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Preface 

During the past fifteen years, a new conceptual framework for un- 
derstanding potential problems in quantum mechanics has been developed 
using ideas borrowed from quantum field theory. The concept of supersym- 
metry when applied to quantum mechanics has led to a new way of relating 
Hamiltonians with similar spectra. These ideas are simple enough to be a 
part of the physics curriculum. 

The aim of this book is to provide an elementary description of super- 
symmetric quantum mechanics which complements the traditional cover- 
age found in existing quantum mechanics textbooks. In this spirit we give 
problems at the end of each chapter as well as complete solutions to all the 
problems. While planning this book, we realized that it was not possible to 
cover all the recent developments in this field. We therefore decided that, 
instead of pretending to be comprehensive, it was better to include those 
topics which we consider important and which could be easily appreciated 
by students in advanced undergraduate and beginning graduate quantum 
mechanics courses. 

It is a pleasure to thank all of our many collaborators who helped in 
our understanding of supersymmetric quantum mechanics. This book could 
not have been written without the love and support of our wives Catherine, 
Pushpa and Medha. 

Fred Cooper, Avinash Khare, Uday Sukhatme 
Los Alamos, Bhubaneswar, Chicago 

September 2000 
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Chapter 1 

Introduction 

Supersymmetry (SUSY) arose as a response to attempts by physicists to 
obtain a unified description of all basic interactions of nature. SUSY relates 
bosonic and fermionic degrees of freedom combining them into superfields 
which provides a more elegant description of nature. The algebra involved 
in SUSY is a graded Lie algebra which closes under a combination of com- 
mutation and anti-commutation relations. It may be noted here that so far 
there has been no experimental evidence of SUSY being realized in nature. 
Nevertheless, in the last fifteen years, the ideas of SUSY have stimulated 
new approaches to other branches of physics like atomic, molecular, nuclear, 
statistical and condensed matter physics as well as nonrelativistic quantum 
mechanics. Naively, unbroken SUSY leads to a degeneracy between the 
spectra of the fermions and bosons in a unified theory. Since this is not 
observed in nature one needs SUSY to be spontaneously broken. It was in 
the context of trying to understand the breakdown of SUSY in field theory 
that the whole subject of SUSY quantum mechanics was first studied. 

Once people started studying various aspects of supersymmetric quan- 
tum mechanics (SUSY QM), it was soon clear that this field was interesting 
in its own right, not just as a model for testing field theory methods. It was 
realized that SUSY QM gives insight into the factorization method of Infeld 
and Hull which was the first attempt to categorize the analytically solvable 
potential problems. Gradually a whole technology was evolved based on 
SUSY to understand the solvable potential problems and even to discover 
new solvable potential problems. One purpose of this book is to introduce 
and elaborate on the use of these new ideas in unifying how one looks at 
solving bound state and continuum quantum mechanics problems. 

1 



2 Introduction 

Let us briefly mention some consequences of supersymmetry in quan- 
tum mechanics. It gives us insight into why certain one-dimensional po- 
tentials are analytically solvable and also suggests how one can discover 
new solvable potentials. For potentials which are not exactly solvable, su- 
persymmetry allows us to develop an array of powerful new approximation 
methods. In this book, we review the theoretical formulation of SUSY QM 
and discuss how SUSY helps us find exact and approximate solutions to  
many interesting quantum mechanics problems. 

We will show that the reason certain potentials are exactly solvable can 
be understood in terms of a few basic ideas which include supersymmetric 
partner potentials and shape invariance. Familiar solvable potentials all 
have the property of shape invariance. We will also use ideas of SUSY to 
explore the deep connection between inverse scattering and isospectral po- 
tentials related by SUSY QM methods. Using these ideas we show how to 
construct multi-soliton solutions of the Korteweg-de Vries (KdV) equation. 
We then turn our attention to introducing approximation methods that 
work particularly well when modified to utilize concepts borrowed from 
SUSY. In particular we will show that a supersymmetry inspired WKB 
approximation is exact for a class of shape invariant potentials. Supersym- 
metry ideas also give particularly nice results for the tunneling rate in a 
double well potential and for improving large N expansions and variational 
methods. 

In SUSY QM, one is considering a simple realization of a SUSY al- 
gebra involving bosonic and fermionic operators which obey commutation 
and anticommutation relations respectively. The Hamiltonian for SUSY 
QM is a 2 x 2 matrix Hamiltonian which when diagonalized gives rise to 
2 separate Hamiltonians whose eigenvalues, eigenfunctions and S-matrices 
are related because of the existence of fermionic operators which commute 
with the Hamiltonian. These relationships will be exploited to  categorize 
analytically solvable potential problems. Once the algebraic structure is 
understood, the results follow and one never needs to return to the origin 
of the Fermi-Bose symmetry. The interpretation of SUSY QM as a degen- 
erate Wess-Zumino field theory in one dimension has not led to any further 
insights into the workings of SUSY QM. For completeness we will provide 
in Appendix A a superfield as well as path integral formulation of SUSY 
quantum mechanics. 

In 1983, the concept of a shape invariant potential (SIP) within the 
structure of SUSY QM was introduced by Gendenshtein. The definition 
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presented was as follows: a potential is said to be shape invariant if its SUSY 
partner potential has the same spatial dependence as the original potential 
with possibly altered parameters. It is readily shown that for any SIP, 
the energy eigenvalue spectra can be obtained algebraically. Much later, 
a list of SIPs was given and it was shown that the energy eigenfunctions 
as well as the scattering matrix could also be obtained algebraically for 
these potentials. It was soon realized that the formalism of SUSY QM plus 
shape invariance (connected with translations of parameters) was intimately 
connected to the factorization method of Infeld and Hull. 

It is perhaps appropriate at this point to digress a bit and talk about the 
history of the factorization method. The factorization method was first in- 
troduced by Schrodinger to solve the hydrogen atom problem algebraically. 
Subsequently, Infeld and Hull generalized this method and obtained a wide 
claw of solvable potentials by considering six different forms of factoriza- 
tion. It turns out that the factorization method as well as the methods of 
SUSY QM including the concept of shape invariance (with translation of 
parameters), are both reformulations of Riccati's idea of using the equiv- 
alence between the solutions of the Riccati equation and a related second 
order linear differential equation. 

The general problem of the classification of SIPs has not yet been solved. 
A partial classification of the SIPs involving a translation of parameters was 
done by Cooper, Ginocchio and Khare and will be discussed later in this 
book. It turns out that in this case one gets all the standard explicitly 
solvable potentials (those whose energy eigenvalues and wave functions can 
be explicitly given), 

In recent years, one dimensional quantum mechanics has become very 
important in understanding the exact multi-soliton solutions to certain 
Hamiltonian dynamical systems governed by high order partial differen- 
tial equations such as the Korteweg-de Vries and sine-Gordon equations. 
It waa noticed that the solution of these equations was related to solving a 
quantum mechanics problem whose potential was the solution itself. The 
technology used to initially find these multi-soliton solutions was based on 
solving the inverse scattering problem. Since the multi-soliton solutions 
corresponded to new potentials, it was soon realized that these new solu- 
tions were related to potentials which were isospectral to the single soliton 
potential. Since SUSY QM offers a simple way of obtaining isospectral 
potentials by using either the Darboux or Abraham-Moses or Pursey tech- 
niques, one obtains an interesting connection between the methods of the 



4 Introduction 

inverse quantum scattering problem and SUSY QM, and we will discuss this 
connection. We will also develop new types of approximations to solving 
quantum mechanics problems that are suggested by several of the topics 
discussed here, namely the existence of a superpotential, partner potentials, 
and the hierarchy of Hamiltonians which are isospectral. We will focus on 
four new approximation methods, the 1/N expansion within SUSY QM, 
6 expansion for the superpotential, a SUSY inspired WKB approximation 
(SWKB) in quantum mechanics and a variational method which utilizes 
the hierarchy of Hamiltonians related by SUSY and factorization. 

We relegate to Appendix A a discussion of the path integral formulation 
of SUSY QM. Historically, such a study of SUSY QM was a means of 
testing ideas for SUSY breaking in quantum field theories. In Appendix 
B, we briefly discuss the method of operator transformations which allows 
one to  find by coordinate transformations new solvable potentials from 
old ones. In particular, this allows one to  extend the solvable potentials to 
include the Natanzon class of potentials which are not shape invariant. The 
new class of solvable potentials have wave functions and energy eigenvalues 
which are known implicitly rather than explicitly. Perturbative effects on 
the ground state of a one-dimensional potential are most easily calculated 
using logarithmic perturbation theory, which is reviewed in Appendix C. 
Finally, solutions to all the problems are given in Appendix D. 

More details and references relevant to this introduction can be found 
in the review articles and books listed at  the end of this chapter. 
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Chapter 2 

The Schrodinger Equation in One 
Dimension 

In this book, we axe mainly concerned with the quantum mechanical prop- 
erties of a particle constrained to move along a straight line (the z-axis) 
under the influence of a time-independent potential V ( x ) .  The Hamiltonian 
H is the sum of a kinetic energy term and a potential energy term, and is 
given by 

+ V ( x )  . A2 dz 
2m dx2 

H = 

We want to obtain solutions of the time independent Schrodinger equation 
H$ = E$, that is 

with the wave function + ( x )  constrained to satisfy appropriate boundary 
conditions. 

All elementary quantum mechanics texts discuss piecewise constant po- 
tentials with resulting sinusoidally oscillating wave functions in regions 
where E > V ( x ) ,  and exponentially damped and growing solutions in re- 
gions where E < v ( ~ ) .  The requirements of continuity of @ and $' f 2 
as well as the restrictions coming from the conservation of probability are 
sufficient to give all the energy eigenstates and scattering properties. Most 
of the familiar results obtained for piecewise constant potentials are in fact 
valid for general potentials. 

Consider a potential V(z) which goes to a constant value V,,, at x -+ 
foo, and is less than V,,, everywhere on the x-axis. A continuous potential 
of this type with minimum value Vmin is shown in Fig. 2.1 . 

7 



8 The Schrodinger Equation in One Dimension 

V 

Fig. 2.1 
potential has both bound states as well as a continuum spectrum. 

Simple continuous potential with one minimum and equal asymptotes. The 

For E < Vminl there are no normalizable solutions of eq. (2.2). For 
Vmin < E < V,,,, there are discrete values of E for which normalizable 
solutions exist. These values Eo, El ,  ... are eigenenergies and the corre- 
sponding wave functions $0, $ I l  ... are eigenfunctions. For E 2 V,,,, there 
is a continuum of energy levels with the wave functions having the behavior 
efik+ at 2 4 fm. 

In this chapter, we state without proof some general well-known prop- 
erties of eigenfunctions for both bound state and continuum situations. We 
will also review the harmonic oscillator problem in the operator formalism 
in detail, since it is the simplest example of the factorization of a gen- 
eral Hamiitonian discussed in the next chapter. For more details on these 
subjects, the reader is referred to the references given at the end of this 
chapter. 

2.1 General Properties of Bound States 

Discrete bound states exist in the range Vmin < E < V,,,. The main 
properties are summarized below: 

0 The eigenfunctions $10, $1, ... can all be chosen to be real. 
0 Since the Hamiltonian is Hermitian, the eigenvalues Eo, El ,  ,.. are 

necessarily real. Furthermore, for one dimensional problems, the 
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eigenvalues are non-degenerate. 

malizable: J-", $:$& = 1. 
The eigenfunctions vanish at x -+ foo ,  and are consequently nor- 

The eigenfunctions are orthogonal: Jym $;&dx = 0 , (i # j ) .  
If the eigenstates are ordered according to increasing energy, i.e. 
EO < El < EZ < ..., then the corresponding eigenfunctions are au- 
tomatically ordered in the number of nodes, with the eigenfunction 
qn having n nodes. 
$,+I has a node located between each pair of consecutive zeros in 
$,, (including the zeros at x -+ foo) .  

2.2 General Properties of Continuum States and Scattering 

For E 2 
continuum states are as follows: 

there is no quantization of energy. The properties of these 

0 For any energy E ,  the wave functions have the behavior e f i k +  at 
x -+ foo ,  where R2k2/2m = E - V,,,. The quantity k is called 
the wave number. 
If one considers the standard situation of a plane wave incident 
from the left, the boundary conditions are 

$k(x) -+ eikz + R(k)e-ikx , x + -oo , 
$&(z) -+ T(k)eik" , x + oo , (2.3) 

where R(k) and T(k) are called the reflection and transmission 
amplitudes (or coefficients) . Conservation of probability guaran- 
tees that lR(k)I2 + IT(k)I2 = 1. For any distinct wave numbers 
k and k', the wave functions satisfy the orthogonality condition 

Considered as functions in the complex k-plane, both R(k) and 
T ( k )  have poles on the positive imaginary k-axis which correspond 
to the bound state eigenvalues of the Hamiltonian. 
The bound state and continuum wave functions taken together form 
a complete set. An arbitrary function can be expanded as a linear 
combination of this complete set. 

s-m", $;$pdX = 0. 

The general properties described above will now be discussed with an 
explicit example. The potential V(x) = -12 sech2x is an exactly solvable 
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potential discussed in many quantum mechanics texts. It is often called 
the symmetric Rosen-Morse potential. The eigenstates can be determined 
either via a traditional treatment of the Schrodinger differential equation 
by a series method, or, as we shall see a little later in this book, the same 
results emerge more elegantly from an operator formalism applied to shape 
invariant potentials. In any case, there are just three discrete eigenstates, 
given by 

Eo = - 9 ,  $0 =sech3x , 
Ei = -4 $1 = sech2xtanhz , 
E2 = -1 $2 = sech x(5 tanh2 x - 1) , (2.4) 

with a continuous spectrum for E 2 0. We are using units such that 
A = 2m = 1. Note that $0, $ I , &  have 0,1,2 nodes respectively. The po- 
tential has the special property of being reflectionless, that is the reflection 
coefficient R(k)  is zero. The transmission coefficient T ( k )  is given by 

(2.5) 

Using the identity r(z)I’(l - x) = .rr/sinnx, it is easy to check that 
IT(k)I2 = 1. This result is of course expected from probability conser- 
vation. Also, recalling that the Gamma function r (x)  has no zeros and 
only simple poles at x = 0, -1, -2, ..., one sees that in the complex k-plane, 
the poles of T ( k )  located on the positive imaginary axis are at k = 3i ,  22, i. 
These poles correspond to the eigenenergies EO = -9,El = -4, E2 = -1, 
since E = k2 with our choice of units. 

2.3 The Harmonic Oscillator in  the Operator Formalism 

The determination of the eigenstates of a particle of mass rn in a harmonic 
oscillator potential V(x) = ikx2  is of great physical interest and is dis- 
cussed in enormous detail in all elementary texts. Defining the angular 
frequency w m, the problem consists of finding all the solutions of 
the time independent Schrodinger equation 

l i 2 d 2 $  1 --- + -mw2x2$ = E$ , 2m dx2 2 
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which satisfy the boundary conditions that Q(x) vanishes at x -+ foo .  As 
is well-known, the solution is a discrete energy spectrum 

1 
E , = ( n + p J ,  n = 0 , 1 , 2  ,... , 

with corresponding eigenfunctions 

= ~ , e x p ( - ~ ~ / 2 )  H,(s) , (2.7) 

where 5 = d a  x, H, denotes the Hermite polynomial of degree n, 
and Nn is a normalization constant. The standard procedure for obtaining 
the eigenstates is to re-scale the Schrodinger equation in terms of dimen- 
sionless parameters, determine and factor out the asymptotic behavior, and 
solve the leftover Hermite differential equation via a series expansion. Im- 
posing boundary conditions leaves only Hermite polynomials as acceptable 
solutions. 

Having gone through the standard solution outlined above, students of 
quantum mechanics greatly appreciate the elegance and economy of the 
alternative treatment of the harmonic oscillator potential using raising and 
lowering operators. We will review this operator treatment in this chapter, 
since similar ideas of factorizing the Hamiltonian play a crucial role in using 
supersymmetry to treat general one-dimension potentials. 

For the operator treatment, we consider the shifted simple harmonic 
oscillator Hamiltonian 

- h 2 d L  1 1 
H=--- + -mw2x2 - -tuJ , 

2rndx2 2 2 

This shift by a constant energy $t.J is rather trivial, but as we shall see 
later, is consistent with the standard discussion of unbroken supersymmetry 
in which the ground state is taken to be at zero energy. Define the raising 
and lowering operators at and a as follows: 

at G(x- --) A d  , a E(s+ --) A d  . (2.9) rnw dx mw dx 

It is easy to check that the commutator [a,at] is unity, and the shifted 
harmonic oscillator Hamiltonian is given by 

H = atahw . 
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For any eigenstate ll)(x) of fi with eigenvalue &, it follows that at@ and 
all, are also eigenstates with eigenvalues E + Aw and E - AW respectively. 
The proof is straightforward since [H,at] = a t h  and [H,a] = - u b .  
Consequently, 

Ha'll) = ( U t f i  - U t h ) l l )  = (E + tiW)U+ll) , 
Hall) = ( U H  - a b ) l l )  = (E - Aw)ull) . (2.10) 

This shows how at and a raise and lower the energy eigenvalues. Since H is 
bounded from below, the lowering process necessarily stops at the ground 
state $ J O ( X )  which is such that a@o(x) = 0. This means that the ground 
state energy of fi is zero, and the ground state wave function is given by 

ti dll)o 
X q J O  + -- = 0 .  mw dx 

This first order differential equation yields the solution 

ll)o(x) = N O  exp( -mwx2/2 t i )  , 

in agreement with eq. (2.7). All higher eigenstates are obtained via appli- 
cation of the raising operator at: 

Qn = N,(Ut)"l l ,O , Bn = nAw , (n = 0 , 1 , 2 , .  . .) . (2.11) 

Clearly the simple harmonic oscillator Hamiltonian H has the same eigen- 
functions &, but the corresponding eigenvalues are En = (n  + ;)t i ,  , (n = 
O , l ,  2, .  . .). 
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Problems 

1. Consider the infinite square well potential with V(x) = 0 for 0 < 3: < L 
and V(z) = oo outside the well. This is usuaily the first potential solved 
in quantum mechanics courses! Show that there are an infinite number of 
discrete bound states with eigenenergies En = (n + 1)2h2/8mL2 , (n = 
0,1,2,3, ...), and obtain the corresponding normalized eigenfunctions. Show 
that the eigenfunctions corresponding to different energies are orthogonal. 
Compute the locations of the zeros of &+I and &, and verify that $,,+I 
has exactly one zero between consecutive zeros of &. The eigenfunctions 
are sketched in Fig. 3.2. 

2. Consider a one dimensional potential well given by V = 0 in region 
I [0 < x c af2] , V = VO in region I1 [u/2 < x < u], and V = 00 for 
x < 0 , x > a. We wish to study the eigenstates of this potential as the 
strength VO is varied from zero to infinity. 

(i) What are the eigenvalues En for the limiting cases VO = 0 and VO = 
oo? Measure all energies in terms of the natural energy unit h2n2/2mu2 
for this problem. 

(ii) For a general value of Vo, write down the wave functions in region 
I and region 11, and obtain the transcendental equation which gives the 
eigenenergies. [Note that some of the eigenenergies may be less than VO]. 

(iii) Solve the transcendental equations obtained in part (ii) numerically 
to  determine the two lowest eigenenergies EO and El for several choices of 
Vo. Plot EO and El as functions of VO. 

(iv) Find the critical value VOC for which EO = VOC, and carefully plot 
the ground state eigenfunction &(x) for this special situation. 

3. Using the explicit expressions for the raising operator ut and the ground 
state wave function $o(z), compute the excited state wave functions $1 (x), 
@2(z) and +s(x) for a harmonic oscillator potential. Locate the zeros, and 
verify that $n+l(z) has a node between each pair of successive nodes of 
&(x) for n = 0,1,2.  

4. Consider the one-dimensional harmonic oscillator potential. Using the 
Heisenberg equations of motion for 2: and p, find the time dependence of 
a and ut and hence work out the unequal time commutators [z( t ) ,z( t ' ) ] ,  
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5. Suppose instead of the Bose oscillator, one had a Fermi oscillator i.e. 
where a and at at equal time satisfy the anti-commutation relations 

{ a , a } = O , { a  t t  , a  } = o , ( a , a t } = 1 .  

Using H = (1/2)(aut - atu)tw, work out the eigenvalues of the number 
operator and hence those of H. 



Chapter 3 

Factorization of a General 
Harniltonian 

Starting from a single particle quantum mechanical Hamiltonian 

in principle, all the bound state and scattering properties can be calculated. 
Instead of starting from a given potential V~(X), one can equally well 

start by specifying the ground state wave function &,(x) which is nodeless 
and vanishes at x = f m .  It is often not appreciated that once one knows 
the ground state wave function, then one knows the potential (up to a 
constant). Without loss of generality, we can choose the ground state energy 

of H I  to be zero. Then the Schrodinger equation for the ground state 
wave function @o(x) is 

2 2  
--- @lo f VI(X)@O(X) = 0 , 

2m dx2 

so that 

This allows a determination of the potential VI (x) from a knowledge of its 
ground state wave function. It is now easy to factorize the Hamiltonian as 
follows: 

H I  = AtA , 
15 
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where 
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- A  d + W(X) , At = -- + W(x) . h d  A = - -  6 dx & dx 
This allows us to identify 

ti 
VI(X) = W y x )  - -W’(5) , & 

(3.4) 

(3.5) 

which is the well-known Riccati equation. The quantity W(x) is generally 
referred to as the superpotential in SUSY QM literature. The solution for 
W ( x )  in terms of the ground state wave function is 

This solution is. obtained by recognizing that once we satisfy A& = 0, we 
automatically have a solution to H I &  = AtA& = 0. 

The next step in constructing the SUSY theory related to the original 
Hamiltonian HI is to define the operator Hz = AAt obtained by reversing 
the order of A and At .  A little simplification shows that the operator Hz 
is in fact a Hamiltonian corresponding to a new potential V;L(x): 

(3.7) 
A2 d2 A 

2m dx2 fi H2 = + V2(X) , VZ(X) = W2(2) + -W’(z) . 

The potentials q(x) and Vz(x) are known as supersymmetric partner po- 
tentials. 

As we shall see, the energy eigenvalues, the wave functions and the S- 
matrices of H I  and HZ are related. To that end notice that the energy 
eigenvalues of both HI and H2 are positive semi-definite 2 0) . For 
n > 0, the Schrodinger equation for H I  

H ~ + ~ = A + A &  1) - - E(’)&) (3.8) 

implies 

Similarly, the Schrodinger equation for H2 
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implies 

H1(At$iZ)) = AtAAt&) = Eh2)(At$i2)) . (3.11) 

From eqs. (3.8)-(3.11) and the fact that Eil) = 0, it is clear that the 
eigenvalues and eigenfunctions of the two Hamiltonians HI and H2 are 
related by (n = 0,1 ,2 ,  ...) 

(3.13) 

@n+l ( l )  = [EF)]-1/2At$i2) . (3.14) 

Notice that if ( I,&?) of HI (Hz) is normalized then the wave func- 
tion ?+!$I ($ill) in eqs. (3.13) and (3.14) is also normalized. Further, 
the operator A(At) not only converts an eigenfunction of Hl(H2) into an 
eigenfunction of Hz(H1) with the same energy, but it also destroys (creates) 
an extra node in the eigenfunction. Since the ground state wave function 
of H I  is annihilated by the operator A, this state has no SUSY partner. 
Thus the picture we get is that knowing all the eigenfunctions of H1 we can 
determine the eigenfunctions of H2 using the operator A ,  and vice versa 
using At we can reconstruct all the eigenfunctions of H1 from those of HZ 
except for the ground state. This is illustrated in Fig. 3.1 . 

The underlying reason for the degeneracy of the spectra of HI and H2 
can be understood most easily from the properties of the SUSY algebra. 
That is we can consider a matrix SUSY Hamiltonian of the form ' 1  

0 H2 ' (3.15) 

which contains both H1 and H2. This matrix Hamiltonian is part of a 
closed algebra which contains both bosonic and fermionic operators with 
commutation and anti-commutation relations. We consider the operators 

Q = [ :  :] (3.16) 

(3.17) 
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E"' ___ E'Z' 
I 

0 

Fig. 3.1 Energy levels of two (unbroken) supersymmetric partner potentials. The action 
of the operators A and At are displayed. The levels are degenerate except that Vl has 
an extra state at zero energy. 

in conjunction with H .  The following commutation and anticommutation 
relations then describe the closed superalgebra sZ( 1/ 1): 

P , Q I  = IH,Qtl=O, 
{Q,Qt) = H { Q , Q ) = { Q t , Q t ) = O .  (3.18) 

The fact that the supercharges Q and Qt commute with H is responsible 
for the degeneracy in the spectra of HI and Hz. The operators Q and Qi  
can be interpreted as operators which change bosonic degrees of freedom 
into fermionic ones and vice versa. This will be elaborated further below 
using the example of the SUSY harmonic oscillator. There are various ways 
of classifying SUSY QM algebras in the literature. One way is by counting 
the number of anticommuting Hermitian generators Q i , i  = l , . . . , N  so 
that an N extended supersymmetry algebra would have 



19 

When N = 2M, we can define complex supercharges: 

The usual SUSY would be an N = 2 SUSY algebra, with 

QI + i Q 2  

fi & =  

Summarizing, we have seen that if there is an exactly solvable potential 
with at least one bound state, then we can always construct its SUSY 
partner potential and it is also exactly solvable. In particular, its bound 
state energy eigenstates are easily obtained by using eq. (3.13). 

Let us look at a well known potential, namely the infinite square well 
and determine its SUSY partner potential. Consider a particle of mass m 
in an infinite square well potential of width L: 

V(x) = 0 ,  O L X S L ,  
0 0 ,  -00 < x < 0 , x  > L .  (3.20) - - 

The normalized ground state wave function is known to be 

(3.21) 

and the ground state energy is 

Subtracting off the ground state energy so that the Hamiltonian can be 
factorized, we have for H1 = H - EO that the energy eigenvalues are 

and the normalized eigenfunctions are 

O < x < L .  (n + 1)nx 
L ’  = ( 2 / ~ ) ’ / ~ s i n  

(3.22) 

(3.23) 

The superpotential for this problem is readily obtained using eq. (3.6) 

W(x) = --J=ZCOt(nx/L) A n  , (3.24) 



20 Factorixation of a Genernl Hamiltonian 

v,(x)-2 cosec*x 

Fig. 3.2 The infinite square well potential V = 0 of width s and its partner potential 
v = 2 cosec2z in units ti = 2m = 1 

and hence the supersymmetric partner potential V2 is 

tL27r2 

2mL2 
vz(x> = -[2 cosec2(m/L) - 11 . (3.25) 

The wave functions for HZ are obtained by applying the operator A to the 
wave functions of H I .  In particular we find that the normalized ground and 
first excited state wave functions are 

(3.26) 
Thus we have shown using SUSY that two rather different potentials 

corresponding to HI and H2 have exactly the same spectra except for the 
fact that HZ has one fewer bound state. In Fig. 3.2 we show the supersym- 
metric partner potentials VI and V2 and the first few eigenfunctions. For 
convenience we have chosen L = T and A = 2m = 1. 

Supersymmetry also allows one to relate the reflection and transmission 
coefficients in situations where the two partner potentials have continuous 
spectra. In order for scattering to take place in both of the partner poten- 
tials, it is necessary that the potentials V192 are finite as x -+ --oo or as 
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x + +oo or both. Let us define 

W ( x  + koo) = W* . (3.27) 

Then it follows that 

v1,2 + w: as z + f o o .  (3.28) 

Let us consider an incident plane wave eikx of energy E coming from 
the direction x + -m. As a result of scattering from the potentials 
Vi,~(z) one would obtain transmitted waves Tl,2(k)eik" and reflected waves 
Rl,z(k)e-ikx". Thus we have 

+(1'2)(k,x + -00) 

+('J)(k',x + +oo) + ~ ~ , 2 e ~ ~ ' ~  , (3.29) 
+ eikx + R1,2e-ikx , 

where k and k' are given by 

k = ( E  - W!)'l2 , k' = ( E  - W;)ll2 . (3.30) 

SUSY connects continuum wave functions of HI and Hz having the same 
energy analogously to what happens in the discrete spectrum. Thus using 
eqs. (3.13) and (3.14) we have the relationships: 

= e i k x  + ~ ~ ~ - i k ~  N [ ( - i k  + W-)e ikx  + (ik + W-)e - ikxR2]  , 
T l e i k ' x  = N[(- ik'  + W+)e""'T2] , (3.31) 

where N is an overall normalization constant. On equating terms with the 
same exponent and eliminating N ,  we find: 

(3.32) 

A few remarks are in order at this stage. 
(1) Clearly IR1I2 = IR2I2 and lT1I2 = IT2I2, that is the partner potentials 
have identical reflection and transmission probabilities. 
( 2 )  &(TI) and R2(T2) have the same poles in the complex plane except 
that Rl(T1) has an extra pole at k = -iW-. This pole is on the positive 
imaginary axis only if W- < 0 in which case it corresponds to a zero energy 
bound state. 
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(3) For the special case W+ = W-, we have Tl(k) = T*(k). 
(4) When W- = 0, then Rl(k) = -Rz(k). 

It is clear from these remarks that if one of the partner potentials is 
a constant potential (i.e. a free particle), then the other partner will be 
of necessity reflectionless. In this way we can understand the reflectionless 
potentials of the form V ( s )  = A sech2as which play a critical role in un- 
derstanding the soliton solutions of the Korteweg-de Vries (KdV) hierarchy 
which we will discuss later. Let us consider the superpotential 

W ( z )  = A tanh ax . (3.33) 

The two partner potentials are 

h 6 = A2 - A ( A  + a-)sech2cux , 
& 

A 
V, = A2 - A ( A  - a---)sech2 cyx & 

For the choice A = a&, V2(z) corresponds to a constant potential and 
hence the corresponding VI is a reflectionless potential. It is worth not- 
ing that VI is h-dependent. One can in fact rigorously show, though it 
is not mentioned in most textbooks, that the reflectionless potentials are 
necessarily h-dependent. 

So far we have discussed SUSY QM on the full line (-m 5 z 5 00). 

Many of these results have analogs for the n-dimensional potentials with 
spherical symmetry. For example, for spherically symmetric potentials in 
three dimensions one can make a partial wave expansion in terms of the 
wave functions: 

1 
$nlm (T ,  834) = ;Rnl (T)L (674) . (3.35) 

Then it is easily shown that the reduced radial wave function R,g satisfies 
the one-dimensional Schrkidinger equation (0 5 T 5 co} 

We notice that this is a Schrodinger equation for an effective one dimen- 
sional potential which contains the original potential plus an angular mo- 
mentum barrier. The asymptotic form of the radial wave function for the 
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Z’th partial wave is 

(3.37) 
1 R(T, I )  + zji;[S’(k’)eiyr - (-l)’e-zk’7 , 

where S‘ is the scattering function for the E‘th partial wave, i.e. Si(k) = 
eibl(k) and 6 is the phase shift. 

For this case we find the relations: 

W+ - ik’ si (k’) = ( w+ + i k , )  Si(k’)  (3.38) 

Here W+ = W ( r  -+ 00). Note that, in this case, W and the potential are 
related by 

3.1 Broken Supersymmetry 

We have seen that when the ground state wave function of H I  is known, then 
we can factorize the Hamiltonian and find a SUSY partner Hamiltonian 
H2. Now let us consider the converse problem. Suppose we are given a 
superpotential W(z). In this case there are two possibiKties. The candidate 
ground state wave function is the ground state for H I  or H2 and can be 
obtained from: 

By convention, we shall always choose W in such a way that amongst 
HI , H2 only H1 (if at all) will have a normalizable zero energy ground 
state eigenfunction. This is ensured by choosing W such that W ( s )  is 
positive(negative) for large positive(negative) 2. This defines HI to have 
fermion number zero in our later formal treatment of SUSY. 

If there are no normalizable solutions of this form, then HI does not 
have a zero eigenvalue and SUSY is broken. Let us now be more precise. A 
symmetry of the Hamiltonian (or Lagrangian) can be spontaneously broken 
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if the lowest energy solution does not respect that symmetry, as for example 
in a ferromagnet, where rotational invariance of the Hamiltonian is broken 
by the ground state. We can define the ground state in our system by a 
two dimensional column vector: 

(3.42) 

For SUSY to be unbroken requires 

QlO >= &+I0 >= 010 > . (3.43) 

Thus we have immediately from eq. (3.18) that the ground state energy 
must be zero in this case. For all the cases we discussed previously, the 
ground state energy was indeed zero and hence the ground state wave func- 
tion for the matrix Hamiltonian can be written: 

(3.44) 

where $t)(s) is given by eq. (3.40). 
If we consider superpotentials of the form 

W ( z )  =gzn,  (3.45) 

then for n odd and g positive one always has a normalizable ground state 
wave function (this is also true for g negative since in that case we can 
choose W ( z )  = -gzn). However for the case n even and g arbitrary, there 
is no candidate matrix ground state wave function that is normalizable. In 
this case the potentials Vl and Vz have degenerate positive ground state 
energies and neither Q nor Qt annihilate the matrix ground state wave 
function as given by eq. (3.42). 

Thus we have the immediate result that if the ground state energy of 
the matrix Hamiltonian is non-zero then SUSY is broken. For the case 
of broken SUSY the operators A and At no longer change the number of 
nodes and there is a 1-1 pairing of all the eigenstates of HI and H2. The 
precise relations that oce now obtains are: 

EA2) = Et )  > 0, n = 0,1,2,  ... (3.46) 

(3.47) 
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(3.48) 

while the relationship between the scattering amplitudes is still given by eqs. 
(3.32) or (3.38). The breaking of SUSY can be described by a topological 
quantum number called the Witten index which we will discuss later. Let 
us however remember that in general if the sign of W ( z )  is opposite as we 
approach infinity from the positive and the negative sides, then SUSY is 
unbroken, whereas in the other case it is always broken. 

Given any nonsingular potential v(z) with eigenfunctions $ ~ ~ ( z )  and 
eigenvalues En (n = 0,1,2,  ...), let us now enquire how one can find the 
most general superpotential W ( s )  which will give v(z) up to an additive 
constant. To answer this question consider the Schrodinger equation for 
V(2) :  

-#’/ + P(Z)(j = €# , (3.49) 

where E is a constant energy to be chosen later. For convenience, and 
without loss of generality, we will always choose a solution #(z) of eq. 
(3.49) which vanishes at x = -m. Note that whenever E corresponds to 
one of the eigenvalues En, the solution #(z) is the eigenfunction $ ~ ~ ( z ) .  If 
one defines the quantity W, = -#’/# and takes it to be the superpotential, 
then clearly the partner potentials generated by W,#, are 

where we have used eq. (3.49) for the last step. The eigenvalues of V,(,, 
are therefore given by 

En(,) = En - c . (3.51) 

One usually takes E to be the ground state energy EO and (j to be the ground 
state wave function $o(z), which makes Eo(,) = 0 and gives the familiar 
case of unbroken SUSY. With this choice, the superpotential 

Web) = -$,;/$,o 

is nonsingular, since $o(z) is normalizable and has no nodes. The partner 
potential Vz(,f has no eigenstate at zero energy since Ao@o(z) = Id/& + 
W,-,(X)]$,O(Z) = 0; however, the remaining eigenvalues of Vz(,) are degener- 
ate with those of Vl(4). 
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Let us now consider what happens for other choices of c, both below 
and above the ground state energy Eo. For 6 < Eo, the solution 4(z) 
has no nodes, and has the same sign for the entire range --oo < x < 
+ao. The corresponding superpotentia1 W+(z) is nonsingular. Hence the 
eigenvalue spectra of V,(,) and V2(+) are completely degenerate and the 
energy eigenvalues are given by eq. (3.51). In particular, Eo(,) = EO - E is 
positive. Here, W+ has the same sign at  2 = foo, and we have the case of 
broken SUSY. For the case when E is above Eo, the solution 4 ( x )  has one 
or more nodes, at which points the superpotential W ( z )  and consequently 
the supersymmetric partner potential V2(+) is singular. Although singular 
potentials have been discussed in the literature, we will not pursue this 
topic further here. 

