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Preface
This volume of Methods in Molecular Biology focuses on techniques to

determine the function of a gene. Traditionally, the function of a gene was
determined following cloning, which provided its DNA sequence and an abil-
ity to modify this sequence. Experiments were performed that looked for phe-
notypic changes in a cell line or model organism following modifications to the
sequence, knocking out of the gene, or enhancing expression of the gene. In the
1990’s, the growing sequence databases and the BLAST algorithm provided
additional power by allowing identification of genes with known function that
had similar sequences and potentially similar molecular mechanisms. On the
experimental side, methods, such as two-hybrid screening that could directly
determine the partners of specific proteins and even the domains of interaction,
came into widespread use.

With the advent of high-throughput technologies following completion of
the human genome project and similar projects in model organisms, the num-
ber of genes of interest has expanded and the traditional methods for gene func-
tion analysis cannot achieve the throughput necessary for large-scale
exploration. Although computational tools such as BLAST remain a good point
of departure, it is often the case that a gene that appears interesting in a high-
throughput experiment shows no obvious similarity to a gene of known func-
tion. In addition, when BLAST does find a similar gene, the process has often
only begun. For example, BLAST and family-based derivatives may tell you
that a gene of interest is likely to be a kinase, but that does little to tell you its
interaction partners or the biological processes in which it plays a role. 

This volume brings together a number of techniques that have developed
recently for looking at gene function. Computational techniques remain a good
point of departure in gene function analysis, as they are inexpensive and can
help focus research on those genes that have a high probability of importance.
But computational methods can still only predict function, since our knowledge
of the detailed biochemical processes that drive cells remains limited in terms
of the nonlinear modeling required to predict behavior purely numerically.
Computational prediction should therefore always be followed by biochemical
and biological techniques to probe the functions of specific targets.

This volume commences, as do most experimental analyses, by looking at com-
putational predictions of gene function. These techniques are divided into two
groups, based solely on ease of use. The first set of techniques are straightforward
to apply and therefore have moderately low activation energies on the part of the
user. The second group are techniques that require moderate programming skills,
an ability to create specialized files, or the use of command line interfaces. 



The first group of computational techniques (Chapters 1–5) includes methods
focused on analysis of gene transcription patterns, promoter analysis, and deter-
mination of regions of protein disorder. Microarrays provide global measures of
transcriptional output in a number of organisms, and the widespread availability
of both data sets and analysis tools make them a logical starting point for gene
function analysis. Many of these chapters utilize microarray data for functional
inference. In chapter 1, Bidaut provides a method based on the analysis of gene
expression data from deletion mutants that permits linking of genes to bio-
logical pathways, permitting genes of unknown function to be linked to known
pathways. In chapter 2, Kirov and colleagues present an approach using the web-
based resource, WebGestalt, to interpret the function of sets of genes through
association analysis. In chapter 3, Wang and Ochs analyze microarray data with
a modified version of Nonnegative Matrix Factorization to link genes of
unknown function to those of known function. In chapter 4, Gonye and col-
leagues describe a web-based tool, PAINT, that uses promoter analysis to iden-
tify gene regulatory networks from microarray data. In chapter 5, Uversky and
colleagues describe a web-based tool that predicts protein function by predicting
the amount and location of disorder in the structure of a protein.

The second group of computational approaches (Chapters 6–10) includes
methods that require greater effort on the part of the reader, but which can also
offer greater reward. In chapter 6, Crabtree and colleagues describe the web-
based Sybil tool, which allows users to use comparative genomics to identify
orthologous sets of genes or proteins, leveraging knowledge from different
organisms to predict gene function. In chapter 7, Date uses phylogenetic profil-
ing and the Rosetta stone method to identify functional linkages between pro-
teins, predicting protein interaction partners. In chapter 8, Davuluri provides an
approach for predicting the targets of transcription factors and for using this
information with ChIP on chip data, linking transcription factors to the genes
they regulate. In chapter 9, Osborne and colleagues utilize MetaMap Transfer
and the Unified Medical Language System to form relationships between free
text in Medline, permitting identification of reported associations between
genes. In chapter 10, Ho and colleagues describe an advanced statistical
approach to identify genes whose expression is linked, either correlated or anti-
correlated, across the conditions in a microarray experiment.

The final portion of this volume (Chapters 11–17) focuses on methods that
can experimentally measure and validate gene function, from methods to knock
out or reduce the expression of genes, to methods to look for protein interaction
partners, and finally to methods that create transcription factors with special-
ized function. These types of approaches naturally extend the computational
methods of the earlier chapters, focused as they are on gene expression, tran-
scriptional regulation, and protein interactions. In chapter 11, Caldwell and
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colleagues demonstrate how to use the deletion of genes in the chicken B cell
line DT40 to determine gene function. In chapter 12, Zhang and colleagues
describe a retroviral-based short hairpin RNA delivery system for knocking
down genes in mammalian systems. In chapter 13, Cheng and Chang describe a
DNA vector-based short hairpin RNA system for inhibiting gene activities in an
inheritable or inducible manner. In chapter 14, Hust and colleagues discuss
methods to select antibodies for specific proteins, permitting users to determine
where and when proteins are present and active in their systems. In chapters 15
and 16, Tikhmyanova, Serebriiski, and colleagues present two modifications of
yeast two-hybrid protein interaction traps that utilize a linked yeast-bacterial
approach for refining identification of protein interaction partners. In chapter
17, Thibodeau-Beganny and Joung describe how to use bacterial two-hybrid
technology to select Cys2His2 zinc finger domains with specific properties.

Michael F. Ochs
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1

Gene Function Inference From Gene Expression 
of Deletion Mutants

Ghislain Bidaut

Summary
Expression data from knockout mutants is a powerful tool for gene function inference, per-

mitting observation of the phenotype of a deleted gene on the organismal scale. A computational
method is demonstrated herein to assess gene function from gene expression measured in dele-
tion mutants using Bayesian decomposition, a matrix factorization technique that permits the
extraction of patterns and functional units from the data, i.e., sets of genes belonging to the same
pathways shared by sets of knockout mutants. ClutrFree, a cluster visualization program is used
to aid in the interpretation of functional units and the assessment of gene functions for a subset
of unknown genes.

Key Words: Bayesian decomposition; data dimensionality; gene function discovery; gene-
expression analysis; microarray; gene ontologies.

1. Introduction
Assessment of function for genes in yeast Saccharomyces cerevisiae is essen-

tial for the understanding of molecular function and the annotation of unknown
genes in higher eukaryotes (1). At the date of this writing, more than 60% of genes
are reliably annotated in S. cerevisiae, which promotes it as one model to compare
and model pathways in other genomes. In addition to the genome sequence, a
large set of microarray experiments monitoring gene transcription activity under
various conditions is available from public repositories. Techniques are now fairly
mature, and integrated solutions are provided by microarray makers such as
Affymetrix (Santa Clara, CA) and Agilent technologies (Santa Clara, CA), which
permit the generation of very reproducible data. On the computing side, microar-
ray management systems and database-based repositories of microarray data
permit access, archiving, and tracing of experimental methods.



The critical step in such a high throughput experiment is the process of
analysis itself, i.e., converting a high-dimensional data set to a reduced data rep-
resentation and then to lists of genes of interest. Several techniques (hierarchi-
cal clustering, neural networks, and support vector machines, see ref. 2 for a
review) have been proposed, but researchers have not yet reached a consensus
on a de facto standard to adopt, and this remains an open question. The use of
Bayesian decomposition (BD) is demonstrated herein, which has proved to be
an effective analysis method to reduce data dimensionality and separate over-
lapping signals in a variety of data types (spectral data decomposition on chem-
ical shift images [2,3], microarray gene-expression data such as in the present
case, and in the yeast cell cycle [4,5] and bacterial phylogenetic profiles [6]). In
gene-expression analysis, BD has been successfully applied to several data sets
in a way that takes the underlying behavior of gene expression into account, i.e.,
gene products can serve more than one role and therefore genes can be part of
multiple functional units.

As an example herein, a deletion mutant data set is analyzed and made avail-
able publicly (1). However, the method can be applied to any large-scale data
set containing conditions linked to large changes in the expression of individ-
ual genes (e.g., large-scale siRNA studies). Briefly, for this data set, 300 knock-
out mutants or chemical treatments of yeast Saccharomyces cerevisiae were
grown in rich media and their gene expression was measured by complemen-
tary DNA two-color microarrays. In addition, 63 cultures of wild-type yeast
have been grown in rich media to infer the variation of transcription independent
of the knockout phenotype in order to generate a gene-specific error model. The
data dimensionality has been estimated before by comparing consistency of
results for multiple runs of BD with a variable number of patterns (5). Tools and
techniques used were similar to those described herein.

In this chapter, methods for the inference of gene function using BD are
detailed, together with advanced visualization software that simplified explo-
ration and interpretation. The chapter covers the setup of the computing envi-
ronment, the download of data and annotations, their analysis with BDrun, and
visualization of the results and graphical interpretation with ClutrFree (7).

2. Material
2.1. Software

The procedure is done under a Unix-type operating system, such as MacOS
X (Apple Computers Inc., Cupertino, CA) or Solaris (Sun Microsystems Inc.,
Palo Alto, CA). Likewise, Linux, a free Unix clone for personal computers, is
available from several distributors (RedHat Enterprise [RedHat, RTP NC]),
Debian Linux [Debian Project], Ubuntu Linux (Canonical Ltd., Douglas, Isle of
Man) or preinstalled on new machines.

2 Bidaut



The components necessary for the analysis are the following:

• The Sun Java virtual machine runtime environment, available from Sun Micro-
systems (Palo Alto, CA) (http://www.sun.com), which allows to run the tools
used in this chapter. This is often installed by default on new computers.

• The BD program (BDrun), part of the BDtools package available from the Fox
Chase Cancer Center Bioinformatics website (8), under the form of an archive
BDtools.tar.gz. This package is extracted with the following command line, which
creates a directory “BDtools” containing binaries and documentation:
$ tar xzf BDtools.tar.gz.

• The ClutrFree program is also available from the Fox Chase Cancer Center Bio-
informatics website (9). This program is available as an executable jar file-clutrfree.jar.
To install, download it and save it in the desired location (e.g., /home/ghbidaut/
clutrfree/clutrfree.jar). Documentation is available as a pdf file from the same website.

2.2. Data Set and Annotations

2.2.1. Filtered Data Set

The filtered reduced data set is available as a tar archive from the supporting
website of this chapter (see ref. 10).

To extract the archive, the following steps must be executed:

1. The archive “filtered_rosetta_dataset.tar.gz” must be downloaded from the supporting
website to the hard drive.

2. The archive is extracted by the following command line:
$ tar xvf filtered_rosetta_dataset.tar.gz.

3. This creates two file: Fr764_228_ratio.txt and Fr764_228_ratio.unc.

The .txt file contains the gene-expression ratios of experiment over control (this
is not a log ratio). The .unc file (at the same format) contains the corresponding
uncertainties derived from the gene-specific error model. This is a reduced version
of the original data set based on gene variation across experiment: genes showing
a variation of at least threefold across experiments, and experiments characterized
by a variation of twofold across at least two of the remaining genes were retained,
leaving a total of 764 genes across 228 conditions. The file format respects the
standard American Standard Code for Information Interchange (ASCII) tab-
delimited format used in many analysis packages. Each row represents a gene tran-
scriptional profile across mutants. The format is detailed in Table 1.

2.2.2. Annotation of Genes and Conditions

• For gene annotation, the MIPS ontologies (Munich Information Center for Protein
Sequences, Munich, Germany) are being used. They are accessible through their
website, and a Perl script (automips.pl) to retrieve and format them is provided.
The script is downloadable from the supporting website and is invoked using the
following command line:

$ auto_mips list_of_genes.txt -o annotation.txt.

Gene Function Inference in Deletion Mutants 3



A snapshot of the annotations (April 2005) is also available from the supporting
website (annot.txt).

• The list of experiments (conditions in the Rosetta data set) must be supplied for
later visualization in ClutrFree. The list is provided on the supporting website as
a tab-delimited file (expnames.txt).

3. Methods
First, the approach in Subheading 3.1. is discussed. Then pattern recogni-

tion in Subheading 3.2. is performed, followed by visualization, interpretation,
and functional analysis in Subheading 3.3.

3.1. Introduction to the BD Algorithm

The BD algorithm is a matrix factorization algorithm that retrieves simulta-
neously two matrices A and P, which when multiplied together, reconstruct the
expression data D under the noise ε:

D = AP + ε

D is the gene-expression data matrix, and P a set of basic vectors in which
the data is projected. The A matrix is a set of coefficients that allows the recon-
struction of D through multiplication of A and P, i.e., the contribution of each
basic vector to each gene (Fig. 1). For more details on the underlying mathe-
matics (see ref. 11). Briefly, BD is a Gibbs Sampler that samples the solution
space using an atomic prior (12) and minimizes the χ2 distance between data D
and model A.P. The algorithm operates in two stages: first, the burn-in stage,
during which the Markov chain reaches an area of high probability and equili-
brates. The second stage is the sampling stage, during which samples are taken
to construct a distribution for A and P elements, leading to a measure of mean
and standard deviation for each element.

3.1.1. Application to the Rosetta Compendium

The two matrices P and A generated by BD from the Rosetta Compendium
contain, respectively, a series of patterns and the distribution of those patterns

4 Bidaut

Table 1
Input File Format Used by BDrun

Gene name Mutant1 Mutant2 Mutant3

Gene_1 Expression_value_1_1 Expression_value_1_2 Expression_value_1_3
Gene_2 Expression_value_2_1 Expression_value_2_2 Expression_value_2_3
Gene_3 Expression_value_3_1 Expression_value_3_2 Expression_value_3_3

Values are tab-delimited. Expression values is a generic term and may be an absolute expres-
sion value, or a ratio of experiment/control. Log values are not acceptable as BD performs the
factorization on positive, additive distributions. The uncertainties file is the exact same format.



in the compendium. Owing to the nature of the prior, BD finds positive additive
patterns that are physiologically significant and that can be interpreted in the
following way: each pattern describes mutants sharing groups of genes, so-
called functional units. Examination of the pattern matrix P by row gives the
distribution of mutants for a given functional unit, and by columns, how a given
mutant is distributed across functional unit. Examination of the distribution
matrix A by row gives the distribution of a given gene in functional units, and
by column, the gene content of each functional unit (Fig. 1). Functional units
are groups of genes related to a pattern, and shared by one or more mutant.
Genes grouped are part of the same pathway or group of pathways, and genes
can be part of several functional units, matching biological borrowing of func-
tion (see ref. 13 for a review of gene function sharing mechanisms in bacteria).

3.1.2. Issue of Dimensionality

The main parameter to set when running BD is the number of patterns to find
in the data (5). Therefore, several BD runs increasing the number of patterns and
observing the hierarchical splitting of pathway are performed. When the number
of patterns increases, functional units (A matrix) grouping several pathways will
split into those different pathways, and the patterns that those units relate to will
also split (P matrix). As the number of patterns reaches 16 (5), the patterns lose
consistency and have a low correlation with the patterns at 15 dimensions, so
the optimal number of patterns is predicted as 15. This is because of an increase
in degrees of freedom as the number of dimensions needed to explain the data
is exceeded.

Gene Function Inference in Deletion Mutants 5

Fig. 1. The data matrix D is decomposed into a pattern matrix P and a distribution
matrix A. These are recombined by multiplication to reconstruct the data matrix D. BD
generates matrices with elements that are defined by an additive and positive distribution.



3.2. Applying BD to the Rosetta Compendium With BDrun

3.2.1. Organizing the Data Files

To display the decomposition results with ClutrFree, the data needs to be
properly organized at two levels: the BD results level and the gene and experi-
ments (conditions) level. Because the variable that is changed between each BD
run is the dimensionality, each BD experiment is to be stored in a separate
folder called “exp_dim” (“dim” being the number of patterns for the current
experiment, for example, “exp_05” contains the decomposition result for five
patterns). ClutrFree can handle arbitrarily named folders but this scheme is fol-
lowed for clarity and to facilitate the writing of other visualization programs.
Other files that have to be included are the condition annotations (the list of
knockout mutant names) and the gene annotations generated from the MIPS
website. The final file layout is a folder containing the files in Table 2.

3.2.2. BDrun and Parameters Selection

BD is run from BDrun, a Java graphics interface that permits the specifica-
tion of parameters and data loading. The program is started by double-clicking
on its icon under MacOS X, or by the following command lines:

$ cd /path_to_bdtools
$ java -jar BDrun.jar.

This brings up the BDrun interface and starts the BDserver computational
engine. The BDrun window is organized in three parts (Fig. 2). The right panel
contains a series of fields that allows for fixing the parameters (reasonable
defaults are provided by the program). The left panel displays messages given
during the Markov chain progression and permits the monitoring of the anneal-
ing and sampling period by displaying the evolution of the number of atoms
(12) and χ2 values. The bottom panel permits the operations of loading input
files and running the algorithm. Following is the detailed step-by-step proce-
dure to run the analysis.

6 Bidaut

Table 2
Folder Layout to Use With the Visualization Program ClutrFree

exp_5/ Folder containing the BD result for 5 patterns: the 
“Fr764_228_ratio.bdo” and “Fr764_228_ratio.gnm” files 
generated by BDrun for five patterns

exp_6/ Folder containing the BD result for 6 patterns: the 
“Fr764_228_ratio.bdo” and “Fr764_228_ratio.gnm” files 
generated by BDrun for six patterns

exp_20/ Folder containing the BD result for 20 patterns
annot.txt Tab-delimited file with gene annotations
expnames.txt Tab-delimited file with mutant names



1. The data must be loaded by using the [Load] button. The file Fr764_228_ratio.txt
must be chosen and the uncertainty file Fr764_228_ratio.unc must be present in
the same directory. If successful, the left textual display gives the message:
read:/home/ghbidaut/data/Rosetta_Compendium/Fr764_228_ratio.unc
read:/home/ghbidaut/data/Rosetta_Compendium/Fr764_228_ratio.txt.
Next, the following parameters need to be reviewed and fixed:
• tag: this is the current experiment tag, used to identify the output.
• dir: this is the current working directory.
• Ensemble: this is the number of Markov chains used simultaneously for

searching a solution. For now, the current implementation of BD is limiting
this value to one so this cannot be changed by the user.

• Niter: the number of Markov chain iterations. 3000 is a reasonable value in this
analysis.

• Nshow: this provides the number of steps of the Markov chain between snap-
shots during sampling. The default value (500) is left as is.

• Iseed: this is the random seed that will determine the position of the Markov
Chain in the solution space. Saving this seed value allows the exact repro-
ducibility of the decomposition.

Gene Function Inference in Deletion Mutants 7

Fig. 2. The main BDrun window, with the parameters to be set on the left and the
message window on the right. The sets of parameters on the bottom left allows to run
BD on a remote machine, and to select a variant of the algorithm. BD is controlled by
the set of buttons at the bottom (operations).



• alphaA: this is the number of atoms initially present in the atomic domain cor-
responding to the A matrix. BDrun estimates the default number of atoms
being proportional to the data set size and the number of patterns, so this
default value will be left as it is.

• alphaF: this is the initial number of atoms initially present in the atomic
domain corresponding to the P matrix. BDrun estimates the default number of
atoms being proportional to the data set size and the number of patterns, so this
default value will be left as it is.

• Nsol: this parameter fixes the number of basis vectors (patterns) to be inferred
by BD. The analysis will be started by setting it initially at three and increase
it to 20 during subsequent runs.

• Na: number of genes (rows) in the data set.
• Nb: number of conditions (columns) in the data set.
• data: the data loaded.
• uncertFlag: this flag is set to 1 when an uncertainty file has been found and loaded
• acc: this is the uncertainty data corresponding to each data value.
• additive: when uncertFlag is set to zero, additive and multiplicative values are

used to model noise and calculate uncertainty. This is not used here, so leave
this to the default value.

• Multiplicative, see additive.
• geneName: the gene IDs found in the data set.
• xLabels: the condition IDs found in the data set.
• Server and Port: this is used to run BD on a remote machine (see Note 1). This

is left to the default values of “local” and “1099.”
• Library: this allows one to choose among several BD variants. This is set to

“BDCI.”
2. Once the parameters have been set, BD is run by clicking on the [run] button. If all

parameters have been set up correctly, BDrun should display the following messages:

running BCDI on local
using uncertainty from file
Running Bayesian Decomposition Version 1.

The Markov Chain random walk is expensive, and one should expect a running
time of about 6 h for five patterns/3000 iterations up to 20 h for 20 patterns/3000
iterations on a 3Ghz Pentium4 Linux machine. It is possible to accelerate this
process by running multiple instances of BD on remote machines or on a cluster
(see Note 1). To verify the proper progression of the algorithm, the messages
specifically can be monitored to the two stages of annealing and sampling in the
BDrun message area:

3. During the annealing period, BDrun will display the following messages:
Running Bayesian Decomposition

1/T = 0.1 of 1.0 942 (179) 134654.6845
1/T = 0.1 of 1.0 911 (162) 134515.2276
…
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4. During the sampling period, BDrun will display the following messages:
Sample = 100 of 3000 1573(405) 107000.3768
Sample = 200 of 3000 1548 (398) 106874.0760
…

5. Once the decomposition is over, BDrun displays the following message:
Random seed was 1141931207
<Chi-Squared> = 106819.8192
<A Atoms> = 1582.8897
< F Atoms > = 405.1083
log[e]Prob(Data) = 75983.9831
Wrote: /home/ghbidaut/data/Rosetta_Dataset/Fr764_228.bdo.

6. Two files have been generated by BDrun: Fr764_228.bdo and Fr764_228.gnm.
The .bdo file contains the two matrices A and P along with their corresponding
uncertainties. The .gnm file contains additional information that is not used here
(a list of gene names used by the BDviewer program).

7. It is then needed to create an appropriate sub directory to store the analysis result. Here
the layout is followed as detailed previously, and will name it “exp_05.” On MacOS
X, the subdirectory can be created by menus, or by the following command line:
$ mkdir exp_05.

8. The analysis files have to be moved in sub directory created in the previous step.
Drag and Drop is possible under MacOS X, or the following command line can be
issued from a terminal in Linux or MacOS X.
$ mv Fr764_228.bdo Fr764_228.gnm exp_5.

9. Back to BDrun, the analysis can restart for six patterns this time, and repeat the
same procedure over again, by changing the “Number of Patterns” value from five to
six and click on the [run] button again. Once the decomposition is finished, the
files Fr764_228.bdo and Fr764_228.gnm has to be moved to the 6_pat directory.
This procedure is repeated for up to 20 patterns to obtain all the necessary data.

3.3. Data Visualization and Analysis

ClutrFree is a tool whose goal is to aid in pattern interpretation and visuali-
zation through advanced visualization techniques and elaborated tree graphs
(7). It features an algorithm for comparison of several experiments generated by
the variation of one or several parameters in a given clustering method. In the
context of this study, the variable parameter is the number of patterns n inferred
by BD, to allow estimation of the data dimensionality. Even though ClutrFree
can be used with any clustering algorithm, it is well suited to the exploration of
the A and P matrices derived by BD. The pattern window is related to the P
matrix and the gene window is related to the A matrix. The tree display permits
the navigation across multiple clustering experiments and the visualization of
patterns, stable and unstable, across the experiments. It is constructed by

Gene Function Inference in Deletion Mutants 9



computing the maximum correlation between patterns (or between the A
matrix columns for the membership tree).

ClutrFree has the capability to visualize simultaneously multiple functional
units and to permit the comparison of the presence/absence of genes across sev-
eral functional units. In this section, it will be explored how to launch ClutrFree
and verify the proper format and organization of the data. The exploration will
then be detailed of functional ontologies associated with each pattern to obtain
a general idea of the function. Finally Subheading 3.3.4. describes in detail the
understanding and assignment of gene functions.

3.3.1. Loading the Data in ClutrFree, Verifying Data Integrity, 
and Basic ClutrFree Window Organization

1. ClutrFree is launched by the following command line wherein the path argument
is the root of the layout detailed in Subheading 3.2.1.
$ java–jar clutrfree/home/ghbidaut/data/Rosetta_Dataset.

The second possibility is to double-click on the ClutrFree icon (in MacOS X), then
use the menus [File] [Import Data] and select the directory from the dialog. Again,
the directory that must be selected is the layout root (Rosetta_Dataset). Once the
input directory is selected, ClutrFree displays a progress bar giving feedback on
the reading of the data.

2. If everything is properly loaded, a dialog box with the following message is
displayed:
“ClutrFree has successfully loaded 16 experiments. The current displayed experi-
ment has five clusters of length 228.” This gives the general topology of the loaded
data, the number of experiments compared (here BD was performed with the num-
ber of patterns varying between 5 and 20 giving 16 total experiments), and the
number of conditions in each cluster (228 conditions from the original data set).
This is consistent with the data size.

3. Once the data is loaded, click “OK” on the dialog box. Two windows appear
then: the pattern graphics window (Titled ClutrFree: 1:5) and the pattern tree
window on top of it. If the pattern tree window is closed, it can be reopened by
the menu sequence [Window] [View The Pattern Tree]. The commands avail-
able from this window are shown in Fig. 1. In addition to the loading data, the
[File] menu permits data importation and exportation (graphics or tab-delimited
files). The [View] menu allows switching the display between stem-like graph-
ics or plot-like graphics (useful for temporal series), and the [window] menu
allows the display of two other windows, the gene table window and the pattern
tree window.

4. A gene window is opened by clicking on the [Gene List] button (as many win-
dows can be opened as the user wishes for ease of exploration and pattern com-
parison). This permits the comparison of a gene list for correlated patterns at
different tree levels. 
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3.3.2. Exploring Patterns and Functional Units: the ClutrFree GUI

The ClutrFree graphic user interface (GUI) has been designed around two
windows: the pattern and the gene table window. A global view of the pattern
similarities among experiments is displayed in the two tree windows (Fig. 3).

• The pattern window: the pattern window shows the pattern inferred by BD (rows
of P). Horizontal arrows allow navigation across patterns for the same experi-
ments and vertical arrows allow navigation across experiments. The current pat-
tern is represented by a highlighted node in the pattern tree (Fig. 3A). The
displayed graph is the contribution of each mutant to the current pattern, displayed
in an arbitrary unit. Other features in the graphs include the display of persistence
(this value is proportional to the thickness of the blue box behind each plotted
point). Graphics can be exported for publication (see Note 3).

• The gene-table window: this window, organized around two tables, displays the
distribution of genes (upper table) and ontologies (lower table) across the differ-
ent patterns (columns of A): on one hand, this is used for functional inference on
patterns to assess the different pathways present in a pattern and linked to a set of
mutants (Fig. 3C). On the other hand, this is used for gene function inference on
the basis of known genes with detailed ontologies present in the pattern. The gene
table must be used together with the pattern window to understand which gene is
linked to which groups of mutants. In the ontology table (lower table), two values
are associated for each ontology in each pattern: enrichment (noted e[x], with x
being the pattern number) and p-value (noted p–v[x], calculated from a hypergeo-
metric distribution, see ref. 5 for the mathematical details).

• The tree windows: there are two tree windows in ClutrFree, one related to the pat-
terns (pattern tree), showing the relationship of patterns across dimensionalities,
and one related to the gene membership (membership tree), constructed from the
columns of A (Fig. 3B,D). Each tree level represents the patterns from a single BD
run, and the levels are sorted from the lower number of patterns (five at the top) to
the higher number of patterns (20 at the bottom). Levels are connected by maxi-
mum correlation between nodes to infer stable patterns (7). More information,
including ontological information can be displayed in the trees (see Note 4).

3.3.3. Inference of Pattern Function

To understand the pattern function, the lower part of the gene-table window
will be used, the ontology table. This table permits the assessment of a general
idea for the pattern function, i.e., which pathways are present in this pattern. This
is an essential step before detailed examination of the list of mutants present in
the pattern, and the list of genes having the highest contribution to the pattern.

The procedure for pattern function inference is the following: (see Note 2).

1. The ontologies for 15 patterns are displayed, the level that is believed to be opti-
mal for analysis (see Subheading 3.1.2.). This is done by pressing the [NSol+1]
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button on the gene table window until the window title displays “Gene Table:
15 patterns.”

2. The filter threshold is set up on the bottom of the gene table (the right slider) to 20.
This removes ontologies with 20 or less instances from the ontology table.

12 Bidaut

Fig. 3. The complete ClutrFree GUI: in (A), the pattern window showing individual
patterns (lines from the P matrix) and featuring arrows for navigation. In (B), the pat-
tern tree displaying relationship between patterns across dimensionality. The lowest
dimensionality (5) is at the top of the tree, and the highest (20) at the bottom. In this
tree, each line represents an experiment. (C) The gene list window is divided in two
parts: on the upper half, the distribution of genes (A matrix) is displayed, each column
related to the corresponding pattern in A. On the lower half, ontologies enrichment
is displayed, and arrows permit navigation between experiments. (D) The windows
displays the tree built on the A matrix columns.



3. The most significant ontologies are explored for each pattern by sorting them in
order of decreasing enrichment value. This is done by clicking on the column
header (alternatively, the ontologies can be sorted by increasing p-values by pressing
shift+clicking on the column header).

4. The five most enriched ontologies are visualized for all the 15 patterns of the
current level. The obtained functions are shown in Table 3 for patterns 5, 9, 11,
14, and 15 (see Note 2).

The last step of this procedure is the linkage of mutants present in the pat-
tern of genes of the ontologies found. This permits a finer understanding of the
pathways present in the pattern. This is done by examination of the mutants that
are absent or present from the corresponding pattern because those absent
mutants are the ones that are affecting the pathways in the functional unit owing
to the gene knockout. There is no clearly established cutoff for considering a
mutant to be present/absent from a pattern but a rule of thumb is that mutant
with an amplitude less than 10% of the maximum amplitude in the pattern can
be considered absent from it (and correspondingly, a mutant with an amplitude
greater or equal to 10% of the maximum amplitude will be considered present).
See Fig. 4 for an example.

In the following, it is assumed that the files from the website have been
loaded into ClutrFree. If BD is rerun, the pattern numbers may change (see
Note 2). The detailed step-by-step procedure is as follows:

1. The Pattern window is brought up and the patterns obtained are displayed with BD
set for 15 solutions by pressing the “\/” key as much as necessary until the 15
pattern experiment appears.

2. Pattern 1 is selected by pressing “>>” or “<<” accordingly. The pattern window
title must display “ClutrFree: 1:15.” It is now displaying pattern 1. Mutant
names are collected and characterized by an amplitude lower than 10% of the
maximum amplitude. For example, in pattern 14, the only missing mutant is
snn6∆.

3. Once the mutant list is established, each mutant annotation is examined: for pat-
tern 14, all mutants are present, although snn6∆ shows a weaker signal for techni-
cal reasons. Now the previous result obtained with the ontologies can be
corroborated and the pattern function is confirmed, which is the overall base of
processes necessary for survival, so that all mutants have this pattern. For pattern
11, it is found that most mutants are absent. Two mutants with genes of known
function, Gas1∆ and Fks1∆, are present in the pattern. Those mutants (Gas1∆ and
Fks1∆) are known to disrupt cell wall maintenance. Other mutants found in the
pattern (Erg2∆, She4∆, as well as YER044c∆) are affecting ergosterol biosynthe-
sis, known for affecting cell wall maintenance.

4. This process is repeated for all patterns by navigating in the pattern window using
the arrows keys. Results are summarized in Table 3 (see the “Missing mutants”
fields). Additional notes for patterns 9 and 15 are provided (see Note 5).
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3.3.4. Function Inference for Unknown Genes

Once the pattern function has been confirmed from statistically enriched
ontologies and mutants absent from the patterns, (or by statistically depleted
ontologies and mutants presents in the pattern), one can use that information to
infer functions for individual genes that remain unclassified. This is done by
using the information of present/absent mutants from the pattern display.
Herein the focus will be on the cell wall patterns (pattern 11) and the ribosomal
pattern (pattern 5) already analyzed in Subheading 3.3.3.

1. For each explored pattern, a list of mutants is established having a significant con-
tribution to the pattern or that are absent from the pattern.

2. For pattern 11, the following mutants were found to be present: Gas1∆, Fks1∆,
treatments with tunicamycin and glucosamine (known to disrupt cell wall); and
Erg2∆, She4∆, and YER044c∆ (linked to ergosterol biosynthesis, so indirectly to
cell wall maintenance). A mutant knocked out an unknown ORF: YER083c.

3. For pattern 5, the following mutants were found to be present: Rpll2a∆, Rpl27a∆,
Rpl34a∆, Rpl6b∆, Rp18a∆, Rps24a∆, Rps24a∆ (haploid), and Rps27b∆. Mutants
knocking out unknown ORF have also been found (YOR078w∆, YMR269w∆, and
YHR034c∆).

4. For each pattern, for which the function has been determined, the pattern function
can be attributed to the unknown ORFS in the pattern: for pattern 11, it is conjec-
tured that the gene YER083c is linked to cell wall maintenance. For pattern 5, it is
conjectured that the genes YOR078w∆, YMR269w∆, and YHR034c∆ are linked
to ribosomal functions.
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Fig. 4. This is a comparison of patterns 9 and 15, and an illustration of mutant is
considered absent or present in the pattern. The contribution is being compared of
mutants Ste12∆, Ste20∆, and Tec1∆ to patterns 9 and 15: Ste12∆ is considered absent
from pattern 15 whereas Ste12∆, Ste20∆, and Tec1∆ are all considered absent from
pattern 9.



4. Notes
1. BDrun has a distributed network mode wherein a series of nodes running a BDrun

server can be set up. A BDrun launched in client mode will send BD jobs to
idle nodes on the network that run a BDrun server. This allows running BD on idle
machines and leaving the user machine resources free. The user can configure the
machines he wishes to use by editing the following file provided with BDrun:
/path_to_bdtools/BDservers.list.

2. The pattern indices can be completely different if the analyses are run, because BD
assigns patterns a random order number. Also, the values obtained for ontological
enhancement may be slightly different than the one shown herein, owing to the
gene amplitude values found by BD, and to the ongoing reannotation of the yeast
gene ontologies in MIPS.

3. ClutrFree offers the possibility to export pattern graphics (menu [File] [Export Current
Graphics] from the ClutrFree main window) or tree graphics for further editing with
publishing tools (menu [File] [Export Current Tree] from one of the tree window).
Supported formats include  joint picture exchange (JPEG), tagged image file format
(TIFF), portable network graphics (PNG), simple vector graphics (SVG), and dot for
tree exportation. Tree exported in dot formats can be further displayed with the
GraphViz package (AT&T Research, Florham Park, NJ, www.graphviz.org).

4. In ClutrFree, trees can be rendered with more information if needed. It is possible
to include correlation value (menu [Display] [Correlation]), as well as displaying
ontological enrichment in each tree node (menu [Display] [Ontologies]). The dis-
play parameters can be set at [Display] [Options].

5. By following the procedure listed in Subheading 3.3.3., functions can be assigned to
patterns 9 and 15. They are the two most enriched patterns for the ontology
34.11.03.07: pheromone response, mating-type determination, and sex-specific pro-
teins. To observe which genes are the highest contributors to pattern 9 and 15, they
are sorted by value in the upper gene table. For pattern 9, it is observed that 11 of the
top 15 genes are transposable elements, involved in filamentation. The hypothesis is
that the patterns 9 and 15 represent two reproductive modes in yeast; filamentation
and the mating response (see ref. 14). To confirm this hypothesis, the contribution of
tree mutants is examined in interest to those patterns; Ste12∆, Ste20∆, and Tec1∆. In
pattern 15, it is found that Ste12∆ is absent, whereas Ste20∆ and Tec1∆ have a strong
signal, which is in accordance with the mating pathway activated through Ste12 but
which can bypass Ste20 through a G protein complex (14). In pattern 9, Ste12∆ is still
absent, and Ste20∆ and Tec1∆ are showing weak signals. This measurement is in
accordance with the set of genes known to trigger filamentation, which includes
Ste12, Ste20, and Tec1. See ref. 5 for a detailed discussion of this issue.
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Association Analysis for Large-Scale Gene Set Data

Stefan A. Kirov, Bing Zhang, and Jay R. Snoddy

Summary
High-throughput experiments in biology often produce sets of genes of potential interests.

Some of those gene sets might be of considerable size. Therefore, computer-assisted analysis is
necessary for the biological interpretation of the gene sets, and for creating working hypotheses,
which can be tested experimentally. One obvious way to analyze gene set data is to associate the
genes with a particular biological feature, for example, a given pathway. Statistical analysis could
be used to evaluate if a gene set is truly associated with a feature. Over the past few years many
tools that perform such analysis have been created. In this chapter, using WebGestalt as an example,
it will be explained in detail how to associate gene sets with functional annotations, pathways,
publication records, and protein domains.

Key Words: Association analysis; data interpretation; gene expression; gene set; WebGestalt;
genome-scale; high-throughput analysis.

1. Introduction
Because of the first large-scale expression analysis in 1995 (1), numerous

studies have tried to correlate the observed expression patterns with other signif-
icant biological data, such as phenotypes, regulatory sequences, pathways, and
so on. Such types of correlation analysis could potentially reveal mechanisms
that are associated with the observed expression patterns. The results from
large-scale biological experiments, such as expression analysis is often complex.
In many cases, it will not be possible to infer the aforementioned associations
by manual analysis because of the data size and complexity. An overview of the
microarray technology and some of the computer-assisted inference analyses is
reviewed by Stoughton (2).

A large number of studies use gene ontology (GO) annotation (3) to assist in
the analysis of gene expression data. For example, Bono et al. used GO to
reconstruct metabolic pathways (4). The GO consortium (3) provides a powerful



way to associate genes with the existing knowledge on some of the genes’ major
characteristics, such as function and cellular localization. GO has a controlled
vocabulary that is understandable to both human and computer, which makes it
extremely useful for associative inference analysis. Biocarta and Kyto
Encyclopedia of Genes (KEGG) (5) pathways are also routinely used in expres-
sion data analysis. Lin et al. (6) used GO, Biocarta, and KEGG to identify reg-
ulatory networks involved in cancer progression; Kluger et al. (7) used GO,
Biocarta, and KEGG in combination with expression patterns to create a matrix
capable of discriminating the developmental choice of hematopoietic cells. An
alternative to GO, KEGG, and Biocarta is the PANTHER project (8), which
relies on its own ontologies and pathway data. Other ontologies are in their
developmental stage as a part of the Open Biomedical Ontologies (OBO) proj-
ect and might expand the inference analysis that is described in this chapter. (9).

Finding other associations, such as transcription factor-binding sites, 3′-UTR
signals, and so on, is of very high interest, yet the existing knowledge in this area
is too limited for high-throughput analysis. The recent development of different
high-throughput techniques such as chip–chip (10,11) and genome-wide DNase
footprinting (12,13) might lead to the accumulation of the critical volume of
data, necessary for transcription factor-binding sites association studies. As gene
set interpretation is becoming a critical step in high-throughput biological studies,
many bioinformatics tools have been developed for this purpose. Table 1 lists
some common software packages for gene set functional association analysis.
Note that this list is not exhaustive. In this chapter, the application of WebGestalt
(14) to the management and association analysis of large-scale gene set data will
be illustrated. This analysis usually includes three steps: (1) identifiers (IDs)
conversion, (2) gene set management, and (3) gene set analysis. Some distinct
functions of other software packages will also be discussed.

2. Materials
Typically, any personal computer (Linux, Mac [Apple, Inc., Cupertino, CA]

Windows [Microsoft, Inc., Redmond, WA], and so on) with a recent Internet
browser should be sufficient. Certain analyses generate comma-separated
files, which are best viewed with a spreadsheet application, such as Open
Office, koffice, Microsoft Excel, and so on. PDF reader is required in order to
read some of the tool documentation. High-speed Internet connection (such
as T1, Digital Subscriber Line [DSL], or cable modem) is highly desirable.
The example gene sets consists of four sets: “lymph node,” “cerebellum,”
“cerebrum” (15), and “brain embryo imprint” (16). These gene sets can be
downloaded from http://bioinfo.vanderbilt.edu/mp/gene_sets. The “lymph
node,” “cerebellum,” and “cerebrum” sets include genes that are overex-
pressed in corresponding tissues (15). The “brain embryo imprint” set is
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based on a study associating expression patterns in the adult mouse brain with
the development of the mouse embryo (16).

Websites of interest and related to this work include:

• WebGestalt: http://genereg.ornl.gov/webgestalt.
• GOTree Machine: http://genereg.ornl.gov/gotm.
• GeneKeyDB: http://genereg.ornl.gov/gkdb or http://sourceforge.net/projects/

genekeydb.
• Entrez gene: http://ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene.
• UCSC genome browser: http://genome.ucsc.edu/cgi-bin/hgGateway.
• CGAP: http://cgap.nci.nih.gov/.
• SourceForge: http://www.sf.net.
• Biocarta (Biocarta, Inc., San Diego, CA): http://www.biocarta.com/index.asp.
• KEGG: http://www.genome.ad.jp/kegg/.
• GO consortium: http://www.geneontology.org/.
• OBO: http://obo.sourceforge.net/.
• PANTHER: www.pantherdb.org.
• STRING: http://string.embl.de/.
• DAVID: http://david.abcc.ncifcrf.gov/.
• GSB: http://www.cisreg.ca/gsb/.
• EnsMART: http://www.ensembl.org/Multi/martview.

Additional important sites and mailing lists are described in Note 1.

3. Methods
The methods that are described require minimal set of computer skills: using

spreadsheet and simple text editing software and accessing the Internet. The steps
needed to define a gene set based on expression or other high-throughput exper-
imental design are out of the scope of this chapter and could require high com-
puter/biostatistics proficiency and access to specialized software. As a starting
point it is assumed that an interesting gene set (based on experimental or other
evidence) is already compiled.

3.1. ID Conversion and Gene Set Management

3.1.1. Gene Set Upload and ID Conversion

Usually commercial microarrays designate the genes printed on the chip
using their own IDs. This contributes to the already significant set of exist-
ing gene designators. Therefore, often the first step that needs to be under-
taken is the conversion of gene IDs. Although it might seem trivial, this step
could lead to misleading results if not performed correctly (see Note 2). It
is strongly advised against the use of gene symbols (see Note 3). It would
be best if the input gene IDs are Entrez gene ID (formerly Locuslink ID)

22 Kirov et al.



(17). Swissprot ID and Ensembl gene stable ID are also recommended as a
second option.

Depending on the technical skills of the user, conversion choices would
vary. Installing a local copy of the Ensembl MART database (18), BioMART
(http://www.biomart.org/), or GeneKeyDB (19) locally, and directly querying
the database might be the best choice, but will be much more challenging than
using web-based tools, such as EnsMART, WebGestalt, and GSB (20). Both
WebGestalt and GSB provide data set management modules, but GSB has better
gene set management functionality. It allows gene set sharing, comment addition,
and set synchronization. WebGestalt has analysis modules and a slightly larger
choice of chip IDs. WebGestalt uses GeneKeyDB (21) to find the relevant data,
whereas GSB is based on Ensembl. Several tools listed in Table 1, such as
PANTHER and DAVID, also have integrated gene set conversion and manage-
ment functionality. If advanced gene set management is important, then either
GSB or WebGestalt would be the appropriate choice for this step. Only
WebGestalt is described herein whereas an overview for other tools exists at
http://bioinfo.vanderbilt.edu/mpaper/tc.html.

1. Register in WebGestalt. This is necessary both to protect and store each users’
gene sets. Storage is temporary. Gene sets are erased following each database
update, but users are warned by email at least a week before the gene sets are
removed. The updates usually occur at 30–60 d periods.

2. Prepare a text file (e.g., in notepad if Windows is used, TextWrangler [Bare
Bones Software, Bedford, MA] for MacOS, and Emacs in *nix/Mac OS) with
one identifier per line. Do not include a header row. If Microsoft Word is used
make sure that in the “Save as type” field one chooses “Plain text.” As an alter-
native one can use the example gene sets (see Subheading 2.). The description
following is based on the example files.

3. Access the gene set uploading/conversion form by selecting “Form file.” Fill in
the form and press the UPLOAD button. At this point the data set is stored in the
database and can be retrieved at a later time (see Note 4 on data set storage).

4. Check for possible inaccuracies, for example:
• The gene list size in the file should be the same or bigger (in case some genes

are not in the supporting database) than the one reported by the conversion tool
(see Notes 2 and 3 for explanation).

• If the number of genes is far smaller than the input, there might be a problem
in the upload process.

3.1.2. Gene Set Manipulations

3.1.2.1. RETRIEVAL OF ORTHOLOGOUS GENE SETS

Currently WebGestalt works only with human and mouse orthologs. To get
the orthologs:

Association Analysis for Large-Scale Gene Set Data 23



1. Retrieve the gene set uploaded in Subheading 3.1.1. To do so login to WebGestalt,
select “lymph node” from the pull-down menu next to RETRIEVE button and
press RETRIEVE.

2. Press the GET <SPECIES> ORTHOLOGS button. In this case the button would
read “get mouse orthologs,” because the starting gene set is human.

3. Press SAVE in the new window that opens and follow the normal gene set
description step.

3.1.2.2. BOOLEAN OPERATIONS: UNIONS, INTERSECTIONS, AND DIFFERENCES

Comparing the composition of different gene sets is important in order to
compare genes’ behavior under different conditions. In this case the overlap of
gene sets enriched in cerebellum vs cerebrum will be compared.

Create the intersection of gene set “cerebellum” (A) and gene set “cere-
brum” (B):

1. Login to WebGestalt. Unless gene sets “cerebellum” or “cerebrum” have been
uploaded previously, upload them at this point. This will make both sets available
from the pull-down menus next to BOOLEAN OPERATIONS button.

2. Select gene set A (cerebrum) and B (cerebellum).
3. Select intersection and press BOOLEAN OPERATIONS to create the new gene set.
4. Press SAVE and enter the new set name and description.

3.1.2.3. BOOLEAN OPERATIONS FOR SETS FROM DIFFERENT SPECIES

1. Upload organism 1 gene set (set A) following the method in Subheading 3.1.2.1.
2. Upload organism 2 gene set (set B) following the method in Subheading 3.1.2.1.
3. Using set A follow steps 1–3 as described in Subheading 3.1.2.1., which will

create gene set AB.
4. Create set BA as in step 3, using set B instead of A.
5. Check if sets AB and BA have the same number of genes.

3.2. Information Retrieval

The following data can be currently collected in WebGestalt: gene IDs/acces-
sion numbers (EntrezGene, RefSeq, UniGene, UniProt, and Ensembl gene stable
id), gene names and symbols, cytogenetic and physical mapping data, protein
domains, Online Mendelian Inheritance in Man (OMIM), genome reference into
function, publications, GO, KEGG, Biocarta, and phenotype.

1. Check the checkboxes denoting the type of data one needs.
2. Press the “Information retrieval” button and save the results (and remember the

location of the file). Some browsers are configured to automatically open the
results through an Excel plugin (this behavior can be changed through the
browser “Helper application” preferences or the operating system (OS) folder
settings).
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Some fields would contain more than one entry. For example, a gene
might have alternative transcripts, in which case there would be more than
one RefSeq accession number, which would be separated by three right
slashes (///). Another exception is the chromosome coordinates column
wherein the fields (chromosome number, start, end, and orientation) are sep-
arated with three colons (:::).

3.3. GO Association Analysis (GOTree Machine and the WebGestalt
GO Module)

All software packages listed in Table 1 could analyze associations between
gene sets and GO categories. There are several important considerations when
choosing the tool that might be most appropriate for the analysis: scope of the
analysis (available organisms, GO levels), statistical approach (including refer-
ence gene set options), visualization options (interactive vs noninteractive), and
update schedule (as almost all tools use database integration). There are other
additional features that are not critical for the analysis, but might be of some
benefit to the user (see the detailed comparison at http://bioinfo.vanderbilt.
edu/mpaper/tc.html).

One could use the following steps to accomplish the analysis through the
GOTree module in WebGestalt (see Note 5 on the differences between
GOTree Machine (GOTM) and WebGestalt GO module and Note 6 on some
restrictions):

1. Retrieve the “brain embryo imprint” gene set.
2. Press the GOTREE button.
3. Choose appropriate reference set and statistical approach (to observe some impor-

tant considerations on this choice, see Note 7). In this case, “WEBGESTALT_
MG_U74AV2” and “Hypergeometric test.” are selected. It may take a few minutes
before the calculations are done.

4. Once the analysis process is completed, a new button CHECK GOTREE will
appear. After pressing the button, an expandable GOTree will appear, with signif-
icantly enriched GO categories highlighted.

5. Press the direct acyclic graph (DAG) button (Fig. 1) for an enriched GO DAG, the
BAR CHART button for a bar chart at the specified annotation level, or the
EXPORT GOTREE button for a text output of the complete tree.

6. To change the GO level and the main tree for a bar chart branch use the pull-down
menu under the “Bar chart” button (see explanation in Note 8).

7. To export the intersection of the input gene set and a specific category follow one
of these steps:
a. From the bar chart: press BAR CHART (opens new window), choose an inter-

esting category and press the bar. This opens a new window with genes from
the gene set being analyzed that are also in the selected category.
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b. From DAG: press ENRICHED DAG (opens new window) and press one of the
DAG boxes, containing the interesting GO category.

c. By GO category keyword (might yield many or none gene sets): type a key
word (e.g., “neuron” or “development”) in the box above KEY WORD SEARCH
and press KEY WORD SEARCH button. This opens a new window with mul-
tiple categories, each showing the genes that were contained in the initial gene
set (brain embryo imprint).

d. From GO category identifier: type the GO category name (e.g., “neuron differ-
entiation”) in the box above GO TERM SEARCH and press the button. Unlike
the previous method (step 7c) this search will produce one or zero (if there is
no intersection between the category and the initial gene set or if the category is
not correctly identified) gene sets.

As shown in Fig. 1, there is strong association between the input gene set and
several categories, most notably neuron development and nervous system
development. Discovering all of these associations manually would have been
extremely difficult.

3.4. Pathway Association Analysis

Some of the tools in Table 1 can be used for finding associations among gene
sets and known biological pathways. The primary sources of data for this analysis
are KEGG and BioCarta. One exception is the PANTHER analysis tools, which
are supported by their own database. The general considerations when choos-
ing the appropriate tool are similar to GO analysis tools.

There are three steps: (1) uploading the gene set, (2) selecting (or uploading)
a reference gene set, and (3) performing the analysis.

1. Retrieve the “lymph node” gene set as in Subheading 3.1.2.2.
2. Press the BioCarta or KEGG button.
3. Select a reference set by choosing “human” (all genes in the human genome).
4. At this point, a list of pathways is available. Pathways with a desired p-value

(default value of 0.01) are highlighted in red. Clicking the name of the pathways
will cause redirection to the source website (KEGG or BioCarta) and display the
pathway maps. Genes from the original gene set are highlighted in the KEGG
pathway map.

5. Export/Save the image (see Fig. 2).

3.5. Other Types of Associative Analysis

Other associations also could be of some value. Among these are protein
domains, genome reference into function, and Pubmed. The association
analysis for this type of data is performed in the same way as the pathway
analysis in WebGestalt (see Subheading 3.4.), after pressing the correspon-
ding button.
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Fig. 2. Pathway analysis: (A) KEGG and (B) Biocarta.



3.6. Tissue Expression and Chromosomal Distribution of the Gene Set

Associations are not quantified in these two analyses. The tissue-expression
pattern for the whole gene set is visualized based on the CGAP project publicly
available data. The chromosomal distribution function is visualized based on
the UCSC annotation.

1. Press the “Tissue Expression Bar Chart” or “Chromosomal distribution Chart”
button (this will open a new window).

2. Click the tissue/chromosome bar representing the tissue/chromosome of interest
to retrieve genes associated with the tissue/chromosome (this also opens a new
window).

3. For the tissue expression analysis, the significance of enrichment for each gene in
the gene list is provided (see Note 9 for the evaluation of the significance of
enrichment). One could also click on each member of the list to see its tissue
distribution.

4. Click “SAVE” button to create a new gene set.

3.7. Advanced Batch Mode Data Mining With GeneKeyDB

Often it is important to find associations for which there is no tool available.
In such case installing and querying one of the genome annotation databases
is necessary. As a rule, most annotation databases are bulky. Two systems,
GeneKeyDB and BioMART, provide a lighter solution to this problem. Designing
custom-associative analysis based on either GeneKeyDB or BioMART requires
higher level of computer proficiency and will not be discussed herein. A
guide on installing GeneKeyDB locally is available at http://bioinfo.vanderbilt.
edu/genekeydb/mirroring.

4. Notes
1. Mailing lists and forums: mailing lists and forums can be used to request help,

new features, and to submit bugs. Forums and mailing lists can be accessed
through sourceforge:
Sourceforge projects:
GenekeyDB: http://sourceforge.net/projects/genekeydb/.
Mailing lists:
GeneKeyDB: genekeydb-faqs@lists.sourceforge.net.
WebGestalt: geneset-wg-faq@lists.sourceforge.net.
GOTM: geneset-gotm-faq @lists.sourceforge.net.

2. ID conversion: the difficulties in ID conversion arise from the fact that the rela-
tionships among different IDs are not always one-to-one. For example, one unigene
identifier can map to more than one Entrez gene ID. Therefore, mapping to Entrez
gene ID through unigene might be unreliable and would produce unreliable final
results unless the many-to-one relationships are taken into account. The same is
true for other IDs as well, such as oligo microarray IDs.
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3. Gene symbols usage: gene symbols are not reliable IDs in most cases. Often differ-
ent research groups refer to the same gene with different gene symbols, and even
worse to different genes with the same symbol. A search for gene symbol TRAF2
matches two human genes—7186 and 10010 (EntrezGene IDs). In recent years
different organizations have started the process of standardization of gene symbols
(e.g., HUGO), but symbols are still unreliable and should be avoided whenever
possible to prevent confusion and conflicts during identifier conversion.

4. Database updates and gene set stability: gene annotation changes as new informa-
tion is incorporated in the publicly available databases. The process of compiling new
knowledge and adding it to a database is known as “release” or “build.” WebGestalt
indirectly uses many such databases through GeneKeyDB. GeneKeyDB needs to
be synchronized against each of its sources because older information in one of
the source can create conflicts. After the update process the users’ gene sets need
to be reuploaded because the identifier mapping might have changed.

5. GOTM vs WebGestalt GOTree module: unlike GOTM web service, the WebGestalt
GOTree module does not have its own gene set management and is dependent on
the gene sets deposited to the user WebGestalt account. Therefore, any analysis
will be lost when the analysis window is closed. The WebGestalt module is also
restricted to include only the organisms, which are accessible through WebGestalt
(currently human and mouse). Using the full GOTM service may be more appro-
priate in several cases.

6. WebGestalt restrictions: owing to the resource limitation, GOTM and the GOTree
module of Webgestalt current restrictions are 500. It is planned to raise the limit
in the near future (besides, this would be very useful as currently the author is con-
stantly driven to other tools owing to this limit). Local installation of GeneKeyDB
and GOTM can also provide the user with the ability to select his own limit, but
describing the installation process for GOTM is out of the scope of this chapter.

In the authors’experience GOTM/WebGestalt will work with Internet Explorer 4
or higher, Mozilla (Mozilla Foundation, Mountain View, CA), Safari (Apple, Inc.,
Cupertino, CA), and Konqueror (http://www.konquerer.org). If one experiences prob-
lems with other browser, one can switch to one of these aforementioned and alert the
authors about the problem. Currently, there is no awareness of any bugs. The updat-
ing process might cause some unexpected behavior because of the unexpected change
in the source files (e.g., Entrez Gene), if such circumstances occur, please contact the
webmaster.

Occasionally, the servers can experience difficulties with a high volume of
requests, which will slow down the analysis considerably. Make sure the Internet
connection is not too slow and try again later, and if one observes the same prob-
lems for a gene set of a reasonable size, one can alert the authors directly or
through one of the mailing lists. To check the Internet connection: Ping
www.google.com (type “ping www.google.com” in a console). Response time of
less than 120 ms and no more than 5% lost packets is sufficiently good.

7. Choosing a reference data set and statistical analysis—caveats: care should
be taken to choose an appropriate reference data set. For example, if the whole
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genome is used as a reference list, but the data set is derived from a subset of the
human genome, then the different ontological distribution will skew the statistical
analysis. One safeguard is to always use the reference set for the microarray used
to generate the expression data (if this is a gene expression study). If this chip is
not available a request can be sent for it to be added, or upload it on own. It is use-
ful to pick a convenient name, such as mychip_reference. Try not to include spaces
and special symbols in the gene set name. Occasionally this will lead to a prob-
lem. Another option one can change is the statistical method used to analyze the
data. Currently there are two options: Fisher and hypergeometric tests.

8. GOTree module visualization options: DAG and bar chart views are graphic inter-
change format (GIF) interactive pictures. Unlike DAG, the bar chart will work
only at one of the GOtree structure levels in one of the three main branches. By
default WebGestalt chooses level 4 in Biological processes.

9. Tissue enrichment: the gene expression profile is derived from CGAP publicly
available data. A gene was considered for inclusion in the enriched set if it was
overrepresented with p < 0.01 (with Bonferroni correction).
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Estimating Gene Function With Least Squares
Nonnegative Matrix Factorization

Guoli Wang and Michael F. Ochs

Summary
Nonnegative matrix factorization is a machine learning algorithm that has extracted informa-

tion from data in a number of fields, including imaging and spectral analysis, text mining, and
microarray data analysis. One limitation with the method for linking genes through microarray
data in order to estimate gene function is the high variance observed in transcription levels
between different genes. Least squares nonnegative matrix factorization uses estimates of the
uncertainties on the mRNA levels for each gene in each condition, to guide the algorithm to a
local minimum in normalized χ2, rather than a Euclidean distance or divergence between the
reconstructed data and the data itself. Herein, application of this method to microarray data is
demonstrated in order to predict gene function.

Key Words: Clustering; least squares; microarray data analysis; nonnegative matrix factorization
(NMF); pattern recognition; machine learning.

1. Introduction
Nonnegative matrix factorization (NMF) was introduced by Lee and Seung for

image decomposition (1). Because of benefits in both interpretation and imple-
mentation, NMF was soon adopted in other research, including text mining (2),
spectral decomposition (3), multiple sequence alignment (4), and neurophysiol-
ogy (5). The application of NMF to microarray data analysis showed that it could
be superior to clustering techniques for prediction of gene function (6,7). One
issue that has limited application of NMF in many areas is that the patterns found
within the data are diffuse, leading to attempts to limit the distributions through
sparse matrix methods (e.g., see ref. 8). In addition, because measurements on
mRNA levels of different genes show large differences in variance, a method that
utilizes variance estimates was recently introduced to improve predictions of gene



function (9). Herein the authors present the methodology and demonstrate how to
apply it to estimate gene function.

NMF aims to solve a problem in which a data matrix (D) can be decomposed by

D = M + ε = AP + ε (1)

and M represents a reconstruction of the data from two new matrices, A (ampli-
tude) and P (pattern), and ε is the error on each element of D. For microarray
data, the matrix D provides the estimates of mRNA levels for genes, such that
each column corresponds to the estimate for a single condition, and each row
represents levels for a single gene. A row of D corresponds to the processed
intensity for a single gene across all conditions. A and P are the decomposed
matrices, which define the assignment of genes to patterns (A) and the behavior
of patterns across condition (P). Therefore, each row of matrix P can be viewed
as representing an expression pattern, and each column of matrix A can be
viewed as representing the amplitude distribution of each gene in the correspon-
ding expression pattern. Therefore, genes linked within a column are linked to a
behavior represented by the row P, and these genes can be expected to be linked
to one or more biological behaviors. By comparing genes of unknown function
in these groups to genes of known function, the function of the unknown genes
can be predicted. Similarly, by noting the genes that have a behavior related to
biological processes (such as genes expressed at a specific phase of the cell
cycle), the biological role of these genes can be predicted.

The key issue to determine in applying an NMF approach to a problem is the
cost function that will guide the analysis to the desired result. The cost function
determines how the algorithm measures the difference between the data (D) and
the estimation of the data, M. For instance, if two genes varied simultaneously
but with different amplitudes, a Pearson correlation would be more useful than
a measure that took into account differences in levels of expression, such as
Euclidean distance. The change in cost function is the primary improvement in
least squares nonnegative matrix factorization (LS-NMF) for microarray data,
as LS-NMF minimizes

(2)

the normalized χ2 measure, instead of
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the Euclidean distance. The inclusion of the gene and array specific standard
deviation (σij) improves the recovery of functional information (9).

2. Materials
1. The source code for LS-NMF including a graphical user interface for loading

input files and visualizing output files can be downloaded from the Fox Chase
Cancer Center Bioinformatics Group at http://bioinformatics.fccc.edu/software/
OpenSource/LS-NMF/java/LS-NMF.shtml (see Note 1).

2. The ClutrFree visualization and gene oncology analysis tool is available from
http://bioinformatics.fccc.edu/software/OpenSource/ClutrFree/clutrFree.shtml.

3. The sample data set and associated gene ontology (GO) annotations can be
downloaded from http://bioinformatics.fccc.edu/papers/methodsLS-NMF/data_
GO.zip.

4. An updated version of the automated sequence annotation pipeline (ASAP II) is avail-
able at http://bioinformatics.fccc.edu/software/OpenSource/ASAP/ASAP.shtml;
however, it does require considerable systems administration skills to implement.
Users might instead gather GO and other annotations for ClutrFree using different
systems, such as OntoExpress (10).

5. It is often useful to access the organism specific database for the particular data
set. Here GeneDB and the Schizosaccharomyces pombe database is used, http://www.
genedb.org/genedb/pombe/.

3. Methods
The procedure for LS-NMF simulation on microarray data sets involves

three steps:

1. Preprocessing microarray data into proper format for LS-NMF analysis (see
Note 2).

2. Setting parameters for LS-NMF simulation, and running the simulation with the
set of the parameters.

3. Interpreting the simulation results.

In order to go through the whole procedure in detail, a sample microarray data
set that is a reduced version of the S. pombe cell cycle experiment is provided
(11). Every step in the implementation is applied specifically on this sample data
set, so readers can follow the description below step-by-step. For different data,
the steps are the same. It is recommended that, users new to bioinformatics tools
apply the process first to the sample data set to learn the procedures.

3.1. Downloading Files and Preparing for Analysis

Each of the files noted in the Subheading 2. should be downloaded (with the
exception of the ASAP system). This can be done with a typical web browser
on any system. The files should be handled in the following manner.
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1. Download the LS-NMFrun.zip file and place it in a directory (i.e. [Apple Inc.,
Cupertino, CA] folder) LS-NMF. Unzip this file (double-click on LS-NMFrun.zip
on a Macintosh or Windows [Microsoft Inc., Redmond, WA] computer, give the
command gunzip LS-NMFrun.zip on a Linux or Solaris [Sun Microsystem Inc.,
Santa Clara, CA] computer).

2. Download the LS-NMF_DATA.zip file and place it in a directory SampleData.
Unzip this file as well. The reduced data is made up of ratio values for 169 genes
across 20 time-points.

3. Download the ClutrFree tool. This can be placed in any directory, as it is an
executable jar file.

4. If one wishes to setup the ASAP, download the system and follow the installation
instructions.

3.2. Preprocessing the Data

The important advantage of the LS-NMF algorithm is its nonnegative con-
straints, which matches the biology of mRNA levels (no negative quantities),
whereas reduces the mathematical space required to be searched to identify A
and P matrices that can explain the observed data. As many researchers provide
log-transformed data, it is necessary to transform such data into ratios. The trans-
formation to use depends on the original log-transform, but most typically it is
2logratio as the log2 ratios are most commonly used. Such transformations can be
done using a spreadsheet program. For original data, it is merely necessary to
generate ratios for two color arrays or use expression estimates from Affymetrix
(Santa Clara, CA), such as provided by robust multichip analysis (12).

The input data format used by the downloaded LS-NMF package is the same
as most commonly used microarray analysis tools, such as the Multiexperiment
Viewer (MEV) tool (13), i.e., matrix D and σ are stored tab-delimited in files.
Robust multichip analysis provides this format as a standard output. Matrix D
should be stored in a file named FILENAME.txt, and matrix σ is stored in
FILENAME.unc. The format has the first row in FILENAME.txt and FILE-
NAME.unc as a header, which labels the conditions, one column for each con-
dition. The first column of each file provides the gene ID (e.g., probeset ID,
gene name, and so on) (see Note 3).

The sample data set is already in this format, with the upper left portion of
the tab-delimited cdc25-sep1.txt file appearing as

time0 time1 time2 time3 time4

SPAC222.09 1.1886973 1.4043094 1.2545819 0.9742178 0.8308763
SPAC977.10 1.4588974 1.4858006 1.6240937 1.5055444 1.7027408
SPAC821.06 1.0014285 1.0467643 1.0772699 1.0653352 1.1393371
SPAC821.09 1.3300012 1.6415249 2.7272928 1.8456596 1.8935258
SPAC821.11 1.0598825 0.9647703 0.93459004 0.9713597 1.0335108
SPAC23C4.13 1.0806911 1.2341665 1.4772284 1.5164454 1.3917305
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with the first row giving the conditions (here, time-points) and the first column
giving gene names. The other data points then provide measurements of gene
expression for each gene in each condition.

3.3. Setting Parameters and Running the Simulation

LS-NMF requires four parameters for a simulation. The first parameter is the
flag to enforce use of uncertainty estimates (see Note 4). The second parame-
ter is the dimensionality of the factorization. As there is no available method yet
to choose the dimensionality a priori, different values are usually tested in order
to find an optimal dimensionality for analysis, so the dimensionality parameter
is usually a range. The third parameter provides the number of repeated LS-
NMF simulations for each specific dimensionality (see Note 5). The fourth
parameter is the maximum number of update steps, which terminates the simu-
lation after the specified number of steps whether or not the simulation has
reached convergence.

These parameters are set using the interface of PattRun (see Note 6). At this
point the PattRun algorithm should be started:

1. On a Macintosh or Windows computer double-click on the PattRun.jar icon.
This will launch the interface. On a Linux or Solaris computer, use the com-
mand java–jar PattRun.jar. The user interface will appear.

2. Click on the Load button, and choose the file cdc25-sep1.txt using the file chooser.
3. The interface will now appear as in Fig. 1, with the left hand column showing the

default parameters for the simulation.
4. Change the parameters for the LS-NMF simulation. Note the arrows in Fig. 2, and

change the numbers by clicking on the values and typing in the new values. Use

uncertFlag 1
StartRank 6
EndRank 6
Nchains 20

which will set LS-NMF to use the uncertainty values in cdc25-sep1.unc, to try
only six dimensions (herein to speed the process the correct number is identified),
and to do 20 simulations. In addition, set the value of Niter further up in the
interface to 5000.

5. The simulation can now be run, which is done simply by pressing the Run button.
The display will note that the run is beginning, and it will update the status after
the completion of each simulation.

3.4. Interpreting the Results

How to interpret decomposed matrices from an NMF simulation depends on
how the original data matrix D is organized, and LS-NMF should be interpreted
in the same way. Usually, matrix D provides the estimates of transcriptional
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levels of genes, such that each column corresponds to the estimate for a single
condition, with each matrix element in a column corresponding to the processed
intensity for a single gene (or probe) in that condition. A row of D corresponds
to the processed intensity for a single gene across all conditions. If D has
dimension of I × J, A has dimensions of I × K, and P has dimensions of K × J,
where K is the dimensionality. Given the factorization D ∼ AP, matrix P can be
used to group the J conditions into K patterns, with each condition being placed
into at least one pattern corresponding to the most highly expressed metagenes
in that condition. So condition j is placed in pattern i if the Pij is among the
largest entries in column j. There are many ways to define the largest entries;
Z-score is used in the original LS-NMF work (9). On the other hand, the A
matrix can also be used to group the I genes into K clusters, which means each
gene is placed into at least one cluster corresponding to the most significant
metaconditions (or metasamples) in that gene. There are always dual views
about the decomposition (6), but the view of decomposition in this metagene
view is most common.
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Fig. 1. The PattRun interface following loading of the data. If one has downloaded
the version with BD software as well as LS-NMF software, one will need to choose LS-
NMF from the pop-up menu in the bottom left.



In order to get comparable decomposed matrices, amplitude (A) and pattern
(P) matrices need to be normalized. The normalization chosen herein sets each
row of P to unit amplitude (i.e., the sum of all elements of the row is 1). The
columns of A matrix must then be scaled inversely to leave M unchanged
(see Eq. 1). There are many freely available tools that can be used to interpret
the results from LS-NMF simulation, herein ClutrFree is used (14), which is
described in Chapter 1 in this work. For mouse and human data, WebGestalt
(15) is a useful web-based system that is described in Chapter 2 in this work.
The graphical version of LS-NMF generates output files appropriate to use with
ClutrFree (see Note 7).

3.4.1. Choosing a Single Best Simulation for Analysis

PattRun with LS-NMF will generate a series of results stored in directo-
ries (folders) in the directory containing the original data. Each directory
will contain one simulation result. The Viewer button on the PattRun window
can be used to view these results one at a time. When it is pushed the first
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Fig. 2. The PattRun interface after setting of the parameters for running LS-NMF.
The arrows show the location of parameters to set before running the simulations.



time, it will load the most recent simulation for visualization. Different files
can be visualized by pressing the Load button.

1. Load each simulation in turn, and record the χ2 value at the top of viewer window.
NMF algorithms will move to the local minimum in χ2, so generally it will not
find an optimal solution.

2. Reload the simulation with the best χ2 value. This will be the simulation to use
for further analysis. One can look at each pattern (behavior across condition,
herein time-course) and decide if a pattern is of interest. To do this, mark the
Pattern checkbox and press the Graph button. Use the < and > buttons to move
between patterns. An example is shown in Fig. 3.

3. The best simulation can be output to a tab-delimited file by pressing the Export
button. Provide a name for the output file in the Save dialog. Mark the Pattern and
Distribution, check boxes, and then press the Save button. The output file can be
edited with a spreadsheet program, the patterns can be plotted, and in Subheading
3.4.3. this information can be used for interpretation.

3.4.2. Interpreting the Simulation Results With ClutrFree

ClutrFree is a visualization tool for analyzing gene enrichment, GO annotation,
and other aspects involved in gene expression and phylogenomic studies.
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Fig. 3. The PattRun-viewer interface with the pattern shown. The viewer allows the
user to look at the data, the reconstructed data (mock), the residuals, the patterns, and
the distributions. In addition, using the basis vector button allows users to look for
genes strongly tied to one or more patterns.



The annotation information ClutrFree needs can be prepared by using the
ASAP system (16) or by generating tab-delimited GO files. For this example,
sample GO files are provided in the download (cdc25-sep1_GO.txt).

1. Relocate to the directory (folder) wherein the cdc25-sep1.txt file is located (i.e.,
where LS-NMF was run). Review the recorded χ2 values. Move all directories that
are not from the lowest value to another directory outside the directory hierarchy.
Alternatively, one might keep all directories that contain runs of similarly low χ2

values, and ClutrFree will analyze all of these simultaneously (as described in
Chapter 1). For this demonstration, there are two files.

2. Place the cdc25-sep1_GO.txt file in the directory and rename it annot.txt.
3. Start ClutrFree by double-clicking on the ClutrFree.jar icon on a Macintosh or

Windows computer. On a Linux or Solaris computer, use the command java–jar
ClutrFree.jar. The user interface will appear.

4. In ClutrFree, click on the File menu and choose Import Data. In the file chooser,
move to the folder containing the annot.txt file, highlight that folder, and click on
the Choose button. This will load the data and GO annotations. A new window for
viewing the cluster shapes and a tree relating the clusters to each other for each
analysis will appear. The >> button allows the users to view the individual cluster
shapes (or pattern).

5. Next, press on the gene table button. A new window will open with the genes in
the analysis listed together with their assignment to each pattern (yellow bars) and
their persistence along the tree (blue bars).

6. For a pattern of interest (herein the third pattern is chosen, which in ones simulation
is related to the G1 phase of the cell cycle), click on the number of the pattern above
the yellow bars (see Fig. 4). This will reorder the genes by their strength within the
pattern (see Note 8).

7. Use an appropriate website or annotation service to get specifics on each gene. For
the S. pombe data, this can be done using GeneDB. For each gene that is highly
tied to a pattern, one can retrieve details using GeneDB. Alternatively, one can use
automated systems to do this.

8. For GeneDB, enter the gene ID in the search field, when the gene page appears
one can add the gene to the basket. Do this for each gene that is strongly tied to
the pattern. Unfortunately, this requires setting a cutoff and there is no reliable
way to do this. In general, for this manual method, choosing the top 10 or 15 genes
will typically give a list of genes with known and unknown functions.

