative is that there is a 1–3 path from a to c. In this case
consider all paths alternately coloured 2 and 4 beginning at b. Then
b and d lie on opposite sides of a 1–3 cycle that forms a 1–3 path
from a to c and the edges (c,x) and (x,a) and so there is no 2–4 path
from b to d, as where two paths cross, the common node has to be
coloured consistently with both paths. We can therefore perform a
2–4 switch along all 2–4 paths from b leaving nodes b and d both
coloured 4 and allowing us to complete the colouring by painting x
the colour 2.

This completes the inductive step and so we have proved that any
map can be five-coloured.

It is tempting to try and work this inductive argument with four
colours as the node e seems to have played little role. However, of
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the five neighbours of x, two will now carry the same colour and this
forces the argument to run into difficulties that, it seems, cannot be
circumvented at all easily.

Page 81 Characterizing 2-colourable networks
(See entry for page 165 below.)

Page 83 Guarding the Gallery

The gap left in the argument was how to show that an n-gon can
be triangulated with n − 3 non-crossing diagonals, a fact which is
vacuously true for the base case when n = 3, as we already have
a triangle, so let us assume that n is at least four. The idea is
to split the polygon P into two smaller ones using one diagonal,
from which point the inductive hypothesis takes charge and sees us
through.

To locate a suitable diagonal we first observe that it is not possible
for all of the corners of the museum to be reflex angles, that is angles
exceeding 180◦; this is because there are n interior angles in P and
the sum of these angles is, by an elementary geometric argument,
(n − 2)180◦. Hence there is a convex interior angle A inside P . (In
fact there are at least three of them as if there were fewer than three,
the degree sum would be exceeded.)

Now let us look to the two neighbouring vertices B and C of A. If
the segment BC lies entirely inside P , then this can be our diagonal.
If not (the pictured case), then the triangle ABC contains at least one
other vertex (this conclusion requires that A is not a reflex angle).
Slide BC directly towards A (see Figure 10.8) until it strikes its last
vertex D in ABC. Now AD lies within P and we have our diagonal.

The argument can now be completed inductively by considering
the two polyhedra P1 and P2 that have the common diagonal AD
and whose other sides comprise all the sides of P . The number
of vertices of P1 and P2 are respectively m1 and m2, say, where
m1 + m2 = n + 2 (as P1 and P2 have vertices A and D in common). By
induction we may triangulate P1 and P2 using no more than m1 − 3
and m2 − 3 non-crossing diagonals respectively. These two sets of
diagonals together with the common diagonal AD yields a required
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A

B C

D

Figure 10.8 Locating a splitting diagonal

triangulation of P using no more than

(m1 − 3) + (m2 − 3) + 1 = (m1 + m2) − 5 = n + 2 − 5 = n − 3

diagonals in all, as required. This fills the gap left in our proof and
allows us to be sure that we never need more than n

3 guards to mind
the museum.

Page 99 Brouwer’s Theorem

Recall that, in two dimensions, the theorem says that any contin-
uous mapping of the closed disc into itself has a fixed point. The
shape of the figure concerned is of no importance (but it does need
to contain its boundary). Instead we work with triangle � with
vertices e1 = (1,0,0), e2 = (0,1,0) and e3 = (0,0,1). This is enough, for
the disc can be mapped in a one-to-one and continuous fashion
onto �, whence it follows that a continuous self-mapping of the
disc with no fixed point would yield a mapping on � with the
same property. Therefore we need only show that any continuous
mapping · : � → � taking � into itself leaves some point where it is.

Recall the meaning of a triangulation T of a figure: we partition the
object into triangles in such a way that one side meets another only
at common corners. By the mesh ‰(T) of the triangulation we mean
the length of the longest line segment that can be drawn within
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the figure without crossing a side of one of the triangles involved
in T.

The idea is to construct an infinite chain of triangulations of �;
T1,T2, . . . such that the sequence of meshes ‰(Tk) converges to 0. This
can be done, for example, by triangulating each little triangle from
its centre of gravity, known as its barycentre, in order to get the next
in the sequence of triangulations.

For each of these triangulations, we introduce a 3-colouring of the
vertices v by setting c(v) = min{i : ·(v)i < vi}, that is c(v) is the least
index i such that the ith coordinate of ·(v) − v is negative. Assuming
that · has no fixed point, this is well-defined for the alternative is
that ·(v)i ≥ vi for all i with strict inequality in at least one case; now
every v ∈ � lies in the plane x1 + x2 + x3 = 1, and hence v1 + v2 + v3 =
1 = ·(v)1 + ·(v)2 + ·(v)3, and so, given that ·(v) �= v, at least one of the
three coordinates of ·(v) − v must be negative, and at least one must
also be positive.

The colouring that now arises respects the hypotheses of Sperner’s
Lemma. Each vertex ei must be assigned the colour i since its ith
component is the only one of the components of ·(ei ) − ei that
can be negative as the other two components of ei are both zero.
Moreover, if v lies on an edge opposite ei , then vi = 0 and so the ith
component of ·(v) − v cannot be negative, and hence v is not assigned
the colour i. The hypotheses of the lemma are therefore satisfied and
so we look to see what follows from its conclusion.