As discussed earlier, for SUSY to be a good symmetry, the operators Q 
and Qt must annihilate the vacuum. Thus the ground state energy of the 
super-Hamiltonian must be zero since 

Witten proposed an index to determine whether SUSY is broken in super- 
symmetric field theories. The Witten index is defined by 

A = Tr(-l)F , (3.52) 

where the trace is over all the bound states and continuum states of the 
super-Hamiltonian. For SUSY QM, the fermion number n F  5 F is defined 
by $(l - ng) and we can represent (-l)F by the Pauli matrix 03. If we 
write the eigenstates of H as the vector: 

(3.53) 

then the f corresponds to  the eigenvalues of ( - l )F  being f l .  For our 
conventions the eigenvalue +1 corresponds to H I  and the eigenvalue -1 
corresponds to H2. Since the bound states of H I  and HZ are paired, except 
for the case of unbroken SUSY where there is an extra state in the bosonic 
sector with E = 0 we expect for the quantum mechanics situation that 
A = 0 for broken SUSY and A = 1 for unbroken SUSY. In the general field 
theory case, Witten gives arguments that in general the index measures 
N+(E = 0) - N - ( E  = 0). In field theories the Witten index needs to be 
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regulated to be well defined so that one considers instead (a = l/lcT) 

A(p) = Tr(-1fFe-OH , (3.54) 

(3.55) 

which for SUSY quantum mechanics becomes 

A(8) = Tr[e-BH1 - e-BH2] . 

After calculating the regulated index one wants to take the limit p + 0. 
In field theory it is quite hard to determine if SUSY is broken non- 

perturbatively, and thus SUSY quantum mechanics became a testing ground 
for different methods to understand non-perturbative SUSY breaking. In 
the quantum mechanics case, the breakdown of SUSY is related to the ques- 
tion of whether there is a normalizable solution to the equation QlO >= 
010 > which implies 

(3.56) 

As we said before, if this candidate ground state wave function does not 
fall off fast enough at foo ,  then Q does not annihilate the vacuum and 
SUSY is spontaneously broken. Let us show using a trivial calculation that 
for two simple polynomial potentials the Witten index does indeed provide 
the correct answer to the question of SUSY breaking. Let us start from 
eq. (3.54). We represent (-l)F by u3 and we realize that the limit p + 0 
corresponds to the classical limit since T + 00. Thus we can replace the 
quantum trace by an integration over classical phase space so that 

(3.57) 

Expanding the term proportional to 03 in the exponent and taking the 
trace we obtain 

A (p)  = / [ ~ ] ~ - a [ p 2 ~ z + W 2 / 2 ] s i n h (  W' (s) /2) . (3.58) 

tends to 0, so that practically We are interested in the regulated index as 
we need to evaluate 

~ ( p >  = [ - I ~ - B ( P ' / ~ + W ' ~ ~ I ( P W ' ( ~ ) / ~ )  . (3.59) J ';? 
If we directly evaluate this integral for any potential of the form W ( x )  = 
gz2"+'(g > 0), which leads to a normalizable ground state wave function, 
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then all the integrals are gamma functions and we explicitly obtain A = 1. 
If instead W ( x )  = gx2n so that the candidate ground state wave function 
is not normalizable then the integrand becomes an odd function of x and 
therefore vanishes. Thus we see for these simple cases in quantum mechanics 
that the Witten index coincides with the one obtained by the direct method. 

3.2 SUSY Harmonic Oscillator 

In Chap. 2 we reviewed the operator treatment of the harmonic oscillator. 
Here we will first recapitulate those results using scaled variables before 
generalizing to the SUSY extension of the harmonic oscillator. We will 
also phrase our discussion in terms of Dirac notation where we talk about 
state vectors instead of wave functions. We will introduce the Fock space 
of boson occupation numbers where we label the states by the occupation 
number n. This means instead of P and q as the basic operators, we instead 
focus on the creation and annihilation operators a and at. Using slightly 
different notation, we rewrite the Hamiltonian for the harmonic oscillator 
as 

p 2  1 2 2  ? i = - + - m w q .  
2m 2 

(3.60) 

We next rescale the Hamiltonian in terms of dimensionless coordinates and 
momenta x and p. We put 

(3.61) h 
2mw 3c = HtLw , q = (-)% , P = ( 2 m h ) ' / 2 p  . 

Then 

H = p  2 +-p x 2  [ x , p ] = i .  (3.62) 

Now we introduce rescaled creation and annihilation operators by (compare 
eq. (2.9)) 

(3.63) X X at = - -ip. 
2 

a = - + i p ,  
2 

Then 

[a,at] = 1 ,  " , a ]  = -a ,  " ,a+]  = at , 
1 
2 H = N + - .  N = at,, (3.64) 
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The ground state is defined by 

a10 >= 0 , (3.65) 

which leads to a first order differential equation for the ground state wave 
function in the Schrodinger picture. The n particle state (which is the n'th 
excited wave function in the coordinate representation) is then given by: 

at In>= -lo> . m (3.66) 

For the case of the SUSY harmonic oscillator one can rewrite the opera- 
tors Q (@) as a product of the bosonic operator a and a fermionic operator 
$. Namely we write Q = a$t and Qt = at$ where the matrix fermionic 
creation and annihilation operators are defined via: 

c i . ' =c7 -= (1  0 0  o ) .  

(3.67) 

(3.68) 

+ and $t obey the usual algebra of the fermionic creation and annihilation 
operators discussed in detail in Appendix A, namely, they obey the anti- 
commutation relations 

W + , i }  = 1 f {it,@} = {ICtlffq = 0 l (3.69) 

where { A ,  B }  E AB + BA, as well as obeying the commutation relation 

The SUSY Hamiltonian can be rewritten in the form 

(3.70) 

(3.71) 

The effect of the last term is to remove the zero point energy. 
The state vector can be thought of as a matrix in the Schrodinger picture 

or as the state Ina,nf > in this Fock space picture. Since the fermionic 
creation and annihilation operators obey anti-commutation relations, the 
fermion number is either zero or one. As stated before, we will choose the 
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ground state of HI to have zero fermion number. Then we can introduce 
the fermion number operator 

(3.72) 

Because of the anticommutation relation, nf  can only take on the values 
0 and 1. The action of the operators a ,  a t ,  $, $t in this Fock space are then: 

alnb, n f  > = - 1, n f  > , $1.6, n f  >= (716, nf - 1 > , 
a+Jnb,n f  > = 1nb + 1,nf > , $tJnb,nf >= )nb,nf + 1 > . 

(3.73) 

We now see that the operator Qi  = a$t has the property of changing a 
boson into a fermion without changing the energy of the state. This is the 
boson-fermion degeneracy characteristic of all SUSY theories. 

For the general case of SUSY QM, the operator a gets replaced by A 
in the definition of Q,  Qt,  i.e. one writes Q = A$t and Qt = At$. The 
effect of Q and Qt are now to relate the wave functions of HI and H2 which 
have fermion number zero and one respectively but now there is no simple 
Fock space description in the bosonic sector because the interactions are 
non-linear. Thus in the general case, we can rewrite the SUSY Hamiltonian 
in the form 

d2 
dx2 

H = (-- + W 2 ) I  - [$,$t]W’. (3.74) 

This form will be useful later when we discuss the Lagrangian formulation 
of SUSY QM in Appendix A. 

3.3 Factorization and the Hierarchy of Hamiltonians 

In a previous section we found that once we know the ground state wave 
function corresponding to a Hamiltonian H I ,  we can find the superpotentid 
Wl(x) from eq. (3.6). The resulting operators A1 and A! obtained from 
eq. (3.4) can be used to factorize Hamiltonian H I .  We also know that the 
ground state wave function of the partner Hamiltonian H2 is determined 
from the first excited state of HI via the application of the operator A l .  
This allows a refactorization of the second Hamiltonian in terms of W2 
which can be determined from the ground state wave function of H2. The 
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partner of this refactorization is now another Hamiltonian H3. Each of the 
new Hamiltonians has one fewer bound state, so that this process can be 
continued until the number of bound states is exhausted. Thus if one has 
an exactly solvable potential problem for H I ,  one can solve for the energy 
eigenvalues and wave functions for the entire hierarchy of Hamiltonians 
created by repeated refactorizations. Conversely if we know the ground 
state wave functions for all the Hamiltonians in this hierarchy, we can 
reconstruct the solutions of the original problem. Let us now be more 
specific. 
We have seen above that if the ground state energy of a Hamiltonian H1 

is zero then it can always be written in a factorizable form as a product of a 
pair of linear differential operators. It is then clear that if the ground state 
energy of a Hamiltonian H1 is Eil) with eigenfunction then in view 
of eq. (3.3), it can always be written in the form (unless stated otherwise, 
from now on we set A = 2m = 1 for simplicity): 

+ Vl(X) ’ 61 H~ = A ~ A ~  + E:) = -- dx2 
where 

The SUSY partner Hamiltonian is then given by 

+ V2(5) ’ H~ = A ~ A ~ ,  + E:) = -- 61 
dx2 

where 

(3.75) 

(3.76) 

(3.77) 

61 
dx2 Vz(z) = W; + Wl + E:) = K(z) + 2W: = Vl(x) - 2-lnqt) . (3.78) 

We will introduce the notation that in EArn), n denotes the energy level 
and (m) refers to the m’th Hamiltonian H,. In view of eqs. (3.12), (3.13) 
and (3.14) the energy eigenvalues and eigenfunctions of the two Hamiltoni- 
ans H I  and H2 are related by 

Efil = Ei2) , +:) = (E;), - @,1))-1/2Al$f)l . (3.79) 

Now starting from H2 whose ground state energy is E r )  = EIl) one can 
similarly generate a third Hamiltonian If3 as a SUSY partner of HZ since 
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we can write H2 in the form: 

H~ = A ~ A ~  + ~ i l )  = A ~ A ~  + E!~) , (3.80) 

where 

d d d ln$f) -42 = - + WZ(X) , A; = -- + W2(2) , W~(X) = -- dx dx dx (3.81) 

Continuing in this manner we obtain 

where 

In this way, it is clear that if the original Hamiltonian H1 has p ( >  1) 

( p  - l),  then we can always generate a hierarchy of ( p  - 1) Hamiltonians 
Hz, ... H p  such that the m’th member of the hierarchy of Hamiltonians (H,) 
has the same eigenvalue spectrum as H I  except that the first (m - 1) 
eigenvalues of H I  are missing in H,. In particular, we can always write 
(rn = 2,3, . . .p) : 

bound states with eigenvalues En ( 1 )  , and eigenfunctions with 0 5 n 5 

(3.85) 
d2 
dx2 H ,  = - 4 ; ~ ~  + = -- + vm(x) , 

where 

(3.86) 

One also has 
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(3.87) 

In this way, knowing all the eigenvalues and eigenfunctions of H I  we 
immediately know all the energy eigenvalues and eigenfunctions of the hi- 
erarchy of p - 1 Hamiltonians. Further the reflection and transmission 
coefficients (or phase shifts) for the hierarchy of Hamiltonians can be ob- 
tained in terms of R1,Z'l of the first Hamiltonian H1 by a repeated use of 
eq. (3.32). In particular we find 

where k and k' are given by 

k = [E - (W!1))2]1/2, k' = [E - (W+ (1) ) 2 ] 1 f 2  . (3.89) 
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Problems 

1. Let Vl(x) denote an infinite square well of width A in the range 0 5 x 5 
A. Compute the potentials Vm(x) , (m = 1,2,  ...) in the supersymmetric hi- 
erarchy. Show that the energy spectrum of Vm(x) is ELrn) = ( n + v ~ ) ~  , (n  = 
0, 1,2,  ...). Find explicit expressions for the two lowest lying eigenfunctions 
$im) and +im) for rn = 1,2,3.  

2. Consider the superpotential W = ax3(u > 0). Write down the two 
partner potentials and plot them as a function of x. Show that one of them 
is a double well and the other a single well potential. 

3. An acceptable ground state wave function on the half line (0 < r < 00) 

is &,(T) = Ar5e-Or, since it is nodeless and vanishes at r = 0,m. Compute 
and plot the corresponding superpotential W ( r )  and the supersymmetric 
partner potentials Vl(r) and V ~ ( T ) .  Take p = 1 for making graphs. 

4. Consider the superpotential W ( x )  = Ax2 + Bx + C, where A ,  B ,  C are 
positive constants. Is this an example of broken or unbroken supersymme- 
try? Taking the values A = 1/5, B = 1, C = 0, compute and plot the 
partner potentials Vl(x)  and V ~ ( S ) .  

5.  Start from the potential V ( z )  = -12 sech2x (ti = 2m = 1) whose 
eigenspectrum and transmission coefficient have been given in Chap. 2. 
Work out the corresponding superpotential W and hence the corresponding 
family of potentials VZ, &, V4. Using the eigenfunctions and transmission 
coefficient for the potential V ( x )  given above, obtain the same quantities 
for the potentials V2, V3, V4. 



Chapter 4 

Shape Invariance and Solvable 
Potentials 

In Chap. 2 we have reviewed how the one dimensional harmonic oscillator 
problem can be elegantly solved using the raising and lowering operator 
method. Using the ideas of SUSY QM developed in Chap. 3 and an 
integrability condition called the shape invariance condition, we now show 
that the operator method for the harmonic oscillator can be generalized 
to  s whole class of shape invariant potentials (SIPS) which includes all the 
popular, analytically solvable potentials. Indeed, we shall see that for such 
potentials, the generalized operator method quickly yields all the bound 
state energy eigenvalues and eigenfunctions as well as the scattering matrix. 
It turns out that this approach is essentially equivalent to Schrodinger’s 
method of factorization although the language of SUSY is more appealing. 

Let us now explain precisely what one means by shape invariance. If 
the pair of SUSY partner potentials V1,2(2) defined in Chap. 3 are similar 
in shape and differ only in the parameters that appear in them, then they 
are said to  be shape invariant. More precisely, if the partner potentials 
VI,z(z; al) satisfy the condition 

where a1 is a set of parameters, a2 is a function of a1 (say a2 = f(a1)) 
and the remainder R ( a l )  is independent of 2, then Vl(z; a l )  and V2(z; a l )  

are said to  be shape invariant. The shape invariance condition (4.1) is an 
integrability condition. Using this condition and the hierarchy of Hamilto- 
nians discussed in Chap. 3 , one can easily obtain the energy eigenvalues 
and eigenfunctions of any SIP when SUSY is unbroken. 

35 
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4.1 General Formulas for Bound State Spectrum, Wave 
Functions and S-Matrix 

Let us start from the SUSY partner Hamiltonians H1 and H2 whose eigen- 
values and eigenfunctions are related by SUSY. Further, since SUSY is 
unbroken we know that 

~ ! ) ( a 1 )  = 0, @il)(x;al) = Nexp [- 1’ WI(P;~I)~Y] . (4.2) 

We will now show that the entire spectrum of H1 can be very easily ob- 
tained algebraically by using the shape invariance condition (4.1). To that 
purpose, let us construct a series of Hamiltonians H,, s = 1 ,2 ,3  ... . In par- 
ticular, following the discussion of the last chapter it is clear that if HI has 
p bound states then one can construct p such Hamiltonians H I ,  HZ . . . H p  
and the n’th Hamiltonian H, will have the same spectrum as H1 except 
that the first n - 1 levels of H1 will be absent in H,. On repeatedly using 
the shape invariance condition (4.1)’ it is then clear that 

where a, = f8-l (al) i.e. the function f applied s - 1 times. Let us compare 
the spectrum of H, and Hs+l. In view of eqs. (4.1) and (4.3) we have 

Thus H, and H,+1 are SUSY partner Hamiltonians and hence have identical 
bound state spectra except for the ground state of H, whose energy is 

8-1 

E p  = c R ( a k ) .  (4.5) 
k=l 

This follows from eq. (4.3) and the fact that Eil) = 0. On going back 
from H, to etc, we would eventually reach H2 and H1 whose ground 
state energy is zero and whose n’th level is coincident with the ground state 
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of the Hamiltonian Hn. Hence the complete eigenvalue spectrum of I f 1  is 
given by 

We now show that, similar to the case of the one dimensional harmonic 
oscillator, the bound state wave functions $il)(z; al) for any shape invariant 
potential can also be easily obtained from its ground state wave function 
&)(z;al) which in turn is known in terms of the superpotential. This is 
possible because the operators A and At link up the eigenfunctions of the 
same energy for the SUSY partner Hamiltonians H ~ J .  Let us start from 
the Hamiltonian Ha as given by eq. (4.3) whose ground state eigenfunction 

using eq. (3.14) we then find that the n'th state unnormalized energy 
eigenfunction $il) (z; al) for the original Hamiltonian HI (2; al) is given by 

is then given by $o (1) (z;aa) .  On going from Ha to H,-1 to H2 to HI and 

$il'(~; ~ 1 )  oc At($; al)A'(z;  az) ... At (3; an)$:)($; an+l) , (4.7) 

which is clearly a generalization of the operator method of constructing the 
energy eigenfunctions for the one dimensional harmonic oscillator. 

It is often convenient to have explicit expressions for the wave functions. 
In that case, instead of using the above equation, it is far simpler to use 
the identity 

$Al)(z;u1) = A+(z;al)$;21(z;aa) * (4.8) 

Finally, in view of the shape invariance condition (4.1), the relation 
(3.32) between scattering amplitudes takes a particularly simple form 

(4.10) 

thereby relating the reflection and transmission coefficients of the same 
Hamiltonian HI at a1 and a2(= f(a1)). 
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4.2 Strategies for Categorizing Shape Invariant Potentials 

Let us now discuss the interesting question of the classification of various 
solutions to the shape invariance condition (4.1). This is clearly an im- 
portant problem because once such a classification is available, then one 
discovers new SIPs which are solvable by purely algebraic methods. Al- 
though the general problem is still unsolved, two classes of solutions have 
been found so far. In the first class, the parameters a1 and a2 are related 
to  each other by translation (a2 = a1 + a).  Remarkably enough, all well 
known analytically solvable potentials found in most textbooks on nonrel- 
ativistic quantum mechanics belong to this class. In the second class, the 
parameters a1 and a2 are related to each other by scaling (a2 = q a l ) .  

4.2.1 Solutions Involving lhnslation 

We shall now point out the key steps that go into the classification of SIPs in 
case a2 = a1 +a. Firstly, one notices the fact that the eigenvalue spectrum 
of the Schrodinger equation is always such that the n'th eigenvalue En for 
large n obeys the constraint 

A/n2 5 En 5 Bn2 , (4.11) 

where the upper bound is saturated by the infinite square well potentia1 
while the lower bound is saturated by the Coulomb potential. Thus, for 
any SIP, the structure of E n  for large n is expected to be of the form 

E , - ~ C , n " ,  - 2 L a 5 2 .  (4.12) 
a 

Now, since for any SIP, En is given by eq. (4.6), it follows that if 

(4.13) 

then 

- 3 5 p 5 1 .  (4.14) 

How does one implement this constraint on R(ak)?  While one has no 
rigorous answer to  this question, it is easily seen that a fairly general factor- 
izable form of W ( z ;  a l )  which produces the above k-dependence in R(ak) 
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is given by 

where 

a1 = (kl, k2 ...) , a2 = (kl +a, k2 + P...) , (4.16) 

with ci, a, /3 being constants. Note that this ansatz excludes all potentials 
leading to En which contain fractional powers of n. On using the above 
ansatz for W in the shape invariance condition eq. (4.1), one can obtain the 
conditions to be satisfied by the functions gi(z), h;(z), fi(z). One important 
condition is of course that only those superpotentials W are admissible 
which give a square integrable ground state wave function. The shape 
invariance condition takes a simple form if we choose a rescaled set of 
parameters m = (ml ,  m2,. - +m,) related by translation by an integer so 
that 

h ( x ,  m )  = Vl(2, m - 1) + R(m - 1) . (4.17) 

In terms of the superpotential W one then obtains the differential-difference 
equation 

W2(x,rn + 1) - W2(x,m) + W’(z,m + 1) + W’(z,m) = L(m) - L(m + 1) 
(4.18) 

with R(m) = L(m) - L(m + 1). If we insert the ansatz eq. (4.15) into eq. 
(4.18), we find that for n = 2 there are only two solutions. More precisely, 
choosing 

W(x;a1) = (kl + c1)91(z) + (k2 + c2)92(z) + f l (2)  , (4.19) 

we find the two solutions 

W(x; A ,  B) = Atan(az + zo) - B cot(az + 50) , A ,  B > 0 , (4.20) 

and 

W ( r ; A , B )  = Atanhar - Bcothar , A > B > 0 ,  (4.21) 

where 0 5 x 5 n/2a and +(x = 0) = +(z = n/2a) = 0. For the simplest 
possibility of n = 1, one has a number of solutions to the shape invariance 
condition (4.1). In Table 4.1, we give expressions for the various shape 
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Table 4.1 Shape invariant potentials with (n=1,2) in which the parameters a2 and a1 

are related by translation (a2 = a1 + p).  The energy eigenvalues and eigenfunctions 
are given in units h = 2m = 1. The constants A,B,a ,w,l  are all taken 2 0. Unless 
otherwise stated, the range of potentials is -m < x 5 o0,O 5 T 5 00. For spherically 
symmetric potentials, the full wave function is vnlm(r, B,d) = vnl ( T ) v m ( B ,  4)- 

Shifted oscillator iwx - b 4.12 (x - $)z  - w/2 W 

3-D oscillator g w r  - +.12r2 + y - ( 1  + 3/2)w 1 

Coulomb &-? f 9 + 4(le+l)l  1 1+1 _ -  e. + I 1 + 1  

Morse A - B exp (-ax) A2 + B2 exp(-2ax) A 
-2E(A + 4 2 )  exp(-ax) 

Scarf I1 A tanhax + Bsech a x  A' + ( B z  - A2 - Aa)sechzax A 
(hyperbolic) +B(2A + a)sech a x  tanh a x  

Rosen-Morse I1 A tanh a x  + B/A A2 + B2/A2 - A(A -k alsech2ax A 
(hyperbolic) (B < A 2 )  + 2B'tanh ax' 

Eckart -A coth CYT + B/A A2 + B2/A2 - 2 8  coth ar A 
(B > A') +A(A - a)cosech2ar 

Scarf I 
(trigonometric) 

Poschl-Teller Acoth - B cosechar A2 + ( B z  + A2 + Aa)cosech'aar A 

A tan a x  - E sec ax 
(-in 5 a x  5 in) 

-Az + (A2 + Bz  - Aa)sec2ax 
-B(2A - a) t anax  sec a x  

A 

(A B )  -E(2A + a) coth ar cosech OT 

Rosen-Morse I -A cot a x  - B/A A(A - a)cosec2ax + 2B cot a x  A 
(trigonometric) (0 < a x  5 T )  -A2 + B2/A2 

invariant potentials VI (x), superpotentials W ( x ) ,  parameters a1 and a2 and 
the corresponding energy eigenvalues EL'). Except for first 3 entries of this 
table, W ( x  + 20) is also a solution. Until recently, these were the only 
solutions found. However a recent careful study by Cariiiena and Ramos of 
the differential-difference eq. (4.18) has found solutions for arbitrary n 2 3 
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Note that the wave functions for the first four potentials (Hermite and Laguerre 
polynomials) are special cases of the confluent hypergeometric function while the rest 
(Jacobi polynomials) are special cases of the hypergeometric function. Fig. B.l of 
Appendix B shows the inter-relations between all the SIPS. In the table s1 = s - n + a , 
92 = 8 - n - a , s 3  = a - n - 8 , 3 4  = -(s + n + a). 

a2 Eigenvalue EL1) Variable y Wave function +n(g) 

assuming a solution of the form: 

Inserting this ansatz into the differential-difference equation, Cariiiena and 
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Ramos find 

j = 1  \ 

(4.23) 

Since the coefficients of the powers of each mi have to be constant, they 
obtain the following system of first order differential equations to be satis- 
fied, 

n 

i= 1 

n 

g i + g j x g i = c j ,  V ~ E { I , . . . , ~ } ,  (4.24) 
i= 1 

(4.25) 

where ci,  i E (0, 1, . . . , n} are real constants. 

for the gi’s, 
The solution of the system can be found by using barycentric coordinates 

(4.26) 

(4.28) 

where j E (1 ,  . . . , n}. Note that not all of the functions v j  are now linearly 
independent, but only n - 1 since cy=l vj = 0. 

Taking the sum of equations (4.24) one obtains that ng,, satisfies the 
Riccati equation with constant coefficients 

I ngcm + (ngcrn12 = n C c m  

Using equations (4.27) and (4.24) one finds 
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1 
n 
-Vjng,m f C j  - Ccm . 

= -(g; - 9; + g; - g; + . . * + 9; - g; + . . . + g; - g;) 
- - 

The system of equations (4.24) and (4.25) becomes 

ngI., + (ngcm12 = nccm > 

W; + wjngc,, = cj - cC,, V j  E (2, . . . , T I } ,  

9; + gongem = GI . 
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(4.29) 
(4.30) 
(4.31) 

These equations have known solutions and one can therefore reconstruct 
the superpotential from 

n 

91 (z) = gcrn(2) - c V i b )  , (4.32) 
i=2 

gj(z) = gcm(z) + uj (2 )  t V j  E (2, . . * 1 n}. (4.33) 

The interested reader is referred to the article by Cariiiena and Ramos for 
details. In general the answer for the superpotential can be given in terms 
of ratios of sums of sines and cosines or ratios of sums of sinh and cosh. It 
is suspected, however, that the solutions found for n 2 3 can be mapped 
into the solutions for n = 2 or n = 1 by a suitable change of parameters. 

Let us now give an example of how the elements of the table are con- 
structed. Consider the superpotential given in eq. (4.20) with 20 = 0. The 
corresponding partner potentials are 

& (2; A, B)  = - ( A  + B)2 + A(A - a) sec2 az + B(B - a)cosec2az, 

Vz(z; A ,  B )  = - ( A  + B)2 + A(A + a) sec2 cyz + B(B + a)cosec2az . (4.34) 

Vl and Vz are often called Poschl-Teller I potentials in the literature. They 
are shape invariant partner potentials since 

V~(Z; A,  B )  = V~(Z; A + a, B + a) + ( A  + B + ~ c Y ) ~  - ( A  + B ) 2  , (4.35) 

and in this case 

{GI} = (A,B);  ( ~ 2 )  = ( A  + a,B + a) ,R(al )  = ( A  + B + ~ c Y ) ~  - ( A  + B)2.  
(4.36) 
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In view of eq. (4.6), the bound state energy eigenvalues of the potential 
V , ( q  A,  B )  are then given by 

n 
&l) = x R ( a k )  = ( A + B + ~ T M x ) ~  - ( A + B ) 2  . (4.37) 

k=l 

The ground state wave function of Vl(x; A, B )  is calculated from the super- 
potential W as given by eq. (4.20). We find 

&)(z; A ,  B )  o( (cosoz)S(sinaz)X , (4.38) 

where 

s = A / o  ; X = B / o  . (4.39) 

The requirement of A, B > 0 that we have assumed in eq. (4.20) guarantees 
that $ t ) ( x ;  A ,  B )  is well behaved and hence acceptable as z + 0, n/2a. 
Using this expression for the ground state wave function and eq. (4.8) 
one can also obtain explicit expressions for the bound state eigenfunctions 
$il)(z; A,  B ) .  In particular, in this case, eq. (4.8) takes the form 

+ Atanox - Bcotax)  Qn-l(x;{az}) . (4.40) 
d 

{ a l l )  = (--& 
On defining a new variable 

9 = 1 - 2 s i n  2 ox, 

and factoring out the ground state state wave function 

$ n b ;  { a l ) )  = $o(Y; { a l } ) R n ( ~ ;  { a l l )  7 

with $0 being given by eq. (4.38), we obtain: 

(4.41) 

(4.42) 

d 
R n ( y ; A , B )  =o(1 - y 2 ) - R n - 1 ( y ; A + ~ , B + ~ )  

dY 
+ [ ( A  - B )  - ( A  + B + a)y]Rn-l(y;  A + IY, B + a) . (4.43) 

It is then clear that Rn(y; A, B )  is proportional to the Jacobi Polynomial 
P,”ib so that the unnormalized bound state energy eigenfunctions for this 
potential are 

n ( Y )  . (4.44) X / 2  1 + y ) s / 2 p X - 1 / 2 , 8 - ’ / 2  $ n ( y ; A , B )  = (1 - Y )  ( 
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The procedure outlined above has been applied to  all known SIPS and the 
energy eigenfunctions $F'(g) have been obtained in Table 4.1, where we 
dm give the variable a, for each case. 

Several remarks are in order at this time. 

(1) The Poschl-Teller I and I1 superpotentials as given by eqs. (4.20) 
and (4.21) respectively have not been included in Table 4.1 since 
they are equivalent to  the Scarf I (trigonometric) and Poschl-Teller 
superpotentials 

WI = Atanax-Bsecaa : ,  
WZ = Acothar  - Bcosech ar , (4.45) 

by appropriate redefinition of the parameters. For example, one 
can write 

(4.46) 

which is just the Poschl-Teller I1 superpotential of eq. (4.21) with 
redefined parameters. 

(2) Throughout this section we have used the convention of h = 2771 = 
1. It would naively appear that if we had not put A = 1, then 
the shape invariant potentials as given in Table 4.1 would all be 
h dependent. However, it is worth noting that in each and every 
case, the f i  dependence is only in the constant multiplying the a:- 
dependent function so that in each case we can always redefine the 
constant multiplying the function and obtain an f i  independent po- 
tential. For example, corresponding to the superpotential given by 
eq. (4.20), the f i  dependent potential is given by (2m = 1) 

CYT B - A  ar 
2 2 2 ) tanh( -) - (-) coth( -) , A + B  

2 
Wz = (- 

VI(Z; A, B )  = W 2  - hW' = - ( A  + B)2  + A ( A  + ha)  sec2 ax 
+ B ( B  + ha)cosec2ax . (4.47) 

On redefining 

A(A + ha)  = a ; B(B  + A a )  = b , (4.48) 

where a, b are A independent parameters, we then have an h inde- 
pendent potential. 
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(3) In Table 4.1, we have given conditions (like A > 0, B > 0) for 
the superpotential (4.20), so that $hl) = Nexp (- s" W(y)dy) is 
an acceptable ground state ener y eigenfunction. Instead one can 
also write down conditions for $f2) = N exp (s" W(y)dy) to be an 
acceptable ground state energy eigenfunction. 

(4) It may be noted that the Coulomb as well as the harmonic oscillator 
potentials in n-dimensions are also shape invariant potentials. 

(5) Are there any other shape invariant potentials apart from those 
satisfying the ansatz eq. (4.15)? We will find below that there is 
another ansatz based on scaling which leads to new SIPs whose 
potential is however only known via a Taylor series expansion. 

(6) No new solutions (apart from those in Table 4.1) have been obtained 
so far in the case of multi-step shape invariance and when a2 and 
a1 are related by translation. 

(7) What we have shown here is that shape invariance is a sufficient 
condition for exact solvability. But is it also a necessary condi- 
tion? The answer is clearly no. Firstly, it has been shown that 
the solvable Natanzon potentials are in general not shape invari- 
ant. However, for the Natanzon potentials, the energy eigenvalues 
and wave functions are known only implicitly. Secondly there are 
various methods which we will discuss later of finding potentials 
which are strictly isospectral to  the SIPs. These are not SIPs but 
for all of these potentials, unlike the Natanzon case, the energy 
eigenvalues and eigenfunctions are known in a closed form. 

Before ending this subsection, we want to remark that for the SIPs (with 
translation) given in Table 4.1, the reflection and transmission amplitudes 
Rl(k) and T1(k) (or phase shift & ( k )  for the three-dimensional case) can 
also be calculated by operator methods. Let us first notice that since for 
all the cases a2 = a1 + a,  hence R1 ( I c ;  a l )  and TI ( I c ;  a l )  are determined for 
all values of a1 from eqs. (4.9) and (4.10) provided they are known in a 
finite strip. For example, let us consider the shape invariant superpotential 

W = n t a n h x ,  (4.49) 

where n is a positive integer (1,2,3,,. .).  The two partner potentials 

Vl(z; n)  = n2 - n(n -t l)sech2s , 
VZ(s;n) = n2 - n(n - l)sech2x , (4.50) 
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are clearly shape invariant with 

a l = n ,  a z = n - 1 .  (4.51) 

On going from VI to V2 to V, etc., we will finally reach the free particle 
potential which is reflectionless and for which T = 1. Thus we immediately 
conclude that the series of potentials V1, V2, ... are all reflectionless and the 
transmission coefficient of the reflectionless potential Vl(x; n) is given by 

(n - ik)(n - 1 - ik) ...( 1 - ik) 
T1(k,n) = (-n - ik)(-n + 1 - ik).*.(-l- ik) 

(4.52) 

The acattering amplitudes for the Coulomb potential and the potential 
corresponding to W = A tanh x + Bsech 2 have also been obtained in this 
way. 

There is, however, a straightforward method for calculating the scat- 
tering amplitudes by making use of the n'th state wave functions as given 
in Table 4.1. In order to impose boundary conditions appropriate to the 
scattering problem, two modifications of the bound state wave functions 
have to be made: (i) instead of the parameter n labelling the number of 
nodes, one must use the wave number k' so that the asymptotic behavior 
is exp(ik'z) as x + 00 (ii) the second solution of the Schrodinger equa- 
tion must be kept (it had been discarded for bound state problems since it 
diverged asymptotically). In this way the scattering amplitude for all the 
SIPS of Table 4.1 have been calculated. 

4.2.2 Solution8 Involving Scaling 

From 1987 until 1993 it was believed that the only shape invariant potentials 
were those given in Table 4.1 and that there were no more shape invariant 
potentials. However, starting in 1993, a huge class of new shape invariant 
potentials have been discovered. It turns out that for many of these new 
shape invariant potentials, the parameters a2 and a1 are related by scaling 
(a2 = qal, 0 < q < 1) rather than by translation, a choice motivated by the 
recent interest in q-deformed Lie algebras. We shall see that many of these 
potentials are reflectionless and have an infinite number of bound states. 
So far, none of these potentials have been obtained in a closed form but are 
obtained only in a series form. 
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Let us consider an expansion of the superpotential of the from 
co 

(4.53) 

and further let 

a2 =qa1, o <  q <  1 * (4.54) 

This is slightly misleading in that a reparameterization of the form a2 = 
qal, can be recast as a: = a: + a merely by taking logarithms. However, 
since the choice of parameter is usually an integral part of constructing a 
SIP, it is in practice part of the ansatz. For example, we will construct below 
potentials by expanding in a1 , a procedure whose legitimacy and outcome 
are clearly dependent on our choice of parameter and hence reparameter- 
ization. We shall see that, even though the construction is non-invariant, 
the resulting potentials will still be invariant under redefinition of al .  On 
using eqs. (4.53) and (4.54) in the shape invariance condition (4.1), writing 
R(a1) in the form 

(4.55) 
j = O  

and equating powers of a1 yields 

fl-I 

j=l 

where 

T,  &/(l - qn), d, = (1 - qn)/(l + 4,) , 71. = 1,2,3, ... . (4.58) 

This set of linear differential equations is easily solvable in succession to 
give a general solution of eq. (4.1). Let us first consider the special case 
go(z) = 0, which corresponds to & = 0. The general solution of eq. (4.57) 
then turns out .to be 

n-1 

gn(z> = dn / dz [ rn  - c gj(z)gn-j(z)] 7 71 = 172, ... (4.59) 
j=1 



Strategies for Categorixing Shape Invariant Potentials 49 

where without loss of generality we have assumed the constants of integra- 
tion to be zero. We thus see that once a set of Tn are chosen, then the 
shape invariance condition essentially fixes the g n ( ~ )  (and hence W(x;  a l ) )  

and determines the shape invariant potential. Implicit constraints on this 
choice are that the resulting ground state wave function be normalizable 
and the spectrum be sensibly ordered which is ensured if R(qnal) > 0. 