9. Using the genes with known function, or the behavior of the pattern (herein a G1
linked cell cycle pattern), predict the gene function for unknown genes (see Note 9).
This is then a prediction for the function of genes with unknown function. For
this case, it is predicted that the gene SPAC1006.08 is involved in the G1 phase
of the cell cycle, even though it is also involved in other patterns (2 and 6), which
appear related to background processes (see refs. 17 and 18 for examples of
analyses with such processes). In addition, one would predict that SPAP14E8.02,
a predicted transcription factor, is uniquely involved in cell cycle, as its entire
behavior is explained by pattern 3.
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3.4.3. Interpreting the Results Using Z-Scores

This approach will generate a list exactly matched to the ClutrFree view. The
advantage of using Z-scores, which can be done with statistical software or
with a spreadsheet, is that, one can compare the assignment of genes across
patterns, as the Z-score will normalize the strength of assignment, based on the
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Fig. 4. The gene table view in ClutrFree. The table has been sorted by Pattern 3,
giving a list of genes that are tied to this pattern strongly. A more formal measure of
the association can be calculated through the Z-score as described in the text.



variability within a pattern. Herein the process using a spreadsheet program is
described, as these are widely available.

1. Output the A (distribution) matrix for the best simulation from the PattRun pro-
gram by pressing the Export button once the results are viewed. Provide a name
for the output file in the Save dialog. Check only the box for the Distribution and
then press the Save button.

2. Open the output file with a spreadsheet program. The top lines of the file will
look like

cdc25-sep1
60147.00
Wed Sep 13 13:42:57 2006
Distribution
SPAC222.09 10.03 3.53 5.75 0 1.28 0
SPAC977.10 10.79 0 0 10.98 0 0.12
SPAC821.06 5.59 0.02 5.10 0.31 6.88 2.09
SPAC821.09 0 0 14.49 0 0 7.31

with a header providing the name of the data set, the χ2 value, and the date of the
LS-NMF analysis. After the header, each row provides the gene name and the
strength of assignment of that gene to each of the six patterns.

3. Choose the pattern of interest; herein again focus is on pattern 3 (column D in
the spreadsheet). Calculate the mean and standard deviation of the column by
replacing cell D3 with “=average(d6:dN)”, where N is the last row with data
and replacing cell D4 with “=stdev(d6:dN).” Using cut and paste these can be
calculated for all patterns, if one wishes.

4. In an empty column, move to the sixth cell and enter “=(d6-$d$4)/$d$5” and
return. Then copy this cell and fill down. These are the Z-scores for the genes.

5. Copy the first column (gene names) and the Z-scores, so they are side-by-side.
If pasting into a new spreadsheet or page, choose to paste values. Sort the
columns by the Z-score.

6. Again, one must choose a cutoff to produce a gene list; however in general, the
larger the magnitude of the Z-score the more strongly a gene is associated with a
pattern. This allows one to compare the strength of association of a gene across
different patterns. Comparison with the list from ClutrFree will show the genes are
in the same order, but the values have changed.

4. Notes
1. In addition, two command line C++ versions, one for single workstation (Desktop

LS-NMF) and one for Beowulf cluster (LAM/MPI LS-NMF), are available for
advanced users. Both versions are coded in C++, should be compiled using a stan-
dard C++ and mpiCC. Packages are downloadable in tar ball form, and a
README file is included with all necessary steps for installation. Other than the
LS-NMF code itself, two Perl scripts are included under API subdirectory for
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results posttreatments, and a small example for microarray data set is also
included in subdirectory of EXAMPLES.

2. The file formats and all further directions relate to the graphical version of LS-NMF.
For the command line version, follow the directions included with these files.

3. The file format is slightly less flexible than that used by the MEV tool, as only a
single column for IDs is allowed.

4. The same application allows the user to run NMF as well as LS-NMF. Herein
focus is only on LS-NMF.

5. By design, NMF algorithms find a local minimum in the misfit between the data
D and the reconstructed data M. This makes the algorithms prone to false minima,
and the general approach is to try many simulations and use the one with the best
fit to the data for further analysis.

6. After signing a material transfer agreement, advanced academic users might
instead download the PattRun software, which includes three versions of the
Bayesian decomposition algorithm as well as LS-NMF. For those users, the
same directions apply but LS-NMF must be chosen from the drop down list of
algorithms.

7. For the command line versions, files must be converted for use with ClutrFree.
Two Perl scripts are provided within the LS-NMF package. One script named
ForClutrFree.pl is used to prepare the simulation results for ClutrFree, and the
other one, ForWebGestalt.pl, is for WebGestalt.

8. The power of both LS-NMF and Bayesian decomposition is that they can assign
genes to multiple patterns, which matches biological reality as genes are usually
multiregulated. In Fig. 4, this can be seen in the multiple assignment of genes such
as SPAC821.09 and SPAPB1E7.10 among many others.

9. Analysis with pattern recognition or clustering methods across conditions will
tend to link genes that are related in biological processes. This makes it a good
complement to sequence-based analysis that links genes with similar molecular
function, owing to sequence conservation of protein motifs.
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From Promoter Analysis to Transcriptional Regulatory
Network Prediction Using PAINT
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Summary
Highly parallel gene-expression analysis has led to analysis of gene regulation, in particular

coregulation, at a system level. Promoter analysis and interaction network toolset (PAINT) was
developed to provide the biologist a computational tool to integrate functional genomics data, for
example, from microarray-based gene-expression analysis with genomic sequence data to carry
out transcriptional regulatory network analysis (TRNA). TRNA combines bioinformatics, used to
identify and analyze gene-regulatory regions, and statistical significance testing, used to rank the
likelihood of the involvement of individual transcription factors (TF), with visualization tools to
identify TF likely to play a role in the cellular process under investigation. In summary, given a list
of gene identifiers PAINT can: (1) fetch potential promoter sequences for the genes in the list, (2)
find TF-binding sites on the sequences, (3) analyze the TF-binding site occurrences for over/under-
representation compared with a reference, with or without coexpression clustering information,
and (4) generate multiple visualizations for these analyses. At present, PAINT supports TRNA of
the human, mouse, and rat genomes. PAINT is currently available as an online, web-based service
located at: http://www.dbi.tju.edu/dbi/tools/paint.

Key Words: Clustering; gene expression; gene regulation; network analysis; pattern recogni-
tion; transcription factors.

1. Introduction
Biomedical scientists have a long standing interest in acquiring gene lists

because the character of differentiated cellular function and disease is often well
described in this fashion. Organ system structure and function are the product of
variations in differentiated gene expression (and gene-expression products) in
interaction with the environment. Disruption of these distinct patterns of active
genes can lead to organ disease and changes in behavior. Thus, associating pat-
terns of gene activity (i.e., gene lists) with structure and function is a key ongoing
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activity and problem within the biomedical research community. Gene lists can
be and have been acquired in any number of ways (e.g., differential display [1],
serial analysis of gene expression [2], and large-scale cDNA sequencing [3], or
derived from the literature or by pathway analysis), and recently this has been
greatly accelerated, as reagents have become available from the genome projects
enabling “functional genomic” techniques. These “-omics” techniques continue
to rapidly proliferate, develop, and improve, and it is clearly by no means at
the end of this technology revolution. At present, for example, DNA microarray
methods have evolved to a point wherein gene expression can be simultaneously
measured for tens of thousands of genes under multiple conditions (4–6).

However, bridging the gap from raw gene-expression data to interpretation
or understanding of its relevance to functional processes remains a large unmet
need. For example, it is now understood that in microarray studies the wet-lab
data acquisition phase of the study is minor in comparison with the analysis
work that follows. Thus, whatever the past, present, or future source of gene
lists there is a tremendous unmet need in the domain of their analysis within
the research community and opportunity for informatics developments to meet
the need.

The objective of the cluster of ongoing interactive developments under the
umbrella of a transcriptional regulatory network analysis (TRNA) framework is
to work in the area of this unmet need in at least two ways.

1. The tools and analysis approaches are useful to the biologist who wants to analyze
the biological context of a gene list in order to more effectively identify transcrip-
tion factors (TF) and associated genes for more detailed study.

2. The informatics will strengthen development of hypotheses and predictions of the
functional regulation of systems of genes, and thereby greatly facilitate development
of model structures, as an approach to systems biological problems.

1.1. Rationale for a Systems-Level Approach

The two points at the end of the previous paragraph highlight the intent that
TRNA will be a continuously evolving analysis approach that will expand in
quality and application over time. The ability to develop useful informatics in
this area depends not just on the developments but also on the continued rapid
expansion and improvement of the web-accessible public and private resources
on which the approach rests. There is every reason to believe this will not only
continue but greatly accelerate. Recently, there have been elegant demonstra-
tions in simple model systems of how these kinds of data can be combined into
models of system function (e.g., refs. 7 and 8). Thus, the potential for synthe-
sizing these kinds of data toward functional understanding is an exciting and
realistic prospect, for example, of predictions of network models of gene regu-
lation, gene output phenotype, and of biochemical pathways/networks. However,



even in simple systems this is a significant challenge, and one that is so far
unaddressed for the particular needs of biomedically relevant mammalian
cell systems.

Zak et al. (9,10) performed in silico analyses of the potential for use of gene
expression results in estimation of functions such as gene-regulatory networks.
From these analyses it is clear that, whereas gene-expression data can greatly
reduce the uncertainty in model estimation, meaningful predictions of a partic-
ular system of gene regulation (i.e., one that would be worth experimental test)
cannot be reached using realistically obtainable gene-expression data alone.
However, if gene-expression data can be combined with other data and/or
knowledge, meaningful model predictions can be reliably achieved. For exam-
ple, combination of gene-expression data with information on TF activity and
localization can reliably predict gene-expression networks (10). These results
support the hypothesis that the nascent large-scale data-acquisition methods in
the present postgenomic period will be useful for a so-called systems biology
approach, depending on development of appropriate informatics tools and
analysis approaches motivating “promoter analysis and interaction network
toolset” (PAINT) development for scalable TRNA (11).

1.2. TRNA Approach

As a starting point the TRNA approach resembles what an investigator
would do when analyzing the regulation or expression of one or two genes by
hand, finding what promoter sites are associated with the gene(s) and develop-
ing contextual information from the literature. However, in the case of TRNA
this work is being done simultaneously for an indefinitely long gene list (11).
The experimental and computational methods presented herein identify a set
of genes and TF that are significant in understanding the function of the gene-
regulatory network in question. The primary purpose of PAINT is to provide a
scalable and extensible platform to automate the process of mining the existing
databases for known regulatory information for a large number of genes of
interest in a particular biological experiment or analysis. The analysis rests on
use of databases of relevant information, includes evaluation of the results
(e.g., of the probability of significance of a result), and automatically provides
pattern data on gene groupings and relationships by various standards. Present
technological developments have resulted in rapidly growing public resources
containing systematic data sets of various types: gene expression changes
from microarrays; protein–DNA interaction and TF-activity data from protein-
binding assays, chromatin immunoprecipitation experiments, and DNA foot-
printing; protein–protein interactions from two-hybrid experiments and
coimmunoprecipitation; and genomic sequence and ontology information in
public databases.
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Currently, PAINT can process a list of gene identifiers (GenBank accession
numbers, Clone IDs, Ensembl Gene IDs, and Entrez Gene IDs) to retrieve corre-
sponding promoter sequences and analyze the same for presence of TF-binding
sites. The tool then uses a statistical analysis, with or without gene expression
clustering results, to generate a set of candidate regulatory interactions and TF that
are likely to play a key role in the mechanisms underlying the cellular response.
PAINT has been used in studying co-ordinated gene regulation in a wide range of
systems including neuronal differentiation, neuronal adaptation, blood cell
development, retinal injury, brain stroke, and bladder inflammation (11–19).

2. Materials
1. Gene level identifier resources: the CloneUpdater tool for annotation updating and

gene identifier conversion across different databases can be found at http://www.
dbi.tju.edu/cloneupdater/html/template.php. The SOURCE tool for conversion
between various gene identifiers can be found at http://source.stanford.edu. Ensembl
gene identifiers can be obtained using the BioMart function at http://www.ensembl.
org/Multi/martview.

2. Gene list input data file: a user-provided single column list of gene identifiers, one
identifier per line, in a plain text file. The data set and associated identifier list files
used in this article are a subset of the data described in ref. 11 and are available at
http://www.dbi.tju.edu/dbi/publications/MiMBchapter/.

3. Cluster membership data file: a user-provided tab-delimited plain text file with two
columns. The first column must contain one gene identifier per row and the second
column must contain a corresponding single word alphanumeric cluster label. An
example file is available in the online Supplemental Information at http://www.dbi.
tju.edu/dbi/publications/MiMBchapter/.

4. TF-binding site data: TRNA requires definitions of TF-binding sites call positional
weight matrices (PWM). PWMs for use with PAINT are provided in two forms
from Biobase International Wolfenbüttel, Germany. A publicly available database
of PWMs is accessed through http://www.gene-regulation.com. A professional and
licensed version is available from http://www.biobase-international.com/. PAINT
requires users to obtain an account with either of these resources if PAINT is to
be used for binding-site analysis. The professional version of TRANSFAC™
Biobase International, Wolfenbüttel, Germany contains substantially higher number
of TREs and TF than the public version, and hence, the use of former significantly
improves the TRNA.

5. PAINT: the latest version of the PAINT is available at http://www.dbi.tju.edu/dbi/
tools/paint/. The original version is described in ref. 11.

2.1. PAINT Architecture

The modular architecture of PAINT, depicted in Fig. 1, is not organism specific.
The key requirements are the availability of annotated genome sequence and
information on TF-binding site motifs. PAINT 3.5 can conduct analysis specific
to the human, mouse, and rat genomes. The tool contains five components:
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1. PAINT promoter database: a MySQL database containing a predicted promoter
sequence for each gene that can be queried using the Ensembl GeneID, Entrez
Gene ID, Clone ID, or GenBank accession number.

2. Upstreamer: a Perl module that provides the functionality of sequence retrieval
from the PAINT promoter database given a list of unique identifiers for the genes
of interest.

3. TFRetriever: a Perl module that processes the retrieved sequences through the
TF-binding site inspection/discovery programs to identify potential TREs. The

Prediction Using PAINT 53

Fig. 1. A schematic of the PAINT architecture. The input and output data, the modules
and their interactions, and different visualizations of the results are detailed in the text.



dynamic nature of the databases containing TF information and user-specified
parameter options require online retrieval rather than an offline processing for all
the promoters in the PAINT promoter database.

4. FeasnetBuilder: a Perl module that processes the output of the TF inspection/discov-
ery programs and produces a candidate interaction matrix, termed Feasnet, for the
genes of interest.

5. FeasnetAnalyzer and FeasnetViewer: a Perl and R module that contains functions
for analysis and visualization of PAINT results (TRE-Pvaluator, StatFilter, R, GD
graphics library, Graphviz available at http://www.graphviz.org). A matrix image
with optional clustering of data and a network layout diagram are available.

A detailed description of each of the modules and the input–output relation-
ships is presented next.

2.2. PAINT Modules

2.2.1. PAINT Promoter Database and Preprocessor Module

For an organism of interest, the principal requirement for constructing the
promoter database is annotated genome sequence assembly. Several genome
assemblies are available for mammalian systems, for example, Ensembl (20) and
Santa Cruz (http://genome.ucsc.edu), Celera (http://www.celera.com). For each
of the human, mouse, and rat genomes, an UpstreamDB database was constructed
for all the annotated genes (known and putative) in the corresponding Ensembl
genome database. For each gene, 5000 bp upstream (5′ to the gene) were retrieved
from the Ensembl database. The retrieved sequence was placed in the database
only if at least 300-bp sequence immediately 5′ to the gene was available. The
genome database contains sequences in 5′ to 3′ orientation on a single strand
(conventionally denoted as +1) of DNA. For the genes that are located on the
strand –1, the sequence from the genome database was reversed and complemen-
tary base pairs were computed to produce the upstream sequences.

One key aspect of any promoter analysis is using the correct sequence to
represent the cis-regulatory control regions. Note that this requires information
about the 5′-untranslated region of each gene in order to correctly identify the
transcription start site, and hence, the corresponding adjacent cis-regulatory
control region for each gene. In order to overcome the limitations of the
incomplete annotation in Ensembl database, early versions of PAINT utilized
5′-untranslated region from RIKEN clone sequences to estimate the transcrip-
tion start site in mouse genome (11,21). Subsequent versions of Ensembl
annotation incorporated the experimentally determined 5′-untranslated
sequence to the extent available, thus improving the Transcription start site
(TSS) estimate significantly. Hence, starting from version 3.0, the preproces-
sor module in PAINT considers for each gene, the starting position of the
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first exon in the Ensembl database to be the transcription start site. This
approach was determined to be acceptable for in silico genome-wide location
analysis (22).

In addition to the promoter sequence for each gene, PAINT promoter database
also contains the cross reference tables that enable retrieval of promoters using
Entrez Gene, the cDNA clone ID, and Genbank accession number. This cross ref-
erence was constructed using information from the Unigene database. This allows
for convenient retrieval of the promoter sequences directly from a list of genes
marked as significantly varying in expression by any microarray analysis software
or other gene-expression analysis methods. The PAINT promoter database is peri-
odically updated when a new version of an annotated genome database is released.

2.3. The Upstreamer Module

The input from the user is a list of identifiers for the genes of interest and the
number of base pairs of the upstream sequence needed for analysis. The length
count is from the start of the gene toward the upstream (5′) end. The identifier
list and parameters are used to query UpstreamDB. The output of the module is
the actual genomic upstream sequences of specified length, for the genes that
are on the user’s list and referenced in the UpstreamDB database. The output is
in FAST-ALL (source: http://www.ebi.ac.uk/fasta/) (FASTA) format for further
processing by transcription binding motif inspection/discovery software in the
TFRetriever module.

The TFRetriever module is envisaged to contain several submodules that can
communicate with various local and web-based motif inspection and discovery
software such as MATCH (TRANSFAC Public) (23), MatInspector (24), and
MEME (25), and so on. A motif is a characteristic sequence of a binding site and
functionally similar motifs are grouped together into families. PAINT 3.5 cur-
rently contains only the submodule for interacting with MATCH software. The
set of vertebrate TF families is utilized for promoter inspection. The output of the
TFRetriever module is the output from the motif discovery program for each
input sequence list. TFRetriever runs MATCH with settings to minimize false-
positives or to minimize the sum of false-positives and -negatives. However, users
can filter the results further by specifying a threshold on the “core similarity” and
choosing whether or not the Transcriptional Regulatory Element (TRE) occur-
rences on complementary sequence are to be considered in further analysis.

The FeasnetBuilder module processes and filters the output from MATCH to
construct an interaction matrix (hereinafter termed “Feasnet”) representing a
candidate set of connections in the regulatory network based on the promoter
sequence and TF/TRE information. The columns of the interaction matrix corre-
spond to the TREs and each row corresponds to a gene from the input list. If
the parameter for binary counting is set in PAINT, the regulation of a gene is
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represented by one if the corresponding TRE is present on the promoter for that
gene and by a zero otherwise. This matrix represents the constraints to a network
identification scheme. The interaction parameters corresponding to zeros in the
candidate matrix need not be computed, substantially reducing the dimension-
ality of the identification problem (Figs. 2 and 3).

The FeasnetAnalyzer module contains a submodule named StatFilter that
calculates the significance of “enrichment” for each TRE resulting from com-
paring the selected genes submitted to PAINT with a random selection of genes.
StatFilter computes p-values for the overrepresentation of each TRE in the set of
promoters considered with respect to a background set of promoters. Specifically,
the p-values give the probability that the observed counts for the TREs in the set
of promoters could be explained by random occurrence in the background set of
promoters. The p-values are calculated using the hypergeometric distribution
(11,26–28). These raw p-values are adjusted for multiple testing using a false
discovery rate (FDR) estimate (29). Typically, for a microarray experiment, the
reference set is that of the genes on the microarray utilized in the experiments.
For each TRE V$X, given (1) a reference Feasnet of n promoters of which nl
promoters contain V$X, and (2) a Feasnet of interest with m promoters of which
h contain V$X, the associated p-value for overrepresentation is given as in Eq. 1.

(1)

The p-value for underrepresentation of a TRE in the observed Feasnet is cal-
culated similarly with the summation in the aforementioned equation going from
1 to h. These estimates of significance can be utilized in filtering for those TREs
that meet a threshold (say, p ≤ 0.05, or FDR-adjusted p ≤ 0.3) to identify most
likely regulators of the genes considered in the experimental context of interest.
Given no information about the source of the genes from which the input list to
PAINT is generated, PAINT can optionally utilize the Feasnet corresponding to
all the genes in the PAINT promoter database as a reference Feasnet in the earlier
enrichment analysis (also termed interchangeably as overrepresentation analysis).
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Fig. 2. (Opposite page) A visualization of a Feasnet. The elements are color-
coded to indicate the over- and underrepresentation of the transcriptional regulatory
elements. Each row in the vertical color bar next to the gene identifiers indicates the
cluster membership of the corresponding gene. The dendrograms are based on hierar-
chical clustering using average-linkage method and the binary distance as the dissim-
ilarity metric. A high-resolution color version of the gray-scale image presented herein
is available online at http://www.dbi.tju.edu/dbi/publications/MiMBchapter/.



The FeasnetViewer module contains various functions for the visualization and
analysis of a Feasnet. An image of the interaction matrix is produced in which the
individual elements of the matrix are represented by a color based on the signifi-
cance values for that particular TRE (p-values for overrepresentation in the
observed Feasnet). This module also contains functionality for hierarchical cluster-
ing using “R” software for statistical analysis (http://www.r-project.org). For clus-
tering, the pair-wise distance that is most appropriate for the Feasnet data is the
binary distance. The binary distance between two genes (or TF) can be computed,
as the ratio of number of elements for which the two rows (or columns) are dissim-
ilar to the total number of elements for which either of the rows contains a one. For
the genes, binary distance is the “dissimilarity” between the regulatory pattern of
two genes as related to the total number of distinct binding sites present on either of
them. For the TF, binary distance is the “dissimilarity” between the regulatory pat-
terns of two TF as related to the total number of genes regulated by either of the TF.

58 Gonye et al.

Fig. 3. A network visualization of a Feasnet that is filtered based on overrepresenta-
tion of transcriptional regulatory elements. Rectangular boxes represent the TREs and
the elliptical boxes represent the promoters (colored based on the Gene Cluster
Membership Data). A high-resolution color version of the gray-scale image presented
herein is available online at http://www.dbi.tju.edu/dbi/publications/MiMBchapter/.



In PAINT, the clustered data can be visualized as a matrix layout with the hier-
archical tree structure aligned to the rows and the columns of the Feasnet. The
zeros in the matrix are shown in black and the nonzero entries in the Feasnet are
color based on the p-value of the corresponding TRE. The brightest shade of red
represents low p-value (most significantly overrepresented in the Feasnet).
Conversely, the brightest shades of cyan represent smaller p-values for underrep-
resentation in the observed Feasnet indicating more significantly underrepresented
TREs. This image can optionally represent the cluster index of each gene, wherein
such cluster indices are generated from other sources such as expression or anno-
tation-based clustering. With such visualization, it is straightforward to explore the
relationship between expression/annotation-based clusters and those based on cis-
regulatory pattern (i.e., Feasnet). The FeasNetViewer module can also generate a
network layout diagram using the GraphViz libraries (available at
http://www.research.att.com/sw/tools/graphviz/). In the web-based PAINT, previ-
ous analyses can be retrieved and/or continued using a job key provided for each
analysis. The PAINT results are presented in a hyperlinked report and can also be
downloaded as a single compressed file for offline perusal.

Nomenclature for this article includes bold italic for onscreen text, bold for
buttons, and courier font for files and folders.

3. Methods
The methods outlined next describe TRNA of biologically associated genes

using PAINT. Genes are typically associated by highly parallel experimental
approaches such as microarray-based gene-expression analysis or proteomic
analyses. However, excellent results have been obtained by creating gene lists
from extant literature by manual searches or computationally derived results from
“knowledge database” searching.

3.1. Identification of Overrepresented TF-Binding Sites Using PAINT

A typical scenario of using PAINT is to study a group of genes identified or
expected to be coregulated under specific experimental conditions. PAINT is
used to investigate whether these genes share any TF-binding sites in their
promoters and if such a shared coincidence of binding sites is significantly higher
than random frequency as determined by Fisher’s exact test.

3.1.1. Generation of PAINT-Compatible Input File

The starting point to PAINT is a file containing the list of genes under inves-
tigation. The file should be a single column plaintext file, each row listing a
gene identifier. All the identifiers in the file need to be of the same type, for
example, Genbank accession number. An example gene list file (named
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exGeneList.txt) is available online at http://www.dbi.tju.edu/dbi/
publications/MiMBchapter/.

3.1.2. TRNA Using PAINT

In this step, the gene list from Subheading 3.1.1. will be used to retrieve pro-
moter sequences, analyze them using TRANSFAC Public, build a Feasnet, and
analyze the resultant Feasnet as compared with a reference Feasnet to derive
hypotheses on overrepresented TREs.

1. Use a web browser to open the web page http://www.dbi.tju/dbi/tools/paint/.
2. Follow the link “Start New Analysis” on the main page.
3. Select Mus Musculus (mouse) as the Organism Name, 2000 for the Desired

upstream length, Accession Number for Gene Identifier type, Gene Identifiers
List for Upload text file of type. Refer to the Notes 4.1 and 4.2 for issues involved
in the selection of the gene identifiers and the size of the gene list.

4. Click the Browse button to locate and select the file exGeneList.txt on the
computer.

5. Ensure that the checkbox next to TFRetriever is selected.
6. Select MATCH (TRANSFAC Public) for TRE finding program. Refer to Note 4.3

on the issues involved in the choice of the TRE-finding programs.
7. Enter the user name and password for logging into the website http://www.gene-

regulation.com.
8. Select Minimize False-Positives for the MATCH filter option.
9. Select 1.00 for the Core similarity threshold. Check the box for Find TREs on

complementary strand?
10. Click the button Execute Feasnet Builder at the end of the form. A new page will

be loaded indicating the status of the analysis. Note down the job key at the top of
the status page for later access, as the analysis might take considerable time depend-
ing on the size of the gene list.

11. Once the FeasnetBuilder analysis is complete, the highlighted status text at the top
of the page will be replaced by a link to the ZIP file containing all the results includ-
ing the status page.

12. After completion of FeasnetBuilder, the status page indicates the number of pro-
moters that were retrieved (refer to Note 4.4 on how redundancy in the gene list is
handled), the promoter sequences in the FASTA format, and also a link to a list of
genes for which the promoter sequences were not found in the database. Next, the
page indicates whether the gene list was split into multiple parts for processing
using MATCH. Links to the actual HTML output from MATCH are provided next
to each of the split sequence files. Last, the overall Feasnet corresponding to the
input gene list is given next to the text Feasnet file.

13. After completion of the FeasnetBuilder step, the status page contains a link to the
follow-up overrepresentation analysis and visualization. Click on the link indicated
by the text Click here to continue with Feasnet Analysis and Visualization.
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14. On the analysis page, the parameters corresponding to the Feasnet, Organism,
Upstream sequence length, Gene Identifier type, TRE finding program, Core
similarity threshold, TREs on the complementary strand included?, will be
automatically set.

15. Under Clustering Options, check both the boxes corresponding to TREs based on
the promoters they are present on and genes based on the TREs present on their
promoters.

16. Under Select Reference Feasnet(s) for significance analysis of TREs, check the
box corresponding to All promoter sequences in PAINT database. Refer to Note 4.5
for additional information on how to choose appropriate reference feasnet.

17. Check the box next to Generate filtered Gene-TRE networks based on TRE over-
representation. Under this text, select 0.30 for the parameter Only those TREs of
FDR-based adjusted p-value <=, and 0.05 for the parameter Only those TREs of
raw p-value <=. Refer to Note 4.6 for information on these two thresholds used
in the analysis.

18. Click the Execute Feasnet Analyzer/Viewer button at the end of the form. A new
page will be loaded indicating the status of the analysis. The job key will be same
as earlier, as this is merely continuation of the analysis.

19. Once the analysis and visualization is complete, the highlighted status text at the
top of the page will be replaced by a link to the ZIP file containing all the results
including the status page.

20. The results from the overrepresentation analysis are under the heading
Significance of TRE occurence (input list compared with a reference). Links to
the specific reference used, p-values for overrepresentation, and the Feasnet images
are provided. Under the subheading Hypothesis Gene-TRE network, links are pro-
vided to the filtered Feasnet data and images based on the specified p-value thresh-
olds (0.30 and 0.05 in step 17). Network images and Graphviz source file are also
given. Refer to Note 4.7 for information on how to interpret the PAINT results.

3.2. Combining Coexpression Clustering Information 
With TRNA Using PAINT (Optional)

PAINT can also be used to simultaneously analyze multiple groups of genes
(e.g., cluster analysis of multicondition microarray data). In this case, the over-
representation analysis is performed for each individual cluster as compared
with the specified reference as well as with the entire input list itself (i.e., all
clusters combined).

3.2.1. Generation of PAINT-Compatible Cluster Information File

Cluster membership data file is a user-provided tab-delimited plain text file
with two columns. The first column must contain one gene identifier per row
and the second column must contain a corresponding single word alphanumeric
cluster label. For example, consider a scenario in which Multiexperiment Viewer

Prediction Using PAINT 61



(http://www.tm4.org) is used for cluster analysis. After clustering is performed,
save each cluster table into a separate text file. Copy the gene lists from each file
into a single column in a spread sheet, one file at a time. Each time, add a cluster
label (e.g., A, B, C, and so on) in a second column for all the gene identifiers that
are copied from a single cluster table. An example file named
exGeneClusterInfo.txt containing cluster information in the specified for-
mat is available online at http://www.dbi.tju.edu/dbi/publications/MiMBchapter/.

3.2.2. Combining Cluster Membership Information With TRNA

1. Follow the steps in Subheading 3.1.2. until step 17.
2. After step 17, click the Browse button for the parameter Gene cluster informa-

tion file to locate and select the exGeneClusterInfo.txt file.
3. Click the Execute Feasnet Analyzer/Viewer button at the end of the form. A new

page will be loaded indicating the status of the analysis.
4. Once the analysis and visualization is complete, the highlighted status text at the

top of the page will be replaced by a link to the compressed file containing all the
results including the status page.

5. The results from the overrepresentation analysis are under the headings Significance
of TRE occurrence (in clusters compared with a reference) and Significance of
TRE occurrence (in individual clusters compared with the list). Links to the
specific reference used, p-values for overrepresentation, and the Feasnet images are
provided. Under the subheading Hypothesis Gene-TRE network, links are provided
to the filtered Feasnet data and images based on the specified p-value threshold
(0.10 in step 17). Network image and Graphviz source file are also given. Refer to
Notes 4.7 for information on how to interpret the PAINT results.

4. Notes
4.1. Selection of Gene Identifiers

A key issue that is often underappreciated is that of gene identifiers used in
TRNA. Typically, if the gene list is derived from a microarray data set, then the
most convenient and proper gene identifiers to use in PAINT are the correspon-
ding Clone IDs or Genbank accession numbers. PAINT uses UniGene database
to map the Clone IDs to the corresponding Entrez gene IDs (used to be named
LocusLink) and then utilize the Ensembl cross-reference annotation informa-
tion to obtain the corresponding unique set of Ensembl gene IDs. Because
UniGene annotation is regularly updated and given that UniGene cluster IDs
are not guaranteed to be stable across different UniGene releases, the use of
UniGene IDs as gene identifiers is not permitted in TRNA using PAINT. In
cases wherein the gene list is manually derived from previous knowledge of
regulation, for example, all genes implicated in a particular cellular function,
then the most convenient and proper gene identifiers to use in PAINT are the
corresponding Entrez gene IDs.
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4.2. Size of the Gene List

Another key issue in TRNA is the size of the gene list. Based on the results
from multiple studies, it is recommended that the gene list correspond to at least
30 genes. Whereas a formal assessment of the robustness of PAINT to “noise”
in the gene list (i.e., containing genes that do not “belong” in the coregulated
set) has not been made, available experience on multiple data sets indicate that
the results are not critically dependent on 100% accuracy of the gene list corre-
sponding to truly coregulated genes. This has a significant impact in the cluster-
based analysis, so that small inaccuracies (<10%) in the clustering algorithms do
not significantly influence the results from TRNA.

4.3. Selection of TRANSFAC Version

To utilize much of PAINT functionality, users need to obtain appropriate
licensed access to the public or professional versions of TRANSFAC database.
The public version is hosted at http://www.gene-regulation.com (not affiliated
with the PAINT team) and is available following a free registration process at
http://www.gene-regulation.com (not affiliated with the PAINT team). Access to
commercial version is available through http://www.biobase-international.com
(not affiliated with the PAINT team). The login and password required in the
analysis step are only used to interact with the appropriate web servers. This
ensures proper handling of the license management issues whereas providing an
option to PAINT users. The professional version of TRANSFAC contains sub-
stantially higher number of TREs and TF than the public version, and hence, the
use of the former significantly improves the TRNA.

4.4. Multiple Promoters and Redundancy in the Gene List

It is likely that several gene identifiers in the input gene list (with the excep-
tion of Ensembl gene IDs) map to same Ensembl gene. The Upstreamer mod-
ule builds the entire cross-referenced list of Ensembl genes that corresponds to
the input gene list and then makes the resultant Ensembl gene ID list unique
before proceeding with the TFRetriever step. In addition, owing to the nature of
the cross reference in the Entrez gene and Ensembl databases, it is likely that a
few of the gene identifiers in the input gene list (with the exception of the
Ensembl gene IDs) individually map to more than one Ensembl gene. In these
cases, PAINT includes all the mapped Ensembl genes in the analysis.

4.5. Selection of Reference Feasnet

The selection of appropriate reference set is the key to derive meaningful
hypotheses in TRNA. Comparison of the experiment Feasnet to the entire genome
gives erroneous results if the input gene list is obtained from a microarray that
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does not span the entire genome or is specific to a particular tissue/disease. In
most of the cases, the microarray gene list is first processed in the Feasnet
Builder to obtain a microarray Feasnet. When analyzing the experimental gene
lists (e.g., differentially expressed genes from a microaray experiment), this
microarray Feasnet should be utilized as the “reference Feasnet” in step 16 (see
Subheading 3.1.2.). However, the choice of reference set does not end with
using the reference Feasnet from the microarray gene list. For example, in com-
parison of an early upregulated gene set to the set of all upregulated genes the
significantly enriched TREs point to those that are characteristic of the early
upregulated genes relative to all the upregulated genes. If the input gene list is
that of entire differentially expressed genes in an experiment, Feasnet from each
gene cluster in the input list (typically, with specific-expression profile or func-
tion) can be compared with that of the input list itself. Such a “cluster-to-list”
comparison can reveal TREs that are differentially specific to each gene clus-
ter. TRNA using PAINT is based on multiple results arising from such compar-
isons, for TRE enrichment to derive specific regulatory network hypotheses.
The Feasnet analysis and visualization step can be repeated multiple times by
considering different gene cluster combinations such as those based on differ-
ent clustering of expression pattern, biological function from gene ontology, or
pathway data.

4.6. Multiple Testing Correction Using an FDR Estimate

In PAINT, the raw p-values in each overrepresentation analysis are corrected
for multiple testing using a FDR estimate (29). As a first option, the results from
the FDR-based, adjusted p-values should be used in identifying the signifi-
cantly overrepresented TREs. However, in some cases, this particular correction
is either inappropriate (e.g., if raw p-values do not follow a β-uniform distribu-
tion) or overconservative (owing to correlations among TREs). It is likely that
filtering the FDR-based multiple testing corrected p-values yields little or no
results. Hence, the Feasnet analysis and visualization step in PAINT includes
filters for both the adjusted and raw p-values. In cases wherein the former yields
no results, one can utilize the latter to follow a discovery approach to derive
TRE hypotheses for further experimental validation. Whereas this alternative
may result in a set of hypotheses that can potentially contain 100% false-posi-
tives in the extreme case (from the multiple testing perspective), in practice, this
amounts to prioritizing the validation experiments based on individually
enriched TREs. Considering that the primary role of any computational analy-
sis is in generating candidates for further experimental validation, in cases
whereby multiple testing correction yields little or no results the alternative raw
p-value based approach is the next best option.
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4.7. Interpreting the PAINT Results

Hypothesized gene-TRE network from the enrichment analysis (step 20)
indicates those TREs that are significantly overrepresented in the promoters of
the entire input gene list as compared with the promoters in the reference (all
promoters in PAINT promoter database). The significantly above-random
nature of occurrence of certain TREs makes these ideal candidates for further
experimental validation. Additional association of subsets of the master list of
genes, after the first cutoff of “differentially expressed” is applied, is often used
to identify subsets of genes sharing some type of more detailed behavior, typi-
cally either by coexpression grouping by any of a plurality of clustering algo-
rithms or by functional grouping, for example, in conjunction with the gene
ontology annotation. When using PAINT for TRNA, these subgroupings can be
used to determine if any of the binding sites found on promoters of differen-
tially expressed genes are diagnostic for any specific gene behavior (coexpres-
sion cluster, functional subgroup, and so on). Therefore, the desired result
would be identification of a TRE determined to be statistically enriched in one
or a few of the subgroups, but not all. When a cluster membership file is pro-
vided, PAINT will generate visualizations with the genes reordered into their
respective groups based on the list order. Thus, group-enriched TREs will
appear on the Feasnet image as a vertical collection of red boxes, which mirror
the limits of the gene list for the group. The enrichment can be more easily visu-
alized by graphing the –log(p-value) for each TRE of interest for each subgroup
as shown in Fig. 4. The enrichment p-values of TREs in each subgroup can be
obtained from the Significance of TRE occurrence (in clusters compared with
a reference) section of the PAINT output, following the link
Overrepresentation in either raw or FDR-adjusted p-values. In the example
depicted in Fig. 4, the TRE V$AML1_Q6 is significantly enriched in only
group 8, whereas the TRE V$GATA3_03 is enriched in both group 5 and group
7. The resultant biological inference is that these specific TREs, and their cog-
nate TF, are specifically involved in the regulation of that subgroup of genes.
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Prediction of Intrinsic Disorder and Its Use 
in Functional Proteomics

Vladimir N. Uversky, Predrag Radivojac, Lilia M. Iakoucheva, 
Zoran Obradovic, and A. Keith Dunker

Summary
The number of experimentally verified, intrinsically disordered (ID) proteins is rapidly rising.

Research is often focused on a structural characterization of a given protein, looking for several
key features. However, ID proteins with their dynamic structures that interconvert on a number of
time-scales are difficult targets for the majority of traditional biophysical and biochemical tech-
niques. Structural and functional analyses of these proteins can be significantly aided by disorder
predictions. The current advances in the prediction of ID proteins and the use of protein disorder
prediction in the fields of molecular biology and bioinformatics are briefly overviewed herein. A
method is provided to utilize intrinsic disorder knowledge to gain structural and functional infor-
mation related to individual proteins, protein groups, families, classes, and even entire proteomes.

Key Words: Intrinsically disordered protein; natively unfolded protein; intrinsically unstruc-
tured protein; protein flexibility; disorder prediction; protein function.

1. Introduction
Although the protein sequence-structure-function paradigm (well known as

the “lock-and-key” hypothesis [1]), according to which a protein can achieve its
biological function only on folding into a unique, structured state determined
by its amino acid sequence, was a dominating view for more than 100 yr, it is
recognized now that the phenomenon of functional intrinsic disorder is highly
abundant in nature. For example, only less than one-third of the crystal struc-
tures in the protein data bank (PDB) are completely devoid of disorder (2). In
fact, recent discoveries of intrinsically disordered (ID) or natively unstructured
proteins have significantly broadened the understanding of protein functionality
and revealed a new and unexpected role of dynamics, plasticity, and flexibility



in protein function. Importantly, bioinformatics played a key role in transforming
a set of anecdotal examples of intrinsically disordered proteins (IDPs), which
were originally considered to be intriguing exceptions within the protein realm,
into a very promising branch of protein science.

1.1. Defining and Identifying IDPs

IDPs or ID protein regions are those that fail to form specific three-dimensional
(3D) structure under physiological conditions in vitro. They are also known as par-
tially folded (3), flexible (4), mobile (5), rheomorphic (6), natively denatured (7),
natively unfolded (8), intrinsically unstructured (9), ID (10), and natively disor-
dered (11). Furthermore, several other names representing different combinations
of “natively, naturally, and intrinsically” with “unfolded, unstructured, flexible,
mobile, and denatured,” are present in literature (12). The interested reader will
find the discussion of the etymology of the term “ID” in a recent review (13). In
contrast to the ordered proteins, the atoms and dihedral angles of IDPs do not have
equilibrium positions. Instead, IDPs exist as highly dynamic ensembles whose
atoms and backbone Ramachandran angles fluctuate significantly over time. An
ID region can be as short as a few amino acid residues, or it can propagate through
the long disordered loops, ends, domains, or even through entire proteins (13). In
the authors’ view, an IDP is a protein that contains at least one disordered region.

Functional ID regions exist in at least two different structural forms: molten
globule-like (collapsed) and random coil-like (extended) (14). Later, the existence
of another functional disordered form, the premolten globule, which appears to be
a distinct category between extended and molten-globular conformations, was
suggested (15). Thus, protein function might be associated with three (or four)
distinct conformations: ordered, molten globule, (premolten globule), and
random coil, and with the transitions between them. These hypotheses are known
as the protein-trinity (14) or protein-quartet models (15).

IDPs can be identified by the variety of physicochemical methods elaborated to
characterize protein structure and self-organization. These methods include miss-
ing electron density in X-ray crystallography maps (16); nuclear magnetic reso-
nance spectroscopy (for recent reviews see refs. 11 and 17–20 and references
therein); circular dichroism spectroscopy in the near-ultraviolet (21) and far-ultraviolet
regions (22–25);  optical rotatory dispersion spectroscopy (ORD) (22,25);  Fourier
transform infased spectroscopy (FTIR) (25); Raman spectroscopy and Raman
optical activity (26); fluorescence spectroscopy (27,28); gel-filtration, viscometry,
small-angle X-ray scattering, small-angle neutron scattering, sedimentation, and
dynamic and static light scattering (27–29); limited proteolysis (30–34); aber-
rant mobility in sodium dodecyl sulfate-gel electrophoresis (35,36); conforma-
tional stability (27,37–40); hydrogen/deuterium exchange (H/D exchange) (28);
immunochemical methods (41,42); interaction with molecular chaperones
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(27); and electron microscopy or atomic force microscopy. Interested readers can
find more detailed description of these approaches in several recent reviews
(11,15,18,28).

1.2. Functional Repertoire of Intrinsic Disorder

Ordered proteins have evolved to carry out efficient catalysis and to bind
specific ligands. This is complemented by the functional repertoire of IDPs,
which are typically involved in regulation, signaling, and control pathways
(13,43,44). Using literature searches, Dunker et al. (45) cataloged 90 proteins in
which disordered regions were functionally annotated. This group of disordered
regions contained 28 specific functions, organized into four functional
classes: (1) molecular recognition, (2) molecular assembly, (3) protein modifi-
cation, and (4) entropic-chain activities (45). Lately, this repertoire was
significantly extended applying a novel bioinformatics tool to find functions
associated with ID regions (46–48). Using this approach it has been established
that out of the 710 Swiss-Prot functional keywords that were associated with at
least 20 proteins, 238 were found strongly positively correlated with long ID
regions, whereas 302 were strongly negatively correlated (46–48).

1.3. DisProt: A Database of IDPs

Although the first public resource containing disordered protein regions, the
ProDDO database, was developed in 2001 (49). This database did not provide
information about type of disorder nor the function of disordered regions.
Furthermore, it was not curated, being limited to the PDB entries only. These limitations
were overcome by currently the most complete database of experimentally
characterized disordered proteins, DisProt (50). This database, which can be
accessed through http://www.disprot.org, provides structural and functional
(wherein available) information on experimentally characterized IDPs. As of June 2006,
the database contained information on 458 proteins (1096 disordered regions).

1.4. Predicting ID Regions

As already emphasized, bioinformatics played a crucial role in the development
of the IDP field. Already at the early stage of the field, simple statistical compar-
isons of amino acid compositions and sequence complexity indicated that disor-
dered and ordered regions are different to a significant degree. In fact, based on the
analysis of 150 ID segments and comparison of these segments with ordered pro-
teins it has been suggested that the amino acids can be grouped into order promot-
ing (C, F, I, L, F, N, V, W, and Y), disorder promoting (A, E, G, K, P, Q, R, and S),
and neutral (D, H, M, and T) (10). Several subsequent studies followed up this
analysis using increasingly larger data sets (51–54). In addition to the first-order
statistics, recent studies also addressed higher-order patterns in amino acid
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sequence space and analyzed the space of various physicochemical properties (55),
confirming the existence of several biases in IDP sequences. The mentioned
sequence biases were exploited to develop a multitude of highly accurate predic-
tors of ID regions, which then were used to estimate the commonness of IDPs in
the three kingdoms of life, as well as to elaborate first identifiers of IDP function.

The first predictor of ID regions was reported in 1997 (54). This two-layer feed-
forward neural network, which achieved a surprising accuracy of about 70% clearly
marked the beginning of a new epoch by showing that (1) there are significant com-
positional differences between ordered and ID protein regions, (2) the lack of fixed
protein 3D structure is predictable from amino acid sequence alone, and (3) ID
regions of different lengths (short, medium, and long) may be compositionally dif-
ferent from each other. The predictive model was later extended to the VLXT pre-
dictor (51), which is a combination of the VL1 and XT predictors (56). The letters
describe the amino acids used for training, where VL stands for Variously-charac-
terized Long disordered internal regions and XT stands for X-ray characterized
Terminal regions. The VLXT designation is preceded by a descriptive prefix,
Predictor of Natural Disordered Regions (PONDR) giving PONDR VLXT.

In 2000, it was noticed that natively unfolded proteins can be separated from
ordered proteins by considering their average net charge and hydropathy (25).
This observation led to the development of a simple binary classifier, the charge-
hydropathy plot (CH-plot) (25), which was based on the analysis of the amino
acid composition and instead of predicting ID on a per residue basis, classified
entire protein as compact or natively unfolded. Another binary classifier is the
cumulative distribution functions (CDF) analysis of disorder scores, which sepa-
rates ordered and disordered sequences based on the per-residue disorder score
retrieved by PONDR VLXT, and the optimal boundary (57,58). This method
summarizes the per-residue predictions by plotting PONDR scores against their
cumulative frequency, which allows ordered and disordered proteins to be distin-
guished based on the distribution of prediction scores.

Later, more sophisticated methods based on various statistical and machine-
learning techniques (including bagging and boosting [59] and linear regression
model for the prediction of long disordered regions [60]) emerged, culminating
in the inclusion of the disorder prediction as a separate category in the Critical
Assessment of (protein) Structure Prediction (CASP) experiments (61,62).
Table 1 presents the information related to those ID predictors that are scientif-
ically novel and/or published. These predictors are briefly outlined as follows:

1. DISOPRED (63) is a neural network classifier trained on the position-specific
scoring matrices and combined disorder prediction with the predictor of secondary
structure (64).

2. PONDR VL3 is an ensemble of feed-forward neural networks that uses evolutionary
information and is trained on long disordered regions (65).
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3. GlobPlot is based on derived amino acid propensities for disordered regions (66).
DisEMBL server uses a support vector machine (67), trained on three proposed
types of disorder: (1) loops/coil, i.e., structured regions missing regular secondary
structure of helix and strand, (2) hot-loops, i.e., structured regions other than helix
or strand, but having high Cα B-factors, and (3) remark465, i.e., regions with missing
electron density from PDB.

4. NORS predictor identifies regions with nonregular secondary structure (68,69).
5. DISOPRED2 uses linear support vector machines (70,71).
6. IUPred is based on energy-derived coefficients (72,73).
7. FoldIndex (74) is based on the CH approach developed by Uversky et al. (25)

and extended to calculations over a sliding window to achieve residue-based
predictions.

8. RONN, a regional-order neural network, classifies residues in the space of dis-
tances between an input sequence and a set of carefully selected “prototype”
sequences (75).

9. PreLink uses compositional bias and lack of hydrophobic clusters (76).
10. DISpro uses large 1D recursive neural networks trained with a variety of compo-

sitional, evolutionary, and derived attributes (77).
11. PONDR VSL incorporates the ideas of training separate models for short- (53)

and long disordered regions (65), with subsequent combination of these models
through a separately trained model (78,79).

12. SPRITZ uses nonlinear support vector machines for short- and long disorder
regions based on multiply aligned sequences (80).

Recently, predictors of intrinsic disorder have been used to find functional
regions in IDPs. In fact, short regions of predicted order bounded by extended
regions of predicted to be disordered by PONDR VLXT, were shown in several
cases to identify binding sites that involved disorder-to-order transitions on
complex formation (81). These structures, which contained short regions of
proteins bound to their partners, showed that the PONDR-indicated region
often formed a helix, on binding to its partner. Many examples of these binding
sites are found in the PDB (82). The pattern in the PONDR VLXT curve reveals
short regions that undergo disorder-to-order transitions on binding.
Additionally, these regions tend to have predictions of helix as well as
hydrophobic moments. From such characteristics, a predictor of helix-forming
molecular recognition features (α-MoRF) was developed (82).

Finally, it has been reported that amino acid compositions, sequence com-
plexity, hydrophobicity, charge, and other sequence attributes of regions adjacent
to phosphorylation sites are very similar to those of IDP regions (83). These
observations were utilized in the development of a new web-based tool for the
prediction of protein phosphorylation sites, disorder-enhanced phosphorylation
predictor (DisPhos or DEPP), the accuracy of which reaches 76% for serine,
81% for threonine, and 83% for tyrosine (83).
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1.5. When to Use the ID Predictions

In this section some indicators have been outlined regarding when to use the ID
predictions, both for the individual protein analysis and for the large-scale studies.

1. ID predictions are priceless for the analysis of individual proteins. These predic-
tions help to better understand and interpret experimental data (e.g., a monomeric
protein predicted to be natively unfolded possesses large hydrodynamic volume.
Such an unexpectedly large hydrodynamic dimension, being observed experi-
mentally might be incorrectly interpreted in terms of oligomer formation if the
protein was assumed to be globular). Such predictions also help to classify pro-
teins and to understand their functionalities. This derives from the observation
that the functional repertoires of ordered proteins and IDPs are extremely differ-
ent. Therefore, knowing that the protein of interest is ID might help redirect its
structural and functional analysis. The disorder predictions aided in structural
characterization of the retinal tetraspanin (84), nicotinic acetylcholine receptor
(85) Dribble, a member of the conserved Krr1P protein family (86) proapoptotic
Bcl-2 homology domain-containing family of proteins (87), transcriptional core-
pressor CtBP (88), notch-signaling pathway proteins (89,90), and many others.

2. Utilizing bioinformatics tools based on ID phenomenon one might find potential
protein–protein and protein–nucleic acid interaction sites (molecular recognition
fragments) and identify potential sites of posttranslational modifications. This
knowledge can be used to drive subsequent research with the major focus on finding
binding partners, analysis of resulting complexes, and searching for small molecules
modulating these interactions.

3. The majority of ID predictors are based on rather large training sets, which makes pre-
diction of intrinsic disorder in a given protein fairly certain. An ID prediction also
means that the analyzed protein is statistically similar to those used in the training of
the ID predictors, thus indicating that a particular protein is not an exception, but a rule.

4. ID predictors are indispensable in estimating the commonness of protein disorder in
large data sets. They allow scientifically sound extrapolation of knowledge gained on
the basis of a few examples to collections including hundreds or even thousands of
proteins. For example, proteins associated with cancer (43) and cardiovascular
disease (91) were shown to be enriched in intrinsic disorder. ID was shown to be
highly abundant in signaling proteins (43), transcription factors (92), proteins with
PEST regions (e.g. regions rich in proline, glutamate, serine and threonine) (93), his-
tones (94), serine/arginine-rich splicing factors (95), partners of 14-3-3 proteins (96),
nucleoporins (97), and several other sets of proteins with different functions.

Finally, disorder prediction is crucial for protein crystallization and structural
genomics projects. Disordered regions are generally not compatible with the
crystallization process. Therefore, close examination of sequences that failed to
crystallize may reveal ID regions interspersed with regions of order. Thus,
accounting for protein disorder can improve target selection and prioritization
for the structural genomics projects.



2. Materials
1. The Swiss-Prot database is described in ref. 98 and is available from

http://www.expasy.org/sprot/.
2. The database of experimentally characterized disordered proteins, DisProt, is avail-

able from http://www.disprot.org. The original version of this database is described
in ref. 50.

3. PONDRVLXT predictor is described in ref. 51 and is availal from http://www.
pondr.com/.

4. PONDR VL3-BA is described in ref. 65 and is available from http://www.
pondr.com/.

5. PONDR VSL is described in refs. 78 and 79 and is available from http://www.
pondr.com/.

6. CH-plot predictor is available from http://www.pondr.com/. The basic algorithm
of this binary classifier is described in ref. 25.

7. CDF analysis is available from http://www.pondr.com/. This predictor is described
in refs. 57 and 58.

8. α-MoRF predictor is described in ref. 82 and is available from http://www.
pondr.com/.

9. DisPhos predictor also known as DEPP is described in ref. 83 and is available
from http://www.pondr.com/.

3. Methods
The methods outlined next describe the analysis of amino acid sequences

using the intrinsic disorder knowledge to gain structural and functional infor-
mation related to a protein, a protein family, or an entire proteome/database.
Although numerous predictors of intrinsic disorder are currently available as
web servers (see DisProt website, http://www.disprot.org, for a complete list of
such servers), focus will be on utilization of PONDR tools, as they cover a wide
range of potential applications of ID concept for structural and functional
analysis of proteins. Obviously, this analysis could have been carried out with
other ID predictors described earlier.

3.1. Analysis of Protein Amino Acid Composition

It has been already pointed out that a specific feature of a probable ID region
is the amino acid compositional bias characterized by a low content of so-called
order-promoting residues such as C, V, L, I, M, F, Y, and W and a high content
of so-called disorder-promoting residues, including Q, S, P, E, K, G, and A
(10,51,60). Therefore, the analysis of the amino acid composition biases can
provide useful information related to the nature of a given protein. The frac-
tional difference in amino acid composition between a given protein (or a given
protein data set) and the set of reference globular proteins is based on the
recently elaborated approach (10) and provides a perfect visualization tool for
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elucidating compositional biases. Here, the fractional difference is calculated as
[ f(r) − fglobular(r)]/fglobular(r), where r �{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W, Y}, f(r) is the frequency of residue r in a given protein set and 
fglobular(r) is the frequency of residue r in the reference set of globular proteins, and
plotted for each amino acid. Negative bars in such a plot correspond to amino acids
that are depleted in a given protein in comparison with the set of globular proteins,
whereas positive bars reflect the relative increase in the particular amino acid con-
tent. Step-by-step design of the fractional difference plot is described next.

3.1.1. Retrieving Sequence Information From the Swiss-Prot Database

Start the Swiss-Prot database by typing http://www.expasy.org/sprot/ in the
Internet browser. Use the following steps to download sequence information
in FASTA format.

1. In the window Search (located at the top of the front page), choose Swiss-Prot/
TrEMBL from the pull-down menu. Type the protein name in the neighboring window
and click Go. Alternatively, click Full text search in the UniProt Knowledgebase
link located in the Access to the UniProt Knowledgebase section of the front page.
Type the protein name in the Enter search terms window and click Submit.

2. On a search in UniProt Knowledgebase (Swiss-Prot and TrEMBL) page choose a
protein of interest from the list of hits and click the corresponding link.

3. Go to the bottom of the UniProtKB/Swiss-Prot entry page and click FASTA format link
located at the bottom- right corner of the Sequence Information section of the page.

4. Copy content of the page, which includes a descriptive header related to the
protein and a protein sequence. Keep this information as it will be used in the
subsequent analysis. This can be done in Notepad or Microsoft Word. A sepa-
rate document for each protein is recommended in which all the results of different
analyses will be stored.

3.1.2. Applying Proteomic Tools to Obtain Amino Acid Composition

1. Direct approach (if you started with Swiss-Prot database).
a. Go to the bottom of the UniProtKB/Swiss-Prot entry page and click the

ProtParam link in Sequence analysis tools section.
b. On the ProtParam: selection of endpoints on the sequence page, click Submit

if you are going to analyze entire sequence from the previous page. Otherwise,
enter the desired endpoints of the sequence in windows provided for N- and
C-terminal points, then hit Submit.

c. Copy a section of the ProtParam page describing amino acid composition.
Keep this information as it will be used in the subsequent analysis. These are
f(r) values for the protein.

2. Alternative approach (if the sequence was retrieved from another source):
a. On the Swiss-Prot home page, hit the Proteomics tools link located in the top-

right corner.
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b. Choose primary structure analysis among the several links at the top of the
ExPASy Proteomics tools page.

c. Click ProtParam link.
d. Enter a Swiss-Prot/TrEMBL accession number in the space provided or one’s

own sequence in the box and click Compute parameters.
e. Copy a section of the ProtParam: user-provided sequence page describing amino

acid composition. Keep this information, as it will be used in the subsequent
analysis. These are f(r) values; i.e., the frequencies of residue r in the protein.

3.1.3. Compositional Profiling

Table 2 lists averaged frequencies of different residues in a reference set of
globular proteins, fglobular(r), and those in a set of experimentally validated IDPs
(458 proteins, 1096 disordered regions) from the DisProt database (50), fIDP(r).

1. Rearrange the data for the protein by taking into account that the order of residues
you retrieved from the Swiss-Prot is alphabetical (for the three-letter code):
Ala(A), Arg(R), Asn(N), Asp(D), Cys(C), Gln(Q), Glu(E), Gly(G), His(H), Ile(I),
Leu(L), Lys(K), Met(M), Phe(F), Pro(P), Ser(S), Thr(T), Trp(W), Tyr(Y), and
Val(V), whereas it is suggested to list residues according to their disorder propen-
sity, from the least to the most disorder-promoting C, W, Y, I, F, V, L, H, T, N, A,
G, D, M, K, R, S, Q, P, and E.

2. Use fglobular(r) values from Table 2 and f(r) values from the Subheading 3.1.2. to
calculate the relative frequencies of amino acid residues in the protein as 
[ f(r) − fglobular(r)]/fglobular(r), where r �{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W,Y}. This can be done using Excel (Microsoft Corporation, Redmond, WA),
SigmaPlot (SYSTAT Software, Inc., San Jose, CA), Origin (OriginLab Corporation,
Northampton, MA), or any other graphical software. 

3. Use fglobular(r) and fIDP(r) values from Table 2 to calculate the relative frequencies
of amino acid residues in a set of IDPs as [ fIDP(r) − fglobular(r)]/fglobular(r). This
also can be done using Excel, SigmaPlot for Windows, Origin, or any other
graphical software.

4. Create a vertical bar chart by plotting the calculated [ f(r) − fglobular(r)]/fglobular(r)

and [ fIDP(r) − fglobular(r)]/fglobular(r) values for each amino acid residue. For better
visual representation, residues should be ranged as follows: C, W, Y, I, F, V, L, H,
T, N, A, G, D, M, K, R, S, Q, P, and E; i.e., from the most order-promoting at the
left to the most disorder-promoting at the right (see Fig. 1).

5. Compare the compositional profiling plot for the protein with that of “averaged” IDP.

Figure 1 illustrates this approach by representing the relative amino acid
compositions of the N-terminal (transactivation) domain of the human proges-
terone receptor (residues 1-566, Swiss-Prot accession no. P06401), protein
arginine N-methyltransferase 1 (Swiss-Prot accession no. Q99873), and a set
of ID regions available in the DisProt database (50). By these computations,
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arginine N-methyltransferase 1 is clearly ordered, whereas the transactivation
domain is clearly disordered.

3.2. Analyzing Disorder Propensity by PONDR Tools

3.2.1. Entering Information to the PONDR Site and Retrieving Results 
of ID Prediction

1. Go to the official PONDR site by typing http://www.pondr.com/ in the Internet
browser. You have to be registered to use the bioinformatics tools available at this
site. If you are not registered as yet, click Create a new User Account link and follow
simple instructions there. You will be provided with a username and password. If
you are a registered user of PONDR, then click Log in to a User Account link, type
the username and password in the corresponding windows, and hit OK. This will
bring you to the PONDR working page.

2. While on the PONDR working page, select boxes corresponding to the desired
Predictors (VLXT, VL3-BA, VSL1, CDF, and CH). When CH box is marked, two
new boxes (From: and To:) will appear. Leave both empty. Put Protein name in the
space provided (optional). Enter NCBI Accession Code or Protein Sequence (FASTA
format or sequence only) in the corresponding boxes. Scroll down the page and check
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Fig. 1. Amino acid composition, relative to the set of globular proteins globular-3D,
of an illustrative IDP, N-terminal (transactivation) domain of the human progesterone
receptor (residues 1-566, Swiss-Prot accession no. P06401) (light gray bars); an illustrative
ordered protein, protein arginine N-methyltransferase 1 (Swiss-Prot accession no.
Q99873) (dark gray bars), and a set of ID regions available in the DisProt 3.2 database
(454 proteins, black bars). The arrangement of the amino acids is by peak height for the
DisProt 3.2 release. Confidence intervals were estimated using per-protein bootstrapping
with 10,000 iterations.



the box Raw Output at the Output Options section. Clicking Submit Query will bring
you to the PONDR results page.

3. It is recommended that you keep the content of the entire PONDR results page.
Figures can be used as illustrations. STATISTICS section provides useful information
on the number of residues predicted to be disordered, overall percent of disordered
residues, number of disordered regions, the length of the longest disordered region,
and the average prediction score. You will find herein a list of regions predicted to be
disordered. Raw output values can be used to plot the results for several proteins on
one graph.

3.2.2. Understanding the Results of the PONDR Analyses

1. PONDR scores. The PONDR results page starts with the plot providing the distribu-
tion of PONDR scores over the amino acid sequence. There will be two color lines,
blue and red, corresponding to the results for the VLXT and VL3-BA predictions,
respectively. Note, when using PONDR VSL1, the results will be emailed. Scores
above the threshold of 0.5 correspond to the regions predicted to be disordered. Long
disordered regions (with more than 30 consecutive residues predicted to be disor-
dered) are indicated as thick black lines. Figure 2A1,A2 represent illustrative
PONDR score plot for the ID transactivation domain of human progesterone recep-
tor (residues 1-566, Swiss-Prot accession no. P06401) (Fig. 2A1) and an ordered
protein, protein arginine N-methyltransferase 1 (Swiss-Prot accession no. Q99873)
(Fig. 2A2). VSL1 curves are added for clarity. The vast majorities of all three curves
in Fig. 2A2 are above the threshold, reflecting the fact that the transactivation domain
is highly disordered. Contrarily, the majority of curves for methyltransferase are
below the threshold, confirming that this protein is highly ordered. Raw data of these
analyses are at the end of the page in the PREDICTOR VALUES section.

2. CDF analysis. Second plot at the PONDR data page represents the results of CDF
analysis. An illustrative CDF curve is shown in Fig. 2B. Remember that CDF
analysis summarizes the per-residue disorder predictions by plotting PONDR
scores against their cumulative frequency, which allows ordered and disordered
proteins to be distinguished based on the distribution of prediction scores (57,58).
In this case, order–disorder classification is based on whether a CDF curve is
above or below a majority of boundary points: if curve is located below the majority
of the boundary points (as shown in Fig. 2B), then entire protein is predicted to be
mostly disordered. However, if the CDF curve is above the boundary, then the ana-
lyzed protein is mostly ordered (see Fig. 2B). Raw data to reproduce this plot
(results for the protein and boundary) are in the CDF OUTPUT section.

3. CH-plot analysis. The last figure at the PONDR results page shows the CH-plot
(25). As aforementioned, compact and natively unfolded proteins plotted in CH
space can be separated to a significant degree by a linear boundary, with proteins
located above the indicated boundary line being unfolded (red circles) and with
proteins below the boundary line being compact (blue squares) (Fig. 2C). The pro-
tein being tested is marked as a large green square. If this square is above the
boundary, then the protein is natively unfolded. If it is below the boundary (as shown
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in Fig. 2C), then the protein is compact. Raw data to build this plot (results for the
protein, boundary as well as coordinates of sets of natively unfolded and ordered
proteins) are in the CHARGE-HYDROPATHY OUTPUT section.

4. Interpretation of PONDR data is rather straightforward. As pointed previously,
high PONDR scores (more than 0.5) for all three predictors (VLXT, VL3-BA, and
VSL1) are characteristic of regions with high propensity to be disordered. Some
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Fig. 2. Illustrative outputs of PONDR algorithms for an illustrative IDP, N-terminal
(transactivation) domain of the human progesterone receptor (residues 1-566, Swiss-Prot
accession no. P06401) (Fig. 2A1,B,C) and an illustrative ordered protein, protein arginine
N-methyltransferase 1 (Swiss-Prot accession no. Q99873) (Fig. 2A2,B,C). Results of
the protein analysis by PONDR VLXT (black solid curves), VL-3B (black dashed), and
VSL1 (gray curves) are shown in Fig. 2A1,A2. CDF curves for the transactivation
domain and methyltransferase are presented in Fig. 2B as solid and dashed lines,
respectively. Figure 2C illustrates corresponding CH-plots, wherein the data for the
transactivation domain and methyltransferase are shown as open-crossed square and tri-
angle, respectively. Results of α-MoRF prediction for the transactivation domain of the
human progesterone receptor are shown as gray horizontal bars in Fig. 2A1. Seven
potential α-MoRFs (fragments 27–44, 51–68, 128–145, 168–185, 360–377, 403–420,
and 468–485) were identified. Note: on your computer screen, results of PONDR and
α-MoRF predictions will be present in color: PONDR VLXT will be shown in red, VL-3B
in blue, and VSL1 in magenta curves, whereas the results of a-MoRF analysis will be
shown as magenta horizontal bars. In CH-plot, data for ordered and natively unfolded
proteins are shown as blue squares and red circles, respectively.



peculiarities of the VLXT curve might correlate with protein functionality
(see Subheading 3.3.1). VL3-BA usually provides very smooth output, as it was
trained on long regions of disorder and its raw predictions are averaged over an
output window of length 31 to obtain the final prediction for a given position (65).
VL3-BA is useful for the accurate prediction of long disordered regions. VSL1 is
the most accurate predictor of intrinsic disorder at least in the PONDR series. Its
training set is 1335 nonredundant protein sequences, containing 230 long disor-
dered regions with 25,958 residues, 983 short disordered regions with 9632
residues, and 354,169 ordered residues (78,79).

5. Interpretation of CDF and CH-plot analyses is straightforward too. It has been
pointed out that sometimes these two analyses provide seemingly contradictory
data, with CDF analysis predicting a much higher frequency of disorder in
sequence databases than CH-plot discrimination (58). The reasons for this discrep-
ancy are outlined in Subheading 4. (see Note 1). Differences in predictions by
these two classifiers were suggested to be physically interpretable in terms of
the protein trinity (14) or protein-quartet models (15). Proteins predicted to be
disordered by both CH-plot and CDF (i.e., polypeptide chains with high net
charge and low hydrophobicity) are likely to be in the extended disorder class.
Proteins predicted to be disordered by CDF, but predicted to be ordered by
CH-plot, should have properties consistent with a dynamic, collapsed chain and
are likely to be in the collapsed disorder class (i.e., molten globules). This sup-
position needs to be further tested by additional experiments. Rarely, proteins
are predicted to be disordered by CH-plot, but ordered by the CDF analysis. This
may represent structured proteins with an unusually high net charge; such pro-
teins are likely to exhibit slat-sensitive structures. Finally, proteins predicted to
be ordered by both algorithms are of course likely to be in the well-structured
class (58). In the application to the illustrative examples of Fig. 2, this means
that the transactivation domain of human progesterone receptor is most likely a
native molten globule, whereas protein arginine N-methyltransferase 1 is likely
to be ordered.

3.3. Intrinsic Disorder-Based Functional Analyses

3.3.1. Predicting the Molecular Recognition Fragments, α-MoRFs

The use of disorder predictor to find potential protein-binding sites is based
on the observation that the sharp-order dips in otherwise predicted to be disor-
dered regions, could indicate short loosely structured binding regions that
undergo disorder-to-order transitions on interaction with the specific binding
partner (81). Based on this presumption and the fact that such regions tend to
have high α-helical propensities and high hydrophobic moments, a predictor of
helix-forming α-MoRF was developed (82). Disorder-to-order transition brings
a large decrease in conformational entropy, which is thought to uncouple specificity
from binding strength, making highly specific interactions easily reversible.
This process is illustrated in Fig. 3. The α-MoRF predictor can be accessed at
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the official PONDR site (http://www.pondr.com/) by special request. A typical
output of this predictor is shown in Fig. 2A as magenta horizontal bars. Notice
that the predicted α-MoRFs are located within the distinctive downward spike
in the PONDR VLXT curve.

3.3.2. Predicting Potential Phosphorylation Sites

It has been shown that intrinsic disorder prediction might help increase
the prediction accuracy of several protein posttranslational modification
sites, including protein phosphorylation (83) and methylation (99). For exam-
ple, DEPP (or DisPhos) uses disorder information to improve the discrimi-
nation between phosphorylation and nonphosphorylation sites. The retrieved
prediction score approximates the probability that the residue is phosphory-
lated. Only residues with a prediction score more than 0.5 (which) are con-
sidered to be phosphorylated. The step-by-step protocol of DEPP analysis is
presented next.

1. Go to the PONDR working page and click the DEPP Prediction button. This will
bring you to the DEPP working page. While on this page, type Protein name in
the space provided (optional) and enter NCBI Accession Code or Protein
Sequence (FASTA format or sequence only) in the corresponding boxes. Scroll
down the page and check the box Raw Output at the Output Options section. By
clicking Submit Query button you will be forwarded to the DEPP results page.

2. The top of DEPP results page represents the plot providing the distribution of
DEPP scores over the amino acid sequence. You will have three types of symbols
corresponding to the Thr (green triangles), Ser (blue squares), and Tyr residues
(red circles) predicted to be phosphorylated. Only residues possessing DEPP
scores more than 0.5 are shown. Fig. 4 represents an illustrative DEPP plot for the
transactivation domain of human progesterone receptor (residues 1-566, Swiss-
Prot accession no. P06401).

3. Raw data related to this analysis are at the end of the page in the PREDICTOR
VALUES section. The DEPP NNP STATISTICS section provides useful information
on the number of phosphorylated serines, threonines, and tyrosines, together with
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Fig. 3. Illustration of disorder-to-order transition on binding. This example shows the
binding of a disordered region of Bad (ribbon) binding to Bcl-XL (globular). Modified
from Oldfield et al. (82).



the total number of these residues in a given protein and the relative phosphoryla-
tion efficiency. Once again, it is recommended that one keeps the content of the
entire DEPP results page for future use.

4. Notes
1. The difference in the ID prediction by CDF analysis and CH-plot likely results

from the fact that the CH-plot is a linear classifier that takes into account only
two parameters of the particular sequence—charge and hydrophobicity (25),
whereas the CDF analysis is dependent on the output of the PONDR VL-XT
predictor, a nonlinear neural network classifier, which was trained to distinguish
order and disorder based on a significantly larger feature space that explicitly
includes net charge and hydropathy (57,58). Therefore, CH feature space can be
considered as a subset of PONDR VL-XT feature space. By definition, CH-plot
analysis is predisposed to discriminate proteins with substantial amounts of
extended disorder (random coils and premolten globules) from proteins with
globular conformations (molten globule-like and rigid well-structured proteins).
On the other hand, PONDR-based CDF analysis may discriminate all types of
disordered conformations, including molten globules, premolten globules, and
coils from ordered proteins (58).
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Fig. 4. Prediction of phosphorylation sites in the transactivation domain of the
human progesterone receptor (residues 1-566, Swiss-Prot accession no. P06401) by
DEPP. The DEPP plot provides the distribution of phosphorylation probability over
the amino acid sequence. Symbols corresponding to the Thr (open triangles), Ser
(gray squares), and Tyr residues (black circles) predicted to be phosphorylated. Only
residues possessing DEPP scores more than 0.5 are shown. Note: on your computer
screen, results of prediction will be present in color: Thr, Ser, and Tyr residues predicted
to be phosphorylated will be shown by green triangles, blue squares, and red circles,
respectively.
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Summary
With the successful completion of genome sequencing projects for a variety of model organisms,

the selection of candidate organisms for future sequencing efforts has been guided increasingly by
a desire to enable comparative genomics. This trend has both depended on and encouraged the
development of software tools that can elucidate and capitalize on the similarities and differences
between genomes. “Sybil,” one such tool, is a primarily web-based software package whose pri-
mary goal is to facilitate the analysis and visualization of comparative genome data, with a partic-
ular emphasis on protein and gene cluster data. Herein, a two-phase protein clustering algorithm,
used to generate protein clusters suitable for analysis through Sybil and a method for creating graph-
ical displays of protein or gene clusters that span multiple genomes are described. When combined,
these two relatively simple techniques provide the user of the Sybil software (The Institute for
Genomic Research [TIGR] Bioinformatics Department) with a browsable graphical display of his
or her “input” genomes, showing which genes are conserved based on the parameters supplied to
the protein clustering algorithm. For any given protein cluster the graphical display consists of a
local alignment of the genomes in which the clustered genes are located. The genomes are arranged
in a vertical stack, as in a multiple alignment, and shaded areas are used to connect genes in the
same cluster, thus displaying conservation at the protein level in the context of the underlying
genomic sequences. The authors have found this display—and slight variants thereof—useful for a
variety of annotation and comparison tasks, ranging from identifying “missed” gene models or sin-
gle-exon discrepancies between orthologous genes, to finding large or small regions of conserved
gene synteny, and investigating the properties of the breakpoints between such regions.