Sperner’s Lemma now assures us that in each triangulation Tk

there is a triply coloured triangle {vk,1,vk,2,vk,3}, with i being the
colour of the vertex vk,i . Now the sequence of points (vk,1)k≥1 need
not converge but the sequence must have a subsequence that does
converge to a point v in �. (This is a compactness property: this
is the point in the argument where we require that the set �

is both bounded and closed, that is to say � contains its own
boundary.)

We now replace the chain of triangulations Tk with the cor-
responding subsequence although, for simplicity, we continue
to denote the members of this subchain by Tk. Now the dis-
tance of the points vk,2 and vk,3 from vk,1 is at most the mesh,



FOR CONNOISSEURS 219

‰(Tk), which converges to 0. It follows that the sequences of
points (vk,2) and (vk,3) also both converge to one and the same
point v.

The question now to ask is: What is ·(v)? We have designed the
colouring so that the first coordinate of ·(vk,1) is smaller than that
of vk,1 for all k. Since · is continuous and the sequence of vk,1

converges, it follows that the first coordinate of ·(v) is less than
or equal to that of v. The same reasoning applies to the second
and third coordinates, yielding the inference that none of the coor-
dinates of ·(v) − v is positive, a conclusion we have already seen
contradicts the assumption that ·(v) =/ v. This therefore completes
the demonstration of the Brouwer Fixed Point Theorem.

The compactness property features quite critically in the proof and
is not just a technicality that might be circumvented by some other
argument—if we begin with the unit disc stripped of its boundary,
then the theorem does not apply. For example, we could consider
the mapping of the disc that acts as follows. We map each point (x,y)
in the open unit disc to a point moved right by half the horizontal
distance to the circle’s circumference: (x + tx,y), where

tx =

√
1 − y2 − |x|

2
.

This is a continuous mapping whose range is the whole open disc.
However, it has no fixed points as for any point in the open disc, tx =/
0; indeed tx > 0 as |x| <

√
1 − y2 for any point of the open disc. We

see, therefore, that inclusion of the boundary matters in the fixed
point theorem.

Chapter 5

Page 104 Euler circuits

What remains to be proved is that a connected network N in which
every node has even degree does possess an Euler circuit. We can
prove this by induction on the number of edges of N. Since N is
connected, every node is even and none are isolated so that the
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degree of every node is at least two. By the very first note proved
in this chapter, this guarantees that N does have a circuit, C. If C
contains every edge of N then we are finished; if not, delete the
edges of C from N to give a new network G which may well be
disconnected, but in which every node still has even degree as the
degree of every node of N has decreased by a multiple of 2, if at
all. Now each component H of G is connected and has nodes only
of even degree so that, by induction, each such H has an Eulerian
circuit. The idea now is to sew these circuits back onto C to create a
grand circuit for N.

More precisely, we begin on C and traverse that circuit until we
meet a node u that is common with one or more of the compo-
nents H. Inductively we now trace an Euler circuit for each such
H based at u. When this process is exhausted we continue to move
on around C, repeating this procedure where necessary when we
encounter new components, until we have returned to our starting
point along C. Since every component H meets C at some point,
the resulting grand circuit represents an Euler circuit of the original
network N.

A similar inductive argument can now be used to show that
the construction given in the Fleury algorithm can be car-
ried out and that the construction always yields an Eulerian
circuit.

The feasibility of the Fleury algorithm is not so obvious as it makes
the demand that we can recognize when an edge of a network forms
a bridge. This sounds innocent enough but in effect it requires us to
be able to tell whether a given network is or is not connected. We
can, however, solve this problem by building a maximal spanning
tree within the network using either the Prim or Kruskal algorithm
and these procedures have no more steps than the given network
has edges. Given what we now know (by the above proof) that an
Euler circuit does exist in a connected network with no odd nodes, it
is not hard to convince yourself that the Fleury algorithm will find
one for you: by design, after each step, the remaining network is
connected and so the procedure will not stop until every edge has
been traversed.
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Chapter 6

Page 112 Hamiltonian tournaments

The claim is that every tournament T is semi-Hamiltonian, meaning
there is a (directed) path that travels through every node just the
once. This is clear for the cases where T has fewer than three nodes
so we shall assume that T has at least that many vertices. Assume
inductively that any tournament with n nodes has a Hamiltonian
path and consider a tournament T with n + 1 nodes. Take one
node v and its arcs away to give an n-node tournament T ′ that
we take inductively to have a Hamiltonian path v1 → v2 → . . . → vn,
say.