The simplest case is r1 > 0 and T,  = 0,n 2 2. In this case eq. (4.59) 
takes a particularly simple form 

g n ( z )  = pn2n--1  , (4.60) 

where 

and hence 

For a2 = qal, this gives 

which corresponds to a self-similar W .  It may be noted here that instead 
of choosing r,  = 0,n 1 2, if any one rn (say r j )  is taken to be nonzero then 
one again obtains self-similar potentials and in these instances the results 
obtained from shape invariance and self-similarity are entirely equivalent 
and the self-similarity condition (4.63) turns out to be a special case of the 
shape invariance condition. 

It must be emphasized here that shape invariance is a much more general 
concept than self-similarity. For example, if we choose more than one T, 

to be nonzero, then SIPS are obtained which are not contained within the 
self-similar ansatz. Consider for example, r, = 0,n 3 3. Using eq. (4.59) 
one can readily calculate all the gn(x ) ,  of which the first three are 

(4.64) 
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Notice that in this case W ( x )  contains only odd powers of x .  This makes 
the potentials V1,2(2) symmetric in x and also guarantees unbroken SUSY. 
The energy eigenvalues follow immediately from eqs. (4.6) and (4.55) and 
are given by (0  < q < 1) 

where rl = dlrlal,I'2 = d2r2aq. The unnormalized ground state wave 
function is 

(1) 2 2  x 4  
$o ( x ; a l )  = exp[--(rl + r2) + $d2r: + 2d3r1r2 + d&) + o ( x S ) ]  . 2 

(4.66) 
The wave functions for the excited states can be recursively calculated from 
the relation (4.8). 

We can also calculate the transmission coefficient of this symmetric 
potential (k = lc') by using the relation (4.10) and the fact that for this SIP 
a2 = qal. Repeated application of the relation (4.10) gives 

[ilc - W(o0, a1)][ik - W(o0, a2)l ...[ ik - W(o0, an)] 
Tl (k; an+l) T1(lc;al) = [ik + W(m,a1)][ ik  + W(o0, a d ]  ...[ ik + W(o0,an)l 

(4.67) 
where 

W ( o o , U j )  = @' - E y  . (4.68) 

Now, as n + oo,an+l = qnal + O(0 < q < 1) and, since we have 
taken g o ( x )  = 0,  one gets W(x;a,+l) + 0. This corresponds to a free 
particle for which the reflection coefficient R1 (k; a l )  vanishes and hence the 
transmission coefficient of this symmetric potential is given by 

(4.69) 

The above discussion keeping only r1 , r;! # 0 can be readily generalized 
to an arbitrary number of nonzero rj .  The energy eigenvalues for this case 
are given by (rj djr ja:)  

(4.70) 
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All these potentials are also symmetric and reflectionless with TI as given 
by eq. (4.69). The limits q + 0 and q + 1 of all these potentials are 
simple and quite interesting. At q = 1, the solution of the shape invariance 
condition (4.1) is the standard one dimensional harmonic oscillator with 
W ( z )  = &/2 while in the limit q -+ 0 the solution is the Rosen-Morse 
superpotential corresponding to the one soliton solution given by 

W ( s )  = G t a n h ( & z )  . (4.71) 

Hence the general solution as obtained above with 0 < q < 1 can be re- 
garded as the multi-parameter deformation of the hyperbolic tangent func- 
tion with q acting as the deformation parameter. It is also worth noting 
that the number of bound states increase discontinuously from just one at 
q = 0 to infinity for q > 0. Further, whereas for q = 1 the spectrum is 
purely discrete, for q even slightly less than one, we have the discrete as 
well as the continuous spectra. 

Finally, let us consider the solution to the shape invariance condi- 
tion (4.1) in the case when & # 0. From eq. (4.56) it then follows 
that go(z) = &x/2 rather than being zero. One can again solve the 
set of linear differential equations (4.56) and (4.57) in succession yield- 
ing g1(s),g2(z), ... . Further, the spectrum can be immediately obtained 
by using eqs. (4.6) and (4.55). For example, in the case of an arbitrary 
number of nonzero Rj (in addition to &), it is given by 

(4.72) 

which is the spectrum of a q-deformed harmonic oscillator. Unlike the usual 
q-oscillator where the space is noncommutative but the potential is normal 
(u2z2), in our approach the space is commutative, but the potential is 
deformed, giving rise to a multi-parameter deformed oscillator spectrum. 

An unfortunate feature of the new SIPS obtained above is that they 
are not explicitly known in terms of elementary functions but only as a 
Taylor series about z = 0. Questions about series convergence naturally 
arise. Numerical solutions pose no serious problems. As a consistency 
check, Barclay et al. have checked numerically that the Schrodinger equa- 
tion solved with numerically obtained potentials indeed has the analytical 
energy eigenvalues given above. From numerical calculations one finds that 
the superpotential and the potential are as shown in Figs. 4.1 and 4.2 
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Fig. 4.1 Self-similar superpotentials W(z) for various values of the deformation pa- 
rameter q. The curve labeled H.O. (harmonic oscillator) corresponds to the limiting 
case of 9 = 1. Note that only the range 2 2 0 is plotted since the superpotentials w e  
antisymmetric: W(z) = -W(-2 ) .  

corresponding to the case when T I  # 0,rn = 0,n 2 2. 
A very unusual new shape invariant potential has also been obtained 

corresponding to r1 = 1, r2 = -1, rn = 0,  n 2 3 (with q = 0.3 and a = 0.75) 
which is shown in Fig. 4.3. In this case, whereas VI(Z) is a double well 
potential, its shape invariant partner potential V2(2) is a single well. 

It is worth pointing out that even though the potentials are not known 
in a closed form in terms of elementary functions, the fact that these u e  
reflectionless symmetric potentials can be used to constrain them quite 
strongly. This is because, if we regard them as a solution of the K-dV 
equation at time t = 0, then being reflectionless, it is well known that as 
t + f o o ,  such solutions will break up into an infinite number of solitons 
of the form 2k:sech2kix. On using the fact that the KdV solitons obey an 
infinite number of conservation laws corresponding to mass, momentum, 
energy ..., one can immediately obtain constraints on the reflectionless SIPS 
obtained above. 



Stmtegies for Categoriring Shape Invariant Potentials 53 

3 

2 

1 

0 

-1 
0 2 4 6 8 10 

X 

Fig. 4.2 
superpotentials shown in Fig. 4.1 

Self-similar potentials Vi(z) (symmetric about x = 0) corresponding to the 

4.2.3 Other Solutions 

So far we have obtained solutions where a2 and a1 are related either by 
scaling or by translation. Are there shape invariant potential where a2 and 
a1 are neither related by scaling nor by translation? It turns out that there 
are other possibilities for obtaining new shape invariant potentials. Some 
of the other possibilities are: a2 = quy with p= 2,3, ...; a2 = qal/(l  +pal) 
and cyclic SIPS. Let us first consider the case when 

a2 = qa, 2 9 (4.73) 

i.e p = 2. Generalization to arbitrary p is straightforward. On using eqs. 
(4.53) and (4.55) one obtains the set of equations 

2m m 

gim(z) + C gj(z)g2rn-j(%) = qm C gj(z)gm-j(X) - qmA(z) + ~ 2 m  7 

gkm+l(z) + C gj(z)g2m+l-j(~) = ~ 2 m + 1  9 

j = O  j = O  
(4.74) 

(4.75) 
2m+l 

j = O  
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Fig. 4.3 A double well potential Vl(z) (solid line) and its single well supersymmetric 
partner Vz(z) (dotted line). Note that these two potentials are shape invariant with a 
scaling change of parameters. The energy levels of Vl(z) are clearly marked. 

which can be solved in succession and one can readily calculate all the 
g n ( z ) .  For example, when only RI and Rz are nonzero, the first three g’s 
are 

The corresponding spectrum turns out to be (EA”(a1) = 0) 

(4.76) 

(4.77) 

The q + 0 limit of these equations again correspond to the Rosen-Morse 
potential corresponding to  the one soliton solution. One can also consider 
shape invariance in multi-steps along with this ansatz thereby obtaining 
deformations of the multi-soliton Rosen-Morse potential. 

One can similarly consider solutions to the shape invariance condition 
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(4.1) for the case 

(4.78) 

when 0 < q < 1 and pal << 1, so that one can expand (1 + pal)-’ in 
powers of al.  For example, when only R1 and R2 are nonzero, then one 
can show that the first two nonzero gn are 

and the energy eigenvalue spectrum is (I$’) = 0) 

Generalization to the case when several Rj are nonzero as well as shape 
invariance in multi-steps is straight forward. 

Finally, let us consider cyclic SIPs. In this case, the SUSY partner 
Hamiltonians correspond to a series of SIPs which repeat after a cycle of p 
(p = 2,3,4 ,...) iterations, i.e. in this case 

f”(a1) = a1 . (4.81) 

Note that here a2 = f(al),aa = f2(al)  etc. It has been shown that such po- 
tentials have an infinite number of periodically spaced eigenvalues. Again, 
in these cases the potentials are only known formally as a Taylor series 
except when p=2 when the potential is known in a closed form. 

We would like to close this subsection with several comments. 

(1) Just as we have obtained q-deformations of the reflectionless Rosen- 
Morse and harmonic oscillator potentials, can one also obtain de- 
formations of the other SIPs given in Table 4.1? 

(2) Have we exhausted the list of SIPs? We now have a significantly 
expanded list but it is clear that the possibilities are far from ex- 
hausted. In fact it appears that there are an unusually large number 
of shape invariant potentials, for all of which the whole spectrum 
can be obtained algebraically. How does one classify all these po- 
tentials? Do these potentials include all solvable potentials? 
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(3) 

(4) 

For those SIPs where a2 and a1 are not related by translation, 
the spectrum has so far only been obtained algebraically. Can one 
directly solve the Schrodinger equation for these potentials? 
There is a fundamental difference between those shape invariant 
potentials for which a2 and a1 are related by translation and other 
choices (like a2 = qal) .  In particular, whereas in the former case 
the potentials are explicitly known in a closed form in terms of 
simple functions, in the other cases they are only known formally 
as a Taylor series. Secondly, whereas in the latter case, all the SIPs 
obtained so far have infinite number of bound states and are either 
reflectionless or have no scattering, in the former case one has also 
many SIPs with nonzero reflection coefficient. 

4.3 Shape Invariance and Noncentral Solvable Potentials 

We have seen that using the ideas of SUSY and shape invariance, a number 
of potential problems can be solved algebraically. Most of these potentials 
are either one dimensional or are central potentials which are again essen- 
tially one dimensional but on the half line. It may be worthwhile to  enquire 
if one can also algebraically solve some noncentral but separable potential 
problems. As has been shown recently, the answer to the question is yes. 
It turns out that the problem is algebraically solvable so long as the sepa- 
rated problems for each of the coordinates belong to the class of SIPs. As 
an illustration, let us discuss noncentral separable potentials in spherical 
polar coordinates. 

In spherical polar coordinates (T,  8, $), the Schrodinger equation is sep- 
arable for a potential of the form 

(4.82) 

where Vl ( r ) ,  V2(8) and V3($) are arbitrary functions of their argument. The 
equation for the wave function $(r,  8,$)  is 

= (E-V)+ .  (4.83) 
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It is convenient to write $(r, 8,+) as 

(4.84) 

Substituting eq. (4.84) in eq. (4.83) and using the standard separation of 
variables procedure, one obtains the following equations for the functions 
K(d),H(0) and R(r)  : 

1 + [v2(8) + (m2 - z) cosec28] H ( e )  = i 2 H ( e )  , &H 
dtI2 

-- 

(4.85) 

(4.86) 

(4.87) 

where m2 and l 2  are separation constants. 
The three Schrodinger equations given by (4.85), (4.86) and (4.87) may 

be solved algebraically by choosing appropriate SIPS for V3 ($), V2 (8)  and 

Generalization of this technique to noncentrd but separable potentials 
in other orthogonal curvilinear coordinate systems as well as in other di- 
mensions is quite straightforward. 

vl (TI. 
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Problems 

1. Consider the ground state wave function $o(T) = Ar3e-r2/r i .  (i) Taking 
ro = 1, plot 1()D(r) versus T.  (ii) Compute and graph the superpotential 
W ( r )  and the partner potentials V ~ ( T )  and Vz(r). (iii) Show that V ~ ( T )  is 
shape invariant and find its eigenvalues. (iv) Compute and plot the first 
and second excited states of V, ( T ) .  (v) Compute and plot the ground and 
first excited states of Vz(t-). 

2. Make a list of all known symmetric shape invariant potentials in which 
the change of parameters is a translation. Give the corresponding superpo- 
tentials, and the energies of the three lowest eigenstates. Take units with 
A = 2 m = 1 .  

3. The Hulthbn potential 

is widely used in atomic physics. (i) Plot the potential as a function of 
the dimensionless parameter T / U .  (ii) Show that the Hulthh potential can 
be recast in the form of the Eckart potential given in the list of shape 
invariant potentials. (iii) What are the energy eigenvalues of the HulthCn 
potential? 





Chapter 5 

Charged Particles in External Fields 
and Supersymmetry 

5.1 Spinless Particles 

To obtain the Schrbdinger equation for a particle of charge q in external 
electric and magnetic fields we must first find the Lagrangian and Hamil- 
tonian from which the equation of motion with a Lorentz force law 

dv' 4 1  
m - = q ( E + - v ' x Z ) ,  dt C (5 .1)  

can be obtained. Following standard textbook methods such as that found 
in Goldstein, the appropriate Lagrangian is 

L = -(mv'+ 1 9 - 2  - A )  - - q2 
2m C 2mc2 

where A and + are the vector and scalar gauge potentials. The momentum 
conjugate to 2 is 

Using the standard Legendre transformation from the variables {z, 2 )  to 
{z, p} we obtain 

1 
H = 3.8- L = -@- !A)" + q(#l . (5.4) 2m c 

Using the correspondence principle 

A -  a 
at @+ TV , H -+ ih- , 
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we obtain the Schrodinger equation: 

a$ 
dt  ah- = H$ , (5.5) 

where 
1 R -  Q -  H = -( -;V - -A)2 + 44 2m z c 

In a uniform magnetic field B' the vector potential is given by 

(5.6) 
1 -  A= -B x F ' ,  
2 

and the time independent Schrodinger equation becomes 

(5.7) 1 - -V2 - -B Q - -  . L + -(g q2 x q2 + q$ 11, = E$ . 2mc 8mc2 

Here 
4 R -  L = F x  y v .  

The first term in the potential energy is the interaction of a magnetic field 
with a magnetic dipole of form 

a 

4 -  G =  - L .  
2mc 

The second term is a term quadratic in ?and leads to  the second order 
Zeeman effect for atoms in external magnetic fields. This Hamiltonian 
does not give the correct spectrum for atoms in an external magnetic field 
since it ignores the intrinsic spin of the electron. 

5.2 Non-relativistic Electrons and the Pauli Equation 

To describe electrons non-relativistically, Pauli introduced the concept of 
intrinsic spin and extended the wave function to include a spin quantum 
number m,. Wave functions are now defined on a product space of orbital 
angular momentum and intrinsic angular momentum or spin. The repre- 
sentations of angular momentum for spin 1/2 are best described in terms 
of the Pauli matrices d = 2;, with components: 
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We have 

s'. s'= (3'4 O ) = s(s + 1 ) 1 ,  0 314 

63 

(5.10) 

and I is the unit matrix in 2 dimensions 

The spin degrees of freedom are described by the two eigenstates of u3 

(5.11) 
1 
2 

X(ms = *-) = X* ; a3x* = f ~ *  . 
If one is in a central field the wave functions are product wave functions of 
the type 

where the q"(8, d) are the standard spherical harmonics. For discussing 
supersymmetry it is useful to also introduce the raising and lowering oper- 
ators: 

(; ;) . (5.131 (; ;) , o- = - ( D l  - iu2)=  
1 
2 

1 
2 

o+ = - (o1 4- ioz) = 

If one now has an electron in a purely magnetic field there is an additional 
interaction of the form (for the electron we set q = -e with e > 0) 

(5.14) 

now acting on a two component wave function. Note that the electron has 
an intrinsic magnetic moment 

eA 
2mc 

1 pCle I =  - = 0.9273 x 10-20erg/gauss = 1 Bohr magneton. (5.15) 

A gyromagnetic ratio of g = 2 results naturally from an N = 1 super- 
symmetry of the Pauli equation and also from the Dirac equation. The 
Pauli Hamiltonian is explicitly (at g = 2) 

H = - - ( ~ ' + ; A )  1 e - 2  + = B . z  eh -. 
2m 

(5.16) 
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This equation already has an N = 1 supersymmetry if we introduce a single 
self-adjoint ( N  = 1) supercharge: 

1 
QI - (g+ :/I) . a ' .  (5.17) 

This is because the Pauli Hamiltonian eq. (5.16) can be written as 

and obviously 

[H,Qil= 0 (5.19) 

When the magnetic field is perpendicular to the motion of the electron, 
there is instead an N = 2 supersymmetry which then relates this problem 
to a 1-D SUSY quantum mechanics problem. There are several ways of 
introducing the N = 2 supersymmetry. The most symmetric form having 
N = 2 supersymmetry is to introduce the complex supercharge 

(5.20) 

which obeys the superalgebra 

Q 2 = 0 ,  { Q , Q t ) = H ~ ,  (5.21) 

where H p  denotes the Pauli Hamiltonian for the special case when the 
motion of the electron is in a plane perpendicular to the magnetic field i.e. 

(5.22) 

The supersymmetry then guarantees that all the positive energy eigenvalues 
of H p  are spin degenerate. These degenerate eigenstates are connected by 
the operators Q and Qt. The Hamiltonians acting on the two subspaces of 
spin up and spin down are AAt and AtA respectively. 

Another way of writing this superalgebra is to write 

(5.23) 
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For this choice of Qi 

{ Q a , Q b }  = H P P  , [Hp,QO] = 0 ,  a,b  = 1,2 . (5.24) 

To find exact solutions to the Pauli equation, it is useful to exploit 
gauge invariance to figure out simple choices of the vector potential for 
the external magnetic field which will lead to an exactly solvable potential 
problem. Since B, (z, y) = % - %, different choices of A" differing by 
a total gradient lead to the same magnetic field. By being clever we can 
reduce the problem trivially to a one dimensional one (without using polar 
coordinates) and then use our previous results on shape invariant potentials. 

First to simplify things we will choose our dimensional units such that 
( R  = 2m = e = c = 1). Then the Pauli Hamiltonian for the motion of a 
charged particle in a plane (here z - 21) in an external magnetic field in the 
direction perpendicular to that plane (here z direction) becomes 

H P  = ( p z  + -4,)' + ( P ~  + A,)2 + Bz03 . (5.25) 

The Hamiltonian eq. (5.25) has an additional 0 ( 2 )  x 0 (2)  symmetry coming 
from a3 and an O(2) rotation in the A' - A2 plane, where A' = p ,  + 
A,, A2 = pa, + A, . One can analyze the solvable potentials most simply 
in an asymmetric gauge where we choose one of A,,  A, to be zero, and the 
other to be a function of the opposite variable. i.e. 

(5.26) 

so that 

This will lead to three different possible solvable potential problems, whereas 
a symmetric choice of gauge leads naturally only to the case of the uniform 
field which is essentially a harmonic oscillator as we shall show below. In 
the asymmetric gauge the Pauli Hamiltonian takes the form 

H P  = (Pz + w Y ) ) 2  + p i  - W'(21)03 * (5.27) 

Since this H p  does not depend on z, hence the eigenfunction 4 can be 
factorized as 

(5.28) 
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where k is the eigenvalue of the operator p ,  (-00 5 k 5 00). The Schrodinger 
equation for $(y) then takes the form 

(5.29) 

where a(= kl) is the eigenvalue of the operator c3. Thus we have reduced 
the problem to that of SUSY in one dimension with superpotential W(y)+k 
where W(y) must be independent of k. This constraint on W(y) strongly 
restricts the allowed forms of shape invariant W(y) for which the spectrum 
can be written down algebraically. In particular, from our previous dis- 
cussion of the one-dimensional Schrodinger equation we find that the only 
allowed forms are 
(i) W(y) = wcy + c1 
(ii) W(y) = a tanhy + c1 
(iii) W(y) = a tany + c1, 

for which W(y) can be written in terms of simple functions and for which 
the spectrum can be written down algebraically. In particular, for case (i), 

- 5 5 y 5 
(iv) W(y) = c1 - c2 exp (-9) 

W(Y) = wcy + c1 , (5.30) 

which corresponds to  the case of uniform magnetic field. For this case, the 
energy eigenvalues are known as Landau levels, and are given by 

E , = ( 2 n + 1 + o ) w c ,  n = 0 , 1 , 2  ... . (5.31) 

Note that the ground state and all excited states are infinite-fold degenerate 
since En does not depend on k which assumes a continuous sequence of value 
(-00 5 k 5 00). 

The magnetic field corresponding to the other choices of W are 
(ii) B = -a sech'y 
(iii)B = -a sec2 y (-5 5 y 5 5) 
(iv) B = c2 exp (-y) 
and as mentioned above, all these problems can be solved algebraically. 

Let us now consider the same problem in the symmetric gauge. We 
choose 
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where p2 = x2 + y2 and wc is a constant. The corresponding magnetic field 
B, is then given by 

&(z, y) = &A, - a,&! = -2wcf(p) - w c p f ' ( p )  ' (5.33) 

In this case the Pauli Hamiltonian can be shown to take the form 

d 2 d L  H = -( -t -@) + W y f 2  - 2wc fL, - (2% f + wcpf')a3 , (5.34) 

where L, is the z-component of the orbital angular momentum operator. 
Clearly the corresponding Schrodinger problem can be solved in the cylin- 
drical coordinates p,Cp. In this case, the eigenfunction $(p,Cp) can be fac- 
torized as 

@ ( P ,  4) = R(p)eirn+/fi t (5.35) 

where m = 0, f l ,  f 2 ,  ... is the eigenvalue of L,. In this case the Schrodinger 
equation for R(p) takes the form 

where a(= *l) is the eigenvalue of the operator a3. There is one shape 
invariant potential ( f ( p )  = 1) for which the spectrum can be written down 
algebraically. This case again corresponds to the famous Landau level prob- 
lem i.e. it corresponds to the motion of a charged particle in the 2 - y plane 
and subjected to a uniform magnetic field (in the symmetric gauge) in the 
%-direction. The energy eigenvalues are 

En = 2(n + m+ I m I)uc , n = 0 , 1 , 2  ... , (5.37) 

so that all the states are again infinite-fold degenerate. It is worth noting 
that nonuniform magnetic fields can also give this equi-spaced spectrum. 
However, they do so only for one particular value of m while for other values 
of m, the spectrum is in general not equi-spaced. 

The fact that in this example there are infinite number of degenerate 
ground states with zero energy can be understood from the Aharonov- 
Casher theorem which states that if the total flux defined by 

@ = B,dzdy = n + c: (0 5 c: < 1) , s 
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then there are precisely n - 1 zero energy states. Note that in our case 0 
is infinite. 

5.3 Relativistic Electrons and the Dirac Equat ion  

The free relativistic electron obeys a 4-component wave equation known as 
the Dirac equation. In units where (A  = c = 1) the equation can be written 

( iyPaP - m) $ = 0 . (5.38) 

The 71 are 4 x 4 matrices, known as the Dirac gamma matrices and they 
obey the anti-commutation relations: 

{yP, y”} = y f y  + y”y’1 = 2gP”I . (5.39) 

The relativistic metric we use is 

gP” = diagonal(1,-1,-1,-1) . (5.40) 

The objects 

transform as generators of the inhomogeneous Lorentz group and yfi trans- 
forms as a vector under this Lorentz group. To make a scalar out of the 
fields $ one introduces the quantity 

l j  $+yo , (5.41) 

and then one can show that $11, transforms like a scalar under Lorentz 
transformations. The Lagrangian density for the Dirac equation is then 
written as 

L = $(z) (iyV, - m) $(5) . (5.42) 

The standard representation of the gamma matrices is 

where I is the unit matrix, ui are the Pauli matrices and we have used a 
condensed notation that each entry is a 2 x 2 matrix. Another non-covariant 
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way that the Dirac equation is written is 

Here = and 

a -  
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(5.44) 

(5.45) 

One also has 

a; = p2 = I  ; (ai,p> = 0 .  (5.46) 

Therefore the Hamiltonian squared takes on the simple form: 

H2 = -v2 + m 2 .  (5.47) 

We seek plane wave solution of the free Dirac equation of the form: 

$(+I (x, t) = ei(p--Et) u(p, s), s = fl positive energy , 
t) = e--i(p---Et) v(p,s), s = f l  negative energy, 

with the condition that E is positive. The Dirac equation implies 

(Y%, - m )  4% 3) = 0 1 

(YP, + m) V ( P ,  3) = 0 * (5.48) 

In the rest frame of the particle where p” 0 we obtain 

(YO - l)u(m, 0) = 0; (yo + l)v(m, 0) = 0 . (5.49) 

There are two linearly independent u solutions and two d s  which lead to 
the four linearly independent solutions in the rest frame: 

(5.50) 
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the last two corresponding to negative energy solutions. 

that 
To obtain u ( p ,  s) at nonzero three momentum we make use of the fact 

Therefore, if we define 

(5.51) 

(where now in u ( p , s ) ,  p stands for the 4-vector (E,p3), then eq. (5.48) is 
automatically satisfied. 

5.4 SUSY and the Dirac Equation 

We are interested in the case of electrons in the presence of external fields, 
both scalar as well as electromagnetic. For many external field problems, 
the Dirac Hamiltonian can be put in the form (see for example the textbook 
of Thaller) 

(5.52) 

with the following relationships being valid: 

Q ~ M -  = M + Q ~  ; QM+ = M-Q . (5.53) 

When those relationships hold, the square of the Dirac Hamiltonian be- 
comes diagonal and of the form: 

(5.54) 

The Dirac Hamiltonian itself can then be diagonalized and put in the form: 
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showing that the positive and negative energy solutions decouple. Since the 
operators QQt and QtQ are isospectral, the positive and negative eigen- 
values of H axe closely related. Furthermore, if QtQ can be related to the 
Hamiltonian of a solvable SUSY quantum mechanics problem then we will 
be able to solve the Dirac equation exactly. 

We will consider two problems below. First we will consider the Dirac 
equation in 1+1 dimensions with Lorentz scalar potential d(z). Then we 
will consider the Dirac equation in an external electromagnetic field. For 
the scalar probiem, the interaction Hamiltonian is obtained by replacing 

m -+ m + +(z) = +(z) . (5.56) 

The covariant Dirac equation becomes: 

w4&$+, t> - *(z)lcl(z, t )  = 0 , 
which in the non-covariant form corresponds to 

(5.57) 

(5.58) 

with 

Choosing a “supersymmetric” representation of the Q and matrices, 

(5.59) 

this Hamiltonian can be put in the standard form (5.52) with 

Q = p * ~ + i c h ( ~ ) ;  M + = M - = O .  (5.60) 

The spectrum of the Hamiltonian can now be obtained from the spectrum 
of the operators: 

Q+Q = -v2 + a2 + cT. VG , 
Q Q ~  = -v2 + ip2 - ,, . v+ . (5.61) 

If we are in 1+1 dimension, or have a potential which is only a function 
of one variable then this problem gets reduced to understanding solvable 
problems in l-D quantum mechanics. 
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For an electron in an external electromagnetic field the Dirac equation 
is obtained by replacing the ordinary derivative by the gauge covariant 
derivative: 

8, + 8, +ZAP . 
Note that electron charge is -e and we are using units where e = ti = c = 1. 
This gives an interaction term in the Hamiltonian: 

HI  = @fA,.gl, . (5.62) 

In non-covariant form the Dirac Hamiltonian for a particle in a pure mag- 
netic field (A0 = 0, A = A ( 3 )  can be written 

+ +  

H D  = d (p"+ A) + /3m . (5.63) 

Using the standard representation of the matrices alp as given by eqs. 
(5.45) and (5.43) we can cast this Dirac Hamiltonian in the form (5.52) 
with the identification 

Q = Q+ = a'. (p'+ A) ; M& = . (5.64) 

This charge Q (apart from a factor 1/&) is exactly the supercharge for 
the Pauli Hamiltonian eq. (5.17). The square of the Hamiltonian has the 
form: 

Q ~ Q  + m2 
0 

H i =  ( (5.65) 

which (apart from a rescaling and a shift by the rest mass energy m ) has 
on the diagonal two copies of the Pauli Hamiltonian. Thus when we solve 
the Pauli Hamiltonian in an external magnetic field we also determine a 
solution of the corresponding Dirac problem. 

5.6 Dirac Equation with a Lorentz Scalar Potential in 1 + 1 
Dimensions 

The Dirac equation in 1+1 dimension in the presence of a scalar potential 
is interesting because it has been used as a model for polymers such as 
polyacetylene. Purely scalar field theories in 1+1 dimension with quartic 
self interactions have finite energy kink solutions such as those found in the 
Korteweg-de Vries equation discussed elsewhere in this book. 
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The Dirac Lagrangian in 1+1 dimensions with a Lorentz scalar potential 
d(x) is given by 

c = iqywP$ - iJ$d . (5.66) 

Here, the scalar potential d(z) can be looked upon as the static, finite 
energy, kink solution corresponding to the scalar field Lagrangian 

(5.67) 
1 

c g  = $ + W ’ d ( 4  - V(d) . 

The Dirac equation following from eq. (5.66) is 

irp”a$qx, t )  - 4(z)$(x, t )  = 0 . (5.68) 

First let us choose a two dimensional representation of the y matrices to 
directly cast the problem in l-D SUSY form. Then we will use our general 
formalism above to obtain solutions for this case. Let 

$(z, t )  = exp(-iwt)$(z) 7 

so that the Dirac equation reduces to 

We choose 

yo = 0 1  = ( 0 1  o )  , 7’ = im = ( 
O ) , = ($.(.,) $1 (x) 0 -i 

so that we have the coupled equations 

where 
d d 
dx dx A =  - ++(x)  , At = -- +4(x)  . 

We can now easily decouple these equations. We get 

A + A $ ~  = w2$1 , AAt$z = w2& . 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

On comparing with the formalism of SUSY QM, we see that there is 
a supersymmetry in the problem and 4(x) is just the superpotential of 
the Schrodinger formalism. Further $1 and $2 are the eigenfunctions of 
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the Hamiltonians H I  A+A and H2 AAt respectively with the cor- 
responding potentials being V I , ~ ( X )  c$~(x )  d ' ( ~ ) .  The spectrum of 
the two Hamiltonians is thus degenerate except that H l ( H 2 )  has an ex- 
tra state at zero energy so long as d ( z  + f m )  have opposite signs and 

This result could also have been obtained by specializing eq. (5.61 ) to 
one dimension and choosing iP = C$(z) so that the Hamiltonian squared is 
immediately: 

d(S + +m) > O(< 0). 

d2 d4(x) H2 = -- +C$yz!) + 0 3 -  . dx2 dx (5.75) 

Using the results previously obtained for 1-D SUSY QM, we then con- 
clude that for every SIP, there exists an analytically solvable Dirac problem 
with the corresponding scalar potential #(x)  being the superpotential of the 
Schrodinger problem. In particular, using the reflectionless superpotential 
given by 

W ( z )  = n tanh z , (5.76) 

one can immediately construct perfectly transparent Dirac potentials with 
TI bound states. Further, using the results for the SIP with scaling ansatz 
(a2 = qa l )  one can also construct perfectly transparent Dirac potentids 
with an infinite number of bound states. 

We can also solve the scalar Dirac Hamiltonian in higher dimensions as 
long as @ depends on only one coordinate. This has been used as a model of 
spatially dependent valence and conduction band edges of semiconductors 
near the l? and L points in the Brillouin zone. One assumes that one can 
write 

so that on these wave functions (assuming iP = d ( z )  ) one has that eq. 
(5.61) becomes 

dd 
+ # 2  + u 3 - ,  

d2 
dz2 QtQ = k : + k % - -  dz 

(5.78) 
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Thus the eigenvalues for the quantum mechanics problem are related di- 
rectly to 

En = W: - (Icz + ki) . (5.79) 

This problem is discussed in more detail in the book of Junker. 

5.6 Supersymmetry and the Dirac Particle in a Coulomb 
Field 

The Dirac equation for a charged particle in an electromagnetic field is 
given by (e = li = c = 1) 

[i?”(a, + iA,) - m]$ = 0 . (5.80) 

For a central field i.e. A = 0 and Ao(Z,t) = V ( r ) ,  the non-covariant form 
of the equation is 

(5.81) 

For central fields, this Dirac equation can be separated in spherical coor- 
dinates. That is we can find simultaneous eigenstates of the total angular 
momentum JZ  as well as J, and H. If we construct the 4- component wave 
function $J in terms of the two component spinors 4 and x 

. 
2- = H$J = (G*p’+ ~ T T I  + V ) @  . 

8t 

$=[;I 1 

then the two component angular eigenfunctions are: 

(5.82) 

(5.83) 

corresponding to whether j = 1 f 1/2. These solutions satisfy the eigenvalue 
equation: 

* a4!ft 3vm ( J 2  - L2 - 3/4)q5$:2 = - ( I c  + l)q5jz . (5.84) 

where k is an eigenvalue of the operator -(Z. L’ + 1) with the eigenvalues 
k = fl ,  f2, f3, ... and satisfies [ k I =  (j+i). In other words, k = -(j+1/2) 
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for the case j = 1 + 1/2 corresponding to the angular solution q5+ and 
k = j + 1/2 when j = 1 - 1/2 corresponding to the angular solution q5-. 
In terms of these the general solution to the central field problem can be 
written for a given j ,m as 

(5.85) 

To compute the energy levels one only needs to  concentrate on the radial 
equations which are given for example in the text of Bjorken and Drell: 

kG 
r G’(r) + - - (a1 - V ) F  = 0 , 

(5.86) 
kF 
r F’(r) - - - (a2 + V ) G  = 0 , 

where 

a l = m + E ,  a z = m - E ,  (5.87) 

and Gk(F&) is the “large” ( “small7’) component in the non-relativistic limit. 
The radial functions Gk and Fk must be multiplied by the appropriate 
two component angular eigenfunctions to make up the full four-component 
solutions of the Dirac equation as given in eq. (5.85). These coupled 
equations are in general not analytically solvable; one of the few exceptions 
being the case of the Dirac particle in a Coulomb field for which 

2 (5.88) Y V ( r )  = -- , y = Ze . r 
We now show that the Coulomb problem can also be solved algebraically 

by using the ideas of SUSY and shape invariance. To that end, we first note 
that in the case of the Coulomb potential, the coupled equations (5.86) can 
be written in a matrix form as 

Following Sukumar, we now notice that the matrix multiplying 1/r can be 
diagonalized by multiplying it by a matrix D from the left and D-l from 
the right where 

(5.90) 
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On multiplying eq. (5.89) from the left by the matrix D and introducing 
the new variable p = ET leads to the pair of equations 

- m k  
E s  AF = ( - - - )G ,  

A’G = - ( -+ - )P ,  m k  
E S  

where 

( ; ) = D ( ; )  9 

(5.91) 

(5.92) 

and 

(5.93) d S Y  
dP P 8 dP P 8 

+ - .  A = - - -  d s 7  + - , A t = - - - -  

Thus we can easily decouple the equations for P and G thereby obthining 

k2 m2 H ~ ~ A + A P  = ( - - - ) F ,  s2 E2 

k2 m2 - 
s2 E2 

H2G 3 AA+G = (- - -)G . (5.94) 

We thus see that there is a supersymmetry in the problem and H1,2 are 
shape invariant supersymmetric partner potentials since 

H 2 ( P ; S , r )  = H l ( P ; s  + 197) + 7 Y2 - - Y2 * (5.95) 

On comparing with the formalism of Chap. 4 it is then clear that in this 
case 

a 2 = s + 1 ,  a 1 = s ,  R ( a 2 ) = - - -  Y2 Y2 (5.96) 
a; a: ’ 

so that the energy eigenvalues of H I  are given by 

Thus the bound state energy eigenvalues En for Dirac particle in a Coulomb 
field are given by 

(5.98) 
m 

En = , n=0,1,2 ,.... 
11 + 1&11’2 
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It should be noted that every eigenvalue of HI is also an eigenvalue of H2 
except for the ground state of H I  which satisfies 

A@ = 0 ==+ &(p)  = p' exp ( -yp /s )  . (5.99) 

Using the formalism for the SIP as developed in Chap. 4, one can also 
algebraically obtain all the eigenfunctions of F and G. 