Key Words: Bioinformatics; Bioperl; comparative genomics; ortholog; paralog; protein
clustering; visualization.

1. Introduction
There are many ways to compare genomes and Sybil focuses on one of the

simplest methods for evaluating potential functional differences between



genomes, which is to examine their relative protein-coding gene complements.
Doing this requires that one make judgments about which of the genes are
orthologs, under the assumption that these genes are most likely to have con-
served functional roles. Numerous published algorithms deal with the problem
of computing clusters of orthologous and paralogous genes (1–6) and such clus-
ters may also be refined or defined manually, with the aid of trained curators
(7–9). Although the cluster analysis and display tools in Sybil are largely agnostic
with respect to the question of how the proteins are clustered, they have been used
primarily with the combination of simple protein clustering techniques described
in Subheading 3.1. This is a two-phase heuristic protein clustering method that
combines an initial step in which a Jaccard similarity coefficient (10) is calculated
for every pair of proteins (see Subheading 3.1.2.), with a second step that
performs a bidirectional best hit analysis (see Subheading 3.1.3.) on the clusters
generated by the first phase of the algorithm, rather than on individual proteins.

Once protein clusters representing paralogs and/or orthologs have been
defined, Sybil provides a web-based interface that allows the cluster data to be
explored. At the level of entire genomes the protein clusters are used to support
queries about relative gene complements (e.g., clusters which contain at least one
representative from genome A and at least one representative from genome B but
none from genomes C or D), and to support the generation of multiple-genome
comparative figures (see Fig. 1). At the level of individual genes the clusters are
used for finer-grained analyses (e.g., enumerate all differences in gene struc-
ture that appear to be unique to genome B). Central to this latter, high-resolution
view of the protein clusters, is a graphical display that shows each gene in a cluster
in its relevant genomic context, with nearby gene clusters highlighted (see Fig. 2).
Variants of this basic graphical view are utilized in a number of places in Sybil and
the method used to generate this view, which leverages the Bio::Graphics package
of Bioperl (http://en.wikipedia.org/wiki/Open_source, http://www.bioperl.
org/wiki/History_of_BioPerl) (11), is described in Subheading 3.2.

Other tools display matches between sequences and/or genomes in a similar
way (12–14), but the figures produced by Sybil tend to be somewhat simpler
and easier to interpret owing to the use of the protein cluster as a “minimum
unit” of conservation. Sybil can also make use of the protein clusters to infer
the presence of regions of conserved synteny or “syntenic blocks.” A num-
ber of tools have been developed in Sybil to identify and visualize such
large-scale conserved regions and how they are rearranged between genomes
(21; Fig. 2 and 21; color plate no. 1). However, these are beyond the scope
of this chapter.

It should be noted that although the current system relies on certain software
packages, programming libraries, data exchange formats, languages, and data-
bases, these choices are largely incidental to the protein clustering method
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Fig. 1. A six-way genome comparison generated using one of the Sybil tools available
at http://www.tigr.org/sybil/rcd. The genes in the reference sequence (bottom row) are
color-coded according to their position in the genome. Those in all the other sequences
are assigned the color of their orthologs in the reference sequence (or are left uncolored
if they have none). Therefore, the figure provides a very high-level view of deletions,
insertions, and rearrangements of any number of sequences compared with a fixed refer-
ence. For more examples of this type of figure see (29) (Fig. 3) and (30) (Fig. 2).

described in Subheading 3.1. Therefore, in that section, an attempt is made
to provide a largely implementation-neutral description of the technique,
relegating any comments on specific implementation choices and strategies
to Subheading 4. On the other hand, Subheading 3.2. describes a technique
that would take significantly longer to implement without using Bioperl, and
which might be of general interest in its own right. Therefore, in that section,
one pays closer attention to the specific technical details that must be observed
in order to interoperate with the Bio::Graphics package.

2. Materials
2.1. Protein Clustering

1. Genome sequences: two or more sequenced genomes, preferably in a finished or
nearly finished state (see Note 1).

2. Gene models/predictions: a complete set of gene models for each of the sequenced
genomes (see Note 2). At minimum each gene model should consist of a set of
protein-coding exon locations, plus the translation start and stop positions if either
the 5′- or 3′-exon contains untranslated sequence, i.e., the same information that
is typically encoded in a GenBank (Protein-coding sequence) CDS feature.

3. Polypeptides: a polypeptide sequence for each of the protein-coding genes in step 2.
If the polypeptide sequences are not specified explicitly then they can be computed
from the gene model information supplied in this section.

2.2. Protein Cluster Visualization

1. A set of protein clusters in which no protein is a member of more than one cluster
(see Note 3).

2. A database that contains (at least) the protein clusters in addition to the genome
sequence data, gene models, and polypeptides for each input genome from
Subheading 2.1.1. (see Note 4).



2.3. Example Data and Display Software (Optional)

1. A complete example data set (including gene models, predicted polypeptides, all-
vs-all protein-protein BLAST (Basic Local Alignment Search Tool) BLASTP
results, protein clusters, and protein cluster alignments) may be downloaded from
http://sybil.sourceforge.net. Also available for download is a set of Perl modules
that implement the graphical protein cluster display algorithm described in
Subheading 3.2.
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Fig. 2. Sybil protein cluster report page. Genes in the selected cluster are listed at the
top of the page (top right) along with the cluster’s average percent identity and percent
coverage scores (top left). The selected cluster appears in the middle of the graphical dis-
play, which shows sequences from three different genomes. Each of the three sequences
is oriented and positioned so that the three clustered genes appear to be in the same ori-
entation and are centered horizontally. As a result this is strictly a local alignment of the
sequences, based solely on the three genes in the selected cluster. The main cluster dis-
play is clickable and when the mouse is placed over a gene or a gene cluster a description
of the relevant gene(s) appears in the text area below the display. The lower two genomes
match very closely here, although note that the bottom sequence has a gene model
(pya1.676.m00112) that has no orthologs in this particular region of the middle sequence.
In fact, the name of this model is drawn in a lighter shade of gray, a cue used to indicate
that it does not have a predicted ortholog anywhere in either of the other two genomes.



3. Methods
3.1. Protein Clustering

3.1.1. “All-vs-All” BLASTP Analysis

1. xdformat is used to create a BLASTP-searchable database of the predicted
polypeptide sequences from all of the input genomes: xdformat –p –I –o all-peptides
all-peptides.fsa (15). It is assumed that each polypeptide has been assigned a unique
identifier and can be related back to the gene of which it is a product.

2. Each of the predicted polypeptide sequences is searched against the database from
step 1 with WU-BLASTP (15,16) (see Note 5) and the results are stored for use in
subsequent steps (see Note 6): blastp all-peptides pep-1.fsa –E 1e-5 –matrix BLO-
SUM62 –wordmask none –B 150 –V 150 –gspmax 5 –shortqueryok –novalidctxok
–cpus 1 > pep-1-vs-all-blastp.raw.

3.1.2. Clustering Phase 1: Jaccard Coefficient-Based Protein Clustering

The first phase of the protein clustering algorithm is run on each input
genome separately. In this phase, a subset of the all-vs-all BLASTP matches is
used to compute a Jaccard similarity coefficient (10) for every pair of polypep-
tides from the same genome. All pairs of polypeptides whose Jaccard coeffi-
cient is more than a specified threshold are then subjected to a straightforward
graph analysis to determine the resulting clusters. For each input genome:

1. Identify the subset of the BLASTP matches to be used. By default only BLASTP
matches with at least 80% sequence identity and an E-value of at most 
1 × 10−5 are used in the subsequent steps (see Note 7).

2. Use the BLASTP matches from step 1 to determine which pairs of polypeptides
are “related” to one another; by definition one considers two polypeptides related
if either one has a BLASTP match to the other that meets the conditions described
in step 1. Every polypeptide is also considered to be related to itself, regardless of
whether a BLASTP self-match was found in step 1.

3. Compute and record a Jaccard similarity coefficient for each pair of predicted
polypeptides. Fig. 3 illustrates how this is done for a representative pair of polypep-
tides. For any two polypeptides P1 and P2 the Jaccard similarity coefficient is the
ratio of the number of polypeptides (including P1 and P2 themselves) that are related
to both P1 and P2 to the number of polypeptides that are related to either P1 or P2.
Therefore, the Jaccard similarity coefficient for any pair of polypeptides P1 and P2 is
a number between zero and one that reflects how similarly connected P1 and P2 are
to the other polypeptides in the same data set (in this case, a single genome).

4. Create a graph (see Fig. 4) in which each node corresponds to one of the polypep-
tides from the selected input genome, and an edge is drawn between two polypeptides
P1 and P2 only if the Jaccard similarity coefficient of P1 and P2 is equal to or more
than a predetermined threshold (set to 0.6 by default) (see Note 8).

5. The connected components of the graph generated in step 4, when treated as sets
of polypeptides, are referred to as “Jaccard clusters,” or “JACs” for short. These
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clusters are the output of the first phase of the clustering process (see Fig. 4,
right panel).

3.1.3. Clustering Phase 2: Bidirectional Best (BLASTP) Hit Clustering

The second phase of the clustering algorithm consists of a bidirectional best
(BLASTP) hit analysis (see Note 9):

1. Identify pairs of JACs (JAC1 and JAC2) that satisfy the following conditions:
a. Each of the two clusters (JAC1 and JAC2) is from a different input genome.
b. The highest-scoring BLASTP match (see Note 10) of at least one polypeptide

in JAC1 is to a polypeptide in JAC2, and vice versa.
An optional filtering step limits the BLASTP matches considered in condition b

to those with an E-value that falls below a given threshold. In practice, this thresh-
old is typically set to the same one that is applied in both the all-vs-all BLASTP
and Jaccard clustering steps.

2. Transform the pairs of JACs found in step 1 into a graph whose nodes are the
individual JACs. An edge should be drawn between two nodes JAC1 and JAC2
only if JAC1 and JAC2 are among the pairs of JACs with bidirectional best hits
from step 1.

3. The connected components (see Note 11) of the graph constructed in step 2 are
referred to as “Jaccard orthologous clusters,” or “JOCs.” Although these clusters
are actually clusters of JACs, they can be easily converted to polypeptide clusters,
by taking the union of the polypeptides in the JACs. These polypeptide clusters are
the output of the second and final phase of the clustering process (see Fig. 6).
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Fig. 3. Computing the Jaccard similarity coefficient for P1 and P2. In each of the
three graphs the labeled circles represent proteins and the edges between the circles
indicate which proteins have a BLASTP match above the preset thresholds; the edges
are nondirectional and an edge is drawn if either protein matches the other at the requi-
site percent identity and E-value. In addition every protein is assumed to match itself
(these edges are not shown). In this example there are six proteins with BLASTP
matches as shown (left panel). There are three proteins that match both P1 and P2
(highlighted in the middle panel) and five proteins that match either P1 or P2 (high-
lighted in the right panel). The Jaccard coefficient for P1 and P2 is therefore 3/5 or 0.6.



3.1.4. Generate ClustalW Alignments

1. ClustalW is run on each of the protein clusters (see Note 12) generated by the previ-
ous step to produce a set of multiple sequence alignments (17). These alignments are
stored alongside the clusters and presented in the Sybil interface as a means to assess
the quality of each cluster.

3.1.5. Compute Cluster Summary Scores

The all-vs-all BLASTP results are used to compute two scores for each of
the JACs and JOCs. The first score is an average percent identity score and the
second is an average coverage score; together these two numbers allow one to
make a rapid quantitative assessment of a cluster without having to examine its
full ClustalW alignment. The average percent identity score reflects how well-
conserved the matching regions of the clustered polypeptides are, whereas the
average percent coverage score reflects how much of each of the clustered
polypeptides matches the others (i.e., how completely the BLASTP GSPs
“cover” the clustered proteins). Using only these two scores one can quickly
identify the most highly conserved high-confidence clusters—they are those
with both a high average percent identity and a high percent coverage score. If,
on the other hand, the average percent identity score is very high but the coverage
score is relatively low, it may indicate a cluster of polypeptides that share a
common motif (or one or more exons, in the case of alternatively spliced tran-
scripts or misannotated genes). Finally, a cluster with a high percent coverage
score but a relatively low percent identity score may be a genuine cluster of
orthologous genes whose members are only distantly related.
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Fig. 4. Computing JACs. A graph is created in which each pair of proteins with 
a nonzero Jaccard coefficient is connected by an edge (left panel). Edges labeled with
Jaccard coefficients below the default threshold of 0.6 are removed (middle panel). The
connected components of the resulting graph are the JACs (JAC1–JAC4 in the right
panel). Note that in the current implementation of the algorithm only clusters of size
two or greater are reported and stored in the database (i.e., JAC1) and any polypeptide
not in one of these clusters is assumed, by convention, to be a cluster of size one.



3.1.5.1. FILTER BLASTP GSPS

1. For each pair of proteins in the cluster P1 and P2 find the highest-scoring
BLASTP, GSPs, or high-scoring segment pair (HSPs) that align P1 and P2.

3.1.5.2. AVERAGE PERCENT IDENTITY SCORE

1. Calculate the (unweighted) average percent identity of all the high-scoring GSPs
from Subheading 3.1.5.1.; this is the cluster’s average percent identity score.

3.1.5.3. AVERAGE PERCENT COVERAGE SCORE

1. Retrieve all high-scoring BLASTP HSPs/GSPs from Subheading 3.1.5.1. for a
single pair of polypeptides (P1 and P2) in the cluster.

2. Create a list of all the intervals on P1 that are aligned to P2 by an HSP/GSP.
3. Merge (take the union of) any intervals that overlap until no overlaps remain.
4. Sum the lengths of the merged intervals and divide this quantity by the length of

P1. The result should be a number between zero and one.
5. Repeat steps 2–4 for P2.
6. Repeat steps 1–5 for all pairs of polypeptides in the cluster.
7. Compute the average of all the values computed in step 4, multiplying by 100 to

obtain a percentage value. This is defined to be the cluster’s average percent cov-
erage score (see Note 13).

3.2. Protein Cluster Visualization

This section describes how to generate a multiple-genome graphical
display like the one that appears in the Sybil protein cluster report page
shown in Fig. 2. Each individual genomic sequence or genomic sequence
fragment that appears in the display is rendered using the Perl package
Bio::Graphics::Panel, which is part of the Bioperl (11) toolkit. The technique
allows several Bio::Graphics::Panels to appear in the same image, with addi-
tional shaded areas used to indicate which genes belong to the same cluster.
Given a cluster identifier the algorithm proceeds as follows:

1. Retrieve all proteins in the cluster (see Note 4).
2. Retrieve the gene models that correspond to the proteins in step 1 and determine

their respective genomic locations.
3. Retrieve all gene models and any other features of interest within a specified vicinity

(see Note 14) of the clustered genes (see Note 15).
4. Convert all genomic sequence fragments, gene models, and other sequence features

into bioPerl objects (see Note 16).
5. Create a Bio::Graphics::Panel for each of the genomic sequence fragments to

appear in the figure (see Note 17). This is done in a top-to-bottom fashion so that
the vertical offset of each successive panel can be set so that it does not overlap
with the panels above it (see Note 18). Calling the height() method of a panel
forces it to compute the layout of all the features contained within it, but without
actually drawing any of those features.
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6. Once the individual panels have been initialized it is possible to determine the
overall dimensions of the combined image. This information is used to allocate a
drawing area (in the form of a Perl GD::Image object) that is large enough to hold
all of the panels, arranged vertically as described.

7. Generate a complete set of “matching gene pairs.” Two genes are considered
matching if both have a protein product in the same cluster (JAC or JOC).

8. Transform the genes in the figure into a graph, creating a node for each distinct
(panel, gene) pair. An edge is drawn between (pA, geneA) and (pB, geneB) for
each matching gene pair (geneA, geneB) identified in step 7. and each panel pA,
pB in which geneA and geneB, respectively, appear. Each edge is assigned a
weight using the following formula, which depends only on the panels in which
geneA and geneB appear (see Note 19):

edge_weight [(pA, geneA), (pB, geneB)] = [distance (pA, pB)]2 – 1
where distance (pA, pB) = (number of panels between pA and pB) + 1.

9. Use any minimum spanning tree (MST) algorithm (18) to select a minimal set of
edges from those calculated in step 8 (see Note 20). These edges represent the
gene–gene matches that will be drawn in the figure (see Note 21 and Fig. 7).

10. Draw the filtered set of matches into the background of the image (see Note 22),
using the boxes() method of Bio::Graphics::Panel to determine the on-screen loca-
tions of the matching gene pairs.

11. Draw the individual Bio::Graphics::Panels on top of the previously drawn matches
from step 10 (see Note 23).

12. Generate a Portable Network Graphics (PNG) or  Joint Photographic Experts
Group (JPEG) (see Note 24) image suitable for display on a web page (see Fig. 2)
using the standard GD::Image methods.

4. Notes
1. As the protein clustering algorithm uses a bidirectional best hit analysis to com-

pute orthologs, it is important that the respective polypeptide sets be as complete
as possible, lest one of the polypeptides not find its true “mate” owing to an
incompletely sequenced or annotated genome. The algorithms can and have been
used on partial polypeptide sets, but the limitation of such data sets is that they
cannot reliably be used to ask questions about the absence of an ortholog for a
particular gene or protein.

2. An automated gene prediction algorithm may be used for this purpose. It is not
critical that all the gene models are completely accurate; indeed, if a sufficiently
similar and well-annotated genome is included in the analysis then a subsequent
comparative analysis of the gene calls can be used to identify many of the omis-
sions and discrepancies. To this end, a comparative “structural annotation tool”
that allows curators to examine several genomes at once and tag common annota-
tion discrepancies for later correction has been developed. The annotation tool
also allows one to manually add or remove proteins to or from any protein cluster,
and to create or delete entire clusters.
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3. For the sake of simplicity it is assumed that no protein is a member of more than
one cluster in the same protein clustering analysis. However, the system is routinely
used to compare protein clusters generated using either different algorithms or the
same algorithm with different parameter settings.

4. Sybil reads annotation and comparative data from a Sybase or PostgreSQL (see
www.postgresql.org/about/history for details) relational database using the chado
(19) schema, the official database schema of the General Model Organism
Database (GMOD) project (20). However, the system is based on a three-tier
architecture that largely isolates the various display and query tools from the spe-
cific implementation details of the database server and schema.

5. WashU-BLASTP 2.0 (produced/licensed by the Washington University in St. Louis
School of Medicine. See http://blast.wustle.edu/ for details) is used for the all-vs-all
BLASTP search. The parameters are configurable but by default the following
options are used: “–E 1e-5 –matrix BLOSUM62 –wordmask none –B 150 –V
150 –gspmax 5 –shortqueryok –novalidctxok –cpus 1.”

6. The current system uses bioinformatic sequence markup language (BSML) (21) to
store the intermediate BLASTP results (which are also eventually loaded into the
chado comparative database). BSML is an XML-based data exchange format for
sequence-related data. In subsequent steps of the analysis the BLASTP matches
are read from BSML flat files using a custom Perl API.

7. It should be emphasized that no additional conditions are placed on the BLASTP
matches used to create the JACs, other than the E-value score and percent iden-
tity thresholds. In particular, there is no requirement that the BLASTP matches
must cover a minimum percentage of either sequence, which means that a rela-
tively short match—if of sufficiently high identity and statistical significance—
is often enough to group polypeptides into the same Jaccard cluster. In early
comparative databases this lack of stringency was found to be more of a help than
a hindrance, particularly when one or more of the input genomes has relatively
low-quality automated annotation. Gene models that incorrectly lack one or more
exons (and thus have artificially abridged polypeptide sequences) are nonetheless
incorporated into the same cluster as the (correct) full-length versions of those
genes. When an expert curator examines these clusters, possible annotation errors
can be rapidly identified and tagged for correction in a future data release.
However, in more recent comparative databases that contain more genomes and
larger protein families, this lack of stringency, in conjunction with the subsequent
single-linkage connected component analysis, has led to some pathological cases,
in which a single well-conserved domain results in artificially large clusters of
otherwise unrelated polypeptides. It is hoped that using a more stringent linkage
criterion to compute the connected components will address this issue.

8. The default Jaccard clustering thresholds—80% identity for the BLASTP matches
and 0.6 for the Jaccard coefficient threshold—were chosen by running the algorithm
on a single representative comparative database using a range of different parameter
values. The resulting matrix of Jaccard cluster sets was evaluated by an expert cura-
tor and default parameter values were chosen that satisfied the following conditions:
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a. The results did not appear to be overly sensitive to the values chosen (i.e.,
small changes in the parameter values in the neighborhood of 80% and 0.6 did
not produce disproportionately large changes in the composition of the result-
ing protein clusters).

b. The protein clusters produced were—in the judgment of the curator—a good
approximation of the “true” paralogous families in each of the genomes in question.

With respect to condition b it is worth noting that the Jaccard clustering phase of
the clustering analysis can serve multiple purposes. Its primary goal is to cluster
paralogs within each genome and prevent them from confusing the subsequent bidi-
rectional best hit analysis. However, the Jaccard clustering phase can be viewed more
generally as a kind of compression algorithm that eliminates duplicate or near-duplicate
polypeptides and their corresponding genes from the data set. In realistic data sets
such duplicates can be produced by processes other than recent gene duplication. For
example, in one recent project (22) sequencing was performed on genomic DNA
sampled from two distinct haplotypes and in this case the Jaccard clustering was used
to collapse the two extremely similar sets of polypeptides into one, which greatly
simplified the downstream analyses. Incomplete or erroneously assembled sequence
contigs in early versions of draft genomes may also contain small-scale duplications
that are artifacts of the assembly process and lead to duplicate gene calls.

9. An earlier version of the clustering algorithm relied solely on the second phase
of the clustering process (see Fig. 5), which is acceptable for analyzing compact
genomes with relatively little recent gene duplication. But as a bidirectional best
hit analysis is easily confounded by the presence of close paralogs, the initial
Jaccard clustering phase was introduced and the best hit analysis was modified
to run on (Jaccard) clusters instead of individual polypeptides (see Fig. 6).

10. The “highest-scoring” BLASTP match is determined by comparing BLAST E-values.
In the case of a tie one of the matches is picked arbitrarily as the “highest-scoring.”
The exact method for doing this is not important, but it should be deterministic so
that the algorithm generates reproducible results. In practice, it should not matter
how such ties are broken, because any two polypeptides that match a third equally
well are likely to be clustered together by the first phase of the algorithm.

11. A consequence of using connected components is that the clustering of genes from
genomes A and B may depend on the other genomes included in the analysis. For
example, if genomes A, B, and C are clustered and gene A1 is a reciprocal best hit
of B1 but not C1, and B1 is a reciprocal best hit of C1 but not A1, then A1, B1,
and C1 will be placed in the same cluster. If, however, genome B were not
included in the analysis then A1 and C1 would not be clustered. At first glance this
may seem to be an undesirable property of the algorithm. However, it is justifiable
from a logical standpoint, because if it is believed that A1 and B1 are orthologs
and B1 and C1 are orthologs then it follows from the definition of the term that it
should also be believed that A1 and C1 are orthologs.

12. As particularly large clusters (in terms of the number of proteins) can take much
longer to run through ClustalW, and may even cause the program to (eventually)
fail, a parameter for this phase of the analysis allows the ClustalW computation to
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Fig. 5. Best bidirectional hit analysis on individual polypeptides. The circles represent
polypeptides from three distinct genomes, and an edge from PX to PY indicates that PY is
the best BLASTP match for PX (among all polypeptides in the same genome as PY). In
order to simplify the example matches between Genome C and Genome A, which
would usually be taken into account, are not considered. If the bidirectional best hit
clustering were applied to this example—considering only matches between individual
polypeptides—then the result would be a single orthologous cluster (JOC), containing P5,
P8, and P11. No other polypeptides would be clustered.

Fig. 6. Best bidirectional hit analysis on JACs. By computing bidirectional best
BLASTP matches between JACs instead of individual polypeptides one is able to gen-
erate larger clusters. In this example, based on the same polypeptides and BLASTP
matches as in Fig. 4, there would be two JOCs: one that contains all the polypeptides
in JAC1 and JAC3 and one that contains all those in JAC2, JAC4, and JAC5.

be skipped for any cluster that contains more than a given number of polypeptides.
This parameter is set by default to 30 proteins.

13. As a consequence of the way that the clusters are calculated and the average percent
coverage and identity scores are defined, it is possible to have a cluster of two



polypeptides P1 and P2 such that P1 has 100 amino acids and P2 has only 50,
but the two match each other perfectly—over the region of the match—and
therefore the cluster is assigned a percent identity score of 100% and a percent
coverage score of 100%. This is not a completely satisfactory result, so in order
to distinguish this case from one in which the polypeptides in a cluster match
perfectly and are of the same length, one frequently calculates and stores a third
quantity, namely the ratio of the length of the shortest polypeptide in the cluster
to the length of the longest polypeptide in the cluster.

14. The default sequence “neighborhood” size is configurable and may also be
changed by clicking on the links (“5 kb,” “10 kb,” and so on) that appear above
the graphical display on the protein cluster report page (see Fig. 2). The amount
of additional sequence to display is calculated by taking the extent of the longest
gene in the cluster and then adding the specified neighborhood size (e.g., 5 kb) on
either side of it. For the other (shorter) genes in the cluster slightly more sequence
must be displayed on either side in order to make all of the sequences line up at
the left and right edges of the display (assuming that the ends of the contigs are
not reached before the edge of the display).

15. The features are retrieved from the chado comparative database using a standard
Structured Query Language (SQL) see http://en.wikipedia.org/wiki/SQL range query
on the chado featureloc.fmin and featureloc.fmax columns. This has produced
acceptable performance, but in future one may adopt a binning scheme for faster
retrieval of sequence features within a given range, as is done in GBrowse see
http://www.bioperl.org/wiki/Lincoln_Stein and http://www.bioperl.org/wiki/Gbrowse
(23) and the University of California, Santa Cruz (UCSC) Genome Browser (UCSC
Genome Bioinformatics Group) (24).

16. The Bioperl features (instances of Bio::SeqFeatureI) that are created are “skele-
ton” features that contain the coordinates and unique identifiers of the features
read from the database. A mapping is stored that allows each Bioperl feature to be
mapped back to the data that were read from the database.
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Fig. 7. Using a MST algorithm to remove redundant matches. Protein cluster image
before (left) and after (right) applying the MST filter.



17. Some clusters may contain adjacent or nearby genes from the same genome,
because of tandem gene duplication. If the repeated genes are within the specified
“neighborhood” distance then the system will automatically include only one copy
of the relevant genomic subsequence in the comparative sequence display; the
alternative, which is to include multiple copies of the same sequence that are offset
from one another, can be quite confusing visually.

18. The order in which the genomes and/or sequences appear in the protein cluster
display may be set to a fixed default in Sybil, or one may click on a gene in the
display to force that genome and sequence to appear at the top of the image. This
feature was used in the TriTryp comparative annotation project (25) to designate
one of the genomes as a reference against which the others were (manually)
compared. Curators were able to traverse three genomes simultaneously by navi-
gating along the fixed reference sequence using a modified version of the protein
cluster display shown in Fig. 2.

19. The purpose of this weight function is simple; by setting the edge weights in this
fashion one ensures that whenever geneA, geneB, and geneC are arranged from
top to bottom in the cluster display, the algorithm will always prefer shorter
matches (edges) to longer ones; geneA will be connected to geneB and geneB will
be connected to geneC, instead of drawing one long match between geneA and
geneC, followed by another between geneA and geneB, or geneB and geneC.

20. The authors use Kruskal’s algorithm (26), as implemented by the Perl module
Graph::Kruskal.

21. This approach does not always produce an ideal figure layout, but in the authors’
experience it does well in simple cases, and in complex cases it will at least
remove the redundant matches.

22. The gene–gene matches are drawn differently depending on whether the genes in
question appear in the same orientation. This provides an easy-to-see visual cue
for genes that are inverted in one genome relative to the others.

23. In order for this to work a small patch must be made to Bio::Graphics::Panel, in
which calls to GD::Image::colorAllocate() are replaced with identical calls to
GD::Image::colorResolve(). This change allows all the panels in the image to
share the same GD color palette.

24. Sybil also supports Scalable Vector Graphics (SVG) http://www.w3.org/graphics/
SVG (27) output. SVG format images can be converted to PDF with the Apache
Batik package see http://www.apache.org/ and http://xmlgraphics.apache.org/
batik/contributors.html (28), which provides an easy way to generate high-resolution
images suitable for presentation or publication.
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Estimating Protein Function Using Protein–Protein
Relationships

Shailesh V. Date

Summary
Many newly identified gene products from completely sequenced genomes are difficult to charac-

terize in the absence of sequence homology to known proteins. In such a scenario, the context of the
proteins’ functional associations can be used for annotation; overrepresented functional linkages with
a certain class of proteins or members of a pathway allow putative function assignments based on the
“guilt-by-association” principle. Two computational functional genomics methods, phylogenetic pro-
filing and identification of Rosetta stone linkages, are described in this chapter, which allow assess-
ment of functional linkages between proteins, consequently facilitating annotation. Phylogenetic
profiling involves measuring similarity between profiles that describe the presence or absence of a
protein in a set of reference genomes, whereas Rosetta stone fusion sequences help link two or more
independently transcribed and translated proteins. Both methods can be applied to investigate func-
tional associations between individual proteins, and can also be extended to reconstruct the genome-
wide network of functional linkages by querying the entire protein complement of an organism.

Key Words: Interactome; protein-protein interactions; functional linkages; phylogenetic
profiles; matual information; Rosetta stone fusion sequences.

1. Introduction
The number of organisms with fully sequenced genomes is growing at a

rapid pace. However, many sequenced genomes are not fully annoted; analy-
sis of this sequence data reveals that many genes and their products lack con-
fident functional assignments, primarily because of absence of any similarity
with sequences of known genes. Empirical observations suggest that the
number of such uncharacterized genes is close to 30% for almost any
sequenced genome, and can be as high as 60% for some, an example being
the genome of the human malarial parasite Plasmodium falciparum (1).
Absence of information about such a significant number of genes or their



products prevents the understanding of the biology of the organisms in
detail, a fact that becomes even more important when dealing with genomes
of pathogenic organisms. In this regard, use of several recently introduced
computational functional genomics methods is proving beneficial, especially
in assigning function to genes that are difficult to characterize using homol-
ogy-based methods alone. Herein, the implementation of two such in silico
methods—phylogenetic profiling (2,3) and identification of Rosetta stone
sequences (4) is discussed, which can be used to assign function to gene
products based on their linkages with proteins of known function.

Phylogenetic profiling involves generating presence/absence profiles of pro-
teins with reference to a set of fully sequenced genomes. Matching profiles are
indicative of functional protein–protein interactions between the corresponding
entities, with functional interactions being defined as associations that can
range from direct physical contact to shared membership in the same pathway
or cellular system (2). Identification of Rosetta stone links is another means of
establishing functional associations between protein entities. The method was
developed based on the observation that independently transcribed and trans-
lated proteins sometimes appear together as a fused protein, either in the same
organism, or in the genome of some other organism (4). The presence of fusion
proteins is likely to indicate a strong functional linkage between independent
candidates, suggesting that the pathways they are a part of are proximate
enough for the occurrence of a dual function protein.

Functional associations suggested by the methods describe protein–pro-
tein relationships, which can be used to assign putative function to unchar-
acterized proteins. If a function, or more commonly, members, of a particular
pathway appear to be overrepresented in a set of linked proteins, it is highly
likely that the query protein either performs a similar function, or is directly
or indirectly linked to the particular pathway. Functional linkages obtained
using phylogenetic profile data have helped identify new pathways (5) and
understand patterns of evolution and conservation (6,7). Similarly, besides
elucidating functional relationships, Rosetta stone linkage data has been
used to reconstruct metabolic pathways in Escherichia coli (4), and has been
combined with other experimental and computational functional genomics
data sets to generate genome-wide interaction maps of high confidence in
other organisms (8,9).

Protocols for constructing phylogenetic profiles and identifying Rosetta stone
links are described below (see Methods). It is important to note that their implemen-
tation requires the ability to write and execute computer programs, including some
that involve the creation of complex logical structures. Proficiency in computer pro-
gramming is therefore assumed, as is the knowledge of basic local alignment search
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tool (BLAST) (10) sequence comparison approach. Users who find computer pro-
gramming daunting should collaborate with an experienced computer programmer.

2. Materials
2.1. Hardware

A personal computer or a computer cluster with a modern processor is
required. The use of a computer cluster is always advised over a stand-alone
machine for reducing analysis and compute time.

2.2. Software

1. Operating system (OS): the use of UNIX or a UNIX-based OS such as Linux is
advocated over other common OS. If other systems are preferred, users should
ensure that the OS supports the ability to write, compile, and execute custom-
generated code (see Note 1).

2. The BLAST package: BLAST package (10) is required for the purposes of
sequence comparison. The BLAST package also includes precompiled binaries
(“ready-to-run” programs) of various tools and utilities besides BLAST, and is
available for download from the National Center for Biotechnology Information
(NCBI) website for most commonly used OS (http://www.ncbi.nlm.nih.gov/
BLAST/download.shtml). The NCBI version of BLAST differs from the WU
Washington University-BLAST package (11) available from the Washington
University in St. Louis (http://blast.wustl.edu), both in implementation and results.
Therefore, programs that parse BLAST output should be modified based on the
version used. This protocol assumes the use of the NCBI BLAST package.

3. A programmatic wrapper: a wrapper program that is able to run BLAST searches
sequentially for each protein in the query set is required (see Note 2). The wrapper
program can be extended to include other steps in the protocol as well, such as
parsing of BLAST results, and execute house-keeping tasks such as moving and
storing various data in proper directories and compressing output files. This program
has to be written by the user.

4. BLAST results parser program: a program that is able to extract relevant infor-
mation from raw BLAST output (such as expectation values and start and stop
coordinates of the matching sequence span) is also required. Information rel-
evant to each method is described in detail in Methods. Raw BLAST output
could be subsequently discarded, or saved if disk space is inexpensive. The user
is free to write a parser program or use parsing programs available over the
Internet (see Note 2).

5. Other required programs: computer programs are also needed for the following
tasks:
a. Generating phylogenetic profiles using BLAST results.
b. Comparing phylogenetic profiles and measuring profile similarity.
c. Finding fusion proteins using BLAST results.
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Details of these tasks are described in Methods. These programs have to be
coded by the user.

3. Methods
Both the computational methods described in this chapter have common

initial requirements (described in Subheading 3.1.), such as the need for a
database of reference genomes, and parsed results of BLAST searches against
the database. Steps specific to the individual methods are described in
Subheading 3.2.

3.1. Common Initial Steps for the Phylogenetic Profiling Method 
and the Rosetta Stone Method

3.1.1. Creating a Database of Reference Genomes

Both methods require a database of genomes against which the query
sequences are compared for similarity. It is important to note that this database
should contain genomes that are fully sequenced, as opposed to, say, creating a
database similar to the BLAST nonredundant database, which is essentially a
repository of all known protein sequences. Use of a database that contains pro-
teins without regarding genome sequence status will generate incorrect profiles
and create complications when applying statistical tests of confidence to
Rosetta stone linkages.

Complete protein complements of fully sequenced genomes can be down-
loaded from NCBI (ftp://ftp.ncbi.nih.gov) or from websites of individual
genome sequencing centers (see Note 3). Users should ensure that all amino
acid sequences included in the database possess unique identifiers (see Note 4).
The more genomes included in the sequence file, the better the methods will
perform. Amino acid sequences of all proteins from the downloaded genomes
are concatenated into a single file for ease of use and more accurate calculation
of BLAST expectation (E) values. This file can also include proteins encoded by
bacterial plasmids, if so desired.

For illustration purposes, this database will be referred to as “myDatabaseFile,”
populated with the following sequences:

>ssolfataricus|gi|15896972

MIVPVKNEERVLPRLLDRLVNLEYDKSKYEIIVVEDGSTDRTFQICKEY
EIKYN NLIRCYSLPR
>ecoli_K12|gi|16127996
MRVLKFGGTSVANAERFLRVADILESNARQGQVATVLSAPAKITNHLVA
MIEKTISGQDALPNI
>hsapiens|gi|20093441
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MSLIEIDGSYGEGGGQILRTAVGMSALTGEPVRIYNIRANRPRPGLSHQH
LHAVKAVAEICDAE>hsapiens|gi|20093442
MGVIEDMMKVGMRSAKAGLEATEELIKLFREDGRLVGSILKEMEPEEI
TELLEGASSQLIRMIR>hsapiens|gi|20093443
MSGNFRKMPEVPDPEELIDVAFRRAERAAEGTRKSFYGTRTPPEVRAR
SIEIARVNTACQLVQ>>celegans|gi|1453778
MEYIYAALLLHAAGQEINEDNLRKVLEAAGVDVDDARLKATVAALEEV
DIDEAIEEAAVPAAAP>celegans|gi|1453779
MVPWVEKYRPRSLKELVNQDEAKKELAAWANEWARGSIPEPRAVLLHG
PPGTGKTSAAYALAHD
>scerevisiae|gi|6799765
MAEHELRVLEIPWVEKYRPKRLDDIVDQEHVVERLKAYVNRGDMPNLL
FAGPPGTGKTTAALCL

The contents of this file are in the “FASTA” format, wherein lines starting
with the “>” sign are treated as comments (for more details, see
http://www.ebi.ac.uk/ help/formats_frame.html) and lines that do not start with
the “>” sign are treated as sequence. For the proteins described in the mock
database above, the comment line contains an abbreviation of the organism
name (the first letter of the genus name concatenated with the entire species
name), followed by the words “gi,” which alert the user to the fact that the fol-
lowing identifier is a Genbank identifier. The identifier associated with each
sequence is unique, and can be used to retrieve records from the NCBI web-
site. This comment structure is used here just for illustration purposes, and
other more suitable formats can be envisioned depending on need.

Advanced users familiar with this step and the subsequent database format-
ting step for BLAST can choose to construct more advanced databases, such as
those with indices. If an advanced database is to be created, users are advised
to carefully follow instructions with respect to identifiers associated with the
individual sequences.

3.1.2. Formatting the Database for Use by BLAST

The database of reference genomes requires formatting before it can be used
for sequence comparison by BLAST. A special program called “formatdb,”
included with the BLAST tools package, is needed for this task. A number of
options can be set for formatdb, depending on the type of input and output
desired. However, for this protocol, as the input is a file containing amino acid
sequences and no additional information is to be generated, no options need to
be specified for formatdb (i.e., formatdb is run with default options):

% /path/to/blast/package/formatdb –i
myDatabaseFile
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This step creates additional files with the same name, but with different
extensions such as “.pin” and “.psq.” All possible formatdb parameters can be
viewed with the ‘-- help’ flag. After this step, the original file myDatabaseFile
is no longer needed by BLAST for sequence comparison; however, this file
should be maintained if disk space availability is not an issue. Once the data-
base file is formatted, it is ready for use by BLAST.

3.1.3. Running BLAST for All Proteins in the Query Set

Individual amino acid sequences in the query set are compared with the data-
base of reference genomes in a sequential manner, using the wrapper program
described in Subheading 2.2. The following is a simple example of the BLAST
command executed from within the wrapper script (with the wrapper script
written in the PERL language; for PERL, see http://www. perlfoundation.org/):

% perl /path/to/wrapper/myBlastWrapper.pl –i
myInputFile –d myDatabase File –b /path/to/BLAST/exe-
cutable –p myBlastParser.pl

Details of the options used for the wrapper program are as follows:

−i Name of the input file containing query protein sequences
−d Name of the reference genome database to use
−b The directory where the BLAST programs are located
−p The BLAST results parser program to use

Users are free to select and set more options based on the tasks ascribed to
the wrapper program. Information about various BLAST options can be
obtained using the ‘-- help’ flag.

The primary job of the wrapper program is to execute BLAST for each input
sequence, and store the output such that it can be retrieved with a unique iden-
tifier. The output can either be stored separately as results of each comparison,
or jointly, based on the configuration of the wrapper program. In addition, as
mentioned previously, other steps of the protocol such as parsing BLAST
results can also be executed from within the wrapper, greatly reducing the com-
plexity and size of the output. In the author’s experience, computational effi-
ciency is high if the wrapper program couples the BLAST step with the parser
step, and stores the parsed output for all input sequences in a single text file.
The following pseudocode describes this approach.

open myInputFile;
foreach querySequence j {

system “blastall –p blastp –i querySequence –d
myDatabaseFile –o myBLASTOutputForProtein_j”;
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system “myBlastParser.pl –i
myBLASTOuputForProtein_ j >>
myParsedBLASTOuputForProtein_ j”;
compress myBLASTOutputForProtein_ j;
move myBLASTOutputForProtein_j.compressed to dir 
storeRawBLASTData/;
}
close myInputFile;

3.1.4. Parsing BLAST Results

Parsing of BLAST results is required so that only the information necessary
for generating phylogenetic profiles and identifying Rosetta stone sequences is
retained from sequence matches against the database. This greatly reduces the
size of the input required for subsequent steps. For every match of the query
sequence against the database, at least five important details need to be captured
and retained from the raw output:

1. The unique identifier of the subject sequence.
2. The genome to which the subject sequence belongs.
3. The BLAST expectation value of the high-scoring pair (HSP).
4. The start and stop position of the HSP on the query sequence.
5. The start and stop position of the HSP on the subject sequence.

Besides these attributes, other bits of information such as raw scores, or
the percentage of sequence identity, can also be captured (see also Note 2).
As the user becomes more familiar with the methods, other pieces of infor-
mation can be utilized as filters, or even as substitutes for the primary attrib-
utes, when deciding the quality of a match or a hit against the reference
database.

One possible form of output from a parser program is described next:

>query >subject raw_score: value | E-value: value |
query_start: value | query_end: value |
subject_start: value | subject_end: value |
match_length: value | identity_percentage: value |
similarity_percentage: value | query_length: value |
subject_length: value
>hsapiens|gi|20093443 >hsapiens|gi|20093443
raw_score: 300 | E-value: 
1e-155 | query_start: 1 | query_end: 140 | sub-
ject_start: 1 | subject_end: 140 | match_length: 140
| identity_percentage: 100 | similarity_percentage:
100 | query_length: 140 | subject_length: 140
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>hsapiens|gi|20093443 >hsapiens|gi|14556780
raw_score: 220 | E-value: 1e-138 | query_start: 1 |
query_end: 105 | subject_start: 15 | subject_end:
155 | match_length: 105 | identity_percentage: 78 |
similarity_percentage: 91 | query_length: 140 | sub-
ject_length: 244
>hsapiens|gi|20093443 >celegans|gi|85444128
raw_score: 132 | E-value: 1e-66 | query_start: 22 |
query_end: 80 | subject_start: 107 | subject_end:
165 | match_length: 58 | identity_percentage: 70 |
similarity_percentage: 88 | query_length: 140 | sub-
ject_length: 111

In this illustration, each line represents a BLAST hit to the query in the
database of reference genomes. The output is divided into three columns: the
first column is the identifier for the query, the second is the identifier for the
hit (the subject) in the database, and the third describes details of the match,
such as E-values and start–stop coordinates. Herein, besides the required
attributes, raw scores, sequence identities and similarities, and subject
sequence length are also captured. Users are free to experiment with the var-
ious stand-alone parser programs available for free through the Internet, or
write their own (see Note 2). One advantage of writing a custom parser pro-
gram is that it proves helpful in getting acquainted with the raw BLAST
results.

3.2. Steps Specific to Individual Methods

3.2.1. The Phylogenetic Profiling Method

Phylogenetic profiles for each of the query input sequences can be created
using the parsed BLAST results. In this protocol, transformed BLAST E-values
will be used to construct the profile vector, rather than representing presence or
absence of the query in a genome using simple binary values of 0 and 1. This
use of BLAST E-values in generating profiles results in profile vectors with a
higher resolution, wherein the similarity or the distance between the vectors can
be measured more accurately.

3.2.1.1. GENERATING PHYLOGENETIC PROFILES FROM BLAST DATA

Generating profiles involves checking BLAST results for information
about best matches to the query sequence, from each genome included in the
database. The E-value of this best match is retained, transformed, and used in
profile construction. One method of transforming E-values, as described by
Pellegrini and coworkers (2), uses the following formulation:

116 Date



For each protein i and its highest scoring match in a genome j, Eij represents
the BLAST expectation value of the match and pij represents the transformation
of Eij, such that

Introduction of logarithm-induced artifacts during this transformation is
avoided by truncating values of pij > 1 to 1. When encoded in a computer pro-
gram, the result of this procedure is vector of N pij values, where N is the num-
ber of completely sequenced genomes included in the reference database. Users
are free to experiment with other ways of transforming BLAST E-values. The
following is a real-life example of the phylogenetic profile vector for the P. fal-
ciparum protein PFA0110w, created by comparing the query sequence against
a database of 163 completely sequenced genomes.

>pfalciparum|Pfa3D7|pfal_chr1|PFA0110w|Annotation|Sanger
1.000 1.000 1.000 1.000 1.000 0.072 0.076 0.068 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.067
1.000 1.000 0.079 0.070 0.082 1.000 1.000 0.072 0.070
0.070 0.070 0.079 0.086 1.000 1.000 1.000 0.072 0.072
1.000 1.000 1.000 0.084 0.080 0.076 0.069 1.000 1.000
1.000 1.000 0.072 0.061 0.082 0.072 0.072 0.072 0.072
0.059 1.000 0.061 0.084 0.071 0.080 0.080 0.080 0.080
0.072 0.080 0.072 1.000 1.000 0.080 0.070 1.000 0.084
0.084 0.087 0.062 1.000 0.084 0.086 1.000 1.000 0.058
0.062 1.000 1.000 1.000 0.072 0.068 0.069 1.000 1.000
0.054 1.000 1.000 0.076 0.062 1.000 1.000 1.000 1.000
0.086 0.082 1.000 0.079 0.065 1.000 1.000 0.087 1.000
0.076 0.058 1.000 1.000 0.068 0.068 0.068 1.000 1.000
0.068 0.080 0.080 1.000 1.000 0.072 1.000 1.000 1.000
1.000 1.000 1.000 0.079 0.079 0.079 1.000 1.000 1.000
1.000 1.000 0.067 0.079 1.000 1.000 0.076 0.070 1.000
1.000 1.000 0.079 0.061 0.067 1.000 1.000 1.000 1.000
1.000 1.000 0.024 0.072 0.061 1.000 0.069 0.062
0.000*0.072 0.076

Scale
1.000 0.000
(complete absence) (confident presence)

In this example, underlined scores represent archaeal genomes, whereas scores
in italics represent eukaryotic genomes, and “*” indicates the transformed

→

p
E

ij
ij

= − 1

log
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BLAST score from the match against the P. falciparum genome. Sequence
matches with BLAST E-values greater than 10−5 are typically discarded (see
Note 5). Besides E-values, other attributes of the HSP can also be used to decide
the quality of the match. For instance, a user might reject a match wherein the
length of the HSP (or all HSPs combined) is not greater than 50% of the query
length, or a match might be rejected based on a cutoff derived from the number
of shared identical amino acids, thereby assuming absence of the query protein in
the particular genome. These choices are reflected in the profile vector, and will
ultimately affect the quality of the final results.

Using this method, phylogenetic profiles are constructed for each amino acid
sequence included in the input file. The query set can be extended to include all
known proteins from the given genome, whereby profiles can be generated on
a genome-wide scale.

3.2.1.2. MEASURING PROFILE SIMILARITY FOR FUNCTION INFERENCE

Similarity between phylogenetic profiles is indicative of functional linkage
between the corresponding proteins and can be measured in a number of differ-
ent ways. Besides commonly used metrics such as Euclidean distance or
Pearson correlation, advanced measures such as mutual information, Hamming
distance, Jaccard coefficient, or the chance co-occurrence probability distribu-
tion can also be used (12). Mutual information (13–15) is the metric of choice
for this protocol, as it has the ability to capture inverse and nonlinear relation-
ships in the data, in addition to detecting direct and linear relationships.
However, users are free to use other metrics, if they seem to perform better.

Mutual information is an information theoretic measure, which is the great-
est when there is complete covariation between two sets of observations, and
tends to zero as the sets diverge. For two vectors of proteins X and Y, mutual
information (MI) can be calculated as follows:

In this equation, represents the marginal entropy of 
the probability distribution p(x) of gene X in each genome included in the
database, summed over intervals in the probability distribution, whereas 

represents the intrinsic entropy of the joint prob-
ability distribution of genes X and Y. Date and Marcotte (5) have described in
detail the application of mutual information for measuring profile similarity.
Users are directed to this paper for more information about the implementation
of the method.

Mutual information can be measured in a pairwise manner for proteins in the
query set. Naturally, all mutual information values are not biologically meaningful,

H X Y p x y p x y( , ) ( , ) ln ( , )= − ∑∑

H X p x p x( ) ( ) ln ( )= −∑

MI X Y H X H Y H X Y, ,( ) = ( )+ ( ) ( )−
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and a threshold needs to be adopted for discarding false-positives and functional
linkages that conflict with known biological facts. Unfortunately, it is difficult to
devise a cutoff that is useful for confidently describing both profile similarity as well
as biological validity of the linkages. One way of obtaining a primary cutoff value
relies on the use of shuffled profiles; mutual information scores between normal
profiles that match or fall below the highest score observed when comparing shuf-
fled profiles can be discarded. Certainly, other techniques can also be imagined,
such as using a set of known linkages to derive a true-positive to false-positive ratio,
which can then be used as a threshold.

Once a reasonable set of matching profiles is obtained, annotations of the
included proteins can be searched for overrepresentation of a particular func-
tion. Overrepresented annotations reveal functional links to particular path-
ways, suggesting a putative role for the query protein, especially if the query
protein in uncharacterized. As a test case, the profile of the P. falciparum
protein PFB0445c was generated and compared with profiles of all known 
P. falciparum proteins. The results capture functional links between PFB0445c
and other helicases in the parasite genome:

Query PFB0445c (helicase, putative)

0.70 PF10_0309 (hypothetical protein)
0.69 MAL6P1.119 (DEAD/DEAH box ATP-dependent RNA helicase, putative)
0.61 MAL7P1.113 (DEAD box helicase, putative)
0.58 PF14_0436 (helicase, truncated, putative)
0.57 PFE0215w (ATP-dependent helicase, putative)

In this example, mutual information scores in the left column indicate confi-
dence in the functional links; the greater the mutual information values, the
greater the confidence in the predicted linkages. Comparison against the Protein
families (Pfam) database (http://www.sanger.ac.uk/Software/Pfam/) reveals
that the hypothetical protein PF10_0309 included in the results also contains
helicase domains, demonstrating that the method captures biologically valid
functional links. Profile data used for this example is available for download
from the plasmoMAP website (http://cbil.upenn.edu/plasmoMAP/) (8). A score
of 0.559, based on scores derived from a comparison of permuted profiles was
used as the cutoff in this example.

As described previously, the input query set can be expanded to include the
entire protein complement of any given genome. After profiles are constructed
for all proteins, an all vs all comparison of profile similarity reveals functional
linkages on a local and genome-wide scale. This is highly useful in understand-
ing relationships between genes, and in some cases, has the ability to reveal new
systems and pathways, especially if a majority of the components involved are
of unknown function (5).
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3.2.2. The Rosetta Stone Method

The Rosetta stone fusion sequences can also be used to identify functional
links between proteins. The method entails looking for two or more proteins
that appear as a fused protein either in the same genome, or the genome of
some other organism. The presence of a fusion protein indicates that the
independent proteins are very likely to share a pathway, or are parts of path-
ways that are interlinked in some way, or even likely to physically interact
with each other.

3.2.2.1. APPLICATION OF THE METHOD

Initial steps of the protocol for identifying functional links based on fusion pro-
teins are similar to the protocol for generating phylogenetic profiles. The method
requires a database of completely sequenced reference genomes, and computer
programs to take an input file containing multiple amino acid sequences and com-
pare them against the database. The BLAST results need to be parsed, or gener-
ated in a form where the attributes such as E-values and start–stop coordinates are
retained. Once parsed BLAST output is available, it can be searched for
sequences with nonoverlapping regions of similarity for two or more independent
proteins. This can be algorithmically described as follows:

For any two proteins X and Y in a genome, identify all proteins (R) from a
set of completely sequenced genomes (N), sharing similarities with both X and
Y in distinctly different regions, where:

Xp ≠ Yp ≠ Rij; and

S(Rij, Xp)
BEGIN > S(Rij, Yp)

END or, S(Rij, Yp)
BEGIN > S(Rij, Xp)

END; and

p ∈ N

In this formulation, S represents the region of similarity spanning all iden-
tified HSPs between the fusion protein Ri from genome j (contained in N),
and proteins X and Y, from genome p, whereas BEGIN and END denote
amino acid positions of the similarity span on protein Rij. The E-value
assigned to the span is the minimum E-value observed among all HSPs that
consists of the match, provided all E-values are lower than 10−5 (see Note 5).
This algorithm needs to be coded as a computer program by the user, and set
to use parsed BLAST results as the input. The output should ideally contain
identifiers of the individual proteins and that of the Rosetta stone sequence,
name of the genome in which the fusion sequence was identified, and the
BEGIN and END positions associated with the Rosetta stone sequence.

The following is an example of results obtained when the protocol was
applied to the genome of P. falciparum. Amino acid sequences of all 5334 
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Fig. 1. A network of functional linkages in the human malarial parasite P. falciparum
generated using the Rosetta stone method. Functional linkages were identified for the
entire protein complement of the parasite using the Rosetta stone protocol. From this set,
Rosetta links based on fusion sequences that were present only in the P. falciparum genome
were discarded. Overall, 5176 links between 993 proteins were retained and used to recon-
struct a part of the P. falciparum functional interaction network (see inset, proteins are rep-
resented as nodes and functional links as unweighted edges). Nodes and edges in the
network are categorized based on their annotation; nodes representing hypothetical proteins
are larger in size, and connections between hypothetical proteins are indicated in gray. Three
examples of protein clusters that contain increasing numbers of hypothetical protein com-
ponents are described as examples. Characteristics of the cluster help reveal characteristics
of the included proteins and allow function assignments, as in the case of the hypothetical
protein PFL1410c, which can be implicated in transport based on connections with a num-
ber of ATP-binding cassette transporters. Clusters made up entirely of novel proteins, such
as the cluster containing hypothetical proteins MAL6P1.273, PFE1490c, and PF10_0276,



P. falciparum proteins were included in the input file, and the results indi-
cated functional linkages between 993 unique proteins.

The output contains information about the protein pair linked by the
fusion protein, along with information about the start and stop coordinates of
the similarity span between the queries and the database hit. “A” and “B”
represent the linked proteins, whereas “RS” indicates the Rosetta stone
sequence that links the proteins together. The program can be coded to pro-
duce this or any other form of output. In the author’s experience, multiple
forms of the output that capture different aspects of the fusion are helpful in
organizing information. For instance, the output arranged in the following
manner allows the user to comprehend at a glance the extent of detected
fusions:

Together, the different forms of output allow efficient analysis of the results.
Quality of the results can be further enhanced and the occurrence of false-pos-
itives can be reduced by incorporating as filters, more features associated with
the HSPs. See Note 6 for additional information about enhancing result quality
and choosing possible filters.

3.2.2.2. TESTING CONFIDENCE OF THE ROSETTA LINKAGES

To ensure the absence of errors, it is important to check the output of the
program using known examples of fusion proteins. One well-known exam-
ple of a fusion that can be used for testing data quality is the dihydrofolate
reductase thymidylate synthase (DHFR-TS) protein in P. falciparum, which
represents a fusion of the independently encoded dihydofolate reductase and
thymidylate synthase in humans, or the yeast topoisomerase II protein,
which links the E. coli proteins gyrA and gyrB. Any implementation of the
method should be able to correctly identify functional links and fusion pro-
teins, when the earlier examples are used for testing.

Although most functional links identified by this method are accurate, it
is likely that some false-positives will be included in the result set, especially
when dealing with genomes of higher-order eukaryotes. It is therefore best
to statistically determine the validity of the results, such as by using a test
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Fig. 1. (Continued) are likely to reveal previously unknown pathways or cellular systems.
P. falciparum functional linkages derived using the Rosetta stone method are available for
download from the plasmoMAP website (http://cbil.upenn.edu/plasmoMAP/) (8). The
network was generated using the LGL package (19). Some independent clusters are
repositioned for clarity.



described by Verjovsky Marcotte and Marcotte (16), which provides a confi-
dence value for each predicted functional link. The test is introduced here in
brief, and users are encouraged to refer to the original publication for details
and tips on computational implementation. The author takes into account
two types of possible ambiguities when determining probability of finding
functionally linked proteins by random chance. First, the probability of find-
ing k number of fusions by random chance is calculated based on the hyper-
geometric distribution, given the number of BLAST hits for proteins X and
Y in a database of size N.

p(number of fusions ≥ k | x, y, N) =

Here, x and y represent hits to proteins X and Y in the database, respectively,
and i represents a counter for summation.

Next, the author introduces a correction term, which addresses potential
problems arising because of the presence of paralogs of the proteins X and Y.

p(X, Y are functionally linked in the presence of paralogs)

This term directly addresses problems encountered when deciding the
accuracy of identifying proteins represented in the fusions; if X and Y are
represented by single copies, then the probability of finding linked proteins
will be one. The probability decreases as more paralogs of X and Y occur in
the genome. The final probability of finding proteins X and Y linked by ran-
dom chance given these conditions, is then simply the product of the two
probabilities. Based on the information provided by the author, this score
performs adequately when benchmarked against information derived from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (17).

3.2.2.3. EXPANDING THE ROSETTA STONE METHOD

The Rosetta stone method can be extended to include the entire genome,
whereby functional links are identified on a genome-wide scale, using the
entire protein complement as input (Fig. 1). The fullest potential of this
method can be achieved when the query genome is a part of the database, and
all sequences in the query genome are compared with each other. Besides
identifying functional links, this also identifies fusion proteins in the query
genome that serve to link independent proteins in other genomes. Thus, the
entire landscape of functional linkages is revealed, along with information
about fusions that might indicate coupling between pathways and systems.

= ( )1 / max ,X Yparalogs paralogs

1
0

1

−
=

−

∑ p i x y N
i

k

( | , , )
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3.3. Verifying the Value of Functional Linkages Obtained 
by Phylogenetic Profiling and the Rosetta Stone Method

Both protocols described in this chapter are representative of computational
functional genomics methods that can be used to identify linkages between
proteins on a large scale. Final verification of the usefulness and validity of 
the biological knowledge gained by the application of such methods is only possible
in the experimental realm. However, evidence from other small- or large-scale
experiments can prove quite helpful in corroborating results. It is also important
to note that predictions from these and other methods, such as yeast two-hybrid
and tandem-affinity purification experiments, may not necessarily overlap with
each other, as each method independently captures only those parts of the inter-
actome that are most accessible to it, and works best with proteins and linkages
that fit the method’s definitions. Therefore, increasingly, studies aimed at find-
ing functional linkages and subsequently protein function now aim to combine
data from diverse sources, resulting in more robust and confident reconstruction
of biological scenarios (8,9,18). Ultimately, it is up to the users to decide how
best to use the results, such that they prove maximally beneficial in understanding
protein function and protein–protein relationships.

4. Notes
1. Several utilities that allow users to write and execute custom code are available for

commonly used OS such as Microsoft Windows and Macintosh. In addition, pro-
grams like Cygwin (http://www.cygwin.com/) provide Windows users a UNIX-
like environment to compile and run programs in common programming
languages. Recent versions of the Macintosh OS (Mac OS X or higher) provide a
“terminal” interface through the X11 suite.

2. Users familiar with the BLAST package will notice that a separate program is not nec-
essary to run individual sequences included in a single input file, indeed, the “blastall”
program can compare all proteins sequentially. This is a valid way of running BLAST;
however, in some instances, error-checking can prove cumbersome. Advanced users
can also try different BLAST output options, such as output in tabular format, which
can at times eliminate the need for result parsing. Note that tabular output will report
on a fixed number of attributes associated with the HSPs (see BLAST documentation).
A number of BLAST parsing programs are freely available on the Internet. In 
addition, large, well-established packages such as BioPerl (http://www.bioperl.org),
BioPython (http://www.biopython.org), and BioJava (http://www.biojava.org),
associated with the PERL, Python (http://www.python.org/), and JAVA
(http://www.java.com) languages, respectively, also make available modules that deal
with BLAST results.

3. Often times, sequencing centers place restrictions on the use of complete genome
sequencing data before its publication. Therefore, it is best to adhere to any agreements



or contracts put forth by the sequencing centers, and ask permission from the prin-
cipal investigators before using the data.

4. In the author’s experience, gene/protein identifiers are used in a sequence-specific
context by the sequencing centers, meaning two or more sequences can possess
the same identifiers. Users should ensure that all identifiers are unique, to prevent
errors in the results.

5. It is always advisable to use a low E-value cutoff to avoid including possible false
positives. For some genomes, especially those of higher eukaryotes, higher E-value
cutoffs might be required to capture accurate sequence matches. An empirical survey
of published literature reveals that authors usually trust and accept sequence
matches with E-values of 10–5.

6. Identification of correct functional links using fusion sequences is greatly affected
by the presence of certain “promiscuous” domains (such as ATP-binding cassette
domains). If possible, sequences with such domains should be identified and dis-
carded during analysis, or placed in a separate low-confidence group. Other cri-
teria for enhancing the value of the match can also serve to strengthen results. For
instance, accepted matches that contain a high percentage of identical amino
acids will certainly increase confidence in the results. Using a strong BLAST E-
value cutoff can also prove beneficial in many instances (see Note 5).
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Bioinformatics Tools for Modeling Transcription Factor
Target Genes and Epigenetic Changes

Ramana V. Davuluri

Summary
The combinatorial control of gene regulatory switches involves both transcription factor (TF)

complexes and associated epigenetic modifications to the chromatin template. The novel high-
throughput technologies, such as Chromatin ImmunoPrecipitation ChIP-chip, have enabled
genome-wide in vivo identification of TF target regulatory regions and related epigenetic modifi-
cations, which led to the view of highly dynamic TF–DNA interactions in activated or repressed
promoters. Consequently, modeling and elucidating the combinatorial interaction of TFs and corre-
sponding cis-regulatory modules in target promoters is of paramount interest. An estimated 5% of the
genes in mammalian genomes code for TF proteins, and computational modeling of cis-regulatory
logic would rapidly increase the pace of experimental confirmation of TF target promoters at the
bench. The purpose of this chapter is to discuss the use of different bioinformatics tools for predict-
ing the target genes of TFs of interest in mammalian genomes, and the application of these meth-
ods in the analysis of ChIP-chip experimental data. The author describes most commonly used
databases and prediction programs that are available on the World Wide Web and demonstrate the
use of some of these programs by an example. A list of these programs is provided along with their
web Uniform Resource Locator (URLs) and guidelines for successful application are suggested.

Key Words: Cis-regulatory logic; computational modeling; CpG island; target promoter;
transcriptional module; ChIP-chip.

1. Introduction
Transcriptional regulation of protein-coding genes involves a number of dif-

ferent levels of organization in the cell nucleus. The transcription machinery is
responsible for the decoding and expression of genes in a regulatory network
made up of various coregulatory complexes that are interconnected to control
RNA synthesis from a given promoter (1). The key players of the transcriptional
regulation are the transcription factors (TFs) that form complexes with other



interacting proteins and bind to sequence specific cis-regulatory elements or
TF-binding sites (TFBSs) in gene promoters. These clusters of TFBSs, always
of different types, and some represented multiple times, which occur synergis-
tically in gene regulatory regions, are known as cis-regulatory modules (2).
Emerging evidence suggests that alternative states of promoter activity (activation
or repression) are influenced by interconnected assembly of transcriptional
regulatory networks and epigenetic modifications at a chromatin template (3).

A key component in this epigenetic machinery is the occurrence of histone
modifications around the promoter region of a gene (4–6), and different combi-
nations of histone modifications may act synergistically or antagonistically to
affect gene expression (7). It is known that acetylation of lysine 9 at histone H3
(H3-K9) is linked to transcriptional activation (8), whereas dimethylation of the
same lysine seems to specify transcriptional repression (9). Regarding this,
coregulatory proteins, which often possess chromatin modulating activities,
appear to act cooperatively with partner TFs to establish patterns of gene
expression, and thus, provide considerable functional flexibility in specifying
transcriptional activation or repression (3,10).

Consequently, modeling the cis-regulatory modules in the activated or
repressed target promoters of specific TFs is required to elucidate the transcrip-
tional regulatory machinery. The first step in modeling the cis-regulatory modules
is specifically identifying the TFBSs in the target promoters of TFs. Which gene
promoters are targets of a given TF is partly determined by the DNA-binding
domain of the TF protein. This domain allows the TF to bind to its specific TFBS
in the target gene promoter. Extensive molecular research has provided a wealth
of such information about experimentally characterized gene promoter
sequences, TFs, and their binding sites (TFBS). Databases such as JASPAR (11),
TRANSFAC (12), TRRD (13), and TFD (14) provide information about TFs and
experimentally known TFBSs. In theory, the availability of these resources along
with gene promoter databases, such as MPromDb (15), DBTSS (16), TRED (17),
and EPD (18), should have made the task of finding TF target promoters a
straightforward approach. For example, one can scan the promoter sequences in
a genome of interest for the location of TFBS by using programs, such as
MATCH (19), which uses TRANSFAC position weight matrices (PWMs). These
PWM-based scanning programs are extremely useful for the identification of
potential TFBS in a small promoter region around the Transcription Start Site
(TSS) of a gene of interest, but produce too many false-positive predictions
when applied to multiple promoters at genome level.

Consequently, determination of the TF targets is a daunting task (20).
Recent programs have greatly improved in their TFBS prediction accuracy
by incorporating sequence conservation information through phylogenetic
footprinting (21–25) and by modeling the cis-regulatory modules (3,26–28).
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The drawback of these integrative approaches is that these programs tend to
miss many functional TFBSs that show very little sequence conservation
even across modestly distant species, because of single-nucleotide substitutions
and small indels within the regulatory regions.

Novel high-throughput technologies, such as ChIP-chip, have enabled
genome-wide identification of the epigenetic mechanisms and protein–DNA
interactions that effect gene expression (29). In ChIP-chip experiments, chromatin
immunoprecipitation of specific protein/DNA complexes followed by
microarray analysis is performed to probe a promoter microarray panel (e.g.,
CpG-island microarray panel [30]). In recent years, the author (31–34) and
others (35) have successfully used ChIP-chip assays to find the target genes
of TFs in mammalian systems. The major focus of this chapter is to introduce
different bioinformatics tools that identify TFBS in a set of genomic
sequences, and discuss the application of these methods in the high-level
analysis of ChIP-chip experimental data.

2. Materials
The user must have access to a computer with Internet access; for example,

a PC running Microsoft Windows or Linux, an Apple Macintosh, or a UNIX
workstation. The user should be familiar with the use of Netscape Navigator or
Microsoft Internet Explorer, and the R statistical package http://www.r-project.org/.
If the R programming package is not readily available the user can download the
R base package from R-project website (through http://CRAN.R-project.org).
The classification packages “rpart” and “randomForest” should be downloaded
and installed in R. The user-friendly commercial CART software from Salford-
systems (http://www.salford-systems.com) and the professional version of
TRANSFAC from Genomatix (http://www.genomatix.de) would be helpful, but
not necessary. The list of commonly used TFBS prediction programs based on
PWM and phylogenetic footprinting approaches are provided in Table 1.

3. Methods
First an overview of the methodology is provided in Subheading 3.1., then

a worked example is presented in Subheading 3.2.

3.1. An Overview of In Silico Identification of TF Target Promoters

Quite a few methods are available to scan for TFBSs in a candidate promoter
sequence. The simplest method of searching for a TFBS is by its consensus
sequence of preferred nucleotides at specific positions of the binding site (36).
Perhaps the most widely used method is the PWM approach, wherein a candidate
TFBS is represented by a matrix of nucleotide scores reflecting the likelihood
of each nucleotide at specific position (37). Although consensus sequence and
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PWM-based models do not capture the complexity of TF–DNA interactions
and produce too many false predictions at genome scale, these simple and easily
interpretable models provide a very good approximation to reality (38). To
reduce the number of predictions found by chance, recent methods have incor-
porated additional information, such as use of complex sequence motif models
(39–41), conservation of TFBSs in orthologous promoters of closely related
species (42–45), and clustering of binding sites in promoters of coregulated genes
(3,24,46). In this protocol, a combination of sequence conservation and clustering
of TFBSs of known PWMs is described in predicting and classifying the target
promoters (see Note 1). Readers are encouraged to read recent reviews (47–49)
for practical strategies to scan for TFBSs.

3.1.1. Identifying Candidate TFBSs by PWM Approach

A number of databases of experimentally supported TFBSs have been
assembled (Table 1). The largest and perhaps most widely used databases are
TRANSFAC (12) and JASPAR (11), which catalog eukaryotic TFs, associated
binding sites, and PWMs. Similarly, PWM-based sequence scanning pro-
grams, such as MatInspector (50), MATCH (19), and MATRIX SEARCH (51),
can be used to search the query sequences for candidate TFBSs by matching
the corresponding PWMs. These programs are quite similar in the use of PWM
databases (e.g., TRANSFAC or JASPAR) and statistically principled methods
in scoring the sites.

Choosing a cutoff threshold for the PWM score is the main requirement in
determining whether a sequence site is a putative TFBS or not, and the number of
TFBS predictions in a candidate sequence is inversely proportional to the cutoff
values. A basic procedure to scan a query sequence using PWM is illustrated in
Fig. 1. MATCH uses the matrix library collected in the TRANSFAC database.
MATCH has built-in optimized matrix cutoff values (called profiles), which were
precalculated to provide three different search modes of varying stringency. The
user can choose one of these three predefined profiles: (1) minFP—cutoffs
minimizing false-negative rate, (2) minFN—cutoffs minimizing false-negative
rate, and (3) minSum—cutoffs minimizing the sum of both errors. The use of
minSum profile is suggested, because sequence conservation is added as an
additional criterion to minimize the false-positive predictions in the next step.

3.1.2. Identification of Conserved TFBSs in Orthologous Promoters

As PWM-based methods tend to produce an overwhelming number of false-
positives, phylogenetic footprinting or comparative genomics approach has been
widely used by both experimental and computational biologists to aid regulatory
element identification by examining orthologous sequences from multiple species
(52). Recent studies (28,53,54) have identified blocks of highly conserved regions
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in orthologous human and mouse promoter sequences. Systematic analyses of
sequence conservation in known human TFBSs was performed to demonstrate
the use of sequence conservation as a useful criterion to identify putative binding
sites (55,56). Several phylogenetic footprinting methods have been developed for
identifying putative binding sites for TFs with known PWMs.