Now either there is some arc v → vi in T or not. In the first case,
let i be the least index where this is true. We then have the following
Hamiltonian path in T:

v1 → v2 → . . . vi−1 → v → vi → . . . → vn

because there is an arc vi−1 → v as there is no arc v → vi−1 and T is a
tournament; note that if i = 1 then the above path simply begins at
v. In the alternative case, no such i exists, in which case vn → v is an
arc of T and this arc may be tacked on the end of the Hamiltonian
path of T ′ to give the required Hamiltonian path for T. Therefore
any tournament has a Hamiltonian path.

It can be shown by similar argument that if T is strongly con-
nected, that is to say there is a directed path from any node to any
other, then T has a Hamilton cycle. Indeed more can be proved:
in these circumstances T is guaranteed to have directed cycles of all
lengths 3,4, . . . n (see for example Robin Wilson, Introduction to Graph
Theory).

However, in general a digraph that is not a tournament may be
strongly connected but lack a Hamiltonian cycle. For example, take
the bow-tie network of Figure 3.7 and direct its edges A → B → C →
D → E → C → A. This directed circuit shows the digraph is strongly
connected yet there is still no Hamilton cycle.



222 FOR CONNOISSEURS

Page 123 Constructing some automata

a

a

b

b a,b

a
i i

a,b
b

a

b

i

a,b

a,b

(4)
i

a
a

b

b

(5) i

a

b
b

a a

b

a

b

a

b

a

(2)

(3)

(1)

b

Figure 10.9 Solutions for the five automata

Minimal automata accepting the languages (1) through to (5) are
seen in Figure 10.9.

Page 126 Algebraic realization of regular sets

This characterization is often not well appreciated even by experts
in the subject of automata, at least if they have come to the topic
from the direction of engineering. It furnishes a beautiful mathe-
matical framework in which to operate. It does, however, involve
algebraic semigroups when most mathematically trained people are
only familiar with groups.

The story goes like this. A group is a set with an associative binary
operation, the action of which can be reversed to return the identity
element. In a semigroup, we drop the requirement that inverses
need exist in this way and we do not even demand that a semigroup
have an identity element, although this is a matter of less impor-
tance. A fundamental type of group is the group of all permutations
of a set with the operation being function composition. A classic
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result of Cayley shows that any group can be realized as a group of
permutations on a set. The counterpart in semigroup theory is the
semigroup of all functions on a set. This semigroup is a monoid as it
does possess an identity element in the usual identity function on
the set. However, since functions are not in general one-to-one or
onto, the members of this semigroup, known as the full transforma-
tion semigroup, do not in general have inverses in the sense needed
in a group. Cayley’s theorem for semigroups is that any semigroup
can be realized as a semigroup of functions (usually called mappings
in this context) on a set. The proof is nearly identical with that
of the traditional Cayley theorem in that the representation arises
through the action of each element a of the given semigroup S on S
itself—the only complication is that we need to adjoin an identity
element to S if it does not already possess one in order to ensure
that the representation is faithful. The resulting monoid is denoted
by S1, where 1 denotes the identity element.

The other ingredient in the connection to recognizable sets is the
free monoid A∗ over a given alphabet A. This is none other than
the set of all possible finite strings or words formed from A. The
operation is concatenation meaning that if u and v are two such
strings then their product in A∗ is simply the string uv. The empty
string ε is also permitted and this acts as the identity element of A∗

making it a monoid. If we delete the empty string we are left with
A+, the free semigroup on A.

The idea of a homomorphism (or sometimes just morphism) is a
universal algebraic idea and applies equally well to semigroups and
monoids in the same way as it does to groups: a morphism · : S → T
between semigroups is a mapping that respects products in that
·(ab) = ·(a)·(b). (In the case of monoids we need to insist that a
morphism maps the identity to the identity as that does not follow
automatically otherwise.) The free semigroup and monoid are then
free in the usual sense. They are the freest algebras containing the
given generating set A and any semigroup (resp. monoid) generated
by A is a homomorphic image of A+ (resp. A∗).

A subset L of A∗, invariably referred to as a language in this context,
is said to be recognized by a semigroup S if there is a morphism · :
A∗ → S such that L = ·−1(P ) for some subset P of S. In words, a
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language is recognizable (by a semigroup) if it is the inverse image
of a subset of S under a morphism from the free monoid.

The algebraic and automata based versions of recognizablity are
equivalent: a language can be recognized by an automaton if and
only if it can be recognized by a finite semigroup. The proof in
each direction is quite short but a little technical and so will not be
recounted here (see for example Finite Automata by M. V. Lawson).
However, in outline it runs as follows. If L is recognized by a finite
semigroup S as above, we consider the automaton that has S1 as its
set of states, initial state 1, and the action of each letter a mimics
that of ·(a), multiplying elements of S (on the left if we compose
mappings from right to left); the automaton’s set of accepting states
is deemed to be P , where L = ·−1(P ), whence, by construction, the
language accepted by this automaton is L.

The converse direction goes by way of the transition monoid of
an automaton A. Each letter a of A acts on the states of A to give a
mapping in the full transformation semigroup whose base set is the
state set of A. This in turn induces a morphism · from A∗ into this
full transformation semigroup S. The language L of the automaton
is then recognized by S and · as L = ·−1(P ), where P is the set of all
words of the form ·(u), where u is a word of L.