Notice that the spectrum as given by eq. (5.98) only depends on I Ic 1 
leading to a doublet of states corresponding to k = I  k I and k = - 1 k I for 
all positive n. However, for n = 0, only the negative value of k is allowed 
and hence this is a singlet state. 

5.7 SUSY and the Dirac Particle in a Magnetic Field 

Let us again consider the Dirac equation in an electromagnetic field as given 
by eq. (5.80) but now consider the other case when the vector potential 
is nonzero but the scalar potential is zero i.e. A0 = 0,A # 0. As shown 
earlier, the energy eigenvalues for this problem can be directly related to 
those of the Pauli equation and thus knowing those solutions we can also 
solve for the Dirac equation in a given magnetic field. To obtain the wave 
functions, however, it is useful to use a slightly different approach which 
comes to the same conclusions about the energy eigenvalues. 

It was shown by Feynman and Gell-Mann and Laurie Brown that the 
solution of the four component Dirac equation in the presence of an ex- 
ternal electromagnetic field can be generated from the solution of a two 
component relativistically invariant equation. In particular, if It, obeys the 
two component equation 

[($+ A)2 + m2 + Z.(8 + i2)]11, = ( E  + A0)'11, , (5.100) 

then the four component spinors that are solutions of the massive Dirac 
equation are generated from the two component It, via 

(5.101) 

Thus, in order to solve the Dirac equation, it is sufficient to solve the much 
simpler two-component eq. (5.100) and then generate the corresponding 
Dirac solutions by the use of eq. (5.101). In the special case when the 
scalar potential Ao (and hence 2) vanishes, the two-component equation 
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then has the canonical form of the Pauli equation describing the motion of 
a charged particle in an external magnetic field. If further, m = 0 and the 
motion is confined to two dimensions, then the Pauli eq. (5.100) exactly 
reduces to eq. (5.25). Further, since 

( H D ) ~  = [&($+ = H ~ a u i i  , (5.102) 

hence, there is a supersymmetry in the massless Dirac problem in external 
magnetic fields in two dimensions as discussed earlier. We can now immedi- 
ately borrow all the results of the section on the Pauli equation. In partic- 
ular, it follows that if the total Aux @(= J B,dzdg)=n + e(0 5 e < 1) then 
there are precisely n - 1 zero modes of the massless Dirac equation in two 
dimensions in the background of the external magnetic field B ( B  B,) .  
Further, in view of eqs. (5.100) and (5.101) we can immediately write down 
the exact solution of the massless Dirac equation in an external magnetic 
field in two dimensions in all the four situations discussed in See. 5.2 when 
the gauge potential depended on only one coordinate (say y). Further us- 
ing the results of that section, one can also algebraically obtain the exact 
solution of the Dirac equation in a uniform magnetic field in the symmetric 
gauge when the gauge potential depends on both z and y. 

Even though there is no SUSY, exact solutions of the Pauli and hence 
the Dirac equation are also possible in the massive case. On comparing the 
equations as given by (5.100) (with A0 = 0,g = 0 )  and (5.25) it is clear 
that the exact solutions in the m,assive case are simply obtained from the 
massless case by replacing E2 by z2 - m2. Summarizing, we conclude that 
the exact solutions of the massive (as well as the massless) Dirac equation in 
a.n external magnetic field in two dimensions can be obtained algebraically 
if the magnetic field B(= Bz)  has any one of the following four forms 

(1) B = constant , 
(2) B = -a sech2y , 
(3) B = -asec2y (-?r/2 5 y 5 z/2) , 
(4) B = -422 exp(-y) . 

Further, in the uniform magnetic field case, the solution can be obtained 
either in the asymmetric or in the symmetric gauge. 
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Problems 

1. Obtain the spectrum of the Pauli equation in case the gauge potential is 

A,(x, y) = 0 , Az(x, y) = W(y) = A tan ay + c . 

2. Obtain the energy eigenvalues of the Dirac equation in 1 + 1 dimensions 
in case the Lorentz scalar potential 4(z) is 

+(x) = m(x) = a[@(x) - @(-x)] . 

3. Obtain the band edge energies of the Dirac equation in 1 + 1 dimensions 
in case the Lorentz scalar potential 4(x) is the periodic potential 

snx  cnx  
dn x 4(x) = m 

where snx,  cnx, and d n x  are Jacobi elliptic functions. 

4. Obtain the energy levels for the massless Dirac equation in a harmonic 
oscillator potential in 3 + 1 dimensions when there is an equal admixture 
of both the scalar and the vector potentials. 



Chapter 6 

Isospect ral Harniltonians 

In this chapter, we will describe how one can start from any given one- 
dimensional potential VI (2) with n bound states, and use supersymmetric 
quantum mechanics to construct an n-parameter family of strictly isospec- 
tral potentials Vi(Xl, XZ,. . . , A,; x) i.e., potentials with eigenvalues, reflec- 
tion and transmission coefficients identical to those for Vl(x). The fact 
that such families exist has been known for a long time from the inverse 
scattering approach, but the Gelfand-Levitan approach to finding them is 
technically much more complicated than the supersymmetry approach de- 
scribed here. Indeed, with the advent of SUSY QM, there is a revival of 
interest in the determination of isospectral potentials. In Sec. 6.1 we de- 
scribe how a one parameter isospectral family is obtained by first deleting 
and then re-inserting the ground state of VI(Z) using the Darboux proce- 
dure. The generalization to obtain an n-parameter family is described in 
Sec. 6.2. These isospectral families are closely connected to multi-soliton 
solutions of nonlinear integrable systems. In Sec. 6.3 we review the connec- 
tion between inverse scattering theory and finding multisoliton solutions to 
nonlinear evolution equations. We then show that the n-parameter families 
of reflectionless isospectral potentials provide surprisingly simple expres- 
sions for the pure multi-soliton solutions of the Korteweg-de Vries (KdV) 
and other nonlinear evolution equations and thus provide a complementary 
approach to inverse scattering methods. 

81 
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6.1 One Parameter Family of Isospectral Potentials 

In this section, we describe two approaches for obtaining the one-parameter 
family V1 (A1; z) of potentials isospectral to a given potential Vl(z). One 
way of determining isospectral potentials is to consider the question of 
the uniqueness of the superpotential W ( z )  in the definition of the partner 
potential to  Vl(z), namely Vz(z). In other words, what are the various 
possible superpotentials @(z) other than W ( z )  satisfying 

h ( z )  = W ( z )  + k'(z)  . (6.1) 

If there are new solutions, then one would obtain new potentials Vl(z) = 
I@2 - I@ which would be isospectral to Vl(z). To find the most general 
solution, let 

W z )  = W(.) + +(z) 1 (6.2) 

in eq. (6.1). We then find that y(z) = 4-'(z) satisfies the Bernoulli 
equation 

whose solution is 

Here 

yf (z )  = 1 + 2 w y  , 

&(.) E /' $;(z')dz' , 
J -m 

A1 is a constant of integration and $1(z) is the normalized ground state 
wave function of Vl(z) = W 2 ( z )  - W'(z) .  It may be noted here that 
unlike the rest of the book, in this chapter $1,$2,$~3~ ... denote the nor- 
malized ground state eigenfunctions of the isospectral family of potentials 
Vl(z), Vz(z), V ~ ( X ) ,  ... respectively. Thus the most general W ( z )  satisfying 
eq. (6.1) is given by 

so that all members of the one parameter family of potentials 
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(6.7) 
d2 

dx2 
G(x> = k 2 ( x )  - W ( x >  = vl(x) - 2-1n[11(x) + ~ 1 1  , 

have the same SUSY partner V2(x). 
In the second approach, we delete the ground state $1 at energy El for 

the potential Vl(x). This generates the SUSY partner potential V2(x) = 
K - 2 6  lnq1, which has the same eigenvalues as %(x) except for the 
bound state at energy El. The next step is to reinstate a bound state at 
energy El. 

Although the potential V2 does not have an eigenenergy El , the function 
1/@1 satisfies the Schrodinger equation with potential V2 and energy El. 
The other linearly independent solution is JT, $?(x')dx'/&. Therefore, 
the most general solution of the Schrodinger equation for the potential VZ 
at energy El is 

%(A,> = Fl + &)/$l * (6.8) 

Now, starting with a potential V2, we can again use the standard SUSY 
(Darboux) procedure to add a state at El by using the general solution 
@l(Xl), 

(6.9) 
d2 

dx2 
Q~(A,) = V, - 2 - - i n + 1 ( ~ 1 )  . 

The function l / @ l ( A l )  is the normalizable ground state wave function of 
Ql(Xl ) ,  provided that A1 does not lie in the interval -1 5 A1 5 0. Therefore, 
we find a one-parameter family of potentials Vl(A1) isospectral to V1 for 
A1 > 0 or A1 < -1 

d2 
dx2 

Vl - 2- In(& + A,) (6.10) 

The corresponding ground state wave functions are 

d l ( A 1 i X )  = I/%(&) . (6.11) 

Note that this family contains the original potential V1. This corresponds 
to the choices XI + foo .  
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To elucidate this discussion, it may be worthwhile to explicitly construct 
the one-parameter family of strictly isospectral potentials corresponding to 
the one dimensional harmonic oscillator. In this case 

W W ( x )  = -x , 
2 

so that 

w2 2 w 
VI(Z) = -x - - . 

4 2 

The normalized ground state eigenfunction of Vl(x) is 

(6.12) 

(6.13) 

(6.14) 

Using eq. (6.5) it is now straightforward to compute the corresponding 
XI (z). We get 

&(z) = 1 - - erfc ( q x )  ; erfc(z) = - Lrn e-t2dt . (6.15) 
2 

Using eqs. (6.10) and (6.11), one obtains the one parameter family of 
isospectral potentials and the corresponding ground state wave functions. 
In Figs. 6.1 and 6.2 , we have plotted some of the potentials and the ground 
state wave functions for the case w = 2. 

We see that as A1 decreases from 00 to 0, v1 starts developing a minimum 
which shifts towards x = -00. Note that as A1 finally becomes zero this 
attractive potential well is lost and we lose a bound state. The remaining 
potentid is called the Pursey potential Vp(x). The general formula for 
Vp(2) is obtained by putting A1 = 0 in eq. (6.10). An analogous situation 
occurs in the limit A1 = -1, the remaining potential being the Abraham- 
Moses potential. 

6.2 Generalization to n-Parameter Isospectral Family 

The second approach discussed in the previous section can be generalized 
by first deleting all n bound states of the original potential Vl(x) and then 
reinstating them one at a time. Since one parameter is generated every 
time an eigenstate is reinstated, the final result is a n-parameter isospec- 
tral family. Recall that deleting the eigenenergy El gave the potential 
Vz(2). The ground state $2 for the potential V2 is located at energy E2. 
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Fig. 6.1 Selected members of the family of potentials with energy spectra identical to 
the one dimensional harmonic oscillator with w = 2. The choice of units is f i  = 2m = 1. 
The curves are labeled by the value of X i ,  and cover the range 0 < A1 5 00. The curve 
A1 = 00 is the one dimensional harmonic oscillator. The curve marked A1 = 0 is known 
as the Pursey potential and has one bound state lesa than the oscillator. 

The procedure can be repeated “upward”, producing potentials V,, V4,. . . 
with ground states $3, Q4,. . . at energies E3, E4,. . . , until the top potential 
Vn+l(z) holds no bound state (see Fig. 6.3 , which corresponds to n = 2). 

In order to produce a two-parameter family of isospectral potentials, we 
go from Vl to V2 to V3 by successively deleting the two lowest states of Vl 
and then we re-add the two states at E2 and El by SUSY transformations. 
The most general solutions of the Schrodinger equation for the potential V3 
are given by @ ~ ( X Z )  = ( 2 2  + X2)/$2 at energy E2, and A 2 @ 1 ( X 1 )  at energy 
El (see Fig. 6.3). The quantities Zi are defined by 

(6.16) 

Here the SUSY operator Ai relates solutions for the potentials V, and %+I,  

A .  - - d - (In$j)‘ . 
’ - dx (6.17) 
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Fig. 6.2 Ground state wave functions for all the potentials shown in Fig. 6.1, except 
the Pursey potential. 

VI 

Fig. 6.3 A schematic diagram showing how SUSY transformations are used for deleting 
the two lowest states of a potential VI(Z) and then re-inserting them, thus producing a 
two-parameter (XI, X2) family of potentials isospectral to Vl(2) .  

Then, as before, we find an isospectral one-parameter family cz ( XZ), 

(6.18) Qz(~z) = VZ - 2- 1n(zz + ~ 2 )  . 

The solutions of the Schrodinger equation for potentials Vs and V z ( X 2 )  are 

d2 
dxz 
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related by a new SUSY operator 

Therefore, the solution @1(X1,X2) at El for V2(X2) is 

@i(Xi,Xz) = A ~ ( X Z ) A ~ @ I ( X ~ )  - (6.20) 

The normalizable function l /@l(X1 , A,) is the ground state at El of a new 
potential, which results in a two-parameter family of isospectral systems 
Pl (XI, A,>, 

d2 
dx2 V 1 ( ( ~ 1 , ~ 2 )  = VI - 2-1n( l l t l l l t2@2(~2)@1(~1 ,~2) )  

for X i  > 0 or X i  c -1. A useful alternative expression is 

Qi(X1, X2) = -G(A2) + 2(@~(X1,X2)/@1(Xir X Z ) ) ~  + 2E1 . (6.22) 

The above procedure is best illustrated by the pyramid structure in Fig. 
6.3. It can be generalized to an n-parameter family of isospectral potentials 
for an initial system with n bound states. The formulas for an n-parameter 
family are 

@i(Ai)  = (Zi +Xi)/$; ; i = l , - - - , n  , (6.23) 

(6.24) 
d 

' - dx A , - - -  (ln$i)' 9 

d2 
d 9  

$ ( X ~ , - * - , A , , )  = - 2--.ln(llr1$2...$,@,,(~,)...@1(Xi,...,X~)) . 
(6.27) 

The above equations summarize the main results of this section. 
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Fig. 6.4 
the KdV equation. 

Flow chart showing the connection between inverse scattering and solution of 

6.3 Inverse Scattering and Solitons 

We would like to  apply the formalism for isospectral Hamiltonians just 
developed above to obtain multisoliton solutions of the KdV equation, Be- 
fore embarking on this it is useful to review the main ideas relating inverse 
scattering methods and soliton solutions. 

It is interesting that the flow equations related to completely integrable 
dynamical systems, such as the Korteweg-de Vries equation can be exactly 
solved by solving a related one dimensional quantum mechanical problem. 
To be specific, if we consider the KdV equation 

U ,  - + uxZx = 0 , > 0 , (6.28) 

with u(z,  0) = f(z), this defines a particular evolution in the parameter 7. 

If we consider a time independent Schrodinger equation which also depends 
on the parameter r (which is not to be confused with the time t in the time 
dependent Schrodinger equation) 

$zx(z,.) + (A - 4 2 ,  T ) M X ,  7) = 0 , (6.29) 

it is possible to show, that the bound state energy eigenvalues X = -n: are 
independent of the parameter T if U(X,T) obeys the KdV equation. Thus 
to  find these eigenvalues one only needs f(z). If we now know how the 
wave function 1c, flows in the parameter r in the limits z f m ,  we can 
then reconstruct u(z ,r)  from the inverse scattering problem in terms of 
the scattering data at arbitrary r. This strategy is summarized in Fig.6.4 
where S(t)  denotes the scattering data R(k, t ) ,  n(t) and cn(t)  defined below. 

First let us summarize the main results of inverse scattering theory. The 
derivations can, for example, be found in the book by Drazin and Johnson. 
Here we will assume unlike our earlier convention, that a particle is incident 
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on a potential from the right to conform with Drazin and Johnson. Also in 
the soliton literature, the ground state wave function and energy is denoted 
by by +I,  EI instead of $0, EO so to conform with that literature we will 
use this altered convention in what follows. 

The Schrodinger equation we want to solve is written as: 

-$,, + u$J = A$ . (6.30) 

The potentials we are interested in have the property u(x) + 0 as x + Am. 
Thus for the continuous spectrum we have in the asymptotic regime: 

for X = E = k2 > 0. For the bound state spectra we have instead: 

+(")(z) - cne-)cne as z -+ +oo , 

where now X = En = -K: < 0, for each discrete eigenvalue (n = 1,2, + - .  , 
N). Note the special notation for the n bound states here ordered by the 
asymptotic behavior. It can be shown that in terms of cn,nn and the 
reflection coefficients R(k) one can reconstruct the potential u(x) in the 
following manner. Defining the function 

(6.32) 

N 
F ( X )  = cze-nnx + Srn R(k)e ikxdk  , (6.33) 

2K -rn n= 1 

one then constructs a new function K ( z , a )  which is the solution of the 
Marchenko equation : 

K ( z ,  z )  + F ( z  + 2) + K ( z ,  f/)F(V + zfdg = 0 . (6.34) 

In terms of K ( z ,  z )  one finds: 

(6.35) 

So now thinking of the time independent Schrodinger equation as a flow 
equation for +(z, 7) and differentiating it, assuming that u(x, T )  obeys the 
flow equation for the KdV equation, one then finds that the discrete eigen- 
values, 

En = -K: 
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are independent of I-. Furthermore, one can show that the cn and R(k)  and 
T ( k )  obey the following flow equations: 

+ T ( k , r )  = T(k,O)  . (6.36) 
d r  

It is clear that the flow evolution will get more complicated as we choose 
f(z) = u(z, 0) to correspond to having more and more bound states because 
of the Marchenko equation. For example if we start with a solvable shape 
invariant potential with only one bound state and which corresponds to a 
reflectionless potential (see Chap. 4) 

f(z) = u(z,O) = -2 sech2(x) , (6.37) 

then there is one normalized bound state with K = 1: 

(6.38) 
1 $(')(z) = - sechz - &e-"as z + 00 , 
fi 

so that c1 (0) = fi and c~(T) = fie4T. Because of the reflectionless nature 
of the potential, R(k)  = 0 making it easy to solve the Marchenko equation 
and one obtains: 

u ( z , ~ )  = -2 sech2(z - 47) . (6.39) 

If we now take an initial condition where there are exactly two bound states 
and which again correspond to a reflectionless potential: 

u(x,O) = -6 sech2z , 

one finds for the bound state wave functions at r = 0, having K I  = 2 , and 
n2 = 1 

J;i 
fi @l)(x) = $sech2z ; $@)(z) = - tanhz sechz . 

€+om the asymptotic behavior and the flow equation one then finds: 

(6.40) 

q ( r )  = 2&e32r ; 4 7 )  = &e4' . (6.41) 
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Using the machinery of the inverse scattering formalism, one eventually 
finds 

(6.42) 

This is the form of the two soliton solution at arbitrary evolution time 
T .  We shall now rederive this solution using the method of isospectral 
Hamiltonians. 

As an application of isospectral potential families, we consider reflec- 
tionless potentials of the form 

3 + 4 cosh(2z - 87) + cosh(4z - 647) 
{ ~ C O S ~ ( X  - 287) + c o s h ( 3 ~  - 3 6 ~ ) ) ~  

+,7) = -12 ' 

V1 = -n(n + l)sech2z , (6.43) 

where n is an integer, since these potentials are of special physical inter- 
est. V1 holds n bound states, and we may form a n-parameter family 
of isospectral potentials. We start with the simplest case n = 1. We 
have V1 = -2sech x,E1 = -1 and $1 = & sechz. The corresponding 
1-parameter family is 

2 

Ql((xl) = -2 sech2(x + - 1 h[l+ -1) 1 . 
2 A1 

(6.44) 

Clearly, varying the parameter A1 corresponds to translations of Vl (2). 

As A1 approaches the limits O+ (Pursey limit) and -1- (Abraham-Moses 
limit), the minimum of the potential moves to -00 and +co respectively. 

For the case n = 2, V1 = -6sech's and there are two bound states at 
El = -4 and E2 = -1. The SUSY partner potential is V2 = -2 sech x. 
The ground state wave functions of V1 and V2 are $1 = $sech2x and 
$2 = Asechx. Also,Zl = f ( t a n h ~ + 1 ) ~ ( 2 - t a n h x )  and& = !j(tanhz+l). 
After some algebraic work, we obtain the 2-parameter family 

2 

di --ln(I 1 + -) 1 , i = 1,2 . 
2 Xi 

As we let A1 + -1,  a well with one bound state at El will move in the +x 
direction leaving behind a shallow well with one bound state at E2. The 
movement of the shallow well is essentially controlled by the parameter A2. 

Thus, we have the freedom to move either of the wells. 
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--e 0 6 .c 10 

Fig. 6.5 The pure three-soliton solution of the KdV equation a8 a function of position 
(2) and time ( t ) .  This solution results from constructing the isospectral potential family 
starting from a reflectionless, symmetric potential with bound states at energies El = 
-25116, E2 = -1, E3 = -16125. 

In case we choose & , 6 2  to be 32 and 4 respectively then we find that 
this solution is identical to the two soliton solution (6.42) as obtained from 
the inverse scattering formalism. 

It is tedious but straightforward to obtain the result for arbitrary n and 
get l$, (XI , X2, * 1 , A,, s). It is well known that one-parameter (t) families 
of isospectral potentials can also be obtained as solutions of a certain class 
of nonlinear evolution equations. These equations have the form (q  = 
0 ,1 ,2 , .  ' -) 

-w = (L)Q ux > (6.45) 

where the operator L, is defined by 
03 

L,f(z) = fxz  - 4 4  + 2% J ,  &f(?4) 7 (6 M' 

and u is chosen to vanish at infinity. (For q = 0 we simply get -ut = u,, 
while for q = 1 we obtain the well studied Korteweg-de Vries (KdV) equa- 
tion). These equations are also known to possess pure (i.e., reflectionless) 
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multisoliton solutions. It is possible to show that by suitably choosing the 
parameters X i  as functions of t  in the n-parameter SUSY isospectral fam- 
ily of a symmetric reflectionless potential holding n bound states, we can 
obtain an explicit analytic formula for the n-soliton solution of each of the 
above evolution equations. These expressions for the multisoliton solutions 
of eq. (6.45) are much simpler than any previously obtained using other 
procedures. Nevertheless, rather than displaying the explicit algebraic ex- 
pressions here, we shall simply illustrate the three soliton solution of the 
KdV equation. The potentials shown in Fig. 6.5 are all isospectral and re- 
flectionless holding bound states at El = -25116, EZ = -1,& = -16/25. 
As t increases, note the clear emergence of the three independent solitons. 

In this section, we have found n-parameter isospectral families by re- 
peatedly using the supersymmetric Darboux procedure for removing and 
inserting bound states. However, as briefly mentioned in Sec. 6.1, there 
are two other closely related, well established procedures for deleting and 
adding bound states. These are the Abraham-Moses procedure and the 
Pursey procedure. If these alternative procedures are used, one gets new 
potential families all having the same bound state energies but different 
reflection and transmission coefficients. 
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Problems 

1. Work out the one parameter family of potentials which are strictly 
isospectral to  the infinite square well. Write down the ground state eigen- 
function for these potentials, along with an explicit expression for comput- 
ing all excited state eigenfunctions. 

2. Show that the one parameter family of isospectral potentials coming from 
the potential VI (x) = 1 - 2 sech2x is given by VI (2, A) = 1 - 2 sech2(x + a)  
and prove that the constants a and X are related by a = ln(1 + X-l). 

3. Let Vl(x) be a symmetric potential with normalized ground state wave 
function $1 (z). Prove that if the potential Vl(z, A) belongs to the isospec- 
tral family of V1 (z), then so does the parity reflected potential Vl(-x ,  A).  

4. Work out the one parameter family of potentials which are strictly 
isospectral to the potential &(x) = -6 sech x. Write down the ground 
state wave function for any member of this family of potentials. 

2 
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5. Compute the traveling-wave solutions [in the form u(x,t) = f(x - ct)] 
of the following three nonlinear evolution equations: 
(i) Burgers equation ut = ux2 - uu, with u + 0,x + +m, u + UO,X -+ 
-cQ ; 
(ii) KdV equation ut = 6uu2 - uzx2 with u, u,, u,, + 0,x  + *oo ; 
(iii) Modified KdV equation ut = -6u2ux - uzZx with u, uz, uZx + 0, x -+ 

fcQ . 





Chapter 7 

New Periodic Potentials from 
Supersymmet ry 

So far we have considered potentials which have discrete and/or continuum 
spectra and by using SUSY QM methods we have generated new solvable 
potentials. In this section we extend this discussion to periodic potentials 
and their band spectra. The importance of this problem can hardly be 
overemphasized. For example, the energy spectrum of electrons on a lat- 
tice is of central importance in condensed matter physics. In particular, 
knowledge of the existence and locations of band edges and band gaps de- 
termines many physical properties of these systems. Unfortunately, even in 
one dimension, there are very few analytically solvable periodic potential 
problems. We show in this chapter that SUSY QM allows us to enlarge 
this class of solvable periodic potential problems. We will also discuss here 
some quasi-exactly solvable periodic potentials. Further, we will show that 
for periodic potentials, even though SUSY is unbroken, the Witten index 
can be zero. 

7.1 Unbroken SUSY and the Value of the Witten Index 

We start from the Hamiltonians H ~ J  in which the SUSY partner potentials 
V'J are periodic nonsingular potentials with a period L. In view of the 
periodicity, one seeks solutions of the Schrodinger equation subject to the 
Bloch condition 
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where k is real and denotes the crystal momentum. As a result, the spec- 
trum shows energy bands whose edges correspond to kL = O , T ,  that is, 
the wave function at the band edges satisfy @(x + L )  = d$~(x). For peri- 
odic potentials, the band edge energies and wave functions are often called 
eigenvalues and eigenfunctions, and we will use this terminology in this 
book. In particular the ground state eigenvafue and eigenfunction refers to 
the bottom edge of the lowest energy band. 

Let us first discuss the question of SUSY breaking for periodic poten- 
tials. Since HI = A t A  and H2 = AAt are formally positive operators 
their spectrum is nonnegative and almost the same. The caveat “almost” 
is needed because the mapping between the positive energy states of the 
two does not apply to zero energy states. 

The Schrodinger equation for  HI,^ has zero energy modes given by 

provided +t’2) belong to the Hilbert space. Supersymmetry is unbroken if 
at least one of the $!I2) is a true zero mode while otherwise it is dynamically 
broken. Thus in the broken case, the spectra of H1,2 are identical and there 
are no zero modes. For a non periodic potential we have seen that at most 
one of the functions +2’2) can be normalizable and hence an acceptable 
eigenfunction. By convention we are choosing W such that only H I  (if at 
all) has a zero mode. 

Let us now consider the case when W (and hence V I , ~ )  are periodic with 
period L.  Now the eigenfunctions including the ground state wave function 
must satisfy the Bloch condition (7.1). But, in view of eq. (7.2) we have 

(7.3) + L)  = , f@L 2 . 2 )  .3, (x), 

where 

On comparing eqs. (7.1) and (7.3) it is clear that for either of the wave 
functions +t12) to belong to the Hilbert space, we must identify ~ X # L  = i kL .  
But 4~ is real (since W and hence V I , ~  are assumed to be real), which 
means that 4~ = 0. Thus, the two functions @f*2) either both belong to 
the Hilbert space, in which case they are strictly periodic with period L: 
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q!Jt"'(x + L )  = @ ~ " ) ( x ) ,  or (when +r, # 0) neither of them belongs to the 
Hilbert space. Thus in the periodic case, irrespective of whether SUSY is 
broken or unbroken, the spectra of V1,2 is always strictly isospectral. 

To summarize, we see that 

f L  
4L = J W(y)dy = 0 

0 
(7.5) 

is a necessary condition for unbroken SUSY, and when this condition is 
satisfied then  HI,^ have identical spectra, including zero modes. In this 

write down the corresponding (un-normalized) eigenfunctions I+'$) (x) of 
Va(z). In particular, from eq. (7.3) the ground state of V2(x) is given by 

case, using the known eigenfunctions q!Jn (1) (z) of V1 (z) one can immediately 

while the excited states $?'(z) are obtained from +?'(z) by using the 
relation 

Thus by starting from an exactly solvable periodic potential V1 (z), one gets 
another strictly isospectral periodic potential VZ (z). 
We recall from Chap. 3 that the Witten index, A = Tr(-l)F = nl - r22 

counts the difference between the number of zero modes QA1) and t,,!$' and 
is an indicator of SUSY breaking. In particular, if A # 0 then there must 
be at least one zero mode and so SUSY is unbroken. On the other hand, 
if A = 0 then more information is needed about whether both or neither 
partner potential has a zero energy state. Much of the power of the index 
method comes from the fact that the Witten index can be calculated quite 
easily and reliably both in SUSY QM and in SUSY field theory. This is 
because, to a large extent A is independent of the parameters (like masses, 
couplings, volume etc.) of the theory. The remarkable thing for periodic 
potentials is that when condition (7.5) is satisfied then SUSY is unbroken 
and yet the Witten index is always zero since both  HI,^ have equal number 
of zero modes. 

As an illustration, consider W ( z )  = Acosx + Bsin2x. In this case 
L = 2n and +r, as given by eq. (7.5) is indeed zero so that the two partner 
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potentials V1,2(z) have identical spectra including zero modes. The Witten 
index is therefore zero even though SUSY is still unbroken. 

At this stage, it is worth pointing out that there are some special clwses 
of periodic superpotentials which trivially satisfy the condition (7.5) and 
hence for them SUSY is unbroken. For example, suppose the superpotential 
is antisymmetric on a half-period: 

L 
W ( z  + -) 2 = -W(z) .  (7.8) 

Then. 

Thus in this case V1,z are simply translations of one another by half a period, 
and hence are essentially identical in shape. Therefore, they must support 
exactly the same spectrum, as SUSY indeed tells us they do. Such a pair of 
isospectral V I , ~  that are identical in shape are termed as “self-isospectral” . 
A simple example of a superpotential of this type is W ( z )  = cosz, so that 
VZ(z) = cos2z - sin% = Vl (z + n). In a way, self-isospectral potentials are 
uninteresting since in this case, SUSY will give us nothing new. 

More generally, if a pair of periodic partner potentials V1,z are such 
that Vz is just the partner potential V1 up to a discrete transformation- 
a translation by any constant amount, a reflection, or both, then such a 
pair of partner potentials are termed as “self-isospectral ”. For example, 
consider periodic superpotentials that are even functions of 2: 

W ( - z )  = W ( z ) ,  (7.10) 

but which also satisfy the condition (7.5). Since the function dW(z)/dz is 
now odd hence it follows that 

The partner potentials are then simply reflections of one another. They 
therefore have the same shape and hence give rise to exactly the same 
spectrum. A simple example of a superpotential of this type is again 
W(z) = cosz, so that V2(z) = cos2z - sinz = Vl(-z). 

It must be made clear here that not all periodic partner potentials are 
self-isospectral even though they are strictly isospectral. Consider for ex- 
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ample, periodic superpotentials that are odd functions of x: 

W ( - 2 )  = -W(z) . (7.12) 

Then the condition (7.5) is satisfied trivially and hence SUSY is unbroken 
even though Witten index is zero. The function dW(z)/dz is even and thus 
Vl,z(z) are also even. In this case, V*(x) are not necessarily related by 
simple translations or reflections. For example, the superpotential W(z) = 
A sins+B sin2z gives rise to an isospectral pair which is not self-isospectral. 
On the other hand, W ( s )  = A sinz + B sin3x gives rise to a self-isospectral 
pair since this W satisfies the condition (7.8). 

7.2 Lam4 Potentials and Their Supersymmetric Partners 

The classic text book example of a periodic potential which is often used 
to demonstrate band structure is the Kronig-Penney model, 

00 

V(z) = c %S(z - nL) . (7.13) 

It should be noted that the band edges of this model can only be computed 
by solving a transcendental equation. 

Another well studied class of periodic problems consists of the Lam6 
potentials 

--w 

~ ( z , m )  = p m sn2(z,m), p E a(a + I). (7.14) 

Here sn(q m) is a Jacobi elliptic function of real elliptic modulus parameter 
m(0 5 m 2 1) with period 4K(m), where K ( m )  is the " real elliptic quarter 
period " given by 

(7.15) 

For simplicity, from now on, we will not explicitly display the modulus 
parameter m as an argument of Jacobi elliptic functions unless necessary. 
Note that the elliptic function potentials (7.14) have period 2K(m). They 
will be referred to as Lam6 potentials, since the corresponding Schrodinger 
equation is called the Lam6 equation in the mathematics literature. It is 
known that for any integer value a = 1,2,3, ..., the corresponding Lame 
potential has a bound bands followed by a continuum band. All the band 
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edge energies and the corresponding wave functions are analytically known. 
We shall now apply the formalism of SUSY QM and calculate the SUSY 
partner potentials corresponding to the Lam6 potentials as given by eq. 
(7.14) and show that even though a = 1 Lam6 partners are self-isospectral, 
for a 2 2 they are not self-isospectral. Consequently, SUSY QM generates 
new exactly solvable periodic problems! 

Before we start our discussion, it is worth mentioning a few basic prop- 
erties of the Jacobi elliptic functions snx,cnx and dnx which we shall be 
using in this discussion. First of all, whereas snx and cnx have period 
4K(m), dnx has period 2K(m) (i.e. dn(x + 2K(m))  = dnx). They are 
related to each other by 

m sn2x = m - m cn2x = 1 - dn2x. (7.16) 

Further, 

d d d -sn x = cn x dn x ; -cn x = -sn x dn x , -dn x = -m sn x cn x . (7.17) 
dx dx dx 

Besides 

cn x sn 3: 
dn x dn x dn x 

sn(x + K )  = - ; cn(x + K )  = - d G -  ; dn(z + K )  = - , 
(7.18) 

Finally, for m = 1(0), these functions reduce to the familiar hyperbolic 
(trigonometric) functions, i.e. 

sn(x, m = 1) = tanh x ; cn(x, m = 1) = sech x ; dn(z, m = 1) = sech z , 
sn(x,m = 0) = sinx;cn(s,m = 0) = cosx;dn(s,m = 0) = 1. (7.19) 

Let us notice that when m = 1, the Lam6 potentials (7.14) reduce to 
the well known Poschl-Teller potentials 

V(x,m = 1) = a(a + 1) - a(a + l)sech2x, (7.20) 

which for integer a are known to be reflectionless and to have a bound 
states. It is worth adding here that in the limit m + 1, K ( m )  tends 
to 00 and the periodic nature of the potential is obscure. On the other 
hand, when m = 0, the Lam6 potential (7.14) vanishes and one has a rigid 
rotator problem (of period 2K(m = 0) = n), whose energy eigenvaiues are 
at E = 0,1,4,9, ... with all the nonzero energy eigenvalues being two-fold 
degenerate. 
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Finally, it may be noted that the Schrodinger equation for finding the 
eigenstates for an arbitrary periodic potential is called Hill’s equation in 
the mathematical literature. A general property of the Hill’s equation is 
the oscillation theorem which states that for a potential with period L, the 
band edge wave functions arranged in order of increasing energy EO 5 El 5 
E2 5 E3 5 Ed 5 E5 5 E6 5 ... are of period L,2L,2L, L, L,2L, 2L, ... . 
The corresponding number of (wave function) nodes in the interval L are 
0,1,1,2,2,3,3 ,... and the energy band gaps are given by A, = E2 - 
El ,  A2 = Ed - E3, A3 5 ES - E5, ... . We shall see that the expected 
rn = 0 limit and the oscillation theorem are very useful in making sure that 
all band edge eigenstates have been properly determined or if some have 
been missed. 