Alignment-based methods, such as rVISTA (57) and ConSite (58), first
compute a multiple sequence alignment of the set of orthologous sequences
and then scan for TFBSs in the conserved regions using PWMs. If the regu-
latory regions are too divergent and fail to align properly, de novo programs,
such as FootPrinter (42,59), can be used to identify sets of subsequences that
exhibit a high degree of conservation given a set of orthologous input
sequences and the phylogenetic tree relating them. Blanco et al. (60) pro-
posed a new approach in which they first translate the nucleotide sequence
of the promoter into an alphabet of different symbols representing different
TFs of known PWMs. These TF-maps of two related promoters (e.g., of
orthologous or coexpressed genes) were then aligned using global pair-wise
alignment method. In this protocol, the use of alignment-based methods or
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Fig. 1. TFBS prediction by PWM approach: a schematic representation of position
frequency matrix (PFM) and PWM construction. The PWM is used to scan the promoter
sequences to score the TFBSs. Experimentally known EREs from Jin et al. (24) were
used to prepare the PFM. PFM is converted to PWM, which is in log scale for efficient
computational analysis.



TF-map alignments of orthologous promoters is suggested. The effectiveness
of either of the approaches largely depends on the quality and availability of
orthologous promoter sequences. The use of OMGProm database (61), which
contains the promoters of orthologous mammalian genes and their sequence
alignments is suggested.

3.1.3. Classification of Target Promoters From Nontargets 
and Inferring cis-Regulatory Modules (TFBS Clusters) 
Using Decision Tree Methodology

TF interaction is an important aspect of mammalian gene regulation.
Through the fine tuning of different partners, a specific TF could involve in
different cellular processes and achieve opposite downstream effects by either
activating or repressing the direct target promoters (3). Different methods to
infer cis-regulatory modules in a given set of target promoters have been
developed (3,24,46,62,63). Most of the methods rely on discriminating a set
of target promoters from nontarget promoters by using TFBSs or sequence
motifs as feature variables in classification function. The best discriminating
feature variables (e.g., TFBSs) are then extracted to infer the cis-regulatory
modules. In this protocol, the use of decision tree approaches is recommended
for their simplicity and interpretability.

Tree-based statistical methods have become increasingly popular since
the publication of the CART monograph (64). These approaches have many
advantages over discriminant analysis, as tree-based models are easy to
interpret, are nonparametric, and make no assumptions regarding the
covariance structure of the two groups. CART analysis provides a better
understanding of the dependence of the response variables (yi) (promoter
status—target or nontarget in the present case) on the structure of the
relationships of potential explanatory variables (xi) (e.g., TFBSs—present
or not present in a given promoter) and their combinations, together with
their high-level interactions. If (yi) is binary, CART produces a classification
tree, whereas if the response variable is continuous, a regression tree is
produced. In essence, CART uses recursive partitioning and asymmetric
stratification to develop tree-like models. CART splits the data at a parent
node by determining a cutoff value along the range of values for an
explanatory variable, thus producing two child nodes with greater
homogeneity (purity) than the parent node.

Child nodes are recursively treated as parent nodes, thereby continuously
splitting the data until a stopping criterion is reached and a set of terminal nodes
are produced, which in total resemble an inverted tree. Overfitted trees are grown,
and then pruning trims the trees to a more optimal size using test samples or
cross-validation. Each terminal node is assigned a class that is determined by the
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class representation in that group. The resulting model is a highly interpretable
decision tree, which helps design further experiments. Some of the principal limi-
tations of CART are low accuracy (because of the use of piece-wise, constant
approximations) and high variance or instability. In particular, when the number of
variables (TFBSs) is much larger than the number of observations (promoters),
CART would fail to give a robust classification model (see Note 3).

In order to limit the number of variables for CART analysis, one can use the
Random Forest program (65) to preselect the most discriminative variables
from a large number of input variables. Random forest is an ensemble of many
decision trees, such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees in the forest.
To classify a new object from an input vector, the algorithm applies the input
vector to each tree of the forest. Each tree is a separate classification model, and
the tree “votes” for that class. The forest then chooses the classification having
the most votes over all of the trees in the forest. The forest error rate depends
on the correlation between any two trees in the forest (increasing the correlation
increases the forest error rate) and the strength of each individual tree in the
forest (a tree with a low error rate is a strong classifier and increasing the
strength of the individual trees decreases the forest error rate).

Random Forest can handle thousands of input variables without variable
selection and gives estimates of what variables are important in the classifica-
tion. Although Random Forest is a robust classifier, the black box nature of the
algorithm makes it impracticable to infer the decision rules from thousands of
trees. In the present case, it is critical to understand the interaction of variables
(TFs) that provide the predictive accuracy. Hence, the use of Random Forest for
variable selection followed by application of CART algorithm is recommended.

The commercially available CART program (66) is perhaps the best and is
user-friendly, and the authors have used it in their earlier studies (3,24). If the
commercial program is not available, the user may use rpart, a free implemen-
tation of CART in the R statistical package. Similarly, the freely available
implementation of Random Forest in R can be used for variable selection. The
author suggests “Gini” method as the splitting method for growing the tree and
the 10-fold cross-validation to obtain the optimal minimal tree. TFBSs pre-
dicted by MATCH and conserved in the human and mouse orthologous pro-
moters can be used as predictor variables, wherein each binding site may be
considered as a binary variable, such that it was either 1 or 0, depending on
its presence or absence within a specified region.

3.2. Worked Example

Various methods are discussed to predict TFBSs in a given promoter and
decision tree classification methods in the previous sections. Now will be
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discussed which programs to choose and how to use those programs in practice.
Given two sets of genome coordinates (usually genomic locations of target
probes and nontarget probes from ChIP-chip experimental data analysis) the
following steps are recommended in classifying target promoters from nontargets
and inferring the cis-regulatory modules. Several alternatives for targets and
nontarget sets are possible (e.g., acetylated promoters vs methylated promoters,
target promoters of specific TF vs nontarget promoters, and methylated- vs
unmethylated-CpG islands).

3.2.1. Procedures

1. Retrieve human and mouse orthologous sequence regions by extending 500 bp at
both ends of each probe of the input set of genome coordinates. Each of the retrieved
sequences would then be of length 1 kb plus the probe length (60 bp in case of Agilent
promoter array Agilent Technologies [http://www.home.agilent.com.]), with a corre-
sponding orthologous region of similar length in human or mouse. The user can use
either OMGProm or USCS genome browser to retrieve the sequences.

2. Use MATCH to predict the TFBSs in each of the sequences by using the minSum
cutoff profile.

3. Consider the conserved TFBSs by comparing the MATCH predictions in orthologous
promoter pairs. See Note 2 for alternative approaches to predict TFBSs.

4. Choose a primary TF of interest and locate its conserved binding sites. For
example, Estrogen Recepter (ER)-α would be primary TF of interest if the ChIP-
chip data was obtained by using antibody against ER-α TF. If multiple TFBSs of
primary TF are predicted within a given sequence region, choose the TFBS clos-
est to the center of the probe.

5. Locate all the TFBSs within −220- to +220-bp region of primary TFBS for each
sequence. Prepare a data matrix (xij), in which i-th row (object) and j-th column
(variable) correspond to i-th promoter and j-th TF, respectively. The data matrix is
binary in nature, such that depending on j-th TF has its binding site
located or not located in i-th promoter. Similarly, prepare the classification vector
or response variable yi, such that depending on whether i-th promoter is
target or nontarget. The user may also use the actual counts (number of TFBSs
present in the promoter for each TF) in the data matrix, in which case the data
matrix is not binary but quantitative in nature.

6. Run RandomForest program in R console by using “randomForest” command (e.g.,
ER.rf <– randomForest[x = X, y = y, importance = T, proximity = T, ntree = 1000,
strata = y, sampsize = c(23, 23)], where X is the data matrix of feature variables
and y is the classification vector.

7. Use the function “importance” to extract the variable importance. For example, the
R command “ER.imp <– importance(ER.rf)” gives a matrix of number of classes
+2 columns (four columns for two class problem), in which the first two columns
are the class specific mean decrease in accuracy, the third column is the mean
decrease in accuracy, and the last column is the mean decrease in Gini index.

yi = 10⏐

xij = 10⏐
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Select a subset of variables by removing a certain percentage (20–25%) of the
least important variables by using mean decrease in accuracy and/or Gini index
values in columns 3 and 4 of the importance matrix (see Notes 3 and 4).

8. Repeat steps 8 and 9 by using the selected subset of variables 5–10 times, and
finally select a subset of 10–20% of the most important variables.

9. Using the subset of variables selected in step 9, run CART to produce the decision
tree that classifies the two sets of promoters. The splitting rules at each node can
be interpreted as “if-then” statements to determine what TFBS are present in each
class of promoters to determine the regulatory modules.

3.2.2. Results of Application to ER-α Targets

The above steps (except the Random Forest steps 8 and 9) have been success-
fully implemented in the earlier studies to classify ER-α targets from nontargets
(24) and acetylated ER-α targets from methylated ER-α targets (3,24). A manu-
script describing the above algorithm is currently under preparation. An automated
version of the computational pipeline would soon be made available (see Note 5).

To demonstrate the above steps, the ER-α target data set from Cheng et al.
(3) consisting of acetylated ER-α promoters (target set) and methylated ER-α
promoters (nontarget set) are used. Briefly, ChIP-chip experiments were con-
ducted by probing the 12 K CpG-island microarray (30) with series of different
ChIP assays using antibodies against ER-α, acetyl-, and dimethyl-H3-K9 in
MCF7 cells treated with E2 for 0, 3, 12, and 24 h. Integrated statistical and
genome analysis of these data identified 92 ER-α target promoters, of which
40 were classified as acetylated (upregulated) and 28 as methylated (downregu-
lated) targets. Retrieve human and mouse orthologous promoter sequences that
correspond to these probes from OMGProm database, and ran MATCH program
on both human and mouse sequences. First find the TFBSs of ER-α (primary TF
of interest). Table 2 gives the list of genes, and genomic coordinates of the
sequences analyzed. Then locate all the TFBSs within −220 and +220 region
around the predicted ERE, and prepare the data matrix as explained in step 7.
Table 3 presents part of the data matrix, which includes the top ranking TFs as
determined by Random Forest variable importance (in step 9). The original data
matrix contains all the TFs that have at least one TFBS in 20% of either of the
promoter sets. Figure 2 presents the plot of variable importance obtained in
step 9. Then select the top 10 ranking variables, ranked according to the mean
decrease in accuracy, for step 10. Here the number of variables selected was
arbitrarily chosen; user should repeat step 10 by varying this number. Using the
subdata matrix that contains only the selected 10 variables run CART and/or
rpart program.

Figure 3A presents a minimal cost tree constructed based on these TFBSs as
the categorical predictor variables. The prediction rate based on 10-fold
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Table 2
ER-a-Responsive Regions

Gene- Human sequence 
Type ID (−220 to +220 of ERE) Mouse orthologous sequence

Ac 333 chr19:41051154-41051607(+) chr7:25859980-25860432(−)
Ac 595 chr11:69162963-69163416(+) chr7:139353963-139354415(()
Ac 652 chr14:53494338-53494791(−) chr14:41471482-41471934(−)
Ac 1380 chr1:204014722-204015175(+) chr1:194917960-194918412(−)
Ac 1745 chr2:172774828-172775281(+) chr2:71226655-71227107(+)
Ac 2553 chr15:48434500-48434953(−) chr2:126189214-126189666(−)
Ac 3099 chr2:74973752-74974205(+) chr6:83116970-83117422(−)
Ac 4201 chr6:43088557-43089010(−) chr17:44192432-44192884(+)
Ac 4207 chr19:19161832-19162285(−) chr8:69294338-69294687(+)
Ac 4609 chr8:128818383-128818836(+) chr15:61998428-61998880(+)
Ac 5018 chr14:22305623-22306076(+) chr14:48877700-48878152(+)
Ac 6925 chr18:51407456-51407909(−) chr18:69575125-69575577(+)
Ac 7057 chr15:37659195-37659648(+) chr2:117624437-117624889(+)
Ac 7779 chr1:208140357-208140810(−) chr1:191646305-191646757(+)
Ac 7779 chr1:208140357-208140810(−) chr1:191646473-191646925(+)
Ac 8317 chr1:91679122-91679575(+) chr5:106027962-106028414(+)
Ac 8615 chr4:77006595-77007048(+) chr5:91473337-91473789(+)
Ac 9908 chr4:77006600-77007053(−) chr5:91473341-91473793(−)
Ac 11273 chr16:28743036-28743489(+) chr7:120551563-120552015(−)
Ac 25939 chr20:35013301-35013754(−) chr2:156591900-156592352(−)
Ac 29090 chr18:69966999-69967452(+) chr18:85118618-85119070(−)
Ac 51110 chr8:71743847-71744300(−) chr1:13793443-13793895(−)
Ac 53373 chr12:112121480-112121933(+) chr5:119740487-119740939(−)
Ac 54433 chr4:111094083-111094536(+) chr3:128764022-128764474(−)
Ac 54737 chr13:19105862-19106315(+) chr14:51190475-51190927(+)
Ac 55920 chr1:17511227-17511680(−) chr4:139582591-139583043(+)
Ac 60314 chr12:51979988-51980441(+) chr15:102392356-102392808(+)
Ac 79694 chr6:96132139-96132592(+) chr4:26481957-26482409(−)
Ac 79980 chr20:34833961-34834414(−) chr2:156462406-156462858(−)
Ac 80256 chr9:35105594-35106047(−) chr4:42960161-42960613(−)
Ac 80256 chr9:35105594-35106047(−) chr4:42961363-42961815(−)
Ac 81603 chr10:104391986-104392439(+) chr19:46047350-46047802(+)
Ac 84447 chr11:64658309-64658762(−) chr19:5835661-5836113(+)
Ac 116138 chr6:43089208-43089661(+) chr17:44191823-44192275(−)
Ac 127933 chr1:159199138-159199591(+) chr1:170189611-170190071(−)
Ac 136319 chr7:135118928-135119381(−) chr6:35633646-35634098(−)
Ac 144608 chr12:14847000-14847453(+) chr6:137599279-137599731(+)
Ac 153364 chr5:89806716-89807169(−) chr13:77784071-77784523(+)
Ac 284403 chr19:41237537-41237990(+) chr7:25693030-25693482(−)
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cross-validation was 86% for acetylated targets and 84% for methylated targets.
Based on the splitting rules at each node and applying the “if then” rules in the
CART tree, three cis-regulatory modules i.e., ERE + MYC, ERE + MYB, and
ERE + E47 + CETS168, were identified for upregulated (i.e., more acetylated)
targets and four modules (ERE + HNF3α, ERE + AP3, ERE + E2A, and ERE +
E47) were identified for downregulated (i.e., more methylated) targets (Fig. 3B).
Overall, CART and Random Forest analyses identified seven distinct cis-regulatory
modules for up- or downregulated ER-α target genes. The user should try
different top ranking variables (TFs) to construct various CART trees and should
focus on those modules that are predicted consistently.

4. Notes
1. Despite great progress, TFBS prediction by computational approaches alone is still

far from perfect. The existing programs that combine PWM and comparative
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Table 2 (Continued)

Gene- Human sequence 
Type ID (−220 to +220 of ERE) Mouse orthologous sequence

Me 119 chr2:70907791-70908244(−) chr6:86456544-86456996(+)
Me 2313 chr11:128068485-128068938(+) chr9:32463271-32463723(−)
Me 4035 chr12:55809318-55809771(+) chr10:127356571-127357023(−)
Me 5048 chr17:2444402-2444855(+) chr11:74448879-74449331(−)
Me 5101 chr13:66702595-66703048(−) chr14:88356851-88357303(−)
Me 5783 chr4:87872450-87872903(+) chr5:102458949-102459401(+)
Me 7702 chr11:9438737-9439190(+) chr7:103914186-103914638(+)
Me 7745 chr6:28213421-28213874(+) chr13:21014835-21015287(−)
Me 8667 chr8:117846957-117847410(−) chr15:51873755-51874207(−)
Me 9774 chr6:136651331-136651784(−) chr10:20240553-20241005(+)
Me 11096 chr21:27259775-27260228(−) chr16:84999666-85000118(−)
Me 53335 chr2:60689565-60690018(−) chr11:23975167-23975619(+)
Me 55064 chr9:4656506-4656959(−) chr19:28220480-28220932(−)
Me 79661 chr15:73426510-73426963(+) chr9:57261658-57262110(−)
Me 80207 chr19:50779773-50780226(−) chr7:16096867-16097319(+)
Me 80309 chr2:228872394-228872847(−) chr1:83738473-83738925(−)
Me 85015 chr6:100069931-100070384(−) chr4:21845309-21845761(+)
Me 116092 chr20:43853917-43854370(+) chr2:164202655-164203107(+)
Me 140775 chr17:18159358-18159811(+) chr11:60503208-60503660(+)
Me 283078 chr10:28074133-28074586(−) chr18:7046824-7047276(+)
Me 200558 chr2:68606356-68606809(+) chr6:88107914-88108471(+)
Me 92014 chr9:37894330-37894344(−) chr4:45324576-45325138(+)
Me 7072 chr2:70387601-70387615(−) chr6:86876812-86877270(+)

Obtained from Cheng et al. (3). The locations of the human sequence around the consensus ERE
and the mouse orthologous region are given in columns 3 and 4. The genomic coordinates are
according to the human (May 2004 Build—hg17) and the mouse (March 2005—mm6) assemblies.
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Fig. 2. Variable importance: relative importance of top ranking variables given by
Random Forest analysis, ranked in the decreasing order of importance with respect to
mean decrease in accuracy and Gini measures.

genomics approaches have reached a reasonable sophistication in identifying
TFBSs of known PWMs (48). Using combination of different programs and taking
the consensus predictions for considering the reliable predictions is suggested. But,
the author expects some amount of noise in terms of false predictions and missed
real TFBS within a given promoter. Further, inclusion of novel TFBS is not consid-
ered in the approaches suggested in this chapter, although one can make PWM and
include it as a new variable. However, even the partial predictions are of immense
value to design the experiments that can determine the regulatory modules faster
than would be possible by experimental methods alone.

2. Recent programs, such as rVISTA (57) and ConSite (58), incorporate both sequence
conservation across orthologous promoters and high-quality PWM models in pro-
ducing more reliable TFBSs predictions.

3. Dimensionality reduction is an important problem in pattern recognition. In most
of the experimental situations, lot more number of features/variables (TFs) are
available than the number of cases (promoters). Selecting the appropriate number
of features to build the classifier is an important problem, and Random Forest
helps to reduce the dimensionality of feature space for effective classification (65).
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Fig. 3. (A) CART Tree: a CART model that discriminates between ER-α upregulated
(more acetylated) and downregulated (more methylated) targets. (B) Cis-regulatory
modules: Modules of ER-α upregulated (acetylated) and downregulated (methylated)
target genes identified by the CART model.



The user should run the Random Forest program repeatedly, each time dropping
a certain percentage (e.g., 20%) of the least important variables. Finally, the user
should focus on the top ranking variables for constructing the CART tree. Even
if some of these top ranking variables are not included in the initial CART tree,
running CART repeatedly by selecting different combinations of the variables
would give a better idea of possible TFBS modules. The list of ranked feature
variables (Fig. 2) is valuable information for prioritizing the TFs for further
experimental verification.

4. The following sequence of R commands ranks the variables in the decreasing
order of mean decrease in accuracy (rf.imp[,3]) and Gini index (rf.imp[,4]), and
selects the union of top 10 ranking variables either according to mean decrease in
accuracy or Gini index.
a. rank1 <- rank(rf.imp[,3]).
b. rank2 <- rank(rf.imp[,4]).
c. rankTF <- rep(F, length(rank1)).
d. rankTF[rank1>=(ncol(x) − 10) | rank2>=(ncol(x) − 10)]<-T.
e. X.sel <- x[, rankTF].

5. Anautomatedpipelinewouldsoonbemadeavailableathttp://bioinformatics.med.
ohio-state.com. The users may contact the author for R code.
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Mining Biomedical Data Using MetaMap Transfer
(MMTx) and the Unified Medical Language System
(UMLS)

John D. Osborne, Simon Lin, Lihua (Julie) Zhu, and Warren A. Kibbe

Summary
Detailed instruction is described for mapping unstructured, free text data into common biomed-

ical concepts (drugs, diseases, anatomy, and so on) found in the Unified Medical Language
System using MetaMap Transfer (MMTx). MMTx can be used in applications including mining
and inferring relationship between concepts in MEDLINE publications by transforming free text
into computable concepts. MMTx is in general not designed to be an end-user program; therefore,
a simple analysis is described using MMTx for users without any programming knowledge. In
addition, two Java template files are provided for automated processing of the output from
MMTx and users can adopt this with minimum Java program experience.

Key Words: Analysis; biomedical; data mining; MMTx; NLP; parsing; UMLS.

1. Introduction
The explosion of biomedical information in electronic format has posed both

opportunities and challenges to researchers wishing to analyze that information.
The easy accessibility and size of the information allow a wide range of
hypotheses to be tested and questions to be asked, but much of the data is in free
text format and consequently difficult to organize and compare. The field of
natural language processing has a variety of tools to deal with these types of
problems, one of which (MetaMap Transfer [MMTx]) (1) is of particular inter-
est to biomedical researchers. MMTx is one of the tools used by the National
Library of Medicine (NLM) to import medical and biological vocabularies into the
Unified Medical Language System (UMLS) database. A total of 143 vocabularies



are included in the 2006 release of UMLS including widely used vocabularies
such as SNOMED™ International Statistical Classification of Diseases and
Related Health Problems (ICD9), Medical Subject Headings (MeSH), the
Formal Model of Anatomy, and many others. The NLM is making an effort to
cover as widely as possible the biomedical domain, so in addition to the stan-
dard medical vocabularies, additional vocabularies covering drug codes, chem-
icals, adverse reactions, and nursing care standards are also included. In
general, the coverage is large enough that most researchers should be able to
find most commonly needed systems and concepts needed to map free text for
their problem domain. A detailed understanding of MMTx is not required to
use it, but it helps to understand the process in order to get the best results pos-
sible. A more detailed and extensive description can be found from the docu-
ments page (http://mmtx. nlm.nih.gov/ docs.shtml), but the salient points are
summarized herein. Figure 1 outlines the steps taken by MMTx as it maps
components of free text to candidate concepts.

First the tokenization module organizes the input document into sections
consisting of sets of sentences and tokens. This tokenizer will recognize the
MEDLINE format (available for PubMed articles through NCBI) or free text
automatically, so in most cases the users will need to do little, if any formatting
of input data before running MMTx. The Part of Speech Tagger Client (2) then
“tags” the tokens in order to identify which part of speech (such as a noun) the
tokens belong to. These tagged tokens are then subject to LexicalLookup, the
module that determines if any of the tagged elements belong to a particular lex-
icon. Adjacent tokens that are part of the same lexicon (for instance “July” and
“5th”) can then be treated as a single lexical element. A noun phrase parser then
identifies noun phrases from these elements for which variants are calculated by
table lookup. These variants are then used to identify matching strings from the
UMLS Metathesaurus termed candidates. Each of the candidates is evaluated
and assigned a score based on the extent of contiguity, central component
involvement, cohesiveness, word order, and other factors. The final mapping
module generates a list of UMLS Metathesaurus concepts that best cover the
input noun phrase and associated scores representing the mapping result for
input text.

The number of applications for a tool like MMTx is enormous. It can be data
mining and inferring relationship between concepts in MEDLINE publications
and other published data and is in general appropriate for any task that requires
the transformation of free text biomedical data into categorized, comparable
biomedical information. Published examples include extracting information
about medical problems from clinical reports (3), detecting respiratory illness
in patients from emergency department reports (4), and annotating enzyme
classes with disease-related information (5). Although, not always easy to
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Fig. 1. Shows the breakdown of a document inputted into MMTx as it proceeds
through the pipeline.



use, it is powerful enough that results can be analyzed with nothing more
complex than a spreadsheet program. For demonstration purposes free text
geneRIF data (found for most genes indexed on NCBI) will be mapped to the
UMLS disease/disorder semantic network to infer relationships for testicular
cancer. A flowchart showing the general usage of MMTx is shown in Fig. 2.
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2. Materials
Data mining with MMTx will require a host machine with a least 1 GHz

CPU speed, 1 GB of RAM, and at least 3–4 GB of hard disk space for most use
cases. If the user is going to use custom data sets (see Subheading 3.1.), then
the UMLS Metathesaurus and Metamorphosys will also need to be installed,
raising the hard disk requirements to approx 40 GB.

UMLS Metamorphosys and MMTx are both Java-based programs and require
Java virtual machine (JVM) to run. They have been tested with JVMs for
Windows (XP, 2000, and NT), Linux, Solaris (8 and 9), or Macintosh OS X 10.3
or higher. Up-to-date requirements for the installation of the UMLS
Metathesaurus can be found in the README.txt file distributed with each dis-
tribution of UMLS. The ideal running environment for ease of setup is probably
one of the non-Windows systems with Java already installed. The command line
examples are designed for a UNIX-like system. However, if NegEx (a program
which detects negations of concepts in Text Mining) is going to be used, then a
Windows system is required. Owing to their large size, obtaining UMLS data
and programs is easiest with a fast Internet connection, otherwise UMLS can be
ordered in DVD format. No Internet connection is required for Metamorphosys
or MMTx while running. Users should also have their own data set in electronic
format on the same machine on which UMLS is installed. UMLS does not need
to be put into a relational database to be used, but if this is desired, then the host
machine should have either mySQL or Oracle installed.

3. Methods
3.1. Determining the Suitability of UMLS for Input Data Set

Broadly speaking the UMLS is organized by vocabulary, by semantic type,
and by individual atomic UMLS concepts. Vocabularies in UMLS are an organ-
ized set of concepts and relationships. Semantic types span vocabularies in
UMLS and were created to categorize all concepts represented in the UMLS. It
includes general categories such as “drugs” and “congenital abnormalities” that
are commonly found in UMLS vocabularies. At the lowest level the UMLS has
concepts, which describe the narrowest entity such as a particular drug or a spe-
cific disease. The first step in determining UMLS suitability is to determine
what in UMLS terms one wants to match the input data with. First-time users
will likely use MMTx to search against one of the preconfigured data sets of
UMLS and then filter their matches against a particular vocabulary, semantic
type or small concept set, to get the results needed. UMLS is preconfigured to
make available most of its English language vocabulary sources. The only
exceptions are listed in Table 1 and are due to licensing restrictions set in place
by the American Medical Association (AMA).
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UMLS source abbreviation Full source name

CDT5 Current Dental Terminology 2005
(CDT-5)

CPT01SP Physicians’ Current Procedural
Terminology, Spanish
Translation, 2001

CPT2005 Physicians’ Current Procedural
Terminology, 2005

HCDT5 HCPCS Version of Current Dental
Terminology 2005 (CDT-5)

HCPCS05 Healthcare Common Procedure
Coding System, 2005

HCPT05 HCPCS Version of Current
Procedural Terminology (CPT),
2005

MTHCH05 Metathesaurus CPT Hierarchical
Terms,2005

MTHHH05 Metathesaurus HCPCS
Hierarchical Terms,2005

Table 1
The Input Options for Data Sent to UMLS

Short name Long name Default value Purpose

_ --medlineCitations False The input is a 
collection of 
mediline citations

_ --mrcon False The inputis a 
collection of 
MRCON rows

_ --free Text True The input is free text
_ --fielded Text= False Is the input file/stdin

fielded text?
_ textField= 2 For fieded text,

which field 
containsthe text

_ --fieldedSeparator 1 For fielded text, which
char is separator



3.1.1. Filtering Against a Specific Vocabulary

Filtering against a particular vocabulary set is advisable in cases wherein the
user has a very specific need to map to that vocabulary, such as mapping free text
from clinical reports to a medical coding system such as SNOMED-CT. Unless
there is a compelling reason (such as a license restriction), it is preferable to use
the entire Metathesaurus to give the best possible coverage. If a user is interested
in a particular vocabulary, the quickest way to check for its presence is to check:
(http://www.nlm.nih.gov/research/umls/sources_by_categories.html), which lists
a relatively current list of English vocabularies in UMLS.

3.1.2. Filtering by Semantic Type

It is worthwhile to take advantage of the classification of concepts in the
Metathesaurus into semantic types when the data to be extracted falls into large
categories and there is no explicit requirement to map to a particular vocabu-
lary. Semantic types (such as deformities, embryonic structures, chemicals, and
so on) allow the data miner to capture data categories across vocabularies with-
out knowing the details of either the vocabulary or the various concepts in
UMLS. A webpage listing semantic types available in the UMLS can be found
at http://mmtx.nlm.nih.gov/semanticTypes.shtml, and the definitive listing of
semantic types for a particular distribution of UMLS can be found in nls/mmtx/
data/2004/mmtx/semdef. A typical use case may be to mine MEDLINE for sta-
tistical associations between semantic types or concepts.

3.1.3. Filtering by Specific Concepts

In this case, input data is filtered by a small group of manually selected concepts
that span one or more semantic types and vocabularies. One such use case that
MMTx and UMLS have already been used for is mapping clinical reports to a
manually selected set of 80 particular medical problems (6). If it is not known
whether the UMLS Metathesaurus contains the specification of the desired con-
cept/s, the UMLS Knowledge Source Server (UMLSKS) can be used to search for
the concepts in UMLS as shown in Fig. 3. The UMLSKS is located at http://uml-
sks.nlm.nih.gov/kss/servlet/Turbine/template/admin,user, KSS_login.vm and its
use requires registration and signing of the UMLS license agreement (Note 1).

3.1.4. UMLS Lacks the Required Content

In cases wherein UMLS does not contain the required vocabulary, semantic
network, or concepts, it is best to directly contact the UMLS development team.
The team is generally receptive to reasonable requests, although the inclusion of
any new vocabulary will have to be justified against the NLM mandate and will
take a considerable amount of time. Semantic types and concepts can be added
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with less difficulty. The webpage for the UMLS users groups is located at
https://list.nih.gov/archives/umlsusers-l.html.

3.2. Using a Custom Data Source

MMTx has three different models for candidate retrieval from Metathesaurus
that differ in extent of filtering applied. However, most users should be satisfied
using these models, in some cases a user may need to create a custom data set. A
typical use case might be for commercial applications using the Metathesaurus
that must exclude particular vocabularies owing to licensing restrictions. Using a
custom data will require that both the UMLS Metathesaurus and Metamorphosys
be downloaded and installed.

It should be kept in mind that a custom data set is not required to restrict results
to appropriate concepts. Whereas creating a custom data source does give the user
the ability to prevent matches to unsuitable concepts, a postmatch filtering can still
be done to eliminate unwanted concepts from particular vocabularies or semantic
types. A custom data source is generally only warranted to avoid licensing prob-
lems or if the information to be extracted from the input data cannot easily be
described by the UMLS semantic network or particular vocabularies. Because of
the release of MMTx 2.4.B, candidate concepts can be filtered by both semantic
type and by vocabulary from command line of MMTx, making custom data sets
less critical. It is advised against creating a custom data set if the concepts of inter-
est are small in number, they can be described by particular vocabularies, or if they
are restricted to certain semantic network types. The custom data set can always
be created later. The creation of a custom data set will not be covered herein, but
for those who are interested in the details on custom data sets creation, the infor-
mation can be found at http://mmtx.nlm.nih.gov/DataFileBuilder.pdf.
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3.3. Downloading

Downloading MMTx requires a login to the UMLSKS, which in turn requires
the acceptance of a license agreement (see Note 1). The site for download is
http://mmtx.nlm.nih.gov/Download/download.shtml, which is password protected.

3.3.1. Downloading of MMTx

Although MMTx is significantly smaller than the Metathesaurus, it is still almost
2.5 GB in size when including the standard data sources. Therefore, the NLM
recommendation to use a fast Internet connection (and not a 802.11g wireless
connection) should be taken seriously. The current version of MMTx as of July
2006 is 2.4 MB. Both the smaller executable file (mmtx_V2.4.B_exec.jar) and the
larger data file (mmtx_V2.4.B_data.jar) should be downloaded and placed in the
same directory. The data file contains only the strict model of the Metathesaurus.

3.3.2. Downloading Metathesaurus and Metamorphosys (Optional)

Users interested in using MMTx with a custom data source or curious about
the “guts” of UMLS should install the Metathesaurus and Metamorphosys on a
local system. Download this by selecting “UMLS Knowledge Sources” from
the download section of the UMLSKS (see Fig. 3). All the files for a release
including the data files (the .nlm files), the checksum files (MD5 and CHK),
and the installation program Metamorphosys (mmsys.zip) should be down-
loaded into a single directory to a partition with at least 23 GB of space, prefer-
ably 30 or more. In general, only a single release (ex., 2006AA) needs to be
downloaded, unless there is interest in changes in UMLS or its component
vocabularies over time. In most cases this is unlikely to be true.

3.4. Installation

The installation of both the MMTx and the UMLS requires Java to extract the
jar files or to run Metamorphosys to set install the Metathesaurus. The latest
release of MMTx has been tested with Java 1.4 and some trouble was encoun-
tered running it with Java 1.5. It would be recommended that “java-version” be
run on the command line to confirm that there is a compatible JVM before contin-
uing. The JVM from Sun, Mac, and Blackdown are all known to work with
UMLS. Installation of Java is beyond the scope of this chapter, but details can be
found on the Sun website (http://www.java.com/en/download/manual.jsp).

3.4.1. Installation of UMLS—MMTx Tool

Installation of UMLS is also relatively straightforward and full instructions
can be found at http://mmtx.nlm.nih.gov/install.shtml. For some notes on the
installation process, see Note 2.

Mining Biomedical Data Using MMTx and UMLS 161



3.4.2. Installation of UMLS Metathesaurus 
and Metamorphosys (Optional)

Although not required unless a user is planning to create a custom data set, it
is recommended to install it anyway. Running Metamorphosys and seeing the
list of vocabularies in UMLS will give one a sense of the scale of UMLS and
potentially pointers to useful areas that might otherwise go undiscovered.
Installation is relatively straightforward, for complete and up-to-date informa-
tion see http://www.nlm.nih.gov/research/umls/meta6.html where the latest
requirements and instruction are detailed. There are only a couple of potential
problems with installation. First, it is important that the checksum files be down-
loaded into the same directory as the other files because Metamorphosys will
need to confirm that the downloaded files are intact. Second, one of the trickier
aspects of Metamorphosys is that it is not always clear which vocabularies are
being included and which are being excluded during source selection. Sources
that are highlighted in blue are selected for exclusion by default, not for inclu-
sion. This is somewhat counterintuitive and because installation of UMLS can
take over an hour on some platforms, the radio buttons over the main menu
should be checked to make sure the correct subset is selected. It is also worth-
while to save one’s configuration file because the selection of the subset of
UMLS to install tends to be fluid. It is often the case that the configuration cho-
sen is not quite optimal (a source for inclusion or exclusion is often overlooked)
so save the configuration to a file before beginning the subset process. Finally,
the option to write the UMLS Metathesaurus as a database SQL script (either
Oracle or mySQL) is turned off, so if one wants to put UMLS into a relational
database, then these options need to be selected before subsetting.

3.5. Setup the Running Environment

If not already present, copy all the input data to the host machine on which
MMTx has been installed. Everything can be run from a single directory.

3.5.1. Formatting Input Data

This step should be done if the user is planning running MMTx from the com-
mand line. If one is going to use the JAVA Application Programming Interface
(Java API) to run and process MMTx (not recommended for non-programmer)
then this input transformation step can be skipped because the programmer (not
MMTx) will be responsible for parsing the input data.

MMTx is extremely flexible in terms of the format of data it can accept. It
will take in any free text, and MEDLINE data can be parsed directly by MMTx
and so can particular fields in a text file delimited by arbitrary separators. For a
listing on how to handle the data type, see Table 1. A user should be able to
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format input data using any commonly available spreadsheet program (such as
Excel), provided the spreadsheet software can support all the lines of input data
that are required to be read in. For example, the geneRIF database is being
processed, an example of the format of being:

139 2827859 15501399 2005-05-14 12:17 T-cell recognition of the outer-
surface protein A (OspA) epitope is important in the induction of autoimmunity
in treatment-resistant Lyme arthritis (OspA).

The tabs can be substituted with “|”s in any text editor that supports find and
replace type operations so that MMTx will have an easier time with the data
(see Note 3). In Microsoft Word the data could be transformed as follows:

1. Open the database file (generif_basic) in Word.
2. Use Ctrl-C to highlight and copy a single tab character.
3. Select Edit → Find.
4. Select the Replace tab.
5. Select the “Find what” textbox and type Ctrl-V to paste in a tab.
6. Select the “Replace with” textbox type “|” without quotes.
7. Select “Replace All.”
8. Save the newly formatted database.

This will result in text in the default MMTx format as shown next. 139| 2827859|
15501399|2005-05-14 12:17|T-cell recognition of the OspA epitope is important in
the induction of autoimmunity in treatment-resistant Lyme arthritis (OspA).

3.6. Running and Handling Results From MMTx

Perhaps the most difficult component of data mining with MMTx is handling
the overwhelming amount of data that will be generated from the original input
data. This problem is complicated by the fact that MMTx is not really designed
to be an end-user program. MMTx is focused more on the production of machine-
readable data for analysis by software tools, and not for direct interruption by an
end-user. Potential users must therefore overcome a fairly work-intensive initial
barrier before they can assess the utility of MMTx and UMLS. The simple exam-
ple herein should avoid some of this but the focus on the generation of machine-
readable data means that the best way to handle MMTx generated data is
programmatically, by either handling the output of MMTx directly or preferably
through the Java API. Regardless of whether software tools are used to process
and analyze the results, ultimately a human is needed for the final analysis.

3.6.1. Choosing a Data Model

Regardless of whether the analysis will be software assisted, one consideration
remains the same—choosing a data model. As discussed in Subheading 3.3.,
there are three different data models. The default “strict” model utilizes the highest
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amount of filtering and is useful when accuracy is desired; the “moderate” model
is similar to the strict model but lacks syntactic filtering and is best suited to eval-
uate input text as a whole rather than as discrete phrases. Finally, the relaxed
model provides minimal filtering of its component strings and is best used for
exploring. In cases wherein accuracy is important, select a strict data model.
When doing exploratory fishing for associations, it is suggested to start with a
relaxed data model and move to a moderate data model if the results are undesir-
able. If one is going to use a different data model one will have to download it
from the download page mentioned in the Subheading 3.3.1.

3.6.2. The Perils of Filtering With MMTx

Filtering of data is an option with MMTx, but often it can cause more prob-
lems than it solves. However, filtering may remove undesirable matches, it also
hides the fact that such matches occurred. High-scoring matches may get past
one’s filter, but one will not know how to remove them if one has no ranking
information. By fully mapping the text it is possible to programmatically
remove high-scoring but low-ranking matches that are counterproductive to the
data mining at hand. For the same reason it is cautioned against removing
sources from contention unless it is for licensing purposes or the source causes
more problems than it creates for one’s mappings.

3.6.3. Running From the Command Line (for Nonprogrammers)

The details of running MMTx are found at http://mmtx.nlm.nih.gov/
runMMTx.shtml and two examples are provided with MMTx usage details
shown on a separate webpage at http://mmtx.nlm.nih.gov/semanticTypes.shtml.

The actual text is the fifth column, which is of interest in mapping. The other
columns could be eliminated by using a spreadsheet or the UNIX “cut” option,
but in this case one can use the MMTx input parameters to handle fielded text.
One will also select the option “show_cuis” which is turned off by default. This
allows to actually determine if one has mappings to the concepts of interest
without having to manually investigate the text. One can also turn off the candi-
dates and mappings (-c=false and -m=false) to reduce the amount of output and
use the sections option to specify the entire line from which geneRIF was
derived. The new version of MMTx (MMTx 2.4B) takes a semantic type as an
argument (⎯restrict_to_sts=neop) not yet specified in the documentation. By
specifying the abbreviation for neoplastic process one can restrict one’s results
appropriately. The actual command to run MMTx appears as follows:

MMTx ⎯fieldedText ⎯textField=5 ⎯fieldSeparator=’|’ ⎯fileName=gener-
ifs_basic ⎯show_cuis -c=false -m=false –-sections ⎯restrict_to_sts=neop > out-
putfile.txt

In this command the input file is specified (—fileName=generifs_basic) in
fieldText format (⎯fieldedText), separated by the “|” character (⎯field
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Separator=’|’) and the text of interest is found in the fifth field
(⎯textField=5). The concept unique identifiers are displayed in UMLS
(⎯show_cuis), which can come in handy when mapping results across
vocabularies. The list of candidates for a map are not displayed (-c=false) nor
are the intermediate mappings (-m=false) in order to reduce the volume of
output directed to outputfile.txt.

The abbreviations for semantic types are found in (http://mmtx.nlm.nih.gov/
semanticTypes.shtml), it is not possible to use the numerical or full-length format
when specifying the semantic type. One of the points to keep in mind when
running MMTx is that it is CPU bound and usually has a relatively large running
time. So it is worthwhile to examine the early results of the run by looking at
the outputfile.txt to ensure that the results being achieved are useful. If machine
processing is desired at a later point, the –f (fielded output) or –q (machine
output) options can be used. However, neither option has any flexibility in
customizing the output; they do not include the concept unique identifier (CUI)
for the actual mapping result and so might be of limited utility.

3.6.4. Java API (Java Programmers Only)

Using the Java API is the optimal way of handling MMTx. With a little bit of
work the processing of the input data can be precisely controlled, which includes
using any other metadata from the data source at processing time in evalua-
ting mapping candidates. It also allows for an exact specification of the
output format for easy analysis. A description of the API can be found
http://mmtx.nlm.nih.gov/MMTxAPI_V2.3.pdf. Below is a template for construct-
ing the Java API to process geneRIFs, consisting of two separate source files.
These are also available on the web at: http://download.bioinformatics.northwest-
ern.edu/download/mmtx/mmtx_java_example_template.tar.gz

The first file (MMTxGeneRIF.java) is a subclass of MMTxAPILite that
will handle the processing. It is in this file in which one’s evaluation of the
input phrases should occur, because at this point one will have access scoring
results in MMTx plus access to any additional metadata in the input phrase
one wants to make use of in evaluating the candidate. The text in bold,
“Undesired phrase here” can be replaced with whatever is appropriate to
remove undesired mappings. The last lines of this file prints out a candidate
CUI, mapped phrase, and score. Adding in an empirical derived cutoff score
to remove bad mappings can further reduce candidates and the output format
can also be adjusted herein.

MMTxGeneRIF.java
import java.util.*;
import gov.nih.nlm.nls.nlp.textfeatures.*; // -Included in MMTx.jar
import gov.nih.nlm.nls.mmtx.MMTxAPILite;
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public class MMTxGeneRIF extends MMTxAPILite{
private static ArrayList _genediseasemaps=new ArrayList(); //Our data
structure
private static GeneRIF _currentRIF = null;
public MMTxGeneRIF(String[] args) { super.init(args); }
public MMTxGeneRIF(){};
public void processMappings(Sentence pSentence) throws Exception {

Vector phrases = pSentence.getPhrases();
for(Iterator g=phrases.iterator();g.hasNext();){

Phrase aPhrase = (Phrase) g.next();
if(aPhrase.getOriginalString().indexOf(“Undesired phrase here”))
continue;

ArrayList topMappings=aPhrase.getBestFinalMappings();
if(topMappings !=null ) {

for(Iterator q=topMappings.iterator();q.hasNext();){
FinalMapping topMapping = (FinalMapping)q.next();
ArrayList cuis = topMapping.getCandidates();

for(Iterator l = cuis.iterator(); l.hasNext();){
Candidate c = (Candidate)l.next();
System.out.println(c.getCUI()+”|”+
aPhrase.getOriginalString()+
“|”+c.getCandidateScore());

} } } } }  }

The other program (MapClient.java) is responsible only for parsing the
input data and calling the MMTxGeneRIF process document function. Users
will have to find or write their own parser for whatever data they are
inputting.

MapClient.java
import edu.northwestern.bcore.dotools.SetupSingleton;
import edu.northwestern.bcore.dotools.UMLSFileTools;
import java.util.*;

public class MapClient {
public static void main(String[] args){

MMTxGeneRIF myMMTx = null;
try {

myMMTx= new MMTxGeneRIF();
Hashtable inputphrases = parseFile(args[0]);
//Write out our document to process
for(Iterator it = inputphrases.keySet().iterator();it.hasNext();){
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String input = (String)it.next();
ArrayList al = (ArrayList)inputphrases.get(input);
for(Iterator it2=al.iterator();it2.hasNext();){
synchronized(rif) { myMMTx.processDocument(input);}

}
}
myMMTx.cleanup();

} catch (Exception e) {//Error handling code here}
}

}

3.6.5. MMTx Wrapper (Non-Java Programmer Option)

This is similar to running MMTx on the command line, except MMTx is
wrapped by an external program that processes the output as it is generated.
This gives significantly more power than running MMTx on the command line
and allows any language to be used as the processing tool. The disadvantage is
the extra programming work involved. The options are too varied and will not
be covered here.

3.7. Filtering and Reprocessing Preliminary Results (Command Line)

The output generated by MMTx can be quickly filtered on a UNIX system
(see Note 4) by the following command:

cat outputfile.txt | grep -P ‘C0153594|C0855197|Section’ > results.txt
This will leave only the original geneRIF input (the MMTx Section) and below

it any hits for “Testicular malignant germ cell tumor” and “Malignant neoplasm of
testis”. A visual inspection at this point may reveal problems with the current
filtering (Figs. 4 and 5). As instance calcium ions (Ca2+) are parsed into a Ca token
that is recognized as cancer. A geneRIF discussing calcium and the testes may be
flagged as cancer accidentally. Using abbreviations like this can be turned off (the
—no_acros_abbrs flag) but more may be lost than gained. It is up to the researcher
to customize the filtering for the data set, it will be an interactive, learning process.

3.8. Analysis

Ultimately, at some point the value gained for handling exceptionally bad
mapping cases will be less than the effort required to handle them. It is at this
point that the user is done. An additional step a user may want to take is to run
the data through NegEx (7), which detects negation expressions in text. For
instance, the program outlined earlier will map all geneRIFs mentioning testicular
data. This means that geneRIFs to the effect of “This gene is not involved in
testicular cancer” will show an association. NegEx can detect and remove these.
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Fig. 5. The concept “Malignant neoplasm of testis” is detailed, including synonyms
and a definition. The CUI uniquely identifies a more or less distinct concept in UMLS.

Fig. 4. Input testicular cancer will show two retrieved concepts, “malignant neoplasm
of testes” and “testicular malignant germ cell tumor” one or both of which may be of
interest to the researcher. The UMLS handles eponyms, synonyms including spelling
variants (tumor/tumour) when selecting matching terms.



4. Notes
1. Registration and License Information: A complete description of the UMLS license

agreement can be found here (http://www.nlm.nih.gov/research/umls/license.html).
In general, one is free to use and incorporate UMLS as needed for research applica-
tions but care should be taken when working with any of the particular vocabularies
in UMLS that are subject to their own licensing requirements. For instance the
SNOMED vocabulary cannot be redistributed in commercial applications nor used
for research outside the United States without a separate license agreement. The
UMLS license also has a minimal reporting requirement; licensees are required to
fill out a short electronic report once a year.

2. Installation of MMTx: After both the mmtx executable and the mmtx data file have
been downloaded to the same directory, it is best to manually unjar both files.
Problems have consistently been had with the installation script detecting and
unjarring the data file.

3. Command Line MMTx: No success has been had in handling tab delimited data
with MMTx, but “|” delimited data (the default) works just fine.

4. Perl Expressions (-P) in grep: Require the presence of GNU grep (see
http://www.gnu.org/software/grep/). Systems without GNU grep may not support it.
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Statistical Methods for Identifying Differentially
Expressed Gene Combinations

Yen-Yi Ho, Leslie Cope, Marcel Dettling, and Giovanni Parmigiani

Summary
Identification of coordinate gene expression changes across phenotypes or biological conditions

is the basis of the ability to decode the role of gene expression regulatory networks. Statistically, the
identification of these changes can be viewed as a search for groups (most typically pairs) of genes
whose expression provides better phenotype discrimination when considered jointly than when
considered individually. Such groups are defined as being jointly differentially expressed. In this
chapter several approaches for identifying jointly differentially expressed groups of genes are
reviewed of compared on a set of simulations.

Key Words: High-order interactions; liquid correlation; microarray data; entropy; joint dif-
ferential expression; correlation.

1. Introduction
Gene-expression microarrays quantify the levels of thousands of RNA tran-

scripts simultaneously (1). A common experimental design is the comparison of
samples from different phenotypes or biological conditions, with the goal of
identifying differences in expression. Standard analysis approaches are con-
structed considering each gene in turn and investigating the hypothesis that the
one-dimensional (1D) gene-specific distributions are the same across conditions
(2,3). In biological processes, RNA transcript levels interact with each other, and
it is of interest to consider more than one gene at a time, to explore functional
relationships between genes that are associated with phenotypes. Statistically,
this means testing more general hypotheses formulated in terms of joint distri-
butions of pairs or larger subgroups of genes (4).

The following artificial examples illustrate two archetypical cases of joint
differential expression. Figure 1 shows two genes with joint association on the



phenotype: if the sum of their expression levels exceeds three, mostly the
grey (�) phenotype is observed. However, neither of the two genes alone
shows a strong association with the phenotype. The sides (margins) of the figure
show the 1D gene-specific distributions (technically referred to as marginal
distributions). These would have been used in a one-gene-at-a-time testing
approach, and thus both genes would have been unlikely to be selected. This
pattern is generated by the combination of a relatively high correlation
between the genes, and a shift in the sum of the expression levels (in this case
owing mostly to gene 2) across phenotypes. Therefore, this will be referred to
as a “shift” pattern. A biological mechanism leading to this pattern may occur
when two genes are substitutes in a molecular process that is closely linked to
the phenotype. A complementary case occurs when two genes cluster around
two positively sloped lines, with a shift in their difference across phenotypes.
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Fig. 1. Artificial example of joint differential expression (shift) of a pair of genes. The
axes are the measured expression levels of the two genes. Grey and black circles repre-
sent samples from two phenotypes (say normal and cancer tissue). The inner panel
reflects the joint distribution; the outer margins display the univariate marginal distribu-
tions. The dashed lines represent the first principal components, conditional on the phe-
notype. For this data Scross = 0.01 and Sshift = –0.29.



A second example is shown in Fig. 2. Herein there is no obvious demarcation
in space, and again, neither gene alone predicts the phenotype. However, in sam-
ples from the grey phenotypes, the expression of the two genes are negatively cor-
related, whereas a positive correlation occurs in samples from the black (�)
phenotype. Therefore, this will be referred to as a “cross” pattern. Biologically,
this pattern could occur when two genes are involved in a common process in one
phenotype, but perform separate or complementary activities in the other.
Alternatively, it could reflect an “on/off” mechanism. If both genes are off (expres-
sion values <0), or both genes are on (expression value >0), the black phenotype
is observed, whereas if only one of the genes is on, the grey phenotype is observed.

Both cross and shift patterns may only be identified when both genes are con-
sidered at the same time. This motivates defining joint differential expression as
a departure from the null hypothesis of identical joint distributions, coupled with
a weaker or no departure from the null hypothesis in the 1D marginal distributions.
This definition is not entirely precise, because the term “weaker” needs to be
specified. It is designed to guide the search toward gene pairs (or more broadly
sets) that would not be identified by one-gene-at-a-time searches, whereas still
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Fig. 2. Artificial example of joint differential expression (cross) of a pair of genes.
The format is the same as that of Fig. 1. For this data set Scross = 1.64 and Sshift = –0.11.



allowing for cases wherein 1D differences exist but are small or harder to detect
than the joint differences. Despite this indeterminacy, it is a useful guide in iden-
tifying pairs that may represent interesting novel biological interactions, as for
example, genes that are in the same pathway.

In practice, identification of gene pairs with joint differential expression is
challenged by the large number of possible pairs. The usual number p of genes on
a chip is in the tens of thousands, so the number of gene pairs, p(p – 1)/2, is
usually in the millions. Challenges increase exponentially as sets of more than
two genes are considered. In this chapter, several statistical methods are discussed
that can be used to search for joint differential expression: a correlation-based
approach (5,6), the liquid association (LA) (7), and a generalization (8), the
expected conditional F-statistic (ECF) (9) and a novel entropy-based method are
examined in some detail and compared in simulations. Some algorithmically and
computationally more complex methods of investigating gene coregulation are
also mentioned (4,10,11). Several classification and network analysis approaches
search more generally for sets of differentially coexpressing genes. These
methods seek larger sets of differentially expressed genes, often without speci-
fying the size of the set in advance. In these cases the search space is too large
for an exhaustive canvas, and so results depend on efficient search algorithms.
Not surprisingly, methods tend to be complex both algorithmically and compu-
tationally. See Note 4.1. for a brief overview.

2. Materials
1. The CorScor R package, which implements the correlation-based method described

in Subheading 3.1.2. is downloadable from http://stat.ethz.ch/~dettling/jde.html.
The package uses the object definition of bioconductor—an open source and open
development software project for the analysis and comprehension of genomic data,
available at http://www.bioconductor.org/. Both require the R language, which is
available at http://cran.r-project.org/.

2. The statistical tools for implementing the LA and projection-based LA (PLA)
methods described in Subheading 3.1.3. are available as a downloadable R-package
from http://kiefer.stat.ucla.edu/LAP/index.php?tools.

3. The R code for calculating ECF-statistics described in Subheading 3.1.4. is avail-
able from http://bioinformatics.med.yale.edu/microarray/BioSuppl.html.

3. Methods
3.1. Statistical Approaches

3.1.1. Notation

Most of the discussion is developed for the basic case in which microarray
experiments are available for two different phenotypes or classes (say normal,
denoted by one; and cancer, by two), and interactions between pairs of genes
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are of interest. However, extensions to more than two classes and more than
two genes are discussed in the context of specific approaches. The notation
(1, 2) is used to represents both classes combined, and the subscript k is used
to indicate class. In the basic case, k can be 1, 2, or (1, 2). A vector of G gene
specific expression values is denoted by X1 . . . XG and often by X, Y, and Z,
when there are only three genes. Then, for example X = (x1, . . ., xnk) are the
gene-expression levels of gene 1 in samples from class k, were nk is the number
of such samples. Uppercase X’s generally refer to a vector of expression levels,
whereas lowercase x’s refer to the levels in individual samples.

3.1.2. Correlation-Based Scoring Functions

The correlation between any two genes within class k is measured by the
class-conditional Pearson correlation coefficient

(1)

which ranges between –1 and 1. If ρk > 0, the observed expression levels
of the two genes are positively correlated (that is they move in the same direc-
tion) in samples from class k. High conditional correlation occurs when the
points within the same phenotype line up as a straight line going upward. If
ρk < 0, levels are negatively correlated, and if ρk = 0 they are uncorrelated.
For each pair of genes, two class-conditional correlation coefficients, ρ1 and
ρ2, and one combined correlation coefficient, ρ = ρ(1, 2) can be derived using
the available samples.

The difference in the class-conditional correlations

(2)

captures cross patterns (5,6). Scross increases with an increasing absolute
difference of the conditional correlations. The largest Scross is two and can be
achieved by perfect conditional correlation in both classes, with opposite signs,
for example, ρ1 = 1, and ρ2 = −1. A Scross of zero occurs when correlations are
the same, irrespective of their magnitude.

An important related case is L-shaped joint distributions, formed by a hori-
zontal and a vertical ellipsoid. These can be thought of as a rotation of Fig. 2,
and occur when the phenotype affects the variance of the two genes so that each
gene varies only within one class. The Scross measure will not capture these
patterns, and will have difficulties with cross pattern that approach an L-shape.
However, 1D comparisons of classes one gene at a time, if appropriately designed,
will identify these genes (12).
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A different measure is needed to capture shifts, as in shift patterns one can have
joint differential expression even though the two class-conditional correlations
are very close. The quantity

(3)

with values of α between one and two, produces good empirical results in
detecting shifts. When α = 2, it is proportional to the difference between the
average of the conditional correlations, and the combined correlation. For
illustration, α = 2 is used throughout the chapter. In Fig. 1, if the grey and black
lines overlap, then Sshjft = 0. When one of the two parallel lines for the two
classes shifts up or down, the combined correlation, which is computed after
pooling the two classes, decreases whereas the class-conditional ones remain
the same. In this way, Sshift will capture shifting patterns.

For example, in Fig. 1, the two correlation-based scores are Scross = |–0.82 –
(–0.83)| = 0.01 and Sshift = |–0.82 + (−0.83) − 2 ⋅ (–0.68)| = 0.29 whereas in Fig. 2
Scross = |0.85 − (−0.80)| = 1.64, and Sshift = |0.85 + (−0.80) − 2 ⋅ (0.08)| = 0.11.

These two correlation-based scores can be used to capture joint differential
expression. They are intuitive and are computationally feasible in large search
space. The same ideas can be extended straightforwardly to other kinds of
association measures for pairs of genes, such as Spearman’s correlation.
Generalizations to searching for joint differential expression of groups of more
than three genes are not readily available, because of the pair-wise nature of
correlations. The implementation of these measures is straightforward in any
programming language with matrix manipulation functionality. The CorScor R
package provides tools for fast evaluation of Scross and Sshift, as well as visuali-
zation of interesting pairs and significance analysis. Use of the functions in the
CorScor package requires previous installation of R and Bioconductor (see
Subheading 2.), and assumes that appropriate preprocessing of expression data
is been carried out before joint differential-expression analysis. Bioconductor
packages affy (for Affymetrix chip experiments) and limma (for a variety of
other experiments including most two-channel arrays), include state-of-the-art
tools and produce normalized data sets that are stored into objects of the class
exprSet, that can be used as input to CorScor.

Normalization of expression data can affect gene–gene correlations.
Specifically, artifacts in gene–gene correlations can be caused by flooring of
expression levels, and by exclusion of low-level readings followed by missing data
imputation. The latter combination can result in marking genes with similarly low
values as missing, and then replacing missing values with values with little vari-
ability but very high correlation across genes. This generates falsely high correla-
tions and can impact the joint differential-expression analysis. The minimal

Sshift = + −ρ ρ αρ1 2
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requirements for a joint differential-expression analysis using CorScor are the
following two objects:

1. eset: either a matrix of gene-expression data, wherein columns correspond to
samples and rows correspond to genes, or an instance of the Bioconductor
exprSet class.

2. Classlabel: either a binary factor or a binary numerical vector, describing the phe-
notype of interest for each sample. If eset is an instance of the exprSet class, it can
also be the name of a binary covariate in the phenoData slot of the exprSet.

The correlation scores can then be evaluated simply by the R command:
corscor.output = corscor(eset, classlabel), which will generate a new object named
corscor.output, of class corscor, described as follows.

Users can also specify any of the following optional inputs:

1. Annotation: an optional character vector, containing a preferred annotation for the
gene names.

2. Scenario: a character string, describing which scenario should be considered in the
correlation scoring method. The two implemented options are “gapsubst” for the
gap/substitution, or “shift” scenario, and “onoff” for the on/off, or “cross” scenario.

3. Cor.method: a character string, describing the way in which correlations should be
computed. The default is “default,” which means that Pearson correlation is used in
the gap/substitution scenario, and Spearman correlation in the on/off scenario. The
choice of either “Pearson” or “Spearman” overrules this default.

4. Dumping: a logical, describing whether gene pairs with 10 or more exactly equal
values of gene expression should be ruled out. This is designed to protect from major
artifacts from flooring. The default is true, but as long as the gene expression data
set is free of artifacts, this variable will not have any effect.

In turn the object of class CorScor generated by the command corscor.output =
corscor(eset, classlable) will include the following slots:

1. Scores: a symmetrical matrix containing the CorScor values for each gene pair.
a. x: a matrix containing a copy of the input gene-expression matrix.
b. y: a numeric vector, which codes for the classlabels by zero and one.

2. Annotation: a character vector, containing the annotation for the genes.
3. Scenario: a character string, saying which scenario was used.
4. Cor.method: a character string, saying which correlation method was used.
5. Dumping: a logical, describing whether dumping was active or not.

The package also provides functionality for follow-up analyses. The functions
print and summary can be used to obtain an overview of the best gene pairs and
their CorScor values. The function bestpairs yields the (column) indices of these
genes. The function plot yields scatterplots displaying the gene pairs, and was used
to generate Figs. 1 and 2. Finally, hmap yields a heatmap-like, more general
overview of the structure, such as shown in ref. 6.
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3.1.3. LA and Generalizations

LA, developed by Li (7), is another correlation-based method for identifying
dynamically coexpressing genes. Assume X, Y, and Z are the standardized and
normally distributed expression intensities of gene 1, 2, and 3 and let f(z) =
E(X,Y |Z = z), then

.

When applied to a set of n samples, distributional assumptions are met by sub-
stituting standard normal quantiles for the order statistics of each variable and
the LA score is estimated as:

. (4)

PLA was developed by Li and colleagues (8) to extend LA to larger genes
sets. As the name suggests, PLA applies the LA method to 2D projections of
the gene space, selecting the projection that maximizes the LA score. Consider
a candidate set of G genes with expression vectors X = (X1, . . ., XG) and an
additional mediator gene Z. A 1D projection of X is a linear combination a′X
where a is a projection direction and has norm one. For a projection in a 2D
space, the method requires that the two projection directions a and b be orthog-
onal to each other. After projection, PLA considers the LA between a′X and b′X
mediated by Z, and seeks informative projections by maximizing
over all pairs of orthogonal projection directions a and b.

Algorithmically, this maximization can be implemented through eigenvalue
decomposition of : begin with the matrix Σ formed by every possible
liquid correlation with mediator Z, that is Σgg′ = LA(Xg,Xg′ |Ζ) = E(XgXg′ Z). If 
λ1, . . ., λG be the ordered eigenvalues of Σ and v1, . . .,v

G
be the associated eigen-

vectors. Then the maximum absolute LA score is

(5)

The optimal projection is to the plane defined by the orthogonal vectors
and . To facilitate interpretation, the signs of

each vector are determined so that the greatest gene-to-gene variation is captured
in the positive component of the vector. If the mediating variable Z is binary,
perhaps representing a phenotype rather than gene expression, then the LA score
is formally equivalent to the correlation-based measure Scross described above.
The simulations described in Subheading 3.2. are confined to the two-gene,
two-class case, and so the LA score is represented there by Scross. Likewise, it is
to be expected that application of PLA when the mediating variable is binary and
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maximizing Scross over 2D projections, would be likely to capture planar crosses
buried in the higher dimensional space.

3.1.4. The ECFs

The F-statistic originates in analysis of variance (13,14) when testing whether
the variation in a response of interest, say gene expression, depends on a class-
label. It is proportional to the ratio of the between class variance to the within
class variance.

where xk,j is the gene expression of the j-th individuals in class k, k = 1, . . ., K;
x-k is the mean expression of samples in class k and x is the overall mean
expression in the pooled classes. If the between group variance is much larger
than the within group variance, it can be inferred that gene expression is
related to phenotype.

The ECF extends the F-statistic to test for coexpression in pairs of genes (9).
If X and Y represent the expression intensities for a pair of genes, the conditional
F-statistic (for outcome X conditional on Y = y) can be written as:

where pk = nk/n is the proportion of samples in class k, ρk is the class-conditional
correlation of X and Y, µxk

and µYk
are the class conditional means of X and Y,

and σxk
and σYk

are the class conditional standard deviations. The expression
above depends on a specific value Y = y. To take the expectation over all possible
values of Y, the conditional F-statistic is then weighted by the probability
density of Y and integrated as follows:

(6)

This leads to the final form of the ECF-statistic:

(7)
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The ECF-statistic can also be simplified as below when σXk = σX and σYk = σY

Full details of the derivation are found in ref. 9.
As in LA, the derivation depends on normally distributed data. To coerce

each variable into a normal distribution, the order statistics are replaced with
quantiles from the desired distribution. A key difference is that in the ECF ver-
sion, the various phenotypic groups are permitted to have different means and
variances. The reference distribution is a mixture of normals having those param-
eters. Quantiles are calculated by simulation. An advantage of the ECF-statis-
tic is that it can be applied to data with an arbitrary number of phenotypic
classes. However, there is no available extension to more than two genes.

3.1.5. An Entropy-Based Measure

In this section, a novel entropy-based approach is introduced. This method
was developed to encompass both correlation-based scores and generalize them
to larger sets of genes. The Shannon entropy of a variable X is a measure of its
randomness (15). Informally, it might be thought of as the inverse of the accu-
racy with which one can predict the outcome of a random process. Thus, a fair
coin flip has higher entropy than that of a coin weighted to land heads-up most
of the time. If X takes on values in the set {1, . . . , m} with Pr(X = x) = px then
the entropy is calculated as . Entropy is always nonneg-
ative. It achieves its greatest value, log2(m) when the m possible outcomes of X
are equally likely (and this have probability 1/m), and approaches zero when
one of the outcomes becomes virtually certain.

The intuition behind the entropy-based approach is that if a set of G standard
normal random variables are well correlated, then the multidimensional scatter-
plots will describe long, narrow ellipsoids. Equivalently, the eigenvalues of the
correlation matrix, which are proportional to the lengths of the various axes of
the ellipsoid, will include only one or a few large values among many smaller ones.
If those eigenvalues are standardized to sum to one, and treated as probabilities,
then the distribution they define has one nearly certain outcome corresponding to
the long axis of the scatterplot, and so will have low entropy. As illustrated in
Fig. 3 both of the motivating examples, cross and shift, the scatterplot of the
pooled data fills a broad ellipse, so the entropy derived from the pooled cor-
relation matrix will be high, whereas the long and narrow class-specific scatterplots
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are characterized by low entropy. Accordingly, sets of genes will be scored by
the difference between pooled and class-specific entropies, using a permuta-
tion test to assess significance.

The full entropy-based score is now developed. First calculate the two class-
specific correlation matrices, Σ1 and Σ2, as well as the correlation for the pooled
data Σ. The eigenvalues of each are calculated and normalized to sum to 1, so
for class k the standardized eigenvalues are Λk = (λk1, . . . , λkG)/G. The entropy
of the standardized eigenvalues is calculated and so that the values do not
depend on dimension, is further standardized to the maximum possible entropy
value log2(G). Thus, the class-specific, standardized entropy can be written as

(8)

If, as above, X = (X1, . . ., XG) is the expression intensity vectors for the can-
didate set of G genes then the entropy score can be written as

(9)

where E is the entropy obtained from pooling the classes. The ENT score is
easily extended to K > 2 classes as follows
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Fig. 3. An illustration of the entropy of standardized eigenvalues with or without the
information of phenotypic classes, in both crosses and shift patterns.



In the special case of two genes, the class-specific, standardized entropy is a
function of the class-specific correlation coefficient ρk

(11)

Although there is no simple closed form expression for entropy for larger sets
of genes, eigenvalues can be calculated efficiently and methods for doing so are
implemented in many computational programs.

To assess significance, classlabels are repeatedly permuted and the entropy
score is recalculated over all gene sets under consideration. Each permutation
gives a distribution of null scores, which are averaged to produce a stable reference
distribution. As usual, the p-value is the proportion of null scores that exceed
the observed value. There is one caveat concerning the calculation of the pooled
correlation value. If the class-specific sample sizes are very different, the larger
one may dominate the pool. In that case, one might weigh by sample size when
calculating the pooled correlation to equalize the influence of the two classes.

3.2. Simulation-Based Evaluation of Methods

To compare methods, data were simulated from each of the archetypical two-
class examples, cross and shift, performance of each method was evaluating by
calculating power. In the two-class case, LA is equivalent to the Scross and so the
two methods coincide in these simulations. The data was simulated from normal
distributions, with a sample size of 50 for each of the two classes. Type I error
was set to α = 0.05 throughout. Null distributions for all methods were obtained
by recalculating scores after permuting class labels. The power was computed as
the frequency of simulated data sets with a test statistic more than the 95-th quan-
tile of the null distribution.

To simulate shift patterns samples were drawn from class-specific bivariate
normal distributions. Class 1 was drawn from a N(µ1 = d, µ2 = d, σ1 = 1, σ2 = 1,
ρ = ρ0) distribution and class 2 was drawn from N(µ1 = −d, µ2 = −d, σ1 = 1, σ2 = 1,
ρ = ρ0), where d is allowed to vary. Thus, the expression levels for both genes
are increased in one class and decreased in the other, whereas correlation for the
two classes remains identical.

Figure 4 demonstrates the power of the three methods to detect shift patterns.
Power is shown as a function of the shift d between the distributions of the two
classes (in the x-axis) and the correlation of the class-conditional distributions
(by panel). The largest ECF-statistic is consistently among the most powerful.
Sshift matches its power at low correlations, whereas the entropy score matches it
at higher correlations. For all methods, power increases with both the shift and
the class-conditional correlation, with exception of combinations of low correla-
tion and large shifts, a situation in which increasing the shift will decrease the
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power of the entropy score, because the highly bimodal marginal distribution
will display lower entropy than each of the components.

Generally, the power of entropy score increases with increasing shift effects.
However, when the marginal separation becomes very large, the entropy score
can decrease, as two well-separated subgroups can create a narrow ellipsoid when
pooled. This feature of the entropy score has the advantage that gene combina-
tions with large univariate separations are less likely to be captured in the top
ranking sets. Because the gene with significant marginal effect can be found more
easily by one-gene-at-the-time analyses, one might wish to exclude those when
looking for gene combinations. 
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Fig. 4. Comparisons of power for detecting shift patterns as a function of the shift
d between the distributions of the two classes. Methods are identified by different
shades of gray. Correlations used to simulate the bivariate normal are listed at the top
of each panel.



Cross patterns were simulated by first drawing observations for each of the two
classes from a bivariate normal distribution N(µ1 = 0, µ2 = 0, σ1, σ2, ρ); then the
class 2 data is modified by rotating the points for that class by the angle θ, whereas
data for class 1 are held fixed. An example, with a rotation of 45°, corresponding
to θ = π/4 is shown in Fig. 5. The difference between classes becomes more pro-
nounced as θ increases until it reaches its maximum at θ = π/2 = 90°. When θ = π
= 180°, the correlations are again equal. In this approach both the combined and
the class-conditional gene variances vary with θ, but the standardized eigenvalues,

, and (the axes of ellipse) were kept fixed.

Figure 6 demonstrates the power of the three compared methods to detect
cross patterns of the type simulated. Power is shown now as a function of the
angle θ between the ellipsoids of the two classes (on the x-axis) and the eigenvalues
used to simulate the bivariate normal ellipsoid (by panel). For all methods, power
increases with both the angle and the class-conditional correlation. The ECF-sta-
tistic depends on which variable is chosen as the conditioning variable. When
searching for interesting pairs, it is suggested to use the largest of the two statis-
tics. The largest ECF-statistic is the most powerful, although by a small margin,
when the data is simulated to have a very long and narrow shape. Methods are
essentially equivalent for low and moderate correlations, but at high correlations
the correlation-based approach loses power on small-angle rotations compared
with the other two alternatives. This is because the class conditional correlation of
the rotated data changes more slowly under these circumstances than other prop-
erties of the joint distribution. Because the correlation measure simply compares
the two correlations, it lacks power to detect the difference.

λ | ρ |
2
∗ = −1

2
λ | ρ |

1
∗ = +1

2
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Fig. 5. An illustration of the approach used for simulating cross patterns, when θ = π/4.



Now consider separately the two versions of the ECF-statistic. The ECFy|x
investigates how well one can predict class using y for a fixed x, whereas the
ECFx|y investigates how well one can predict class using x for a fixed y. Figure 7
shows power of both versions in an additional scenario in which the ellipsoids are
yet narrower than in Fig. 6. The ECFx|y and ECFy|x show markedly different
behavior, as the power of ECFy|x decreases when the data of phenotypic class 2 is
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Fig. 6. Comparisons of power for detecting cross patterns as a function of the angle θ
between the correlations of the two classes. Methods are identified by different shades of
gray. Eigenvalues used to simulate the bivariate normal are listed at the top of each panel.



vertically aligned, that is when θ is around π/4. To investigate further the reason
for this behavior, note that the rotated data points (x′, y′) of genes 1 and 2 can be
expressed in term of the original points (x, y) as:

The resulting variance and correlation of the data in phenotypic class 2 after
rotation can be written as:

(12)

(13)

(14)

The ECF-statistics is shown in Eq. 7. In the simulation, set µx1 = µx2 = µy1 =
µy2 = 0, and and therefore the ECF-statistic can be expressed as a
function of θ and ρ alone. The value of ECFy|x when the class 1 data is fixed and
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Fig. 7. The power curves of ECFx|y, ENT, |ρ1 − ρ2|, and ECFy|x.



class 2 data is rotated with a degree θ counterclockwise, is not monotone in θ
for a fixed ρ. Rather the value of ECFy|x increases with θ except for a dip when
θ is such that the data of class 2 is vertically aligned. This results in the non-
monotone pattern of the power function of Fig. 7. This is owing to the fact that
the ECFy|x calculation is weighted by the marginal distribution of x, which
results in narrowing the comparison between classes to a region of relatively
small class effect.