Once the basics have been established in this manner we enjoy
the full freedom to study recognizablity through either of these
two equivalent approaches, these being the machine or the alge-
braic viewpoint. Some results are more transparent when seen alge-
braically. For example, if L is recognized by S then the language of
reversed words, Lr , is recognized by the left–right dual semigroup
Sr whose multiplication ◦ is defined by a ◦ b = ba (where the latter
product is in S), using the same morphism and subset of S that were
the ingredients in the recognition of L.

Showing that certain languages are not recognizable, such as the
languages of all palindromes or the languages of all words with equal
numbers of a’s and b’s, is particularly simple. Roughly speaking,
arguments that appeal to the so-called Pumping Lemma in automata
theory are replaced by arguments involving idempotents in the
semigroup approach (a finite semigroup always has at least one
idempotent, that is a member a that equals its own square). There
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is a natural interplay between features in one theory and the other.
For example, the transition monoid of the minimal automaton of
a language is a common morphic image of every semigroup that
recognizes that language. A semigroup that recognizes a language
also recognizes all its so-called quotients (which are therefore recog-
nizable too). More broadly, a natural class of semigroups, known
as a variety, corresponds to what is known as a stream or variety of
languages, which is a class of languages that is closed under various
natural operations, which include the boolean set operations and
quotients.

These theories are very much two sides of the one coin. However,
one side of this coin is comparatively neglected!

Page 133 Least common multiple of the first
ten counting numbers

In general, to find the lcm n of a given set of numbers we write n
as a product of powers of primes. The power pr required for each
prime number p is the greatest power of p that is a factor of any of
the numbers in the set. For the integers 1,2, . . . ,10 the only relevant
primes are 2,3,5, and 7. The highest power of 2 involved is 23 = 8,
while we have 32 = 9, and the primes 5 and 7 only ever arise as single
powers. Therefore our least common multiple in this case is 23 ×
32 × 51 × 71 = 8 × 9 × 5 × 7 = 2,520.

Page 136 Finite lattices have meets and joins of arbitrary sets

Let L be our finite lattice and suppose that S is any non-empty set
of nodes of L with |S| = n ≥ 1. We show by induction on n that the
meet of S exists: the proof for joins is exactly the same with the
symbol ∨ replacing ∧ throughout. There is no trouble anchoring
the induction, for the claim is clearly true in the cases where n = 1
or n = 2 so let us assume that n ≥ 3. Take a node u ∈ S and consider
the set S ′ = S\{u}. Since |S ′| = n − 1 it follows by induction that the
meet of S ′ exists and we denote it by v. We then claim that u ∧ v is
the meet of S.
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By definition of the ∧ operation, u ∧ v ≤ u and u ∧ v ≤ v ≤ s, where
s ∈ S ′. Hence u ∧ v is a lower bound for the set S. Let w denote an
arbitrary lower bound of S. Then w ≤ s for any s ∈ S ′ and since v is
the greatest lower bound of S ′ we infer that w ≤ v. Moreover, since
w is a lower bound for S, in particular w ≤ u. Hence w is a common
lower bound of u and v and therefore w ≤ u ∧ v. This proves that
u ∧ v is indeed the greatest of the common lower bounds of all the
members of S.

In particular, taking S to be the full vertex set of L, we see that any
finite lattice has a minimum node and a maximum node.

Chapter 7

Page 139 Prim’s Algorithm

We show by a rather subtle induction that Prim’s algorithm, where a
tree is extended in a greedy manner until it spans the network, does
always yield a minimal spanning tree.

We suppose that the network N has n nodes and let the trees con-
structed via Prim be listed as T1,T2, . . . ,Tn−1, where Ti has as its edges
the list (e1,e2, . . . ,ei ). Let T be a minimal spanning tree of N that has
as many edges in common with Tn−1 as possible. We demonstrate
the result by showing that T and Tn−1 are in fact identical.

Suppose to the contrary that T �= Tn−1 and let e j = (a,b) be the first
edge chosen by Prim that is not in T. Let P be the path in T from
a to b (since T is a spanning tree for N, there is a unique path
within T between any two nodes of N). Next let e∗ be an edge of
P between a node in Tj−1 and a node not in Tj−1 (since a is a node
of Tj−1 and b is not, such an edge e∗ exists). Now the weight of e∗

is at least as great as that of e j , for otherwise e∗ would have been
chosen by Prim ahead of e j when forming the tree Tj . We then
delete e∗ from T and replace it by e j to form a new network T ′ of
weight no more than T that has one more edge in common with
Tn−1 than does T. However, by construction, T ′ is still connected
(this needs a moment’s thought) and has n nodes and n − 1 edges so
is indeed a spanning tree for N, contradicting our original choice of
T. Hence we must drop the assumption that T �= Tn−1 and so Prim’s
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algorithm will always produce a spanning tree of N of minimal
weight.