Let us first consider the Lam6 potential (7.14) with a = 1 and show 
that in this case the SUSY partner potentials are self-isospectral. The 
Schrodinger equation for the Lam6 potential with a = 1 can be solved 
exactly and it is well known that in this case the spectrum consists of a 
single bound band and a continuum. In particular, the eigenstates for the 
lower and upper edge of the bound band are given by 

Eo = m ;  &(z) = d n x ,  (7.21) 

El = 1; .1c1(z) = c n z .  (7.22) 

On the other hand, the eigenstate for the lower edge of the continuum band 
is given by 

E2 = 1 + m ;  &(z) = s n z .  (7.23) 

Note that at m = 0 the energy eigenvalues are at 0 , l  as expected for a 
rigid rotator and as m + 1, one gets V(x) + 2 - 2 sech2z, the band width 
1 - rn vanishes as expected, and one has an energy level at E = 0 and the 
continuum begins at E = 1. 

Using eq. (7.21) the corresponding superpotential turns out to be 
snx cnx W ( z )  = m  

dnx ’ (7.24) 

On making use of eq. (7.18) it is easily shown (see the problem at the 
end of the chapter) that this W satisfies the condition (7.8) and hence the 
corresponding partner potentials are indeed self-isospectral. 
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The Lam6 potential (7.14) with a = 1, is one of the rare periodic poten- 
tials for which the dispersion relation between E and crystal momentum k 
is known in a closed form. This happens because the Schrodinger equation 
for this potential has two independent solutions given by 

(7.25) 

where the parameter a is related to the energy eigenvalue E by E I 
dn2(a, m), H ( z )  is the Jacobi eta function, O(2) is the Jacobi theta func- 
tion, and Z(a)  is the Jacobi zeta function. Using this exact solution and 
the Bloch condition, (7.1) one can find the dispersion relation by noting 
that the Lame potential is of period 2K(m).  In particular, it can be shown 
that the dispersion relation is given by 

(7.26) 

In Fig. 7.1 we have plotted this dispersion relation for the case rn = 0.3 
which clearly shows the band gap. 

k 
l r  

Fig. 7.1 The exact dispersion relation (7.26) between energy E and crystal momentum 
k for the Lame potential (7.14) with a = 1. This plot is for m = 0.3. The horizontal line 
marks the edge of the Brillioun zone, at which k = &. 

In view of this result for a = 1, one might think that even for higher 
integer values of a, the two partner potentials would be self-isospectral, 
However, this is not so, and in fact for any integer a(> 2) we obtain a new 
exactly solvable periodic potential. As an illustration, consider the Lam6 
potential (7.14) with a = 2 .  For the a = 2 case, the Lam6 potential has 2 
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n b l e  7.1 The eigenvalues and eigenfunctions for the 5 band edges corresponding to 
the a = 2 Lam6 potential V1 which gives (p,q) = (6,O) and its SUSY partner VZ, Here 
B 1 + m + 6 and 6 E dl - m + mT. The potentials V ~ J  have period L = 2K(m) and 
their analytic forms are given by eqs. (7.27) and (7.30) respectively. The periods T of 
various eigenfunctions and the number of nodes N in the interval L are tabulated 

E T N  
0 B - 3msn2x 1 2K 0 
36-B cnxdnx snx[6m - (m + l)B 4K 1 

2 B - 3  snxdnx cn x[B + m(3 - 2B)sn2x] 4K 1 
2B-3m snxcnx dnx[B + (3m - 2B)sn2x] 2K 2 
46 B - 26 - 3msn2x snxcnxdnx 2K 2 

+msn2x(2B - 3 - sm)] 

bound bands and a continuum band. The energies and wave functions of 
the five band edges are well known. The lowest energy band ranges from 
2 + 2rn - 26 to 1 + rn, the second energy band ranges from 1 + 4m to 4 + m 
and the continuum starts at energy 2 + 2m + 26, where 6 = dl - m + m2. 
The wave functions of all the band edges are given in Table 7.1 

Note that in the interval 2K(m) corresponding to the period of the 
Lame potential, the number of nodes increases with energy. In order to use 
the SUSY QM formalism, we must shift the Lame potential by a constant 
to ensure that the ground state (i.e. the lower edge of the lowest band) has 
energy E = 0. As a result, the potential 

Vl(x) = -2-2m+26+6rnsn2x, (7.27) 

has its ground state energy at zero with the corresponding un-normalized 
wave function 

q$'(x) = 1 + m  + 6 - 3msn2x . (7.28) 

The corresponding superpotential is 

d (1) 6msnx cnxdnx w = --log& (2) = 
dx &) (2) 

7 

and hence the partner potential corresponding to (7.27) is 

(7.29) 
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4 1  

4 L______, 2 e x  8 

Fig. 7.2 The (6,O) Lamb potential Vl(z)  corresponding to a = 2 [thick line] as given 
by eq. (7.27) and its supersymmetric partner potential Vzfz) [thin line] as given by eq. 
(7.30) for m = 0.5 . 

Although the SUSY QM formalism guarantees that the potentials V I , ~  
are isospectral, they are not self-isospectral, since they do not satisfy eq. 
(7.9). Therefore, h ( x )  as given by eq. (7.30) is a new periodic potential 
which is strictly isospectral to the potential (7.27) and hence it also has 2 
bound bands and a continuum band. In Figs. 7.2 and 7.3 we have plotted 
the potentials V1,2(x) corresponding to a = 2 for two different values of the 
parameter rn. 

The difference in shape between Vl(x) and VZ(S) is manifest from the 
figures, especially for large m. Using eqs. (7.6) and (7.7) and the known 
eigenstates of VI (x), we can immediately compute all the band-edge Bloch 
wave functions for VZ (x). In Table 7.1 we have given the energy eigenvalues 
and wave functions for the isospectral partner potentials VI,Z(Z). At m = 0 
one has energy eigenvalues 0,1 ,4  as expected for a rigid rotator. As m + 1, 
one gets Vl(x) + 4 - 6 sech2x, the band widths vanish as expected, and 
one has two energy levels a t  E = 0,3, with a continuum beginning from 
E = 4. 

Finally, consider the a = 3 Lam6 potential as given by eq. (7.14). The 
ground state wave function is known to be 

&)(z) = dnz[2m + 61 + 1 - 5msn2x] , (7.31) 
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Fig. 7.3 Same parameters as Fig. 7.2 except for m = 0.998 . 

hence the corresponding superpotential is 

m s n z c n z  [2m+& + 11 - 15msn2z] w =  (7.32) dnx [2m + 61 + 1 - 5msn2xj ’ 

and the partner potentials V1,2(5) are 

and 

Clearly, the potentials V1,2(2) are not self-isospectral. In fact, Vl(x) and 
Vz(z) are distinctly different periodic potentials which have the same seven 
band edges corresponding to three bound bands and a continuum band. In 
Fig. 7.4 we have plotted the potentials V1,2(x) corresponding to a = 3 for 
the value m = 0.5 . 

It is clear from the figure that the potentials V2(x) and Vl(z) have 
different shapes and are far from being self-isospectral. Using eqs. (7.6) 
and (7.7) and the known eigenstates of Vl(x), we can immediately compute 
all the 7 band edges of V2(2) corresponding to the known 3 bound bands 
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Fig. 7.4 The (12,O) Lam6 potential Vi(x) corresponding to a = 3 [thick line] as given 
by eq. (7.33) and its supersymmetric partner potential V ~ ( Z )  [thin line] as given by eq. 
(7.34) for rn = 0.5 . 

and a continuum band. For example, the ground state $f) is given by 

(7.35) 

The wave functions for the remaining six states are similarly written 
down by using eq. (7.7). These are shown in Table 7.2 

Note that at m = 0 one has energy eigenvalues at 0,1,4,9 as expected 
for a rigid rotator and as m -+ 1, one gets Vl (x) -+ 9 - 12 sech'x, the band 
widths vanish as expected, and one has three energy levels at E = 0,5,8 
with a continuum above E = 9. 

The extension to higher values of a is straightforward. It is possible 
to make several general comments about the form of the band edge wave 
functions for the partner potentials Vz(x ) .  This is most conveniently done 
by separately discussing the cases of even and odd values of a. 

If a is an even integer, say a = 2 N ,  it can be shown that the corre- 
sponding Lam6 potential has N + 1 solutions of the form FN(sn2z), and N 
solutions each of the three forms snx cnx FN-~ (sn2x), snx dnx FN-~ (sn2x), 
cnz dnx FN-l(sn2x). Here F, denotes a polynomial of degree T in its ar- 
gument. The ground state $p'(x) is of the form FN(sn2x). It is easily 
checked using eq. (7.7) that the corresponding partner potential V ~ ( X )  has 
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Table 7.2 The eigenvalues and eigenfunctions for the 7 band edges corresponding to 
the o = 3 Lam6 potential VI which gives (p, q )  = (12,O) and its SUSY partner Vz. Here 
61 3 dl - m + 49722; 62 \/4 - m + nzz; 63 E 4 4  - 7m + 4m2. The potentials V1.2 
have period L = 2K(m) and their analytic forms are given by eqs. (7.33) and (7.34) 
respectively. The periods T of various eigenfunctions and the number of nodes N in the 
interval L are tabulated. 

E +(I) &)+w T N  
0 dnxIl+ 2m + 61 - 5msnzx] 1 2K 0 

3 - 3m+ en S[Z + m + 6 2  - 5msn2x] lOm(1 - rn + 62 - 6 l ) x  4K 1 
261 - 262 sn xcn2xdn2x 

an++(l)+(*) 
-(I - m)* 

3 + 261 sn xf2 + 2m + 63 - 5rnsn2x] 10m(l+ 63 - 61)cn xsn2xdn2x 4K 1 

2 - m  sn x cna: dn x dn3x[l + 2m + 61 2K 2 
+261 
461 dnz[l + 2m - 61 - 5msn2x] sn xcnxdn3x 2K 2 

3 - 3m+ cn z[2 + m - 62 - 5rnsn2x] lOrn(1 - m - 62 - 61)x 4K 3 
261 +26z snxcn2xdnzz 

cno$f*)+(’) 
- 263 -0 - 2msn24* 

+(rn - 2 - 261)sn2x] 

snzp) (1) 

- ( 1 - m ) 4  
3 + 261 sn 4 2  + 2m - 63 - 5rnsn2x] 10m( 1 - 63 - &)cn x sn2x dn2x 4K 3 

cnz$(’) (1) 
+263 -(I - 2 m s n z x ) A  

N solutions each of the four forms 

enx GN(sn2x) snz cnz dnzGN-l(sn2z) 
f 

@%I &)(4 
t 

while the ground state is given by &“(z) = l/$f’(z). 
If a is an odd integer, say a = 2N + 1, the corresponding Lam6 potential 

has N + 1 solutions each of the three forms snz FN(sn2z), cnz FN(sn2z), 
dnz FN(sn2s) , and N solutions of the form snz cnz dnz FN-l(sn2z). 
The ground state +t)(z) is of the form dnz F’(sn2z). We can then easily 
deduce that the corresponding partner potentials Vz(z) will have N + 1 
solutions each of the two forms 

snz GN+I (sn’z) cnz G N + ~  (sn2z) 
f 

&)(4 $f)W 
f 



110 New Periodic Potentials f r o m  Supersymmetry 

and N solutions each of the two forms 

dnx G N + ~  (sn2x) snx cnx dnx GN(sn2x) 
1 $tY4 7 

while as usual, the ground state is given by $g’(x) = l/$:’)(x). 

In summary, for integral a, Lam6 potentials with a 2 2 are not self 
isospectral. They have distinct supersymmetric partner potentials even 
though both potentials have the same (2a + 1) band edge eigenvalues. 

7.3 Associated Lam6 Potentials and Their Supersymmetric 
Partners 

We shall now discuss a much richer class of periodic potentials given by 

cn2x 
dn2x 

V(x) = pmsn2x + qm- ; p = a(a + 1) ; q  = b(b + 1). (7.36) 

The potentials of eq. (7.36) are called associated Lam6 potentials, since the 
corresponding Schrodinger equation is called the associated Lam6 equation. 
We shall often refer to this potential as the ( p ,  q )  potential. Note that the 
( q , p )  potential is just the ( p , q )  potential shifted by K(m) .  Also the (p ,O)  
potential is just the Lam6 potential of eq. (7.14). 

In general, for any value of p and q, the associated Lam6 potentials have 
a period 2K(m) since 

sn(x + 2K)  = -sn x , cn(x + 2K) = -cn x , dn(x + 2K)  = dn x . 

However, for the special case p = q, eq. (7.18) shows that the period is 
K(m) .  From a physical viewpoint, if one thinks of a Lam4 potential (p,O) 
as due to a one-dimensional regular array of atoms with spacing 2K(m),  
and “strength” p ,  then the associated Lam6 potential ( p , q )  results from 
two alternating types of atoms spaced by K ( m )  with “strengths” p and q 
respectively. If the two types of atoms are identical (which makes p = q),  
one expects a potential of period K(m).  

We start with the associated Lam6 equation which is just the Schrodinger 
equation for the potential (7.36) 

cn2x 
dx2 dn2x 

-- d2’ + [P” sn2x + qm - - El$ = 0 . (7.37) 
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On substituting 

= [ d n x r b  Y(X) > (7.38) 

it is easily shown that y(x), satisfies the Hermite elliptic equation 

snxcnx 
dn x y” (x) + 2bm - y’(x)+[A-(a+1-b)(a+b)msn2z]y(z) = 0 ,  (7.39) 

where 

p = a ( a + l )  , q = b ( b + l ) ,  E = X + m b 2 .  (7.40) 

On further substituting 

snx = sint , y(z) = z ( t )  , (7.41) 

one obtains Ince’s equation 

(1 - msin2t)z”(t) + (2b - 1)msintcost z’(t) 
+[A - (a 4- 1 - b ) ( ~  + b)m sin2 t l z f t )  = 0 ,  (7.42) 

which is a well known quasi-exactly solvable (QES) equation. On substi- 
tuting 

00 unRn 
cost = u ,  z ( t )  G U(.) = c - n! ’ 

n=Q 
(7.43) 

it is easily shown that & satisfies a three-term recursion relation. In par- 
ticular if a + b + 1 = n ( n = 1,2,3, ...) then one obtains n QES solutions. 
Actually n QES solutions are also obtained for b - a = -n(n = 1,2,3,  ...) 
but since q is unchanged under b -6 - 1, no really new solutions are 
obtained in this case. The QES solutions for n = 1,2 ,3 ,4 ,5  are given in 
Table 7.3. In particular, for any given choice of p = a(a + l), Table 7.3 lists 
the eigenstates of the associated Lam6 equation for various values of q. 

It is easily checked from Table 7.3 that the solution corresponding to 
q = a(a - 1) as well as one of the q = (a - 2)(a - 3) solutions are nodeless 
and correspond to the ground state. Hence, for these cases, one can obtain 
the superpotential and hence the partner potential VZ and enquire if V I , ~  
are self-isospectral or not. 

Let us now consider the SUSY partner potentials computed from the 
ground state for the p = a(a + l ) , q  = (a - 3)(a - 2) case. It is given by 
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Table 7.3 Eigenvalues and eigenfunctions for various associated Lamb potentials ( p ,  q )  
with p = a(a + 1) and q = ( a  - n + l)(a - n) for n = 1 ,2 ,3 ,  ... . The periods of 
various eigenfunctions and the number of nodes in the interval 2K(m) are tabulated, 
Here 64 s v/l- m + m2(a - 112 ; 66 = J4 - 7m + 2ma + m2(a - 212 ; 66 3 

J4 - m - 2ma + mZ(a - 112 ; 67 J9 - 9 m  + mz(a - 212 . 

Q E dn-" (z)$ T N  
a(a  - 1) maL 1 2K 0 

4 K  1 
4 K  1 

cn x 
dn x 
8n x 
dn x 

- (a - l ) (a  - 2) 1 + m(a - 1)2 
- (a - l ) (a  - 2) 

(a - 2)(a - 3) m(a2 - 2a + 2) &[m(2a - l)sn2x 2K 2 , O  

(a - 2)(a - 3) 
(a - 3)(a - 4) m(a2 - 4a + 5) s [ m ( 2 a  - l)sn2a: 4K 3,l 

(a - 3)(a - 4) m(a' - 2a + 2) E [ m ( 2 a  - l)sn2a: 4 K  3 , l  

(a - 4)(a - 5) m(a2 - 4a + 5) S ~ ~ ~ z [ m ( 2 a  - l)sn2a: 2K 4,2 

1 + ma2 

4-2 f 264 
an xcn x 

dnax 4 + m(a - 1)' 

+5 & 265 -2 + m(2 - a )  f 651 

+5 f 266 -2 + m(1- a )  661 

4-10 f 267 -3 + m(2 - a )  f 671 

-1 + m(1 - a )  f 641 
2K 2 

(see Table 7.3) 

$o(x) = m(1 - a) - 1 - 64 + m(2a - l)sn2x (dnx)a-2 , (7.44) 

where 64 = ,/1 - m + m2(a - 1)2. The corresponding superpotential W 
turns out to be 

[ I 
2m(2n - 1)sns c n z  d n z  

[m(l - a) - 1 - 84 + m(2a - l)sn2x] 
- . (7.45) 

m(a - 2)snx cnx  
dn x w =  

Hence the corresponding partner potentials are 

V ~ ( X )  = ma(a+ l)sn2z 
cn2x 
dn2x 

+ m(a - 3)(a  - 2)- - 2 - m(a2 - 2a + 2) + 264, (7.46) 

VZ(2) = -V1(2) + 2W2(x) . (7.47) 

It is easily checked that these potentials are not self-isospectral since they 
do not satisfy the condition (7.9). Thus one has discovered a whole class of 
new elliptic periodic potentials Vz(z) as given by eq. (7.47) for which three 
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states are analytically known no matter what a is. In particular, the energy 
eigenfunctions for VZ of these three states are easily obtained by using the 
corresponding energy eigenstates of Vl as given in Table 7.3 and using eqs. 
(7.6) and (7.7). 

We might add here that the well known solutions for the Lam4 potential 
(7.14) with integer a are contained in Table 7.3. For example, when a = 3, 
one has the (12,O) potential. &om Table 7.3 it follows that the 3 band 
edges of period 2K(m) are obtained from q = (a - 2)(a - 3) and 4 band 
edges of period 4K(m) are obtained from q = (a - 3)(a - 4). Altogether, 
arranging in order of increasing nodes, one has 7 band edges with periods 
2K,4K,4K, 2K,2K,41(,4K with 0,1,1,2,2,3,3 nodes respectively. There 
are no missing states and this gives three bound bands and a continuum 
band. 

From Table 7.3 it is also clear that if a and b are either both integers or 
half-integers then several band edge energies are exactly known though in 
most cases one usually does not know all the band edge energies, that is one 
has a QES problem. However, in the special case of p = q=integer (a = b = 
integer), we show that all the band edge eigenstates can be obtained and 
one has an exactly solvable periodic problem. 

7.3.1 

Let us now discuss the special case of p = q = a(a + l), a = 1,2, ... . In this 
case the associated Lam4 potential (7.36) has period K ,  rather than 2K. It 
then follows from the oscillation theorem that with increasing energy, the 
band edges must have periods K, 2K, 2K, K, K ,  ... and in the m = 0 limit 
the eigenvalues must go to E = 0,4,16,36, ... with all nonzero eigenvalues 
being doubly degenerate. One case for which we already have exact results 
is when p = q = 2. In particular, using eqs. (7.44) to (7.47) and taking 
a = 1 in q = (a - 2)(a - 3) we can calculate three energy eigenvalues and 
eigenfunctions of VI (see Problem 7.3 at the end of the chapter) given by 

a = b = Integer 

(7.48) 
cn2x 
dn2x 

v~(x) = 2msn2x + 2m- - 2 - rn + 

Whereas the ground state is of period K, the next two states in Table 7.3 
indeed have period 2K. Using a = 1 in eqs. (7.44) to (7.47), we find that 
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the corresponding SUSY partner potential is 

8 d F m m 2 s n 2 x  cn2x 
v~(x) = 2 - m - 2 4 G  - 

[dn2x + d=l2 ' 

Are the potentials & ,2(x) self-isospectral? Using the relations 

(7.49) 

(7.50) 

cn(z + K(rn) /2)  
(1 + J T F E ) 1 / 2 c n x  - snxdnx  

dn2x + d K  = (1 + d-li=Gi)1/2(l -,)a [ 
(7.51) 

(1 + d G ) d n z  - rnsnxcnx [ d n 2 x + d G  dn(z + K(rn)/2) = (1 - m) 

(7.52) 

a little algebra reveals that indeed V1,2 are self-isospectral and satisfy eq. 

Are the higher members of the p = q family (i.e. p = q = 6,12,20, ...) 
also self-isospectral? If our experience with the Lam6 case is any guide then 
we would doubt it. Indeed, we will now show that the (6,6) associated Lam6 
potential is not self-isospectral. First of all let us note that for this case we 
get five band edges analytically from Table 7.3. In particular, take a = 2 
and consider the case of q = (a-4)(a-5), for which we know two eigenstates 
as given in Table 7.3. In fact, in this case three more eigenstates can be 
analytically obtained but the corresponding eigenvalues and eigenfunctions 
have not been given in Table 7.3 since the energy eigenvalues are solutions of 
a cubic equation whose exact solution for arbitrary a can not be written in a 
compact form. However, for a = 2, we are able to solve the cubic equation 
and obtain the three eigenvalues in a closed simple form. In particular 
consider an ansatz of the form 

(7.9). 

y = A -t Bsn2s + Dsn4x. (7.53) 

On substituting this ansatz in eq. (7.39) it is easy to show that the energy 
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Table 7.4 The five eigenvaluea and eigenfunctions for the associated Lam6 potential 
corresponding to a = b = 2 which gives (p,q) = (6,6). Here 68 \/16 - 16m + mz 
The number of nodes in one period K ( m )  of the potential is tabulated. 

E dn"s?,bf'f Period Nodes 
0 1 - (4 - m - 68)sn2z K 0 

+(4 - 2m - 68)sn4z 
-4 + 2m + 268 1 - 2sn2z + msn4z 2K 1 

2 - m + 268 sn x cn z[ 1 2K 1 
-6./1'-m -(1 - d G ) s n 2 z ]  

2 - m + 268 sn x cn z[l K 2 
+6,/i=% - ( 1 +  di=$sn2z] 

468 1 - (4 - m + 68)sn2z K 2 
+(4 - 2m + 68)sn4z 

eigenvalue A(= E - m(a - 4)2) must obey the cubic equation 

A3 + 4[7m - 5 - 3am]X2 + 16[4 + m(l0a - 19) 
+2m2(a - 2)(a - 3)]X - 64m(2a - 3)(2 - 2m + ma) = 0 .  (7.54) 

The solution of this equation is in general quite lengthy but in the special 
case of a = 2 this cubic equation is easily solved yielding three eigenvalues 
in a compact form. On combining them with the two levels given in Table 
7.3, we obtain the eigenvalues and eigenfunctions of all the five band edges 
for the case p = q = 6. These are given in Table 7.4. 

We have also verified that these five eigenstates in ascending order of 
energy indeed have periods K, 2K, 2K, K ,  K respectively and that the en- 
ergy eigenvalues have expected limits at m = 0. In particular the associated 
Lam6 potential Vl(z) is 

n 

(7.55) 
cn'x 
dn2z 

Vl(z) = 6msn2z + 6m- - 8 - 2m + 268, 

whose ground state energy is zero while the corresponding eigenfunction 
t&' is 

1 - (4 - m - 68)sn2z + (4 - 2m - 68)sn4(2) 

dn2x 
, (7.56) ?&)($) = 
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Fig. 7.5 The (6,6) associated Lam6 potential VI(Z) [thick line] as given by eq. (7.55) 
and its supersymmetric partner potential VZ(Z) [thin line] as given by eq. (7.58) for 
m =  . 5 .  

where 68 = d16 - 16m + m2. Hence the corresponding superpotential is 

[ (4 - m - 68) - 2(4 - 2m - 68)sn2z , 1 -2m sn x cn x 2sn x cn x W(x) = + 
dn x dn x (z) 

(7.57) 

(7.58) 

and the partner potential V2(x) which is isospectral to K(x) is 

V*(x) = -V1(X) + 2W2(X). 

It is easily shown that W(z) as given by eq. (7.57) does not satisfy the 
self-isospectrality condition (7.8). Hence, unlike the p = q = 2 case, the 
p = q = 6 potential is not self-isospectral. In Figs. 7.5 and 7.6 we have 
plotted the potentials Vl,z(z) corresponding to p = q = 6 for two values of 
the parameter m. The figures confirm that the potentials are far from being 
self-isospectral. Thus we have obtained a new exactly solvable periodic 
potential (7.58) which has two bound bands and a continuum band, with 
five band edges and the corresponding eigenfunctions being exactly known 
using Table 7.4 and eqs. (7.6) and (7.7). 

It is clear that the higher associated Lam6 potentials with p = q = 
12,20, ... which have 7,9, ... band edges are also exactly solvable in principle 
and none of them will be self-isospectral, so that in each case one obtains a 
new exactly solvable periodic potential. In particular, for p = q = n(n + 1) 
there will be (2n + 1) band edges in both VI,~(X) whose energy eigenvalues 
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41 

Fig. 7.6 Same as Fig. 7.5 but m = .998 

can be obtained from Table 7.3 when q has the form [n - 2n][n - (2n + 
l)]. Out of the (2n + 1) band edges in V~(;C), (n + 1) solutions (including 
the ground state) have the form while n solutions have the form 

On the other hand, as far as the (2n + 1) solutions of the partner po- 

2 snzcnz Fn-l(sn 4 x .  
tentid V2 are concerned, there are n states each of the two forms 

snz cnz G,(sn2z) Gn+l (sn2x) 
dn2"-'z&)(z) ' dn2n-'z&)(z) ' 

while the ground state is given by $P'(;C) = l/$:'(s). 
Thus, using the formalism of SUSY QM, one is able to discover many 

new exactly solvable and quasi-exactly periodic potentials involving Jacobi 
elliptic functions. 
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Problems 

1. Obtain the partner potentials corresponding to the periodic superpoten- 
tial W ( x )  = Asinz. Is SUSY broken or unbroken in this case? Are the 
partner potentials self-isospectral? 

2. Check that the Lam6 potential V I ( X )  = 2rnsn2(x,rn) - m has a zero 
energy eigenstate with eigenfunction $o(z) = dn(z,rn). Prove that this 
potential is self-isospectral by explicitly working out its SUSY partner po- 
tential. 

3. Find the eigenvalues Eo, El,  E2, and the corresponding eigenfunctions 
for the associated Lam6 potential with a = b = 1. Verify the result for the 
partner potential Vz(2) given in the text and show that V I ( X )  and VZ(Z)  
are self-isospectral. 

4. Using Table 7.3 determine the ground state of the associated Lam4 
potential corresponding to (a, b) = (2 , l ) .  Work out the SUSY partner and 
check if it is self-isospectral. 



Chapter 8 

Supersymmetric WKB 
Approximat ion 

WKB theory is a very successful method for obtaining global approxima- 
tions to  solutions of ordinary differential equations. It has numerous ap- 
plications in physics and mathematics. Even though some general mathe- 
matical techniques were developed in the early nineteenth century, system- 
atic development took place only after the emergence of quantum mechan- 
ics. WKB theory is applicable to differential equations when the highest 
derivative has a small multiplicative parameter e .  Such situations occur in 
boundary-value and Sturm-Liouville problems, and in particular in quan- 
tum mechanics, the small parameter E is related to the quantity h2 in 
Schrodinger’s equation. When applied to quantum mechanics, WKB the- 
ory is often called the semiclassical method since it enables one to take the 
parameter ti to zero and study the classical limit. It has been successfully 
used for many years to  determine eigenvalues and to compute barrier tun- 
neling probabilities. The analytic properties of the WKB approximation 
have been studied in detail from a purely mathematical point of view, and 
the accuracy of the method has been tested by comparison between ana- 
lytic and numerical results. An excellent review of WKB theory from a 
mathematical point of view is given in the book of Bender and Orszag. 

In this chapter we will first review the main results of WKB theory. 
Then we will describe a recent extension of the semiclassical approach in- 
spired by supersymmetry called the supersymmetric WKB (SWKB) method. 
We will show that for many problems the SWKB method gives better ac- 
curacy than the WKB method. In particular, we discuss and prove the 
remarkable result that the lowest order SWKB approximation gives exact 
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energy eigenvalues for all simple SIPS with translation. 

8.1 Lowest Order WKB Quantization Condition 

The semiclassical WKB approximation for one dimensional potentials with 
two classical turning points is discussed in most quantum mechanics text- 
books. Let us look at the standard situation of a potential on the entire real 
line, which has two classical turning points z~ and XR given by V(z) = E 
for any choice of energy E(> Vmin). To derive the WKB quantization con- 
dition we have to connect the solution in the classically allowed region with 
the solution in the classically forbidden region. 

We start from the time independent Schrodinger equation 

A2 ----7p(z) + [V(z) - E]@(z)  = 0 .  
2m 

In the WKB approximation, one substitutes 

in the Schrodinger eq. (8.1). One then finds that S(z) satisfies 

(S')2 - ihS' = 2m(E - V )  . (8.3) 

One now substitutes an expansion of S in powers of A 

s = s o  + AS1 + ... , (8.4) 

in eq. (8.3) and equate equal powers of h to obtain a sequence of equations 

(s;,2 = 2m(E - V )  , 
is; = 2s;s;, 

. .  (8.5) 

The first two equations give 
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where arbitrary constants of integration that can be absorbed in A have 
been omitted. Here p(x, E )  is the generalized momentum defined by 

while x ( x )  is 

(8.8) 

To this order of approximation, the solution, in the classically allowed region 
XL 5 x 5 XR, is given by 

while in the classically forbidden region x > ZR or 2 < XL it is given by 

(8.10) 

At this point it is worth digressing a minute and examine the region 
of validity of the WKB approximation. Since So is a monotonic increasing 
function of x (so long as p does not vanish), hence the ratio tiSl/So is 
expected to be small if hSi/S(, is small. Hence the solution (8.9) is expected 
to be a useful solution so long as 

hS{ p’ I - I=I - I << 1 sl, 2p2 
(8.11) 

Since the local de Broglie wavelength X is 2n/p,  hence this condition can 
also be written as 

dP 
47r dx - - - l - l < < P  (8.12) 

We thus conclude that the WKB approximation is useful when the de 
Broglie wavelength X is small compared to the characteristic distance over 
which the potential varies appreciably. In other words, the potential must 
be essentially constant over many wavelengths i.e. the WKB approximation 
is reliable in the short-wavelength limit. 
We now observe that the condition (8.11) is badly violated near the 

turning points X L , ~ R  for which V(z) = E. In fact it is a nontrivial task to 
match the two solutions (8.9) and (8.10) across the classical turning points 
ZL and XR. This has been discussed in great detail in the literature so we 
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shall merely quote the results of such an analysis. The standard procedure 
is to make a linear approximation to the potential near the turning points 
ZL, ZR and solve the resulting Schrodinger equation for a linear potential 
which is valid near the turning points XL, XR. One then has to match this 
solution to the other two as given by eqs. (8.9) and (8.10) by appropri- 
ately choosing various constants of integration. In this way one obtains the 
famous WKB quantization condition 

lT d ~ d 2 m [ E  - V(z)] = (n  + 1/2)A7r, (8.13) 

where n = 0,1,2, ... . It is easily seen that here n denotes the number of 
nodes of the WKB wave function between the turning points. 

It is worth recalling that the WKB wave functions (8.9) and (8.10) 
diverge at the classical turning points ZL, XR. Although this divergence 
is understandable in the classical limit, since a classical particle has zero 
speed at the turning points, it is certainly not present in a full quantum me- 
chanical treatment. It is because of this divergence that one has to  resort 
to connection formulas and somewhat tricky matching of the wave func- 
tions that eventually yields the well known WKB quantization condition 
eq. (8.13). 

8.1.1 Simpler Approach for the Lowest Order Quantization 
Condition 

Very recently, a much simpler heuristic derivation of the WKB quantization 
condition (8.13) has been given. In this approach one effectively matches 
the zeroth order nondivergerit wave function (coming solely from So) at 
the classical turning points. For simplicity, we restrict our attention to 
symmetric potentials V ( X )  = V(-z). For this case, XL = -ZR, and it is 
sufficient to just look at  the half line z > 0, since the eigenfunctions will be 
necessarily symmetric or antisymmetric. Using eqs. (8.2) to (8.8) it follows 
that for the symmetric case, the zeroth order WKB wave function in the 
classically allowed region XL 5 x 5 ZR is 

(8.14) 

while in the classically forbidden region I1 (X > XR) it is given by 

$ ( o ) ( ~ )  I1 = B e - X ( Z ) + X ( Z R )  . (8.15) 
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Matching the wave functions +?'(X) and &)(x) and their first derivatives 
at X R  gives two equations 

which yield tan[X(zR) - x(O)] = 1, or 

(8.18) 

Similarly for the antisymmetric case, the zeroth order WKB approxi- 
mation to the wave function in the classically allowed region XL 5 x 5 XR 

is +y'(z) = Asin[x(z) - x(O)] while in the classically forbidden region I1 
(z > z ~ )  it is &)(x) = Be-X(s)+X(sR). Matching these wave functions 
and their first derivatives at XR now gives tan[X(zR) - x ( O ) ]  = -1, or 

3 7 11 
p ( z ,  E)dX = -7r -7r --a,. . . . t Jd"" 4 ' 4  ' 4  (8.19) 

Combining eqs. (8.18) and (8.19)' we then obtain the quantization con- 
dition (8.13). This derivation is evidently much simpler than the usual 
textbook approach for deriving connection formulas. 

Why is this simple procedure for matching +(O)(X) justified? Clearly, 
the correct approach is neither to match +(O)(z) nor $(l)(z), but to keep a 
sufficient number of higher order contributions in R ,  so that the resulting 
wave function is non-divergent. This has to be the case, since there is no 
divergence in the full wave function. A simple way in which the divergence 
gets tamed is for the WKB wave function to have the form 

where f (z ,A)  is an analytic function of x and ti. It is easy to check that 
requiring +WKB(z) and its derivatives to be continuous amounts to the 
procedure of matching the value and slope of +(O)(z> at the classical turning 
point ZR, which justifies the simple approach. 
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8.2 Some General Comments on WKB Theory 

There are two aspects to WKB theory. The first is its ability to accurately 
determine the energy eigenvalues and the second is its ability to describe the 
tunneling rate. These are not totally independent since the spectrum is also 
related to an analytic continuation of the scattering amplitude. Here we will 
concentrate on the validity of WKB theory for the spectrum. WKB theory 
should give good results if the turning points are several wave lengths apart 
or if n is large compared to  unity. By now it has been tested for several 
potentials and one finds that for many of them even for low values of n 
it yields moderately accurate eigenvalues. For additional accuracy, it is 
necessary to consider second and higher order corrections in h. In fact, this 
has been done. For example, it has been shown that to O(h2) ,  the WKB 
quantization condition (8.13) is modified to 

dzJ2m[E - V(z)] - -- = (n  + 1/2)hn.  I:" 
(8.20) 

In the special case of the one dimensional harmonic oscillator and the 
Morse potential, it turns out that the lowest order WKB approximation 
(8.13) is in fact exact (see the problems below) and further, the higher 
order corrections are all zero. 