3.3. Conclusion

Several statistical approaches are now available for identifying joint differ-
ential expression. In this chapter a definition of joint differential expression is
proposed, several approaches are reviewed, and a simulation is used to compare
the three methods that can at present be used for exhaustive searches of all pairs
or all triples of genes in realistically large gene sets. A compendium of proper-
ties of different methods is presented in Table 1. Overall, no method appears to
be uniformly superior. However, in the two-gene analyses investigated in the
simulation, the performance of the ECF-statistic is consistently reliable. The
CorScor approach maintains an intuitive interpretability and is by far the most
attractive computationally. The entropy scoring approach shows promise for
comprehensive searches of three-gene sets.

4. Notes
4.1. Other Approaches

In briefly this section, a few other distinctive approaches are described. For
full details, the reader is referred to original sources. Methods described in
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Table 1
A Synopsis of the Key Features of the Methods

Joint differen- Effect of large 
tial expression Multidimensi- increase More than Continuous

pattern onal extension in marginal two pheno- mediator
Method targeted available separation typic classes variable

Scross “cross” No None No No 
Sshift “shift” No Depends on Yes No

data
ENT “cross” and Yes Decreases Yes No

“shift”
LA (PLA) “cross” Yes None Yes Yes
ECF “cross” and No Increase Yes No

“shift”



this section were not included in the simulation-based analysis. For notation
in this section, consider a candidate set of G genes and two phenotypic groups
with n1 and n2 samples, respectively. Then ui, i = 1,..., n1 and vi, i = 1,..., n2
are G dimensional vectors representing sample intensities measured over
genes in the set.

In a recent article, Xiao and colleagues (4) considered multivariate searches
for differentially expressed gene combinations. Their algorithm is built on a
previously proposed multivariate test statistic (16) and successive selection of
differentially expressed sets of genes (17). Their goal is to uncover subsets of
predefined size G such that the multivariate distributions of expression in the
two phenotypes differ. To score candidate gene sets users need to choose a kernel
function F(u, v) and calculate

wherein the sums are taken over all pairs of samples in each class. Distance
functions are classical choices for , the authors use the Euclidean dis-
tance function throughout. With that choice, the score S can be described as
average between-group distance minus average within-group distance.

The search starts with an arbitrary set of G genes, which are then exchanged,
one at a time, at random, with candidate genes from outside the set. Exchanges
that do not improve the score are discarded, whereas if an exchange improves
the score, the set is modified accordingly and the search continues for a set
number of steps, or until predefined criteria is met. Cross-validation is used to
stabilize the results of the search procedure. A permutation test is used to evaluate
significance, and a multiple-testing procedure is developed to control family-
wise error rate when selecting combinations of genes. The approach uncovers
sets that potentially consist of combinations of jointly and marginally differentially
expressed genes. Kostka and Spang (10) took a different approach to the basic
problem. The goal of their methodology was to identify sets of genes, which are
normally tightly coregulated, but which disregulate in a diseased state. The
measure of coregulation of a gene set G, within class k, denoted S(G,k), was
previously suggested by Cheng and Church (18). It is calculated as the mean
squared residual obtained over values of g in 1, ..., G and i in 1, ..., nk, after fitting
the following model

.

Small values of S indicate strong correlation so if the genes in G are tightly
correlated in phenotypic group k but not in group k′, then the ratio S(G, k)/S(G, k′)
will be small. The search procedure begins with an arbitrary set of genes,
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adding or removing genes to improve the score until further improvement is
not possible, or until a predetermined number of iterations are completed.
Gene sets are not required to be of a particular size, so they are added or
removed individually.

In recent years, several network-based methods for discovering gene-
coexpression patterns have been proposed. Bayesian networks are most frequently
used in this fashion, although Boolean networks and other approaches have been
applied as well (19). Bayesian networks offer a graphical representation of the
dependence structure among a set of variables. In the gene-expression setting,
genes are represented in the network by nodes, with edges connecting those nodes
when genes strongly coregulate. The parameters of the underlying Bayesian
model can be estimated independently of the graphical component of the network
model and summarized by nongraphical means. However, the graphical network
representation offers additional intuitive, potentially informative, and possibly
biologically relevant features with which gene interactions can be characterized.
Examples include the degree of connectivity seen in a set of correlated genes and
the number of distinct components, or gene sets that can be identified. Candidate
network structures can be scored for goodness of fit of the dependence relation-
ships observed in the data. Graphical features that characteristically associate
with high-scoring network structures are likely to be interesting.

Every possible network structure corresponds to a Bayesian model, which can
be fitted to the data. The score for a network is calculated as the log likelihood of
the corresponding model, and so the best-fitting network is one that corresponds
to the maximum likelihood model. The space of all possible networks grows
exponentially with the number of genes/nodes under consideration and so, as in
the methods described earlier in this section, greedy stochastic search algorithms
are used to navigate the network space. Edges are added or removed at random to
improve the overall fit and the search stops after a predetermined number of steps
or when improvement is no longer possible.

Work by Friedman and colleagues (11,20) is representative of results in this
area. The investigators search for the network structure that best fits a set of
gene-expression data, identify biologically interesting graphical features of that
network, and assign bootstrap-based confidences to the discoveries. The Markov
blanket of a set of genes/nodes is one such feature. Imagine that a set of nodes
X is isolated in a corner of the network, relating to the remaining nodes only
through the mediation of a small set of neighbors Y. Then Y is described as the
Markov blanket of X. A bootstrap procedure is used to assign confidences to
discovered features. The data is repeatedly resampled with replacement, each
time the search for the best-fitting network structure is performed on the resampled
data. The proportion of samples exhibiting the feature under study is taken as the
confidence level for the feature.
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Summary
Quidquid agis, prudenter agas et respice finem!—Whatever you do, do it wisely and consider

the goal. In consideration of that sage advice, the chicken B-cell line DT40 is an excellent model
cell system to study the function of vertebrate genes. In addition to being highly amenable to gene
manipulations, the recent influx of genome and gene/protein resources allows for the straightfor-
ward selection, design, and targeting of candidate genes for knockout analysis. This chapter will
give a step by step standardized protocol to creating a gene knockout mutant in DT40. With care-
ful consideration, the methods and protocols described herein can be easily modified to allow for
further gene manipulations such as creating a knockin or a conditional mutant.

Key Words: Conditional mutant; DT40; gene function analysis; gene manipulation; genotype;
homologous recombination; knockin; knockout; phenotype; targeting.

1. Introduction
Advantages of DT40 include the high homologous recombination activity

facilitating targeted gene manipulations (1), the availability of tightly regulated
conditional gene expression systems and the ability to study genetic interac-
tions by the stepwise modification of multiple loci using marker recycling (2).
DT40 is particularly suited for genetic analysis if (1) the main phenotype of the
gene loss can be studied in cell culture, (2) gene functions are conserved during
evolution, and (3) interactions between multiple genes need to be analyzed and
the genes of interest are essential for murine embryonic development.

The recent release of the chicken genome sequence has greatly benefited the
DT40 research community (3). For the first time, the genome can be searched



for sequences that are conserved during vertebrate evolution between mammals
and chicken. This greatly expedites the identification of worthwhile candidate
genes and the subsequent analysis and interpretation of mutant phenotypes.
Targeting constructs are now easily derived from the genome sequence to delete
gene coding regions, modify regulatory sequences, or add gene coding tags for
the visualization and purification of protein complexes. Furthermore, enhancing
the use of DT40 in gene analysis is (1) the International Chicken Polymorphism
Map Consortium’s release of a comprehensive single nucleotide polymorphism
analysis (4), (2) the Second Report on Chicken Genes and Chromosomes 2005
(5), and (3) the first serial analysis of gene expression (SAGE) of the chicken
B-cell and DT40 genes by Wahl et al. (6). In addition, genes expressed in
DT40 are often available as full-length cDNA clones from a large bursal
cDNA library, thus enhancing DT40’s usefulness by further facilitating the
complementation of gene disruption phenotypes and the artificial expression
of proteins (7). Thus, DT40 is well suited to study gene function through
knockout analysis.

1.1. The Design

1.1.1. Choice of Knockout Candidate Genes

Candidate genes for knockouts in DT40 are usually chosen based on struc-
tural homology to genes with known function in other organisms. A thorough
check of what is known about the functions of the homologs and whether the
suspected phenotype can be measured in cell culture is highly recommended at
this stage. Retrieve the nucleotide and amino acid sequences of the nonchicken
homologs either from the public databases (http://www.ncbi.nlm.nih.gov or
http://www.ebi.ac.uk/embl/) or other sources.

1.1.2. Retrieval of Chicken EST or cDNA

Although an evolutionary conserved cDNA or protein sequence from a
nonchicken species may yield a positive result in a basic local alignment
search tool (BLAST) search against the chicken genome, only knockouts of
genes expressed in DT40 can be expected to give a phenotype. If there is
doubt of whether the gene is expressed, searches of the Bursal Transcript
Database or the bursal and DT40 SAGE tag databases are recommended
(http://pheasant.gsf.de/DEPARTMENT/). Careful analysis of ESTs and the
cDNA sequence of a knockout candidate gene are also advantageous to define
the exact exon–intron boundaries of the genomic locus. The chicken full-
length cDNA may also be needed to complement the mutant phenotype.

To search for ESTs or cDNAs within The Bursal Transcript Database, enter
the cDNA nucleotide query sequence of the closest homolog from a nonchicken
species or the chicken cDNA deduced from the chicken genome or other
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sources as a query sequence. Select the “BLAST search” link from the chicken
transcript website. The result lists any homologous ESTs or full-length cDNAs
among the sequences from two bursal cDNA libraries. The link may be followed
behind the sequence name to obtain the sequences and other information such
as whether there are other overlapping sequences or SAGE tags derived from
Bursal and DT40 SAGE tag libraries. The sequences in The Bursal Transcript
Database are from bursal lymphocytes, but DT40 is derived from these cells
and is similar in its transcription profile. Thus, sequences found in The Bursal
Transcript Database may be expected to be expressed in DT40 as well. On the
other hand, tags from the DT40 SAGE library are direct evidence for expression
and their relative frequencies indicate the steady-state level of corresponding
transcripts.

Although, the Bursal Transcript Database includes close to 30,000 ESTs
from different cDNA clones and more than 2250 unique full-length cDNAs, the
absence of sequences matching a candidate gene does not necessarily indicate
lack of expression in DT40. The failure may be because of cDNA cloning
difficulties or low transcript abundance. Because there are other large-scale
chicken EST and cDNA databases in the public domain, they too can be probed
for chicken transcript sequences (i.e., http://www.chick.umist.ac.uk/ or http://
www.chickest.udel.edu/). If this is successful, the expression of the candidate
gene in DT40 can be confirmed by reverse polymerase chain reaction (PCR) of
DT40 mRNA.

1.1.3. Finding the Target Locus

The best ways to define the exon–intron structure of the target locus is by
running a BLAST search of the full-length chicken cDNA sequence against
the chicken genome assembly (http://www.ncbi.nlm.nih.gov/projects/
genome/guide/chicken/ or http://www.ensembl.org/Gallus_gallus/index.html)
or perform a BLAT search (http://genome.ucsc.edu/). However, if the chicken
cDNA is not available, a search of the cDNA or protein sequence of the
homolog from another species can be tried. The successful identification of
the coding regions depends on the degree of interspecies transcript conserva-
tion. If the chicken full-length cDNA is available, a BLAST or BLAT search
against the chicken genome should reveal the precise exon–intron structure of
the locus. The only possible problem can be errors in the cDNA sequence or
gaps or errors in the genome sequence. The chicken genome assembly is esti-
mated to be 90–95% complete.

If only the cDNA sequence of a nonchicken homolog is available, a
BLAST/BLAT search against the chicken genome may reveal the conserved
coding regions of the chicken locus. Although both the nucleotide and the amino
acid sequence can be tried, the amino acid sequence may be the most suitable
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query because it is likely to be more conserved than the nucleotide sequence in
distantly related species. The obtained information might be enough for the
design of the targeting construct, if the deletion of a conserved region is all that is
desired. As bioinformatics technology grows, the Internet-based tools available
will reflect the enhanced capabilities as either experimentally known or algo-
rithmically predicted sequence structure. The various sites may also show the
predicted 5′ and 3′ noncoding sequences of the transcript, but this information is
sometimes incomplete or even wrong and it should be considered tentative
without the support of an experimentally confirmed full-length cDNA sequence.

1.1.4. Coding Sequence Conservation

The analysis of the primary amino acid sequence conservation is crucial to
anticipate the gene knockout phenotype and to plan its analysis. Most of the
candidate genes are chosen based on the known function of a homolog in
other organisms. The higher the primary amino acid sequence conservation
of the candidate gene, the more likely it becomes that its function is likewise
conserved. Furthermore, essential structural domains need to be defined for
the construction of targeting vectors if a null mutation is desired, but a complete
gene deletion is not feasible. Use the amino acid sequence encoded by the
chicken candidate gene in a BLAST search of the public protein or EST data-
bases (e.g., http://www.ncbi.nlm.nih.gov/BLAST/) to retrieve the sequences
of the likely homologues from other vertebrate species (e.g., human, mouse,
rat, and fish). Use the National Center for Biotechnology Information (NCBI)
Conserved Domain Database service to search for conserved domains. A
BLAST search of the protein database will automatically identify conserved
domains and will display a link that can be followed for more information on
the identified domains. The usefulness of this and the Gene Ontology (GO,
http://www.geneontology.org/) databases should only increase as more is
learnt about the relationship that domain structures confer on function.

Align and compare the amino acid sequences of orthologs from different
species. One way to do so is to copy the sequences of the homologs in FASTA
format to the program “BioEdit” to align and compare the amino acid sequences.
BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) is a free software pro-
gram that allows the user to import multiple sequences from the various databases,
accepts both text and FASTA formats, and has the ability to toggle between nucleic
acid and amino acid views. This program is rather easy for the beginner to use and
allows for a detailed visual view that is uncomplicated and straightforward.

1.2. Design of the Targeting Construct

Phenotypes of DT40 mutants are difficult to predict and in most cases a null
mutation of the candidate gene is aimed for. Deleting the entire gene coding region
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is the safest way to produce such a mutation. Deletions of up to 20 kb have been
introduced into DT40 by targeted construct integration, but there is the impres-
sion that the efficiency of targeting is less predictable for very large deletions.
Therefore, if the target gene locus is large, then alternative strategies need to be
considered. A common approach is to introduce an early truncation of the open
reading frame in combination with the deletion of a region encoding an indispen-
sable structural domain. The resulting locus most likely encodes only a shortened
peptide, and because of the deletion, even aberrant translation or splicing cannot
lead to a functional protein. The arms should be amplified by PCR using genomic
DT40 as template. This assures that the arm sequences are isogenic to at least one
allele of DT40 that may increase the targeting efficiencies.

The plasmid insert of standard DT40 targeting vectors consists of a loxP
flanked drug resistance marker cassette flanked 5′ and 3′ by sequences derived
from the target locus (see Fig. 1A,B). The 3′ end of the upstream arm and the
5′ end of the downstream arm define the boundaries of the target gene deletion.
The plasmid is linearized before transfection using a restriction enzyme (RE)
(i.e., NotI) whose site is present within the plasmid, but not within the insert.

Many of the rules for the design of DT40 targeting vectors are to a certain
degree arbitrary and might be changed if the goal is a single knockout construct
for a particular gene. Nevertheless, following these rules for the design of target-
ing vectors has the advantage that success rates can be measured for each step
in the vector construction and the subsequent generation of knockout clones.
This will give more predictable results and may lead to further optimization of
the methods presented where needed.

1.2.1. The Size and Location of the Target Arms

If the entire gene-coding region is not larger than 5 kb, the targeting vector
is made by placing the arms upstream and downstream of the coding region
boundaries. This will lead to the deletion of the entire coding region. If it is not
possible to delete the whole gene-coding sequence (e.g., because of its large
size or owing to long intron sequences), the targeting vector is made by placing
the arms upstream and downstream of a coding region that encodes crucial
functions of the protein. In addition, the downstream primer of the upstream
arm introduces an in-frame stop codon into the gene. The size of the deletion is
again limited to 5 kb. Targeted integration of this vector should lead to a null
mutation as a result of the partial deletion of the coding region and the intro-
duction of the in-frame stop codon (see Fig. 2).

The standard sizes of the 5′ and 3′ arms are 3 and 2 kb, respectively.
Problems can arise through the presence of restrictions sites that preclude the
cloning of the arms, the insertion of the central resistance marker cassette or the
linearization of the targeting vector. If these problems are anticipated, it is first
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tried to reverse the sizes of the upstream and downstream arms. If this does not
solve the problem, the arms might be shortened down to 1 kb. If this adjustment
fails, the positions of the arms within the locus need to be shifted. Other prob-
lems are PCR amplification failures or difficulties to clone an arm sequence. If
the failure involves an upstream arm, pairs of new upstream primers are
designed 500 bp closer to the downstream primers as long as the arm sequence
still exceeds 1 kb. In addition, a pair of new downstream primers is made at the
next suitable position. If the failure involves a downstream arm, pairs of new
downstream primers are stepwise designed 500 bp closer to the upstream
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Fig. 1. (A) Protein X is made up of two exons. Therefore, the deletion of exons A
and B is all that is required to create a knockout. (B) Protein X is made up of three
exons. Exon C does not contribute significantly to the protein and is made up of almost
completely of the 3′UTR. Therefore, the deletion of exons A and B is all that is required
to create a knockout.



primers and a new pair of upstream primers is made. If this fails, the positions
of the arms within the locus need to be shifted.

1.2.2. Usage of Restriction Sites

The KS (pBluescript KS+) vector is chosen for the cloning of the targeting
constructs. Based on the arrangement of the restriction sites in the KS polylinker,
the outside cloning site of one arm is XhoI and SalI, and the outside cloning
site of the other arm is SpeI and XbaI. NotI can also be used instead of XhoI/SalI
or SpeI/XbaI as an outside cloning site in case of problems. In general, both
arms are first inserted into the vector, and the resistance marker is then cloned
into a central BamHI or BglII site. The first choice for the marker cloning is
BamHI. The site used for the insertion of the resistance marker needs to be
unique in the construct. The NotI in the KS polylinker is normally used for the
linearization of the construct before transfection, but SpeI or XbaI can serve as
alternatives. The site used for linearization may be present more than once in
the vector backbone, but it should not be present in the arm sequences or the
resistance marker cassettes.

1.2.3. Primer Design

The standard approach is to add XhoI-SalI sites to the outside primer of one
arm, SpeI-XbaI sites to the outside primer of the other arm, and (stop)-BamHI-
BglII/BglII-BamHI sites to the inside primers of each arm. In addition, all primers
start with three G nucleotides to facilitate restriction digestion of the added
restriction sites. If only a partial deletion of the gene-coding region is possible,
the inside primer of the upstream arm adds an in-frame stop codon (see Fig. 3).
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Fig. 2. Protein X’s exons are too large for complete deletion targeting. Therefore, a
stop codon is introduced into exon A and the critical functional domain encoded by
exon A and exon B is targeted for deletion.



outside primer of first arm: GGG + SalI/XhoI
outside primer of second arm: GGG + SpeI/XbaI
inside primer of upstream arm: GGG + BamHI/BglII or

GGG + BamHI/BglII + in-frame stop
inside primer of downstream arm: GGG + BamHI/BglII
5′ upstream arm (XhoI-SalI)
5′ GGG CTCGAG GTCGAC 3′
3′ upstream arm (STOP-BamHI-BglII)
5′ GA AGATCT GGATCC CTA 3′
5′ downstream arm (BglII-BamHI)
5′ GA AGATCT GGATCC 3′
3′ downstream arm (SpeI-XbaI)
5′ GGG TCTAGA ACTAGT 3′
The 3′ end of each primer contains a 25 nucleotide sequence derived from

the knockout gene locus. Only sequences with not less than 40% and not more
than 70% GC content are accepted and the primer location is shifted one base
at the time until this condition is met. Apart from generally accepted primer
design rules known to reduce PCR artifact, try to avoid ending with “T” at the
3′ most position if at all possible.

2. Materials
2.1. Web Resources

1. DT40 SAGE Tag Database: http://pheasant.gsf.de/DEPARTMENT/.
2. Marker Cassette Information: http://pheasant.gsf.de/DEPARTMENT/dt40.html.
3. Chicken EST and cDNA Databases: http://www.chick.umist.ac.uk/, http://www.

chickest.udel.edu/.
4. Chicken Genome Database: http://www.ncbi.nlm.nih.gov/projects/genome/guide/

chicken/ or http://www.ensembl.org/Gallus_gallus/index.html.
5. BLAT Search: http://genome.ucsc.edu/.
6. Gene Ontology Database: http://www.geneontology.org/.
7. BioEdit: http://www.mbio.ncsu.edu/BioEdit/bioedit.html.
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2.2. Amplification of the Arms

1. Chicken media (CM): add to 500 mL RPMI-1640 without glutamine (Gibco/BRL),
50 mL (10%) FCS (Biochrom AG), 10 mL (2%) penicillin/streptomycin solution
(Gibco/BRL), 5 mL (1%) glutamin solution (Gibco/BRL), 5 mL (1%) chicken serum
(Sigma), and 0.05 mL (0.1%) of 1 M β-mercaptoethanol solution (Sigma) (see Note 1).

2. Amplification reaction mixture (target arms PCR): 106.5 µL sterile H2O, 15 µL
cresol red, 15 µL buffer 1 (10X), 3 µL dNTP (10 mM), 1.5 µL polymerase mix,
3 µL primer forward (25 pmol/µL), 3 µL primer reverse (25 pmol/µL), and 3 µL
genomic DNA (100 ng/µL). The mix is evenly divided among three PCR tubes.

3. Buffer 1 and polymerase mix: Expand Long Template PCR System, (Roche
Applied Science).

4. Proteinase K buffer: 100 mM NaCl, 10mM Tris-HCL (pH 8.0), and 25 mM ethyl-
enediamine tetra acetic acid (EDTA).

5. TE (1X): 10 mM Tris-HCL (pH 8.0) and 25 mM EDTA.
6. Expand Long Template PCR System (Roche Applied Science).
7. Cresol red (Sigma-Aldrich).
8. 10 mM dNTP (Fermentas).
9. Standardized insert/vector RE reaction mixture: 30 µL PCR purification product

or plasmid (~100 µg/µL), 4 µL appropriate buffer, 1 µL RE, 0.4 µL bovine serum
albumin (BSA), and 4.6 µL sterile H2O.

10. Buffer: use appropriate buffer supplied with the RE(s).
11. Takara DNA Ligation Kit Ver. 2.1: 5 µL solution I, 0.5 µL prepared vector, and

4.5 µL prepared fragment (Takara Bio Inc.).
12. Chemically competent DH5α cells calcium chloride prepared.
13. Amplification reaction mixture (colony PCR): 6.3 µL sterile H2O, 1 µL dimethyl

sulfoxide (DMSO), 1 µL buffer S, 0.2 µL dNTP (10 mM), 0.7 µL Taq polymerase,
2 µL primer forward (5 pmol/µL), 2 µL primer reverse (5 pmol/µL), and 10 µL
picked colony suspension.

14. Buffer S: 166 mM (NH4)2SO4, 670 mM Tris-HCl (pH8.8), 67 mM MgCl2, and
100 mM β-mercaptoethanol.

15. Standardized RE analysis reaction mixture: 2.5 µL plasmid prep DNA, 14.3 µL
sterile H2O, 2 µL appropriate buffer, 0.2 µL BSA, 0.5 µL enzyme 1, and 0.5 µL
enzyme 2 or sterile H2O.

16. Buffer: use appropriate buffer supplied with the RE(s).
17. Linearization mixture: 300 µL Maxiprep DNA (1 µg/µL), 51 µL sterile H2O,

40 µL appropriate buffer, 4 µL BSA, and 5 µL NotI (or other enzyme).

2.3. Knockout

1. Blasticidin (stock solution 60 µg/mL) (Invitrogen).
2. Mycophenolic acid (stock solution 2 µg/mL) (Sigma-Aldrich).
3. Puromycin (stock solution 2 µg/mL) (Sigma-Aldrich).
4. K buffer (10 µL): 0.5% Tween-20 and 100 µg/mL proteinase K in 1X PCR buffer

(buffer 2 is used from the Expand Long Template PCR System [Roche Applied
Science]). Prepare just before use.
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5. Targeting screening PCR reaction mixture: 6.3 µL sterile H2O, 1 µL cresol red, 1 µL
buffer 1, 0.2 µL dNTP, 0.07 µL polymerase mix, 0.2 µL primer forward (25 pmol/µL),
0.2 µL primer reverse (25 pmol/µL), and 1 µL DNA from the crude extract.

6. Buffer 1 and polymerase mix expand long template PCR system (Roche Applied
Science).

3. Methods
3.1. Amplification of the Arms

Genomic DNA prepared from wild-type or mutant DT40 cells is used as
the template to generate isogenic fragments for the targeting constructs.
Isogenic arms that are identical to the sequence of the target locus were shown
to increase the ratio of targeted-to-random integration after transfection of
murine embryonic stem cells (8). This effect was also seen after transfection
of DT40, although it is most likely less pronounced because of increased
homologous recombination activity of the cells. Nevertheless, it is advisable
to use genomic DNA of DT40 for the amplification of the arm sequences
because this may increase the targeting ratio of more difficult genes. As DT40
is derived from an out-bred chicken, there remains the chance that one allele
is targeted less efficiently than the other allele because polymorphisms cause
differences between the targeting vector and the allelic locus. It should also be
noted herein that chromosome 2 of DT40 exists in triplicate.

3.1.1. Genomic DNA Preparation

DT40 cells are grown in a humidified CO2 (5%) incubator at 41°C in CM.

Day 1:

1. Centrifuge 50 mL of healthy viable DT40 cells at 1500 rpm and 4°C for 5 min.
The health and viability of the cells is checked with a microscope. The cells should
have a rounded shape and build clusters. This is indicative that they are healthy
and are in a growing phase.

2. Wash the pellet with 1–2 mL 1X phosphate buffer solution (PBS) and centrifuge
at 1500 rpm and 4°C for 5 min.

3. Resuspend the pellet in 500 µL proteinase K buffer plus 12.5 µL 20% sodium
dodecyl sulfate and transfer to a 1.5-mL tube.

4. Incubate tube overnight at 56°C to extract DNA.

Day 2:

1. Add the same amount of phenol (500 µL) to the DNA extract.
2. The mix is rotated gently for 15 min and then centrifuged at 13,000 rpm and 4°C

for 5min.
3. 500 µL of the upper phase are transferred to a new tube containing 500 µL

phenol/chloroform (1:1).
4. The mix is rotated gently for 15 min and then centrifuged at 13,000 rpm and 4°C

for 5 min.
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5. 500 µL of the upper phase are transferred to a new tube containing 500 µL chloroform.
6. The solution is mixed by inverting and centrifuged at 13,000 rpm and 4°C for 5min.
7. 500 µL of the upper phase are transferred to a new tube containing 1µL RNAse A.
8. The RNA is digested for 2 h at 37°C.
9. The reaction is stopped by the addition of 50 µL of 0.5 M EDTA pH 8.0 and mixing

by gently inverting.
10. Perform a quick spin (the DNA can be stored at this point at 4°C until dialysis).
11. The DNA is loaded into a dialysis membrane and dialyzed against ice cold 1X TE

at 4°C while mixing. The 1X TE is changed after 2 h and again after 2–4 h followed
by overnight dialysis.

Day 3: transfer the DNA from the membrane to a clean tube and measure the
OD260 to obtain the concentration.

3.1.2. Amplification of the Target Arm Sequences

The 5′ and 3′ ends flanking the knockout region of the target gene are ampli-
fied by PCR. Use the Expand Long Template PCR System (Roche Applied
Science) with cresol red, 10 mM dNTP, forward primer (25 pM), and reverse
primer (25 pM) in the standardized amplification reaction mixture (target arms
PCR). The mixture is evenly divided among three PCR tubes.

PCR program:

Five microliter of each sample are checked and confirmed through gel elec-
trophoresis. The selected samples are combined for PCR purification through
ethanol precipitation or a commercially available kit of one’s choice. If at first
the PCR fails, repeat once using half the amount of primer and the addition of
1 µL DMSO (see Note 2).

3.1.3. Preparing Arms and Vector for Cloning

The target arm sequences are now cloned into the vector pKS using chem-
ical or electro competent Escherichia coli cells. Sequentially, the 5′ and 3′
arms are cloned into the appropriately restricted vector. In the final step, the
marker cassettes are cloned into the targeting vector between the two arms
using the BamHI and/or BglII site(s). The targeting of the two alleles of a
gene is accomplished by using two different resistance marker cassettes that
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will allow the selection of cells carrying first one and then the other resist-
ance marker (see Notes 3 and 4).

For cloning, the purified DNA and pKS are digested with the appropriate RE
overnight using the standardized insert/vector RE reaction mixture. Vectors are
further alkaline phosphatase treated to block religation. The digested fragments
are then isolated through agarose gel electrophoresis. The product is cut out of
the gel and purified by the gel purification method of one’s choice. It is found
that ligation efficiency is increased and background colonies decreased when all
fragments are gel isolated for cloning. Alternatively, the target arm fragments
may be cloned straight from the PCR product using Invitrogen’s TOPO TA
Cloning kit before subcloning into the pKS targeting vector (see Note 5).

3.1.4. Ligation and Transformation

For ligation, the Takara DNA Ligation Kit is used as noted in Subheading 2.
For transformation, use 50 µL of chemically competent DH5α cells. This is
found to be quite robust, but the method used at this point is not critical.

3.1.5. Colony Screening

To screen colonies, one can either use plasmid preparation followed by RE
analysis or perform colony PCR using a primer specific for the insert and one for
the vector. RE analysis should still be performed on PCR-identified clones for
unambiguous verification. Colony PCR is performed as defined in Wahl et al. (6).

1. Pick bacterial colonies and suspend in 50 µL sterile H2O. After using for colony
PCR, this can be stored at 4°C until selected colonies are inoculated into bacterial
culture media for further use. Storage time is up to 2 wk without supplementing
with bacterial culture media.

2. PCR amplify using the amplification reaction mixture.

PCR program:
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RE or primer pairs differ depending on the specific cloning step. Figure 4 is
used to graphically demonstrate the methods presented herein (clones may
vary). Digest ≥1 h in the standardized RE analysis reaction mixture, add load-
ing buffer, and run on a 0.8% agarose gel electrophoresis. To check the inser-
tion of the 5′-arm, the plasmid is cut with BamHI and with a mix of BamHI and
XhoI. After cloning of the 3′-arm, the plasmid is digested with BamHI and a mix
of BamHI and XbaI. Successful cloning of the drug resistance marker cassette
(BSR in this example) is verified with a digest with NotI, BamHI, a mix of
BamHI and XhoI, and with a mix of BamHI and XbaI. The marker cassette carries
additional restriction sites. This can be used to check the direction of the insert.
For more information on marker cassettes (including their sequences and how
to request them) see http://pheasant.gsf.de/DEPARTMENT/dt40.html.
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Fig. 4. Cloning steps of the construct: (A) The vector used contains the restriction
sites XhoI, XbaI, and NotI in its multiple cloning site. (B) In the first cloning step, XhoI
and BamHI were used to insert the 5′-arm. REs or colony PCR (PF, primer forward; PR,
primer reverse) can be used to identify the correct clones. (C) In the second cloning
step, BamHI and XbaI were used to insert the 3′-arm. Again, RE or colony PCR is used
to identify the correct clones. (D) Finally, the drug resistance markers are inserted into
the BamHI site between the 5′ and 3′-arms followed by correct clone identification
through RE analysis or colony PCR.



3.1.6. Plasmid Preparation and RE Analysis

Once the targeting constructs have been successfully built and confirmed,
a large-scale plasmid preparation will need to be performed to obtain enough
plasmid for transfection into DT40 (40 µg are needed per transfection).
Using one’s favorite large-scale plasmid preparation method, determine the
concentration and dilute to 1µg/µL. This is the final step before transfection
and it is extremely important that one be sure of the product in hand. So
when in doubt, repeat RE analysis or do partial sequencing to be assured of
what one is working with.

3.1.7. Linearization

1. The plasmid is linearized using a single cutter, in this case NotI.
2. Digest overnight at 37°C in linearization mixture.

The following day:

1. Add to the overnight digest 1 vol phenol–chloroform (400 µL). Mix well and
centrifuge at 13,000 rpm for 5 min at 4°C.

2. Transfer the upper phase to a new tube containing 1 vol chloroform (400 µL). Mix
well and centrifuge at 13,000 rpm for 5 min at 4°C.

3. Transfer the upper phase to a new tube containing 1 vol isopropanol (400 µL) and
add 0.1 vol 3 M sodium acetate (40 µL). Mix well and centrifuge at 13,000 rpm
for 30 min at 4°C.

4. Discard the supernatant and wash the pellet with 80% ethanol. Do not mix.
Centrifuge at 13,000 rpm for 5 min at 4°C.

5. Discard the supernatant under a laminar flow hood and dry the pellet 10–20 min.
6. Add 300 µL sterile H2O for an end concentration of 1 µg/µL and store at 4°C for

a minimum of 1 h to resolve the pellet, which can be used immediately or stored
at –20°C.

3.2. Knockout

3.2.1. Transfection of DT40 Cells

The construct is now ready to be transfected into DT40 to begin the knock-
out process.

1. Perform a cell viability count on DT40 cells grown in CM. It should be noted that
some DT40 mutants have a considerably lower viability than wild-type and one
should use the healthiest possible cells regardless.

2. Take 5 × 106 viable cells and centrifuge for 5 min at 1500 rpm and 4°C.
3. While centrifuging the DT40 cells prepare a 1-mL electroporation cuvet; add

40 µL of the linearized construct (concentration 1 µg/mL) and place cuvet on ice.
4. Resolve the DT40 cell pellet in 800 µL sterile 1X PBS or CM, add 800 µL to each cuvet.
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5. Electroporate the cells using 25 µF and 700 V (the Gene Pulser I, II, or Xcell from
Bio-Rad is recommended).

6. Transfer the electroporated cells to a 50-mL tube containing 15 mL CM.
7. Mix well and transfer 5 mL to second 50-mL tube containing 5 mL CM.
8. Aliquot the two dilutions to two labeled 96-well flat bottom microtiter plates

(100 µL/well).
9. Grow overnight at 41°C.

10. Following 12–24 h of incubation time, add 100 µL CM containing the appropriate
selective drug (blasticidin [60 µg/mL] or mycophenolic acid [2 µg/mL] or puromycin
[2 µg/mL]) to each well to ensure that only cells carrying the resistance marker
will grow. End concentration is half that of the stock solution; 30 µg/mL, 1 µg/mL,
and 1 µg/mL, respectively.

11. Continue growing until colonies appear (normally 7–14 d). Note: some mutants
may grow considerably slower and colonies may not appear until after 2 wk (see
Note 6).

12. As soon as colonies are visible, pick single colonies by carefully pipeting 10 µL to
a new 96-well flat bottom microtiter plate containing 300 µL CM/well. Continue
picking colonies daily until all single colonies possible have been picked. The best
way to see the colonies is to hold the plate up to the light and look at the bottom for
wells with only single colonies. The majority of wells should have none or single
colonies. To pick the colony, stick the pipet tip into the “center” of the colony and
withdraw the 10 µL to be transferred to the new plate. In order to assure the picking
of a single colony, one may need to perform subcloning through limited dilution on
the confirmed positive clones chosen for further use.

13. Grow the picked colonies at 41°C and split and refeed CM as necessary (every 3–4 d)
(see Notes 7–9).

3.2.2. Targeting Screening

To confirm homologous targeting, the grown single colonies are checked
through PCR.

Crude DNA Extract:

1. Mix the cells in the picked colony 96-well flat bottom microtiter plate and trans-
fer 200 µL to a 96-well flat bottom microtiter PCR plate. Centrifuge for 5 min at
1500 rpm and 4°C.

2. Discard the supernatant and wash with 200 µL 1X PBS. Centrifuge again for 5
min at 1500 rpm and 4°C.

3. Discard the supernatant and resolve the pellet in 10 µL K buffer. Prepare the K
buffer just before use.

4. Spin down cells with a quick spin.
5. Incubate 45 min at 56°C followed by 10 min at 95°C.
6. Store at 4°C. The crude extract is stable for at least 1 wk.
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PCR amplify the extract using the targeting screening reaction mixture:

Use various primer pairs to identify the targeted clones (refer to Fig. 4):

1. Primer forward upstream of 5′ arm and primer reverse inside the drug resistance
marker cassette to amplify the marker and to exclude single crossing over.

2. Primer forward and primer reverse inside target locus to amplify the deleted region.
3. Check PCR screen through agarose gel electrophoresis.
4. Select a number of targeted clones and grow in 24-well flat bottom microtiter

plates by adding 100 µL of the correct cell suspension from the 96-well flat bottom
microtiter plate and add 2 mL CM (see Notes 8 and 9).

5. Select an appropriate clone and repeat the transfection procedure using a second
targeting construct with a different marker cassette.

At this point, it is highly recommended to perform the phenotype exper-
iments and consider the results in selecting specific heterologous knockout
clones for further use.

4. Notes
1. Use only trusted suppliers of cell culture reagents and always test new lot numbers

as well as each batch of freshly made CM.
2. The addition of DMSO is known to help with difficult spots and it is used in the

sequencing protocol wherein its’ inclusion increases both the quality and the length
of the sequencing product. Glycerol has sometimes been used for PCR, but in the
original tests that were done on it previously, it was found that additives such as
Ipegal and DMSO performed better. This effect was seen with multiple polymerases
including Taq, TaqGold, Vent, MMLV-RT, and Superscript RT.

3. Marker recycling:
a. The marker cassette can be removed from the knockout clones to exclude side

effects of the drug resistance marker and to reuse the marker.
b. Cells with viability over 80% are diluted to a concentration of 0.6 × 106 cells

in 2 mL.
c. Add 100 µL 4-tetrahydroxytamoxifen (40 µM) to the 2 mL of cells (final concen-

tration 2 µM) and incubate for 5–12 h at 41°C. The concentration and timing
of this step will have to be empirically determined based on the targeted locus.
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A thorough reading of Arakawa et al. (2) is highly recommended before attempt-
ing 4-HT induction.

d. Proceed with subcloning.
4. Drug check after marker recycling or transfection: drug check is carried out for

three purposes: first, to ensure the excision of the marker cassette after marker
recycling, and second, to eliminate single targeted cells in a mix of targeted and
nontargeted cells after the second transfection, and third, to confirm that the second
transfection did not target the already knocked out locus thereby excising the first
targeting event.
a. Pick single colonies from the subcloning and transfer to a 96-well flat bottom

microtiter plate containing 300 µL CM/well.
b. Transfer 75 µL of the cell suspension to serial wells containing 75 µL of the

drug(s) to be checked: blasticidin (60 µg/mL) or mycophenolic acid (2 µg/mL)
or puromycin (2 µg/mL). End concentration is half that of the stock solution;
30 µg/mL, 1 µg/mL, and 1 µg/mL, respectively.

c. Let grow for 3–4 d at 41°C.
d. Choose clones positive/negative for blasticidin, mycophenolic acid, or puromycin

as expected.
e. Cultivate selected clones for further experiments.

5. This may facilitate the cloning of particularly difficult fragments. In using this
approach, it is recommended to include the addition of a step to add the 3′
A-overhang, as the long range PCR uses a proofreading enzyme. 
a. Method: 8 µL PCR product, 1 µL 10X PCR buffer, 0.1 µL dATP(10 µM), 0.1 µL

Taq polymerase at 72°C for 10 min and then proceed according to the kits
instructions. The target arms are then isolated from the prepared TA TOPO kit
plasmid through RE as shown above.

6. Drug check following second transfection.
a. To check transfectants after the second transfection for the two drug-resistance

marker cassettes, the cells are cultivated in both drugs simultaneously.
b. Mix 500 µL of each drug in a 24-well flat bottom microtiter plate and incubate

with 100 µL cell suspension.
c. Let grow at 41°C for 3–5 d.

7. Freezing positive clones:
a. Positive clones are transferred to flasks and grown in 50 mL CM for 2 d.
b. The cells are transferred to a 50-mL centrifuge tube and centrifuged for 5 min

at 1500 rpm and 4°C.
c. The supernatant is discarded and the pellet resolved in 10 mL freezing medium

containing DMSO.
d. The cells should now be immediately transferred to 10 labeled cryovials and

frozen at –80°C. After 24 h (and up to 1 wk) the cells need to be transferred to
a liquid nitrogen tank for long-term storage.

e. Freezing medium: 70 mL (70%) CM, 20 mL (20%) FCS, and 10 mL (10%)
DMSO.
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8. Thawing cells:
a. To thaw the cells, place the vial for 5 min in the 41°C incubator, then spin

down the tube for 5 min at 1500 rpm and 4°C.
b. Remove the freeze medium completely, resolve the pellet in 1 mL CM, and

transfer to a flask containing 25 mL CM.
c. Let grow for 2–3 d at 41°C and check the cells condition every day under the

microscope.
9. Subcloning by limited dilution:

a. Count the viable cells using Trypan blue.
b. Prepare three tubes containing 10 mL CM each and add 1000, 300, and 100

cells, respectively.
c. Plate each tube to a 96-well flat bottom microtiter plate by pipeting to each well

100 µL (transfer three plates with 10 cells/well, 3 cells/well, and 1 cell/well).
Alternatively, cells can be distributed across two 96-well flat bottom microtiter
plates in a 300, 100, 30, 10, 3, and 1 cells/well configuration using a third of the
plate for each dilution.

d. Incubate the plates for 8 d without changing medium.
e. Subclones should be visible by then as round colonies. Pick single colonies

into 300 µL CM.
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Design and Application of a shRNA-Based Gene
Replacement Retrovirus

Rugang Zhang, Peter D. Adams, and Xiaofen Ye

Summary
To perform structure/function analyses of a protein in vivo, ideally one should be able to

simultaneously abolish expression of the endogenous wild-type protein, substitute it with a form
of the protein containing a targeted mutation, and analyze the functional consequences. Until
recently, this was a highly challenging and/or laborious approach in mammalian systems, requir-
ing a targeted gene knockin in a human cell line or mouse. Herein is described a RNA interference
(RNAi)-based approach to achieve this much more simply in mammalian cells. A single retro-
virus has been constructed, which directs expression of a short hairpin RNA (shRNA) to knock-
down expression of the endogenous protein of interest; a cDNA coding for a wild-type or mutant
version of the same protein that also contains “silent mutations” that do not affect the protein
sequence, but do make the mRNA resistant to the shRNA; and a puromycin-resistance gene to
allow rapid drug selection of the virus-infected cells. Using this virus, expression of the endoge-
nous Anti-Silencing Function 1a (ASF1a) histone chaperone has been efficiently replaced in pri-
mary human cells, by an ectopically expressed epitope-tagged version. Moreover, the virus is
designed so that other shRNA and shRNA-resistant cDNA cassettes can easily be substituted,
making the approach readily applicable to other protein targets.

Key Words: Gene replacement; retrovirus; shRNA; silent mutations; shRNA-resistant cDNA;
U6 promoter.

1. Introduction
RNAi-based technologies have revolutionized the molecular and cellular

approaches taken to understand biological processes in mammalian cells. For
example, when studying gene function at the cellular level, researchers can use
RNAi technology to quickly generate cells lacking the gene of interest and
examine its “loss-of-function” phenotype (1). Furthermore, it is becoming
feasible to perform RNAi-based “genetic screens” in mammalian cells for gene
products whose inactivation confers a specific cellular phenotype (2–6).



Going one step beyond simple knockdown of gene expression, one can use
RNAi technology to knockdown expression of an endogenous protein and
simultaneously replace it with a mutant version of the same protein. This is
analogous to a gene “knockin” experiment, and has great potential for defining
functional domains of proteins using physiological assays, without interference
from the wild-type endogenous protein. Herein, a single retrovirus has been
described that encodes a RNAi to knockdown the endogenous protein and a
RNAi-resistant mRNA that, in turn, codes for a wild-type or mutant version of
the same protein. The mRNA is made RNAi-resistant by introducing silent
mutations into the redundant positions of each codon, so that they do not affect
the amino acid sequence. The virus is designed so that the individual shRNA
and cDNA-expression cassettes corresponding to any gene of interest can be
readily subcloned into the virus.

In this chapter, it is assumed that the reader has identified a gene of interest
and the cDNA(s) encoding the mutant or mutants of interest. First, how to gen-
erate a functional shRNA that knocks down the target protein is described. For
this purpose, the polymerase chain reaction (PCR)-shagging approach of
Hannon and coworkers is used (7). However, an entry vector for the shRNA,
called pPUR V2 has been custom designed. Once the shRNA-expression cas-
sette is subcloned into this vector, it can be readily transfected into a trans-
fectable human cell line, the transfected cells selected in puromycin can then be
assayed for knockdown of the target protein. Functional shRNAs are then easily
subcloned from pPUR V2 into the retrovirus plasmid. The retrovirus is modified
from the pQCXI series of vectors (Clontech: Mountain View, CA). The vec-
tor has been designed with the capacity to direct expression of the shRNA
subcloned from pPUR V2, a cDNA coding for a shRNA-resistant mRNA, and
a gene-encoding resistance to puromycin. The retrovirus plasmid is packaged
into infectious retrovirus using Phoenix cells and then delivered to the target
cells by a standard virus infection.

2. Materials

1. pPUR V2—this cloning vector was modified from pPUR (Clontech). An approx
750-bp BamHI/EcoRI fragment was excised from pPUR and replaced by a
synthetic oligonucleotide linker containing the multiple cloning site (MCS) in
Fig. 1. The linker was synthesized with BglII and MfeI sticky ends, which are
compatible with BamHI and EcoRI, respectively, but meaning that the original
BamHI and EcoRI sites are destroyed by the ligation. This plasmid is available
on request.

2. pGEM1-U6 plasmid (a gift of Greg Hannon [7]). This plasmid contains the human
U6 promoter, a promoter that directs expression by RNA polymerase III.

3. 5 U/µL Taq polymerase (Invitrogen).
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4. 2 U/µL Deep vent DNA polymerase (New England Biolabs [NEB: Ipswich, MA]).
5. Qiaquick PCR purification kit (Qiagen).
6. Restriction enzymes and buffers: EcoRI and XhoI (NEB).
7. 10X Tris-Acetate-EDTA (TAE) agarose gel-loading dye (150 mM ethylenedi-

aminetetraacetic acid, 30% glycerol, 0.25% [w/v] bromophenol blue [Sigma, St.
Louis, MA], and 0.25% [w/v] xylene cyanol FF [Sigma]).

8. 1% UltraPure agarose (Invitrogen).
9. Low melting temperature agarose (SeaPlaque Agarose, Cambrex: Walkersville, MD).

10. T4 DNA ligase (Roche: Basel, Switzerland).
11. DH5α competent cells (Invitrogen).
12. Qiafilter plasmid Maxi kit (Qiagen: Valencia, CA).
13. Laemmli sample buffer (50 mM Tris-HCl, 2% [w/v] sodium dodecyl sulfate

[SDS], 100 mM dithiothreitol, 10% [v/v] glycerol, and 0.05% [w/v] bromophenol
blue, pH 6.8).

14. Equipment and reagents for SDS-polyacrylamide gel electrophoresis (PAGE).
15. Bradford reagent: Bio-rad, Hercules, CA and 1 mg/mL bovine serum albumin

as standard.
16. Polyvinylidene (PVDF) protein transfer membrane (Bio-Rad: Hercules, CA).
17. Towbin transfer buffer (170 mM glycine, 22 mM Tris-HCl, and 0.01% [w/v] SDS,

pH 8.3).
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Fig. 1. Restriction map of pPUR V2 vector. The original BamHI and EcoRI sites in
pPUR have been destroyed. The U6-shRNA cassette, generated by PCR, is subcloned
into the EcoRI and XhoI sites of pPUR V2.



18. Sterile-filtered, 1 mg/mL puromycin in phosphate-buffered saline, pH 7.3 (Clontech).
19. U2OS cells grown in Dulbecco’s Modified Eagles (DME) supplemented with 10%

(v/v) fetal bovine serum (FBS) in a humidified 37°C, 10% (v/v) CO2 incubator.
20. Luria Bertani media + 100 µg/mL ampicilin (Sigma).
21. Phoenix cells were a gift by Gary Nolan, and WI38 primary human fibroblast cells

were purchased from ATCC: Manassas, VA. Phoenix cells should be grown in
DME supplemented with 10% (v/v) FBS in a humidified 37°C, 5% (v/v) CO2
incubator. WI38 cells should be grown in Dulbecco’s modified Eagle’s medium
supplemented with 20% (v/v) FBS, essential and nonessential amino acids, and
vitamins (Cellgro: Herndon, VA) in a humidified 37°C, 5% (v/v) CO2 incubator.

22. 8 mg/mL Polybrene in ddH2O (Sigma).
23. 0.45-µm Filter (Fisher: Pittsburgh, PA).
24. ddH2O.

3. Methods
3.1. Generation and Validation of Functional shRNAs in pPUR V2

The shRNAs are generated by PCR, as fusions to the human U6 RNA
polymerase III promoter (Fig. 2). It is recommended to first construct 3–6
shRNAs per gene and identify those that efficiently knockdown the target in a
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Fig. 2. Generation of U6-shRNA-expression cassette by PCR. The U6-shRNA-
expression cassette is generated by PCR using plasmid pGEM-U6 as a template; a for-
ward primer that contains a XhoI site and anneals to an SP6 site in the plasmid; a reverse
primer that contains an EcoRI site, the shRNA sequence, and anneals to the 3′-end of
the U6 promoter. The PCR product is digested with XhoI and EcoRI and subcloned into
pPUR V2 cut with the same two enzymes.



simple transfection-based assay. Typically, it is found that 20–30% of sequence-
verified shRNAs efficiently knockdown their target. Therefore, if 3–6 are
tested, at least one should knockdown its target.

To generate shRNAs, the U6-shRNA fusion is synthesized by PCR as
described in section 3.1.1.–3.1.7. and subcloned into pPUR V2 as an EcoRI/XhoI
fragment. This plasmid is transfected into cells that express the target gene (typi-
cally U2OS osteosarcoma cells, because they are readily transfectable), the trans-
fected cells are selected for 48 h in 1 µg/mL puromycin and then target
knockdown is assayed by protein Western blot and/or reverse transcriptase (RT)-
PCR of the mRNA. Plasmid pPUR V2 was designed for this purpose (Fig. 1). In
this plasmid, selection of transfected cells with puromycin is rapid and the custom-
designed MCS allows functional shRNAs to be easily shuttled from pPUR V2 into
a unique NheI (New England Biolabs, Ipswich, MA) site in the 3′-long terminal
repeat (LTR) of the retrovirus (pQCXIP, pQCXIH, or pQCXIN [Clontech]).

1. Design and order PCR primers: the reverse primer encoding the shRNA is
designed using “RNAi Central” at http://katahdin.cshl.org:9331/RNAi_web/
scripts/main2.pl. Click on “shRNA design.” Using the radio buttons and
drop-down menu, select three “29-mer design sense–antisense” and three “29-mer
antisense– sense.” Make sure that the accession numbers or sequences that match
cDNA or exon sequences are entered. The website generates sequences of oligos
encoding the shRNA and an EcoRI site for subcloning into pPUR V2. A GCGC
sequence should be added to the 5′-end of the oligo to facilitate digestion by
EcoRI. For each target gene, reverse primers containing the shRNA sequence
should be synthesized at 0.05-µmol scale by Sigma-Genosys (The Woodlands,
TX) or elsewhere. In addition, the forward PCR primer that is common to all
shRNAs and contains a XhoI site and a SP6 primer should be synthesized: 5′-
GGCCCTCGAGGATTTAGGTGACACTATAG-3′. Additional information on
shRNA design is at RNAi Central.

2. Perform PCR to generate the U6-shRNA cassette: this is schematized in Fig. 2. As
a PCR template, the pGEM1-U6 plasmid containing the human U6 RNA poly-
merase III promoter is used. Set up the PCR reaction, as follows:

pGEM1-U6 1 ng
50 mM MgCl2 2.5 µL
2.5 mM Deoxynucleotide 5′-triphosphate 4 µL
10X Taq buffer 5 µL
40% Dimethyl sulfoxide 5 µL
50 µM SP6 1 µL
50 µM Hairpin primer 1 µL
ddH2O 30 µL
Taq DNA polymerase 1 µL
Deep vent DNA polymerase 0.2 µL
Final volume 50 µL
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Perform PCR cycles, as follows: 95°C for 3 min; 30 cycles of: 95°C for 30 s, 55°C
for 30 s, and 72°C for 1 min; and one cycle of: 72°C for 10 min. Confirm the PCR
reaction by 1% TAE agarose gel electrophoresis (8). A single PCR product of
approx 600 bp should be apparent.

3. Purify the PCR product using the Qiaquick PCR purification kit, according to
manufacture’s instructions. Collect the purified PCR product in 30 µL of ddH2O.

4. Digest the PCR product as follows:

PCR product (3–5 µg DNA) 30 µL
10X NEB buffer 3 4 µL
EcoRI 1.5 µL
XhoI 1.5 µL
ddH2O 3 µL, to make a final volume of 40 µL

Incubate for 2 h at 37°C and then add 4 L of 10X TAE-loading buffer. For the
vector, digest 3 µg of pPUR V2 in the same way.

5. Purify both DNA fragments by TAE agarose electrophoresis in low-melting point
agarose (1% agarose for the PCR product and 0.6% agarose for pPUR V2). Excise
the DNA bands. Bands containing DNA can be stored at −20°C at this point.

6. Perform ligations as follows: melt the agarose gel slices at 75°C and set up liga-
tion reactions as follows:

Vector DNA (µL) 1 1
Insert DNA (µL) 0 3
ddH2O (µL) 9 6

Melt the agarose/water mix at 75°C for 4 min. Place at 37°C for 4 min. During this
time, make a T4 ligase/buffer master mix. For each ligation reaction: 7 µL of
water, 2 µL of 10X T4 DNA ligase buffer (Roche), and 1 µL of T4 DNA ligase
(Roche). Add 10 µL of reaction mix to each ligation reaction. Stir gently with
pipet tip. Place at room temperature for 2 h to overnight. Melt ligation at 75°C and
transform 1 µL into DH5α competent cells.

7. Restriction digest screening and sequencing of shRNAs: verify that the ligations
worked, based on the number of colonies obtained. Ideally, ligation of cut pPUR V2
alone should generate zero colonies and pPUR V2 with the U6-shRNA insert should
generate 10 or 100 s of colonies. Inoculate three to five colonies from each shRNA
ligation reaction into 5 mL of Luria Bertani media + ampicilin and grow overnight
at 37°C with shaking. Purify plasmid DNA with an Eppendorf perfect-prep mini-
prep kit (Eppendorf, Hamburg, Germany), according to the manufacturer’s instruc-
tions. Verify the clones by restriction digest with XhoI and EcoRI, which should
release an approx 600-bp fragment. Confirm those plasmids with the correct size,
insert by direct sequencing using the primer AATTTCTTGGGTAGTTTGCAG,
which anneals to the human U6 promoter and directs sequencing into the shRNA.

8. Transfection of pPUR V2-shRNA into U2OS cells: transfection quality DNA of
each sequence-verified pPUR V2-U6-shRNA plasmid is made using a Qiafilter
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plasmid Maxi kit, according to the manufacturer’s instructions. Use each of these
purified plasmids to transfect a 60% confluent 10-cm plate of U2OS cells by the
calcium phosphate method (9). In addition, transfect one plate with pPUR V2
vector alone and one plate with no DNA. Add puromycin to a final concentration
of 1 µg/mL, 48 h after transfection (see Note 1). After 72–96 h, scrape the cells into
Laemmli sample buffer, determine the protein concentration by Bradford assay and
fractionate 50–100 µg of total cellular protein by SDS-PAGE (10) (see Note 2).

9. Western blotting to test for protein knockdown: transfer the proteins from the gel
to a PVDF membrane and immunoblot to detect the protein of interest using a
standard protocol (10). The extract derived from pPUR V2-transfected cells serves
as a positive control and the efficiency of knockdown is measured relative to this.
If antibodies to the protein of interest are not available, knockdown can be assayed
by quantitative real-time RT-PCR.

3.2. Design of shRNA-Resistant cDNA

To design an shRNA-resistant cDNA, silent mutations are introduced in the
cDNA in the region targeted by the shRNA (Fig. 3). These mutations change
the nucleotide sequence, but do not affect the encoded protein sequence. For
most codons, this means changing the third base of the codon. In other cases,
more or less flexibility is allowed. Consult the full genetic code for details (e.g.,
in the New England Biolabs catalog). Mutations are introduced by a standard
mutagenesis protocol, for example, two-step mutagenic PCR or with the
Strategene Quickchange kit (La Jolla, CA) (8).

3.3. Subcloning shRNA and cDNA Into Retrovirus

A modified version was constructed of pQCXIN (Clontech, http://orders.
clontech.com/clontech/techinfo/vectors/vectorsM-Q/pQCXIN.shtml) (Fig. 4).
The final vector encodes the ASF1a shRNA, under control of the U6 promoter;
a puromycin-resistance gene, under control of a CMV promoter; and an ASF1a
cDNA that is resistant to the ASF1a shRNA, under control of the same CMV
promoter and an internal ribosomal entry site.
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Fig. 3. Design of an shRNA-resistant ASF1a. The figure shows the region of the
wild-type endogenous ASF1a mRNA that is targeted by the shRNA (Line 2); the cor-
responding amino acid sequence (Line 1); and the ectopically expressed ASF1a mRNA
that does not change the protein sequence, but which is resistant to the shRNA by virtue
of base changes in the third position of each codon.



This vector was made as follows. First a puromycin-resistance gene was
inserted into the MCS of pQCXIN as a BamHI/EcoRI fragment. This fragment
was generated by PCR using pQCXIP as a template and PCR primers contain-
ing a BamHI site (forward primer, 5′-end of gene) and an EcoRI site (reverse
primer, 3′-end of gene). Second, using a PCR-based approach, the neomycin-
resistance gene downstream of the internal ribosomal entry site in pQCXIN was
removed and replaced with a shRNA-resistant ASF1a cDNA flanked by a unique
XhoI site at the 5′-end and a unique MluI site at the 3′-end. The cDNA codes for
an hemagglutinin (HA)-tagged form of ASF1a. This cDNA can be excised with
XhoI and MluI and replaced by another cDNA of choice. Third, the U6-shASF1a
cassette was excised from pPUR V2 as a NheI fragment and inserted into the
unique NheI site in the 3′-LTR of the virus plasmid. This vector was verified by
sequencing and is available on request.
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Fig. 4. Schematic map of modified pQCXIP plasmid. This retrovirus plasmid is
designed for simultaneous expression of both shASF1a, an shASF1a-resistant wild-
type or mutant ASF1a cDNA, and resistance to puromycin under control of the indi-
cated promoters. See text for details.



3.4. Infection of Cells

The infectious retrovirus is generated by transfecting the plasmid DNA into
a packaging cell line, for example, Phoenix cells (http://www.stanford.edu/
group/nolan/protocols/pro_helper_dep.html). Transfection quality DNA of the
retrovirus plasmid is made using a Qiafilter plasmid Maxi kit, according to the
manufacturer’s instructions. After transfection, the Phoenix cells reverse tran-
scribe the plasmid DNA into an RNA that is packaged into infectious virus and
expelled from the cells. Then, the tissue culture supernatant containing the virus
is applied to the cells of interest, to deliver the shRNA and the shRNA-resistant
cDNA to the cells in a single virus. The infected cells can be selected in
puromycin to enrich for the infected cells. To assess the efficiency of killing of
uninfected cells by puromycin, perform a mock virus infection. To assess the
efficiency of infection, infect one plate with a virus known to generate good
titer (e.g., vector pQCXIP, Clontech).

1. The day before transfection, plate 5 × 106 Phoenix cells in 10 mL of medium in a
10-cm dish. Culture in a 37°C, 5% (v/v) CO2 incubator overnight.

2. Remove the medium from the 10-cm dish 4 h before transfection, and replace with
9 mL of prewarmed fresh medium.

3. Dilute the required amount of 2.5 M CaCl2 to 250 mM and aliquot 0.5 mL per
transfection to separate sterile 15-mL polystyrene tubes.

4. Add supercoiled plasmid DNA of the intended virus, to a total of 30 µg per tube.
5. Add 0.5 mL of 2X BES Buffered Saline (BBS), by dripping slowly from a 1-mL pipet,

vertically down the center of the tube (1–2 drops per second). Do not mix. Wait 
15 min. At this time, the precipitate should be barely visible to the naked eye.

6. Use a 1-mL pipet to blow air bubbles through the solution to mix the precipitate.
Distribute the mixture drop-wise into the medium, evenly over the plate of
Phoenix cells.

7. Rock the plates back and forth very gently to mix the calcium phosphate precipi-
tate and then place in humidified 37°C incubator with 5% (v/v) CO2 overnight.

8. Remove the medium and replace with 6 mL of fresh medium 24 h after transfec-
tion and return to the humidified 37°C incubator with 5% (v/v) CO2.

9. On the same day, split the target WI38 primary fibroblast cells in 10 mL of medium
in a 10-cm plate. The cell density the next day should be about 50% confluent.

10. Harvest the virus containing supernatant 24 h after step 8, and then filter through
a 0.45-µm filter.

11. Remove 10-mL medium from the target WI38 cell plate, and replace with 5 mL
of fresh WI38 cell medium. Add 5 mL of virus containing supernatant from
Phoenix cells dropwise into the target WI38 cell plate.

12. Add polybrene to each plate of WI38 cells to a final concentration of 8 µg/mL.
Mix polybrene into the medium by gently shaking the plate. Put the cell plate back
into a 5% (v/v) CO2-containing incubator.

Design and Application of a shRNA 219



13. Remove the medium from the WI38 cells 24 h postinfection and replace with 10 mL
of fresh WI38 medium, containing puromycin at a final concentration of 3 µg/mL.

14. Typically, 3 d after addition of puromycin, all of the noninfected cells should be
dead. At this time, there should be no surviving cells left on the mock virus
infected plate.

15. Harvest the infected cells for Western blot analysis by scraping directly in 1X
Laemmli sample buffer, followed by boiling for 4 min. Samples can be stored
frozen at −80°C.

3.5. Testing Protein Knockdown and Ectopic Expression

Cell extracts should be fractionated by SDS-PAGE, transferred to a PVDF
membrane and then Western blotted with antibodies to the protein of interest and
with anti-HA antibodies (or an appropriate epitope tag) (10). During SDS-PAGE,
it should be possible to resolve the HA-tagged ectopically expressed protein from
the untagged endogenous protein, making it possible to detect knockdown of the
endogenous protein and its replacement by the ectopically expressed HA-tagged
protein of higher molecular weight. This is illustrated for ASF1a in Fig. 5.

Once knockdown of the endogenous protein and expression of the ectopic
protein are confirmed, the cells can be assayed for the functional consequences.
The assays herein will obviously be specific to each protein and researcher.
However, regardless of the assay, the following control viruses should also be
used: a virus that knocks down the endogenous protein, but does not direct
expression of an ectopic protein; a virus that knocks down the endogenous
protein, and directs expression of the HA-tagged wild-type protein.

4. Notes
1. About 1 µg/mL Puromycin should kill all of the untransfected cells within 48 h.

The efficiency of transfection and cell killing should be determined from the plates
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Fig. 5. Replacement of endogenous ASF1a by ectopically expressed HA-tagged
ASF1a. W138 cells were infected with mock (1,4) virus encoding shRNA to ASF1a
(2,5), or virus encoding shRNA to ASF1a and a myc-tagged shRNA-resistant form of
ASF1a (3,6). Cell extracts were Western blotted with anti-ASF1a or anti-myc antibodies.



transfected with pPUR V2 only and no DNA, respectively. Approx 20–30% of the
cells on the plate should be transfected and the doubling time of U2OS cells is
about 24 h. Therefore, after 48 h of drug selection the plate transfected with pPUR
V2 alone should be about 60% confluent. There should be no live cells remaining
on the plate transfected without DNA.

2. A Bradford assay can be performed on samples in Laemmli sample buffer, pro-
vided that not more than 1 µL of Laemmli buffer is added per 700 µL Bradford
reaction. Also, add 1 µL of Laemmli sample buffer to the reference Bradford reac-
tions, containing 0, 5, and 10 µg of bovine serum albumin as standards.
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Construction of Simple and Efficient DNA Vector-Based
Short Hairpin RNA Expression Systems for Specific
Gene Silencing in Mammalian Cells

Tsung-Lin Cheng and Wen-Tsan Chang

Summary
RNA interference (RNAi) is an evolutionarily conserved mechanism of posttranscriptional gene

silencing induced by introducing the double-stranded RNAs (dsRNAs) into cells. Recent progress
in RNAi-based gene-silencing techniques has revolutionarily advanced in studies of the functional
genomics and molecular therapeutics. Among the widely used dsRNAs including exogenously 
synthetic and endogenously expressed small interfering RNAs (siRNAs) and short hairpin RNAs
(shRNAs), the shRNAs are more efficient than siRNAs on the induction of gene silencing and 
currently have evolved as an extremely powerful and the most popular gene silencing reagent. The
DNA vector-based shRNA-expression systems provide not only a simple and effective way in
inhibiting gene activities in either inheritable or inducible manner, but also a cost-effective tool in
constructing the expression vectors. To fully explore the DNA vector-based shRNA-expression 
systems in RNAi-mediated gene-silencing techniques, four distinct RNA polymerase III (Pol III)-
controlled type III promoter-based expression vectors are constructed including pHsH1, pHsU6,
pMmH1, and pMmU6, which contain either the RNase P RNA H1 (H1) or small nuclear RNA U6
(U6) promoter from human and mouse. Moreover, to improve the constructing and screening effi-
ciency for the shRNA-expression recombinant clones, these four DNA vectors are further recon-
structed by inserting a stuffer of puromycin resistance gene (PuroR) between restriction enzyme
ClaI and HindIII sites, which makes the preparation of vectors easy and simple for cloning the
shRNA-expression sequences. Because of the ease, speed, and cost efficiency, these four improved
DNA vector-based shRNA-expression vectors provide a simple, convenient, and efficient gene-
silencing system for analyzing specific gene functions in mammalian cells. Herein, the simple and
practical procedures for the construction of DNA vector-based expression vectors, potential and
rational design rules for the selection of effective RNAi-targeting sequences, efficient and cost-
effective cloning strategies for the construction of shRNA-expression cassettes, and effective and
functional activity assays for the evaluation of expressed shRNAs are described.

Key Words: DNA vector-based RNAi system; gene silencing; RNA interference (RNAi);
RNA polymerase III (Pol III) promoter; RNase P RNA H1 promoter (H1); small nuclear RNA
U6 promoter (U6); short hairpin RNA (shRNA); small interfering RNA (siRNA).



1. Introduction
RNA interference (RNAi) is a mechanism of posttranscriptional gene silenc-

ing in which double-stranded RNAs (dsRNAs) induce sequence-specific cleav-
age of the homologous RNA transcripts and in turn cause complete degradation
of the aberrant RNA fragments, resulting in reduced or loss of activities of the
genes (1,2). During the processes of RNAi-mediated gene silencing, the dsRNAs
are first recognized and cleaved into 21–23-nucleotide (nt) small interfering
RNAs (siRNA) duplexes, with symmetrical 2-nt 3′-overhangs by dsRNA-specific
RNase III-related endonuclease, Dicer (3,4). The resulting siRNAs are efficiently
incorporated into the RNA-induced silencing complex (RISC) to form a ribonucleo-
protein complex that first mediates the unwinding of the siRNA duplexes and
selectively degrades the sense strand of siRNA. The single-stranded siRNA-coupled
(RISC) is in turn guided to catalyze the endonucleolytic cleavage of homologous
RNA transcripts at the site where the antisense strand of siRNAs is comple-
mentarily bound (5,6). Subsequently, the resulting disruptive RNA fragments
are immediately subjected to exonucleolytic destruction by the action of
exoribonuclease.

RNAi is evolutionarily conserved to each of the eukaryotic organisms
involved in regulation of the gene activity. The function of RNAi, primarily,
appears to be implicated in cellular defense mechanism in antiviral infection
and maintaining genomic integrity against transposable element-induced
genomic instability (7,8), as well as in cellular gene regulation and chromoso-
mal epigenetic control (9–11). Currently, it has emerged as a practically used
strategy for reverse functional genomics and in particular as an extremely power-
ful approach for molecular therapeutics (12–15). In plants and invertebrates,
introduction of the dsRNAs into the cells induces sequence-specific inhibition
of homologous gene expression. However, in mammals, the dsRNAs longer
than 30 nt in length trigger a strong cytotoxic response through activation of the
dsRNA-dependent protein kinase and 2′,5′-oligoadenylate synthetase, resulting
in inactivation of the eukaryotic initiation factor-2α and activation of the
RNaseL, and in turn causing general inhibition of protein synthesis and nonspe-
cific degradation of single-stranded RNA, respectively (16–20). However, by
using short synthetic 21-nt siRNAs with symmetrical 2-nt 3′-overhangs allow
for inducing the sequence-specific gene silencing, yet avoid triggering the non-
selective cytotoxic effects by long dsRNAs (21,22).

In mammals, there are mainly two strategies in producing dsRNAs by exoge-
nous delivery of synthetic siRNAs (21,22) or short hairpin RNAs (shRNAs)
(23) and endogenous vector-expressed siRNAs (24–26) or shRNAs (27–31).
The silencing effect induced by synthetic dsRNAs is transient and the target
gene is reactive after a few days, as well as the cost of chemical synthesis of RNA
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oligonucleotides is expensive (21–23). In contrast, the inhibition effect trig-
gered by vector-expressed dsRNAs can be easily manipulated in either
inheritable or inducible manner, and in particular construction of the expres-
sion vectors requires only DNA oligonucleotides that can be easily obtained
from local commercial suppliers (27,32,33). The endogenous dsRNAs
including siRNAs and shRNAs can be transcribed from either RNA Pol II-or
Pol III-regulated promoters; however, the primary RNA transcripts derived
from RNA Pol II promoters are subjected to posttranscriptional processes,
including 5′-capping and 3′-polyadenylation. In addition, the RNA Pol II pro-
moters require specific transcription terminator sequences that make it difficult
to predefine the size of mature RNA products. Whereas, the RNA Pol III-regulated
type III promoters, especially H1 or U6 from human and mouse, have been used
most frequently, because they have a well-defined transcription start site and a
simple and effective transcription terminator sequence consisting of only five or
six consecutive thymidine residues (Ts), and therefore these H1 and U6 promoters
are suitable for the synthesis of small RNA transcripts with defined sizes.
Moreover, RNA Pol III promoters can efficiently transcribe small RNA transcripts
lacking both the 5′-cap and 3′-polyadenosine (poly[A]) tail (34–36).

In practice, the siRNA-expression vectors utilize dual promoter strategy in
which two RNA Pol III promoters align in either tandem or convergent manner
(see Fig. 1B,C). The two tandem promoters drive independently the expression
of sense and antisense RNAs from two separated transcriptional units (24,25),
whereas the two convergent promoters drive simultaneously the expression of
complementary sense and antisense RNAs from a single DNA fragment (26).
In contrast, the shRNA-expression vectors contain a single RNA Pol III pro-
moter followed by the sense, a loop, and the antisense sequences (see Fig. 1A)
(27–31). In addition, previous studies have reported that both the siRNA-
expression systems do not appear to work as efficiently as the shRNA-expression
system to inhibit gene expression (33,37,38). To develop convenient and effec-
tive DNA vectors for simple and efficient cloning of small-RNA expression
sequences, four distinct expression vectors including pHsH1, pHsU6, pMmH1,
and pMmU6, which contain the widely used RNA Pol III promoters H1 and
U6 from human and mouse, are constructed (38). In particular, these four
expression cassettes are designed in which the small-RNA expression
sequences are cloned between two unique restriction enzyme ClaI and
HindIII sites. Moreover, to facilitate the cloning of small-RNA expression
sequences into these four expression cassettes, these four expression vectors
are further improved on by constructing a stuffer of PuroR between ClaI and
HindIII sites. These improved expression vectors can be used directly for
mammalian gene function analysis in vitro cultured cells or in vivo whole
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Fig. 1. Structures of shRNA and siRNA-expression systems. (A) Construct of RNA
Pol III-controlled promoter-based shRNA-expression vector. In this system, a single
RNA Pol III promoter drives the expression of a shRNA transcript in which the sense
and antisense strands of the shRNA are linked by a 9-nt loop sequence. The connection
of five consecutive Ts (T5) at the 3′-end of the cassette provides not only a transcription
termination signal for RNA Pol III but also a 2-nt uridine overhang at the 3′-terminus
of shRNA transcript. (B) Construct of two tandem array RNA Pol III-controlled
promoters-based siRNA-expression vector. In this system, two tandem array RNA Pol
III promoter-based expression cassettes are used to drive separately the expression of
the sense and antisense RNA transcripts. Both the sense and antisense RNAs then
anneal to form a ds-siRNA. (C) Construct of two convergent array RNA Pol III-
controlled promoters-based siRNA-expression vector. In this system, two convergent
array RNA Pol III promoters-based expression unit is used to drive simultaneously the
transcription of the sense and antisense strands. Both the complementary sense and
antisense strands then anneal to form a ds-siRNA.

animals. In this chapter, the discussion is focused on these improved DNA
vector-based shRNA-expression systems used in this laboratory. The proto-
cols described in this chapter provide a comprehensive procedure for con-
structing the simple and efficient shRNA-expression systems for specific
gene silencing in mammalian cells.