Page 140 Counting spanning trees

The incidence matrix of a network is a binary n × n matrix where
the (i, j)th entry is a 1 if node i is adjacent to node j and is 0
otherwise. (This presupposes that we have numbered the nodes in
some (perhaps arbitary) order. Coding a network as a matrix is a
natural way to store it in a computer from which point particular
algorithms of interest may be carried out.)

The Kirchhoff matrix of a simple network is obtained by taking the
adjacency matrix, swapping all the 1’s for −1’s and replacing each
diagonal 0 by the degree of the corresponding node. Its significance
lies in the theorem that all the cofactors of any such matrix are
identical and their common value equals the number of spanning
trees of the network.

For example, if we take our network N to be a square with one
diagonal (so that it is one edge short of being K4) the Kirchhoff
matrix of N would be:




3 −1 −1 −1

−1 2 0 −1

−1 0 2 −1

−1 −1 −1 3




Kirchhoff’s Theorem says that the number of spanning trees of a
connected simple network is equal to any of the cofactors of the
matrix. In this example, if we use the (1,1) cofactor we obtain the
answer as:

2

∣∣∣∣∣
2 −1

−1 3

∣∣∣∣∣ −
∣∣∣∣∣
0 −1

2 −1

∣∣∣∣∣ = 2(6 − 1) − (0 − (−2)) = 10 − 2 = 8,

so there are eight spanning trees to be found (six paths of length 3,
while two trees have nodes of degree 3).

It is instructive to work out an example like this in the case of
a tree, for you will know if you have carried out the calculation
correctly as the answer must be 1! The calculation of such cofactors
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for a network of more than half a dozen nodes soon becomes too
laborious to carry out by hand. However, the theorem does provide
a convenient approach for a computer to use.

What is more, Kirchhoff’s Theorem can also be used to verify
a theoretical counting result that goes right back to Cayley: the
number of labelled trees on n nodes is nn−2. By a labelled network in
this context we mean each of the nodes has its own distinct label,
usually a number. The key observation is that every labelled tree
on n nodes is a spanning tree for the complete labelled network
Kn and conversely, any spanning tree on Kn is a labelled tree on
n nodes. The problem then comes down to applying Kirchhoff to
Kn. (Although not an induction argument, it is worth checking the
first few cases: for example, for n = 3 there are 31 = 3 labelled trees,
each being determined by the label of the node of degree two.)

We need, therefore, to calculate any of the cofactors of the matrix
M = Mn all of whose diagonal elements are n − 1 and whose off
diagonal elements are −1.

The (1,1)-cofactor of M is the determinant of a matrix that is
almost Mn−1 except that the diagonal entries are still n − 1. The trick
is to add every row to the first, and then the first row to each of
the others (which leaves the value of the determinant invariant).
The matrix that results has the first row consisting entirely of 1’s, the
first column entirely of 0’s (except for the initial 1) and the remain-
der of the matrix is nIn−2, where I denotes the identity matrix.
Since this matrix is upper triangular, its determinant is simply the
product of the diagonal elements, which evidently is nn−2. This is
just one of many clever proofs of Cayley’s enumeration of labelled
trees.

Page 144 Designing the one-way system

What remains to be proved is that if the network N has no bridges,
then N is strongly connected, and in order to do this we show by
induction on k that it is always possible to drive from 1 to k and
back again in the one-way system that the algorithm provides.

The k = 1 case is clear so we take k ≥ 2 and suppose that the
claim holds for all lesser values. The node labelled k was assigned its
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number by virtue of being adjacent to some other node l that was
already labelled. In that case l < k and by induction it is possible
to drive from 1 to l and from l to 1 within the system. By the
way the tree is constructed and labelled, the arc between l and
k is directed l → k, and so there is a directed path from 1 to k
via l. However, we need to find a way of also getting back from
k to 1.

Suppose all the nodes adjacent to k in the undirected network
have been labelled prior to k (so that the algorithm, if it continues,
will backtrack from k). Now, there must be some node adjacent to
k apart from l as otherwise the edge lk would be a bridge. Take one
such node with label m < k. Since the edge mk is not part of the
spanning tree (otherwise k would already have been labelled) its
orientation is k → m and by induction there is a directed path from
m to 1, thus yielding a directed path from k to 1.

However, there is still the case where the algorithm does not back-
track after labelling k but rather proceeds on to new nodes labelled
k + 1,k + 2, . . . ,k + t say, where t ≥ 1 and k + t is a node from which
the algorithm does backtrack. If any of these nodes happens to be
adjacent to a node labelled m < k we obtain a directed path from k
to 1 via that node. If, to the contrary, all the nodes k + i (1 ≤ i ≤ t)
were only adjacent to other nodes of this same kind, there would
be no path from k to l that did not use the edge lk, and once again,
kl would be a bridge, giving the required contradiction to complete
the proof.