The WKB approximation can also be applied to  three-dimensional prob- 
lems with spherical symmetry by applying the WKB formalism to the re- 
duced radial Schrodinger equation 

where the effective potential is 

(8.21) 

(8.22) 

In view of the wrong behavior of the WKB reduced radial wave function at 
the origin, it was suggested by Langer that in the effective potential (8.221, 
1 ( 1 +  1) be replaced by ( I  + $,)2. This is popularly known in the literature 
as the Langer correction. It turns out that with this Langer correction, the 
lowest order WKB quantization condition reproduces the exact spectrum 
in the case of the Coulomb as well as the oscillator potentials (see the 
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problems below). It may however be noted here that the Langer correction 
needs modification at each order of approximation. 

8.3 Tunneling Probability in the WKB Approximation 

Tunneling is one of the most striking consequence of quantum mechanics 
which has no classical analogue. There are numerous applications of this 
phenomenon starting from cr decay. In most cases an exact computation of 
the tunneling probability is not possible and the WKB approximation has 
proved useful. For simplicity we again consider a symmetric potential in one 
dimension but now instead of a potential well we are considering a barrier. 
Let us assume that a particle of energy E is incident from the left and 
that E is less than the top of the potential barrier. Let ZL and ZR denote 
the two turning points. By exactly following the treatment given above for 
the potential well case, we can write down the WKB wave functions in the 
various regions. Note however that now in region I (ZL 5 5 5 ZR) one will 
have exponentially decaying and growing wave functions while in region I1 
(x < ZL) and I11 (x > ZR) one will have oscillating wave functions. As 
before, these WKB wave functions will not be valid near the two turning 
points and one has to make proper use of the connection formulae to match 
the WKB solutions in the three regions. This has been discussed in great 
detail in the literature and it has been shown that the transmission and 
reflection probabilities are given by 

(8.23) 

where 

K = ly dz\/2m[V(z) - El .  (8.24) 

Now let us discuss the accuracy of the WKB approximation (8.23) for the 
tunneling probability. In the classical limit ( h  + 0), T -+ 0, i.e. there is in- 
deed no barrier penetration. Further, as expected, I R I 2  + I T l2 is indeed 
equal to 1. Besides, in the case of the inverted oscillator and the inverted 
Morse potential, the WKB approximation (8.23) for the tunneling probabil- 
ity is in fact exact. However, for other potentials, the WKB approximation 
is only moderately good. Another way to test the WKB approximation is 
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to examine the poles of the transmission probability function I T l2 analyt- 
ically continued to the case of the inverted potential (well) and compare it 
with the exact bound state spectrum. It turns out that the poles of I T l2 
as given by eq. (8.23) indeed give the exact bound state spectrum in the 
case of the harmonic oscillator as well as the Morse potential while for all 
other cases it does not reproduce the exact spectrum. 

8.4 SWKB Quantization Condition for Unbroken Super- 
symmetry 

In the previous sections, we have reviewed the semiclassical WKB method. 
Combining the ideas of SUSY with the lowest order WKB method, Comtet, 
Bandrauk and Campbell obtained the lowest order SWKB quantization 
condition for unbroken SUSY and showed that it yields energy eigenvalues 
which are not only accurate for large quantum numbers n but which are 
also exact for the ground state (n = 0). We shall now discuss this in detail. 

For the potential Vl (z) corresponding to the superpotential W ( x ) ,  the 
lowest order WKB quantization condition (8.13) takes the form 

J,:" \iZmbA1) - W 2 ( z )  + dz = (n + 1/2)tLn . (8.25) 

Let us assume that the superpotential W ( z )  is formally O(ho).  Then, the 
W' term is clearly O(h) .  Therefore, expanding the left hand side in powers 
of tc. gives 

+ . . . = (n + 1/2)tt?r , W'(z)  dx 

J- 
(8.26) 

where a and 6 are the turning points defined by E g )  = W 2 ( a )  = W2(6).  
The 0 th )  term in eq. (8.26) can be integrated easily to yield 

r i b  

(8.27) 

In the case of unbroken SUSY, the superpotential W ( z )  has opposite signs 



S WKB Quantization Condition for Unbroken Supersymmetr$r 127 

at the two turning points, that is 

-W(a) = W(b) = @ . (8.28) 

For this case, the O(h) term in (8.27) exactly gives Ax/2, so that to leading 
order in A the SWKB quantization condition when SUSY is unbroken is 

/ b d m d x = n A 7 r ,  a n=0,1 ,2  ,.... (8.29) 

Proceeding in the same way, the SWKB quantization condition for the 
potential Vz(z) turns out to be 

4- d x  = (n + 1)h ,  n = 0,1,2,  ... . (8.30) 

Some remarks are in order at  this stage. 
(i) For n = 0, the turning points a and b in eq. (8.29) are coincident 

and EA') = 0. Hence the SWKB condition is exact by construction for the 
ground state energy of the potential V+). 

(ii) On comparing eqs. (8.29) and (8.30), it follows that the lowest order 
SWKB quantization condition preserves the SUSY level degeneracy i.e. the 
approximate energy eigenvalues computed from the SWKB quantization 
conditions for VI (2)  and V.(x) satisfy the exact degeneracy relation E,(,!i1 = 

(iii) Since the lowest order SWKB approximation is not only exact, as 
expected for large n, but is also exact by construction for n = 0, hence, 
unlike the ordinary WKB approach, the SWKB eigenvalues are constrained 
to be accurate at both ends, at least when the spectrum is purely discrete. 
One can thus reasonably expect better results than the WKB scheme even 
when n is neither small nor very large. 

(iv) For spherically symmetric potentials, unlike the conventional WKB 
approach, in the SWKB case one obtains the correct threshold behavior 
without making any Langer-like correction. This happens because, in this 
approach 

S o - ( E - W  ) z0 -iA(Z + l ) /r ,  (8.31) 

EA2'. 

so that 

(8.32) 
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One can show that even after including higher order correction terms like 
&,S2, ..., the SWKB wave function continues to behave like rl+l as r + 0 
to all orders in h, i.e. the SWKB formalism contains the correct threshold 
behavior in a natural way. 

8.5 Exactness of the SWKB Condition for Shape Invariant 
Potentials 

In order to determine the accuracy of the SWKB quantization condition 
as given by eq. (8.29), researchers first obtained the SWKB bound state 
spectra of several analytically solvable potentials. Remarkably they found 
that the lowest order SWKB condition gives the exact eigenvalues for all 
SIPS with translation! Let us now prove this result. 

Recall that the shape invariance condition eq. (4.1) on the partner 
potentials is 

Vz(x1a1) = V1(x,a2) + R(a1), 
where a1 is a set of parameters, a2 is a function of al (say a2 = f(u1)) and 
the remainder R(a1) is independent of x. 

In Chapter 4, we showed using factorization and the Hamiltonian hier- 
archy that the general expression for the s'th Hamiltonian was given by eq. 
(4.3) 

where a, = f"-'(al) i.e. the function f applied s - 1 times. 
The proof of the exactness of the bound state spectrum eq. (4.6) in 

the lowest order SWKB approximation now follows from the fact that the 
SWKB condition (8.29) preserves (a) the level degeneracy and (b) a vanish- 
ing ground state energy eigenvalue. For the hierarchy of Hamiltonians H(") 
as given by eq. (4.3), the SWKB quantization condition takes the form 

(8.33) 1 8-1 / 4 2m [.::.I - R(a,) - W2(a,;  x) dx = n h  . 

Now, since the SWKB quantization condition is exact for the ground state 
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energy when SUSY is unbroken, hence 

a-I 

k=l 

129 

(8.34) 

must be exact for Hamiltonian H(8)  as given by eq. (8.33). One can now go 
back in sequential manner from H ( # )  to H(a- ' )  to and H(') and use the 
fact that the SWKB method preserves the level degeneracy E;!l = 
On using this relation n times, we find that for all SIPs, the lowest order 
SWKB condition gives the exact energy eigenvalues. 

This is a substantial improvement over the usual WKB formula eq. 
(8.13) which is not exact for most SIPs. Of course, one can artificially 
restore exactness by ad hoc Langer-like corrections. However, such modi- 
fications are unmotivated and have different forms for different potentials. 
Besides, even with such corrections, the higher order WKB contributions 
are non-zero for most of these potentials. 

What about the higher order SWKB contributions? Since the lowest 
order SWKB energies are exact for shape invariant potentials, it would be 
nice to check that higher order corrections vanish order by order in h. By 
starting from the higher order WKB formalism, one can readily develop the 
higher order SWKB formalism. It has been explicitly checked for all known 
SIPs (with translation) that up to O(hs) there are indeed no corrections.. 
This result can be extended to all orders in h. 

We proved above that the lowest order SWKB approximation repro- 
duces the exact bound state spectrum of any SIP. This statement has in- 
deed been explicitly checked for all known SIPs with translation i.e. solu- 
tions of the shape invariance condition involving a translation of parameters 
a2 = al+ constant. However, a few years ago it has was shown that the 
above statement is not true for the newly discovered class of SIPs discussed 
in Chapter 4, for which the parameters a2 and a1 are related by scaling 
a2 = qal. This is because for those potentials, W is not explicitly known 
except as a power series which mixes powers of A so that the superpoten- 
tial is intrinsically h-dependent and hence the derivation given above is no 
longer valid for these SIPs. 
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8.6 Comparison of the SWKB and WKB Approaches 

Let us now compare the merits of the WKB and SWKB methods. For 
potentials for which the ground state wave function (and hence the su- 
perpotential W )  is not known, clearly the WKB approach is preferable, 
since one cannot directly make use of the SWKB quantization condition 
(8.29). On the other hand, we have already seen that for shape invariant 
potentials, SWKB is clearly superior. An obvious interesting question is 
to compare WKB and SWKB for potentials which are not shape invariant 
but for whom the ground state wave function is known. One choice which 
readily springs to  mind is the Ginocchio potential given by 

where y is related to the independent variable x by 

- dv = (1 - y q 1 -  (1 - P ) y 2 ]  . 
dx (8.36) 

Here the parameters v and A measure the depth and shape of the potential 
respectively. The corresponding superpotential is 

W ( z )  = (1 - X2)y(y2 - 1)/2 + pox2&! , (8.37) 

where pn is given by Ginocchio 

pnX2 = .\/[A2(v + 1/2)2 + (1 - X2)(n + 1/2)2] - (n + 1/2) , (8.38) 

and the bound state energies are 

E~ = -pU2,x4, n = 0,1,2, ... . (8.39) 

For the special case A = 1, one has the Rosen-Morse potential, which 
is shape invariant. The spectra of the Ginocchio potential using both the 
WKB and SWKB quantization conditions have been computed. The results 
are shown in Table 8.1. 

In general, neither semiclassical method gives the exact energy spec- 
trum. The only exception is the shape invariant limit X = 1, in which case 
the SWKB results are exact, as expected. Also, for n = 0 , l  the SWKB val- 
ues are consistently better, but there is no clear cut indication that SWKB 
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lbble 8.1 Comparison of the lowest order WKB and SWKB predictions for the bound 
state spectrum of the Ginocchio potential for different values of the parameters X , V  
and several values of the quantum number n. The exact answer is also given. Units 
correeponding to h = 2 m  = 1 are used throughout. 

X = 0.5, Y = 5.5 X = 6.25, v = 5.5 
n WKB SWKB Exact WKB SWKB Exact 
0 -6.19 -6.41 -6.41 -1372.28 -1359.61 -1359.61 
1 -3.08 -3.17 -3.13 -1228.16 -1212.70 -1213.84 
2 -1.43 -1.47 -1.44 -1012.52 -999.63 -1003.70 
3 -0.58 -0.60 -0.58 -733.59 -727.72 -737.62 
5 -0.02 -0.02 -0.02 -55.27 -70.59 -109.50 

X = 0.5, Y = 10.5 A = 6.25, v = 10.5 
n WKB SWKB Exact WKB SWKB Exact 
0 -24.87 -25.17 -25.17 -4659.88 -4648.62 -4648.61 
1 -17.09 -17.27 -17.23 -4452.74 -4438.32 -4438.80 
2 -11.57 -11.68 -11.63 -4174.48 -4158.48 -4159.43 
3 -7.70 -7.77 -7.73 -328.49 -3812.57 -3815.65 
5 -3.15 -3.18 -3.15 -2949.60 -2978.47 -2947.70 

results are always better. This example, as well as several other poten- 
tials (including the one parameter family of potentials which are strictly 
isospectral to the SIPS with translation) studied in the literature indicate 
that by and large, SWKB does better than WKB in case the ground state 
wave function and hence the superpotential W is known. These studies 
also support the conjecture that shape invariance is perhaps a necessary 
condition so that the lowest order SWKB reproduce the exact bound state 
spectrum. 

8.7 SWKB Quantization Condition for Broken Supersym- 
metry 

The derivation of the lowest order SWKB quantization condition (8.29) for 
the case of unbroken SUSY is given above [(8.25) to (8.29)]. For the case 
of broken SUSY, the same derivation applies until one examines the O(h) 
term in eq. (8.27). Here, for broken SUSY, one has 

W ( a )  = W(b) = dEE1) , (8.40) 
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and the O(h) term in (8.27) exactly vanishes. So, to the leading order in 
A, the SWKB quantization condition for broken SUSY (BSWKB) is 

fi- dz = (n + 1/2)A7r, n = 0,1,2, ... . (8.41) 

As before, it is easy to obtain the quantization condition which includes 
higher orders in A and to  test how well the broken SWKB condition works 
for various specific examples. As in the unbroken SUSY case, it is found 
that the lowest order BSWKB quantization condition also reproduces the 
exact spectra for SIPs with translation of parameters. For potentials which 
are not analytically solvable, the results using eq. (8.41) are usually better 
than the standard WKB computations. 

a 

8.8 Tunneling Probability in the SWKB Approximation 

In this section we shall show that in certain respects, the SWKB approxi- 
mation does even better than the WKB approximation as far as the com- 
putation of the tunneling probability I T l2 is concerned. In particular, 
recall that whereas the WKB expression for I T l2 is exact in the case of 
the inverted oscillator and the inverted Morse potential, in the other cases 
not only is the expression for 1 T l2 not exact but even the poles of I T l2 
analytically continued to the inverted potential (well instead of barrier) do 
not reproduce the correct bound state energy eigenvalues except for the 
harmonic oscillator and the Morse potentials. For the SWKB method, it is 
again true that except for the two special cases mentioned above, one does 
not get the exact expression for I T 1 2 .  Nevertheless the poles of I T 12, 
analytically continued to the inverted potential (which is now a well), do 
reproduce the exact bound state spectrum for SIPs with translation. 

Consider a symmetric potential barrier in one dimension. We start from 
the WKB expression for T l2 as given by 

(8.42) 

where 

x = f s,:" dzJ2rn[V(s) - El.  (8.43) 
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Let us apply this formula to the partner potentials 

(8.44) 

where W(z) is the analytically continued superpotential for the barriers. 
Clearly, for the partner potentials, K takes the form 

(8.45) 

where b, a are the turning points obtained from 

W2(b) = E = W 2 ( a ) .  (8.46) 

The value of the second integral of eq. (8.45) turns out to be -in and 
hence the expression for the transmission probability for the SUSY partner 
potentials is given by 

where 

and 

(8.47) 

(8.48) 

p(1*2)(2) = $/W2(x) - EfW. (8.49) 

Now, under the changep('i2) + ip(lq2) , T(1*2) have poles in the complex 
energy plane and they precisely give the SWKB quantization conditions for 
V(lv2) as given by eqs. (8.29) and (8.30) which have been shown to yield the 
exact bound state spectrum for all SIPS with translation. In this way, we see 
that the SWKB expression for I T l2 when analytically continued, yields the 
exact bound state spectrum for all SIP with translation. It must however 
be emphasized that as far as the expression for I T l2 itself is concerned, 
SWKB is in general inexact, the two exceptions being the inverted oscillator 
and the inverted Morse potential. However, as in the bound state spectrum 
case, one finds that on the whole, the SWKB expression for 1 T l2 gives 
better results compared to the corresponding WKB answer. 
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Problems 

1. Work out the energy spectra of the harmonic oscillator and the Morse 
potentials using the WKB approximation and show that they are exact. 
In both cases work out the O(h2) correction using the formula given in 
the text, and show that the corrections vanish. Show that the SWKB 
approximation for these potentials also gives exact ene rh  eigenvalues. 

2. For the potential V ( s )  = A2 - A(A + 1) sech2z, show that the WKB 
approximation does not reproduce the exact spectrum. Compute the ac- 
curacy of the four eigenenergies corresponding to the case A = 4. Now 
repeat the calculation using the SWKB approximation, and show that it 
gives exact eigenenergies. 

3. Compute the spectrum of the Coulomb potential V ( r )  = -e2 /F  using the 
WKB approximation with the appropriate 1(Z+1)/2mr2 angular momentum 
term. Show that the inclusion of the Langer correction 1 ( 1 +  1) + ( I  + i)2 
leads to the exact spectrum. Finally, show that the SWKB approximation 
also gives the exact eigenenergies, thus removing the need for any ad hoc 
Langer-type corrections. 

4. Consider the one-dimensional potential V(z) = alzl*. Show that the 
WKB energy levels are given by 

where r ( a )  is the usual gamma function. Note that no power law potential 
exists which can make energy levels further apart asymptotically than the 
quadratic spacing of the infinite square well. 





Chapter 9 

Perturbative Methods for Calculating 
Energy Spectra and Wave Functions 

The framework of supersymmetric quantum mechanics has been very useful 
in generating several new perturbative methods for calculating the energy 
spectra and wave functions for one dimensional potentials. Four such meth- 
ods are described in this chapter. 

In Secs. 9.1 and 9.2, we discuss two approximation methods (the vari- 
ational method and the 6- expansion) for determining the wave functions 
and energy eigenvdues of the anharmonic oscillator making use of SUSY 
QM. Sec. 9.3 contains a description of a SUSY QM calculation of the en- 
ergy splitting and rate of tunneling in a double well potential. The result 
is a rapidly converging series which is substantially better than the usual 
WKB tunneling formula. Finally, in Sec. 9.4, we describe how the large N 
expansion ( N  = number of spatial dimensions) used in quantum mechanics 
can be further improved by incorporating SUSY. 

9.1 Variational Approach 

The anharmonic oscillator potential V(z) = gx4 is not an exactly solvable 
problem in quantum mechanics. To determine the superpotential one has 
to first subtract the ground state energy EO and solve the Riccati equation 
for W(z): 

(9.1) V*(2) = 9x4 -El) E w 2 - w’ . 

Once the ground state energy and the superpotential is known to some 
order of accuracy, one can then determine the partner potential and its 
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ground state wave function approximately. Then, using the SUSY operator 

one can construct the first excited state of the anharmonic oscillator in the 
usual manner. Using the hierarchy of Hamiltonians discussed in Chapter 3, 
one can construct from the approximate ground state wave functions of the 
hierarchy and the approximate superpotentiais W, all the excited states of 
the anharmonic oscillator approximately. 

First let us see how this works using a simple variational approach, 
For the original potential, we can determine the optimal Gaussian wave 
function quite easily. Assuming a (normalized) trial wave function of the 
form 

we obtain 

P2 P 39 < H >=< - +gx4 >= - + - 2 2 16p2 * 
(9.3) 

(In this section, we are taking m = l , A  = 1 in order to make contact 
with published numerical results). Minimizing the expectation value of t h e  
Hamiltonian with respect to the parameter p yields 

This is rather good for this crude approximation since the exact ground 
state energy of the anharmonic oscillator determined numerically is Eo = 
0.66799g'/3 whereas ( i )4 /3  = 0.68142. The approximate superpotential W 
resulting from this variational calculation is 

which leads, within the Gaussian approximation, to the potential 

VIG = 4px2 - 2p . (9.5) 

The (approximate) supersymmetric partner potential is now 

V2G = 4px2 + 2p . (9.6) 
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Table 9.1 
method with the exact results. 

Comparison of the three lowest energy eigenvalues obtained by a variational 

Level n P A(E)vav A(E)ezact 
0 1.183458 0.666721 0.669330 0.667986 
1 0.995834 0.429829 1.727582 1.725658 
2 1.000596 0.435604 2.316410 2.303151 

Since V2G differs from V1G by a constant, the approximate ground state 
wave function for V2 is also given by eq. (9.2). The approximate ground 
state energy of the second potential is now 

Thus we find in the harmonic approximation that the energy difference 
between the ground state and the first excited state of the anharmonic 
oscillator is 

El - EO = 4p = 4(3)'/'g'f3 = 3.632g'j3 , 4 

which is to be compared with the exact numerical value of 1.726g1/' as 
seen from the Table 9.1. This shows that the harmonic approximation 
breaks down rapidly when we consider the higher energy eigenstates of an 
anharmonic oscillator. 

The approximate (unnormalized) first excited state wave function in 
this simple approximation is 

1 d  
= [-zz + 2px]$lh 0; 4pxe-fixa 

To obtain better accuracy it is necessary to extend the number of vari- 
ational parameters. For the ground state wave function one does not want 
any nodes. A parameterization which allows one to perform all the integrals 
analytically in the determination of the trial Hamiltonian is a generalization 
of the Gaussian to the form: 

Using this generalized form, we obtain much better agreement for the 
low lying eigenvalues and eigenfunctions as we shall demonstrate below. It 
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is convenient in this case to first scale the Hamiltonian for the anharmonic 
oscillator, 

18 
H = + g x 4 ,  

2 dx2  (9.10) 

by letting x -+ x / g 1 I 6  and H + g 1 I 3 H .  Then we find the ground state 
energy of the anharmonic oscillator and the variational parameters p1 and 
nl by forming the functional 

(9.11) 

Thus we first determine p1 and n1 by requiring 

m=o, O P l  m=o. an1 (9.12) 

Using the trial wavefunction (9.9), the energy functional for the anharmonic 
oscillator is given by 

(9.13) 

Minimizing this expression, we obtain the following variational result: 

Eo = 0.66933, 7 ~ 1  = 1.18346, pi = 0.666721 . (9.14) 

This ground state energy is to be compared with the exact numerical value 
of 0.667986 . 

Let us now try to  estimate the energy differences En - E,-I of the 
anharmonic oscillator. To that end, we consider the variational Hamiltonian 

Hvk+l = Z A k v A k ,  l t  (9.15) 

which approximately determines these energy differences. Since the trial 
wave function for all ground states is given by eq. (9.9), the Variational 
superpotential for all k is 

w k v  = nklx12nh-1(pk)-n' . (9.16) 

We obtain the approximate energy splittings by minimizing the energy 
functional 
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Performing the integrals one obtains the simple recursion relation: 

2nr-1-1 
nk-1 +-(2nk-1 - 1) 
2Pk Pk-1 

(9.18) 

One can perform the minimization in p analytically leaving one minimiza- 
tion to perform numerically. 

The results for the variational parameters and for the energy differ- 
ences are presented in Table 9.1 for the first three energy eigenvalues and 
compared with a numerical calculation, based on a shooting method. For 
these low lying states, this variational method is more accurate than first 
order WKB results. However for n 2 4 first order WKB becomes more 
accurate than this variational calculation. A more recent calculation using 
more variational parameters (polynomials times exponentials) gave energy 
eigenvalues for these low lying states accurate to .l% . 

9.2 SUSY 6 Expansion Method 

In this section we consider the anharmonic oscillator as an analytic contin- 
uation from the harmonic oscillator in the parameter controlling the anhar- 
monicity. We introduce a novel expansion method based on introducing a 
perturbation parameter S which describes the degree of nonlinearity of an 
anharmonic oscillator. We will follow the ideas of Appendix C in doing our 
perturbation theory by assuming that both the ground state energy as well 
aa the superpotential W ( x )  have an expansion in the perturbation parame- 
ter (here 6 as opposed to the coupling constant version in Appendix C ) .  We 
will make a slight change in notation here to conform with the published 
literature. We will choose the Hamiltonian for the quartic anharmonic os- 
cillator as before, but introduce a new variable V1 (x) to be twice the usual 
potential. Thus, we have for the anharmonic oscillator: 

(9.19) 
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On introducing a mass scale parameter M ,  and an anharmonicity parameter 
6 ,  Vl(z) has the form 

V1(x) = M 2+6x2+26 - C(6) z W2(x,S) - w‘ , (9.20) 

where C is the ground state energy of the anharmonic oscillator. C is 
subtracted as usual from the potential so that it can be factorized. The 
harmonic oscillator had 6 = 0 and M = rn. As we increase 6 to one we reach 
the quartic anharmonic oscillator with the identification M = (2g)1/3. To 
approximately determine W(x) from Vl(x) we assume that both W(x) and 
Vl(z) have a Taylor series expansion in 6. Thus we write: 

(9.21) 
O0 Sn[ln(Mx2)]” O0 

Vl(X) = M 2 c - E 2 E n b n  , 
n=O 

n! 
n=O 

where En corresponds to the coefficient of S“ in the Taylor series expansion 
of the ground state energy. 

We assume 
M 

(9.22) 
n=O 

and insert these expressions in eq. (9.20) and match terms order by order. 
At lowest order in 6 the problem reduces to the supersymmetric harmonic 
oscillator. We have: 

Wz - W; = M2x2 - 2Eo , (9.23) 

whose solution is 

(9.24) 
1 
2 WQ(Z) = M X  , Eo = -M . 

To the next order we have the differential equation: 

2W1Wo = -M2x21n(Mx2) + 2E1 , dWi 
dx 
-- (9.25) 

which is to be solved with the boundary condition Wn(0) = 0. The order 
S contribution to the energy eigenvalue El is determined by requiring that 
the ground state wave function be square integrable. Solving for W1 we 
obtain 

~ ~ e - M ~ z [ M 2 ~ 2 1 n ( M ~ 2 )  - 2E1] 
M z a  /d” Wl(x) = -e (9.26) 
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To first order in 6 the ground state wave function is now: 

&(z) = e - M q 1 -  6 S 2  dyW1(y)] . 
0 

Imposing the condition that $0 vanishes at infinity, we obtain: 

(9.27) 

Writing M = (2g)1/3, we find that the first two terms in the 6 expansion 
for the ground state energy are 

1 
E~ = p ' 1 1 ' ( 3 / 2 )  $(s) = r w w  . 

(9.28) 

At 6 = 1, we get for the ground state energy of the quartic anharmonic 
oscillator 

E = 0.6415g1/3 . (9.29) 

a9 opposed to the exact numerical value E = 0.667986g1j3. A more accurate 
determination of the ground state energy can be obtained by calculating up 
to order d2 and then analytically continuing in 6 using Pad6 approximants. 
Using standard SUSY methods we can also calculate all the excited states 
of the anharmonic oscillator in a 6 expansion about the Harmonic oscillator 
result. The method can also be extended to perturbing about any shape 
invariant potential. For determining the energy levels of the anharmonic 
oscillator the variational method is simpler and more accurate than the 6 
expansion method. 

9.3 Supersymmetry and Double Well Potentials 

Supersymmetric quantum mechanics has been profitably used to obtain a 
novel perturbation expansion for the probability of tunneling in a double 
well potential. Since double wells are widely used in many areas of physics 
and chemistry, this expansion has found many applications ranging from 
condensed matter physics to the computation of chemical reaction rates. 
In what follows, we shall restrict our attention to symmetric double wells, 
although an extension to asymmetric double wells is relatively straightfor- 
ward. 
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Fig. 9.1 
its supersymmetric partner potential Vz(z). 

A “deep” symmetric double well potential VL(Z) with minima at x = fxa  and 

Usually, in most applications the quantity of interest is the energy dif- 
ference t E El - EO between the lowest two eigenstates, and corresponds to 
the tunneling rate through the double-well barrier. The quantity t is often 
small and difficult to calculate numerically, especially when the potential 
barrier between the two wells is large. Here, we show how SUSY facilitates 
the evaluation of t .  Indeed, using the supersymmetric partner potential 
VZ (x), we obtain a systematic, highly convergent perturbation expansion 
for the energy difference t .  The leading term is more accurate than the 
standard WKB tunneling formula, and the magnitude of the nonleading 
terms gives a reliable handle on the accuracy of the result. 

First, we briefly review the standard approach for determining t in the 
case of a symmetric, one-dimensional double well potential, V1 (x), whose 
minima are located x = fzo. We define the depth, D, of V1(x) by D 
VI(0) - VI(z0). An example of such a potential is shown in Fig. 9.1 

For sufficiently deep wells, the double-well structure produces closely 
spaced pairs of energy levels lying below V1 (0). The number of such pairs, 
n, can be crudely estimated from the standard WKB bound-state formula 
applied to VI(S) for z > 0: 

(9.30) 

where zc is the classical turning point corresponding to energy Vl(0) and we 
have chosen units where A = 2?n = 1. We shall call a double-well potential 



Superrymmetry and Double Well Potentials 145 

“shallow” if it can hold at most one pair of bound states, i.e., n 5 1. In 
contrast, a “deep” potential refers to n 2 2. 

The energy splitting t of the lowest-lying pair of states can be obtained 
by a standard argument. Let x(z) be the normalized eigenfunction for a 
particle moving in a single well whose structure is the same as the right- 
hand well of Vl(z) (i.e., x > 0). If the probability of barrier penetration is 
small, the lowest two eigenfunctions of the double-well potential Vl(x) are 
well approximated by 

!$!(x) = [x(4 f x ( - 4 l / f i  . (9.31) 

By integration of Schrodinger’s equation for the above eigenfunctions, it 
can be shown that 

t El - Eo = 4x(O)x’(O) , (9.32) 

where the prime denotes differentiation with respect to x. This result is ac- 
curate for “deep” potentials, but becomes progressively worse as the depth 
decreases. Use of WKB wave functions in eq. (9.32) yields the standard 
result: 

Using the supersymmetric formulation of quantum mechanics for a given 
Hamiltonian, HI = -d2/dz2 + VI (z), and its zero-energy ground state wave 
function +:I, we know that the supersymmetric partner potential V,(z) is 
given by 

f i b )  = V l b )  - 2 ( d / W & J / + o )  
= -V1(2) + 2(%4/+0)2 . (9.34) 

(Here and in what follows we are using $0 for +f).) 

-+&/+o we can write 
Alternatively, in terms of the superpotential W ( s )  given by W ( 2 )  = 

V2,1(x) = W 2 ( x )  f dW/dx  . (9.35) 

From the discussion of unbroken SUSY in previous chapters, we know 
that the energy spectra of the potentials V2 and Vl are identical, except for 
the ground state of V1 which is missing from the spectrum of VZ. Hence, 
for the double-well problem, we see that if V1 (z) is “shallow” (i.e., only the 
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lowest two states are paired), then the spectrum of V2 is well separated. 
In this case, VZ is relatively structureless and simpler than VI .  Thus, not 
surprisingly, for the shallow potentials, the use of SUSY simplifies the eval- 
uation of the energy difference t .  In contrast, let us now consider the case 
of a deep double well as shown in Fig. 9.1. Here, the spectrum of Vz has a 
single unpaired ground state followed by paired excited states. In order to  
produce this spectrum, V2 has a double-well structure together with a sharp 
9- function like" dip at x = 0. This central dip produces the unpaired 
ground state, and becomes sharper as the potential VI (z) becomes deeper. 

As a concrete example, we consider the class of potentials whose ground 
state wave function is the sum of two Gaussians, centered around ztxo, 

The variables x and zo have been chosen to be dimensionless. The cor- 
responding superpotential W ( z ) ,  and the two supersymmetric partner po- 
tentials Vl(x) and VZ(X), are given respectively by 

W(X) = 2[x - xo tanh(2xso)I (9.37) 

V1,2(z) = 4[z - 20 tanh(2zz0)j2 F 2[1- 2x&ech2(2zzo)] . (9.38) 

The minima of Vl(x) are located near f x o  and the well depth (in the limit 
of large 50) is D N 45;. We illustrate the potentials VI(X) and &(z) in 
Fig. 9.2 for the two choices 20 = 1.0 and zo = 2.5. We see that in the limit 
of large 20, for both Vl(x) and &(z), the wells become widely separated 
and deep and that VZ(Z) develops a strong central dip. 

The asymptotic behavior of the energy splitting, t ,  in the limit xo + 00 

can be calculated from eq. (9.32), with x(z) given by one of the (normal- 
ized) Gaussians in eq. (9.36). We find that 

t -+ 8z0(2/~)'/~e-~"; . (9.39) 

The same result can be obtained by observing that Vl (x) + 4( 1 z I - z o ) ~  as 
zo + 00. This potential has a well known analytic solution, which involves 
solving the parabolic cylindrical differential equation. After carefully han- 
dling the boundary conditions, one obtains the separation of the lowest two 
energy levels to  be 8~,-,(2/x)~/~ exp(-2z;), in agreement with eq. (9.39). 
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Fig, 9.2 
choices of the parameter zo for the potentials given in eq. (9.38). 

Supersymmetric partner potentials V1 (z) and V2(z) corresponding to two 

We now turn to  the evaluation o f t  by determining the ground state en- 
ergy of the supersymmetric partner potential V~(Z). In general, since V2(2) 

is not anaIyticaIIy solvable, we must solve an approximate problem and 
calculate the corrections perturbatively. We will first show that a close ap- 
proximation to the potential can be found by studying the non-normalizable 
solution to Schrodinger equation for the potential Vz(2) .  Using the fact that 

W(z) = -- 
$0 

and that 

Vz(z) = w 2  + w' 
, it is straightforward to show that the wave function 

(9.40) 

is a zero energy solution of the Schrodinger equation for the potential V2 (2). 



148 Perturbative Methods for Calculating Energy Spectra and Wave Functions 

Since t is small, we expect this solution to be an excellent approxima- 
tion to the correct eigenfunction for small values of x. However, l/llf~ is 
not normalizable and hence is not acceptable as a starting point for per- 
turbation theory. One possibility is to regularize the behavior artificially 
at large 2 I .  This procedure is cumbersome and results in perturbation 
corrections to the leading term which are substantial. 

It turns out, that if we consider the second linearly independent solution 
of the Schrodinger equation related to $(x) 

4(z) = ; J,m +;(x’)dx’, 2 > 0 ,  (9.41) 

and #(z) = 4(-z) for x < 0, then this wave function actually corresponds 
to a well defined zero-energy solution of the Schrodinger equation for a 
slightly different potential %(x) , namely 

h(2) = Vz(.) - 41clO2(0)d(~) - (9.42) 

We can now do standard perturbation perturbation theory about VO (x) to 
find the approximate solution for VZ(Z). In eq. (9.42) we have assumed 
that $~(z) is normalized. The wave function $(x) is well behaved at x = 
f o o  and closely approximates 1/& at small x. It already is an excellent 
approximation of the exact ground state wave function of V~(Z) for all values 
of 2. The derivative of $(z) is continuous except at the origin, where, unlike 
the exact solution to VZ(Z), it has a discontinuity 

4 Iz=+e -4 I+=-<= -2dJo(O) * 

We can calculate the perturbative corrections to the ground state energy 
using AV = +4$$(0)6(x) as the perturbation. Note that the coefficient 
multiplying the &function is quite small as a result of Ilt(0) being small 
so that we expect our perturbation series to converge rapidly. It may be 
noted that since Q(0) is the ground state wave function for a double well 
potential, its support is mostly near the minima of the potential and it is 
smallest at the origin and at foo .  

For the case of a symmetric potential such as Vz(x), the perturbative 
corrections to the energy arising from AV can be most simply calculated 
by use of the logarithmic perturbation theory. Logarithmic perturbation 
theory is the method of choice of doing perturbation theory for one dimen- 
sional potentials. A discussion of this method is found in the article of 
Imbo and Sukhatme and is summarized in Appendix C. 
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Fig. 9.3 The energy splitting t = El - EO as a function of the separation 220 of the 
superposed Gaussians in the ground state wave function +O(Z). 