2. Materials
2.1. Cell Culture

1. Mammalian cell lines of interest (American Type Culture Collection, Manassas,
VA) stored in liquid nitrogen or at −80°C.

2. Cell line-specific growth media (GIBCO-BRL, Rockville, MD) supplemented with or
without the heat inactivated various percentages of fetal calf serum (Biological Industries,
Ashrat, Israel) and 1% antibiotic/antimycotic solution (GIBCO-BRL), and stored at 4°C.

3. Phosphate-buffered saline (PBS): 2.7 mM KCl, 1.8 mM KH2 PO4, 136 mM Nacl,
10 mM Na2HPO4, pH 7.4; stored at room temperature.

4. 0.25% Trypsin solution (GIBCO-BRL) and 1 mM ethylenediamine tetraacetic
acid (EDTA) (GIBCO-BRL) stored in aliquots at −20°C.

5. Cell scrapers and spatulas (Techno Plastic Products AG, Trasadingen, Switzerland).

2.2. Plasmid Vectors

1. pHsH1, pHsU6, pMmH1, pMmU6, pHsH1puro, pHsU6puro, pMmH1puro, and
pMmU6puro expression vectors (see Figs. 2 and 3) stored in aliquots at −30°C.

2. pGEM-7ZF(+) vector (Promega, Madison, WI) stored at −30°C.
3. pMSCVpuro vector (BD Biosciences Clontech, Palo Alto, CA) stored at −30°C.
4. Competent cells of Escherichia coli strain XL 1-blue (Stratagene, La Jolla, CA)

stored in aliquots at −80°C.
5. Luria-Bertani (LB) broth stored at room temperature.
6. Ampicilin stock solution (100 mg/mL) stored in aliquots at −30°C.
7. ClaI, EcoRI, and HindIII restriction enzymes (Promega) and T4 DNA ligase

(Promega) stored at −30°C.
8. Agarose gel (Promega) stored at room temperature.
9. 50X Tris-acetate stock solution stored at room temperature.

10. Gel-loading buffer (6X): 0.25% bromophenol blue, 0.25% xylene cyanol FF, and
15% Ficoll type 400; stored at room temperature.

11. Plasmid mini and maxi purification kits (Viogene, Sunnyvale, CA), as well as gel
extraction and polymerase chain reaction (PCR) purification kits (Viogene) stored
at room temperature.

12. Pheno/chloroform/isoamyl alcohol (25/24/1) and chloroform/isoamyl alcohol
(24/1) stored at 4°C and room temperature, respectively.

13. 3 M Sodium acetate, pH 4.8, stored at room temperature.
14. Ethanol (100% and 70% [v/v]) stored at −30°C.
15. Tris-EDT buffer (TE) 10 mM Tris-HCl and 1 mM EDTA, pH 8.0; stored at room

temperature.
16. ABI PRISM® BigDye™ terminator cycle sequencing ready reaction kits with

AmpliTaq DNA polymerase (Applied Biosystems, Foster, CA) stored at −30°C.

2.3. Polymerase Chain Reaction

1. Oligonucleotide primers (T7 promoter: 5′-TAATACGACTCACTATAGGG-3′;
SP6 promoter: 5′-GATTTAGGTGACACTATAG-3′) stored at −30°C.
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Fig. 2. Sequences and structures of RNA Pol III-controlled type III promoter-based
shRNA-expression vectors. The human H1 (HsH1) and U6 (HsU6), and mouse H1
(MmH1) and U6 (MmU6) promoters are isolated from human and mouse genomic
DNAs by PCR amplification, and cloned into the pGEM-7ZF(+) vector. The resulting
DNA constructs are designated as pHsH1 (A), pHsU6 (B), pMmH1 (C), and pMmU6
(D) vectors. These four DNA vectors all contain the same unique restriction enzyme ClaI
and HindIII sites for cloning the shRNA-coding sequences. In these four DNA vectors,
the proximal sequence element is in white and shaded in blue, TATA box is in bold and
shaded in green, restriction enzyme sites of EcoRI (GAATTC), ClaI (ATCGAT), and
HindIII (AAGCTT) are underlined and in purple and bold, and G is the transcription
initiation site (+1).

2. 10 mM Deoxynucleoside triphosphate mixtures (Promega) stored at −30°C.
3. PCR reagents, including Taq DNA polymerase and 10X reaction buffer with

MgCl2 (Promega) stored at −30°C.

2.4. Transfection and Functional Assessments

1. Lipofectamine 2000™ (Invitrogen, Carlsbad, CA) stored at 4°C.
2. TRI Reagent™ (Molecular Research Center, Cincinnati, OH) stored at 4°C.
3. Protein lysis buffer: 50 mM NaCl, 50 mM Tris-HCl, 2 mM EDTA, 0.5% sodium

deoxycholate, 1% NP-40 (Roche Molecular Biochemicals, Mannheim, Germany),
and 0.1% SDS, pH 7.4, stored at room temperature.

4. Protease inhibitors (Roche) stored in aliquots at −80°C.



5. 3% Paraformaldehyde (Merck, Darmstadt, Germany).
6. 0.5% Triton X-100 (Merck, Darmstadt, Germany).
7. Bicinchoninic acid assay (Pierce, Rockford, IL) stored at room temperature.
8. Bovine serum albumin (Sigma, St Louis, MO) stored at room temperature.
9. Dual-luciferase reporter assay system (Promega) stored in aliquots at −80°C.

10. Enhanced chemiluminescence Western blotting detection reagents (Amersham
Biosciences, Arlington Heights, IL) stored at 4°C.

2.5. Instruments
1. Microcentrifuges (Heraeus Biofuge Pico and Heraeus Biofuge Fresco, Kendro

Laboratory Products, Sollentum, Germany).
2. Dri-block heater (Techne DRI-BLOCK DB 20, Techne, Cambridge, UK).
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Fig. 3. Constructs of improved DNA vector-based shRNA-expression systems. The
PuroR is cloned between restriction enzyme ClaI and HindIII sites in the pHsH1, pHsU6,
pMmH1, and pMmU6 constructs as a stuffer that is convenient for the cloning of the
shRNA-coding sequences. The resulting improved DNA constructs are redesignated as
pHsH1puro (A), pHsU6puro (B), pMmH1puro (C), and pMmU6puro (D) vectors.



3. Handheld ultraviolet (UV) lamp (VL-4.L, Vilber Lourmat, Marne-la-Vallee, France).
4. UV image system (UV illuminator, Vilber Lourmat, Marne-la-Vallee, France).
5. Spectrophotometer (Beckman DU 640, Beckman Instruments, Fullerton, CA).
6. Microplate reader (Dynatech MR5000, Dynatech Laboratories, Chantilly, VA).
7. Luminometer (MiniLumat LB 9506, EG&G Berthold, Wildbach, Germany).
8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparatus (Mighty

Small II 8 × 7 cm2, Hoefer Scientific Instruments, San Francisco, CA).
9. Electrophoresis power supply (EPS 1000, Amersham Pharmacia Biotech, Uppsala,

Sweden).
10. Semidry transfer apparatus (Semiphor transphor unit, Amersham Pharmacia Biotech).
11. Automated DNA sequencer (ABI PRISM 377 DNA sequencer, Applied Biosystems,

Foster, CA).

3. Methods
The methods described in this section outline (1) the structural features and

construction of improved shRNA-expression vectors, (2) the molecular charac-
teristics of designed and selected RNAi-targeting sequences, (3) the procedures
for cloning shRNA-expression vectors, and (4) the approaches for assessing
gene silencing efficiency by shRNA-expression vectors.

3.1. Structural Features and Construction of Improved 
shRNA-Expression Vectors

3.1.1. Structural Features of Improved shRNA-Expression Vectors

The functional active siRNA, either in vivo identified or in vitro synthesized,
is a small 21–23-nt RNA duplex with symmetrical 2-nt 3′-overhangs (3,4). In
addition, the long dsRNAs stimulate a serious cytotoxic response through acti-
vation of the dsRNA-dependent protein kinase and 2′,5′-oligoadenylate syn-
thetase in mammalian cells (16–20). However, this nonselective cytotoxic effect
can be overcome by directly applying small dsRNAs with the size smaller than
30-nt in length, including synthetic or expressed siRNAs and shRNAs. The
RNA Pol III-regulated type III promoters, especially H1 and U6 from human
and mouse, have been used most frequently, because they transcribe the RNA
from a defined start site (+1) and terminate at a run of 5–6 Ts. As well as, they
can efficiently express small-RNA transcripts without posttranscriptional mod-
ification including 5′-capping and 3′-polyadenylation (34–36). Thus, these pro-
moters are suitable for expression of the defined small-RNA transcripts with the
features fulfilling the aforementioned criteria.

In addition, to make the construction of shRNA-expression vectors simple and
convenient, all the vectors are constructed to contain the same unique cloning
sites, ClaI and HindIII, for cloning the RNAi-targeting sequences (see Note 1).
Because U6 promoter transcribes preferentially from a “G” nucleotide at the +1
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position, whereas the H1 promoter is less strict. The shRNA-expression vectors
are designed particularly that RNA transcripts start with a nucleotide G in the
vectors, where it locates within the restriction enzyme ClaI site (see Fig. 2).
Specifically selected RNAi-targeting sequences can be easily cloned into an
expression cassette, providing an optimal system for testing endogenous expres-
sion and activity of shRNA. However, one big obstacle for DNA vector-based
RNAi systems is that it takes much time and effort to clone the DNA constructs.
To enhance the convenience of constructing a DNA vector-based RNAi system
and facilitate the screening of recombinant clones, all the vectors are further
improved by inserting a stuffer of PuroR between the unique cloning sites, ClaI
and HindIII, which makes the preparation of the DNA vectors simple and easy by
only removing the stuffer of PuroR DNA fragment with ClaI and HindIII double
digestion (see Fig. 3) (Note 2) (38).

3.1.2. Construction of Improved shRNA-Expression Vectors

The shRNA-expression vectors, including pHsH1, pHsU6, pMmH1, and
pMmU6 (see Fig. 2), are constructed by PCR-based cloning method. The RNA
Pol III-regulated type III promoters, including H1 and U6 from human (Hs)
and mouse (Mm), are amplified by standard PCR reaction using synthetic
oligonucleotides, which are purchased from local commercial suppliers (see
Note 3). The oligonucleotides used for amplification of the HsH1, HsU6,
MmH1, and MmU6 are:

HsH1-S: 5′-GGAATTCGAACGCTGACGTCATCAAC-3′ and HsH1-AS:
5′-CCATCGATAAAGAGTGGTCTCATACAG-3′; HsU6-S:
5′-GGAATTCAAGGTCGGGC AGG AAGAGG-3′ and HsU6-AS:
5′-CCCAAGCTTCCATCGATGTTTCGTCCTTTCCACAAGATAT-3′; MmH1-S:
5′-GGAATTCCGCTCTTGAAGGACGACGTCATC-3′ and MmH1-AS:
5′-CCATCGATAGGGTGTAGACCGGCCGCCAC-3′; MmU6-S:
5′-GGAATTCATCCGACGCCGCCATCTCTAGG-3′ and MmU6-AS:
5′-CCATCGATCAAGGCTTTTCTCCAAGGGATA-3′.

To simplify the construction procedures, the amplification product of HsU6
promoter is first treated with EcoRI and HindIII restriction enzymes, then
cloned into an EcoRI/HindIII-digested pGEM-7ZF(+) vector (see Note 4), and
the resulting plasmid is designated as pHsU6. Subsequently, the other amplifi-
cation products including HsH1, MmH1, and MmU6 promoters are treated with
EcoRI and ClaI restriction enzymes, subcloned into an EcoRI/ClaI-digested
pHsU6 vector to substitute the HsU6 promoter, and the resulting plasmids are
called as pHsH1, pMmH1, and pMmU6. To construct the improved cloning
vectors, including pHsH1puro, pHsU6puro, pMmH1puro, and pMmU6puro
(see Fig. 3), a ClaI/HindIII-treated PuroR DNA fragment isolated from
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pMSCVpuro vector is inserted into the ClaI/HindIII-digested pHsH1, pHsU6,
pMmH1, and pMmU6 vectors.

3.2. Molecular Characteristics of Designed and Selected 
RNAi-Targeting Sequences

The efficiency of RNAi-based gene silencing is primarily dependent on the
effectiveness and specificity of the RNAi-targeting sequences. To obtain the
effective siRNAs, it is necessary to design, synthesize, and screen several different
RNAi-targeting sequences from a particular gene. Systematic analyses of the
specific features from the effective siRNAs reveal that siRNA might have
sequence-specific characteristics associated with its functionality. These molecular
characteristics generally include low-to-medium G/C content (30–50%), high
internal stability at the sense strand 5′-terminus, low internal stability at the sense
strand 3′-terminus, absence of internal repeats or palindromes, and base preferences
at the sense strand positions 1, 3, 10, and 19 (see Fig. 4) (39–43).

1. Retrieve the nucleotide sequence of any gene from the National Center for
Biotechnology Information (NCBI) nucleotide database (GenBank; http://www.
ncbi.nlm.nih.gov/).

2. Screen any 19-nt sequence (see Note 5) within the coding region and 3′-untranslated
region that fulfills the aforementioned sequence-specific characteristics and in
particular does not contain stretches of four or more consecutive As and Ts.

3. Select any 19-nt sequence containing more than three mismatches to any other
gene and also avoid any known single nucleotide polymorphisms by searching the
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Fig. 4. Sequence-specific features for the rational design of potential siRNAs. The
mature siRNA is a 21–23-nt dsRNA that contains a 19-nt duplexed region, symmetri-
cal 2-nt 3′-overhangs, and 5′-phosphate (P) and 3′-hydroxyl (OH) groups. The positions
of each nucleotide in the 19-nt duplexed region of the sense strand are numbered. On
the basis of recently established design rules, an effective siRNA has high stability at
the 5′-terminus of the sense strand, and lower stability at the 5′-antisense terminus and
at the cleavage site. In addition, the sequence-specific preferences at the following posi-
tions on the sense strand are important including the presence of a G (C) at position 1,
an A at position 3, an U at position 10, and an A (U) at position 19.



nonredundant NCBI database (http://www.ncbi.nlm.nih.gov/BLAST/) with the
screened sequence.

4. Choose particularly two to four 19-nt sequences with a G/C and an A/T at the
sense strand positions 1 and 19, respectively.

5. Design the sense and antisense oligonucleotides: shGene-S: 5′-CGNNNNNNN
NNNNNNNNNNNttcaagagaNNNNNNNNNNNNNNNNNNCTTTTTGGAAA-3′
and shGene-AS: 5′-AGCTTTTCCAAAAAGNNNNNNNNNNNNNNNNNN
tctcttgaaNNNNNNNNNNNNNNNNNN-3′ (see Note 3).

3.3. Molecular Construction of shRNA-Expression Vectors

This subsection describes the molecular cloning of the shRNA-expression
vectors that can efficiently induce inhibition of target-gene expression in a
sequence-specific manner. The construction procedures use only standard
molecular cloning techniques, which simply involve inserting an annealed
oligonucleotide duplex into the ClaI/HindIII restriction enzyme sites in the
improved shRNA-expression vectors. The following experimental steps discuss
the key components of this procedure, including (1) preparation of the shRNA-
expression vectors, (2) preparation of the shRNA-expression templates, (3)
cloning of the gene-specific shRNA-expression vectors, (4) screening of the
shRNA-expression template positive clones, and (5) sequencing of the shRNA-
expression template sequences (see Fig. 5).

3.3.1. Preparation of the shRNA-Expression Vectors

1. Digest 10 µg of pHsH1puro, pHsU6puro, pMmH1puro, or pMmU6puro in a 1.5-mL
Eppendorf tube in a reaction with 5 µL of 10X restriction enzyme buffer, 10 U of
ClaI and HindIII, and distilled H2O to total 50 µL in 37°C water bath for 2 h.

2. Analyze 1 µL of digested DNA mixtures on a 0.8% (w/v) agarose gel with an
appropriate molecular weight marker.

3. Inactivate the restriction enzymes by incubation at 70°C heat block for 10 min.
4. Isolate the digested vector by using electrophoresis on a 0.8% (w/v) agarose gel.
5. Recover the DNA fragment from the agarose gel by using the gel extraction kit,

and elute the DNA fragment with 50 µL of TE (pH 8.0) (see Fig. 5).

3.3.2. Preparation of the shRNA-Expression Templates

l. Mix 5 µL of the complementary oligonucleotides (100 µM) in a 1.5-mL Eppendorf
tube in a reaction with 2 µL of 10X annealing buffer (T4 DNA ligase ligation
buffer) and distilled H2O to total 20 µL (see Note 6).

2. Place the Eppendorf tube in a 95°C heat block for 10 min.
3. Remove the Eppendorf tube from the heat block and allow to cool to room tem-

perature on the bench.
4. Centrifuge briefly the Eppendorf tube to recover the reaction solution and store on

ice or at 4°C until ready to use (see Note 7).
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Fig. 5. Experimental procedure for constructing the DNA vector-based shRNA-
expression cassette. (A) Preparation of DNA vector-based shRNA-expression vector.
The improved DNA vector-based shRNA-expression vector is digested with restriction
enzymes ClaI and HindIII, simultaneously, to remove the stuffer PuroR DNA fragment.
(B) Cloning of shRNA-expression cassette. The ClaI/HindIII-digested shRNA-expression
vector is ligated with an annealed oligonucleotide duplex that contains a specific
shRNA-expression sequence with a row of five Ts as a transcription termination signal
and two unique restriction enzyme ClaI and HindIII compatible ends. (C) Screening of
shRNA expressed recombinant DNA clone. The DNA construct containing the shRNA-
expression sequence is identified by simply mapping with restriction enzymes ClaI and
HindIII, and further confirmed by directly DNA sequencing with oligonucleotide
primer against T7 or SP6 promoter. The positive recombinant clones contain the restric-
tion enzyme HindIII site but usually lose the restriction enzyme ClaI site.
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3.3.3. Cloning of the Gene-Specific shRNA-Expression Vectors

1. Mix 2 µL of ClaI/HindIII-digested vectors and 8 µL of annealed shRNA-coding
DNA templates in a 1.5-mL Eppendorf tube in a reaction with 2 µL of 10X liga-
tion buffer and distilled H2O to total 19 µL (see Note 8).

2. Add 1 µL of T4 DNA ligase.
3. Incubate in 16°C water bath overnight.
4. Transform 200 µL of XL 1-blue competent cells with 20 µL of ligated mixtures.
5. Plate on LB agar plates containing 100 µg/mL of ampicillin.
6. Incubate in 37°C incubator overnight.

3.3.4. Screening of the shRNA-Expression Template Positive Clones

1. Inoculate four selected colonies into 3 mL LB broth containing 100 µg/mL of
ampicillin (see Note 9).

2. Incubate in 37°C incubator overnight.
3. Purify plasmid DNAs from 1.5 mL overnight culture by using plasmid mini purifi-

cation kit, and elute the plasmid DNAs with 50 µL of TE (pH 8.0).
4. Check isolated plasmid DNAs by single digestion with restriction enzyme ClaI or

HindIII. Digest 2 µL of purified plasmid DNA in a 1.5-mL Eppendorf tube in a
reaction with 2 µL of 10X restriction enzyme buffer, 2 U of ClaI or HindIII, and
distilled H2O to total 20 µL in 37°C water bath for 1 h.

5. Analyze 10 µL of digested DNAs on a 0.8% (w/v) agarose gel with an appropriate
molecular weight marker. The positive shRNA-expression clones containing
restriction enzyme HindIII site but usually losing restriction enzyme ClaI site are
digested only with HindIII and not digested with ClaI. Plasmids showing this
restriction enzyme-digestion pattern are presumably correct and should be con-
firmed by directly sequencing.

3.3.5. Sequencing of the shRNA-Expression Templates

Plasmid DNA is sequenced by using an automated DNA sequencer, which
uses the dideoxy sequencing method with fluorescent dyes.

1. Set up cycle sequencing reaction: 500 ng plasmid DNA, 3.2 pmol of T7 or SP6
promoter primer, 8 µL ABI Prism dGTP BigDye terminator, and distilled H2O to
total 20 µL.

2. Perform the PCR reaction by using the following thermocycling parameters:

Step Time Temperature (°C) Cycles

Initial denaturation 2 min 94 1
Denaturation 30 s 96 –
Annealing 15 s 50 25
Extension 4 min 60 –

3. Amplify plasmid DNA containing the correct sequence by using plasmid maxi
purification kit, and elute the plasmid DNAs with 500 µL of TE (pH 8.0).



3.4. Functional Assessment of shRNA-Expression Vectors 
in Mammalian Cells

Tremendous evidence has already shown that not all of the RNAi-targeting
sequences selected from a particular gene exhibit the same potencies on induc-
ing gene silencing. Only a limited number of trigger siRNAs are capable of
inducing highly efficient target gene silencing in a sequence-specific manner.
The silencing efficacy of siRNAs is dependent on the specificity of the target
sites within the gene and can only be determined experimentally based on the
inhibition of the target-gene expression. Several widely used approaches can be
used to analyze the efficiency of gene silencing induced by DNA vector-based
shRNA expression, including (1) Northern blot, (2) quantitative reverse tran-
scription (RT)-PCR, (3) Western blot, (4) immunostaining, and (5) functional
activity assay (see Fig. 6). In general, the effect of gene silencing can be
detected 24–48 h after transfection, dependent on the abundance and the stabil-
ity of the proteins encoded by the target genes.

3.4.1. Transfection of shRNA-Expression Vectors

1. Subculture and plate 1 × 105 cells per well in 2 mL growth medium onto a six-well
culture plate 24 h before transfection. For immunostaining, cells are plated on a
glass cover slip in 2 mL growth medium in a six-well culture plate 24 h before
transfection.

2. Transfect 2 µg of shRNA-expression vector, or cotransfect 0.5 µg of RNAi-target
gene-expression vector and 1.5 µg of trigger shRNA-expression vector by using
Lipofectamine 2000 following the manufacturer’s protocol.

3. Incubate the transfected cells at 37°C in a CO2 incubator for 48 h.

3.4.2. Isolation of Total RNAs for Northern Blot or RT-PCR

1. Remove growth medium and wash the transfected cells three times with PBS.
2. Harvest the transfected cells from the plate by using cell scrapers or spatulas into

a 50-mL culture tube.
3. Purify total RNAs from the transfected cells by using TRI reagent following the

manufacturer’s protocol.
4. Perform Northern blot or RT-PCR analysis with specific probe or primer pair

according to standard protocols, respectively.

3.4.3. Preparation of Total Cell Lysates for Western Blot

1. Remove growth medium and wash the transfected cells three times with PBS.
2. Harvest the transfected cells from the plate by using cell scrapers or spatulas into

a 50-mL culture tube.
3. Prepare total cell lysates from the transfected cells by using protein lysis buffer

containing protease inhibitors.
4. Perform Western blot analysis with specific antibody according to standard protocols.
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Fig. 6. Experimental procedures for assessing the inhibition efficiency of shRNA-
expression constructs. (A) Seeding of targeting cell line. The targeting cell line is sub-
cultured 24 h before transfection and plated into six-well culture plate at 1 × 105 cells
per well. (B) Transfection of shRNA-expression construct. The cultured cells are either
transfected with 2 µg of shRNA-expression construct or cotransfected 0.5 µg of RNAi
target-gene expression construct and 1.5 µg of trigger shRNA-expression construct by
using Lipofectamine 2000 according to the manufacturer’s instructions. (C)
Assessment of inhibition efficiency. After 48 h incubation, the transfected cells are har-
vested and lysed for either RNA or protein level analysis of target-gene expression by
using Northern blot, RT-PCR, Western blot, immunostaining, or functional reporter
assay (luciferase activity).



3.4.4. Fixation of Transfected Cells for Immunostaining

1. Remove growth medium and wash the transfected cells three times with PBS.
2. Fix the transfected cells with 3% paraformaldehyde for 1 min and wash the fixed

cells three times with PBS.
3. Permeabilize the fixed cells with 0.5% Triton X-100 for 15 min and wash the per-

meabilized cells three times with PBS.
4. Perform immunostaining with specific antibody according to standard protocols.

4. Notes
1. This approach is cost-effective and convenient, as any annealed oligonucleotide

duplexes can be directly cloned into these four different expression vectors at the
same time.

2. The main advantage of this approach is that the preparation of the inserting vec-
tors is simple and efficient by only double digestion with restriction enzymes ClaI
and HindIII to remove the stuffer of PuroR gene from pHsH1puro, pHsU6puro,
pMmH1puro, and pMmU6puro vectors. This will dramatically increase the
cloning efficiency to more than 75%.

3. The oligonucleotides used for constructing the systems can be purchased
from any local commercial suppliers without any further modification or
treatment.

4. The sequential digestion of pGEM-7ZF(+) by EcoRI and HindIII followed by
agarose gel purification is strongly recommended to ensure a complete digestion
of vector by both restriction enzymes. This will greatly reduce the self-ligation of
vector in the cloning.

5. The length of duplex region for a shRNA is relatively flexible from 19- to 29-nt.
Although increasing the length of duplex region for a relatively ineffective 19-nt
shRNA can increase its effectiveness, increasing the length of an effective 19-nt
shRNA may not further improve the inhibition effect.

6. The annealing of two complementary oligonucleotides can be efficiently carried
out in 1X T4 DNA ligase buffer, which can be obtained from any T4 DNA ligase
commercial suppliers.

7. The annealed oligonucleotide duplexes do not need to be phosphorylated before
the ligation step because it might result in multiple copies of insertion.

8. It is important to construct the second expression cassette with the same orientation
as both the human and mouse H1 promoters, because these two promoters could
express the protein-coding genes by the activity of Pol II-dependent poly(ADP-ribose)
polymerase-2 promoter, efficiently. Otherwise the Pol II-dependent poly(ADP-ribose)
polymerase-2 promoter could possibly transcribe the antisense strand of protein-
coding genes, resulting in formation of the long dsRNAs that might trigger non-
selective cytotoxic effects (44).

9. By using this protocol for cloning the shRNA-expression cassettes, it is efficient
and cost-effective that only four colonies are selected and screened for the posi-
tive clones containing the shRNA-expression sequence.
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Selection of Recombinant Antibodies 
From Antibody Gene Libraries

Michael Hust, Stefan Dübel, and Thomas Schirrmann

Summary
After the sequencing of the human genome is completed, the research focus shifts toward the

analysis of gene products. The human genome encodes more than 30,000 genes. Owing to alter-
native mRNA splicing and posttranslational modifications, for example, glycosylation, phoshory-
lation, and so on, the number of different proteins of human proteome is supposed to easily
exceed 90,000. Antibodies are key detection reagents for the “postgenomic” analysis of these pro-
teins. Any systematic investigation of the human proteome requires high throughput methods for
antibody generation. In vitro selection systems utilizing recombinant antibody repertoires offer
this capability and capacity. The most commonly used contemporary in vitro selection system is
antibody phage display, which has already yielded thousands of useful antibodies for therapy,
research, and diagnostics. Herein, methods are described for the selection of recombinant anti-
body fragments from naive antibody gene libraries.

Key Words: Antibody engineering; panning; phage display; scFv; antibody gene libraries; 
filamentous phage.

1. Introduction
The production of polyclonal antibodies by immunization of animals is

established for more than a century. The first antibody serum was directed
against diphtheria and produced in horses (1). Hybridoma technology was the
next milestone, allowing the production of monoclonal antibodies by fusion of
an antibody producing spleen B-cell with an immortal myeloma cell (2).
However, hybridoma technology has some limitations like a potential genetic
instability of the aneuploid cell lines and most of all its inability to produce
antibodies against toxic or highly conserved antigens (3). When repeatedly
administered in therapy, murine hybridoma antibodies induce a human anti-
mouse antibody response caused by murine antibodies (4). This problem can be



overcome by two approaches: By humanization of mouse antibodies (5) or by
using repertoires of human antibody genes. The second approach was achieved
in two ways. First, human antibody gene repertoires were inserted into the
genomes of immunoglobulin (Ig)G-knockout-mice, allowing to generate
hybridoma cell lines, which produce human Igs (6–8). This method yielded a
significant number of antibodies that reached clinical studies, but still
requires immunization and has the limitations in respect of toxic and
conserved antigens.

Alternatively, human antibodies can be generated completely independent
from any immune system by an in vitro selection process: “antibody phage dis-
play,” which utilizes human antibody gene libraries displayed on bacteriophage
is the method of choice. The first antibody gene repertoires in phage were
generated and screened by using the lytic phage λ (9) with very limited success.
The display method most commonly used today is based on the groundbreak-
ing work of Georg P. Smith (10) on filamentous phage display. Herein, the
genotype and phenotype of peptides were linked by fusing their short gene frag-
ments to the minor coat protein III gene of the filamentous bacteriophage M13.
The resulting peptide::pIII fusion protein is expressed on the surface of phage
allowing the affinity purification of the desired gene by peptide binding. In the
same way, antibody fragments fused to pIII can be presented on the surface
of M13 phage (11–16). Owing to limitations of the Escherichia coli folding
machinery, complete IgG molecules cannot be displayed on the surface of
phage. Therefore, smaller antibody fragments are used for antibody phage dis-
play: the Fab fragment or the single chain Fv fragment (scFv). Fab fragments
consist of two chains, the variable (VH) and first constant region of the heavy
chain (CH1) and the light chain (LC) of the antibody, both linked by a disul-
phide bond. In contrast, scFv fragments consist of only one polypeptide chain,
made up of the variable region of the heavy chain (VH) and the variable region
of the LC (VL) fused by a short peptide linker. Two different genetic systems
have been developed for the expression of the antibody::pIII fusion proteins.
First, the antibody genes can be directly inserted into the phage genome fused
to the wild-type pIII gene (11). However, most of the successful systems uncou-
ple antibody expression from phage propagation by providing the genes encod-
ing the antibody::pIII fusion proteins a separate plasmid (phagemid),
containing a phage morphogenetic signal for packaging the vector into the
assembled phage particles (12–16). A large variety of phagemids have been
constructed for the display of scFvs or Fabs on filamentous phage (for an
overview see refs. 17).

Different types of antibody phage display gene libraries have been created
from different genetic sources. First, the variable region genes of Ig-secreting
plasma cells from immunized donors or from patients with an antibody titer
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against the desired antigen could be isolated to construct “immune” libraries
(14,18). Immune libraries are typically used in medical research to select abun-
dant antibodies against one particular antigen or group of antigens, for exam-
ple, of infectious pathogens, whereas they are not the source of choice for the
isolation of antibodies with other specificities. “Single-pot” or universal libraries
are designed to provide antibody fragments binding to every possible antigen.
Naive libraries are constructed from rearranged antibody genes from IgM produc-
ing B-cells of nonimmunized donors. An example for this library type is the naive
human Fab library constructed by de Haardt et al. (19). “Semisynthetic” libraries
are derived from not rearranged V-genes from pre-B-cells (germline cells) or from
a single antibody framework with at least one complementary determining region
(CDR) genetically randomized, such as the library described by Pini et al. (20). A
combination of naive and synthetic repertoire was used by Hoet et al. (21). They
combined LCs from autoimmune patients with a Fd fragment containing syn-
thetic CDR 1 and CDR2 in one human framework and naive CDR3 regions,
origined from autoimmune patients. Fully synthetic libraries have a human
framework with randomly integrated CDR cassettes (22,23). All library types—
“immune,” “naïve,” and “synthetic” and their intermediates—have been proven
to be useful sources for the selection of antibodies for diagnostic and therapeu-
tic purposes. To date, “single-pot” antibody libraries with a theoretical diversity of
up to 1011 independent clones have been generated (24) to serve as a molecular
repertoire for phage display selection procedures. An overview of antibody
libraries and the comparison of their construction principles is given by Hust
and Dübel (25) (Fig. 1).

2. Materials
2.1. Coating of Microtiter Wells

1. Maxisorb microtiter plates oder stripes (Nunc, Wiesbaden, Germany).
2. Phosphate-buffered saline (PBS): 8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4⋅2H2O,

and 0.24 g/L KH2PO4, pH 7.4.
3. Dimethyl sulfoxide.
4. Phosphate-buffered saline Tween (PBST) PBS + 0.1% Tween-20.

2.2. Panning

1. Milk phosphate-buffered saline Tween (MPBST) 2% skim milk in PBST, prepare fresh.
2. Panning block solution: 1% (w/v) skim milk and 1% (w/v) bovine serum albumin

(BSA) in PBST, prepare fresh.
3. 10 µg/mL Trypsin in PBS.
4. E. coli XL1-blue MRF`(Stratagene), genotype: ∆(mcrA)183 ∆(mcrCB-hsdSMR-

mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac (F ′ proAB LacI
q
Z∆M15

Tn10 [TetR]).
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5. M13K07 Helperphage (Stratagene, Amsterdam, Netherlands).
6. 2X TY media: 1.6% (w/v) tryptone, 1% (w/v) yeast extract, and 0.5% (w/v) NaCl,

pH 7.0.
7. 2X TY-T: 2X TY, containing 50 µg/mL tetracycline.
8. Super Optimal Broth (SOB) media: 2% (w/v) tryptone, 0.5% (w/v) yeast extract,

and 0.05% (w/v) NaCl, after autoclavation add sterile 1% (v/v) of the 2 M Mg
solution, pH 7.0.

9. 2 M Mg solution: 1 M MgCl + 1 M MgSO4.
10. Super Optimal Broth Glucose Ampicilin (SOB-GA) SOB, containing 100 µg/mL

ampicilin and 100 mM glucose.
11. SOB-GA agar plates: SOB-GA + 1.5% (w/v) agar–agar.
12. 15-cm Petri dishes.
13. 2X TY-GA: 2X TY, containing 100 mM glucose and 100 µg/mL ampicilin.
14. Glycerin solution: 87% (v/v).
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2.3. Packaging of Phagemids

1. 2X TY-AK: 2X TY, containing 100 µg/mL ampicillin, and 50 µg/mL kanamycin.
2. Polyethylene glycol (PEG) solution: 20% (w/v) PEG 6000: Fluka (part of Sigma-Aldrich

Chemie Gmbhl), München, Germany and 2.5 M NaCl.
3. Phage dilution buffer: 10 mM Tris-HCl, 20 mM NaCl, and 2 mM ethylenedi-

aminetetraacetic acid, pH 7.5.

2.4. Titering

1. 2X TY-GA agar plates: 2X TY-GA and 1.5% (w/v) agar–agar.

2.5. ELISA of a Polyclonal Antibody Phage Suspension

1. BSA: prepare a 10 mg/mL stock solution in PBS.
2. Anti-M13, horseradish peroxidase (HRP)-conjugated monoclonal antibody 

(Amersham Bioscience; GE Healthcare, München, Germany).
3. Tetramethylbenzidine (TMB) solution A: 10 g citric acid solved in 100 mL water

and add 9.73 g potassium citrate to 1 L water, pH 4.1.
4. TMB solution B: 240 mg tetramethylbenzidine, 10 mL acetone, 90 mL ethanol,

and 907 µL 30% H2O2.
5. 1 N H2SO4.

2.6. Production of Soluble Monoclonal Antibody Fragments 
in Microtiter Plates

1. 96-well U-bottom polypropylene (PP) microtiter plates (Greiner, Germany).
2. AeraSeal breathable sealing film (Excel Scientific: Wrightwood, CA).
3. 2X TY-A containing 50 µM isopropyl-β-D-thiogalactopyranoside (IPTG).

2.7. ELISA of Soluble Monoclonal Antibody Fragments

1. Mouse α-His-tag monoclonal antibodies (α-Penta His, Qiagen, Germany).
2. Mouse α-myc-tag monoclonal antibodies (9E10, Sigma, Germany).
3. Mouse α-pIII monoclonal antibodies (PSKAN3, Mobitec, Germany).
4. Goat α-mouse IgG serum (Fab specific) HRP-conjugated (Sigma, Germany).

3. Methods
The in vitro procedure for isolating antibody fragments by their binding

activity was called “panning,” referring to the gold washers tool (26). The anti-
gen is immobilized to a solid surface, such as nitrocellulose (e.g., ref. 27), mag-
netic beads (e.g., ref. 28), a column matrix (e.g., ref. 12) or, most widely used,
plastic surfaces as polystyrole tubes (e.g., ref. 29) or 96-well microtiter plates
(e.g., ref. 13). The antibody phage are incubated with the surface-bound antigen,
followed by thorough washing to remove the vast excess of nonbinding antibody
phage. The bound antibody phage can subsequently be eluted and reamplified by
infection of E. coli. This amplification allows detection of a single molecular
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interaction during panning as after elution a single antibody phage can give rise
to a bacterial colony by its resistance marker. The selection cycle can be
repeated by infection of the phagemid bearing E. coli colonies from the former
panning round with a helperphage to produce new antibody phage, which can
be used for further panning rounds until a significant enrichment of antigen-
specific phage is achieved. The number of antigen-specific antibody phage
clones should increase with every panning round. Usually two to six panning
rounds are necessary to select specifically binding antibody fragments. High
throughput methods using microtiter plates and robotics can facilitate and
enhance the panning procedure (for review see ref. 30).

The first step in the evaluation process of potential binders is mostly done by
an enzyme-linked immunosorbent assay (ELISA) with polyclonal phage prepa-
rations from each panning round against immobilized, i.e., coated, target anti-
gen and on control protein, for example, BSA. In the next step, antibody clones
of panning rounds showing a significant enrichment of specific antigen binding
in the polyclonal phage ELISA are produced as soluble monoclonal antibody
fragments in microtiter plates followed by an ELISA on coated antigen vs on
control protein. The following protocols describe the selection of recombinant
antibody fragments from antibody gene libraries by phage display and the ini-
tial analysis of the selected antibody fragments.

3.1. Coating of Microtiter Plate Wells

1. (a) Protein antigen: for the first panning round, use 2–10 µg protein per panning,
for the following rounds use 0.1–1 µg protein for more stringent conditions.
Dissolve the antigen in 150 µL PBS, transfer into the microtiter plate well and incu-
bate overnight at 4°C (see Note 1) and (b) oligopeptide antigen: use 100–500 ng
oligopeptide for each panning round. Dissolve the oligopeptide in 150 µL 5% (v/v)
dimethyl sulfoxide containing PBS, transfer into the microtiter plate well and
incubate overnight at 4°C (see Note 2).

2. Wash the coated microtiter plate wells three times with PBST using an ELISA
washer (see Note 3).

3.2. Panning

1. (a) Block the antigen-coated wells with MPBST for 2 h at RT. The wells must be
completely filled and (b) perform this step only in the first panning round. In par-
allel, block an additional well (without antigen) per panning with MPBST for 1 h
at RT for preincubation of the antibody gene library. The wells must be completely
filled. Wash three times with PBST (see Note 3). Incubate 1011–1012 antibody
phage from the library in 150 µL panning block for 1 h at RT. This step removes
unspecific binders from the antibody gene library.

2. Wash the blocked antigen-coated wells three times with PBST (see Note 3).
Either carry over the preincubated antibody phage library to the blocked wells or
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fill 1011–1012 amplified phage solved in 150 µL panning block from the former
panning round in the blocked wells. Incubate at RT for 2 h for binding of the anti-
body phage.

3. Remove the unspecifically bound antibody phage by stringent washing.
Thereafter, wash the wells 10 times with an ELISA washer in the first panning
round. In the following panning rounds increase the washing steps (20 times in the
second panning round, 30 times in the third panning round, and so on.) (see Note 3).

4. Elute with 200 µL trypsin solution for 30 min at 37°C (see Note 4).
5. Use 10 µL of the eluted phage for titering (see titering).
6. Inoculate 50 mL 2X TY-T with an overnight culture of E. coli XL1-blue MRF′

(Stratagene, Amsterdam, Netherland) in 100-mL Erlenmeyer flasks and grow at
250 rpm and 37°C.

7. Infect exponentially (OD600 ~0.5 nm, after 2–3 h) growing 20 mL XL1-blue MRF′
culture with the remaining 190 µL of the eluted phage. Incubate 30 min at 37°C
without shaking and the following 30 min with 250 rpm.

8. Harvest the infected bacteria by centrifugation for 10 min at 3200g in 50-mL PP
tubes. Resolve the pellet in 250 µL SOB-GA and plate the bacteria suspension on
SOB-GA agar plates (15-cm Petri dish). Grow overnight at 37°C (see Note 5).

9. Harvest the grown colonies by suspending in 2.5 mL 2X TY-GA with a
Drigalsky spatula.

10. Use 100 µL of the harvested bacteria for the amplification of the eluted phage (see
Subheading 3.3.).

11. Make a glycerin stock of the panning round by adding 250 µL 87% glycerin to
750 mL of the harvested bacteria. Mix and store at −80°C.

3.3. Packaging of Phagemids

1. For the next panning round the eluted phage must be packaged and reamplified.
Inoculate 50 mL 2X TY-GA in a 100-mL Erlenmeyer flask with 100 µL harvested
bacteria (OD600 < 0.1 nm). Grow at 250 rpm at 37°C up to an OD600 approx 0.5 nm.

2. Infect 5 mL bacteria culture (~2.5 × 109 cells) with 5 × 1010 PFU (multiplicity of
infection = 1:20) of the helperphage M13K07. Incubate for 30 min without shak-
ing and the following 30 min with 250 rpm at 37°C.

3. To remove the glucose, harvest the cells by centrifugation for 10 min at 3200g in
50-mL PP tubes.

4. Resuspend the pellet in 30 mL 2X TY-AK in a 100-mL Erlenmeyer flask. Produce
the phage for 16 h at 250 rpm and 30°C

5. Pellet the bacteria by centrifugation for 10 min at 3200g in 50-mL PP tubes. If the
supernatant is not clear, centrifuge again to remove remaining bacteria.

6. Precipitate the phage in the supernatant by adding one-fifth volume PEG solution
in 50-mL PP tubes. Incubate for 1 h at 4°C with gentle shaking.

7. Pellet the phage by centrifugation for 1 h at 3200g and 4°C. Put the open tubes
upside down on tissue paper and let the viscous PEG solution move out completely.
Resuspend the phage pellet in 500 µL phage dilution buffer. Titer the phage prepa-
ration and use it for the next panning round. Store the remaining phage at 4°C.
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3.4. Titering

1. Inoculate 5 mL 2X TY-T in a 100-mL Erlenmeyer flask with XL1-blue MRF′ and
grow overnight at 37°C and 250 rpm.

2. Inoculate 50 mL 2X TY-T with 500 µL overnight culture and grow at 250 rpm at
37°C up to OD600 approx 0.5 nm (see Note 6).

3. Make serial dilutions of the phage solution in PBS. The number of eluted phages
depends on several parameters (e.g., antigen, library, panning round, washing
stringency, and so on). In case of a successful panning, the phage titer usually is
103–105 phage per well in the first round increasing to 106–109 phage per well in
the succeeding rounds. The phage preparation after reamplification of the eluted
phage have a titer of about 1012–1013 phage/mL.

4. Infect 50 µL bacteria with 10 µL phage dilution and incubate for 30 min at 37°C
(see Note 7).

5. Titrations can be done in two different ways:
a. Plate the 60 µL infected bacteria on 2X TY-GA agar plates (9-cm Petri dishes).
b. Pipet 10 µL (better as triplicate) on 2X TY-GA agar plates. Here, about 20

titering spots can be placed on one 9-cm Petri dish.
6. Incubate the plates overnight at 37°C.
7. Count the colonies and calculate the colony-forming units titer, according to

the dilution.

3.5. ELISA of a Polyclonal Antibody Phage Suspension

1. To investigate the enrichment of antigen-specific antibody phage after a panning
round, prepare microtiter plates with 100–1000 ng antigen per well for each pan-
ning round (for method see Subheading 3.1.). As a control, prepare wells with
100–1000 ng BSA in 150 µL PBS overnight at 4°C (see Note 8).

2. Wash the coated microtiter plate wells three times with PBST (washing procedure
see Subheading 3.2. and Note 3).

3. Block the antigen-coated wells with MPBST for 2 h at RT. The wells must be
completely filled.

4. Wash the coated microtiter plate wells three times with PBST (washing procedure
see Subheading 3.2. and Note 3).

5. Resuspend 1010 antibody phage from each panning round in 150 µL 2%MPST and
incubate them for 1.5 h on the antigen and the BSA control, respectively.

6. Wash the microtiter plate wells three times with PBST (washing procedure see
Subheading 3.2. and Note 3).

7. Incubate each well with 100 µL HRP-conjugated anti-M13 antibody 1:5000
diluted in MPST for 1.5 h.

8. Wash the microtiter plate wells three times with PBST (washing procedure see
Subheading 3.2 and Note 3).

9. Shortly before use, mix 19 parts TMB solution A and one part TMB solution B.
Add 100 µL of the prepared TMB solution to each well and incubate for 1–15 min.
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10. Stop the substrate reaction by adding 100 µL 1 N sulfuric acid. The color turns
from blue to yellow.

11. Measure the extinction at 450 nm in an ELISA reader.

3.6. Production of Soluble Monoclonal Antibody Fragments 
in Microtiter Plates

1. Fill each well of a 96-well U-bottom PP microtiter plate with 150 µL 2X TY-GA.
2. Pick 96 clones with sterile tips from the desired panning round (see Note 9) and

inoculate each well (see Note 10). Seal the plate with a breathable sealing film.
3. Incubate overnight in a microtiter plate shaker (e.g., Thermo Shaker PST-60HL-4,

Lab4You, Germany) at 37°C and 1200 rpm.
4. (a) Fill a new 96-well polypropyplene microtiter plate with 150 µL 2X TY-GA and

add 10 µL of the overnight cultures. Incubate for 2 h at 37°C and 1200 rpm and
(b) add 30 µL glycerin solution to the remaining 140 µL overnight cultures. Mix
by pipeting and store this masterplate at −80°C.

5. Pellet the bacteria in the microtiter plates by centrifugation for 10 min at 3200g
and 4°C. Remove 180 µL glucose containing media by carefully pipeting (do not
disturb the pellet).

6. Add 180 µL 2X TY-A with 50 µM IPTG and incubate overnight at 30°C and 1200
rpm (see Note 11).

7. Pellet the bacteria by centrifugation for 10 min at 3200g in the microtiter plates.
Transfer the antibody fragment containing supernatant to a new PP microtiter
plate and store at 4°C.

3.7. ELISA of Soluble Monoclonal Antibody Fragments

1. To analyze the antigen specificity of the monoclonal soluble antibodies, coat
100–1000 ng antigen per well overnight at 4°C. As control coat 100–1000 ng BSA
per well (see Subheading 3.1., Notes 8 and 10).

2. Wash the coated microtiter plate wells three times with PBST (washing procedure
see Subheading 3.2., and Note 3).

3. Block the antigen-coated wells with MPST for 2 h at RT. The wells must be com-
pletely filled.

4. Fill 50 µL MPST in each well and add 50 µL of antibody solution (see
Subheading 3.6.). Incubate for 1.5 h at RT (or overnight at 4°C).

5. Wash the microtiter plate wells three times with PBST (washing procedure see
Subheading 3.2., and Note 3).

6. Incubate 100 µL α-tag antibody solution for 1.5 h (appropriate dilution in MPBST).
7. Wash the microtiter plate wells three times with PBST (washing procedure see

Subheading 3.2., and Note 3).
8. Incubate 100 µL goat α-mouse HRP conjugate (1:10,000 in MPBST).
9. Wash the microtiter plate wells three times with PBST (washing procedure see

Subheading 3.2., and Note 3).
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10. Shortly before use, mix 19 parts TMB solution A and 1 part TMB solution B.
Add 100 µL of the prepared TMB solution into each well and incubate for
1–15 min.

11. Stop the color reaction by adding 100 µL 1 N sulfuric acid. The color turns from
blue to yellow.

12. Measure the extinction at 450 nm in an ELISA reader.
13. Identify positive candidates with a signal (antigen) 10X over noise (BSA).

4. Notes
1. If the protein is not binding properly to the microtiter plate surface, try bicarbon-

ate buffer (50 mM NaHCO3, pH 9.6).
2. If biotinylated oligopeptide is used, dissolve 100 ng streptavidin in 150 µL PBS

and coat overnight at 4°C. Coat two wells for each panning, one well is for the
panning, the second one for the preincubation of the library to remove strepta-
vidin binders! Some time is necessary to use free streptavidin during panning in
competition to remove streptavidin binders. Pour out the wells and wash three
times with PBST. Dissolve 100–500 ng biotinylated oligopeptide in PBS and
incubate for 1 h at RT. Alternatively, oligopeptides can coupled to BSA and coat
overnight at 4°C.

3. The washing should be performed with an ELISA washer (e.g., TECAN Columbus
Plus: Crailsheim, Germany) for more stringent and reproducible washing results.
To remove antigen or blocking solutions wash three times with PBST (“standard
washing protocol” for TECAN washer). If no ELISA washer is available, wash
manually three times with PBST. After binding of antibody phage, wash 10 times
with PBST (“stringent bottom washing protocol” in case of TECAN washer). If no
ELISA washer is available, wash manually 10 times with PBST and 10 times with
PBS. For stringent off-rate selection increase the number of washing steps or addi-
tionally incubate the microtiter plate in 1 L PBS for some days.

4. Phagemids like pSEX81 (18) or pHAL1 (31) or pHAL 14 (17) have coding
sequences for a trypsin-specific cleavage site between the antibody fragment gene
and the gIII. Trypsin also cleaves within antibody fragments but does not cleave
the phage. The phage protein pIII mediates the binding of the phage to the F pili
of E. coli required for the infection. It is found that proteolytic cleavage of the anti-
body fragments from the antibody::pIII fusion by trypsin enhances the infection
rate of eluted antibodies, especially when using Hyperphage (Progen, Heidelberg,
Germany) as helperphage to obtain polyvalent display (32–34).

5. The high concentration of glucose is necessary to efficiently repress the lac pro-
moter controlling the antibody::pIII fusion gene on the phagemid. Low glucose
leads to an inefficient repression of the lac promoter and background expression
of the antibody::pIII fusion protein. The strong selection pressure frequently
causes mutations in the phagemid, especially in the promoter region and the anti-
body::pIII fusion gene. Bacteria with mutated phagemids can proliferate faster
than bacteria with nonmutated phagemids. Therefore, the glucose can only be
omitted at the phage production step.
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6. If the bacteria have reached OD600 approx 0.5 nm before they are needed, store the
culture at 4°C to maintain the F pili on the E. coli cells. If used for titration, a
M13K07 positive control is advised.

7. It is advisable to conduct control titerings. To control the PBS, PEG solutions
use 10 µL of this solution to “infect” bacteria with this solution and also plate
out noninfected XL1-blue MRF′ to control the bacteria. It is recommended to
clean the working place each time with virus-inactivating solutions (e.g.,
Barrycidal 36, BIO-HIT, Germany) and to use filter tips for pipeting.

8. Antibody phage binding unspecifically are usually enriched during panning.
These unspecific binding usually results from misfolded or incomplete antibodies.
They often bind to BSA, streptavidin, and plastic surfaces.

9. Use the polyclonal antibody phage ELISA to select the suitable panning round for
picking.

10. It is recommended to pick only 92 clones. Use the wells H3, H6, H9, and H12 for
controls. H3 and H6 are negative controls—these wells will not be inoculated and
not used for the following ELISA with soluble antibodies. The wells H9 and H12
are inoculated with a clone containing a phagemid encoding a known antibody
fragment. Therefore, the wells H9 and H12 are coated with the corresponding antigen.

11. The appropriate IPTG concentration for induction depends on the vector design. A
concentration of 50 µM was well suited for vectors with a Lac promoter like pSEX81
(18), pIT2 (35), and pHENIX (36) and pHAL14 (18). The method for the production
of soluble antibodies works with vectors with (e.g., pHAL 14) and without (e.g.,
pSEX81) an amber stop codon between antibody fragment and gIII. If the vector has
no amber stop codon the antibody::pIII fusion protein will be produced (37).
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A Bacterial/Yeast Merged Two-Hybrid System
Protocol for Yeast Screening With Single or Parallel Baits

Nadezhda Y. Tikhmyanova, Eugene A. Izumchenko, Ilya G. Serebriiskii, 
and Erica A. Golemis

Summary
The yeast two-hybrid system is a useful tool for identifying new protein–protein interactions,

and for the dissection of previously identified interactions. An important issue in protein-interaction
studies is frequently that of determining whether a protein associates specifically with one pro-
tein or domain of interest, or has a more promiscuous interaction profile. To help address this
issue, the authors have created a new two-hybrid system, which can be used either in bacteria or
in yeast to counterscreen against “decoy” baits in parallel with a primary screen, hence improv-
ing the power and specificity of the method. Protocols of this system for use in yeast are pro-
vided; a companion article, Serebriiski et al., describes alternative use of this system in bacteria.

Key Words: Decoy bait; false-positive; protein–protein interaction; yeast two hybrid; bacterial
two hybrid system; proteomics, library screening.

1. Introduction
As it was first introduced in 1989 as a means to study protein–protein inter-

actions (1), the two-hybrid system has evolved into a robust technology. The
number of novel interactions detected through use of this system now number
in thousands, based on the work of many individual investigators, and increas-
ingly, the output from high-throughput proteomics projects (e.g., refs. 2–7).
These efforts have begun to yield genome-wide protein interaction linkage
maps, and together with other protein interaction detection technologies such as
tandem affinity purification-mass spectrometry (8,9) are key components sup-
porting the nascent field of systems biology (e.g., refs. 10 and 11). On a smaller
scale, the two-hybrid system is a useful way for an individual scientist to gain
some insight into the function of a poorly understood protein, by identifying



functionally characterized “interactors” for that protein. Numerous technical
extensions and derivatives of the two-hybrid system paradigm have been devel-
oped, and two-hybrid interaction screening can now be performed not only in
yeast, but also in bacteria or other organisms (e.g., ref. 12).

Despite these many accomplishments, there remain a number of technical
limitations that restrict the utility of two-hybrid-based protein interaction data.
One issue is that of false-positives. Estimates of the frequency of nonspecific
“positives” obtained for a protein used in a two-hybrid library screen vary, but
may be as high as 50% or more, in some particularly bad cases. A second issue
is that of false negatives. Meta-analyses comparing the results of large- and
small-scale two-hybrid screens, and studies comparing the results of two-hybrid
and other protein-interaction techniques, have led to the clear realization that
the two-hybrid system probably substantially undersamples the interactor pool
for any given sample (11,13). There are various approaches to addressing these
problems. In this and a companion chapter (16), one systematic approach,
which is the development of a two-hybrid system variant with extended
screening capacity and greater internal controls will be discussed.

The basic yeast two-hybrid system paradigm is shown in Fig. 1A. In library
screening with this system, a “bait” protein is made, in which a protein of inter-
est is expressed as a chimera with a DNA-binding domain (DBD) of known
sequence-binding specificity. For the “classic” two-hybrid system, this bait pro-
tein must be confirmed to lack transcriptional activating sequences; as such
autoactivation will make it unusable in a library screen. To measure bait-
dependent transcription, the bait is expressed in strains of yeast with reporter
genes, wherein a binding site for the bait DBD is located within the promoter
region of two reporter genes. These are typically a colorimetric reporter (LacZ
and GusA) and an auxotrophic selection gene (HIS3, LEU2, and LYS2). In
library screening, a library of “preys,” representing a cDNA library expressed
from a vector that fuses them to a transcriptional activation domain (AD), is
introduced into yeast containing transcriptionally inactive baits. Interaction of
an AD-fused library constituent with the bait turns on the reporter genes, allow-
ing selection of positive clones.

In 1999, the “dual bait” two-hybrid system, which can be used to simulta-
neously analyze the interaction of two distinct baits with the same interactive
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Fig. 1. (Opposite page) Two-hybrid system and dual bait system. An AD-fused
protein (prey) interacts with a LexA-fused protein (bait1) to drive transcription of LexA
op-responsive LEU2 and LacZ reporters but does not interact with a cI-fused bait, and
thus, does not turn on transcription of cI op-responsive LYS2 and GusA reporters.

Note: as drawn herein, cI-fused bait is representing a nonspecific partner; the system
can also be configured for the prey to interact with both baits. AD, activation domain.
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partner was first described (14,15). In the dual bait system (schematically
shown in Fig. 1B), one protein of interest is expressed as a fusion to a DBD
provided by λ bacteriophage cI (bait 1), whereas another is expressed as a
fusion to a DBD provided by the bacterial protein LexA (bait 2). Four separate
reporter genes are used to analyze the interaction between the two baits and
preys. GusA and LYS2 are transcriptionally responsive to an operator for cI
(cI op-GusA and cI op-LYS2), whereas LacZ and LEU2 are transcriptionally
responsive to an operator for LexA (LexA op-LacZ and LexA op-LEU2). There
are many advantages and potential uses for such a system, discussed at length in
refs. 14–17. For the specific purpose of library screening, a major benefit is that
a library can be screened to identify proteins that interact with bait 1, then imme-
diately counterscreened to eliminate “positives” that also interact with bait 2,
reducing the false-positive rate. “True-positives” would have a transcriptional
activation phenotype such that expression of LYS2 = GusA >> LacZ = LEU2.

In addressing the second problem, that of false-negatives, the authors and
collaborators have exploited the fact that a given bait can identify nonequiva-
lent sets of interactors when used for two-hybrid screening in bacteria vs in
yeast (18). There a set of vectors (represented herein by the prototypic vector
pGLS23) suitable for expressing baits in either bacteria or yeast have been
described. It is proposed that screening baits constructed in these vectors in
both organisms, and/or counterscreening using dual bait capacities in yeast, can
significantly improve the power of two-hybrid library interrogation. The com-
panion chapter (Chapter 16) describes the use of the bacterial system in greater
detail. This chapter focuses on the use of the yeast system, using a counter-
screen approach. It is noted, space limitations do not allow detailed presenta-
tion of basic auxiliary protocols related to execution of the technique (e.g.,
preparation of yeast medium, Western blotting, and so on). These are found in
standard reference manuals, including refs. 19 and 20.

2. Materials
A complete table of reagents compatible with the bacterial/yeast and dual bait

two-hybrid systems, together with acknowledgments to the numerous investiga-
tors whose work has contributed to the development of these tools, is available at
http://www.fccc.edu/research/labs/golemis/interactiontrapinwork.html. Many of
these reagents are available commercially, and also can be acquired by request
from IG_Serebriiskii@fccc.edu, (215) 728-3885 phone, (215) 728-3616 fax, at
Fox Chase Cancer Center (Philadelphia, PA).

2.1. Plasmids

1. pGLS23—the plasmid for making cI fusion protein (bait 1), Fig. 2A. Bait expression
is from the constitutive alcohol dehydrogenase (ADH1) promoter. The yeast
selection marker is HIS5, and the bacterial selective marker is CmR (Note 1).
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2. pMW103—plasmid for making LexA-fusion protein (bait 2) (Fig. 2B). Expression
is from the constitutive ADH1 promoter. The yeast selection marker is HIS3 and
the bacterial selective marker is KmR.

3. pJG4-5—the plasmid for making a nuclear localization sequence—AD—hemaglutinin
epitope tag fusion to a unique protein or a cDNA library (21), Fig. 2C. AD-fusion
expression is from the galactokinase (GAL1) galactose-inducible promoter. The
yeast selection marker is TRP1, and the bacterial selective marker is ApR.

4. pLacGus—the reporter plasmids containing 8 LexA operators upstream of the
LacZ reporter gene, and 3 cI operators upstream of GusA reporter gene (Fig. 2D).
The yeast selection marker is URA3, and the bacterial selective marker is KmR.
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Fig. 2. Plasmid maps. (A) pGLS23, used for bait 1 expression. (B) pMW103, for
bait 2 expression. (C) pJG4-5, used for library or defined interactor (prey) expression.
(D) pLacGus (also known as pDR8), double reporter (cI-responsive GusA and LexA-
responsive LacZ).



5. pGLS22-Ras—plasmid encoding cI-Ras, a negative control for activation and pos-
itive control for interaction. Selection markers are HIS5 and CmR.

6. pGLS22-EE12345L—a plasmid encoding cI-EE12345L fusion, a strong positive con-
trol for activation. Selection markers are HIS5 and CmR.

7. pEG202-Krit—HIS3 plasmid encoding LexA-Krit, a strong positive control for
activation. The vector pEG202 is almost identical to pMW103 (yeast selection
marker is HIS3), but the bacterial selective marker is ApR.

8. pEG202-Krev1—a plasmid encoding LexA-Krev1, a negative control for activa-
tion and positive control for interaction. Markers are HIS3 and ApR.

9. pJG4-5 (Origene Technologies, Inc., Rockville, MD, as a part of DKT100
DupLEX-A Yeast Two-Hybrid System):Raf—library plasmid encoding a positive
control for interaction with Ras. Selection markers are TRP1 and ApR.

10. pJG4-5:Krit1—library plasmid encoding a positive control for interaction with
Krev1. Selection markers are TRP1 and ApR.

11. pYesTrp:RalGDS—TRP1 library plasmid encoding a positive control for interac-
tion with both Ras and Krev1. This plasmid is similar to pJG4-5, but has an
extended polylinker and a V5-epitope tag instead of a hemaglutinin tag. Selection
markers are TRP1 and ApR.

2.2. Strains

1. Yeast strain PRT50 (MATα URA3 TRP1 HIS3 2LexA op-LEU2 3cI op-LYS2).
2. Yeast strain PRT475 (MATa URA3 TRP1 HIS3 2LexA op-LEU2 3cI op-LYS2).

2.3. Lithium Acetate Transformation of Yeast

1. 10 mM Tris-HCl, 1 mM ethylenediaminetetraacetic acid (EDTA), and 0.1 M
lithium acetate, pH 8.0, sterile filtered.

2. 10 mM Tris-HCl, 1 mM EDTA, 0.1 M lithium acetate, and 40% PEG4000, pH 8.0,
sterile filtered.

3. Dimethylsulfoxide (DMSO).
4. 6 mg/mL freshly denatured (i.e., boiled for 5 min and chilled on ice) sheared

salmon sperm DNA (sssDNA).

2.4. Minipreps/Polymerase Chain Reaction From Yeast

1. Acid-washed sterile glass beads, 0.15–0.45 mm diameter (e.g., Sigma G-1145).
2. Tris EDTA solution TE:10 mM Tris-HCl and 1 mM EDTA, pH 8.0.
3. 1:50 β-glucuronidase type HP-2 (crude solution from Helix pomatia [Sigma]), 50 mM

Tris-HCl, 10 mM EDTA, and 0.3% (v/v) 2-mercaptoethanol (prepare fresh), pH 7.5.

2.5. XGal/XGluc Overlay Assays

1. 1% Low-melting agarose in 100 mM KHPO4, pH 7.0 agarose; add 5-bromo-4-
chloro-3-indolyl-beta-D-galactopyranoside (XGal) or 5-bromo-4-chloro-3-indolyl-
beta-D-glucuronide sodium salt (XGluc) (Diagnostic Chemicals, Oxford, CT) to
0.25 mg/mL when cooled to approx 60°C.

2. Chloroform (CHCl3).
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2.6. Media and Plates

1. Plates for growing bacteria (100 mm), Luria Bertani medium containing 50 µg/mL
ampicillin.

2. Defined minimal yeast medium: all minimal yeast media, liquid, and plates used
in this protocol are based on the following ingredients, which are sterilized by
autoclaving for 15–20 min: 6.7 g/L yeast nitrogen base-amino acids (Difco 0919-15),
20 g/L glucose, or 20 g/L galactose plus 10 g/L raffinose, and 2 g/L appropriate
nutrient “dropout” mix (see in next paragraph). For plates, 20 g Difco spark MDMI
bacto agar (Difco 0140-01) are also added.

A complete minimal nutrient mix includes the following: 2.5 g adenine, 1.2 g
L-arginine, 6 g L-aspartic acid, 6 g L-glutamic acid, 1.2 g L-histidine, 1.2 g L-isoleucine,
3.6 g L-leucine, 1.8 g L-lysine, 1.2 g L-methionine, 3 g L-phenylalanine, 22 g L-serine,
12 g L-threonine, 2.4 g L-tryptophan, 1.8 g L-tyrosine, 9 g L-valine, and 1.2 g uracil.
To make liquid media or plates for selection of yeast expressing plasmid selection
markers or auxotrophic reporters, one or more ingredients are omitted from the
complete minimal nutrient mix. Thus, “dropout medium” lacking histidine
(denoted His− in the following recipes) would select for the presence of plasmids
with the HIS3, HIS5, double marker, and so on. Note: (1) the quantities of nutri-
ents described above are enough to prepare 40 L of medium, which in most cases
is more than will be required and (2) premade dropout mixes are available from
some commercial suppliers.

3. Specific yeast liquid media and plates for this protocol (100 mm).
a. Yeast extract, peptone and dextrese medium (YPD) (rich medium): 10 g/L

yeast extract, 20 g/L peptone, and 20 g/L glucose, autoclave about 18 min.
To make plates: add 20 g Difco bacto agar per liter of (unautoclaved) mix for
liquid media, and autoclave about 18 min. 1 L makes approx 40 plates.

b. Defined minimal dropout plates, with glucose as a carbon source: Trp−; Ura−

His−; Ura− His− Trp−; Ura− His− Trp− Leu−; and Ura− His− Trp− Lys−.
c. Defined minimal dropout media, with glucose as a carbon source:Ura− His−;

and Trp−.
d. Defined minimal dropout plates, with galactose and raffinose as a carbon

source: Ura− His−; Ura− His− Trp− Leu−; Ura− His− Trp− Lys−; Ura− His− Leu−;
Ura− His− Lys−; and Ura− His− Lys− Leu− (this last, optional).

e. Plates for growing yeast library transformations (240 × 240 mm2): use minimal
dropout plates (Trp−), with glucose as a carbon source. Pour approx 250 mL
medium on each plate.

2.7. Primers

1. For cI-fusion plasmids: forward primer, to confirm correct reading frame 5′-ATG
ATC CCA TGC AAT GAG AG-3′.

2. For LexA-fusion plasmids: forward primer, to confirm correct reading frame 5′-
CGT CAG CAG AGC TTC ACC ATT G-3′.

3. For JG4-5 plasmid: forward primer, FP1, 5′-CTG AGT GGA GAT GCC TCC-3′.
Reverse primer, FP2, 5′-CTG GCA AGG TAG ACA AGC CG-3′.
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4. pYESTrp2 plasmid: forward primer, FP1 can be used, or 5′-GATGTTAACGAT-
ACCAGCC-3′ (Invitrogen: Carlsbad, CA, recommended).
Reverse primer 5′-GCG TGA ATG TAA GCG TGA C-3′.

2.8. Miscellaneous
1. Sterile glass beads, 3–4 mm in diameter, no. 3000, Thomas Scientific (Waltham,

MA) 5663L19 or Fisher (Waltham, MA) no. 11-312A.
2. Sterile glycerol solution for freezing transformants (65% sterile glycerol, 0.1 M

MgSO4, and 25 mM Tris-HCl, pH 8.0).
3. Insert grid from a rack of pipet tips (Rainin RT series [Rainin Instrument, LLC,

Oakland, CA], 200 µL capacity).
4. A metal frogger (e.g., Dankar Scientific, Reading, MA, no. MC48).
5. A plastic replicator (Bel-Art Products, Pequannock, NJ, no. 378776-0002, Bel-

Blotter, or Fisher no. 1371213).
6. 2X Laemmli sample buffer (0.125 M Tris-HCl, 4% [w/v] SDS, 20% [v/v] glycerol,

10% [v/v] 2-mercaptoethanol, and 0.002% [w/v] bromophenol blue, pH 6.8).
Add 2-mercaptoethanol shortly before use, store at 4°C, and discard if color
becomes orange.

7. Antibody to cI (Invitrogen, Santa-Cruz) and to LexA (Invitrogen).

3. Methods
3.1. Creating and Assessing the Bait

Before beginning to hunt for an interactor, it is necessary to construct plas-
mids that reliably express the proteins of interest (baits). Baits are expressed as
fusions to the λ phage protein cI and/or to the bacterial protein LexA. These
plasmids are then transformed (22) into a yeast reporter strain to assess the suit-
ability of the bait proteins for library screening. Yeast colonies containing baits
are then tested to determine whether the baits are appropriately synthesized, and
do not exhibit self-activation (trigger the transcription of reporter genes on their
own) and are not toxic. For these purposes, they are compared with previously
established controls (Table 1). If all these requirements are not met, there are
strategies that can be used to modify the bait(s) or screening conditions (23).
Rapid movement through the characterization steps is recommended before
starting a library screen, to diminish artifacts and avoid other difficulties.
Although plasmids will be retained for extended periods of time in yeast main-
tained on stock plates, using freshly transformed colonies for all experiments
(<10 d to 2 wk, with plates maintained at 4°C) is suggested, as it is much more
likely that variable protein expression and anomalous transcriptional activation
results will occur if using older transformed stocks.

3.1.1. Constructing and Transforming cI and LexA Bait Proteins
1. Clone (see Note 1) the DNA encoding the protein of interest into the polylinker of

pGLS23 (Fig. 3A) to enable synthesis of an in-frame protein fusion to cI (see
Notes 1 and 2).
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Table 1
Expected Phenotype for Control Interactions

Bait Prey LEU2 LacZ LYS2 GusA Explanation

cI-Ras + Krit + + − − Prey interacts with 
LexA − LexA-fused bait only
Krev1 RalGDS + + + + Prey interacts with both baits

Raf1 − − + + Prey interacts with cI-fused
bait only

cI-bait1 + Random − − − − Prey does not interact 
LexA − bait2 specifically with bait

Adapted from ref. 23.
Each feature marked as positive (+) should be also galactose-dependent, as in Table 2, top

row. Comparing the phenotype of new baits of interest to this set of controls should help to assess
whether an isolated prey interacts with one or both baits.

2. Clone the DNA encoding the second protein of interest into the polylinker of
pMW103 (Fig. 3B) to enable synthesis of an in-frame protein fusion to LexA
(see Notes 2 and 3). If the main research goal is to use the second bait as a
library counterselection, rather than to perform a second library screen, a well-
characterized LexA-fusion such as pEG202-Krev1 can be used in place of a
newly cloned fusion.

3. Select a colony of PRT50 (see Note 4) and grow a 5 mL culture in liquid YPD
medium overnight at 30°C in a shaking incubator.

4. Dilute into 50–60 mL of YPD liquid medium such that the culture has an optical
density (OD)600 nm of approx 0.15. Continue to incubate at 30°C on an orbital
shaker until the culture has reached an OD600 nm of 0.5–0.7. This is sufficient yeast
for 10 transformations.

5. Transfer culture to a sterile 50-mL Falcon tube, and centrifuge for 5 min at
1000–1500g at room temperature. Gently resuspend the pellet in 5 mL of sterile water.

6. Centrifuge the cells for 5 min at 1000–1500g. Pour off the water and resuspend
the yeast pellet in 0.5 mL of TE/0.1 M lithium acetate.

7. Aliquot 1 µg of freshly sheared, denatured salmon sperm DNA to 1.5-mL Eppendorf
tubes.

8. Add 50 µL of competent yeast cells from step 6 to each tube. Add the following
combinations of cI-fusion, LexA-fusion, and reporter plasmids (100–500 ng each):
a. pGLS23-Bait1 + pLacGus + pMW103-Bait2 (test for autoactivation).
b. pGLS22-Ras + pLacGus + pEG202-Krev1 (negative controls for autoactivation).
c. pGLS22-EE12345L + pLacGus + pEG202-Krit (strong positive controls for

autoactivation).
9. To each tube, add 300 µL of sterile 40% (w/v) PEG 4000/0.1 M lithium acetate/TE

buffer, pH 7.5. Invert several times to mix (do not vortex). Incubate the tubes at
30°C for 30–60 min.