Page 145 Acyclic digraphs have linear orderings
on their nodes

Suppose that N is an acyclic (not necessarily connected) digraph
with n nodes. Begin at any node u and take a directed walk for as
long as you can. As there are no directed cycles, eventually we meet
a node v that has no arc leading out of it. Delete this node and its
incident arcs from N to give a digraph N′ on one fewer nodes that
is still acylic. By induction, we can order the nodes v1,v2, . . . ,vn−1 in
such a way that there is an arc from vi to v j only if i < j . Putting
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vn = v then gives a linear ordering of all the nodes of N with the
same property.

Chapter 8

Page 161 Maximum flow equals minimum cut

As has already been pointed out, the maximum flow through the
network N cannot exceed the capacity of the minimum cut, so it
is enough to show there is a cut whose capacity equals that of an
attainable flow. A flow Ë assigns a non-negative integer to each arc a
in a specified direction so that the flow does not exceed the capacity
of any arc and the flow into a node (apart from the source and sink)
equals the outflow from that node. An arc is called saturated if the
flow through it equals its (maximum) capacity. The assumption that
the flow through an arc is integral is harmless—by scaling to suitably
small units this can be seen not to act as a genuine restriction
but merely allows us to bring to bear arguments based on discrete
units.

Let Ë be a maximum flow in N with s and z respectively denoting
the source and sink of N, so that the flow begins at the source s
and ends at z. We introduce two disjoint sets of nodes V and W as
follows: let G denote the underlying network; put a node u in V
if there is some path in G: s = v0 → v1 → v2 → . . . → vm−1 → vm = u,
with the property that each edge (vivi+1) represents either an unsat-
urated arc (one not carrying its maximum capacity) or there is a
positive backflow in the direction (vi+1vi ). The set W is merely the
complementary set to V. By definition, V is not empty as it at least
contains the source of the flow, s.

We show that z lies in W. If not, then z lies in V and so there
is a path s = v0 → . . . → z of the type described. We now perturb
the flow by a small positive amount ε. We choose ε so as not to
exceed the amount needed to saturate any arc of the first type and
not to exceed the flow through any arc of the second type (backflow
arcs). We now increase the flow through arcs of the first type by
ε and decrease the flow through the backflow arcs by ε. (This is
possible as it will not cause any violation of the inflow = outflow
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condition at each node.) The net effect of this is to increase the
overall flow to the value of Ë + ε, which is impossible as Ë represents
a maximum flow. Therefore it is indeed the case that z lies in W and
not V.

The question is now settled by considering the set A of all arcs
a = (x,y) from V to W. This collection is a cutset as s is in V and z is in
W, so that all flow passes out of V into W. Moreover, every arc (x,y)
in A must be saturated for otherwise, since x lies in V, then y would
also if (x,y) were not used up to maximum capacity. It follows that
the capacity of the cut A is, as claimed, the same as the maximum
flow in the network.

Page 165 Bipartite = all cycles have even length

The fact that K3,3 has all cycles of length at least 4 was used in
Chapter 4 to show that it was not planar. In a bipartite network
based on two disjoint sets of vertices, G and B, any cycle passes
between these two sets a certain number, let us say k times, and so
the cycle has even length, 2k.

Conversely, let N be a network in which all cycle lengths are even
and since the following argument can be applied one component
at a time, there is no harm in taking N to be connected. By the
distance between any two nodes we mean the length of a shortest
path joining them.

Begin with any node u and let G be the set of all nodes, including
u, whose distance from u is even and let B consist of all nodes that
are not in G. Then B and G form the two ‘parts’ of the bipartite
network and to justify this claim we need only check that no two
nodes in G are adjacent, and similarly for B.

To see this, suppose that two nodes, u1 and u2 in G were adjacent.
Consider paths P1 and P2 of shortest possible lengths from u to u1

and u2 respectively. Let x be the final common point of these paths
from u to u1 and u2. The length of the initial segments of P1 and P2

from u to x must be equal, for if the first were longer than the other,
say, then P1 could not be an initial segment of a shortest path from u
to u1. Let us then call this common length k, and let l1 and l2 denote
the distance from x to u1 and u2 respectively. Then, if k is even, then
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so are l1 and l2, while if k is odd, then so are l1 and l2. In either
case, by taking the terminal segments of P1 and P2 together with
the edge u1u2, we now obtain a cycle of length l1 + l2 + 1, which is
odd, contrary to the assumption that N has no cycles of odd length.
A similar contradiction arises if we assume that two nodes in B are
adjacent, and this completes the proof.

Page 167 Hall’s Marriage Lemma

Here is a direct induction argument for the tricky direction of the
lemma. That is, every set of k girls collectively is prepared to marry
at least k of the boys for all 1 ≤ k ≤ n and we need to show that there
will then necessarily be a matching for all the girls. The argument
here, due to Halmos and Vaughan, is a short but subtle induction on
n, the number of girls. There is no trouble of course if there is only
one girl so let us take n ≥ 2.