The first and second order corrections to the unperturbed energy E = 0 
are 

(9.43) 

For our example, we numerically evaluate these corrections in order to 
obtain an estimate of t. The results are shown in Fig. 9.3 for values of 
xo 5 2. Estimates of t correct to first, second, and third order calculated 
from logarithmic perturbation theory are compared with the exact result 
for V2, obtained by the Runge-Kutta method. The asymptotic behavior 
of t  given by eq. (9.39) is also shown. This asymptotic form can also be 
recovered from eq. (9.43) by a suitable approximation of the integrand 
in the large-zo limit. Even for values of 20 5 I f &  in which case Vl(z) 
does not exhibit a double-well structure, the approximation technique is 
surprisingly good. The third-order perturbative result and the exact result 
are indistinguishable for all values of ZO. 

In conclusion, we have demonstrated how SUSY can be used to calculate 
t, the energy splitting for a double well potential. Rather than calculating 
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this splitting as a difference between the lowest-lying two states of Vl(z), 
one can instead develop a perturbation series for the ground state energy t 
of the partner potential V2(2). By choosing as an unperturbed problem the 
potential whose solution is the normalizable zero-energy solution of Vi (z), 
we obtain a very simple 6-function perturbation which produces a rapidly 
convergent series for t .  The procedure is quite general and is applicable 
to  any arbitrary double-well potential, including asymmetric ones. The 
numerical results are very accurate for both deep and shallow potentials. 

9.4 Supersymmetry and the Large-N Expansion 

The large-N method, where N is the number of spatial dimensions, is 
a powerful technique for analytically determining the eigenstates of the 
Schrodinger equation, even for potentials which have no small coupling con- 
stant and hence not amenable to treatment by standard perturbation the- 
ory. A slightly modified, physically motivated approach, called the “shifted 
large-N method” incorporates exactly known analytic results into the 1 / N  
expansion, greatly enhancing its accuracy, simplicity and range of appli- 
cability. In this section, we will describe how the rate of convergence of 
shifted 1 / N  expansions can be still further improved by using the ideas of 
SUSY QM . 

The basic idea of the 1/N expansion in quantum mechanics consists of 
solving the Schrodinger equation in N spatial dimensions, assuming N to  be 
large, and taking 1/N as an “artificially created” expansion parameter for 
doing standard perturbation theory. At the end of the calculation, one sets 
N = 3 to get results for problems of physical interest in three dimensions. 

For an arbitrary spherically symmetric potential V ( r )  in N dimensions, 
the radial Schrodinger equation contains the effective potential 

, k = N + 2 1 .  (9.44) 
(k  - l ) ( k  - 3)h2 

Kff = V ( r )  + 8mr2 

It  is important to note that N and 1 always appear together in the 
combination k = N + 21. This means that the eigenstates, which could in 
principle have depended on the three quantities N ,  1 ,  n, in fact only depend 
on k and n, where n is the radial quantum number which can take values 
0,1,2, ... . One now makes a systematic expansion of eigenstates in the pa- 
rameter 1 / x ,  where x = k - a. Of course, for very large values of N ,  the two 
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choices and k are equivalent. However, for N = 3 dimensions, a properly 
chosen shift a produces great improvement in accuracy and simplicity. At 
small values of T ,  the n = 0 wave function $JO(T) has the behavior d k h 1 ) I 2 .  
If one sets 

$o(T)  = T@-l)'%O(T) (9.45) 

where @o(T) is finite at the origin, then eq. (9.45) readily gives the super- 
symmetric partner potential of V&(r) to be 

VZ(T) = V(r) + - -- ln@o(r) . (9.46) 
(k + l ) ( k  - l)h2 h2 d2 

8mr2 m dr2 
Note that &(r) and I&&-) have the same energy eigenvalues [except for 
the ground state]. However, large-N expansion with the partner potential 
V2(r) is considerably better since the angular momentum barrier in eq. 
(9.46) is given by (k' - 1)(k' - 3)Fi2/8mr2, where k' = k + 2. So, effectively, 
one is working in two extra spatial dimensions! Thus, for example, in order 
to calculate the energy of the state with quantum numbers k,n of V,R(T) 
one can equally well use k' = k + 2, n - 1 with K(T).  To demonstrate this 
procedure, let us give an explicit example. Using the usual choice of units 
f i  = 2m = 1, the s-wave Hulthen effective potential in three dimensions and 
its ground state wave function are: 

where the parameter 6 is restricted to be less than 2. The supersymmetric 
partner potential turns out to be 

(9.48) 

As r tends to zero, V2H goes like 2r-', which as mentioned above, (note 
ti = 2m = 1) corresponds to the angular momentum barrier (k' - l)(k' - 
3)/4r2 with k' = 5 (N = 5,l = 0). Let us compute the energy of the 
first excited state of V$(T) .  For the choice 6 = 0.05, the exact answer 
is known to be 0.748125. The results up to leading, second and third 
order using a shifted 1/N expansion for \: are 0.747713, 0.748127 and 
0.748125 . The corresponding values using the supersymmetric partner 
potential V2H are all 0.748125 ! It is clear that although excellent results 
are obtained with the use of the shifted 1/N expansion for the original 
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potential V z  ( r )  in three dimensions, even faster convergence is obtained 
by using the supersymmetric partner potential, since we are now effectively 
working in five dimensions instead of three. Thus, SUSY has played an 
important role in making a very good expansion even better. In fact, for 
many applications, considerable analytic simplification occurs since it is 
sufficient to  just use the leading term in the shifted 1 /N expansion for 
vz (.I. 
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1. Consider the paftner Hamiltonians H2,1 = p2/2 + V2,1, with 

(a) Determine the ground state wave function and energy for H I  exactly. 
(b) Using the trial wave function of the form given in eq. (9.9) determine 
the energy functional &(p ,  n). 
(c) For n = 1 , 2  find the value of p that minimizes the energy functionals 
for both H2 and W1. 

(d) Determine the ground state energy from the results of (c). What can 
you say about the accuracy of this approximation for n = 1,2 for H2 and 
HI? 

VZJ = i(W2 f W’); W = 53. 

2. There are some other polynomial potentials for which the ground state 
is exactly known. One has that for 

2 v  = z6 - 7x2 : Eo = --a ; 2v = x6 - lls2 : Eo = -4 . 
Again calculate the variational energies for n = 1,2 and compare with these 
exact results. 

3. An alternative to the 6 expansion of the text is what is known as the 
linear 6 expansion. Again consider the partner potential Vz = t ( x 8  + 3z2) 
to be written as 

1 
V(z) = ,j(z6 - 3 ~ ’  t 6 6 x2) , 

where again 6 is initially assumed to be a perturbation parameter which 
will be set to one or extrapolated to one at the end. Following the discus- 
sion of the 6 expansion, or following the related discussion of logarithmic 
perturbation theory of Appendix C, introduce a new potential 

2V1(~)  = W 2  - W’ = x6 - 3x2 + 66x2 - 2E(6) 
Assume all quantities have a series expansion in 6 .  First rederive that 
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Wo = X ~ ~ E O  = 0. Next show that WI obeys the differential equation (see 
also eq. (C.3)) : 

W: - 2x3W1 = 62' - El . 

Assuming a solution of the form W ( x )  = e"4/2f(x), show that: 

w1 (x)e-z4/2 = Jd" dy e-"4/2[6y2 - 2E1] . 

Therefore derive that 

El = 3 f i m  = 1.433397. 
W / 4 )  

If we just set 6 = 1 this then gives a higher answer for the ground state 
energy than the variational method. This would be improved if we instead 
calculated several terms in the linear 6 expansion and extrapolated to 6 = 1 
using say Pad6 approximants. 

4. This problem describes the procedure of obtaining a 1 / N  expansion for 
the spherically symmetric power law potentials V ( r )  = Ar". Start from the 
radial Schrodinger equation in N dimensions. Scale out the characteristic 
distance of the problem T,  (A2/2mA)'/("+') and the corresponding char- 
acteristic energy E, = ArcVI by defining < = r / r c  and X = E/E,. Show 
that the Schrodinger equation now reads 

dL ( k  - l ) ( k  - 3)  
[-@+<'.+ 4<' 

where k = N + 21. Change the independent variable to q = <k-2/(v+2)  
and show that the effective potential at large k is V,ff = q" + 1/4q2, 
with a minimum at qo = ( 2 ~ ) - ' / ( ' . + ~ ) .  Again make a change of variables 
x = k'/'(q - qo) /qo  and show that the Schrodinger equation becomes 

[-G d 2 k  + 4 (1 - i) (1 - 1) (1 + j$)-z + & (1 + &)"I 9 = JdJ 7 

where x = X q o ' k ~ .  Expand all terms in l / k  and equate order by order 
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to  get the result 

5. The rate of convergence of the l / k  expansion, discussed in the previous 
problem for power law potentials, can be substantially improved by chang- 
ing to a lf i  expansion, which makes use of the shifted expansion parameter 

= k - 2 + (2n + l)m. Here, the shift has been chosen so that the 
eigenvalues are exact for the analytically known cases v = -1(Coulomb) 
and v = 2(harmonic oscillator). Show that in this case, if one carries out 
the perturbation expansion up to O(E-”, the result is 





Appendix A 

Path Integrals and SUSY 

A.l  Dirac Notation 

Quantum mechanics describes the state of a particle by a state vector 14) 
which belongs to a Hilbert space 3c. 3c is the vector space of complex, square 
integrable functions, defined in configuration space. The scalar product of 
vectors in the space 3c in Dirac notation is 

(A-1) 

By definition, a vector 14) belongs to the Hilbert space 31 if the norm of 
14) is finite: 

(4#) = J d 3 ? d v h w , l  < 00 . ( A 4  

The eigenvectors of the position operator & and momentum operator fji 

do not belong to '?i because their norm is infinite, however they obey the 
closure relations: 

The overlap of these eigenvectors is given by 

(d.') = 6 3 ( r ' -  .') ; (p78) = 63(5- p') , 
157 
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and 

Path Integrals and SUSY 

The wave function of a particle in the state 14) is given in the coordinate 
representation by 

dr‘) = (44) * (A@ 

In the coordinate representation one has 

In what follows we will use the notation x,p to represent F, 5. So for example 
the closure relationship will be 

dZlZ ) (Z (  = 1 . J 
A.2 Path Integral for the Evolution Operator 

The matrix element of the evolution operator 

U(Zf,tf;Zittj) 5 (Zf, t f [ ” i , t i )  = (“ f l e -kH(t f - tqZi )  , (-4.8) 

can be cast in the form of a Feynman path integral by dividing the finite 
time interval into a large number of small steps and evaluating the evolution 
operator for each step. Let us divide the time interval t f  - ti into N + 1 
equal steps of size E ,  

tf - t i  

N + l  
t : = - .  

Then the intermediate times are denoted by 

and the intermediate positions by 
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Inserting the resolution of the identity 

d z n l z n ) ( s n l =  1 9 s 
N times we have 

N N+1 

( z f t t f l s i t t i )  = n / h k  n bnrtnlZn- l tk-1)  * ( A . l l )  

The object that needs to be evaluated is the matrix element of the infinites- 
imal evolution operator: 

k=O n= 1 

(~,le-~*'('t') 1 ~ n - 1 )  = 1 dPn(zn Ipn)(pnle-i*'('th) lzn-1) . (A. 12) 

Because the operators @ and 4 do not commute one needs to find an ap- 
proximation to the infinitesimal evolution operator which allows simple 
evaluation of the matrix element in eq. (A.12). There are several choices 
here, many of which are discussed in the book by Schulman. A very conve- 
nient choice is found in the book of Negele and Orland. There they define 
the normal form : O@$) : of an operator 0 to have all the ji to the left and 
all the 4 to the right so that 

They then prove that the difference between the exact infinitesimal evolu- 
tion operator and the normal ordered one is of order e2, with the leading 
correction being 

(A.14) 

We therefore obtain using eq. (A.12) and the normal ordered approximation 
that 

(A.15) 

where 
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and d is the number of spatial dimensions of the problem (usually 1 or 3). 
The integration over p is a shifted Gaussian integral in d dimensions. Using 
the basic integration formula for a shifted Gaussian in one dimension: 

(A.16) 

we obtain 

Therefore the matrix element of the evolution operator is approximately 
given by 

(A.18) 

The set of points {zo,x1,. ' . , Z N + ~ }  defines a trajectory in the limit N + 00 

which is denoted by s(t) with x(ti)  = xi and z(tr) = xf .  In the continuum 
limit one has 

N+f t f  m dx 
2 dt dt-(-)' , 

n= 1 

(A.19) 

so that in the continuum limit we get the Feynman path integral: 

where 
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and the action S[z(t)] is given by 

tf m dx 
S [ x ( t ) ]  = 1,; dtl[z(t) , i( t)] = 1 dt [ ~ ( - g ) ~  - V ( ~ ( t ) ) ]  . (A.21) 

ti 

In the Heisenberg picture we often want to calculate the ground state cor- 
relation functions or Green’s functions such as: 

Wl’ t 2 )  = (o lm( t l )w2)) lo)  9 (A.22) 

where the time ordered product is given by 

T(2(t)g(t’))  = Q(t - t’)?(i?)&(t’) + Q(t’ - t)&(t’)?(t) , (A.23) 

If we now assume t‘ > tl > t z  > t we have (inserting the resolution of the 
identity twice) that 

(x,tlO> > 
G(t l ,  t z )  = 1.. dx’(olz’, t’> lyt’*t‘ D[z(t>lz(tl)s(tz)e J*’ d t L [ s ( t ) ]  

(A.24) 
where 

-iEot (.,tlO> = 4Jo(x)e I 

is the ground state wave function. A careful argument involving analytic 
continuation in time then shows that we can project out these ground state 
wave functions by letting t + (1 - iq)f with 7 an infinitesimal and then 
taking the Iimit f + 00. One then obtains 

It is convenient to define the functional Zb] 

where the limit discussed above is now assumed. N is chosen so that 

Z [ j = O ] = l .  

In terms of Zb], we find for example that 

(A.27) 
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which is the reason that Z[j] is called the generating functional for the 
correlation functions. 

A.3 Path Integrals for Fermionic Degrees of Freedom 

A.3.1 

Two fermionic particles (for example, those having 1/2 integer spin) can- 
not occupy the same quantum state as a resuit of the the Paul  exclusion 
principle. The simplest fermionic system is described by the Hilbert space 

= 1% 11) 1 (A.28) 

Hilbert Space for Fermionic Oscillator 

with the property that the vacuum is defined by 

al0) = 0 , (A.29) 

and the single particle state by 

11) = a+ 10) . (A.30) 

The fermion creation and annihilation operators at , a obey the anticommu- 
tation relations 

{ U , U t )  = .at +at, = 1 ,  
{a,a} = ( U t , U t }  = o .  (A.31) 

The Pauli principle is encoded in the fact that 

a t p )  = U + U + l O )  = 0 . (A.32) 

The completeness of the Hilbert space 3c is the relationship: 

lO>(OI + 11>(11 = 1 ’ (A .33) 

Coherent states of oscillators are states which are eigenfunctions of the 
annihilation operator i.e. 

44) = 414) . (A.34) 

We see that because of the anticommutation relations satisfied by the a, 
that the eigenvalues of a i.e. # cannot be ordinary numbers but must be 
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anticommuting variables that turn out to be members of what is known as 
a Grassmann algebra. That is we must have 

{4,41 = o  9 { h a )  = o .  (A.35) 

The variables of a Grassmann algebra are necessary to encode into the 
definition of the fermion path integral the Pauli exclusion principle. The 
coherent states for a single oscillator are easy to construct as: 

14) = e - q o )  = 10) - 411) . (A.36) 

Using the anticommutation relation between 4 and a as given by eq. (A.35), 
it is easy to see that eq. (A.34) is indeed satisfied. A Grassmann algebra is 
defined by a set of generators denoted by {ta), a = 1,. . . , n. The generators 
anticommute: 

{&&I = 0 .  (A.37) 

The basis of the algebra is made of all distinct products of the generators: 

{ 1, Q, 7 Eat &k% 7 - * * tax Q, . . * €an 1 * 

If we consider a Grassmann algebra with two generators 5, <* then the basis 
is 

(A.38) 

and the most general object that can be written in this basis is of the form: 

A(S*, t )  = a0 4- alt  f G l t '  + a12t*t * (A.39) 

In terms of real Grassmann variables (1 and 

Next we want to define differentiation and integration over Grassmann vari- 
ables. We define the derivative of a Grassmann variable in a similar fashion 
to that of a complex derivative except that in order for the derivative op- 
erator & to act on t the variable 5 must be anticommuted through the 
expression for A until it is adjacent to &. For example: 

(A.40) 



164 Path Integrnls and SUSY 

One finds that 

(A.41) 

Thus the derivatives with respect to the Grassmann variables also anticom- 
mute: 

} = O .  a a a a  (-- -- 
a<* at' at at* (A.42) 

Integration over Grassmann variables is defined in such a manner as to 
give a definition for Gaussian integration which gave the correct effective 
action for an electron in an external electromagnetic field. These rules were 
codified in the book by Berezin and we will try to motivate them here. The 
main concept that one wants to preserve is analogous to the statement for 
ordinary integrais that if one has a function f ( x )  which vanishes at f o o  
then we have 

Since 1 is the derivative of < this implies 

d < l = O .  J 

(A.43) 

(A.44) 

The only nonvanishing integral is that of which is a constant convention- 
ally taken to be 1, i.e. 

J 4 < = 1 .  (A.45) 

In eq. (A.45) one needs to make sure that t is anticommuted to be next to 
the 4. We notice that integration gives the same result as differentiation. 
To remove any ambiguities one needs to perform innermost integrals first, 
so that the convention for two Grassmann variables 8 , q  is 

We have in analogy with differentiation that 

(A.46) 
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Another way the rules given by eqs. (A.44) and (A.45) are often obtained 
is by demanding the analogue of translation invariance for f(z) 

00 00 

dzf(z +a)  = [00 d z f ( t )  . (A.48) 1, 
Now consider two Grassmann variables 8, q and a function 

f(0) = A + B8 , (A.49) 

so that under the shift 8 + 8 + q we demand 

This then leads to the rules (A.44) and (A.45). We next turn to the question 
of evaluating a Gaussian integral over a complex Grassmann variable. We 
have 

This is to be contrasted with the result for complex integration over all 
space: 

(A.52) 

So we see here that for fermions the factor of b occurs in the numerator 
rather than the denominator. If we have an additional factor of ('5 we 
obtain instead 

(A.53) 

which yields (apart from the minus sign!) the same factor of we would 
have obtained from ordinary Gaussian integration. In what follows we 
will need to perform a general Gaussian integral in higher dimensions. In 
order to perform this integral we must first show that an integral over com- 
plex Grassmann variables is invariant under unitary transformations. We 
will then be able to evaluate the Gaussian integral involving an Hermitian 
matrix B with eigenvalues bi by diagonalizing the matrix using a unitary 
transformation. First consider n complex Grassmann variables ( i  and a 

1 J b 
d t * d t  c*<e-c*bc = -1 = -- . b . 
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(A.54) 

(A.55) 

the only term in f(<*, t )  that survives has exactly one factor of each 
(:; and is thus proportional to 

and 

i i 

Under the unitary transformation E + U< this term acquires a factor of 

(det U )  (det U ) *  = 1 . 

Thus the integral is unchanged by the unitary transformation. So now if 
we have a general Gaussian integral involving an Hermitian matrix B with 
eigenvalues bi we obtain 

(A.56) 
This is the equation we will need to study the path integral formulation of 
SUSY quantum mechanics. Similarly one can show that 
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A.4 Path Integral Formulation of SUSY Quantum Mechan- 
ics 

In this appendix, we will describe the Lagrangian formulation of SUSY QM 
and discuss three related path integrals: one for the generating functional 
of correlation functions, one for the Witten index - a topological quantity 
which determines whether SUSY is broken, and one for a related “classical” 
stochastic differential equation, namely the Langevin equation. We will also 
briefly discuss the superspace formalism for SUSY QM. Starting from the 
matrix SUSY Hamiltonian which is 1/2 of our previous H [eq. (3.74)] for 
convenience: 

1 1 1 
H = p 2  + , w W  - , [@,@+]W’(Z) , 

we obtain the Lagrangian 

(A.58) 

In the above, H and L are operators in the Hilbert space which is the 
product of square integrable wave functions times two component column 
vectors describing the spin degrees of freedom. For the path integral the 
classical Lagrangian is needed. This requires replacing the operators @ 
and $~t which act on the spinorial part of the wave function by the anti- 
commuting Grassman variables @ and @*, as well as xop by the c number 
coordinate 2. It is most useful to consider the generating functional of 
correlation functions in Euclidean space. We rotate t + i~ and obtain for 
the Euclidean path integral : 

1 1 1 
2 

L = -k2 + i@+&@ - p y z )  + ,[@, @+]W’(2) . 

where 

and qj and qj* are elements of a Grassmann aigebra: 

(A.60) 
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and 
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dx 
2, = - 

d r  

The Euclidean action is invariant under the following SUSY transformations 
which mix bosonic and fermionic degrees of freedom: 

6 2  = €*$ + $*€ , 

'?+b = -€ (-aTx + W ( x ) )  , (A.61) 

where 6 and c* are two infinitesimal anticommuting parameters. These 
transformations correspond to N = 2 supersymmetry. The path integral 
over the fermions can now be explicitly performed using a cutoff lattice 
which is periodic in the the coordinate x but antiperiodic in the fermionic 
degrees of freedom at T = 0 and T = T .  Namely we evaluate the fermionic 
path integral: 

by calculating the determinant of the operator [aT - W'(x)]  using eigenvec- 
tors which are antiperiodic. We have, following Gildener and Patrascioiu, 
that 

det[& - W'(5)]  = A, , 
m 

where 

so that 

lClrn(7) = C,exp[ dT'[Xm + W'] . lT 
Imposing the antiperiodic boundary conditions: 

(A.63) 
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yields: 

Am = i(2m T + 1)n - $ L'dTW'(2) . (A.64) 

Regulating the determinant by dividing by the determinant for the case 
where the potential is zero we obtain 

(A.65) 

Rewriting the cosh as a sum of two exponentials we find, as expected that 
Z is the sum of the partition functions for the two pieces of the supersym- 
metric Hamiltonian when the external sources are zero: 

Note that when SUSY is unbroken, only the ground state of H I  contributes 
as T -+ 00. We also have 

.& = /[d4exp[-S~I , (A.67) 

where 

A related path integral is obtained for the noise averaged correlation func- 
tions coming from a classical stochastic equation, the Langevin equation. 
What we have in mind here is a classical dynamical system being impinged 
upon by random sources. These random sources are assumed to have the 
property of white noise in that they are statistical in nature with the dis- 
tribution being Gaussian at any particular time. In the following, these 
classical kicks at time T are described by the random variable ~(7). It has 
been observed that for the particular stochastic differential equation 

where ~ ( 7 )  is a random stirring force obeying Gaussian statistics, the cor- 
relation functions of x are exactly the same as the correlation functions ob- 
tained from the Euclidean quantum mechanics related to the Hamiltonian 
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H I .  To see this we note that Gaussian noise is described by a probability 
functional: 

P[q] = Nexp[-5 d7-] 
lIT %) 

(A.69) 

normalized so that: 

J D ~ P M  = 1 

so that the quantity Fo describes the strength of the noise correlation func- 
tion. The correlation functions averaged over the noise are 

< Z ( ' f 1 ) 2 ( T z )  ... >= D@[r1]5(71)Z(Tz). . .  , (A.70) 

where we have in mind first solving the Langevin equation explicitly for 
x(q(7)) and then averaging over the noise. To make things more concrete, 
we can discretize the time 

J 

so that the discretized Langevin equation for W ( z )  = gx is just: 

~ ( z n  - zn-1) = gzn + qn 7 

which leads the update equation: 

(A.71) 

(A.72) 

In the regime where g >> E one can analytically determine 2, in terms of 
vi as a power series in f. On the lattice the path integral over q becomes 
a product of ordinary integrals at the discrete values of time 7, = na: 

(A.73) 
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Another way to calculate the correlation functions without explicitly solving 
for z as a function of q is to change variables in the functional integral from 
q to 2: 

This involves calculating the functional determinant, 

(A.75) 

subject to the boundary condition that the Green’s functions obey causality, 
so one has retarded boundary conditions. One has 

d T 
detl-1 d77 = eXp/d d7 ‘Ik In ([z - Wf(2(T))]6(T - 7’ )  

dx 

When there are no interactions (W(x)  = 0)’ the retarded boundary con- 
ditions on the stochastic equation yield for the free Green’s function that 
satisfies 

the result 

G ~ ( T  - 7‘) = f?(T - T ’ )  . (A.77) 

Expanding the determinant around the free result by rewriting the In in 
the form 1nGG1(1 - GoW‘), one finds because of the retarded boundary 
conditions that only the first term in the expansion contributes so that 

detl-1 d77(T) = 
dx (7‘) 

Choosing FO = A so that 

= N exp[- - dT(E + W ( X ) ) ~ ]  2. ST 

(A.78) 

(A.79) 
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we find that the generating functional for the correlation functions is ex- 
actly the generating functional for the correlation functions for Euclidean 
quantum mechanics corresponding to the Hamiltonian HI : 

1 T 

Zb] = N / D [ z ]  a p [  - f dr  (z: + W 2 ( z )  - W’(z )  - ~ ~ ( T ) z ( T ) )  . 
(A.80) 

Thus we see that we can determine the correlation functions of x for the 
Hamiltonian H I  by either evaluating the path integral or by solving the 
Langevin equation and averaging over Gaussian noise. An equation related 
to the Langevin equation is the Fokker-Planck equation, which defines the 
classical probability function Pc for the equal time correlation functions of 
H I .  Defining the noise average: 

Pc(z) =< q z  - s(t)) >v= DqS(z - z( t ) )P[q] , (A.81) J 
one obviously has: 

dzznP,(z,t) = D q [ z ( t ) ] V [ q ]  =< zn > . J 00 L 
One can show that P, obeys the Fokker-Planck equation: 

(A.82) 

For an equilibrium distribution to  exist a t  long times t one requires that 

and 
03 

B(z)dz  = 1 . 1, 
Setting = 0 in the Fokker-Planck equation, we obtain 

Thus at long times only the ground state wave function contributes (we are 
in Euclidean space) and the probability function is just the usual ground 
state wave function squared. We see from this that when SUSY is broken, 
one cannot define an equilibrium distribution for the classical stochastic 
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system. A third path integral for SUSY QM is related to the Witten index. 
As we discussed before, one can introduce a “fermion” number operator via 

(A.84) 

Thus Witten index A can be written as 

A ( - l ) F  = [+,+‘I = ~3 . (A.85) 

The Witten index needs to be regulated and the regulated index is defined 
as: 

A(@) = ( - 1 ) F e - f i H  = (e-fiH1 - e - f i f f z )  . (A.86) 

In Chapter 3 we discussed that the Witten index was important for un- 
derstanding non-perturbative breaking of SUSY. Here we will show that 
the Witten index can be obtained using the path integral representation of 
the generating functional of SUSY QM where the fermion determinant is 
now evaluated using periodic boundary conditions to incorporate the factor 

It is easy to verify a posteriori that this is the case. Consider the 
path integral: 

(A.87) 

where 
1 1 
2 2 

LE = -.; + -w2 - **[ar - W‘(.)]* . 

To incorporate the (-l)F in the trace, one changes the boundary conditions 
for evaluating the fermion determinant at 7 = 0, to periodic ones: 

.(O) = ; * ( O )  = * (P I  * 

The path integral over the fermions can again be explicitly performed using 
a cutoff lattice which is periodic in the fermionic degrees of freedom at 7 = 0 
and T = p. We now impose these boundary conditions on the determinant 
of the operator [a, - W’(z)] using eigenvectors which are periodic. We 
again have 

det[& - W‘(Z)] = nXm . 
m 
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Imposing periodic boundary conditions: 

(A.88) 

Regulating the determinant by dividing by the determinant for the case 
where the potential is zero we obtain 

det [ a, - a, Wl(x )  ] = sinh lo d . r T  . 
(A.89) 

Again rewriting the sinh as a sum of two exponentials we find, as expected 
that we obtain the regulated Witten index: 

A(B) = 2- - Z+ = Tk e-QH1 - Tr e-OHz . (A.90) 

A.5 Superspace Formulation of SUSY Quantum Mechanics 

One can think of SUSY QM as a degenerate case of supersymmetric field 
theory in d = 1 in the superspace formalism of Salam and Strathdee. Su- 
perfields are defined on the space (xn;8,) where x is the space coordinate 
and 8, are anticommuting spinors. In the degenerate case of d = 1 the field 
is replaced by x ( t )  so that the only coordinate is time. The anticommuting 
variables are 8 and 8' where 

{e ,  e*)  = {e, el = p, ti = o . 
Consider the following SUSY transformations: 

tr  = t - i(e*€ - €*el , e l  = e + , e*' = e* + €* . (A.91) 

If we assume that the generator of finite SUSY transformations is 

i(a'Q'+Qc) , L = e  

then from 

6 A  = i[c*Q* i- QE,  A] , 

we infer that the operators Q and Q* are given by 

Q = iae - etat , Q* = -ig. - eat . 

(A.92) 

(A.93) 



Superapace Formulation of SUS Y Quantum Mechanics 175 

Now these charges obey the familiar SUSY QM algebra: 

{&,Q*} = 2iat = 2 H ,  [H,Q] = 0 ,(&,&} = 0 .  (A.94) 

The Lagrangian in superspace is determined as follows. A superfield made 
up of 2 , 6, and 6' can at most be a bilinear in the Grassmann variables: 

&(z,@,e*) = ~ ( t )  + ie.Jl(t) - i.Jl'6' + BB*D(t) . (A.95) 

Under a SUSY transformation, the following derivatives are invariant: 

D~ = ae - ie*& 
or in component form: 

Derp = i$ - B'D - i6'x + 0.84 , 
and 

D ~ .  = ae. - ieat , 

(A.96) 

or in component form: 

[ D ~ # I *  = -i+* - eD + i B j  + e*e$* . (A.97) 

The most general invariant action is: 

s= dtde'de -]De&12-f(4)) . (A.98) J G 
Again the expansion in terms of the Grassmann variables causes a Taylor 
expansion of f to truncate at the second derivative level. Integrating over 
the Grassmann degrees of freedom using the usual path integral rules for 
Grassmann variables: 

ede= e*de* = 1, de= de* = o ,  J J  J J  
one obtains 

Eliminating the constraint variable D = -f'(z) = W(Z) we obtain our 
previous result for the action (now in Minkowski space): 

(A. 100) 
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Appendix B 

Operator Transforms - New Solvable 
Potentials from Old 

In 1971, Natanzon wrote down (what he thought at that time to be) the 
most general solvable potentials i.e. for which the Schrodinger equation 
can be reduced to either the hypergeometric or confluent hypergeometric 
equation. It turns out that most of these potentials are not shape invari- 
ant. Further, for most of them, the energy eigenvalues and eigenfunctions 
are known implicitly rather than explicitly as in the shape invariant case. 
One might ask if one can obtain these solutions from the explicitly solv- 
able shape invariant ones. One strategy for doing this is to start with a 
Schrodinger equation which is exactly solvable (for example one having a 
SIP) and to see what happens to this equation under a point canonical 
coordinate transformation (PCT). In order for the Schriidinger equation to 
be mapped into another Schrodinger equation, there are severe restrictions 
on the nature of the coordinate transformation. Coordinate transforma- 
tions which satisfy these restrictions give rise to new solvable problems. 
When the relationship between coordinates is implicit, then the new so- 
lutions are only implicitly determined, while if the relationship is explicit 
then the newly found solvable potentials are also shape invariant. In a more 
specific special application of these ideas, Kostelecky et al. were able to re- 
late, using an explicit coordinate transformation, the Coulomb problem in 
d dimensions with the d-dimensional harmonic oscillator. Other explicit 
applications of the coordinate transformation idea are found in the review 
article of Haymaker and Rau. 

Let us see how this works. We start from the one-dimensional Schrodinger 
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equation 

Consider the coordinate transformation from x to z defined by 

dz 
f f z )  = 9 

so that 
d d 
dx - = f d z .  

The first step in obtaining a new Schrodinger equation is to change coor- 
dinates and divide by f 2  so that we have: 

To eliminate the first derivative term, one next rescales the wave function: 

Adding a term En$ to both sides of the equation yields 

where 

In order for this to be a legitimate Schrodinger equation, the potential 
v(En) + tn must be independent of n. This can be achieved if the quantity 
G defined by 

G=V-En+E, f2 ,  (B.8) 

is independent of n. How can one satisfy this condition? One way is to have 
f and G to have the same functional dependence on ~ ( z )  as the original 
potential V .  This further requires that in order for P to be independent 
of n, the parameters of V must change with n so that the wave function 
corresponding to the n’th energy level of the new Hamiltonian is related to 
a wave function of the old Hamiltonian with parameters which depend on 
n. This can be made clear by a simple example. 
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Let us consider an exactly solvable problem-the three dimensional har- 
monic oscillator in a given angular momentum state with angular momen- 
tum 8. The reduced ground state wave function for that angular momentum 
is 

+o(T) = rB+le-ara/2 03.9) 

so that the superpotential is given by 

W ( r )  = ar - ( B  + l ) / r  , (B.lO) 

and H I  is given by 

HI=--+ dr2 ’ ’(’ r2 + ’) + a2r2 - 2a(B + 3/2) . (B. l l )  

By our previous argument we must choose f = % to be of the form 

dz A 
f 2 = ( - ) 2 = - + B T 2 + C .  dr ~2 (B.12) 

The solution of this equation gives z = Z ( T )  which in general is not invertible 
so that one knows r = r ( z )  only implicitly as discussed before. However, 
for special cases one has an invertible function. Let us, for simplicity, now 
choose 

f = r ,  z = r 2 / 2 .  (B.13) 

As discussed earlier, the energy eigenvalues of the three dimensional har- 
monic oscillator are give by 

En = 4an , (B.14) 

so that the condition we want to satisfy is 
D 
T2 

V - 4an + en f 2  = G = - + Er2 + F . (B.15) 

Equating coefficients we obtain 

D = B(B+ 1) , 
E = c n + a 2 = Y ,  

F = -4an - 2a(p + 3/2) = -2Ze’ . (B.16) 

We see that for the quantities D, E ,  F to be independent of n one needs 
to have that a, which describes the strength of the oscillator potential, be 
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dependent on n. Explicitly, solving the above three equations and choosing 
@ = 21 + 112, we obtain the relations: 

(B.17) Ze2 Z2e4 
4(1+ 1 + n)2 * 

a(1,n) = t e n = T -  2(1+ n + 1) 

We now choose y = a2(1,n = 0) so that the ground state energy is zero. 
These energy levels are those of the hydrogen atom. In fact, the new Hamil- 
tonian written in terms of z is now 

(B.18) - d2 1(1 t 1) Ze2 + Z2e4 H =  --+ ~ - - 
dz2 22 z 4(t + 1)2 ’ 

and the ground state wave function of the hydrogen atom is obtained from 
the ground state wave function of the harmonic oscillator via 

lcfo = fl/2$o = zlfle-u(l,n=O)z (B.19) 

Higher wave functions will have values of (Y which depend on n so that 
the different wave functions correspond to harmonic oscillator solutions 
with different strengths. All the exactly solvable shape invariant potentials 
of Table 4.1 can be inter-related by point canonical coordinate transforma- 
tions. This is nicely illustrated in Fig.B.l. In general, r cannot be explicitly 
found in terms of z,  and one has 

dzldr = f = dA/r2 + Br2 + C , 
whose solution is: 

(B.20) 

d A  + C r 2  + Br4 

fi log(2 A + C r 2  + 2 a d A  + C r 2  + Br4) 
2 

fi log(r2) 
2 + 2  z =  

- 

. (B.21) C l o g ( C + 2 B r 2 + 2 2 d A + C r 2  + B r 4 )  
4JBI 

+ 
This clearly is not invertible in general. If we choose this general coordinate 
transformation, then the potential that one obtains is the particular class 
of Natanzon potentials whose wave functions are confluent hypergeometric 
functions in the variable r and are thus only implicitly known in terms 
of the true coordinate z .  In fact, even the expression for the transformed 
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"'a\ J"" 

Fig. B.1 Diagram showing how all the shape invariant potentials of Table 4.1 are inter- 
related by point canonical coordinate transformations. Potentials on the outer hexagon 
have eigenfunctions which are hypergeometric functions whereas those on the inner tri- 
angle have eigenfunctions which are confluent hypergeometric functions. 

potential is only known in terms of T :  

P(z, D, E )  = l/f2[D/r2 + Er2 + F - f2/4 + ffff/2] , (B.22) 

and thus only implicitly in terms of z .  Equating coefficients, we get an 
implicit expression for the eigenvalues: 

CE,, - F - dD+ 1 /4 -Aen  = 2n+ 1 ,  
2- 

(B.23) 
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as well as the state dependence on Q and p necessary for the new Hamilto- 
nian to be energy independent: 

a n  = d n ,  = -112 + JD + 114 - AEn * (B.24) 

B.l Natanzon Potentials 

The more general class of Natanzon potentials whose wave functions are 
hypergeometric functions can be obtained by making an operator transfor- 
mation of the generalized Poschl-Teller potential whose Hamiltonian is 

+ (a - p ) 2  . (B.25) t + B(B - 1) - + 1) Hi = AIA1 = -- 
dr2 sinh2r cosh2r 

This corresponds to a superpotential 

W = OtanhT - &oth T , Q > /3 , (B.26) 

and a ground state wave function given by 

$0 = sinha T cosh-& r . (B.27) 

The energy eigenvalues were discussed earlier and are 

E, = (a - p ) 2  - (a - 0 - 2n)2 . (B .28) 

The most general transformation of coordinates from r to z which preserves 
the Schrodinger equation is described by 

dz 
sinh2 r cosh2 r dr + C = ( - ) ?  f2=--- B A 

F’rom this we obtain an explicit expression for z in terms of T .  

z =  

I -3A + B - C + ( A  + B - C ) C O S ~  2~ 
2 G ( r ) a  

v/;l tan-’ [ 
- f i l o g  - A + 3 B - C + ( A + B + C )  cosh 2r [ 

(B.29) 

+ B -t- C cosh 2r + G(T)& I 
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+fi log [2sinh2 r ] , 
where 

(B.30) 

G(r) = 4 - 2 A + 2 B - C + 2 ( A + B )  cosh 2 r + C c o s h 2 2 r .  