10. Add 40 µL of dimethyl sulfoxide to each tube, mix by inversion. Heat shock the
tubes by incubating at 42°C (in a heat block) for 10 min.
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Fig. 3. Polylinkers of basic two-hybrid vectors. (A) pGLS23. (B) pMW103. (C) pJG4-5.
Maps and sequences for these and additional vectors are available on the web at
http://www.fccc.edu/research/labs/golemis/InteractionTrapInWork.html. Only restriction
sites that are available for insertion of coding sequences are shown; those shown in bold
type are unique.

11. Microfuge the cells for 20 s at 10,000–15,000g. Pour off the supernatant and
resuspend the yeast in 0.5 mL of sterile water.

12. Spread each transformation mixture on Glu/CM Ura− His− dropout plates, and keep
at 30°C for 2 d to select for yeast colonies containing transformed plasmids (Note 5).

3.2. Replica Technique/Gridding Yeast: Assessing Bait Activation 
of Reporters

For each transformation: pick and analyze at least six independent colonies for
their transcriptional activation phenotype, using the auxotrophic and colorimetric



reporters (see Note 6). Assessment of transcriptional activation requires the
transfer of yeast from master plates to a variety of selective (dropout) plates. A
sterile toothpick is usually used to move cells from individual patches on the
master plate to each of the selective media. In some cases (particularly in
genomic-scale applications) a large number of colonies expressing numerous
combinations of bait and prey need to be examined. In this case especially, it is
useful to use a transfer technique that is made for a high-throughput analysis,
such as the one described herein.

1. Add approx 50 µL of sterile water to the wells of 96-well microtiter plate with a
syringe-based repeater or multichannel pipet (e.g., use wells A1–C6 for six
colonies each of the three transformations described in Subheading 3.1.1., step 8).
Position a micropipet tip insert grid on the microtiter plate, and attach it with tape:
the holes in the insert grid should be placed exactly over the wells of the microtiter
plate (this is important for stabilization of the tips in the plate, and will allow
simultaneous removal afterward, thereby speeding the replica process).

2. Use sterile plastic micropipet tips (or toothpicks) to pick six yeast colonies (1–2-mm
diameter) from each of the transformation plates a–c (see Subheading 3.1.1., step 12).
Place the tips in the wells leaving them in a near-vertical position supported by the
insert grid until all the colonies have been picked.

3. Swirl the plate gently to mix the yeast into suspension and remove the insert grid,
thereby removing all the tips at once.

4. Use a replicator to plate (see Note 7) yeast suspensions to new plates. Each spoke
will leave a drop approximately equal to a 3 µL volume. Use the following plates:
a. One Glu/CM Ura− His− (producing a master plate).
b. Two Gal-Raff/CM Ura− His− plates (for X-Gluc and X-Gal overlay assays, to

test for GusA and LacZ reporter activity, respectively).
c. One Gal-Raff/CM Ura− His− Lys− (for scoring activation of the LYS2 reporter).
d. One Gal-Raff/CM Ura− His− Leu− (for scoring activation of the LEU2 reporter).
e. One Gal-Raff/CM Ura− His− Lys− Leu− (optional).

5. Grow the plates at 30°C. After 1–2 d, put the Glu/CM Ura− His− master plate at
4°C, and assay the two Gal-Raff/CM Ura− His− plates for the activation of GusA
and LacZ. Grow the remaining plates at 30°C until very strong growth is observed
on the three LYS2 and LEU2 selection plates by the positive controls (for up to 4 d,
but typically within 2 d).

6. Activation of the GusA and LacZ reporters is assessed qualitatively, using the
yeast grown for 18–36 h on the two Gal-Raff/CM Ura− His− plates. Use one
plate for overlay with XGal agarose, and the second for overlay with XGluc
agarose, as follows.
a. Slowly release approx 5 mL chloroform (CHCl3) from a glass pipet held near

the inside of the plate (or slowly pour from a small bottle). The objective is not
to smear the colonies by too vigorous a release of CHCl3. Do not cover plate
with lid. Incubate colonies completely covered in CHCl3 for approx 5 min.
Caution: CHCl3 is a toxic chemical. Take precautions to avoid inhalation and
skin contact. Wear gloves. The procedure must be done in a chemical hood.
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To minimize the amount of CHCl3, use just enough to cover the colonies; try to
avoid extended contact with the walls of the plate, as CHCl3 dissolves plastic.

b. (Optional) Briefly rinse the plates with another approx 5 mL CHCl3, then drain
and let dry, uncovered, for another 5 min at 37°C, or for 10 min in a chemical
hood at room temperature.

c. Carefully add about 10 mL of XGal- or X-Gluc agarose on the plate, making
sure that all yeast spots are completely covered. Note that it is difficult to
spread less than 7 mL of agarose because the plates chill as CHCl3 evaporates.

d. Put plates in 30°C incubator and keep track of color changes. Checking the
plates at 20 min, 1 h, and 3 h after agarose addition is recommended. Yeast
colonies containing positive control baits (transformation c) as well as test
baits that strongly activate GusA and LacZ reporters will become dark blue
colonies in 20–60 min, whereas negative controls (transformation b)
should remain as faint blue or white colonies for several hours. An optimal
bait should be either comparable with the negative control or develop faint
blue color.

7. Next, at days 3–4 after plating, analyze the transformants for transcriptional acti-
vation of reporter genes LYS2 and LEU2, which enable growth of the transformed
autotrophic yeast strain on selective media. Yeast containing both cI-and LexA-
fused test baits (from transformation a) and negative controls (from transforma-
tion b) should not grow on Gal-Raff/CM Ura− His− Leu−, Ura− His− Lys−, or Ura−

His− Lys− Leu− plates (Note 8). The most important sign that baits may be suitable
for screening libraries is the absence of growth similar to negative activation con-
trol. If the tested baits grow as well as the positive control for activation (from
transformation c) they may not be used for library screening, as they are likely to
produce high background (see Note 9).

3.2.1. Detection of Bait Protein Expression

In general, it is recommended to evaluate the expression level and appropri-
ate size of the bait proteins by Western blot analysis, even if the bait is well
behaved in the activation assays (see Note 10).

1. For each bait (test and control), pick at least two primary bait/reporter transfor-
mants from the Glu/CM Ura− His− master plate (see Subheading 3.2., step 5), and
inoculate them into Glu/CM Ura− His− liquid medium. Grow overnight (8–12 h)
on an orbital shaker at 30°C. Dilute the saturated cultures into 2 mL of the same
medium at a density of approx 0.15 OD600, and grow at 30°C (see Note 11).

2. After incubating for 4–6 h the OD600 of the cultures should reach 0.45–0.7 (meas-
ure before harvesting). Centrifuge 1.5 mL of each culture at 13,000g for 3–5 min
in a microfuge. When each cell pellet is visible (should be approx 2–5 µL of
packed cell volume), carefully aspirate the supernatant.

3. Add 50 µL of 2X Laemmli sample buffer to each pellet, and rapidly mix by vor-
texing to resuspend each pellet. Boil the samples at 100°C for 5 min for immedi-
ate assay, or freeze at –70°C (in dry ice) for subsequent use (Note 12).
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4. After boiling, chill the samples on ice and centrifuge for 30 s at 13,000g to pellet
large cell debris. Load 10–25 µL of each sample onto a 0.1% (w/v) sodium dode-
cyl sulfate-polyacrylamide gel.

5. Prepare a Western blot and use an antibody to cI to analyze cI-fusion (bait 1)
expression. Subsequently, strip the blot and probe with antibody to LexA to screen
for LexA-fusion (bait 2) expression (Note 13).

3.3. Transforming a Library, and Characterizing Interactors

A partial list of available libraries compatible with the interaction trap is
found at http://www.fccc.edu/research/labs/golemis/InteractionTrapInWork.html.
Currently, the majority of libraries suitable for the two-hybrid reagents described
herein are available commercially, through sources including Origene (Rockville,
MD) and Invitrogen (from a noninducible promoter). If one wishes to make one’s
own library, it should be cloned in a vector such as pJG4-5 or a related vector such
as pYESTRP2 (Invitrogen). The polylinker sequence at the site of cDNA inser-
tion for the vector pJG4-5 is shown in Fig. 3C.

The protocol outlined next is designed with the goal of performing a screen,
which should saturate a cDNA library derived from a genome of mammalian com-
plexity (see also Figs. 4 and 5, for flow charts). Fewer plates will be required for
screens with libraries derived from organisms with less complex genomes, and
researchers should scale back accordingly. A protocol is provided for transforming
the library into PRT475 yeast, then using mating (24) to introduce the library against
the bait of interest by crossing bait-containing PRT50 with library-containing
PRT475 yeast. The main advantage of this approach (as opposed to directly trans-
forming the library into yeast containing the bait), is that if the investigator wishes
to use the same library to screen multiple baits, only a single large-scale transfor-
mation is required, followed by relatively easy mating steps (see Note 14).

In order to obtain a clear estimate of the frequency of cDNA-independent
false-positives (a frequency that is important to know when deciding how many
positives to pick and characterize), it is a good idea to perform a small-scale
parallel “test mating” for new bait strains with the PRT475 yeast containing
only the library vector. This mating can be performed at the same time as the
library mating, and both matings can be treated identically in the next step,
selecting interactors.

A positive control is usually quite useful in a subsequent characterization of
potential interactors, and can also be performed in parallel with the library trans-
formation. Normally, these positive controls will interact with either or both of the
baits expressed in the PRT50 control strain obtained in Subheading 3.1.1., trans-
formation b, i.e., (pEG202-Krev1 + pLacGus + pGLS22-Ras). For the experi-
ments described herein, pJG4-5:Raf will interact with pGLS22-Ras, pJG4-5:Krit1
will interact with pEG202-Krev1, and pYesTrp:RalGDS will interact with both.
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Fig. 4. Flow chart for a two-hybrid screen done by interaction mating. Stage three
allows flexibility in step order, see text for details.
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Fig. 5. Detailed library screening flow chart. See text for details.



3.3.1. Transforming the Library

1. Use a fresh colony of PRT475 to inoculate a flask containing 20 mL of liquid YPD
medium. Grow yeast overnight at 30°C in an orbital shaker (see Note 4).

2. Dilute the overnight culture into 300 mL of fresh YPD liquid medium in a 1-L
flask such that the diluted culture has an OD600 nm of 0.15, and grow as before
until the culture has reached an OD600 nm of 0.5–0.7 (about 4–6 h).

3. Subdivide the 300 mL of culture among six 50-mL sterile disposable tubes, and
centrifuge at 1000–1500g for 5 min at room temperature. Gently resuspend each
pellet in 5 mL of sterile water, and combine all the slurries in a single tube. Add
sterile water to the top of the tube and mix.

4. Recentrifuge the cells at 1000–1500g for 5 min at room temperature. Pour off the
water, add 1.5 mL of TE/0.1 M lithium acetate and resuspend the remaining yeast
pellet (~150 µL packed volume). Reserve 150 µL for use in step 10 (parallel control
transformations). Total volume should be approx 1.75 mL.

5. Mix 30 µg of library DNA and 1.5 mg of freshly denatured (i.e., boiled for 5 min)
sssDNA and mix gently. Add the DNA mix to the yeast. Mix gently and dispense
60-µL aliquots of DNA/yeast suspension into 30 microfuge tubes (see Note 15).

6. To each tube, add 300 µL of sterile 40% (w/v) polyethylene glycol (PEG) 4000
prepared in 0.1 M lithium acetate/TE buffer, pH 7.5. Gently mix by inverting the
tubes several times (do not vortex). Incubate the tubes at 30°C for 30–60 min.

7. Add 40 µL of dimethyl sulfoxide to each tube, and mix by inversion. Heat-shock
cells by placing the tubes in a heat block set to 42°C for approx 10 min.

8. Pipet the complete contents of each tube onto each of 30 240 × 240 mm2 Glu-Trp
dropout plate, and spread the cells evenly using 12–24 sterile glass beads. Invert
the plates without discarding glass beads (see Note 16) and incubate at 30°C until
all colonies appear (within 3–4 d).

9. Select two representative transformation plates. Draw a 23 × 23 mm2 (1% of the
plate bottom surface) over an area containing an average density of colonies.
Count the colonies in each grid section, and recalculate for the whole transforma-
tion. A good transformation performed according to this protocol should yield
approx 20,000–40,000 colonies per plate.

10. Use small aliquots (~25 µL) of competent yeast from step 4 to transform the empty
library plasmid (pJG4-5 or pYesTrp2), pJG4-5:Raf1, pJG4-5:Krit1, and
pYesTrp2:RalGDS. Plate each on a 100-mm plate, and collect the transformed
cells as for the library (protocol outlined next), scaling down accordingly.

3.3.2. Harvesting and Pooling Primary Transformants

In the next step, a homogenized slurry is prepared (see Note 17) from the
pool of approx 3 × 105–106 primary transformants, which is then aliquoted and
frozen. Each of these aliquots is representative of the complete set of primary
transformants, and can be used in subsequent mating.

1. Pour 10 mL of sterile water onto each of five 240 × 240 mm2 plates containing
transformants. Stack the five plates on top of each other. Holding on tightly, shake
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the stack horizontally until all the colonies are in suspension (1–2 min). Using a
sterile pipet, collect yeast slurry from each plate (by tilting the plates) and pool the
resuspended transformants into a sterile 50-mL conical tube.

2. Repeat for further sets of five plates of transformants, resulting in a total of up to
150 mL of suspension split between three 50-mL tubes (see Note 18).

3. Fill each tube containing yeast to the top with sterile TE or water, and vortex/invert
to suspend the cells. Spin cells down for 5 min at 1000–1500g at room tempera-
ture, and discard the supernatants. Repeat this step. After the second wash, the
cumulative pellet volume should be approx 25 mL of cells derived from up to
approx 106 transformants.

4. Resuspend each pellet in one volume of glycerol solution. Combine the contents
of the three tubes and mix well. Freeze in 0.2–1-mL aliquots at –70°C. (These
aliquots are stable for more than 1 yr. Refreezing a thawed aliquot results in the
loss of viability, and is not advised.)

3.3.3. Mating the Bait Strain and the Pretransformed Library

Once the bait strain has been made and characterized, and the library strain
has been transformed and frozen in aliquots, the next step is an interaction
mating between the bait strain and an aliquot of the pretransformed library
strain, followed by selection of positive interactors. In parallel, the bait strain
is mated with a frozen aliquot of the negative control strain. When mating
occurs, individual haploid cells of the bait strain fuse with individual haploid
cells of the library strain to form a diploid yeast strain containing bait–prey
combinations.

Practically, to mate the two strains, the bait strain and a pretransformed
thawed aliquot of library or a control strain are mixed together, and incubated
overnight on rich medium. To select for interactors, the diploids, along unmated
haploid strains held in reserve as controls, are then recovered from the mating
plates, and replated on media on which only diploids can grow (as described in
Subheading 3.3.4.). In practice, a few aliquots of the diploid/haploid mixture
are generally frozen in reserve, to allow tittering of mating efficiency, and
repeated platings at various dilutions. Perform the mating with negative control
strain (generated in Subheading 3.3.1.) at the same time as setting up the
library interaction mating. For both matings, use the same techniques, and treat
them identically in the next step (see Subheading 3.3.4.).

1. Start a 30-mL Glu/CM Ura− His− liquid culture of the bait strain from the Glu/CM
Ura− His− master plate prepared in Subheading 3.2., step 5 (see Note 19). Grow
with shaking at 30°C to mid- to late-log phase (OD600 nm = 1–2). See step 6 for
parallel bait controls.

2. Collect the cells by centrifuging at 1000g for 5 min at room temperature.
Resuspend the cell pellet in 1 mL of sterile water and transfer to a sterile 1.5-mL
microfuge tube. This will yield a yeast suspension of about 1 × 109 cells/mL.
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3. At room temperature, thaw an aliquot of the pretransformed library and negative con-
trol library vector strain (see also other controls discussed in step 6). Mix 200 µL of
the bait strain (~2 × 108 cells) with approx 108 cells of the pretransformed library
(see Subheading 3.3.2., step 4) or negative control strain on a single 100-mm
YPD plate and incubate at 30°C for 12–15 h (overnight).

4. Add 1.5–2 mL of sterile water and 5–10 (3–4 mm) glass beads to the surface of
each YPD plate, and suspend the cells as described for library transformation, i.e.,
by agitating the plate. Transfer the suspension to a sterile tube and vortex gently
for 2 min. Collect the cells by centrifugation at 1000g for 5 min and resuspend in
one volume of sterile glycerol solution. Distribute into 200-µL aliquots, and freeze
at –80°C (see comment Subheading 3.3.2., step 4). However, leave one aliquot
unfrozen if one wishes to proceed directly to the next step—plating on selective
medium (see Subheading 3.3.4.).

5. Titer the mated cells by thawing an aliquot (or using the unfrozen aliquot), and
plating serial dilutions (made in sterile water) on Glu/CM Trp− His− Ura− plates
(this medium will not support the growth of the parental unmated haploids).
Incubate plates at 30°C, and count the colonies that grow after 2–3 d on each plate,
and determine the plating efficiency/colony forming units (CFUs) of the mated
cells (see Note 20).

6. In parallel with steps 1–4 above, grow up approx 1.5 mL of control bait strain
(pGLS22-Ras + pLacGus + pEG202-Krev1) in Glu/CM Ura− His− and approx 1.5 mL
cultures of each of the three control prey strains (see Subheading 3.3.1., step 10)
in Glu/CM Trp−.

7. Take a YPD plate and make three spots of control bait strain by placing a drop (~5 µL)
of the liquid culture on its surface. Without waiting for the liquid to soak in, over-
lay with 5 µL of one of the three control prey strains on each of the spots. Incubate
overnight to allow mating, and then streak all three matings onto Glu/CM Ura−

His− Trp− plates to select diploids.

3.3.4. Screening for Interacting Proteins

In the next steps, interacting preys are selected by plating the mated cells onto
auxotrophic selection plates. It is important to know how many viable diploids
were plated onto these selection plates both to gain a sense of how much of the
library has been screened (saturation) and to determine the false-positive fre-
quency. This information is provided by the titer (expressed as CFU/mL), which
indicates how successful the mating was (see Subheading 3.3.3., step 5).

Dual bait reagents allow selection for an interaction with the cI-fused bait
(on Gal-Raff/CM Ura− His− Trp− Lys− plates), or the LexA-fused bait (on Gal-
Raff/CM Ura− His− Trp− Leu− plates). It also allows selection for preys that
interact with both baits (on Gal-Raff/CM Ura− His− Trp− Leu− Lys− plates).
Negative selection (one interaction but not the second one) is theoretically pos-
sible, but impractical in a single step (but very feasible and recommended as a
follow-up screen). Hence, one will plate the mated cells (step 2 below) on
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appropriate selective plates based on the purpose of one’s screen. If the second
bait is to be used mainly to increase the specificity of the primary screen, plate
the mating on lysine selection plates only (and hold leucine testing for later). If
one wishes to screen two independent baits, plate on two separate sets of lysine
and leucine selection plates. Finally, if one is trying to identify proteins that
interact with both baits, plating a fraction of the mating on lysine selection
plates, and another fraction on double selection (Leu− Lys−) plates is suggested.

1. On the day the screen is scheduled, thaw an aliquot of the mated transformants.
Dilute 100 µL into 10 mL of Gal-Raff/CM Ura− His− Trp− liquid dropout medium,
and incubate with shaking at 30°C for 5 h to allow yeast to begin active growth,
and to induce the galactose-dependent expression of library proteins. If the frozen
culture was not previously titered, plate serial dilutions onto Glu/CM Ura− His−

Trp− plates.
2. After 5–6 h of incubation, measure the OD600 of the culture. On the assumption that

a culture at OD600 nm = 1 contains approx 1 × 107 cells/mL, plate 106 cells on five
100-mm plates with the appropriate auxotrophic selection medium. Plate 107 cells on
each of five additional plates with the same medium. Generally, the plating of 106

cells/plate yields the best result. Although, plating cells at 107cells/plate density
greatly reduces the number of plates that must be processed, allowing one to more
thoroughly saturate the library, it may or may not contribute to cross-feeding between
yeast, resulting in spurious background growth. Therefore, initially plating mated
yeast at two different cell densities and comparing the results is recommended.

3. Place the plates in a 30°C incubator for up to 6 d, inspecting cell growth regularly
(see Note 21). Depending on the individual bait used, good candidates for positive
interactors will generally produce LYS+ colonies over this time period, with the
most common appearance of colonies at days 3–5. LEU+ colonies typically form
at days 2–4 (see Note 22).

4. Observe the plates on a daily basis. On the first day that colonies are visible by
eye, mark their location on the plate with dots of a given color. Monitor the
appearance of the colonies over 5 d. Each day, mark further colonies arising with
different colors. At day 4 or 5, streak colonies in a microtiter plate format onto a
solid master plate (Glu/CM Ura− His− Trp−), in which colonies are grouped
according to the day on which they appeared (see Note 23). If many apparent pos-
itives appear, it might be necessary to pick separate master plates for colonies
obtained on day 2, on day 3, and on day 4, respectively: be sure to include con-
trols (step 5) on these plates.

It is important to compare selection plates seeded with lower and higher densi-
ties. A “lawn” should not be evident on either class, and the number of colonies
should be roughly proportional to the seeding density. If no background growth
appears on the more densely seeded plates, this strategy is successful as a means of
more efficiently screening more of the library. If one gets disproportionally more
colonies on the more densely seeded plates (especially sitting on a thin lawn), this
is probably background owing to cross-feeding. In this case, take another aliquot of
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the frozen mating, repeat induction and plate at 1 × 106 cells per plate on as many
plates as are necessary for full representation of the calculated number of diploids.

5. Controls: include the positive control colonies (from mating with the control bait
strains) on each of the master plates. Also, it is appropriate at this time to gener-
ate additional negative controls for subsequent steps by picking at random a few
colonies from the titer plate (step 1 above) and streaking them in parallel on the
master plates to be tested in the next steps. As these contain randomly chosen
library plasmids, the transcriptional activation phenotype of these colonies is most
likely to be negative: if not, it is necessary to be extremely skeptical of the validity
of predicted interactors.

6. Incubate the master plates at 30°C until patches/colonies form (overnight).

3.3.5. First Confirmation of Positive Interactions

The following steps test the specificity of positive interactors, assessing the acti-
vation of both the auxotrophic and colorimetric reporters in a galactose-dependent
fashion. Simultaneously, galactose-inducible activation of both reporters generally
indicate that the transcriptional phenotype is attributable to expression of library-
encoded proteins, rather than derived from mutation of the yeast.

1. Invert a replicator, (see Note 7) on a flat surface, and place a master plate upside
down on the spokes, making sure that the spokes and colonies are properly
aligned. Remove the plate and insert the replicator into a microtiter plate contain-
ing 50 µL of sterile water in each well. Let the plate sit for 5–10 min, shaking from
time-to-time to resuspend the cells left on the spokes. When all yeast are resus-
pended, print on the following plates (see Notes 24 and 25):
a. Master plate: Glu/CM Ura− His− Trp−.
b. Test for activation of LYS2: Gal-Raff/CM (Ura− His− Trp−) Lys− and Glu/CM

(Ura− His− Trp−) Lys−.
c. Test for activation of LEU2: Gal-Raff/CM (Ura− His− Trp−) Leu− and Glu/CM

(Ura− His− Trp−) Leu−.
d. Two sets of plates, to be assayed for LacZ and GusA activation: Glu/CM Ura−

His− Trp− and Gal-Raff/CM Ura− His− Trp−.
2. Repeat for each master plate (from Subheading 3.3.4., step 4).
3. Incubate the plates at 30°C. After 18–36 h of incubation, take out all Ura− His−

Trp− plates. Keep one of the Glu/CM Ura− His− Trp− plates as a fresh master
plate. Overlay the remaining two sets with XGal or XGluc agarose, as described
in Subheading 3.2., step 6. Continue to monitor growth on the Leu− and Lys−

plates 48–72 h after plating. For comments on interpretation of the results, refer
to Table 2.

3.3.6. DNA Isolation, and Second Confirmation of Positive Interactions

Execution of the aforementioned protocols for any given bait will result in
the isolation of between zero and hundreds of potential “positive” interactors
(see Note 25). These positives must next be evaluated for reproducible phenotype,
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Table 2
Interpretation of Primary Isolates’ Behavior

Observed phenotype

Auxotrophic Colorimetric
reporter reporter Interpretaion

Glu Gal Glu Gal Conservative Optimistic Recommendation

− + − + Very good sign Work with those
clones first

(+) + (+) + Bait is mutated or • GAL1 promoter Take a small 
its expression is is slightly leaky number of 
upregulated, • both bait and clones (six or
causing a high prey are very less) for confir-
background of stable mation of
transcriptional • interaction occurs interaction;
activation with high affinity store the rest

− + − − Yeast mutation Some bait-interactor If all other 
occurred that combinations are candidates fail,
favors growth or known to check these
transcriptional preferentially clones (or redo
activation on activate one the screen with
galactose reporter versus different bait,
medium another library, and 

so on)
All other phenotypes Contamination/ Something really Trash

plasmid new
rearrangements/
mutations

From http://www.fccc.edu/research/labs/golemis/interactiontrapinwork.html.

and specific interaction with the bait used to select them, using a strategy as
shown in Fig. 6. If a large number of positives are obtained, the subsequent char-
acterization steps require prioritization. In this case, select up to about 24–48 inde-
pendent colonies (preferably, those growing the soonest after plating on selective
media) for the first round of assessment, while maintaining master plates of
additional positives at 4°C. This first analysis set will be tested for specificity of
interaction (i.e., for their ability to bind unrelated baits in addition to the original
one) and screened by polymerase chain reaction (PCR)/restriction digest analysis
and/or sequencing to establish whether clusters of frequently isolated cDNAs are
obtained: such clusters are generally a good indication for a specific interaction.



The protocols described next provide two different approaches for analyzing
positives: the first is encouraged. These approaches are summarized in the flow
chart in Fig. 6. Both utilize similar methods, but the order with which tech-
niques are applied differs. The choice between strategies depends on whether
the individual investigator would rather spend time and money doing bulk PCR
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Fig. 6. Detailed flow chart for characterization and second confirmation of primary
positives. See text for details.



(option 1) or bulk yeast plasmid recovery (option 2). The first protocol is gen-
erally 1–3 d faster, but does not result in bankable plasmids.

3.3.6.1. PCR APPROACH: RAPID SCREEN FOR INTERACTION TRAP POSITIVES

A major strength of the protocol described next is that it will identify redun-
dant clones before plasmid isolation and bacterial transformation, which in
some cases greatly reduces the amount of required work. Accurate records
should be maintained of how many of each class of cDNA are obtained; and if
any ambiguity is present about whether a particular cDNA is part of a set or is
unique, investigators should err on the side of caution.

The outlined protocol includes steps of enzymatic treatment to generate crude
yeast lysates (steps 1–3), used later as template for the PCR reaction (step 4).
PCR product can be obtained directly from the yeast colonies even without
β-glucuronidase treatment (e.g., by introducing a 10-min 94°C step at the begin-
ning of the PCR program). However, yeast lysates obtained in this protocol also
can be used as a source of plasmid for electroporation into Escherichia coli,
instead of the more time-consuming plasmid recovery protocol described next.

1. Starting from the Glu/CM Ura− His− Trp− master plate, resuspend yeast in 25 µL
of β-glucuronidase solution in a 96-well microtiter plate by using a replicator. Seal
the wells using tape, and incubate on a horizontal shaker at 37°C for 1.5–3.5 h (see
Note 26).

2. Remove the tape, and add about 25 µL of glass beads to each well, and seal again.
Attach the microtiter plate to a vortex with a flat top surface (e.g., using rubber
bands) and mix vigorously for 5 min.

3. To each well, add 100 µL of sterile distilled water. Take 0.8–2 µL as a template for each
PCR reaction. Reseal the plate with tape, and keep the remainder frozen at −70°C.

4. PCR amplification:
a. For PCR amplification use primers specific for the library plasmid used (see

Subheading 2.7.). Perform PCR amplification (in ~30 µL volume) as follows
(see Notes 27):

i. 2 min at 94°C.
ii. 45 s at 94°C.

iii. 45 s at 56°C 31 cycles of steps ii–iv.
iv. 45 s at 72°C.

b. Simultaneously, perform PCR reactions from the following control templates:
Empty library plasmid (diluted to about 0.1 ng); yeast from the positive con-
trol colonies (see Subheading 3.3.3., step 7), treated along with experimental
clones as above (see Note 28); and the same amounts of diluted library plas-
mid mixed together with the positive control yeast. For analysis of possible
outcomes, see Table 3.

5. Take 10 µL of the PCR product for the HaeIII digestion (below), and run out the
remainder of the PCR reaction (about 20 µL) on a 0.7% agarose gel. Identify
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fragments that appear to be of the same size; HaeIII digests of these fragments
should be run side-by-side. Put gel in a refrigerator until it is ready to isolate frag-
ments (see Note 29).

6. Perform a restriction digest of 10 µL of the PCR product with HaeIII in a total volume
of 20 µL. Rearrange the loading order according to the results obtained with nondi-
gested PCR, and load the digestion products on a 1.5% agarose gel. Run out the DNA
a sufficient distance to get good resolution of DNA products in the 200–1000 bp size
range. This will generally yield distinctive and unambiguous groups of inserts, con-
firming whether multiple isolates of a small number of cDNAs have been obtained.

7. Purify the uncut fragments from the gel by using standard agarose gel-purifica-
tion techniques. In cases whereby a very large number of isolates representing a
small number of cDNA classes have been obtained, the investigator might
choose to directly sequence the PCR product (see Note 30). The purified cDNA
can be used directly to reassess the interaction with bait (second confirmation of
interaction).

8. The next step is to establish whether isolated cDNAs are reproducible and able to
reassess, whether interactors associate specifically with the bait(s) of interest, or
are nonspecific (“sticky” proteins), or false-positives that were spuriously isolated
owing to mutations in the initial bait strain that lead to nonspecific growth and/or
nonspecific transcriptional activation. This can be done using a PCR-recombina-
tion approach (derived from ref. 25) in a single step, after which confirmed spe-
cific positive clones can be worked up through conventional plasmid purification.

9. Perform a restriction digestion of an empty library plasmid with two enzymes produc-
ing incompatible ends in the polylinker region (e.g., EcoRI and XhoI), see Note 31.

10. Perform PCR from positive control plasmid(s) using the same primers as before,
and purify the PCR product.

11. Transform PRT50 containing pGLS22-Ras + pLacGus + pEG202-Krev1 (see
Note 19) with:
a. Digested library plasmid (50–100 ng).
b. Digested library plasmid (50–100 ng) and control PCR product (0.5–1 µg).
c. Uncut library plasmid (50–100 ng).

Save the extra digested library plasmid and the pPrey-control PCR product for
further use in the specificity test (step 13).

12. Plate the transformations on Glu/CM Ura− His− Trp− dropout plates and grow at
30°C for 2 d (until colonies grow). Count colonies (see Notes 32 and 33). If trans-
formation efficiency in b is better than in a by 5–20-fold, it is safe to proceed to
the next steps. c is a positive control for the transformation (Note 34).

13. Using same ratios as in step 11b above, transform digested library vector in combi-
nation with selected PCR products (again, include positive control(s) from step 9)
to the following:
a. pGLS23-Bait1 + pLacGus + pMW103-Bait2 (the original naïve bait strain).
b. pGLS22-Ras + pLacGus + pEG202-Krev1 (the control bait strain).

14. Plate each transformation mix on Glu/CM Ura− His− Trp− dropout plates and incu-
bate at 30°C until colonies grow (2–3 d).
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15. Prepare a master plate for each library plasmid being tested. Each plate should con-
tain at least 10 colonies of the transformed PCR-insert/digested plasmid into each
of a and b.

16. Test for coloration and for auxotrophic requirements exactly as described for
Subheading 3.3.5. above. True-positives should show an interaction phenotype
with a, but not with b. Yeast transformed with control PCR product will provide
both positive and negative controls: a should be negative whereas b should be pos-
itive when assayed for both color and growth on the corresponding plates (see
Subheading 3.2., step 4).

17. Proceed with sequencing and biological characterization. Most often, PCR provides
ample source of DNA for all subsequent cloning. If needed, transform selected pos-
itives into E. coli by electroporation (20) using 1–2 µL of the β-glucuronidase-
treated frozen yeast (step 3), and isolate plasmid DNA from ApR colonies.

3.3.6.2. PLASMID ISOLATION APPROACH: ISOLATION OF PLASMIDS, TRANSFER

TO BACTERIA

This protocol provides an alternative option to the basic protocol in case PCR
technology is not readily available for use, or in case of failure to obtain a spe-
cific PCR product using the library vector primers. This protocol is based on
lysing the cells with glass beads after the β-glucuronidase treatment, followed
by plasmid transformation in E. coli and plasmid isolation, and plasmid retrans-
formation into yeast. A number of kits for yeast minipreps are commercially
available, for example, from Clontech (Clontech Laboratories Inc., www.clontech.
com, Mountain View, CA) and others.

1. Take 1–2 µL from the β-glucuronidase-treated yeast suspension (see Subheading
3.3.6.1., step 3) and transform the DNA by electroporation (20) into any standard
E. coli strain (e.g., DH5α) selecting a medium containing ampicillin, because only
bacteria that have taken up a library plasmid will grow.

2. Select at least two bacterial clones for each yeast clone, and prepare a small quan-
tity of plasmid DNA (12) from each bacterial clone.

3. Follow Subheading 3.3.6.1. from step 11 to the end essentially as described,
except transform with purified library plasmids, instead of mixture of PCR prod-
uct and digested library vector.

3.4. Follow-up for Library Screening

Following completion of the aforementioned specificity tests, the next step is
to leave work with the two-hybrid system, and proceed to biological characteri-
zation of the interaction in the appropriate organism for the bait. Such character-
ization will be necessarily bait specific, and should serve to further eliminate
interactions of dubious physiological relevance. Of note, a database of common
false-positives, along with discussion of issues related to false-positives, is found
at: http://www.fccc.edu/research/labs/golemis/interactiontrapinwork.html.
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4. Notes
1. Some of the control plasmids described in this protocol have inserts cloned in a

pGLS22 background: pGLS22 is identical to pGLS23 but lacks an EcoRI site in
the polylinker. The pGLS series of plasmids uses the HIS5 gene in the histidine
synthesis pathway: the PRT50 yeast strains used for selection are doubly mutated
in HIS5 and a second gene in this pathway, HIS3, which is used to select the
second bait (producing the LexA-fusion). It is thus important to simultaneously
introduce both baits into the PRT50 yeast (otherwise no yeast will grow on His−

dropout plates): practically, this saves about a week by skipping transformation
step used to combine two different baits.

2. Standard molecular biology techniques (restriction digests) or alternative cloning
strategies (i.e., in vivo recombination of PCR products ref. 26 or GATEWAY
cloning ref. 27) can be used. Whatever approach is used, it is a good idea to
include a translational stop sequence at the carboxy-terminal end of the bait
sequence. It is also important to keep in mind that the assay depends on the abil-
ity of the bait to enter the nucleus, and requires the bait to be a transcriptional non-
activator. Hence, obvious membrane localization motifs, or known transcriptional
ADs should be removed in the cloning process. Using two-hybrid systems to find
associating partners for proteins that are normally extracellular, even though such
strategies have apparently worked in a limited number of cases, should be regarded
as extremely high risk.

3. A number of modified versions of the plasmid exists, which contains additional restric-
tion sites, altered reading frames, and alternative antibiotic resistance markers (see
http://www.fccc.edu/research/labs/golemis/interactiontrapinwork.html for details).

4. It is important to use a fresh (thawed from −70°C and streaked to single colony less
than ~7 d previously) colony and maintain sterile conditions throughout all subse-
quent procedures.

5. An efficient transformation yields approx 103 transformants/µg of DNA (when
three plasmids are being simultaneously transformed). Therefore, this experiment
also provides a good chance to assess transformation efficiency, which will be of
much higher importance by the time of library transformation. If only a very small
number of colonies are obtained, or colonies are not apparent within 3–4 d, this
implies that transformation is for some reason very inefficient, and that results
obtained in characterization experiments may not be typical. In this case all
solutions/media/conditions must be double-checked or prepared fresh, and trans-
formation be repeated. In library transformations, sssDNA is often used as carrier
DNA to boost transformation frequency. sssDNA must be of very high quality,
whether obtained from a commercial vendor or homemade (22) (also see http://www.
umanitoba.ca/faculties/medicine/biochem/gietz/Solutions.html). As a separate
issue, if very few transformants containing the bait plasmid appear (compared
with the controls), or yeast expressing the bait protein grow noticeably more
poorly than control yeast, or if colony population appears much more heteroge-
neous than control (e.g., presents a mix of large and small colonies), this would
suggest that the bait protein is somewhat toxic to the yeast.
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6. Assay of multiple colonies is important, because for some baits, protein expres-
sion level is heterogeneous between independent colonies, with accompanying
heterogeneity of apparent ability to activate transcription of the two reporters. For
further discussion, see Chapter 16 Fig. 4.

7. A replicator for the transfer of multiple colonies can be purchased or easily home-
made; it is important that all of the spokes have a flat surface, and that spoke ends
are level. A metal frogger can be sterilized by autoclaving or by alcohol/flaming;
a plastic replicator must be cut in half to fit to a standard 90-mm Petri plate; it can
be sterilized by autoclaving or rinsing with alcohol. The replicator should have 48
spokes in a 6 × 8 configuration. When making prints on a plate, dip the replicator
in the wells of the microtiter plate, then put it on the surface of the solidified
medium. Tilt slightly in circular movement, then lift replicator and put it in the
microtiter plate (keep the correct orientation). Make sure all the drops left on the
surface are of approximately the same size. If only one or two drops are missing,
it is easy to correct this by dropping approx 3 µL of yeast suspension on the miss-
ing spots from the corresponding wells. If many drops are missing, make sure that
all the spokes of the replicator are in good contact with liquid in the microtiter
plate (it may be necessary to cut off the side protrusions on the edge spokes of the
plastic replicator) and redo the whole plate. Continue replicating by shuttling back
and forth between microtiter and media plates. Let the liquid absorb to the agar
before putting the plates upside down in the incubator. For alternative techniques
to assess LacZ reporters, including growing yeast directly on Xgal- or Xgluc-
containing plates, see http://www.fccc.edu/research/labs/golemis/interactiontrapin-
work.html. The technique described herein is much more sensitive than a standard
XGluc plate assay, and can be done within 24 h of plating on appropriate medium,
and is generally preferred in high throughput analysis.

8. Transcriptional activation phenotype of bait 1 on the auxotrophic reporters is the
most important consideration for library screening, because this is used for
direct selection for interaction phenotype. Therefore, if no activation is detected on
Lys− plates, one should proceed further; if bait causes considerable growth on
Lys− plates, it must be modified (e.g., by truncation). There is normally a good
correlation between activation of the two reporters, so it is unlikely that a bait,
which does not significantly activate LYS2 will significantly activate GusA. For
the screening strategy described herein, the behavior of the cI bait is most
important; as the LexA bait is primarily being used as a counterselection, weak
activation is tolerated.

9. In an optimal result, all six colonies assayed for a given transformation would have
essentially the same phenotype. For a small number of baits, this is not the case.
The most typical deviation is that of six colonies assayed for a new bait, some
fraction appears to be inactive (white in colorimetric assay, and not growing on
auxotrophic selection medium), whereas the remaining fraction display some
degree of blueness and growth. Do not automatically select the white, nongrowing
colonies as starting point in a library screen; generally, these colonies possess the
phenotypes they do because they are synthesizing little or no bait protein (as can
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be assayed by Western blot, see Subheading 3.2.1.). The reasons for this are not
clear; however, it appears to be a bait-specific phenomenon, and may be linked to
some degree of toxicity associated with continued expression of particular pro-
teins in yeast. It is usually necessary to modify such bait(s), as use of the unmod-
ified baits is associated with high backgrounds of false-positives and artifactual
results. In case of problematic (toxic, autoactivating nonnuclear) baits, a number
of bait modification strategies have been described for LexA-based (but not for
cI-based) fusions (23), which may provide useful models for subsequent steps.

10. In addition to the simplified technique described in this chapter, a number of more
elaborate (and time-consuming) protocols exist (e.g., see Clontech’s Yeast Protocols
Handbook, available at http://www.clontech.com.

11. Many fusion proteins exhibit sharp decreases in detectable levels of protein with
the onset of stationary phase. Therefore, use of the saturated cultures is not recom-
mended for this assay.

12. Frozen samples will be stable for at least 4–6 mo, and will need to be boiled for
5 min at 100°C before loading on an sodium dodecyl sulfate-polyacrylamide gel.

13. The lysates prepared from yeast cultures containing pGLS22-Ras and pEG202-
Krev1 allows comparison of expression levels of new baits with two well-expressed
bait proteins that have worked well under library screening conditions. Some pro-
teins may be synthesized at lower levels, or be posttranslationally cleaved by pro-
teases (resulting in anomalously small baits). This can be because of the size of
the fused domain derived from the protein of interest (proteins of 60–80 kDa and
larger often have problems). In case of proteolytically clipped proteins, screens
might inadvertently be performed with DBD fused only to the amino(N)-terminal
end of the larger intended bait. It is also possible for the proteins expressed at low
levels, and seemingly inactive in transcriptional activation assays to be upregu-
lated to much higher levels under the auxotrophic selection, and suddenly demon-
strate a high background of transcriptional activation. Hence, it is often a good
idea to remake baits showing these properties as smaller derivatives of the proteins
of interest. A high percentage of the colonies not appropriately expressing the bait
protein, although containing the bait plasmid, may be indicative that the bait is
toxic in the yeast. Finally, the best way to find out if a bait protein is correctly
expressed is to coexpress it in yeast with a known interaction partner as a prey (i.e.,
expressed as an AD-fusion), and scoring for transcriptional activation on appropri-
ate dropout media.

14. A “traditional” but more laborious alternative to the mating, directly transforming the
library into yeast containing the bait (21), is not really practical for dual bait system.
Such direct transformation in the bait strain requires media not only selective for
library plasmid, but also maintaining selective pressure to keep both baits and reporter.

15. A good library transformation efficiency should yield approx 105 transformants/µg
of library DNA (for transformation with a single plasmid). Transformation of
yeast in multiple small aliquots in parallel helps reduce the likelihood of contam-
ination; furthermore, it frequently results in significantly better transformation
efficiency than that obtained by using larger volumes of yeast in a smaller number
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of tubes. Finally, do not use excess transforming library DNA per aliquot of com-
petent yeast, as competent cells may then take up multiple library plasmids, com-
plicating subsequent analysis. Under the conditions described herein, less than 10%
of yeast will contain two or more library plasmids.

16. Although it is possible to throw away the beads after spreading, it is acceptable
and efficient to keep the glass beads on the lids while incubating the plates; glass
beads will be needed to harvest the library transformants (see Subheading
3.3.2.). Contamination is much less likely to occur on the glassbeads than on the
plates themselves.

17. Thoroughly inspect the plates visually before making a slurry to collect transformants.
If visible molds or other contaminants are observed on the plates, carefully excise them
and a region around them using a sterile razor blade before adding liquid.

18. This technique also minimizes the time the plates are open, and thus reduces con-
tamination from airborne molds and bacteria. It is more important to ensure the
same wash-off rate for all plates, than to collect as many yeast as possible (about
one-third of the yeast slurry will be left on the plates). Furthermore, a significant
amount of the water added will soak into the plates, so although 10 mL is added,
5 mL is commonly recovered. A second wash can greatly improve the homogeneity
of the yield. If one wishes to do a second wash after the first wash, add 10 mL of
water, shake again, and transfer the slurry to the next unwashed plate; at the end,
make sure all yeast are pooled in a common tube. Optionally, the 24 × 24 cm2

plates can be reused many times after removing the remaining agar, washing, and
alcohol/ultraviolet sterilization. As these plates are quite expensive, this is a use-
ful point of economy.

19. The bait and reporter plasmids should have been transformed into the yeast less
than about 7–10 d before mating with pretransformed library. If it is older, repeat
the transformation and Western blot.

20. Titering can be also be done later, in parallel with selection (see Subheading 3.3.4).
21. Compare selection plates seeded with lower and higher densities. The number of

colonies should be roughly proportional to the seeding density, and there should
be no background growth. If disproportionally more colonies (or a lawn) appear on
the more densely seeded plates, this is background resulting from cross-feeding.
In this case, a higher number of plates seeded at lower density should be used.
Calculate, how many plates at acceptable cell density are necessary for full repre-
sentation of the desired number of diploids, and if needed, repeat induction and
plating from another frozen mating aliquot.

22. If colonies do not arise within the first week after plating, colonies appearing at
later time-points are not likely to represent bona fide positives. True interactors
tend to come up in a window of time specific for a given bait, with false-positives
clustering at a different time-point: hence, pregrouping by date of growth facili-
tates the decision of which clones to analyze first.

23. The number of candidate colonies to pick and characterize should be based on the
number of cDNA-independent false-positives that arise on the same selection
plates for the control mating. The higher the frequency of false-positives, the more
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colonies should be picked to find rare true-positives. As the frequency of true-
positives will be unknown at this step, the goal will be to pick through all of the
false-positives that are expected in the number of library transformants being
screened. For example, if the number of library transformants was 106, the goal
will be to pick through the number of false-positives expected in 106 diploids. If
the cDNA-independent false-positive frequency is one LYS+ colony in 104 CFU
plated, it will be necessary to pick at least 100 LYS+ colonies to find a true-positive
that exists at a frequency of one in 106.

24. In general, test plates for auxotrophic reporter characterization lacking only
leucine or lysine would automatically keep selective pressure for the presence of
the prey and the corresponding bait plasmids. Using plates with fewer dropped-out
components would slightly accelerate the growth, and the potential loss of other
plasmids would not influence the results of the assay on these plates. However, at
the investigator’s discretion, Leu− and Lys− plates can be substituted for Ura− His−

Trp− Leu− or Ura− His− Trp− Lys−.
25. In some cases no positives are obtained from library screens. Reasons for this

might include inappropriate library source; an inadequate number of screened
colonies (<500,000); a bait that in spite of production at high levels is neverthe-
less incorrectly folded or posttranslationally modified; or alternatively, a bait that
does not interact with its partners with a sufficiently high affinity to be detected.
Be as well aware of such simple explanations as a wrong batch of plates. In such
cases, it may be worth trying screens again with a different variant of bait, screen-
ing strain, and/or library, although success is not guaranteed. It is rarely if ever
profitable to continue to rescreen the same bait/strain/library combination through
>3–5,000,000 primary transformants.

26. Transfer approximately the volume of one middle-sized yeast colony (2–3 µL
packed pellet); do not take more, or quality of isolated DNA will suffer. The mas-
ter plate does not need to be absolutely fresh: plates that have been stored for 5 d
at 4°C have been successfully used.

27. Modified versions of this protocol with extended elongation times were also found
to work; the variant given in this chapter has amplified fragments of as much as
1.8 kb in pretty fair quantity.

28. If the library being screened is based on pJG4-5 plasmid (and primers specific for
this plasmid are used in PCR mastermix), only clones containing Raf1 and Krit-1
plasmids would produce products; for a pYesTrp2-based library, take RalGDS
clone as positive control.

29. Sometimes a single yeast cell will contain two or more different library plasmids. If
this happens, it will be immediately revealed by PCR. In this case two bands can be
separately isolated from the gel, and reamplified for subsequent characterization by
retransformation against naïve bait. Also, after bacterial transformation an increased
number of clones should be checked to avoid the loss of the “real” interactor.

30. Note: only the forward primer, FP1, works well in sequencing of PCR frag-
ments; the reverse primer will only work in sequencing from purified plasmid.
In general, the TA-rich nature of the ADH terminator sequences downstream of
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the polylinker in the pJG4-5 vector makes it difficult to design high-quality
primers in this region.

31. Gel analysis produces little information on the completeness of digestion, because
it is not possible to distinguish between plasmid species cut by one and two
enzymes. Purification of the digested plasmid is not necessary.

32. This control experiment is an indicator of the degree of digestion of the library
plasmid. The background level of colonies transformed with digested empty
library plasmid (a) (see Subheading 3.3.6.1., step 11) should be minimal. In case
the background is high, make sure that the digestion of the empty library plasmid
is full and not partial by increasing the digestion incubation time or the restriction
enzyme concentration.

33. The fraction of the correct clones can be assessed by replica-plating 12–24 clones
to check their phenotype (as in Subheading 3.3.5.). Normally, it should be
between 85 and 95%.

34. When transformed together, the PCR-amplified cDNA fragment from pPrey-
control PCR product and the digested library plasmid will undergo homologous
recombination in vivo in up to 97% of the transformants that acquired both vector
and insert (25,26). This is owing to the identity between the cDNA PCR fragment
and the plasmid at the priming sites. The background level of colonies transformed
with digested empty library plasmid (a) should be minimal.
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A Bacterial/Yeast Merged Two-Hybrid System
Protocol for Bacterial Screening

llya G. Serebriiskii, Nadia Milech, and Erica A. Golemis

Summary
Yeast two-hybrid systems are artificial genetic systems that allow identification and charac-

terization of protein–protein interactions. One common limit to the use of these techniques is
when the intrinsic property of “bait” proteins of interest transcriptionally autoactivates reporters,
eliminating the basis for interaction detection. To circumvent this problem, autoactivating baits
can be alternatively used in bacteria wherein such activation does not occur. A single-vector sys-
tem has been developed, which can be used either in yeast or in bacteria, streamlining and
expanding capacity for protein–protein interaction screens. A concise proposal is provided for use
of this system in bacteria; a companion article, chapter 15, describes use of the system in yeast.

Key Words: Protein–protein interaction; transcriptional activation; two-hybrid; yeast; bacteria;
library screen.

1. Introduction
The yeast two-hybrid system is a powerful tool for studying protein–protein

interactions. This genetic method, based on the reconstitution of a functional
transcriptional activator in yeast (1), has now been used extensively both to
identify novel protein–protein interactions and to analyze known interactions.
Many extensions to the original two-hybrid system have greatly expanded its
utility, enabling use of a two-hybrid paradigm to selectively study protein inter-
actions with RNA, DNA, peptides, and small molecules (2). Separately, a bac-
terial genetic selection system analogous to the yeast two-hybrid has been
described (3–7). This bacteria-based system offers two significant advantages
over its yeast counterpart: (1) it permits the analysis of very large libraries (>108

in size) and (2) it provides an alternative approach to identify interacting partners



for eukaryotic proteins that are not amenable to analysis in the yeast-based sys-
tem (e.g., DNA-binding domain [DBD]-fused proteins that autoactivate tran-
scription, proteins toxic to yeast, or proteins that have undesired interactions
with endogenous yeast proteins). In contrast, some advantages are specific to the
yeast-based system, including the fact that proteins from eukaryotic organisms
are more likely to be properly folded and posttranslationally modified in an
eukaryotic milieu.

Together, the yeast and bacterial two-hybrid systems provide powerful
methods for analyzing protein–protein interactions. Recently, the creation and
optimization of novel vectors was described that could be used to express DBD-
fused “baits” that could be used for library screening in either bacterial or yeast
environments (8). A specific advantage of this system is that it reduces bait
cloning and characterization work, facilitating screening for interacting proteins
in yeast and bacterial systems in parallel, and allowing extremely direct compar-
ison of results obtained in the two systems. As is shown, a single bait used for
library screens in yeast and in bacteria could identify very different sets of inter-
acting partners in the two environments (probably because of the considerations
discussed earlier) (8). Hence, use of both systems is more likely to identify a
full set of interactive partners for a given bait. This chapter describes the proce-
dures for use of these reagents for screening in bacteria; Chapter 15 describes
the use of related reagents (including a common pGLS23 plasmid series) for
screening in yeast.

1.1. A Bacterial Two-Hybrid System Based 
on Transcriptional Activation

The bacterial two-hybrid system described herein is based on the observation
that two interacting proteins, “X” and “Y,” can trigger transcriptional activation
of a weak promoter in Escherichia coli. As shown in Fig. 1, transcriptional acti-
vation is dependent on the expression of two fusion proteins in the cell. One of
the fusions (the bait) consists of protein X covalently linked to a DNA-binding
protein, which in turn binds to a specific DNA site positioned near the weak
promoter. In the system described in this chapter, the DNA-binding protein
used for sequence-specific binding comes from bacteriophage λcI repressor.
The other fusion (the prey) consists of protein Y (or the proteins encoded by a
cDNA library) linked to the α-subunit of the E. coli RNA polymerase (RNAP).
In this configuration, X is tethered near the weak promoter (through the DNA-
binding protein part of the fusion) and, if X interacts with Y, this recruits RNAP
to the weak promoter to thereby activate transcription.

In theory, any interacting protein–protein (X–Y) pair should be able to mediate
this transcriptional activation, and a number of experiments have demonstrated
that this is generally true. Interacting protein–protein pairs from prokaryotes
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Fig. 1. The bacterial two-hybrid system. (A) Schematic showing the components
of the bacterial two-hybrid system. A first protein, the bait, is fused to a DBD provided
by λcI that in turn binds to a specific DNA-binding site positioned near a weak promoter.
A second protein, the prey, is fused to the α-subunit of the E. coli RNAP. Interaction
between bait and prey mediates the recruitment of RNAP to the weak promoter,
thereby activating transcription of a downstream reporter gene(s). (B) Expression of
the yeast HIS3 gene following bait–prey interaction can be selected for E. coli strains
lacking a functional hisB gene (KJ1567 or Bacteriomatch). The bacterial aadA gene
encodes for streptomycin and spectinomycin antibiotic resistance, and provides a second
selection. (C) The LacZ gene in the strain AG58(RP28) encodes β-galactosidase,
which can be assayed either qualitatively on a plate-based assay, or quantitatively, as
discussed in the text.



(3,9), yeast (4,5), and mammals (5,8,10) have all been shown to activate tran-
scription in this system. In addition, the affinity of the interacting partners
approximately correlates with the magnitude of transcriptional activation
observed (3,7), although it is subject to some transcriptional activation threshold
considerations that compress dynamic range (8).

1.2. Selectable Marker Genes Used With the Bacterial 
Two-Hybrid System

In a “classic” yeast two-hybrid system used for library screening, a yeast
strain carries at least one auxotrophic reporter (e.g., LEU2, HIS3, or LYS2) and
one colorimetric reporter (e.g., LacZ or GusA) (2). In contrast, the bacterial
system’s auxotrophic (HIS3) and colorimetric (LacZ) reporters are separated in
two different strains (Fig. 1B,C), whereas the HIS3 auxotrophic selection is
supplemented by a cocistronic antibiotic-resistance selection cassette. For
library screening purposes, the HIS3 selection strain is used as a primary assay
system. Positive clones are subsequently assessed by streptomycin/spectinomycin
antibiotic resistance using the initial bacteria strain, and by β-galactosidase
assay in a second LacZ reporter strain.

1.2.1. The HIS3/aadA Selection Cassette

E. coli cells bearing a hisB gene deletion do not grow on medium lacking
histidine (His-deficient medium). However, expression of the yeast HIS3 gene
in bacteria is sufficient to complement such a hisB defect, permitting growth
on His-deficient medium (11,12). The stringency of this selection can be
raised or lowered by altering the concentration of 3-aminotriazole (3-AT), a
competitive inhibitor of the HIS3p enzyme, in the medium (13). In bacteria,
the HIS3 selection marker exhibits a low spontaneous background frequency
(~3 × 10–8 breakthrough colonies with 20 mM 3-AT [5], and up to ~106 can-
didates can be plated on a single 100-mm agar plate). As shown in Fig. 1B,
the selection cassette also harbors a secondary selection gene that is expressed
cocistronically with the primary HIS3 selectable marker (5). This secondary
reporter, the bacterial aadA gene (conferring resistance to the antibiotics
streptomycin and spectinomycin [14]), can provide a rapid independent
means to verify potential positives that come through the initial selection on
His-deficient medium (see Subheading 3.), as a mutation affecting HIS3
activity will not influence aadA expression.

Two E. coli strains are currently available for HIS3/aadA-based bacterial
two-hybrid screening: KJ1567 (8,15) and Bacteriomatch II (Stratagene). Both
strains grow on the same minimal medium. The most essential difference
between them is that the Bacteriomatch II strain is tetracycline (Tc) sensitive,
and thus accepts Stratagene libraries constructed in (TcR) plasmids such as the
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pTRG series, whereas the KJ1567 strain requires a library based on ampicillin-
resistant (ApR) plasmids. It should be noted that both versions of the system are
quite new, reflected by limited publications to date (e.g., ref. 8). When choosing
which strain to use, one factor to be considered is availability and affordability.
The Bacteriomatch II system is predominantly available commercially, whereas
a basic set of plasmids described herein is available free of charge from the
authors on request. If a library screen is intended, the investigator should check
whether or not the appropriate library exists and is affordable, or has to be con-
structed (see Note 2). Constructing a new library in a pTRG plasmid may be
easier using a commercially available kit available from Stratagene, La Jolla,
CA. Conversely, pAC-UV5-αLP encodes an f1 phage origin, so a library con-
structed in this vector can easily be converted into a library of infectious trans-
ducing phage, and subsequently introduced into selection strain cells by simple
phage infection. This may permit the reproducible plating of more than 108 library
members on a single selection plate (15).

Besides availability/affordability considerations, both strains should pro-
duce comparable results and should be equally well suited to test pair-wise
interactions between the targeted proteins. Throughout this protocol, the use of
the KJ1567 strain is described; at the appropriate steps, notes indicate the
minimal changes in the protocol to be made to instead use Bacteriomatch II
reporters.

1.2.2. The LacZ Reporter

In a two-hybrid screen, the primary advantages of the LacZ reporter are that its
expression can be measured quantitatively, and thus one can readily assess the
magnitude of activation seen with potential positives. Further, activation of LacZ
by a bait-interactor combination provides independent verification that activation
of HIS3 is not owing to a nonspecific mutation (e.g., in the HIS3 promoter
region). The HIS3/aadA double reporter described earlier is more stringent a
selection than the single auxotrophic reporter used in yeast. Nevertheless, the
AG58(RP28) LacZ reporter strain (Fig. 1C) is available to provide additional
tools for studying the interaction between defined pairs of proteins or to further
characterize potential interactors isolated in a library screen using HIS3/aadA
selection.

1.3. Summary

Using auxotrophic, drug-resistant, and colorimetric bacterial reporter strains
as described earlier, one can successfully screen large libraries for candidates
that interact with a protein of interest. This selection system has been successfully
used to isolate candidates of interest from cDNA, randomized and/or mutagenized
libraries. However, direct comparison of the yeast and bacterial two-hybrid
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systems has shown that both systems identified physiological interactors for
common a bait; nonidentical interactors were also obtained from the screens in
the different host organisms (8). Thus, the bacterial two-hybrid system can be
considered to both complement and expand on the yeast two-hybrid system.
This chapter provides detailed protocols for using bacterial two-hybrid to ana-
lyze protein–protein interactions with the HIS3-selection system. It first details
methods to construct and characterize a selection strain harboring a “bait”
fusion protein. It next describes methods for introducing a library of prey-
fusion proteins into the selection strain and protocols for performing the selec-
tion. Finally, it suggests additional experiments for validating potential
positives from the selection, including characterization of the candidate’s speci-
ficity by testing their interaction with nonrelated bait, and estimating the inter-
action strength using LacZ assay. An overview of the various stages, as well as
estimated time frames for each step, is given in Fig. 2.

2. Materials
2.1. Specific Solutions for Media Preparation

Amino acid mixture: 17 different amino acids (no His, Met, or Cys). Make
the following six mixtures first; all percentages are (w/v):

1. Phe 0.99%, Lys 1.1%, and Arg 2.5% in water.
2. Gly 0.2%, Val 0.7%, Ala 0.84%, and Trp 0.41% in water.
3. Thr 0.71%, Ser 8.4%, Pro 4.6%, and Asn 0.96% in water.
4. Asp 1.04% and Gln 14.6% in 3% hydrochloric acid.
5. Glu 18.7% and Tyr 0.36% in water with 4 g NaOH.
6. Ile 0.79% and Leu 0.79% in water.

Mix together equal volumes of solutions (1–6) and filter-sterilize through a
0.2-µm nylon filter. Wrap in foil to protect from light and store at 4°C for up to 
1 mo. For each 500 mL minimal media, 15 mL of amino acid mixture is required.

2.2. Antibiotics and Supplements

See Table 1 for preparation and concentrations of antibiotic stocks and sup-
plements. Filter all solutions through 0.2-µm nylon filter and store antibiotic
and isopropyl-beta-D-thiogalactopyranoside (IPTG) at −20°C, 3-AT foil wrapped
at +4°C.

2.3. Media Preparation

Standard size plates (100- or 90 mm) are used throughout this protocol.

1. Liquid NM medium: to make 500 mL, mix reagents listed next, and filter-sterilize
through a 0.2-µm filter:
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Fig. 2. Flowchart for use of the bacterial two-hybrid system. See text for details;
dashed lines indicate optional steps.
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Table 1
Concentrations of Antibiotics and Other Supplements Used in Agar Plates

Final
concentration

Antibiotic Stock solution in plates Abbreviationa

Ampicillin 100 mg/mL in H2O 100 µg/mL A
Chloramphenicol 30 mg/mL in ethanol 15 µg/mL C
Kanamycin 10 mg/mL in H2O 10 µg/mL K
Tetracycline 10 mg/mL in 80% ethanol 5 µg/mL T
Streptomycin 10 mg/mL in H2O 10 µg/mL S
IPTG 1 M in H2O Up to 50 µM I
3-Aminotriazole 1 M in H2O 1–40 mM AT

aMedia description consists of the name of basic medium, followed by abbreviations for
antibiotics and inducers, followed by concentration of aminotriazole. For example, LB_AC indicates
LB plates with ampicillin and chloramphenicol; NM_ACSI_5AT is NM medium with ampicillin,
chloramphenicol, streptomycin, IPTG, and 5 mM 3-Aminotriazole.

418 mL ddH2O
50 mL 10X M9 salts (Miller recipe [16,17]:

for 1 L, add 60 g Na2HPO4, 30 g
KH2PO4, 5 g NaCl, and 10 g NH4Cl,
autoclave)

10 mL 20% Glucose
5 mL 20 mM Adenine HCl

15 mL Amino acid mixture (see Subheading 2.1.)
0.5 mL 1 M MgSO4
0.5 mL 10 mg/mL Thiamine
0.5 mL 10 mM ZnSO4
0.5 mL 100 mM CaCl2 (always add this last).

2. NM agar plates: for 500 mL of plates, autoclave 418 mL ddH2O with 7.5 g of
bacto-agar and a stir bar, allow agar to cool to 65–70°C and then add the same 
82 mL of basic components as for the liquid NM medium (premixed and filtered).

3. Liquid Luria-Bertani (LB) medium: add 5 g bacto-tryptone, 2.5 g yeast extract, and
5 g NaCl to 400 mL dH2O, adjust pH to 7.5 with NaOH, adjust volume to 500 mL,
autoclave 15 min.

4. LB agar plates: add 7.5 bacto-agar to liquid LB media before autoclaving.

Add antibiotics, IPTG, and 3-AT to media as needed (see text for details).
When adding antibiotics, ensure temperature of autoclaved media is less than
70°C before addition.
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Fig. 3. Vector maps. (A) cI fusion vector pGLS23. This vector is referred to as pBaitC
in the text. (B) RNAP fusion vector pBR-UV5-αLP, used to express the prey in the
KJ1567 selection strain. Further maps, sequences, and polylinkers for system-compatible plas-
mids are given on the websites: http://www.fccc.edu/research/labs/golemis/Interaction
TrapInWork.html (source of these maps) and http://www.stratagene.com/lit/vector.aspx.



2.4. Vectors

Figure 3 and Table 2 summarize and provide maps and other information for
the bacterial two-hybrid vectors used in this method (see Note 1).

2.5. Bacterial Strains

See Table 3 for genotypes of the E. coli strains used for selection.
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Table 2
Plasmids

Short name/ Antibiotic 
source Full name marker Comment/description

pBaitCa pGLS23a CmR Basic plasmid to clone bait as 
a fusion to λcI protein

pTRGb pTRG TcR Basic plasmid to clone prey 
as fusion to E. coli RNAP 
α-subunit residues 1–248 

pLibBa pBR-UV5-αLP ApR Basic plasmid to clone prey as 
a fusion to E. coli RNAP 
α-subunit residues 1–248; 
has f1 origin of replication

pTRG-RGL pTRG-RGL-2 TcR Control plasmid that expresses
(control) an activation domain-RGL 

fusion protein
pBaitC-Rasa pGLS22-HRas CmR Bait plasmid expresses a λcI-

(control) HRasfusion; positive control 
for interaction with BRaf and 
RGL-2

pBaitC-zipa pGLS22- CmR Bait plasmid that expresses a 
(control) EE12345 λcI-leucine zipper protein 

fusion; negative control for 
interaction

pLibB-Rafa pBR-UV5- ApR Control plasmid that expresses 
(control) αLP-BRaf an activation domain-BRaf 

fusion

Expression of the fusion proteins in E. coli is driven by tandem lpp/lacUV5 promoters.
All plasmids except for pAC-UV5-αLP have a pBR322 E. coli replication origin.
It is noted, pGLS23 is described as the prototypical cI-fusion (pBaitC) plasmid: this dual-host

expression vector also allows the screening in a Dual Bait yeast two-hybrid system, as described
in Tikhmyanova et al. Chapter 15.

aGolemis lab (Fox Chase Cancer Center, Philadelphia, PA).
bStratagene.



2.6. Primers for Sequencing and Polymerase Chain reaction (PCR)

Primer Sequence/
name Sequence Target PCR Direction

FPB1 ATGATCCCATGCAATGAGAG pBaitC Sequence Forward
FPP1 ATCCTGAAGAGGCGATTCG pLibB, Sequence Forward

pTRG
FPP2 TGGAAACCAACGGCACAATC pLibB, Sequence, Forward

pTRG PCR
RPP1 TCTCGCCTGTGTCTT

CTTACTTAGG pLibB Sequence, Reverse
PCR

RPP2 GACGCTCAGTGGAACG pTRG Sequence, Reverse
AAAACTC PCR
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Table 3
Bacterial Screening Strains

Strain/source Genotype Comments/description

Bacteriomatch ∆(mcrA)183
II Reportera ∆ (mcrCB-hsdSMR-mrr)173,

endA1 endA1 hisB supE44 
thi-1recA1 gyrA96, relA1 lac 
(F′ laqIq HIS3 aadA KanR)

KJ1567b ∆hisB463, Reporter strains in which the 
∆(gpt-proAB-arg-lac) expression of the HIS3
XIII zaj::Tn10 (F′ LacIq and aadA reporter genes 
HIS3 aadA KanR) is directed by a weak 

promoter bearing an 
upstream λcI DNA-
binding site

AG58A(RP28)b ∆hisB463, Reporter strain in which the 
∆ (gpt-proAB- expression of the lacZ
arg-lac)XIII zaj::Tn10 reporter gene is directed 
(F′ LacIq LacZ KanR) by a weak promoter bearing

an upstream λcI
DNA-binding site

aStratagene.
bGolemis lab.



2.7. Miscellaneous

1. Sterile glass balls, 3–4 mm, Thomas Scientific (Swedesboro, NJ) 5663L19 or
Thermo Fisher Scientific, (Waltham, MA) no. 11-312A (autoclave in jar to sterilize).

2. Sterile toothpicks (to sterilize, autoclave foil-wrapped toothpicks, or in a jar).
3. Insert grid from a rack of pipet tips (Rainin Instrument [Oakland, CA]) RT series,

200 µL capacity).
4. A metal replicator for the transfer of multiple colonies (e.g., Dankar Scientific

[Reading, MA] no. MC48) (see Fig. 5) (see Note 3), or alternatively, a plastic
replicator (Bel-Blotter, Bel-Art Products (Pequannock, NJ) no. 378776-0002 or
Fisher no. 1371213) (see Note 3).

5. Antibody to cI (commercially available from Invitrogen Corp [Carlsbad, CA]),
and other reagents for Western blotting.

6. 2X Laemmli sample buffer: 0.125 M Tris-HCl, 4% (w/v) sodium dodecyl sulfate,
20% (v/v) glycerol, 10% (v/v) 2-mercaptoethanol, and 0.002% (w/v) bromophenol
blue (pH 6.8). Add 2-mercaptoethanol immediately before use.

3. Methods
3.1. Construction and Characterization of a Bait

The protein to be screened for interactors is fused to the bacteriophage λ repressor
(λcI protein) DNA-binding protein. Two tests of this bait fusion protein are then
performed. First, an activation assay verifies that the bait fusion does not activate the
reporter promoter on its own (see Note 4). Second, a Western blot assay establishes the
expression levels and stability of bait fusion protein inside a bacterial cell (see Note 5).

For these assays, expression of the bait-λcI fusion is induced by IPTG, and pro-
tein levels can be increased or decreased by adjusting the IPTG concentration in
the medium. If the expression level of the bait fusion is too low (it cannot be
detected by Western analysis, under circumstances in which the positive control cI-
fused protein is clearly seen in bacterial lysate) or if the bait is degraded (seen as
a ladder or smear of less than the expected molecular weight), then it is not appro-
priate for use in bacterial two-hybrid screens. In these circumstances, the bait con-
struct needs to be redesigned (e.g., by truncating the bait to smaller domains).

Transcriptional activation of the reporters by the bait (in the absence of any
interacting partner) is checked by assaying the expression of a HIS3 and/or
LacZ reporter gene directed by a weak promoter bearing an upstream λcI-binding
site. Baits should not activate expression of the HIS3 or LacZ reporter genes in
the absence of the interacting RNAP-prey fusion.

3.1.1. Constructing and Transforming a lcI Bait

1. Insert DNA encoding the protein of interest (your favorite gene, [YFG]) into the
polylinker of the λcI-encoding expression vector, pBaitC to create an in-frame
cI-fusion protein (see Note 6). For simplicity, this plasmid will be referred to as
pBaitC-YFG in this protocol.
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2. Transform the KJ1567 or Bacteriomatch II E. coli HIS3/aadA reporter strain (and,
optionally, the AG58(RP28) LacZ reporter strain) with the following combinations
of plasmids (see Notes 7–11):
a. pBaitC-YFG + pLibB-Raf (test for autoactivation).
b. pBaitC-Ras + pLibB-Raf (positive control for activation and interaction).
c. pBaitC-zip + pLibB-Raf (negative control for activation and interaction).

3. Plate each transformation on LB_AC plates and incubate at 37°C for 12–18 h,
until colonies have grown.

3.1.2. Assessing Bait Activation of Reporter Genes: Replica
Technique/Gridding

For each combination of plasmids, assay at least six independent colonies for
their ability to activate the auxotrophic and colorimetric reporters (see Note 12).
Assessment of transcriptional activation requires the transfer of colonies from
master plates to a variety of selective media. This transfer can be accomplished
simply, by using a sterile toothpick to move cells from individual patches on the
master plate to each of the selective media. However, in cases in which large num-
bers of colonies and combinations of bait and prey are to be examined it is useful
to use a transfer technique that facilitates high-throughput analysis. The follow-
ing technique, based on microtiter plates, is an example of such an approach.

1. Add approx 100 µL of sterile NM medium to each well of one half (wells A1–H6)
of a 96-well microtiter plate. As shown in Fig. 4A, place an insert grid from a rack
of micropipet tips over the top of the microtiter plate, and attach it with tape: the
holes in the insert grid should be placed exactly over the wells of the microtiter
plate. Although this is not essential, the grid will stabilize the tips in the plate, and
allow simultaneous removal, speeding the replication process.

2. Using sterile plastic micropipet tips, pick six colonies (1–2-mm diameter) from each
of the transformation plates a–c (Subheading 3.1.1., step 2). Put each set of six
across one of the first top four rows, and leave the tips supported in a near-vertical
position by the insert grid until all the colonies have been picked.

3. Swirl the plate gently to mix the cells into suspension, remove the sealing tape,
and lift the insert grid, thereby removing all the tips at once.

4. To print the cell suspensions on a plate, place the replicator (see Note 13) into the
microtiter plate, lift it and turn 180°, and then reinsert into the remaining half of
the plate. This will make an approx 1:20 dilution of one’s primary suspension in
the bottom four rows (reversed mirror image—do not forget).