First suppose that it were the case that for all k with 1 ≤ k ≤ n − 1,
every set of k girls had a set of suitable boys of size at least k + 1.
In this case, marry off one suitable pair, leaving us with n − 1 girls,
and it is still the case that any k of them (1 ≤ k ≤ n − 1) is suited to
at least k boys. We can then marry off the remaining n − 1 girls by
induction.

The alternative is that the supposition is false, in which case there
is some set of k girls (1 ≤ k ≤ n − 1) whose set of suitors numbers
exactly k as well. Since k < n we can, by induction, marry off these
k girls to their k boys, leaving a set of n − k girls remaining. We
can now marry off these n − k girls by induction, providing Hall’s
condition holds for the remaining girls and boys, and this has to be
checked.

But it does! Any h say of the remaining girls (1 ≤ h ≤ n − k) does
have a set of suitors of size at least h, for suppose that this condition
were somehow violated for some particular set of girls of size h,
so that they are suitable for fewer than h of the remaining boys.
Consider then this set of h girls together with the original set of
k girls considered earlier. Then this collection of k + h girls is only
suited to a set of fewer than k + h boys. (This is because none of
the k girls is suited to any of the remaining boys—the key point
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of the argument.) This, however, violates the original condition
on subsets of girls, so represents a contradiction. Therefore, the
remaining n − k girls can be married by induction and the proof is
complete.

There are many other proofs of Hall’s Lemma, which is one of
the most useful tools in combinatorics. Although often short, every
proof has a tricky bit that you have to think about!

Page 169 Menger, Marriage, and Maximum Flows

We assume that the condition of the Marriage Lemma holds and
we begin with the same augmented network as was used in the
demonstration of the Marriage Lemma from the Max Flow Theorem,
and indeed the argument is much the same.

Given that there are n girls in G, a complete matching for the girls
is equivalent to a set of n node disjoint paths from the source to
the sink. By the nodal version of Menger therefore, it is sufficient
to show that any nodal cutset S for the pair of nodes s and z
has at least n nodes. Let X and Y be the respective subsets of G
and of B that together form the set S. If we assume that X has
k nodes, which is less than n, then, by the Hall condition, the
remaining n − k girls are collectively linked to at least n − k boys.
Each of the nodes representing these boys must be in Y, as otherwise
there would be a path from s to z that did not use any nodes
from the nodal cutset S. Therefore the size of S must be at least
k + (n − k) = n.

Although Menger’s Theorem takes some work, it is relatively
easy to show that the edge and node versions of the theorem are
equivalent, meaning that if you believe one of them, then you
must believe the other as well, as each can be deduced from the
other.

The Max Flow Theorem can also be inferred from Menger’s The-
orem by the device of replacing an arc with a capacity of k units
by k multiple edges between the same nodes. A flow now cor-
responds to a set of edge-disjoint paths between the source and
sink. By Menger’s Theorem, the maximum value for this is the
minimum size of any edge cutset, which in turn corresponds to
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the minimum capacity of a cutset. Conversely, we can deduce
Menger’s Theorem from the Max Flow Theorem by giving each edge
capacity of one unit. Applying the Max Flow Theorem then gives
the required conclusion that the maximum size of a set of edge-
disjoint paths in the network equals the minimum size of an edge
cutset.

Chapter 9

Page 181 Insanity Cubes

YB

G

1

1

2

2

3
3

R
1

2

4 4 3

4

G

1 3

R4

YY

G

BB 3

2 4

2

R 1

Figure 10.10 Insanity network and labelled factors

In this instance the network of the puzzle is as in Figure 10.10
with two suitable labelled factors as shown. Unlike the puzzle in the
text, the second factor necessarily has two components; we follow
the labelling of the 3-cycle in a cyclically consistent fashion (say
clockwise) to obtain a consistent colouring of the back and front
of the tower with the three colours blue, green, and yellow: cube 1
carries the colour red both front and back.
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Page 183 Two litres of wine

Again, we can specify the state of play with an ordered pair (x,y)
where x and y are the measures of the contents of the 7- and the
4-litre jugs respectively, bearing in mind that 0 ≤ x + y ≤ 10, as 10 is
the capacity of the big jug. The minimum sequence of pourings in
this case turns out to be

(0,0) → (0,4) → (6,4) → (6,0) → (2,4)

and so in just four steps we have a 2-litre portion in the 7-litre jug
(with the 4-litre and 10-litre jugs both left holding 4 litres each).

Page 195 Reconstructing the RNA chain
G-fragments: AACUG, UAG, A, AG, AG, AG, G

U, C-fragments: U, AGAAC, AGAGA, GGAGU

There are two abnormal fragments, A and AGAGA, and so the longer
forms the end of the chain. The interior extended bases and unsplit-
table fragments are

interior extended bases: U, AG, G, AG

unsplittable fragments: A, AG, AG, AG, G, U

The two unsplittable fragments that are not extended bases are AG
and A, and since the chain terminates with AGAGA, it begins with
AG. The digraph of the problem is then given by the final diagram.