However the expression for the transformed potential is only known in terms 
of r :  

1 w -  11 Y(Y+ 1) + C J - - + -  f ’ 2  ’”1 (B.31) 
4 f 2  2f ’ P(Z,,,6) = - - - f [ sinh2 r cosh2 r 

and thus only implicitly in terms of z .  Equating coefficients, we get an 
implicit expression for the eigenvalues: 

[(y + 1/2)2 - Ac, ]”~  - [(6- 1/2)2   BE,]^/^ - (0 - C E , ) ” ~  = 272 + 1 , (B.32) 

as well as the state dependence on a and f i  necessary for the new Hamilto- 
nian to  be energy independent: 

a, = [(y + 1/2)2 - A c , ] ~ / ~  - 1/2 , 
p, = [(a - 1/2)2 - B€,]’/2 + 1/2 . (B.33) 

Knowing the ground state wave function for the Natanzon potential we can 
determine the superpotential W(r)  and then find a hierarchy of Hamiltoni- 
an8 which generalize the Natanzon potential and whose wave functions are 
sums of hypergeometric functions. This class was first found by Cooper, 
Ginocchio and Khare in 1987. 
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Appendix C 

Logarithmic Perturbation Theory 

Perturbation theory on bound states in nonrelativistic quantum mechanics 
is usually done using the Fbyleigh-Schrodinger expansion in the coupling 
constant. While the calculation of the first order energy correction El 
is straightforward, the formulas for higher order corrections En involve 
summations over all possible eigenstates which often cannot be explicitly 
performed even for simple perturbing potentials. Here, it is shown that 
if we restrict our attention to the important special case of perturbations 
to the ground state energy of one dimensional potentials, then the energy 
corrections to any order can be computed using an alternative much simpler 
form. This approach, called logarithmic perturbation theory (LPT) consists 
of Arst changing from the ground state wave function to the quantity S(z) = 
In$($), and then expanding in the coupling constant. LPT is considerably 
easier to use than other methods, since only a knowledge of the initial 
unperturbed ground state $o(z) is required and no summation over all 
intermediate states is necessary. More specifically, one does not need any 
information about the unperturbed excited states and the computations 
just involve well defined one dimensional integrals. 

We now give the derivation of the LPT formulas. The time independent 
Schriidinger equation is 

where Vo(z) is the unperturbed potential and Vl(z) is the perturbation 
with coupling constant 9. After the transformation $(z) = es("), the 
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Schrodinger equation becomes 

which is Riccati’s equation. Now expand E and S‘(z) in powers of the 
coupling constant g: 

E = EO + gE1+ g2E2 + . . . ; S‘(Z) = CO(Z) + QC~(Z) + g2C2(x) + . . . . 
Substitution into Riccati’s equation, and collecting like powers of g yields 
the following series of equations: 

(C-3) 
2m 

C&) + G(4 = -“vo(z> - Eol 7 ti2 

n-1 2m C~(x)+2C0(z)Cn(x) = --En-C C,(x)C,-,(x) , n = 2 , 3 , .  . . . (C.5) 

Each of these linear differential equations is easily solved by using integra- 
tion factors. Eq. (C.3) is just the unperturbed problem. Integration of eq. 
(C.4) using the integration factor l$0(z)1~ gives 

s= 1 Ti2 

(C.6) 
d 2m 
-“cl(~c)140(~)121 = -“V1(x) - EllI@0~~)l2 . dx A2 

Since &(z) + 0 as x + -00, we get 

C1(4l40(x)l2 = q / z  [vl(x) - Elll@0(~)l2 dx * (C.7) 
-00 

Since the left hand side goes to zero as x -+ 00, we get the standard result 

Here we have assumed that the unperturbed ground state wave function 
t+bo(x) is normalized. Proceeding in the same manner, one can integrate 
eqs. (C.5) to get the following results: 

Ez = -- (C.9) 
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E3 = -- ti2 jrn ~CI(~)C~(~)I+O(~I~ dx , (C.11) 
2m -m 

which are readily generalized to arbitrary order n. Clearly the quantities 
C,(z) and En are determined by simple integration. Although we have 
kept absolute value signs for l+0(z)1~ in all the formulas these signs are 
superfluous since $&) can always be chosen to be real for one dimensional 
problems. Note that the quantities Cn(z) are related to the perturbed 
ground state wave function and E,, give corrections to the ground state 
energy. 

References 

(1) Y, Aharonov and C. Au, New Approach to Pertwbation Theory, 
Phys. Rev. Lett. 42 (1979) 1582-1585. 

(2) T. Imbo and U. Sukhatme, Logarithmic Perturbation Expansions in 
Nonrelatiuistic Qvantum Mechanics, Am. Jour. Phys. 52 (1984) 
140- 146. 

Problems 

1, Consider the situation of a charged particle in a harmonic oscillator po- 
tential Vo(z) = $mu2x2 .  If an external constant electric field €, producing 
a perturbing potential Vl (z) = -eEx is now turned on, compute the ground 
state energy using logarithmic perturbation theory. The calculation can be 
carried out to any order in the electric field €. This problem is a simple 
variant of the Stark Effect. 

2. The Coulomb potential for a hydrogen atom is Vo(r) = -e2/r. The 
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ground state energy is EO = -e2/2ao, where a0 E ti2/me2 is the Bohr 
radius. A simple model which takes into account the effect of the nucleus 
is to consider the perturbation V I ( T )  = e 2 / r  - e 2 / R  for r < R, where R is 
the nuclear radius. Use logarithmic perturbation theory to show that the 
ground state energy is of the form 

E = E ~ P  + ~ ~ r j ~  + p3Q3 + o(q4)1 

where 9 denotes the dimensionless constant 7 2R/ao. Determine the 
numerical values of 8 2  and 8 3 .  



Appendix D 

Solutions to Problems 

Chapter 2. 

Problem 2.1: Eigenfunctions correspond to an integer number of half 
wavelengths fitted into the region 0 5 2 5 L.  Normalized eigenfunctions 
and corresponding eigenenergies are 

, (n = 0,1,2, ...) . (n + 1)rx (n + 1)2h2 
8mL2 $n(z> = E s i n  7 En= 

Orthonormality follows from checking that 
that $n has (n + 2) zeros located at 

dx$Jrn(x)$Jn(z) = amn. Note 

z = 0, L / ( n  + l), 2L/(n -t- l), ..., nL/(n + l), L , 

whereas has (n + 3) zeros at 

x = 0, L / ( n  + 2 ) ,  2L/ (n  + 2 ) ,  ..., nL/(n + 2), (n + 1)L/(n + 2), L 

Clearly $ J ~ + I  has exactly one zero located between the consecutive zeros of 
&. 

Problem 2.2: (i) Taking the unit of energy to be tL2n2/2ma2, for Vo = 0 
one has an infinite square well of width a with eigenenergies 
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and for Vo = CQ one has an infinite square well of width a12 with eigenen- 
ergies 

E, = 4(n + l)”? ,a = 0,1,2, * .  . 

(ii) By matching the wave function and its first derivative at x = a/2, one 
obtains a transcendental equation for the eigenenergies. The result depends 
on whether E is greater than or less than VO: 

(iii) The values of the eigenenergies EO and El for several choices of VO are 
tabulated below. 

v o o  1 3 10 1000 0;) 

Eo 1.000 1.439 2.007 2.724 3.844 4.000 
El 4.000 4.546 5.844 9.864 15.370 16.000 

(iv) The critical value is Voc = 1.668. For the special situation EO = VOC, 
the ground state eigenfunction is Iinear in the region a/:! 5 2 5 a. The 
analytic expression for the un-normalized wave function is &(x) = sinka: 
for 0 5 x 5 a12 and $o(x) = -kcos(k7r/2)(n - x) for a12 5 x 5 a,  where 
k & = 1.2916. 

Problem 2.3: Using units with h = 2m = 1, the explicit low lying eigen- 
functions for the harmonic oscillator potential V ( x )  = w2z2/4 are given 
below, along with their zeros at finite values of x. Note that all bound 
state wave functions also vanish at  x = 500. 

n @7&f Zeros 
0 exp( -wz2/4) None 
1 x exp( -wx2/4) 0 
2 (0x2 - 1) exp( -wx2/4) - m, + 
3 x(wx2 - 3) exp(-wz2/4) - J&G, 0, + 

Problem 2.4: The Heisenberg equations of motion for 2 and p (using units 



191 

with ti = 2m = 1) are 

- dx = 2p , - dP = -w2x/2 . 
dt dt 

The corresponding equations for a and at are 

da - = -iwa , - dat =iwat . 
dt dt 

Since the equations for a and at are decoupled, they are readily solved. 
The solutions are a(t) = a(O)exp(-iwt) and at(t) = at(O)exp(iwt). The 
unequal time commutators are 

2i 

iw 

[z(t),z(t‘)] = -- sin[w(t - t’)] , 

[p(t),p(t’)] -T sin[w(t - t’)] , 
W 

= 

[x(t),p(t‘)] = i cos[w(t - t’)] . 

Problem 2.5: The number operator is N = ata. Since N 2  = N ,  the 
eigenvalues X satisfy X2 = A, which gives two solutions X = 0 , l .  Using 
the Fermi oscillator anti-commutation relations, the Hamiltonian can be 
rewritten as H = ( - N  + 1 / 2 ) b ,  and the eigenvalues of H are ftiw/2. 

Chapter 3. 

Problem 3.1: An infinite square well of width T has been discussed in 
the text. The potential is VI(X) = 0 (0 < 5 < n), with eigenstates 
E f )  = (n + 1)’ , $?) o( sin(n + 1)s , n = 0,1,2,. . . . The superpotential 
is Wl(z) = -$!)‘(z)/&)(x) = -cotx. The SUSY partner potential of 
K(z) is VZ(X) = K(z) + 2Wi(x) = 2cosec2x, with eigenvalues Ei2) = 
(n + 2)2 , n = 0,1,2,. . . , and eigenfunctions 

$i2) oc A ~ $ t i ~  = (d/da: - cotx) sin(n + 1)x . 
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The low lying eigenfunctions have the explicit form $?' o( sin2 2, $i2) c( 
sin2 x cos x, $?) o( sin2 x ( 6  sin2 z - 5 ) .  

We use information about V2(x) to generate the next potential in the 
hierarchy. The superpotential is 

The supersymmetric partner potential of Vz(2) is V3(z) = V2(2)+2W;(x) = 
6 cosec2x, with eigenvalues EL3) = (n + 3)2 , n = 0, 1 ,2 ,  ... and eigenfunc- 
tions @k3) a A2qb?iI = (d/dz - 2 cot z)$fJl. The low lying eigenfunctions 
have the explicit form $6"' o( sin3 z, $1113) oi sin3 z cos z. 

Now, we use information about V3(2) to obtain the next potential in the 
hierarchy. The superpotential is W3(x) = -$f)'(z)/$F)(x) = -3cot2. 
The supersymmetric partner potential of V3(x) is V4(x) = V3(x)+ZW$(z) = 
12 cosec2z, with eigenvalues E?) = (n + 4)2, n = 0,1,2, ... and ground 
state eigenfunction $6"' = (d/dz - 3 cot z) sin3 x cos z 0: sin4 z. 

The pattern is now clear. The general potential in the hierarchy is 
Vm(x) = m(m - 1)cosec'x with ground state eigenfunction $Am) oc sinm z, 
and energy eigenvalues Ekm) = (n +m)2 ,  n = 0, 1 ,2 ,  ... . Similarly, the first 
excited state has the form @$''') 0: sinm x cos z. These results can of course 
be checked by direct substitution into the Schrodinger equation. 

Problem 3.2: The supersymmetric partner potentials are V Z , ~  = Wa f 
W' = a2x6 f 3az2. Both V2 and V1 are symmetric potentials. At large 
fz, they both have the same asymptotic behavior a2z6, whereas at small 
2, VZ -+ +3ax2 and V1 -+ -3ax2. V2(z) is a single well potential with a 
minimum at z = 0, whereas V,(z) is a double well potential with a local 
maximum at 5 = 0, and minima at x = 

Problem 3.3: The superpotential is W ( r )  = - 5/r ,  and the super- 
symmetric partner potentials are & = p2 - lOp/r + 20/r2 and b = 
p2 - lOp/r + 30/r2. 

Problem 3.4: Since the quantity e- s W d z  = e-(AxS/3+Bx2/2+Cz) is not 
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normalizable, this is an example of broken supersymmetry, and both V2 and 
V, have identical energy spectra. The partner potentials V2,1(x) = W 2  f 
W' = (Az2+Bz+C)2f(2Az+B) are related to each other by a translation 
and reflection. A little algebra shows that Vz(s-B/2A) = Vl(-x+B/2A). 
For the values A = 1/5, B = 1, C = 0, the partner potentials are Vz(x) = 
z4/25+2x3/5+z2+2x/5+1 and VI (z) = z4/25+2z3/5+z2-2z/5-1. Note 
that V1 and VZ are also related by Vz(z, A, B, C) = V1 (z, -A,  -B, 4). 

Problem 3.5: F'rorn the Rosen-Morse I1 entry in the table of shape in- 
variant potentials given in the text, one sees that the potential K(s)  = 

with an energy continuum for E 2 0. The eigenfunctions are $I:) 0: 

seCh3--nzp;3--n,3--n) (tanhz) , n = 0,1,2. From the ground state wave 
function, the superpotential is found to be W1 = 3 tanhx. The partner 
potential of Vl(z) is Vz(z) = K (2) + 2Wi = -6sech2x. 

It is easily checked that V2(z) = -6 sech2x has energy levels at Ef' = 
-4, Ei2) = -1, with an energy continuum for E 2 0. The corresponding 
eigenfunctions are $JP'(z) oc sech2z, $Jy'(z) o( sechz tanh x. The ground 
state wave function yields the superpotential W2 = 2 tanh x. Repeat- 
ing the same process again, gives Vs(z) = -2sech2z and V4(z) = 0. It is 
easily checked that V, has only one bound state at Ef) = -1 with the cor- 
responding eigenfunction $Jf)(z) a sechx while K obviously does not hold 
any bound state! As discussed in the text, Vl , V2, V3, V4 are all reflectionless 
potentials so that the transmission coefficient is a pure phase. Using the 
Transmission coefficient T l ( k )  for the potential VI as given in chapter '2 and 
the relation (3.32) it is easily shown that 

-12 sech2z has energy levels at EA') = -9, Ei') = -4, E;') = -1, 

while obviously T4(lc) = 1. 



194 Solutions to Pmblems 

Chapter 4. 

Problem 4.1: The ground state wave function $o(r) has a maximum at 
r = (1.5)'/'ro. The superpotential and partner potentials are 

4T2 10 12 Vz(r) = 4 - - V1(r) = 4 - -7j- + - 2r 3 4r2 14 6 , r ; + ; ; z '  W ( r )  = 7 - - 
To r ro ro r2 TO 

Vl(r) has a minimum at T = (1.5)'/4r~. Vz(r) has a minimum at T = 3ll4ro. 
From the superpotential and the table of exactly solvable shape invari- 
ant problems given in the text, one recognizes that this problem corre- 
sponds to a three dimensional oscillator with w = 4/r; , 1 = 2. %(r)  
has energy levels EL1) = 2 , (n = 0,1 ,2 , .  . .) and eigenfunctions $2) oc 
~ ~ e - ~ * / ~ o a L " , / ~ ( Z r ~ / l r g ) ,  where L",//" is a Laguerre polynomial. V ~ ( T )  has the 
same energy levels as V1 ( r )  , except that there is no zero energy eigenstate, 
since this is an example of unbroken supersymmetry. More precisely, the 
ground, first and second excited states of Vl ( T )  are 

EL') = o ; y$)(r) 0: r 3 e -r"/r,' 

E!') = 8/rg ; $il'(r) 0: ~ ~ e - ~ ~ / ~ i ( 4 r ~  - 7 ~ ; )  , 
Eil) = 16/ri ; 

9 

$!jl'(r) a T 3 e -r'/r,' (16r4 - 72r2r; + 63~:) , 

Similarly, the ground and first excited states of V2(r) are 
E r )  = 8/r," ; $ r ' ( r )  a r 4 e -ra/r,' 

El2) = 16/ri ; 

7 

$i2'(r) oc r 4 e -.'/Ti (4r2 - 9 ~ ; )  . 

Problem 4.2: There are three types of symmetric shape invariant po- 
tentials. The superpotential, potential and first three eigenvalues are: 

W(X) Potential V- ( 2 )  Eigenvalues Eo, E l ,  E2 
w x f 2  wZx"4 - w f 2  O,w,2w 

Atanhax  A Z - A ( A + a ) s e c h 2 a x  0 , A 2 - ( A - a ) 2 , A 2 - ( A - 2 a ) 2  
A tan ax -A2 + A ( A  - a) 8ec2 a x  0 ,  -A2  + ( A  + a)2, -A2  + ( A  + 2 ~ 2 ) ~  
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Problem 4.3: The Hulthkn potential is always attractive, diverges like 
-aVo/r at small r and goes exponentially to zero at large r. It can be 
rewritten as 

which is now recognizable as a special case of the Eckart potential in 
our list of analytically solvable potentials. The energy eigenvalues are 

is the largest positive integer such that Via2 - (n  + 1)' > 0 . 
En = - [voU2 - (72 + 1)']I2/[4a2(n I)'] , 7l = 0,1, - . . , n M A X .  Here n M A X  

Chapter 5. 

Problem 5.1: It is easily seen that in this case the Pauli equation (for cr = 
fl) reduces to the Schrodinger equations for the SUSY partner potentials 

K (y) = A(A - a) sec2 ay + 2B tan ay + B2/A2 - A' , 

Vz(y) = A(A + a) sec2 ay + 2B tanay + B2/A2  - A2 , 

where B / A  = k +c and -r/2 5 cup 5 7r/2. On comparing with Table 4.1 it 
is clear that these are shape invariant Rosen-Morse I potentials and hence 
the spectrum of Vl(y) is 

En = (A + na)' - A2 + B2/A2 - B 2 / ( A  + n c ~ ) ~ ,  n = 0,1, ... . 

Problem 5.2: For the Lorentz scalar potential +(r) = a ~ ( z ) ,  the uncou- 
pled equation for the Dirac spinor $1 takes the form 

This is essentially the Schrodinger equation for an attractive delta function 
potential which is well known to have only one bound state at w2 = 0 with 
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the corresponding eigenfunction being 

+,l(z) = e-a+) . 

Hence the corresponding solution is 

Problem 5.3: In this case, notice that the Lorentz scalar potential is 
antisymmetric over a half-period i.e. it satisfies 

d)b + Kb:))  = -4b) . 
Hence the corresponding partner potentials V1,2(a) = +'(z) T d)'(z) are 
self-isospectral. Now the uncoupled equation for $1 (z) is 

+ 2m sn2x - m $1 (z) = w2+1 (z) 1 dL 
[-di. 

born Chapter 7 we know that in this case there is one bound band with 
band edges at w2 = 0 , l  - m while the continuum band begins a t  w2 = 1. 
The corresponding band edge eigenfunctions respectively are 

d n x ,  c n z ,  snx  

Hence the solution of the Dirac problem is immediately written down: 

Problem 5.4: If one has both scalar and vector potentials U ( r )  and V ( r )  
respectively, then the Dirac Hamiltonian has the form 

H = a.p + P(m + U )  + V. 

To compute the energy levels, one only needs to  concentrate on the radial 
equations which now take the form 

kG ~ ' ( r )  + - - [E + m + U - V ] F  = 0 , 
T 
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[ m - E + U + V ] G  = 0 .  
kF 
r 

F'(r) - - - 
Clearly, if U ( r )  = *V(r)  then one of the equation takes a simpler form 
and one can obtain an uncoupled second order equation for F or G. For 
example, consider V ( r )  = V ( r )  = w2r2/2 in which case G satisfies the 
second order equation 

[-$+E2-Eu2r2-- k(k r 2  + 1) ] G ( r )  = 0 . 

The corresponding eigenvalues and eigenfunctions G(r) are 

E = [w(4n + 2k + 3)I2I3, n = 0,1, ... 

The corresponding function F ( r )  is easily obtained. 

Chapter 6. 

Problem 6.1: Consider an infinite square well Vl(z) = 0, 0 5 x 5 L. The 
normalized eigenfunctions are $,, = &sin(-), n = 0,1,2,3, ... . 
Using the ground state wave function, the superpotential is 

n nx 
W ( z )  = -$;(z)/$o(z) = -z cot * 

The one parameter family of isospectral potentials is 

where 
2 "  T X  x 1 2nz I ( $ )  1 sin2 dx = - - - sin - 

L 2.rr L -  

The ground state of the potential v~(z, A) is 
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The excited states of (z, A) are readily computed from the expression 

where, 

( 2 / ~ )  sin2 7 
I@(z, A) = W ( z )  + - - -  &sin?  + A  

Problem 6.2: The normalized ground state wave function corresponding 
to the potential Vl(z) = 1 - 2 seeh2z is ~ l ( s )  = sechz. The indefinite 
integral I(x) is (1 + tanhs) /2 ,  and the one parameter family of potentials 
is & (2, A) = &(z) - 2 s  ln(I(x) + A). After substantial algebraic simpli- 
fication, one gets the explicit simplified form Vl(x, A) = 1 - 2 sech2(z + a ) ,  
where the quantity a is given by cotha = 1 + 2X, which is equivalent to 
a = 3 ln(1 + A-l), as given in the text. 

Problem 6.3: Since Vl(z) is symmetric, so is its normalized ground 
state wave function $1(z). For a symmetric $~(z),  it follows that I(x) + 
I ( - x )  = 1, where I ( s )  = Jfwdx'$:(z'). The potential Vl(z,X) = Vl(x) - 
2&[In{I(x) + A}]  is a member of the isospectral family of Vl(z). The 
parity reflected potential is 

d2 
dx2 Vl(-x,X) = V1(-z) - 2---[1n{I(-z) + A } ]  

= VI(5) - 2--pl{l(o) d2 - x - l}] = K(., -A - 1) * dx2 
Clearly, V, (-x, A) is also a member of the isospectral family of Vl (z) cor- 
responding to a parameter value - A  - 1. 

Problem 6.4: The potential Vl(x) = -6 sech2z has two eigenstates at 
energies El = -4 , E2 = -1.  The normalized ground state wave func- 
tion is $ J ~ ( z )  = 9 sech2z, which yields the indefinite integral I(z) = 
(2 + 3 tanh x - tanh3 z)/4. The one parameter family V1 (z, A) corresponds 
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to putting X i  = X and A2 = 00 (132 = 0), in the two parameter family 
Vl(z, XI, XZ) formula given in the text. The un-normalized ground state of 
Vl(z, A) is 

sech2 x 
31(z'x) o( 2 + 4X - 3tanh2z - tanh3z 

Problem 0.6: Consider traveling wave solutions u(x, t )  = f (5 -c t )  moving 
in the positive z direction with speed c. Define < 2 - d. Substituting 
f(() into Burghers equation yields f" - f fc = -cfE. This ordinary dif- 
ferential equation can be readily integrated. After imposing the boundary 
conditions, one gets u(x, t )  = y[l - tanh(uo(z - ct)/4 + A)] ,  where A is an 
arbitrary constant. Similarly, the traveling wave solutions of the KdV and 
the modified KdV equations are u(x,t) = -$ sech2[,/Z(x - c t ) /2  + A] and 
u(z, t )  = sech[&(z - ct)  + A] respectively. 

Chapter 7. 

Problem 7.1: The superpotential W(z) = Asinz has period 2n. The 
corresponding partner potentials are Vl(z) = sin2 x - cosz and Vz(2) = 
sin2 z + cosz. Since both exp(f J Wdz) = exp(yA cos z) are normaliz- 
able, and eq. (7.4) is satisfied, this is an example of unbroken SUSY. Note 
that V2(z) = Vl(x + n), which means that the partner potentials are self- 
isospectral. 

Problem 7.2: The Lam6 potential Vl(z) = 2m sn2(z,m) - m has pe- 
riod 2K(m). The function $o(z) = dn(z,m) also has period 2 K ( m )  and 
no nodes. It is a zero energy band edge, since it is easy to check that 
-&&(z) + V~(Z)&(Z) = 0. The superpotential is "(2) = -$;/$o = 
m sn(2,m) cn(z,m)/dn(z,m) and the SUSY partner potentials V1,2(5c) = 
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W 2  W' are given by 

Vl(x) = 2m sn2(x, m) - m , 

2m2 sn2(x, m) cn2(x, m) 
dn2(x, m) 

- m sn2(x, m) + m cn2(x, rn) Vz(x) = 

Using the relation sn(z+K(m), m) = cn(x, m)/dn(x, m) and algebraic iden- 
tities involving Jacobi elliptic functions, one can show that V1 (x + K ( m ) )  F 

V2 (z), thus establishing the self-isospectrality property. 

Problem 7.3: The associated Lam6 potential under consideration is 

V~(X) = 2m sn2x + 2m cn2x/dnzx . 

It has period K(m).  Choosing a = 1 , n = 3 in Table 7.3 immediately 
yields the desired three eigenvalues and corresponding eigenfunctions. The 
lowest energy is EO = 2 + m - 2 d G  with a nodeless wave function 
$0 = dn(x, m) + d z / d n ( x ,  m) of period K(m) .  The next two energy 
levels are at  El = 2 + m + 2 J T - m  and Ez = 4 with wave functions 
$JI = dn(x,m) - d z / d n ( x , m )  and $2 = sn(z,m) cn(x,m)/dn(x,rn). 
These wave functions have a period 2K(m) and one node in every period. 

Problem 7.4: The associated Lame potential for (a, a) = (2,l)  is 6m sn2s 
+2m cn2z/dn2z. It has period 2X(m). Choosing a = 2 , n = 1 in Table 7.3 
gives the ground state energy EO = 4m and wave function $0 = dn2 (2, m). 
As expected, $0 is nodeless and has period 2K(m) .  The corresponding 
superpotential is 

W(x) = -$~/$Jo = 2m sn(z,m) cn(x,m)/dn(x,m) . 

The SUSY partner potentials are 

Vl(x) = 6m sn2x + 2m cn2x/dn2x - 4m , 

VZ(X) = 2m sn2x + 6m cn2x/dn2x - 4m . 
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Clearly, V.(x)  is just VI(Z) shifted by a half-period. Hence the two poten- 
tials are self-isospectral. 

Chapter 8, 

Problem 8.1: The WKB integral JzzLR dx d m  for the harmonic os- 
cillator potential V ( x )  = w2x2/4 can be easily evaluated to be REIw, which 
gives the energy levels E F K E  = (n + i)u, in agreement with the exact an- 
swer. For the Morse potential V ( x )  = A2 + B2e-2az - 2B(A + a/2)ecaz, 
the W K B  integral is : [ (A  + 4 2 )  - 4-1, leading to the energy leveis 
ETKB = A2 - ( A  - which is again the exact answer. Similar calcu- 
lations using W 2 ( z )  and the SWKB approximation also give exact energy 
levels for the harmonic oscillator and Morse potentials. 

Problem 8.2: The potential V(z) = A2 - A ( A  + lfsech’x is a special case 
( B  = 0) of the Rosen-Morse I1 potential. This potential is shape invariant, 
and hence analytically solvable. The exact eigenenergies are En = A2 - 
( A  - n)2.  The WKB approximation is 

1 
2 

Z R  

2 Jd  dq/ [E,WKB - A2 + A(A + l)sech20] = (n + -)R , 
where the classical turning point ZR is determined from V ( Z R )  = E r K E .  
The integral can be evaluated after a change of variables y = tanh 2. Alge- 
braic simplification then yields the result 

For very large values of n and A, the WKB approximation clearly re- 
duces to the exact eigenenergies. For A = 4, the WKB energies are 
4.22,11.17,16.11,19.05. These are to be compared with the exact values 
0,7,12,15, and the accuracy is clearly very poor. 

The superpotential which corresponds to V ( z )  is W = A tanh o. The 
SWKB approximation is 

j .R  

2 dxJ[E,SWKB - A2 tanh2 x] = n.lr , 
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where the classical turning points satisfy V ( ~ . R )  = E;LSWKB. After consid- 
erable algebraic simplification, one gets EnsWKB = 2An - n2,  which agrees 
with the exact result! 

Problem 8.3: The energy levels of the Coulomb potential in the WKB 
approximation are given by 

where the classical turning points T L ,  TR are the two solutions of the quadratic 
equation E F K B  + e2 / r  - 1 ( Z  + 1)/r2 = 0. Upon simplification, this yields 

The Langer correction replaces d m  by 1 + 3, thereby yielding exact 
energy levels. 

The superpotential W ( T )  = & - (1+1) gives the potential V ( T )  = 

=$ + + 6. The SWKB condition gives the energy levels of V ( r )  
to be 

e4 

4(n+ 1 + 1)2 ’ 
- E ~ W K B  = e4 

4Z(Z + 1) 

which corresponds to the exact spectrum for the three dimensional Coulomb 
potential. 

Problem 8.4: The WKB energy levels are given by 

1 J- dx = (n  + -)T . Jd’””l’/q 2 

Making a change of variables y = d v ,  we obtain 

1 
2 

dyy2(En - y2)(1-q)’g = (n + -)T 

The energy dependence can be scaled out by a further change of variables 
u = y2/En. The remaining integral is a beta function B ( ; , q - ’ ) .  After 
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some aigebraic simplification, one gets the desired result for the WKB en- 
ergy levels 

Chapter 9. 

Problem 9.1: a) The exact ground state wave function is 

@O = Nexp[-s4/4j , 

and the ground state energy is EO = 0. 
b) The ground state energy functional is 

1 / 2  . c) For HI we have for n = 2 , p  = d, and for n = 1 , p  = (&(1 + 6)) 
For Ha we have for n = 2, p = 
d) For HI we have for n = 2, E = 0 and for n = 1, E = .152. For HZ we 
have for n = 2, E = 1.104 and for n = 1 ,  E = .978. 

.816497,andforn= l , p =  (&(-l+fi)) 1/2 . 

Problem 9.2: For this problem with 2 V ( s )  = s* - az2 with the choices 
a = 7 , l l  (which is a double well potential) the exact wave function is of 
the form e-r'/4 multiplied by a polynomial which is quadratic and quartic 
respectively for the choices a = 7 , l l .  Since the exact wave function has 
two regimes of large support not at the origin, we do not expect our form 
of the trial wave function to be that accurate. However we will find that 
taking a non-Gaussian trial wave function can definitely improve the value 
of the ground state energy estimate over a Gaussian. The exact answers 
are Eo = -v/z for a = 7 and EO = -4 for a = 11. The variational result is 

1 n2 4 n - 1  p3 7 a p  3 
2n  2p 2n  

E o ( p , n )  x r(-) = -r(-) + 2 -r(-) 2n  - 2 -U-) 2n  . 
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Setting n = 1,2  and minimizing this functional we obtain for the choice 
LY = 7 the following: for n = 1 : p = 0.8614,Eo = -0.618; for n = 2 : p = 
1.86892, EO = -1.11221. These need to be compared to Eo = -1.414. In- 
stead for the value a = 11, we find for n = 1 : p = 1.0303,Eo = -1.56535; 
and for n = 2 : p = 2.2689, EO = -2.5139. These need to be compared to  
Eo = -4.0. 

Problem 9.3: This problem is self explanatory. 

Problem 9.4: The radial Schrodinger equation in N dimensions is 

( N  + 21 - 1)(N + 21 - 3)hZ 
8 7 d  ] # = E m  

The remaining steps and results are described in the problem. 

Problem 9.5: Note that, as expected from our choice of k, only the leading 
term in the result for En survives for v = -1 and v = 2. The computation 
of the O(k-2) terms is quite involved. The interested student can find de- 
tails in U. Sukhatme and T. Imbo, Phys. Rev. D28 (1983) 418-420. 

Appendix C. 

Problem C1: In logarithmic perturbation theory, the procedure is to start 
with the unperturbed normalized ground state wave function and energy, 
$o(s) and Eo, and then successively compute the quantities E1,Cl,E2, 
C2, E3, C 3 , .  , . using the formulas given in the text. For this problem, the 
unperturbed starting points are 

The first-order energy correction El vanishes, since one has an antisym- 
metric integrand and symmetric limits of integration. The quantity C1 (s) 
is given by 

me& 
h2a 

( -e&x)  e-ax2 dx = - . 
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The second-order energy correction E2 is 

The quantity Cz(2) is given by 

Since C2 vanishes, so does E3 as well as all higher-order corrections. The 
final well-known result is 

tw e2E2 
2 2mw2’ 

E = - - -  

which is the exact answer. 
Problem C2: The unperturbed normalized ground state wave function 
and energy are 

Using the logarithmic perturbation theory formulas, performing the neces- 
sary integrals, and discarding terms of O(q4), one gets 

El = Eo [ -- + $ + O(v4)] , E2 = EO [g + O(q4)] , 

E*>2 = Eo 0(q4) * 

E = E ~ P +  p2q2 + p3q3 + 0(q4)1 , 
The final result for the ground state energy is 

18 with B2 = -4  and p3 = B. 
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