5. Use the replicator to plate bacterial cells suspensions on the following plates see
Subheadings 2.1.–2.3.:
a. LB_AC (backup master plate, media test).
b. NM_AC (master plate).
c. NM_ACI.
d. NM_AC_5AT.
e. NM_ACI_5AT.
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Fig. 4. Characterization of bacterial reporter activity using replica technique. (A)
Replica techniques. (Top) Pick each bacterial colony (1–2-mm diameter) to be tested
from the transformation plates, and resuspend it in  NM medium 100 µL of sterile in
a well of a 96-well microtiter plate. If sterile toothpicks are used for picking colonies,
they need to be removed immediately after resuspension of a colony, to prevent
absorption of the liquid. Plastic pipet tips can be also used; place an insert (as indi-
cated by ref. 1) from a rack of pipet tips (e.g., Rainin RT series) over the top of the
microtiter plate, and attach to the sides of the plate using tape (shown in ref. 2).
(Bottom) After removal of the tips, a metal replicator is used as described in the text
to transfer colonies to selection plates. (B) Typical results on selection plates. Herein
potential H-Ras interactors from a Bacteriomatch HeLa library are analyzed. Patches
were obtained after printing of the bacterial suspension on various selection plates
(see Note 13 for using replica tool). The NM_TC medium is nonselective for inter-
action, whereas use of various concentrations of 3-AT, addition of streptomycin, or
the combination of these approaches represents various selection strengths. These
are used to identify candidate interactors, as described in Subheading 3.2.2.



f. NM_ACS.
g. NM_ACIS.

Incubate the plates at 37°C for up to 12–24 h, then save the NM_AC master
plate at 4°C while assays are run.

6. Analysis: ideally, all six colonies assayed representing the same transformation
would have essentially the same phenotype, although some heterogeneity is normal
(see Fig. 4B). Bacteria containing the strong positive control (from transformation b)
should be detectably growing on HIS3 (NM_AC_5AT) and aadA (NM_ACS)
selection plates both with and without IPTG (i.e., even minimal quantities of proteins
produced should activate these reporters). The negative control (from plasmid
combination c) should not grow on either HIS3 or aadA selection plates. If the
bacteria containing the bait under test (from plasmid combination a) shows no
growth on the HIS3 and aadA selection plates within 24 h, it is probably suitable
for library screening; if it is similar to the positive control, it must be reconfigured.
Intermediate growth phenotypes (e.g., weak growth only in plates containing
IPTG) suggest the bait may be usable, but may have background in a library
screen. Figure 4B shows typical results from a characterization of bacterial
reporter activity using the replica technique.

Several “technical” conclusions can also be drawn on analysis of the results of
this experiment. First, it allows optimization of the nonselective minimal medium,
which could be especially important for the subsequent library screening.
However, LB_AC is a much richer medium than NM_AC; in an optimal result, the
difference in bacterial growth on LB_AC and NM_AC plates should not be dramatic
by 12–24 h after plating. If bacterial growth rate and/or plating efficiency on NM
is low, it should be optimized (check the components, adjust antibiotic concentra-
tions and drying time for plates). In the meantime, use the LB_AC plate as a
“healthy” master plate. Second, slow growth in the presence of the IPTG-inducer
on a nonselective plate (NM_ACI) would suggest toxicity of the bait; this may
lead to artifacts and many false-positives during a library screen. Third, analysis
of the growth pattern of the positive and negative controls allows assessment of the
selective medium. If there is no good discrimination between the growth of positive
and negative controls, or if the growth of the positive control cells is very poor at
24 h, the concentrations of streptomycin and 3-AT should be adjusted.

7. Optional: if the AG58(RP28) LacZ reporter strain is also used, assay β-galactosidase
activity of the emerging clones by using one of the quantitative assays (e.g., [8,18]).

3.1.3. Detection of Bait Protein Expression (Western Blot)

Western analysis of lysates of bacteria containing DBD-fused baits is important
for the characterization of the size and expression level of the bait size. Some
proteins may either be synthesized at very low levels, or be posttranslationally
clipped. Either of the above two problems can lead to complications in
library screens. Where proteins are proteolytically clipped, screens might inad-
vertently be performed with DBD fused only to the amino-terminal end of the
larger intended bait. Western analysis should be performed as follows:
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1. From the NM_AC master plate, inoculate at least two colonies per test bait into 2 mL
of NM_AC liquid medium (if using an LB_AC master plate, adjust to LB_AC). In
parallel, set up cultures of pBaitC-Ras and/or pBaitC-zip transformants as positive
controls for protein expression (see Fig. 5, lanes 1 and 5). Grow overnight cultures on
an orbital shaker at 37°C. For optimal protein expression, dilute the saturated cultures
1/100 into fresh tubes containing 2 mL of the same medium with or without IPTG to
obtain exponentially growing cultures (see Note 14).

2. After the OD600 nm of the cultures reaches 0.35–0.5 (after about 4–6 h), harvest
cells from 1.5 mL of each culture by centrifuging at 13,000g for 3–5 min in a
micro-centrifuge. Carefully remove supernatant from the cell pellet.

3. Add 50 µL of 2X Laemmli sample buffer to each tube, and rapidly vortex to resus-
pend each pellet. Heat the samples at 100°C for 5 min for immediate assay, or
freeze (using dry ice for flash freezing) and store at –70°C for subsequent use:
frozen samples should then be heated at 100°C before proceeding to step 4.

4. After heating, chill the samples on ice, then centrifuge for 30 s at 13,000g to pellet
large cellular debris. Dilute 1:100 in 1X Laemmli sample buffer, and load 10–25 µL
of each sample onto a 10% (w/v) sodium dodecyl sulfate polyacrylamide gel
electrophoresis gel.

5. Prepare for Western blot analysis using standard transfer approaches (17), and
probe membrane using an antibody to cI. This allows comparison of expression
levels of the bait protein under test with control cI-fused proteins (see Fig. 5 for a
typical example of an immunoblot detecting cI-bait expression).

3.1.4. Troubleshooting Baits With Undesirable Characteristics

1. If a bait is expressed at inappropriately low/high levels (more than 10-fold diver-
gent from the controls), one may wish to consider adjusting the concentration of
IPTG used in the test plates.

2. If a bait autoactivates the reporter to any significant degree, it is probably worth-
while to subdivide the bait into overlapping domains, creating new baits that may
have reduced autoactivation potential. In doing so, try to divide the bait according
to any available information about protein structure, in order to avoid disrupting
discrete domains.

3.2. Introducing the Library Into the Selection Strain 
and Selecting Interactors

Methods for introducing prey libraries into the selection strain cells differ
depending on the library. In the most straightforward approach, the prey-
plasmid library is electroporated directly into high-transformation efficiency
cells along with the pBait plasmid. Alternatively, a library constructed
using pLibB can be converted into a library of infectious transducing
phage, and subsequently introduced into selection strain cells containing
only the bait (prepared in Subheading 3.1.1., see Note 11) by simple
infection with the phage.

306 Serebriiskii et al.



Following plating of the transformation on selective plates, potential candi-
dates appear as colonies over the following 24–48 h. These colonies are sub-
jected to an initial confirmatory test (see Subheading 3.2.2.) that looks not only
for increased expression of the primary selectable marker HIS3, but also of the
aadA secondary reporter (see Note 15). Prey candidates that pass this initial test
are carried through to additional testing in Subheading 3.3.

3.2.1. Introducing the Library into Selection Strains, 
and Performing the Selection

1. Prepare highly competent KJ1567 cells by a standard high-efficiency protocol.
Alternatively, use manufacturer’s instructions to render the Bacteriomatch II strain
highly competent. Aim for a transformation frequency of more than 108. Transform
50–100 µL aliquot of bacteria with a mixture of library and bait plasmid (50 ng
each). At the same time, perform a parallel transformation with pBaitC-YFG and
control library plasmid: carrying yeast transformed with these two plasmids
throughout the subsequent steps provides a negative control for the library screen.

2. After the transformation, bacteria typically recover 90–120 min in 1 mL of rich
medium broth. After recovery, transfer the culture to sterile tubes and spin in a
microcentrifuge at 2000g for 10 min (room temperature). Remove the medium and
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Fig. 5. Detection of bait expression by Western blot. Transformation (lane 1),
cI–HRas fusion (pBaitC-Ras); Transformations (lanes 2–4), various leucine zipper
fusions being evaluated for expression level (marked with *); transformation (lane 5),
control pBaitC-zip; M, marker lane with the approximate size in kilodaltons. Two inde-
pendent transformants are assayed for each transformation. Equivalent quantities of
total lysate for each bacterial culture are loaded in each lane on the gel, and the subse-
quent membrane immunoblotted with α-cI primary antibody. Note that different baits
are expressed at different levels.



resuspend the cell pellet in 1.5 mL of fresh NM_ACI medium. Grow the cells for
2 h at 37°C in this media, to allow the cells to adapt to growth in minimal medium
before plating, providing selection for bait (C) and library (A) plasmids.

3. Serially dilute approx 100 µL of the transformed cells at least to 10–5 in NM
medium. Plate 100 µL of each of the 10–3–10–5 dilutions on:
a. LB_C plates (to assess the number of bait-transformed cells).
b. LB_A plates (to assess the number of library-transformed cells).
c. LB_AC and NM_ACI plates (to assess the number of doubly transformed cells

capable of growing on rich and minimal medium, respectively).
4. In parallel, plate the remainder of the transformed cells, dividing evenly among 10

NM_ACI_5AT plates. Add 10–12 sterile glass beads per plate, Thomas Scientific
(Swedesboro, NJ) or Fisher no. 11-312A, and gently agitate (do not shake) plates
to distribute the cells evenly on the plate. Allow to air-dry, and then invert and
incubate for 24–36 h at 37°C, followed by up to 24 h at room temperature.

5. Count the colonies that grow within 24 h on the titer plates from step 3 to verify
the total number of cells transformed with the prey plasmids that were plated on
the selection plate. Calculate the efficiency of double transformation, and the total
number of double-transformed cells plated on selective medium. If the library is
not fully represented, it may be necessary to repeat the transformation (possibly
adjusting the amount of plasmid DNA) to achieve the full coverage of the library.
However, plating more than 106 of transformants per plate is not recommended, as
this might result in increased spurious background.

6. Inspect the NM_ACI_5AT selection plates for the appearance of colonies.
a. If the predicted number of viable transformants has been plated, but no

colonies appear on the NM_ACI_5AT selection plates, one can repeat the
transformation procedure, but perform the selection at lesser stringency using
lower concentrations of 3-AT. However, note that the number of background
colonies increases with lower concentrations of 3-AT.

b. If too many candidates appear on the NM_ACI_5AT plates, giving the
impression of nonselected bacterial growth, one can redo the selection at
greater stringencies using higher concentrations of 3-AT (as high as 40 mM).
However, caution should be used, as concentrations of 3-AT more than 30 mM
may decrease the plating efficiency of positive candidates (see Note 16).

7. Colonies that grow on the selective plates should be rapidly (within 24 h) processed
to the next step (see Subheading 3.2.2.).

3.2.2. Confirmation of Positive Interactions: 
Test for Secondary Reporter Activity

One rapid method to characterize potential positive colonies is using replica
technique (as described in Subheading 3.1.2.) to assess the level of expression
of the secondary aadA reporter present in the selection strains. True-positives,
as opposed to nonspecific mutations affecting histidine auxotrophy, should also
show increased aadA activity, reflected in growth on media containing strepto-
mycin. In addition, plating potential positive clones on a series of plates made
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with a range of 3-AT concentration allows some ranking of the candidate inter-
actors.

1. Pick potential positive colonies directly from the selection plate and resuspend in
100 µL of NM medium in a microtiter plate well, using the four upper rows. Also,
include positive and negative controls from Subheading 3.1.2.

2. Dilute colony suspensions approx 1:30 in approx 100 µL NM, using the four bottom
rows of the microtiter plate, as described in Subheading 3.1.2., step 4.

3. Using the replica tool, print suspensions and dilutions on the following plates:
a. NM_ACI (to confirm effective colony transfer; one master plate).
b. NM_ACI_4AT.
c. NM_ACI_5AT.
d. NM_ACI_10AT.
e. NM_ACI_20AT.
f. NM_ACIS.
g. NM_ACIS_5AT.

4. Incubate plates for 24 h at 37°C, and inspect for growth. If necessary, allow plates
to incubate an additional 12–48 h at room temperature, inspecting periodically.
Compare the growth of the candidate colonies vs positive and negative controls on
the selective plates and rank them accordingly (taking photographs or scans is
helpful). If none of the candidates grow on the streptomycin plates (and particu-
larly if growth of the positive controls is slow on these plates), replate the whole
set on lower concentrations of streptomycin.

5. Colonies that rank best by growth on the 3-AT and/or streptomycin plates should be
designated as preferred first round positives and carried forward to Subheading 3.3.
for further analysis. Keep the NM_ACI master plate in the refrigerator. Glycerol
stocks of strongest positives should also be made at this stage (see Note 17).

3.3. Second Confirmation of Potential Positive Candidates

In this stage, candidates initially confirmed as positives in Subheading 3.2.
are further tested to determine if the increased reporter-gene expression is
linked to the expression of the specific prey isolated from the library. To perform
this analysis, the plasmid encoding the prey fusion is isolated and, along with
the bait, is reintroduced into naive selection strain cells. If the ability to grow on
selection plates is linked to the prey plasmid, as indicated by recapitulation 
of the interaction phenotype, then the insert may be sequenced, or used for
other tests.

3.3.1. Isolation of Purified Prey Plasmid From Bacteria 
With Candidate Interactors

A major strength of the optional steps 1 and 2 in this protocol is that it will
identify redundant clones before two rounds of plasmid isolation and bacterial
transformation, which in some cases greatly reduces the amount of work required.
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1. Use primers specific for the library plasmid (see Subheading 2.6.). Perform a PCR
amplification (in ~50 µL volume with small amounts—barely visible—of the bacte-
rial colonies as PCR template), designing the amplification program as follows:
a. 1 min—94°C.
b. 45 s—94°C.
c. 45 s—56°C (31 cycles of b–d).
d. 45 s—72°C.

In parallel with candidate colonies, set up PCR reactions from the following
control templates: appropriate control plasmid (either pLibB-Raf or pTRG-RGL
highly diluted); E. coli carrying the same control plasmid (see Subheading 3.1.2.
and Note 18).

2. Run out an aliquot of the PCR reaction on a 0.7% agarose gel. Identify fragments
that appear to be of the same size. Digest some of the PCR-amplified DNA for
these clones with the frequently cutting restriction enzyme HaeIII, to determine if
an equivalent digestion pattern results: if so, the colonies are likely to be identical
(see Note 19). Purified PCR fragments can be sequenced using the same primers
used for amplification.

3. For each potential-independent candidate, inoculate 2 mL of LB_A with bacteria
patched from a spot on the master plate created in Subheading 3.2.2., step 3.
Grow at 37°C with agitation for 12 h or overnight.

4. Isolate total plasmid DNA for each independent candidate interactor from 1.5 mL of
the overnight culture using any standard miniprep isolation procedure. Resuspend or
elute DNA in a final volume of 40 mL water. The plasmid DNA isolated by this
method will include not only the prey plasmid, but also the bait plasmid as well.
Hence, another round of transformation is necessary to separate the prey from the bait
(see Note 20).

5. Use 1 µL of the DNA from step 4 to transform a naive reporter strain (or any
standard E. coli cloning strain, such as DH-5α). To specifically rescue the library
plasmid, spread 1/20th of the final transformation volume (or streak on a sector
of a plate using inoculation loop) on a LB_A plate in order to get single colonies.
Incubate 16–18 h at 37°C.

6. Pick two colonies from each transformation and using sterile toothpicks or tips
patch in an identical grid to an LB_C plate and an LB_A plate. Let patches grow
6–8 h at 37°C.

7. Transformants harboring only the prey plasmid should not grow on the chloram-
phenicol (LB_C) plate. For each candidate, pick one of the colonies that meet this
criteria from the LB_A patch plate made in step 6 and inoculate a 10 mL culture
of LB supplemented with100 µg/mL ampicillin and grow at 37°C for 16–18 h with
agitation.

8. Isolate plasmid DNA from the 10 mL cultures using standard commercially avail-
able alkaline lysis/column purification methods (or the means of one’s choice
[17]). Utilize procedures for low-copy number plasmids, and perform all extra
wash steps to obtain plasmid DNA of optimal yield and quality. This DNA can be
sequenced, or further confirmation tests (see Subheading 3.3.2.) performed.
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3.3.2. Additional Confirmations of Positive Interactions, 
and Specificity Test for Positive Candidates

1. A strongly recommended option is to use the AG58(RP28) strain to further char-
acterize potential interactors isolated in the library screen based on the ability of
interacting proteins to activate LacZ activity. For this purpose, transform the
desired bait/prey combinations, including controls, in the AG58(RP28) strain
essentially as described in Subheading 3.2.1., and then perform quantitative
β-galactosidase assays (18,19).

2. One additional test that may be performed before sequencing the prey-encoding
plasmids is to check that the candidate preys interact specifically with the bait
used for their selection in the two-hybrid assay. This is accomplished by testing
whether or not the prey can activate the weak promoter reporter in the absence of
the original bait fusion protein.
a. Use 1 µL of purified prey plasmid DNA along with the bait plasmid to cotrans-

form reporter strain cells. In parallel, cotransform the candidate prey plasmid
with the pBaitC-zip and/or pBaitC-Ras control baits (see Notes 21 and 22).
Plate transform cells on NM_AC as described in Subheading 3.3.1., step 5
and characterize six independent colonies for each transformation as described
in Subheading 3.1.1.

b. Analyze growth on the plates. Candidates that demonstrate a specific interac-
tion phenotype on selective medium should certainly have their inserts
sequenced.

5. Notes
1. A number of modified versions of the plasmids and bacterial strains exist. These

include a GATEWAY-ready (20,21) pBR-UV5-α(LP) prey vector, and also coun-
terselectable systems (22) for assessing interaction disruption in bacterial-based
interaction trap systems.

2. See the Stratagene website for Bacteriomatch II-compatible libraries in pTRG-
series vectors [http://www.stratagene.com/products/showCategory.aspx?catId=78].
In contrast, KJ1567 libraries must be constructed in ApR vectors such as the pBR-
UV5-αLP vector discussed in this chapter.

3. A metal replicator gives more precision, but requires more practice for reproducible
use (inexperienced users often stab holes in agar plates). However, it is also much
more expensive to purchase than a plastic replicator; it can easily be homemade (see
Fig. 4A). If the user is constructing their own, it is important that all of the spokes
have a flat surface, and that spoke ends are level. The replicator should have 48
spokes in a 6 × 8 configuration to fit to a standard 90-mm Petri plate (thus, a plastic
replicator from Bel-Art, made to fit 12 × 8 plate, must be cut in half). A metal repli-
cator can be sterilized by autoclaving or by alcohol/flaming; a plastic replicator can
be sterilized by autoclaving or by rinsing with alcohol and air-drying.

4. So far, no autoactivating eukaryotic baits have been reported for the cI fusion-based
bacterial two-hybrid system. However, because of the still limited number of
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published uses of bacterial two-hybrid systems compared with yeast two-hybrid
systems, it still remains a possibility. In any case, performance of the autoactivation
assay provides an opportunity to work out the conditions for the subsequent screen.
In this assay, a combination of interacting proteins is used as a positive control.

5. A phage immunity assay can be run to check for both the stability and DNA-binding
capability inside a bacterial cell, as discussed in ref. 15.

6. Standard molecular biology techniques or alternative cloning strategies (i.e., in
vivo recombination [23] or GATEWAY cloning [20]) can be used. The bait-encoding
cDNA should be cloned in-frame with the λcI DBD, and a translation stop codon
should be created in-frame at the end of the bait sequence. If screens in both bacte-
ria and yeast are planned using a single bait prepared in pGLS23, bait construction
is subject to additional limitations required for use in the yeast system (see commen-
tary in Chapter 15).

7. An efficient transformation yields approx 107 transformants per µg of DNA (when
two plasmids are being simultaneously transformed). Therefore, this experiment
also provides a good chance to assess transformation efficiency, which will be of
considerable importance at the time of library transformation. If only a very small
number of colonies are obtained, or colonies are not apparent within 24 h, this
implies that transformation is very inefficient, and results obtained in characteri-
zation experiments may not be typical. In this case all solutions, media, and condi-
tions must be double-checked or prepared fresh and transformation be repeated. If
very few transformants containing the bait plasmid appear (compared with the
controls), or bacteria expressing the bait protein grow noticeably more poorly than
controls, or if colony population appears much more heterogeneous than control
(e.g., presents a mix of large and small colonies), this would suggest that the bait
protein is somewhat toxic to the E. coli.

8. If one is planning to use the Bacteriomatch II strain for screening, a pTRG-based
plasmid (pTRG-RGL) should be used instead of pLibB-Raf. Accordingly, ampi-
cillin in the medium should be replaced with Tc throughout the protocol.

9. For simplicity, the same prey plasmid pLibB-Raf (or pTRG-RGL) is used
throughout this experiment, under the assumption that most bait proteins will not
interact with BRaf (or RGL). At the researcher’s discretion (and if the researcher
is, e.g., studying Raf-interacting proteins), these plasmids can be substituted for
empty vectors in reaction mix (a).

10. At this step, the ability of a cI-fused bait to activate transcription should be
tested on both HIS3 and aadA reporters, whereas potential activation of the LacZ
reporter (in AG58[RP28] strain) is only optional. The auxotrophic reporter is the
most important for the library screening because it allows direct selection for
interaction phenotype. In addition, there is normally a good correlation between
activation of the two reporters, so it is very unlikely that a bait that does not activate
HIS3 will significantly activate LacZ. Therefore, if no activation is detected on
His-deficient plates, one should proceed further; if the bait causes growth on
His-deficient plates, it should be modified, regardless of its phenotype with the
LacZ reporter.
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11. There are options described further in this protocol to introduce the library (as
infectious phage) or the specific library plasmid into the bait-containing reporter
strain. If one of these options is going to be used, then approx 5% of each trans-
formation should be plated on an LB_C plate to produce “bait only” colonies.
After these have grown, they should be transferred to a master plate and preserved
while other tests are ongoing.

12. This is important, because for some baits, protein expression level is heterogeneous
between independent colonies, with accompanying heterogeneity of apparent ability
to activate transcription of the reporter(s). This is less of a problem with the bacterial
two-hybrid system than the yeast two-hybrid system, but it is good to be careful.

13. When making prints on a plate, dip the replicator in the wells of the microtiter
plate, then very gently put it on the surface of the solidified medium. Tilt slightly
in circular movement, then lift replicator and put it back in the microtiter plate
(keep the correct orientation). Make sure all the drops left on the surface are of
approximately the same size. If only one or two drops are missing, this is easy to
correct by dropping approx 3 µL of yeast suspension on the missing spots from
the corresponding wells. If many drops are missing, make sure that all the spokes
of the replicator are in good contact with liquid in the microtiter plate (it may be
necessary to cut off the side protrusions on the edge spokes of the plastic replicator)
and redo the whole plate. Continue replicating by shuttling back and forth between
microtiter and media plates. Let the liquid absorb to the agar before putting the
plates upside down in the incubator.

14. Basal expression levels of some baits (e.g., pBaitC-zip) may be so high that the
addition of IPTG causes no visually discernible difference.

15. This initial test includes comparing the candidate clones with the positive and
negative controls characterized in Subheading 3.1.2., step 5; make sure these
controls are available fresh at the time of library screening. If the master plate is
more than 1 wk old, restreak and grow anew; if more than 2 wk old, retransform.

16. The plating efficiency of positive clones and appearance of background colonies
can be tested by plating dilutions of the positive and negative clones from
Subheading 3.1.2.

17. The strongest interactors are not always the most biologically meaningful. In
Fig. 4B, compare growth of the spots a2, a5, and b5, all of which represent a
known interaction between HRas and RGL-2, with the growth of the spot c3,
which represents a previously undescribed (and probably nonphysiological)
interaction between HRas and LTBP4.

18. The absence of a PCR product from the purified plasmid indicates general PCR
problems (reagents, faulty amplifier). The absence of a PCR product from the pos-
itive control E. coli strains (under conditions in which the PCR from the purified
plasmid works well) indicates a need to adjust the amount of bacteria taken for the
reaction (either too low, so there is not enough template, or too high, which inhibits
the DNA polymerase).

19. Perform a restriction digest of up to 10 µL of the unpurified PCR product with
HaeIII in a total volume of 20 µL. Rearrange the loading order according to the
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results obtained with nondigested PCR, and load the digestion products on a 1.5%
agarose gel. Run out the DNA fragments a sufficient distance to get good resolution
of DNA products in the 200–1000-bp size range. This will generally yield distinctive
and unambiguous groups of inserts, confirming whether multiple isolates of a small
number of cDNAs have been obtained.

20. Primer FPP1 provides enough specificity to sequence library plasmid even from
this crude mixture.

21. It is possible to use 5 µL of unpurified plasmid mixture (see Subheading 3.2.1.,
step 2) to transform the original reporter strain (and, in parallel, pBaitC-zip and/or
pBaitC-Ras control bait strains) used in Subheading 3.1.1. (see also Note 11).

22. A further option is to test a few additional bait proteins that are related to one’s
protein of interest and a few that are unrelated. Interaction with related bait
proteins and not with unrelated bait proteins might indicate that the isolated prey
specifically interacts with a family of proteins, whereas interaction with any
nonspecific baits tested can indicate a widespread or a nonspecific interaction.
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Engineering Cys2His2 Zinc Finger Domains Using 
a Bacterial Cell-Based Two-Hybrid Selection System
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Summary
Synthetic Cys2His2 zinc finger domains with novel DNA-binding specificities can be identi-

fied from large randomized libraries using selection methodologies such as phage display. It has
been previously demonstrated that a bacterial cell-based two-hybrid system is at least as effective
as phage display for selecting zinc fingers with desired specificities from these libraries. In this
chapter the authors provide updated and detailed protocols for performing zinc finger selections
using the bacterial two-hybrid system.

Key Words: Artificial transcription factor; bacterial two-hybrid; Cys2His2 zinc finger; zinc
finger nuclease; gene therapy; gene targeting; protein engineering; synthetic biology.

1. Introduction
Artificial Cys2His2 zinc finger domains (C2H2 ZFs) with engineered DNA-

binding specificities have shown promise for applications in both biological
research and gene therapy (1–9). Selection-based methods for altering the speci-
ficities of individual C2H2 ZFs typically involve randomization of amino acid
residues in the DNA-recognition helix to generate large libraries followed by use
of a selection method to identify variants with desired DNA-binding specifici-
ties. Early studies utilized phage display for the selection method (2,10,11) but
more recent studies have demonstrated that a bacterial cell-based two-hybrid
(B2H) system works as well as phage display, and might be, in certain cases,
more effective (12,13). In addition, the B2H system is somewhat easier to use
than phage display because it directly selects for proteins in an in vivo, cellular
context whereas phage display requires multiple rounds of in vitro selection.

In this chapter, detailed methods are described for using the B2H system to
identify individual C2H2 ZFs with desired DNA-binding specificities from
randomized libraries more than 108 in size. Although, similar protocols have



been outlined in previous publications (12,13), the overall approach has evolved
in our laboratory as we have gained experience with the method. The protocol
described in detail herein is the most up-to-date method currently utilized by
the laboratory for selections.

2. Materials
2.1. Molecular Biology Reagents

10X Annealing buffer (1 mL): 400 µL 1 M Tris-HCl, pH 8.0 200 µL 1 M
MgCl2, 100 µL 5 M NaCl, and 300 µL H2O.

2.2. Primer Sequences

1. OK.181 sequencing primer: 5′-CCAGAGCATGTATCATATGGTCCAGAAA
CCC-3′.

2. OK.5 polymerase chain reaction (PCR) primer: 5′-AAAATAGGCGTATCAC-
GAGGCCCT-3′.

3. OK.163 PCR primer: 5′-CGCCAGGGTTTTCCCAGTCACGAC-3′.
4. OK.61 sequencing primer: 5′-GGGTAGTACGATGACGGAACCTGTC-3′.

2.3. Bacterial Strains

1. CSH100 (genotype: F′ lac proA+B+ [lacIq lacPL8]/ara− ∆ [gpt-lac]5).
2. KJ1C (genotype: F − ∆hisB463 ∆ [gpt-proAB-arg-lac] XIII zaj::Tn10).

These strains are both available from the Joung laboratory (Massachusette
General Hospital).

2.4. Bacterial Media

1. Luria Bertani (LB)/TKS plates contain tetracycline, kanamycin, and sucrose.
2. LB/TK plates contain tetracycline and kanamycin.
3. LB/Kan plates contain kanamycin.
4. LB/CCK plates contain carbenicillin, chloramphenicol, and kanamycin.
5. LB/CK plates contain chloramphenicol and kanamycin.
6. LB/Tet plates contain tetracycline.
7. M9 minimal medium plates.

For 500 mL: autoclave 439 mL H2O with 7.5 g bacto agar and magnetic stir bar.
After agar has cooled to approx 65°C, add 50 mL 10X M9 salts, 1 mL 1 M MgSO4,
10 mL 20% glucose, and 0.5 mL 100 mM CaCl2 and then pour plates.

8. NM medium (1 L): 836 mL H2O, 100 mL 10X M9 salts, 20 mL 20% glucose, 10 mL
20 mM adenine, 30 mL 200X amino acid mixture (see Step 10), 1 mL 1 M MgSO4,
1 mL 10 mg/mL thiamine, 1 mL 10 mM ZnSO4, and 1 mL 100 mM CaCl2.
a. Filter-sterilize and store at 4°C.
b. Add antibiotics, isopropyl-β-D-thiogalactopyranoside (IPTG), and 3-aminotriazole

(3-AT) as desired.
9. NM agar plates (1 L).

a. Autoclave 836 mL H2O, 15 g bacto agar, and a magnetic stir bar together.
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b. While agar is cooling, mix together the following components in a sterile flask:
100 mL 10X M9 salts, 20 mL 20% glucose, 10 mL 20 mM adenine, 30 mL 200X
amino acid mixture (see below), 1 mL 1 M MgSO4, 1 mL 10 mg/mL thiamine,
1 mL 10 mM ZnSO4, 1 mL 100 mM CaCl2, and antibiotics, IPTG, and 3-AT as
desired.

c. When agar has reached a temperature of approx 65°C, add the above mixture
to the agar, stir well, and pour plates.

d. NM/CCKI plates are NM agar plates supplemented with carbenicillin 
(100 µg/mL), chloramphenicol (30 µg/mL), kanamycin (30 µg/mL), and
IPTG (50 µM).

10. 200X Amino acid mixture: each of the six solutions below should be made sepa-
rately with ingredients mixed together in the order listed. The six solutions are then
mixed together, filter-sterilized, and stored at 4°C (see Note 1). This yields a 200X
stock containing all amino acids except histidine, cysteine, and methionine.
a. Solution I (100 mL): dissolve 0.99 g phenylalanine, 1.10 g lysine, and 2.50 g

arginine in H2O.
b. Solution II (100 mL): dissolve 0.20 g glycine, 0.70 g valine, 0.84 g alanine,

and 0.41 g tryptophan in H2O.
c. Solution III (100 mL): dissolve 0.71 g threonine, 8.40 g serine, 4.60 g proline,

and 0.96 g asparagine in H2O.
d. Solution IV (100 mL): add 9.1 mL 36.5% HCl to 80 mL H2O, dissolve 1.04 g

aspartate and 14.60 g glutamine. Adjust final volume to 100 mL with H2O.
e. Solution V (100 mL): dissolve 18.70 g K-glutamate in 80 mL H2O, dissolve

0.36 g tyrosine and 4 g NaOH pellets, and then adjust final volume to 100 mL
with H2O to 100 mL.

f. Solution VI (100 mL): dissolve 0.79 g isoleucine and 0.79 g leucine in H2O.
11. Final concentrations of antibiotics and other additives in plates.

a. Carbenicillin (100 µg/mL); stock is 50 mg/mL in ddH2O.
Note: Carbenicillin is used at a final concentration of 50 µg/mL in liquid media.

b. Chloramphenicol (30 µg/mL); stock is 30 mg/mL in EtOH.
c. Kanamycin (30 µg/mL); stock is 30 mg/mL in ddH2O.
d. Tetracycline (12.5 µg/mL); stock is 12.5 mg/mL in 80% EtOH.
e. Sucrose (5%); stock is 50% in ddH2O.
f. IPTG (50 µM); stock is 50 mM in ddH2O.
g. 3-AT (varies: 10–60 mM); stock is 1 M in ddH2O (see Note 2).
h. Streptomycin (varies: 20–80 µg/mL); stock is 100 mg/mL in ddH2O.

3. Methods
The B2H system, as used in this protocol, links the occurrence of a protein-

DNA interaction to the activation of two reporter genes: the yeast HIS3 and
the bacterial aadA genes. To do this, a “selection strain” harboring a cocistronic
HIS3/aadA reporter on a single copy episome is constructed. This reporter
also contains a target DNA site of interest positioned just upstream of the
weak promoter directing HIS3/aadA expression. If a zinc finger domain
capable of binding the target DNA site of interest (and fused to a fragment of
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the yeast Gal11P protein) is expressed in the selection strain, this leads to
recruitment of RNA polymerase to the weak promoter and subsequent activated
expression of HIS3/aadA transcription; this occurs because the Gal11P fragment
interacts with a yeast Gal4 protein fragment that is fused to a subunit of the
Escherichia coli RNA polymerase α-subunit (a hybrid protein referred to as the
αGal4 protein) (see Fig. 1) (13). Cells harboring such a zinc finger domain can
be identified on medium lacking histidine and containing the antibiotic strepto-
mycin. The stringency of the HIS3 or aadA selections can be increased by
adding higher concentrations of 3-AT (a competitive inhibitor of the HIS3
enzyme) or streptomycin, respectively, to the medium.

In this section, first the methods for engineering “selection strains” harboring
target DNA sequences of interest are described. Then the methods for using these
strains to identify zinc finger variants of interest from large randomized libraries
are described.
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Fig. 1. Schematic overview of the bacterial two-hybrid selection system A selec-
tion strain harboring the HIS3/aadA reporter and a kanamycin-resistance (KanR) gene on
a single copy recombinant F′ is transformed with plasmids encoding a hybrid αGal4
protein (harboring chloramphenicol resistance [CamR]) and a zinc finger domain–Gal11P
hybrid protein (harboring carbenicillin resistance [AmpR]). If the zinc finger domain
binds to the target DNA site present on the F′ reporter (black box), transcription of the
HIS3/aadA reporter gene cistron is activated through recruitment of RNA polymerase to
the reporter promoter mediated by interaction of the Gal11P and Gal4 domains. See text
for additional details.



3.1. Selection Strain Construction

Selection strains are constructed in two steps: In an initial step, a target
DNA site of interest is synthesized and then cloned into a multicopy plasmid
reporter vector designed in the lab. In a second step, a portion of this reporter
plasmid is recombined to a single copy F′ episome in bacterial strain CSH100
and the resulting recombinant F′ is then transferred by conjugation to KJ1C,
an F– strain in which one can select for HIS3 and aadA expression (13). The
method of selection strain construction is similar to one previously described
by Whipple (14) but utilizes a counter-selection step that simplifies identification
of desired double-recombinants (see Fig. 5).

3.1.1. Reporter Plasmid Construction

1. Cut approx 1 µg of the reporter plasmid pKJ1712 with SapI (NEB, New England
Biolabs). pKJ1712 contains two closely positioned SapI sites (see Fig. 2), and
therefore, digestion with SapI releases a small 45-bp fragment.
a. 1 µg Stuffer plasmid.
b. 5 µL 10X NEB buffer 4.
c. 5 µL SapI (2 U/µL).
d. Fill to 50 µL with H2O.
e. Incubate at 37°C for 2 h.

2. Isolate the 8678-bp pKJ1712 vector backbone on either an agarose or polyacry-
lamide gel using standard methods (Sambrook and Russell, 2001). Resuspend the
final purified digested vector in 20 µL of ddH2O.

3. Treat the purified vector with Pfu to create extended overhangs. Cloned Pfu DNA
polymerase (Stratagene) has a 3′- to 5′-exonuclease activity, and by providing only
one nucleotide (dCTP) to the reaction, the enzyme will degrade DNA until it reaches
a position that can be filled in with dCTP. At this point, the forward synthesis and
reverse exonuclease activities will reach equilibrium, thereby leaving extended over-
hangs as shown in Fig. 2. Reaction conditions for Pfu treatment are as follows.
2 µL 10 mM dCTP.
2 µL 10X Cloned Pfu buffer (Stratagene).
10 µL pKJ1712 SapI-digested vector.
1.2 µL Cloned Pfu (2.5 U/µL).
4.8 µL H2O.
72°C for 15 min, 4°C for more than 2 min.

4. As illustrated in Fig. 3, design a pair of oligonucleotides, which when annealed
together will form a double-stranded DNA fragment bearing the target DNA-binding
site and extended overhangs compatible with the pKJ1712 vector prepared in step 3,
Subheading 3.1.1.

5. Anneal the target DNA-binding site oligonucleotides together as follows:
a. 1 µL Oligo 1 (10 pmol/µL).
b. 1 µL Oligo 2 (10 pmol/µL).
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c. 20 µL 10X Annealing buffer.
d. 178 µL H2O.
e. Incubate at 95°C for 2 min, then shut off heat block and let tubes slowly cool

to 35°C and then place on ice or 95°C for 2 min → –1°C/min → 25°C → 4°C
in a thermocycler. Store at –80°C.

6. Ligate the purified pKJ1712 vector backbone to the annealed oligonucleotide
binding site as follows:
a. 2 µL Purified SapI-digested, Pfu-treated pKJ1712 vector.
b. 8 µL Annealed binding site oligos.
c. 10 µL 2X Quick ligase buffer (NEB).
d. 1 µL T4 DNA ligase (400 U/µL) (NEB).
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Fig. 2. Structure and sequence of the reporter plasmid vector pKJ1712. A schematic
of reporter plasmid pKJ1712 is shown. The region of the plasmid into which target
DNA-binding sites are cloned is represented as a black rectangle with corresponding
detailed sequence shown. Digestion of pKJ1712 with SapI Type IIS restriction enzyme
releases a 45-bp fragment. Further treatment of the SapI-digested vector backbone with
Pfu DNA polymerase in the presence of dCTP nucleotide results in formation of the
DNA overhangs illustrated



e. Room temperature for 5 min → ice.
A control ligation containing only the SapI-digested pKJ1712 vector (i.e., with-

out annealed oligos) is also performed.
7. Transform ligations into XL-1 Blue E. coli competent cells using standard proto-

cols and plate 1/3 of the transformations on LB/kan plates. Incubate plates at 37°C
overnight.

8. Isolate miniprep plasmid DNA from transformants. Typically, if there are at least
20-fold more colonies than the control transformation plate, DNA from two dif-
ferent colonies are prepared. As pKJ1712 is a low-copy number plasmid, 10 mL
overnight cultures in liquid LB/kanamycin (30 µg/mL) will yield an adequate
DNA concentration when using the QIAgen’s QIAprep Spin Miniprep Kit.
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Fig. 3. (A) Template for design of oligonucleotides harboring a target DNA site. The
target DNA site of interest is substituted for the “nnnnnnnnnn” sequence illustrated in the
template. (Note that this sequence can be longer than 10 bp if desired). Oligonucleotides
corresponding to the highlighted sequences are then synthesized and annealed together to
create an insert that can be ligated to reporter plasmid pKJ1712 (compare overhangs of
the annealed oligo complex with the overhangs of SapI-digested, Pfu-treated pKJ1712
shown at the bottom of Fig. 2). (B) Design of binding site oligonucleotides for the 10-bp
Zif268 target DNA site. As an example, this figure illustrates the design of binding site
oligonucleotides for the 10-bp Zif268 binding site 5′-GCGTGGGCGC-3′. In this example,
the amino-terminal finger of Zif268 binds to the 3′-end of the target sequence whereas
the carboxy-terminal finger binds to the 5′-end.



Typically, DNA is eluted in 50 µL 0.1X EB (a 1X EB stock is provided in the
QIAgen kit).

9. To verify uptake of the annealed oligonucleotides in the pKJ1712 plasmid, 5 µL of
each candidate DNA is digested with EcoRI and HindIII. As a control, plasmid
pKJ1712 is also digested with EcoRI and HindIII. Recombinants that have taken up
the annealed oligonucleotide insert should yield five bands of sizes 6109, 1006, 963,
431, and 190 bp. By contrast, pKJ1712 should yield five bands of sizes 6109, 1006,
963, 456, and 190 bp (see Note 3).

10. Plasmids that look correct by restriction digest should be sequenced to confirm the
target DNA-binding site. Primer OK.181, a primer which anneals to the sense
DNA strand just downstream of (and pointing back toward) the target binding site,
to verify the sequence of the insert is used (see Note 4).

3.1.2. F′ Episome Recombination and Transfer

3.1.2.1. RECOMBINATION OF REPORTER PLASMID SEQUENCES ONTO

THE F′ OF STRAIN CSH100

As shown in Fig. 4, the reporter plasmid contains portions of the lacIq and
lacZ gene that are also present in the F′ found in strain CSH100. These regions
of matching sequence can serve as point of recombination between the reporter
plasmid and the F′. A double crossover event at both regions of sequence identity
can lead to transfer of a portion of the reporter plasmid onto the F′.

1. Streak out F− strain KJ1C on a LB/Tet plate and grow at 37°C overnight.
2. The next day, transform F+ strain CSH100 with the reporter plasmid and plate

enough to obtain a confluent lawn of transformants on LB/Kan plate. Incubate
overnight at 37°C.

3.1.2.2. TRANSFER OF F′S FROM CSH100 TO KJ1C BY BACTERIAL MATING

The population of transformed CSH100 cells will contain a small number
of cells in which a single recombination event has led to integration of the
reporter onto the F′ (Fig. 5). In an even smaller number of cells, a double
recombination event will have exchanged the target DNA-binding site and pro-
moter present on the reporter plasmid with the promoter on the F′ (Fig. 5). As
is described in this step, all F′s (recombinant and nonrecombinant) in the
CSH100 transformants are transferred to the F− strain KJ1C by mating. In a
subsequent step, the desired double recombinant F′ that have been transferred
to strain KJ1C can be identified by plating on appropriate selective medium
(Fig. 5 and see Step 9).

1. Scrape the confluent plate of CSH100 transformants with a sterile wooden stick
and transfer cell paste to a sterile 25-mm glass tube containing 10 mL of LB
(see Note 5).
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2. Vortex to resuspend the CSH100 transformants (see Note 6) and transfer
approx 200 µL of this cell resuspension to a fresh 25-mm tube with 5 mL of LB 
(see Note 7).

3. Transfer approx 200 µL of an overnight culture of KJ1C cells (inoculated the night
before, grown in LB containing 12.5 µg/mL of tetracycline) to a sterile 25-mm
tube containing 10 mL of LB.

4. Prepare a control 25-mm tube containing 10 mL of LB.
5. Incubate all tubes from steps 2 to 4 for 2 h at 37°C without agitation, thereby

allowing cells to grow to log phase and for CSH100 cells to form F pili.
6. To perform matings, mix together the following combinations of the cultures from

steps 2 to 4 in sterile 18-mm glass tubes. Use 1 mL of each liquid culture (i.e., each
mating will consist of a total of 2 mL).
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Fig. 4. Homologous recombination between reporter plasmids and the CSH100 strain
F′ mediated by regions of sequence identity. Schematic of a reporter plasmid showing its
structure and its regions of sequence identity with the F′ from E. coli strain CSH100. A
double homologous recombination event between the two regions of sequence identity
(from the lacIq and lacZ genes) leads to insertion of a fragment consisting of the KanR

gene, the target DNA-binding site, and the HIS3/aadA reporter into the F′. Note that a
double homologous recombination event does not transfer the counter-selectable sacB
gene from the reporter plasmid to the F′.



a. CSH100 transformants + KJ1C (actual mating).
b. CSH100 transformants + LB (negative control).
c. KJ1C + LB (negative control).
d. LB + LB (negative control).

Allow matings to proceed at 37°C for 1 h without agitation.
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Fig. 5. Construction and identification of selection strains by recombination,
mating, and selection. Reporter plasmids transformed into CSH100 either undergo
no recombination (top left), single recombination (middle left), or double recombina-
tion (bottom left) with the F′ present in this strain. Mating of these CSH100 cells with
the tetracycline-resistant, F− strain KJ1C results in transfer of the three different F′s
into KJ1C cells (top, middle, and bottom right). When these cells are plated on
medium containing tetracycline, kanamycin, and sucrose, only KJ1C cells that have
received the double recombinant F′ (the desired selection strain, bottom right) will
survive. All of CSH100 cells (left side) will fail to grow because of sensitivity to tetra-
cycline. KJ1C cells that do not receive an F′, or that receive a nonrecombinant F′ (top
right) will fail to grow because of sensitivity to kanamycin. KJ1C cells that receive a
single recombinant F′ (middle right) will fail to grow because of their sensitivity to
sucrose owing to the presence of the sacB gene. KJ1C cells harboring a double recom-
binant F′ will be resistant to kanamycin, tetracycline, and sucrose and thus will be the
only surviving cells on the plate.



7. Put tubes on the wheel, 37°C for 90 min.
8. Plate 300 µL of the actual mating from step 6a above (CSH100 transformants

+ KJ1C) on a LB/TK plate and on a LB/TKS plate. Spot 5 µL of each of the
negative controls on a LB/TK plate and on a LB/TKS plate. Incubate all plates
overnight at 37°C.

As shown in Fig. 5, only KJ1C cells harboring the desired double recombinant F′
should grow on LB/TKS plates. All the matings are plated on LB/TK plates as well
to check that the counter-selectable marker (sacB) is working to eliminate KJ1C cells
harboring single recombinant and nonrecombinant F′s (see Fig. 5). (Note that
expression of the sacB gene is lethal in E. coli cells when they are plated on medium
containing sucrose.) Typically, at least a 10-fold reduction in the number of colonies
is observed when comparing the number of colonies on LB/TK with the number of
colonies on LB/TKS plates.

9. After KJ1C cells harboring the desired double recombinant F′ have been identified
on the basis of growth on LB/TKS plates (see Note 8), clonal isolates have been
purified by restreaking candidates two times to LB/TKS plates. (Note: KJ1C cells
grow quickly, so if they are streaked early in the morning, new pickable colonies
will typically be ready by evening to streak again.). Typically, two candidates are
chosen (which are designated “A” and “B”) for each desired clone because a small
percentage of cells that survive on LB/TKS plates will fail additional subsequent
verification tests (as described next).

3.1.3. Selection Strain Verification

3.1.3.1. GENETIC CONFIRMATION OF F′ TRANSFER

1. Resuspend each colony (A and B candidates) in 100 µL of 1X M9 Salts (this is
typically done in wells of a sterile 96-well plate). Spot 5 µL of each cell suspension
on an M9 minimal medium plate (see Note 9).

2. After overnight growth at 37°C, verify growth of cells within the spots. Candidates
that fail to grow should be discarded.

3.1.3.2. SEQUENCING OF THE RECOMBINANT F′ REPORTER

For candidates that successfully demonstrate growth on M9 minimal medium
plates, the portion of the F′ harboring the target DNA site is amplified and
sequenced to verify the reporter.

1. Use 20 µL of the cell suspension from step 1, Subheading 3.1.3.1., to inoculate a
4 mL LB/kanamycin (30 µg/mL) overnight culture.

2. Transfer approx 100 µL of saturated overnight culture to a 1.5-mL microcentrifuge
tube. Spin at maximum speed for 1 min in a microfuge. Remove media using a
pipet tip and then resuspend cells in 100 µL PCR-grade ddH2O. Heat the cell resus-
pension at 95°C for 10 min and then spin at maximum speed for 1 min in a
microfuge. Remove 50 µL of the supernatant to a fresh tube and use this crude
preparation of genomic DNA as template for a PCR reaction as follows:
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PCR conditions Cycling

5 µL crude template 95°C for 5 min
5 µL 10X Expand buffer 94°C for 30 sa

(Roche)
4 µL 10 mM dNTPs 60°C for 30 sa

1 µL OK5 (10 pmol/µL) 72°C for 2.5 mina

1 µL OK163 (10 pmol/µL) 72°C for 10 min
0.375 µL Expand enzyme 33.625 µL H2O

(Roche)
50 µL

aIndicates repeated steps in 25 cycles.

3. Run PCR products out on a 5% polyacrylamide gel or 1% agarose gel and isolate
the expected approx 1.8-kb DNA fragment. Sequencing of the target DNA-binding
site can be performed using primer OK181.

4. Typically, glycerol stocks and competent cells of the selection strain are also
prepared using the overnight culture inoculated in step 1, Subheading 3.1.3.2.

3.1.3.3. TRANSFORMATION OF RECOMBINANT F′ KJ1C STRAIN

WITH PLASMID PAC-αGAL4

The final step in preparation of the selection strain is to transform the KJ1C
strain, harboring a sequence verified F′ reporter episome, with the pAC-αGal4
plasmid (13) (see Note 10).

1. KJ1C cells bearing a sequence-verified recombinant F′ reporter episome are
transformed with plasmid pAC-αGal4 using standard chemical transformation
protocols. Transformations are plated on LB/CK plates because the recombinant
F′ episome in the KJ1C cells confers resistance to kanamycin whereas the pAC-
αGal4 plasmid encodes a chloramphenicol resistance gene.

2. Transformants are inoculated into overnight LB cultures containing chloram-
phenicol (30 µg/mL) and kanamycin (30 µg/mL) grown overnight at 37°C.

3. Glycerol stocks of the final selection strains are prepared using the overnight culture.

3.2. Selection of C2H2 ZFs Using the Bacterial Two-Hybrid System

To perform selections, phagemid libraries encoding randomized zinc fingers
are introduced into a selection strain and then plated on selective media. These
zinc finger variants are expressed as fusions to a fragment of the yeast Gal11P
protein, which interacts with the fragment of the yeast Gal4 protein present in
the αGal4 protein expressed in selection strains. Binding of a zinc finger domain
to the target DNA sequence leads to recruitment of RNA polymerase complexes
that have incorporated the αGal4 hybrid protein. This recruitment in turn leads
to activation of reporter gene expression and survival on selective medium.
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Typically, selections are performed in two stages. In stage A selections,
large numbers of transformants (typically ~109) are plated on a low-stringency
selection plate. Zinc finger-encoding phagemids are rescued from surviving
cells. In stage B selections, this enriched population of phagemids are then
reintroduced into the selection strain cells and plated on a series of higher
stringency selection plates. Phagemid DNA is then isolated from cells that
grow on the highest stringency plate and sequenced to determine the identity
of the fingers.

3.2.1. Stage A Selections

1. Streak out the selection strain on an LB/CK plate and incubate overnight at
37°C.

2. Use a fresh, well-isolated colony to start an overnight culture of the strain in 
20 mL of NM media supplemented with chloramphenicol (30 µg/mL), kanamycin
(30 µg/mL), and 50 mM IPTG. Because selection strain cells are sensitive to deter-
gents and rapid agitation, this culture should be grown in a sterile 125-mL glass
flask that was rinsed thoroughly with deionized distilled water before autoclaving
and with shaking at 110 rpm at 37°C for approx 16–24 h.

3. Introduction of zinc finger phagemid libraries into selection strain cells. The con-
struction of the randomized zinc finger phagemid libraries used in this step has
been previously described (12,13).
a. Thaw phagemid phage library on ice. Extreme care is required to prevent phage

contamination in the lab as it may persist.
b. Transfer 5 mL of the saturated overnight culture of selection strain cells to a

sterile 125-mL flask.
c. Add approx 6 × 108 ampicillin transducing units (see Note 11) of phagemid

library to the selection strain cells and gently swirl immediately. Allow the
cell/phagemid mixture to sit at room temperature for 30 min without agitation.

d. Add 20 mL of prewarmed NM media supplemented with chloramphenicol
(30 µg/mL), kanamycin (30 µg/mL), and 50 mM IPTG to the infected cells.
Shake at 110 rpm, 37°C for 90 min.

e. Transfer culture to a sterile 50-mL conical tube and pellet cells by spinning at
2500 rpm in a table top centrifuge for 25 min at room temperature.

f. Pour off medium and resuspend the cell pellet in 2.5 mL of prewarmed NM
medium supplemented with chloramphenicol (30 µg/mL), kanamycin 
(30 µg/mL), and 50 mM IPTG.

g. Serially dilute 100-µL aliquots of the cell resuspension in a sterile 96-well
microtiter plate (Corning, Cat. no. 3596). Perform three independent dilution
sets using NM medium supplemented with chloramphenicol (30 µg/mL),
kanamycin (30 µg/mL), and 50 mM IPTG. Perform dilutions from 10−1 to 10−8

(note that one will only plate dilutions 10−3–10−8).
h. Spot 5 µL of the 10−3 to 10−8 dilutions each in triplicate on LB/CK, LB/CCK,

and NM/CCK/50 µM IPTG plates. Incubate LB/CK and LB/CCK plates for
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16–18 h at 37°C and NM/CCK/50 µM IPTG plates for 24 h at 37°C. Titers
from these plates can be calculated the next day after colonies have formed
(see Step m).

i. Pour some sterile glass beads (Fisher Scientific, cat. no. 11-312A) (3 mm) onto a
large (245 × 245 mm2) NM/CCK/50 µM IPTG/10 mM 3-AT plate.

j. Measure the remainder of the cell suspension, record the value (this volume
will be used when calculating titers), and then add the cells to the NM/CCK/50
µM IPTG/10 mM 3-AT plate.

k. Spread the cells with circular motions using the beads to distribute the cells
evenly.

l. When plates have dried, turn plates over, and tap beads from the agar onto the
inverted plate cover. Incubate at 37°C for 24 h and then at room temperature
for 18 h.

m. The next day, count colonies on the serial dilution plates to calculate the total
number of cells and total number of transformed cells plated on the selection
plate. LB/CK plates are used to determine the total number of cells plated
and the LB/CCK and NM/CCK/I50 plates are used to determine the total
number of transformed cells plated. The following formula is used to perform
these calculations:
(No. of colonies/volume of spots [µL]) × dilution factor × volume (µL) plated
on large dish.
Example 65 total colonies in nine 5 µL spots of a 10−6 dilution together
with 2650 µL plated on the large plate would give the following equation:
(65 colonies/45 µL) × 106 × 2650 µL = 3.83 × 109 cells

4. Recovery of zinc finger-encoding plasmids from cells surviving the selection. In this
step, zinc finger-encoding plasmids from surviving cells are rescued as phagemids
by infecting these cells with M13K07 helper phage.
a. Turn the large selection plate over and tap the glass beads back onto the agar

and add 15 mL prewarmed NM media to the plate. Move the plates in a circular
motion using the glass beads to resuspend the cells in the media.

b. Transfer the suspension to a sterile 25-mm glass tube.
c. Remove 3 mL of cell resuspension to make glycerol stocks in case this recovery

step needs to be redone.
d. Add enough of the cell suspension to 90 mL 2XYT supplemented with carbeni-

cillin (50 µg/mL) and kanamycin (30 µg/mL) to give it a prelog appearance
(i.e., an OD600 of ~0.1). Shake this culture at 120 rpm, 37°C for 1 h.

e. Infect the log-phase culture with 1012 kanamycin-transducing units of M13K07
helper phage. Allow the phage to adsorb to the cells, without shaking, at room
temperature for 30 min.

f. Add kanamycin to a final concentration of 100 µg/mL (including the original
30 µg/mL present in the culture). Shake the culture at 125 rpm, 37°C for 6 h.
During this incubation, zinc finger-encoding phagemids from the cells will be
packaged as infectious phage particles harboring single-stranded DNA mole-
cules and extruded into the culture medium.
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g. Harvest the zinc finger-encoding phagemid phage by filtering the culture
through a 0.2 µm polyethersulfone (PES) filter membrane (no need to cen-
trifuge the cells away first). This enriched phagemid phage library can be
stored at 4°C for several weeks (for long-term storage, one freezes the
phage at −80°C).

3.2.2. Stage B Selections

3.2.2.1. INTRODUCTION OF ENRICHED LIBRARY OF ZINC FINGER-ENCODING PHAGEMID

PHAGE INTO THE SELECTION STRAIN

1. Start a 20 mL overnight culture of the selection strain in NM medium supple-
mented with chloramphenicol (30 µg/mL), kanamycin (30 µg/mL), and 50 mM
IPTG in a sterile 125-mL flask. Shake 16–24 h at 110 rpm, 37°C.

2. In a 96-well plate, aliquot 50 mL of the selection strain overnight culture into
six wells.

3. In another column of a 96-well plate, add 100 µL of the enriched phagemid phage
library to one well. Perform serial fivefold dilutions of the enriched library by
removing 20 µL of phage and adding it to a well containing 80 µL of NM medium
supplemented with chloramphenicol (30 µg/mL), kanamycin (30 µg/mL), and
IPTG (50 mM). Repeat to create 2E-1, 4E-2, 8E-3, 1.6E-3, and 3.2E-4 dilutions.

4. Infect each of the wells containing 50 µL of selection strain overnight culture with
10 µL of each of the following: undiluted enriched phagemid library and 2E-1, 4E-2,
8E-3, 1.6E-3, and 3.2E-4 dilutions of the phagemid library. Allow phage to adsorb
by leaving them (without shaking) at room temperature for 30 min.

5. Add 190 µL of prewarmed NM medium containing chloramphenicol (30 µg/mL),
kanamycin (30 µg/mL), and IPTG (50 mM) to each well. Incubate for 2 h at 37°C
(no shaking).

6. Spot 5-µL aliquots of the phagemid-infected selection strain cells on the following
plates:
a. NM/CCKI plates (six 5 µL spots on standard Petri dishes).
b. NM/CCKI/20 mM 3-AT/20 µg/mL streptomycin (10 spots [5-µL each] on small

square 100 × 100 mm2 plates).
c. NM/CCKI/25 mM 3-AT/40 µg/mL streptomycin (10 spots [5-µL each] on

small square 100 × 100 mm2 plates).
d. NM/CCKI/40 mM 3-AT/60 µg/mL streptomycin (10 spots [5-µL each] on small

square 100 × 100 mm2 plates).
7. Incubate plates 37°C for 48 h and inspect for colonies. Colonies may not form on

NM/CCKI/40 mM 3-AT/60 µg/mL streptomycin plates until approx 72–96 h of
incubation at 37°C.

3.2.2.2. ISOLATION AND SEQUENCING OF PLASMID DNA FROM SELECTED COLONIES

1. Pick 8–12 well-isolated colonies from the highest stringency selection plate on
which colonies appear and inoculate them into 4 mL of LB supplemented with
carbenicillin (50 µg/mL). Incubate overnight at 37°C with agitation.
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2. Prepare miniprep plasmid DNA from the saturated 4 mL overnight cultures using
QIAgen’s QIAprep Spin Miniprep Kit (cat. no. 27106) and their protocol with the
following differences:
a. Perform triple washes with both PB and PE buffers (see Note 12).
b. Elute the DNA with 60 µL of prewarmed (60°C) 0.1X EB (see Note 13).

3. Send the plasmids for sequencing with sequencing primer OK.61, a sense strand
primer, which anneals just upstream of the region encoding the zinc finger
domains.

4. Notes
1. It is important to dissolve the amino acids in each of the six solutions in precisely

the order listed as this avoids potential solubility issues. Typically, the amino acid
mixture is kept for no more than 2–3 mo.

2. 3-AT should be prepared using gloves. In addition, it has been found that the
solubility and purity of 3-AT varies from lot to lot. Some preparations have the
appearance of a white powder whereas others look like brown flakes. For certain
lots, it has been found that heating the solution to 50°C can aid with solubility.

3. These digests are run on 5% polyacrylamide gels made with 0.5X TBE buffer to
visualize the relatively small change in fragment size in clones that have taken up
the annealed oligonucleotide insert.

4. The entire sequence between the unique EcoRI site (positioned just upstream of
the zinc finger domain-binding site) and the unique SalI site (positioned at the
start site of transcription) will be sequence verified. Verifying this entire span of
sequence ensures that both the zinc finger-binding site and the promoter do not
have undesired mutations.

5. It has been found that using a resuspension of multiple transformed CSH100
colonies rather than an overnight culture grown from a single transformed colony
helps ensure that a relatively consistent percent of transformed CSH100 cells
contain the desired double-recombinant F′.

6. Set vortex to half-maximum speed to ensure that resuspension does not spill over
the top of the glass tube.

7. The initial density of this subculture should correspond to OD600 of approx 0.1
(i.e., prelogarithmic phase). Depending on the density of the resuspension culture,
more or less culture will be added as needed, to achieve this target OD600.

8. Occasionally, some small colonies are observed on the LB/TKS plates. Picking
these colonies is avoided because it has been found that these colonies do not yield
the desired recombinants.

9. KJ1C cells will not grow unless proline and histidine are provided in their media
owing to deletion of the proAB gene cluster and a deletion within the hisB gene,
respectively. A double recombinant F′ transferred from CSH100 cells harbors an
intact proAB gene cluster and expresses a low level of the yeast HIS3 gene, which
is sufficient to complement the hisB deletion of strain KJ1C. Thus, KJ1C cells that
receive a double recombinant F′ should be able to grow on M9 minimal medium
lacking proline and histidine.
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10. pAC-αGal4 encodes a fusion protein consisting of the N-terminal domain and
interdomain linker of the E. coli RNA polymerase α-subunit, fused to amino acid
residues 58–97 of the yeast Gal4 protein. Expression of the αGal4 hybrid protein
from pAC-αGal4 is directed by a strong, IPTG-inducible semisynthetic
lpp/lacUV5 promoter. The pAC-aGal4 plasmid possesses a p15A origin of repli-
cation and confers resistance to chloramphenicol.

11. Typically, it is aimed for a threefold oversampling of the size of the randomized
library being interrogated and for a fivefold ratio of total cells to transformed
cells. For example, for a randomized library with a complexity of approx 2 × 108,
one would aim to plate a total of approx 6 × 108 transformed cells and of more
than 3 × 109 total cells on the selection plate.

12. It has been found that these triple washes are critical for obtaining good quality
sequencing reads. It is believed that these washes help reduce contaminating
endonuclease activity from the endA+ selection strains.

13. 0.1X EB is buffer EB from the QIAgen miniprep kit diluted 10-fold with ddH2O.

Acknowledgments
This work was supported by grants from the National Institutes of Health (K08

DK002883 and R01 GM069906) and start-up funds from the Massachusetts
General Hospital Department of Pathology. J.K.J. dedicates this work to Robert L.
Burghoff, Ph.D., who always taught and shared his best protocols.

References
1. Jamieson, A. C., Miller, J. C., and Pabo, C. O. (2003) Drug discovery with engi-

neered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361–368.
2. Beerli, R. R. and Barbas, C. F., 3rd. (2002) Engineering polydactyl zinc-finger

transcription factors. Nat. Biotechnol. 20, 135–341.
3. Blancafort, P., Segal, D. J., and Barbas, C. F., 3rd. (2004) Designing transcription

factor architectures for drug discovery. Mol. Pharmacol. 66, 1361–1371.
4. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., and Chandrasegaran, S.

(2005) Zinc finger nucleases: custom-designed molecular scissors for genome
engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990.

5. Porteus, M. H. (2005) Mammalian gene targeting with designed zinc finger
nucleases. Mol. Ther. 13(2), 438–446.

6. Porteus, M. H. and Baltimore, D. (2003) Chimeric nucleases stimulate gene
targeting in human cells. Science 300, 763.

7. Porteus, M. H. and Carroll, D. (2005) Gene targeting using zinc finger nucleases.
Nat. Biotechnol. 23, 967–973.

8. Urnov, F. D., Miller, J. C., Lee, Y. L., et al. (2005) Highly efficient endogenous
human gene correction using designed zinc-finger nucleases. Nature 435, 646–651.

9. Alwin, S., Gere, M. B., Guhl, E., et al. (2005) Custom zinc-finger nucleases for use
in human cells. Mol. Ther. 12(4), 610–617.

10. Choo, Y. and Klug, A. (1995) Designing DNA-binding proteins on the surface of
filamentous phage. Curr. Opin. Biotechnol. 6, 431–436.

Engineering Cys2His2 Zinc Finger Domains 333



11. Pabo, C. O., Peisach, E., and Grant, R. A. (2001) Design and selection of novel
Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340.

12. Hurt, J. A., Thibodeau, S. A., Hirsh, A. S., Pabo, C. O., and Joung, J. K. (2003)
Highly specific zinc finger proteins obtained by directed domain shuffling and
cell-based selection. Proc. Natl. Acad. Sci. USA 100, 12,271–12,276.

13. Joung, J. K., Ramm, E. I., and Pabo, C. O. (2000) A bacterial two-hybrid selection
system for studying protein-DNA and protein-protein interactions. Proc. Natl.
Acad. Sci. USA 97, 7382–7387.

14. Whipple, F. W. (1998) Genetic analysis of prokaryotic and eukaryotic DNA-
binding proteins in Escherichia coli. Nucleic Acids Res. 26, 3700–3706.

334 Thibodeau-Beganny and Joung



A
amino acid 69–73, 75–79, 81–82, 85–86,

105, 112–114, 118, 121, 126,
194–196, 212, 214, 217, 263, 296,
298, 317–319, 332–333

antibody 138, 236, 238,
monoclonal 247–248, 251
polyclonal 243, 247–248, 250, 253

B
blots

Western 165, 215, 217, 220, 229,
236–237, 260, 269, 285–286, 302,
305–307

Northern 236–237

C
chromatin 51, 129–131

ChIP-chip 20, 129, 131, 138–139
cis-regulatory 54, 68, 129

cis-regulatory element (CRE) or 
cis-regulatory module  129–130,
136, 138, 141, 146

D
data analysis and mining

CART 131, 136–137, 139, 141, 144,
146–147

Clustering 2, 9, 35, 46, 49, 52, 54,
57–59, 61–64, 66, 93–95, 97–98,
101–104, 134, 286

Random Forest 137, 139, 141,
144–145, 147,

Rosetta stone 109–110, 112, 115,
120–125

database
BioCarta 20, 22, 24, 27–28

CGAP (Cancer Genome Anatomy
Project) 22, 29, 31

Ensembl 22–24, 52–55, 62–63,
195, 200

EntrezGene 24, 30
GenBank 52–53, 55, 59, 62, 95,

113, 232
KEGG (Kyoto Encyclopedia of Genes

and Genomes) 20, 22, 24, 27–28,
31, 124

PDB (Protein DataBank) 69, 71, 75
TRANSFAC 52, 55, 60, 63, 130–134
UniGene 24, 29, 55, 62

differential expression 171–174,
176–177, 187

dimensionality 1–2, 5–6, 9, 12, 39–40,
57, 145

E
ELISA (Enzyme-Linked ImmunoSorbent

Assay) 247–253

G
Gene

CpG island 129, 131, 138–139, 149
exon 53, 93, 95, 99, 102, 194–195,

198–199, 215, 224, 321
intron 194–195, 197
transcription factor binding site (TFBS)

20, 130–139, 141, 144–145, 147
gene annotation 3, 6, 30, 62
comparative genomics 93, 134

I
immunostaining 236–238
interactome 109, 125 
intrinsically disordered protein 69–70, 73

335

Index



K
knockin (gene knockin) 193, 211–212
knockout (gene knockout) 1–2, 6, 13,

193–194, 196–198, 200–201, 203,
206, 208, 244

L
library (cDNA) 194, 258, 261, 269, 292
ligand 71, 89

M
matrix (mathematical) 1, 4–5, 8–10, 12,

35–36, 38–41, 45, 102, 138–139, 142,
144, 177–178, 180

O
ortholog 23–24, 93–96, 98–99, 101,

103–104, 132–141, 145, 196

P
paralog 93–94, 103, 124
pathway 1, 5, 11, 13, 15, 17, 19–20,

27–28, 50, 64, 71, 109–110, 119, 121,
174, 283, 289

phage display
antibody phage display  243–244

phenotype 1–2, 15, 19, 24, 50, 171–175,
177–179, 188, 193–194, 196, 208,
211, 244, 260, 265–266, 276–277,
282, 284, 288, 305, 309, 311–312

phylogenetic footprinting (or profiling)
109–110, 112, 116, 125, 130–131,
134–135

polymorphism 194, 202, 232
primer 197–205, 208, 214–216, 218, 227,

234–236, 263–264, 279–282, 287–288,
301, 310, 314, 318, 324, 328, 332

promoter analysis
protein complex 17, 194, 224
protein interaction map 110, 228
protein-DNA interaction 51, 131, 319

TF-DNA interaction 129, 132, 134
protein-protein interaction 51, 109, 257,

288–289, 291–292, 296

R
recombination 281, 283, 288, 290, 312,

324–326
homologous recombination 193, 202

regulatory network 20, 49–51, 55, 64,
129–130

reporter
auxotrophic 263, 266, 276–277,

294–295, 303, 312
bacterial reporter 295, 304–305 
BacteriomatchII 295, 301, 303
colorimetric 258, 266, 276–277,

287, 294, 303
LacZ or GasA 260–262, 267–268,

284, 294–295, 312
HIS3/aadA 294–295, 303,

319–320, 325
RISC (RNA-induced silencing 

complex) 224
RNA

mRNA 35–36, 38, 195, 211–212, 215,
217, 243

siRNA 2, 223–226, 230, 232, 236
shRNA 211–221, 223–231,

233–239
shRNA-resistant cDNA 211,

217, 219

S
SAGE (serial analysis of gene expression)

194–195, 200
Sequence Analysis 78, 133, 315

BLAST (Basic Local Alignment
Search Tool) 96–100, 102–104,
111–118, 121, 124–126,
194–196, 233

ClustalW 99, 103
FASTA format 55, 60, 78, 81, 85,

113, 196
position weight matrix (PWM) 51,

130–135, 141, 145
silent mutation 211–212, 217
Statistics

correlation coefficient 175, 182

336 Index



eigenvalue 178, 180–182, 184–185
false discovery rate (FDR) 57, 61, 64,

66, 68
false negative 55, 134, 258, 260
false positive 60, 64, 119, 123,

126, 130, 134, 257–258, 260,
269, 274, 281–282,
285–287, 305

multiple testing 57, 64, 188
mutual information 118–119
power 182–186, 257, 260
p-value 11, 13, 27, 57–59, 61–62,

64–66, 182
Shannon entropy 180
Z-score 40, 44–45

synteny (syntenic) 93–94

T
text mining 35, 157
transcriptional regulation 129

transcription factor binding site (TFBS)
20, 130–139, 141, 144–145, 147

transcriptional regulatory element
(TRE) 55, 57–58

transcription factor (TF) 43, 49–50,
76, 317

V
virus 127, 253

retrovirus 211–212, 215, 217–220
visualization 1–2, 4, 6, 9, 18, 25, 31, 37,

42, 49, 53–54, 57–62, 64, 66, 77, 93,
95, 100, 176, 194

Index 337


	Cover
	Frontmatter
	I: Computational Methods I
	1 Gene Function Inference From Gene Expression of Deletion Mutants
	2 Association Analysis for Large-Scale Gene Set Data
	3 Estimating Gene Function With Least Squares Nonnegative Matrix Factorization
	4 From Promoter Analysis to Transcriptional Regulatory Network Prediction Using PAINT
	5 Prediction of Intrinsic Disorder and Its Use in Functional Proteomics

	II: Computational Methods II
	6 Sybil: Methods and Software for Multiple Genome Comparison and Visualization
	7 Estimating Protein Function Using Protein–Protein Relationships
	8 Bioinformatics Tools for Modeling Transcription Factor Target Genes and Epigenetic Changes
	9 Mining Biomedical Data Using MetaMap Transfer (MMTx) and the Unified Medical Language System (UMLS)
	10 Statistical Methods for Identifying Differentially Expressed Gene Combinations

	III: Experimental Methods
	11 Gene Function Analysis Using the Chicken B-Cell Line DT40
	12 Design and Application of a shRNA-Based Gene Replacement Retrovirus
	13 Construction of Simple and Efficient DNA Vector-Based Short Hairpin RNA Expression Systems for Specific Gene Silencing in Mammalian Cells
	14 Selection of Recombinant Antibodies From Antibody Gene Libraries
	15 A Bacterial/Yeast Merged Two-Hybrid System - Protocol for Yeast Screening With Single or Parallel Baits
	16 A Bacterial/Yeast Merged Two-Hybrid System - Protocol for Bacterial Screening
	17 Engineering Cys2His2 Zinc Finger Domains Using a Bacterial Cell-Based Two-Hybrid Selection System

	Index