AACUG

AGAAC

GGAGU

UAG AG

AGAGA ∗ AG
U

AAC G

Figure 10.11 Digraph for RNA chain
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There is only one Euler circuit that ends with the starred arc
(which is in this case a loop), giving the arc labels

AGAAC AACUG GGAGU UAG AGAGA∗AG

and so the reconstituted RNA chain is

AGAACUGGAGUAGAGA
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FURTHER READING

As mentioned in the text, in mathematics the general area that is
the subject of this book is known as Graph Theory, especially among
the mathematical fraternity. It may seem an odd name as almost
everyone knows that a graph usually means a plot of one measure-
ment against another, typically a quantity such as sales, inflation, or
velocity as a function of time. A classic mathematical text is Graph
Theory by Frank Harary and it was the source of some of the counting
facts about the number of trees on a given number of nodes and
the isomers of saturated hydrocarbons. Overall, though, this is a
pure mathematics text and is not much interested in applications to
operational research. Robin Wilson’s little book Introduction to Graph
Theory gives a rapid outline of the subject along with the classical
applications of matching theory.

I normally would hesitate to recommend a mathematics text book
as a source for someone who had developed a passing interest in the
subject but Discrete Mathematics, as this general area is known, is a
more accessible part of the subject. There are dozens of good texts
on discrete mathematics, often known also as Finite Mathematics,
and the titles often include the terms graph theory, computation,
or more mysteriously combinatorics. This last word is nothing to be
afraid of but it does sound esoteric. It is a word not found in most
dictionaries, so a general reader might take it as a signal that the
book is not for them. To explain, combinatorics is that part of math-
ematics to do with counting, which may also sound rather strange,
for don’t we all know how to count already? Examples will best
clarify: questions such as how many different noughts and crosses
games are there? how many genuinely different sudoku puzzles are
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there? and how large does a network have to be before a certain
kind of clique is bound to arise? are examples of combinatorial
questions. Sometimes precise answers can be given, although on
tougher questions we often have to be satisfied with bounding the
answer between two extremes and talking of how fast the figure
in question increases as various parameters vary. This can be very
important when deciding whether or not a problem will become
too unwieldy to handle if it is allowed to grow more complicated.

Of the many books you will come across of this type, I like Discrete
Mathematics with Graph Theory by Goodaire and Parmenter. This was
my source particularly for the description of the Chinese Postman
Problem and the problems on the recovery of RNA chains. Ralph
Grimaldi’s Discrete and Combinatorial Mathematics: an Applied Intro-
duction goes further in the direction of coding theory and algebraic
applications. Both of these books are weighty tomes in the modern
American style. I also like Applied Combinatorics by Alan Tucker,
which has more the feel of an old-fashioned mathematics book. The
account of Instant Insanity and some other novelties was due to
this text, which you might find is more for a serious mathematics
student. It does, however, explain how to go about solving some
important but messy problems like finding Hamiltonian cycles in
sizeable networks.

The source for Circular Sudoku is the recent book by myself and
my daughter Caroline: The Official Book of Circular Sudoku (Plume
Press). That book explains the puzzles, including variants that do
not feature here, and how to solve them. Techniques for solving
ordinary sudoku will be supplied by any decent search engine on
the Web.

The book by Albert-Laszlo Barabasi, Linked: How Everything is
Connected to Everything Else has certainly been influential and has
increased the general interest in networks of all kinds. The descrip-
tion of the nature of the internet, which was pioneered by Barabasi
and his colleagues, is summarized in the second chapter of this
book. Paul Hoffman’s biography on Erdos, The Man Who Loved Only
Numbers, Hyperion, New York (1998) is an interesting account of
the life of a mathematician. Some reviewers fear that it slips into
caricature of the man and the subject in places but the general
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public will find there some real insight into what mathematicians
get up to.

The Theory of Computation, an Introduction, Jones & Bartlett (1996)
by James Hein is better than some of the big hardbacks on discrete
mathematics as, in addition to lots of algorithms and examples,
there is more of the underlying mathematics as well. It also deals
well with all forms of automata. For more on Automata and Lan-
guages I would recommend either the book of that title by John
M. Howie and also Finite Automata by Mark V. Lawson, although
be warned, these are also mathematics books.

The trickiest mathematics described in this book came from the
celebrated Proofs from the Book by Martin Aigner and Gunter Ziegler
and included the Guarding the Gallery, and the Sylvester–Gallai and
Brouwer theorems. These are relatively difficult but serve to show
how subtle even quite ‘elementary’ mathematics can be. You have
to be wary when a mathematician talks of an ‘elementary’ proof. The
word in this context means only that the proof does not call upon
sophisticated techniques, such as the use of complex variables. An
‘elementary’ proof can be difficult to follow and even more difficult
to discover! The title, ‘Proofs from the Book’, is a reference to the
Platonic book, imagined by Paul Erdos, which was a home for all of
the very best proofs. In Heaven, those brave souls who have proved
themselves worthy, will be free to read The Book to their hearts’
content!
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